Science.gov

Sample records for diffusive optical cavity

  1. Dual frequency optical cavity

    DOEpatents

    George, E.V.; Schipper, J.F.

    Method and apparatus for generating two distinct laser frequencies in an optical cavity, using a T configuration laser cavity and means for intermittently increasing or decreasing the index of refraction n of an associated transmission medium in one arm of the optical cavity to enhance laser action in one arm or the second arm of the cavity.

  2. Dual frequency optical cavity

    DOEpatents

    George, E. Victor; Schipper, John F.

    1985-01-01

    Method and apparatus for generating two distinct laser frequencies in an optical cavity, using a "T" configuration laser cavity and means for intermittently increasing or decreasing the index of refraction n of an associated transmission medium in one arm of the optical cavity to enhance laser action in one arm or the second arm of the cavity.

  3. Optically measuring interior cavities

    SciTech Connect

    Stone, Gary Franklin

    2008-12-21

    A method of measuring the three-dimensional volume or perimeter shape of an interior cavity includes the steps of collecting a first optical slice of data that represents a partial volume or perimeter shape of the interior cavity, collecting additional optical slices of data that represents a partial volume or perimeter shape of the interior cavity, and combining the first optical slice of data and the additional optical slices of data to calculate of the three-dimensional volume or perimeter shape of the interior cavity.

  4. Tuned optical cavity magnetometer

    DOEpatents

    Okandan, Murat; Schwindt, Peter

    2010-11-02

    An atomic magnetometer is disclosed which utilizes an optical cavity formed from a grating and a mirror, with a vapor cell containing an alkali metal vapor located inside the optical cavity. Lasers are used to magnetically polarize the alkali metal vapor and to probe the vapor and generate a diffracted laser beam which can be used to sense a magnetic field. Electrostatic actuators can be used in the magnetometer for positioning of the mirror, or for modulation thereof. Another optical cavity can also be formed from the mirror and a second grating for sensing, adjusting, or stabilizing the position of the mirror.

  5. Optical cavity furnace for semiconductor wafer processing

    DOEpatents

    Sopori, Bhushan L.

    2014-08-05

    An optical cavity furnace 10 having multiple optical energy sources 12 associated with an optical cavity 18 of the furnace. The multiple optical energy sources 12 may be lamps or other devices suitable for producing an appropriate level of optical energy. The optical cavity furnace 10 may also include one or more reflectors 14 and one or more walls 16 associated with the optical energy sources 12 such that the reflectors 14 and walls 16 define the optical cavity 18. The walls 16 may have any desired configuration or shape to enhance operation of the furnace as an optical cavity 18. The optical energy sources 12 may be positioned at any location with respect to the reflectors 14 and walls defining the optical cavity. The optical cavity furnace 10 may further include a semiconductor wafer transport system 22 for transporting one or more semiconductor wafers 20 through the optical cavity.

  6. Photonic crystal cavities and integrated optical devices

    NASA Astrophysics Data System (ADS)

    Gan, Lin; Li, ZhiYuan

    2015-11-01

    This paper gives a brief introduction to our recent works on photonic crystal (PhC) cavities and related integrated optical structures and devices. Theoretical background and numerical methods for simulation of PhC cavities are first presented. Based on the theoretical basis, two relevant quantities, the cavity mode volume and the quality factor are discussed. Then the methods of fabrication and characterization of silicon PhC slab cavities are introduced. Several types of PhC cavities are presented, such as the usual L3 missing-hole cavity, the new concept waveguide-like parallel-hetero cavity, and the low-index nanobeam cavity. The advantages and disadvantages of each type of cavity are discussed. This will help the readers to decide which type of PhC cavities to use in particular applications. Furthermore, several integrated optical devices based on PhC cavities, such as optical filters, channel-drop filters, optical switches, and optical logic gates are described in both the working principle and operation characteristics. These devices designed and realized in our group demonstrate the wide range of applications of PhC cavities and offer possible solutions to some integrated optical problems.

  7. Cavity-enhanced spectroscopy in optical fibers.

    PubMed

    Gupta, Manish; Jiao, Hong; O'Keefe, Anthony

    2002-11-01

    Cavity-enhanced methods have been extended to fiber optics by use of fiber Bragg gratings (FBGs) as reflectors. High-finesse fiber cavities were fabricated from FBGs made in both germanium/boron-co-doped photosensitive fiber and hydrogen-loaded Corning SMF-28 fiber. Optical losses in these cavities were determined from the measured Fabry-Perot transmission spectra and cavity ring-down spectroscopy. For a 10-m-long single-mode fiber cavity, ring-down times in excess of 2 ms were observed at 1563.6 nm, and individual laser pulses were resolved. An evanescent-wave access block was produced within a fiber cavity, and an enhanced sensitivity to optical loss was observed as the external medium's refractive index was altered.

  8. Calculating model of light transmission efficiency of diffusers attached to a lighting cavity.

    PubMed

    Sun, Ching-Cherng; Chien, Wei-Ting; Moreno, Ivan; Hsieh, Chih-To; Lin, Mo-Cha; Hsiao, Shu-Li; Lee, Xuan-Hao

    2010-03-15

    A lighting cavity is a reflecting box with light sources inside. Its exit side is covered with a diffuser plate to mix and distribute light, which addresses a key issue of luminaires, display backlights, and other illumination systems. We derive a simple but precise formula for the optical efficiency of diffuser plates attached to a light cavity. We overcome the complexity of the scattering theory and the difficulty of the multiple calculations involved, by carrying out the calculation with a single ray of light that statistically represents all the scattered rays. We constructed and tested several optical cavities using light-emitting diodes, bulk-scattering diffusers, white scatter sheets, and silver coatings. All measurements are in good agreement with predictions from our optical model.

  9. Mounting system for optical frequency reference cavities

    NASA Technical Reports Server (NTRS)

    Notcutt, Mark (Inventor); Hall, John L. (Inventor); Ma, Long-Sheng (Inventor)

    2008-01-01

    A technique for reducing the vibration sensitivity of laser-stabilizing optical reference cavities is based upon an improved design and mounting method for the cavity, wherein the cavity is mounted vertically. It is suspended at one plane, around the spacer cylinder, equidistant from the mirror ends of the cavity. The suspension element is a collar of an extremely low thermal expansion coefficient material, which surrounds the spacer cylinder and contacts it uniformly. Once the collar has been properly located, it is cemented in place so that the spacer cylinder is uniformly supported and does not have to be squeezed at all. The collar also includes a number of cavities partially bored into its lower flat surface, around the axial bore. These cavities are support points, into which mounting base pins will be inserted. Hence the collar is supported at a minimum of three points.

  10. Light diffusing fiber optic chamber

    DOEpatents

    Maitland, Duncan J.

    2002-01-01

    A light diffusion system for transmitting light to a target area. The light is transmitted in a direction from a proximal end to a distal end by an optical fiber. A diffusing chamber is operatively connected to the optical fiber for transmitting the light from the proximal end to the distal end and transmitting said light to said target area. A plug is operatively connected to the diffusing chamber for increasing the light that is transmitted to the target area.

  11. Optical Resonant Cavity in a Nanotaper

    SciTech Connect

    Lee, Sang Hyun; Goto, Takenari; Miyazaki, Hiroshi; Chang, Jiho; Yao, Takafumi

    2010-01-01

    The present study describes an optical resonant cavity in a nanotaper with scale reduction from micro to several nanometers. Both experimental results and a finite-difference time-domain (FDTD)-based simulation suggested that the nanometer-scale taper with a diameter similar to the wavelength of light acted as a mirror, which facilitated the formation of a laser cavity and caused lasing in ZnO nanotapers. As the light inside the nanotaper propagated toward the apex, the lateral mode was reduced and reflection occurred. This report suggests that use of the resonant optical cavities in nanotapers might result in novel active and passive optical components, which will broaden the horizons of photonic technology.

  12. 850-nm Zn-diffusion vertical-cavity surface-emitting lasers with with oxide-relief structure for high-speed and energy-efficient optical interconnects from very-short to medium (2km) reaches

    NASA Astrophysics Data System (ADS)

    Shi, Jin-Wei; Wei, Chia-Chien; Chen, Jason (Jyehong); Yang, Ying-Jay

    2015-03-01

    High-speed and "green" ~850 nm vertical-cavity surface-emitting lasers (VCSELs) have lately attracted lots of attention due to their suitability for applications in optical interconnects (OIs). To further enhance the speed and its maximum allowable linking distance of VCSELs are two major trends to meet the requirement of OI in next generation data centers. Recently, by use of the advanced 850 nm VCSEL technique, data rate as high as 64 Gbit/sec over 57m and 20 Gbit/sec over 2km MMF transmission have been demonstrated, respectively. Here, we will review our recent work about 850 nm Zn-diffusion VCSELs with oxide-relief apertures to further enhance the above-mentioned performances. By using Zn-diffusion, we can not only reduce the device resistance but also manipulate the number of optical modes to benefit transmission. Combing such device, which has excellent single-mode (SMSR >30 dB) and high-power (~7mW) performance, with advanced modulation format (OFDM), record-high bit-rate-distance-product through MMF (2.3 km×28 Gbit/sec) has been demonstrated. Furthermore, by selective etching away the oxide aperture inside Zn-diffusion VCSEL, significant enhancement of device speed, D-factor, and reliability can be observed. With such unique VCSEL structure, >40 Gbit/sec energy-efficient transmission over 100m MMF under extremely low-driving current density (<10kA/cm2) has been successfully demonstrated.

  13. Gas Diffusion Studies in Steady and Nonsteady Cavities

    DTIC Science & Technology

    1987-09-01

    gaseous diffusion, turbulent entrainment, cavitating flows, gas-liquid interface, two-dimensional flows, hydrofoil I Ioscillation 19 ABSTRACT...PAS Water tunnel experiments for twoidimensional f ows were co2ducted on cavities behind a stationary and oscillating -~flat plate’ (wedge) hydrofoil ...for two-dimensional flows were conducted on cavities behind a stationary and oscillating "flat plate" (wedge) hydrofoil . It is found that the steady

  14. Optical cavity resonator in an expanding universe

    NASA Astrophysics Data System (ADS)

    Kopeikin, Sergei M.

    2015-02-01

    We study the cosmological evolution of frequency of a standing electromagnetic wave in a resonant optical cavity placed to the expanding manifold described by the Robertson-Walker metric. Because of the Einstein principle of equivalence (EEP), one can find a local coordinate system (a local freely falling frame), in which spacetime is locally Minkowskian. However, due to the conformal nature of the Robertson-Walker metric the conventional transformation to the local inertial coordinates introduces ambiguity in the physical interpretation of the local time coordinate, . Therefore, contrary to a common-sense expectation, a straightforward implementation of EEP alone does not allow us to unambiguously decide whether atomic clocks based on quantum transitions of atoms, ticks at the same rate as the clocks based on electromagnetic modes of a cavity. To resolve this ambiguity we have to analyse the cavity rigidity and the oscillation of its electromagnetic modes in an expanding universe by employing the full machinery of the Maxwell equations irrespectively of the underlying theory of gravity. We proceed in this way and found out that the size of the cavity and the electromagnetic frequency experience an adiabatic drift in conformal (unphysical) coordinates as the universe expands in accordance with the Hubble law. We set up the oscillation equation for the resonant electromagnetic modes, solve it by the WKB approximation, and reduce the coordinate-dependent quantities to their counterparts measured by a local observer who counts time with atomic clock. The solution shows that there is a perfect mutual cancellation of the adiabatic drift of cavity's frequency by space transformation to local coordinates and the time counted by the clocks based on electromagnetic modes of cavity has the same rate as that of atomic clocks. We conclude that if general relativity is correct and the local expansion of space is isotropic there should be no cosmological drift of frequency of a

  15. Hybrid ion chains inside an optical cavity

    NASA Astrophysics Data System (ADS)

    Zhou, Zichao; Siverns, James; Quraishi, Qudsia

    2016-05-01

    Trapped ions remain a leading candidate for the implementation of large-scale quantum networks. These networks require nodes that can store and process quantum information as well as communicate with each other though photonic flying qubits. We propose to use hybrid ion chains of barium, for communication, and ytterbium, for quantum information processing. We report on progress in setting up a hybrid ion chain in a versatile four-blade trap using high numerical aperture collection optics. Although the visible photons produced from barium ions are more favorable as they are not suitable for long distance fiber communication. With this in mind, we intend to implement frequency conversion to overcome this issue. Also, with the view toward increasing the flying-qubit production rate, we propose a cavity-based system to enhance interactions between the ions and photons. The cavity axis is to be placed along the axial direction of the trap allowing a chain of multiple ions to interact with the cavity at the same time. With this configuration the atom-photon coupling strength can be improved by sqrt(N), where N is the number of ions. Experiments will focus on exploring the dynamics of hybrid ion chain, dual species quantum information processing, two-colour entanglement and phase gates assisted by the ion-cavity coupling are to be explored.

  16. Specimen illumination apparatus with optical cavity for dark field illumination

    DOEpatents

    Pinkel, Daniel; Sudar, Damir; Albertson, Donna

    1999-01-01

    An illumination apparatus with a specimen slide holder, an illumination source, an optical cavity producing multiple reflection of illumination light to a specimen comprising a first and a second reflective surface arranged to achieve multiple reflections of light to a specimen is provided. The apparatus can further include additional reflective surfaces to achieve the optical cavity, a slide for mounting the specimen, a coverslip which is a reflective component of the optical cavity, one or more prisms for directing light within the optical cavity, antifading solutions for improving the viewing properties of the specimen, an array of materials for analysis, fluorescent components, curved reflective surfaces as components of the optical cavity, specimen detection apparatus, optical detection equipment, computers for analysis of optical images, a plane polarizer, fiberoptics, light transmission apertures, microscopic components, lenses for viewing the specimen, and upper and lower mirrors above and below the specimen slide as components of the optical cavity. Methods of using the apparatus are also provided.

  17. Optical scatter of quantum noise filter cavity optics

    NASA Astrophysics Data System (ADS)

    Vander-Hyde, Daniel; Amra, Claude; Lequime, Michel; Magaña-Sandoval, Fabian; Smith, Joshua R.; Zerrad, Myriam

    2015-07-01

    Optical cavities to filter squeezed light for quantum noise reduction require optics with very low scattering losses. We report on measured light scattering from two super-polished fused silica optics before and after applying highly-reflective ion-beam sputtered dielectric coatings. We used an imaging scatterometer that illuminates the sample with a linearly polarized 1064 nm wavelength laser at a fixed angle of incidence and records images of back scatter for azimuthal angles in the plane of the laser beam. We extract from these images the bidirectional reflectance distribution function (BRDF) of the optics with and without coating and estimate their integrated scatter. We find that application of these coatings led to a more than 50% increase of the integrated wide-angle scatter, to 5.00+/- 0.30 and 3.38+/- 0.20 ppm for the two coated samples. In addition, the BRDF function of the coated optics takes on a pattern of maxima versus azimuthal angle. We compare with a scattering model to show that this is qualitatively consistent with roughness scattering from the coating layer interfaces. These results are part of a broader study to understand and minimize optical loss in quantum noise filter cavities for interferometric gravitational-wave detectors. The scattering measured for these samples is acceptable for the 16 m long filter cavities envisioned for the Laser Interferometer Gravitational-wave Observatory (LIGO), though reducing the loss further would improve LIGO’s quantum-noise limited performance.

  18. Optical Material Characterization Using Microdisk Cavities

    NASA Astrophysics Data System (ADS)

    Michael, Christopher P.

    Since Jack Kilby recorded his "Monolithic Idea" for integrated circuits in 1958, microelectronics companies have invested billions of dollars in developing the silicon material system to increase performance and reduce cost. For decades, the industry has made Moore's Law, concerning cost and transistor density, a self-fulfilling prophecy by integrating technical and material requirements vertically down their supply chains and horizontally across competitors in the market. At recent technology nodes, the unacceptable scaling behavior of copper interconnects has become a major design constraint by increasing latency and power consumption---more than 50% of the power consumed by high speed processors is dissipated by intrachip communications. Optical networks at the chip scale are a potential low-power high-bandwidth replacement for conventional global interconnects, but the lack of efficient on-chip optical sources has remained an outstanding problem despite significant advances in silicon optoelectronics. Many material systems are being researched, but there is no ideal candidate even though the established infrastructure strongly favors a CMOS-compatible solution. This thesis focuses on assessing the optical properties of materials using microdisk cavities with the intention to advance processing techniques and materials relevant to silicon photonics. Low-loss microdisk resonators are chosen because of their simplicity and long optical path lengths. A localized photonic probe is developed and characterized that employs a tapered optical-fiber waveguide, and it is utilized in practical demonstrations to test tightly arranged devices and to help prototype new fabrication methods. A case study in AlxGa1-xAs illustrates how the optical scattering and absorption losses can be obtained from the cavity-waveguide transmission. Finally, single-crystal Er2O3 epitaxially grown on silicon is analyzed in detail as a potential CMOS-compatable gain medium due to its high Er3

  19. Optical fiber tips functionalized with semiconductor photonic crystal cavities

    NASA Astrophysics Data System (ADS)

    Shambat, Gary; Provine, J.; Rivoire, Kelley; Sarmiento, Tomas; Harris, James; Vučković, Jelena

    2011-11-01

    We demonstrate a simple and rapid epoxy-based method for transferring photonic crystal (PC) cavities to the facets of optical fibers. Passive Si cavities were measured via fiber taper coupling as well as direct transmission from the fiber facet. Active quantum dot containing GaAs cavities showed photoluminescence that was collected both in free space and back through the original fiber. Cavities maintain a high quality factor (2000-4000) in both material systems. This design architecture provides a practical mechanically stable platform for the integration of photonic crystal cavities with macroscale optics and opens the door for innovative research on fiber-coupled cavity devices.

  20. Daisy patterns in the passive ring cavity with diffusion effects

    NASA Astrophysics Data System (ADS)

    Le Berre, M.; Patrascu, A. S.; Ressayre, E.; Tallet, A.

    1996-02-01

    Near-field patterns with three to fifteen petals set on a single circle are numerically observed in the ring cavity device. Three to six petal daisies result from usual finite size effects. We point out the non-trivial formation of seven to fifteen petal daisies, with a top-hat input, and a small diffusion term that controls this daisy-type pattern formation, preventing the usual hexagonal structure to be formed.

  1. Diffraction-limited high-finesse optical cavities

    SciTech Connect

    Kleckner, Dustin; Irvine, William T. M.; Oemrawsingh, Sumant S. R.; Bouwmeester, Dirk

    2010-04-15

    High-quality optical cavities with wavelength-sized end mirrors are important to the growing field of micro-optomechanical systems. We present a versatile method for calculating the modes of diffraction limited optical cavities and show that it can be used to determine the effect of a wide variety of cavity geometries and imperfections. Additionally, we show these calculations agree remarkably well with FDTD simulations for wavelength-sized optical modes, even though our method is based on the paraxial approximation.

  2. Comparisons of hybrid radiosity-diffusion model and diffusion equation for bioluminescence tomography in cavity cancer detection

    NASA Astrophysics Data System (ADS)

    Chen, Xueli; Yang, Defu; Qu, Xiaochao; Hu, Hao; Liang, Jimin; Gao, Xinbo; Tian, Jie

    2012-06-01

    Bioluminescence tomography (BLT) has been successfully applied to the detection and therapeutic evaluation of solid cancers. However, the existing BLT reconstruction algorithms are not accurate enough for cavity cancer detection because of neglecting the void problem. Motivated by the ability of the hybrid radiosity-diffusion model (HRDM) in describing the light propagation in cavity organs, an HRDM-based BLT reconstruction algorithm was provided for the specific problem of cavity cancer detection. HRDM has been applied to optical tomography but is limited to simple and regular geometries because of the complexity in coupling the boundary between the scattering and void region. In the provided algorithm, HRDM was first applied to three-dimensional complicated and irregular geometries and then employed as the forward light transport model to describe the bioluminescent light propagation in tissues. Combining HRDM with the sparse reconstruction strategy, the cavity cancer cells labeled with bioluminescent probes can be more accurately reconstructed. Compared with the diffusion equation based reconstruction algorithm, the essentiality and superiority of the HRDM-based algorithm were demonstrated with simulation, phantom and animal studies. An in vivo gastric cancer-bearing nude mouse experiment was conducted, whose results revealed the ability and feasibility of the HRDM-based algorithm in the biomedical application of gastric cancer detection.

  3. Temporal laser pulse manipulation using multiple optical ring-cavities

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet (Inventor); Kojima, Jun (Inventor)

    2010-01-01

    An optical pulse stretcher and a mathematical algorithm for the detailed calculation of its design and performance is disclosed. The optical pulse stretcher has a plurality of optical cavities, having multiple optical reflectors such that an optical path length in each of the optical cavities is different. The optical pulse stretcher also has a plurality of beam splitters, each of which intercepts a portion of an input optical beam and diverts the portion into one of the plurality of optical cavities. The input optical beam is stretched and a power of an output beam is reduced after passing through the optical pulse stretcher and the placement of the plurality of optical cavities and beam splitters is optimized through a model that takes into account optical beam divergence and alignment in the pluralities of the optical cavities. The optical pulse stretcher system can also function as a high-repetition-rate (MHz) laser pulse generator, making it suitable for use as a stroboscopic light source for high speed ballistic projectile imaging studies, or it can be used for high speed flow diagnostics using a laser light sheet with digital particle imaging velocimetry. The optical pulse stretcher system can also be implemented using fiber optic components to realize a rugged and compact optical system that is alignment free and easy to use.

  4. Cavity solitons and localized patterns in a finite-size optical cavity

    NASA Astrophysics Data System (ADS)

    Kozyreff, G.; Gelens, L.

    2011-08-01

    In appropriate ranges of parameters, laser-driven nonlinear optical cavities can support a wide variety of optical patterns, which could be used to carry information. The intensity peaks appearing in these patterns are called cavity solitons and are individually addressable. Using the Lugiato-Lefever equation to model a perfectly homogeneous cavity, we show that cavity solitons can only be located at discrete points and at a minimal distance from the edges. Other localized states which are attached to the edges are identified. By interpreting these patterns in an information coding frame, the information capacity of this dynamical system is evaluated. The results are explained analytically in terms of the the tail characteristics of the cavity solitons. Finally, the influence of boundaries and of cavity imperfections on cavity solitons are compared.

  5. Localized Turing patterns in nonlinear optical cavities

    NASA Astrophysics Data System (ADS)

    Kozyreff, G.

    2012-05-01

    The subcritical Turing instability is studied in two classes of models for laser-driven nonlinear optical cavities. In the first class of models, the nonlinearity is purely absorptive, with arbitrary intensity-dependent losses. In the second class, the refractive index is real and is an arbitrary function of the intracavity intensity. Through a weakly nonlinear analysis, a Ginzburg-Landau equation with quintic nonlinearity is derived. Thus, the Maxwell curve, which marks the existence of localized patterns in parameter space, is determined. In the particular case of the Lugiato-Lefever model, the analysis is continued to seventh order, yielding a refined formula for the Maxwell curve and the theoretical curve is compared with recent numerical simulation by Gomila et al. [D. Gomila, A. Scroggie, W. Firth, Bifurcation structure of dissipative solitons, Physica D 227 (2007) 70-77.

  6. Optically thin hybrid cavity for terahertz photo-conductive detectors

    NASA Astrophysics Data System (ADS)

    Thompson, R. J.; Siday, T.; Glass, S.; Luk, T. S.; Reno, J. L.; Brener, I.; Mitrofanov, O.

    2017-01-01

    The efficiency of photoconductive (PC) devices, including terahertz detectors, is constrained by the bulk optical constants of PC materials. Here, we show that optical absorption in a PC layer can be modified substantially within a hybrid cavity containing nanoantennas and a Distributed Bragg Reflector. We find that a hybrid cavity, consisting of a GaAs PC layer of just 50 nm, can be used to absorb >75% of incident photons by trapping the light within the cavity. We provide an intuitive model, which describes the dependence of the optimum operation wavelength on the cavity thickness. We also find that the nanoantenna size is a critical parameter, small variations of which lead to both wavelength shifting and reduced absorption in the cavity, suggesting that impedance matching is key for achieving efficient absorption in the optically thin hybrid cavities.

  7. A master equation for a two-sided optical cavity

    PubMed Central

    Barlow, Thomas M.; Bennett, Robert; Beige, Almut

    2015-01-01

    Quantum optical systems, like trapped ions, are routinely described by master equations. The purpose of this paper is to introduce a master equation for two-sided optical cavities with spontaneous photon emission. To do so, we use the same notion of photons as in linear optics scattering theory and consider a continuum of travelling-wave cavity photon modes. Our model predicts the same stationary state photon emission rates for the different sides of a laser-driven optical cavity as classical theories. Moreover, it predicts the same time evolution of the total cavity photon number as the standard standing-wave description in experiments with resonant and near-resonant laser driving. The proposed resonator Hamiltonian can be used, for example, to analyse coherent cavity-fiber networks [E. Kyoseva et al., New J. Phys. 14, 023023 (2012)].

  8. Quantum optics, cavity QED, and quantum optomechanics

    NASA Astrophysics Data System (ADS)

    Meystre, Pierre

    2013-05-01

    Quantum optomechanics provides a universal tool to achieve the quantum control of mechanical motion. It does that in devices spanning a vast range of parameters, with mechanical frequencies from a few Hertz to GHz, and with masses from 10-20 g to several kilos. Its underlying ideas can be traced back to the study of gravitational wave antennas, quantum optics, cavity QED and laser cooling which, when combined with the recent availability of advanced micromechanical and nanomechanical devices, opens a path to the realization of macroscopic mechanical systems that operate deep in the quantum regime. At the fundamental level this development paves the way to experiments that will lead to a more profound understanding of quantum mechanics; and from the point of view of applications, quantum optomechanical techniques will provide motion and force sensing near the fundamental limit imposed by quantum mechanics (quantum metrology) and significantly expand the toolbox of quantum information science. After a brief summary of key historical developments, the talk will give a broad overview of the current state of the art of quantum optomechanics, and comment on future prospects both in applied and in fundamental science. Work supported by NSF, ARO and the DARPA QuASAR and ORCHID programs.

  9. Single ion coupled to an optical fiber cavity.

    PubMed

    Steiner, Matthias; Meyer, Hendrik M; Deutsch, Christian; Reichel, Jakob; Köhl, Michael

    2013-01-25

    We present the realization of a combined trapped-ion and optical cavity system, in which a single Yb(+) ion is confined by a micron-scale ion trap inside a 230 μm-long optical fiber cavity. We characterize the spatial ion-cavity coupling and measure the ion-cavity coupling strength using a cavity-stimulated Λ transition. Owing to the small mode volume of the fiber resonator, the coherent coupling strength between the ion and a single photon exceeds the natural decay rate of the dipole moment. This system can be integrated into ion-photon quantum networks and is a step towards cavity quantum electrodynamics based quantum information processing with trapped ions.

  10. Lattice-cavity solitons in a degenerate optical parametric oscillator

    SciTech Connect

    Egorov, O. A.; Lederer, F.

    2007-11-15

    We predict the existence of lattice-cavity solitons for a quadratic nonlinear cavity, where the linear losses are compensated for by the optical pump at second harmonic (degenerate optical parametric oscillator), and which is endowed with a one-dimensional photonic lattice. In the limit of strong discreteness (weak coupling) this kind of soliton solution contains as the subclass the quadratic discrete cavity solitons. The nonlinear coupling between the Bloch waves of different photonics bands allows for the formation of a reach variety of localized solutions. In particular, different types of multiband lattice-cavity solitons can be identified. Most types of lattice-cavity solitons do not have counterparts, neither in conventional planar microresonators nor in genuine discrete systems as an array of weakly coupled cavities. We show that these solitons may destabilize as a consequence of the competition between Bloch waves of different photonic bands.

  11. Impurity-free quantum well intermixing for large optical cavity high-power laser diode structures

    NASA Astrophysics Data System (ADS)

    Kahraman, Abdullah; Gür, Emre; Aydınlı, Atilla

    2016-08-01

    We report on the correlation of atomic concentration profiles of diffusing species with the blueshift of the quantum well luminescence from both as-grown and impurity free quantum wells intermixed on actual large optical cavity high power laser diode structures. Because it is critical to suppress catastrophic optical mirror damage, sputtered SiO2 and thermally evaporated SrF2 were used both to enhance and suppress quantum well intermixing, respectively, in these (Al)GaAs large optical cavity structures. A luminescence blueshift of 55 nm (130 meV) was obtained for samples with 400 nm thick sputtered SiO2. These layers were used to generate point defects by annealing the samples at 950 °C for 3 min. The ensuing Ga diffusion observed as a shifting front towards the surface at the interface of the GaAs cap and AlGaAs cladding, as well as Al diffusion into the GaAs cap layer, correlates well with the observed luminescence blue shift, as determined by x-ray photoelectron spectroscopy. Although this technique is well-known, the correlation between the photoluminescence peak blue shift and diffusion of Ga and Al during impurity free quantum well intermixing on actual large optical cavity laser diode structures was demonstrated with both x ray photoelectron and photoluminescence spectroscopy, for the first time.

  12. Diffuse Optics for Tissue Monitoring and Tomography

    PubMed Central

    Durduran, T; Choe, R; Baker, W B; Yodh, A G

    2015-01-01

    This review describes the diffusion model for light transport in tissues and the medical applications of diffuse light. Diffuse optics is particularly useful for measurement of tissue hemodynamics, wherein quantitative assessment of oxy- and deoxy-hemoglobin concentrations and blood flow are desired. The theoretical basis for near-infrared or diffuse optical spectroscopy (NIRS or DOS, respectively) is developed, and the basic elements of diffuse optical tomography (DOT) are outlined. We also discuss diffuse correlation spectroscopy (DCS), a technique whereby temporal correlation functions of diffusing light are transported through tissue and are used to measure blood flow. Essential instrumentation is described, and representative brain and breast functional imaging and monitoring results illustrate the workings of these new tissue diagnostics. PMID:26120204

  13. Different optical properties in different periodic slot cavity geometrical morphologies

    NASA Astrophysics Data System (ADS)

    Zhou, Jing; Shen, Meng; Du, Lan; Deng, Caisong; Ni, Haibin; Wang, Ming

    2016-09-01

    In this paper, optical properties of two-dimensional periodic annular slot cavity arrays in hexagonal close-packing on a silica substrate are theoretically characterized by finite difference time domain (FDTD) simulation method. By simulating reflectance spectra, electric field distribution, and charge distribution, we confirm that multiple cylindrical surface plasmon resonances can be excited in annular inclined slot cavities by linearly polarized light, in which the four reflectance dips are attributed to Fabry-Perot cavity resonances in the coaxial cavity. A coaxial waveguide mode TE11 will exist in these annular cavities, and the wavelengths of these reflectance dips are effectively tailored by changing the geometrical pattern of slot cavity and the dielectric materials filled in the cavities. These resonant wavelengths are localized in annular cavities with large electric field enhancement and dissipate gradually due to metal loss. The formation of an absorption peak can be explained from the aspect of phase matching conditions. We observed that the proposed structure can be tuned over the broad spectral range of 600-4000 nm by changing the outer and inner radii of the annular gaps, gap surface topography. Meanwhile, different lengths of the cavity may cause the shift of resonance dips. Also, we study the field enhancement at different vertical locations of the slit. In addition, dielectric materials filling in the annular gaps will result in a shift of the resonance wavelengths, which make the annular cavities good candidates for refractive index sensors. The refractive index sensitivity of annular cavities can also be tuned by the geometry size and the media around the cavity. Annular cavities with novel applications can be implied as surface enhanced Raman spectra substrates, refractive index sensors, nano-lasers, and optical trappers. Project supported by the National Natural Science Foundation of China (Grant No. 61178044), the Natural Science Foundation

  14. Calculations of laser cavity dumping for optical communications

    NASA Technical Reports Server (NTRS)

    Robinson, D. L.; Rayman, M. D.

    1988-01-01

    For deep-space pulse-position modulation (PPM) optical communication links using Nd:YAG lasers, two types of laser transmitter modulation techniques are available for efficiently producing laser pulses over a broad range of repetition rates: Q-switching and cavity dumping. The desired modulation scheme is dependent on the required pulse repetition frequency and link parameters. These two techniques are discussed, theoretical and numerical calculations of the internal energy of the laser cavity in cavity dumping are described, and an example of cavity dumping is applied to a link for a proposed experiment package on Cassini.

  15. Nanosecond pulsed laser texturing of optical diffusers

    NASA Astrophysics Data System (ADS)

    Alqurashi, Tawfiq; Sabouri, Aydin; Yetisen, Ali K.; Butt, Haider

    2017-02-01

    High-quality optical glass diffusers have applications in aerospace, displays, imaging systems, medical devices, and optical sensors. The development of rapid and accurate fabrication techniques is highly desirable for their production. Here, a micropatterning method for the fast fabrication of optical diffusers by means of nanosecond pulsed laser ablation is demonstrated (λ=1064 nm, power=7.02, 9.36 and 11.7 W and scanning speed=200 and 800 mm s-1). The experiments were carried out by point-to-point texturing of a glass surface in spiral shape. The laser machining parameters, the number of pulses and their power had significant effect on surface features. The optical characteristics of the diffusers were characterized at different scattering angles. The features of the microscale structures influenced average roughness from 0.8 μm to 1.97 μm. The glass diffusers scattered light at angles up to 20° and their transmission efficiency were measured up to ˜97% across the visible spectrum. The produced optical devices diffuse light less but do so with less scattering and energy losses as compared to opal diffusing glass. The presented fabrication method can be applied to any other transparent material to create optical diffusers. It is anticipated that the optical diffusers presented in this work will have applications in the production of LED spotlights and imaging devices.

  16. Optimal feedback in efficient single-cavity optical parametric oscillators

    SciTech Connect

    Petnikova, V M; Shuvalov, Vladimir V

    2010-09-10

    An approach based on the description of competition of quadratic processes of merging and decomposition of quanta resulting in the formation of cnoidal waves on an effective cascade cubic Kerr-type nonlinearity is used to optimise the scheme of a single-cavity optical parametric oscillator. It is shown that the use of a feedback circuit (cavity) decreases the period of cnoidal waves produced in a nonlinear crystal, while the optimisation procedure of the transfer constant of this circuit (reflectivity of the output mirror of the cavity) is reduced to matching this period with the nonlinear crystal length. (optical parametric oscillators)

  17. Polarization-controlled optical ring cavity (PORC) tunable pulse stretcher

    NASA Astrophysics Data System (ADS)

    Williamson, Andrew P.; Kiefer, Johannes

    2016-08-01

    A new concept and a theoretical approach for modeling a tunable polarization-controlled optical ring cavity pulse stretcher is demonstrated. The technique discussed herein permits highly simplified and flexible tuning of the temporal shape of nanosecond duration pulses. Using half-wave plates positioned extra- and intracavity, transmission to reflection ratios across both input faces of a polarization beam splitter can easily be controlled. The resulting models indicate a further reduction in peak intensity of 30%, with respect to conventional dielectric beam splitting optical ring cavities, when configured under equivalent and optimized cavity settings.

  18. Controllable optical switch using a Bose-Einstein condensate in an optical cavity

    SciTech Connect

    Yang Shuai; Zubairy, M. Suhail; Al-Amri, M.; Evers, Joerg

    2011-05-15

    The optical bistability of an ultracold atomic ensemble located in a small-volume ultrahigh-finesse optical cavity is investigated. We find that a transverse pumping field can be used to control the bistable behavior of the intracavity photons induced by the input pumping along the cavity axis. This phenomenon can be used as a controllable optical switch.

  19. Extreme diffusion limited electropolishing of niobium radiofrequency cavities

    NASA Astrophysics Data System (ADS)

    Crawford, Anthony C.

    2017-03-01

    A deeply modulated, regular, continuous, oscillating current waveform is reliably and repeatably achieved during electropolishing of niobium single-cell elliptical radiofrequency cavities. Details of the technique and cavity test results are reported here. The method is applicable for cavity frequencies in the range 500 MHz to 3.9 GHz and can be extended to multicell structures.

  20. Extreme diffusion limited electropolishing of niobium radiofrequency cavities

    DOE PAGES

    Crawford, Anthony C.

    2017-01-04

    In this study, a deeply modulated, regular, continuous, oscillating current waveform is reliably and repeatably achieved during electropolishing of niobium single-cell elliptical radiofrequency cavities. Details of the technique and cavity test results are reported here. The method is applicable for cavity frequencies in the range 500 MHz to 3.9 GHz and can be extended to multicell structures.

  1. Design and optimization of microbolometer multilayer optical cavity

    NASA Astrophysics Data System (ADS)

    Awad, E.; Al-Khalli, N.; Abdel-Rahman, M.; Debbar, N.; Alduraibi, M.

    2015-03-01

    Microbolometers are the most widely used detectors in long-wave infrared uncooled thermal imagers. An optical cavity is required within a microbolometer structure to increase its optical absorption. In this work we present a detailed study on the design and optimization of a microbolometer optical cavity using Essential-Macleod package. In the simulations, the cavity is considered as thin film multi-layers that form cascaded Fabry-Perot optical cavities. In the design phase, the layers structures are selected including materials and initial thickness. The absorbing layers are chosen to be vanadium-pentoxide (V2O5) and titanium (Ti). In the optimization phase, the designed layer thicknesses are varied to maximize optical absorption within the absorbing layers. The simulations show that Ti layer absorption dominates over V2O5 layer. Also, the optimization proves that the air-gap cavity thickness is not simply quarter-wavelength because of the complex cascaded Fabry-Perot structure. The optimized air-gap thickness here is ≈3.5 µm at 10.6µm wavelength.

  2. Design and optimization of microbolometer multilayer optical cavity

    SciTech Connect

    Awad, E.; Al-Khalli, N.; Debbar, N.; Abdel-Rahman, M.; Alduraibi, M.

    2015-03-30

    Microbolometers are the most widely used detectors in long-wave infrared uncooled thermal imagers. An optical cavity is required within a microbolometer structure to increase its optical absorption. In this work we present a detailed study on the design and optimization of a microbolometer optical cavity using Essential-Macleod package. In the simulations, the cavity is considered as thin film multi-layers that form cascaded Fabry-Perot optical cavities. In the design phase, the layers structures are selected including materials and initial thickness. The absorbing layers are chosen to be vanadium-pentoxide (V{sub 2}O{sub 5}) and titanium (Ti). In the optimization phase, the designed layer thicknesses are varied to maximize optical absorption within the absorbing layers. The simulations show that Ti layer absorption dominates over V{sub 2}O{sub 5} layer. Also, the optimization proves that the air-gap cavity thickness is not simply quarter-wavelength because of the complex cascaded Fabry-Perot structure. The optimized air-gap thickness here is ≈3.5 µm at 10.6µm wavelength.

  3. Dynamical entanglement purification using chains of atoms and optical cavities

    SciTech Connect

    Gonta, Denis; Loock, Peter van

    2011-10-15

    In the framework of cavity QED, we propose a practical scheme to purify dynamically a bipartite entangled state using short chains of atoms coupled to high-finesse optical cavities. In contrast to conventional entanglement purification protocols, we avoid controlled-not gates, thus reducing complicated pulse sequences and superfluous qubit operations. Our interaction scheme works in a deterministic way and, together with entanglement distribution and swapping, opens a route toward efficient quantum repeaters for long-distance quantum communication.

  4. Transmission spectrum of an optical cavity containing N atoms

    SciTech Connect

    Leslie, Sabrina; Shenvi, Neil; Brown, Kenneth R.; Whaley, K. Birgitta; Stamper-Kurn, Dan M.

    2004-04-01

    The transmission spectrum of a high-finesse optical cavity containing an arbitrary number of trapped atoms is presented in the zero-temperature, low saturation limit. We take spatial and motional effects into account and show that in the limit of strong coupling, the important spectral features can be determined for an arbitrary number of atoms, N. We also show that these results have important ramifications in limiting our ability to determine the number of atoms in the cavity.

  5. Optical trapping of dielectric nanoparticles in resonant cavities

    SciTech Connect

    Hu Juejun; Lin Shiyun; Crozier, Kenneth; Kimerling, Lionel C.

    2010-11-15

    We theoretically investigate the opto-mechanical interactions between a dielectric nanoparticle and the resonantly enhanced optical field inside a high Q, small-mode-volume optical cavity. We develop an analytical method based on open system analysis to account for the resonant perturbation due to particle introduction and predict trapping potential in good agreement with three-dimensional (3D) finite-difference time-domain (FDTD) numerical simulations. Strong size-dependent trapping dynamics distinctly different from free-space optical tweezers arise as a consequence of the finite cavity perturbation. We illustrate single nanoparticle trapping from an ensemble of monodispersed particles based on size-dependent trapping dynamics. We further discover that the failure of the conventional dipole approximation in the case of resonant cavity trapping originates from a new perturbation interaction mechanism between trapped particles and spatially localized photons.

  6. Scattering-free optical levitation of a cavity mirror.

    PubMed

    Guccione, G; Hosseini, M; Adlong, S; Johnsson, M T; Hope, J; Buchler, B C; Lam, P K

    2013-11-01

    We demonstrate the feasibility of levitating a small mirror using only radiation pressure. In our scheme, the mirror is supported by a tripod where each leg of the tripod is a Fabry-Perot cavity. The macroscopic state of the mirror is coherently coupled to the supporting cavity modes allowing coherent interrogation and manipulation of the mirror motion. The proposed scheme is an extreme example of the optical spring, where a mechanical oscillator is isolated from the environment and its mechanical frequency and macroscopic state can be manipulated solely through optical fields. We model the stability of the system and find a three-dimensional lattice of trapping points where cavity resonances allow for buildup of optical field sufficient to support the weight of the mirror. Our scheme offers a unique platform for studying quantum and classical optomechanics and can potentially be used for precision gravitational field sensing and quantum state generation.

  7. Optical re-injection in cavity-enhanced absorption spectroscopy

    PubMed Central

    Leen, J. Brian; O’Keefe, Anthony

    2014-01-01

    Non-mode-matched cavity-enhanced absorption spectrometry (e.g., cavity ringdown spectroscopy and integrated cavity output spectroscopy) is commonly used for the ultrasensitive detection of trace gases. These techniques are attractive for their simplicity and robustness, but their performance may be limited by the reflection of light from the front mirror and the resulting low optical transmission. Although this low transmitted power can sometimes be overcome with higher power lasers and lower noise detectors (e.g., in the near-infrared), many regimes exist where the available light intensity or photodetector sensitivity limits instrument performance (e.g., in the mid-infrared). In this article, we describe a method of repeatedly re-injecting light reflected off the front mirror of the optical cavity to boost the cavity's circulating power and deliver more light to the photodetector and thus increase the signal-to-noise ratio of the absorption measurement. We model and experimentally demonstrate the method's performance using off-axis cavity ringdown spectroscopy (OA-CRDS) with a broadly tunable external cavity quantum cascade laser. The power coupled through the cavity to the detector is increased by a factor of 22.5. The cavity loss is measured with a precision of 2 × 10−10 cm−1/\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$\\sqrt {{\\rm Hz;}}$\\end{document} Hz ; an increase of 12 times over the standard off-axis configuration without reinjection and comparable to the best reported sensitivities in the mid-infrared. Finally, the re-injected CRDS system is used to measure the spectrum of several volatile organic compounds, demonstrating the improved ability to resolve weakly absorbing spectroscopic features. PMID:25273701

  8. Optical re-injection in cavity-enhanced absorption spectroscopy

    SciTech Connect

    Leen, J. Brian O’Keefe, Anthony

    2014-09-15

    Non-mode-matched cavity-enhanced absorption spectrometry (e.g., cavity ringdown spectroscopy and integrated cavity output spectroscopy) is commonly used for the ultrasensitive detection of trace gases. These techniques are attractive for their simplicity and robustness, but their performance may be limited by the reflection of light from the front mirror and the resulting low optical transmission. Although this low transmitted power can sometimes be overcome with higher power lasers and lower noise detectors (e.g., in the near-infrared), many regimes exist where the available light intensity or photodetector sensitivity limits instrument performance (e.g., in the mid-infrared). In this article, we describe a method of repeatedly re-injecting light reflected off the front mirror of the optical cavity to boost the cavity's circulating power and deliver more light to the photodetector and thus increase the signal-to-noise ratio of the absorption measurement. We model and experimentally demonstrate the method's performance using off-axis cavity ringdown spectroscopy (OA-CRDS) with a broadly tunable external cavity quantum cascade laser. The power coupled through the cavity to the detector is increased by a factor of 22.5. The cavity loss is measured with a precision of 2 × 10{sup −10} cm{sup −1}/√(Hz;) an increase of 12 times over the standard off-axis configuration without reinjection and comparable to the best reported sensitivities in the mid-infrared. Finally, the re-injected CRDS system is used to measure the spectrum of several volatile organic compounds, demonstrating the improved ability to resolve weakly absorbing spectroscopic features.

  9. Optical re-injection in cavity-enhanced absorption spectroscopy.

    PubMed

    Leen, J Brian; O'Keefe, Anthony

    2014-09-01

    Non-mode-matched cavity-enhanced absorption spectrometry (e.g., cavity ringdown spectroscopy and integrated cavity output spectroscopy) is commonly used for the ultrasensitive detection of trace gases. These techniques are attractive for their simplicity and robustness, but their performance may be limited by the reflection of light from the front mirror and the resulting low optical transmission. Although this low transmitted power can sometimes be overcome with higher power lasers and lower noise detectors (e.g., in the near-infrared), many regimes exist where the available light intensity or photodetector sensitivity limits instrument performance (e.g., in the mid-infrared). In this article, we describe a method of repeatedly re-injecting light reflected off the front mirror of the optical cavity to boost the cavity's circulating power and deliver more light to the photodetector and thus increase the signal-to-noise ratio of the absorption measurement. We model and experimentally demonstrate the method's performance using off-axis cavity ringdown spectroscopy (OA-CRDS) with a broadly tunable external cavity quantum cascade laser. The power coupled through the cavity to the detector is increased by a factor of 22.5. The cavity loss is measured with a precision of 2 × 10(-10) cm(-1)/√Hz; an increase of 12 times over the standard off-axis configuration without reinjection and comparable to the best reported sensitivities in the mid-infrared. Finally, the re-injected CRDS system is used to measure the spectrum of several volatile organic compounds, demonstrating the improved ability to resolve weakly absorbing spectroscopic features.

  10. Microgel photonics: a breathing cavity onto optical fiber tip

    NASA Astrophysics Data System (ADS)

    Ricciardi, A.; Aliberti, A.; Giaquinto, M.; Micco, A.; Cusano, A.

    2015-09-01

    We experimentally demonstrate a novel multifunctional optical fiber probe resulting from the integration between two rapidly emerging technologies such as Lab-on-Fiber and Microgel Photonics. The device consists of a microgel based cavity formed by metallic slabs supporting plasmonic resonances, directly integrated on the optical fiber tip. By exploiting the multiresponsivity of microgel systems, variations of temperature, PH, ionic strength, as well as molecular binding events, make the cavity to `breath', thus modulating the interference pattern in the reflection spectrum. The microgel layer can be synthetized in such a way to obtain different thicknesses, corresponding to different operating regimes, opening new avenues for the realization of advanced multifunctional nanoprobes.

  11. New frontiers in time-domain diffuse optics, a review

    NASA Astrophysics Data System (ADS)

    Pifferi, Antonio; Contini, Davide; Mora, Alberto Dalla; Farina, Andrea; Spinelli, Lorenzo; Torricelli, Alessandro

    2016-09-01

    The recent developments in time-domain diffuse optics that rely on physical concepts (e.g., time-gating and null distance) and advanced photonic components (e.g., vertical cavity source-emitting laser as light sources, single photon avalanche diode, and silicon photomultipliers as detectors, fast-gating circuits, and time-to-digital converters for acquisition) are focused. This study shows how these tools could lead on one hand to compact and wearable time-domain devices for point-of-care diagnostics down to the consumer level and on the other hand to powerful systems with exceptional depth penetration and sensitivity.

  12. Optical cavity integrated surface ion trap for enhanced light collection

    NASA Astrophysics Data System (ADS)

    Benito, Francisco M.

    Ion trap systems allow the faithful storage and manipulation of qubits encoded in the energy levels of the ions, and can be interfaced with photonic qubits that can be transmitted to connect remote quantum systems. Single photons transmitted from two remote sites, each entangled with one quantum memory, can be used to entangle distant quantum memories by interfering on a beam splitter. Efficient remote entanglement generation relies upon efficient light collection from single ions into a single mode fiber. This can be realized by integrating an ion trap with an optical cavity and employing the Purcell effect for enhancing the light collection. Remote entanglement can be used as a resource for a quantum repeater for provably secure long-distance communication or as a method for communicating within a distributed quantum information processor. We present the integration of a 1 mm optical cavity with a micro-fabricated surface ion trap. The plano-concave cavity is oriented normal to the chip surface where the planar mirror is attached underneath the trap chip. The cavity is locked using a 780 nm laser which is stabilized to Rubidium and shifted to match the 369 nm Doppler transition in Ytterbium. The linear ion trap allows ions to be shuttled in and out of the cavity mode. The Purcell enhancement of spontaneous emission into the cavity mode would then allow efficient collection of the emitted photons, enabling faster remote entanglement generation.

  13. Optothermal transport behavior in whispering gallery mode optical cavities

    SciTech Connect

    Soltani, Soheil; Armani, Andrea M.

    2014-08-04

    Over the past century, whispering gallery mode optical cavities have enabled numerous advances in science and engineering, such as discoveries in quantum mechanics and non-linear optics, as well as the development of optical gyroscopes and add drop filters. One reason for their widespread appeal is their ability to confine light for long periods of time, resulting in high circulating intensities. However, when sufficiently large amounts of optical power are coupled into these cavities, they begin to experience optothermal or photothermal behavior, in which the optical energy is converted into heat. Above the optothermal threshold, the resonance behavior is no longer solely defined by electromagnetics. Previous work has primarily focused on the role of the optothermal coefficient of the material in this instability. However, the physics of this optothermal behavior is significantly more complex. In the present work, we develop a predictive theory based on a generalizable analytical expression in combination with a geometry-specific COMSOL Multiphysics finite element method model. The simulation couples the optical and thermal physics components, accounting for geometry variations as well as the temporal and spatial profile of the optical field. To experimentally verify our theoretical model, the optothermal thresholds of a series of silica toroidal resonant cavities are characterized at different wavelengths (visible through near-infrared) and using different device geometries. The silica toroid offers a particularly rigorous case study for the developed optothermal model because of its complex geometrical structure which provides multiple thermal transport paths.

  14. Augmentation of Cavity Optical Inspection by Replicas Without Performance Degradation

    SciTech Connect

    Ge, M.; Burk, D.; Hicks, D.; Wu, G.; Thompson, C.; Cooley, L.D.; /Fermilab

    2009-01-01

    Although cavity optical inspection systems provide a huge amount of qualitative information about surface features, the amount of quantitative topographic informa-tion is limited. Here, we report the use of silicone-based RTV for replicas and moldings that provide increased details of topographic data associated with the optical cavity images. Profilometry scans of the molds yield mi-crometer-scale details associated with equator weld struc-tures and weld pits. This confirms at least two different types of pits, one which is bowl-shaped, and one which has a small peak at the bottom. The contour information extracted from profilometry can be used to evaluate mechanisms by which pits and other features limit RF performance. We present calculations based on a con-formal transformation of the profiles above. We also show that application of the replica followed by rinsing does not adversely affect the cavity performance.

  15. Optical diagnostics in the oral cavity: an overview

    PubMed Central

    Wilder-Smith, P; Holtzman, J; Epstein, J; Le, A

    2014-01-01

    As the emphasis shifts from damage mitigation to disease prevention or reversal of early disease in the oral cavity, the need for sensitive and accurate detection and diagnostic tools become more important. Many novel and emergent optical diagnostic modalities for the oral cavity are becoming available to clinicians with a variety of desirable attributes including: (i) non-invasiveness, (ii) absence of ionizing radiation, (iii) patient-friendliness, (iv) real-time information (v) repeatability, and (vi) high-resolution surface and subsurface images. In this article, the principles behind optical diagnostic approaches, their feasibility and applicability for imaging soft and hard tissues, and their potential usefulness as a tool in the diagnosis of oral mucosal lesions, dental pathologies, and other dental applications will be reviewed. The clinical applications of light-based imaging technologies in the oral cavity and of their derivative devices will be discussed to provide the reader with a comprehensive understanding of emergent diagnostic modalities. PMID:20561224

  16. Laser Pulse-Stretching Using Multiple Optical Ring-Cavities

    NASA Technical Reports Server (NTRS)

    Kojima, Jun; Nguyen, Quang-Viet; Lee, Chi-Ming (Technical Monitor)

    2002-01-01

    We describe a simple and passive nanosecond-long (ns-long) laser 'pulse-stretcher' using multiple optical ring-cavities. We present a model of the pulse-stretching process for an arbitrary number of optical ring-cavities. Using the model, we optimize the design of a pulse-stretcher for use in a spontaneous Raman scattering excitation system that avoids laser-induced plasma spark problems. From the optimized design, we then experimentally demonstrate and verify the model with a 3-cavity pulse-stretcher system that converts a 1000 mJ, 8.4 ns-long input laser pulse into an approximately 75 ns-long (FWHM) output laser pulse with a peak power reduction of 0.10X, and an 83% efficiency.

  17. Measurement of aerosol optical properties by cw cavity enhanced spectroscopy

    NASA Astrophysics Data System (ADS)

    Jie, Guo; Ye, Shan-Shan; Yang, Xiao; Han, Ye-Xing; Tang, Huai-Wu; Yu, Zhi-Wei

    2016-10-01

    The CAPS (Cavity Attenuated Phase shift Spectroscopy) system, which detects the extinction coefficients within a 10 nm bandpass centered at 532 nm, comprises a green LED with center wavelength in 532nm, a resonant optical cavity (36 cm length), a Photo Multiplier Tube detector, and a lock in amplifier. The square wave modulated light from the LED passes through the optical cavity and is detected as a distorted waveform which is characterized by a phase shift with respect to the initial modulation. Extinction coefficients are determined from changes in the phase shift of the distorted waveform of the square wave modulated LED light that is transmitted through the optical cavity. The performance of the CAPS system was evaluated by using measurements of the stability and response of the system. The minima ( 0.1 Mm-1) in the Allan plots show the optimum average time ( 100s) for optimum detection performance of the CAPS system. In the paper, it illustrates that extinction coefficient was correlated with PM2.5 mass (0.91). These figures indicate that this method has the potential to become one of the most sensitive on-line analytical techniques for extinction coefficient detection. This work aims to provide an initial validation of the CAPS extinction monitor in laboratory and field environments. Our initial results presented in this paper show that the CAPS extinction monitor is capable of providing state-of-the-art performance while dramatically reducing the complexity of optical instrumentation for directly measuring the extinction coefficients.

  18. Superradiant Topological Peierls Insulator inside an Optical Cavity

    NASA Astrophysics Data System (ADS)

    Mivehvar, Farokh; Ritsch, Helmut; Piazza, Francesco

    2017-02-01

    We consider a spinless ultracold Fermi gas tightly trapped along the axis of an optical resonator and transversely illuminated by a laser closely tuned to a resonator mode. At a certain threshold pump intensity, the homogeneous gas density breaks a Z2 symmetry towards a spatially periodic order, which collectively scatters pump photons into the cavity. We show that this known self-ordering transition also occurs for low field seeking fermionic particles when the laser light is blue detuned to an atomic transition. The emergent superradiant optical lattice in this case is homopolar and possesses two distinct dimerizations. Depending on the spontaneously chosen dimerization, the resulting Bloch bands can have a nontrivial topological structure characterized by a nonvanishing Zak phase. In the case where the Fermi momentum is close to half of the cavity-mode wave number, a Peierls-like instability here creates a topological insulator with a gap at the Fermi surface, which hosts a pair of edge states. The topological features of the system can be nondestructively observed via the cavity output: the Zak phase of the bulk coincides with the relative phase between laser and cavity field, while the fingerprint of edge states can be observed as additional broadening in a well-defined frequency window of the cavity spectrum.

  19. Superradiant Topological Peierls Insulator inside an Optical Cavity.

    PubMed

    Mivehvar, Farokh; Ritsch, Helmut; Piazza, Francesco

    2017-02-17

    We consider a spinless ultracold Fermi gas tightly trapped along the axis of an optical resonator and transversely illuminated by a laser closely tuned to a resonator mode. At a certain threshold pump intensity, the homogeneous gas density breaks a Z_{2} symmetry towards a spatially periodic order, which collectively scatters pump photons into the cavity. We show that this known self-ordering transition also occurs for low field seeking fermionic particles when the laser light is blue detuned to an atomic transition. The emergent superradiant optical lattice in this case is homopolar and possesses two distinct dimerizations. Depending on the spontaneously chosen dimerization, the resulting Bloch bands can have a nontrivial topological structure characterized by a nonvanishing Zak phase. In the case where the Fermi momentum is close to half of the cavity-mode wave number, a Peierls-like instability here creates a topological insulator with a gap at the Fermi surface, which hosts a pair of edge states. The topological features of the system can be nondestructively observed via the cavity output: the Zak phase of the bulk coincides with the relative phase between laser and cavity field, while the fingerprint of edge states can be observed as additional broadening in a well-defined frequency window of the cavity spectrum.

  20. Optical complexity in external cavity semiconductor laser

    NASA Astrophysics Data System (ADS)

    Rondoni, Lamberto; Ariffin, M. R. K.; Varatharajoo, Renuganth; Mukherjee, Sayan; Palit, Sanjay K.; Banerjee, Santo

    2017-03-01

    In this article, the window based complexity and output modulation of a time delayed chaotic semiconductor laser (SL) model has been investigated. The window based optical complexity (OC), is measured by introducing the recurrence sample entropy (SampEn). The analysis has been done without and in the presence of external noise. The significant changes in the dynamics can be observed under induced noise with weak strength. It has also been found that there is a strong positive correlation between the output power and the complexity of the system with various sets of parameters. The laser intensity, as well as the OC can be increased with the incremental noise strength and the associated system parameters. Thus, optical complexity quantifies the system dynamics and its instabilities, since is strongly correlated with the laser outputs. This analysis can be applied to measure the laser instabilities and modulation of output power.

  1. Noise-Immune Cavity-Enhanced Optical Frequency Comb Spectroscopy

    NASA Astrophysics Data System (ADS)

    Rutkowski, Lucile; Khodabakhsh, Amir; Johanssson, Alexandra C.; Foltynowicz, Aleksandra

    2015-06-01

    We present noise-immune cavity-enhanced optical frequency comb spectroscopy (NICE-OFCS), a recently developed technique for sensitive, broadband, and high resolution spectroscopy. In NICE-OFCS an optical frequency comb (OFC) is locked to a high finesse cavity and phase-modulated at a frequency precisely equal to (a multiple of) the cavity free spectral range. Since each comb line and sideband is transmitted through a separate cavity mode in exactly the same way, any residual frequency noise on the OFC relative to the cavity affects each component in an identical manner. The transmitted intensity contains a beat signal at the modulation frequency that is immune to frequency-to-amplitude noise conversion by the cavity, in a way similar to continuous wave noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS). The light transmitted through the cavity is detected with a fast-scanning Fourier-transform spectrometer (FTS) and the NICE-OFCS signal is obtained by fast Fourier transform of the synchronously demodulated interferogram. Our NICE-OFCS system is based on an Er:fiber femtosecond laser locked to a cavity with a finesse of ˜9000 and a fast-scanning FTS equipped with a high-bandwidth commercial detector. We measured NICE-OFCS signals from the 3νb{1}+νb{3} overtone band of CO_2 around 1.57 μm and achieved absorption sensitivity 6.4×10-11cm-1 Hz-1/2 per spectral element, corresponding to a minimum detectable CO_2 concentration of 25 ppb after 330 s integration time. We will describe the principles of the technique and its technical implementation, and discuss the spectral lineshapes of the NICE-OFCS signals. A. Khodabakhsh, C. Abd Alrahman, and A. Foltynowicz, Opt. Lett. 39, 5034-5037 (2014). J. Ye, L. S. Ma, and J. L. Hall, J. Opt. Soc. Am. B 15, 6-15 (1998). A. Khodabakhsh, A. C. Johansson, and A. Foltynowicz, Appl. Phys. B (2015) doi:10.1007/s00340-015-6010-7.

  2. Suppressing spectral diffusion of emitted photons with optical pulses

    SciTech Connect

    Fotso, H. F.; Feiguin, A. E.; Awschalom, D. D.; Dobrovitski, V. V.

    2016-01-22

    In many quantum architectures the solid-state qubits, such as quantum dots or color centers, are interfaced via emitted photons. However, the frequency of photons emitted by solid-state systems exhibits slow uncontrollable fluctuations over time (spectral diffusion), creating a serious problem for implementation of the photon-mediated protocols. Here we show that a sequence of optical pulses applied to the solid-state emitter can stabilize the emission line at the desired frequency. We demonstrate efficiency, robustness, and feasibility of the method analytically and numerically. Taking nitrogen-vacancy center in diamond as an example, we show that only several pulses, with the width of 1 ns, separated by few ns (which is not difficult to achieve) can suppress spectral diffusion. As a result, our method provides a simple and robust way to greatly improve the efficiency of photon-mediated entanglement and/or coupling to photonic cavities for solid-state qubits.

  3. Time-domain diffuse optics: towards next generation devices

    NASA Astrophysics Data System (ADS)

    Contini, Davide; Dalla Mora, Alberto; Arridge, Simon; Martelli, Fabrizio; Tosi, Alberto; Boso, Gianluca; Farina, Andrea; Durduran, Turgut; Martinenghi, Edoardo; Torricelli, Alessandro; Pifferi, Antonio

    2015-07-01

    Diffuse optics is a powerful tool for clinical applications ranging from oncology to neurology, but also for molecular imaging, and quality assessment of food, wood and pharmaceuticals. We show that ideally time-domain diffuse optics can give higher contrast and a higher penetration depth with respect to standard technology. In order to completely exploit the advantages of a time-domain system a distribution of sources and detectors with fast gating capabilities covering all the sample surface is needed. Here, we present the building block to build up such system. This basic component is made of a miniaturised source-detector pair embedded into the probe based on pulsed Vertical-Cavity Surface-Emitting Lasers (VCSEL) as sources and Single-Photon Avalanche Diodes (SPAD) or Silicon Photomultipliers (SiPM) as detectors. The possibility to miniaturized and dramatically increase the number of source detectors pairs open the way to an advancement of diffuse optics in terms of improvement of performances and exploration of new applications. Furthermore, availability of compact devices with reduction in size and cost can boost the application of this technique.

  4. Modes of a twisted optical cavity

    SciTech Connect

    Habraken, Steven J. M.; Nienhuis, Gerard

    2007-03-15

    An astigmatic optical resonator consists of two astigmatic mirrors facing each other. The resonator is twisted when the symmetry axes of the mirrors are nonparallel. We present an algebraic method to obtain the complete set of the paraxial eigenmodes of such a resonator. Basic ingredients are the complex eigenvectors of the four-dimensional transfer matrix that describes the transformation of a ray of light over a roundtrip of the resonator. The relation between the fundamental mode and the higher-order modes is expressed in terms of raising operators in the spirit of the ladder operators of the quantum harmonic oscillator.

  5. Fiber Optic Based Thermometry System for Superconducting RF Cavities

    SciTech Connect

    Kochergin, Vladimir

    2013-05-06

    Thermometry is recognized as the best technique to identify and characterize losses in SRF cavities. The most widely used and reliable apparatus for temperature mapping at cryogenic temperatures is based on carbon resistors (RTDs). The use of this technology on multi-cell cavities is inconvenient due to the very large number of sensors required to obtain sufficient spatial resolution. Recent developments make feasible the use of multiplexible fiber optic sensors for highly distributed temperature measurements. However, sensitivity of multiplexible cryogenic temperature sensors was found extending only to 12K at best and thus was not sufficient for SRF cavity thermometry. During the course of the project the team of MicroXact, JLab and Virginia Tech developed and demonstrated the multiplexible fiber optic sensor with adequate response below 20K. The demonstrated temperature resolution is by at least a factor of 60 better than that of the best multiplexible fiber optic temperature sensors reported to date. The clear path toward at least 10times better temperature resolution is shown. The first to date temperature distribution measurements with ~2.5mm spatial resolution was done with fiber optic sensors at 2K to4K temperatures. The repeatability and accuracy of the sensors were verified only at 183K, but at this temperature both parameters significantly exceeded the state of the art. The results of this work are expected to find a wide range of applications, since the results are enabling the whole new testing capabilities, not accessible before.

