Sample records for diffusive radial transport

  1. A velocity-dependent anomalous radial transport model for (2-D, 2-V) kinetic transport codes

    NASA Astrophysics Data System (ADS)

    Bodi, Kowsik; Krasheninnikov, Sergei; Cohen, Ron; Rognlien, Tom

    2008-11-01

    Plasma turbulence constitutes a significant part of radial plasma transport in magnetically confined plasmas. This turbulent transport is modeled in the form of anomalous convection and diffusion coefficients in fluid transport codes. There is a need to model the same in continuum kinetic edge codes [such as the (2-D, 2-V) transport version of TEMPEST, NEO, and the code being developed by the Edge Simulation Laboratory] with non-Maxwellian distributions. We present an anomalous transport model with velocity-dependent convection and diffusion coefficients leading to a diagonal transport matrix similar to that used in contemporary fluid transport models (e.g., UEDGE). Also presented are results of simulations corresponding to radial transport due to long-wavelength ExB turbulence using a velocity-independent diffusion coefficient. A BGK collision model is used to enable comparison with fluid transport codes.

  2. A radially resolved kinetic model for nonlocal electron ripple diffusion losses in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, Scott

    A relatively simple radially resolved kinetic model is applied to the ripple diffusion problem for electrons in tokamaks. The distribution function f(r,v) is defined on a two-dimensional grid, where r is the radial coordinate and v is the velocity coordinate. Particle transport in the radial direction is from ripple and banana diffusion and transport in the velocity direction is described by the Fokker-Planck equation. Particles and energy are replaced by source functions that are adjusted to maintain a constant central density and temperature. The relaxed profiles of f(r,v) show that the electron distribution function at the wall contains suprathermal electronsmore » that have diffused from the interior that enhance ripple transport. The transport at the periphery is therefore nonlocal. The energy replacement times from the computational model are near to the experimental replacement times for tokamak discharges in the compilation by Pfeiffer and Waltz [Nucl. Fusion 19, 51 (1979)].« less

  3. Diffusive transport of several hundred keV electrons in the Earth's slot region

    NASA Astrophysics Data System (ADS)

    Ma, Q.; Li, W.; Thorne, R. M.; Bortnik, J.

    2017-12-01

    We investigate the gradual diffusion of energetic electrons from the inner edge of the outer radiation belt into the slot region. The Van Allen Probes observed slow inward diffusion and decay of 200-600 keV electrons following the intense geomagnetic storm that occurred on 17 March 2013. During the 10-day non-disturbed period following the storm, the peak of electron fluxes gradually moved from L 2.7 to L 2.4, and the flux levels decreased by a factor of 2-4 depending on the electron energy. We simulated the radial intrusion and decay of electrons using a 3-dimentional diffusion code, which reproduced the energy-dependent transport of electrons from 100 keV to 1 MeV in the slot region. At energies of 100-200 keV, the electrons experience fast transport across the slot region due to the dominance of radial diffusion; at energies of 200-600 keV, the electrons gradually diffuse and decay in the slot region due to the comparable radial diffusion rate and pitch angle scattering rate by plasmaspheric hiss; at energies of E > 700 keV, the electrons stopped diffusing near the inner edge of outer radiation belt due to the dominant pitch angle scattering loss. In addition to plasmaspheric hiss, magnetosonic waves and VLF waves can cause the loss of high pitch angle electrons, relaxing the sharp `top-hat' shaped pitch angle distributions created by plasmaspheric hiss. Our simulation indicates the importance of radial diffusion and pitch angle scattering in forming the diffusive intrusion of energetic electrons across the slot region.

  4. Diffusive Transport of Several Hundred keV Electrons in the Earth's Slot Region

    NASA Astrophysics Data System (ADS)

    Ma, Q.; Li, W.; Thorne, R. M.; Bortnik, J.; Reeves, G. D.; Spence, H. E.; Turner, D. L.; Blake, J. B.; Fennell, J. F.; Claudepierre, S. G.; Kletzing, C. A.; Kurth, W. S.; Hospodarsky, G. B.; Baker, D. N.

    2017-10-01

    We investigate the gradual diffusion of energetic electrons from the inner edge of the outer radiation belt into the slot region. The Van Allen Probes observed slow inward diffusion and decay of 200-600 keV electrons following the intense geomagnetic storm that occurred on 17 March 2013. During the 10 day nondisturbed period following the storm, the peak of electron fluxes gradually moved from L 2.7 to L 2.4, and the flux levels decreased by a factor of 2-4 depending on the electron energy. We simulated the radial intrusion and decay of electrons using a three-dimensional diffusion code, which reproduced the energy-dependent transport of electrons from 100 keV to 1 MeV in the slot region. At energies of 100-200 keV, the electrons experience fast transport across the slot region due to the dominance of radial diffusion; at energies of 200-600 keV, the electrons gradually diffuse and decay in the slot region due to the comparable rate of radial diffusion and pitch angle scattering by plasmaspheric hiss; at energies of E > 700 keV, the electrons stopped diffusing near the inner edge of outer radiation belt due to the dominant pitch angle scattering loss. In addition to plasmaspheric hiss, magnetosonic waves and VLF transmitters can cause the loss of high pitch angle electrons, relaxing the sharp "top-hat" shaped pitch angle distributions created by plasmaspheric hiss. Our simulation indicates the importance of balance between radial diffusion and loss through pitch angle scattering in forming the diffusive intrusion of energetic electrons across the slot region.

  5. Ratchet effect for nanoparticle transport in hair follicles.

    PubMed

    Radtke, Matthias; Patzelt, Alexa; Knorr, Fanny; Lademann, Jürgen; Netz, Roland R

    2017-07-01

    The motion of a single rigid nanoparticle inside a hair follicle is investigated by means of Brownian dynamics simulations. The cuticular hair structure is modeled as a periodic asymmetric ratchet-shaped surface. Induced by oscillating radial hair motion we find directed nanoparticle transport into the hair follicle with maximal velocity at a specific optimal frequency and an optimal particle size. We observe flow reversal when switching from radial to axial oscillatory hair motion. We also study the diffusion behavior and find strongly enhanced diffusion for axial motion with a diffusivity significantly larger than for free diffusion. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Diffusive Transport of Several Hundred keV Electrons in the Earth's Slot Region

    DOE PAGES

    Ma, Q.; Li, W.; Thorne, R. M.; ...

    2017-09-29

    Here, we investigate the gradual diffusion of energetic electrons from the inner edge of the outer radiation belt into the slot region. The Van Allen Probes observed slow inward diffusion and decay of ~200–600 keV electrons following the intense geomagnetic storm that occurred on 17 March 2013. During the 10 day nondisturbed period following the storm, the peak of electron fluxes gradually moved from L ~ 2.7 to L ~ 2.4, and the flux levels decreased by a factor of ~2–4 depending on the electron energy. We simulated the radial intrusion and decay of electrons using a three–dimensional diffusion code,more » which reproduced the energy–dependent transport of electrons from ~100 keV to 1 MeV in the slot region. At energies of 100–200 keV, the electrons experience fast transport across the slot region due to the dominance of radial diffusion; at energies of 200–600 keV, the electrons gradually diffuse and decay in the slot region due to the comparable rate of radial diffusion and pitch angle scattering by plasmaspheric hiss; at energies of E > 700 keV, the electrons stopped diffusing near the inner edge of outer radiation belt due to the dominant pitch angle scattering loss. In addition to plasmaspheric hiss, magnetosonic waves and VLF transmitters can cause the loss of high pitch angle electrons, relaxing the sharp “top–hat” shaped pitch angle distributions created by plasmaspheric hiss. Our simulation indicates the importance of balance between radial diffusion and loss through pitch angle scattering in forming the diffusive intrusion of energetic electrons across the slot region.« less

  7. Magnetic-flutter-induced pedestal plasma transport

    NASA Astrophysics Data System (ADS)

    Callen, J. D.; Hegna, C. C.; Cole, A. J.

    2013-11-01

    Plasma toroidal rotation can limit reconnection of externally applied resonant magnetic perturbation (RMP) fields δB on rational magnetic flux surfaces. Hence it causes the induced radial perturbations δBρ to be small there, thereby inhibiting magnetic island formation and stochasticity at the top of pedestals in high (H-mode) confinement tokamak plasmas. However, the δBρs induced by RMPs increase away from rational surfaces and are shown to induce significant sinusoidal radial motion (flutter) of magnetic field lines with a radial extent that varies linearly with δBρ and inversely with distance from the rational surface because of the magnetic shear. This produces a radial electron thermal diffusivity that is (1/2)(δBρ/B0)2 times a kinetically derived, electron-collision-induced, magnetic-shear-reduced, effective parallel electron thermal diffusivity in the absence of magnetic stochasticity. These low collisionality flutter-induced transport processes and thin magnetic island effects are shown to be highly peaked in the vicinity of rational surfaces at the top of low collisionality pedestals. However, the smaller but finite level of magnetic-flutter-induced electron heat transport midway between rational surfaces is the primary factor that determines the electron temperature difference between rational surfaces at the pedestal top. The magnetic-flutter-induced non-ambipolar electron density transport can be large enough to push the plasma toward an electron density transport root. Requiring ambipolar density transport is shown to determine the radial electric field, the plasma toroidal rotation (via radial force balance), a reduced electron thermal diffusivity and increased ambipolar density transport in the pedestal. At high collisionality the various flutter effects are less strongly peaked at rational surfaces and generally less significant. They are thus less likely to exhibit flutter-induced resonant behaviour and transition toward an electron transport root. Magnetic-flutter-induced plasma transport processes provide a new paradigm for developing an understanding of how RMPs modify the pedestal structure to stabilize peeling-ballooning modes and thereby suppress edge localized modes in low collisionality tokamak H-mode plasmas.

  8. Influence of fast alpha diffusion and thermal alpha buildup on tokamak reactor performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uckan, N.A.; Tolliver, J.S.; Houlberg, W.A.

    1987-11-01

    The effect of fast alpha diffusion and thermal alpha accumulation on the confinement capability of a candidate Engineering Test Reactor (ETR) plasma (Tokamak Ignition/Burn Experimental Reactor (TIBER-II)) in achieving ignition and steady-state driven operation has been assessed using both global and 1-1/2-D transport models. Estimates are made of the threshold for radial diffusion of fast alphas and thermal alpha buildup. It is shown that a relatively low level of radial transport, when combined with large gradients in the fast alpha density, leads to a significant radial flow with a deleterious effect on plasma performance. Similarly, modest levels of thermal alphamore » concentration significantly influence the ignition and steady-state burn capability. 23 refs., 9 figs., 4 tabs.« less

  9. Evolution of Edge Pedestal Profiles Over the L-H Transition

    NASA Astrophysics Data System (ADS)

    Sayer, M. S.; Stacey, W. M.; Floyd, J. P.; Groebner, R. J.

    2012-10-01

    The detailed time evolution of thermal diffusivities, electromagnetic forces, pressure gradients, particle pinch and momentum transport frequencies (which determine the diffusion coefficient) have been analyzed during the L-H transition in a DIII-D discharge. Density, temperature, rotation velocity and electric field profiles at times just before and after the L-H transition are analyzed in terms of these quantities. The analysis is based on the fluid particle balance, energy balance, force balance and heat conduction equations, as in Ref. [1], but with much greater time resolution and with account for thermal ion orbit loss. The variation of diffusive and non-diffusive transport over the L-H transition is determined from the variation in the radial force balance (radial electric field, VxB force, and pressure gradient) and the variation in the interpreted diffusive transport coefficients. 6pt [1] W.M. Stacey and R.J. Groebner, Phys. Plasmas 17, 112512 (2010).

  10. Analytic expressions for ULF wave radiation belt radial diffusion coefficients

    PubMed Central

    Ozeke, Louis G; Mann, Ian R; Murphy, Kyle R; Jonathan Rae, I; Milling, David K

    2014-01-01

    We present analytic expressions for ULF wave-derived radiation belt radial diffusion coefficients, as a function of L and Kp, which can easily be incorporated into global radiation belt transport models. The diffusion coefficients are derived from statistical representations of ULF wave power, electric field power mapped from ground magnetometer data, and compressional magnetic field power from in situ measurements. We show that the overall electric and magnetic diffusion coefficients are to a good approximation both independent of energy. We present example 1-D radial diffusion results from simulations driven by CRRES-observed time-dependent energy spectra at the outer boundary, under the action of radial diffusion driven by the new ULF wave radial diffusion coefficients and with empirical chorus wave loss terms (as a function of energy, Kp and L). There is excellent agreement between the differential flux produced by the 1-D, Kp-driven, radial diffusion model and CRRES observations of differential electron flux at 0.976 MeV—even though the model does not include the effects of local internal acceleration sources. Our results highlight not only the importance of correct specification of radial diffusion coefficients for developing accurate models but also show significant promise for belt specification based on relatively simple models driven by solar wind parameters such as solar wind speed or geomagnetic indices such as Kp. Key Points Analytic expressions for the radial diffusion coefficients are presented The coefficients do not dependent on energy or wave m value The electric field diffusion coefficient dominates over the magnetic PMID:26167440

  11. Dependence of radiation belt simulations to assumed radial diffusion rates tested for two empirical models of radial transport

    NASA Astrophysics Data System (ADS)

    Drozdov, Alexander; Shprits, Yuri; Aseev, Nikita; Kellerman, Adam; Reeves, Geoffrey

    2017-04-01

    Radial diffusion is one of the dominant physical mechanisms that drives acceleration and loss of the radiation belt electrons, which makes it very important for nowcasting and forecasting space weather models. We investigate the sensitivity of the two parameterizations of the radial diffusion of Brautigam and Albert [2000] and Ozeke et al. [2014] on long-term radiation belt modeling using the Versatile Electron Radiation Belt (VERB). Following Brautigam and Albert [2000] and Ozeke et al. [2014], we first perform 1-D radial diffusion simulations. Comparison of the simulation results with observations shows that the difference between simulations with either radial diffusion parameterization is small. To take into account effects of local acceleration and loss, we perform 3-D simulations, including pitch-angle, energy and mixed diffusion. We found that the results of 3-D simulations are even less sensitive to the choice of parameterization of radial diffusion rates than the results of 1-D simulations at various energies (from 0.59 to 1.80 MeV). This result demonstrates that the inclusion of local acceleration and pitch-angle diffusion can provide a negative feedback effect, such that the result is largely indistinguishable simulations conducted with different radial diffusion parameterizations. We also perform a number of sensitivity tests by multiplying radial diffusion rates by constant factors and show that such an approach leads to unrealistic predictions of radiation belt dynamics. References Brautigam, D. H., and J. M. Albert (2000), Radial diffusion analysis of outer radiation belt electrons during the October 9, 1990, magnetic storm, J. Geophys. Res., 105(A1), 291-309, doi:10.1029/1999ja900344. Ozeke, L. G., I. R. Mann, K. R. Murphy, I. Jonathan Rae, and D. K. Milling (2014), Analytic expressions for ULF wave radiation belt radial diffusion coefficients, J. Geophys. Res. [Space Phys.], 119(3), 1587-1605, doi:10.1002/2013JA019204.

  12. Calculation of two-dimension radial electric field in boundary plasmas by using BOUT++

    NASA Astrophysics Data System (ADS)

    Li, N. M.; Xu, X. Q.; Rognlien, T. D.; Gui, B.; Sun, J. Z.; Wang, D. Z.

    2018-07-01

    The steady state radial electric field (Er) is calculated by coupling a plasma transport model with the quasi-neutrality constraint and the vorticity equation within the BOUT++ framework. Based on the experimentally measured plasma density and temperature profiles in Alcator C-Mod discharges, the effective radial particle and heat diffusivities are inferred from the set of plasma transport equations. The effective diffusivities are then extended into the scrape-off layer (SOL) to calculate the plasma density, temperature and flow profiles across the separatrix into the SOL with the electrostatic sheath boundary conditions (SBC) applied on the divertor plates. Given these diffusivities, the electric field can be calculated self-consistently across the separatrix from the vorticity equation with SBC coupled to the plasma transport equations. The sheath boundary conditions act to generate a large and positive Er in the SOL, which is consistent with experimental measurements. The effect of magnetic particle drifts is shown to play a significant role on local particle transport and Er by inducing a net particle flow in both the edge and SOL regions.

  13. The role of fluctuation-induced transport in a toroidal plasma with strong radial electric fields

    NASA Technical Reports Server (NTRS)

    Roth, J. R.; Krawczonek, W. M.; Powers, E. J.; Hong, J. Y.; Kim, Y. C.

    1981-01-01

    Previous work employing digitally implemented spectral analysis techniques is extended to demonstrate that radial fluctuation-induced transport is the dominant ion transport mechanism in an electric field dominated toroidal plasma. Such transport can be made to occur against a density gradient, and hence may have a very beneficial effect on confinement in toroidal plasmas of fusion interest. It is shown that Bohm or classical diffusion down a density gradient, the collisional Pedersen-current mechanism, and the collisionless electric field gradient mechanism described by Cole (1976) all played a minor role, if any, in the radial transport of this plasma.

  14. Radial transport of radiation belt electrons in kinetic field-line resonances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaston, Christopher C.; Bonnell, J. W.; Wygant, J. R.

    A representative case study from the Van Allen Probes during a geomagnetic storm recovery phase reveals enhanced electron fluxes at intermediate pitch angles over energies from ~100 keV to 5 MeV coincident with broadband low-frequency electromagnetic waves. The statistical properties of these waves are used to build a model for radial diffusion via drift-bounce resonances in kinetic Alfvén eigenmodes/kinetic field-line resonances. Estimated diffusion coefficients indicate timescales for radial transport on the order of hours in storm time events at energies from <100 keV to MeVs over equatorial pitch angles from the edge of the loss cone to nearly perpendicular tomore » the geomagnetic field. In conclusion, the correlation of kinetic resonances with electron depletions and enhancements during storm main phase and recovery, and the rapid diffusion these waves drive, suggests that they may modulate the outer radiation belt.« less

  15. Radial transport of radiation belt electrons in kinetic field-line resonances

    DOE PAGES

    Chaston, Christopher C.; Bonnell, J. W.; Wygant, J. R.; ...