  6. Microfabricated Optical Cavities and Photonic Crystals

    NASA Astrophysics Data System (ADS)

    Lončar, Marko; Scherer, Axel

    Microfabricated periodic structures with a high refractive index contrast have recently become very interesting geometries for the manipulation of light. The existence of a photonic bandgap, a frequency range within which propagation of light is prevented in all directions, is very useful where spatial localization of light is required. Ideally, by constructing three-dimensional confinement geometries, light propagation can be controlled in all three dimensions. However, since the fabrication of 3D photonic crystals is difficult, a more manufacturable approach is based on the use of one- or two-dimensional geometries. Here we describe the evolution of microcavities from 1D Bragg reflectors to 2D photonic crystals. The 1D microcavity laser (VCSEL) has already found widespread commercial use in data communications, and the equivalent 2D geometry has recently attracted a lot of research attention. 2D photonic crystal lasers, fabricated within a thin dielectric membrane and perforated with a two-dimensional lattice of holes, are very appealing for dense integration of photonic devices in telecommunications and optical sensing systems. In this chapter, we describe theory and experiments of planar photonic crystals as well as their applications towards lasers and super-dispersive elements. Low-threshold 2D photonic crystal lasers were recently demonstrated both in air and in different chemical solutions and can now be used to perform spectroscopic tests on ultra-small volumes of analyte.

  7. Biosensors based on GaN nanoring optical cavities

    NASA Astrophysics Data System (ADS)

    Kouno, Tetsuya; Takeshima, Hoshi; Kishino, Katsumi; Sakai, Masaru; Hara, Kazuhiko

    2016-05-01

    Biosensors based on GaN nanoring optical cavities were demonstrated using room-temperature photoluminescence measurements. The outer diameter, height, and thickness of the GaN nanorings were approximately 750-800, 900, and 130-180 nm, respectively. The nanorings functioned as whispering-gallery-mode (WGM)-type optical cavities and exhibited sharp resonant peaks like lasing actions. The evanescent component of the WGM was strongly affected by the refractive index of the ambient environment, the type of liquid, and the sucrose concentration of the analyzed solution, resulting in shifts of the resonant wavelengths. The results indicate that the GaN nanorings can potentially be used in sugar sensors of the biosensors.

  8. Surface diffusion studies by optical diffraction techniques

    SciTech Connect

    Xiao, X.D.

    1992-11-01

    The newly developed optical techniques have been combined with either second harmonic (SH) diffraction or linear diffraction off a monolayer adsorbate grating for surface diffusion measurement. Anisotropy of surface diffusion of CO on Ni(l10) was used as a demonstration for the second harmonic dim reaction method. The linear diffraction method, which possesses a much higher sensitivity than the SH diffraction method, was employed to study the effect of adsorbate-adsorbate interaction on CO diffusion on Ni(l10) surface. Results showed that only the short range direct CO-CO orbital overlapping interaction influences CO diffusion but not the long range dipole-dipole and CO-NI-CO interactions. Effects of impurities and defects on surface diffusion were further explored by using linear diffraction method on CO/Ni(110) system. It was found that a few percent S impurity can alter the CO diffusion barrier height to a much higher value through changing the Ni(110) surface. The point defects of Ni(l10) surface seem to speed up CO diffusion significantly. A mechanism with long jumps over multiple lattice distance initiated by CO filled vacancy is proposed to explain the observed defect effect.

  9. Enhancement in Quality Factor of SRF Niobium Cavities by Material Diffusion

    SciTech Connect

    Dhakal, Pashupati; Ciovati, Gianluigi; Kneisel, Peter K.; Myneni, Ganapati Rao

    2015-06-01

    An increase in the quality factor of superconducting radiofrequency cavities is achieved by minimizing the surface resistance during processing steps. The surface resistance is the sum of temperature independent residual resistance and temperature/material dependent Bardeen-Cooper-Schrieffer (BCS) resistance. High temperature heat treatment usually reduces the impurities concentration from the bulk niobium, lowering the residual resistance. The BCS part can be reduced by selectively doping non-magnetic impurities. The increase in quality factor, termed as Q-rise, was observed in cavities when titanium or nitrogen thermally diffused in the inner cavity surface.

  10. Nonperturbative atom-photon interactions in an optical cavity

    SciTech Connect

    Carmichael, H.J.; Tian, L.; Ren, W.

    1994-12-31

    One of the principal developments in cavity quantum electrodynamics in the last few years has been the extension of the ideas originally applied to systems of Rydberg atoms in microwave cavities to optical frequencies. As a corollary of this, more attention is being paid to quantum fluctuations and photon statistics. Another development, still in its infancy, is a move toward experiments using slowed or trapped atoms, or velocity selected beams; these methods are needed to enter the nonperturbative (strong dipole coupling) regime for one atom where there are experiments on subtle quantum-statistical effects go carry out. In this chapter we solve a number of theoretical problems related to these themes. Although the focus of the work is on optical systems, most of what we do is also relevant at microwave frequencies. We emphasize quantum fluctuations and photon statistics, and we try always to separate the quantum physics from those aspects of the physics that are understandable in classical terms. On the whole we only pay attention to the nonperturbative regime of cavity quantum electrodynamics where the dipole coupling strength is larger than the dissipation rates. 59 refs., 14 figs.

  11. Cavity quantum electro-optics. II. Input-output relations between traveling optical and microwave fields

    NASA Astrophysics Data System (ADS)

    Tsang, Mankei

    2011-10-01

    In a previous paper [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.81.063837 81, 063837 (2010)], I proposed a quantum model of the cavity electro-optic modulator, which can coherently couple an optical cavity mode to a microwave resonator mode and enable quantum operations on the two modes, including laser cooling of the microwave resonator, electro-optic entanglement, and backaction-evading optical measurement of a microwave quadrature. In this sequel, I focus on the quantum input-output relations between traveling optical and microwave fields coupled to the cavity electro-optic modulator. With red-sideband optical pumping, the relations are shown to resemble those of a beam splitter for the traveling fields, so that in the ideal case of zero parasitic loss and critical coupling, microwave photons can be coherently up converted to “flying” optical photons with unit efficiency, and vice versa. With blue-sideband pumping, the modulator acts as a nondegenerate parametric amplifier, which can generate two-mode squeezing and hybrid entangled photon pairs at optical and microwave frequencies. These fundamental operations provide a potential bridge between circuit quantum electrodynamics and quantum optics.

  12. Cavity quantum electro-optics. II. Input-output relations between traveling optical and microwave fields

    SciTech Connect

    Tsang, Mankei

    2011-10-15

    In a previous paper [Phys. Rev. A 81, 063837 (2010)], I proposed a quantum model of the cavity electro-optic modulator, which can coherently couple an optical cavity mode to a microwave resonator mode and enable quantum operations on the two modes, including laser cooling of the microwave resonator, electro-optic entanglement, and backaction-evading optical measurement of a microwave quadrature. In this sequel, I focus on the quantum input-output relations between traveling optical and microwave fields coupled to the cavity electro-optic modulator. With red-sideband optical pumping, the relations are shown to resemble those of a beam splitter for the traveling fields, so that in the ideal case of zero parasitic loss and critical coupling, microwave photons can be coherently up converted to ''flying'' optical photons with unit efficiency, and vice versa. With blue-sideband pumping, the modulator acts as a nondegenerate parametric amplifier, which can generate two-mode squeezing and hybrid entangled photon pairs at optical and microwave frequencies. These fundamental operations provide a potential bridge between circuit quantum electrodynamics and quantum optics.

  13. Coupling a single trapped atom to a nanoscale optical cavity.

    PubMed

    Thompson, J D; Tiecke, T G; de Leon, N P; Feist, J; Akimov, A V; Gullans, M; Zibrov, A S; Vuletić, V; Lukin, M D

    2013-06-07

    Hybrid quantum devices, in which dissimilar quantum systems are combined in order to attain qualities not available with either system alone, may enable far-reaching control in quantum measurement, sensing, and information processing. A paradigmatic example is trapped ultracold atoms, which offer excellent quantum coherent properties, coupled to nanoscale solid-state systems, which allow for strong interactions. We demonstrate a deterministic interface between a single trapped rubidium atom and a nanoscale photonic crystal cavity. Precise control over the atom's position allows us to probe the cavity near-field with a resolution below the diffraction limit and to observe large atom-photon coupling. This approach may enable the realization of integrated, strongly coupled quantum nano-optical circuits.

  14. Optical and electrical mappings of surface plasmon cavity modes

    NASA Astrophysics Data System (ADS)

    Ye, Fan; Merlo, Juan M.; Burns, Michael J.; Naughton, Michael J.

    2014-04-01

    Plasmonics is a rapidly expanding field, founded in physics but now with a growing number of applications in biology (biosensing), nanophotonics, photovoltaics, optical engineering and advanced information technology. Appearing as charge density oscillations along a metal surface, excited by electromagnetic radiation (e.g., light), plasmons can propagate as surface plasmon polaritons, or can be confined as standing waves along an appropriately-prepared surface. Here, we review the latter manifestation, both their origins and the manners in which they are detected, the latter dominated by near field scanning optical microscopy (NSOM/SNOM). We include discussion of the "plasmonic halo" effect recently observed by the authors, wherein cavity-confined plasmons are able to modulate optical transmission through step-gap nanostructures, yielding a novel form of color (wavelength) selection.

  15. Thermal Wave Resonator Cavity Applied to the Study of the Thermal Diffusivity of Coffee Infusions

    NASA Astrophysics Data System (ADS)

    Tepepa, B. Briseño; Marín, E.; Martín-Martínez, E. San; Orea, A. Cruz

    2009-10-01

    Among the photothermal methods, the photopyroelectric technique, in its several experimental configurations, has been extensively used to measure the thermal properties of liquids, mainly the thermal effusivity and diffusivity. In this paper, the use of the so-called thermal wave resonator cavity method, in the cavity-length-scan mode, to measure the thermal diffusivity of commercial coffee infusions with samples at different concentrations and degrees of degradation induced by heating cycles is reported. A linear relationship between the logarithm of the pyroelectric signal amplitude and the sample thickness was observed, in agreement with the basic theory for the experimental configuration used here, from which the thermal diffusivity values of the samples were obtained. The thermal diffusivity was found to be almost independent of the coffee concentration in water but that this parameter is sensitive to sample modifications induced by degradation. This work represents another step to demonstrate the capability of the used method for characterization of the thermal properties of liquids.

  16. Three-dimensional nanometer-scale optical cavities of indefinite medium

    PubMed Central

    Yao, Jie; Yang, Xiaodong; Yin, Xiaobo; Bartal, Guy; Zhang, Xiang

    2011-01-01

    Miniaturization of optical cavities has numerous advantages for enhancing light–matter interaction in quantum optical devices, low-threshold lasers with minimal power consumption, and efficient integration of optoelectronic devices at large scale. However, the realization of a truly nanometer-scale optical cavity is hindered by the diffraction limit of the nature materials. In addition, the scaling of the photon life time with the cavity size significantly reduces the quality factor of small cavities. Here we theoretically present an approach to achieve ultrasmall optical cavities using indefinite medium with hyperbolic dispersion, which allows propagation of electromagnetic waves with wave vectors much larger than those in vacuum enabling extremely small 3D cavity down to (λ/20)3. These cavities exhibit size-independent resonance frequencies and anomalous scaling of quality factors in contrast to the conventional cavities, resulting in nanocavities with both high Q/Vm ratio and broad bandwidth. PMID:21709266

  17. Blood oxygenation monitoring by diffuse optical tomography

    SciTech Connect

    Patachia, M; Dutu, D.C.A.; Dumitras, D.C.

    2011-01-24

    Diffuse optical tomography (DOT) makes it possible to reconstruct, in two or three dimensions, the internal structure of the biological tissues based on the distribution of the absorption coefficient and the reduced scattering coefficient, using optical measurements at multiple source - detector positions on the tissue surface. The measurement of the light intensity transmitted through the tissue can be also used to compute the haemoglobin and oxyhaemoglobin concentrations, measuring the selective absorption of the main blood chromophores by near infrared spectroscopy (NIRS). The spectral selectivity of the system and the evaluation of the blood volume and blood oxygenation (BV and OXY distributions), together with the reconstruction of the inner structure of the tissue, can improve the accuracy of early cancer diagnosis, based on the tissue angiogenesis characterisation. (application of lasers and laser-optical methods in life sciences)

  18. [APPROACH TO ESTABLISHMENT OF INDICATIONS FOR PROGRAMMED SANATION OF ABDOMINAL CAVITY IN DIFFUSE PERITONITIS].

    PubMed

    Joffe, I V; Lesnoy, V V

    2016-01-01

    The results of treatment of 33 patients, suffering diffuse peritonitis, with postoperatively applied tactics of the programmed surgical sanation of abdominal cavity were analyzed. Indications for relaparotomy were established, based on the estimation scale for the enteral insufficiency severity. The patients death and the complications causes were analyzed, depending on terms and rates of relaparotomy conduction.

  19. Compact carbon monoxide sensor utilizing a confocal optical cavity.

    NASA Technical Reports Server (NTRS)

    Scott, B.; Magyar, J.; Weyant, R.; Hall, J.

    1973-01-01

    The carbon monoxide sensor discussed in this paper utilizes a unique confocal cavity which allows the complete system to be packaged in a small volume suitable for hand-held use. The optical system is the heart of the instrument with equal emphasis placed on the electronics support circuitry, consisting essentially of a thermal infrared pyroelectric detector and lock-in amplifier. The pyroelectric detector offers a major advantage over other thermal detectors, providing a signal-to-noise ratio and detectivity that remain nearly constant over the frequency range from dc to 2000 Hz. Since bias voltage is not required, low frequency noise is not generated in the detector.

  20. Bloch FDTD simulation of slow optical wave resonance cavity in optical storage technology

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Lin, Zhaohua; Cai, Lihua

    2013-08-01

    Long chain series resonance cavity is suitable for transferring slow optical wave, which can be served as the basic device for optical storage technology. Micro-ring resonator is one kind of such a long chain structure, which is considered to be the basic component of optical integrated circuit and optical computer in the future. The discrete energy level has the potential to distinguish digital optical data. The optical delay characteristics make such a device possible to store the information for some time. The advantage of this device is that it has the potential to construct an optical storage device in small geometrical dimension and could use mature semiconductor manufacture capability to lower the design and manufacturing expenses. Many experimental results have proved a lot of material and geometrical coefficients are very important for such an optical delay device. New theory method is needed to calculate the periodical energy transfer and time delay characteristics, which can be compared with experimental result. The Bloch FDTD is presented for analysis of such a new optical device, based on the optical Bloch energy band theory. The energy band characteristics of micro-ring periodical optical waveguide device is discussed used that analytical method. This precise calculated method could be served as a useful tool for design the structure of such resonance cavity to achieve desired slow optical wave transfer performance.

  1. Models for coupled diffusive/strain controlled growth of creep cavities

    SciTech Connect

    Lu, H.M.; Delph, T.J. )

    1993-08-01

    The importance of intergranular creep cavitation to high-temperature failure processes in metals and ceramics has been well-recognized for some time now. In general, creep cavity growth at elevated temperature is thought to occur by one of two processes. The first of these is diffusive growth, whereby matter is transported from the cavity surface and is deposited on the grain boundary. The second is strain-controlled growth, in which the cavity grows entirely as a consequence of creep deformation of the surrounding material under the action of an applied stress. Several models of cavity growth have been proposed in which these processes are coupled to each other and occur simultaneously. These models have attained some currency and have been used in several studies involving the growth of creep cavitation. The purpose of the present note is to investigate in some detail one particular class of these models.

  2. Optical heterodyne detection for cavity ring-down spectroscopy

    DOEpatents

    Levenson, Marc D.; Paldus, Barbara A.; Zare, Richard N.

    2000-07-25

    A cavity ring-down system for performing cavity ring-down spectroscopy (CRDS) using optical heterodyne detection of a ring-down wave E.sub.RD during a ring-down phase or a ring-up wave E.sub.RU during a ring up phase. The system sends a local oscillator wave E.sub.LO and a signal wave E.sub.SIGNAL to the cavity, preferably a ring resonator, and derives an interference signal from the combined local oscillator wave E.sub.LO and the ring-down wave E.sub.RD (or ring-up wave E.sub.RU). The local oscillator wave E.sub.LO has a first polarization and the ring-down wave E.sub.RD has a second polarization different from the first polarization. The system has a combining arrangement for combining or overlapping local oscillator wave E.sub.LO and the ring-down wave E.sub.RD at a photodetector, which receives the interference signal and generates a heterodyne current I.sub.H therefrom. Frequency and phase differences between the waves are adjustable.

  3. Cavity opto-mechanics using an optically levitated nanosphere

    PubMed Central

    Chang, D. E.; Regal, C. A.; Papp, S. B.; Wilson, D. J.; Ye, J.; Painter, O.; Kimble, H. J.; Zoller, P.

    2010-01-01

    Recently, remarkable advances have been made in coupling a number of high-Q modes of nano-mechanical systems to high-finesse optical cavities, with the goal of reaching regimes in which quantum behavior can be observed and leveraged toward new applications. To reach this regime, the coupling between these systems and their thermal environments must be minimized. Here we propose a novel approach to this problem, in which optically levitating a nano-mechanical system can greatly reduce its thermal contact, while simultaneously eliminating dissipation arising from clamping. Through the long coherence times allowed, this approach potentially opens the door to ground-state cooling and coherent manipulation of a single mesoscopic mechanical system or entanglement generation between spatially separate systems, even in room-temperature environments. As an example, we show that these goals should be achievable when the mechanical mode consists of the center-of-mass motion of a levitated nanosphere. PMID:20080573

  4. Assessing PDT response with diffuse optical spectroscopies

    NASA Astrophysics Data System (ADS)

    Rohrbach, Daniel J.

    Photodynamic therapy (PDT) is used to treat a variety of conditions including cancer. Effective PDT requires three components: a photosensitizer (PS), light of a specific wavelength to activate the PS and oxygen. When all three are present in a lesion it leads to cell death and vascular destruction. Optical techniques such as diffuse reflectance spectroscopy (DRS), diffuse fluorescence spectroscopy (DFS) and diffuse correlation spectroscopy (DCS) can be used to quantify vascular parameters and photosensitizer content before and after PDT, providing valuable information for assessing response. For the quantification of vascular parameters, a probe-specific empirical light transport model was developed. A look-up-table was constructed using tissue simulating phantoms made of Intralipid to control the scattering, India Ink to control the absorption and water. The empirical model allowed the quantification of optical properties as well as the vascular parameters blood volume fraction (BVf) and blood oxygen saturation (SO2) with DRS. Blood flow was measured using DCS. For the quantification of PS content two techniques were used. DRS was used to fit the absorption of the PS and DFS measured the fluorescence of the PS. For quantification of PS content from measured fluorescence, a correction factor was developed using Monte Carlo simulations to account for the optical properties at the excitation and emission wavelengths. The three techniques were used to assess PDT response in pre-clinical and clinical studies. For the preclinical study, mice were treated with HPPH-PDT and blood flow was measured continuously with DCS. Blood flow variables were compared to STAT3 crosslinking (a molecular marker for PDT photoreaction) and CD31 staining (to visualize intact endothelial cells after PDT). For the clinical study, patients in a clinical trial for HPPH-PDT were measured with DRS, DFS and DCS before and after treatment. Multiple parameters were compared to the clinical response

  5. Optical cavity temperature measurement based on the first overtones spontaneous emission spectra for HF chemical laser

    NASA Astrophysics Data System (ADS)

    Tang, Shukai; Li, Liucheng; Duo, Liping; Wang, Yuanhu; Yu, Haijun; Jin, Yuqi; Sang, Fengting

    2015-02-01

    An optical cavity temperature test method has been established for the HF chemical laser. This method assumes that in HF optical cavity the rotational distribution of vibrationally excited HF molecules meets the statistical thermodynamic distribution, the first overtones (v = 3-1 and 2-0) spontaneous emission spectral intensity distribution is obtained by using OMA V, the optical cavity temperature is calculated by linear fitting the rotational thermal equilibrium distribution formula for each HF vibrationally excited state. This method is simple, reliable, and repeatable. This method can be used to test the optical cavity temperature not only without lasing, but also with lasing.

  6. Optical processing furnace with quartz muffle and diffuser plate

    DOEpatents

    Sopori, Bhushan L.

    1996-01-01

    An optical furnace for annealing a process wafer comprising a source of optical energy, a quartz muffle having a door to hold the wafer for processing, and a quartz diffuser plate to diffuse the light impinging on the quartz muffle; a feedback system with a light sensor located in the wall of the muffle is also provided for controlling the source of optical energy.

  7. Suppressing spectral diffusion of emitted photons with optical pulses

    DOE PAGES

    Fotso, H. F.; Feiguin, A. E.; Awschalom, D. D.; ...

    2016-01-22

    In many quantum architectures the solid-state qubits, such as quantum dots or color centers, are interfaced via emitted photons. However, the frequency of photons emitted by solid-state systems exhibits slow uncontrollable fluctuations over time (spectral diffusion), creating a serious problem for implementation of the photon-mediated protocols. Here we show that a sequence of optical pulses applied to the solid-state emitter can stabilize the emission line at the desired frequency. We demonstrate efficiency, robustness, and feasibility of the method analytically and numerically. Taking nitrogen-vacancy center in diamond as an example, we show that only several pulses, with the width of 1more » ns, separated by few ns (which is not difficult to achieve) can suppress spectral diffusion. As a result, our method provides a simple and robust way to greatly improve the efficiency of photon-mediated entanglement and/or coupling to photonic cavities for solid-state qubits.« less

  8. Information theoretic regularization in diffuse optical tomography.

    PubMed

    Panagiotou, Christos; Somayajula, Sangeetha; Gibson, Adam P; Schweiger, Martin; Leahy, Richard M; Arridge, Simon R

    2009-05-01

    Diffuse optical tomography (DOT) retrieves the spatially distributed optical characteristics of a medium from external measurements. Recovering the parameters of interest involves solving a nonlinear and highly ill-posed inverse problem. This paper examines the possibility of regularizing DOT via the introduction of a priori information from alternative high-resolution anatomical modalities, using the information theory concepts of mutual information (MI) and joint entropy (JE). Such functionals evaluate the similarity between the reconstructed optical image and the prior image while bypassing the multimodality barrier manifested as the incommensurate relation between the gray value representations of corresponding anatomical features in the two modalities. By introducing structural information, we aim to improve the spatial resolution and quantitative accuracy of the solution. We provide a thorough explanation of the theory from an imaging perspective, accompanied by preliminary results using numerical simulations. In addition we compare the performance of MI and JE. Finally, we have adopted a method for fast marginal entropy evaluation and optimization by modifying the objective function and extending it to the JE case. We demonstrate its use on an image reconstruction framework and show significant computational savings.

  9. Logically combined photonic crystal - A Fabry Perot optical cavity

    NASA Astrophysics Data System (ADS)

    Alagappan, G.; Png, C. E.

    2016-11-01

    We address the logical combination, as opposed to the linear superposition, of two one - dimensional photonic crystals of slightly different periodicities. The original short range translational symmetry is destroyed in these quasi - periodic system. This induces a strong coupling between Bloch modes of different translational wavevectors, and results in a large number of slow modes in such logically combined photonic crystal. In this article, we show by exploiting the beating feature characteristics of the topology of our system, that these slow modes can be effectively described as modes of a Fabry Perot optical cavity made of a homogenous metamaterial with a dispersive refractive index. The homogenized refractive index of the equivalent metamaterial can be obtained from the band structure calculations, using an extended zone scheme. The density of the slow modes in the logically combined photonic crystal is inversely proportional to the group index of the equivalent metamaterial.

  10. Long distance measurement using optical sampling by cavity tuning.

    PubMed

    Wu, Hanzhong; Zhang, Fumin; Liu, Tingyang; Balling, Petr; Li, Jianshuang; Qu, Xinghua

    2016-05-15

    We experimentally demonstrate a method enabling absolute distance measurement based on optical sampling by cavity tuning. The cross-correlation patterns can be obtained by sweeping the repetition frequency of the frequency comb. The 114 m long fiber delay line, working as the reference arm, is actively stabilized by using a feedback servo loop with 10-10 level stability. The unknown distance can be measured via the instantaneous repetition frequency corresponding to the peak of the fringe packet. We compare the present technique with the reference incremental interferometer, and the experimental results show an agreement within 3 μm over 60 m distance, corresponding to 10-8 level in relative.

  11. A simplified model for thermal-wave cavity self-consistent measurement of thermal diffusivity

    SciTech Connect

    Shen, Jun Zhou, Jianqin; Gu, Caikang; Neill, Stuart; Michaelian, Kirk H.; Fairbridge, Craig; Astrath, Nelson G. C.; Baesso, Mauro L.

    2013-12-15

    A simplified theoretical model was developed for the thermal-wave cavity (TWC) technique in this study. This model takes thermal radiation into account and can be employed for absolute measurements of the thermal diffusivity of gas and liquid samples without any knowledge of geometrical and thermal parameters of the components of the TWC. Using this model and cavity-length scans, thermal diffusivities of air and distilled water were accurately and precisely measured as (2.191 ± 0.004) × 10{sup −5} and (1.427 ± 0.009) × 10{sup −7} m{sup 2} s{sup −1}, respectively, in very good agreement with accepted literature values.

  12. A 100 Mbps resonant cavity phase modulator for coherent optical communications

    NASA Technical Reports Server (NTRS)

    Chen, Chien-Chung; Robinson, Deborah L.; Hemmati, Hamid

    1992-01-01

    A resonant cavity electro-optic phase modulator has been designed and implemented to operate at a data rate of 100 Mbps. The modulator consists of an electro-optic crystal located in a highly resonant cavity. The cavity is electro-optically tuned on and off resonance, and the phase dispersion near the cavity resonance provides the output phase modulation. The performance of the modulator was measured by first heterodyne detecting the signal to an intermediate frequency and then measuring the spectral characteristics using an RF spectrum analyzer. The measured phase shift is shown to be in good agreement with the theoretical predictions.

  13. Measurements of optical loss in transparent solids using a novel spectrometer based on optical cavity decay

    SciTech Connect

    Milanovich, F.P.; Hunt, J.T.; Roe, J.N.

    1988-12-14

    Recent advances in High Average Power (HAP) solid state lasers and the development of new concept lasers with the potential of ultra- high average power output have put increasing demands on the transparency of optical window materials. To gain a better understanding of the current status of window materials and to direct research toward more nearly transparent materials, we have constructed an optical characterization facility with the purpose of making quantitative optical loss measurements in the sensitivity range of 10/sup /minus/3/ to 10/sup /minus/6/ cm/sup /minus/1/. The cornerstone of this facility is a scanning optical lossmeter in which loss is determined by comparing the decay time of an optical cavity with and without a transparent solid present. The lossmeter has been successfully applied to measurements of the optical loss of witness samples of highly transparent fused silica. A description of the lossmeter and a compilation of preliminary loss measurements are presented here. 3 refs.

  14. Double-diffusive natural convection in a fluid saturated porous cavity with a freely convecting wall

    SciTech Connect

    Nithiarasu, P.; Sundararajan, T.; Seetharamu, K.N.

    1997-12-01

    Double-diffusive natural convection in fluid saturated porous medium has been investigated using a generalized porous medium model. One of the vertical walls of the porous cavity considered is subjected to convective heat and mass transfer conditions. The results show that the flow, heat and mass transfer become sensitive to applied mass transfer coefficient in both the Darcy and non-Darcy flow regimes. It is also observed that the Sherwood number approaches a constant value as the solutal Biot number increases. Double-diffusive natural convection in fluid saturated porous medium is encountered in applications such as food processing, contaminant transport in ground water, and others.

  15. Diffusion and rheology in a suspension of hydrodynamically interacting colloids enclosed by a spherical cavity

    NASA Astrophysics Data System (ADS)

    Aponte-Rivera, Christian; Zia, Roseanna

    2014-11-01

    We study diffusion and rheology of a suspension of hydrodynamically interacting colloidal spheres enclosed by a spherical cavity, utilizing the Stokesian Dynamics framework to account for long-range many-body and pairwise lubrication interactions between the particles and between particle and enclosure. Previous studies of 1D- and 2D-confined suspensions have revealed that boundaries exert a pronounced qualitative influence on microstructure, dynamics, and rheology. While studies of the motion of a point particle in a cavity have been reported, the neglect of finite size sacrifices significant qualitative information, resulting in an incorrect coupling between torque and velocity, among others. We have derived new hydrodynamic mobility functions for finite-size particles confined by a spherical boundary that faithfully capture the physics of the boundary and its influence on particle dynamics. We obtain the full grand-mobility matrix and, from these, the position-dependent short-time self-diffusivity for an isolated particle and the dynamics of a hydrodynamically interacting pair suspended in the cavity. Both of these are studied over a range of particle-to-cavity size ratios. This material is based upon work supported by the NSF GRFP under Grant No. DGE-0707428. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the NSF.

  16. Optical-Fiber Thermal-Wave-Cavity Technique to Study Thermal Properties of Silver/Clay Nanofliuds

    NASA Astrophysics Data System (ADS)

    Noroozi, M.; Radiman, S.; Zakaria, A.; Shameli, K.; Deraman, M.; Soltaninejad, S.; Abedini, A.

    2014-10-01

    Thermal properties enhancement of nanofluids have varied strongly with synthesis technique, particle size and type, concentration and agglomeration with time. This study explores the possibility of changing the thermal wave signal of Ag/clay nanofluids into a thermal diffusivity measurement at well dispersion or aggregation of nanoparticles in the base fluid. Optical-Fiber Thermal-Wave-Cavity (OF-TWC) technique was achieved by using a small amount of nanofluid (only 0.2 mL) between fiber optic tip and the Pyroelectric detector and the cavity-length scan was performed. We established the accuracy and precision of this technique by comparing the thermal diffusivity of distilled water to values reported in the literature. Assuming a linear Pyroelectric signal response, the results show that adding clay reduced the thermal diffusivity of water, while increasing the Ag concentration from 1 to 5 wt.% increased the thermal diffusivity of the Ag nanofluid from 1.524×10-3 to 1.789×10-3 cm2/s. However, in particular, nanoparticles show the tendency to form aggregates over time that correlated with the performance change of thermal properties of nanofluid. Our results confirm the high sensitivity of OF-TWC technique raises the potential to be applied to measuring the optical and thermal properties of nanofluids. Furthermore, this technique allows the extraction of information not obtained using other traditional techniques.

  17. Hyperspectral image reconstruction for diffuse optical tomography

    PubMed Central

    Larusson, Fridrik; Fantini, Sergio; Miller, Eric L.

    2011-01-01

    We explore the development and performance of algorithms for hyperspectral diffuse optical tomography (DOT) for which data from hundreds of wavelengths are collected and used to determine the concentration distribution of chromophores in the medium under investigation. An efficient method is detailed for forming the images using iterative algorithms applied to a linearized Born approximation model assuming the scattering coefficient is spatially constant and known. The L-surface framework is employed to select optimal regularization parameters for the inverse problem. We report image reconstructions using 126 wavelengths with estimation error in simulations as low as 0.05 and mean square error of experimental data of 0.18 and 0.29 for ink and dye concentrations, respectively, an improvement over reconstructions using fewer specifically chosen wavelengths. PMID:21483616

  18. Direct Measurement of Large, Diffuse, Optical Structures

    NASA Technical Reports Server (NTRS)

    Saif, Babak N.; Keski-Kuha, Ritva; Feinberg, Lee; Wyant, J. C.; Atkinson, C.

    2004-01-01

    Digital Speckle Pattern Interferometry (DSPI) is a well-established method for the measurement of diffuse objects in experimental mechanics. DSPIs are phase shifting interferometers. Three or four bucket temporal phase shifting algorithms are commonly used to provide phase shifting. These algorithms are sensitive to vibrations and can not be used to measure large optical structures far away from the interferometer. In this research a simultaneous phase shifted interferometer, PhaseCam product of 4D Technology Corporation in Tucson Arizona, is modified to be a Simultaneous phase shifted Digital Speckle Pattern Interferometer (SDSPI). Repeatability, dynamic range, and accuracy of the SDSPI are characterized by measuring a 5 cm x 5 cm carbon fiber coupon.

  19. Improving diffuse optical tomography with structural a priori from fluorescence diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Ma, Wenjuan; Gao, Feng; Duan, Linjing; Zhu, Qingzhen; Wang, Xin; Zhang, Wei; Wu, Linhui; Yi, Xi; Zhao, Huijuan

    2012-03-01

    We obtain absorption and scattering reconstructed images by incorporating a priori information of target location obtained from fluorescence diffuse optical tomography (FDOT) into the diffuse optical tomography (DOT). The main disadvantage of DOT lies in the low spatial resolution resulting from highly scattering nature of tissue in the near-infrared (NIR), but one can use it to monitor hemoglobin concentration and oxygen saturation simultaneously, as well as several other cheomphores such as water, lipids, and cytochrome-c-oxidase. Up to date, extensive effort has been made to integrate DOT with other imaging modalities such as MRI, CT, to obtain accurate optical property maps of the tissue. However, the experimental apparatus is intricate. In this study, DOT image reconstruction algorithm that incorporates a prior structural information provided by FDOT is investigated in an attempt to optimize recovery of a simulated optical property distribution. By use of a specifically designed multi-channel time-correlated single photon counting system, the proposed scheme in a transmission mode is experimentally validated to achieve simultaneous reconstruction of the fluorescent yield, lifetime, absorption and scattering coefficient. The experimental results demonstrate that the quantitative recovery of the tumor optical properties has doubled and the spatial resolution improves as well by applying the new improved method.

  20. Open Quantum System Studies of Optical Lattices and Nonlinear Optical Cavities: A Comprehensive Development of Atomtronics

    NASA Astrophysics Data System (ADS)

    Pepino, Ronald A.

    2011-12-01

    A generalized open quantum theory that models the transport properties of bosonic systems is derived from first principles. This theory is shown to correctly describe the long-time behavior of a specific class of non-Markovian system-reservoir interactions. Starting with strongly-interacting bosons in optical lattices, we use this theory to construct a novel, one-to-one analogy with electronic systems, components, and devices. Beginning with the concept of a wire, we demonstrate theoretically the ultracold boson analog of a semiconductor diode, a field-effect transistor, and a bipolar junction transistor. In a manner directly analogous to electronics, we show that it is possible to construct combinatorial logic structures from the fundamental electronic-emulating devices just described. In this sense, our proposal for atomtronic devices is a useful starting point for arrangements with more complex functionality. In addition we show that the behavior of the proposed diode should also be possible utilizing a weakly-interacting, coherent bosonic drive. After demonstrating the formal equivalence between systems comprised of bosons in optical lattices and photons in nonlinear cavity networks, we use the formalism to extend the ideas and concepts developed earlier in ultracold boson systems to nonlinear optical systems. We adapt the open quantum system theory to this new physical environment, and demonstrate theoretically how a few-photon optical diode can be realized in a coupled nonlinear cavity system. An analysis of different practical cavity quantum electrodynamics systems is presented and experimentally-viable candidates are evaluated.

  1. Near-Infrared Diffuse Optical Tomography

    PubMed Central

    Hielscher, A. H.; Bluestone, A. Y.; Abdoulaev, G. S.; Klose, A. D.; Lasker, J.; Stewart, M.; Netz, U.; Beuthan, J.

    2002-01-01

    Diffuse optical tomography (DOT) is emerging as a viable new biomedical imaging modality. Using near-infrared (NIR) light, this technique probes absorption as well as scattering properties of biological tissues. First commercial instruments are now available that allow users to obtain cross-sectional and volumetric views of various body parts. Currently, the main applications are brain, breast, limb, joint, and fluorescence/bioluminescence imaging. Although the spatial resolution is limited when compared with other imaging modalities, such as magnetic resonance imaging (MRI) or X-ray computerized tomography (CT), DOT provides access to a variety of physiological parameters that otherwise are not accessible, including sub-second imaging of hemodynamics and other fast-changing processes. Furthermore, DOT can be realized in compact, portable instrumentation that allows for bedside monitoring at relatively low cost. In this paper, we present an overview of current state-of-the -art technology, including hardware and image-reconstruction algorithms, and focus on applications in brain and joint imaging. In addition, we present recent results of work on optical tomographic imaging in small animals. PMID:14646043

  2. Lasing optical cavities based on macroscopic scattering elements

    NASA Astrophysics Data System (ADS)

    Consoli, Antonio; López, Cefe

    2017-01-01

    Two major elements are required in a laser device: light confinement and light amplification. Light confinement is obtained in optical cavities by employing a pair of mirrors or by periodic spatial modulation of the refractive index as in photonic crystals and Bragg gratings. In random lasers, randomly placed nanoparticles embedded in the active material provide distributed optical feedback for lasing action. Recently, we demonstrated a novel architecture in which scattering nanoparticles and active element are spatially separated and random lasing is observed. Here we show that this approach can be extended to scattering media with macroscopic size, namely, a pair of sand grains, which act as feedback elements and output couplers, resulting in lasing emission. We demonstrate that the number of lasing modes depends on the surface roughness of the sand grains in use which affect the coherent feedback and thus the emission spectrum. Our findings offer a new perspective of material science and photonic structures, facilitating a novel and simple approach for the realization of new photonics devices based on natural scattering materials.

  3. Lasing optical cavities based on macroscopic scattering elements.

    PubMed

    Consoli, Antonio; López, Cefe

    2017-01-10

    Two major elements are required in a laser device: light confinement and light amplification. Light confinement is obtained in optical cavities by employing a pair of mirrors or by periodic spatial modulation of the refractive index as in photonic crystals and Bragg gratings. In random lasers, randomly placed nanoparticles embedded in the active material provide distributed optical feedback for lasing action. Recently, we demonstrated a novel architecture in which scattering nanoparticles and active element are spatially separated and random lasing is observed. Here we show that this approach can be extended to scattering media with macroscopic size, namely, a pair of sand grains, which act as feedback elements and output couplers, resulting in lasing emission. We demonstrate that the number of lasing modes depends on the surface roughness of the sand grains in use which affect the coherent feedback and thus the emission spectrum. Our findings offer a new perspective of material science and photonic structures, facilitating a novel and simple approach for the realization of new photonics devices based on natural scattering materials.

  4. Lasing optical cavities based on macroscopic scattering elements

    PubMed Central

    Consoli, Antonio; López, Cefe

    2017-01-01

    Two major elements are required in a laser device: light confinement and light amplification. Light confinement is obtained in optical cavities by employing a pair of mirrors or by periodic spatial modulation of the refractive index as in photonic crystals and Bragg gratings. In random lasers, randomly placed nanoparticles embedded in the active material provide distributed optical feedback for lasing action. Recently, we demonstrated a novel architecture in which scattering nanoparticles and active element are spatially separated and random lasing is observed. Here we show that this approach can be extended to scattering media with macroscopic size, namely, a pair of sand grains, which act as feedback elements and output couplers, resulting in lasing emission. We demonstrate that the number of lasing modes depends on the surface roughness of the sand grains in use which affect the coherent feedback and thus the emission spectrum. Our findings offer a new perspective of material science and photonic structures, facilitating a novel and simple approach for the realization of new photonics devices based on natural scattering materials. PMID:28071675

  5. All-optical flip-flop based on vertical cavity semiconductor optical amplifiers.

    PubMed

    Song, Deqiang; Gauss, Veronica; Zhang, Haijiang; Gross, Matthias; Wen, Pengyue; Esener, Sadik

    2007-10-15

    We report the operation of an all-optical set-reset (SR) flip-flop based on vertical cavity semiconductor optical amplifiers (VCSOAs). This flip-flop is cascadable, has low optical switching power (~10 microW), and has the potential to be integrated on a small footprint (~100 microm(2)). The flip-flop is composed of two cross-coupled electrically pumped VCSOA inverters and uses the principles of cross-gain modulation, polarization gain anisotropy, and highly nonlinear gain characteristics to achieve flip-flop functionality. We believe that, when integrated on chip, this type of all-optical flip-flop opens new prospects for implementing all-optical fast memories and timing regeneration circuits.

  6. Cascadable all-optical inverter based on a nonlinear vertical-cavity semiconductor optical amplifier.

    PubMed

    Zhang, Haijiang; Wen, Pengyue; Esener, Sadik

    2007-07-01

    We report, for the first time to our knowledge, the operation of a cascadable, low-optical-switching-power(~10 microW) small-area (~100 microm(2)) high-speed (80 ps fall time) all-optical inverter. This inverter employs cross-gain modulation, polarization gain anisotropy, and highly nonlinear gain characteristics of an electrically pumped vertical-cavity semiconductor optical amplifier (VCSOA). The measured transfer characteristics of such an optical inverter resemble those of standard electronic metal-oxide semiconductor field-effect transistor-based inverters exhibiting high noise margin and high extinction ratio (~9.3 dB), making VCSOAs an ideal building block for all-optical logic and memory.

  7. Intra-Cavity Total Reflection For High Sensitivity Measurement Of Optical Properties

    DOEpatents

    Pipino, Andrew Charles Rule

    1999-11-16

    An optical cavity resonator device is provided for conducting sensitive murement of optical absorption by matter in any state with diffraction-limited spatial resolution through utilization of total internal reflection within a high-Q (high quality, low loss) optical cavity. Intracavity total reflection generates an evanescent wave that decays exponentially in space at a point external to the cavity, thereby providing a localized region where absorbing materials can be sensitively probed through alteration of the Q-factor of the otherwise isolated cavity. When a laser pulse is injected into the cavity and passes through the evanescent state, an amplitude loss resulting from absorption is incurred that reduces the lifetime of the pulse in the cavity. By monitoring the decay of the injected pulse, the absorption coefficient of manner within the evanescent wave region is accurately obtained from the decay time measurement.

  8. Intra-Cavity Total Reflection For High Sensitivity Measurement Of Optical Properties

    DOEpatents

    Pipino, Andrew C. R.; Hudgens, Jeffrey W.

    1999-08-24

    An optical cavity resonator device is provided for conducting sensitive murement of optical absorption by matter in any state with diffraction-limited spatial resolution through utilization of total internal reflection within a high-Q (high quality, low loss) optical cavity. Intracavity total reflection generates an evanescent wave that decays exponentially in space at a point external to the cavity, thereby providing a localized region where absorbing materials can be sensitively probed through alteration of the Q-factor of the otherwise isolated cavity. When a laser pulse is injected into the cavity and passes through the evanescent state, an amplitude loss resulting from absorption is incurred that reduces the lifetime of the pulse in the cavity. By monitoring the decay of the injected pulse, the absorption coefficient of manner within the evanescent wave region is accurately obtained from the decay time measurement.

  9. Optical processing furnace with quartz muffle and diffuser plate

    DOEpatents

    Sopori, Bhushan L.

    1995-01-01

    An optical furnace for annealing a process wafer comprising a source of optical energy, a quartz muffle having a door to hold the wafer for processing, and a quartz diffuser plate to diffuse the light impinging on the quartz muffle; a feedback system with a light sensor located in the door or wall of the muffle is also provided for controlling the source of optical energy. The quartz for the diffuser plate is surface etched (to give the quartz diffusive qualities) in the furnace during a high intensity burn-in process.

  10. Optical extinction monitor using cw cavity enhanced detection.

    PubMed

    Kebabian, Paul L; Robinson, Wade A; Freedman, Andrew

    2007-06-01

    We present details of an apparatus capable of measuring optical extinction (i.e., scattering and/or absorption) with high precision and sensitivity. The apparatus employs one variant of cavity enhanced detection, specifically cavity attenuated phase shift spectroscopy, using a near-confocal arrangement of two high reflectivity (R approximately 0.9999) mirrors in tandem with an enclosed cell 26 cm in length, a light emitting diode (LED), and a vacuum photodiode detector. The square wave modulated light from the LED passes through the absorption cell and is detected as a distorted wave form which is characterized by a phase shift with respect to the initial modulation. The amount of that phase shift is a function of fixed instrument properties-cell length, mirror reflectivity, and modulation frequency-and of the presence of a scatterer or absorber (air, particles, trace gases, etc.) within the cell. The specific implementation reported here employs a blue LED; the wavelength and spectral bandpass of the measurement are defined by the use of an interference filter centered at 440 nm with a 20 nm wide bandpass. The monitor is enclosed within a standard 19 in. rack-mounted instrumentation box, weighs 10 kg, and uses 70 W of electrical power including a vacuum pump. Measurements of the phase shift induced by Rayleigh scattering from several gases (which range in extinction coefficient from 0.4-32 Mm(-1)) exhibit a highly linear dependence (r(2)=0.999 97) when plotted as the co-tangent of the phase shift versus the expected extinction. Using heterodyne demodulation techniques, we demonstrate a detection limit of 0.04 Mm(-1) (4 x 10(-10) cm(-1)) (2sigma) in 10 s integration time and a base line drift of less than +/-0.1 Mm(-1) over a 24 h period. Detection limits decrease as the square root of integration time out to approximately 150 s.

  11. Duality relation between nonspherical mirror optical cavities and its application to gravitational-wave detectors.

    PubMed

    Agresti, Juri; Chen, Yanbei; D'Ambrosio, Erika; Savov, Pavlin

    2012-09-01

    In this paper, we analytically prove a unique duality relation between the eigenspectra of paraxial optical cavities with nonspherical mirrors: a one-to-one mapping between eigenmodes and eigenvalues of cavities deviating from flat mirrors by h(r) and cavities deviating from concentric mirrors by -h(r), where h need not be a small perturbation. We then illustrate its application to optical cavities, proposed for advanced interferometric gravitational-wave detectors, where the mirrors are designed to support beams with rather flat intensity profiles over the mirror surfaces. This unique mapping might be very useful in future studies of alternative optical designs for advanced gravitational wave interferometers or experiments employing optical cavities with nonstandard mirrors.

  12. Proposal of using slot-waveguide cavity to reduce noises in resonant integrated optical gyroscopes

    NASA Astrophysics Data System (ADS)

    Jiang, Yi; Kong, Mei; Xu, Yameng

    2016-10-01

    Resonant optical gyroscopes suffer serious performance degradation induced by noises. We propose using an air-gap silicon-on-silica slot waveguide ring resonator as the resonant cavity of a resonant integrated optical gyroscope. We estimate possible backscattering, Kerr effect, polarization fluctuation, and thermal drift in the air-gap slot waveguide. It is shown that the backscattering, Kerr nonlinearity, and thermal instabilities can decrease significantly compared to those in a common solid-core silicon waveguide cavity, and perturbations of the polarization fluctuation may be eliminated. In addition, a slot-waveguide cavity is more beneficial for integration than a photonic bandgap fiber cavity.

  13. Deterministic Loading of Individual Atoms to a High-Finesse Optical Cavity

    SciTech Connect

    Fortier, Kevin M.; Kim, Soo Y.; Gibbons, Michael J.; Ahmadi, Peyman; Chapman, Michael S.

    2007-06-08

    Individual laser-cooled atoms are delivered on demand from a single atom magneto-optic trap to a high-finesse optical cavity using an atom conveyor. Strong coupling of the atom with the cavity field allows simultaneous cooling and detection of individual atoms for time scales exceeding 15 s. The single atom scatter rate is studied as a function of probe-cavity detuning and probe Rabi frequency, and the experimental results are in qualitative agreement with theoretical predictions. We demonstrate the ability to manipulate the position of a single atom relative to the cavity mode with excellent control and reproducibility.

  14. On The Anomalous Fast Ion Energy Diffusion in Toroidal Plasmas Due to Cavity Modes

    SciTech Connect

    N.N. Gorelenkov, N.J. Fisch and E. Fredrickson

    2010-03-09

    An enormous wave-particle diffusion coefficient along paths suitable for alpha channeling had been deduced in mode converted ion Bernstein wave experiments on Tokamak Fusion Test Reactor (TFTR) the only plausible explanation advanced for such a large diffusion coefficient was the excitation of internal cavity modes which induce particle diffusion along identical diffusion paths, but at much higher rates. Although such a mode was conjectured, it was never observed. However, recent detailed observations of high frequency compressional Alfven eigenmodes (CAEs) on the National Spherical torus Experiment (NSTX) indirectly support the existence of the related conjectured modes on TFTR. The eigenmodes responsible for the high frequency magnetic activity can be identified as CAEs through the polarization of the observed magnetic field oscillations in NSTX and through a comparison with the theoretically derived freuency dispersion relation. Here, we show how these recent observations of high frequency CAEs lend support to this explanation of the long-standing puzzle of anomalous fast ion energy diffusion on TFTR. The support of the conjecure that these internal modes could have caused the remarkable ion energy diffusion on TFTR carries significant and favorable implications for the possibilities in achieving the alpha channeling effect with small injected power in a tokamak reactor.

  15. Optical cavity-assisted broadband optical transparency of a plasmonic metal film.

    PubMed

    Liu, Zhengqi; Nie, Yiyou; Yuan, Wen; Liu, Xiaoshan; Huang, Shan; Chen, Jing; Gao, Huogui; Gu, Gang; Liu, Guiqiang

    2015-05-08

    We theoretically present a powerful method to achieve a continuous metal film structure with broadband optical transparency via introducing a dielectric Fabry-Pérot (FP) cavity. An incident optical field could be efficiently coupled and confined with the strong localized plasmons by the non-close-packed plasmonic crystal at the input part and could then become re-radiated output via the transmission channel supported by the dielectric cavity. The formed photonic-plasmonic system could therefore make the seamless metal film structure have a superior near-unity transparency (up to 97%) response and a broadband transparent spectrum with bandwidth >245 nm (with transmittance >90%) in the optical regime. The observed optical properties of the proposed structure can be highly tuned via varying the structural parameters. Based on the colloidal assembly method, the proposed plasmonic crystal can be fabricated in a large area. In addition, the achieved optical transparency can be retained in the extremely roughed metal film structure. Thereby, the findings could offer a feasible way to achieve a broadband transparent metal film structure and hold potential applications in transparent electrodes, touch screens and interactive electronics.

  16. Optical cavity-assisted broadband optical transparency of a plasmonic metal film

    NASA Astrophysics Data System (ADS)

    Liu, Zhengqi; Nie, Yiyou; Yuan, Wen; Liu, Xiaoshan; Huang, Shan; Chen, Jing; Gao, Huogui; Gu, Gang; Liu, Guiqiang

    2015-05-01

    We theoretically present a powerful method to achieve a continuous metal film structure with broadband optical transparency via introducing a dielectric Fabry-Pérot (FP) cavity. An incident optical field could be efficiently coupled and confined with the strong localized plasmons by the non-close-packed plasmonic crystal at the input part and could then become re-radiated output via the transmission channel supported by the dielectric cavity. The formed photonic-plasmonic system could therefore make the seamless metal film structure have a superior near-unity transparency (up to 97%) response and a broadband transparent spectrum with bandwidth >245 nm (with transmittance >90%) in the optical regime. The observed optical properties of the proposed structure can be highly tuned via varying the structural parameters. Based on the colloidal assembly method, the proposed plasmonic crystal can be fabricated in a large area. In addition, the achieved optical transparency can be retained in the extremely roughed metal film structure. Thereby, the findings could offer a feasible way to achieve a broadband transparent metal film structure and hold potential applications in transparent electrodes, touch screens and interactive electronics.

  17. Optical processing furnace with quartz muffle and diffuser plate

    DOEpatents

    Sopori, B.L.

    1996-11-19

    An optical furnace for annealing a process wafer is disclosed comprising a source of optical energy, a quartz muffle having a door to hold the wafer for processing, and a quartz diffuser plate to diffuse the light impinging on the quartz muffle; a feedback system with a light sensor located in the wall of the muffle is also provided for controlling the source of optical energy. 5 figs.

  18. Optical detection of disordered water within a protein cavity.

    PubMed

    Goldbeck, Robert A; Pillsbury, Marlisa L; Jensen, Russell A; Mendoza, Juan L; Nguyen, Rosa L; Olson, John S; Soman, Jayashree; Kliger, David S; Esquerra, Raymond M

    2009-09-02

    Internal water molecules are important to protein structure and function, but positional disorder and low occupancies can obscure their detection by X-ray crystallography. Here, we show that water can be detected within the distal cavities of myoglobin mutants by subtle changes in the absorbance spectrum of pentacoordinate heme, even when the presence of solvent is not readily observed in the corresponding crystal structures. A well-defined, noncoordinated water molecule hydrogen bonded to the distal histidine (His64) is seen within the distal heme pocket in the crystal structure of wild type (wt) deoxymyoglobin. Displacement of this water decreases the rate of ligand entry into wt Mb, and we have shown previously that the entry of this water is readily detected optically after laser photolysis of MbCO complexes. However, for L29F and V68L Mb no discrete positions for solvent molecules are seen in the electron density maps of the crystal structures even though His64 is still present and slow rates of ligand binding indicative of internal water are observed. In contrast, time-resolved perturbations of the visible absorption bands of L29F and V68L deoxyMb generated after laser photolysis detect the entry and significant occupancy of water within the distal pockets of these variants. Thus, the spectral perturbation of pentacoordinate heme offers a potentially robust system for measuring nonspecific hydration of the active sites of heme proteins.

  19. Cavity Optical Pulse Extraction: ultra-short pulse generation as seeded Hawking radiation.

    PubMed

    Eilenberger, Falk; Kabakova, Irina V; de Sterke, C Martijn; Eggleton, Benjamin J; Pertsch, Thomas

    2013-01-01

    We show that light trapped in an optical cavity can be extracted from that cavity in an ultrashort burst by means of a trigger pulse. We find a simple analytic description of this process and show that while the extracted pulse inherits its pulse length from that of the trigger pulse, its wavelength can be completely different. Cavity Optical Pulse Extraction is thus well suited for the development of ultrashort laser sources in new wavelength ranges. We discuss similarities between this process and the generation of Hawking radiation at the optical analogue of an event horizon with extremely high Hawking temperature. Our analytic predictions are confirmed by thorough numerical simulations.

  20. A photonic crystal cavity-optical fiber tip nanoparticle sensor for biomedical applications

    NASA Astrophysics Data System (ADS)

    Shambat, Gary; Rajasekhar Kothapalli, Sri; Khurana, Aman; Provine, J.; Sarmiento, Tomas; Cheng, Kai; Cheng, Zhen; Harris, James; Daldrup-Link, Heike; Sam Gambhir, Sanjiv; Vučković, Jelena

    2012-05-01

    We present a sensor capable of detecting solution-based nanoparticles using an optical fiber tip functionalized with a photonic crystal cavity. When sensor tips are retracted from a nanoparticle solution after being submerged, we find that a combination of convective fluid forces and optically induced trapping cause an aggregation of nanoparticles to form directly on cavity surfaces. A simple readout of quantum dot photoluminescence coupled to the optical fiber shows that nanoparticle presence and concentration can be detected through modified cavity properties. Our sensor can detect both gold and iron oxide nanoparticles and can be utilized for molecular sensing applications in biomedicine.

  1. Bose-Einstein condensates in an optical cavity with sub-recoil bandwidth

    NASA Astrophysics Data System (ADS)

    Klinder, J.; Keßler, H.; Georges, Ch.; Vargas, J.; Hemmerich, A.

    2016-12-01

    This article provides a brief synopsis of our recent work on the interaction of Bose-Einstein condensates with the light field inside an optical cavity exhibiting a bandwidth on the order of the recoil frequency. Three different coupling scenarios are discussed giving rise to different physical phenomena at the borderline between the fields of quantum optics and many-body physics. This includes sub-recoil opto-mechanical cooling, cavity-controlled matter wave superradiance and the emergence of a superradiant superfluid or a superradiant Mott insulating many-body phase in a self-organized intra-cavity optical lattice with retarded infinite range interactions.

  2. Excess Noise Depletion of a Bose-Einstein Condensate in an Optical Cavity

    NASA Astrophysics Data System (ADS)

    Szirmai, G.; Nagy, D.; Domokos, P.

    2009-02-01

    Quantum fluctuations of a cavity field coupled into the motion of ultracold bosons can be strongly amplified by a mechanism analogous to the Petermann excess noise factor in lasers with unstable cavities. For a Bose-Einstein condensate in a stable optical resonator, the excess noise effect amounts to a significant depletion on long time scales.

  3. Hyperparallel optical quantum computation assisted by atomic ensembles embedded in double-sided optical cavities

    NASA Astrophysics Data System (ADS)

    Li, Tao; Long, Gui-Lu

    2016-08-01

    We propose an effective, scalable, hyperparallel photonic quantum computation scheme in which photonic qubits are hyperencoded both in the spatial degrees of freedom (DOF) and the polarization DOF of each photon. The deterministic hyper-controlled-not (hyper-cnot) gate on a two-photon system is attainable with our interesting interface between the polarized photon and the collective spin wave (magnon) of an atomic ensemble embedded in a double-sided optical cavity, and it doubles the operations in the conventional quantum cnot gate. Moreover, we present a compact hyper-cnotN gate on N +1 hyperencoded photons with only two auxiliary cavity-magnon systems, not more, and it can be faithfully constituted with current experimental techniques. Our proposal enables various applications with the hyperencoded photons in quantum computing and quantum networks.

  4. Normal Mode Splitting and Mechanical Effects of an Optical Lattice in a Ring Cavity

    NASA Astrophysics Data System (ADS)

    Klinner, Julian; Lindholdt, Malik; Nagorny, Boris; Hemmerich, Andreas

    2006-01-01

    A novel regime of atom-cavity physics is explored, arising when large atom samples dispersively interact with high-finesse optical cavities. A stable far-detuned optical lattice of several million rubidium atoms is formed inside an optical ring resonator by coupling equal amounts of laser light to each propagation direction of a longitudinal cavity mode. An adjacent longitudinal mode, detuned by about 3 GHz, is used to perform probe transmission spectroscopy of the system. The atom-cavity coupling for the lattice beams and the probe is dispersive and dissipation results only from the finite photon-storage time. The observation of two well-resolved normal modes demonstrates the regime of strong cooperative coupling. The details of the normal mode spectrum reveal mechanical effects associated with the retroaction of the probe upon the optical lattice.

  5. Normal mode splitting and mechanical effects of an optical lattice in a ring cavity.

    PubMed

    Klinner, Julian; Lindholdt, Malik; Nagorny, Boris; Hemmerich, Andreas

    2006-01-20

    A novel regime of atom-cavity physics is explored, arising when large atom samples dispersively interact with high-finesse optical cavities. A stable far-detuned optical lattice of several million rubidium atoms is formed inside an optical ring resonator by coupling equal amounts of laser light to each propagation direction of a longitudinal cavity mode. An adjacent longitudinal mode, detuned by about 3 GHz, is used to perform probe transmission spectroscopy of the system. The atom-cavity coupling for the lattice beams and the probe is dispersive and dissipation results only from the finite photon-storage time. The observation of two well-resolved normal modes demonstrates the regime of strong cooperative coupling. The details of the normal mode spectrum reveal mechanical effects associated with the retroaction of the probe upon the optical lattice.

  6. All-optical switching in a continuously operated and strongly coupled atom-cavity system

    NASA Astrophysics Data System (ADS)

    Dutta, Sourav; Rangwala, S. A.

    2017-03-01

    We experimentally demonstrate collective strong coupling, optical bi-stability (OB), and all-optical switching in a system consisting of ultracold 85Rb atoms, trapped in a dark magneto-optical trap (DMOT), and coupled to an optical Fabry-Perot cavity. The strong coupling is established by measuring the vacuum Rabi splitting (VRS) of a weak on-axis probe beam. The dependence of VRS on the probe beam power is measured, and bi-stability in the cavity transmission is observed. We demonstrate control over the transmission of the probe beam through the atom-cavity system using a free-space off-axis control beam and show that the cavity transmission can be switched on and off in micro-second timescales using micro-Watt control powers. The utility of the system as a tool for sensitive, in-situ and rapid measurements is envisaged.

  7. Normal Mode Splitting and Mechanical Effects of an Optical Lattice in a Ring Cavity

    SciTech Connect

    Klinner, Julian; Lindholdt, Malik; Nagorny, Boris; Hemmerich, Andreas

    2006-01-20

    A novel regime of atom-cavity physics is explored, arising when large atom samples dispersively interact with high-finesse optical cavities. A stable far-detuned optical lattice of several million rubidium atoms is formed inside an optical ring resonator by coupling equal amounts of laser light to each propagation direction of a longitudinal cavity mode. An adjacent longitudinal mode, detuned by about 3 GHz, is used to perform probe transmission spectroscopy of the system. The atom-cavity coupling for the lattice beams and the probe is dispersive and dissipation results only from the finite photon-storage time. The observation of two well-resolved normal modes demonstrates the regime of strong cooperative coupling. The details of the normal mode spectrum reveal mechanical effects associated with the retroaction of the probe upon the optical lattice.

  8. Cooperative effects of two optical dipole antennas coupled to plasmonic Fabry-Pérot cavity.

    PubMed

    Yang, Zhong-Jian; Wang, Qu-Quan; Lin, Hai-Qing

    2012-09-07

    We investigate the cooperative effects of two optical dipole antennas that are coupled to a finite Au nanowire acting as plasmonic Fabry-Pérot (F-P) cavity. The coherent coupling between one single antenna and the F-P cavity can result in Fano resonance, and the coupling strength is antenna position dependent. For two antennas coupled to the F-P cavity, constructive or destructive interference between antennas could be achieved by adjusting their positions along the F-P cavity. Consequently, the Fano resonance will become stronger or weaker correspondingly.

  9. Ultra-low power fiber-coupled gallium arsenide photonic crystal cavity electro-optic modulator.

    PubMed

    Shambat, Gary; Ellis, Bryan; Mayer, Marie A; Majumdar, Arka; Haller, Eugene E; Vučković, Jelena

    2011-04-11

    We demonstrate a gallium arsenide photonic crystal cavity injection-based electro-optic modulator coupled to a fiber taper waveguide. The fiber taper serves as a convenient and tunable waveguide for cavity coupling with minimal loss. Localized electrical injection of carriers into the cavity region via a laterally doped p-i-n diode combined with the small mode volume of the cavity enable ultra-low energy modulation at sub-fJ/bit levels. Speeds of up to 1 GHz are demonstrated with photoluminescence lifetime measurements revealing that the ultimate limit goes well into the tens of GHz.

  10. Quantum dynamics of an optical cavity coupled to a thin semitransparent membrane: Effect of membrane absorption

    SciTech Connect

    Biancofiore, C.; Karuza, M.; Galassi, M.; Natali, R.; Vitali, D.; Tombesi, P.; Di Giuseppe, G.

    2011-09-15

    We study the quantum dynamics of the cavity optomechanical system formed by a Fabry-Perot cavity with a thin vibrating membrane at its center. We determine in particular to what extent optical absorption by the membrane hinders reaching a quantum regime for the cavity-membrane system. We show that even though membrane absorption may significantly lower the cavity finesse and also heat the membrane, one can still simultaneously achieve ground state cooling of a vibrational mode of the membrane and stationary optomechanical entanglement with state-of-the-art apparatuses.

  11. Intra-cavity cryogenic optical refrigeration using high power vertical external-cavity surface-emitting lasers (VECSELs).

    PubMed

    Ghasemkhani, Mohammadreza; Albrecht, Alexander R; Melgaard, Seth D; Seletskiy, Denis V; Cederberg, Jeffrey G; Sheik-Bahae, Mansoor

    2014-06-30

    A 7% Yb:YLF crystal is laser cooled to 131 ± 1 K from room temperature by placing it inside the external cavity of a high power InGaAs/GaAs VECSEL operating at 1020 nm with 0.15 nm linewidth. This is the lowest temperature achieved in the intracavity geometry to date and presents major progress towards realizing an all-solid-state compact optical cryocooler.

  12. Tuning the Sensitivity of an Optical Cavity with Slow and Fast Light

    NASA Technical Reports Server (NTRS)

    Smith, David D.; Myneni, Krishna; Chang, H.; Toftul, A.; Schambeau, C.; Odutola, J. A.; Diels, J. C.

    2012-01-01

    We have measured mode pushing by the dispersion of a rubidium vapor in a Fabry-Perot cavity and have shown that the scale factor and sensitivity of a passive cavity can be strongly enhanced by the presence of such an anomalous dispersion medium. The enhancement is the result of the atom-cavity coupling, which provides a positive feedback to the cavity response. The cavity sensitivity can also be controlled and tuned through a pole by a second, optical pumping, beam applied transverse to the cavity. Alternatively, the sensitivity can be controlled by the introduction of a second counter-propagating input beam that interferes with the first beam, coherently increasing the cavity absorptance. We show that the pole in the sensitivity occurs when the sum of the effective group index and an additional cavity delay factor that accounts for mode reshaping goes to zero, and is an example of an exceptional point, commonly associated with coupled non-Hermitian Hamiltonian systems. Additionally we show that a normal dispersion feature can decrease the cavity scale factor and can be generated through velocity selective optical pumping

  13. Power enhancement of burst-mode ultraviolet pulses using a doubly resonant optical cavity.

    PubMed

    Rakhman, Abdurahim; Notcutt, Mark; Liu, Yun

    2015-12-01

    We report a doubly resonant enhancement cavity (DREC) that can realize a simultaneous enhancement of two incoming laser beams at different wavelengths and different temporal structures. The double-resonance condition is theoretically analyzed, and different DREC locking methods are experimentally investigated. Simultaneous locking of a Fabry-Perot cavity to both an infrared (1064 nm) and its frequency-tripled ultraviolet (355 nm) pulses has been demonstrated by controlling the frequency difference between the two beams with a fiber-optic frequency shifter. The DREC technique enables novel applications of optical cavities to power enhancement of burst-mode lasers with arbitrary macropulse width and repetition rate.

  14. Power enhancement of burst-mode UV pulses using a doubly-resonant optical cavity

    SciTech Connect

    Rahkman, Abdurahim; Notcutt, Mark; Liu, Yun

    2015-11-24

    We report a doubly-resonant enhancement cavity (DREC) that can realize a simultaneous enhancement of two incoming laser beams at different wavelengths and different temporal structures. The double-resonance condition is theoretically analyzed and different DREC locking methods are experimentally investigated. Simultaneous locking of a Fabry-Perot cavity to both an infrared (IR, 1064 nm) and its frequency tripled ultraviolet (UV, 355 nm) pulses has been demonstrated by controlling the frequency difference between the two beams with a fiber optic frequency shifter. The DREC technique opens a new paradigm in the applications of optical cavities to power enhancement of burst-mode lasers with arbitrary macropulse width and repetition rate.

  15. Measurement-based generation of shaped single photons and coherent state superpositions in optical cavities

    NASA Astrophysics Data System (ADS)

    Lecamwasam, Ruvindha L.; Hush, Michael R.; James, Matthew R.; Carvalho, André R. R.

    2017-01-01

    We propose related schemes to generate arbitrarily shaped single photons, i.e., photons with an arbitrary temporal profile, and coherent state superpositions using simple optical elements. The first system consists of two coupled cavities, a memory cavity and a shutter cavity, containing a second-order optical nonlinearity and electro-optic modulator (EOM), respectively. Photodetection events of the shutter cavity output herald preparation of a single photon in the memory cavity, which may be stored by immediately changing the optical length of the shutter cavity with the EOM after detection. On-demand readout of the photon, with arbitrary shaping, can be achieved through modulation of the EOM. The second scheme consists of a memory cavity with two outputs, which are interfered, phase shifted, and measured. States that closely approximate a coherent state superposition can be produced through postselection for sequences of detection events, with more photon detection events leading to a larger superposition. We furthermore demonstrate that no-knowledge feedback can be easily implemented in this system and used to preserve the superposition state, as well as provide an extra control mechanism for state generation.

  16. Coupled-Cavity Interferometer for the Optics Laboratory

    ERIC Educational Resources Information Center

    Peterson, R. W.

    1975-01-01

    Describes the construction of a flexible coupled-cavity interferometer for student use. A helium-neon laser and phonograph turntable are the main components. Lists activities which may be performed with the apparatus. (Author/CP)

  17. Clinical measurements of tissue optical properties in the esophagus and in the oral cavity

    NASA Astrophysics Data System (ADS)

    Bays, Roland; Wagnieres, Georges A.; Robert, D.; Mizeret, Jerome C.; Braichotte, Daniel; Savary, Jean-Francois; Monnier, Philippe; van den Bergh, Hubert

    1995-03-01

    A non-invasive probe has been devised and clinically used to perform in vivo measurements of the optical properties of the esophageal wall and oral cavity. The absorption and reduced scattering coefficients are determined from the observation of the spatial distribution of the diffuse reflectance at the tissue surface under a narrow beam illumination of the tissue. The determination of these two coefficients enables us to evaluate the value of the effective attenuation coefficient which is of major interest in the field of light dosimetry for photodynamic therapy (PDT). An invasive isotropic micro-probe has also been designed and clinically used to directly measure in vivo the value of the fluence rate in tissues. The principle of this probe is based on the fluorescence generated in a ruby sphere by the light which propagates in the tissue. This fluorescence which can be excited between 350 and 680 nm is isotropically emitted and in part collected by an optical fiber glued against the ruby sphere. Results, obtained with both probes at 514 and 630 nm, i.e., wavelengths of interest in photodynamic therapy, with actual clinically used photosensitizers are summarized and compared. The agreement obtained between these two techniques validates the principle of these measurements.

  18. High finesse optical fiber cavities: optimal alignment and robust stabilization (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ratschbacher, Lothar; Gallego, Jose; Ghosh, Sutapa; Alavi, Seyed; Alt, Wolfgang; Martinez-Dorantes, Miguel; Meschede, Dieter

    2016-04-01

    Fiber Fabry-Perot cavities, formed by micro-machined mirrors on the end-facets of optical fibers, are used in an increasing number of technical and scientific applications. Some of the most promising areas of application of these optical micro-resonators with high finesse and small mode volume are in the field of quantum communication and information. The resonator-enhanced light-matter interaction, for instance, provide basis for the realization of efficient optical interfaces between stationary matter-based quantum nodes and flying single-photon qubits. To date fiber Fabry-Perot cavities have been successfully applied in experiments interfacing single photons with a wide range of quantum systems, including cold atoms, ions and solid state emitters as well as quantum optomechanical experiments. Here we address some important practical questions that arise during the experimental implementation of high finesse fiber Fabry-Perot cavities: How can optimal fiber cavity alignment be achieved and how can the efficiency of coupling light from the optical fibers to the cavity mode and vice versa be characterized? How should optical fiber cavities be constructed and stabilized to fulfill their potential for miniaturization and integration into robust scientific and technological devices that can operate outside of dedicated laboratory environments in the future? The first two questions we answer with an analytic mode matching calculation that relates the alignment dependent fiber-to-cavity mode-matching efficiency to the easily measurable dip in the reflected light power at the cavity resonance. Our general analysis provides a simple recipe for the optimal alignment of fiber Fabry-Perot cavities and moreover for the first time explains the asymmetry in their reflective line shapes. The latter question we explore by investigating a novel, intrinsically rigid fiber cavity design that makes use of the high passive stability of a monolithic cavity spacer and employs thermal

  19. Feasibility of a feedback control of atomic self-organization in an optical cavity

    SciTech Connect

    Ivanov, D. A. Ivanova, T. Yu.

    2015-08-15

    Many interesting nonlinear effects are based on the strong interaction of motional degrees of freedom of atoms with an optical cavity field. Among them is the spatial self-organization of atoms in a pattern where the atoms group in either odd or even sites of the cavity-induced optical potential. An experimental observation of this effect can be simplified by using, along with the original cavity-induced feedback, an additional electronic feedback based on the detection of light leaking the cavity and the control of the optical potential for the atoms. Following our previous study, we show that this approach is more efficient from the laser power perspective than the original scheme without the electronic feedback.

  20. A method for cleaning optical precision surface of laser gyro cavity

    NASA Astrophysics Data System (ADS)

    Cui, Ying; Jiao, Ling Yan; Lin, Na Na; Zhang, Dong

    2016-10-01

    Laser gyro is the only one non-electromechanical high-precision inertial sensitive instruments in aircraft inertial guidance systems. Ultra high vacuum acquisition is a key segment during the manufacturing process of laser gyro. The surface cleanliness and integrity have decisive influence on the sealing performance of ultra-high vacuum. A cleaning technology for the optical surface of laser gyro cavity was found by experiment. Meanwhile, the analysis of the adsorption mechanism of contaminant on the laser gyro cavity surface and overview of common optical element cleaning technology were given. The result showed that the new cleaning technology improved the cleanliness of the cavity optical surface without any damage and provided a reliable solution for chronic leak of high precision laser gyro cavity.

  1. Cavity modes with optical orbital angular momentum in a metamaterial ring based on transformation optics.

    PubMed

    Wu, H W; Wang, F; Dong, Y Q; Shu, F Z; Zhang, K; Peng, R W; Xiong, X; Wang, Mu

    2015-12-14

    In this work, we theoretically study the cavity modes with transverse orbital angular momentum in metamaterial ring based on transformation optics. The metamaterial ring is designed to transform the straight trajectory of light into the circulating one by enlarging the azimuthal angle, effectively presenting the modes with transverse orbital angular momentum. The simulation results confirm the theoretical predictions, which state that the transverse orbital angular momentum of the mode not only depends on the frequency of the incident light, but also depends on the transformation scale of the azimuthal angle. Because energy dissipation inevitably reduces the field amplitude of the modes, the confined electromagnetic energy and the quality factor of the modes inside the ring are also studied in order to evaluate the stability of those cavity modes. The results show that the metamaterial ring can effectively confine light with a high quality factor and maintain steady modes with the orbital angular momentum, even if the dimension of the ring is much smaller than the wavelength of the incident light. This technique for exploiting the modes with optical transverse orbital angular momentum may provides a unique platform for applications related to micromanipulation.

  2. Three-dimensional Gradient Index Optics Fabricated in Diffusive Photopolymers

    NASA Astrophysics Data System (ADS)

    Ye, Chunfang

    This thesis demonstrates three-dimensional gradient index (GRIN) optics fabricated in two diffusive photopolymers. These polymer optical components have localized gradient index structures, which are self-developed in diffusive photopolymers by introducing localized illuminations. Based on the sizes of the formed index structures, the photopolymer optics studied in this thesis fall into two categories: GRIN lens based optics and waveguide based optics. GRIN lenses and lens arrays with parabolic index profiles are created through Gaussian beam exposure, while GRIN lenses with arbitrary index profiles are created through a dual-axis galvo scanning system. Waveguide based optics, which include uniform waveguides, waveguide tapers, waveguides through thin optics and 900 sharp waveguide bends, are fabricated through direct-write lithography. Several quantitative characterization methods for the fabricated polymer optics are described. The index profiles of the GRIN lens based optics are quantitatively measured by a modified scanning transmission phase microscope and a Shack-Hartmann wavefront sensor. Three-dimensional mode profile characterization of the polymer waveguides is carried out through a novel polymer sample preparation procedure and an active mode imaging system. A single mode performance is confirmed for the fabricated waveguides. A loss measurement for the waveguides is also accomplished. An index formation model is developed for a diffusive polymer developed by Dr. McLeod's group, which provides a fundamental guidance for fabricating custom-design index structures in the polymer. A hybrid GRIN axicon lens is fabricated to significantly extend the depth of focus in an endoscopy OCT application. Potential applications of the fabricated polymer optics include hybrid integrated optical circuits. The diffusive photopolymer with self-development characteristics provides a platform to integrate various optoelectronic subcomponents in integrated optical circuits.

  3. Length measurement in absolute scale via low-dispersion optical cavity

    NASA Astrophysics Data System (ADS)

    Pravdova, Lenka; Lesundak, Adam; Smid, Radek; Hrabina, Jan; Rerucha, Simon; Cip, Ondrej

    2016-12-01

    We report on the length measuring instrument with the absolute scale that was based on the combination of an optical frequency comb and a passive optical cavity. The time spacing of short femtosecond pulses, generated by the optical frequency comb, is optically phase locked onto the cavity free spectral range with a derivative spectroscopy technique so that the value of the repetition frequency of the femtosecond laser is tied to and determines the measured displacement. The instantaneous value of the femtosecond pulse train frequency is counted by a frequency counter. This counted value corresponds to the length given by the spacing between the two mirrors of the passive cavity. The phase lock between the femtosecond pulsed beam and the passive cavity is possible due to the low-dispersion of the cavity mirrors, where the silver coating on the mirrors was used to provide the low dispersion for the broadband radiation of the comb. Every reflection on the output mirror feeds a portion of the beam back to the cavity so that the output beam is a result of multiple interfering components. The parameters of the output beam are given not only by the parameters of the mirrors but mainly by the absolute distance between the mirror surfaces. Thus, one cavity mirror can be considered as the reference starting point of the distance to be measured and the other mirror is the measuring probe surveying the unknown distance. The measuring mirror of the experimental setup of the low-dispersion cavity is mounted on a piezoelectric actuator which provides small changes in the cavity length we used to test the length measurement method. For the verification of the measurement accuracy a reference incremental interferometer was integrated into our system so that the displacement of the piezoelectric actuator could be obtained with both measuring methods simultaneously.

  4. Fluorescence of semiconductor nanocrystals coupled to optical Tamm cavities

    NASA Astrophysics Data System (ADS)

    Feng, Fu; Pascale Senellart Team; Benoit Dubertret Team; Agnes Maitre Team

    We describe here the photoluminescence properties of a layer of colloidal CdSe/CdS fluorescent nanocrystals embedded in such a Tamm cavity. Spectral and angular analysis of fluorescence shows that the nanocrystals emission is into the Tamm states ; the emission dispersion relation for disks of various diameters shows the effect of the Tamm states lateral confinement. We also combined spatial and angular emission analysis and showed that the direction of emission is not the same for different points on a disk: emission from the left (resp. right) portion of the cavity is directed mostly in the left (resp. right) direction, in agreement with our numerical simulations. Our measurement scheme constitutes a probe of the Tamm state electric field phase gradient inside the cavity. Spatial and K space resolved spectroscopy.

  5. Flight-Like Optical Reference Cavity for GRACE Follow-On Laser Frequency Stabilization

    NASA Technical Reports Server (NTRS)

    Folkner, W. M.; deVine, G.; Klipstein, W. M.; McKenzie, K.; Spero, R.; Thompson, R.; Yu, N.; Stephens, M.; Leitch, J.; Pierce, R.; Shaddock, D.; Lam, T.

    2011-01-01

    We describe a prototype optical cavity and associated optics that has been developed to provide a stable frequency reference for a future space-based laser ranging system. This instrument is being considered for inclusion as a technology demonstration on the recently announced GRACE follow-on mission, which will monitor variations in the Earth's gravity field.

  6. Development of Nb{sub 3}Sn Cavity Vapor Diffusion Deposition System

    SciTech Connect

    Eremeev, Grigory V.; Macha, Kurt M.; Clemens, William A.; Park, HyeKyoung; Williams, R. Scott

    2014-02-01

    Nb{sub 3}Sn is a BCS superconductors with the superconducting critical temperature higher than that of niobium, so theoretically it surpasses the limitations of niobium in RF fields. The feasibility of technology has been demonstrated at 1.5 GHz with Nb{sub 3}Sn vapor deposition technique at Wuppertal University. The benefit at these frequencies is more pronounced at 4.2 K, where Nb{sub 3}Sn coated cavities show RF resistances an order of magnitude lower than that of niobium. At Jefferson Lab we started the development of Nb{sub 3}Sn vapor diffusion deposition system within an R\\&D development program towards compact light sources. Here we present the current progress of the system development.

  7. [The videoendoscopic sanation of the abdominal cavity by the diffuse septic peritonitis].

    PubMed

    Sukovatykh, B S; Blinkov, Iu Iu; Ivanov, P A

    2012-01-01

    The 1st group consisted of 68 patients with the diffuse peritonitis, who were treated with the use of traditional approach, i.e., laparotomy, elimination of the peritonitis source, nasointestinal intubation, abdominal cavity sanation and drainage. Within 24--48 hours all these patients had videoendoscopic abdominal sanation with the injection of 200 ml 0.03% water solution of sodium hypochlorite. The 2nd group, consisted of 41 patients. The first treatment stage was the same, but during the videoendoscopic stage the pulsing stream of the antiseptic was used and the procedure ended with intraabdominal injection of 200 ml 0.03% water solution of sodium hypochlorite immobilized in gel. All patients of the 2nd group showed better recovery results.

  8. Active disturbance rejection control of temperature for ultrastable optical cavities.

    PubMed

    Pizzocaro, Marco; Calonico, Davide; Calosso, Claudio; Clivati, Cecilia; Costanzo, Giovanni A; Levi, Filippo; Mura, Alberto

    2013-02-01

    This paper describes the application of a novel active disturbance rejection control (ADRC) to the stabilization of the temperature of two ultra-stable Fabry-Perot cavities. The cavities are 10 cm long and entirely made of ultralow- expansion glass. The control is based on a linear extended state observer that estimates and compensates the disturbance in the system in real time. The resulting control is inherently robust and easy to tune. A digital implementation of ADRC gives a temperature instability of 200 μK at one day of integration time.

  9. Comparison of diffusion approximation and higher order diffusion equations for optical tomography of osteoarthritis

    NASA Astrophysics Data System (ADS)

    Yuan, Zhen; Zhang, Qizhi; Sobel, Eric; Jiang, Huabei

    2009-09-01

    In this study, a simplified spherical harmonics approximated higher order diffusion model is employed for 3-D diffuse optical tomography of osteoarthritis in the finger joints. We find that the use of a higher-order diffusion model in a stand-alone framework provides significant improvement in reconstruction accuracy over the diffusion approximation model. However, we also find that this is not the case in the image-guided setting when spatial prior knowledge from x-rays is incorporated. The results show that the reconstruction error between these two models is about 15 and 4%, respectively, for stand-alone and image-guided frameworks.

  10. Lateral shearing optical gradient force in coupled nanobeam photonic crystal cavities

    NASA Astrophysics Data System (ADS)

    Du, Han; Zhang, Xingwang; Deng, Jie; Zhao, Yunshan; Chau, Fook Siong; Zhou, Guangya

    2016-04-01

    We report the experimental observation of lateral shearing optical gradient forces in nanoelectromechanical systems (NEMS) controlled dual-coupled photonic crystal (PhC) nanobeam cavities. With an on-chip integrated NEMS actuator, the coupled cavities can be mechanically reconfigured in the lateral direction while maintaining a constant coupling gap. Shearing optical gradient forces are generated when the two cavity centers are laterally displaced. In our experiments, positive and negative lateral shearing optical forces of 0.42 nN and 0.29 nN are observed with different pumping modes. This study may broaden the potential applications of the optical gradient force in nanophotonic devices and benefit the future nanooptoelectromechanical systems.

  11. Enhanced photocoagulation with catheter-based diffusing optical device

    NASA Astrophysics Data System (ADS)

    Kang, Hyun Wook; Kim, Jeehyun; Oh, Jungwhan

    2012-11-01

    A novel balloon catheter-based diffusing optical device was designed and evaluated to assist in treating excessive menstrual bleeding. A synthetic fused-silica fiber was micro-machined precisely to create scattering segments on a 25 mm long fiber tip for uniform light distribution. A visible wavelength (λ=532 nm) was used to specifically target the endometrium due to the high vascularity of the uterine wall. Optical simulation presented 30% wider distribution of photons along with approximately 40% higher irradiance induced by addition of a glass cap to the diffuser tip. Incorporation of the optical diffuser with a polyurethane balloon catheter considerably enhanced coagulation depth and area (i.e., 3.5 mm and 18.9 cm2 at 1 min irradiation) in tissue in vitro. The prototype device demonstrated the coagulation necrosis of 2.8±1.2 mm (n=18) and no thermal damage to myometrium in in vivo caprine models. A prototype 5 cm long balloon catheter-assisted optical diffuser was also evaluated with a cadaveric human uterus to confirm the coagulative response of the uterine tissue as well as to identify the further design improvement and clinical applicability. The proposed catheter-based diffusing optical device can be a feasible therapeutic tool to photocoagulate endometrial cell layers in an efficient and safe manner.

  12. High-Q silica zipper cavity for optical radiation pressure driven MOMS switch

    SciTech Connect

    Tetsumoto, Tomohiro; Tanabe, Takasumi

    2014-07-15

    We design a silica zipper cavity that has high optical and mechanical Q (quality factor) values and demonstrate numerically the feasibility of a radiation pressure driven micro opto-mechanical system (MOMS) directional switch. The silica zipper cavity has an optical Q of 4.0 × 10{sup 4} and an effective mode volume V{sub mode} of 0.67λ{sup 3} when the gap between two cavities is 34 nm. The mechanical Q (Q{sub m}) is determined by thermo-elastic damping and is 2.0 × 10{sup 6} in a vacuum at room temperature. The opto-mechanical coupling rate g{sub OM} is as high as 100 GHz/nm, which allows us to move the directional cavity-waveguide system and switch 1550-nm light with 770-nm light by controlling the radiation pressure.

  13. Modeling of multi-cavity Fabry-Perot optical fiber sensors

    NASA Astrophysics Data System (ADS)

    Wierzba, Paweł

    2015-12-01

    Reflectance characteristics of a two-cavity extrinsic Fabry-Perot optical fiber sensor were investigated using computer modeling. Calculations were performed using a plane wave-based approach, selected for clarity of results. Based on the modeling results, it can be concluded that the two-cavity Fabry-Perot interferometer can be used to measure two different quantities, such as refractive index and temperature, independently. It is also possible to use one of its cavities as a wavelength or optical path length reference, especially when a tunable laser is used as a light source. Spectral signal processing needed in such sensor is not substantially more complicated than that used in single cavity sensors.

  14. Demonstration of the stabilization technique for nonplanar optical resonant cavities utilizing polarization

    SciTech Connect

    Akagi, T.; Araki, S.; Funahashi, Y.; Honda, Y.; Okugi, T.; Omori, T.; Shimizu, H.; Terunuma, N.; Urakawa, J.; Miyoshi, S.; Takahashi, T. Tanaka, R.; Uesugi, Y.; Yoshitama, H.; Sakaue, K.; Washio, M.

    2015-04-15

    Based on our previously developed scheme to stabilize nonplanar optical resonant cavities utilizing polarization caused by a geometric phase in electromagnetic waves traveling along a twisted path, we report an application of the technique for a cavity installed in the Accelerator Test Facility, a 1.3-GeV electron beam accelerator at KEK, in which photons are generated by laser-Compton scattering. We successfully achieved a power enhancement of 1200 with 1.4% fluctuation, which means that the optical path length of the cavity has been controlled with a precision of 14 pm under an accelerator environment. In addition, polarization switching utilizing a geometric phase of the nonplanar cavity was demonstrated.

  15. In situ characterization of an optically thick atom-filled cavity

    NASA Astrophysics Data System (ADS)

    Munns, J. H. D.; Qiu, C.; Ledingham, P. M.; Walmsley, I. A.; Nunn, J.; Saunders, D. J.

    2016-01-01

    A means for precise experimental characterization of the dielectric susceptibility of an atomic gas inside an optical cavity is important for the design and operation of quantum light-matter interfaces, particularly in the context of quantum information processing. Here we present a numerically optimized theoretical model to predict the spectral response of an atom-filled cavity, accounting for both homogeneous and inhomogeneous broadening at high optical densities. We investigate the regime where the two broadening mechanisms are of similar magnitude, which makes the use of common approximations invalid. Our model agrees with an experimental implementation with warm caesium vapor in a ring cavity. From the cavity response, we are able to extract important experimental parameters, for instance the ground-state populations, total number density, and the magnitudes of both homogeneous and inhomogeneous broadening.

  16. Generation and purification of maximally entangled atomic states in optical cavities

    SciTech Connect

    Lougovski, P.; Walther, H.; Solano, E.

    2005-01-01

    We present a probabilistic scheme for generating and purifying maximally entangled states of two atoms inside an optical cavity via no-photon detection at the cavity output, where ideal detectors are not required. The intermediate mixed states can be continuously purified so as to violate Bell inequalities in a parametrized manner. The scheme relies on an additional strong-driving field that realizes, atypically, simultaneous Jaynes-Cummings and anti-Jaynes-Cummings interactions.

  17. In situ observation of optomechanical Bloch oscillations in an optical cavity

    NASA Astrophysics Data System (ADS)

    Keßler, H.; Klinder, J.; Prasanna Venkatesh, B.; Georges, Ch; Hemmerich, A.

    2016-10-01

    It is shown experimentally that a Bose-Einstein condensate inside an optical cavity, operating in the regime of strong cooperative coupling, responds to an external force by an optomechanical Bloch oscillation, which can be directly observed in the light leaking out of the cavity. Previous theoretical work predicts that the frequency of this oscillation matches with that of conventional Bloch oscillations such that its in situ monitoring may help to increase the data acquisition speed in precision force measurements.

  18. XTREME OPTICS: the behavior of cavity optics for the Jefferson Lab free-electron laser

    SciTech Connect

    Michelle D. Shinn; Christopher Behre; Stephen Benson; David Douglas; Fred Dylla; Christopher Gould; Joseph Gubeli; David Hardy; Kevin Jordan; George Neil; and Shukui Zhanga

    2006-09-25

    The cavity optics within high power free-electron lasers based on energy-recovering accelerators are subjected to extreme conditions associated with illumination from a broad spectrum of radiation, often at high irradiances. This is especially true for the output coupler, where absorption of radiation by both the mirror substrate and coating places significant design restrictions to properly manage heat load and prevent mirror distortion. Besides the fundamental lasing wavelength, the mirrors are irradiated with light at harmonics of the fundamental, THz radiation generated by the bending magnets downstream of the wiggler, and x-rays produced when the electron beam strikes accelerator diagnostic components (e.g., wire scanners and view screens) or from inadvertent beam loss. The optics must reside within high vacuum at ~ 10-8 Torr and this requirement introduces its own set of complications. This talk discusses the performance of numerous high reflector and output coupler optics assemblies and provides a detailed list of lessons learned gleaned from years of experience operating the Upgrade IR FEL, a 10 kW-class, sub-ps laser with output wavelength from 1 to 6 microns.

  19. LES/RANS Modeling of Aero-Optical Effects in a Supersonic Cavity Flow

    DTIC Science & Technology

    2016-06-13

    which focused on simulations of the effects of heat release due to lasing chemistry on shock-train formation within chemical oxygen iodine lasers...complete some of the work proposed under the original statement of work. 2.0 INTRODUCTION Externally-mounted optical systems (e.g. an aircraft... systems , it is important to be able to predict and model these aero-optical effects. Figure 1. Schematic of cavity flow with optical reflector at

  20. Thermal-wave resonator cavity design and measurements of the thermal diffusivity of liquids

    NASA Astrophysics Data System (ADS)

    Balderas-López, J. A.; Mandelis, A.; Garcia, J. A.

    2000-07-01

    A liquid-ambient-compatible thermal wave resonant cavity (TWRC) has been constructed for the measurement of the thermal diffusivity of liquids. The thermal diffusivities of distilled water, glycerol, ethylene glycol, and olive oil were determined at room temperature (25 °C), with four-significant-figure precision as follows: (0.1445±0.0002)×10-2 cm2/s (distilled water); (0.0922±0.0002)×10-2 cm2/s (glycerol); (0.0918±0.0002)×10-2 cm2/s (ethylene glycol); and (0.0881±0.0004)×10-2 cm2/s (olive oil). The liquid-state TWRC sensor was found to be highly sensitive to various mixtures of methanol and salt in distilled water with sensitivity limits 0.5% (v/v) and 0.03% (w/v), respectively. The use of the TWRC to measure gas evolution from liquids and its potential for environmental applications has also been demonstrated.

  1. Dynamically Manipulating Topological Physics and Edge Modes in a Single Degenerate Optical Cavity

    NASA Astrophysics Data System (ADS)

    Zhou, Xiang-Fa; Luo, Xi-Wang; Wang, Su; Guo, Guang-Can; Zhou, Xingxiang; Pu, Han; Zhou, Zheng-Wei

    2017-02-01

    We propose a scheme to simulate topological physics within a single degenerate cavity, whose modes are mapped to lattice sites. A crucial ingredient of the scheme is to construct a sharp boundary so that the open boundary condition can be implemented for this effective lattice system. In doing so, the topological properties of the system can manifest themselves on the edge states, which can be probed from the spectrum of an output cavity field. We demonstrate this with two examples: a static Su-Schrieffer-Heeger chain and a periodically driven Floquet topological insulator. Our work opens up new avenues to explore exotic photonic topological phases inside a single optical cavity.

  2. Polymer-based Photonic Crystal Cavity Sensor for Optical Detection in the Visible Wavelength Region.

    PubMed

    Maeno, Kenichi; Aki, Shoma; Sueyoshi, Kenji; Hisamoto, Hideaki; Endo, Tatsuro

    2016-01-01

    In this study, a polymer-based two-dimensional photonic crystal (PhC) cavity for visible-light-based optical-sensing applications was designed and fabricated for the first time. The PhC cavity configuration was designed to operate at 650 nm, and fabricated with a polymer (resist) on a silicon substrate using electron-beam lithography. For investigating sensing applications based on shifting of condition exhibiting a photonic bandgap (PBG), the polymer monolayer deposition (layer-by-layer method) was monitored as the light-intensity change at the cavity position. Consequently, the monolayer-level detection of polyions was achieved.

  3. Modeling of optically controlled reflective bistability in a vertical cavity semiconductor saturable absorber

    NASA Astrophysics Data System (ADS)

    Mishra, L.

    2015-05-01

    Bistability switching between two optical signals has been studied theoretically utilizing the concept of cross absorption modulation in a vertical cavity semiconductor saturable absorber (VCSSA). The probe beam is fixed at a wavelength other than the low power cavity resonance wavelength, which exhibits bistable characteristic by controlling the power of a pump beam (λpump≠λprobe). The cavity nonlinear effects that arises simultaneously from the excitonic absorption bleaching, and the carrier induced nonlinear index change has been considered in the model. The high power absorption in the active region introduces thermal effects within the nonlinear cavity due to which the effective cavity length changes. This leads to a red-shift of the cavity resonance wavelength, which results a change in phase of the optical fields within the cavity. In the simulation, the phase-change due to this resonance shifting is considered to be constant over time, and it assumes the value corresponding to the maximum input power. Further, an initial phase detuning of the probe beam has been considered to investigate its effect on switching. It is observed from the simulated results that, the output of the probe beam exhibits either clockwise or counter-clockwise bistability, depending on its initial phase detuning.

  4. Non-adiabatic dynamics of molecules in optical cavities

    NASA Astrophysics Data System (ADS)

    Kowalewski, Markus; Bennett, Kochise; Mukamel, Shaul

    2016-02-01

    Strong coupling of molecules to the vacuum field of micro cavities can modify the potential energy surfaces thereby opening new photophysical and photochemical reaction pathways. While the influence of laser fields is usually described in terms of classical field, coupling to the vacuum state of a cavity has to be described in terms of dressed photon-matter states (polaritons) which require quantized fields. We present a derivation of the non-adiabatic couplings for single molecules in the strong coupling regime suitable for the calculation of the dressed state dynamics. The formalism allows to use quantities readily accessible from quantum chemistry codes like the adiabatic potential energy surfaces and dipole moments to carry out wave packet simulations in the dressed basis. The implications for photochemistry are demonstrated for a set of model systems representing typical situations found in molecules.

  5. Non-adiabatic dynamics of molecules in optical cavities

    SciTech Connect

    Kowalewski, Markus Bennett, Kochise; Mukamel, Shaul

    2016-02-07

    Strong coupling of molecules to the vacuum field of micro cavities can modify the potential energy surfaces thereby opening new photophysical and photochemical reaction pathways. While the influence of laser fields is usually described in terms of classical field, coupling to the vacuum state of a cavity has to be described in terms of dressed photon-matter states (polaritons) which require quantized fields. We present a derivation of the non-adiabatic couplings for single molecules in the strong coupling regime suitable for the calculation of the dressed state dynamics. The formalism allows to use quantities readily accessible from quantum chemistry codes like the adiabatic potential energy surfaces and dipole moments to carry out wave packet simulations in the dressed basis. The implications for photochemistry are demonstrated for a set of model systems representing typical situations found in molecules.

  6. Two-Photon Cavity Solitons in Active Optical Media

    SciTech Connect

    Vilaseca, R.; Torrent, M. C.; Garcia-Ojalvo, J.; Brambilla, M.; San Miguel, M.

    2001-08-20

    We show that broad-area cascade lasers with no absorbing intracavity elements support the spontaneous formation of two-dimensional bright localized structures in a dark background. These cavity solitons consist of islands of two-photon emission embedded in a background of single-photon emission. We discuss the mechanisms through which these structures are formed and interact, along with their properties and stability.

  7. Novel laser machining of optical fibers for long cavities with low birefringence.

    PubMed

    Takahashi, Hiroki; Morphew, Jack; Oručević, Fedja; Noguchi, Atsushi; Kassa, Ezra; Keller, Matthias

    2014-12-15

    We present a novel method of machining optical fiber surfaces with a CO₂ laser for use in Fiber-based Fabry-Perot Cavities (FFPCs). Previously FFPCs were prone to large birefringence and limited to relatively short cavity lengths (≤ 200 μm). These characteristics hinder their use in some applications such as cavity quantum electrodynamics with trapped ions. We optimized the laser machining process to produce large, uniform surface structures. This enables the cavities to achieve high finesse even for long cavity lengths. By rotating the fibers around their axis during the laser machining process the asymmetry resulting from the laser's transverse mode profile is eliminated. Consequently we are able to fabricate fiber mirrors with a high degree of rotational symmetry, leading to remarkably low birefringence. Through measurements of the cavity finesse over a range of cavity lengths and the polarization dependence of the cavity linewidth, we confirmed the quality of the produced fiber mirrors for use in low-birefringence FFPCs.

  8. Thermal analysis of optical reference cavities for low sensitivity to environmental temperature fluctuations.

    PubMed

    Dai, Xiaojiao; Jiang, Yanyi; Hang, Chao; Bi, Zhiyi; Ma, Longsheng

    2015-02-23

    The temperature stability of optical reference cavities is significant in state-of-the-art ultra-stable narrow-linewidth laser systems. In this paper, the thermal time constant and thermal sensitivity of reference cavities are analyzed when reference cavities respond to environmental perturbations via heat transfer of thermal conduction and thermal radiation separately. The analysis as well as simulation results indicate that a reference cavity enclosed in multiple layers of thermal shields with larger mass, higher thermal capacity and lower emissivity is found to have a larger thermal time constant and thus a smaller sensitivity to environmental temperature perturbations. The design of thermal shields for reference cavities may vary according to experimentally achievable temperature stability and the coefficient of thermal expansion of reference cavities. A temperature fluctuation-induced length instability of reference cavities as low as 6 × 10(-16) on a day timescale can be achieved if a two-layer thermal shield is inserted between a cavity with the coefficient of thermal expansion of 1 × 10(-10) /K and an outer vacuum chamber with temperature fluctuation amplitude of 1 mK and period of 24 hours.

  9. High contrast all-optical diode based on direction-dependent optical bistability within asymmetric ring cavity

    NASA Astrophysics Data System (ADS)

    Xia, Xiu-Wen; Zhang, Xin-Qin; Xu, Jing-Ping; Yang, Ya-Ping

    2016-08-01

    We propose a simple all-optical diode which is comprised of an asymmetric ring cavity containing a two-level atomic ensemble. Attributed to spatial symmetry breaking of the ring cavity, direction-dependent optical bistability is obtained in a classical bistable system. Therefore, a giant optical non-reciprocity is generated, which guarantees an all-optical diode with a high contrast up to 22 dB. Furthermore, its application as an all-optical logic AND gate is also discussed. Project supported by the National Natural Science Foundation of China (Grant Nos. 11274242, 11474221, and 11574229), the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant No. U1330203), and the National Key Basic Research Special Foundation of China (Grant Nos. 2011CB922203 and 2013CB632701).

  10. Control of diffusion of nanoparticles in an optical vortex lattice

    NASA Astrophysics Data System (ADS)

    Zapata, Ivar; Delgado-Buscalioni, Rafael; Sáenz, Juan José

    2016-06-01

    A two-dimensional periodic optical force field, which combines conservative dipolar forces with vortices from radiation pressure, is proposed in order to influence the diffusion properties of optically susceptible nanoparticles. The different deterministic flow patterns are identified. In the low-noise limit, the diffusion coefficient is computed from a mean first passage time and the most probable escape paths are identified for those flow patterns which possess a stable stationary point. Numerical simulations of the associated Langevin equations show remarkable agreement with the analytically deduced expressions. Modifications of the force field are proposed so that a wider range of phenomena could be tested.

  11. Transportable cavity-stabilized laser system for optical carrier frequency transmission experiments.

    PubMed

    Parker, B; Marra, G; Johnson, L A M; Margolis, H S; Webster, S A; Wright, L; Lea, S N; Gill, P; Bayvel, P

    2014-12-10

    We report the design and performance of a transportable laser system at 1543 nm, together with its application as the source for a demonstration of optical carrier frequency transmission over 118 km of an installed dark fiber network. The laser system is based around an optical reference cavity featuring an elastic mounting that bonds the cavity to its support, enabling the cavity to be transported without additional clamping. The cavity exhibits passive fractional frequency insensitivity to vibration along the optical axis of 2.0×10(-11)  m(-1) s(2). With active fiber noise cancellation, the optical carrier frequency transmission achieves a fractional frequency instability, measured at the user end, of 2.6×10(-16) at 1 s, averaging down to below 3×10(-18) after 20,000 s. The fractional frequency accuracy of the transfer is better than 3×10(-18). This level of performance is sufficient for comparison of state-of-the-art optical frequency standards and is achieved in an urban fiber environment.

  12. Optical glucose monitoring using vertical cavity surface emitting lasers (VCSELs)

    NASA Astrophysics Data System (ADS)

    Talebi Fard, Sahba; Hofmann, Werner; Talebi Fard, Pouria; Kwok, Ezra; Amann, Markus-Christian; Chrostowski, Lukas

    2009-08-01

    Diabetes Mellitus is a common chronic disease that has become a public health issue. Continuous glucose monitoring improves patient health by stabilizing the glucose levels. Optical methods are one of the painless and promising methods that can be used for blood glucose predictions. However, having accuracies lower than what is acceptable clinically has been a major concern. Using lasers along with multivariate techniques such as Partial Least Square (PLS) can improve glucose predictions. This research involves investigations for developing a novel optical system for accurate glucose predictions, which leads to the development of a small, low power, implantable optical sensor for diabetes patients.

  13. Quantum memory and phase gate in Optical cavities based on EIT

    NASA Astrophysics Data System (ADS)

    Borges, Halyne; Villas-Bôas, Celso

    In this work we investigate theoretically the implementation of an optical quantum memory in a system composed by a single atom, trapped in a high finesse optical cavity. In order to analyse the feasibility of implementing a quantum memory in the atom-cavity system based on the EIT phenomenon, we investigated in detail which parameter configuration the memory efficiency is optimized considering the two different setups. Our results shows that for a asymmetric one-sided cavity, which is the experimental setup commonly used to observe the EIT effect, the memory efficiency value saturates at about 8 . 5 % . Meanwhile, for an one-sided cavity, we observe for a sufficiently high value of the coupling constant g, the efficiency has its maximum value increased considerably, close to 100 % . However, this experimental setup is not suitable to observe cavity-EIT in the transmission spectrum, being necessary another kind of experiment, such as measurements phase difference field that leaves the cavity induced by the control field. Considering this configuration we also showed the implementation of a quantum phase gate based on the same nonlinear effect, where the pulse probe can experience a phase shift on the order of π, due to the presence or absence of a control pulse. Supported by FAPESP (Proc. 2014/12740-1) and INCT-IQ.

  14. Benchmark calculations of excess electrons in water cluster cavities: balancing the addition of atom-centered diffuse functions versus floating diffuse functions.

    PubMed

    Zhang, Changzhe; Bu, Yuxiang

    2016-09-14

    Diffuse functions have been proved to be especially crucial for the accurate characterization of excess electrons which are usually bound weakly in intermolecular zones far away from the nuclei. To examine the effects of diffuse functions on the nature of the cavity-shaped excess electrons in water cluster surroundings, both the HOMO and LUMO distributions, vertical detachment energies (VDEs) and visible absorption spectra of two selected (H2O)24(-) isomers are investigated in the present work. Two main types of diffuse functions are considered in calculations including the Pople-style atom-centered diffuse functions and the ghost-atom-based floating diffuse functions. It is found that augmentation of atom-centered diffuse functions contributes to a better description of the HOMO (corresponding to the VDE convergence), in agreement with previous studies, but also leads to unreasonable diffuse characters of the LUMO with significant red-shifts in the visible spectra, which is against the conventional point of view that the more the diffuse functions, the better the results. The issue of designing extra floating functions for excess electrons has also been systematically discussed, which indicates that the floating diffuse functions are necessary not only for reducing the computational cost but also for improving both the HOMO and LUMO accuracy. Thus, the basis sets with a combination of partial atom-centered diffuse functions and floating diffuse functions are recommended for a reliable description of the weakly bound electrons. This work presents an efficient way for characterizing the electronic properties of weakly bound electrons accurately by balancing the addition of atom-centered diffuse functions and floating diffuse functions and also by balancing the computational cost and accuracy of the calculated results, and thus is very useful in the relevant calculations of various solvated electron systems and weakly bound anionic systems.

  15. Photoacoustic-guided convergence of light through optically diffusive media.

    PubMed

    Kong, Fanting; Silverman, Ronald H; Liu, Liping; Chitnis, Parag V; Lee, Kotik K; Chen, Y C

    2011-06-01

    We demonstrate that laser beams can be converged toward a light-absorbing target through optically diffusive media by using photoacoustic-guided interferometric focusing. The convergence of light is achieved by shaping the wavefront of the incident light with a deformable mirror to maximize the photoacoustic signal, which is proportional to the scattered light intensity at the light absorber.

  16. Photoacoustic-guided convergence of light through optically diffusive media

    PubMed Central

    Kong, Fanting; Silverman, Ronald H.; Liu, Liping; Chitnis, Parag V.; Lee, Kotik K.; Chen, Y. C.

    2012-01-01

    We demonstrate that laser beams can be converged toward a light-absorbing target through optically diffusive media by using photoacoustic-guided interferometric focusing. The convergence of light is achieved by shaping the wavefront of the incident light with a deformable mirror to maximize the photoacoustic signal, which is propor tional to the scattered light intensity at the light absorber. PMID:21633446

  17. Magnetic microtraps for cavity QED, Bose-Einstein condensates, and atom optics

    NASA Astrophysics Data System (ADS)

    Lev, Benjamin L.

    The system comprised of an atom strongly coupled to photons, known as cavity quantum electrodynamics (QED), provides a rich experimental setting for quantum information processing, both in the implementation of quantum logic gates and in the development of quantum networks. Moreover, studies of cavity QED will help elucidate the dynamics of continuously observed open quantum systems with quantum-limited feedback. To achieve these goals in cavity QED, a neutral atom must be tightly confined inside a high-finesse cavity with small mode volume for long periods of time. Microfabricated wires on a substrate---known as an atom chip---can create a sufficiently high-curvature magnetic potential to trap atoms in the Lamb-Dicke regime. We have recently integrated an optical fiber Fabry-Perot cavity with such a device. The microwires allow the on-chip collection and laser cooling of neutral atoms, and allow the magnetic waveguiding of these atoms to an Ioffe trap inside the cavity mode. Magnetically trapped intracavity atoms have been detected with this cavity QED system. A similar experiment employing microdisks and photonic bandgap cavities is nearing completion. With these more exotic cavities, a robust and scalable atom-cavity chip system will deeply probe the strong coupling regime of cavity QED with magnetically trapped atoms. Atom chips have found great success in producing and manipulating Bose-Einstein condensates and in creating novel atom optical elements. An on-chip BEC has been attained in a miniaturized system incorporating an atom chip designed for atom interferometry and for studies of Josephson effects of a BEC in a double-well potential. Using similar microfabrication techniques, we created and demonstrated a specular magnetic atom mirror formed from a standard computer hard drive. This device, in conjunction with micron-sized charged circular pads, can produce a 1-D ring trap which may prove useful for studying Tonks gases in a ring geometry and for

  18. An integrated quantum repeater at telecom wavelength with single atoms in optical fiber cavities

    NASA Astrophysics Data System (ADS)

    Uphoff, Manuel; Brekenfeld, Manuel; Rempe, Gerhard; Ritter, Stephan

    2016-03-01

    Quantum repeaters promise to enable quantum networks over global distances by circumventing the exponential decrease in success probability inherent in direct photon transmission. We propose a realistic, functionally integrated quantum-repeater implementation based on single atoms in optical cavities. Entanglement is directly generated between the single-atom quantum memory and a photon at telecom wavelength. The latter is collected with high efficiency and adjustable temporal and spectral properties into a spatially well-defined cavity mode. It is heralded by a near-infrared photon emitted from a second, orthogonal cavity. Entanglement between two remote quantum memories can be generated via an optical Bell-state measurement, while we propose entanglement swapping based on a highly efficient, cavity-assisted atom-atom gate. Our quantum-repeater scheme eliminates any requirement for wavelength conversion such that only a single system is needed at each node. We investigate a particular implementation with rubidium and realistic parameters for Fabry-Perot cavities based on hbox {CO}_2 laser-machined optical fibers. We show that the scheme enables the implementation of a rather simple quantum repeater that outperforms direct entanglement generation over large distances and does not require any improvements in technology beyond the state of the art.

  19. Design and test of the microwave cavity in an optically-pumped Rubidium beam frequency standard

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Wang, Yan-Hui

    2015-01-01

    We are developing a compact rubidium atomic beam frequency standard with optical pumping and detection. The cavity for microwave interrogation is an important part of the clock. The cavity in our design is a Ramsey-type, E-bend one, which is the same as the conventional method in most cesium beam clocks. Requirements for the design are proposed based on the frequency shift associated with the cavity. The basic structure of the cavity is given by theoretical analysis and detailed dimensions are determined by means of electromagnetic field simulation with the help of commercial software. The cavity is manufactured and fabricated successfully. The preliminary test result of the cavity is given, which is in good agreement with the simulation. The resonant frequency is 6.835 GHz, equal to the clock transition frequency of 87Rb, and the loaded quality factor is 500. These values are adjustable with posts outside the cavity. Estimations on the Ramsey line width and several frequency shifts are made. Project supported by the National Natural Science Foundation of China (Grant No. 11174015).

  20. Off-Axis Cavity Ring Down Spectroscopy Based on a Continuous-Wave Optical Parametric Oscillator

    NASA Astrophysics Data System (ADS)

    Peltola, Jari; Siltanen, Mikael; Halonen, Lauri; Vainio, Markku

    2011-06-01

    Continuous-wave cavity ring down spectroscopy (cw-CRDS) is a sensitive absorption technique for trace gas analysis. Although it is highly sensitivity and relatively fast, ring down repetition rate and spectral resolution are limited by the cavity free spectral range (FSR). Normally, the injected beam is mode matched to the lowest transverse electro-magnetic mode (TEM00) of the cavity. Light is coupled into the cavity only when standing wave condition is fulfilled. Scanning of the laser without variation of the cavity length leads to transmission comb where recorded ring down times are separated in frequency by the FSR. Recently Romanini et. al. reported an off-axis (OA) CRDS spectrometer operating in the 766 nm region where the FSR of the cavity was reduced by N = 4 times from the original. In this re-entrant condition the cavity length is chosen to provide degeneracy of transverse modes. If the injection is adequately off-axis the beam returns to the starting point after N round trips. This divides the FSR to N group of degenerated modes which are equally frequency-spaced. We present an OA-CRDS spectrometer (N = 4) based on a continuous-wave optical parametric oscillator (cw-OPO) operating in the mid-infrared region (2.75 - 3.45 μm). The measurement of formaldehyde (H_2CO) using an OA-CRDS spectrometer will be presented. J. Courtois, A. K. Mohamed and D. Romanini Opt. Express 18, (5), 1 March 2010.

  1. Arbitrary GRIN component fabrication in optically driven diffusive photopolymers.

    PubMed

    Urness, Adam C; Anderson, Ken; Ye, Chungfang; Wilson, William L; McLeod, Robert R

    2015-01-12

    We introduce a maskless lithography tool and optically-initiated diffusive photopolymer that enable arbitrary two-dimensional gradient index (GRIN) polymer lens profiles. The lithography tool uses a pulse-width modulated deformable mirror device (DMD) to control the 8-bit gray-scale intensity pattern on the material. The custom polymer responds with a self-developing refractive index profile that is non-linear with optical dose. We show that this nonlinear material response can be corrected with pre-compensation of the intensity pattern to yield high fidelity, optically induced index profiles. The process is demonstrated with quadratic, millimeter aperture GRIN lenses, Zernike polynomials and GRIN Fresnel lenses.

  2. Diffusion tensor imaging of occult injury of optic radiation following optic neuritis in multiple sclerosis

    PubMed Central

    Chen, Jiafeng; Zhu, Lijun; Li, He; Lu, Ziwen; Chen, Xin; Fang, Shaokuan

    2016-01-01

    Multiple sclerosis (MS) is easily detected by routine magnetic resonance imaging (MRI). However, it is not possible to detect early or occult lesions in MS by routine MRI, and this may explain the inconsistency between the severity of the lesions found by MRI and the degree of clinical disability of patients with MS. The present study included 10 patients with relapsing-remitting MS and 10 healthy volunteers. Each patient underwent routine 3.0 T MRI, diffusion tensor imaging (DTI), and diffusion tensor tractography (DTT). Optic nerve and optic radiation were analyzed by DTI and DTT. The fractional anisotropy (FA), mean diffusivity (MD), λ//, and λ┴ values were measured. In the 10 patients with MS, 7 optic nerves were affected, and 13 optic nerves were not affected. Cranial MRI showed that optic nerve thickening and hyperintensity occurred in 2 patients with MS. In the directionally encoded color maps, a hypointensive green signal in the optic nerve was observed in 3 patients with MS. The FA values were significantly lower and the MD, λ//, and λ┴ values were significantly higher in the affected and unaffected optic nerves and optic radiations in patients with MS in comparison with controls (P<0.05). There were no significant differences in these values between the affected and unaffected optic nerves and optic radiation in patients with MS (P>0.05). Diffusion tensor imaging is sensitive in the detection of occult injury of the optic nerve and optic radiation following optic neuritis. Diffusion tensor imaging may be a useful tool for the early diagnosis, treatment and management of MS. PMID:27703508

  3. Entanglement of movable mirror and cavity field enhanced by an optical parametric amplifier

    NASA Astrophysics Data System (ADS)

    Cai-yun, Zhang; Hu, Li; Gui-xia, Pan; Zong-qiang, Sheng

    2016-07-01

    A scheme to generate entanglement in a cavity optomechanical system filled with an optical parametric amplifier is proposed. With the help of the optical parametric amplifier, the stationary macroscopic entanglement between the movable mirror and the cavity field can be notably enhanced, and the entanglement increases when the parametric gain increases. Moreover, for a given parametric gain, the degree of entanglement of the cavity optomechanical system increases with increasing input laser power. Project supported by the National Natural Science Foundation of China (Grant No. 11247001), the Scientific Research Foundation of the Higher Education Institutions of Anhui Province, China (Grant No. KJ2012A083), and the Doctor (Master) Fund of Anhui University of Science and Technology, China.

  4. Power enhancement of burst-mode UV pulses using a doubly-resonant optical cavity

    DOE PAGES

    Rahkman, Abdurahim; Notcutt, Mark; Liu, Yun

    2015-11-24

    We report a doubly-resonant enhancement cavity (DREC) that can realize a simultaneous enhancement of two incoming laser beams at different wavelengths and different temporal structures. The double-resonance condition is theoretically analyzed and different DREC locking methods are experimentally investigated. Simultaneous locking of a Fabry-Perot cavity to both an infrared (IR, 1064 nm) and its frequency tripled ultraviolet (UV, 355 nm) pulses has been demonstrated by controlling the frequency difference between the two beams with a fiber optic frequency shifter. The DREC technique opens a new paradigm in the applications of optical cavities to power enhancement of burst-mode lasers with arbitrarymore » macropulse width and repetition rate.« less

  5. Optical response of a misaligned and suspended Fabry-Perot cavity

    SciTech Connect

    Cella, G.; Di Virgilio, A.; La Penna, P.; D'Auria, V.; Porzio, A.; Ricciardi, I.; Solimeno, S.

    2006-07-15

    The response to a probe laser beam of a suspended, misaligned, and detuned optical cavity is examined. A five degree of freedom dynamical model of the fluctuations of the longitudinal and transverse mirror coordinates is presented. Classical and quantum mechanical effects of radiation pressure are studied with the help of the optical stiffness coefficients and the signals provided by an FM sideband technique and a quadrant detector, for generic values of the product {tau} of the fluctuation frequency times the cavity round trip. A simplified version is presented for the case of small misalignments. Mechanical stability, mirror position entanglement, and ponderomotive squeezing are accommodated in this model. Numerical plots refer to cavities under test at the so-called Pisa LF facility. The presented model can describe radiation pressure effects recently appeared in the VIRGO antenna and give a framework for designing the next generation of gravitational wave antennas where such effects would be of critical relevance.

  6. Three-dimensional spatial diffusion in optical molasses

    NASA Astrophysics Data System (ADS)

    Hodapp, T. W.; Gerz, C.; Furtlehner, C.; Westbrook, C. I.; Phillips, W. D.; Dalibard, J.

    1995-02-01

    We have studied the expansion of a small cloud of85Rb atoms in three-dimensional optical molasses (lin ⊥ lin and σ+ - σ- configurations) and observed diffusive motion. We determined the spatial-diffusion coefficients for various laser intensities and detunings, and compared them (in the case of lin ⊥ lin molasses) to values calculated from friction and momentum-diffusion coefficients of a one-dimensional (1D) theory of laser cooling. The predicted variations of the spatial-diffusion coefficient with laser intensity and detuning are in good qualitative agreement with the experimental data. We found that the minimal value observed experimentally, ≈ 6 × 10-4 cm2/s, lies within a factor of 3 of the 1D theoretical minimum, ≈, 26ħ/ M, where M is the atomic mass.

  7. Detecting quantum coherence of Bose gases in optical lattices by scattering light intensity in cavity.

    PubMed

    Zhou, Xiaoji; Xu, Xu; Yin, Lan; Liu, W M; Chen, Xuzong

    2010-07-19

    We propose a new method of detecting quantum coherence of a Bose gas trapped in a one-dimensional optical lattice by measuring the light intensity from Raman scattering in cavity. After pump and displacement process, the intensity or amplitude of scattering light is different for different quantum states of a Bose gas, such as superfluid and Mott-Insulator states. This method can also be useful to detect quantum states of atoms with two components in an optical lattice.

  8. Photonic crystal cavity on optical fiber facet for refractive index sensing.

    PubMed

    Wang, Bowen; Siahaan, Timothy; Dündar, Mehmet A; Nötzel, Richard; van der Hoek, Marinus J; He, Sailing; van der Heijden, Rob W

    2012-03-01

    Using a micromanipulation technique, a planar photonic crystal nanocavity made from a thin semiconductor membrane is released from the host semiconductor and attached to the end facet of a standard single-mode optical fiber. The cavity spectrum can be read out through the fiber by detecting the photoluminescence of embedded quantum dots. The modified fiber end serves as a fiber-optic refractive index sensor.

  9. Observation of motion-dependent nonlinear dispersion with narrow-linewidth atoms in an optical cavity.

    PubMed

    Westergaard, Philip G; Christensen, Bjarke T R; Tieri, David; Matin, Rastin; Cooper, John; Holland, Murray; Ye, Jun; Thomsen, Jan W

    2015-03-06

    As an alternative to state-of-the-art laser frequency stabilization using ultrastable cavities, it has been proposed to exploit the nonlinear effects from coupling of atoms with a narrow transition to an optical cavity. Here, we have constructed such a system and observed nonlinear phase shifts of a narrow optical line by a strong coupling of a sample of strontium-88 atoms to an optical cavity. The sample temperature of a few mK provides a domain where the Doppler energy scale is several orders of magnitude larger than the narrow linewidth of the optical transition. This makes the system sensitive to velocity dependent multiphoton scattering events (Dopplerons) that affect the cavity field transmission and phase. By varying the number of atoms and the intracavity power, we systematically study this nonlinear phase signature which displays roughly the same features as for much lower temperature samples. This demonstration in a relatively simple system opens new possibilities for alternative routes to laser stabilization at the sub-100 mHz level and superradiant laser sources involving narrow-line atoms. The understanding of relevant motional effects obtained here has direct implications for other atomic clocks when used in relation to ultranarrow clock transitions.

  10. Development of a 4-mirror optical cavity for an inverse Compton scattering experiment in the STF

    NASA Astrophysics Data System (ADS)

    Shimizu, Hirotaka; Aryshev, Alexander; Higashi, Yasuo; Honda, Yosuke; Urakawa, Junji

    2014-05-01

    To obtain high-brightness quasi-monochromatic X-rays via inverse Compton scattering (ICS), an optical cavity for intensifying laser beams was designed and implemented in a new beam line at the KEK Superconducting RF Test Facility (STF) accelerator. The optical cavity adopts a planar configuration consisting of 4 mirrors. This confocal type resonator provides stable laser storage even with a long mirror distance, enabling head-on collision with the electron beams. To overcome the well-known astigmatism problems of the planar-type optical cavity, two forcibly bendable cylindrical mirrors were introduced instead of flat mirrors. With this new function for laser profile adjustment, an almost round laser profile at the waist point in the accelerator environment was successfully achieved. Estimated waist sizes were 43.7 μm for the horizontal and 50.8 μm for the vertical dimensions. The feedback control of this 4-mirror optical cavity worked with a stiff plate supporting all 4 mirrors. 1.7×103 finesse and 2.8-kW stored power for a 1-ms duration with 5 Hz were achieved.

  11. Homoclinic orbits and chaos in a second-harmonic generating optical cavity

    SciTech Connect

    Holm, D.; Kovacic, G., Timofeyev, I.

    1997-04-01

    We present two large families of Silnikov-type homoclinic orbits in a two mode-model that describes second-harmonic generation in a passive optical cavity. These families of homoclinic orbits give rise to chaotic dynamics in the model. 4 refs., 1 fig.

  12. Serial Diffusion Tensor Imaging of the Optic Radiations after Acute Optic Neuritis

    PubMed Central

    van der Walt, Anneke; Butzkueven, Helmut; Klistorner, Alexander; Egan, Gary F.; Kilpatrick, Trevor J.

    2016-01-01

    Previous studies have reported diffusion tensor imaging (DTI) changes within the optic radiations of patients after optic neuritis (ON). We aimed to study optic radiation DTI changes over 12 months following acute ON and to study correlations between DTI parameters and damage to the optic nerve and primary visual cortex (V1). We measured DTI parameters [fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD)] from the optic radiations of 38 acute ON patients at presentation and 6 and 12 months after acute ON. In addition, we measured retinal nerve fibre layer thickness, visual evoked potential amplitude, optic radiation lesion load, and V1 thickness. At baseline, FA was reduced and RD and MD were increased compared to control. Over 12 months, FA reduced in patients at an average rate of −2.6% per annum (control = −0.51%; p = 0.006). Change in FA, RD, and MD correlated with V1 thinning over 12 months (FA: R = 0.450, p = 0.006; RD: R = −0.428, p = 0.009; MD: R = −0.365, p = 0.029). In patients with no optic radiation lesions, AD significantly correlated with RNFL thinning at 12 months (R = 0.489, p = 0.039). In conclusion, DTI can detect optic radiation changes over 12 months following acute ON that correlate with optic nerve and V1 damage. PMID:27555964

  13. Towards diffuse optical tomography of arbitrarily heterogeneous turbid medium using GPU-accelerated Monte-Carlo forward calculation

    NASA Astrophysics Data System (ADS)

    Yi, Xi; Chen, Weiting; Wu, Linhui; Zhang, Wei; Li, Jiao; Wang, Xin; Zhang, Limin; Zhao, Huijuan; Gao, Feng

    2013-03-01

    At present, the most widely accepted forward model in diffuse optical tomography (DOT) is the diffusion equation, which is derived from the radiative transfer equation by employing the P1 approximation. However, due to its validity restricted to highly scattering regions, this model has several limitations for the whole-body imaging of small-animals, where some cavity and low scattering areas exist. To overcome the difficulty, we presented a Graphic-Processing- Unit(GPU) implementation of Monte-Carlo (MC) modeling for photon migration in arbitrarily heterogeneous turbid medium, and, based on this GPU-accelerated MC forward calculation, developed a fast, universal DOT image reconstruction algorithm. We experimentally validated the proposed method using a continuous-wave DOT system in the photon-counting mode and a cylindrical phantom with a cavity inclusion.

  14. Quantum phase gate based on electromagnetically induced transparency in optical cavities

    NASA Astrophysics Data System (ADS)

    Borges, Halyne S.; Villas-Bôas, Celso J.

    2016-11-01

    We theoretically investigate the implementation of a quantum controlled-phase gate in a system constituted by a single atom inside an optical cavity, based on the electromagnetically induced transparency effect. First we show that a probe pulse can experience a π phase shift due to the presence or absence of a classical control field. Considering the interplay of the cavity-EIT effect and the quantum memory process, we demonstrated a controlled-phase gate between two single photons. To this end, first one needs to store a (control) photon in the ground atomic states. In the following, a second (target) photon must impinge on the atom-cavity system. Depending on the atomic state, this second photon will be either transmitted or reflected, acquiring different phase shifts. This protocol can then be easily extended to multiphoton systems, i.e., keeping the control photon stored, it may induce phase shifts in several single photons, thus enabling the generation of multipartite entangled states. We explore the relevant parameter space in the atom-cavity system that allows the implementation of quantum controlled-phase gates using the recent technologies. In particular, we have found a lower bound for the cooperativity of the atom-cavity system which enables the implementation of phase shift on single photons. The induced shift on the phase of a photonic qubit and the controlled-phase gate between single photons, combined with optical devices, enable one to perform universal quantum computation.

  15. Overview of diffuse optical tomography and its clinical applications

    NASA Astrophysics Data System (ADS)

    Hoshi, Yoko; Yamada, Yukio

    2016-09-01

    Near-infrared diffuse optical tomography (DOT), one of the most sophisticated optical imaging techniques for observations through biological tissue, allows 3-D quantitative imaging of optical properties, which include functional and anatomical information. With DOT, it is expected to be possible to overcome the limitations of conventional near-infrared spectroscopy (NIRS) as well as offering the potential for diagnostic optical imaging. However, DOT has been under development for more than 30 years, and the difficulties in development are attributed to the fact that light is strongly scattered and that diffusive photons are used for the image reconstruction. The DOT algorithm is based on the techniques of inverse problems. The radiative transfer equation accurately describes photon propagation in biological tissue, while, because of its high computation load, the diffusion equation (DE) is often used as the forward model. However, the DE is invalid in low-scattering and/or highly absorbing regions and in the vicinity of light sources. The inverse problem is inherently ill-posed and highly undetermined. Here, we first summarize NIRS and then describe various approaches in the efforts to develop accurate and efficient DOT algorithms and present some examples of clinical applications. Finally, we discuss the future prospects of DOT.

  16. Overview of diffuse optical tomography and its clinical applications.

    PubMed

    Hoshi, Yoko; Yamada, Yukio

    2016-09-01

    Near-infrared diffuse optical tomography (DOT), one of the most sophisticated optical imaging techniques for observations through biological tissue, allows 3-D quantitative imaging of optical properties, which include functional and anatomical information. With DOT, it is expected to be possible to overcome the limitations of conventional near-infrared spectroscopy (NIRS) as well as offering the potential for diagnostic optical imaging. However, DOT has been under development for more than 30 years, and the difficulties in development are attributed to the fact that light is strongly scattered and that diffusive photons are used for the image reconstruction. The DOT algorithm is based on the techniques of inverse problems. The radiative transfer equation accurately describes photon propagation in biological tissue, while, because of its high computation load, the diffusion equation (DE) is often used as the forward model. However, the DE is invalid in low-scattering and/or highly absorbing regions and in the vicinity of light sources. The inverse problem is inherently ill-posed and highly undetermined. Here, we first summarize NIRS and then describe various approaches in the efforts to develop accurate and efficient DOT algorithms and present some examples of clinical applications. Finally, we discuss the future prospects of DOT.

  17. Optical Tracking of Anomalous Diffusion Kinetics in Polymer Microspheres

    NASA Astrophysics Data System (ADS)

    Foreman, Matthew R.; Vollmer, Frank

    2015-03-01

    In this Letter we propose the use of whispering gallery mode resonance tracking as a label-free optical means to monitor diffusion kinetics in glassy polymer microspheres. Approximate solutions to the governing diffusion equations are derived for the case of slow relaxation and small Stefan number. Transduction of physical changes in the polymer, including formation of a rubbery layer, swelling, and dissolution, into detectable resonance shifts are described using a perturbative approach. Concrete examples of poly(methyl methacrylate) and polystyrene spheres in water are considered.

  18. Water-walled microfluidics for high-optical finesse cavities

    NASA Astrophysics Data System (ADS)

    Maayani, Shai; Martin, Leopoldo L.; Carmon, Tal

    2016-01-01

    In submerged microcavities there is a tradeoff between resonant enhancement for spatial water and light overlap. Why not transform the continuously resonating optical mode to be fully contained in a water microdroplet per se? Here we demonstrate a sustainable 30-μm-pure water device, bounded almost completely by free surfaces, enabling >1,000,000 re-circulations of light. The droplets survive for >16 h using a technique that is based on a nano-water bridge from the droplet to a distant reservoir to compensate for evaporation. More than enabling a nearly-perfect optical overlap with water, atomic-level surface smoothness that minimizes scattering loss, and ~99% coupling efficiency from a standard fibre. Surface tension in our droplet is 8,000 times stronger than gravity, suggesting a new class of devices with water-made walls, for new fields of study including opto-capillaries.