    2017-07-25

    A representative case study from the Van Allen Probes during a geomagnetic storm recovery phase reveals enhanced electron fluxes at intermediate pitch angles over energies from ~100 keV to 5 MeV coincident with broadband low-frequency electromagnetic waves. The statistical properties of these waves are used to build a model for radial diffusion via drift-bounce resonances in kinetic Alfvén eigenmodes/kinetic field-line resonances. Estimated diffusion coefficients indicate timescales for radial transport on the order of hours in storm time events at energies from <100 keV to MeVs over equatorial pitch angles from the edge of the loss cone to nearly perpendicular tomore » the geomagnetic field. In conclusion, the correlation of kinetic resonances with electron depletions and enhancements during storm main phase and recovery, and the rapid diffusion these waves drive, suggests that they may modulate the outer radiation belt.« less

  16. Response of radiation belt simulations to different radial diffusion coefficients for relativistic and ultra-relativistic electrons

    NASA Astrophysics Data System (ADS)

    Drozdov, Alexander; Mann, Ian; Baker, Daniel N.; Subbotin, Dmitriy; Ozeke, Louis; Shprits, Yuri; Kellerman, Adam

    Two parameterizations of the resonant wave-particle interactions of electrons with ULF waves in the magnetosphere by Brautigam and Albert [2000] and Ozeke et al. [2012] are evaluated using the Versatile Electron Radiation Belt (VERB) diffusion code to estimate the effect of changing a diffusion coefficient on the radiation belt simulation. The period of investigation includes geomagnetically quiet and active time. The simulations take into account wave-particle interactions represented by radial diffusion transport, local acceleration, losses due to pitch-angle diffusion, and mixed diffusion. 1. Brautigam, D. H., and J. M. Albert (2000), Radial diffusion analysis of outer radiation belt electrons during the October 9, 1990, magnetic storm, J. Geophys. Res., 105(A1), 291-309, doi:10.1029/1999JA900344 2. Ozeke, L. G., I. R. Mann, K. R. Murphy, I. J. Rae, D. K. Milling, S. R. Elkington, A. A. Chan, and H. J. Singer (2012), ULF wave derived radiation belt radial diffusion coefficients, J. Geophys. Res., 117, A04222, doi:10.1029/2011JA017463.

  17. Modeling anomalous radial transport in kinetic transport codes

    NASA Astrophysics Data System (ADS)

    Bodi, K.; Krasheninnikov, S. I.; Cohen, R. H.; Rognlien, T. D.

    2009-11-01

    Anomalous transport is typically the dominant component of the radial transport in magnetically confined plasmas, where the physical origin of this transport is believed to be plasma turbulence. A model is presented for anomalous transport that can be used in continuum kinetic edge codes like TEMPEST, NEO and the next-generation code being developed by the Edge Simulation Laboratory. The model can also be adapted to particle-based codes. It is demonstrated that the model with a velocity-dependent diffusion and convection terms can match a diagonal gradient-driven transport matrix as found in contemporary fluid codes, but can also include off-diagonal effects. The anomalous transport model is also combined with particle drifts and a particle/energy-conserving Krook collision operator to study possible synergistic effects with neoclassical transport. For the latter study, a velocity-independent anomalous diffusion coefficient is used to mimic the effect of long-wavelength ExB turbulence.

  18. Radial Diffusion Coefficients Using E and B Field Data from the Van Allen Probes: Comparison with the CRRES Study

    NASA Astrophysics Data System (ADS)

    Ali, A.; Elkington, S. R.; Malaspina, D.

    2014-12-01

    The Van Allen radiation belts contain highly energetic particles which interact with a variety of plasma and MHD waves. Waves with frequencies in the ULF range are understood to play an important role in loss and acceleration of energetic particles. We are investigating the contributions from perturbations in both the magnetic and the electric fields in driving radial diffusion of charged particles and wish to probe two unanswered questions about ULF wave driven radial transport. First, how important are the fluctuations in the magnetic field compared with the fluctuations in the electric field in driving radial diffusion? Second, how does ULF wave power distribution in azimuth affect radial diffusion? Analytic treatments of the diffusion coefficients generally assume uniform distribution of power in azimuth but in situ measurements suggest otherwise. We present results from a study using the electric and magnetic field measurements from the Van Allen Probes to estimate the radial diffusion coefficients as a function of L and Kp. During the lifetime of the RBSP mission to date, there has been a dearth of solar activity. This compels us to consider Kp as the only time and activity dependent parameter instead of solar wind velocity and pressure.

  19. B2.5-Eirene modeling of radial transport in the MAGPIE linear plasma device

    NASA Astrophysics Data System (ADS)

    Owen, L. W.; Caneses, J. F.; Canik, J.; Lore, J. D.; Corr, C.; Blackwell, B.; Bonnin, X.; Rapp, J.

    2017-05-01

    Radial transport in helicon heated hydrogen plasmas in the MAGnetized Plasma Interaction Experiment (MAGPIE) is studied with the B2.5-Eirene (SOLPS5.0) code. Radial distributions of plasma density, temperature and ambipolar potential are computed for several magnetic field configurations and compared to double Langmuir probe measurements. Evidence for an unmagnetized ion population is seen in the requirement for a convective pinch term in the continuity equation in order to fit the centrally peaked density profile data. The measured slightly hollow electron temperature profiles are reproduced with combinations of on-axis and edge heating which can be interpreted as helicon and Trivelpiece-Gould wave absorption, respectively. Pressure gradient driven radial charged particle diffusion is chosen to describe the diffusive particle flux since the hollowness of the temperature profiles assists the establishment of on-axis density peaking.

  20. Measurements and modeling of transport and impurity radial profiles in the EXTRAP T2R reversed field pinch

    NASA Astrophysics Data System (ADS)

    Kuldkepp, M.; Brunsell, P. R.; Cecconello, M.; Dux, R.; Menmuir, S.; Rachlew, E.

    2006-09-01

    Radial impurity profiles of oxygen in the rebuilt reversed field pinch EXTRAP T2R [P. R. Brunsell et al., Plasma Phys. Control. Fusion 43, 1457 (2001)] have been measured with a multichannel spectrometer. Absolute ion densities for oxygen peak between 1-4×1010cm-3 for a central electron density of 1×1013cm-3. Transport simulations with the one-dimensional transport code STRAHL with a diffusion coefficient of 20m2 s-1 yield density profiles similar to those measured. Direct measurement of the ion profile evolution during pulsed poloidal current drive suggests that the diffusion coefficient is reduced by a factor ˜2 in the core but remains unaffected toward the edge. Core transport is not significantly affected by the radial magnetic field growth seen at the edge in discharges without feedback control. This indicates that the mode core amplitude remains the same while the mode eigenfunction increases at the edge.

  1. Coupling of Outward Radial Diffusion and Losses at the Magnetopause in the Outer Radiation Belt

    NASA Astrophysics Data System (ADS)

    Castillo Tibocha, A. M.; Shprits, Y.; Drozdov, A.; Kellerman, A. C.; Aseev, N.

    2017-12-01

    Sudden dropouts observed in relativistic electron fluxes within the radiation belts are one the most studied and yet poorly understood features of the dynamics of radiation belts. A number of physical processes contributing to these dropout events are triggered by solar wind drivers. Magnetopause losses are one of the most effective mechanisms involved here and usually occur when drifting particles reach the boundary or when inward motion of the magnetopause crosses closed particle drift shells. In both cases, particles are rapidly transported into interplanetary space generating sharp gradients in electron PSD that will promote further outward radial diffusion of particles due to adiabatic transport and the influence of outward ULF waves. Studies suggest that the coupling of these two mechanisms explains nearly all the depletion of MeV electrons observed in the outer region of the radiation belts (L*>5). In this study, we present a simple approach to model electron losses at the magnetopause and outward radial diffusion in the outer radiation belt during geomagnetic storm time. Measured upstream solar wind parameters were used to calculate the radial distance of the subsolar point as proposed by Shue et al. (1997), which was defined as the radial extent of our assumed dipole field configuration. Radial diffusion was modelled using the empirical Kp-dependent DLL [Brautigam and Albert, JGR 2000] diffusion coefficient, which is included in the 3D Versatile Electron Radiation Belt (VERB) code. Simulations of geomagnetic storms were performed in order to evaluate the effects of the integrated mechanisms and the results were compared with Van Allen probe satellite data. Our simulation results reproduce well the observed loss at the magnetopause and electron depletion in the outer radiation belt.

  2. Introduction of Shear-Based Transport Mechanisms in Radial-Axial Hybrid Hall Thruster Simulations

    NASA Astrophysics Data System (ADS)

    Scharfe, Michelle; Gascon, Nicolas; Scharfe, David; Cappelli, Mark; Fernandez, Eduardo

    2007-11-01

    Electron diffusion across magnetic field lines in Hall effect thrusters is experimentally observed to be higher than predicted by classical diffusion theory. Motivated by theoretical work for fusion applications and experimental measurements of Hall thrusters, numerical models for the electron transport are implemented in radial-axial hybrid simulations in order to compute the electron mobility using simulated plasma properties and fitting parameters. These models relate the cross-field transport to the imposed magnetic field distribution through shear suppression of turbulence-enhanced transport. While azimuthal waves likely enhance cross field mobility, axial shear in the electron fluid may reduce transport due to a reduction in turbulence amplitudes and modification of phase shifts between fluctuating properties. The sensitivity of the simulation results to the fitting parameters is evaluated and an examination is made of the transportability of these parameters to several Hall thruster devices.

  3. ULF Waves and Diffusive Radial Transport of Charged Particles

    NASA Astrophysics Data System (ADS)

    Ali, Ashar Fawad

    The Van Allen radiation belts contain highly energetic particles which interact with a variety of plasma and magnetohydrodynamic (MHD) waves. Waves in the ultra low-frequency (ULF) range play an important role in the loss and acceleration of energetic particles. Considering the geometry of the geomagnetic field, charged particles trapped in the inner magnetosphere undergo three distinct types of periodic motions; an adiabatic invariant is associated with each type of motion. The evolution of the phase space density of charged particles in the magnetosphere in the coordinate space of the three adiabatic invariants is modeled by the Fokker-Planck equation. If we assume that the first two adiabatic invariants are conserved while the third invariant is violated, then the general Fokker-Planck equation reduces to a radial diffusion equation with the radial diffusion coefficient quantifying the rate of the radial diffusion of charged particles, including contributions from perturbations in both the magnetic and the electric fields. This thesis investigates two unanswered questions about ULF wave-driven radial transport of charged particles. First, how important are the ULF fluctuations in the magnetic field compared with the ULF fluctuations in the electric field in driving the radial diffusion of charged particles in the Earth's inner magnetosphere? It has generally been accepted that magnetic field perturbations dominate over electric field perturbations, but several recently published studies suggest otherwise. Second, what is the distribution of ULF wave power in azimuth, and how does ULF wave power depend upon radial distance and the level of geomagnetic activity? Analytic treatments of the diffusion coefficients generally assume uniform distribution of power in azimuth, but in situ measurements suggest that this may not be the case. We used the magnetic field data from the Combined Release and Radiation Effects Satellite (CRRES) and the electric and the magnetic field data from the Radiation Belt Storm Probes (RBSP) to compute the electric and the magnetic component of the radial diffusion coefficient using the Fei et al. [2006] formulation. We conclude that contrary to prior notions, the electric component is dominant in driving radial diffusion of charged particles in the Earth's inner magnetosphere instead of the magnetic component. The electric component can be up to two orders of magnitude larger than the magnetic component. In addition, we see that ULF wave power in both the electric and the magnetic fields has a clear dependence on Kp with wave power decreasing as radial distance decreases. For both fields, the noon sectors generally contain more ULF wave power than the dawn, dusk, and the midnight magnetic local time (MLT) sectors. There is no significant difference between ULF wave power in the dawn, dusk, and the midnight sectors.

  4. Position-Dependent Diffusion Tensors in Anisotropic Media from Simulation: Oxygen Transport in and through Membranes.

    PubMed

    Ghysels, An; Venable, Richard M; Pastor, Richard W; Hummer, Gerhard

    2017-06-13

    A Bayesian-based methodology is developed to estimate diffusion tensors from molecular dynamics simulations of permeants in anisotropic media, and is applied to oxygen in lipid bilayers. By a separation of variables in the Smoluchowski diffusion equation, the multidimensional diffusion is reduced to coupled one-dimensional diffusion problems that are treated by discretization. The resulting diffusivity profiles characterize the membrane transport dynamics as a function of the position across the membrane, discriminating between diffusion normal and parallel to the membrane. The methodology is first validated with neat water, neat hexadecane, and a hexadecane slab surrounded by water, the latter being a simple model for a lipid membrane. Next, a bilayer consisting of pure 1-palmitoyl 2-oleoylphosphatidylcholine (POPC), and a bilayer mimicking the lipid composition of the inner mitochondrial membrane, including cardiolipin, are investigated. We analyze the detailed time evolution of oxygen molecules, in terms of both normal diffusion through and radial diffusion inside the membrane. Diffusion is fast in the more loosely packed interleaflet region, and anisotropic, with oxygen spreading more rapidly in the membrane plane than normal to it. Visualization of the propagator shows that oxygen enters the membrane rapidly, reaching its thermodynamically favored center in about 1 ns, despite the free energy barrier at the headgroup region. Oxygen transport is quantified by computing the oxygen permeability of the membranes and the average radial diffusivity, which confirm the anisotropy of the diffusion. The position-dependent diffusion constants and free energies are used to construct compartmental models and test assumptions used in estimating permeability, including Overton's rule. In particular, a hexadecane slab surrounded by water is found to be a poor model of oxygen transport in membranes because the relevant energy barriers differ substantially.

  5. Internal transport barrier in tokamak and helical plasmas

    NASA Astrophysics Data System (ADS)

    Ida, K.; Fujita, T.

    2018-03-01

    The differences and similarities between the internal transport barriers (ITBs) of tokamak and helical plasmas are reviewed. By comparing the characteristics of the ITBs in tokamak and helical plasmas, the mechanisms of the physics for the formation and dynamics of the ITB are clarified. The ITB is defined as the appearance of discontinuity of temperature, flow velocity, or density gradient in the radius. From the radial profiles of temperature, flow velocity, and density the ITB is characterized by the three parameters of normalized temperature gradient, R/{L}T, the location, {ρ }{ITB}, and the width, W/a, and can be expressed by ‘weak’ ITB (small R/{L}T) or ‘strong’ (large R/{L}T), ‘small’ ITB (small {ρ }{ITB}) or ‘large’ ITB (large {ρ }{ITB}), and ‘narrow’ (small W/a) or ‘wide’ (large W/a). Three key physics elements for the ITB formation, radial electric field shear, magnetic shear, and rational surface (and/or magnetic island) are described. The characteristics of electron and ion heat transport and electron and impurity transport are reviewed. There are significant differences in ion heat transport and electron heat transport. The dynamics of ITB formation and termination is also discussed. The emergence of the location of the ITB is sometimes far inside the ITB foot in the steady-state phase and the ITB region shows radial propagation during the formation of the ITB. The non-diffusive terms in momentum transport and impurity transport become more dominant in the plasma with the ITB. The reversal of the sign of non-diffusive terms in momentum transport and impurity transport associated with the formation of the ITB reported in helical plasma is described. Non-local transport plays an important role in determining the radial profile of temperature and density. The spontaneous change in temperature curvature (second radial derivative of temperature) in the ITB region is described. In addition, the key parameters of the control of the ITB and future prospects are discussed.

  6. Estimation of the radial diffusion coefficient using REE-associated ground Pc 5 pulsations

    NASA Astrophysics Data System (ADS)

    Fujimoto, A.; Yumoto, K.

    2010-12-01

    Pc 5 pulsations with frequencies between 1.67 and 6.67 mHz are believed to contribute to the REE in the outer radiation belt during magnetic storms, by means of the observations [Baker et al., 1998; Rostoker et al., 1998; Mathie and Mann, 2000; O'Brien et al., 2001, 2003] and several theoretical studies. The latter studies are roughly categorized into two themes: in-situ acceleration at L lower than 6.6 by wave-particle interactions [Liu et al., 199 9; Summers et al., 1999; Summers and Ma, 2000] and acceleration by radial diffusion from the outer to the inner magnetosphere [Elkington et al., 1999, 2003; Hudson et al., 2000; Kim et al., 2001]. One possible acceleration mechanism is the resonant interaction with Pc 5 toroidal and poloidal pulsations, referred as the radial diffusion mechanism. One of unsolved problems is where and which Pc 5 pulsation mode (toroidal and/or poloidal) play effective role in the radial diffusion process. In order to verify Pc 5 pulsation as the major roles for REEs, we have to examine the time variation of electron phase space density (cf. Green et al., 2004). Electron phase space density is not directly measured, but we can estimate radial diffusion coefficients which determine the electron transportation efficiency, using ground-based magnetic field data. We estimated the radial diffusion coefficient of ground Pc 5 pulsations associated with the Relativistic Electron Enhancement (REE) in the geosynchronous orbit. In order to estimate the radial diffusion coefficient D_LL, we need the value of in-situ Pc 5 electric field power spectral density. In this paper, however, we estimated the equatorial electric field mapped from Pc 5 pulsations power spectral density on the ground. Reciprocal of radial diffusion coefficient describes the timescale T_LL for an electron to diffuse 1 Re. Applying a superposed epoch analysis about timescales T_LL of the radial diffusion for 12 REE events in 2008, we found that when the relativistic electron enhancements occur, T_LL at higher latitude (L larger than 5) is predominantly diffusional, whereas T_LL at lower latitude (L less than 4) is mainly convectional. We concluded that higher-latitude Pc 5 pulsations play more effective roles than lower latitude Pc 5 pulsations in the radial diffusion process.

  7. Impurity profiles and radial transport in the EXTRAP-T2 reversed field pinch

    NASA Astrophysics Data System (ADS)

    Sallander, J.