  19. Water-walled microfluidics for high-optical finesse cavities

    PubMed Central

    Maayani, Shai; Martin, Leopoldo L.; Carmon, Tal

    2016-01-01

    In submerged microcavities there is a tradeoff between resonant enhancement for spatial water and light overlap. Why not transform the continuously resonating optical mode to be fully contained in a water microdroplet per se? Here we demonstrate a sustainable 30-μm-pure water device, bounded almost completely by free surfaces, enabling >1,000,000 re-circulations of light. The droplets survive for >16 h using a technique that is based on a nano-water bridge from the droplet to a distant reservoir to compensate for evaporation. More than enabling a nearly-perfect optical overlap with water, atomic-level surface smoothness that minimizes scattering loss, and ∼99% coupling efficiency from a standard fibre. Surface tension in our droplet is 8,000 times stronger than gravity, suggesting a new class of devices with water-made walls, for new fields of study including opto-capillaries. PMID:26794271

  20. Cavity Opto-Mechanics using an Optically Levitated Nanosphere

    DTIC Science & Technology

    2010-01-19

    Phys Rev Lett, 100:033602. 21. Yonezawa H, Braunstein SL, Furusawa A (2007) Experimental demonstration of quantum teleportation of broadband squeezing...Kimbleb,1, and P. Zollerb,e aInstitute for Quantum Information and Center for the Physics of Information, California Institute of Technology, Pasadena...Pasadena, CA 91125; and eInstitute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck, Austria

  1. Fabrication of optical cavities with femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Lin, Jintian; Song, Jiangxin; Tang, Jialei; Fang, Wei; Sugioka, Koji; Cheng, Ya

    2014-03-01

    We report on fabrication of three-dimensional (3D) high-quality (Q) whispering-gallery-mode microcavities by femtosecond laser micromachining. The main fabrication procedures include the formation of on-chip freestanding microdisk through selective material removal by femtosecond laser pulses, followed by surface smoothing processes (CO2 laser reflow for amorphous glass and focused ion beam (FIB) sidewall milling for crystalline materials) to improve the Q factors. Fused silica microcavities with 3D geometries are demonstrated with Q factors exceeding 106. A microcavity laser based on Nd:glass has been fabricated, showing a threshold as low as 69μW via free space continuous-wave optical excitation at the room temperature. CaF2 crystalline microcavities with Q factor of ~4.2×104 have also been demonstrated. This technique allows us to fabricate 3D high-Q microcavities in various transparent materials such as glass and crystals, which will benefit a broad spectrum of applications such as nonlinear optics, quantum optics, and bio-sensing.

  2. Size-dependent waveguide dispersion in nanowire optical cavities: slowed light and dispersionless guiding.

    PubMed

    van Vugt, Lambert K; Zhang, Bin; Piccione, Brian; Spector, Arthur A; Agarwal, Ritesh

    2009-04-01

    Fundamental understanding of the size dependence of nanoscale optical confinement in semiconductor nanowire waveguides, as expressed by changes in the dispersion of light, is crucial for the optimal design of nanophotonic devices. Measurements of the dispersion are particularly challenging for nanoscale cavities due to difficulties associated with the in- and out-coupling of light resulting from diffraction effects. We report the strong size dependence of optical dispersion and associated group velocities in subwavelength width ZnSe nanowire waveguide cavities, using a technique based on Fabry-Perot resonator modes as probes over a wide energy range. Furthermore, we observed subwavelength (lambda/9) dispersionless waveguiding and significant slowing of the propagating light by 90% (c/8). These results, in addition to providing insights into nanoscale optical transport, will facilitate the rational design of nanowire photonic devices with tailored dispersion and group velocities.

  3. Dual-pump Kerr Micro-cavity Optical Frequency Comb with varying FSR spacing

    NASA Astrophysics Data System (ADS)

    Wang, Weiqiang; Chu, Sai T.; Little, Brent E.; Pasquazi, Alessia; Wang, Yishan; Wang, Leiran; Zhang, Wenfu; Wang, Lei; Hu, Xiaohong; Wang, Guoxi; Hu, Hui; Su, Yulong; Li, Feitao; Liu, Yuanshan; Zhao, Wei

    2016-06-01

    In this paper, we demonstrate a novel dual-pump approach to generate robust optical frequency comb with varying free spectral range (FSR) spacing in a CMOS-compatible high-Q micro-ring resonator (MRR). The frequency spacing of the comb can be tuned by an integer number FSR of the MRR freely in our dual-pump scheme. The dual pumps are self-oscillated in the laser cavity loop and their wavelengths can be tuned flexibly by programming the tunable filter embedded in the cavity. By tuning the pump wavelength, broadband OFC with the bandwidth of >180 nm and the frequency-spacing varying from 6 to 46-fold FSRs is realized at a low pump power. This approach could find potential and practical applications in many areas, such as optical metrology, optical communication, and signal processing systems, for its excellent flexibility and robustness.

  4. Ultra-small Fabry-Perot cavities in tapered optical fibers

    NASA Astrophysics Data System (ADS)

    Warren-Smith, Stephen C.; André, Ricardo M.; Dellith, Jan; Bartelt, Hartmut

    2016-11-01

    The small dimensions of optical fiber sensors are of interest to biological applications, given the ability to penetrate relatively inaccessible regions. However, conventional optical fibers are larger than biological material such as cells, and thus there is a need for further miniaturization. Here we present the fabrication of ultra-small Fabry-Perot cavities written into optical micro-fibers using focused ion beam (FIB) milling. We have fabricated cavities as small as 2.8 μm and demonstrated their use for measuring refractive index. In order to achieve sensitive measurements we interrogate at visible wavelengths, thereby reducing the free spectral range of the interferometer (relative to infra-red interrogation), increasing the number of interference fringes, and allowing for the implementation of the Fourier shift method.

  5. Dual-pump Kerr Micro-cavity Optical Frequency Comb with varying FSR spacing.

    PubMed

    Wang, Weiqiang; Chu, Sai T; Little, Brent E; Pasquazi, Alessia; Wang, Yishan; Wang, Leiran; Zhang, Wenfu; Wang, Lei; Hu, Xiaohong; Wang, Guoxi; Hu, Hui; Su, Yulong; Li, Feitao; Liu, Yuanshan; Zhao, Wei

    2016-06-24

    In this paper, we demonstrate a novel dual-pump approach to generate robust optical frequency comb with varying free spectral range (FSR) spacing in a CMOS-compatible high-Q micro-ring resonator (MRR). The frequency spacing of the comb can be tuned by an integer number FSR of the MRR freely in our dual-pump scheme. The dual pumps are self-oscillated in the laser cavity loop and their wavelengths can be tuned flexibly by programming the tunable filter embedded in the cavity. By tuning the pump wavelength, broadband OFC with the bandwidth of >180 nm and the frequency-spacing varying from 6 to 46-fold FSRs is realized at a low pump power. This approach could find potential and practical applications in many areas, such as optical metrology, optical communication, and signal processing systems, for its excellent flexibility and robustness.

  6. Dual-pump Kerr Micro-cavity Optical Frequency Comb with varying FSR spacing

    PubMed Central

    Wang, Weiqiang; Chu, Sai T.; Little, Brent E.; Pasquazi, Alessia; Wang, Yishan; Wang, Leiran; Zhang, Wenfu; Wang, Lei; Hu, Xiaohong; Wang, Guoxi; Hu, Hui; Su, Yulong; Li, Feitao; Liu, Yuanshan; Zhao, Wei

    2016-01-01

    In this paper, we demonstrate a novel dual-pump approach to generate robust optical frequency comb with varying free spectral range (FSR) spacing in a CMOS-compatible high-Q micro-ring resonator (MRR). The frequency spacing of the comb can be tuned by an integer number FSR of the MRR freely in our dual-pump scheme. The dual pumps are self-oscillated in the laser cavity loop and their wavelengths can be tuned flexibly by programming the tunable filter embedded in the cavity. By tuning the pump wavelength, broadband OFC with the bandwidth of >180 nm and the frequency-spacing varying from 6 to 46-fold FSRs is realized at a low pump power. This approach could find potential and practical applications in many areas, such as optical metrology, optical communication, and signal processing systems, for its excellent flexibility and robustness. PMID:27338250

  7. Quantitative photoacoustic microscopy of optical absorption coefficients from acoustic spectra in the optical diffusive regime.

    PubMed

    Guo, Zijian; Favazza, Christopher; Garcia-Uribe, Alejandro; Wang, Lihong V

    2012-06-01

    Photoacoustic (PA) microscopy (PAM) can image optical absorption contrast with ultrasonic spatial resolution in the optical diffusive regime. Conventionally, accurate quantification in PAM requires knowledge of the optical fluence attenuation, acoustic pressure attenuation, and detection bandwidth. We circumvent this requirement by quantifying the optical absorption coefficients from the acoustic spectra of PA signals acquired at multiple optical wavelengths. With the acoustic spectral method, the absorption coefficients of an oxygenated bovine blood phantom at 560, 565, 570, and 575 nm were quantified with errors of <3%. We also quantified the total hemoglobin concentration and hemoglobin oxygen saturation in a live mouse. Compared with the conventional amplitude method, the acoustic spectral method provides greater quantification accuracy in the optical diffusive regime. The limitations of the acoustic spectral method was also discussed.

  8. Ex vivo laser lipolysis assisted with radially diffusing optical applicator

    NASA Astrophysics Data System (ADS)

    Hwang, Jieun; Hau, Nguyen Trung; Park, Sung Yeon; Rhee, Yun-Hee; Ahn, Jin-Chul; Kang, Hyun Wook

    2016-05-01

    Laser-assisted lipolysis has been implemented to reduce body fat in light of thermal interactions with adipose tissue. However, using a flat fiber with high irradiance often needs rapid cannula movements and even undesirable thermal injury due to direct tissue contact. The aim of the current study was to explore the feasibility of a radially diffusing optical applicator to liquefy the adipose tissue for effective laser lipolysis. The proposed diffuser was evaluated with a flat fiber in terms of temperature elevation and tissue liquefaction after laser lipolysis with a 980-nm wavelength. Given the same power (20 W), the diffusing applicator generated a 30% slower temperature increase with a 25% lower maximum temperature (84±3.2°C in 1 min p<0.001) in the tissue, compared with the flat fiber. Under the equivalent temperature development, the diffuser induced up to fivefold larger area of the adipose liquefaction due to radial light emission than the flat fiber. Ex vivo tissue tests for 5-min irradiation demonstrated that the diffuser (1.24±0.15 g) liquefied 66% more adipose tissue than the flat fiber (0.75±0.05 g). The proposed diffusing applicator can be a feasible therapeutic device for laser lipolysis due to low temperature development and wide coverage of thermal treatment.

  9. Realizing mode conversion and optical diode effect by coupling photonic crystal waveguides with cavity

    NASA Astrophysics Data System (ADS)

    Ye, Han; Zhang, Jin-Qian-Nan; Yu, Zhong-Yuan; Wang, Dong-Lin; Chen, Zhi-Hui

    2015-09-01

    We propose a novel two-dimensional photonic crystal structure consisting of two line defect waveguides and a cavity to realize mode conversion based on the coupling effect. The W1/cavity/W2 structure breaks the spatial symmetry and successfully converts the even (odd) mode to the odd (even) mode in the W2 waveguide during the forward (backward) transmission. When considering the incidence of only the even mode, the optical diode effect emerges and achieves approximate 35 dB unidirectionality at the resonant frequency. Moreover, owing to the narrow bandpass feature and the flexibility of the tuning cavity, utilization of the proposed structure as a wavelength filter is demonstrated in a device with a Y-branch splitter. Here, we provide a heuristic design for a mode converter, optical diode, and wavelength filter derived from the coupling effect between a cavity and adjacent waveguides, and expect that the proposed structure can be applied as a building block in future all-optical integrated circuits. Project supported by the National Natural Science Foundation of China (Grant Nos. 61372037 and 61307069), Beijing Excellent Ph. D. Thesis Guidance Foundation, China (Grant No. 20131001301), and the Natural Science Foundation of Shanxi Province, China (Grant No. 2013021017-3).

  10. Optical modes within III-nitride multiple quantum well microdisk cavities

    NASA Astrophysics Data System (ADS)

    Mair, R. A.; Zeng, K. C.; Lin, J. Y.; Jiang, H. X.; Zhang, B.; Dai, L.; Botchkarev, A.; Kim, W.; Morkoç, H.; Khan, M. A.

    1998-03-01

    Optical resonance modes have been observed in optically pumped microdisk cavities fabricated from 50 Å/50 Å GaN/AlxGa1-xN(x˜0.07) and 45 Å/45 Å InxGa1-xN/GaN(x˜0.15) multiple quantum well structures. Microdisks, approximately 9 μm in diameter and regularly spaced every 50 μm, were formed by an ion beam etch process. Individual disks were pumped at 300 and 10 K with 290 nm laser pulses focused to a spot size much smaller than the disk diameter. Optical modes corresponding to (i) the radial mode type with a spacing of 49-51 meV (both TE and TM) and (ii) the Whispering Gallery mode with a spacing of 15-16 meV were observed in the GaN microdisk cavities. The spacings of these modes are consistent with those expected for modes within a resonant cavity of cylindrical symmetry, refractive index, and dimensions of the microdisks under investigation. The GaN-based microdisk cavity is compared with its GaAs counterpart and implications regarding future GaN-based microdisk lasers are discussed.

  11. Relaxation of crack tip stresses by diffusive growth of grain boundary cavities at a steadily growing creep crack

    SciTech Connect

    Jeon, J.Y. . Dept. of Electronic Materials Engineering)

    1994-02-15

    In this study, the analytic solution of the stress field for the steadily growing crack with Gb cavitation is to be found. The effect of Gb cavitation is simultaneously incorporated in the stress analysis. The macroscopic material behavior is assumed to be elastic, thus, the original stress distribution is determined by the K field of linear elastic fracture mechanics (LEFM). Also, the non-elastic deformation by Gb cavitation relaxes the stress singularity at the crack tip. The stress relaxation by local cavitation is calculated using the dislocation model. For modeling of the cavitation as distributed dislocations, several assumptions can be made: (1) the Gb cavities are nucleated instantaneously at uniformly distributed precipitates when the applied stress reaches the nucleation stress; (2) the quasi-equilibrium type cavity shape is maintained throughout cavity growth because of a sufficiently large surface diffusivity compared to that of Gb diffusivity; (3) the matter flux by diffusion is deposited uniformly at Gb and thus causes rigid body motion which relaxes the elastic stress field.

  12. Electro-optic harmonic conversion to switch a laser beam out of a cavity

    DOEpatents

    Haas, Roger A.; Henesian, Mark A.

    1987-01-01

    The invention is a switch to permit a laser beam to escape a laser cavity through the use of an externally applied electric field across a harmonic conversion crystal. Amplification takes place in the laser cavity, and then the laser beam is switched out by the laser light being harmonically converted with dichroic or polarization sensitive elements present to alter the optical path of the harmonically converted laser light. Modulation of the laser beam can also be accomplished by varying the external electric field.

  13. Large ion Coulomb crystals: A near-ideal medium for coupling optical cavity modes to matter

    SciTech Connect

    Dantan, A.; Albert, M.; Marler, J. P.; Herskind, P. F.; Drewsen, M.

    2009-10-15

    We present an investigation of the coherent coupling of various transverse field modes of an optical cavity to ion Coulomb crystals. The obtained experimental results, which include the demonstration of identical collective coupling rates for different transverse modes of a cavity field to ions in the same large Coulomb crystal, are in excellent agreement with theoretical predictions. The results furthermore suggest that Coulomb crystals in the future may serve as near-ideal media for high-fidelity multimode quantum information processing and communication purposes, including the generation and storage of single-photon qubits encoded in different transverse modes.

  14. Time delay signature concealment of optical feedback induced chaos in an external cavity semiconductor laser.

    PubMed

    Wu, Jia-Gui; Xia, Guang-Qiong; Tang, Xi; Lin, Xiao-Dong; Deng, Tao; Fan, Li; Wu, Zheng-Mao

    2010-03-29

    The time delay (TD) signature concealment of optical feedback induced chaos in an external cavity semiconductor laser is experimentally demonstrated. Both the evolution curve and the distribution map of TD signature are obtained in the parameter space of external feedback strength and injection current. The optimum parameter scope of the TD signature concealment is also specified. Furthermore, the approximately periodic evolution relation between TD signature and external cavity length is observed and indicates that the intrinsic relaxation oscillation of semiconductor laser may play an important role during the process of TD signature suppression.

  15. Intermodal beat length measurement with Fabry-Perot optical fiber cavities.

    PubMed

    Vaziri, M; Chen, C L

    1997-05-20

    We present a new technique for measuring the intermodal beat length of a two-mode optical fiber. We formed a Fabry-Perot fiber cavity by depositing reflective mirrors on the fiber tips. As the fiber is stretched, two series of resonance peaks are observed. One series is due to the resonance of LP(01 q) modes and the other is due to the LP(11 q) modes. From the separation of resonance peaks as a function of cavity length, we deduce the intermodal beat length of the fiber. The measurement principle and the experimental confirmation are discussed.

  16. Organic Fabry-Perot micro-cavity for electro-optic sampling by amplitude modulation

    NASA Astrophysics Data System (ADS)

    Gaborit, G.; Martin, G.; Duvillaret, L.; Coutaz, J.-L.; Nguyen, C.; Hierle, R.; Zyss, J.

    2006-02-01

    We present herein a original concept of electro-optic (EO) probe for high frequency electric field measurements. This sensors is based on a thin organic layer of DR1-PMMA embedded in a high finesse Fabry-Perot cavity. The optimal orientation of DRl molecules, parallel to the face of the micro-cavity, has been obtained thanks to a lateral poling method. A r 33 of 2.5 pm/V has been reached for a 16 μm thick polymer layer. The final probe exhibits high sensitivity of 2V.cm -1.Hz -1/2.

  17. Nanofiber Fabry-Perot microresonator for nonlinear optics and cavity quantum electrodynamics.

    PubMed

    Wuttke, C; Becker, M; Brückner, S; Rothhardt, M; Rauschenbeutel, A

    2012-06-01

    We experimentally realize a Fabry-Perot-type optical microresonator near the cesium D2 line wavelength based on a tapered optical fiber, equipped with two fiber Bragg gratings that enclose a subwavelength diameter waist. Owing to the very low taper losses, the finesse of the resonator reaches F=86 while the on-resonance transmission is T=11%. The characteristics of our resonator fulfill the requirements of nonlinear optics and cavity quantum electrodynamics in the strong coupling regime. These characteristics, combined with the demonstrated ease of use and advantageous mode geometry, open a realm of applications.

  18. 1300 nm optically pumped quantum dot spin vertical external-cavity surface-emitting laser

    NASA Astrophysics Data System (ADS)

    Alharthi, S. S.; Orchard, J.; Clarke, E.; Henning, I. D.; Adams, M. J.

    2015-10-01

    We report a room temperature optically pumped Quantum Dot-based Spin-Vertical-External-Cavity Surface-Emitting laser (QD Spin-VECSEL) operating at the telecom wavelength of 1.3 μm. The active medium was composed of 5 × 3 QD layers; each threefold group was positioned at an antinode of the standing wave of the optical field. Circularly polarized lasing in the QD-VECSEL under Continuous-Wave optical pumping has been realized with a threshold pump power of 11 mW. We further demonstrate at room temperature control of the QD-VECSEL output polarization ellipticity via the pump polarization.

  19. Commissioning results of Nb3Sn cavity vapor diffusion deposition system at JLab

    SciTech Connect

    Eremeev, Grigory; Clemens, William A.; Macha, Kurt M.; Park, HyeKyoung; Williams, R.

    2015-09-01

    Nb3Sn as a BCS superconductor with a superconducting critical temperature higher than that of niobium offers potential benefit for SRF cavities via a lower-than-niobium surface resistance at the same temperature and frequency. A Nb3Sn vapor diffusion deposition system designed for coating of 1.5 and 1.3 GHz single-cell cavities was built and commissioned at JLab. As the part of the commissioning, RF performance at 2.0 K of a single-cell 1.5 GHz CEBAF-shaped cavity was measured before and after coating in the system. Before Nb3Sn coating the cavity had a Q0 of about 1010 and was limited by the high field Q-slope at Eacc ≅ 27 MV/m. Coated cavity exhibited the superconducting transition at about 17.9 K. The low-field quality factor was about 5∙109 at 4.3 K and 7∙109 at 2.0 K decreasing with field to about 1∙109 at Eacc ≅ 8 MV/m at both temperatures. The highest field was limited by the available RF power.

  20. Energy-efficient utilization of bipolar optical forces in nano-optomechanical cavities.

    PubMed

    Tian, Feng; Zhou, Guangya; Du, Yu; Chau, Fook Siong; Deng, Jie; Tang, Xiaosong; Akkipeddi, Ramam

    2013-07-29

    Nanoscale all-optical circuits driven by optical forces have broad applications in future communication, computation, and sensing systems. Because human society faces huge challenges of energy saving and emission reduction, it is very important to develop energy-efficient nano-optomechanical devices. Due to their high quality (Q) factors, resonance modes of cavities are capable of generating much larger forces than waveguide modes. Here we experimentally demonstrate the use of resonance modes of double-coupled one-dimensional photonic crystal cavities to generate bipolar optical forces. Attractive and repulsive forces of -6.2 nN and 1.9 nN were obtained with respective launching powers of 0.81 mW and 0.87 mW in the waveguide just before cavities. Supported by flexible nanosprings (spring constant 0.166 N/m), one cavity is pulled to (pushed away from) the other cavity by 37.1 nm (11.4 nm). The shifts of the selected resonance modes of the device are mechanically and thermally calibrated with an integrated nanoelectromechanical system actuator and a temperature-controlled testing platform respectively. Based on these experimentally-obtained relations, probe mode shifts due to the optomechanical effect are decoupled from those due to the thermo-optic effect. Actuated by the third-order even pump mode, the optomechanical shift of the second-order even probe mode is found to be about 2.5 times its thermal shift, indicating a highly efficient conversion of light energy to mechanical energy.

  1. Diagnosis of cardiovascular diseases based on diffuse optical tomography system

    NASA Astrophysics Data System (ADS)

    Yu, Zong-Han; Wu, Chun-Ming; Lin, Yo-Wei; Chuang, Ming-Lung; Tsai, Jui-che; Sun, Chia-Wei

    2008-02-01

    Diffuse optical tomography (DOT) is a technique to assess the spatial variation in absorption and scattering properties of the biological tissues. DOT provides the measurement of changes in concentrations of oxy-hemoglobin and deoxy-hemoglobin. The oxygenation images are reconstructed by the measured optical signals with nearest-neighbor pairs of sources and detectors. In our study, a portable DOT system is built with optode design on a flexible print circuit board (FPCB). In experiments, the hemodynamics temporal evolution of exercises and vessel occlusions are observed with in vivo measurements form normal subjects and some patients in intensive care unit.

  2. Numerical modelling and image reconstruction in diffuse optical tomography

    PubMed Central

    Dehghani, Hamid; Srinivasan, Subhadra; Pogue, Brian W.; Gibson, Adam

    2009-01-01

    The development of diffuse optical tomography as a functional imaging modality has relied largely on the use of model-based image reconstruction. The recovery of optical parameters from boundary measurements of light propagation within tissue is inherently a difficult one, because the problem is nonlinear, ill-posed and ill-conditioned. Additionally, although the measured near-infrared signals of light transmission through tissue provide high imaging contrast, the reconstructed images suffer from poor spatial resolution due to the diffuse propagation of light in biological tissue. The application of model-based image reconstruction is reviewed in this paper, together with a numerical modelling approach to light propagation in tissue as well as generalized image reconstruction using boundary data. A comprehensive review and details of the basis for using spatial and structural prior information are also discussed, whereby the use of spectral and dual-modality systems can improve contrast and spatial resolution. PMID:19581256

  3. Use of diffusive optical fibers for plant lighting

    NASA Technical Reports Server (NTRS)

    Kozai, T.; Kitaya, Y.; Fujiwara, K.; Kino, S.; Kinowaki, M.

    1994-01-01

    Lighting is one of the most critical aspects in plant production and environmental research with plants. Much research has been repeated on the effect of light intensity, spectral distribution of light and lighting cycle, but comparatively little research done on the effect of lighting direction on the growth, development and morphology of plants. When plants are grown with lamps above, light is directed downward to the plants. Downward or overhead lighting is utilized in almost all cases. However, downward lighting does not always give the best result in terms of lighting efficiency, growth, development and morphology of plants. In the present study, a sideward lighting system was developed using diffusive optical fiber belts. More higher quality tissue-cultured transplants could be produced in a reduced space with the sideward lighting system than with a downward lighting system. An application of the sideward lighting system using diffusive optical fiber belts is described and the advantages and disadvantages are discussed.

  4. Use of diffusive optical fibers for plant lighting

    NASA Astrophysics Data System (ADS)

    Kozai, T.; Kitaya, Y.; Fujiwara, K.; Kino, S.; Kinowaki, M.

    1994-03-01

    Lighting is one of the most critical aspects in plant production and environmental research with plants. Much research has been repeated on the effect of light intensity, spectral distribution of light and lighting cycle, but comparatively little research done on the effect of lighting direction on the growth, development and morphology of plants. When plants are grown with lamps above, light is directed downward to the plants. Downward or overhead lighting is utilized in almost all cases. However, downward lighting does not always give the best result in terms of lighting efficiency, growth, development and morphology of plants. In the present study, a sideward lighting system was developed using diffusive optical fiber belts. More higher quality tissue-cultured transplants could be produced in a reduced space with the sideward lighting system than with a downward lighting system. An application of the sideward lighting system using diffusive optical fiber belts is described and the advantages and disadvantages are discussed.

  5. Diffuse optical tomography based on multiple access coding

    NASA Astrophysics Data System (ADS)

    Wang, Xuefeng; Wang, Yuanqing; Su, Jinshan; Xu, Fan

    2016-04-01

    Diffuse optical tomography (DOT) has the advantages of being a non-invasive, non-radiation emitting and low-cost biological tissue imaging method, and many recent studies have employed this technology. By improving the spatial resolution and developing a new method for constantly improving the flexibility of the experimental device, the system can perform data acquisition rapidly and conveniently. We propose a method for rapid data acquisition based on multiple access coding; it can acquire data in parallel, and the system can greatly improve the temporal resolution of the data acquisition step in diffuse optical tomography thereafter. We simulate the encoding and decoding process of the source-detector pair and successfully isolate the source signal from mixed signals. The DOT image reconstruction highlight the effectiveness of the system.

  6. Temporal characterization of FEL micropulses as function of cavity length detuning using frequency-resolved optical gating

    SciTech Connect

    Richman, B.A.; DeLong, K.W.; Trebino, R.

    1995-12-31

    Results of frequency resolved optical gating (FROG) measurements on the Stanford mid-IR FEL system show the effect of FEL cavity length detuning on the micropulse temporal structure. The FROG technique enables the acquisition of complete and uniquely invertible amplitude and phase temporal dependence of optical pulses. Unambiguous phase and amplitude profiles are recovered from the data. The optical pulses are nearly transform limited, and the pulse length increases with cavity length detuning.

  7. Functional imaging of small tissue volumes with diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Klose, Alexander D.; Hielscher, Andreas H.

    2006-03-01

    Imaging of dynamic changes in blood parameters, functional brain imaging, and tumor imaging are the most advanced application areas of diffuse optical tomography (DOT). When dealing with the image reconstruction problem one is faced with the fact that near-infrared photons, unlike X-rays, are highly scattered when they traverse biological tissue. Image reconstruction schemes are required that model the light propagation inside biological tissue and predict measurements on the tissue surface. By iteratively changing the tissue-parameters until the predictions agree with the real measurements, a spatial distribution of optical properties inside the tissue is found. The optical properties can be related to the tissue oxygenation, inflammation, or to the fluorophore concentration of a biochemical marker. If the model of light propagation is inaccurate, the reconstruction process will lead to an inaccurate result as well. Here, we focus on difficulties that are encountered when DOT is employed for functional imaging of small tissue volumes, for example, in cancer studies involving small animals, or human finger joints for early diagnosis of rheumatoid arthritis. Most of the currently employed image reconstruction methods rely on the diffusion theory that is an approximation to the equation of radiative transfer. But, in the cases of small tissue volumes and tissues that contain low scattering regions diffusion theory has been shown to be of limited applicability Therefore, we employ a light propagation model that is based on the equation of radiative transfer, which promises to overcome the limitations.

  8. Cavity Quantum Electrodynamics: A Universal Quantum Optics Toolbox

    NASA Astrophysics Data System (ADS)

    Rempe, Gerhard

    2016-05-01

    Electromagnetic resonators provide unparalleled capabilities in controlling the interaction between light and matter. The recently developed techniques for trapping and cooling atoms between closely spaced mirrors now open up new experimental avenues for genuine quantum-mechanical experiments. Particularly exciting possibilities concern long-distance quantum networking and scalable quantum computation. Recent achievements like the nondestructive detection of an optical photon, the realization of a quantum gate between a single atom and a single photon, and the heralded and efficient conversion of a flying qubit into a stationary qubit are past highlights. The longstanding dream of a quantum gate between individually addressable photonic qubits might become reality in the future. The talk will summarize recent experiments and give an outlook onto future directions.

  9. Feasibility of interstitial diffuse optical tomography using cylindrical diffusing fiber for prostate PDT

    PubMed Central

    Liang, Xing; Wang, Ken Kang-Hsin; Zhu, Timothy C.

    2013-01-01

    Interstitial diffuse optical tomography (DOT) has been used to characterize spatial distribution of optical properties for prostate photodynamic therapy (PDT) dosimetry. We have developed an interstitial DOT method using cylindrical diffuse fibers (CDFs) as light sources, so that the same light sources can be used for both DOT measurement and PDT treatment. In this novel interstitial CDF-DOT method, absolute light fluence per source strength (in unit of 1/cm2) is used to separate absorption and scattering coefficients. A mathematical phantom and a solid prostate phantom including anomalies with known optical properties were used, respectively, to test the feasibility of reconstructing optical properties using interstitial CDF-DOT. Three dimension spatial distributions of the optical properties were reconstructed for both scenarios. Our studies show that absorption coefficient can be reliably extrapolated while there are some cross talks between absorption and scattering properties. Even with the suboptimal reduced scattering coefficients, the reconstructed light fluence rate agreed with the measured values to within ±10%, thus the proposed CDF-DOT allows greatly improved light dosimetry calculation for interstitial PDT. PMID:23629149

  10. Low noise planar external cavity laser for interferometric fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Alalusi, Mazin; Brasil, Paul; Lee, Sanggeon; Mols, Peter; Stolpner, Lew; Mehnert, Axel; Li, Steve

    2009-05-01

    A 1550 nm DWDM planar external cavity laser (ECL) is demonstrated to provide low phase/frequency noise, narrow linewidth, and low RIN. The cavity includes a semiconductor gain chip and a planar lightwave circuit waveguide with Bragg grating, packaged in a 14-pin butterfly package. This planar ECL laser is designed to operate under vibration and in harsh environmental conditions. The laser shows linewidth <= 2.6 kHz, phase/frequency noise comparable with that of long cavity fiber lasers, RIN <= -147dB/Hz at 1kHz, and power >= 10mW. Performance is suitable for various high performance fiber optic sensing systems, including interferometric sensing in Oil and Gas, military/security and other applications, currently served mostly by costly and less reliable laser sources.

  11. Nonequilibrium phase transition of interacting bosons in an intra-cavity optical lattice.

    PubMed

    Bakhtiari, M Reza; Hemmerich, A; Ritsch, H; Thorwart, M

    2015-03-27

    We investigate the nonlinear light-matter interaction of a Bose-Einstein condensate trapped in an external periodic potential inside an optical cavity which is weakly coupled to vacuum radiation modes and driven by a transverse pump field. Based on a generalized Bose-Hubbard model which incorporates a single cavity mode, we include the collective backaction of the atoms on the cavity light field and determine the nonequilibrium quantum phases within the nonperturbative bosonic dynamical mean-field theory. With the system parameters adapted to recent experiments, we find a quantum phase transition from a normal phase to a self-organized superfluid phase, which is related to the Hepp-Lieb-Dicke superradiance phase transition. For even stronger pumping, a self-organized Mott insulator phase arises.

  12. A crossed optical cavities apparatus for a precision test of the isotropy of light propagation

    NASA Astrophysics Data System (ADS)

    Eisele, Ch.; Okhapkin, M.; Nevsky, A. Yu.; Schiller, S.

    2008-03-01

    A novel apparatus for a sensitive test of the independence of the speed of optical waves from the propagation direction has been developed. It employs a monolithic ULE glass structure containing two orthogonal, crossing Fabry-Perot cavities which enable common mode rejection of certain disturbances. Highly accurate locking and cavity frequency read-out are achieved using laser frequency modulation at audio frequencies. Several systematic effects were characterized. Without rotation the root Allan variance (RAV) of the beat frequency reaches a minimum of 0.5 Hz (2 × 10-15) close to the thermal noise floor of the cavities. The performance of the apparatus under rotation is demonstrated by determining with improved accuracy one parameter of the standard model extension test theory, (κ˜e-)ZZ = (-1.0 ± 2.3) × 10-15, under simplifying assumptions.

  13. Monitoring the Evaporation of Fluids from Fiber-Optic Micro-Cell Cavities

    PubMed Central

    Preter, Eyal; Preloznik, Borut; Artel, Vlada; Sukenik, Chaim N.; Donlagic, Denis; Zadok, Avi

    2013-01-01

    Fiber-optic sensors provide remote access, are readily embedded within structures, and can operate in harsh environments. Nevertheless, fiber-optic sensing of liquids has been largely restricted to measurements of refractive index and absorption spectroscopy. The temporal dynamics of fluid evaporation have potential applications in monitoring the quality of water, identification of fuel dilutions, mobile point-of-care diagnostics, climatography and more. In this work, the fiber-optic monitoring of fluids evaporation is proposed and demonstrated. Sub-nano-liter volumes of a liquid are applied to inline fiber-optic micro-cavities. As the liquid evaporates, light is refracted out of the cavity at the receding index boundary between the fluid and the ambient surroundings. A sharp transient attenuation in the transmission of light through the cavity, by as much as 50 dB and on a sub-second time scale, is observed. Numerical models for the transmission dynamics in terms of ray-tracing and wavefront propagation are provided. Experiments show that the temporal transmission profile can distinguish between different liquids. PMID:24212122

  14. Cavity Self-Stabilization and Enhancement of Laser Gyroscopes by (Coupled) Optical Resonators

    NASA Technical Reports Server (NTRS)

    Smith, David D.

    2006-01-01

    We analyze the effect of a highly dispersive element placed inside a modulated optical cavity on the frequency and amplitude of the modulation to determine the conditions for cavity self-stabilization and enhanced gyroscopic sensitivity. Hence, we model cavity rotation or instability by an arbitrary AM/FM modulation, and the dispersive element as a phase and amplitude filter. We find that anomalous dispersion may be used to self-stabilize a laser cavity, provided the magnitude of the group index of refraction is smaller than the phase index of refraction in the cavity. The optimal stabilization is found to occur when the group index is zero. Group indices with magnitudes larger than the phase index (both normal and anomalous dispersion) are found to enhance the sensitivity of a laser gyroscope to rotation. Furthermore, our results indicate that atomic media, even coherent superpositions in multilevel atoms, are not useful for these applications, because the amplitude and phase filters work against one another, i.e., decreasing the modulation frequency increases its amplitude and vice versa, with one exception: negative group indices whose magnitudes are larger than the phase index result in negative, but enhanced, beat frequencies. On the other hand, for optical resonators the dispersion reversal associated with critical coupling enables the amplitude and phase filters to work together under a greater variety of circumstances than for atomic media. We find that for single over-coupled resonators, or in the case of under-coupled coupled-resonator-induced absorption, the absorption and normal dispersion on-resonance increase the contrast and frequency of the beat-note, respectively, resulting in a substantial enhancement of the gyroscopic response. Moreover, for cavity self-stabilization, we propose the use of a variety of coupled-resonator induced transparency that is accompanied by anomalous dispersion.

  15. Concentrating partially entangled W-class states on nonlocal atoms using low- Q optical cavity and linear optical elements

    NASA Astrophysics Data System (ADS)

    Cao, Cong; Chen, Xi; Duan, YuWen; Fan, Ling; Zhang, Ru; Wang, TieJun; Wang, Chuan

    2016-10-01

    Entanglement plays an important role in quantum information science, especially in quantum communications. Here we present an efficient entanglement concentration protocol (ECP) for nonlocal atom systems in the partially entangled W-class states, using the single-photon input-output process regarding low- Q cavity and linear optical elements. Compared with previously published ECPs for the concentration of non-maximally entangled atomic states, our protocol is much simpler and more efficient as it employs the Faraday rotation in cavity quantum electrodynamics (QED) and the parameter-splitting method. The Faraday rotation requires the cavity with low- Q factor and weak coupling to the atom, which makes the requirement for entanglement concentration much less stringent than the previous methods, and achievable with current cavity QED techniques. The parameter-splitting method resorts to linear-optical elements only. This ECP has high efficiency and fidelity in realistic experiments, and some imperfections during the experiment can be avoided efficiently with currently available techniques.

  16. All-optical phase modulation in a cavity-polariton Mach–Zehnder interferometer

    PubMed Central

    Sturm, C.; Tanese, D.; Nguyen, H.S.; Flayac, H.; Galopin, E.; Lemaître, A.; Sagnes, I.; Solnyshkov, D.; Amo, A.; Malpuech, G.; Bloch, J.

    2014-01-01

    Quantum fluids based on light is a highly developing research field, since they provide a nonlinear platform for developing optical functionalities and quantum simulators. An important issue in this context is the ability to coherently control the properties of the fluid. Here we propose an all-optical approach for controlling the phase of a flow of cavity-polaritons, making use of their strong interactions with localized excitons. Here we illustrate the potential of this method by implementing a compact exciton–polariton interferometer, which output intensity and polarization can be optically controlled. This interferometer is cascadable with already reported polariton devices and is promising for future polaritonic quantum optic experiments. Complex phase patterns could be also engineered using this optical method, providing a key tool to build photonic artificial gauge fields. PMID:24513781

  17. Diffuse optical tomography using multichannel robotic platform for interstitial PDT

    PubMed Central

    Sharikova, Anna V.; Liang, Xing; Zhu, Timothy C.

    2015-01-01

    In the operating room, time is extremely precious, and the speed of one’s data acquisition system often determines whether the data will be taken or not. Our multichannel robotic platform addresses this issue by optimizing source and detector scanning procedures. Up to 16 fibers can be moved independently with resolution of 0.05 mm and speed of 50 mm/s using motors with position feedback. The initial fiber alignment employs a light beam/optical detector system for identical positioning of all motors. Peak and edge detection algorithms, for point and linear sources, are used with multiple fibers simultaneously for fast realignment of sources and detectors. The robotic platform is used to perform Diffuse Optical Tomography (DOT) measurements in solid prostate phantoms with both homogenous and inhomogeneous Optical Properties (OP). Correct positioning is critical for the accurate recovery of the OP. The light fluence rate distribution is determined by scanning multiple detector fibers simultaneously along lit linear sources placed throughout the phantom volume inside catheter needles. The scanning time for the entire DOT is about 10 seconds after the initial alignment. The OP distribution reconstruction is based on the steady-state light diffusion equation. The inverse interstitial DOT problem is solved using NIRFAST. The optical properties are recovered by iterative minimization of the difference between measured and calculated light fluence rates. Recovered OP agree with the actual values within 10%. The OP corrections are used to significantly improve light fluence accuracy for the entire volume of bulk tumor. PMID:25999650

  18. Scheme for generating the singlet state of three atoms trapped in distant cavities coupled by optical fibers

    SciTech Connect

    Wang, Dong-Yang; Wen, Jing-Ji; Bai, Cheng-Hua; Hu, Shi; Cui, Wen-Xue; Wang, Hong-Fu; Zhu, Ai-Dong; Zhang, Shou

    2015-09-15

    An effective scheme is proposed to generate the singlet state with three four-level atoms trapped in three distant cavities connected with each other by three optical fibers, respectively. After a series of appropriate atom–cavity interactions, which can be arbitrarily controlled via the selective pairing of Raman transitions and corresponding optical switches, a three-atom singlet state can be successfully generated. The influence of atomic spontaneous decay, photon leakage of cavities and optical fibers on the fidelity of the state is numerically simulated showing that the three-atom singlet state can be generated with high fidelity by choosing the experimental parameters appropriately.

  19. Model reduction of cavity nonlinear optics for photonic logic: a quasi-principal components approach

    NASA Astrophysics Data System (ADS)

    Shi, Zhan; Nurdin, Hendra I.

    2016-11-01

    Kerr nonlinear cavities displaying optical thresholding have been proposed for the realization of ultra-low power photonic logic gates. In the ultra-low photon number regime, corresponding to energy levels in the attojoule scale, quantum input-output models become important to study the effect of unavoidable quantum fluctuations on the performance of such logic gates. However, being a quantum anharmonic oscillator, a Kerr-cavity has an infinite dimensional Hilbert space spanned by the Fock states of the oscillator. This poses a challenge to simulate and analyze photonic logic gates and circuits composed of multiple Kerr nonlinearities. For simulation, the Hilbert of the oscillator is typically truncated to the span of only a finite number of Fock states. This paper develops a quasi-principal components approach to identify important subspaces of a Kerr-cavity Hilbert space and exploits it to construct an approximate reduced model of the Kerr-cavity on a smaller Hilbert space. Using this approach, we find a reduced dimension model with a Hilbert space dimension of 15 that can closely match the magnitudes of the mean transmitted and reflected output fields of a conventional truncated Fock state model of dimension 75, when driven by an input coherent field that switches between two levels. For the same input, the reduced model also closely matches the magnitudes of the mean output fields of Kerr-cavity-based AND and NOT gates and a NAND latch obtained from simulation of the full 75 dimension model.

  20. Quantum theory of spontaneous emission in a one-dimensional optical cavity with two-side output coupling

    NASA Astrophysics Data System (ADS)

    Feng, Xiao-Ping; Ujihara, Kikuo

    1990-03-01

    A quantum theory of spontaneous emission from an initially excited two-level atom in a one-dimensional optical cavity with output coupling from both sides is developed. Orthonormal mode functions with a continuous spectrum are employed, which are derived by imposing a periodic boundary condition on the whole space with a period much larger than the cavity length. The delay differential equation of the atomic state of Cook and Milonni [Phys. Rev. A 35, 5081 (1987)] is re-derived in a strict manner, where the reflectivity of the cavity mirrors is included naturally in the mode functions. An approximate solution at a single-resonant-mode limit shows the results of ``vacuum'' Rabi oscillation in an underdamped cavity and enhanced spontaneous emission rate in an overdamped cavity. For the latter case, it is found that in the optical range the spontaneous emission rate is enhanced by a factor F (finesse of the cavity).

  1. Microstructured optical fiber-based micro-cavity sensor for chemical detection

    NASA Astrophysics Data System (ADS)

    Kim, Bongkyun; Ahn, Jin-Chul; Chung, Phil-Sang; Chung, Youngjoo

    2014-02-01

    The studies on microstructured optical fibers (MOF) have drawn considerable interest and played an important role in many applications. MOFs provide unique optical properties and controllable modal properties because of their flexibilities on manipulation of the transmission spectrum and the waveguide dispersion properties. MOFs are especially useful for optical sensing applications because the micro-structured air channels in MOF can host various types of analytes such as liquids, gases, and chemical molecules. Recently, many studies have focused on the development of MOF-based optical sensors for various gases and chemical molecules. We propose a compact, and highly sensitive optical micro-cavity chemical sensor using microstructured fiber. The sensor probe is composed of a hollow optical fiber and end cleaved microstructured fiber with a solid core. The interference spectrum resulting from the reflected light at the silica and air interfaces changes when the micro-cavity is infiltrated with external chemical molecules. This structure enables the direct detection of chemical molecules such as volatile organic compounds (VOCs) without the introduction of any permeable material.

  2. Mapping distributed brain function and networks with diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Eggebrecht, Adam T.; Ferradal, Silvina L.; Robichaux-Viehoever, Amy; Hassanpour, Mahlega S.; Dehghani, Hamid; Snyder, Abraham Z.; Hershey, Tamara; Culver, Joseph P.

    2014-06-01

    Mapping of human brain function has revolutionized systems neuroscience. However, traditional functional neuroimaging by positron emission tomography or functional magnetic resonance imaging cannot be used when applications require portability, or are contraindicated because of ionizing radiation (positron emission tomography) or implanted metal (functional magnetic resonance imaging). Optical neuroimaging offers a non-invasive alternative that is radiation free and compatible with implanted metal and electronic devices (for example, pacemakers). However, optical imaging technology has heretofore lacked the combination of spatial resolution and wide field of view sufficient to map distributed brain functions. Here, we present a high-density diffuse optical tomography imaging array that can map higher-order, distributed brain function. The system was tested by imaging four hierarchical language tasks and multiple resting-state networks including the dorsal attention and default mode networks. Finally, we imaged brain function in patients with Parkinson's disease and implanted deep brain stimulators that preclude functional magnetic resonance imaging.

  3. All-optical switching in silicon-on-insulator photonic wire nano-cavities.

    PubMed

    Belotti, Michele; Galli, Matteo; Gerace, Dario; Andreani, Lucio Claudio; Guizzetti, Giorgio; Md Zain, Ahmad R; Johnson, Nigel P; Sorel, Marc; De La Rue, Richard M

    2010-01-18

    We report on experimental demonstration of all-optical switching in a silicon-on-insulator photonic wire nanocavity operating at telecom wavelengths. The switching is performed with a control pulse energy as low as approximately 0.1 pJ on a cavity device that presents very high signal transmission, an ultra-high quality-factor, almost diffraction-limited modal volume and a footprint of only 5 microm(2). High-speed modulation of the cavity mode is achieved by means of optical injection of free carriers using a nanosecond pulsed laser. Experimental results are interpreted by means of finite-difference time-domain simulations. The possibility of using this device as a logic gate is also demonstrated.

  4. Optical cavity characterization of the Tor Vergata Fabry-Pérot interferometer

    NASA Astrophysics Data System (ADS)

    Giovannelli, Luca; Berrilli, Francesco; Del Moro, Dario; Greco, Vincenzo; Piazzesi, Roberto; Sordini, Andrea; Stangalini, Marco

    2014-08-01

    We report the first optical and control performances of the Tor Vergata Fabry-Ṕerot interferometer prototype designed and realized in the framework of the ADvanced Astronomy for HELIophysics (ADAHELI) solar mission project. The characterization of the the coated surfaces of the two plates defining the optical cavity has been carried out with a Zygo interferometer able to measure the microroughness and global curvature of the cavity. The peak-to-valley errors are compliant with the manufacturer specifications and correspond to λ/70 and λ/80 @632.8 nm respectively. In addition, we present a first estimate of the interferometer spectral stability in stable open-air condition. A spectral uncertainty equal to 0.95 pm is found as the typical RMS over one hour of the passband central wavelength position.

  5. Feedback control of thermal lensing in a high optical power cavity.

    PubMed

    Fan, Y; Zhao, C; Degallaix, J; Ju, L; Blair, D G; Slagmolen, B J J; Hosken, D J; Brooks, A F; Veitch, P J; Munch, J

    2008-10-01

    This paper reports automatic compensation of strong thermal lensing in a suspended 80 m optical cavity with sapphire test mass mirrors. Variation of the transmitted beam spot size is used to obtain an error signal to control the heating power applied to the cylindrical surface of an intracavity compensation plate. The negative thermal lens created in the compensation plate compensates the positive thermal lens in the sapphire test mass, which was caused by the absorption of the high intracavity optical power. The results show that feedback control is feasible to compensate the strong thermal lensing expected to occur in advanced laser interferometric gravitational wave detectors. Compensation allows the cavity resonance to be maintained at the fundamental mode, but the long thermal time constant for thermal lensing control in fused silica could cause difficulties with the control of parametric instabilities.

  6. Cavity-enhanced optical trapping of bacteria using a silicon photonic crystal.

    PubMed

    van Leest, Thijs; Caro, Jacob

    2013-11-21

    On-chip optical trapping and manipulation of cells based on the evanescent field of photonic structures is emerging as a promising technique, both in research and for applications in broader context. Relying on mass fabrication techniques, the involved integration of photonics and microfluidics allows control of both the flow of light and water on the scale of interest in single cell microbiology. In this paper, we demonstrate for the first time optical trapping of single bacteria (B. subtilis and E. coli) using photonic crystal cavities for local enhancement of the evanescent field, as opposed to the synthetic particles used so far. Three types of cavities (H0, H1 and L3) are studied, embedded in a planar photonic crystal and optimized for coupling to two collinear photonic crystal waveguides. The photonic crystals are fabricated on a silicon-on-insulator chip, onto which a fluidic channel is created as well. For each of the cavities, when pumped at the resonance wavelength (around 1550 nm), we clearly demonstrate optical trapping of bacteria, in spite of their low index contrast w.r.t. water. By tracking the confined Brownian motion of B. subtilis spores in the traps using recorded microscope observations, we derive strong in-plane trap stiffnesses of about 7.6 pN nm(-1) W(-1). The values found agree very well with calculations based on the Maxwell stress tensor for the force and finite-difference time-domain simulations of the fields for the fabricated cavity geometries. We envision that our lab-on-a-chip with photonic crystal traps opens up new application directions, e.g. immobilization of single bio-objects such as mammalian cells and bacteria under controlled conditions for optical microscopy studies.

  7. Compact efficient eye-safe intracavity optical parametric oscillator with a shared cavity configuration

    SciTech Connect

    Chen, Y. F.; Su, K. W.; Chang, Y. T.; Yen, W. C

    2007-06-10

    We present a compact efficient eye-safe intracavity optical parametric oscillator pumpedby a passively Q-switched Nd:YAG laser in a shared cavity configuration. A signal pulse of 3.3 mJ energy at a 1573 nm wavelength with a peak power of150 kW was achieved. The effective conversion efficiency with respective to the optimized 1064 nm Q-switched pulse energy was as high as 51%.

  8. Performance scaling via passive pulse shaping in cavity-enhanced optical parametric chirped-pulse amplification.

    PubMed

    Siddiqui, Aleem M; Moses, Jeffrey; Hong, Kyung-Han; Lai, Chien-Jen; Kärtner, Franz X

    2010-06-15

    We show that an enhancement cavity seeded at the full repetition rate of the pump laser can automatically reshape small-signal gain across the interacting pulses in an optical parametric chirped-pulse amplifier for close-to-optimal operation, significantly increasing both the gain bandwidth and the conversion efficiency, in addition to boosting gain for high-repetition-rate amplification. Applied to a degenerate amplifier, the technique can provide an octave-spanning gain bandwidth.

  9. Monitoring tumor therapeutic response with diffuse optical spectroscopies

    NASA Astrophysics Data System (ADS)

    Sunar, Ulas

    The diffuse optical technique using Near-Infrared (NIR) light provides a promising means for non-invasive imaging and clinical diagnosis of deep tissues. During the last few years, we have developed a multi-modal diffuse optical technique combining two qualitatively different methodologies: Diffuse Reflectance Spectroscopy (DRS) and Diffuse Correlation Spectroscopy (DCS). This approach permits real-time, non-invasive and simultaneous quantification of tissue hemoglobin concentration, blood oxygen saturation and blood flow. The instrumentation is portable and rapid, and it has enabled us to study tissue responses in a variety of physiological contexts from cancer treatment monitoring to functional imaging of brain. In this thesis I focus on monitoring of tumor responses to therapies in preclinical and clinical contexts. In preclinical applications, I investigate an antivascular therapy in animal models. The effects of an antivascular drug, Combretastatin, were monitored continuously and were found to induce substantial reduction of blood flow and tissue oxygen. The observations of blood flow and oxygenation were then correlated with power Doppler Ultrasound and EF5 (hypoxia biomarker) techniques, respectively. In another animal model application, the chemotherapy drug, Onconase (Onc), was tested. Onc enhances the therapeutic effects of the drug Cisplatin, which is currently used as a chemotherapeutic agent for head and neck patients during chemoradiation therapy. Our observations demonstrated that Onc increased both tissue blood flow and tissue blood oxygenation; we also compared our results with those from MRI/MRS measurements. The diffuse optical technique was then translated to the clinic, i.e. head and neck patients during chemo-radiation therapy. Our pilot study with eight patients revealed significant early changes in hemodynamic parameters suggesting that daily optics-based therapy monitoring during the first two weeks of chemo-radiation therapy may have

  10. Direct Measurement of Optical Force Induced by Near-Field Plasmonic Cavity Using Dynamic Mode AFM

    PubMed Central

    Guan, Dongshi; Hang, Zhi Hong; Marcet, Zsolt; Liu, Hui; Kravchenko, I. I.; Chan, C. T.; Chan, H. B.; Tong, Penger

    2015-01-01

    Plasmonic nanostructures have attracted much attention in recent years because of their potential applications in optical manipulation through near-field enhancement. Continuing experimental efforts have been made to develop accurate techniques to directly measure the near-field optical force induced by the plasmonic nanostructures in the visible frequency range. In this work, we report a new application of dynamic mode atomic force microscopy (DM-AFM) in the measurement of the enhanced optical force acting on a nano-structured plasmonic resonant cavity. The plasmonic cavity is made of an upper gold-coated glass sphere and a lower quartz substrate patterned with an array of subwavelength gold disks. In the near-field when the sphere is positioned close to the disk array, plasmonic resonance is excited in the cavity and the induced force by a 1550 nm infrared laser is found to be increased by an order of magnitude compared with the photon pressure generated by the same laser light. The experiment demonstrates that DM-AFM is a powerful tool for the study of light induced forces and their enhancement in plasmonic nanostructures. PMID:26586455

  11. Direct measurement of optical force induced by near-field plasmonic cavity using dynamic mode AFM

    DOE PAGES

    Guan, Dongshi; Hang, Zhi Hong; Marset, Zsolt; ...

    2015-11-20

    Plasmonic nanostructures have attracted much attention in recent years because of their potential applications in optical manipulation through near-field enhancement. Continuing experimental efforts have been made to develop accurate techniques to directly measure the near-field optical force induced by the plasmonic nanostructures in the visible frequency range. In this work, we report a new application of dynamic mode atomic force microscopy (DM-AFM) in the measurement of the enhanced optical force acting on a nano-structured plasmonic resonant cavity. The plasmonic cavity is made of an upper gold-coated glass sphere and a lower quartz substrate patterned with an array of subwavelength goldmore » disks. In the near-field when the sphere is positioned close to the disk array, plasmonic resonance is excited in the cavity and the induced force by a 1550 nm infrared laser is found to be increased by an order of magnitude compared with the photon pressure generated by the same laser light. Lastly, the experiment demonstrates that DM-AFM is a powerful tool for the study of light induced forces and their enhancement in plasmonic nanostructures.« less

  12. Direct measurement of optical force induced by near-field plasmonic cavity using dynamic mode AFM

    SciTech Connect

    Guan, Dongshi; Hang, Zhi Hong; Marset, Zsolt; Liu, Hui; Kravchenko, Ivan I.; Chan, Ho Bun; Chan, C. T.; Tong, Penger

    2015-11-20

    Plasmonic nanostructures have attracted much attention in recent years because of their potential applications in optical manipulation through near-field enhancement. Continuing experimental efforts have been made to develop accurate techniques to directly measure the near-field optical force induced by the plasmonic nanostructures in the visible frequency range. In this work, we report a new application of dynamic mode atomic force microscopy (DM-AFM) in the measurement of the enhanced optical force acting on a nano-structured plasmonic resonant cavity. The plasmonic cavity is made of an upper gold-coated glass sphere and a lower quartz substrate patterned with an array of subwavelength gold disks. In the near-field when the sphere is positioned close to the disk array, plasmonic resonance is excited in the cavity and the induced force by a 1550 nm infrared laser is found to be increased by an order of magnitude compared with the photon pressure generated by the same laser light. Lastly, the experiment demonstrates that DM-AFM is a powerful tool for the study of light induced forces and their enhancement in plasmonic nanostructures.

  13. Temperature Sensitivity of an Atomic Vapor Cell-Based Dispersion-Enhanced Optical Cavity

    NASA Technical Reports Server (NTRS)

    Myneni, K.; Smith, D. D.; Chang, H.; Luckay, H. A.

    2015-01-01

    Enhancement of the response of an optical cavity to a change in optical path length, through the use of an intracavity fast-light medium, has previously been demonstrated experimentally and described theoretically for an atomic vapor cell as the intracavity resonant absorber. This phenomenon may be used to enhance both the scale factor and sensitivity of an optical cavity mode to the change in path length, e.g. in gyroscopic applications. We study the temperature sensitivity of the on-resonant scale factor enhancement, S(sub o), due to the thermal sensitivity of the lower-level atom density in an atomic vapor cell, specifically for the case of the Rb-87 D(sub 2) transition. A semi-empirical model of the temperature-dependence of the absorption profile, characterized by two parameters, a(sub o)(T) and gamma(sub a)(T) allows the temperature-dependence of the cavity response, S(sub o)(T) and dS(sub o)/dT to be predicted over a range of temperature. We compare the predictions to experiment. Our model will be useful in determining the useful range for S(sub o), given the practical constraints on temperature stability for an atomic vapor cell.

  14. Mesoscale cavities in hollow-core waveguides for quantum optics with atomic ensembles

    NASA Astrophysics Data System (ADS)

    Haapamaki, C. M.; Flannery, J.; Bappi, G.; Al Maruf, R.; Bhaskara, S. V.; Alshehri, O.; Yoon, T.; Bajcsy, M.

    2016-08-01

    Single-mode hollow-core waveguides loaded with atomic ensembles offer an excellent platform for light-matter interactions and nonlinear optics at low photon levels. We review and discuss possible approaches for incorporating mirrors, cavities, and Bragg gratings into these waveguides without obstructing their hollow cores. With these additional features controlling the light propagation in the hollow-core waveguides, one could potentially achieve optical nonlinearities controllable by single photons in systems with small footprints that can be integrated on a chip. We propose possible applications such as single-photon transistors and superradiant lasers that could be implemented in these enhanced hollow-core waveguides.

  15. Stacked optical antennas for plasmon propagation in a 5 nm-confined cavity

    PubMed Central

    Saeed, A.; Panaro, S.; Zaccaria, R. Proietti; Raja, W.; Liberale, C.; Dipalo, M.; Messina, G. C.; Wang, H.; De Angelis, F.; Toma, A.

    2015-01-01

    The sub-wavelength concentration and propagation of electromagnetic energy are two complementary aspects of plasmonics that are not necessarily co-present in a single nanosystem. Here we exploit the strong nanofocusing properties of stacked optical antennas in order to highly concentrate the electromagnetic energy into a 5 nm metal-insulator-metal (MIM) cavity and convert free radiation into guided modes. The proposed nano-architecture combines the concentration properties of optical nanoantennas with the propagation capability of MIM systems, paving the way to highly miniaturized on-chip plasmonic waveguiding. PMID:26057661

  16. Stacked optical antennas for plasmon propagation in a 5 nm-confined cavity

    NASA Astrophysics Data System (ADS)

    Saeed, A.; Panaro, S.; Zaccaria, R. Proietti; Raja, W.; Liberale, C.; Dipalo, M.; Messina, G. C.; Wang, H.; de Angelis, F.; Toma, A.

    2015-06-01

    The sub-wavelength concentration and propagation of electromagnetic energy are two complementary aspects of plasmonics that are not necessarily co-present in a single nanosystem. Here we exploit the strong nanofocusing properties of stacked optical antennas in order to highly concentrate the electromagnetic energy into a 5 nm metal-insulator-metal (MIM) cavity and convert free radiation into guided modes. The proposed nano-architecture combines the concentration properties of optical nanoantennas with the propagation capability of MIM systems, paving the way to highly miniaturized on-chip plasmonic waveguiding.

  17. Electro-thermo-optical simulation of vertical-cavity surface-emitting lasers

    NASA Astrophysics Data System (ADS)

    Smagley, Vladimir Anatolievich

    Three-dimensional electro-thermal simulator based on the double-layer approximation for the active region was coupled to optical gain and optical field numerical simulators to provide a self-consistent steady-state solution of VCSEL current-voltage and current-output power characteristics. Methodology of VCSEL modeling had been established and applied to model a standard 850-nm VCSEL based on GaAs-active region and a novel intracavity-contacted 400-nm GaN-based VCSEL. Results of GaAs VCSEL simulation were in a good agreement with experiment. Correlations between current injection and radiative mode profiles have been observed. Physical sub-models of transport, optical gain and cavity optical field were developed. Carrier transport through DBRs was studied. Problem of optical fields in VCSEL cavity was treated numerically by the effective frequency method. All the sub-models were connected through spatially inhomogeneous rate equation system. It was shown that the conventional uncoupled analysis of every separate physical phenomenon would be insufficient to describe VCSEL operation.

  18. Bridging the Gap between RF and Optical Patch Antenna Analysis via the Cavity Model

    PubMed Central

    Unal, G. S.; Aksun, M. I.

    2015-01-01

    Although optical antennas with a variety of shapes and for a variety of applications have been proposed and studied, they are still in their infancy compared to their radio frequency (rf) counterparts. Optical antennas have mainly utilized the geometrical attributes of rf antennas rather than the analysis tools that have been the source of intuition for antenna engineers in rf. This study intends to narrow the gap of experience and intuition in the design of optical patch antennas by introducing an easy-to-understand and easy-to-implement analysis tool in rf, namely, the cavity model, into the optical regime. The importance of this approach is not only its simplicity in understanding and implementation but also its applicability to a broad class of patch antennas and, more importantly, its ability to provide the intuition needed to predict the outcome without going through the trial-and-error simulations with no or little intuitive guidance by the user. PMID:26522889

  19. Bridging the Gap between RF and Optical Patch Antenna Analysis via the Cavity Model

    NASA Astrophysics Data System (ADS)

    Unal, G. S.; Aksun, M. I.

    2015-11-01

    Although optical antennas with a variety of shapes and for a variety of applications have been proposed and studied, they are still in their infancy compared to their radio frequency (rf) counterparts. Optical antennas have mainly utilized the geometrical attributes of rf antennas rather than the analysis tools that have been the source of intuition for antenna engineers in rf. This study intends to narrow the gap of experience and intuition in the design of optical patch antennas by introducing an easy-to-understand and easy-to-implement analysis tool in rf, namely, the cavity model, into the optical regime. The importance of this approach is not only its simplicity in understanding and implementation but also its applicability to a broad class of patch antennas and, more importantly, its ability to provide the intuition needed to predict the outcome without going through the trial-and-error simulations with no or little intuitive guidance by the user.

  20. Bridging the Gap between RF and Optical Patch Antenna Analysis via the Cavity Model.

    PubMed

    Unal, G S; Aksun, M I

    2015-11-02

    Although optical antennas with a variety of shapes and for a variety of applications have been proposed and studied, they are still in their infancy compared to their radio frequency (rf) counterparts. Optical antennas have mainly utilized the geometrical attributes of rf antennas rather than the analysis tools that have been the source of intuition for antenna engineers in rf. This study intends to narrow the gap of experience and intuition in the design of optical patch antennas by introducing an easy-to-understand and easy-to-implement analysis tool in rf, namely, the cavity model, into the optical regime. The importance of this approach is not only its simplicity in understanding and implementation but also its applicability to a broad class of patch antennas and, more importantly, its ability to provide the intuition needed to predict the outcome without going through the trial-and-error simulations with no or little intuitive guidance by the user.

  1. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode.

    PubMed

    Verhagen, E; Deléglise, S; Weis, S; Schliesser, A; Kippenberg, T J

    2012-02-01

    Optical laser fields have been widely used to achieve quantum control over the motional and internal degrees of freedom of atoms and ions, molecules and atomic gases. A route to controlling the quantum states of macroscopic mechanical oscillators in a similar fashion is to exploit the parametric coupling between optical and mechanical degrees of freedom through radiation pressure in suitably engineered optical cavities. If the optomechanical coupling is 'quantum coherent'--that is, if the coherent coupling rate exceeds both the optical and the mechanical decoherence rate--quantum states are transferred from the optical field to the mechanical oscillator and vice versa. This transfer allows control of the mechanical oscillator state using the wide range of available quantum optical techniques. So far, however, quantum-coherent coupling of micromechanical oscillators has only been achieved using microwave fields at millikelvin temperatures. Optical experiments have not attained this regime owing to the large mechanical decoherence rates and the difficulty of overcoming optical dissipation. Here we achieve quantum-coherent coupling between optical photons and a micromechanical oscillator. Simultaneously, coupling to the cold photon bath cools the mechanical oscillator to an average occupancy of 1.7 ± 0.1 motional quanta. Excitation with weak classical light pulses reveals the exchange of energy between the optical light field and the micromechanical oscillator in the time domain at the level of less than one quantum on average. This optomechanical system establishes an efficient quantum interface between mechanical oscillators and optical photons, which can provide decoherence-free transport of quantum states through optical fibres. Our results offer a route towards the use of mechanical oscillators as quantum transducers or in microwave-to-optical quantum links.

  2. Application of optical diffusion theory to transcutaneous bilirubinometry

    NASA Astrophysics Data System (ADS)

    Spott, Thorsten; Svaasand, Lars O.; Anderson, R. E.; Schmedling, P. F.

    1998-01-01

    Neonatal hyperbilirubinemia affects more than half of the newborns and represents a potentially serious condition due to the toxicity of bilirubin to the central nervous system. A precise non-invasive technique for the monitoring of bilirubin concentration is desirable for the treatment of icteric babies. Transcutaneous bilirubinometry based on optical reflectance spectra is complicated by the superposition of the spectral absorption properties of melanin and haemoglobin with those of bilirubin. Diffusion theory forms a suitable model for the description of light propagation in tissue. In this treatment, an inverse diffusion approach is developed to measure bilirubin concentration in tissue by means of the reflectance spectrum. First results of its application to in vivo measurements are encouraging.

  3. Pre-seizure state identified by diffuse optical tomography

    PubMed Central

    Zhang, Tao; Zhou, Junli; Jiang, Ruixin; Yang, Hao; Carney, Paul R.; Jiang, Huabei

    2014-01-01

    In epilepsy it has been challenging to detect early changes in brain activity that occurs prior to seizure onset and to map their origin and evolution for possible intervention. Here we demonstrate using a rat model of generalized epilepsy that diffuse optical tomography (DOT) provides a unique functional neuroimaging modality for noninvasively and continuously tracking such brain activities with high spatiotemporal resolution. We detected early hemodynamic responses with heterogeneous patterns, along with intracranial electroencephalogram gamma power changes, several minutes preceding the electroencephalographic seizure onset, supporting the presence of a “pre-seizure” state. We also observed the decoupling between local hemodynamic and neural activities. We found widespread hemodynamic changes evolving from local regions of the bilateral cortex and thalamus to the entire brain, indicating that the onset of generalized seizures may originate locally rather than diffusely. Together, these findings suggest DOT represents a powerful tool for mapping early seizure onset and propagation pathways. PMID:24445927

  4. Aerosol optical properties measurement by recently developed cavity-enhanced aerosol single scattering albedometer

    NASA Astrophysics Data System (ADS)

    Zhao, Weixiong; Xu, Xuezhe; Zhang, Qilei; Fang, Bo; Qian, Xiaodong; Chen, Weidong; Gao, Xiaoming; Zhang, Weijun

    2015-04-01

    Development of appropriate and well-adapted measurement technologies for real-time in-situ measurement of aerosol optical properties is an important step towards a more accurate and quantitative understanding of aerosol impacts on climate and the environment. Aerosol single scattering albedo (SSA, ω), the ratio between the scattering (αscat) and extinction (αext) coefficients, is an important optical parameter that governs the relative strength of the aerosol scattering and absorption capacity. Since the aerosol extinction coefficient is the sum of the absorption and scattering coefficients, a commonly used method for the determination of SSA is to separately measure two of the three optical parameters - absorption, scattering and extinction coefficients - with different instruments. However, as this method involves still different instruments for separate measurements of extinction and absorption coefficients under different sampling conditions, it might cause potential errors in the determination of SSA value, because aerosol optical properties are very sensitive to the sampling conditions such as temperature and relative humidity (RH). In this paper, we report on the development of a cavity-enhanced aerosol single scattering albedometer incorporating incoherent broad-band cavity-enhanced spectroscopy (IBBCEAS) and an integrating sphere (IS) for direct in-situ measurement of aerosol scattering and extinction coefficients on the exact same sample volume. The cavity-enhanced albedometer holds great promise for high-sensitivity and high-precision measurement of ambient aerosol scattering and extinction coefficients (hence absorption coefficient and SSA determination) and for absorbing trace gas concentration. In addition, simultaneous measurements of aerosol scattering and extinction coefficients enable a potential application for the retrieval of particle number size distribution and for faster retrieval of aerosols' complex RI. The albedometer was deployed to

  5. Method of varying a characteristic of an optical vertical cavity structure formed by metalorganic vapor phase epitaxy

    SciTech Connect

    Hou, Hong Q.; Coltrin, Michael E.; Choquette, Kent D.

    2001-01-01

    A process for forming an array of vertical cavity optical resonant structures wherein the structures in the array have different detection or emission wavelengths. The process uses selective area growth (SAG) in conjunction with annular masks of differing dimensions to control the thickness and chemical composition of the materials in the optical cavities in conjunction with a metalorganic vapor phase epitaxy (MOVPE) process to build these arrays.

  6. Diffuse optical imaging using spatially and temporally modulated light

    NASA Astrophysics Data System (ADS)

    O'Sullivan, Thomas D.; Cerussi, Albert E.; Cuccia, David J.; Tromberg, Bruce J.

    2012-07-01

    The authors describe the development of diffuse optical imaging (DOI) technologies, specifically the use of spatial and temporal modulation to control near infrared light propagation in thick tissues. We present theory and methods of DOI focusing on model-based techniques for quantitative, in vivo measurements of endogenous tissue absorption and scattering properties. We specifically emphasize the common conceptual framework of the scalar photon density wave for both temporal and spatial frequency-domain approaches. After presenting the history, theoretical foundation, and instrumentation related to these methods, we provide a brief review of clinical and preclinical applications from our research as well as our outlook on the future of DOI technology.

  7. Estimation of kinetic model parameters in fluorescence optical diffusion tomography.

    PubMed

    Milstein, Adam B; Webb, Kevin J; Bouman, Charles A

    2005-07-01

    We present a technique for reconstructing the spatially dependent dynamics of a fluorescent contrast agent in turbid media. The dynamic behavior is described by linear and nonlinear parameters of a compartmental model or some other model with a deterministic functional form. The method extends our previous work in fluorescence optical diffusion tomography by parametrically reconstructing the time-dependent fluorescent yield. The reconstruction uses a Bayesian framework and parametric iterative coordinate descent optimization, which is closely related to Gauss-Seidel methods. We demonstrate the method with a simulation study.

  8. Reflectance Diffuse Optical Tomography: Its Application to Human Brain Mapping

    NASA Astrophysics Data System (ADS)

    Ueda, Yukio; Yamanaka, Takeshi; Yamashita, Daisuke; Suzuki, Toshihiko; Ohmae, Etsuko; Oda, Motoki; Yamashita, Yutaka

    2005-09-01

    We report the successful application of reflectance diffuse optical tomography (DOT) using near-infrared light with the new reconstruction algorithm that we developed to the observation of regional hemodynamic changes in the brain under specific mental tasks. Our results reveal the heterogeneous distribution of oxyhemoglobin and deoxyhemoglobin in the brain, showing complementary images of oxyhemoglobin and deoxyhemoglobin changes in certain regions. We conclude that our reflectance DOT has practical potential for human brain mapping, as well as in the diagnostic imaging of brain diseases.

  9. Mapping the human brain at rest with diffuse optical tomography

    PubMed Central

    White, Brian R.; Snyder, Abraham Z.; Cohen, Alexander L.; Petersen, Steven E.; Raichle, Marcus E.; Schlaggar, Bradley L.; Culver, Joseph P.

    2014-01-01

    Diffuse optical tomography (DOT) is a portable functional neuroimaging technique that is able to simultaneously measure both oxy- and deoxyhemoglobin responses to brain activity. Herein, we demonstrate a technique for mapping functional connections in the brain by measuring the spatial distribution of temporal correlations in resting brain activity. Simultaneous DOT imaging over the motor and visual cortices yielded robust correlation maps reproducing the expected functional neural architecture. These functional connectivity methods will have utility in certain populations, such as those who are unconscious or very young, who have difficulty performing the behaviors required in traditional task-based functional neuroimaging paradigms. PMID:19964102

  10. TOPICAL REVIEW: Recent advances in diffuse optical imaging

    NASA Astrophysics Data System (ADS)

    Gibson, A. P.; Hebden, J. C.; Arridge, S. R.

    2005-02-01

    We review the current state-of-the-art of diffuse optical imaging, which is an emerging technique for functional imaging of biological tissue. It involves generating images using measurements of visible or near-infrared light scattered across large (greater than several centimetres) thicknesses of tissue. We discuss recent advances in experimental methods and instrumentation, and examine new theoretical techniques applied to modelling and image reconstruction. We review recent work on in vivo applications including imaging the breast and brain, and examine future challenges.

  11. Split operator method for fluorescence diffuse optical tomography using anisotropic diffusion regularisation with prior anatomical information

    PubMed Central

    Correia, Teresa; Aguirre, Juan; Sisniega, Alejandro; Chamorro-Servent, Judit; Abascal, Juan; Vaquero, Juan J.; Desco, Manuel; Kolehmainen, Ville; Arridge, Simon

    2011-01-01

    Fluorescence diffuse optical tomography (fDOT) is an imaging modality that provides images of the fluorochrome distribution within the object of study. The image reconstruction problem is ill-posed and highly underdetermined and, therefore, regularisation techniques need to be used. In this paper we use a nonlinear anisotropic diffusion regularisation term that incorporates anatomical prior information. We introduce a split operator method that reduces the nonlinear inverse problem to two simpler problems, allowing fast and efficient solution of the fDOT problem. We tested our method using simulated, phantom and ex-vivo mouse data, and found that it provides reconstructions with better spatial localisation and size of fluorochrome inclusions than using the standard Tikhonov penalty term. PMID:22091447

  12. Scanning, non-contact, hybrid broadband diffuse optical spectroscopy and diffuse correlation spectroscopy system

    PubMed Central

    Johansson, Johannes D.; Mireles, Miguel; Morales-Dalmau, Jordi; Farzam, Parisa; Martínez-Lozano, Mar; Casanovas, Oriol; Durduran, Turgut

    2016-01-01

    A scanning system for small animal imaging using non-contact, hybrid broadband diffuse optical spectroscopy (ncDOS) and diffuse correlation spectroscopy (ncDCS) is presented. The ncDOS uses a two-dimensional spectrophotometer retrieving broadband (610-900 nm) spectral information from up to fifty-seven source-detector distances between 2 and 5 mm. The ncDCS data is simultaneously acquired from four source-detector pairs. The sample is scanned in two dimensions while tracking variations in height. The system has been validated with liquid phantoms, demonstrated in vivo on a human fingertip during an arm cuff occlusion and on a group of mice with xenoimplanted renal cell carcinoma. PMID:26977357

  13. Thermal radiation from optically driven Kerr (χ{sup (3)}) photonic cavities

    SciTech Connect

    Khandekar, Chinmay; Rodriguez, Alejandro W.; Lin, Zin

    2015-04-13

    We describe thermal radiation from nonlinear (χ{sup (3)}) photonic cavities coupled to external channels and subject to incident monochromatic light. Our work extends related work on nonlinear mechanical oscillators to the problem of thermal radiation, demonstrating that bistability can enhance thermal radiation by orders of magnitude and result in strong lineshape alternations, including “super-narrow spectral peaks” occurring at the onset of kinetic phase transitions. We show that when the cavities are designed to exhibit perfect linear emissivity (rate matching), such thermally activated transitions can be exploited to dramatically tune the output power and radiative properties of the cavity, leading to a kind of Kerr-mediated thermo-optic effect. Finally, we demonstrate that in certain parameter regimes, the output radiation exhibits Stokes and anti-Stokes side peaks whose relative magnitudes can be altered by tuning the internal temperature of the cavity relative to its surroundings, a consequence of strong correlations and interference between the emitted and reflected radiation.

  14. Photon bunching and anti-bunching with two dipole-coupled atoms in an optical cavity

    NASA Astrophysics Data System (ADS)

    Zheng, Ya-Mei; Hu, Chang-Sheng; Yang, Zhen-Biao; Wu, Huai-Zhi

    2016-10-01

    We investigate the effect of the dipole-dipole interaction (DDI) on the photon statistics with two atoms trapped in an optical cavity driven by a laser field and subjected to cooperative emission. By means of the quantum trajectory analysis and the second-order correlation functions, we show that the photon statistics of the cavity transmission can be flexibly modulated by the DDI while the incoming coherent laser selectively excites the atom-cavity system’s nonlinear Jaynes-Cummings ladder of excited states. Finally, we find that the effect of the cooperatively atomic emission can also be revealed by the numerical simulations and can be explained with a simplified picture. The DDI induced nonlinearity gives rise to highly nonclassical photon emission from the cavity that is significant for quantum information processing and quantum communication. Project supported by the National Natural Science Foundation of China (Grant Nos. 11305037, 11347114, and 11374054) and the Natural Science Foundation of Fujian Province, China (Grant No. 2013J01012).

  15. Measurement of epithelial thickness within the oral cavity using optical coherence tomography (OCT)

    NASA Astrophysics Data System (ADS)

    Prestin, S.; Betz, C.; Kraft, M.

    2010-02-01

    Optical coherence tomography (OCT) is a promising method in the early diagnosis of oral cavity cancer. The objective of the present study is to determine normal values of epithelial thickness in the oral cavity, as no such data are to be found in the literature. In healthy test persons, epithelial thickness of the oral mucosa was determined with the help of OCT separately for each side at nine different locations. Special attention was directed to those sites having the highest incidence for the development of dysplasias and carcinomas. Depending on the location within the oral cavity, the epithelium demonstrated a varying thickness. The highest values were found in the region of the tongue and the cheek, whereas the floor of the mouth showed the thinnest epithelium. Our data serve as reference values for detecting oral malignancy and determining the approximate grade of dysplasia. In this circumstance, a differentiated view of the different regions is important due to the variation in thickness of the epithelium within the normal oral cavity.

  16. Feasibility of fiber optic displacement sensor scanning system for imaging of dental cavity

    NASA Astrophysics Data System (ADS)

    Rahman, Husna Abdul; Che Ani, Adi Izhar; Harun, Sulaiman Wadi; Yasin, Moh.; Apsari, Retna; Ahmad, Harith

    2012-07-01

    The purpose of this study is to investigate the potential of intensity modulated fiber optic displacement sensor scanning system for the imaging of dental cavity. Here, we discuss our preliminary results in the imaging of cavities on various teeth surfaces, as well as measurement of the diameter of the cavities which are represented by drilled holes on the teeth surfaces. Based on the analysis of displacement measurement, the sensitivities and linear range for the molar, canine, hybrid composite resin, and acrylic surfaces are obtained at 0.09667 mV/mm and 0.45 mm 0.775 mV/mm and 0.4 mm 0.5109 mV/mm and 0.5 mm and 0.25 mV/mm and 0.5 mm, respectively, with a good linearity of more than 99%. The results also show a clear distinction between the cavity and surrounding tooth region. The stability, simplicity of design, and low cost of fabrication make it suitable for restorative dentistry.

  17. Bose–Einstein condensation versus Dicke–Hepp–Lieb transition in an optical cavity

    SciTech Connect

    Piazza, Francesco; Strack, Philipp; Zwerger, Wilhelm

    2013-12-15

    We provide an exact solution for the interplay between Bose–Einstein condensation and the Dicke–Hepp–Lieb self-organization transition of an ideal Bose gas trapped inside a single-mode optical cavity and subject to a transverse laser drive. Based on an effective action approach, we determine the full phase diagram at arbitrary temperature, which features a bi-critical point where the transitions cross. We calculate the dynamically generated band structure of the atoms and the associated suppression of the critical temperature for Bose–Einstein condensation in the phase with a spontaneous periodic density modulation. Moreover, we determine the evolution of the polariton spectrum due to the coupling of the cavity photons and the atomic field near the self-organization transition, which is quite different above or below the Bose–Einstein condensation temperature. At low temperatures, the critical value of the Dicke–Hepp–Lieb transition decreases with temperature and thus thermal fluctuations can enhance the tendency to a periodic arrangement of the atoms. -- Highlights: •Atoms inside a driven cavity can undergo two transitions: self-organization and BEC. •The phase diagram has four phases which coexist at a bi-critical point. •Atom–cavity coupling creates a dynamical lattice for the atoms. •Finite temperature can enhance the tendency towards self-organization. •We calculate the detailed spectrum of the polaritonic excitations.

  18. Recipes to make organic phantoms for diffusive optical spectroscopy.

    PubMed

    Quarto, Giovanna; Pifferi, Antonio; Bargigia, Ilaria; Farina, Andrea; Cubeddu, Rinaldo; Taroni, Paola

    2013-04-10

    Three recipes are presented to make tissue constituent-equivalent phantoms of water and lipids. Different approaches to prepare the emulsion are proposed. Nature phantoms are made using no emulsifying agent, but just a professional disperser; instead Agar and Triton phantoms are made using agar or Triton X-100, respectively, as agents to emulsify water and lipids. Different water-to-lipid ratios ranging from 30% to 70% by mass were tested. A broadband time-resolved diffuse optical spectroscopy system was used to characterize the phantoms in terms of optical properties and composition. For some water/lipid ratios the emulsion fails or the phantom has limited lifetime, but in most cases the recipes provide phantoms with a high degree of homogeneity [coefficient of variation (CV) of 4.6% and 1.5% for the absorption and reduced scattering coefficient, respectively] and good reproducibility (CV of 8.3% and 12.4% for absorption and reduced scattering coefficient, respectively).

  19. Diffused holographic information storage and retrieval using photorefractive optical materials

    NASA Astrophysics Data System (ADS)

    McMillen, Deanna Kay

    Holography offers a tremendous opportunity for dense information storage, theoretically one bit per cubic wavelength of material volume, with rapid retrieval, of up to thousands of pages of information simultaneously. However, many factors prevent the theoretical storage limit from being reached, including dynamic range problems and imperfections in recording materials. This research explores new ways of moving closer to practical holographic information storage and retrieval by altering the recording materials, in this case, photorefractive crystals, and by increasing the current storage capacity while improving the information retrieved. As an experimental example of the techniques developed, the information retrieved is the correlation peak from an optical recognition architecture, but the materials and methods developed are applicable to many other holographic information storage systems. Optical correlators can potentially solve any signal or image recognition problem. Military surveillance, fingerprint identification for law enforcement or employee identification, and video games are but a few examples of applications. A major obstacle keeping optical correlators from being universally accepted is the lack of a high quality, thick (high capacity) holographic recording material that operates with red or infrared wavelengths which are available from inexpensive diode lasers. This research addresses the problems from two positions: find a better material for use with diode lasers, and reduce the requirements placed on the material while maintaining an efficient and effective system. This research found that the solutions are new dopants introduced into photorefractive lithium niobate to improve wavelength sensitivities and the use of a novel inexpensive diffuser that reduces the dynamic range and optical element quality requirements (which reduces the cost) while improving performance. A uniquely doped set of 12 lithium niobate crystals was specified and

  20. Influence of radiation on double conjugate diffusion in a porous cavity

    NASA Astrophysics Data System (ADS)

    Azeem, Khan, T. M. Yunus; Badruddin, Irfan Anjum; Nik-Ghazali, N.; Idris, Mohd Yamani Idna

    2016-05-01

    The current work highlights the effect of radiation on the conjugate heat and mass transfer in a square porous cavity having a solid wall. The solid wall is placed at the center of cavity. The left surface of cavity is maintained at higher temperature Tw and concentration Cw whereas the right surface is maintained at Tc and Cc such that Tw>Tc and Cw>Cc. The top and bottom surfaces are adiabatic. The governing equations are solved with the help of finite element method by making use of triangular elements. The results are discussed with respect to two different heights of solid wall inside the porous medium along with the radiation parameter.

  1. Optical feedback cavity enhanced absorption spectroscopy: effective adjustment of the feedback-phase

    NASA Astrophysics Data System (ADS)

    Habig, J. C.; Nadolny, J.; Meinen, J.; Saathoff, H.; Leisner, T.

    2012-02-01

    Optical-feedback cavity enhanced absorption spectroscopy (OF-CEAS) is a very sensitive technique for the detection of trace amounts of gaseous absorbers. The most crucial parameter in an OF-CEAS setup is the optical phase of the light fed back into the laser source, which is usually controlled by the position of a piezo driven mirror. Various approaches for the analysis of the cavity transmitted light with respect to feedback-phase are presented, and tested on simulated phase and frequency dependent cavity transmission. Finally, we present the performance of a digital signal processor based regulator—employing one of these approaches—in a real OF-CEAS experiment. The results of the simulation show that several algorithms are well suited for the task of control signal generation. They confirm also that with the presented approach, a mode by mode correction of the feedback-phase is possible. Consequently, a regulatory bandwidth of 37 Hz was achieved. This maximum control frequency was limited by the piezo system.

  2. Cavity-Enhanced Raman Spectroscopy of Natural Gas with Optical Feedback cw-Diode Lasers.

    PubMed

    Hippler, Michael

    2015-08-04

    We report on improvements made on our previously introduced technique of cavity-enhanced Raman spectroscopy (CERS) with optical feedback cw-diode lasers in the gas phase, including a new mode-matching procedure which keeps the laser in resonance with the optical cavity without inducing long-term frequency shifts of the laser, and using a new CCD camera with improved noise performance. With 10 mW of 636.2 nm diode laser excitation and 30 s integration time, cavity enhancement achieves noise-equivalent detection limits below 1 mbar at 1 bar total pressure, depending on Raman cross sections. Detection limits can be easily improved using higher power diodes. We further demonstrate a relevant analytical application of CERS, the multicomponent analysis of natural gas samples. Several spectroscopic features have been identified and characterized. CERS with low power diode lasers is suitable for online monitoring of natural gas mixtures with sensitivity and spectroscopic selectivity, including monitoring H2, H2S, N2, CO2, and alkanes.

  3. T-shaped cavity dual-frequency Nd:YAG laser with electro-optical modulation

    NASA Astrophysics Data System (ADS)

    Xing, Junhong; Jiao, Mingxing; Liu, Yun

    2016-05-01

    A T-shaped cavity dual-frequency Nd:YAG laser with electro-optical modulation is proposed, which consists of both p- and s-cavities sharing the same gain medium of Nd:YAG. Each cavity was not only able to select longitudinal mode but also tune frequency using an electro-optic birefringent filter polarization beam splitter + lithium niobate. The frequency difference of dual frequency was tuned through the whole gain bandwidth of Nd:YAG, which is far above the usually accepted free spectral range value in the case of a single-axis laser. As a result, the simultaneous operation of orthogonally and linearly polarized dual-frequency laser was obtained, which coincides with the theoretical analysis based on Jones matrices. The obtained frequency difference ranges from 0 to 132 GHz. This offers a simple and widely tunable source with potential for portable frequency reference applications in terahertz-wave generation and absolute-distance interferometry measurement areas.

  4. Hybridization of plasmonic antenna and cavity modes: Extreme optics of nanoparticle-on-mirror nanogaps

    NASA Astrophysics Data System (ADS)

    Tserkezis, C.; Esteban, R.; Sigle, D. O.; Mertens, J.; Herrmann, L. O.; Baumberg, J. J.; Aizpurua, J.

    2015-11-01

    The precise structural details of metallic nanogaps within optical antennae are found to dramatically modify the plasmonic response, producing a complex pattern of electromagnetic modes that can be directly observed in scattering experiments. We analyze this situation theoretically in the nanoparticle-on-mirror construct, which forms a plasmonic nanogap sensitive to even atomic-scale restructuring of nanoparticle morphology. We focus on the effect of nanoparticle faceting, which allows the formation of ultrathin cavities between the particle and the underlying metallic film in the nanoparticle-on-mirror geometry. Two different sets of modes are identified: longitudinal antenna modes, which are strongly radiative and excited for all facet width ranges, and transverse cavity modes produced at large facets and exhibiting extreme confinement. The interaction and hybridization of antenna and cavity modes is determined by their symmetry and the precise morphology of the nanogap edges. Understanding such complex optics from nanoparticle-on-mirror structures is important to elucidate a wide variety of emerging photochemical and optoelectronic processes.

  5. Nonlinear optical effects and Hong-Ou-Mandel interference in cavity quantum electrodynamics

    NASA Astrophysics Data System (ADS)

    Mirza, Imran M.; van Enk, Steven J.

    Pure quantum interference among single photons is one of the key ingredients to perform linear optics quantum computation (LOQC). The Hong-Ou-Mandel interference (HOMI) [C. K. Hong, Z. Y. Ou and L. Mandel, Phys. Rev. Lett. 59, (18), 2044-2046 (1987)] i.e. complete destructive interference between two identical and indistinguishable photons simultaneously entering input ports of a 50/50 beam splitter, is a well-known example in this context. In this talk, I'll present our theoretical study of HOMI in a coupled Jaynes-Cummings array. In particular and by applying quantum jump/trajectory formalism, I'll focus on how partial quantum interference between two photons survive both non-linearities produced by two-level emitter and spectral filtering due to optical cavities in our coupled cavity array setup [Imran M. Mirza and Steven J. van Enk, Opt. Comm. 343, 172-177 (2015)]. Along with LOQC, this work is crucial from the perspective of exploiting coupled cavity arrays to store single photons reliably (without altering their temporal and spectral traits) [Imran M. Mirza, Steven J. van Enk and Jeff Kimble, JOSA B, 10, 2640-2649, (2013)].

  6. Developing High-Density Diffuse Optical Tomography for Neuroimaging

    NASA Astrophysics Data System (ADS)

    White, Brian Richard

    Clinicians who care for brain-injured patients and premature infants desire a bedside monitor of brain function. A decade ago, there was hope that optical imaging would be able to fill this role, as it combined fMRI's ability to construct cortical maps with EEG's portable, cap-based systems. However, early optical systems had poor imaging performance, and the momentum for the technique slowed. In our lab, we develop diffuse optical tomography (DOT), which is a more advanced method of performing optical imaging. My research has been to pioneer the in vivo use of DOT for advanced neuroimaging by (1) quantifying the advantages of DOT through both in silico simulation and in vivo performance metrics, (2) restoring confidence in the technique with the first retinotopic mapping of the visual cortex (a benchmark for fMRI and PET), and (3) creating concepts and methods for the clinical translation of DOT. Hospitalized patients are unable to perform complicated neurological tasks, which has motivated us to develop the first DOT methods for resting-state brain mapping with functional connectivity. Finally, in collaboration with neonatologists, I have extended these methods with proof-of-principle imaging of brain-injured premature infants. This work establishes DOT's improvements in imaging performance and readies it for multiple clinical and research roles.

  7. Cavity-enhanced optical Hall effect in two-dimensional free charge carrier gases detected at terahertz frequencies.

    PubMed

    Knight, S; Schöche, S; Darakchieva, V; Kühne, P; Carlin, J-F; Grandjean, N; Herzinger, C M; Schubert, M; Hofmann, T

    2015-06-15

    The effect of a tunable, externally coupled Fabry-Perot cavity to resonantly enhance the optical Hall effect signatures at terahertz frequencies produced by a traditional Drude-like two-dimensional electron gas is shown and discussed in this Letter. As a result, the detection of optical Hall effect signatures at conveniently obtainable magnetic fields, for example, by neodymium permanent magnets, is demonstrated. An AlInN/GaN-based high-electron mobility transistor structure grown on a sapphire substrate is used for the experiment. The optical Hall effect signatures and their dispersions, which are governed by the frequency and the reflectance minima and maxima of the externally coupled Fabry-Perot cavity, are presented and discussed. Tuning the externally coupled Fabry-Perot cavity strongly modifies the optical Hall effect signatures, which provides a new degree of freedom for optical Hall effect experiments in addition to frequency, angle of incidence, and magnetic field direction and strength.

  8. Super-diffusion in optical realizations of Anderson localization

    NASA Astrophysics Data System (ADS)

    Krivolapov, Yevgeny; Levi, Liad; Fishman, Shmuel; Segev, Mordechai; Wilkinson, Michael

    2012-04-01

    We discuss the dynamics of particles in one dimension in potentials that are random in both space and time. The results are applied to recent optics experiments on Anderson localization, in which the transverse spreading of a beam is suppressed by random fluctuations in the refractive index. If the refractive index fluctuates along the direction of the paraxial propagation of the beam, the localization is destroyed. We analyze this broken localization in terms of the spectral decomposition of the potential. When the potential has a discrete spectrum, the spread is controlled by the overlap of Chirikov resonances in phase space. As the number of Fourier components is increased, the resonances merge into a continuum, which is described by a Fokker-Planck equation. We express the diffusion coefficient in terms of the spectral intensity of the potential. For a general class of potentials that are commonly used in optics, the solutions to the Fokker-Planck equation exhibit anomalous diffusion in phase space, implying that when Anderson localization is broken by temporal fluctuations of the potential, the result is transport at a rate similar to a ballistic one or even faster. For a class of potentials which arise in some existing realizations of Anderson localization, atypical behavior is found.

  9. Tunable Optical Performances on a Periodic Array of Plasmonic Bowtie Nanoantennas with Hollow Cavities

    NASA Astrophysics Data System (ADS)

    Chou Chau, Yuan-Fong; Chou Chao, Chung-Ting; Rao, Jhin-Yu; Chiang, Hai-Pang; Lim, Chee Ming; Lim, Ren Chong; Voo, Nyuk Yoong

    2016-09-01

    We propose a design method to tune the near-field intensities and absorption spectra of a periodic array of plasmonic bowtie nanoantennas (PBNAs) by introducing the hollow cavities inside the metal nanostructures. The numerical method is performed by finite element method that demonstrates the engineered hollow PBNAs can tune the optical spectrum in the range of 400-3000 nm. Simulation results show the hollow number is a key factor for enhancing the cavity plasmon resonance with respect to the hotspot region in PBNAs. The design efforts primarily concentrate on shifting the operation wavelength and enhancing the local fields by manipulating the filling dielectric medium, outline film thickness, and hollow number in PBNAs. Such characteristics indicate that the proposed hollow PBNAs can be a potential candidate for plasmonic enhancers and absorbers in multifunctional opto-electronic biosensors.

  10. Tuning all-Optical Analog to Electromagnetically Induced Transparency in nanobeam cavities using nanoelectromechanical system

    PubMed Central

    Shi, Peng; Zhou, Guangya; deng, Jie; Tian, Feng; Chau, Fook Siong

    2015-01-01

    We report the observations of all-optical electromagnetically induced transparency in nanostructures using waveguide side-coupled with photonic crystal nanobeam cavities, which has measured linewidths much narrower than individual resonances. The quality factor of transparency resonance can be 30 times larger than those of measured individual resonances. When the gap between cavity and waveguide is reduced to 10 nm, the bandwidth of destructive interference region can reach 10 nm while the width of transparency resonance is 0.3 nm. Subsequently, a comb-drive actuator is introduced to tune the line shape of the transparency resonance. The width of the peak is reduced to 15 pm and the resulting quality factor exceeds 105. PMID:26415907

  11. High-Q silicon photonic crystal cavity for enhanced optical nonlinearities

    SciTech Connect

    Dharanipathy, Ulagalandha Perumal; Tonin, Mario; Houdré, Romuald; Minkov, Momchil Savona, Vincenzo

    2014-09-08

    We fabricate and experimentally characterize an H0 photonic crystal slab nanocavity with a design optimized for maximal quality factor, Q = 1.7 × 10{sup 6}. The cavity, fabricated from a silicon slab, has a resonant mode at λ = 1.59 μm and a measured Q-factor of 400 000. It displays nonlinear effects, including high-contrast optical bistability, at a threshold power among the lowest ever reported for a silicon device. With a theoretical modal volume as small as V = 0.34(λ/n){sup 3}, this cavity ranks among those with the highest Q/V ratios ever demonstrated, while having a small footprint suited for integration in photonic circuits.

  12. Quantum simulation of 2D topological physics in a 1D array of optical cavities.

    PubMed

    Luo, Xi-Wang; Zhou, Xingxiang; Li, Chuan-Feng; Xu, Jin-Shi; Guo, Guang-Can; Zhou, Zheng-Wei

    2015-07-06

    Orbital angular momentum of light is a fundamental optical degree of freedom characterized by unlimited number of available angular momentum states. Although this unique property has proved invaluable in diverse recent studies ranging from optical communication to quantum information, it has not been considered useful or even relevant for simulating nontrivial physics problems such as topological phenomena. Contrary to this misconception, we demonstrate the incredible value of orbital angular momentum of light for quantum simulation by showing theoretically how it allows to study a variety of important 2D topological physics in a 1D array of optical cavities. This application for orbital angular momentum of light not only reduces required physical resources but also increases feasible scale of simulation, and thus makes it possible to investigate important topics such as edge-state transport and topological phase transition in a small simulator ready for immediate experimental exploration.

  13. Strong coupling between chlorosomes of photosynthetic bacteria and a confined optical cavity mode.

    PubMed

    Coles, David M; Yang, Yanshen; Wang, Yaya; Grant, Richard T; Taylor, Robert A; Saikin, Semion K; Aspuru-Guzik, Alán; Lidzey, David G; Tang, Joseph Kuo-Hsiang; Smith, Jason M

    2014-11-28

    Strong exciton-photon coupling is the result of a reversible exchange of energy between an excited state and a confined optical field. This results in the formation of polariton states that have energies different from the exciton and photon. We demonstrate strong exciton-photon coupling between light-harvesting complexes and a confined optical mode within a metallic optical microcavity. The energetic anti-crossing between the exciton and photon dispersions characteristic of strong coupling is observed in reflectivity and transmission with a Rabi splitting energy on the order of 150 meV, which corresponds to about 1,000 chlorosomes coherently coupled to the cavity mode. We believe that the strong coupling regime presents an opportunity to modify the energy transfer pathways within photosynthetic organisms without modification of the molecular structure.

  14. Detection of early seizures by diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Hajihashemi, M. Reza; Zhou, Junli; Carney, Paul R.; Jiang, Huabei

    2015-03-01

    In epilepsy it has been challenging to detect early changes in brain activity that occurs prior to seizure onset and to map their origin and evolution for possible intervention. Besides, preclinical seizure experiments need to be conducted in awake animals with images reconstructed and displayed in real-time. We demonstrate using a rat model of generalized epilepsy that diffuse optical tomography (DOT) provides a unique functional neuroimaging modality for noninvasively and continuously tracking brain activities with high spatiotemporal resolution. We developed methods to conduct seizure experiments in fully awake rats using a subject-specific helmet and a restraining mechanism. For the first time, we detected early hemodynamic responses with heterogeneous patterns several minutes preceding the electroencephalographic seizure onset, supporting the presence of a "pre-seizure" state both in anesthetized and awake rats. Using a novel time-series analysis of scattering images, we show that the analysis of scattered diffuse light is a sensitive and reliable modality for detecting changes in neural activity associated with generalized seizure. We found widespread hemodynamic changes evolving from local regions of the bilateral cortex and thalamus to the entire brain, indicating that the onset of generalized seizures may originate locally rather than diffusely. Together, these findings suggest DOT represents a powerful tool for mapping early seizure onset and propagation pathways.

  15. Optical Oscillation Established Using Acousto-Optic Bragg Angle Defraction In Conjunction With Closed Cavity Feedback

    NASA Astrophysics Data System (ADS)

    Vezzoli, G. C.; Cadwallender, W.; Megargel, L. R.; Mentzer, M. A.; Craley, D. E.

    1987-03-01

    An optical oscillator has been designed, constructed, and operated by using a HeNe laser and acousto-optic modulator in conjunction with two opposed fiber optic feedback circuits. Depending on round-trip feedback time, a low frequency ( 1Hz) sinusoidal oscillator or a high frequency (100KHz) square wave (,..%,1 us rise time) is obtained.

  16. Region-of-interest diffuse optical tomography system

    SciTech Connect

    Saikia, Manob Jyoti; Kanhirodan, Rajan

    2016-01-15

    Diffuse optical tomography (DOT) using near-infrared light is a promising tool for non-invasive imaging of deep tissue. This technique is capable of quantitative reconstruction of absorption (μ{sub a}) and scattering coefficient (μ{sub s}) inhomogeneities in the tissue. The rationale for reconstructing the optical property map is that the absorption coefficient variation provides diagnostic information about metabolic and disease states of the tissue. The aim of DOT is to reconstruct the internal tissue cross section with good spatial resolution and contrast from noisy measurements non-invasively. We develop a region-of-interest scanning system based on DOT principles. Modulated light is injected into the phantom/tissue through one of the four light emitting diode sources. The light traversing through the tissue gets partially absorbed and scattered multiple times. The intensity and phase of the exiting light are measured using a set of photodetectors. The light transport through a tissue is diffusive in nature and is modeled using radiative transfer equation. However, a simplified model based on diffusion equation (DE) can be used if the system satisfies following conditions: (a) the optical parameter of the inhomogeneity is close to the optical property of the background, and (b) μ{sub s} of the medium is much greater than μ{sub a} (μ{sub s} > > μ{sub a}). The light transport through a highly scattering tissue satisfies both of these conditions. A discrete version of DE based on finite element method is used for solving the inverse problem. The depth of probing light inside the tissue depends on the wavelength of light, absorption, and scattering coefficients of the medium and the separation between the source and detector locations. Extensive simulation studies have been carried out and the results are validated using two sets of experimental measurements. The utility of the system can be further improved by using multiple wavelength light sources. In such

  17. Optical Phased Array Antennas using Coupled Vertical Cavity Surface Emitting Lasers

    NASA Technical Reports Server (NTRS)

    Mueller, Carl H.; Rojas, Roberto A.; Nessel, James A.; Miranda, Felix A.

    2007-01-01

    High data rate communication links are needed to meet the needs of NASA as well as other organizations to develop space-based optical communication systems. These systems must be robust to high radiation environments, reliable, and operate over a wide temperature range. Highly desirable features include beam steering capability, reconfigurability, low power consumption, and small aperture size. Optical communication links, using coupled vertical cavity surface emitting laser radiating elements are promising candidates for the transmit portion of these communication links. In this talk we describe a mission scenario, and how the antenna requirements are derived from the mission needs. We describe a potential architecture for this type of antenna, and outline the advantages and drawbacks of this approach relative to competing technologies. The technology we are proposing used coupled arrays of 1550 nm vertical cavity surface emitting lasers for transmission. The feasibility of coupling these arrays together, to form coherent high-power beams that can be modulated at data rates exceeding 1 Gbps, will be explored. We will propose an architecture that enables electronic beam steering, thus mitigating the need for ancillary acquisition, tracking and beam pointing equipment such as needed for current optical communicatin systems. The beam-steering capability we are proposing also opens the possibility of using this technology for inter-satellite communicatin links, and satellite-to-surface links.

  18. Short cavity active mode locking fiber laser for optical sensing and imaging

    NASA Astrophysics Data System (ADS)

    Lee, Hwi Don; Han, Ga Hee; Jeong, Syung Won; Jeong, Myung Yung; Kim, Chang-Seok; Shin, Jun Geun; Lee, Byeong Ha; Eom, Tae Joong

    2014-05-01

    We demonstrate a highly linear wavenumber- swept active mode locking (AML) fiber laser for optical sensing and imaging without any wavenumber-space resampling process. In this all-electric AML wavenumber-swept mechanism, a conventional wavelength selection filter is eliminated and, instead, the suitable programmed electric modulation signal is directly applied to the gain medium. Various types of wavenumber (or wavelength) tunings can be implemented because of the filter-less cavity configuration. Therefore, we successfully demonstrate a linearly wavenumber-swept AML fiber laser with 26.5 mW of output power to obtain an in-vivo OCT image at the 100 kHz swept rate.

  19. Study of the interference effects in an optical cavity for organic light-emitting diode applications.

    PubMed

    Villani, Fulvia; Grimaldi, Immacolata Angelica; Nenna, Giuseppe; Del Mauro, Anna De Girolamo; Loffredo, Fausta; Minarini, Carla

    2010-10-15

    The interference effects generated in a bottom-emitting electroluminescent device fabricated on a polymer underlayer introduced with the aim of improving the anode roughness have been studied. The analysis of the interference fringes at different detection angles and the spatial coherence demonstrates that this phenomenon is due to multiple internal reflections that propagate in the polymer layer. This effect can be eliminated by modifying the polymer thickness and the incidence angle of the electromagnetic radiation at the anode-polymer interface. Inkjet etching technology is adopted for microcavities-shaped polymer structuring to destroy the resonator effect of the optical cavity.

  20. Optical switching of cross intensity correlation in cavity electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Rao, Shi; Hu, Xiangming; Xu, Jun; Li, Lingchao

    2017-03-01

    We present optical switching of cross intensity correlation in the context of cavity electromagnetically induced transparency configuration. For symmetrical parameters, the cross intensity correlation switches from negative to positive as the atom–pump detunings change symmetrically from one case to the other. In terms of the dressed atomic states and the Bogoliubov modes we analyze the atom–photon interaction mechanism for the switching behavior, and present a numerical verification. As a by-product, we show noise squeezing of the sum or difference intensity in a limited region of parameters.

  1. Spectral engineering by flexible tunings of optical Tamm states and Fabry-Perot cavity resonance.

    PubMed

    Zhang, Xu-Lin; Song, Jun-Feng; Feng, Jing; Sun, Hong-Bo

    2013-11-01

    We present a design for spectral engineering in a metal dual distributed Bragg reflector (DBR)-based structure. Optical Tamm states and Fabry-Perot cavity mode, dual windows for light-matter interaction enhancement, can be excited simultaneously and tuned flexibly, including their respective bandwidth and resonant wavelength, due to the variable reflection phase from the outer DBR's internal surface. The design can find applications in solar cells for light trappings. Via calculations of overall absorptivity, the proposed simpler dual-states-based scheme is demonstrated to be almost as effective as the coherent-light-trapping scheme, owing to the dual-states-induced broader-band absorption enhancement.

  2. Half-period Aharonov-Bohm oscillations in disordered rotating optical ring cavities

    NASA Astrophysics Data System (ADS)

    Li, Huanan; Kottos, Tsampikos; Shapiro, Boris

    2016-09-01

    There exists an analogy between Maxwell equations in a rotating frame and the Schrödinger equation for a charged particle in the presence of a magnetic field. We exploit this analogy to point out that electromagnetic phenomena in the rotating frame, under appropriate conditions, can exhibit periodicity with respect to the angular velocity of rotation. In particular, in disordered ring cavities one finds the optical analog of the Al'tshuler-Aronov-Spivak effect well known in mesoscopic physics of disordered metals.

  3. Numerical studies of the fluid and optical fields associated with complex cavity flows

    NASA Technical Reports Server (NTRS)

    Atwood, Christopher A.

    1992-01-01

    Numerical solutions for the flowfield about several cavity configurations have been computed using the Reynolds averaged Navier-Stokes equations. Comparisons between numerical and experimental results are made in two dimensions for free shear layers and a rectangular cavity, and in three dimensions for the transonic aero-window problem of the Stratospheric Observatory for Infrared Astronomy (SOFIA). Results show that dominant acoustic frequencies and magnitudes of the self excited resonant cavity flows compare well with the experiment. In addition, solution sensitivity to artificial dissipation and grid resolution levels are determined. Optical path distortion due to the flow field is modelled geometrically and is found to match the experiment. The fluid field was computed using a diagonalized scheme within an overset mesh framework. An existing code, OVERFLOW, was utilized with the additions of characteristic boundary condition and output routines required for reduction of the unsteady data. The newly developed code is directly applicable to a generalized three dimensional structured grid zone. Details are provided in a paper included in Appendix A.

  4. NO_2 Trace Measurements by Optical-Feedback Cavity-Enhanced Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ventrillard-Courtillot, I.; Desbois, Th.; Foldes, T.; Romanini, D.

    2009-06-01

    In order to reach the sub-ppb NO_2 detection level required for environmental applications in remote areas, we develop a spectrometer based on a technique introduced a few years ago, named Optical-Feedback Cavity-Enhanced Absorption Spectroscopy (OF-CEAS) [1]. It allows very sensitive and selective measurements, together with the realization of compact and robust set-ups as was subsequently demonstrated during measurements campaigns in harsh environments [2]. OF-CEAS benefits from the optical feedback to efficiently inject a cw-laser in a V-shaped high finesse cavity (typically 10 000). Cavity-enhanced absorption spectra are acquired on a small spectral region (˜1 cm^{-1}) that enables selective and quantitative measurements at a fast acquisition rate with a detection limit of several 10^{-10} cm^{-1} as reported in this work. Spectra are obtained with high spectral definition (150 MHz highly precisely spaced data points) and are self calibrated by cavity rind-down measurements regularly performed (typically every second). NO_2 measurements are performed with a commercial extended cavity diode laser around 411 nm, spectral region where intense electronic transitions occur. We will describe the set-up developed for in-situ measurements allowing real time concentration measurements at typically 5 Hz; and then report on the measurements performed with calibrated NO_2 reference samples to evaluate the linearity of the apparatus. The minimum detectable absorption loss is estimated by considering the standard deviation of the residual of one spectrum. We achieved 2x10^{-10} cm^{-1} for a single spectrum recorded in less than 100 ms at 100 mbar. It leads to a potential detection limit of 3x10^8 molecules/cm^3, corresponding to about 150 pptv at this pressure. [1] J. Morville, S. Kassi, M. Chenevier, and D. Romanini, Appl. Phys. B, 80, 1027 (2005). [2] D. Romanini, M. Chenevrier, S. Kassi, M. Schmidt, C. Valant, M. Ramonet, J. Lopez, and H.-J. Jost, Appl. Phys. B, 83, 659

  5. Optical clearing of melanoma in vivo: characterization by diffuse reflectance spectroscopy and optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Pires, Layla; Demidov, Valentin; Vitkin, I. Alex; Bagnato, Vanderlei; Kurachi, Cristina; Wilson, Brian C.

    2016-08-01

    Melanoma is the most aggressive type of skin cancer, with significant risk of fatality. Due to its pigmentation, light-based imaging and treatment techniques are limited to near the tumor surface, which is inadequate, for example, to evaluate the microvascular density that is associated with prognosis. White-light diffuse reflectance spectroscopy (DRS) and near-infrared optical coherence tomography (OCT) were used to evaluate the effect of a topically applied optical clearing agent (OCA) in melanoma in vivo and to image the microvascular network. DRS was performed using a contact fiber optic probe in the range from 450 to 650 nm. OCT imaging was performed using a swept-source system at 1310 nm. The OCT image data were processed using speckle variance and depth-encoded algorithms. Diffuse reflectance signals decreased with clearing, dropping by ˜90% after 45 min. OCT was able to image the microvasculature in the pigmented melanoma tissue with good spatial resolution up to a depth of ˜300 μm without the use of OCA; improved contrast resolution was achieved with optical clearing to a depth of ˜750 μm in tumor. These findings are relevant to potential clinical applications in melanoma, such as assessing prognosis and treatment responses. Optical clearing may also facilitate the use of light-based treatments such as photodynamic therapy.

  6. Optical clearing of melanoma in vivo: characterization by diffuse reflectance spectroscopy and optical coherence tomography.

    PubMed

    Pires, Layla; Demidov, Valentin; Vitkin, I Alex; Bagnato, Vanderlei; Kurachi, Cristina; Wilson, Brian C

    2016-08-01

    Melanoma is the most aggressive type of skin cancer, with significant risk of fatality. Due to its pigmentation, light-based imaging and treatment techniques are limited to near the tumor surface, which is inadequate, for example, to evaluate the microvascular density that is associated with prognosis. White-light diffuse reflectance spectroscopy (DRS) and near-infrared optical coherence tomography (OCT) were used to evaluate the effect of a topically applied optical clearing agent (OCA) in melanoma in vivo and to image the microvascular network. DRS was performed using a contact fiber optic probe in the range from 450 to 650 nm. OCT imaging was performed using a swept-source system at 1310 nm. The OCT image data were processed using speckle variance and depth-encoded algorithms. Diffuse reflectance signals decreased with clearing, dropping by ∼ 90% after 45 min. OCT was able to image the microvasculature in the pigmented melanoma tissue with good spatial resolution up to a depth of ∼ 300 μm without the use of OCA; improved contrast resolution was achieved with optical clearing to a depth of ∼ 750 μm in tumor. These findings are relevant to potential clinical applications in melanoma, such as assessing prognosis and treatment responses. Optical clearing may also facilitate the use of light-based treatments such as photodynamic therapy.

  7. Fast Bayesian inference of optical trap stiffness and particle diffusion

    PubMed Central

    Bera, Sudipta; Paul, Shuvojit; Singh, Rajesh; Ghosh, Dipanjan; Kundu, Avijit; Banerjee, Ayan; Adhikari, R.

    2017-01-01

    Bayesian inference provides a principled way of estimating the parameters of a stochastic process that is observed discretely in time. The overdamped Brownian motion of a particle confined in an optical trap is generally modelled by the Ornstein-Uhlenbeck process and can be observed directly in experiment. Here we present Bayesian methods for inferring the parameters of this process, the trap stiffness and the particle diffusion coefficient, that use exact likelihoods and sufficient statistics to arrive at simple expressions for the maximum a posteriori estimates. This obviates the need for Monte Carlo sampling and yields methods that are both fast and accurate. We apply these to experimental data and demonstrate their advantage over commonly used non-Bayesian fitting methods. PMID:28139705

  8. Diffuse optical tomography in the presence of a chest wall

    NASA Astrophysics Data System (ADS)

    Ban, Han Y.; Busch, David R.; Pathak, Saurav; Moscatelli, Frank A.; Machida, Manabu; Schotland, John C.; Markel, Vadim A.; Yodh, Arjun G.

    2013-02-01

    Diffuse optical tomography (DOT) has been employed to derive spatial maps of physiologically important chromophores in the human breast, but the fidelity of these images is often compromised by boundary effects such as those due to the chest wall. We explore the image quality in fast, data-intensive analytic and algebraic linear DOT reconstructions of phantoms with subcentimeter target features and large absorptive regions mimicking the chest wall. Experiments demonstrate that the chest wall phantom can introduce severe image artifacts. We then show how these artifacts can be mitigated by exclusion of data affected by the chest wall. We also introduce and demonstrate a linear algebraic reconstruction method well suited for very large data sets in the presence of a chest wall.

  9. Multispectral guided fluorescence diffuse optical tomography using upconverting nanoparticles

    SciTech Connect

    Svenmarker, Pontus; Xu, Can T.; Liu, Haichun; Wu, Xia; Andersson-Engels, Stefan

    2014-02-17

    We report on improved image detectability for fluorescence diffuse optical tomography using upconverting nanoparticles doped with rare-earth elements. Core-shell NaYF{sub 4}:Yb{sup 3+}/Er{sup 3+}@NaYF{sub 4} upconverting nanoparticles were synthesized through a stoichiometric method. The Yb{sup 3+}/Er{sup 3+} sensitizer-activator pair yielded two anti-Stokes shifted fluorescence emission bands at 540 nm and 660 nm, here used to a priori estimate the fluorescence source depth with sub-millimeter precision. A spatially varying regularization incorporated the a priori fluorescence source depth estimation into the tomography reconstruction scheme. Tissue phantom experiments showed both an improved resolution and contrast in the reconstructed images as compared to not using any a priori information.

  10. Variational inference with ARD prior for NIRS diffuse optical tomography.

    PubMed

    Miyamoto, Atsushi; Watanabe, Kazuho; Ikeda, Kazushi; Sato, Masa-Aki

    2015-05-01

    Diffuse optical tomography (DOT) reconstructs 3-D tomographic images of brain activities from observations by near-infrared spectroscopy (NIRS) that is formulated as an ill-posed inverse problem. This brief presents a method for NIRS DOT based on a hierarchical Bayesian approach introducing the automatic relevance determination prior and the variational Bayes technique. Although the sparseness of the estimation strongly depends on the hyperparameters, in general, our method has less dependency on the hyperparameters. We confirm through numerical experiments that a schematic phase diagram of sparseness with respect to the hyperparameters has two regions: in one region hyperparameters give sparse solutions and in the other they give dense ones. The experimental results are supported by our theoretical analyses in simple cases.

  11. Fast Bayesian inference of optical trap stiffness and particle diffusion

    NASA Astrophysics Data System (ADS)

    Bera, Sudipta; Paul, Shuvojit; Singh, Rajesh; Ghosh, Dipanjan; Kundu, Avijit; Banerjee, Ayan; Adhikari, R.

    2017-01-01

    Bayesian inference provides a principled way of estimating the parameters of a stochastic process that is observed discretely in time. The overdamped Brownian motion of a particle confined in an optical trap is generally modelled by the Ornstein-Uhlenbeck process and can be observed directly in experiment. Here we present Bayesian methods for inferring the parameters of this process, the trap stiffness and the particle diffusion coefficient, that use exact likelihoods and sufficient statistics to arrive at simple expressions for the maximum a posteriori estimates. This obviates the need for Monte Carlo sampling and yields methods that are both fast and accurate. We apply these to experimental data and demonstrate their advantage over commonly used non-Bayesian fitting methods.

  12. Diffuse optical spectroscopy of breast tissue extended to 1100 nm

    NASA Astrophysics Data System (ADS)

    Taroni, Paola; Bassi, Andrea; Comelli, Daniela; Farina, Andrea; Cubeddu, Rinaldo; Pifferi, Antonio

    2009-09-01

    The feasibility of in vivo measurements in the range of 1000 to 1100 nm and the potential benefits of operation in that wavelength range for diagnostic applications are investigated. To this purpose, an existing system for time-resolved diffuse spectroscopy is modified to enable in vivo studies to be carried out continuously from 600 to 1100 nm. The optical characterization of collagen powder is extended to 1100 nm and an accurate measurement of the absorption properties of lipid is carried out over the entire spectral range. Finally, the first in vivo absorption and scattering spectra of breast tissue are measured from 10 healthy volunteers between 600 and 1100 nm and tissue composition is evaluated in terms of blood parameters and water, lipid, and collagen content using a spectrally constrained global fitting procedure.

  13. Diffuse optical methods for assessing breast cancer chemotherapy

    NASA Astrophysics Data System (ADS)

    Tromberg, Bruce J.

    2014-03-01

    In his talk, "Diffuse Optical Methods for Assessing Breast Cancer Chemotherapy," SPIE Fellow Bruce Tromberg (Beckman Laser Institute and Medical Clinic) describes a method combining frequency domain photon migration, essentially a method of tracking photon motion in tissue, with a NIR spectroscopy technique using 850nm LEDs. The result is a scatter corrected absorption spectra. The technique takes advantage of elevated blood and water levels and decreased lipid levels in the presence of tumors to provide a more accurate mapping of the breast, allowing more effective treatment. Tromberg's team recently completed their first full mapping of the breast and have taken the instrument from a standalone unit to a portable one suitable for travel. In addition to providing feedback to enhance breast cancer treatment, Tromberg expects that this technique will be applicable in treating other forms of cancer as well.

  14. Diffuse optical tomography using multi-directional sources and detectors

    PubMed Central

    Shimokawa, Takeaki; Ishii, Toshihiro; Takahashi, Yoichiro; Sugawara, Satoru; Sato, Masa-aki; Yamashita, Okito

    2016-01-01

    Diffuse optical tomography (DOT) is an advanced imaging method used to visualize the internal state of biological tissues as 3D images. However, current continuous-wave DOT requires high-density probe arrays for measurement (less than 15-mm interval) to gather enough information for 3D image reconstruction, which makes the experiment time-consuming. In this paper, we propose a novel DOT measurement system using multi-directional light sources and multi-directional photodetectors instead of high-density probe arrays. We evaluated this system’s multi-directional DOT through computer simulation and a phantom experiment. From the results, we achieved DOT with less than 5-mm localization error up to a 15-mm depth with low-density probe arrays (30-mm interval), indicating that the multi-directional measurement approach allows DOT without requiring high-density measurement. PMID:27446694

  15. Dynamic diffuse optical tomography imaging of peripheral arterial disease.

    PubMed

    Khalil, Michael A; Kim, Hyun K; Kim, In-Kyong; Flexman, Molly; Dayal, Rajeev; Shrikhande, Gautam; Hielscher, Andreas H

    2012-09-01

    Peripheral arterial disease (PAD) is the narrowing of arteries due to plaque accumulation in the vascular walls. This leads to insufficient blood supply to the extremities and can ultimately cause cell death. Currently available methods are ineffective in diagnosing PAD in patients with calcified arteries, such as those with diabetes. In this paper we investigate the potential of dynamic diffuse optical tomography (DDOT) as an alternative way to assess PAD in the lower extremities. DDOT is a non-invasive, non-ionizing imaging modality that uses near-infrared light to create spatio-temporal maps of oxy- and deoxy-hemoglobin in tissue. We present three case studies in which we used DDOT to visualize vascular perfusion of a healthy volunteer, a PAD patient and a diabetic PAD patient with calcified arteries. These preliminary results show significant differences in DDOT time-traces and images between all three cases, underscoring the potential of DDOT as a new diagnostic tool.

  16. Multibeam fluorescence diffuse optical tomography using upconverting nanoparticles.

    PubMed

    Liu, Haichun; Xu, Can T; Andersson-Engels, Stefan

    2010-03-01

    Fluorescence diffuse optical tomography (FDOT) is a biomedical imaging modality that can be used for localization and quantification of fluorescent molecules inside turbid media. In this ill-posed problem, the reconstruction quality is directly determined by the amount and quality of the information obtained from the boundary measurements. Regularly, more information can be obtained by increasing the number of excitation positions in an FDOT system. However, the maximum number of excitation positions is limited by the finite size of the excitation beam. In the present work, we demonstrate a method in FDOT to exploit the unique nonlinear power dependence of upconverting nanoparticles to further increase the amount of information in a raster-scanning setup by including excitation with two beams simultaneously. We show that the additional information can be used to obtain more accurate reconstructions.

  17. Optical control of NMDA receptors with a diffusible photoswitch

    PubMed Central

    Laprell, Laura; Repak, Emilienne; Franckevicius, Vilius; Hartrampf, Felix; Terhag, Jan; Hollmann, Michael; Sumser, Martin; Rebola, Nelson; DiGregorio, David A.; Trauner, Dirk

    2015-01-01

    N-methyl-D-aspartate receptors (NMDARs) play a central role in synaptic plasticity, learning and memory, and are implicated in various neuronal disorders. We synthesized a diffusible photochromic glutamate analogue, azobenzene-triazole-glutamate (ATG), which is specific for NMDARs and functions as a photoswitchable agonist. ATG is inactive in its dark-adapted trans-isoform, but can be converted into its active cis-isoform using one-photon (near UV) or two-photon (740 nm) excitation. Irradiation with violet light photo-inactivates ATG within milliseconds, allowing agonist removal on the timescale of NMDAR deactivation. ATG is compatible with Ca2+ imaging and can be used to optically mimic synaptic coincidence detection protocols. Thus, ATG can be used like traditional caged glutamate compounds, but with the added advantages of NMDAR specificity, low antagonism of GABAR-mediated currents, and precise temporal control of agonist delivery. PMID:26311290

  18. Low-cost diffuse optical tomography for the classroom

    NASA Astrophysics Data System (ADS)

    Minagawa, Taisuke; Zirak, Peyman; Weigel, Udo M.; Kristoffersen, Anna K.; Mateos, Nicolas; Valencia, Alejandra; Durduran, Turgut

    2012-10-01

    Diffuse optical tomography (DOT) is an emerging imaging modality with potential applications in oncology, neurology, and other clinical areas. It allows the non-invasive probing of the tissue function using relatively inexpensive and safe instrumentation. An educational laboratory setup of a DOT system could be used to demonstrate how photons propagate through tissues, basics of medical tomography, and the concepts of multiple scattering and absorption. Here, we report a DOT setup that could be introduced to the advanced undergraduate or early graduate curriculum using inexpensive and readily available tools. The basis of the system is the LEGO Mindstorms NXT platform which controls the light sources, the detectors (photo-diodes), a mechanical 2D scanning platform, and the data acquisition. A basic tomographic reconstruction is implemented in standard numerical software, and 3D images are reconstructed. The concept was tested and developed in an educational environment that involved a high-school student and a group of post-doctoral fellows.

  19. Diffuse optical imaging of the breast using structured-light

    NASA Astrophysics Data System (ADS)

    Kwong, Jessica; Nouizi, Farouk; Cho, Jaedu; Zheng, Jie; Li, Yifan; Chen, Jeon-hor; Su, Min-Ying; Gulsen, Gultekin

    2015-03-01

    Diffuse optical imaging with structured-light illumination and detection can provide rapid, wide-field anatomical and functional imaging of the breast with an application for breast cancer screening. Our aims for this study were to test the feasibility of structured-light, test our pattern set, and develop and optimize our image reconstruction algorithm. For our phantom studies, we created an agar phantom with dimensions similar to a compressed breast. A cubic inclusion of 30mm by 30mm by 25mm with twice the amount of absorption contrast than the background was placed at the center. Near-infrared light of eleven patterns including a full illumination and single stripes was illuminated onto the breast phantom and detected with a CCD camera, with integration of the signals according to the patterns performed post-data acquisition, with a total of 121 measurements. These measurements were then used in our reconstruction algorithm that iteratively minimized the difference between the collected data and the estimation from our FEM-based forward model of photon diffusion to calculate the absorption values. Reconstructions of the 3D absorption maps detect an inclusion at the center and indicate that our selected set of patterns may be sufficient for structured-light imaging. We are currently improving our instrumentation and testing with additional phantom studies, while also performing simulations of numerical breast phantoms created from MR images to test structured-light's ability to image complex and realistic breast tissue composition. We hope to use this technique as optical method to image molecular markers, such as hemoglobin, water and lipid, within the breast.

  20. Diffusion-Weighted Imaging of Traumatic Optic Neuropathy: Diagnosis and Predicting the Prognosis

    DTIC Science & Technology

    2014-01-01

    AFRL-SA-WP-SR-2014-0004 Diffusion-Weighted Imaging of Traumatic Optic Neuropathy : Diagnosis and Predicting the Prognosis...Diffusion-Weighted Imaging of Traumatic Optic Neuropathy : Diagnosis and Predicting the Prognosis 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c...Number: 88ABW-2014-1607, 11 Apr 2014 13. SUPPLEMENTARY NOTES 14. ABSTRACT Traumatic optic neuropathy is an axonal injury of the optic nerve

  1. Diffuse reflectance spectroscopy of epithelial tissue with a smart fiber-optic probe.

    PubMed

    Yu, Bing; Shah, Amy; Nagarajan, Vivek K; Ferris, Daron G

    2014-03-01

    Diffuse reflectance spectroscopy (DRS) with a fiber-optic probe can noninvasively quantify the optical properties of epithelial tissues and has shown the potential as a cost-effective, fast and sensitive tool for diagnosis of early precancerous changes in the cervix and oral cavity. However, current DRS systems are susceptible to several sources of systematic and random errors, such as uncontrolled probe-to-tissue pressure and lack of a real-time calibration that can significantly impair the measurement accuracy, reliability and validity of this technology as well as its clinical utility. In addition, such systems use bulky, high power and expensive optical components which impede their widespread use in low- and middle-income countries (LMICs) where epithelial cancer related death is disproportionately high. In this paper we report a portable, easy-to-use and low cost, yet accurate and reliable DRS device that can aid in the screening and diagnosis of oral and cervical cancer. The device uses an innovative smart fiber-optic probe to eliminate operator bias, state-of-the-art photonics components to reduce size and power consumption, and automated software to reduce the need of operator training. The device showed a mean error of 1.4 ± 0.5% and 6.8 ± 1.7% for extraction of phantom absorption and reduced scattering coefficients, respectively. A clinical study on healthy volunteers indicated that a pressure below 1.0 psi is desired for oral mucosal tissues to minimize the probe effects on tissue physiology and morphology.

  2. Diffuse reflectance spectroscopy of epithelial tissue with a smart fiber-optic probe

    PubMed Central

    Yu, Bing; Shah, Amy; Nagarajan, Vivek K.; Ferris, Daron G.