    1999-05-01

    Radially resolved spectroscopy has been used to measure the radial distribution of impurity ions (O III-O V and C III-CVI) in the EXTRAP-T2 reversed field pinch (RFP). The radial profile of the emission is reconstructed from line emission measured along five lines of sight. The ion density profile is the fitted quantity in the reconstruction of the brightness profile and is thus obtained directly in this process. These measurements are then used to adjust the parameters in transport calculations in order to obtain consistency with the observed ion density profiles. Comparison between model and measurements show that a radial dependence in the diffusion is needed to explain the measured ion densities.

  8. SNOW LINES AS PROBES OF TURBULENT DIFFUSION IN PROTOPLANETARY DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owen, James E.

    2014-07-20

    Sharp chemical discontinuities can occur in protoplanetary disks, particularly at ''snow lines'' where a gas-phase species freezes out to form ice grains. Such sharp discontinuities will diffuse out due to the turbulence suspected to drive angular momentum transport in accretion disks. We demonstrate that the concentration gradient—in the vicinity of the snow line—of a species present outside a snow line but destroyed inside is strongly sensitive to the level of turbulent diffusion (provided the chemical and transport timescales are decoupled) and provides a direct measurement of the radial ''Schmidt number'' (the ratio of the angular momentum transport to radial turbulentmore » diffusion). Taking as an example the tracer species N{sub 2}H{sup +}, which is expected to be destroyed inside the CO snow line (as recently observed in TW Hya) we show that ALMA observations possess significant angular resolution to constrain the Schmidt number. Since different turbulent driving mechanisms predict different Schmidt numbers, a direct measurement of the Schmidt number in accretion disks would allow inferences to be made about the nature of the turbulence.« less

  9. SEAWAT-based simulation of axisymmetric heat transport.

    PubMed

    Vandenbohede, Alexander; Louwyck, Andy; Vlamynck, Nele

    2014-01-01

    Simulation of heat transport has its applications in geothermal exploitation of aquifers and the analysis of temperature dependent chemical reactions. Under homogeneous conditions and in the absence of a regional hydraulic gradient, groundwater flow and heat transport from or to a well exhibit radial symmetry, and governing equations are reduced by one dimension (1D) which increases computational efficiency importantly. Solute transport codes can simulate heat transport and input parameters may be modified such that the Cartesian geometry can handle radial flow. In this article, SEAWAT is evaluated as simulator for heat transport under radial flow conditions. The 1971, 1D analytical solution of Gelhar and Collins is used to compare axisymmetric transport with retardation (i.e., as a result of thermal equilibrium between fluid and solid) and a large diffusion (conduction). It is shown that an axisymmetric simulation compares well with a fully three dimensional (3D) simulation of an aquifer thermal energy storage systems. The influence of grid discretization, solver parameters, and advection solution is illustrated. Because of the high diffusion to simulate conduction, convergence criterion for heat transport must be set much smaller (10(-10) ) than for solute transport (10(-6) ). Grid discretization should be considered carefully, in particular the subdivision of the screen interval. On the other hand, different methods to calculate the pumping or injection rate distribution over different nodes of a multilayer well lead to small differences only. © 2013, National Ground Water Association.

  10. Radial Diffusion study of the 1 June 2013 CME event using MHD simulations.

    NASA Astrophysics Data System (ADS)

    Patel, M.; Hudson, M.; Wiltberger, M. J.; Li, Z.; Boyd, A. J.

    2016-12-01

    The June 1, 2013 storm was a CME-shock driven geomagnetic storm (Dst = -119 nT) that caused a dropout affecting all radiation belt electron energies measured by the Energetic Particle, Composition and Thermal Plasma Suite (ECT) instrument on Van Allen Probes at higher L-shells following dynamic pressure enhancement in the solar wind. Lower energies (up to about 700 keV) were enhanced by the storm while MeV electrons were depleted throughout the belt. We focus on depletion through radial diffusion caused by the enhanced ULF wave activity due to the CME-shock. This study utilities the Lyon-Fedder-Mobarry (LFM) model, a 3D global magnetospheric simulation code based on the ideal MHD equations, coupled with the Magnetosphere Ionosphere Coupler (MIX) and Rice Convection Model (RCM). The MHD electric and magnetic fields with equations described by Fei et al. [JGR, 2006] are used to calculate radial diffusion coefficients (DLL). These DLL values are input into a radial diffusion code to recreate the dropouts observed by the Van Allen Probes. The importance of understanding the complex role that ULF waves play in radial transport and the effects of CME-driven storms on the relativistic energy electrons in the radiation belts can be accomplished using MHD simulations to obtain diffusion coefficients, initial phase space density and the outer boundary condition from the ECT instrument suite and a radial diffusion model to reproduce observed fluxes which compare favorably with Van Allen Probes ECT measurements.

  11. Changes in the distribution of radiocesium in the wood of Japanese cedar trees from 2011 to 2013.

    PubMed

    Ogawa, Hideki; Hirano, Yurika; Igei, Shigemitsu; Yokota, Kahori; Arai, Shio; Ito, Hirohisa; Kumata, Atsushi; Yoshida, Hirohisa

    2016-09-01

    The changes in the distribution of (137)Cs in the wood of Japanese cedar (Cryptomeria japonica) trunks within three years after the Fukushima Dai-ichi Nuclear Power Plant (FDNP) accident in 2011 were investigated. Thirteen trees were felled to collect samples at 6 forests in 2 regions of the Fukushima prefecture. The radial distribution of (137)Cs in the wood was measured at different heights. Profiles of (137)Cs distribution in the wood changed considerably from 2011 to 2013, and the process of (137)Cs distribution change in the wood was clarified. From 2011 to 2012, the active transportation from sapwood to heartwood and the radial diffusion in heartwood proceeded quickly, and the radial (137)Cs distribution differed according to the vertical positon of trees. From 2012 to 2013, the vertical diffusion of (137)Cs from the treetop to the ground, probably caused by the gradient of (137)Cs concentration in the trunk, was observed. Eventually, the radial (137)Cs distributions were nearly identical at any vertical positions in 2013. Our results suggested that the active transportation from sapwood to heartwood and the vertical and radial diffusion in heartwood proceeded according to the vertical position of the tree and (137)Cs distribution in the wood approached the equilibrium state within three years after the accident. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Transport, charge exchange and loss of energetic heavy ions in the earth's radiation belts - Applicability and limitations of theory

    NASA Technical Reports Server (NTRS)

    Spjeldvik, W. N.

    1981-01-01

    Computer simulations of processes which control the relative abundances of ions in the trapping regions of geospace are compared with observations from discriminating ion detectors. Energy losses due to Coulomb collisions between ions and exospheric neutrals are considered, along with charge exchange losses and internal charge exchanges. The time evolution of energetic ion fluxes of equatorially mirroring ions under radial diffusion is modelled to include geomagnetic and geoelectric fluctutations. Limits to the validity of diffusion transport theory are discussed, and the simulation is noted to contain provisions for six ionic charge states and the source effect on the radiation belt oxygen ion distributions. Comparisons are made with ion flux data gathered on Explorer 45 and ISEE-1 spacecraft and results indicate that internal charge exchanges cause the radiation belt ion charge state to be independent of source charge rate characteristics, and relative charge state distribution is independent of the radially diffusive transport rate below the charge state redistribution zone.

  13. Response of radiation belt simulations to different radial diffusion coefficients

    NASA Astrophysics Data System (ADS)

    Drozdov, A.; Shprits, Y.; Subbotin, D.; Kellerman, A. C.

    2013-12-01

    Resonant interactions between Ultra Low Frequency (ULF) waves and relativistic electrons may violate the third adiabatic invariant of motion, which produces radial diffusion in the electron radiation belts. This process plays an important role in the formation and structure of the outer electron radiation belt and is important for electron acceleration and losses in that region. Two parameterizations of the resonant wave-particle interaction of electrons with ULF waves in the magnetosphere by Brautigam and Albert [2000] and Ozeke et al. [2012] are evaluated using the Versatile Electron Radiation Belt (VERB) diffusion code to estimate their relative effect on the radiation belt simulation. The period of investigation includes quiet time and storm time geomagnetic activity and is compared to data based on satellite observations. Our calculations take into account wave-particle interactions represented by radial diffusion transport, local acceleration, losses due to pitch-angle diffusion, and mixed diffusion. We show that the results of the 3D diffusion simulations depend on the assumed parametrization of waves. The differences between the simulations and potential missing physical mechanisms are discussed. References Brautigam, D. H., and J. M. Albert (2000), Radial diffusion analysis of outer radiation belt electrons during the October 9, 1990, magnetic storm, J. Geophys. Res., 105(A1), 291-309, doi:10.1029/1999JA900344 Ozeke, L. G., I. R. Mann, K. R. Murphy, I. J. Rae, D. K. Milling, S. R. Elkington, A. A. Chan, and H. J. Singer (2012), ULF wave derived radiation belt radial diffusion coefficients, J. Geophys. Res., 117, A04222, doi:10.1029/2011JA017463.

  14. Radial diffusion, vertical transport, and refixation of labeled bicarbonate in scots pine stems

    NASA Astrophysics Data System (ADS)

    Marshall, J. D.; Tarvainen, L.; Wallin, G.

    2016-12-01

    The CO2 produced by a respiring stem provides an index of metabolic activity in the stem and a quantitative estimate of an important component of the forest carbon budget. Production of CO2 by a given stem volume is lost by three competing processes. First, some diffuses radially outward through the bark. Second, some is dissolved and vertically transported upward out of the control volume by the xylem stream. Third, some is refixed by photosynthesis under the bark. The relative balance among these pathways was quantified in 17-m Scots pine trees by 13C-bicarbonate labeling of the xylem stream and monitoring of the 13CO2 in the xylem water, along with continuous monitoring of the radial diffusive flux at four canopy heights and in transpiration from leaves. Most of the label diffused out radially, as 13CO2, immediately above the labeling site, over about a week. The pulse was weakly and briefly detected 4 m above that height. Further up the stem it was not detected at all. We detected significant refixation of CO2 in the stems at all heights above 4 m, where the bark becomes papery and thin, but the label was so weak at this height that refixation had little influence on the pulse chase. We conclude that the vertical flux is negligible in Scots pine, but that the refixation flux must be accounted for in estimates of whole-stem CO2 efflux.

  15. Diffusive-convective physical vapor transport of PbTe from a Te-rich solid source

    NASA Technical Reports Server (NTRS)

    Zoutendyk, J.; Akutagawa, W.

    1982-01-01

    Crystal growth of PbTe by physical vapor transport (sublimation) in a closed ampoule is governed by the vapor species in thermal equilibrium with the solid compound. Deviations from stoichiometry in the source material cause diffusion limitation of the transport rate, which can be modified by natural (gravity-driven) convection. Mass-transport experiments have been performed using Te-rich material wherein sublimation rates have been measured in order to study the effects of natural convection in diffusion-limited vapor transport. Linear velocities for both crystal growth and evaporation (back sublimation) have been measured for transport in the direction of gravity, horizontally, and opposite to gravity. The experimental results are discussed in terms of both the one-dimensional diffusive-advective model and current, more sophisticated theory which includes natural convection. There is some evidence that convection effects from radial temperature gradients and solutal density gradients have been observed.

  16. SYMTRAN - A Time-dependent Symmetric Tandem Mirror Transport Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hua, D; Fowler, T

    2004-06-15

    A time-dependent version of the steady-state radial transport model in symmetric tandem mirrors in Ref. [1] has been coded up and first tests performed. Our code, named SYMTRAN, is an adaptation of the earlier SPHERE code for spheromaks, now modified for tandem mirror physics. Motivated by Post's new concept of kinetic stabilization of symmetric mirrors, it is an extension of the earlier TAMRAC rate-equation code omitting radial transport [2], which successfully accounted for experimental results in TMX. The SYMTRAN code differs from the earlier tandem mirror radial transport code TMT in that our code is focused on axisymmetric tandem mirrorsmore » and classical diffusion, whereas TMT emphasized non-ambipolar transport in TMX and MFTF-B due to yin-yang plugs and non-symmetric transitions between the plugs and axisymmetric center cell. Both codes exhibit interesting but different non-linear behavior.« less

  17. Investigations of Turbulent Transport Channels in Gyrokinetic Simulations

    NASA Astrophysics Data System (ADS)

    Dimits, A. M.; Candy, J.; Guttenfelder, W.; Holland, C.; Howard, N.; Nevins, W. M.; Wang, E.

    2014-10-01

    Magnetic-field stochasticity arises due to microtearing perturbations, which can be driven linearly or nonlinearly (in cases where they are linearly stable), even at very modest values of the plasma beta. The resulting magnetic-flutter contribution may or may not be a significant component of the overall electron (particle and thermal) transport. Investigations of the effect of ExB flow shear on electron-drift magnetic-flutter diffusion coefficient Dedr (r ,v||) using perturbed magnetic fields from simulations, using the GYRO code, of ITG turbulence show a significant effect for electrons with parallel velocities v|| surprisingly far from the resonant velocity. We further examine changes in the radial dependence of this diffusion coefficient vs. v|| and which resonant magnetic-field perturbations are important to the values and radial structure of Dedr. The resulting electron transport fluxes are compared with the simulation results. Improvements over in treating the ambipolar field in the relationship between the magnetic (or drift) diffusion coefficients and the transport have been made in these comparisons. Prepared for US DOE by LLNL under Contract DE-AC52-07NA27344, by GA under Contract DE-FG03-95ER54309, and by PPPL under Contract DE-AC02-09CH11466.

  18. Stormtime transport of ring current and radiation belt ions

    NASA Technical Reports Server (NTRS)

    Chen, Margaret W.; Schulz, Michael; Lyons, L. R.; Gorney, David J.

    1993-01-01

    This is an investigation of stormtime particle transport that leads to formation of the ring current. Our method is to trace the guiding-center motion of representative ions (having selected first adiabatic invariants mu) in response to model substorm-associated impulses in the convection electric field. We compare our simulation results qualitatively with existing analytically tractable idealizations of particle transport (direct convective access and radial diffusion) in order to assess the limits of validity of these approximations. For mu approximately less than 10 MeV/G (E approximately less than 10 keV at L equivalent to 3) the ion drift period on the final (ring-current) drift shell of interest (L equivalent to 3) exceeds the duration of the main phase of our model storm, and we find that the transport of ions to this drift shell is appropriately idealized as direct convective access, typically from open drift paths. Ion transport to a final closed drift path from an open (plasma-sheet) drift trajectory is possible for those portions of that drift path that lie outside the mean stormtime separatrix between closed and open drift trajectories, For mu approximately 10-25 MeV/G (110 keV approximately less than E approximately less than 280 keV at L equivalent to 3) the drift period at L equivalent to 3 is comparable to the postulated 3-hr duration of the storm, and the mode of transport is transitional between direct convective access and transport that resembles radial diffusion. (This particle population is transitional between the ring current and radiation belt). For mu approximately greater than 25 MeV/G (radiation-belt ions having E approximately greater than 280 keV at L equivalent to 3) the ion drift period is considerably shorter than the main phase of a typical storm, and ions gain access to the ring-current region essentially via radial diffusion. By computing the mean and mean-square cumulative changes in 1/L among (in this case) 12 representative ions equally spaced in drift time around the steady-state drift shell of interest (L equivalent to 3), we have estimated (from both our forward and our time-reversed simulations) the time-integrated radial-diffusion coefficients D(sup sim)(sub LL) for particles having selected values of mu approximately greater than 15 MeV/G. The results agree surprisingly well with the predictions (D(sup ql)(sub LL)) of quasilinear radial diffusion theory, despite the rather brief duration (approximately 3 hrs) of our model storm and despite the extreme variability (with frequency) of the spectral-density function that characterizes the applied electric field during our model storm. As expected, the values of D(sup sim)(sub LL) deduced (respectively) from our forward and time-reversed simulations agree even better with each other and with D(sup sim)(sub LL) when the impulse amplitudes which characterize the individual substorms of our model storm are systematically reduced.

  19. Ion radial diffusion in an electrostatic impulse model for stormtime ring current formation

    NASA Technical Reports Server (NTRS)

    Chen, Margaret W.; Schulz, Michael; Lyons, Larry R.; Gorney, David J.

    1992-01-01

    Two refinements to the quasi-linear theory of ion radial diffusion are proposed and examined analytically with simulations of particle trajectories. The resonance-broadening correction by Dungey (1965) is applied to the quasi-linear diffusion theory by Faelthammar (1965) for an individual model storm. Quasi-linear theory is then applied to the mean diffusion coefficients resulting from simulations of particle trajectories in 20 model storms. The correction for drift-resonance broadening results in quasi-linear diffusion coefficients with discrepancies from the corresponding simulated values that are reduced by a factor of about 3. Further reductions in the discrepancies are noted following the averaging of the quasi-linear diffusion coefficients, the simulated coefficients, and the resonance-broadened coefficients for the 20 storms. Quasi-linear theory provides good descriptions of particle transport for a single storm but performs even better in conjunction with the present ensemble-averaging.

  20. Comparisons of anomalous and collisional radial transport with a continuum kinetic edge code

    NASA Astrophysics Data System (ADS)

    Bodi, K.; Krasheninnikov, S.; Cohen, R.; Rognlien, T.

    2009-05-01

    Modeling of anomalous (turbulence-driven) radial transport in controlled-fusion plasmas is necessary for long-time transport simulations. Here the focus is continuum kinetic edge codes such as the (2-D, 2-V) transport version of TEMPEST, NEO, and the code being developed by the Edge Simulation Laboratory, but the model also has wider application. Our previously developed anomalous diagonal transport matrix model with velocity-dependent convection and diffusion coefficients allows contact with typical fluid transport models (e.g., UEDGE). Results are presented that combine the anomalous transport model and collisional transport owing to ion drift orbits utilizing a Krook collision operator that conserves density and energy. Comparison is made of the relative magnitudes and possible synergistic effects of the two processes for typical tokamak device parameters.

  1. What sets the minimum tokamak scrape-off layer width?

    NASA Astrophysics Data System (ADS)

    Joseph, Ilon

    2016-10-01

    The heat flux width of the tokamak scrape-off layer is on the order of the poloidal ion gyroradius, but the ``heuristic drift'' physics model is still not completely understood. In the absence of anomalous transport, neoclassical transport sets the minimum width. For plateau collisionality, the ion temperature width is set by qρi , while the electron temperature width scales as the geometric mean q(ρeρi) 1 / 2 and is close to qρi in magnitude. The width is enhanced because electrons are confined by the sheath potential and have a much longer time to radially diffuse before escaping to the wall. In the Pfirsch-Schluter regime, collisional diffusion increases the width by the factor (qR / λ) 1 / 2 where qR is the connection length and λ is the mean free path. This qualitatively agrees with the observed transition in the scaling law for detached plasmas. The radial width of the SOL electric field is determined by Spitzer parallel and ``neoclassical'' radial electric conductivity and has a similar scaling to that for thermal transport. Prepared under US DOE contract DE-AC52-07NA27344.

  2. Fast Ion and Thermal Plasma Transport in Turbulent Waves in the Large Plasma Device (LAPD)

    NASA Astrophysics Data System (ADS)

    Zhou, Shu

    2011-10-01

    The transport of fast ions and thermal plasmas in electrostatic microturbulence is studied. Strong density and potential fluctuations (δn / n ~ δϕ / kTe ~ 0 . 5 , f ~5-50 kHz) are observed in the LAPD in density gradient regions produced by obstacles with slab or cylindrical geometry. Wave characteristics and the associated plasma transport are modified by driving sheared E ×B drift through biasing the obstacle, and by modification of the axial magnetic fields (Bz) and the plasma species. Cross-field plasma transport is suppressed with small bias and large Bz, and is enhanced with large bias and small Bz. Suppressed cross-field thermal transport coincides with a 180° phase shift between the density and potential fluctuations in the radial direction, while the enhanced thermal transport is associated with modes having low mode number (m = 1) and long radial correlation length. Large gyroradius lithium ions (ρfast /ρs ~ 10) orbit through the turbulent region. Scans with a collimated analyzer and with Langmuir probes give detailed profiles of the fast ion spatial-temporal distribution and of the fluctuating fields. Fast-ion transport decreases rapidly with increasing fast-ion gyroradius. Background waves with different scale lengths also alter the fast ion transport: Beam diffusion is smaller in waves with smaller structures (higher mode number); also, coherent waves with long correlation length cause less beam diffusion than turbulent waves. Experimental results agree well with gyro-averaging theory. When the fast ion interacts with the wave for most of a wave period, a transition from super-diffusive to sub-diffusive transport is observed, as predicted by diffusion theory. A Monte Carlo trajectory-following code simulates the interaction of the fast ions with the measured turbulent fields. Good agreement between observation and modeling is observed. Work funded by DOE and NSF and performed at the Basic Plasma Science Facility.

  3. Ion transport and loss in the earth's quiet ring current. I - Data and standard model

    NASA Technical Reports Server (NTRS)

    Sheldon, R. B.; Hamilton, D. C.

    1993-01-01

    A study of the transport and loss of ions in the earth's quiet time ring current, in which the standard radial diffusion model developed for the high-energy radiation belt particles is compared with the measurements of the lower-energy ring current ions, is presented. The data set provides ionic composition information in an energy range that includes the bulk of the ring current energy density, 1-300 keV/e. Protons are found to dominate the quiet time energy density at all altitudes, peaking near L of about 4 at 60 keV/cu cm, with much smaller contributions from O(+) (1-10 percent), He(+) (1-5 percent), and He(2+) (less than 1 percent). A minimization procedure is used to fit the amplitudes of the standard electric radial diffusion coefficient, yielding 5.8 x 10 exp -11 R(E-squared)/s. Fluctuation ionospheric electric fields are suggested as the source of the additional diffusion detected.

  4. Local and nonlocal parallel heat transport in general magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Del-Castillo-Negrete, Diego B; Chacon, Luis

    2011-01-01

    A novel approach for the study of parallel transport in magnetized plasmas is presented. The method avoids numerical pollution issues of grid-based formulations and applies to integrable and chaotic magnetic fields with local or nonlocal parallel closures. In weakly chaotic fields, the method gives the fractal structure of the devil's staircase radial temperature profile. In fully chaotic fields, the temperature exhibits self-similar spatiotemporal evolution with a stretched-exponential scaling function for local closures and an algebraically decaying one for nonlocal closures. It is shown that, for both closures, the effective radial heat transport is incompatible with the quasilinear diffusion model.

  5. A Search for Plasma "Fingers" in the Io Torus

    NASA Astrophysics Data System (ADS)

    Jaggar, S.; Schneider, N. M.; Bagenal, F.; Trauger, J. T.

    1996-09-01

    We have compared model and data images of the Io plasma torus to test the radial diffusion model of Yang et al. (J. Geophys. Res., Vol 99, p. 8755, 1994). They predict that radial diffusion takes the form of `fingers' of dense plasma flowing outward due to the centrifugal force. Furthermore, they show that the spatial scale of these significant longitudinal variations is approximately 15(o) . The observations used in this study were obtained using a 2.4m telescope at Las Campanas Observatory using a narrowband filter to isolate emissions from S(++) at 9531 Angstroms. S(++) images are dominated by emission from the warm torus where outward radial transport is expected. Although S(+) images are brighter, they are contaminated by emission from the cold torus where fingers are not expected. We used the Colorado Io Torus Emission Package (CITEP)(Taylor et al., J. Geophys. Res., Vol. 100, p. 19541, 1995) to simulate images of the torus with fingers. CITEP is a comprehensive program which incorporates accurate atomic physics, plasma physics and magnetic field models to simulate the brightness and morphology or torus emissions. We used a Voyager empirical model (Bagenal, J. Geophys. Res., Vol. 99, p. 11043, 1994) modulated by a sinusoidal longitudinal density variation with a 15(o) period and an amplitude proportional to the density at that L-shell. We compared simulated images with data to determine the minimum density contrast necessary to make fingers detectable. We place an upper limit on the density contrast of +/- 20% on a 15(o) spatial scale. We conclude that either the density contrast of this mode of transport is small, or other processes are more important for radial transport. This constraint can also be used in other radial diffusion models which predict density variations on this spatial scale. This work has been supported by NASA's Planetary Astronomy and Planetary Atmospheres programs.

  6. Gyrokinetic Simulations of Transport Scaling and Structure

    NASA Astrophysics Data System (ADS)

    Hahm, Taik Soo

    2001-10-01

    There is accumulating evidence from global gyrokinetic particle simulations with profile variations and experimental fluctuation measurements that microturbulence, with its time-averaged eddy size which scales with the ion gyroradius, can cause ion thermal transport which deviates from the gyro-Bohm scaling. The physics here can be best addressed by large scale (rho* = rho_i/a = 0.001) full torus gyrokinetic particle-in-cell turbulence simulations using our massively parallel, general geometry gyrokinetic toroidal code with field-aligned mesh. Simulation results from device-size scans for realistic parameters show that ``wave transport'' mechanism is not the dominant contribution for this Bohm-like transport and that transport is mostly diffusive driven by microscopic scale fluctuations in the presence of self-generated zonal flows. In this work, we analyze the turbulence and zonal flow statistics from simulations and compare to nonlinear theoretical predictions including the radial decorrelation of the transport events by zonal flows and the resulting probability distribution function (PDF). In particular, possible deviation of the characteristic radial size of transport processes from the time-averaged radial size of the density fluctuation eddys will be critically examined.

  7. Diffuse Cosmic Rays Shining in the Galactic Center: A Novel Interpretation of H.E.S.S. and Fermi-LAT γ-Ray Data.

    PubMed

    Gaggero, D; Grasso, D; Marinelli, A; Taoso, M; Urbano, A

    2017-07-21

    We present a novel interpretation of the γ-ray diffuse emission measured by Fermi-LAT and H.E.S.S. in the Galactic center (GC) region and the Galactic ridge (GR). In the first part we perform a data-driven analysis based on PASS8 Fermi-LAT data: We extend down to a few GeV the spectra measured by H.E.S.S. and infer the primary cosmic-ray (CR) radial distribution between 0.1 and 3 TeV. In the second part we adopt a CR transport model based on a position-dependent diffusion coefficient. Such behavior reproduces the radial dependence of the CR spectral index recently inferred from the Fermi-LAT observations. We find that the bulk of the GR emission can be naturally explained by the interaction of the diffuse steady-state Galactic CR sea with the gas present in the central molecular zone. Although we confirm the presence of a residual radial-dependent emission associated with a central source, the relevance of the large-scale diffuse component prevents to claim a solid evidence of GC pevatrons.

  8. Transport and Deposition of Nanoparticles in the Pore Network of a Reservoir Rock: Effects of Pore Surface Heterogeneity and Radial Diffusion

    NASA Astrophysics Data System (ADS)

    Pham, Ngoc; Papavassiliou, Dimitrios

    2014-03-01

    In this study, transport behavior of nanoparticles under different pore surface conditions of consolidated Berea sandstone is numerically investigated. Micro-CT scanning technique is applied to obtain 3D grayscale images of the rock sample geometry. Quantitative characterization, which is based on image analysis is done to obtain physical properties of the pore network, such as the pore size distribution and the type of each pore (dead-end, isolated, and fully connected pore). Transport of water through the rock is simulated by employing a 3D lattice Boltzmann method. The trajectories of nanopaticles moving under convection in the simulated flow field and due to molecular diffusion are monitored in the Lagrangian framework. It is assumed in the model that the particle adsorption on the pore surface, which is modeled as a pseudo-first order adsorption, is the only factor hindering particle propagation. The effect of pore surface heterogeneity to the particle breakthrough is considered, and the role of particle radial diffusion is also addressed in details. The financial support of the Advanced Energy Consortium (AEC BEG08-022) and the computational support of XSEDE (CTS090017) are acknowledged.

  9. Engine Systems Ownership Cost Reduction - Aircraft Propulsion Subsystems Integration (APSI)

    DTIC Science & Technology

    1975-08-01

    compreusor fabrication costs. Hybrid Radial Compresscr Diffuser - Combining both the radial and axial sections of a standard diffuser into a single cascade...compressor diffuser by using a single mixed-flow diffuser instead of the separate radial and axial diffuser stator rows. The proposed mixed-flow diffuser...to an axial diffuser. A cost analyses of the hybrid radial diffuser was made and compared to baseline configuration ( radial and axial diffusers). The

  10. Analytical solutions for a soil vapor extraction model that incorporates gas phase dispersion and molecular diffusion

    NASA Astrophysics Data System (ADS)

    Huang, Junqi; Goltz, Mark N.

    2017-06-01

    To greatly simplify their solution, the equations describing radial advective/dispersive transport to an extraction well in a porous medium typically neglect molecular diffusion. While this simplification is appropriate to simulate transport in the saturated zone, it can result in significant errors when modeling gas phase transport in the vadose zone, as might be applied when simulating a soil vapor extraction (SVE) system to remediate vadose zone contamination. A new analytical solution for the equations describing radial gas phase transport of a sorbing contaminant to an extraction well is presented. The equations model advection, dispersion (including both mechanical dispersion and molecular diffusion), and rate-limited mass transfer of dissolved, separate phase, and sorbed contaminants into the gas phase. The model equations are analytically solved by using the Laplace transform with respect to time. The solutions are represented by confluent hypergeometric functions in the Laplace domain. The Laplace domain solutions are then evaluated using a numerical Laplace inversion algorithm. The solutions can be used to simulate the spatial distribution and the temporal evolution of contaminant concentrations during operation of a soil vapor extraction well. Results of model simulations show that the effect of gas phase molecular diffusion upon concentrations at the extraction well is relatively small, although the effect upon the distribution of concentrations in space is significant. This study provides a tool that can be useful in designing SVE remediation strategies, as well as verifying numerical models used to simulate SVE system performance.

  11. Radial transport of high-energy oxygen ions into the deep inner magnetosphere observed by Van Allen Probes

    NASA Astrophysics Data System (ADS)

    Mitani, K.; Seki, K.; Keika, K.; Gkioulidou, M.; Lanzerotti, L. J.; Mitchell, D. G.; Kletzing, C.

    2017-12-01

    It is known that proton is main contributor of the ring current and oxygen ions can make significant contribution during major magnetic storms. Ions are supplied to the ring current by radial transport from the plasma sheet. Convective transport of lower-energy protons and diffusive transport of higher-energy protons were reported to contribute to the storm-time and quiet-time ring current respectively [e.g., Gkioulidou et al., 2016]. However, supply mechanisms of the oxygen ions are not clear. To characterize the supply of oxygen ions to the ring current during magnetic storms, we studied the properties of energetic proton and oxygen ion phase space densities (PSDs) for specific magnetic moment (μ) during the April 23-25, 2013, geomagnetic storm observed by the Van Allen Probes mission. We here report on radial transport of high-energy (μ ≥ 0.5 keV/nT) oxygen ions into the deep inner magnetosphere during the late main phase of the magnetic storm. Since protons show little change during this period, this oxygen radial transport is inferred to cause the development of the late main phase. Enhancement of poloidal magnetic fluctuations is simultaneously observed. We estimated azimuthal mode number ≤5 by using cross wavelet analysis with ground-based observation of IMAGE ground magnetometers. The fluctuations can resonate with drift and bounce motions of the oxygen ions. The results suggest that combination of the drift and drift-bounce resonances is responsible for the radial transport of high-energy oxygen ions into the deep inner magnetosphere. We also report on the radial transport of the high-energy oxygen ions into the deep inner magnetosphere during other magnetic storms.

  12. Influence of mean radial electric field on particle transport induced by RMPs in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Chen, Dunqiang; Xu, Yingfeng; Wang, Shaojie

    2018-06-01

    The quasi-linear theory of the particle diffusion coefficient including the finite Larmor radius effect and the mean radial electric field ( E r without shear) in a stochastic magnetic field is derived. The theory has been verified by comparing with test particle simulations and previous theory. It is found that E r can shift the wave-particle resonance position. The Er-shift effect mainly modifies the ion diffusion coefficients and leads to the modification of ion particle flux. By using the ambipolar condition, we obtained the balanced flux at the edge of a tokamak plasma and found good agreement with recent experimental observations.

  13. Effect of radial plasma transport at the magnetic throat on axial ion beam formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yunchao, E-mail: yunchao.zhang@anu.edu.au; Charles, Christine; Boswell, Rod

    2016-08-15

    Correlation between radial plasma transport and formation of an axial ion beam has been investigated in a helicon plasma reactor implemented with a convergent-divergent magnetic nozzle. The plasma discharge is sustained under a high magnetic field mode and a low magnetic field mode for which the electron energy probability function, the plasma density, the plasma potential, and the electron temperature are measured at the magnetic throat, and the two field modes show different radial parametric behaviors. Although an axial potential drop occurs in the plasma source for both field modes, an ion beam is only observed in the high fieldmore » mode while not in the low field mode. The transport of energetic ions is characterized downstream of the plasma source using the delimited ion current and nonlocal ion current. A decay of ion beam strength is also observed in the diffusion chamber.« less

  14. Pc 5 Spectral Density at ULTIMA stataions and its Radial Diffusion Coefficients for REE

    NASA Astrophysics Data System (ADS)

    Fujimoto, A.; Tokunaga, T.; Abe, S.; Uozumi, T.; Yoshikawa, A.; Mann, I. R.; Chi, P. J.; Engebretson, M. J.; Yumoto, K.

    2009-12-01

    Pc 5 magnetic pulsations with frequencies between 1.67 and 6.67 mHz, are believed to contribute to the Relativistic Electron Enhancement (REE) in the outer radiation belt during magnetic storms. Ground-based observations suggested that high-speed solar wind and large-amplitude Pc 5 waves with a long duration during the storm recovery phase are closely associated with the production of relativistic electrons [Baker et al., 1998; Rostoker et al., 1998; Mathie and Mann, 2000; O’Brien et al., 2001, 2003]. On the other hand, many relativistic electron acceleration mechanisms have been proposed theoretically. They are separated roughly into two themes: in situ acceleration at L lower than 6.6 by wave particle interactions (as internal source acceleration mechanisms) [Liu et al., 1999; Summers et al., 1999; Summers and Ma, 2000] and acceleration by radial diffusion to transport and accelerate a source population of electrons from the outer to the inner magnetosphere (as external source acceleration mechanisms) [Elkington et al., 1999, 2003; Hudson et al., 2000; Kim et al., 2001]. One possible external source acceleration mechanism is the resonant interaction with ULF toroidal and poloidal waves. In order to verify which of the two mechanisms is more effective for the REE, we have to examine the time variation of electron phase space density. Electron phase space density is not directly measured, but we can estimate radial diffusion coefficients using observational electric and magnetic data. The goal of this paper is to get more reliable radial diffusion coefficient from ground-based observational magnetic field and to show reasonability of it for radial diffusion model. We use the global magnetometer data obtained from ULTIMA (Ultra Large Terrestrial International Magnetic Array, see http://www.serc.kyushu-u.ac.jp/ultima/ultima.html) stations, to precisely define the radial diffusion timescales. The ULTIMA includes McMAC, CARISAM, 210MM and MAGDAS/CPMN magnetometer arrays. The radial diffusion coefficient can be given from the magnetic field power spectral density as a function of L, frequency (f) and m-number (m) in the Pc 5 frequency range during the REE related magnetic storms [see Brautigam et al., 2005]. We can fit Pc 5 power spectral density (L, f, m) using the ULTIMA data. The m-number of global Pc 5 pulsation on the ground is found to be almost less than 5. This is consistent with m-number required in the radial diffusion theory by Elkington et al. [1999, 2003]. We will compare the observationally estimated diffusion coefficient with theoretical diffusion coefficient [e.g. Elkington et al., 2006], and discuss adequacy of our diffusion coefficient.

  15. TEMPEST simulations of the plasma transport in a single-null tokamak geometry

    NASA Astrophysics Data System (ADS)

    Xu, X. Q.; Bodi, K.; Cohen, R. H.; Krasheninnikov, S.; Rognlien, T. D.