    2014-01-01

    Diffuse reflectance spectroscopy (DRS) with a fiber-optic probe can noninvasively quantify the optical properties of epithelial tissues and has shown the potential as a cost-effective, fast and sensitive tool for diagnosis of early precancerous changes in the cervix and oral cavity. However, current DRS systems are susceptible to several sources of systematic and random errors, such as uncontrolled probe-to-tissue pressure and lack of a real-time calibration that can significantly impair the measurement accuracy, reliability and validity of this technology as well as its clinical utility. In addition, such systems use bulky, high power and expensive optical components which impede their widespread use in low- and middle-income countries (LMICs) where epithelial cancer related death is disproportionately high. In this paper we report a portable, easy-to-use and low cost, yet accurate and reliable DRS device that can aid in the screening and diagnosis of oral and cervical cancer. The device uses an innovative smart fiber-optic probe to eliminate operator bias, state-of-the-art photonics components to reduce size and power consumption, and automated software to reduce the need of operator training. The device showed a mean error of 1.4 ± 0.5% and 6.8 ± 1.7% for extraction of phantom absorption and reduced scattering coefficients, respectively. A clinical study on healthy volunteers indicated that a pressure below 1.0 psi is desired for oral mucosal tissues to minimize the probe effects on tissue physiology and morphology. PMID:24688805

  3. Dynamic optical sampling by cavity tuning and its application in lidar.

    PubMed

    Yang, Lin; Nie, Jinsong; Duan, Lingze

    2013-02-11

    Optical sampling by cavity tuning (OSCAT) enables cost-effective realization of fast tunable optical delay using a single femtosecond laser. We report here a dynamic model of OSCAT, taking into account the continuous modulation of laser repetition rates. This allows us to evaluate the delay scan depth under high interferometer imbalance and high scan rates, which cannot be described by the previous static model. We also report the demonstration of remote motion tracking based on fast OSCAT. Target vibration as small as 15 µm peak to peak and as fast as 50 Hz along line-of-sight has been successfully detected at an equivalent free-space distance of more than 2 km.

  4. Plasmonic crystal cavity on single-mode optical fiber end facet for label-free biosensing

    NASA Astrophysics Data System (ADS)

    He, Xiaolong; Yi, Hui; Long, Jing; Zhou, Xin; Yang, Jie; Yang, Tian

    2016-06-01

    Surface plasmon resonance (SPR) devices on single-mode optical fiber (SMF) end facets are desired for label-free biosensing, due to flexible light delivery, in vivo inspection capability, and seamless integration with fiber-optic communication techniques. We report a plasmonic crystal cavity structure that has a steep resonance near the plasmonic bandedge, a fabrication process to efficiently transfer and align the structure onto a bare SMF end facet, and characterization of its sensing performance. With a sensitivity of 571 nm RIU-1, a figure of merit of 68 RIU-1 and a real-time refractive index detection limit of 3.5 × 10-6 RIU, our sensors can be readily applied in common SPR biosensing experiments. They are over an order of magnitude more sensitive than reported modified-end multimode fiber SPR devices, while there are no reports on previous SMF end facet devices' detection limits which have very low figures of merit.

  5. Observation of Noise-Assisted Transport in an All-Optical Cavity-Based Network

    NASA Astrophysics Data System (ADS)

    Viciani, Silvia; Lima, Manuela; Bellini, Marco; Caruso, Filippo

    2015-08-01

    Recent theoretical and experimental efforts have shown the remarkable and counterintuitive role of noise in enhancing the transport efficiency of complex systems. Here, we realize simple, scalable, and controllable optical fiber cavity networks that allow us to analyze the performance of transport networks for different conditions of interference, dephasing, and disorder. In particular, we experimentally demonstrate that the transport efficiency reaches a maximum when varying the external dephasing noise, i.e., a bell-like shape behavior that had been predicted only theoretically. These optical platforms are very promising simulators of quantum transport phenomena and could be used, in particular, to design and test optimal topologies of artificial light-harvesting structures for future solar energy technologies.

  6. Optimal feedback in efficient ring double-cavity optical parametric oscillators

    SciTech Connect

    Petnikova, V M; Shuvalov, Vladimir V

    2010-09-10

    It is shown that the use of two feedback circuits with matched transfer constants and optimal phase incursions in a nondegenerate optical parametric oscillator (OPO) makes it possible to localise the extremes of intensity distributions of interacting waves on the output face of a nonlinear crystal, which provides maximum possible conversion efficiency of pump energy. The optimisation procedure in this case is rather flexible because it is reduced to ambiguous matching of the period and shift of the extremes of exact analytic solutions of the corresponding problem in the form of cnoidal waves with respect to the nonlinear crystal position. Unlike the single-cavity OPO scheme, both these parameters can substantially exceed the nonlinear crystal length and even tend to infinity, which corresponds to solitary soliton-like solutions. (optical parametric oscillators)

  7. Disorder and dephasing as control knobs for light transport in optical fiber cavity networks

    NASA Astrophysics Data System (ADS)

    Viciani, Silvia; Gherardini, Stefano; Lima, Manuela; Bellini, Marco; Caruso, Filippo

    2016-11-01

    Transport phenomena represent a very interdisciplinary topic with applications in many fields of science, such as physics, chemistry, and biology. In this context, the possibility to design a perfectly controllable experimental setup, where to tune and optimize its dynamics parameters, is a challenging but very relevant task to emulate, for instance, the transmission of energy in light harvesting processes. Here, we experimentally build a scalable and controllable transport emulator based on optical fiber cavity networks where the system noise parameters can be finely tuned while maximizing the transfer efficiency. In particular, we demonstrate that disorder and dephasing noise are two control knobs allowing one to play with constructive and destructive interference to optimize the transport paths towards an exit site. These optical setups, on one side, mimic the transport dynamics in natural photosynthetic organisms and, on the other, are very promising platforms to artificially design optimal nanoscale structures for novel, more efficient, clean energy technologies.

  8. Disorder and dephasing as control knobs for light transport in optical fiber cavity networks

    PubMed Central

    Viciani, Silvia; Gherardini, Stefano; Lima, Manuela; Bellini, Marco; Caruso, Filippo

    2016-01-01

    Transport phenomena represent a very interdisciplinary topic with applications in many fields of science, such as physics, chemistry, and biology. In this context, the possibility to design a perfectly controllable experimental setup, where to tune and optimize its dynamics parameters, is a challenging but very relevant task to emulate, for instance, the transmission of energy in light harvesting processes. Here, we experimentally build a scalable and controllable transport emulator based on optical fiber cavity networks where the system noise parameters can be finely tuned while maximizing the transfer efficiency. In particular, we demonstrate that disorder and dephasing noise are two control knobs allowing one to play with constructive and destructive interference to optimize the transport paths towards an exit site. These optical setups, on one side, mimic the transport dynamics in natural photosynthetic organisms and, on the other, are very promising platforms to artificially design optimal nanoscale structures for novel, more efficient, clean energy technologies. PMID:27886246

  9. Numerical analysis of an optical nanoscale particles trapping device based on a slotted nanobeam cavity

    NASA Astrophysics Data System (ADS)

    Zhang, Senlin; Yong, Zhengdong; Shi, Yaocheng; He, Sailing

    2016-10-01

    A slotted nanobeam cavity (SNC) is utilized to trap a polystyrene (PS) particle with a radius of only 2 nm. The carefully designed SNC shows an ultrahigh Q factor of 4.5 × 107 while maintaining a small mode volume of 0.067(λ/nwater)3. Strongly enhanced optical trapping force is numerically demonstrated when the 2 nm PS particle is introduced into the central, slotted part of the SNC. In the vertical direction, the numerical calculation results show that a trapping stiffness of 0.4 pN/(nm · mW) around the equilibrium position and a trapping potential barrier of ~2000 kBT/mW can be reached. To our best knowledge, the trapping capability (trapping stiffness and trapping potential barrier) of the proposed structure significantly outperforms the theoretical results of those in previously reported work. In addition, the SNC system does not suffer from the metal induced heat issue that restricts the performance of state-of-the-art optical trapping systems involving plasmonic enhancement. Based on the proposed cavity, applications such as lab-on-a-chip platforms for nanoscale particle trapping and analysis can be expected in future.

  10. Numerical analysis of an optical nanoscale particles trapping device based on a slotted nanobeam cavity

    PubMed Central

    Zhang, Senlin; Yong, Zhengdong; Shi, Yaocheng; He, Sailing

    2016-01-01

    A slotted nanobeam cavity (SNC) is utilized to trap a polystyrene (PS) particle with a radius of only 2 nm. The carefully designed SNC shows an ultrahigh Q factor of 4.5 × 107 while maintaining a small mode volume of 0.067(λ/nwater)3. Strongly enhanced optical trapping force is numerically demonstrated when the 2 nm PS particle is introduced into the central, slotted part of the SNC. In the vertical direction, the numerical calculation results show that a trapping stiffness of 0.4 pN/(nm · mW) around the equilibrium position and a trapping potential barrier of ~2000 kBT/mW can be reached. To our best knowledge, the trapping capability (trapping stiffness and trapping potential barrier) of the proposed structure significantly outperforms the theoretical results of those in previously reported work. In addition, the SNC system does not suffer from the metal induced heat issue that restricts the performance of state-of-the-art optical trapping systems involving plasmonic enhancement. Based on the proposed cavity, applications such as lab-on-a-chip platforms for nanoscale particle trapping and analysis can be expected in future. PMID:27786248

  11. Region-based diffuse optical tomography with registered atlas: in vivo acquisition of mouse optical properties

    PubMed Central

    Wan, Wenbo; Wang, Yihan; Qi, Jin; Liu, Lingling; Ma, Wenjuan; Li, Jiao; Zhang, Limin; Zhou, Zhongxing; Zhao, Huijuan; Gao, Feng

    2016-01-01

    The reconstruction quality in the model-based optical tomography modalities can greatly benefit from a priori information of accurate tissue optical properties, which are difficult to be obtained in vivo with a conventional diffuse optical tomography (DOT) system alone. One of the solutions is to apply a priori anatomical structures obtained with anatomical imaging systems such as X-ray computed tomography (XCT) to constrain the reconstruction process of DOT. However, since X-ray offers low soft-tissue contrast, segmentation of abdominal organs from sole XCT images can be problematic. In order to overcome the challenges, the current study proposes a novel method of recovering a priori organ-oriented tissue optical properties, where anatomical structures of an in vivo mouse are approximately obtained by registering a standard anatomical atlas, i.e., the Digimouse, to the target XCT volume with the non-rigid image registration, and, in turn, employed to guide DOT for extracting the optical properties of inner organs. Simulative investigations have validated the methodological availability of such atlas-registration-based DOT strategy in revealing both a priori anatomical structures and optical properties. Further experiments have demonstrated the feasibility of the proposed method for acquiring the organ-oriented tissue optical properties of in vivo mice, making it as an efficient way of the reconstruction enhancement. PMID:28018725

  12. Coupling of erbium dopants to yttrium orthosilicate photonic crystal cavities for on-chip optical quantum memories

    SciTech Connect

    Miyazono, Evan; Zhong, Tian; Craiciu, Ioana; Kindem, Jonathan M.; Faraon, Andrei

    2016-01-04

    Erbium dopants in crystals exhibit highly coherent optical transitions well suited for solid-state optical quantum memories operating in the telecom band. Here, we demonstrate coupling of erbium dopant ions in yttrium orthosilicate to a photonic crystal cavity fabricated directly in the host crystal using focused ion beam milling. The coupling leads to reduction of the photoluminescence lifetime and enhancement of the optical depth in microns-long devices, which will enable on-chip quantum memories.

  13. Effects of probe geometry on transscleral diffuse optical spectroscopy

    PubMed Central

    Svenmarker, Pontus; Xu, Can T.; Andersson-Engels, Stefan; Krohn, Jørgen

    2011-01-01

    The purpose of this study was to investigate how the geometry of a fiber optic probe affects the transmission and reflection of light through the scleral eye wall. Two geometrical parameters of the fiber probe were investigated: the source-detector distance and the fiber protrusion, i.e. the length of the fiber extending from the flat surface of the fiber probe. For optimization of the fiber optic probe geometry, fluorescence stained choroidal tumor phantoms in ex vivo porcine eyes were measured with both diffuse reflectance- and laser-induced fluorescence spectroscopy. The strength of the fluorescence signal compared to the excitation signal was used as a measure for optimization. Intraocular pressure (IOP) and temperature were monitored to assess the impact of the probe on the eye. For visualizing any possible damage caused by the probe, the scleral surface was imaged with scanning electron microscopy after completion of the spectroscopic measurements. A source-detector distance of 5 mm with zero fiber protrusion was considered optimal in terms of spectroscopic contrast, however, a slight fiber protrusion of 0.5 mm is argued to be advantageous for clinical measurements. The study further indicates that transscleral spectroscopy can be safely performed in human eyes under in vivo conditions, without leading to an unacceptable IOP elevation, a significant rise in tissue temperature, or any visible damage to the scleral surface. PMID:22076267

  14. Towards next generation time-domain diffuse optics devices

    NASA Astrophysics Data System (ADS)

    Dalla Mora, Alberto; Contini, Davide; Arridge, Simon R.; Martelli, Fabrizio; Tosi, Alberto; Boso, Gianluca; Farina, Andrea; Durduran, Turgut; Martinenghi, Edoardo; Torricelli, Alessandro; Pifferi, Antonio

    2015-03-01

    Diffuse Optics is growing in terms of applications ranging from e.g. oximetry, to mammography, molecular imaging, quality assessment of food and pharmaceuticals, wood optics, physics of random media. Time-domain (TD) approaches, although appealing in terms of quantitation and depth sensibility, are presently limited to large fiber-based systems, with limited number of source-detector pairs. We present a miniaturized TD source-detector probe embedding integrated laser sources and single-photon detectors. Some electronics are still external (e.g. power supply, pulse generators, timing electronics), yet full integration on-board using already proven technologies is feasible. The novel devices were successfully validated on heterogeneous phantoms showing performances comparable to large state-of-the-art TD rack-based systems. With an investigation based on simulations we provide numerical evidence that the possibility to stack many TD compact source-detector pairs in a dense, null source-detector distance arrangement could yield on the brain cortex about 1 decade higher contrast as compared to a continuous wave (CW) approach. Further, a 3-fold increase in the maximum depth (down to 6 cm) is estimated, opening accessibility to new organs such as the lung or the heart. Finally, these new technologies show the way towards compact and wearable TD probes with orders of magnitude reduction in size and cost, for a widespread use of TD devices in real life.

  15. Synchronization in an optomechanical cavity

    NASA Astrophysics Data System (ADS)

    Shlomi, Keren; Yuvaraj, D.; Baskin, Ilya; Suchoi, Oren; Winik, Roni; Buks, Eyal

    2015-03-01

    We study self-excited oscillations (SEO) in an on-fiber optomechanical cavity. Synchronization is observed when the optical power that is injected into the cavity is periodically modulated. A theoretical analysis based on the Fokker-Planck equation evaluates the expected phase space distribution (PSD) of the self-oscillating mechanical resonator. A tomography technique is employed for extracting PSD from the measured reflected optical power. Time-resolved state tomography measurements are performed to study phase diffusion and phase locking of the SEO. The detuning region inside which synchronization occurs is experimentally determined and the results are compared with the theoretical prediction.

  16. CFD-based aero-optical analysis of flow fields over two-dimensional cavities with active flow control

    NASA Astrophysics Data System (ADS)

    Tan, Yan

    Prediction and control of optical wave front distortions and aberrations in a high energy laser beam due to interaction with an unsteady highly non-uniform flow field is of great importance in the development of directed energy weapon systems for Unmanned Air Vehicles (UAV). The unsteady shear layer over the weapons bay cavity is the primary cause of this distortion of the optical wave front. The large scale vortical structure of the shear layer over the cavity can be significantly reduced by employing an active flow control technique combined with passive flow control. This dissertation explores various active and passive control methods to suppress the cavity oscillations and thereby improve the aero-optics of cavity flow. In active flow control technique, a steady or a pulsed jet is applied at the sharp leading edge of cavities of different aspect ratios L/D (=2, 4, 15), where L and D are the width and the depth of a cavity respectively. In the passive flow control approach, the sharp leading or trailing edge of the cavity is modified into a round edge of different radii. Both of these active and passive flow control approaches are studied independently and in combination. Numerical simulations are performed, with and without active flow control for subsonic free stream flow past two-dimensional sharp and round leading or trailing edge cavities using Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations with a two-equation Shear Stress Transport (SST) turbulence model or a hybrid SST/Large Eddy Simulation (LES) model. Aero-optical analysis is developed and applied to all the simulation cases. Index of refraction and Optical Path Difference (OPD) are compared for flow fields without and with active flow control. Root-Mean-Square (RMS) value of OPD is calculated and compared with the experimental data, where available. The effect of steady and pulsed blowing on buffet loading on the downstream face of the cavity is also computed. Using the numerical

  17. Analysis of entropy generation for double diffusive MHD convection in a square cavity with isothermal hollow cylinder

    NASA Astrophysics Data System (ADS)

    Mojumder, Satyajit; Saha, Sourav; Saha, Sumon

    2016-07-01

    Entropy optimization is a major concern for designing modern thermal management system. In the present work, entropy analysis in a square cavity with an isothermal hollow cylinder at the center is carried out for magneto-hydrodynamic (MHD) double diffusive convection. Galerkin weighted residuals method of finite element formulation is adopted for the numerical solution. Entropies due to fluid flow, heat, and mass transfer are computed for wide range of Hartmann (0 ≤ Ha ≤ 50) and Lewis numbers (1 ≤ Le ≤ 15), and buoyancy ratios (-5 ≤ N ≤ 5) at constant Rayleigh and Prandtl numbers. It is found that the influence of buoyancy ratio is prominent on entropy generation, which also depends on both Lewis and Hartmann numbers. The ratio N = -1 shows minimum entropy generation for any combination of Lewis and Hartman numbers. Visualization of isentropic contours and the variation of total entropy with the governing parameters provide remarkable evidences of entropy optimization.

  18. Design and performance analysis of a bio-optical sub-assembly for diffuse optical technologies

    NASA Astrophysics Data System (ADS)

    Jeong, Je-Myung; Park, Kyoungsu; Kim, Sehwan

    2014-11-01

    This paper presents a compact, multi-wavelength, and high-frequency-response light source named the bio-optical sub-assembly (BiOSA). The BiOSA is used to measure the absorption and the reduced scattering coefficients from diffuse optics-based biomedical systems. It is equipped with six laser diodes and one optical fiber with a 400- μm diameter core. Simulations can be used to determine the design parameters and to confirm the feasibility of the BiOSA. The evaluation results indicate that the coupling efficiency of the fabricated BiOSA is 80 ˜ 85%, and the frequency response is up to 3.38 GHz.

  19. Optical Injection Locking of Vertical Cavity Surface-Emitting Lasers: Digital and Analog Applications

    NASA Astrophysics Data System (ADS)

    Parekh, Devang

    With the rise of mobile (cellphones, tablets, notebooks, etc.) and broadband wireline communications (Fiber to the Home), there are increasing demands being placed on transmitters for moving data from device to device and around the world. Digital and analog fiber-optic communications have been the key technology to meet this challenge, ushering in ubiquitous Internet and cable TV over the past 20 years. At the physical layer, high-volume low-cost manufacturing of semiconductor optoelectronic devices has played an integral role in allowing for deployment of high-speed communication links. In particular, vertical cavity surface emitting lasers (VCSEL) have revolutionized short reach communications and are poised to enter more markets due to their low cost, small size, and performance. However, VCSELs have disadvantages such as limited modulation performance and large frequency chirp which limits fiber transmission speed and distance, key parameters for many fiber-optic communication systems. Optical injection locking is one method to overcome these limitations without re-engineering the VCSEL at the device level. By locking the frequency and phase of the VCSEL by the direct injection of light from another laser oscillator, improved device performance is achieved in a post-fabrication method. In this dissertation, optical injection locking of VCSELs is investigated from an applications perspective. Optical injection locking of VCSELs can be used as a pathway to reduce complexity, cost, and size of both digital and analog fiber-optic communications. On the digital front, reduction of frequency chirp via bit pattern inversion for large-signal modulation is experimentally demonstrated showing up to 10 times reduction in frequency chirp and over 90 times increase in fiber transmission distance. Based on these results, a new reflection-based interferometric model for optical injection locking was established to explain this phenomenon. On the analog side, the resonance

  20. Optical filter finesses enhancement based on nested coupled cavities and active medium

    NASA Astrophysics Data System (ADS)

    Adib, George A.; Sabry, Yasser M.; Khalil, Diaa

    2016-04-01

    Optical filters with relatively large FSR and narrow linewidth are simultaneously needed for different applications. The ratio between the FSR and the 3-dB linewidth is given by finesse of the filter, which is solely determined by the different energy loss mechanisms limited by the technology advancement. In this work, we present a novel coupled-cavity configuration embedding an optical filter and a gain medium; allowing an overall finesse enhancement and simultaneous FSR and 3-dB linewidth engineering beyond the technological limits of the filter fabrication method. The configuration consists of two resonators. An active ring resonator comprises an optical gain medium and a passive resonator. In one configuration, the optical filter is the passive resonator itself. In a second configuration, the passive resonator is another ring resonator that embeds the optical filter. The presented configurations using a semiconductor optical amplifier are applied one time to a mechanically Fabry-Perot filter in the first presented configuration; and a second time to a fiber ring filter in the second presented configuration. The mechanical filter has an original 3-dB linewidth of 1nm and an FSR that is larger than 100nm while the enhanced linewidth is about 0.3nm. The fiber ring filter length is 4 m and directional coupler ratios of 90/10corresponding to a 3-dBlinewidth of about 4MHz and an FSR of 47 MHz. The enhanced 3- dBlinewidth of the overall filter configuration is 200kHz, demonstrating finesse enhancement up to20 times the original finesse of the filter.

  1. System for diffusing light from an optical fiber or light guide

    DOEpatents

    Maitland, Duncan J [Pleasant Hill, CA; Wilson, Thomas S [San Leandro, CA; Benett, William J [Livermore, CA; Small, IV, Ward [

    2008-06-10

    A system for diffusing light from an optical fiber wherein the optical fiber is coupled to a light source, comprising forming a polymer element adapted to be connected to the optical fiber and incorporating a scattering element with the polymer element wherein the scattering element diffuses the light from the polymer element. The apparatus of the present invention comprises a polymer element operatively connected to the optical fiber and a scattering element operatively connected with the shape polymer element that diffuses the light from the polymer element.

  2. Planar-waveguide external cavity laser stabilization for an optical link with 10(-19) frequency stability.

    PubMed

    Clivati, Cecilia; Mura, Alberto; Calonico, Davide; Levi, Filippo; Costanzo, Giovanni A; Calosso, Claudio E; Godone, Aldo

    2011-12-01

    We stabilized the frequency of a compact planar-waveguide external cavity laser (ECL) on a Fabry-Perot cavity (FPC) through a Pound-Drever-Hall scheme. The residual frequency stability of the ECL is 10(-14), comparable to the stability achievable with a fiber laser (FL) locked to an FPC through the same scheme. We set up an optical link of 100 km, based on fiber spools, that reaches 10(-19) relative stability, and we show that its performances using the ECL or FL are comparable. Thus ECLs could serve as an excellent replacement for FLs in optical links where cost-effectiveness and robustness are important considerations.

  3. Sub-kilohertz linewidth narrowing of a mid-infrared optical parametric oscillator idler frequency by direct cavity stabilization.

    PubMed

    Ricciardi, I; Mosca, S; Parisi, M; Maddaloni, P; Santamaria, L; De Natale, P; De Rosa, M

    2015-10-15

    We stabilize the idler frequency of a singly resonant optical parametric oscillator directly to the resonance of a mid-infrared Fabry-Perot reference cavity. This is accomplished by the Pound-Drever-Hall locking scheme, controlling either the pump laser or the resonant signal frequency. A residual relative frequency noise power spectral density below 10(3)  Hz(2)/Hz is reached on average, with a Gaussian linewidth of 920 Hz over 100 ms, which reveals the potential for reaching spectral purity down to the hertz level by locking the optical parametric oscillator against a mid-infrared cavity with state-of-the-art superior performance.

  4. Overlapping double potential wells in a single optical microtube cavity with vernier-scale-like tuning effect

    NASA Astrophysics Data System (ADS)

    Madani, A.; Bolaños Quiñones, V. A.; Ma, L. B.; Miao, S. D.; Jorgensen, M. R.; Schmidt, O. G.

    2016-04-01

    Spatially and temporally overlapping double potential wells are realized in a hybrid optical microtube cavity due to the coexistence of an aggregate of luminescent quantum dots embedded in the tube wall and the cone-shaped tube's geometry. The double potential wells produce two independent sets of optical modes with different sets of mode numbers, indicating phase velocity separation for the modes overlapping at the same frequency. The overlapping mode position can be tuned by modifying the tube cavity, where these mode sets shift with different magnitudes, allowing for a vernier-scale-like tuning effect.

  5. Accurate measurement method of Fabry-Perot cavity parameters via optical transfer function

    SciTech Connect

    Bondu, Francois; Debieu, Olivier

    2007-05-10

    It is shown how the transfer function from frequency noise to a Pound-Drever-Hall signal for a Fabry-Perot cavity can be used to accurately measure cavity length, cavity linewidth, mirror curvature, misalignments, laser beam shape mismatching with resonant beam shape, and cavity impedance mismatching with respect to vacuum.

  6. Design verification of large time constant thermal shields for optical reference cavities

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Wu, W.; Shi, X. H.; Zeng, X. Y.; Deng, K.; Lu, Z. H.

    2016-02-01

    In order to achieve high frequency stability in ultra-stable lasers, the Fabry-Pérot reference cavities shall be put inside vacuum chambers with large thermal time constants to reduce the sensitivity to external temperature fluctuations. Currently, the determination of thermal time constants of vacuum chambers is based either on theoretical calculation or time-consuming experiments. The first method can only apply to simple system, while the second method will take a lot of time to try out different designs. To overcome these limitations, we present thermal time constant simulation using finite element analysis (FEA) based on complete vacuum chamber models and verify the results with measured time constants. We measure the thermal time constants using ultrastable laser systems and a frequency comb. The thermal expansion coefficients of optical reference cavities are precisely measured to reduce the measurement error of time constants. The simulation results and the experimental results agree very well. With this knowledge, we simulate several simplified design models using FEA to obtain larger vacuum thermal time constants at room temperature, taking into account vacuum pressure, shielding layers, and support structure. We adopt the Taguchi method for shielding layer optimization and demonstrate that layer material and layer number dominate the contributions to the thermal time constant, compared with layer thickness and layer spacing.

  7. Design verification of large time constant thermal shields for optical reference cavities.

    PubMed

    Zhang, J; Wu, W; Shi, X H; Zeng, X Y; Deng, K; Lu, Z H

    2016-02-01

    In order to achieve high frequency stability in ultra-stable lasers, the Fabry-Pérot reference cavities shall be put inside vacuum chambers with large thermal time constants to reduce the sensitivity to external temperature fluctuations. Currently, the determination of thermal time constants of vacuum chambers is based either on theoretical calculation or time-consuming experiments. The first method can only apply to simple system, while the second method will take a lot of time to try out different designs. To overcome these limitations, we present thermal time constant simulation using finite element analysis (FEA) based on complete vacuum chamber models and verify the results with measured time constants. We measure the thermal time constants using ultrastable laser systems and a frequency comb. The thermal expansion coefficients of optical reference cavities are precisely measured to reduce the measurement error of time constants. The simulation results and the experimental results agree very well. With this knowledge, we simulate several simplified design models using FEA to obtain larger vacuum thermal time constants at room temperature, taking into account vacuum pressure, shielding layers, and support structure. We adopt the Taguchi method for shielding layer optimization and demonstrate that layer material and layer number dominate the contributions to the thermal time constant, compared with layer thickness and layer spacing.

  8. Broadband optical ultrasound sensor with a unique open-cavity structure.

    PubMed

    Chow, Colin M; Zhou, Yun; Guo, Yunbo; Norris, Theodore B; Wang, Xueding; Deng, Cheri X; Ye, Jing Yong

    2011-01-01

    High-resolution ultrasound imaging requires quality sensors with wide bandwidth and high sensitivity, as shown in a wide range of applications, including intravascular imaging of cardiovascular diseases. However, piezoelectric technology, the current dominant approach for hydrophone fabrication, has encountered many technical limitations in the high-frequency range. Using optical techniques for the detection of high-frequency ultrasound signals has attracted much recent attention. One of the most studied approaches is based on a Fabry-Pérot interferometer, consisting of an optical cavity sandwiched between two mirrors. This technique offers promising sensitivity and bandwidth, and a potential alternative to piezoelectric polyvinylidene fluoride (PVDF) hydrophones. We propose an innovative optical ultrasound sensor using only a single mirror in a total-internal-reflection configuration. Besides retaining the advantages of Fabry-Pérot interferometer-based ultrasound sensors, this unique design provides a bandwidth of at least 160 MHz, a potential decrease in fabrication cost, and an increase in signal fidelity.

  9. Energy Deposition into a Collisional Gas from Optical Lattices Formed in an Optical Cavity (PREPRINT)

    DTIC Science & Technology

    2008-07-02

    pp. 1344-1347 2 Kuga et al., “Novel Optical Trap of Atoms with a Doughnut Beam,” Physical Review Letters 78, (1997), pp. 4713-4716 3 Dotsenko et...other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a ...Technical Paper 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Energy Deposition into a Collisional Gas from

  10. Aersol Optical Property Measurements During TEXAQS II Using Cavity Ring-Down Transmissometer.

    NASA Astrophysics Data System (ADS)

    Wright, M. E.; Parra, J.; Linda, G.; Dean, A.

    2006-12-01

    Measurements of aerosol extinction and scattering were made using a tandem cavity ring-down transmissometer/nephelometer instrument during the TEXAQS II measurement campaign August 14 to September 29, 2006. The visible (532 nm) particle absorption and single scattering albedo are also derived from the measured extinction and scattering coefficients. The instrument was part of a suite of measurements conducted at the Moody Tower on the University of Houston campus as part of the Texas Radical and Aerosol Measurement Program. Comparison between various aerosol measurement techniques deployed at the Moody Tower site and by the other measurement platforms will be possible given the wide range of aerosol conditions encountered. A preliminary analysis of our aerosol optical property data and possible consequences for radiative forcing and air quality will be presented.

  11. Laser Frequency Stabilization and Control through Offset Sideband Locking to Optical Cavities

    NASA Technical Reports Server (NTRS)

    Thorpe, James I.; Livas, J.; Numata, K.

    2008-01-01

    We describe a class of techniques whereby a laser frequency can be stabilized to a fixed optical cavity resonance with an adjustable offset, providing a wide tuning range for the central frequency. These techniques require only minor modifications to the standard Pound-Drever-Hall locking techniques and have the advantage of not altering the intrinsic stability of the frequency reference. In a laboratory investigation the sideband techniques were found to perform equally well as the standard, non-tunable Pound-Drever-Hall technique, each providing more than four decades of frequency noise suppression over the free-running noise. An application of a tunable system as a pre-stabilization stage in a phase-lock loop is also presented with the combined system achieving a frequency noise suppression of nearly twelve orders of magnitude.

  12. External cavity quantum cascade lasers with ultra rapid acousto-optic tuning

    SciTech Connect

    Lyakh, A. Barron-Jimenez, R.; Dunayevskiy, I.; Go, R.; Patel, C. Kumar N.

    2015-04-06

    We report operation of tunable external cavity quantum cascade lasers with emission wavelength controlled by an acousto-optic modulator (AOM). A long-wave infrared quantum cascade laser wavelength tuned from ∼8.5 μm to ∼9.8 μm when the AOM frequency was changed from ∼41MHz to ∼49 MHz. The laser delivered over 350 mW of average power at the center of the tuning curve in a linewidth of ∼4.7 cm{sup −1}. Measured wavelength switching time between any two wavelengths within the tuning range of the QCL was less than 1 μs. Spectral measurements of infrared absorption features of Freon demonstrated a capability of obtaining complete spectral data in less than 20 μs.

  13. Characterization of spatiotemporal chaos in a Kerr optical frequency comb and in all fiber cavities

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Ouali, M.; Coulibaly, S.; Clerc, M. G.; Taki, M.; Tlidi, M.

    2017-03-01

    Complex spatiotemporal dynamics have been a subject of recent experimental investigations in optical frequency comb microresonators and in driven fiber cavities with a Kerr-type media. We show that this complex behavior has a spatiotemporal chaotic nature. We determine numerically the Lyapunov spectra, allowing to characterize different dynamical behavior occurring in these simple devices. The Yorke-Kaplan dimension is used as an order parameter to characterize the bifurcation diagram. We identify a wide regime of parameters where the system exhibits a coexistence between the spatiotemporal chaos, the oscillatory localized structure, and the homogeneous steady state. The destabilization of an oscillatory localized state through radiation of counter propagative fronts between the homogeneous and the spatiotemporal chaotic states is analyzed. To characterize better the spatiotemporal chaos, we estimate the front speed as a function of the pump intensity.

  14. One by N wavelength-selected optical switch based on tunable Fabry-Perot cavity

    NASA Astrophysics Data System (ADS)

    Li, Xinwan; Chen, Jian-Ping; Lu, Jialin; Ye, Ailun

    2005-02-01

    In this paper, a kind of tunable wavelength selective optical switch was proposed with two-input/two-output fiber ports. It is based on tunable Fabry-Perot cavity by a pair of multi-layered piezoelectric ceramics. Each fiber carries N wavelengths, one of which can be selected. The tunable span can reach 5.43 nm under 10 V DC voltages. The relation of wavelength tuning ability and driving voltage is linear. The maximum of difference between theoretical and experimental results is less than 0.08nm. The quantities of maximum insertion loss, switching time and on/off ratio are about 3 dB, 1 ms and 28 dB

  15. GaAs micro-pyramids serving as optical micro-cavities

    SciTech Connect

    Karl, M.; Beck, T.; Li, S.; Hu, D. Z.; Schaadt, D. M.; Kalt, H.; Hetterich, M.

    2010-01-04

    An efficient light-matter coupling requires high-quality (Q) micro-cavities with small mode volume. We suggest GaAs micro-pyramids placed on top of AlAs/GaAs distributed Bragg reflectors to be promising candidates. The pyramids were fabricated by molecular-beam epitaxy, electron-beam lithography and a subsequent wet-chemical etching process using a sacrificial AlAs layer. Measured Q-factors of optical modes in single pyramids reach values up to 650. A finite-difference time-domain simulation assuming a simplified cone-shaped geometry suggests possible Q-factors up to 3600. To enhance the light confinement in the micro-pyramids we intend to overgrow the pyramidal facets with a Bragg mirror--results of preliminary tests are given.

  16. Simultaneous strain and temperature sensing using a slightly tapered optical fiber with an inner cavity.

    PubMed

    Chen, H F; Wang, D N; Wang, Y

    2015-03-21

    An ultracompact optical fiber mode interferometer capable of performing simultaneous strain and temperature sensing is demonstrated. The device is fabricated by using femtosecond laser micromachining together with fusion splicing techniques and followed by a tapering process. The transmission spectrum of the device exhibits a number of resonance wavelength dips, corresponding to different orders of cladding mode, which allow simultaneous strain and temperature sensing by monitoring the variation of selected two wavelength dips. The sensitivity achieved is -16.12 pm με(-1) and 85.95 pm °C(-1) for strain and temperature, respectively. The device has a spatially precise sensing capability owing to the small size of the inner air-cavity.

  17. Probing dark energy with an atom interferometer in an optical cavity

    NASA Astrophysics Data System (ADS)

    Jaffe, Matthew; Haslinger, Philipp; Hamilton, Paul; Mueller, Holger; Khoury, Justin; Elder, Benjamin

    2016-05-01

    If dark energy -- which drives the accelerated expansion of the universe -- consists of a light scalar field, it might be detectable as a ``fifth force'' between normal-matter objects, in potential conflict with precision tests of gravity. Chameleon fields and other theories with screening mechanisms can evade such tests by suppressing this force in regions of high density, such as the laboratory. Our experiments constrain these dark energy models using atoms in an ultrahigh-vacuum chamber as probes to expose the screened fields. Using a cesium matter wave interferometer in an optical cavity, we set stringent bounds on coupling screened theories to matter. A further 4 to 5 orders of magnitude would completely rule out chameleon and f(R) theories. I will describe this first tabletop dark energy search, and present the hundredfold boost in sensitivity we have since achieved.

  18. Absolute calibration for complex-geometry biomedical diffuse optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Mastanduno, Michael A.; Jiang, Shudong; El-Ghussein, Fadi; diFlorio-Alexander, Roberta; Pogue, Brian W.; Paulsen, Keith D.

    2013-03-01

    We have presented methodology to calibrate data in NIRS/MRI imaging versus an absolute reference phantom and results in both phantoms and healthy volunteers. This method directly calibrates data to a diffusion-based model, takes advantage of patient specific geometry from MRI prior information, and generates an initial guess without the need for a large data set. This method of calibration allows for more accurate quantification of total hemoglobin, oxygen saturation, water content, scattering, and lipid concentration as compared with other, slope-based methods. We found the main source of error in the method to be derived from incorrect assignment of reference phantom optical properties rather than initial guess in reconstruction. We also present examples of phantom and breast images from a combined frequency domain and continuous wave MRI-coupled NIRS system. We were able to recover phantom data within 10% of expected contrast and within 10% of the actual value using this method and compare these results with slope-based calibration methods. Finally, we were able to use this technique to calibrate and reconstruct images from healthy volunteers. Representative images are shown and discussion is provided for comparison with existing literature. These methods work towards fully combining the synergistic attributes of MRI and NIRS for in-vivo imaging of breast cancer. Complete software and hardware integration in dual modality instruments is especially important due to the complexity of the technology and success will contribute to complex anatomical and molecular prognostic information that can be readily obtained in clinical use.

  19. NIR time domain diffuse optical tomography experiments on human forearm

    NASA Astrophysics Data System (ADS)

    Zhao, Huijuan; Gao, Feng; Tanikawa, Yukari; Homma, Kazuhiro; Yamada, Yukio

    2003-07-01

    To date, the applications of near infrared (NIR) diffusion optical tomography (DOT) are mostly focused on the potential of imaging woman breast, human head hemodynamics and neonatal head. For the neonates, who are suffered from ischaemia or hemorrhages in brain, bedside monitoring of the cerebral perfusion situation, e.g., the blood oxygen saturation and blood volume, is necessary for avoiding permanent injure. NIR DOT is on the promising tools because it is noninvasive, smaller in size, and moveable. Prior to achieving the ultimate goal of imaging infant brain and woman breast using DOT, in this paper, the developed methodologies are justified by imaging in vivo human forearms. The absolute absorption- and scattering-coefficient images revealed the inner structure of the forearm and the bones were clearly distinguished from the muscle. The differential images showed the changes in oxy-hemoglobin, deoxy-hemoglobin and blood volume during the hand-gripping exercises, which are consistent with the physiological process reported on literatures.

  20. Towards next-generation time-domain diffuse optics for extreme depth penetration and sensitivity

    PubMed Central

    Mora, Alberto Dalla; Contini, Davide; Arridge, Simon; Martelli, Fabrizio; Tosi, Alberto; Boso, Gianluca; Farina, Andrea; Durduran, Turgut; Martinenghi, Edoardo; Torricelli, Alessandro; Pifferi, Antonio

    2015-01-01

    Light is a powerful tool to non-invasively probe highly scattering media for clinical applications ranging from oncology to neurology, but also for molecular imaging, and quality assessment of food, wood and pharmaceuticals. Here we show that, for a paradigmatic case of diffuse optical imaging, ideal yet realistic time-domain systems yield more than 2-fold higher depth penetration and many decades higher contrast as compared to ideal continuous-wave systems, by adopting a dense source-detector distribution with picosecond time-gating. Towards this aim, we demonstrate the first building block made of a source-detector pair directly embedded into the probe based on a pulsed Vertical-Cavity Surface-Emitting Laser (VCSEL) to allow parallelization for dense coverage, a Silicon Photomultiplier (SiPM) to maximize light harvesting, and a Single-Photon Avalanche Diode (SPAD) to demonstrate the time-gating capability on the basic SiPM element. This paves the way to a dramatic advancement in terms of increased performances, new high impact applications, and availability of devices with orders of magnitude reduction in size and cost for widespread use, including quantitative wearable imaging. PMID:26137377

  1. Towards next-generation time-domain diffuse optics for extreme depth penetration and sensitivity.

    PubMed

    Mora, Alberto Dalla; Contini, Davide; Arridge, Simon; Martelli, Fabrizio; Tosi, Alberto; Boso, Gianluca; Farina, Andrea; Durduran, Turgut; Martinenghi, Edoardo; Torricelli, Alessandro; Pifferi, Antonio

    2015-05-01

    Light is a powerful tool to non-invasively probe highly scattering media for clinical applications ranging from oncology to neurology, but also for molecular imaging, and quality assessment of food, wood and pharmaceuticals. Here we show that, for a paradigmatic case of diffuse optical imaging, ideal yet realistic time-domain systems yield more than 2-fold higher depth penetration and many decades higher contrast as compared to ideal continuous-wave systems, by adopting a dense source-detector distribution with picosecond time-gating. Towards this aim, we demonstrate the first building block made of a source-detector pair directly embedded into the probe based on a pulsed Vertical-Cavity Surface-Emitting Laser (VCSEL) to allow parallelization for dense coverage, a Silicon Photomultiplier (SiPM) to maximize light harvesting, and a Single-Photon Avalanche Diode (SPAD) to demonstrate the time-gating capability on the basic SiPM element. This paves the way to a dramatic advancement in terms of increased performances, new high impact applications, and availability of devices with orders of magnitude reduction in size and cost for widespread use, including quantitative wearable imaging.

  2. Application of diffusion and photosensitizing techniques in PMMA to optical interconnects

    NASA Astrophysics Data System (ADS)

    Brenner, Karl-Heinz; Kufner, Maria; Kufner, Stefan; Sinzinger, Stefan; Testorf, Markus E.

    1990-07-01

    A new technique for the three dimensional integration of optical components is presented. It is based on diffusion techniques and photoinitiated polymerization. Initial experimental results demonstrate the feasibility and efficiency. DIFFUSION jQ PHOTOINITIATED POLYMERISA11ON We want to combine diffusion with photoinitiated polymerization in order to form passive elements which are necessary for three dimensional integration of optical components for microoptical systems1''2. The production of optical elements by photopolymerization consists of two main steps. First the PMMA is sensitized to ultraviolet light by diffusing a photoinitiator into the substrat. Then the exposure by UV light causes an increase in the thickness and in the refractive index. The structuring can be achieved either by local diffusion and global exposure for stabilization or by global diffusion and local exposure. In the first case metal-masks for the diffusion process are necessary whereas in the second case photo-masks can be used. OPTICAL INTERCONNECFION For realizing a flexible optical interconnection plate3''4 the necessary functions are: light collimation light deflection and beam splitting. Collimation can be achieved by microlenses. For deflection we use a miniaturized prism. For beam splitting an index grating can be used. The components are integrated within a planar PMMA plate. EXPERIMENTAL RESULTS By measuring the phase profile of diffused lenses and prisms we demonstrated that phase shifts of several wavelengths can be achieved by polymerization and diffusion techniques. The main effect results from the

  3. Cavity Ring Down Absorption of O2 in Air as a Temperature Sensor for an Open and a Cryogenic Optical Cavity.

    PubMed

    Nyaupane, Parashu R; Perez-Delgado, Yasnahir; Camejo, David; Wright, Lesley M; Manzanares, Carlos E

    2016-06-30

    The A-band of oxygen has been measured at low resolution at temperatures between 90 K and 373 K using the phase shift cavity ring down (PS-CRD) technique. For temperatures between 90 K and 295 K, the PS-CRD technique presented here involves an optical cavity attached to a cryostat. The static cell and mirrors of the optical cavity are all inside a vacuum chamber at the same temperature of the cryostat. The temperature of the cell can be changed between 77 K and 295 K. For temperatures above 295 K, a hollow glass cylindrical tube without windows has been inserted inside an optical cavity to measure the temperature of air flowing through the tube. The cavity consists of two highly reflective mirrors which are mounted parallel to each other and separated by a distance of 93 cm. In this experiment, air is passed through a heated tube. The temperature of the air flowing through the tube is determined by measuring the intensity of the oxygen absorption as a function of the wavenumber. The A-band of oxygen is measured between 298 K and 373 K, with several air flow rates. To obtain the temperature, the energy of the lower rotational state for seven selected rotational transitions is linearly fitted to a logarithmic function that contains the relative intensity of the rotational transition, the initial and final rotational quantum numbers, and the energy of the transition. Accuracy of the temperature measurement is determined by comparing the calculated temperature from the spectra with the temperature obtained from a calibrated thermocouple inserted at the center of the tube. This flowing air temperature sensor will be used to measure the temperatures of cooling air at the input (cold air) and output (hot air) after cooling the blades of a laboratory gas turbine. The results could contribute to improvements in turbine blade cooling design.

  4. [Measurement of Trace C2H6 Based on Optical-Feedback Cavity-Enhanced Absorption Spectroscopy].

    PubMed

    Wan, Fu; Chen, Wei-gen; Gu, Zhao-liang; Zou, Jing-xin; DU, Ling-Ling; Qi, Wei; Zhou, Qu

    2015-10-01

    Ethane is one of major fault characteristic gases dissolved in power transformer, the detection of Ethane with high accuracy and sensitivity is the key of dissolved gas analysis. In this paper, based on optical feedback theory and cavity-enhanced absorption spectroscopy, combined with quantum cascade laser, a detection system for dissolved gas C2 H6 in transformer oil was built up. Based on the symmetry of the individual cavity modes, the phase matching of returning light in resonance with the cavity was achieved through LabVIEW codes. The optical feedback effect that the emitted light return to the laser cavity after a small delay time and lock to the resonance frequency of cavity, even and odd modes effect that the higher modes and lower modes structure will build up alternatively, and threshold current lowering effect of about 1.2 mA were studied and achieved. By cavity ring-down spectroscopy, the effective reflectivity of 99.978% and cavity finesse of 7 138.4 is obtained respectively. The frequency selectivity is 0.005 2 cm(-1). With an acquisition time of 1s, this optical system allows detection for the PQ3 band of C2 H6 with high accuracy of 95.72% ± 0.17% and detection limit of (1.97 ± 0.06) x 10(-3) μL x L(-1) at atmospheric pressure and temperature of 20 degrees C, which lays a foundation for fault diagnose from dissolved gas analysis.

  5. Spectroscopic evaluation of photodynamic therapy of the intraperitoneal cavity

    NASA Astrophysics Data System (ADS)

    Finlay, Jarod C.; Sandell, Julia L.; Zhu, Timothy C.; Lewis, Robert; Cengel, Keith A.; Hahn, Stephen M.

    2010-02-01

    We present the results of spectroscopic measurements of diffuse reflectance and fluorescence before and after photodynamic therapy of healthy canine peritoneal cavity. Animals were treated intra-operatively after iv injection of the benzoporphyrin derivative (BPD). The small bowel was treated using a uniform light field projected by a microlens-tipped fiber. The cavity was then filled with scattering medium and the remaining organs were treated using a moving diffuser. Diffuse reflectance and fluorescence measurements were made using a multi-fiber optical probe positioned on the surface of various tissues within the cavity before and after illumination. The measured data were analyzed to quantify hemoglobin concentration and oxygenation and sensitizer concentration.

  6. Spectroscopic evaluation of photodynamic therapy of the intraperitoneal cavity

    PubMed Central

    Finlay, Jarod C.; Sandell, Julia L.; Zhu, Timothy C.; Lewis, Robert; Cengel, Keith A.; Hahn, Stephen M.

    2015-01-01

    We present the results of spectroscopic measurements of diffuse reflectance and fluorescence before and after photodynamic therapy of healthy canine peritoneal cavity. Animals were treated intra-operatively after iv injection of the benzoporphyrin derivative (BPD). The small bowel was treated using a uniform light field projected by a microlenstipped fiber. The cavity was then filled with scattering medium and the remaining organs were treated using a moving diffuser. Diffuse reflectance and fluorescence measurements were made using a multi-fiber optical probe positioned on the surface of various tissues within the cavity before and after illumination. The measured data were analyzed to quantify hemoglobin concentration and oxygenation and sensitizer concentration. PMID:26028798

  7. A theoretical study on using a fictional mirror to simplify the behavior of a volume Bragg grating in an optical cavity

    NASA Astrophysics Data System (ADS)

    Hsieh, Yu-Hua; Huang, Ching-Hsun; Chung, Te-yuan; Shy, Jow-Tsong

    2016-11-01

    A fictional mirror was proposed to describe the reflective behaviors of a volume Bragg grating (VBG) in an optical cavity. When a finite beam interacts with a VBG, the analytical forms of the location and the radius of curvature of the fictional mirror are derived. In addition, the longitudinal mode spacing of an optical cavity using a VBG as the cavity mirror is investigated theoretically and experimentally.

  8. An ultra-narrow-band optical filter based on whispering-gallery-mode hybrid-microsphere-cavity

    NASA Astrophysics Data System (ADS)

    Wan, Hongdan; Zhu, Haohan; Liu, Linqian; Xu, Ji; Wang, Jin

    2016-10-01

    We demonstrate an ultra-narrow-band mode-selection method based on a hybrid-microsphere-cavity which consists of a coated silica microsphere. Optical field distribution and narrow-band transmission spectrum of the whispering gallery modes (WGM) are investigated by finite-difference time-domain method. WGM transmission spectra are measured for microsphere and tapered fibers with different diameters. A high refractive index layer coated on the microsphere-cavity make the Q factor increased, the transmission spectrum bandwidth compressed and the side-mode suppression ratio increased. Parameters of the hybrid-microsphere-cavity, namely, the coated shell thickness and its refractive index are optimized under different excitation light source as to investigate the whispering-gallery-modes' transmission spectrum. The 3dB bandwidth of the proposed filter can be less than MHz which will have great potential for applications in all-optical sensing and communication systems.

  9. Controlled mode tuning in 1-D 'RIM' plasmonic crystal trench cavities probed with coupled optical emitters.

    PubMed

    Liu, Tsung-li; Russell, Kasey J; Cui, Shanying; Hu, Evelyn L

    2013-12-02

    We present a design of plasmonic cavities that consists of two sets of 1-D plasmonic crystal reflectors on a plasmonic trench waveguide. A 'reverse image mold' (RIM) technique was developed to pattern high-resolution silver trenches and to embed emitters at the cavity field maximum, and FDTD simulations were performed to analyze the frequency response of the fabricated devices. Distinct cavity modes were observed from the photoluminescence spectra of the organic dye embedded within these cavities. The cavity geometry facilitates tuning of the modes through a change in cavity dimensions. Both the design and the fabrication technique presented could be extended to making trench waveguide-based plasmonic devices and circuits.

  10. Systematic diffuse optical image errors resulting from uncertainty in the background optical properties

    NASA Astrophysics Data System (ADS)

    Cheng, Xuefeng; Boas, David A.

    1999-04-01

    We investigated the diffuse optical image errors resulting from systematic errors in the background scattering and absorption coefficients, Gaussian noise in the measurements, and the depth at which the image is reconstructed when using a 2D linear reconstruction algorithm for a 3D object. The fourth Born perturbation approach was used to generate reflectance measurements and k-space tomography was used for the reconstruction. Our simulations using both single and dual wavelengths show large systematic errors in the absolute reconstructed absorption coefficients and corresponding hemoglobin concentrations, while the errors in the relative oxy- and deoxy- hemoglobin concentrations are acceptable. The greatest difference arises from a systematic error in the depth at which an image is reconstructed. While an absolute reconstruction of the hemoglobin concentrations can deviate by 100% for a depth error of ñ1 mm, the error in the relative concentrations is less than 5%. These results demonstrate that while quantitative diffuse optical tomography is difficult, images of the relative concentrations of oxy- and deoxy-hemoglobin are accurate and robust. Other results, not presented, confirm that these findings hold for other linear reconstruction techniques (i.e. SVD and SIRT) as well as for transmission through slab geometries.

  11. Combination of broadband diffuse optical spectroscopy with magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Merritt, Sean Isaiah

    Broadband diffuse optical spectroscopy (DOS) is an emerging optical technique used to measure absorption and scattering of bulk tissue non-invasively within the near-infrared (600--1050 nm). The ultimate aim of my advisors group is for broadband DOS to become an established medical diagnostic technique used clinically on various tissue types including breast, muscle and bone. The specific goal for my research is to use established magnetic resonance (MR) techniques for the purpose of continued development and validation of broadband DOS. The initial studies carried out were a validation of broadband DOS through a direct comparison with MRI. Both techniques are sensitive to signals produced by water and lipids in tissue. There is also sensitivity to blood flow, which MRI measures using exogenous contrast agents and broadband DOS is sensitive through measurement of total hemoglobin content (THC) and tissue oxygen saturation (StO2). These validation studies were compared initially in a rat tumor model in which both techniques were used simultaneously. A qualitative correlation was found between the MR images of water content and blood perfusion compared with the DOS water and THC values. A more quantitative comparison was made between measuring absolute water and lipid content in phantoms and in human tissue, which showed a strong correlation. The in vivo study also validated that broadband DOS was interrogating bone marrow in the tibia. The second half of this thesis is focused on developing new capabilities of broadband DOS and the MRI literature is used as a guide. When a water molecule hydrogen bonds to another molecule, the absorption spectrum in the near-infrared which is due to the vibrational overtone of the OH bond will change. The expected changes were observed in tissue and an algorithm was developed to fit for a tissue bound water parameter. Also, as tissue temperature changes, the fraction of water bound to other water molecules changes and can be used to

  12. Thin cylindrical slot in an optical microdisk cavity for sensing biomaterials

    NASA Astrophysics Data System (ADS)

    Daraei, Ahmadreza; Daraei, Mohammad Esmaeil

    2017-04-01

    In this paper, we propose and investigate a thin cylindrical slot etched into a disk shape optical microcavity (MC) aiming for sensing biomaterials in a label-free style. Supporting whispering gallery modes (WGMs), with remarkably large quality factor to modal volume ratio (Q/Vm) of the optical MC structures that penetrate in the slot region, enables us to perform sensing. Three different geometries for the side walls of host microdisk cavities, including vertical, 60° wedged, and half-circular cross section, are selected for investigations. In each individual case, the radial position, width, and height of the thin cylindrical slot are varied. The electromagnetic (EM) field intensity distributions (mode mapping profiles) of the WGMs show funneling of the intensified fields into the slot area that possessing nearly the same high Q values. Tuning the slot position, width, and depth for a suitably chosen WGM, sensing could be optimized for different biomaterials. Sensitivity value as high as 75 nm/RIU is calculated for the half-circular side wall microdisk. The proposed WGM-based slotted microdisk, as a state-of-the-art device which can operate, such as lab-on-chip structure, would function as a sensitive biosensor, even down to the single biomolecule levels.

  13. Cavity-based quantum networks with single atoms and optical photons

    NASA Astrophysics Data System (ADS)

    Reiserer, Andreas; Rempe, Gerhard

    2015-10-01

    Distributed quantum networks will allow users to perform tasks and to interact in ways which are not possible with present-day technology. Their implementation is a key challenge for quantum science and requires the development of stationary quantum nodes that can send and receive as well as store and process quantum information locally. The nodes are connected by quantum channels for flying information carriers, i.e., photons. These channels serve both to directly exchange quantum information between nodes and to distribute entanglement over the whole network. In order to scale such networks to many particles and long distances, an efficient interface between the nodes and the channels is required. This article describes the cavity-based approach to this goal, with an emphasis on experimental systems in which single atoms are trapped in and coupled to optical resonators. Besides being conceptually appealing, this approach is promising for quantum networks on larger scales, as it gives access to long qubit coherence times and high light-matter coupling efficiencies. Thus, it allows one to generate entangled photons on the push of a button, to reversibly map the quantum state of a photon onto an atom, to transfer and teleport quantum states between remote atoms, to entangle distant atoms, to detect optical photons nondestructively, to perform entangling quantum gates between an atom and one or several photons, and even provides a route toward efficient heralded quantum memories for future repeaters. The presented general protocols and the identification of key parameters are applicable to other experimental systems.

  14. Selection of Optical Cavity Surface Coatings for 1micron Laser Based Missions

    NASA Technical Reports Server (NTRS)

    Hedgeland, Randy J.; Straka, Sharon; Matsumura, Mark; Hammerbacher, Joseph

    2004-01-01

    The particulate surface cleanliness level on several coatings for aluminum and beryllium substrates were examined for use in the optical cavities of high pulse energy Nd:YAG Q-switched, diode-pumped lasers for space flight applications. Because of the high intensity of the lasers, any contaminants in the laser beam path could damage optical coatings and limit the instrument mission objectives at the operating wavelength of 1 micron (micrometer). Our goal was to achieve an EST-STD-CC1246D Level 100 particulate distribution or better to ensure particulate redistribution during launch would not adversely affect the performance objectives. Tapelifts were performed to quantify the amount of particles using in-house developed procedures. The primary candidate coatings included chromate conversion coating aluminum (Al), uncoated Al electroless Nickel (Ni) on Al, Ni-gold (Au) on Al, anodized Al, and gold (Au)/Ni on Beryllium (Be). The results indicate that there were advantages in Ni and Au coating applications for the two major substrates, Al and Be, when considering applications that need to meet launch environments.

  15. Schemes generating entangled states and entanglement swapping between photons and three-level atoms inside optical cavities for quantum communication

    NASA Astrophysics Data System (ADS)

    Heo, Jino; Kang, Min-Sung; Hong, Chang-Ho; Yang, Hyeon; Choi, Seong-Gon

    2017-01-01

    We propose quantum information processing schemes based on cavity quantum electrodynamics (QED) for quantum communication. First, to generate entangled states (Bell and Greenberger-Horne-Zeilinger [GHZ] states) between flying photons and three-level atoms inside optical cavities, we utilize a controlled phase flip (CPF) gate that can be implemented via cavity QED). Subsequently, we present an entanglement swapping scheme that can be realized using single-qubit measurements and CPF gates via optical cavities. These schemes can be directly applied to construct an entanglement channel for a communication system between two users. Consequently, it is possible for the trust center, having quantum nodes, to accomplish the linked channel (entanglement channel) between the two separate long-distance users via the distribution of Bell states and entanglement swapping. Furthermore, in our schemes, the main physical component is the CPF gate between the photons and the three-level atoms in cavity QED, which is feasible in practice. Thus, our schemes can be experimentally realized with current technology.

  16. Molecular Diffuse Optical Tomography for Early Breast Cancer Detection and Characterization

    DTIC Science & Technology

    2001-10-01

    1996).3V. Ntziachristos, A. H. Hielscher , A. G. Yodh et al., "Diffuse optical tomography of highly heterogeneous media," leee Transactions on...1995). 11 V. Ntziachristos, A. Hielscher , A.G. Yodh, B. Chance, submitted to IEEE transactions on Medical Imaging (2000) [In part published at...jNtziachristos V., Hielscher A.H., Yodh A.G., Chance B., in Biomedical Optics : Advances in Optical Imaging, Photon Migration and Tissue Optics, OSA

  17. Real-time detection of lipid bilayer assembly and detergent-initiated solubilization using optical cavities

    NASA Astrophysics Data System (ADS)

    Sun, V.; Armani, A. M.

    2015-02-01

    The cellular membrane governs numerous fundamental biological processes. Therefore, developing a comprehensive understanding of its structure and function is critical. However, its inherent biological complexity gives rise to numerous inter-dependent physical phenomena. In an attempt to develop a model, two different experimental approaches are being pursued in parallel: performing single cell experiments (top down) and using biomimetic structures (bottom up), such as lipid bilayers. One challenge in many of these experiments is the reliance on fluorescent probes for detection which can create confounds in this already complex system. In the present work, a label-free detection method based on an optical resonant cavity is used to detect one of the fundamental physical phenomena in the system: assembly and solubilization of the lipid bilayer. The evanescent field of the cavity strongly interacts with the lipid bilayer, enabling the detection of the bilayer behavior in real-time. Two independent detection mechanisms confirm the formation and detergent-assisted solubilization of the lipid bilayers: (1) a refractive index change and (2) a material loss change. Both mechanisms can be monitored in parallel, on the same device, thus allowing for cross-confirmation of the results. To verify the proposed method, we have detected the formation of self-assembled phosphatidylcholine lipid bilayers from small unilamellar vesicles on the device surface in real-time. Subsequently, we exposed the bilayers to two different detergents (non-ionic Triton X-100 and anionic sodium dodecyl sulfate) to initiate solubilization, and this process was also detected in real-time. After the bilayer solubilization, the device returned to its initial state, exhibiting minimal hysteresis. The experimental wash-off was also collected and analyzed using dynamic light scattering.

  18. Spectroscopic study of optical confinement and transport effects in coupled microspheres and pillar cavities

    NASA Astrophysics Data System (ADS)

    Yang, Seungmoo

    In this thesis we investigated the spatial and spectral mode profiles, and the optical transport properties of single and multiple coupled cavities. We performed numerical modeling of whispering gallery modes (WGMs) in such cavities in order to explain recent experiments on semiconductor micropillars. High quality (Q up to 20 000) WGMs with small mode volumes V ˜0.3 mum 3 in 4-5 mum micropillars were reproduced. The WGM spectra were found to be in a good agreement with the experimental data. The coupling between size-matched spheres from 2.9 to 6.0 mum in diameter was characterized using spectroscopy. We observed peculiar kites in the spectral images of such coherently coupled bispheres. The origin of these kites was explained due to the coupling of multiple pairs of azimuthal modes. We quantified the coupling constant for WGMs located in the equatorial plane of spheres parallel to the substrate which plays the most important role in the transport of WGMs in such structures. It was shown that in long (>10 spheres) chains of size-disordered polystyrene microspheres the transmission properties are dominated by photonic nanojet-induced modes (NIMs) leading to periodic focusing of light along the chain. In the transmission spectra of such chains we observed Fabry-Perot fringes with propagation losses of only 0.08 dB per sphere at the maxima of the transmission peaks. The fringes of NIMs are found to be in a good agreement with the results of numerical modeling. These modes can be used in various biomedical applications requiring tight focusing of the beams.

  19. Phase dynamics in vertical-cavity surface-emitting lasers with delayed optical feedback and cross-polarized reinjection

    NASA Astrophysics Data System (ADS)

    Javaloyes, J.; Marconi, M.; Giudici, M.

    2014-08-01

    We study theoretically the nonlinear polarization dynamics of vertical-cavity surface-emitting lasers in the presence of an external cavity providing delayed optical feedback and cross-polarized reinjection. We show that, far from the laser threshold, the dynamics remains confined close to the equatorial plane of a Poincaré sphere with a fixed radius. It entails that the evolution of the system is described by two phase variables: the orientation phase of the quasilinear polarization and the optical phase of the field. We explore the complex modal structure given by the double reinjection configuration and how it evolves between the cases of single cross-polarized reinjection and single optical feedback, hence disclosing the relationship with the Lang-Kobayashi model. We also reinterpret the square-wave switching observed by J. Mulet et al. [Phys. Rev. A 76, 043801 (2007), 10.1103/PhysRevA.76.043801] in terms of phase kinks.

  20. Simultaneous measurement of temperature and refractive index using focused ion beam milled Fabry-Perot cavities in optical fiber micro-tips.

    PubMed

    André, Ricardo M; Warren-Smith, Stephen C; Becker, Martin; Dellith, Jan; Rothhardt, Manfred; Zibaii, M I; Latifi, H; Marques, Manuel B; Bartelt, Hartmut; Frazão, Orlando

    2016-06-27

    Optical fiber micro-tips are promising devices for sensing applications in small volume and difficult to access locations, such as biological and biomedical settings. The tapered fiber tips are prepared by dynamic chemical etching, reducing the size from 125 μm to just a few μm. Focused ion beam milling is then used to create cavity structures on the tapered fiber tips. Two different Fabry-Perot micro-cavities have been prepared and characterized: a solid silica cavity created by milling two thin slots and a gap cavity. A third multi-cavity structure is fabricated by combining the concepts of solid silica cavity and gap cavity. This micro-tip structure is analyzed using a fast Fourier transform method to demultiplex the signals of each cavity. Simultaneous measurement of temperature and external refractive index is then demonstrated, presenting sensitivities of - 15.8 pm/K and -1316 nm/RIU, respectively.

  1. Quantum-Noise-Limited Sensitivity-Enhancement of a Passive Optical Cavity by a Fast-Light Medium

    NASA Technical Reports Server (NTRS)

    Smith, David D.; Luckay, H. A.; Chang, Hongrok; Myneni, Krishna

    2016-01-01

    We demonstrate for a passive optical cavity containing an intracavity dispersive atomic medium, the increase in scale factor near the critical anomalous dispersion is not cancelled by mode broadening or attenuation, resulting in an overall increase in the predicted quantum-noiselimited sensitivity. Enhancements of over two orders of magnitude are measured in the scale factor, which translates to greater than an order-of-magnitude enhancement in the predicted quantumnoise- limited measurement precision, by temperature tuning a low-pressure vapor of noninteracting atoms in a low-finesse cavity close to the critical anomalous dispersion condition. The predicted enhancement in sensitivity is confirmed through Monte-Carlo numerical simulations.