    2010-06-01

    We present edge kinetic ion transport simulations of tokamak plasmas in magnetic divertor geometry using the fully nonlinear (full-f) continuum code TEMPEST. Besides neoclassical transport, a term for divergence of anomalous kinetic radial flux is added to mock up the effect of turbulent transport. To study the relative roles of neoclassical and anomalous transport, TEMPEST simulations were carried out for plasma transport and flow dynamics in a single-null tokamak geometry, including the pedestal region that extends across the separatrix into the scrape-off layer and private flux region. A series of TEMPEST simulations were conducted to investigate the transition of midplane pedestal heat flux and flow from the neoclassical to the turbulent limit and the transition of divertor heat flux and flow from the kinetic to the fluid regime via an anomalous transport scan and a density scan. The TEMPEST simulation results demonstrate that turbulent transport (as modelled by large diffusion) plays a similar role to collisional decorrelation of particle orbits and that the large turbulent transport (large diffusion) leads to an apparent Maxwellianization of the particle distribution. We also show the transition of parallel heat flux and flow at the entrance to the divertor plates from the fluid to the kinetic regime. For an absorbing divertor plate boundary condition, a non-half-Maxwellian is found due to the balance between upstream radial anomalous transport and energetic ion endloss.

  16. Implementation of an anomalous radial transport model for continuum kinetic edge codes

    NASA Astrophysics Data System (ADS)

    Bodi, K.; Krasheninnikov, S. I.; Cohen, R. H.; Rognlien, T. D.

    2007-11-01

    Radial plasma transport in magnetic fusion devices is often dominated by plasma turbulence compared to neoclassical collisional transport. Continuum kinetic edge codes [such as the (2d,2v) transport version of TEMPEST and also EGK] compute the collisional transport directly, but there is a need to model the anomalous transport from turbulence for long-time transport simulations. Such a model is presented and results are shown for its implementation in the TEMPEST gyrokinetic edge code. The model includes velocity-dependent convection and diffusion coefficients expressed as a Hermite polynominals in velocity. The specification of the Hermite coefficients can be set, e.g., by specifying the ratio of particle and energy transport as in fluid transport codes. The anomalous transport terms preserve the property of no particle flux into unphysical regions of velocity space. TEMPEST simulations are presented showing the separate control of particle and energy anomalous transport, and comparisons are made with neoclassical transport also included.

  17. Effect of accelerated crucible rotation on the segregation of impurities in vertical Bridgman growth of multi-crystalline silicon

    NASA Astrophysics Data System (ADS)

    Bellmann, M. P.; Meese, E. A.; Arnberg, L.

    2011-03-01

    We have performed axisymmetric, transient simulations of the vertical Bridgman growth of mc-silicon to study the effect of the accelerated crucible rotation technique (ACRT) on the melt flow and impurity segregation. A solute transport model has been applied to predict the final segregation pattern of impurities in a circular ingot. The sinusoidal ACRT rotation cycle considered here suppresses mixing in the melt near the center, resulting in diffusion-limited mass transport. Therefore the radial impurity segregation is increased towards the center. The effect of increased radial segregation is intensified for low values of the Ekman time scale.

  18. A fully-neoclassical finite-orbit-width version of the CQL3D Fokker–Planck code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrov, Yu V.; Harvey, R. W.

    The time-dependent bounce-averaged CQL3D flux-conservative finite-difference Fokker–Planck equation (FPE) solver has been upgraded to include finite-orbit-width (FOW) capabilities which are necessary for an accurate description of neoclassical transport, losses to the walls, and transfer of particles, momentum, and heat to the scrape-off layer. The FOW modifications are implemented in the formulation of the neutral beam source, collision operator, RF quasilinear diffusion operator, and in synthetic particle diagnostics. The collisional neoclassical radial transport appears naturally in the FOW version due to the orbit-averaging of local collision coefficients coupled with transformation coefficients from local (R, Z) coordinates along each guiding-center orbit tomore » the corresponding midplane computational coordinates, where the FPE is solved. In a similar way, the local quasilinear RF diffusion terms give rise to additional radial transport of orbits. We note that the neoclassical results are obtained for ‘full’ orbits, not dependent on a common small orbit-width approximation. Results of validation tests for the FOW version are also presented.« less

  19. A fully-neoclassical finite-orbit-width version of the CQL3D Fokker–Planck code

    DOE PAGES

    Petrov, Yu V.; Harvey, R. W.

    2016-09-08

    The time-dependent bounce-averaged CQL3D flux-conservative finite-difference Fokker–Planck equation (FPE) solver has been upgraded to include finite-orbit-width (FOW) capabilities which are necessary for an accurate description of neoclassical transport, losses to the walls, and transfer of particles, momentum, and heat to the scrape-off layer. The FOW modifications are implemented in the formulation of the neutral beam source, collision operator, RF quasilinear diffusion operator, and in synthetic particle diagnostics. The collisional neoclassical radial transport appears naturally in the FOW version due to the orbit-averaging of local collision coefficients coupled with transformation coefficients from local (R, Z) coordinates along each guiding-center orbit tomore » the corresponding midplane computational coordinates, where the FPE is solved. In a similar way, the local quasilinear RF diffusion terms give rise to additional radial transport of orbits. We note that the neoclassical results are obtained for ‘full’ orbits, not dependent on a common small orbit-width approximation. Results of validation tests for the FOW version are also presented.« less

  20. TEMPEST Simulations of the Plasma Transport in a Single-Null Tokamak Geometry

    DOE PAGES

    X. Q. Xu; Bodi, K.; Cohen, R. H.; ...

    2010-05-28

    We present edge kinetic ion transport simulations of tokamak plasmas in magnetic divertor geometry using the fully nonlinear (full-f) continuum code TEMPEST. Besides neoclassical transport, a term for divergence of anomalous kinetic radial flux is added to mock up the effect of turbulent transport. In order to study the relative roles of neoclassical and anomalous transport, TEMPEST simulations were carried out for plasma transport and flow dynamics in a single-null tokamak geometry, including the pedestal region that extends across the separatrix into the scrape-off layer and private flux region. In a series of TEMPEST simulations were conducted to investigate themore » transition of midplane pedestal heat flux and flow from the neoclassical to the turbulent limit and the transition of divertor heat flux and flow from the kinetic to the fluid regime via an anomalous transport scan and a density scan. The TEMPEST simulation results demonstrate that turbulent transport (as modelled by large diffusion) plays a similar role to collisional decorrelation of particle orbits and that the large turbulent transport (large diffusion) leads to an apparent Maxwellianization of the particle distribution. Moreover, we show the transition of parallel heat flux and flow at the entrance to the divertor plates from the fluid to the kinetic regime. For an absorbing divertor plate boundary condition, a non-half-Maxwellian is found due to the balance between upstream radial anomalous transport and energetic ion endloss.« less

  1. TEMPEST Simulations of the Plasma Transport in a Single-Null Tokamak Geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    X. Q. Xu; Bodi, K.; Cohen, R. H.

    We present edge kinetic ion transport simulations of tokamak plasmas in magnetic divertor geometry using the fully nonlinear (full-f) continuum code TEMPEST. Besides neoclassical transport, a term for divergence of anomalous kinetic radial flux is added to mock up the effect of turbulent transport. In order to study the relative roles of neoclassical and anomalous transport, TEMPEST simulations were carried out for plasma transport and flow dynamics in a single-null tokamak geometry, including the pedestal region that extends across the separatrix into the scrape-off layer and private flux region. In a series of TEMPEST simulations were conducted to investigate themore » transition of midplane pedestal heat flux and flow from the neoclassical to the turbulent limit and the transition of divertor heat flux and flow from the kinetic to the fluid regime via an anomalous transport scan and a density scan. The TEMPEST simulation results demonstrate that turbulent transport (as modelled by large diffusion) plays a similar role to collisional decorrelation of particle orbits and that the large turbulent transport (large diffusion) leads to an apparent Maxwellianization of the particle distribution. Moreover, we show the transition of parallel heat flux and flow at the entrance to the divertor plates from the fluid to the kinetic regime. For an absorbing divertor plate boundary condition, a non-half-Maxwellian is found due to the balance between upstream radial anomalous transport and energetic ion endloss.« less

  2. Deduction of the rates of radial diffusion of protons from the structure of the Earth's radiation belts

    NASA Astrophysics Data System (ADS)

    Kovtyukh, Alexander S.

    2016-11-01

    From the data on the fluxes and energy spectra of protons with an equatorial pitch angle of α0 ≈ 90° during quiet and slightly disturbed (Kp ≤ 2) periods, I directly calculated the value DLL, which is a measure of the rate of radial transport (diffusion) of trapped particles. This is done by successively solving the systems (chains) of integrodifferential equations which describe the balance of radial transport/acceleration and ionization losses of low-energy protons of the stationary belt. This was done for the first time. For these calculations, I used data of International Sun-Earth Explorer 1 (ISEE-1) for protons with an energy of 24 to 2081 keV at L = 2-10 and data of Explorer-45 for protons with an energy of 78.6 to 872 keV at L = 2-5. Ionization losses of protons (Coulomb losses and charge exchange) were calculated on the basis of modern models of the plasmasphere and the exosphere. It is shown that for protons with μ from ˜ 0.7 to ˜ 7 keV nT-1 at L ≈ 4.5-10, the functions of DLL can be approximated by the following equivalent expressions: DLL ≈ 4.9 × 10-14μ-4.1L8.2 or DLL ≈ 1.3 × 105(EL)-4.1 or DLL ≈ 1.2 × 10-9fd-4.1, where fd is the drift frequency of the protons (in mHz), DLL is measured in s-1, E is measured in kiloelectronvolt and μ is measured in kiloelectronvolt per nanotesla. These results are consistent with the radial diffusion of particles under the action of the electric field fluctuations (pulsations) in the range of Pc6 and contradict the mechanism of the radial diffusion of particles under the action of sudden impulses (SIs) of the magnetic field and also under the action of substorm impulses of the electric field. During magnetic storms DLL increases, and the expressions for DLL obtained here can change completely.

  3. Study of electron transport in a Hall thruster by axial–radial fully kinetic particle simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Shinatora, E-mail: choh.shinatora@jaxa.jp; Kubota, Kenichi; Funaki, Ikkoh

    2015-10-15

    Electron transport across a magnetic field in a magnetic-layer-type Hall thruster was numerically investigated for the future predictive modeling of Hall thrusters. The discharge of a 1-kW-class magnetic-layer-type Hall thruster designed for high-specific-impulse operation was modeled using an r-z two-dimensional fully kinetic particle code with and without artificial electron-diffusion models. The thruster performance results showed that both electron transport models captured the experimental result within discrepancies less than 20% in thrust and discharge current for all the simulated operation conditions. The electron cross-field transport mechanism of the so-called anomalous diffusion was self-consistently observed in the simulation without artificial diffusion models;more » the effective electron mobility was two orders of magnitude higher than the value obtained using the classical diffusion theory. To account for the self-consistently observed anomalous transport, the oscillation of plasma properties was speculated. It was suggested that the enhanced random-walk diffusion due to the velocity oscillation of low-frequency electron flow could explain the observed anomalous diffusion within an order of magnitude. The dominant oscillation mode of the electron flow velocity was found to be 20 kHz, which was coupled to electrostatic oscillation excited by global ionization instability.« less

  4. Plasma transport in the Io torus - The importance of microscopic diffusion

    NASA Technical Reports Server (NTRS)

    Mei, YI; Thorne, Richard M.

    1991-01-01

    This paper considers the question of whether the distribution of mass in the Io plasma torus is consistent with the concept of interchange eddy transport. Specifically, the flux tube content exhibits a gradual decrease with increasing radial distance from the source near Io without any evidence for substantial density irregularity associated with the plasma source or loss. Using a simple one-dimensional numerical model to simulate macroscopic interchange eddy transport, it is demonstrated that this smooth equilibrium distribution of mass can occur but only with the inclusion of a minimal level of small scale microscopic mixing at a rate approaching Bohm diffusion. Otherwise, the system exhibits a chaotic appearance which never approaches an equilibrium distribution. Various physical mechanisms for the microscopic diffusion process which is required to provide a sufficiently rapid mixing of material between the macroscopic eddies are discussed.

  5. Fractional calculus phenomenology in two-dimensional plasma models

    NASA Astrophysics Data System (ADS)

    Gustafson, Kyle; Del Castillo Negrete, Diego; Dorland, Bill

    2006-10-01

    Transport processes in confined plasmas for fusion experiments, such as ITER, are not well-understood at the basic level of fully nonlinear, three-dimensional kinetic physics. Turbulent transport is invoked to describe the observed levels in tokamaks, which are orders of magnitude greater than the theoretical predictions. Recent results show the ability of a non-diffusive transport model to describe numerical observations of turbulent transport. For example, resistive MHD modeling of tracer particle transport in pressure-gradient driven turbulence for a three-dimensional plasma reveals that the superdiffusive (2̂˜t^α where α> 1) radial transport in this system is described quantitatively by a fractional diffusion equation Fractional calculus is a generalization involving integro-differential operators, which naturally describe non-local behaviors. Our previous work showed the quantitative agreement of special fractional diffusion equation solutions with numerical tracer particle flows in time-dependent linearized dynamics of the Hasegawa-Mima equation (for poloidal transport in a two-dimensional cold-ion plasma). In pursuit of a fractional diffusion model for transport in a gyrokinetic plasma, we now present numerical results from tracer particle transport in the nonlinear Hasegawa-Mima equation and a planar gyrokinetic model. Finite Larmor radius effects will be discussed. D. del Castillo Negrete, et al, Phys. Rev. Lett. 94, 065003 (2005).

  6. Transport of secondary electrons and reactive species in ion tracks

    NASA Astrophysics Data System (ADS)

    Surdutovich, Eugene; Solov'yov, Andrey V.

    2015-08-01

    The transport of reactive species brought about by ions traversing tissue-like medium is analysed analytically. Secondary electrons ejected by ions are capable of ionizing other molecules; the transport of these generations of electrons is studied using the random walk approximation until these electrons remain ballistic. Then, the distribution of solvated electrons produced as a result of interaction of low-energy electrons with water molecules is obtained. The radial distribution of energy loss by ions and secondary electrons to the medium yields the initial radial dose distribution, which can be used as initial conditions for the predicted shock waves. The formation, diffusion, and chemical evolution of hydroxyl radicals in liquid water are studied as well. COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy.

  7. Magnetospheric electrons

    NASA Technical Reports Server (NTRS)

    Coroniti, F. V.; Thorne, R. M.

    1972-01-01

    Coupling of source, transport, and sink processes produces a fairly accurate model for the macroscopic structure and dynamics of magnetospheric electrons. Auroral electrons are controlled by convective transport from a plasma sheet source coupled with a precipitation loss due to whistler and electrostatic plasma turbulence. Outer and inner zone electrons are governed by radial diffusion transport from convection and acceleration sources external to the plasmapause and by parasitic precipitation losses arising from cyclotron and Landau interactions with whistler and ion cyclotron turbulence.

  8. A MODEL FOR CHLORINE CONCENTRATION DECAY IN PIPES

    EPA Science Inventory

    A model that accounts for transport in the axial direction by convection and in the radial direction by diffusion and that incorporates first order decay kinetics has been developed to predict the chlorine concentration in a pipe in a distribution system. A generalized expressio...

  9. Ring current impoundment of the Io plasma torus

    NASA Technical Reports Server (NTRS)

    Siscoe, G. L.; Thorne, R. M.; Richardson, J. D.; Bagenal, F.; Sullivan, J. D.; Eviatar, A.

    1981-01-01

    A newly discovered feature in the Io plasma formation that may be described as a ramp separating a high-density plasma ledge on its Jupiterward side from the lower-density radially distended Io plasma disc on its anti-Jupiterward side is observed to coincide with a marked inward decrease in the ring current population. The spatial congruency of the counter-directed maximal gradients in both plasma bodies reveals a profound coupling between them. The existence of the ramp requires a local order-of-magnitude reduction in the diffusion coefficient that governs radial mass transport. It is demonstrated that the diminished diffusive efficiency there is caused by strong pressure gradient inhibition of the interchange instability that underlies mass transport. The Io plasma torus, which is defined as the region of strong ultraviolet emissions, is identified as the plasma ledge. The plasma density in the ledge is high and, incidentally therefore, able to emit strongly because it is impounded against rapid, centrifugal expulsion by the inwardly directed pressure of the ring current at its inner edge.

  10. An update of Leighton's solar dynamo model

    NASA Astrophysics Data System (ADS)

    Cameron, R. H.; Schüssler, M.

    2017-03-01

    In 1969, Leighton developed a quasi-1D mathematical model of the solar dynamo, building upon the phenomenological scenario of Babcock published in 1961. Here we present a modification and extension of Leighton's model. Using the axisymmetric component (longitudinal average) of the magnetic field, we consider the radial field component at the solar surface and the radially integrated toroidal magnetic flux in the convection zone, both as functions of latitude. No assumptions are made with regard to the radial location of the toroidal flux. The model includes the effects of (I) turbulent diffusion at the surface and in the convection zone; (II) poleward meridional flow at the surface and an equatorward return flow affecting the toroidal flux; (III) latitudinal differential rotation and the near-surface layer of radial rotational shear; (iv) downward convective pumping of magnetic flux in the shear layer; and (v) flux emergence in the form of tilted bipolar magnetic regions treated as a source term for the radial surface field. While the parameters relevant for the transport of the surface field are taken from observations, the model condenses the unknown properties of magnetic field and flow in the convection zone into a few free parameters (turbulent diffusivity, effective return flow, amplitude of the source term, and a parameter describing the effective radial shear). Comparison with the results of 2D flux transport dynamo codes shows that the model captures the essential features of these simulations. We make use of the computational efficiency of the model to carry out an extended parameter study. We cover an extended domain of the 4D parameter space and identify the parameter ranges that provide solar-like solutions. Dipole parity is always preferred and solutions with periods around 22 yr and a correct phase difference between flux emergence in low latitudes and the strength of the polar fields are found for a return flow speed around 2 m s-1, turbulent diffusivity below about 80 km2s-1, and dynamo excitation not too far above the threshold (linear growth rate less than 0.1 yr-1).

  11. Babcock-Leighton solar dynamo: the role of downward pumping and the equatorward propagation of activity

    NASA Astrophysics Data System (ADS)

    Karak, Bidya Binay; Cameron, Robert

    2016-05-01

    We investigate the role of downward magnetic pumping near the surface using a kinematic Babcock-Leighton model. We find that the pumping causes the poloidal field to become predominately radial in the near-surface shear layer. This allows the negative radial shear in the near-surface layer to effectively act on the radial field to produce a toroidal field. Consequently, we observe a clear equatorward migration of the toroidal field at low latitudes even when there is no meridional flow in the deep CZ. We show a case where the period of a dynamo wave solution is approximately 11 years. Flux transport models are also shown with periods close to 11 years. Both the dynamo wave and flux transport dynamo are thus able to reproduce some of the observed features of solar cycle. The main difference between the two types of dynamo is the value of $\\alpha$ required to produce dynamo action. In both types of dynamo, the surface meridional flow helps to advect and build the polar field in high latitudes, while in flux transport dynamo the equatorward flow near the bottom of CZ advects toroidal field to cause the equatorward migration in butterfly wings and this advection makes the dynamo easier by transporting strong toroidal field to low latitudes where $\\alpha$ effect works. Another conclusion of our study is that the magnetic pumping suppresses the diffusion of fields through the photospheric surface which helps to achieve the 11-year dynamo cycle at a moderately larger value of magnetic diffusivity than has previously been used.

  12. The improvement of the method of equivalent cross section in HTR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, J.; Li, F.

    The Method of Equivalence Cross-Sections (MECS) is a combined transport-diffusion method. By appropriately adjusting the diffusion coefficient of homogenized absorber region, the diffusion theory could yield satisfactory results for the full core model with strong neutron absorber material, for example the control rod in High temperature gas cooled reactor (HTR). Original implementation of MECS based on 1-D cell transport model has some limitation on accuracy and applicability, a new implementation of MECS based on 2-D transport model are proposed and tested in this paper. This improvement can extend the MECS to the calculation of twin small absorber ball system whichmore » have a non-circular boring in graphite reflector and different radial position. A least-square algorithm for the calculation of equivalent diffusion coefficient is adopted, and special treatment for diffusion coefficient for higher energy group is proposed in the case that absorber is absent. Numerical results to adopt MECS into control rod calculation in HTR are encouraging. However, there are some problems left. (authors)« less

  13. Helium, Iron and Electron Particle Transport and Energy Transport Studies on the TFTR Tokamak

    DOE R&D Accomplishments Database

    Synakowski, E. J.; Efthimion, P. C.; Rewoldt, G.; Stratton, B. C.; Tang, W. M.; Grek, B.; Hill, K. W.; Hulse, R. A.; Johnson, D .W.; Mansfield, D. K.; McCune, D.; Mikkelsen, D. R.; Park, H. K.; Ramsey, A. T.; Redi, M. H.; Scott, S. D.; Taylor, G.; Timberlake, J.; Zarnstorff, M. C. (Princeton Univ., NJ (United States). Plasma Physics Lab.); Kissick, M. W. (Wisconsin Univ., Madison, WI (United States))

    1993-03-01

    Results from helium, iron, and electron transport on TFTR in L-mode and Supershot deuterium plasmas with the same toroidal field, plasma current, and neutral beam heating power are presented. They are compared to results from thermal transport analysis based on power balance. Particle diffusivities and thermal conductivities are radially hollow and larger than neoclassical values, except possibly near the magnetic axis. The ion channel dominates over the electron channel in both particle and thermal diffusion. A peaked helium profile, supported by inward convection that is stronger than predicted by neoclassical theory, is measured in the Supershot The helium profile shape is consistent with predictions from quasilinear electrostatic drift-wave theory. While the perturbative particle diffusion coefficients of all three species are similar in the Supershot, differences are found in the L-Mode. Quasilinear theory calculations of the ratios of impurity diffusivities are in good accord with measurements. Theory estimates indicate that the ion heat flux should be larger than the electron heat flux, consistent with power balance analysis. However, theoretical values of the ratio of the ion to electron heat flux can be more than a factor of three larger than experimental values. A correlation between helium diffusion and ion thermal transport is observed and has favorable implications for sustained ignition of a tokamak fusion reactor.

  14. Dependence of enhanced asymmetry-induced transport on collision frequency

    NASA Astrophysics Data System (ADS)

    Eggleston, D. L.

    2014-07-01

    A single-particle code with collisional effects is used to study how asymmetry-induced radial transport in a non-neutral plasma depends on collision frequency. For asymmetries of the form ϕ1(r) cos(kz) cos(ωt-lθ), two sources for the transport have been identified: resonant particles and axially trapped particles. The simulation shows that this latter type, which occurs near the radius where ω matches the azimuthal rotation frequency ωR, is usually dominant at low collision frequency ν but becomes negligible at higher ν. This behavior can be understood by noting that axially trapped particles have a lower trapping frequency than resonant particles. In the low ν (banana) regime, the radial oscillations have amplitude Δr ≈ vr/ωT, so axially trapped particles dominate, and the transport may even exceed the resonant particle plateau regime level. As ν increases, collisions start to interrupt the slower axially trapped particle oscillations, while the resonant particles are still in the banana regime, so the axially trapped particle contribution to the transport decreases. At the largest ν values, axially trapped particle transport is negligible and the observed diffusion coefficient matches that given by plateau regime resonant particle theory. Heuristic models based on these considerations give reasonable agreement with the observed scaling laws for the value of the collision frequency where axially trapped particle transport starts to decrease and for the enhancement of the diffusion coefficient produced by axially trapped particles.

  15. Cosmic Ray Diffusion Tensor throughout the Heliosphere on the basis of Nearly Incompressible Magnetohydrodynamic Turbulence Model

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Zank, G. P.; Adhikari, L.

    2017-12-01

    The radial and rigidity dependence of cosmic ray (CR) diffusion tensor is investigated on the basis of the recently developed 2D and slab turbulence transport model using nearly incompressible (NI) theory (Zank et al. 2017; Adhikari et al. 2017). We use the energy in forward propagating modes from 0.29 to 1 AU and in backward propagating modes from 1 to 75 AU. We employ the quasi-linear theory (QLT) and nonlinear guiding center (NLGC) theory, respectively, to determine the parallel and perpendicular elements of CR diffusion tensor. We also present the effect of both weak and moderately strong turbulence on the drift element of CR diffusion tensor. We find that (1) from 0.29 to 1 AU the radial mean free path (mfp) is dominated by the parallel component, both increase slowly after 0.4 AU; (2) from 1 to 75 AU the radial mfp starts with a rapid increase and then decreases after a peak at about 3.5 AU, mainly caused by pick-up ion sources of turbulence model; (3) after 20 AU the perpendicular mfp is nearly constant and begin to dominate the radial mfp; (4) the rigidity dependence of the parallel mfp is proportional to at 1 AU from 0.1 to 10 GV and the perpendicular mfp is weakly influenced by the rigidity; (5) turbulence does more than suppress the traditional drift element but introduces a new component normal to the magnetic field. This study shows that a proper two-component turbulence model is necessary to produce the complexity of diffusion coefficient for CR modulation throughout the heliosphere.

  16. Two-Dimensional Transport Studies for the Composition and Structure of the Io Plasma Torus

    NASA Technical Reports Server (NTRS)

    Smyth, William H.

    2003-01-01

    The overall objective of this project is to investigate the roles of local and spatially extended plasma sources created by Io, plasma torus chemistry, and plasma convective and diffusive transport in producing the long-lived S(+), S(++) and O(+) radial ribbon structures of the plasma torus, their System III longitude and local-time asymmetries, their energy sources and their possible time variability. To accomplish this objective, two-dimensional [radial (L) and System III longitude] plasma transport equations for the flux-tube plasma content and energy content will be solved that include the convective motions for both the east-west electric field and co-rotational velocity-lag profile near Io s orbit, radial diffusion, and the spacetime dependent flux-tube production and loss created by both neutral-plasma and plasma-ion reaction chemistry in the plasma torus. For neutral-plasma chemistry, the project will for the first time undertake the calculation of realistic three-dimensional, spatially-extended, and time-varying contributions to the flux-tube ion-production and loss that are produced by Io's corona and extended neutral clouds. The unknown two-dimensional spatial nature of diffusion in the plasma transport will be isolated and better defined in the investigation by the collective consideration of the foregoing different physical processes. For energy transport, the energy flow from hot pickup ions (and a new electron source) to thermal ions and electrons will be included in investigating the System III longitude and local-time temperature asymmetries in the plasma torus. The research is central to the scope of the NASA Sun-Earth Connection Roadmap in Quest II Campaign 4 "Comparative Planetary Space Environments" by addressing key questions for understanding the magnetosphere of planets with high rotation rates and large internal plasma sources and, in addition, is of considerable importance to the NASA Solar System Exploration Science Theme. In this regard, Jupiter is the most extreme example with its rapid rotation and with its inner Galilean satellite Io providing the dominant plasma source for the magnetosphere.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Gen; Lee, Martin A., E-mail: gjk44@wildcats.unh.edu

    The effects of scatter-dominated interplanetary transport on the spectral properties of the differential fluence of large gradual solar energetic particle (SEP) events are investigated analytically. The model assumes for simplicity radial constant solar wind and radial magnetic field. The radial diffusion coefficient is calculated with quasilinear theory by assuming a spectrum of Alfvén waves propagating parallel to the magnetic field. Cross-field transport is neglected. The model takes into consideration several essential features of gradual event transport: nearly isotropic ion distributions, adiabatic deceleration in a divergent solar wind, and particle radial scattering mean free paths increasing with energy. Assuming an impulsivemore » and spherically symmetric injection of SEPs with a power-law spectrum near the Sun, the predicted differential fluence spectrum exhibits at 1 AU three distinctive power laws for different energy domains. The model naturally reproduces the spectral features of the double power-law proton differential fluence spectra that tend to be observed in extremely large SEP events. We select nine western ground-level events (GLEs) out of the 16 GLEs during Solar Cycle 23 and fit the observed double power-law spectra to the analytical predictions. The compression ratio of the accelerating shock wave, the power-law index of the ambient wave intensity, and the proton radial scattering mean free path are determined for the nine GLEs. The derived parameters are generally in agreement with the characteristic values expected for large gradual SEP events.« less

  18. Computation of thermodynamic and transport properties to predict thermophoretic effects in an argon-krypton mixture

    NASA Astrophysics Data System (ADS)

    Miller, Nicholas A. T.; Daivis, Peter J.; Snook, Ian K.; Todd, B. D.

    2013-10-01

    Thermophoresis is the movement of molecules caused by a temperature gradient. Here we report the results of a study of thermophoresis using non-equilibrium molecular dynamics simulations of a confined argon-krypton fluid subject to two different temperatures at thermostated walls. The resulting temperature profile between the walls is used along with the Soret coefficient to predict the concentration profile that develops across the channel. We obtain the Soret coefficient by calculating the mutual diffusion and thermal diffusion coefficients. We report an appropriate method for calculating the transport coefficients for binary systems, using the Green-Kubo integrals and radial distribution functions obtained from equilibrium molecular dynamics simulations of the bulk fluid. Our method has the unique advantage of separating the mutual diffusion and thermal diffusion coefficients, and calculating the sign and magnitude of their individual contributions to thermophoresis in binary mixtures.

  19. A parametric study of segregation effects during vertical Bridgman crystal growth with an axial magnetic field

    NASA Astrophysics Data System (ADS)

    Ma, N.; Walker, J. S.

    2000-01-01

    This paper presents a model for the unsteady transport of a dopant during the vertical Bridgman crystal growth process with a planar crystal-melt interface and with an axial magnetic field, and investigates the effects of varying different process variables on the crystal composition. The convective mass transport due to the buoyant convection in the melt produces nonuniformities in the concentration in both the melt and the crystal. The convective mass transport plays an important role for all magnetic field strengths considered. Diffusive mass transport begins to dominate for a magnetic flux density of 4 T and a fast growth rate, producing crystals which have an axial variation of the radially averaged crystal composition approaching that of the diffusion-controlled limit. Dopant distributions for several different combinations of process parameters are presented.

  20. Diffusive vs. impulsive energetic electron transport during radiation belt storms

    NASA Astrophysics Data System (ADS)

    Vassiliadis, D.; Koepke, M.; Tornquist, M.

    2008-12-01

    Earth's electron radiation belts are continually replenished by inward particle transport (as well as other, local acceleration processes) taking place during radiation belt storms. For some storms the radial transport is primarily diffusive while for others it is impulsive, or characterized by injections. To distinguish between these types of inward transport, we first use a dynamic model of the phase-space density as measured by POLAR/HIST and expressed in terms of adiabatic invariants [Green and Kivelson, 2004]. In a review of storms from 1997 to 2004 the coefficients of the model are peaked at characteristic temporal and phase- space (mu, k, L*) scales during specific storms. The transport is quantified in terms of those invariants which are violated and identified with peaks of the electron distribution in invariant space. Second, we run guiding- center simulations in wave fields fitted to in situ measurements complemented at low and high L by ground ULF pulsations. The modes of response identified in earlier studies from SAMPEX and POLAR electron flux measurements are now associated with primarily diffusive transport in the central range of the outer belt, L=4-8, and primarily impulsive transport near the plasmapause boundary, L=3-4.

  1. Self-sustained radial oscillating flows between parallel disks

    NASA Astrophysics Data System (ADS)

    Mochizuki, S.; Yang, W.-J.

    1985-05-01

    It is pointed out that radial flow between parallel circular disks is of interest in a number of physical systems such as hydrostatic air bearings, radial diffusers, and VTOL aircraft with centrally located downward-positioned jets. The present investigation is concerned with the problem of instability in radial flow between parallel disks. A time-dependent numerical study and experiments are conducted. Both approaches reveal the nucleation, growth, migration, and decay of annular separation bubbles (i.e. vortex or recirculation zones) in the laminar-flow region. A finite-difference technique is utilized to solve the full unsteady vorticity transport equation in the theoretical procedure, while the flow patterns in the experiments are visualized with the aid of dye-injection, hydrogen-bubble, and paraffin-mist methods. It is found that the separation and reattachment of shear layers in the radial flow through parallel disks are unsteady phenomena. The sequence of nucleation, growth, migration, and decay of the vortices is self-sustained.

  2. Radiation belt electron acceleration during the 17 March 2015 geomagnetic storm: Observations and simulations

    DOE PAGES

    Li, W.; Ma, Q.; Thorne, R. M.; ...

    2016-06-10

    Various physical processes are known to cause acceleration, loss, and transport of energetic electrons in the Earth's radiation belts, but their quantitative roles in different time and space need further investigation. During the largest storm over the past decade (17 March 2015), relativistic electrons experienced fairly rapid acceleration up to ~7 MeV within 2 days after an initial substantial dropout, as observed by Van Allen Probes. In the present paper, we evaluate the relative roles of various physical processes during the recovery phase of this large storm using a 3-D diffusion simulation. By quantitatively comparing the observed and simulated electronmore » evolution, we found that chorus plays a critical role in accelerating electrons up to several MeV near the developing peak location and produces characteristic flat-top pitch angle distributions. By only including radial diffusion, the simulation underestimates the observed electron acceleration, while radial diffusion plays an important role in redistributing electrons and potentially accelerates them to even higher energies. Moreover, plasmaspheric hiss is found to provide efficient pitch angle scattering losses for hundreds of keV electrons, while its scattering effect on > 1 MeV electrons is relatively slow. Although an additional loss process is required to fully explain the overestimated electron fluxes at multi-MeV, the combined physical processes of radial diffusion and pitch angle and energy diffusion by chorus and hiss reproduce the observed electron dynamics remarkably well, suggesting that quasi-linear diffusion theory is reasonable to evaluate radiation belt electron dynamics during this big storm.« less

  3. Radiation belt electron acceleration during the 17 March 2015 geomagnetic storm: Observations and simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, W.; Ma, Q.; Thorne, R. M.

    Various physical processes are known to cause acceleration, loss, and transport of energetic electrons in the Earth's radiation belts, but their quantitative roles in different time and space need further investigation. During the largest storm over the past decade (17 March 2015), relativistic electrons experienced fairly rapid acceleration up to ~7 MeV within 2 days after an initial substantial dropout, as observed by Van Allen Probes. In the present paper, we evaluate the relative roles of various physical processes during the recovery phase of this large storm using a 3-D diffusion simulation. By quantitatively comparing the observed and simulated electronmore » evolution, we found that chorus plays a critical role in accelerating electrons up to several MeV near the developing peak location and produces characteristic flat-top pitch angle distributions. By only including radial diffusion, the simulation underestimates the observed electron acceleration, while radial diffusion plays an important role in redistributing electrons and potentially accelerates them to even higher energies. Moreover, plasmaspheric hiss is found to provide efficient pitch angle scattering losses for hundreds of keV electrons, while its scattering effect on > 1 MeV electrons is relatively slow. Although an additional loss process is required to fully explain the overestimated electron fluxes at multi-MeV, the combined physical processes of radial diffusion and pitch angle and energy diffusion by chorus and hiss reproduce the observed electron dynamics remarkably well, suggesting that quasi-linear diffusion theory is reasonable to evaluate radiation belt electron dynamics during this big storm.« less

  4. Modeling electrochemical deposition inside nanotubes to obtain metal-semiconductor multiscale nanocables or conical nanopores.

    PubMed

    Lebedev, Konstantin; Mafé, Salvador; Stroeve, Pieter

    2005-08-04

    Nanocables with a radial metal-semiconductor heterostructure have recently been prepared by electrochemical deposition inside metal nanotubes. First, a bare nanoporous polycarbonate track-etched membrane is coated uniformly with a metal film by electroless deposition. The film forms a working electrode for further deposition of a semiconductor layer that grows radially inside the nanopore when the deposition rate is slow. We propose a new physical model for the nanocable synthesis and study the effects of the deposited species concentration, potential-dependent reaction rate, and nanopore dimensions on the electrochemical deposition. The problem involves both axial diffusion through the nanopore and radial transport to the nanopore surface, with a surface reaction rate that depends on the axial position and the time. This is so because the radial potential drop across the deposited semiconductor layer changes with the layer thickness through the nanopore. Since axially uniform nanocables are needed for most applications, we consider the relative role of reaction and axial diffusion rates on the deposition process. However, in those cases where partial, empty-core deposition should be desirable (e.g., for producing conical nanopores to be used in single nanoparticle detection), we give conditions where asymmetric geometries can be experimentally realized.