  2. 1300 nm optically pumped quantum dot spin vertical external-cavity surface-emitting laser

    SciTech Connect

    Alharthi, S. S. Henning, I. D.; Adams, M. J.; Orchard, J.; Clarke, E.

    2015-10-12

    We report a room temperature optically pumped Quantum Dot-based Spin-Vertical-External-Cavity Surface-Emitting laser (QD Spin-VECSEL) operating at the telecom wavelength of 1.3 μm. The active medium was composed of 5 × 3 QD layers; each threefold group was positioned at an antinode of the standing wave of the optical field. Circularly polarized lasing in the QD-VECSEL under Continuous-Wave optical pumping has been realized with a threshold pump power of 11 mW. We further demonstrate at room temperature control of the QD-VECSEL output polarization ellipticity via the pump polarization.

  3. LED lamp or bulb with remote phosphor and diffuser configuration with enhanced scattering properties

    DOEpatents

    Tong, Tao; Le Toquin, Ronan; Keller, Bernd; Tarsa, Eric; Youmans, Mark; Lowes, Theodore; Medendorp, Jr., Nicholas W; Van De Ven, Antony; Negley, Gerald

    2014-11-11

    An LED lamp or bulb is disclosed that comprises a light source, a heat sink structure and an optical cavity. The optical cavity comprises a phosphor carrier having a conversions material and arranged over an opening to the cavity. The phosphor carrier comprises a thermally conductive transparent material and is thermally coupled to the heat sink structure. An LED based light source is mounted in the optical cavity remote to the phosphor carrier with light from the light source passing through the phosphor carrier. A diffuser dome is included that is mounted over the optical cavity, with light from the optical cavity passing through the diffuser dome. The properties of the diffuser, such as geometry, scattering properties of the scattering layer, surface roughness or smoothness, and spatial distribution of the scattering layer properties may be used to control various lamp properties such as color uniformity and light intensity distribution as a function of viewing angle.

  4. Diffusion between glass and metals for optical fiber preform extrusion

    NASA Astrophysics Data System (ADS)

    Yeo, Felicia Yan Xin; Zhang, Zhifeng; Kumar Chakkathara Janardhanan Nair, Dileep; Zhang, Yilei

    2015-07-01

    When silica is extruded, diffusion of metal atoms into silica results contamination to the silica being heated, and thus is a serious concern for the glass extrusion process, such as extrusion of glass fiber preform. This paper examines diffusion between fused silica and two high strength metals, the stainless steel SS410 and the superalloy Inconel 718, at 1000 °C and under the normal atmosphere condition by SEM and Electron Dispersion Spectrum. It is found that diffusion occurs between silica and SS410, and at the same time, SS410 is severely oxidized during diffusion experiment. On the contrary, the diffusion between Inconel 718 and silica is unnoticeable, suggesting excellent high temperature performance of Inconel 718 for glass extrusion.

  5. Fiber-laser-pumped, high-energy, mid-IR, picosecond optical parametric oscillator with a high-harmonic cavity.

    PubMed

    Xu, L; Chan, H-Y; Alam, S-U; Richardson, D J; Shepherd, D P

    2015-07-15

    We demonstrate the generation of high-energy, mid-IR, picosecond pulses in a high-harmonic-cavity optical parametric oscillator (OPO) that has a relatively compact cavity with a length that is a small fraction of that required to match the pump repetition rate. The OPO, based on an MgO-doped periodically poled LiNbO3 crystal, is pumped by a fiber master-oscillator-power-amplifier system employing direct amplification and delivering 11-μJ, 150-ps pulses at 1035 nm. For a 1.554-m-long OPO cavity, resonating near-infrared signal pulses with a repetition rate that is the 193rd harmonic of the 1-MHz pump are demonstrated. The mid-infrared idler output pulses, tunable from 2300 nm to 3500 nm, are generated at a 1-MHz repetition rate and have energies as high as 1.5 μJ.

  6. Two-dimensional pseudo-random optical phased array based on tandem optical injection locking of vertical cavity surface emitting lasers.

    PubMed

    Sayyah, Keyvan; Efimov, Oleg; Patterson, Pamela; Schaffner, James; White, Carson; Seurin, Jean-Francois; Xu, Guoyang; Miglo, Alexander

    2015-07-27

    We demonstrate, both theoretically and experimentally, a pseudo-random, two-dimensional optical phased array (OPA) concept based on tandem injection locking of 64-element vertical cavity surface emitting laser (VCSEL) arrays. A low cavity-Q VCSEL design resulted in an injection locking optical power of less than 1 μW per VCSEL, providing large OPA scaling potential. Tandem injection locking of two VCSEL arrays resulted in measured controllable optical phase change of 0-1.6π. A high quality beam formed with suppressed grating lobes due to the pseudo-random array design was demonstrated with performance close to simulated results. A preliminary 2.2° x 1.2° beam steering example using the tandem arrays was also demonstrated.

  7. Coaxial multishell nanowires with high-quality electronic interfaces and tunable optical cavities for ultrathin photovoltaics.

    PubMed

    Kempa, Thomas J; Cahoon, James F; Kim, Sun-Kyung; Day, Robert W; Bell, David C; Park, Hong-Gyu; Lieber, Charles M

    2012-01-31

    Silicon nanowires (NWs) could enable low-cost and efficient photovoltaics, though their performance has been limited by nonideal electrical characteristics and an inability to tune absorption properties. We overcome these limitations through controlled synthesis of a series of polymorphic core/multishell NWs with highly crystalline, hexagonally-faceted shells, and well-defined coaxial (p/n) and p/intrinsic/n (p/i/n) diode junctions. Designed 200-300 nm diameter p/i/n NW diodes exhibit ultralow leakage currents of approximately 1 fA, and open-circuit voltages and fill-factors up to 0.5 V and 73%, respectively, under one-sun illumination. Single-NW wavelength-dependent photocurrent measurements reveal size-tunable optical resonances, external quantum efficiencies greater than unity, and current densities double those for silicon films of comparable thickness. In addition, finite-difference-time-domain simulations for the measured NW structures agree quantitatively with the photocurrent measurements, and demonstrate that the optical resonances are due to Fabry-Perot and whispering-gallery cavity modes supported in the high-quality faceted nanostructures. Synthetically optimized NW devices achieve current densities of 17 mA/cm(2) and power-conversion efficiencies of 6%. Horizontal integration of multiple NWs demonstrates linear scaling of the absolute photocurrent with number of NWs, as well as retention of the high open-circuit voltages and short-circuit current densities measured for single NW devices. Notably, assembly of 2 NW elements into vertical stacks yields short-circuit current densities of 25 mA/cm(2) with a backside reflector, and simulations further show that such stacking represents an attractive approach for further enhancing performance with projected efficiencies of > 15% for 1.2 μm thick 5 NW stacks.

  8. Evaluation of thermal expansion coefficient of Fabry-Perot cavity using an optical frequency comb

    NASA Astrophysics Data System (ADS)

    Oulehla, Jindřich; Šmíd, Radek; Buchta, Zdeněk; Čížek, Martin; Mikel, Břetislav; Jedlička, Petr; Lazar, Josef; Číp, Ondřej

    2011-05-01

    In construction of highly mechanically stable measuring devices like AFM microscopes or nano-comparators the use of low expansion materials is very necessary. We can find Zerodur ceramics or ULE glasses used as a frame or basement of these devices. The expansion coefficient of such low-expansion materials is lower than 0.01 x 10-6 m•K-1. For example in case of a frame or basement 20 cm long it leads to a dilatation approximately 4 nm per 1 K. For calculation of the total uncertainty of the mentioned measuring devices the knowledge of the thermal expansion coefficient of the frame or basement is necessary. In this work we present a method, where small distance changes are transformed into rf-frequency signal. The frequency of this signal is detected by a counter which measures the value of the frequency with respect to an ultra-stable time-base. This method uses a Fabry-Perot cavity as a distance measuring tool. The spacer of the optical resonator is made from the investigated low-expansion material. It is placed into a vacuum chamber where the inside temperature is controlled. A selected mode of the femtosecond frequency of the femtosecond comb which represent the distance changes of the optical resonator. The frequency is measured by the rf-counter which is synchronized by a time-base signal from an atomic clock. The first results show the resolution of the method in the 0.1 nm order. Therefore the method has a potential in characterisation of materials in the nanoworld.

  9. An improved oxygen diffusion model to explain the effect of low-temperature baking on high field losses in niobium superconducting cavities

    SciTech Connect

    Ciovati, Gianluigi

    2006-07-01

    Radio-frequency (RF) superconducting cavities made of high purity niobium are widely used to accelerate charged particle beams in particle accelerators. The major limitation to achieve RF field values approaching the theoretical limit for niobium is represented by ''anomalous'' losses which degrade the quality factor of the cavities starting at peak surface magnetic fields of about 100 mT, in absence of field emission. These high field losses are often referred to as ''Q-drop''. It has been observed that the Q-drop is drastically reduced by baking the cavities at 120 C for about 48 h under ultrahigh vacuum. An improved oxygen diffusion model for the niobium-oxide system is proposed to explain the benefit of the low-temperature baking on the Q-drop in niobium superconducting rf cavities. The model shows that baking at 120 C for 48 h allows oxygen to diffuse away from the surface, and therefore increasing the lower critical field towards the value for pure niobium.

  10. A selective optical sensor based on [9]mercuracarborand-3, a new type of ionophore with a chloride complexing cavity

    NASA Technical Reports Server (NTRS)

    Badr, I. H.; Johnson, R. D.; Diaz, M.; Hawthorne, M. F.; Bachas, L. G.; Daunert, S. (Principal Investigator)

    2000-01-01

    A highly selective optical sensor for chloride, based on the multidentate Lewis acid ionophore [9]mercuracarborand-3, is described herein. This sensor is constructed by embedding the mercuracarborand ionophore, a suitable pH-sensitive lipophilic dye, and lipophilic cationic sites in a plasticized polymeric membrane. The multiple complementary interactions offered by the preorganized complexing cavity of [9]mercuracarborand-3 is shown to control the anion selectivity pattern of the optical film. The film exhibits a significantly enhanced selectivity for chloride over a variety of lipophilic anions such as perchlorate, nitrate, salicylate, and thiocyanate. Furthermore, the optical selectivity coefficients obtained for chloride over other biologically relevant anions are shown to meet the selectivity requirements for the determination of chloride in physiological fluids, unlike previously reported chloride optical sensors. In addition, the optical film responds to chloride reversibly over a wide dynamic range (16 microM-136 mM) with fast response and recovery times.

  11. Spurious electro-optic coefficients inferred from modulation ellipsometry measurements in the presence of an air cavity

    NASA Astrophysics Data System (ADS)

    Quilty, J. W.

    2017-04-01

    This paper describes how thin air gaps in multilayer polymer thin film structures can lead to unexpectedly large signals in modulation ellipsometry experiments, which can then be misinterpreted as the electro-optic effect. The contributions from the electro-optic effect and polarisation on reflection from the air cavity are indistinguishable and the reflection contribution can be on the order of 100 times that of the electro-optic effect. Caution must thus be exercised in any attempt to measure electro-optic coefficients with modulation ellipsometry in the presence of air gaps, to avoid spuriously high results. Thin film multilayer structures containing air gaps may be suitable for some of the same applications as electro-optic reflectance modulators.

  12. High-resolution, large dynamic range fiber-optic thermometer with cascaded Fabry-Perot cavities.

    PubMed

    Liu, Guigen; Sheng, Qiwen; Hou, Weilin; Han, Ming

    2016-11-01

    The paradox between a large dynamic range and a high resolution commonly exists in nearly all kinds of sensors. Here, we propose a fiber-optic thermometer based on dual Fabry-Perot interferometers (FPIs) made from the same material (silicon), but with different cavity lengths, which enables unambiguous recognition of the dense fringes associated with the thick FPI over the free-spectral range determined by the thin FPI. Therefore, the sensor combines the large dynamic range of the thin FPI and the high resolution of the thick FPI. To verify this new concept, a sensor with one 200 μm thick silicon FPI cascaded by another 10 μm thick silicon FPI was fabricated. A temperature range of -50°C to 130°C and a resolution of 6.8×10-3°C were demonstrated using a simple average wavelength tracking demodulation. Compared to a sensor with only the thick silicon FPI, the dynamic range of the hybrid sensor was more than 10 times larger. Compared to a sensor with only the thin silicon FPI, the resolution of the hybrid sensor was more than 18 times higher.

  13. Diffuse Reflectance Spectroscopy of Human Skin Using a Commercial Fiber Optic Spectrometer

    SciTech Connect

    Atencio, J. A. Delgado; Rodriguez, M. Cunill; Montiel, S. Vazquez y; Castro, Jorge; Rodriguez, A. Cornejo; Gutierrez, J. L.; Martinez, F.; Gutierrez, B.; Orozco, E.

    2008-08-11

    Diffuse reflectance spectroscopy is a reliable and easy to implement technique in human tissue characterization. In this work we evaluate the performance of the commercial USB4000 miniature fiber optic spectrometer in the in-vivo measurement of the diffuse reflectance spectra of different healthy skin sites and lesions in a population of 54 volunteers. Results show, that this spectrometer reproduces well the typical signatures of skin spectra over the 400-1000 nm region. Remarkable spectral differences exist between lesions and normal surrounding skin. A diffusion-based model was used to simulate reflectance spectra collected by the optical probe of the system.

  14. Gaugement of the inner space of the apomyoglobin's heme binding site by a single free diffusing proton. I. Proton in the cavity.

    PubMed

    Shimoni, E; Tsfadia, Y; Nachliel, E; Gutman, M

    1993-02-01

    Time resolved fluorimetry was employed to monitor the geminate recombination between proton and excited pyranine anion locked, together with less than 30 water molecules, inside the heme binding site of Apomyoglobin (sperm whale). The results were analyzed by a numerical reconstruction of the differential rate equation for time-dependent diffusion controlled reaction with radiating boundaries using N. Agmon's procedure (Huppert, Pines, and Agmon, 1990, J. Opt. Soc. Am. B., 7:1541-1550). The analysis of the curve provided the effective dielectric constant of the proton permeable space in the cavity and the diffusion coefficient of the proton. The electrostatic potential within the cavity was investigated by the equations given by Gilson et al. (1985, J. Mol. Biol., 183:503-516). According to this analysis the dielectric constant of the protein surrounding the site is epsilon prot < or = 6.5. The diffusion coefficient of the proton in the heme binding site of Apomyoglobin-pyranine complex is D = 4 x 10(-5) cm2/s. This value is approximately 50% of the diffusion coefficient of proton in water. The lower value indicates enhanced ordering of water in the cavity, a finding which is corroborated by a large negative enthropy of binding delta S0 = -46.6 cal.mole-1 deg-1. The capacity of a small cavity in a protein to retain a proton had been investigated through the mathematical reconstruction of the dynamics. It has been demonstrated that Coulombic attraction, as large as delta psi of energy coupling membrane, is insufficient to delay a free proton for a time frame comparable to the turnover time of protogenic sites.

  15. Gaugement of the inner space of the apomyoglobin's heme binding site by a single free diffusing proton. I. Proton in the cavity.

    PubMed Central

    Shimoni, E; Tsfadia, Y; Nachliel, E; Gutman, M

    1993-01-01

    Time resolved fluorimetry was employed to monitor the geminate recombination between proton and excited pyranine anion locked, together with less than 30 water molecules, inside the heme binding site of Apomyoglobin (sperm whale). The results were analyzed by a numerical reconstruction of the differential rate equation for time-dependent diffusion controlled reaction with radiating boundaries using N. Agmon's procedure (Huppert, Pines, and Agmon, 1990, J. Opt. Soc. Am. B., 7:1541-1550). The analysis of the curve provided the effective dielectric constant of the proton permeable space in the cavity and the diffusion coefficient of the proton. The electrostatic potential within the cavity was investigated by the equations given by Gilson et al. (1985, J. Mol. Biol., 183:503-516). According to this analysis the dielectric constant of the protein surrounding the site is epsilon prot < or = 6.5. The diffusion coefficient of the proton in the heme binding site of Apomyoglobin-pyranine complex is D = 4 x 10(-5) cm2/s. This value is approximately 50% of the diffusion coefficient of proton in water. The lower value indicates enhanced ordering of water in the cavity, a finding which is corroborated by a large negative enthropy of binding delta S0 = -46.6 cal.mole-1 deg-1. The capacity of a small cavity in a protein to retain a proton had been investigated through the mathematical reconstruction of the dynamics. It has been demonstrated that Coulombic attraction, as large as delta psi of energy coupling membrane, is insufficient to delay a free proton for a time frame comparable to the turnover time of protogenic sites. PMID:8384501

  16. Composite cavity based fiber optic Fabry Perot strain sensors demodulated by an unbalanced fiber optic Michelson interferometer with an electrical scanning mirror

    NASA Astrophysics Data System (ADS)

    Zhang, Jianzhong; Yang, Jun; Sun, Weimin; Jin, Wencai; Yuan, Libo; Peng, G. D.

    2008-08-01

    A composite cavity based fiber optic Fabry-Perot strain sensor system, interrogated by a white light source and demodulated by an unbalanced fiber optic Michelson interferometer with an electrical scanning mirror, is proposed and demonstrated. Comparing with the traditional extrinsic fiber optic Fabry-Perot strain sensor, the potential multiplexing capability and the dynamic measurement range are improved simultaneously. At the same time, the measurement stability of the electrical scanning mirror system is improved by the self-referenced signal of the sensor structure.

  17. Optical measurement of transverse molecular diffusion in a microchannel.

    PubMed Central

    Kamholz, A E; Schilling, E A; Yager, P

    2001-01-01

    Quantitative analysis of molecular diffusion is a necessity for the efficient design of most microfluidic devices as well as an important biophysical method in its own right. This study demonstrates the rapid measurement of diffusion coefficients of large and small molecules in a microfluidic device, the T-sensor, by means of conventional epifluorescence microscopy. Data were collected by monitoring the transverse flux of analyte from a sample stream into a second stream flowing alongside it. As indicated by the low Reynolds numbers of the system (< 1), flow is laminar, and molecular transport between streams occurs only by diffusion. Quantitative determinations were made by fitting data with predictions of a one-dimensional model. Analysis was made of the flow development and its effect on the distribution of diffusing analyte using a three-dimensional modeling software package. Diffusion coefficients were measured for four fluorescently labeled molecules: fluorescein-biotin, insulin, ovalbumin, and streptavidin. The resulting values differed from accepted results by an average of 2.4%. Microfluidic system parameters can be selected to achieve accurate diffusion coefficient measurements and to optimize other microfluidic devices that rely on precise transverse transport of molecules. PMID:11259309

  18. Electric dipole coupling in optical cavities and its implications for energy transfer, up-conversion, and pooling

    NASA Astrophysics Data System (ADS)

    LaCount, Michael D.; Lusk, Mark T.

    2016-06-01

    Resonant energy transfer, energy transfer up-conversion, and energy pooling are considered within optical cavities to elucidate the relationship between exciton dynamics and donor-acceptor separation distance. This is accomplished by using perturbation theory to derive analytic expressions for the electric dipole coupling tensors of perfect planar and rectangular channel reflectors—directly related to a number of important energy-transfer processes. In the near field, the separation dependence along the cavity axis is not influenced by the cavity and is essentially the same as for three-dimensional free space. This is in sharp contrast with the reduced sensitivity to separation found in idealized low-dimensional settings. The cavity dynamics only correspond to their reduced-dimensional counterparts in the far field where such excitonic processes are not typically of interest. There is an intermediate regime, though, where sufficiently small cavities cause a substantial decrease in separation sensitivity that results in one component of the dipole-dipole coupling tensor being much larger than those of free space.

  19. Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Foltynowicz, A.; Masłowski, P.; Fleisher, A. J.; Bjork, B. J.; Ye, J.

    2013-02-01

    We demonstrate the first cavity-enhanced optical frequency comb spectroscopy in the mid-infrared wavelength region and report the sensitive real-time trace detection of hydrogen peroxide in the presence of a large amount of water. The experimental apparatus is based on a mid-infrared optical parametric oscillator synchronously pumped by a high-power Yb:fiber laser, a high-finesse broadband cavity, and a fast-scanning Fourier transform spectrometer with autobalancing detection. The comb spectrum with a bandwidth of 200 nm centered around 3.76 μm is simultaneously coupled to the cavity and both degrees of freedom of the comb, i.e. the repetition rate and carrier envelope offset frequency, are locked to the cavity to ensure stable transmission. The autobalancing detection scheme reduces the intensity noise by a factor of 300, and a sensitivity of 5.4×10-9 cm-1 Hz-1/2 with a resolution of 800 MHz is achieved (corresponding to 6.9×10-11 cm-1 Hz-1/2 per spectral element for 6000 resolved elements). This yields a noise equivalent detection limit for hydrogen peroxide of 8 parts-per-billion (ppb); in the presence of 2.8 % of water the detection limit is 130 ppb. Spectra of acetylene, methane, and nitrous oxide at atmospheric pressure are also presented, and a line-shape model is developed to simulate the experimental data.

  20. Optical biomarkers for breast cancer derived from dynamic diffuse optical tomography.

    PubMed

    Flexman, Molly L; Kim, Hyun K; Gunther, Jacqueline E; Lim, Emerson A; Alvarez, Maria C; Desperito, Elise; Kalinsky, Kevin; Hershman, Dawn L; Hielscher, Andreas H

    2013-09-01

    Diffuse optical tomography (DOT) is a noninvasive, nonionizing imaging modality that uses near-infrared light to visualize optically relevant chromophores. A recently developed dynamic DOT imaging system enables the study of hemodynamic effects in the breast during a breath-hold. Dynamic DOT imaging was performed in a total of 21 subjects (age 54±10  years) including 3 healthy subjects and 18 subjects with benign (n=8) and malignant (n=14) masses. Three-dimensional time-series images of the percentage change in oxygenated and deoxygenated hemoglobin concentrations ([HbO2] and [Hb]) from baseline are obtained over the course of a breath-hold. At a time point of 15 s following the end of the breath-hold, [Hb] in healthy breasts has returned to near-baseline values (1.6%±0.5%), while tumor-bearing breasts have increased levels of [Hb] (6.8%±3.6%, p<0.01). Further, healthy subjects have a higher correlation between the breasts over the course of the breath-hold as compared with the subjects with breast cancer (healthy: 0.96±0.02; benign: 0.89±0.02; malignant: 0.78±0.23, p<0.05). Therefore this study shows that dynamic features extracted from DOT measurements can differentiate healthy and diseased breast tissues. These features provide a physiologic method for identifying breast cancer without the need for ionizing radiation.

  1. Electronic sideband locking of a broadly tunable 318.6 nm ultraviolet laser to an ultra-stable optical cavity

    NASA Astrophysics Data System (ADS)

    Bai, Jiandong; Wang, Jieying; He, Jun; Wang, Junmin

    2017-04-01

    We demonstrate frequency stabilization of a tunable 318.6 nm ultraviolet (UV) laser system using electronic sideband locking. By indirectly changing the frequency of a broadband electro-optic phase modulator, the laser can be continuously tuned over 4 GHz, while a 637.2 nm laser is directly stabilized to a high-finesse ultra-stable optical cavity. The doubling cavity also remains locked to the 637.2 nm light. We show that the tuning range depends mainly on the gain-flattening region of the modulator and the piezo-tunable range of the seed laser. The frequency-stabilized tunable UV laser system is able to compensate for the offset between reference and target frequencies, and has potential applications in precision spectroscopy of cold atoms.

  2. Simultaneous measurement of refractive index and temperature with micro silica sphere cavity hybrid Fabry Perot optical fiber sensor

    NASA Astrophysics Data System (ADS)

    Ranjbar Naeini, O. R.; Latifi, H.; Zibaii, M. I.

    2015-09-01

    In this article, a novel Micro Silica Sphere Cavity Hybrid Fabry Perot optical fiber sensor is reported where refractive index (RI) and temperature can be simultaneously measured. The sensor is based on Micro Silica Sphere that was fabricated using a capillary tube. The micro silica sphere and optical fiber form a Hybrid Fabry Perot cavity. The temperature cross sensitivity of this sensor is small enough to be used for accurate RI measurement. The temperature sensitivity and RI sensitivity are -0.0028 dBm/ºC, -0.0044 dBm/ºC , -24.09 dBm/RIU and -20.6 dBm/RIU respectively, using two selected resonances.

  3. Time-resolved measurements of the optical properties of fibrous media using the anisotropic diffusion equation

    NASA Astrophysics Data System (ADS)

    Simon, Emanuel; Krauter, Philipp; Kienle, Alwin

    2014-07-01

    Transmittance and reflectance from spruce wood and bovine ligamentum nuchae as two different fibrous media are examined by time-of-flight spectroscopy for varying source detector separations and several orientations of the fibers in the sample. The anisotropic diffusion theory is used to obtain the absorption coefficient and the diffusion coefficients parallel and perpendicular to the fibers. The results are compared to those obtained with the isotropic diffusion theory. It is shown that for increasing source detector separations, the retrieved optical properties change as expected from Monte Carlo simulations performed in a previous study. This confirms that the anisotropic diffusion theory yields useful results for certain experimental conditions.

  4. A novel approach to a PPM-modulated frequency-doubled electro-optic cavity-dumped Nd:YAG laser

    NASA Technical Reports Server (NTRS)

    Robinson, D. L.

    1989-01-01

    A technique which can provide frequency doubling, with high efficiency, while cavity dumping a laser for pulse position M-ary modulation while being used for an optical communication link is discussed. This approach uses a secondary cavity that provides feedback of the undoubled fundamental light, which is normally lost, into the primary cavity to be recirculated and frequency doubled. Specific operations of the electrooptic modulator and frequency-doubling crystal are described along with the overall modulation scheme and experimental setup.

  5. Three-dimensional representation of late-arriving photons for detecting inhomogeneities in diffuse optical tomography

    SciTech Connect

    Potlov, A Yu; Proskurin, S G; Frolov, S V

    2014-02-28

    A method for rapid detection of absorbing inhomogeneity in a strongly scattering medium having the properties of a biological tissue before the image reconstruction is described based on the principles of diffuse optical tomography. The method is based on preliminary processing of a three-dimensional surface obtained from the set of time-resolved data in the Cartesian coordinate system, followed by its conformal transformation into two surfaces in the cylindrical coordinate system. A specific feature of the method is the use of late-arriving photons, scattered and diffusely transmitted through an optically turbid object. (optical tomography)

  6. Analogies between optical propagation and heat diffusion: applications to microcavities, gratings and cloaks

    PubMed Central

    Amra, C.; Petiteau, D.; Zerrad, M.; Guenneau, S.; Soriano, G.; Gralak, B.; Bellieud, M.; Veynante, D.; Rolland, N.

    2015-01-01

    A new analogy between optical propagation and heat diffusion in heterogeneous anisotropic media has been proposed recently by three of the present authors. A detailed derivation of this unconventional correspondence is presented and developed. In time harmonic regime, all thermal parameters are related to optical ones in artificial metallic media, thus making possible to use numerical codes developed for optics. Then, the optical admittance formalism is extended to heat conduction in multilayered structures. The concepts of planar microcavities, diffraction gratings and planar transformation optics for heat conduction are addressed. Results and limitations of the analogy are emphasized. PMID:26730214

  7. Coexisting oscillation modes and optical chaos in a hybrid ring cavity containing an induced absorber (CdS)

    SciTech Connect

    Wegener, M.; Klingshirn, C.

    1987-05-15

    We investigate the self-oscillations of an induced absorber (CdS, photothermal effects) in a hybrid ring cavity. If the induced absorber is intrinsically bistable, we show that for a given set of system parameters different oscillation modes may exist depending on the initial conditions. In contrast to the behavior of an intrinsically bistable absorber, we find a bifurcation route to optical chaos if the induced absorber is not intrinsically bistable.

  8. Spectral properties and phase diagram of correlated lattice bosons in an optical cavity within bosonic dynamical mean-field theory

    NASA Astrophysics Data System (ADS)

    Panas, Jaromir; Kauch, Anna; Byczuk, Krzysztof

    2017-03-01

    We use the Bose-Hubbard model with an effective infinite-range interaction to describe the correlated lattice bosons in an optical cavity. We study both static and spectral properties of such system within the bosonic dynamical mean-field theory, which is the state-of-the-art method for strongly correlated bosonic systems. Both similarities and differences are found and discussed between our results and those obtained within different theoretical methods and experiment.

  9. Effect of probe geometry and optical properties on the sampling depth for diffuse reflectance spectroscopy.

    PubMed

    Hennessy, Ricky; Goth, Will; Sharma, Manu; Markey, Mia K; Tunnell, James W

    2014-01-01

    The sampling depth of light for diffuse reflectance spectroscopy is analyzed both experimentally and computationally. A Monte Carlo (MC) model was used to investigate the effect of optical properties and probe geometry on sampling depth. MC model estimates of sampling depth show an excellent agreement with experimental measurements over a wide range of optical properties and probe geometries. The MC data are used to define a mathematical expression for sampling depth that is expressed in terms of optical properties and probe geometry parameters.

  10. ICG enhanced co-registered diffuse optical tomography and photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Xu, Chen; Kumavor, Patrick D.; Xu, Yan; Zhu, Quing

    2013-03-01

    To overcome the intensive light scattering in the biological tissue, diffuse optical tomography (DOT) in the near infrared range for breast lesion detection usually is combined with other imaging modalities such as ultrasound, X-ray, and MRI, to provide guidance. However, the guided imaging modalities may depend on different contrast mechanics compared to the optical contrast in the DOT. As a result, they can't provide reliable guidance for diffuse optical tomography because some lesions may not be detectable by a non-optical modality but yet have high optical contrast. An imaging modality which can provide the guidance from optical contrast is desirable for DOT. In this paper, we present a system that combines diffuse optical tomography and photoacoustic tomography (PAT), to detect and characterize the deeply-seated targets embedded in a turbid medium. Photoacoustic tomography utilizes a short-pulsed laser beam to penetrate into tissue diffusively. Upon absorption of the light by the target, photoacoustic waves are generated and used to reconstruct, at ultrasound resolution, the optical absorption distribution that reveals optical contrast. The combined system used in the experiment combines a 64-channel photoacoustic system with a frequency-domain diffused optical system. To further improve the contrast, the exogenous contrast agent, indocyanine green (ICG) is used. Our experiment results show that the combined system can detect a tumormimicking phantom up to 2.5 cm in depth and 10 μM in concentration. Mice experiments also confirmed that the combined system can detect the tumor region and monitor the ICG uptake and washout in the tumor region. This method can potentially improve the accuracy to detect the small breast lesions or any lesions which are sensitive to the reference change, such as the lesions located on the chest wall.

  11. Optical feedback cavity-enhanced absorption spectroscopy with a 3.24 μm interband cascade laser

    SciTech Connect

    Manfred, K. M.; Ritchie, G. A. D.; Lang, N.; Röpcke, J.; Helden, J. H. van

    2015-06-01

    The development of interband cascade lasers (ICLs) has made the strong C-H transitions in the 3 μm spectral region increasingly accessible. We present the demonstration of a single mode distributed feedback ICL coupled to a V-shaped optical cavity in an optical feedback cavity-enhanced absorption spectroscopy (OF-CEAS) experiment. We achieved a minimum detectable absorption coefficient, α{sub min}, of (7.1±0.2)×10{sup −8} cm{sup −1} for a spectrum of CH{sub 4} at 3.24 μm with a two second acquisition time (100 scans averaged). This corresponds to a detection limit of 3 ppb CH{sub 4} at atmospheric pressure, which is comparable to previously reported OF-CEAS instruments with diode lasers or quantum cascade lasers. The ability to frequency lock an ICL source in the important 3 μm region to an optical cavity holds great promise for future spectroscopic applications.

  12. Optimizing the external optical cavity parameters for performance improvement of a fiber grating Fabry-Perot laser

    NASA Astrophysics Data System (ADS)

    Hisham, Hisham Kadhum; Abas, Ahmad Fauzi; Amouzad Mahdiraji, Ghafour; Mahdi, Mohd Adzir; Mahamd Adikan, Faisal Rafiq

    2015-04-01

    The effects of the external optical cavity parameters (external optical cavity length ( L ext), amplitude coupling ( C o) and anti-reflection coating (ARC) reflectivity coefficients) on the noise and modulation spectra of a fiber grating Fabry-Perot laser are numerically analyzed for designing a laser that operates in strong feedback regime (Regime V). Fiber Bragg grating (FBG) is used as a wavelength selective element to control the properties of the laser output by controlling the external optical feedback (OFB) level. The study is performed by modifying a set of rate equations that are solved by considering the effects of external OFB and ambient temperature ( T) variations. We proposed a model to calculate the temperature dependence (TD) of laser characteristics according to the TD of laser parameters. An accurate analytical expression for the TD of threshold carrier density ( N th,fe) has been derived. The TD of N th,fe was calculated according to the TD of laser cavity parameters instead of using well-known empirical Pankove relationship via the use of characteristics temperature ( T o) and current ( I o). Results show that the optimum external fiber length ( L ext) is 3.1 cm. Also, it is shown that ARC with reflectivity value of 1 × 10-2 is sufficient for the laser to operate at low noise, good modulation response, and low fabrication complexity.

  13. Reduction of the time-to-full-brightness in solid-state lasers using intra-cavity adaptive optics.

    PubMed

    Lubeigt, Walter; Griffith, Mike; Laycock, Leslie; Burns, David

    2009-07-06

    Several adaptive-optics techniques, based on the active modification of the optical properties of the laser cavity, were used to significantly reduce the time-to-full-brightness of solid-state lasers. Resonator re-configuration was achieved using a mechanical translation stage and both multi- and single-element deformable bimorph mirrors. Using these techniques the effects of thermally induced distortion in Nd:YLF and Nd:YAG lasers can be minimized and the warm-up time reduced by a factor of 3-6.

  14. Accessing deep optical properties of skin using diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Koenig, Anne; Roig, Blandine; Le Digabel, Jimmy; Josse, Gwendal; Dinten, Jean-Marc

    2015-07-01

    Diffuse reflectance spectroscopy characterizes composition and structure of tissues by determining their scattering and absorption properties. We have developed in our laboratory a low-cost spatially resolved diffuse reflectance spectroscopy instrument. We present in this study some results showing how to adapt this technology on multi-layered tissues. First of all, a method enabling determination of scattering and absorption properties of multi-layered phantoms is described; the adaptation of the initial methodology to focus on deep layers is especially detailed. Then some preliminary results obtained on a panel of volunteer's redness faces are presented.

  15. Multimode nanobeam cavities for nonlinear optics: high quality resonances separated by an octave.

    PubMed

    Buckley, Sonia; Radulaski, Marina; Zhang, Jingyuan Linda; Petykiewicz, Jan; Biermann, Klaus; Vučković, Jelena

    2014-11-03

    We demonstrate the design, fabrication and characterization of nanobeam cavities with multiple higher order modes. Designs with two high Q modes with frequency separations of an octave are introduced, and we fabricate such cavities exhibiting resonances with wavelength separations of up to 740 nm.

  16. Ultrasensitive near-infrared integrated cavity output spectroscopy technique for detection of CO at 1.57 μm: new sensitivity limits for absorption measurements in passive optical cavities

    NASA Astrophysics Data System (ADS)

    Engel, Gregory S.; Drisdell, Walter S.; Keutsch, Frank N.; Moyer, Elisabeth J.; Anderson, James G.

    2006-12-01

    A robust absorption spectrometer using the off-axis integrated cavity output spectroscopy (ICOS) technique in a passive cavity is presented. The observed sensitivity, conceptually the detection threshold for the absorption cross section (cm2) multiplied by the concentration (cm-3) and normalized by the averaging time, is measured to be 1.9×10-12 (1/cm√Hz). This high sensitivity arises from using the optical cavity to amplify the observed path length in the spectrometer while avoiding cavity resonances by careful design of the spot pattern within the cavity. The instrument is ideally suited for routine monitoring of trace gases in the near-infrared region. A spectrum showing ambient carbon monoxide at 1.57 μm is presented.

  17. Properties of optical breakdown in BK7 glass induced by an extended-cavity femtosecond laser oscillator.

    PubMed

    Do, Binh T; Phillips, Mark C; Miller, Paul A; Kimmel, Mark W; Britsch, Justin; Cho, Seong-Ho

    2009-02-16

    Using an extended-cavity femtosecond oscillator, we investigated optical breakdown in BK7 glass caused by the accumulated action of many laser pulses. By using a pump-probe experiment and collecting the transmitted pump along with the reflected pump and the broadband light generated by the optical breakdown, we measured the build-up time to optical breakdown as a function of the pulse energy, and we also observed the instability of the plasma due to the effect of defocusing and shielding created by the electron gas. The spectrum of the broadband light emitted by the optical breakdown and the origin of the material modification in BK7 glass was studied. We developed a simple model of electromagnetic wave propagation in plasma that is consistent with the observed behavior of the reflection, absorption, and transmission of the laser light.

  18. Adiabatic transfer of light in a double cavity and the optical Landau-Zener problem

    SciTech Connect

    Miladinovic, N.; Hasan, F.; Linnington, I. E.; O'Dell, D. H. J.; Chisholm, N.; Hinds, E. A.

    2011-10-15

    We analyze the evolution of an electromagnetic field inside a double cavity when the difference in length between the two cavities is changed, e.g., by translating the common mirror. We find that this allows photons to be moved deterministically from one cavity to the other. We are able to obtain the conditions for adiabatic transfer by first mapping the Maxwell wave equation for the electric field onto a Schroedinger-like wave equation and then using the Landau-Zener result for the transition probability at an avoided crossing. Our analysis reveals that this mapping only rigorously holds when the two cavities are weakly coupled (i.e., in the regime of a highly reflective common mirror) and that, generally speaking, care is required when attempting a Hamiltonian description of cavity electrodynamics with time-dependent boundary conditions.

  19. Measurement of laser heating in spin exchange optical pumping by NMR diffusion sensitization gradients

    SciTech Connect

    Parnell, Steven R.; Deppe, Martin H.; Ajraoui, Salma; Parra-Robles, Juan; Wild, Jim M.; Boag, Stephen

    2010-05-15

    This paper details pulsed gradient NMR measurements of the {sup 3}He diffusion coefficient in sealed cells during spin exchange optical pumping. The potential of ultra low field magnetic resonance imgaing (MRI) and NMR for noninvasive measurement of cell pressure is demonstrated. Diffusion sensitization gradients allow measurement of the {sup 3}He diffusion coefficient from which the pressure and/or temperature of the gas can be determined during optical pumping. The pressure measurements were compared with neutron time of flight transmission measurements. Good agreement was observed between the temperature/pressure measurements and predictions based on Chapman-Enskog theory. The technique had sufficient sensitivity to observe the diffusion coefficient increasing with temperature in a sealed cell. With this method, evidence for laser heating of the {sup 3}He during optical pumping was found. The results show that NMR diffusion measurements allow noninvasive measurement of the cell temperature and/or pressure in an optical pumping setup. The method can be expanded using MRI to probe the spatial distribution of the diffusion coefficient. These techniques can be applied to the further investigation of polarization limiting effects such as laser heating.

  20. Recovery of optical properties using interstitial cylindrical diffusers as source and detector fibers

    NASA Astrophysics Data System (ADS)

    Baran, Timothy M.

    2016-07-01

    We demonstrate recovery of optical properties using arrays of interstitial cylindrical diffusing fibers as sources and detectors. A single 1-cm diffuser delivered laser illumination at 665 nm, while seven 1- and 2-cm diffusers at 1-cm grid spacing acted as detectors. Extraction of optical properties from these measurements was based upon a diffusion model of emission and detection distributions for these diffuser fibers, informed by previous measurements of heterogeneous axial detection. Verification of the technique was performed in 15 liquid tissue-simulating phantoms consisting of deionized water, India ink as absorber, and Intralipid 20% as scatterer. For the range of optical properties tested, mean errors were 4.4% for effective attenuation coefficient, 12.6% for absorption coefficient, and 7.6% for reduced scattering coefficient. Error in recovery tended to increase with decreasing transport albedo. For therapeutic techniques involving the delivery of light to locations deep within the body, such as interstitial photodynamic and photothermal therapies, the methods described here would allow the treatment diffuser fibers also to be used as sources and detectors for recovery of optical properties. This would eliminate the need for separately inserted fibers for spectroscopy, reducing clinical complexity and improving the accuracy of treatment planning.

  1. Optical characterization of volcanic ash using diffuse reflection spectroscopy

    NASA Astrophysics Data System (ADS)

    Bravo, D. Kelly; Falcón, Nelsón; Narea, Freddy J.; Muñoz, Rafael A.; Muñoz, Aaron A.

    2013-11-01

    The determination of the optical parameters are important for remote sensing and aircraft, in this case allow the difference between a cloud composed solely of water and water plus ash. Therefore, this research is intended to determine the optical properties of the ash four active volcanoes, by studying the spectral resolution reflectance interpreting the results in the approximation of Kubelka - Munk equation through the transfer equation radiative. The results allow classifying these ashes depending on their place of origin.

  2. The Measurement of Aerosol Optical Properties using Continuous Wave Cavity Ring-Down Techniques

    NASA Technical Reports Server (NTRS)

    Strawa, Anthony W.; Castaneda, Rene; Owano, Thomas; Baer, Douglas S.; Paldus, Barbara A.; Gore, Warren J. (Technical Monitor)

    2002-01-01

    Large uncertainties in the effects that aerosols have on climate require improved in situ measurements of extinction coefficient and single-scattering albedo. This paper describes the use of continuous wave cavity ring-down (CW-CRD) technology to address this problem. The innovations in this instrument are the use of CW-CRD to measure aerosol extinction coefficient, the simultaneous measurement of scattering coefficient, and small size suitable for a wide range of aircraft applications. Our prototype instrument measures extinction and scattering coefficient at 690 nm and extinction coefficient at 1550 nm. The instrument itself is small (60 x 48 x 15 cm) and relatively insensitive to vibrations. The prototype instrument has been tested in our lab and used in the field. While improvements in performance are needed, the prototype has been shown to make accurate and sensitive measurements of extinction and scattering coefficients. Combining these two parameters, one can obtain the single-scattering albedo and absorption coefficient, both important aerosol properties. The use of two wavelengths also allows us to obtain a quantitative idea of the size of the aerosol through the Angstrom exponent. Minimum sensitivity of the prototype instrument is 1.5 x 10(exp -6)/m (1.5 M/m). Validation of the measurement of extinction coefficient has been accomplished by comparing the measurement of calibration spheres with Mie calculations. This instrument and its successors have potential to help reduce uncertainty currently associated with aerosol optical properties and their spatial and temporal variation. Possible applications include studies of visibility, climate forcing by aerosol, and the validation of aerosol retrieval schemes from satellite data.

  3. The Measurement of Aerosol Optical Properties Using Continuous Wave Cavity Ring-Down Techniques

    NASA Technical Reports Server (NTRS)

    Strawa, A. W.; Owano, T.; Castaneda, R.; Baer, D. S.; Paldus, B. A.; Gore, Warren J. (Technical Monitor)

    2002-01-01

    Large uncertainties in the effects that aerosols have on climate require improved in-situ measurements of extinction coefficient and single-scattering albedo. This abstract describes the use of continuous wave cavity ring-down (CW-CRD) technology to address this problem. The innovations in this instrument are the use of CW-CRD to measure aerosol extinction coefficient, the simultaneous measurement of scattering coefficient, and small size suitable for a wide range of aircraft applications. Our prototype instrument measures extinction and scattering coefficient at 690 nm and extinction coefficient at 1550 nm. The instrument itself is small (60 x 48 x 15 cm) and relatively insensitive to vibrations. The prototype instrument has been tested in our lab and used in the field. While improvements in performance are needed, the prototype has been shown to make accurate and sensitive measurements of extinction and scattering coefficients. Combining these two parameters, one can obtain the single-scattering albedo and absorption coefficient, both important aerosol properties. The use of two wavelengths also allows us to obtain a quantitative idea of the size of the aerosol through the Angstrom exponent. Minimum sensitivity of the prototype instrument is 1.5 x 10(exp -6)/m (1.5/Mm). Validation of the measurement of extinction coefficient has been accomplished by comparing the measurement of calibration spheres with Mie calculations. This instrument and its successors have potential to help reduce uncertainty currently associated with aerosol optical properties and their spatial and temporal variation. Possible applications include studies of visibility, climate forcing by aerosol, and the validation of aerosol retrieval schemes from satellite data.

  4. Optical properties of organic-silicon photonic crystal nanoslot cavity light source

    NASA Astrophysics Data System (ADS)

    Yang, Ming-Jay; Lin, Chun-Chi; Wu, Yu-Shu; Wang, Likarn; Na, Neil

    2017-03-01

    We theoretically study a dielectric photonic crystal nanoslot cavity immersed in an organic fluid containing near-infrared dyes by means of a full rate equation model including the complete cavity QED effects. Based on the modeling results, we numerically design an organic-silicon cavity light source in which its mode volume, quality factor, and far-field emission pattern are optimized for energy-efficient, high-speed applications. Dye quantum efficiency improved by two orders of magnitude and 3dB modulation bandwidth of a few hundred GHz can be obtained.

  5. Functional imaging and assessment of the glucose diffusion rate in epithelial tissues in optical coherence tomography

    SciTech Connect

    Larin, K V; Tuchin, V V

    2008-06-30

    Functional imaging, monitoring and quantitative description of glucose diffusion in epithelial and underlying stromal tissues in vivo and controlling of the optical properties of tissues are extremely important for many biomedical applications including the development of noninvasive or minimally invasive glucose sensors as well as for therapy and diagnostics of various diseases, such as cancer, diabetic retinopathy, and glaucoma. Recent progress in the development of a noninvasive molecular diffusion biosensor based on optical coherence tomography (OCT) is described. The diffusion of glucose was studied in several epithelial tissues both in vitro and in vivo. Because OCT provides depth-resolved imaging of tissues with high in-depth resolution, the glucose diffusion is described not only as a function of time but also as a function of depth. (special issue devoted to application of laser technologies in biophotonics and biomedical studies)

  6. UV laser with an acousto-optic intra-cavity control for GaN-sapphire cut

    NASA Astrophysics Data System (ADS)

    Gradoboev, Yury G.; Kazaryan, Mishik A.; Mokrushin, Yury M.; Shakin, Oleg V.

    2012-09-01

    A copper vapor laser is proposed as the basic component of the installation for processing of sapphire substrates with a GaN-coating. Laser radiation is transformed to UV range by optical frequency doubling. Powerful UV lasers are prospective tools for crystal cutting, photolithography and recording of the fiber Bragg gratings. The proposed approach is more promising in comparison with the use of excimer radiation because of instabilities of excimer laser generation and low coherence of its radiation, which makes difficult precise focusing and using interference pattern of UV radiation for exposing materials. UV laser based on second harmonic radiation of copper vapors laser has been designed. The UV laser system of high operation stability has been developed with output power 1 W at wavelengths 255.5 nm, 271.1 nm, 289.1 nm and coherence length radiation about 4 cm. The original intra-cavity acousto-optic control of output radiation is developed. It is allows adjusting frequency and on-off time ratio of output laser pulses with high accuracy. The stable heat regime was achieved for an active element of copper vapor laser̤ The laser system allows to select an optimum mode of ultra-violet radiation exposition for production of different optical elements. Intra-cavity acousto-optic cell was used for controlling of single pulse amplitude and number of pulses without any power supply tuning providing the stable operation of the laser system.

  7. Controllable optical response by modifying the gain and loss of a mechanical resonator and cavity mode in an optomechanical system

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Long; Wu, Rebing; Zhang, Jing; Özdemir, Şahin Kaya; Yang, Lan; Nori, Franco; Liu, Yu-xi

    2017-01-01

    We theoretically study a strongly driven optomechanical system which consists of a passive optical cavity and an active mechanical resonator. When the optomechanical coupling strength is varied, phase transitions, which are similar to those observed in PT -symmetric systems, are observed. We show that the optical transmission can be controlled by changing the gain of the mechanical resonator and loss of the optical cavity mode. Especially, we find that (i) for balanced gain and loss, optical amplification and absorption can be tuned by changing the optomechanical coupling strength through a control field; (ii) for unbalanced gain and loss, even with a tiny mechanical gain, both optomechanically induced transparency and anomalous dispersion can be observed around a critical point, which exhibits an ultralong group delay. The time delay τ can be optimized by regulating the optomechanical coupling strength through the control field, and it can be improved up to several orders of magnitude (τ ˜2 ms ) compared to that of conventional optomechanical systems (τ ˜1 μ s ). The presence of mechanical gain makes the group delay more robust to environmental perturbations. Our proposal provides a powerful platform to control light transport using a PT -symmetric-like optomechanical system.

  8. Noninvasive optical cytochrome c oxidase redox state measurements using diffuse optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Lee, Jangwoen; Kim, Jae G.; Mahon, Sari B.; Mukai, David; Yoon, David; Boss, Gerry R.; Patterson, Steven E.; Rockwood, Gary; Isom, Gary; Brenner, Matthew

    2014-05-01

    A major need exists for methods to assess organ oxidative metabolic states in vivo. By contrasting the responses to cyanide (CN) poisoning versus hemorrhage in animal models, we demonstrate that diffuse optical spectroscopy (DOS) can detect cytochrome c oxidase (CcO) redox states. Intermittent decreases in inspired O2 from 100% to 21% were applied before, during, and after CN poisoning, hemorrhage, and resuscitation in rabbits. Continuous DOS measurements of total hemoglobin, oxyhemoglobin, deoxyhemoglobin, and oxidized and reduced CcO from muscle were obtained. Rabbit hemorrhage was accomplished with stepwise removal of blood, followed by blood resuscitation. CN treated rabbits received 0.166 mg/min NaCN infusion. During hemorrhage, CcO redox state became reduced concurrently with decreases in oxyhemoglobin, resulting from reduced tissue oxygen delivery and hypoxia. In contrast, during CN infusion, CcO redox state decreased while oxyhemoglobin concentration increased due to CN binding and reduction of CcO with resultant inhibition of the electron transport chain. Spectral absorption similarities between hemoglobin and CcO make noninvasive spectroscopic distinction of CcO redox states difficult. By contrasting physiological perturbations of CN poisoning versus hemorrhage, we demonstrate that DOS measured CcO redox state changes are decoupled from hemoglobin concentration measurement changes.

  9. Algebraic reconstruction and postprocessing in one-step diffuse optical tomography

    SciTech Connect

    Konovalov, A B; Vlasov, V V; Mogilenskikh, D V; Kravtsenyuk, O V; Lyubimov, V V

    2008-06-30

    The photon average trajectory method is considered, which is used as an approximate method of diffuse optical tomography and is based on the solution of the Radon-like trajectory integral equation. A system of linear algebraic equations describing a discrete model of object reconstruction is once inverted by using a modified multiplicative algebraic technique. The blurring of diffusion tomograms is eliminated by using space-varying restoration and methods of nonlinear colour interpretation of data. The optical models of the breast tissue in the form of rectangular scattering objects with circular absorbing inhomogeneities are reconstructed within the framework of the numerical experiment from optical projections simulated for time-domain measurement technique. It is shown that the quality of diffusion tomograms reconstructed by this method is close to that of tomograms reconstructed by using Newton-like multistep algorithms, while the computational time is much shorter. (special issue devoted to application of laser technologies in biophotonics and biomedical studies)

  10. Diffuse optical correlation tomography of cerebral blood flow during cortical spreading depression in rat brain

    NASA Astrophysics Data System (ADS)

    Zhou, Chao; Yu, Guoqiang; Furuya, Daisuke; Greenberg, Joel; Yodh, Arjun; Durduran, Turgut

    2006-02-01

    Diffuse optical correlation methods were adapted for three-dimensional (3D) tomography of cerebral blood flow (CBF) in small animal models. The image reconstruction was optimized using a noise model for diffuse correlation tomography which enabled better data selection and regularization. The tomographic approach was demonstrated with simulated data and during in-vivo cortical spreading depression (CSD) in rat brain. Three-dimensional images of CBF were obtained through intact skull in tissues(~4mm) deep below the cortex.

  11. Diffusion behavior of copper atoms under Cu(II) reduction in Cucurbit[8]uril cavity at elevated temperatures

    SciTech Connect

    Bakovets, Vladimir V.; Nadolinnii, Vladimir A.; Kovalenko, Ekaterina A.; Plyusnin, Pavel E.; Dolgovesova, Irina P.; Zaikovskii, Vladimir I.

    2015-01-15

    In this paper we describe copper clusters and nanoparticles formation by the reduction of copper (II) ions inside cavities of macrocycle molecules using supramolecular compound [Cu(Cyclen)(H{sub 2}O)@CB[8

  12. Investigation of a diffuse optical measurements-assisted quantitative photoacoustic tomographic method in reflection geometry

    PubMed Central

    Xu, Chen; Kumavor, Patrick D.; Aguirre, Andres

    2012-01-01

    Abstract. Photoacoustic tomography provides the distribution of absorbed optical energy density, which is the product of optical absorption coefficient and optical fluence distribution. We report the experimental investigation of a novel fitting procedure that quantitatively determines the optical absorption coefficient of chromophores. The experimental setup consisted of a hybrid system of a 64-channel photoacoustic imaging system with a frequency-domain diffused optical measurement system. The fitting procedure included a complete photoacoustic forward model and an analytical solution of a target chromophore using the diffusion approximation. The fitting procedure combines the information from the photoacoustic image and the background information from the diffuse optical measurements to minimize the photoacoustic measurements and forward model data and recover the target absorption coefficient quantitatively. 1-cm-cube phantom absorbers of high and low contrasts were imaged at depths of up to 3.0 cm. The fitted absorption coefficient results were at least 80% of their true values. The sensitivities of this fitting procedure to target location, target radius, and background optical properties were also investigated. We found that this fitting procedure was most sensitive to the accurate determination of the target radius and depth. Blood sample in a thin tube of radius 0.58 mm, simulating a blood vessel, was also studied. The photoacoustic images and fitted absorption coefficients are presented. These results demonstrate the clinical potential of this fitting procedure to quantitatively characterize small lesions in breast imaging. PMID:22734743

  13. Portable, Fiber-Based, Diffuse Reflection Spectroscopy (DRS) Systems for Estimating Tissue Optical Properties

    PubMed Central

    Vishwanath, Karthik; Chang, Kevin; Klein, Daniel; Deng, Yu Feng; Chang, Vivide; Phelps, Janelle E.; Ramanujam, Nimmi

    2010-01-01

    Steady-state diffuse reflection spectroscopy is a well-studied optical technique that can provide a noninvasive and quantitative method for characterizing the absorption and scattering properties of biological tissues. Here, we compare three fiber-based diffuse reflection spectroscopy systems that were assembled to create a light-weight, portable, and robust optical spectrometer that could be easily translated for repeated and reliable use in mobile settings. The three systems were built using a broadband light source and a compact, commercially available spectrograph. We tested two different light sources and two spectrographs (manufactured by two different vendors). The assembled systems were characterized by their signal-to-noise ratios, the source-intensity drifts, and detector linearity. We quantified the performance of these instruments in extracting optical properties from diffuse reflectance spectra in tissue-mimicking liquid phantoms with well-controlled optical absorption and scattering coefficients. We show that all assembled systems were able to extract the optical absorption and scattering properties with errors less than 10%, while providing greater than ten-fold decrease in footprint and cost (relative to a previously well-characterized and widely used commercial system). Finally, we demonstrate the use of these small systems to measure optical biomarkers in vivo in a small-animal model cancer therapy study. We show that optical measurements from the simple portable system provide estimates of tumor oxygen saturation similar to those detected using the commercial system in murine tumor models of head and neck cancer. PMID:21499501

  14. Cavity light bullets: three-dimensional localized structures in a nonlinear optical resonator.

    PubMed

    Brambilla, Massimo; Maggipinto, Tommaso; Patera, Giuseppe; Columbo, Lorenzo

    2004-11-12

    We consider the paraxial model for a nonlinear resonator with a saturable absorber beyond the mean-field limit. For accessible parametric domains we observe total radiation confinement and the formation of 3D localized bright structures. Different from freely propagating light bullets, here the self-organization proceeds from the resonator feedback, combined with diffraction and nonlinearity. Such "cavity" light bullets can be independently excited and erased by appropriate pulses, and once created, they endlessly travel the cavity round-trip.

  15. Experimental Study of Electronic Quantum Interference, Photonic Crystal Cavity, Photonic Band Edge Effects for Optical Amplification

    DTIC Science & Technology

    2016-01-26

    AFRL-RV-PS- AFRL-RV-PS- TR-2016-0003 TR-2016-0003 EXPERIMENTAL STUDY OF ELECTRONIC QUANTUM INTERFERENCE, PHOTONIC CRYSTAL CAVITY, PHOTONIC BAND...2014 – 11 Jan 2016 4. TITLE AND SUBTITLE Experimental Study of Electronic Quantum Interference, Photonic Crystal Cavity, Photonic Band Edge Effects...tailoring of dispersion and the photonic band gap. The band gap frequency can be matched to tailor the emission from active medium such as quantum

  16. Transport- and diffusion-based optical tomography in small domains: a comparative study.

    PubMed

    Ren, Kui; Bal, Guillaume; Hielscher, Andreas H

    2007-09-20

    We compare reconstructions based on the radiative transport and diffusion equations in optical tomography for media of small sizes. While it is well known that the diffusion approximation is less accurate to describe light propagation in such media, it has not yet been shown how this inaccuracy affects the images obtained with model-based iterative image reconstructions schemes. Using synthetic nondifferential data we calculate the error in the reconstructed images of optical properties as functions of source modulation frequency, noise level in measurement, and diffusion extrapolation length. We observe that the differences between diffusion and transport reconstructions are large when high modulation frequencies and noise-free data are used in the reconstructions. When the noise in data reaches a certain level, approximately 12% in our simulations, the differences between diffusion- and transport-based reconstructions become almost indistinguishable. Given that state-of-the-art optical imaging systems operate at much lower noise levels, the benefits of transport-based reconstructions of small imaging domains can be realized with most of the currently available systems. However, transport-based reconstructions are considerably slower than diffusion-based reconstructions.

  17. Diffuse optical monitoring of hemodynamic changes in piglet brain with closed head injury

    NASA Astrophysics Data System (ADS)

    Zhou, Chao; Eucker, Stephanie A.; Durduran, Turgut; Yu, Guoqiang; Ralston, Jill; Friess, Stuart H.; Ichord, Rebecca N.; Margulies, Susan S.; Yodh, Arjun G.

    2009-05-01

    We used a nonimpact inertial rotational model of a closed head injury in neonatal piglets to simulate the conditions following traumatic brain injury in infants. Diffuse optical techniques, including diffuse reflectance spectroscopy and diffuse correlation spectroscopy (DCS), were used to measure cerebral blood oxygenation and blood flow continuously and noninvasively before injury and up to 6 h after the injury. The DCS measurements of relative cerebral blood flow were validated against the fluorescent microsphere method. A strong linear correlation was observed between the two techniques (R=0.89, p<0.00001). Injury-induced cerebral hemodynamic changes were quantified, and significant changes were found in oxy- and deoxy-hemoglobin concentrations, total hemoglobin concentration, blood oxygen saturation, and cerebral blood flow after the injury. The diffuse optical measurements were robust and also correlated well with recordings of vital physiological parameters over the 6-h monitoring period, such as mean arterial blood pressure, arterial oxygen saturation, and heart rate. Finally, the diffuse optical techniques demonstrated sensitivity to dynamic physiological events, such as apnea, cardiac arrest, and hypertonic saline infusion. In total, the investigation corraborates potential of the optical methods for bedside monitoring of pediatric and adult human patients in the neurointensive care unit.

  18. Diffuse optical monitoring of hemodynamic changes in piglet brain with closed head injury

    PubMed Central

    Zhou, Chao; Eucker, Stephanie A.; Durduran, Turgut; Yu, Guoqiang; Ralston, Jill; Friess, Stuart H.; Ichord, Rebecca N.; Margulies, Susan S.; Yodh, Arjun G.

    2011-01-01

    We used a nonimpact inertial rotational model of a closed head injury in neonatal piglets to simulate the conditions following traumatic brain injury in infants. Diffuse optical techniques, including diffuse reflectance spectroscopy and diffuse correlation spectroscopy (DCS), were used to measure cerebral blood oxygenation and blood flow continuously and noninvasively before injury and up to 6 h after the injury. The DCS measurements of relative cerebral blood flow were validated against the fluorescent microsphere method. A strong linear correlation was observed between the two techniques (R = 0.89, p < 0.00001). Injury-induced cerebral hemodynamic changes were quantified, and significant changes were found in oxy- and deoxy-hemoglobin concentrations, total hemoglobin concentration, blood oxygen saturation, and cerebral blood flow after the injury. The diffuse optical measurements were robust and also correlated well with recordings of vital physiological parameters over the 6-h monitoring period, such as mean arterial blood pressure, arterial oxygen saturation, and heart rate. Finally, the diffuse optical techniques demonstrated sensitivity to dynamic physiological events, such as apnea, cardiac arrest, and hypertonic saline infusion. In total, the investigation corraborates potential of the optical methods for bedside monitoring of pediatric and adult human patients in the neurointensive care unit. PMID:19566308

  19. A transparent black non-diffusing micelle gel for optical CT performance evaluation phantoms

    NASA Astrophysics Data System (ADS)

    Jordan, Kevin; Battista, Jerry

    2009-05-01

    Performance evaluation of optical CT scanners requires a set of phantoms with well known optical and geometric properties. Gels are often used and tinted with colouring agents but these suffer from wavelength dependencies, diffusion and degradation over time. In this paper we describe a new approach to creating suitable test phantoms using micelles. Adding surfactants to gelatin hydrogels allows materials insoluble in water to become suspended. Carbon black nanoparticles were dissolved into a transparent hydrogel consisting of 4% gelatine and 0.2% Triton X-100. The lack of macroscopic diffusion of the black particles was demonstrated by recording transmission images over 500 hours.

  20. Optical diffuse reflectance accessory for measurements of skin tissue by near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Marbach, R.; Heise, H. M.

    1995-02-01

    An optimized accessory for measuring the diffuse reflectance spectra of human skin tissue in the near-infrared spectral range is presented. The device includes an on-axis ellipsoidal collecting mirror with efficient illumination optics for small sampling areas of bulky body specimens. The optical design is supported by the results of a Monte Carlo simulation study of the reflectance characteristics of skin tissue. Because the results evolved from efforts to measure blood glucose noninvasively, the main emphasis is placed on the long-wavelength near-infrared range where sufficient penetration depth for radiation into tissue is still available. The accessory is applied for in vivo diffuse reflectance measurements.

  1. Optical diffuse reflectance accessory for measurements of skin tissue by near-infrared spectroscopy.

    PubMed

    Marbach, R; Heise, H M

    1995-02-01

    An optimized accessory for measuring the diffuse reflectance spectra of human skin tissue in the near-infrared spectral range is presented. The device includes an on-axis ellipsoidal collecting mirror with efficient illumination optics for small sampling areas of bulky body specimens. The optical design is supported by the results of a Monte Carlo simulation study of the reflectance characteristics of skin tissue. Because the results evolved from efforts to measure blood glucose noninvasively, the main emphasis is placed on the long-wavelength near-infrared range where sufficient penetration depth for radiation into tissue is still available. The accessory is applied for in vivo diffuse reflectance measurements.

  2. Efficient continuous-wave eye-safe region signal output from intra-cavity singly resonant optical parametric oscillator

    NASA Astrophysics Data System (ADS)

    Li, Bin; Ding, Xin; Sheng, Quan; Yin, Su-Jia; Shi, Chun-Peng; Li, Xue; Yu, Xuan-Yi; Wen, Wu-Qi; Yao, Jian-Quan

    2012-01-01

    We report an efficient continuous-wave (CW) tunable intra-cavity singly resonant optical parametric oscillator based on the multi-period periodically poled lithium niobate and using a laser diode (LD) end-pumped CW 1064 nm Nd:YVO4 laser as the pump source. A highly efficiency CW operation is realized through a careful cavity design for mode matching and thermal stability. The signal tuning range is 1401-1500 nm obtained by varying the domain period. The maximum output power of 2.2 W at 1500 nm is obtained with a 17.1 W 808 nm LD power and the corresponding conversion efficiency is 12.9%.

  3. Optic nerve: Separating compartments based on 23Na TQF spectra and TQF-diffusion anisotropy

    NASA Astrophysics Data System (ADS)

    Eliav, Uzi; Xu, Xiang; Jerschow, Alexej; Navon, Gil

    2013-06-01

    We present a triple quantum filtered (TQF) sodium spectroscopy study of an excised bovine optic nerve. By choosing proper experimental parameters, this technique allowed us to independently observe the satellite transitions originating from the various compartments in the tissue. TQF-based diffusion experiments provided further characterization of the compartments in terms of their geometry. As a result, the peak that exhibited the smallest residual quadrupolar splitting, and the largest diffusion anisotropy was assigned to axons. Two other pairs of satellite peaks were assigned to extra-cellular compartments on the basis of either the size of their quadrupolar splitting or the diffusion properties.