  5. Gradual Diffusion and Punctuated Phase Space Density Enhancements of Highly Relativistic Electrons: Van Allen Probes Observations

    NASA Technical Reports Server (NTRS)

    Baker, D. N.; Jaynes, A. N.; Li, X.; Henderson, M. G.; Kanekal, S. G.; Reeves, G. D.; Spence, H. E.; Claudepierre, S. G.; Fennell, J. F.; Hudson, M. K.

    2014-01-01

    The dual-spacecraft Van Allen Probes mission has provided a new window into mega electron volt (MeV) particle dynamics in the Earth's radiation belts. Observations (up to E (is) approximately 10MeV) show clearly the behavior of the outer electron radiation belt at different timescales: months-long periods of gradual inward radial diffusive transport and weak loss being punctuated by dramatic flux changes driven by strong solar wind transient events. We present analysis of multi-MeV electron flux and phase space density (PSD) changes during March 2013 in the context of the first year of Van Allen Probes operation. This March period demonstrates the classic signatures both of inward radial diffusive energization and abrupt localized acceleration deep within the outer Van Allen zone (L (is) approximately 4.0 +/- 0.5). This reveals graphically that both 'competing' mechanisms of multi-MeV electron energization are at play in the radiation belts, often acting almost concurrently or at least in rapid succession.

  6. Dependence of radiation belt simulations to assumed radial diffusion rates

    NASA Astrophysics Data System (ADS)

    Drozdov, A.; Shprits, Y.; Aseev, N.; Kellerman, A. C.; Reeves, G. D.

    2017-12-01

    Radial diffusion is one of the dominant physical mechanisms that drives acceleration and loss of the radiation belt electrons due to wave-particle interaction with ultra low frequency (ULF) waves, which makes it very important for radiation belt modeling and forecasting. We investigate the sensitivity of several parameterizations of the radial diffusion including Brautigam and Albert [2000], Ozeke et al. [2014] and Ali et al. [2016] on long-term radiation belt modeling using the Versatile Electron Radiation Belt (VERB). Following previous studies, we first perform 1-D radial diffusion simulations. To take into account effects of local acceleration and loss, we perform additional 3-D simulations, including pitch-angle, energy and mixed diffusion. The obtained result demonstrates that the inclusion of local acceleration and pitch-angle diffusion can provide a negative feedback effect, such that the result is largely indistinguishable between simulations conducted with different radial diffusion parameterizations. We also perform a number of sensitivity tests by multiplying radial diffusion rates by constant factors and show that such an approach leads to unrealistic predictions of radiation belt dynamics.

  7. Dependence of enhanced asymmetry-induced transport on collision frequency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eggleston, D. L.

    A single-particle code with collisional effects is used to study how asymmetry-induced radial transport in a non-neutral plasma depends on collision frequency. For asymmetries of the form ϕ{sub 1}(r) cos(kz) cos(ωt−lθ), two sources for the transport have been identified: resonant particles and axially trapped particles. The simulation shows that this latter type, which occurs near the radius where ω matches the azimuthal rotation frequency ω{sub R}, is usually dominant at low collision frequency ν but becomes negligible at higher ν. This behavior can be understood by noting that axially trapped particles have a lower trapping frequency than resonant particles. In the lowmore » ν (banana) regime, the radial oscillations have amplitude Δr ≈ v{sub r}/ω{sub T}, so axially trapped particles dominate, and the transport may even exceed the resonant particle plateau regime level. As ν increases, collisions start to interrupt the slower axially trapped particle oscillations, while the resonant particles are still in the banana regime, so the axially trapped particle contribution to the transport decreases. At the largest ν values, axially trapped particle transport is negligible and the observed diffusion coefficient matches that given by plateau regime resonant particle theory. Heuristic models based on these considerations give reasonable agreement with the observed scaling laws for the value of the collision frequency where axially trapped particle transport starts to decrease and for the enhancement of the diffusion coefficient produced by axially trapped particles.« less

  8. Evaluation of multidimensional transport through a field-scale compacted soil liner

    USGS Publications Warehouse

    Willingham, T.W.; Werth, C.J.; Valocchi, A.J.; Krapac, I.G.; Toupiol, C.; Stark, T.D.; Daniel, D.E.

    2004-01-01

    A field-scale compacted soil liner was constructed at the University of Illinois at Urbana-Champaign by the U.S. Environmental Protection Agency (USEPA) and Illinois State Geological Survey in 1988 to investigate chemical transport rates through low permeability compacted clay liners (CCLs). Four tracers (bromide and three benzoic acid tracers) were each added to one of four large ring infiltrometers (LRIs) while tritium was added to the pond water (excluding the infiltrometers). Results from the long-term transport of Br- from the localized source zone of LRI are presented in this paper. Core samples were taken radially outward from the center of the Br- LRI and concentration depth profiles were obtained. Transport properties were evaluated using an axially symmetric transport model. Results indicate that (1) transport was diffusion controlled; (2) transport due to advection was negligible and well within the regulatory limits of ksat???1 ?? 10-7 cm/s; (3) diffusion rates in the horizontal and vertical directions were the same; and (4) small positioning errors due to compression during soil sampling did not affect the best fit advection and diffusion values. The best-fit diffusion coefficient for bromide was equal to the molecular diffusion coefficient multiplied by a tortuosity factor of 0.27, which is within 8% of the tortuosity factor (0.25) found in a related study where tritium transport through the same liner was evaluated. This suggests that the governing mechanisms for the transport of tritium and bromide through the CCL were similar. These results are significant because they address transport through a composite liner from a localized source zone which occurs when defects or punctures in the geomembrane of a composite system are present. ?? ASCE.

  9. Evolution of electron pitch angle distributions across Saturn's middle magnetospheric region from MIMI/LEMMS

    NASA Astrophysics Data System (ADS)

    Clark, G.; Paranicas, C.; Santos-Costa, D.; Livi, S.; Krupp, N.; Mitchell, D. G.; Roussos, E.; Tseng, W.-L.

    2014-12-01

    We provide a global view of ~20 to 800 keV electron pitch angle distributions (PADs) close to Saturn's current sheet using observations from the Cassini MIMI/LEMMS instrument. Previous work indicated that the nature of pitch angle distributions in Saturn's inner to middle magnetosphere changes near the radial distance of 10RS. This work confirms the existence of a PAD transition region. Here we go further and develop a new technique to statistically quantify the spatial profile of butterfly PADs as well as present new spatial trends on the isotropic PAD. Additionally, we perform a case study analysis and show the PADs exhibit strong energy dependent features throughout this transition region. We also present a diffusion theory model based on adiabatic transport, Coulomb interactions with Saturn's neutral gas torus, and an energy dependent radial diffusion coefficient. A data-model comparison reveals that adiabatic transport is the dominant transport mechanism between ~8 to 12RS, however interactions with Saturn's neutral gas torus become dominant inside ~7RS and govern the flux level of ~20 to 800 keV electrons. We have also found that field-aligned fluxes were not well reproduced by our modeling approach. We suggest that wave-particle interactions and/or a polar source of the energetic particles needs further investigation.

  10. Anisotropic heat transport in reversed shear configurations: shearless Cantori barriers and nonlocal transport

    NASA Astrophysics Data System (ADS)

    Blasevski, D.; Del-Castillo-Negrete, D.

    2012-10-01

    Heat transport in magnetized plasmas is a problem of fundamental interest in controlled fusion. In Ref.footnotetext D. del-Castillo-Negrete, and L. Chac'on, Phys. Rev. Lett., 106, 195004 (2011); Phys. Plasmas 19, 056112 (2012). we proposed a Lagrangian-Green's function (LG) method to study this problem in the strongly anisotropic (χ=0) regime. The LG method bypasses the need to discretize the transport operators on a grid and it is applicable to general parallel flux closures and 3-D magnetic fields. Here we apply the LG method to parallel transport (with local and nonlocal parallel flux closures) in reversed shear magnetic field configurations known to exhibit robust transport barriers in the vicinity of the extrema of the q-profile. By shearless Cantori (SC) we mean the invariant Cantor sets remaining after the destruction of toroidal flux surfaces with zero magnetic shear, q^'=0. We provide numerical evidence of the role of SC in the anomalously slow relaxation of radial temperature gradients in chaotic magnetic fields with no transport barriers. The spatio-temporal evolution of temperature pulses localized in the reversed shear region exhibits non-diffusive self-similar evolution and nonlocal effective radial transport.

  11. MULTI-SPACECRAFT OBSERVATIONS AND TRANSPORT MODELING OF ENERGETIC ELECTRONS FOR A SERIES OF SOLAR PARTICLE EVENTS IN AUGUST 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dröge, W.; Kartavykh, Y. Y.; Dresing, N.

    During 2010 August a series of solar particle events was observed by the two STEREO spacecraft as well as near-Earth spacecraft. The events, occurring on August 7, 14, and 18, originated from active regions 11093 and 11099. We combine in situ and remote-sensing observations with predictions from our model of three-dimensional anisotropic particle propagation in order to investigate the physical processes that caused the large angular spreads of energetic electrons during these events. In particular, we address the effects of the lateral transport of the electrons in the solar corona that is due to diffusion perpendicular to the average magneticmore » field in the interplanetary medium. We also study the influence of two coronal mass ejections and associated shock waves on the electron propagation, and a possible time variation of the transport conditions during the above period. For the August 18 event we also utilize electron observations from the MESSENGER spacecraft at a distance of 0.31 au from the Sun for an attempt to separate between radial and longitudinal dependencies in the transport process. Our modelings show that the parallel and perpendicular diffusion mean free paths of electrons can vary significantly not only as a function of the radial distance, but also of the heliospheric longitude. Normalized to a distance of 1 au, we derive values of λ {sub ∥} in the range of 0.15–0.6 au, and values of λ {sub ⊥} in the range of 0.005–0.01 au. We discuss how our results relate to various theoretical models for perpendicular diffusion, and whether there might be a functional relationship between the perpendicular and the parallel mean free path.« less

  12. Multi-spacecraft Observations and Transport Modeling of Energetic Electrons for a Series of Solar Particle Events in August 2010

    NASA Astrophysics Data System (ADS)

    Dröge, W.; Kartavykh, Y. Y.; Dresing, N.; Klassen, A.

    2016-08-01

    During 2010 August a series of solar particle events was observed by the two STEREO spacecraft as well as near-Earth spacecraft. The events, occurring on August 7, 14, and 18, originated from active regions 11093 and 11099. We combine in situ and remote-sensing observations with predictions from our model of three-dimensional anisotropic particle propagation in order to investigate the physical processes that caused the large angular spreads of energetic electrons during these events. In particular, we address the effects of the lateral transport of the electrons in the solar corona that is due to diffusion perpendicular to the average magnetic field in the interplanetary medium. We also study the influence of two coronal mass ejections and associated shock waves on the electron propagation, and a possible time variation of the transport conditions during the above period. For the August 18 event we also utilize electron observations from the MESSENGER spacecraft at a distance of 0.31 au from the Sun for an attempt to separate between radial and longitudinal dependencies in the transport process. Our modelings show that the parallel and perpendicular diffusion mean free paths of electrons can vary significantly not only as a function of the radial distance, but also of the heliospheric longitude. Normalized to a distance of 1 au, we derive values of λ ∥ in the range of 0.15-0.6 au, and values of λ ⊥ in the range of 0.005-0.01 au. We discuss how our results relate to various theoretical models for perpendicular diffusion, and whether there might be a functional relationship between the perpendicular and the parallel mean free path.

  13. Radial diffusion with outer boundary determined by geosynchronous measurements: Storm and post-storm intervals

    NASA Astrophysics Data System (ADS)

    Chu, F.; Haines, P.; Hudson, M.; Kress, B.; Freidel, R.; Kanekal, S.

    2007-12-01

    Work is underway by several groups to quantify diffusive radial transport of radiation belt electrons, including a model for pitch angle scattering losses to the atmosphere. The radial diffusion model conserves the first and second adiabatic invariants and breaks the third invariant. We have developed a radial diffusion code which uses the Crank Nicholson method with a variable outer boundary condition. For the radial diffusion coefficient, DLL, we have several choices, including the Brautigam and Albert (JGR, 2000) diffusion coefficient parameterized by Kp, which provides an ad hoc measure of the power level at ULF wave frequencies in the range of electron drift (mHz), breaking the third invariant. Other diffusion coefficient models are Kp-independent, fixed in time but explicitly dependent on the first invariant, or energy at a fixed L, such as calculated by Elkington et al. (JGR, 2003) and Perry et al. (JGR, 2006) based on ULF wave model fields. We analyzed three periods of electron flux and phase space density (PSD) enhancements inside of geosynchronous orbit: March 31 - May 31, 1991, and July 2004 and Nov 2004 storm intervals. The radial diffusion calculation is initialized with a computed phase space density profile for the 1991 interval using differential flux values from the CRRES High Energy Electron Fluxmeter instrument, covering 0.65 - 7.5 MeV. To calculate the initial phase space density, we convert Roederer L* to McIlwain's L- parameter using the ONERA-DESP program. A time averaged model developed by Vampola1 from the entire 14 month CRRES data set is applied to the July 2004 and Nov 2004 storms. The online CRESS data for specific orbits and the Vampola-model flux are both expressed in McIlwain L-shell, while conversion to L* conserves phase space density in a distorted non-dipolar magnetic field model. A Tsyganenko (T04) magnetic field model is used for conversion between L* and L. The outer boundary PSD is updated using LANL GEO satellite fluxes. After calculating the phase space density time evolution for the two storms and post-injection interval (March 31 - May 31, 1991), we compare results with SAMPEX measurements. A better match with SAMPEX measurements is obtained with a variable outer boundary, also with a Kp-dependent diffusion coefficient, and finally with an energy and L-dependent loss term (Summers et al., JGR, 2004), than with a time-independent diffusion coefficient and a simple Kp-parametrized loss rate and location of the plasmapause. Addition of a varying outer boundary which incorporates measured fluxes at geosynchronous orbit using L* has the biggest effect of the three parametrized variations studied. 1Vampola, A.L., 1996, The ESA Outer Zone Electron Model Update, Environment Modelling for Spaced-based Applications, ESA SP-392, ESTEC, Nordwijk, NL, pp. 151-158, W. Burke and T.-D. Guyenne, eds.

  14. Macrosegregation of GeSi Alloys Grown in a Static Magnetic Field

    NASA Technical Reports Server (NTRS)

    Ritter, T. M.; Volz, M. P.; Cobb, S. D.; Szofran, F. R.

    1999-01-01

    Axial and radial macrosegregation profiles have been determined for GeSi alloy crystals grown by the vertical Bridgman technique. An axial 5 Tesla magnetic field was applied to several samples during growth to decrease the melt velocities by means of the Lorentz force. Compositions were measured with either energy dispersive X-ray spectroscopy (EDS) on a scanning electron microscope (SEM) or by wavelength dispersive X-ray spectroscopy (WDS) on a microprobe. The crystals were processed in graphite, hot-pressed boron nitride (BN), and pyrolytic boron nitride (PBN) ampoules, which produced various solid-liquid interface shapes during solidification. Those samples grown in a graphite ampoule exhibited radial profiles consistent with a highly concave interface and axial profiles indicative of complete mixing in the melt. The samples grown in BN and PBN ampoules had less radial variation. Axial macrosegregation profiles of these samples fell between the predictions for a completely mixed melt and one where solute transport is dominated by diffusion. Possible explanations for the apparent insufficiency of the magnetic field to achieve diffusion controlled growth conditions are discussed.

  15. Modeling the Impenetrable Barrier to Inward Transport of Ultra-relativistic Radiation Belt Electrons

    NASA Astrophysics Data System (ADS)

    Tu, W.; Cunningham, G.; Chen, Y.; Baker, D. N.; Henderson, M. G.; Reeves, G. D.

    2014-12-01

    It has long been considered that the inner edge of the Earth's outer radiation belt is closely correlated with the minimum plasmapause location. However, recent discoveries by Baker et al. [1] show that it is not the case for ultra-relativistic electrons (2-10 MeV) in the radiation belt. Based on almost two years of Van Allen Probes/REPT data, they find that the inner edge of highly relativistic electrons is rarely collocated with the plasmapause; and more interestingly, there is a clear, persistent, and nearly impenetrable barrier to inward transport of high energy electrons, observed to locate at L~2.8. The presence of such an impenetrable barrier at this very specific location poses a significant puzzle. Using our DREAM3D diffusion model, which includes radial, pitch angle, and momentum diffusion, we are able to simulate the observed impenetrable barrier of ultra-relativistic electrons. The simulation demonstrates that during strong geomagnetic storms the plasmapause can be compressed to very low L region (sometimes as low as L~3), then strong chorus waves just outside the plasmapause can locally accelerate electrons up to multiple-MeV; when storm recovers, plasmapause moves back to large L, while the highly-relativistic electrons generated at low L continue to diffuse inward and slow decay by pitch angle diffusion from plasmaspheric hiss. The delicate balance between slow inward radial diffusion and weak pitch angle scattering creates a fixed inner boundary or barrier for ultra-relativistic electrons. The barrier is found to locate at a fixed L location, independent of the initial penetration depth of electrons that is correlated with the plasmapause location. Our simulation results quantitatively reproduce the evolution of the flux versus L profile, the L location of the barrier, and the decay rate of highly energetic electrons right outside the barrier. 1Baker, D. N., et al. (2014), Nearly Impenetrable Barrier to Inward Ultra-relativistic Magnetospheric Electron Transport, submitted to Nature.