  4. Controllable vacuum-induced diffraction of matter-wave superradiance using an all-optical dispersive cavity

    PubMed Central

    Su, Shih-Wei; Lu, Zhen-Kai; Gou, Shih-Chuan; Liao, Wen-Te

    2016-01-01

    Cavity quantum electrodynamics (CQED) has played a central role in demonstrating the fundamental principles of the quantum world, and in particular those of atom-light interactions. Developing fast, dynamical and non-mechanical control over a CQED system is particularly desirable for controlling atomic dynamics and building future quantum networks at high speed. However conventional mirrors do not allow for such flexible and fast controls over their coupling to intracavity atoms mediated by photons. Here we theoretically investigate a novel all-optical CQED system composed of a binary Bose-Einstein condensate (BEC) sandwiched by two atomic ensembles. The highly tunable atomic dispersion of the CQED system enables the medium to act as a versatile, all-optically controlled atomic mirror that can be employed to manipulate the vacuum-induced diffraction of matter-wave superradiance. Our study illustrates a innovative all-optical element of atomtroics and sheds new light on controlling light-matter interactions. PMID:27748413

  5. Controllable vacuum-induced diffraction of matter-wave superradiance using an all-optical dispersive cavity

    NASA Astrophysics Data System (ADS)

    Su, Shih-Wei; Lu, Zhen-Kai; Gou, Shih-Chuan; Liao, Wen-Te

    2016-10-01

    Cavity quantum electrodynamics (CQED) has played a central role in demonstrating the fundamental principles of the quantum world, and in particular those of atom-light interactions. Developing fast, dynamical and non-mechanical control over a CQED system is particularly desirable for controlling atomic dynamics and building future quantum networks at high speed. However conventional mirrors do not allow for such flexible and fast controls over their coupling to intracavity atoms mediated by photons. Here we theoretically investigate a novel all-optical CQED system composed of a binary Bose-Einstein condensate (BEC) sandwiched by two atomic ensembles. The highly tunable atomic dispersion of the CQED system enables the medium to act as a versatile, all-optically controlled atomic mirror that can be employed to manipulate the vacuum-induced diffraction of matter-wave superradiance. Our study illustrates a innovative all-optical element of atomtroics and sheds new light on controlling light-matter interactions.

  6. Diffuse optical tomography using dual-interfering source

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Mu, Chenpeng; Intes, Xavier; Chance, Britton

    2002-04-01

    A frequency domain heterodyne system for recording the amplitude and phase of diffuse photon density wave (DPDW) is described here. We demonstrated experimentally the possibility of tomographic image reconstruction using a pair of out-of-phase sources. Both iterative method (SIRT) and subspace technique (SVD) have been used to address the inverse problem. The image quality with respect to the number of iterations and regularization numbers is discussed. Further investigations including the relationship between several parameters (such as modulation frequency, the source pair separation and the number of source and detectors) and the image quality are also discussed.

  7. Methanol-induced toxic optic neuropathy with diffusion weighted MRI findings.

    PubMed

    Tanrivermis Sayit, Asli; Aslan, Kerim; Elmali, Muzaffer; Gungor, Inci

    2016-12-01

    We report a 52-year-old man with methanol intoxication who showed optic nerve damage as assessed by magnetic resonance imaging (MRI). He was admitted to the hospital with blurred vision after the consumption of alcohol (600-700 ml of cologne). He was treated with intravenous ethanol, NaHCO3 and hemodialysis. On admission, a brain and orbital MRI was performed. Bilateral mild contrast enhancement was detected on the contrast-enhanced images in the retrobulbar segment of the optic nerves (RBONs). Also, diffusion-weighted images showed restricted diffusion in the RBONs. Diagnosis was considered as methanol-induced optic neuropathy based on the MRI findings of the optic nerves.

  8. The design and fabrication of an optical diffuser for head-up displays

    NASA Astrophysics Data System (ADS)

    Lee, Chi-Hung; Chou, Ming-Chieh; Chen, Yi-Cheng

    2015-03-01

    Laser scanning head-up display (HUD) is an off-axis imaging virtual image display system. Its optical design inherited the feature of head-up display architecture in a fighter. When it is applied to a car, its main optics is replaced by a mirror to save space. Usually, a diffusion sheet or frosted glass is placed in front of a pico-projector to be an image screen, but there will be an issue of lower sharpness of the image due to its low divergence ability for the incident beam. This study proposes a pyramid-shaped micro-structure optical diaphragm to replace the above traditional diffusion films. Besides, the relationship between the optical light path and microstructure in the HUD is also well described.

  9. In vivo evaluation of optic nerve aging in adult rhesus monkey by diffusion tensor imaging

    PubMed Central

    Yan, Yumei; Li, Longchuan; Preuss, Todd M.; Hu, Xiaoping; Herndon, James G.

    2014-01-01

    Aging of the optic nerve can result in reduced visual sensitivity or vision loss. Normal optic nerve aging has been investigated previously in tissue specimens but poorly explored in vivo. In the present study, the normal aging of optic nerve was evaluated by diffusion tensor imaging (DTI) in non-human primates. Adult female rhesus monkeys at the ages of 9 to 13 years old (young group, n=8) and 21 to 27 years old (old group, n=7) were studied using parallel-imaging-based DTI on a clinical 3T scanner. Compared to young adults, the old monkeys showed 26% lower fractional anisotropy (P<0.01), and 44% greater radial diffusivity, although the latter difference was of marginal statistical significance (P=0.058). These MRI findings are largely consistent with published results of light and electron microscopic studies of optic nerve aging in macaque monkeys, which indicate a loss of fibers and degenerative changes in myelin sheaths. PMID:24649434

  10. Diffusion analysis of one photosensitizer in bovine teeth using fluorescence optical imaging

    NASA Astrophysics Data System (ADS)

    Montanha, S.; Pratavieira, S.; Jacomassi, D. P.; Rastelli, A. N. S.; Bagnato, V. S.

    2012-01-01

    Some photosensitizers (PSs) used for PACT (Antimicrobial Photodynamic Therapy) show an affinity for bacterial walls and can be photo-activated to cause the desired damage. However, on dentine bacterias may be less susceptible to PACT as a result of limited penetration of the PS. The aim of this study was to evaluate the diffusion of one PS based on hematoporphyrin on dentine structures. Twelve bovine incisors were used. Class III cavities (3 x 3 x 1mm) were prepared on the mesial or distal surfaces using a diamond bur. Photogem® solution at 1 mg/mL (10 uL for each cavity) was used. The experimental Groups were divided according to thickness of dentine remaining and etched or no-etched before the PS application. The fluorescence excitation source was a VelScope® system. For image capture a scientific CCD color camera PixelFly® was coupled to VelScope. For image acquisition and processing, a computational routine was developed at Matlab®. Fick's Law was used to obtain the average diffusion coefficient of PS. Differences were found between all Groups. The longitudinal temporal diffusion was influenced by the different times, thickness and acid etching.

  11. Cavity enhanced terahertz modulation

    SciTech Connect

    Born, N.; Scheller, M.; Moloney, J. V.; Koch, M.

    2014-03-10

    We present a versatile concept for all optical terahertz (THz) amplitude modulators based on a Fabry-Pérot semiconductor cavity design. Employing the high reflectivity of two parallel meta-surfaces allows for trapping selected THz photons within the cavity and thus only a weak optical modulation of the semiconductor absorbance is required to significantly damp the field within the cavity. The optical switching yields to modulation depths of more than 90% with insertion efficiencies of 80%.

  12. Computer-aided, multi-modal, and compression diffuse optical studies of breast tissue

    NASA Astrophysics Data System (ADS)

    Busch, David Richard, Jr.

    Diffuse Optical Tomography and Spectroscopy permit measurement of important physiological parameters non-invasively through ˜10 cm of tissue. I have applied these techniques in measurements of human breast and breast cancer. My thesis integrates three loosely connected themes in this context: multi-modal breast cancer imaging, automated data analysis of breast cancer images, and microvascular hemodynamics of breast under compression. As per the first theme, I describe construction, testing, and the initial clinical usage of two generations of imaging systems for simultaneous diffuse optical and magnetic resonance imaging. The second project develops a statistical analysis of optical breast data from many spatial locations in a population of cancers to derive a novel optical signature of malignancy; I then apply this data-derived signature for localization of cancer in additional subjects. Finally, I construct and deploy diffuse optical instrumentation to measure blood content and blood flow during breast compression; besides optics, this research has implications for any method employing breast compression, e.g., mammography.

  13. All-optical control of three-photon spectra and time asymmetry in a strongly coupled cavity polariton system

    PubMed Central

    Zhang, X.; Li, R.; Wu, Haibin

    2016-01-01

    Manipulating the nature of photons emission is one of the basic tasks in quantum optics and photonics. The ever growing list of quantum applications requires a robust means of controlling the strongly coupled coherent interaction of photons and matter. Here, we investigate three-photon transmission spectra in a strongly coupled cavity polariton system and show that the correlation functions and transmitted photon stream can be optically manipulated. The dynamics of single photons and photon pairs at the polariton resonances can be changed by light from a single external coupling laser. At the “dark-state polariton,” three-photon transmission is a perfectly coherent field in contrast to the strong photon-bunching behavior of a typical cavity quantum electrodynamics system. When the detuned probe light is tuned to the “bright polariton,” the light exhibits a dramatic photon antibunching effect. Remarkably, the Fano-resonant asymmetric three-photon transmission caused by the interference between the dressed states leads to a new quantum feature that is strongly nonclassical (the third-order correlation function g(3)(0, 0) ≪ 1) and has a wide and tunable bandwidth. The dependence of the intrinsic third-order correlation and time symmetry of the photon stream on the controlled parameters is also examined. Strongly nonclassical, all-optically controllable multi-photon dynamics are very important for future quantum devices and metrology. PMID:26936334

  14. Spectral and angular dependence of mid-infrared diffuse scattering from explosives residues for standoff detection using external cavity quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Suter, Jonathan D.; Bernacki, Bruce; Phillips, Mark C.

    2012-09-01

    We present a study of the spectral and angular dependence of scattered mid-infrared light from surfaces coated with explosives residues (TNT, RDX, and tetryl) detected at a 2 m standoff distance. An external cavity quantum cascade laser provided tunable illumination between 7 and 8 μm. Important differences were identified in the spectral features between specular reflection and diffuse scattering which will impact most practical testing scenarios and complicate material identification. We discuss some of the factors influencing the dependence of observed spectra on the experimental geometry.

  15. Quantum Computation by Optically Coupled Steady Atoms/Quantum-Dots Inside a Quantum Cavity

    NASA Technical Reports Server (NTRS)

    Pradhan, P.; Wang, K. L.; Roychowdhury, V. P.; Anantram, M. P.; Mor, T.; Saini, Subhash (Technical Monitor)

    1999-01-01

    We present a model for quantum computation using $n$ steady 3-level atoms kept inside a quantum cavity, or using $n$ quantum-dots (QDs) kept inside a quantum cavity. In this model one external laser is pointed towards all the atoms/QDs, and $n$ pairs of electrodes are addressing the atoms/QDs, so that each atom is addressed by one pair. The energy levels of each atom/QD are controlled by an external Stark field given to the atom/QD by its external pair of electrodes. Transition between two energy levels of an individual atom/ QD are controlled by the voltage on its electrodes, and by the external laser. Interactions between two atoms/ QDs are performed with the additional help of the cavity mode (using on-resonance condition). Laser frequency, cavity frequency, and energy levels are far off-resonance most of the time, and they are brought to the resonance (using the Stark effect) only at the time of operations. Steps for a controlled-NOT gate between any two atoms/QDs have been described for this model. Our model demands some challenging technological efforts, such as manufacturing single-electron QDs inside a cavity. However, it promises big advantages over other existing models which are currently implemented, and might enable a much easier scale-up, to compute with many more qubits.

  16. Noninvasive Vibrational Mode Spectroscopy of Ion Coulomb Crystals through Resonant Collective Coupling to an Optical Cavity Field

    SciTech Connect

    Dantan, A.; Marler, J. P.; Albert, M.; Guenot, D.; Drewsen, M.

    2010-09-03

    We report on a novel noninvasive method to determine the normal mode frequencies of ion Coulomb crystals in traps based on the resonance enhanced collective coupling between the electronic states of the ions and an optical cavity field at the single photon level. Excitations of the normal modes are observed through a Doppler broadening of the resonance. An excellent agreement with the predictions of a zero-temperature uniformly charged liquid plasma model is found. The technique opens up for investigations of the heating and damping of cold plasma modes, as well as the coupling between them.

  17. All-optical diode actions through a coupled system of Tamm plasmon-polariton and nonlinear cavity mode

    NASA Astrophysics Data System (ADS)

    Fang, Yun-Tuan; Zheng, Jing; Yang, Li-Xia; Zhou, Xiang

    2013-08-01

    Light propagation in a coupled system of Tamm plasmon-polariton and nonlinear cavity mode is theoretically investigated through the nonlinear transfer matrix method. It is found that the asymmetric layered structure exhibits both pronounced unidirectionality and high transmission. This leads to all-optical diode actions. Compared with other similar studies, the designed structure is much simple only with seven periods. The unique feature is that the direction of on-off can be reversed depending on the working frequencies. The effect of metal loss is also considered in this study.

  18. Electro-optic harmonic conversion to switch a laser beam out of a cavity

    DOEpatents

    Haas, R.A.; Henesian, M.A.

    1984-10-19

    The present invention relates to switching laser beams out of laser cavities, and more particularly, it relates to the use of generating harmonics of the laser beam to accomplish the switching. When laser light is generatd in a laser cavity the problem arises of how to switch the laser light out of the cavity in order to make use of the resulting laser beam in a well known multitude of ways. These uses include range finding, communication, remote sensing, medical surgery, laser fusion applications and many more. The switch-out problem becomes more difficult as the size of the laser aperture grows such as in laser fusion applications. The final amplifier stages of the Nova and Novette lasers at Lawrence Livermore National Laboratory are 46 centimeters with the laser beam expanded to 74 centimeters thereafter. Larger aperture lasers are planned.

  19. Evanescent-wave comb spectroscopy of liquids with strongly dispersive optical fiber cavities

    NASA Astrophysics Data System (ADS)

    Avino, S.; Giorgini, A.; Salza, M.; Fabian, M.; Gagliardi, G.; De Natale, P.

    2013-05-01

    We demonstrate evanescent-wave fiber cavity-enhanced spectroscopy in the liquid phase using a near-infrared frequency comb. Exploiting strong fiber-dispersion effects, we show that liquid absorption spectra can be recorded without any external dispersive element. The fiber cavity is used both as sensor and spectrometer. The resonance modes are frequency locked to the comb teeth while the cavity photon lifetime is measured over 155 nm, from 1515 nm to 1670 nm, where absorption bands of liquid polyamines are detected as a proof of concept. Our fiber spectrometer lends itself to in situ, real-time chemical analysis in environmental monitoring, biomedical assays, and micro-opto-fluidic systems.

  20. Calibration of diffuse correlation spectroscopy blood flow index with venous-occlusion diffuse optical spectroscopy in skeletal muscle

    PubMed Central

    Li, Zhe; Baker, Wesley B.; Parthasarathy, Ashwin B.; Ko, Tiffany S.; Wang, Detian; Schenkel, Steven; Durduran, Turgut; Li, Gang; Yodh, Arjun G.

    2015-01-01

    Abstract. We investigate and assess the utility of a simple scheme for continuous absolute blood flow monitoring based on diffuse correlation spectroscopy (DCS). The scheme calibrates DCS using venous-occlusion diffuse optical spectroscopy (VO-DOS) measurements of arm muscle tissue at a single time-point. A calibration coefficient (γ) for the arm is determined, permitting conversion of DCS blood flow indices to absolute blood flow units, and a study of healthy adults (N=10) is carried out to ascertain the variability of γ. The average DCS calibration coefficient for the right (i.e., dominant) arm was γ=(1.24±0.15)×108 (mL·100  mL−1·min−1)/(cm2/s). However, variability can be significant and is apparent in our site-to-site and day-to-day repeated measurements. The peak hyperemic blood flow overshoot relative to baseline resting flow was also studied following arm-cuff ischemia; excellent agreement between VO-DOS and DCS was found (R2=0.95, slope=0.94±0.07, mean difference=−0.10±0.45). Finally, we show that incorporation of subject-specific absolute optical properties significantly improves blood flow calibration accuracy. PMID:26720870

  1. Calibration of diffuse correlation spectroscopy blood flow index with venous-occlusion diffuse optical spectroscopy in skeletal muscle

    NASA Astrophysics Data System (ADS)

    Li, Zhe; Baker, Wesley B.; Parthasarathy, Ashwin B.; Ko, Tiffany S.; Wang, Detian; Schenkel, Steven; Durduran, Turgut; Li, Gang; Yodh, Arjun G.

    2015-12-01

    We investigate and assess the utility of a simple scheme for continuous absolute blood flow monitoring based on diffuse correlation spectroscopy (DCS). The scheme calibrates DCS using venous-occlusion diffuse optical spectroscopy (VO-DOS) measurements of arm muscle tissue at a single time-point. A calibration coefficient (γ) for the arm is determined, permitting conversion of DCS blood flow indices to absolute blood flow units, and a study of healthy adults (N=10) is carried out to ascertain the variability of γ. The average DCS calibration coefficient for the right (i.e., dominant) arm was γ=(1.24±0.15)×108 (mL·100 mL-1·min-1)/(cm2/s). However, variability can be significant and is apparent in our site-to-site and day-to-day repeated measurements. The peak hyperemic blood flow overshoot relative to baseline resting flow was also studied following arm-cuff ischemia; excellent agreement between VO-DOS and DCS was found (R2=0.95, slope=0.94±0.07, mean difference=-0.10±0.45). Finally, we show that incorporation of subject-specific absolute optical properties significantly improves blood flow calibration accuracy.

  2. Time domain diffuse optical spectroscopy: In vivo quantification of collagen in breast tissue

    NASA Astrophysics Data System (ADS)

    Taroni, Paola; Pifferi, Antonio; Quarto, Giovanna; Farina, Andrea; Ieva, Francesca; Paganoni, Anna Maria; Abbate, Francesca; Cassano, Enrico; Cubeddu, Rinaldo

    2015-05-01

    Time-resolved diffuse optical spectroscopy provides non-invasively the optical characterization of highly diffusive media, such as biological tissues. Light pulses are injected into the tissue and the effects of light propagation on re-emitted pulses are interpreted with the diffusion theory to assess simultaneously tissue absorption and reduced scattering coefficients. Performing spectral measurements, information on tissue composition and structure is derived applying the Beer law to the measured absorption and an empiric approximation to Mie theory to the reduced scattering. The absorption properties of collagen powder were preliminarily measured in the range of 600-1100 nm using a laboratory set-up for broadband time-resolved diffuse optical spectroscopy. Optical projection images were subsequently acquired in compressed breast geometry on 218 subjects, either healthy or bearing breast lesions, using a portable instrument for optical mammography that operates at 7 wavelengths selected in the range 635-1060 nm. For all subjects, tissue composition was estimated in terms of oxy- and deoxy-hemoglobin, water, lipids, and collagen. Information on tissue microscopic structure was also derived. Good correlation was obtained between mammographic breast density (a strong risk factor for breast cancer) and an optical index based on collagen content and scattering power (that accounts mostly for tissue collagen). Logistic regression applied to all optically derived parameters showed that subjects at high risk for developing breast cancer for their high breast density can effectively be identified based on collagen content and scattering parameters. Tissue composition assessed in breast lesions with a perturbative approach indicated that collagen and hemoglobin content are significantly higher in malignant lesions than in benign ones.

  3. Influence of cloud optical thickness on surface diffuse light and carbon uptake in forests and croplands

    NASA Astrophysics Data System (ADS)

    Cheng, S. J.; Steiner, A. L.; Nadelhoffer, K. J.

    2014-12-01

    Accurately modeling atmospheric CO2 removal by terrestrial ecosystems requires an understanding of how atmospheric conditions change the rate of photosynthesis across major vegetation types. Diffuse light, which is created from interactions between incident solar radiation and atmospheric aerosols and clouds, has been postulated to increase carbon uptake in terrestrial ecosystems. To determine how cloud conditions affect carbon uptake through its influence on diffuse light, we quantify the relationship between cloud optical thickness, which indicates surface light attenuation by clouds, and surface diffuse light. We then examine the relationship between cloud optical thickness and gross primary productivity (GPP) to determine whether cloud properties could modulate GPP in temperate ecosystems. Surface diffuse light and GPP data are obtained from publically available Ameriflux data (Mead Crop sites, University of Michigan Biological Station, Morgan Monroe, and Howland Forest) and cloud optical thickness data over the Ameriflux sites are retrieved from NASA's Moderate Resolution Imaging Spetroradiometer. We compare the response of GPP to cloud optical thickness between croplands and forests, as well as within ecosystem types to determine ecosystem-specific responses and the role of plant community composition on ecosystem-level GPP under varying cloud conditions. By linking atmospheric cloud properties to surface light conditions and ecosystem carbon fluxes, we refine understanding of land-atmosphere carbon cycling and how changes in atmospheric cloud conditions may influence the future of the land carbon sink.

  4. Experimental results on time-resolved reflectance diffuse optical tomography with fast-gated SPADs

    NASA Astrophysics Data System (ADS)

    Puszka, Agathe; Di Sieno, Laura; Dalla Mora, Alberto; Pifferi, Antonio; Contini, Davide; Boso, Gianluca; Tosi, Alberto; Planat-Chrétien, Anne; Hervé, Lionel; Koenig, Anne; Dinten, Jean-Marc

    2013-06-01

    We present experimental results of time-resolved reflectance diffuse optical tomography performed with fast-gated single-photon avalanche diodes (SPADs) and show an increased imaged depth range for a given acquisition time compared to the non gated mode.

  5. Effects of Aerosol Optical Depth on diffuse UV and visible radiation

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Kim, J.; Cho, H.; Kim, Y.

    2007-12-01

    Ultraviolet radiation (UV, 300-367nm) was measured with a UV-multifilter rotating shadowband radiometer (UV- MFRSR) at Yonsei University, Seoul (37.57°N, 126.97°) for 7 months from January to July 2006 and visible irradiance (400-700 nm) also measured with a MFRSR for 12 months of 2006 at the same station. Spectral UV_AOD and vis_AOD were retrieved using the Langley method and Beer-Bouguer-Lambert's law, and compared with AOD obtained from Skyradiometer to validate their values. The diffuse and direct irradiance were analyzed to investigate the dependence on total optical depth (TOD) and aerosol optical depth (AOD). The direct-horizontal solar irradiance decreases exponentially as the optical depth increases according to the Beer- Bouguer-Lambert's Law. As the TOD and AOD increase, the diffuse-horizontal UV radiation gradually increases and shows a maximum value at some critical optical depth for a given SZA. Similar analysis was performed on the relation between the diffuse irradiance and AOD. RAF(radiation amplification factor) was used to correct the ozone effects on UV. These results provide empirical equations for the amount of diffuse irradiance in UV and visible wavelengths.

  6. An Optical Offgas Sensor Network Incorporating a HG Cavity Ringdown Spectrometer and IR Diode Lasers

    SciTech Connect

    George P. Miller

    2007-12-30

    A multi-element cavity ringdown system was evaluated with the objective of developing an intelligent sensor network to be incorporated into the control systems for advanced coal combustion facilities. Using a combination of a YAG-pumped dye laser and a tunable NIR/IR laser a dual cavity was constructed and a labview program was developed to provide multi-channel, real-time data to permit the real-time monitoring of typical exhaust emission gases, (for example: CO{sub 2}, SO{sub 2}, and mercury) of concern to the next generation of coal-powered facilities.

  7. Fragmented Superradiance of a Bose-Einstein Condensate in an Optical Cavity

    NASA Astrophysics Data System (ADS)

    Lode, Axel U. J.; Bruder, Christoph

    2017-01-01

    The Dicke model and the superradiance of two-level systems in a radiation field have many applications. Recently, a Dicke quantum phase transition has been realized with a Bose-Einstein condensate in a cavity. We numerically solve the many-body Schrödinger equation and study correlations in the ground state of interacting bosons in a cavity as a function of the strength of a driving laser. Beyond a critical strength, the bosons occupy multiple modes macroscopically while remaining superradiant. This fragmented superradiance can be detected by analyzing the variance of single-shot measurements.

  8. High-efficiency acousto-optic coupling in phoxonic resonator based on silicon fishbone nanobeam cavity.

    PubMed

    Chiu, Chien-Chang; Chen, Wei-Min; Sung, Kuen-Wei; Hsiao, Fu-Li

    2017-03-20

    We investigate the acousto-optic coupling rates between different acoustic resonance modes and a specified optical resonance mode in a one-dimensional phoxonic crystal fishbone nanobeam formed by periodically arranging semi-cylinders of air on both sides of a suspended silicon waveguide. The gradually tapered unit cells form optical and acoustic resonators. In acousto-optic coupling rate calculation, the acoustic fields and optical fields are obtained by steady state monochromatic analysis and eigen-mode computation, respectively. Results showed that the acoustic polarizations and symmetries of the acoustic resonance modes are dominant factors in the acousto-optic coupling efficiency, and appropriate selection of these parameters can prevent cancellation of acousto-optic interactions, thereby enhancing acousto-optic coupling rates. This study provides important insights that can be applied to acousto-optic device designs.

  9. Phantoms for diffuse optical imaging based on totally absorbing objects, part 2: experimental implementation

    NASA Astrophysics Data System (ADS)

    Martelli, Fabrizio; Ninni, Paola Di; Zaccanti, Giovanni; Contini, Davide; Spinelli, Lorenzo; Torricelli, Alessandro; Cubeddu, Rinaldo; Wabnitz, Heidrun; Mazurenka, Mikhail; Macdonald, Rainer; Sassaroli, Angelo; Pifferi, Antonio

    2014-07-01

    We present the experimental implementation and validation of a phantom for diffuse optical imaging based on totally absorbing objects for which, in the previous paper [J. Biomed. Opt. 18(6), 066014, (2013)], we have provided the basic theory. Totally absorbing objects have been manufactured as black polyvinyl chloride (PVC) cylinders and the phantom is a water dilution of intralipid-20% as the diffusive medium and India ink as the absorber, filled into a black scattering cell made of PVC. By means of time-domain measurements and of Monte Carlo simulations, we have shown the reliability, the accuracy, and the robustness of such a phantom in mimicking typical absorbing perturbations of diffuse optical imaging. In particular, we show that such a phantom can be used to generate any absorption perturbation by changing the volume and position of the totally absorbing inclusion.

  10. Image Reconstruction for Diffuse Optical Tomography Based on Radiative Transfer Equation

    PubMed Central

    Han, Bo; Tang, Jinping

    2015-01-01

    Diffuse optical tomography is a novel molecular imaging technology for small animal studies. Most known reconstruction methods use the diffusion equation (DA) as forward model, although the validation of DA breaks down in certain situations. In this work, we use the radiative transfer equation as forward model which provides an accurate description of the light propagation within biological media and investigate the potential of sparsity constraints in solving the diffuse optical tomography inverse problem. The feasibility of the sparsity reconstruction approach is evaluated by boundary angular-averaged measurement data and internal angular-averaged measurement data. Simulation results demonstrate that in most of the test cases the reconstructions with sparsity regularization are both qualitatively and quantitatively more reliable than those with standard L2 regularization. Results also show the competitive performance of the split Bregman algorithm for the DOT image reconstruction with sparsity regularization compared with other existing L1 algorithms. PMID:25648064

  11. High-efficiency intra-cavity sum-frequency-generation in a self-seeded image-rotating nanosecond optical parametric oscillator.

    SciTech Connect

    Armstrong, Darrell Jewell; Smith, Arlee Virgil

    2005-02-01

    We have built and tested a highly efficient source of pulsed 320 nm light based on intra-cavity sum-frequency-generation in a self-injection-seeded image-rotating nanosecond optical parametric oscillator. The four-mirror nonplanar ring optical cavity uses the RISTRA geometry, denoting rotated-image singly-resonant twisted rectangle. The cavity contains a type-II xz-cut KTP crystal pumped by the 532 nm second harmonic of Nd:YAG to generate an 803{approx}nm signal and 1576 nm idler, and a type-II BBO crystal to sum-frequency mix the 532 nm pump and cavity-resonant 803 nm signal to generate 320 nm light. The cavity is configured so pump light passes first through the BBO crystal and then through the KTP crystal with the 320 nm light exiting through the output coupler following the BBO sum-frequency crystal. The cavity output coupler is designed to be a high reflector at 532 nm, have high transmission at 320 nm, and reflect approximately 85% at 803 nm. With this configuration we've obtained 1064 nm to 320 nm optical-to-optical conversion efficiency of 24% and generated single-frequency {lambda} = 320 nm pulses with energies up to 140 mJ.

  12. High efficiency intra-cavity sum-frequency-generation in a self-seeded image-rotating nanosecond optical parametric oscillator

    NASA Astrophysics Data System (ADS)

    Armstrong, Darrell J.; Smith, Arlee V.

    2005-03-01

    We have built and tested a highly efficient source of pulsed 320 nm light based on intra-cavity sum-frequency-generation in a self-injection-seeded image-rotating nanosecond optical parametric oscillator. The four-mirror nonplanar ring optical cavity uses the RISTRA geometry, denoting rotated-image singly-resonant twisted rectangle. The cavity contains a type-II xz-cut KTP crystal pumped by the 532 nm second harmonic of Nd:YAG to generate an 803~nm signal and 1576 nm idler, and a type-II BBO crystal to sum-frequency mix the 532 nm pump and cavity-resonant 803 nm signal to generate 320 nm light. The cavity is configured so pump light passes first through the BBO crystal and then through the KTP crystal with the 320 nm light exiting through the output coupler following the BBO sum-frequency crystal. The cavity output coupler is designed to be a high reflector at 532 nm, have high transmission at 320 nm, and reflect approximately 85% at 803 nm. With this configuration we've obtained 1064 nm to 320 nm optical-to-optical conversion efficiency of 24% and generated single-frequency λ = 320 nm pulses with energies up to 140 mJ.

  13. Time resolved diffuse optical spectroscopy with geometrically accurate models for bulk parameter recovery

    PubMed Central

    Guggenheim, James A.; Bargigia, Ilaria; Farina, Andrea; Pifferi, Antonio; Dehghani, Hamid

    2016-01-01

    A novel straightforward, accessible and efficient approach is presented for performing hyperspectral time-domain diffuse optical spectroscopy to determine the optical properties of samples accurately using geometry specific models. To allow bulk parameter recovery from measured spectra, a set of libraries based on a numerical model of the domain being investigated is developed as opposed to the conventional approach of using an analytical semi-infinite slab approximation, which is known and shown to introduce boundary effects. Results demonstrate that the method improves the accuracy of derived spectrally varying optical properties over the use of the semi-infinite approximation. PMID:27699137

  14. High flux circularly polarized gamma beam factory: coupling a Fabry-Perot optical cavity with an electron storage ring

    NASA Astrophysics Data System (ADS)

    Chaikovska, I.; Cassou, K.; Chiche, R.; Cizeron, R.; Cornebise, P.; Delerue, N.; Jehanno, D.; Labaye, F.; Marie, R.; Martens, A.; Peinaud, Y.; Soskov, V.; Variola, A.; Zomer, F.; Cormier, E.; Lhermite, J.; Dolique, V.; Flaminio, R.; Michel, C.; Pinard, L.; Sassolas, B.; Akagi, T.; Araki, S.; Honda, Y.; Omori, T.; Terunuma, N.; Urakawa, J.; Miyoshi, S.; Takahashi, T.; Yoshitama, H.

    2016-11-01

    We report and discuss high-flux generation of circularly polarized γ-rays by means of Compton scattering. The γ-ray beam results from the collision of an external-cavity-enhanced infrared laser beam and a low emittance relativistic electron beam. By operating a non-planar bow-tie high-finesse optical Fabry-Perot cavity coupled to a storage ring, we have recorded a flux of up to (3.5 ± 0.3) × 108 photons per second with a mean measured energy of 24 MeV. The γ-ray flux has been sustained for several hours. In particular, we were able to measure a record value of up to 400 γ-rays per collision in a full bandwidth. Moreover, the impact of Compton scattering on the electron beam dynamics could be observed resulting in a reduction of the electron beam lifetime correlated to the laser power stored in the Fabry-Perot cavity. We demonstrate that the electron beam lifetime provides an independent and consistent determination of the γ-ray flux. Furthermore, a reduction of the γ-ray flux due to intrabeam scattering has clearly been identified. These results, obtained on an accelerator test facility, warrant potential scaling and revealed both expected and yet unobserved effects. They set the baseline for further scaling of the future Compton sources under development around the world.

  15. Optical coherence tomography based imaging of dental demineralisation and cavity restoration in 840 nm and 1310 nm wavelength regions

    NASA Astrophysics Data System (ADS)

    Damodaran, Vani; Rao, Suresh Ranga; Vasa, Nilesh J.

    2016-08-01

    In this paper, a study of in-house built optical coherence tomography (OCT) system with a wavelength of 840 nm for imaging of dental caries, progress in demineralisation and cavity restoration is presented. The caries when imaged with the 840 nm OCT system showed minute demineralisation in the order of 5 μm. The OCT system was also proposed to study the growth of lesion and this was demonstrated by artificially inducing caries with a demineralisation solution of pH 4.8. The progress of carious lesion to a depth of about 50-60 μm after 60 hours of demineralisation was clearly observed with the 840 nm OCT system. The tooth samples were subjected to accelerated demineralisation condition at pH of approximately 2.3 to study the adverse effects and the onset of cavity formation was clearly observed. The restoration of cavity was also studied by employing different restorative materials (filled and unfilled). In the case of restoration without filler material (unfilled), the restoration boundaries were clearly observed. Overall, results were comparable with that of the widely used 1310 nm OCT system. In the case of restoration with filler material, the 1310 nm OCT imaging displayed better imaging capacity due to lower scattering than 840 nm imaging.

  16. High flux circularly polarized gamma beam factory: coupling a Fabry-Perot optical cavity with an electron storage ring

    PubMed Central

    Chaikovska, I.; Cassou, K.; Chiche, R.; Cizeron, R.; Cornebise, P.; Delerue, N.; Jehanno, D.; Labaye, F.; Marie, R.; Martens, A.; Peinaud, Y.; Soskov, V.; Variola, A.; Zomer, F.; Cormier, E.; Lhermite, J.; Dolique, V.; Flaminio, R.; Michel, C.; Pinard, L.; Sassolas, B.; Akagi, T.; Araki, S.; Honda, Y.; Omori, T.; Terunuma, N.; Urakawa, J.; Miyoshi, S.; Takahashi, T.; Yoshitama, H.

    2016-01-01

    We report and discuss high-flux generation of circularly polarized γ-rays by means of Compton scattering. The γ-ray beam results from the collision of an external-cavity-enhanced infrared laser beam and a low emittance relativistic electron beam. By operating a non-planar bow-tie high-finesse optical Fabry-Perot cavity coupled to a storage ring, we have recorded a flux of up to (3.5 ± 0.3) × 108 photons per second with a mean measured energy of 24 MeV. The γ-ray flux has been sustained for several hours. In particular, we were able to measure a record value of up to 400 γ-rays per collision in a full bandwidth. Moreover, the impact of Compton scattering on the electron beam dynamics could be observed resulting in a reduction of the electron beam lifetime correlated to the laser power stored in the Fabry-Perot cavity. We demonstrate that the electron beam lifetime provides an independent and consistent determination of the γ-ray flux. Furthermore, a reduction of the γ-ray flux due to intrabeam scattering has clearly been identified. These results, obtained on an accelerator test facility, warrant potential scaling and revealed both expected and yet unobserved effects. They set the baseline for further scaling of the future Compton sources under development around the world. PMID:27857146

  17. Hemodynamic and metabolic diffuse optical monitoring in a mouse model of hindlimb ischemia.

    PubMed

    Mesquita, Rickson C; Skuli, Nicolas; Kim, Meeri N; Liang, Jiaming; Schenkel, Steve; Majmundar, Amar J; Simon, M Celeste; Yodh, Arjun G

    2010-10-15

    Murine hindlimb ischemia is a useful model for investigation of the mechanisms of peripheral arterial disease and for understanding the role of endothelial cells and generic factors affecting vascular regeneration or angiogenesis. To date, important research with these models has explored tissue reperfusion following ischemia with Laser Doppler methods, methods which provide information about superficial (~mm) vascular regeneration. In this work, we employ diffuse correlation spectroscopy (DCS) and diffuse optical spectroscopy (DOS) in mice after hindlimb ischemia. We hypothesize that vascular re-growth is not uniform in tissue, and therefore, since diffuse optical methods are capable of probing deep tissues, that the diffuse optics approach will provide a more complete picture of the angiogenesis process throughout the whole depth profile of the limb. Besides increased depth penetration, the combined measurements of DCS and DOS enable all-optical, noninvasive, longitudinal monitoring of tissue perfusion and oxygenation that reveals the interplay between these hemodynamic parameters during angiogenesis. Control mice were found to reestablish 90% of perfusion and oxygen consumption during this period, but oxygen saturation in the limb only partially recovered to about 30% of its initial value. The vascular recovery of mice with endothelial cell-specific deletion of HIF-2α was found to be significantly impaired relative to control mice, indicating that HIF-2α is important for endothelial cell functions in angiogenesis. Comparison of DOS/DCS measurements to parallel measurements in the murine models using Laser Doppler Flowmetry reveal differences in the reperfusion achieved by superficial versus deep tissue during neoangiogenesis; findings from histological analysis of blood vessel development were further correlated with these differences. In general, the combination of DCS and DOS enables experimenters to obtain useful information about oxygenation, metabolism

  18. Effect of contact force on breast tissue optical property measurements using a broadband diffuse optical spectroscopy handheld probe

    PubMed Central

    Cerussi, Albert; Siavoshi, Sarah; Durkin, Amanda; Chen, Cynthia; Tanamai, Wendy; Hsiang, David; Tromberg, Bruce J.

    2010-01-01

    We investigated the effects of operator-applied force on diffuse optical spectroscopy (DOS) by integrating a force transducer into the handheld probe. Over the typical range of contact forces measured in the breasts of eight patients, absorption and reduced scattering coefficients (650 to 1000 nm) variance was 3.1 ± 1.0% and 1.0 ± 0.4%. For trained operators, we observed <5% variation in hemoglobin and <2% variation in water and lipids. Contact force is not a significant source of variation, most likely because of a relatively wide probe surface area and the stability of the DOS method for calculating tissue optical properties. PMID:19623242

  19. Effects of parasitic Fabry-Perot cavities in fiber-optic interferometric sensors.

    PubMed

    Dagenais, D M; Koo, K P; Bucholtz, F

    1993-03-01

    We show theoretical and experimental evidence for increased quadrature point fluctuations and amplitude and phase noise in interferometric fiber sensors owing to the presence of parasitic Fabry-Perot cavities. We demonstrate greater than 2 orders of magnitude reduction of such effects.

  20. Image reconstruction using wavelet multi-resolution technique for time-domain diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Yang, Fang; Gao, Feng; Jiao, Yuting; Zhao, Huijuan

    2010-02-01

    It is generally believed that the inverse problem in diffuse optical tomography (DOT) is highly ill-posed and its solution is always under-determined and sensitive to noise, which is the main problem in the application of DOT. In this paper, we propose a method on image reconstruction for time-domain diffuse optical tomography based on panel detection and Finite-Difference Method, and introduce an approach to reduce the number of unknown parameters in the reconstruction process. We propose a multi-level scheme to reduce the number of unknowns by parameterizing the spatial distribution of optical properties via wavelet transform and then reconstruct the coefficients of this transform. Compared with previous traditional uni-level full spatial domain algorithm, this method can efficiently improve the reconstruction quality. Numerical simulations show that wavelet-based multi-level inversion is superior to the uni-level algebraic reconstruction technique.

  1. Circular polarization switching and bistability in an optically injected 1300 nm spin-vertical cavity surface emitting laser

    SciTech Connect

    Alharthi, S. S. Henning, I. D.; Adams, M. J.; Hurtado, A.; Korpijarvi, V.-M.; Guina, M.

    2015-01-12

    We report the experimental observation of circular polarization switching (PS) and polarization bistability (PB) in a 1300 nm dilute nitride spin-vertical cavity surface emitting laser (VCSEL). We demonstrate that the circularly polarized optical signal at 1300 nm can gradually or abruptly switch the polarization ellipticity of the spin-VCSEL from right-to-left circular polarization and vice versa. Moreover, different forms of PS and PB between right- and left-circular polarizations are observed by controlling the injection strength and the initial wavelength detuning. These results obtained at the telecom wavelength of 1300 nm open the door for novel uses of spin-VCSELs in polarization sensitive applications in future optical systems.

  2. Single-mode, narrow-linewidth external cavity quantum cascade laser through optical feedback from a partial-reflector

    SciTech Connect

    Cendejas, Richard A.; Phillips, Mark C.; Myers, Tanya L.; Taubman, Matthew S.

    2010-11-30

    An external-cavity (EC) quantum cascade (QC) laser using optical feedback from a partial-reflector is reported. With this configuration, the otherwise multi-mode emission of a Fabry-Perot QC laser was made single-mode with optical output powers exceeding 40 mW. A mode-hop free tuning range of 2.46 cm-1 was achieved by synchronously tuning the EC length and QC laser current. The linewidth of the partial-reflector EC-QC laser was measured for integration times from 100 μs to 4 s, and compared to a distributed feedback QC laser. Linewidths as small as 480 kHz were recorded for the EC-QC laser

  3. Eavesdropping in chaotic optical communication using the feedback length of an external-cavity laser as a key.

    PubMed

    Zhao, Qingchun; Wang, Yuncai; Wang, Anbang

    2009-06-20

    An external-cavity laser (ECL) operating in a chaotic state is usually used in a chaotic optical secure communication system and its feedback length (FL) is often regarded as an additional key. Our analyses show that an eavesdropper's (Eve) laser can synchronize with a transmitter (Alice) without any knowledge of the FL by simply increasing the injection strength. A sequence of a 1 Gbit/s nonreturn-to-zero message encoded by the FL as the key is successfully eavesdropped. The reason for the synchronization deviation between Alice's and Eve's lasers is given. Our results indicate that the FL as a key cannot enhance the security of chaotic optical communication using long-ECLs.

  4. A surgical navigation system for non-contact diffuse optical tomography and intraoperative cone-beam CT

    NASA Astrophysics Data System (ADS)

    Daly, Michael J.; Muhanna, Nidal; Chan, Harley; Wilson, Brian C.; Irish, Jonathan C.; Jaffray, David A.

    2014-02-01

    A freehand, non-contact diffuse optical tomography (DOT) system has been developed for multimodal imaging with intraoperative cone-beam CT (CBCT) during minimally-invasive cancer surgery. The DOT system is configured for near-infrared fluorescence imaging with indocyanine green (ICG) using a collimated 780 nm laser diode and a nearinfrared CCD camera (PCO Pixelfly USB). Depending on the intended surgical application, the camera is coupled to either a rigid 10 mm diameter endoscope (Karl Storz) or a 25 mm focal length lens (Edmund Optics). A prototype flatpanel CBCT C-Arm (Siemens Healthcare) acquires low-dose 3D images with sub-mm spatial resolution. A 3D mesh is extracted from CBCT for finite-element DOT implementation in NIRFAST (Dartmouth College), with the capability for soft/hard imaging priors (e.g., segmented lymph nodes). A stereoscopic optical camera (NDI Polaris) provides real-time 6D localization of reflective spheres mounted to the laser and camera. Camera calibration combined with tracking data is used to estimate intrinsic (focal length, principal point, non-linear distortion) and extrinsic (translation, rotation) lens parameters. Source/detector boundary data is computed from the tracked laser/camera positions using radiometry models. Target registration errors (TRE) between real and projected boundary points are ~1-2 mm for typical acquisition geometries. Pre-clinical studies using tissue phantoms are presented to characterize 3D imaging performance. This translational research system is under investigation for clinical applications in head-and-neck surgery including oral cavity tumour resection, lymph node mapping, and free-flap perforator assessment.

  5. Application of novel optical diffuser for urethral stricture treatment (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nguyen, Trung Hau; Rhee, Yun-Hee; Ahn, Jin-Chul; Kang, Hyun Wook

    2016-02-01

    Optical fibers have frequently been used for photothermal laser therapy due to its efficiency to deliver laser energy directly to tissue. The aim of the current study was to develop a diffusing optical fiber to achieve radially uniform light irradiation for endoscopically treating urethral stricture. The optical diffuser was fabricated by micro-machining helical patterns on the fiber surface using CO2 laser light at 5 W. Visible light emission (632 nm) and spatial emissions (including polar, azimuthal, and longitudinal emissions) of the fiber tip were evaluated to validate the performance of the fabricated diffuser. Prior to tissue tests, numerical simulation on heat distribution was developed to estimate the degree of tissue coagulation depth during interstitial coagulation. Due to a high absorption coefficient by tissue water, 1470 nm laser was used for photothermal therapy treatment of urethral stricture to obtain a more precise depth profile. For in vitro tissue tests, porcine liver tissue was irradiated with three different power levels (3, 6, and 9 W) at various irradiation times. Porcine urethral tissue was also tested with the diffuser for 10 sec at 6 W to validate the feasibility of circumferential photothermal treatment. The treated tissue was stained with hematoxylin and eosin (H and E) and then imaged with an optical transmission microscope. The spatial emission characteristics of the diffusing optical fiber presented an almost uniform power distribution along the diffuser tip (less than 10% deviation) and around its circumference (less than 5% deviation). The peak temperature in simulation model at the tissue interface between the glass-cap and the tissue was 373 K that was higher than that at the distal end. The tissue tests showed that higher power levels resulted in lower coagulation thresholds (e.g., 1 sec at 9 W vs 8 sec at 3 W). Furthermore, the coagulation depth was approximately 20% thinner than the simulation results (p<0.001). The extent of

  6. Theoretical modeling of optical properties of Ag8 and Ag14 silver clusters embedded in an LTA sodalite zeolite cavity.

    PubMed

    Cuong, Ngo Tuan; Nguyen, Hue Minh Thi; Nguyen, Minh Tho

    2013-10-07

    Optical properties of silver Ag(n) nanoclusters are demonstrated to be dependent on their size, structure and charge state. It is found that when being contained in the sodalite cavity of LTA zeolite the tetradecanuclear hexacation silver cluster Ag14(6+) is stable. Its lower-lying states and optical spectrum are theoretically determined using the quantum chemical TD-DFT method. Its ground state possesses an outer-shell electron configuration of A1g(2)T2g(6) mimicking the s(2)p(6) valence of noble gas atoms. These frontier orbitals are constructed from 5s,5p(Ag)-AOs with contributions from framework oxygen atoms. Light absorption of Ag14(6+) embedded in the sodalite cage which is characterized by strong peaks centered at 331 and 476 nm (transitions 5s,p(Ag) → 5s,p(Ag)) leads to much longer wavelength emission. The sodalite cage, as a container, stabilizes the central Ag14(6+) cluster by electrostatic attraction. The absorption spectrum of the isovalent neutral Ag8 cluster embedded inside the same sodalite cavity is also simulated using TD-DFT and CASPT2 methods. This absorption spectrum which is similar to that of the Ag14(6+) cluster has two absorption bands in the near UV and visible regions.

  7. Analysis of Fabry-Perot optical micro-cavities based on coating-free all-silicon cylindrical Bragg reflectors.

    PubMed

    Malak, Maurine; Gaber, Noha; Marty, Frédéric; Pavy, Nicolas; Richalot, Elodie; Bourouina, Tarik

    2013-01-28

    We study the behavior of Fabry-Perot micro-optical resonators based on cylindrical reflectors, optionally combined with cylindrical lenses. The core of the resonator architecture incorporates coating-free, all-silicon, Bragg reflectors of cylindrical shape. The combined effect of high reflectance and light confinement produced by the reflectors curvature allows substantial reduction of the energy loss. The proposed resonator uses curved Bragg reflectors consisting of a stack of silicon-air wall pairs constructed by micromachining. Quality factor Q ~1000 was achieved on rather large cavity length L = 210 microns, which is mainly intended to lab-on-chip analytical experiments, where enough space is required to introduce the analyte inside the resonator. We report on the behavioral analysis of such resonators through analytical modeling along with numerical simulations supported by experimental results. We demonstrate selective excitation of pure longitudinal modes, taking advantage of a proper control of mode matching involved in the process of coupling light from an optical fiber to the resonator. For the sake of comparison, insight on the behavior of Fabry-Perot cavity incorporating a Fiber-Rod-Lens is confirmed by similar numerical simulations.

  8. Cavity-enhanced Raman spectroscopy with optical feedback cw diode lasers for gas phase analysis and spectroscopy.

    PubMed

    Salter, Robert; Chu, Johnny; Hippler, Michael

    2012-10-21

    A variant of cavity-enhanced Raman spectroscopy (CERS) is introduced, in which diode laser radiation at 635 nm is coupled into an external linear optical cavity composed of two highly reflective mirrors. Using optical feedback stabilisation, build-up of circulating laser power by 3 orders of magnitude occurs. Strong Raman signals are collected in forward scattering geometry. Gas phase CERS spectra of H(2), air, CH(4) and benzene are recorded to demonstrate the potential for analytical applications and fundamental molecular studies. Noise equivalent limits of detection in the ppm by volume range (1 bar sample) can be achieved with excellent linearity with a 10 mW excitation laser, with sensitivity increasing with laser power and integration time. The apparatus can be operated with battery powered components and can thus be very compact and portable. Possible applications include safety monitoring of hydrogen gas levels, isotope tracer studies (e.g., (14)N/(15)N ratios), observing isotopomers of hydrogen (e.g., radioactive tritium), and simultaneous multi-component gas analysis. CERS has the potential to become a standard method for sensitive gas phase Raman spectroscopy.

  9. Cavity-enhanced resonant photoacoustic spectroscopy with optical feedback cw diode lasers: A novel technique for ultratrace gas analysis and high-resolution spectroscopy.

    PubMed

    Hippler, Michael; Mohr, Christian; Keen, Katherine A; McNaghten, Edward D

    2010-07-28

    Cavity-enhanced resonant photoacoustic spectroscopy with optical feedback cw diode lasers (OF-CERPAS) is introduced as a novel technique for ultratrace gas analysis and high-resolution spectroscopy. In the scheme, a single-mode cw diode laser (3 mW, 635 nm) is coupled into a high-finesse linear cavity and stabilized to the cavity by optical feedback. Inside the cavity, a build-up of laser power to at least 2.5 W occurs. Absorbing gas phase species inside the cavity are detected with high sensitivity by the photoacoustic effect using a microphone embedded in the cavity. To increase sensitivity further, coupling into the cavity is modulated at a frequency corresponding to a longitudinal resonance of an organ pipe acoustic resonator (f=1.35 kHz and Q approximately 10). The technique has been characterized by measuring very weak water overtone transitions near 635 nm. Normalized noise-equivalent absorption coefficients are determined as alpha approximately 4.4x10(-9) cm(-1) s(1/2) (1 s integration time) and 2.6x10(-11) cm(-1) s(1/2) W (1 s integration time and 1 W laser power). These sensitivities compare favorably with existing state-of-the-art techniques. As an advantage, OF-CERPAS is a "zero-background" method which increases selectivity and sensitivity, and its sensitivity scales with laser power.

  10. Cavity-enhanced resonant photoacoustic spectroscopy with optical feedback cw diode lasers: A novel technique for ultratrace gas analysis and high-resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    Hippler, Michael; Mohr, Christian; Keen, Katherine A.; McNaghten, Edward D.

    2010-07-01

    Cavity-enhanced resonant photoacoustic spectroscopy with optical feedback cw diode lasers (OF-CERPAS) is introduced as a novel technique for ultratrace gas analysis and high-resolution spectroscopy. In the scheme, a single-mode cw diode laser (3 mW, 635 nm) is coupled into a high-finesse linear cavity and stabilized to the cavity by optical feedback. Inside the cavity, a build-up of laser power to at least 2.5 W occurs. Absorbing gas phase species inside the cavity are detected with high sensitivity by the photoacoustic effect using a microphone embedded in the cavity. To increase sensitivity further, coupling into the cavity is modulated at a frequency corresponding to a longitudinal resonance of an organ pipe acoustic resonator (f =1.35 kHz and Q ≈10). The technique has been characterized by measuring very weak water overtone transitions near 635 nm. Normalized noise-equivalent absorption coefficients are determined as α ≈4.4×10-9 cm-1 s1/2 (1 s integration time) and 2.6×10-11 cm-1 s1/2 W (1 s integration time and 1 W laser power). These sensitivities compare favorably with existing state-of-the-art techniques. As an advantage, OF-CERPAS is a "zero-background" method which increases selectivity and sensitivity, and its sensitivity scales with laser power.

  11. Evaluating contextual processing in diffusion MRI: application to optic radiation reconstruction for epilepsy surgery.

    PubMed

    Tax, Chantal M W; Duits, Remco; Vilanova, Anna; ter Haar Romeny, Bart M; Hofman, Paul; Wagner, Louis; Leemans, Alexander; Ossenblok, Pauly

    2014-01-01

    Diffusion MRI and tractography allow for investigation of the architectural configuration of white matter in vivo, offering new avenues for applications like presurgical planning. Despite the promising outlook, there are many pitfalls that complicate its use for (clinical) application. Amongst these are inaccuracies in the geometry of the diffusion profiles on which tractography is based, and poor alignment with neighboring profiles. Recently developed contextual processing techniques, including enhancement and well-posed geometric sharpening, have shown to result in sharper and better aligned diffusion profiles. However, the research that has been conducted up to now is mainly of theoretical nature, and so far these techniques have only been evaluated by visual inspection of the diffusion profiles. In this work, the method is evaluated in a clinically relevant application: the reconstruction of the optic radiation for epilepsy surgery. For this evaluation we have developed a framework in which we incorporate a novel scoring procedure for individual pathways. We demonstrate that, using enhancement and sharpening, the extraction of an anatomically plausible reconstruction of the optic radiation from a large amount of probabilistic pathways is greatly improved in three healthy controls, where currently used methods fail to do so. Furthermore, challenging reconstructions of the optic radiation in three epilepsy surgery candidates with extensive brain lesions demonstrate that it is beneficial to integrate these methods in surgical planning.

  12. Evaluating Contextual Processing in Diffusion MRI: Application to Optic Radiation Reconstruction for Epilepsy Surgery

    PubMed Central

    Tax, Chantal M. W.; Duits, Remco; Vilanova, Anna; ter Haar Romeny, Bart M.; Hofman, Paul; Wagner, Louis; Leemans, Alexander; Ossenblok, Pauly

    2014-01-01

    Diffusion MRI and tractography allow for investigation of the architectural configuration of white matter in vivo, offering new avenues for applications like presurgical planning. Despite the promising outlook, there are many pitfalls that complicate its use for (clinical) application. Amongst these are inaccuracies in the geometry of the diffusion profiles on which tractography is based, and poor alignment with neighboring profiles. Recently developed contextual processing techniques, including enhancement and well-posed geometric sharpening, have shown to result in sharper and better aligned diffusion profiles. However, the research that has been conducted up to now is mainly of theoretical nature, and so far these techniques have only been evaluated by visual inspection of the diffusion profiles. In this work, the method is evaluated in a clinically relevant application: the reconstruction of the optic radiation for epilepsy surgery. For this evaluation we have developed a framework in which we incorporate a novel scoring procedure for individual pathways. We demonstrate that, using enhancement and sharpening, the extraction of an anatomically plausible reconstruction of the optic radiation from a large amount of probabilistic pathways is greatly improved in three healthy controls, where currently used methods fail to do so. Furthermore, challenging reconstructions of the optic radiation in three epilepsy surgery candidates with extensive brain lesions demonstrate that it is beneficial to integrate these methods in surgical planning. PMID:25077946

  13. Ring resonant cavities for spectroscopy

    DOEpatents

    Zare, R.N.; Martin, J.; Paldus, B.A.; Xie, J.

    1999-06-15

    Ring-shaped resonant cavities for spectroscopy allow a reduction in optical feedback to the light source, and provide information on the interaction of both s- and p-polarized light with samples. A laser light source is locked to a single cavity mode. An intracavity acousto-optic modulator may be used to couple light into the cavity. The cavity geometry is particularly useful for Cavity Ring-Down Spectroscopy (CRDS). 6 figs.

  14. Ring resonant cavities for spectroscopy

    DOEpatents

    Zare, Richard N.; Martin, Juergen; Paldus, Barbara A.; Xie, Jinchun

    1999-01-01

    Ring-shaped resonant cavities for spectroscopy allow a reduction in optical feedback to the light source, and provide information on the interaction of both s- and p-polarized light with samples. A laser light source is locked to a single cavity mode. An intracavity acousto-optic modulator may be used to couple light into the cavity. The cavity geometry is particularly useful for Cavity Ring-Down Spectroscopy (CRDS).

  15. The rigorous wave optics design of diffuse medium reflectors for photovoltaics

    NASA Astrophysics Data System (ADS)

    Lin, Albert; Ming Fu, Sze; Kai Zhong, Yan; Wei Tseng, Chi; Yu Chen, Po; Ping Ju, Nyan

    2014-04-01

    Recently, diffuse reflectors are being incorporated into solar cells, due to the advantage of no metallic absorption loss, higher reflectance, decent light scattering property by embedded TiO2 scatterers, and the ease of fabrication. Different methods have been employed to analyze diffuse reflectors, including Monte Carlo method, N-flux method, and a one-dimensional approximation based on semi-coherent optics, and the calculated reflectance is around 80% by these methods. In this work, rigorous wave optics solution is used, and it is shown that the reflectance for diffuse medium mirrors can actually be as high as >99% over a broad spectral range, provided the TiO2 scatterer geometry is properly optimized. The bandwidth of diffuse reflectors is un-achievable by other dielectric mirrors such as distributed Bragg reflectors or high index contrast grating mirror, using the same index contrast. Finally, it is promisingly found that even if the distribution of TiO2 is random, the wide-band reflection can still be achieved for the optimized TiO2 geometry. Initial experimental result is included in the supplementary material which shows the high feasibility of diffuse medium mirrors for solar cells.

  16. Determination of the spin diffusion length in germanium by spin optical orientation and electrical spin injection

    NASA Astrophysics Data System (ADS)

    Rinaldi, C.; Bertoli, S.; Asa, M.; Baldrati, L.; Manzoni, C.; Marangoni, M.; Cerullo, G.; Bianchi, M.; Sordan, R.; Bertacco, R.; Cantoni, M.

    2016-10-01

    The measurement of the spin diffusion length and/or lifetime in semiconductors is a key issue for the realisation of spintronic devices, exploiting the spin degree of freedom of carriers for storing and manipulating information. In this paper, we address such parameters in germanium (0 0 1) at room temperature (RT) by three different measurement methods. Exploiting optical spin orientation in the semiconductor and spin filtering across an insulating MgO barrier, the dependence of the resistivity on the spin of photo-excited carriers in Fe/MgO/Ge spin photodiodes (spin-PDs) was electrically detected. A spin diffusion length of 0.9  ±  0.2 µm was obtained by fitting the photon energy dependence of the spin signal by a mathematical model. Electrical techniques, comprising non-local four-terminal and Hanle measurements performed on CoFeB/MgO/Ge lateral devices, led to spin diffusion lengths of 1.3  ±  0.2 µm and 1.3  ±  0.08 µm, respectively. Despite minor differences due to experimental details, the order of magnitude of the spin diffusion length is the same for the three techniques. Although standard electrical methods are the most employed in semiconductor spintronics for spin diffusion length measurements, here we demonstrate optical spin orientation as a viable alternative for the determination of the spin diffusion length in semiconductors allowing for optical spin orientation.

  17. Non-invasive measurements of tissue hemodynamics with hybrid diffuse optical methods

    NASA Astrophysics Data System (ADS)

    Durduran, Turgut

    Diffuse optical techniques were used to measure hemodynamics of tissues non-invasively. Spectroscopy and tomography of the brain, muscle and implanted tumors were carried out in animal models and humans. Two qualitatively different methods, diffuse optical tomography and diffuse correlation tomography, were hybridized permitting simultaneous measurement of total hemoglobin concentration, blood oxygen saturation and blood flow. This combination of information was processed further to derive estimates of oxygen metabolism (e.g. CMRO 2) in tissue. The diffuse correlation measurements of blood flow were demonstrated in human tissues, for the first time, demonstrating continous, non-invasive imaging of oxygen metabolism in large tissue volumes several centimeters below the tissue surface. The bulk of these investigations focussed on cerebral hemodynamics. Extensive validation of this methodology was carried out in in vivo rat brain models. Three dimensional images of deep tissue hemodynamics in middle cerebral artery occlusion and cortical spreading depression (CSD) were obtained. CSD hemodynamics were found to depend strongly on partial pressure of carbon dioxide. The technique was then adapted for measurement of human brain. All optical spectroscopic measurements of CMRO2 during functional activation were obtained through intact human skull non-invasively. Finally, a high spatio-temporal resolution measurement of cerebral blood flow due to somatosensory cortex activation following electrical forepaw stimulation in rats was carried out with laser speckle flowmetry. New analysis methods were introduced for laser speckle flowmetry. In other organs, deep tissue hemodynamics were measured on human calf muscle during exercise and cuff-ischemia and were shown to have some clinical utility for peripheral vascular disease. In mice tumor models, the measured hemodynamics were shown to be predictive of photodynamic therapy efficacy, again suggesting promise of clinical utility

  18. Cavity-enhanced room-temperature high sensitivity optical Faraday magnetometry

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Lei, Yaohua; Fan, Shuangli; Zhang, Qiaolin; Guo, Hong

    2017-01-01

    We propose a cavity QED system with two-photon Doppler-free configuration for weak magnetic field detection with high sensitivity at room temperature based on cavity electromagnetically induced transparency. Owing to the destructive interference induced by the control and driving fields, two transparency channels are opened. The Faraday rotation within two transparency channels can be used to detect weak magnetic field with high sensitivity at room temperature. The sensitivity with single photon and multiphoton probe inputs is analyzed. With single photon measurement, our numerical calculations demonstrate that the sensitivity with 3.8nT/√{Hz} and 6.4nT/√{Hz} could be achieved. When we measure the magnetic field with multiphoton input, the sensitivity can be improved to 7.7fT/√{Hz} and 25.6fT/√{Hz} under the realistic experimental conditions.

  19. Experimental Demonstration of Frequency Autolocking an Optical Cavity Using a Time-Varying Kalman Filter

    NASA Astrophysics Data System (ADS)

    Schütte, Dirk; Hassen, S. Z. Sayed; Karvinen, Kai S.; Boyson, Toby K.; Kallapur, Abhijit G.; Song, Hongbin; Petersen, Ian R.; Huntington, Elanor H.; Heurs, Michèle

    2016-01-01

    We propose and demonstrate a new autolocking scheme using a three-mirror ring cavity consisting of a linear quadratic regulator and a time-varying Kalman filter. Our technique does not require a frequency scan to acquire resonance. We utilize the singular perturbation method to simplify our system dynamics and to permit the application of linear control techniques. The error signal combined with the transmitted power is used to estimate the cavity detuning. This estimate is used by a linear time-varying Kalman filter which enables the implementation of an optimal controller. The experimental results validate the controller design, and we demonstrate improved robustness to disturbances and a faster locking time than a traditional proportional-integral controller. More important, the time-varying Kalman filtering approach automatically reacquires lock for large detunings, where the error signal leaves its linear capture range, a feat which linear time-invariant controllers cannot achieve.

  20. Optical cavity for enhanced parametric four-wave mixing in rubidium

    NASA Astrophysics Data System (ADS)

    Brekke, E.; Potier, S.

    2017-01-01

    We demonstrate the implementation of a ring cavity to enhance the efficiency of parametric four-wave mixing in rubidium. Using an input coupler with 95% reflectance, a finesse of 19.6$\\pm$0.5 is achieved with a rubidium cell inside. This increases the circulating intensity by a factor of 5.6$\\pm$0.5, and through two-photon excitation on the $5s_{1/2}\\rightarrow5d_{5/2}$ transition with a single excitation laser, up to 1.9$\\pm$0.3 mW of power at 420 nm is generated, 50 times what was previously generated with this scheme. The dependence of the output on Rb density and input power has been explored, suggesting the process may be approaching saturation. The blue output of the cavity also shows greatly improved spatial quality, combining to make this a promising source of 420 nm light for future experiments.