  16. Modeling the Magnetopause Shadowing Loss during the October 2012 Dropout Event

    NASA Astrophysics Data System (ADS)

    Tu, Weichao; Cunningham, Gregory

    2017-04-01

    The relativistic electron flux in Earth's outer radiation belt are observed to drop by orders of magnitude on timescales of a few hours, which is called radiation belt dropouts. Where do the electrons go during the dropouts? This is one of the most important outstanding questions in radiation belt studies. Radiation belt electrons can be lost either by precipitation into the atmosphere or by transport across the magnetopause into interplanetary space. The latter mechanism is called magnetopause shadowing, usually combined with outward radial diffusion of electrons due to the sharp radial gradient it creates. In order to quantify the relative contribution of these two mechanisms to radiation belt dropout, we performed an event study on the October 2012 dropout event observed by Van Allen Probes. First, the precipitating MeV electrons observed by multiple NOAA POES satellites at low altitude did not show evidence of enhanced precipitation during the dropout, which suggested that precipitation was not the dominant loss mechanism for the event. Then, in order to simulate the magnetopause shadowing loss and outward radial diffusion during the dropout, we applied a radial diffusion model with electron lifetimes on the order of electron drift periods outside the last closed drift shell. In addition, realistic and event-specific inputs of radial diffusion coefficients (DLL) and last closed drift shell (LCDS) were implemented in the model. Specifically, we used the new DLL developed by Cunningham [JGR 2016] which were estimated in realistic TS04 [Tsyganenko and Sitnov, JGR 2005] storm time magnetic field model and included physical K (2nd adiabatic invariant) or pitch angle dependence. Event-specific LCDS traced in TS04 model with realistic K dependence was also implemented. Our simulation results showed that these event-specific inputs are critical to explain the electron dropout during the event. The new DLL greatly improved the model performance at low L* regions (L*<3.6) compared to empirical Kp-dependent DLL [Brautigam and Albert, JGR 2000] used in previous radial diffusion models. Combining the event-specific DLL and LCDS, our model well captured the magnetopause shadowing loss and reproduced the electron dropout at L*=4.0-4.5. In addition, we found the K-dependent LCDS is critical to reproduce the pitch angle dependence of the observed electron dropout.

  17. Modeling a Single SEP Event from Multiple Vantage Points Using the iPATH Model

    NASA Astrophysics Data System (ADS)

    Hu, Junxiang; Li, Gang; Fu, Shuai; Zank, Gary; Ao, Xianzhi

    2018-02-01

    Using the recently extended 2D improved Particle Acceleration and Transport in the Heliosphere (iPATH) model, we model an example gradual solar energetic particle event as observed at multiple locations. Protons and ions that are energized via the diffusive shock acceleration mechanism are followed at a 2D coronal mass ejection-driven shock where the shock geometry varies across the shock front. The subsequent transport of energetic particles, including cross-field diffusion, is modeled by a Monte Carlo code that is based on a stochastic differential equation method. Time intensity profiles and particle spectra at multiple locations and different radial distances, separated in longitudes, are presented. The results shown here are relevant to the upcoming Parker Solar Probe mission.

  18. Ion radial diffusion in an electrostatic impulse model for stormtime ring current formation

    NASA Technical Reports Server (NTRS)

    Chen, Margaret W.; Schulz, Michael; Lyons, Larry R.; Gorney, David J.

    1992-01-01

    Guiding-center simulations of stormtime transport of ring-current and radiation-belt ions having first adiabatic invariants mu is approximately greater than 15 MeV/G (E is approximately greater than 165 keV at L is approximately 3) are surprisingly well described (typically within a factor of approximately less than 4) by the quasilinear theory of radial diffusion. This holds even for the case of an individual model storm characterized by substorm-associated impulses in the convection electric field, provided that the actual spectrum of the electric field is incorporated in the quasilinear theory. Correction of the quasilinear diffusion coefficient D(sub LL)(sup ql) for drift-resonance broadening (so as to define D(sub LL)(sup ql)) reduced the typical discrepancy with the diffusion coefficients D(sub LL)(sup sim) deduced from guiding-center simulations of representative-particle trajectories to a factor of approximately 3. The typical discrepancy was reduced to a factor of approximately 1.4 by averaging D(sub LL)(sup sim), D(sub LL)(sup ql), and D(sub LL)(sup rb) over an ensemble of model storms characterized by different (but statistically equivalent) sets of substorm-onset times.

  19. Imaging and modelling root water uptake

    NASA Astrophysics Data System (ADS)

    Zarebanadkouki, M.; Meunier, F.; Javaux, M.; Kaestner, A.; Carminati, A.

    2017-12-01

    Spatially resolved measurement and modelling of root water uptake is urgently needed to identify root traits that can improve capture of water from the soil. However, measuring water fluxes into roots of transpiring plants growing in soil remains challenging. Here, we describe an in-situ technique to measure local fluxes of water into roots. The technique consists of tracing the transport of deuterated water (D2O) in soil and roots using time series neutron radiography and tomography. A diffusion-convection model was used to model the transport of D2O in roots. The model includes root features such as the endodermis, xylem and the composite flow of water in the apoplastic and symplastic pathways. Diffusion permeability of root cells and of the endodermis were estimated by fitting the experiment during the night, when transpiration was negligible. The water fluxes at different position of the root system were obtained by fitting the experiments at daytime. The results showed that root water uptake was not uniform along root system and varied among different root types. The measured profiles of root water uptake into roots were used to estimate the radial and axial hydraulic of the roots. A three-dimensional model of root water uptake was used to fit the measured water fluxes by adjusting the root radial and axial hydraulic conductivities. We found that the estimated radial conductivities decreased with root age, while the axial conducances increased, and they are different among root types. The significance of this study is the development of a method to estimate 1) water uptake and 2) the radial and axial hydraulic conductivities of roots of transpiring plants growing in the soil.

  20. Galactic Cosmic-ray Transport in the Global Heliosphere: A Four-Dimensional Stochastic Model

    NASA Astrophysics Data System (ADS)

    Florinski, V.

    2009-04-01

    We study galactic cosmic-ray transport in the outer heliosphere and heliosheath using a newly developed transport model based on stochastic integration of the phase-space trajectories of Parker's equation. The model employs backward integration of the diffusion-convection transport equation using Ito calculus and is four-dimensional in space+momentum. We apply the model to the problem of galactic proton transport in the heliosphere during a negative solar minimum. Model results are compared with the Voyager measurements of galactic proton radial gradients and spectra in the heliosheath. We show that the heliosheath is not as efficient in diverting cosmic rays during solar minima as predicted by earlier two-dimensional models.

  1. Parallel heat transport in integrable and chaotic magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Del-Castillo-Negrete, Diego B; Chacon, Luis

    2012-01-01

    The study of transport in magnetized plasmas is a problem of fundamental interest in controlled fusion, space plasmas, and astrophysics research. Three issues make this problem particularly chal- lenging: (i) The extreme anisotropy between the parallel (i.e., along the magnetic field), , and the perpendicular, , conductivities ( / may exceed 1010 in fusion plasmas); (ii) Magnetic field lines chaos which in general complicates (and may preclude) the construction of magnetic field line coordinates; and (iii) Nonlocal parallel transport in the limit of small collisionality. Motivated by these issues, we present a Lagrangian Green s function method to solve themore » local and non-local parallel transport equation applicable to integrable and chaotic magnetic fields in arbitrary geom- etry. The method avoids by construction the numerical pollution issues of grid-based algorithms. The potential of the approach is demonstrated with nontrivial applications to integrable (magnetic island chain), weakly chaotic (devil s staircase), and fully chaotic magnetic field configurations. For the latter, numerical solutions of the parallel heat transport equation show that the effective radial transport, with local and non-local closures, is non-diffusive, thus casting doubts on the appropriateness of the applicability of quasilinear diffusion descriptions. General conditions for the existence of non-diffusive, multivalued flux-gradient relations in the temperature evolution are derived.« less

  2. Effects of whistler mode hiss waves on the radiation belts structure during quiet times

    NASA Astrophysics Data System (ADS)

    Ripoll, J. F.; Santolik, O.; Reeves, G. D.; Kurth, W. S.; Denton, M.; Loridan, V.; Thaller, S. A.; Cunningham, G.; Kletzing, C.; Turner, D. L.; Henderson, M. G.; Ukhorskiy, S.; Drozdov, A.; Cervantes Villa, J. S.; Shprits, Y.

    2017-12-01

    We present dynamic Fokker-Planck simulations of the electron radiation belts and slot formation during the quiet days that can follow a storm. Simulations are made for all energies and L-shells between 2 and 6 in the view of recovering the observations of two particular events. Pitch angle diffusion is essential to energy structure of the belts and slot region. Pitch angle diffusion is computed from data-driven spatially and temporally-resolved whistler mode hiss wave and ambient plasma observations from the Van Allen Probes satellites. The simulations are performed either with a 3D formulation that uses pitch angle diffusion coefficients or with a simpler 1D Fokker-Planck equation based on losses computed from a lifetime. Validation is carried out globally against Magnetic Electron and Ion Spectrometer observations of the belts at all energy. Results are complemented with a sensitivity study involving different radial diffusion coefficients, electron lifetimes, and pitch angle diffusion coefficients. We discuss which models allow to recover the observed "S-shaped" energy-dependent inner boundary to the outer zone that results from the competition between diffusive radial transport and losses. Periods when the plasmasphere extends beyond L 5 favor long-lasting hiss losses from the outer belt. Through these simulations, we explain the full structure in energy and L-shell of the belts and the slot formation by hiss scattering during quiet storm recovery.

  3. Influence of tissue metabolism and capillary oxygen supply on arteriolar oxygen transport: a computational model.

    PubMed

    Moschandreou, T E; Ellis, C G; Goldman, D

    2011-07-01

    We present a theoretical model for steady-state radial and longitudinal oxygen transport in arterioles containing flowing blood (plasma and red blood cells) and surrounded by living tissue. This model combines a detailed description of convective and diffusive oxygen transport inside the arteriole with a novel boundary condition at the arteriolar lumen surface, and the results provide new mass transfer coefficients for computing arteriolar O(2) losses based on far-field tissue O(2) tension and in the presence of spatially distributed capillaries. A numerical procedure is introduced for calculating O(2) diffusion from an arteriole to a continuous capillary-tissue matrix immediately adjacent to the arteriole. The tissue O(2) consumption rate is assumed to be constant and capillaries act as either O(2) sources or sinks depending on the local O(2) environment. Using the model, O(2) saturation (SO(2)) and tension (PO(2)) are determined for the intraluminal region of the arteriole, as well as for the extraluminal region in the neighbouring tissue. Our model gives results that are consistent with available experimental data and previous intraluminal transport models, including appreciable radial decreases in intraluminal PO(2) for all vessel diameters considered (12-100 μm) and slower longitudinal decreases in PO(2) for larger vessels than for smaller ones, and predicts substantially less diffusion of O(2) from arteriolar blood than do models with PO(2) specified at the edge of the lumen. The dependence of the new mass transfer coefficients on vessel diameter, SO(2) and far-field PO(2) is calculated allowing their application to a wide range of physiological situations. This novel arteriolar O(2) transport model will be a vital component of future integrated models of microvascular regulation of O(2) supply to capillary beds and the tissue regions they support. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. The evolution of Saturn's radiation belts modulated by changes in radial diffusion

    NASA Astrophysics Data System (ADS)

    Kollmann, P.; Roussos, E.; Kotova, A.; Paranicas, C.; Krupp, N.

    2017-12-01

    Globally magnetized planets, such as the Earth1 and Saturn2, are surrounded by radiation belts of protons and electrons with kinetic energies well into the million electronvolt range. The Earth's proton belt is supplied locally from galactic cosmic rays interacting with the atmosphere3, as well as from slow inward radial transport4. Its intensity shows a relationship with the solar cycle4,5 and abrupt dropouts due to geomagnetic storms6,7. Saturn's proton belts are simpler than the Earth's because cosmic rays are the principal source of energetic protons8 with virtually no contribution from inward transport, and these belts can therefore act as a prototype to understand more complex radiation belts. However, the time dependence of Saturn's proton belts had not been observed over sufficiently long timescales to test the driving mechanisms unambiguously. Here we analyse the evolution of Saturn's proton belts over a solar cycle using in-situ measurements from the Cassini Saturn orbiter and a numerical model. We find that the intensity in Saturn's proton radiation belts usually rises over time, interrupted by periods that last over a year for which the intensity is gradually dropping. These observations are inconsistent with predictions based on a modulation in the cosmic-ray source, as could be expected4,9 based on the evolution of the Earth's proton belts. We demonstrate that Saturn's intensity dropouts result instead from losses due to abrupt changes in magnetospheric radial diffusion.

  5. Babcock-Leighton Solar Dynamo: The Role of Downward Pumping and the Equatorward Propagation of Activity

    NASA Astrophysics Data System (ADS)

    Karak, Bidya Binay; Cameron, Robert

    2016-11-01

    The key elements of the Babcock-Leighton dynamos are the generation of poloidal field through decay and the dispersal of tilted bipolar active regions and the generation of toroidal field through the observed differential rotation. These models are traditionally known as flux transport dynamo models as the equatorward propagations of the butterfly wings in these models are produced due to an equatorward flow at the bottom of the convection zone. Here we investigate the role of downward magnetic pumping near the surface using a kinematic Babcock-Leighton model. We find that the pumping causes the poloidal field to become predominately radial in the near-surface shear layer, which allows the negative radial shear to effectively act on the radial field to produce a toroidal field. We observe a clear equatorward migration of the toroidal field at low latitudes as a consequence of the dynamo wave even when there is no meridional flow in the deep convection zone. Both the dynamo wave and the flux transport type solutions are thus able to reproduce some of the observed features of the solar cycle including the 11-year periodicity. The main difference between the two types of solutions is the strength of the Babcock-Leighton source required to produce the dynamo action. A second consequence of the magnetic pumping is that it suppresses the diffusion of fields through the surface, which helps to allow an 11-year cycle at (moderately) larger values of magnetic diffusivity than have previously been used.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazra, Gopal; Karak, Bidya Binay; Choudhuri, Arnab Rai, E-mail: ghazra@physics.iisc.ernet.in

    The solar activity cycle is successfully modeled by the flux transport dynamo, in which the meridional circulation of the Sun plays an important role. Most of the kinematic dynamo simulations assume a one-cell structure of the meridional circulation within the convection zone, with the equatorward return flow at its bottom. In view of the recent claims that the return flow occurs at a much shallower depth, we explore whether a meridional circulation with such a shallow return flow can still retain the attractive features of the flux transport dynamo (such as a proper butterfly diagram, the proper phase relation betweenmore » the toroidal and poloidal fields). We consider additional cells of the meridional circulation below the shallow return flow—both the case of multiple cells radially stacked above one another and the case of more complicated cell patterns. As long as there is an equatorward flow in low latitudes at the bottom of the convection zone, we find that the solar behavior is approximately reproduced. However, if there is either no flow or a poleward flow at the bottom of the convection zone, then we cannot reproduce solar behavior. On making the turbulent diffusivity low, we still find periodic behavior, although the period of the cycle becomes unrealistically large. In addition, with a low diffusivity, we do not get the observed correlation between the polar field at the sunspot minimum and the strength of the next cycle, which is reproduced when diffusivity is high. On introducing radially downward pumping, we get a more reasonable period and more solar-like behavior even with low diffusivity.« less

  7. Turbulent edge transport in the Princeton Beta Experiment-Modified high confinement mode

    NASA Astrophysics Data System (ADS)

    Tynan, G. R.; Schmitz, L.; Blush, L.; Boedo, J. A.; Conn, R. W.; Doerner, R.; Lehmer, R.; Moyer, R.; Kugel, H.; Bell, R.; Kaye, S.; Okabayashi, M.; Sesnic, S.; Sun, Y.

    1994-10-01

    The first probe measurements of edge turbulence and transport in a neutral beam induced high confinement mode (H-mode) are reported. A strong negative radial electric field is directly observed in H-mode. A transient suppression of normalized ion saturation and floating potential fluctuation levels occurs at the low confinement mode to high confinement mode (L-H) transition, followed by a recovery to near low mode (L-mode) levels. The average poloidal wave number and the poloidal wave-number spectral width are decreased, and the correlation between fluctuating density and potential is reduced. A large-amplitude coherent oscillation, localized to the strong radial electric field region, is observed in H-mode but does not cause transport. In H-mode the effective turbulent diffusion coefficient is reduced by an order of magnitude inside the last closed flux surface and in the scrape-off layer. The results are compared with a heuristic model of turbulence suppression by velocity-shear stabilization.

  8. Interactions Between Energetic Electrons and Realistic Whistler Mode Waves in the Jovian Magnetosphere

    NASA Astrophysics Data System (ADS)

    de Soria-Santacruz Pich, M.; Drozdov, A.; Menietti, J. D.; Garrett, H. B.; Kellerman, A. C.; Shprits, Y. Y.

    2016-12-01

    The radiation belts of Jupiter are the most intense of all the planets in the solar system. Their source is not well understood but they are believed to be the result of inward radial transport beyond the orbit of Io. In the case of Earth, the radiation belts are the result of local acceleration and radial diffusion from whistler waves, and it has been suggested that this type of acceleration may also be significant in the magnetosphere of Jupiter. Multiple diffusion codes have been developed to study the dynamics of the Earth's magnetosphere and characterize the interaction between relativistic electrons and whistler waves; in the present paper we adapt one of these codes, the two-dimensional version of the Versatile Electron Radiation Belt (VERB) computer code, to the case of the Jovian magnetosphere. We use realistic parameters to determine the importance of whistler emissions in the acceleration and loss of electrons in the Jovian magnetosphere. More specifically, we use an extensive wave survey from the Galileo spacecraft and initial conditions derived from the Galileo Interim Radiation Electron Model version 2 (GIRE2) to estimate the pitch angle and energy diffusion of the electron population due to lower and upper band whistlers as a function of latitude and radial distance from the planet, and we calculate the decay rates that result from this interaction.

  9. Transport of ion beam in an annular magnetically expanding helicon double layer thruster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yunchao, E-mail: yunchao.zhang@anu.edu.au; Charles, Christine; Boswell, Rod

    2014-06-15

    An ion beam generated by an annular double layer has been measured in a helicon thruster, which sustains a magnetised low-pressure (5.0 × 10{sup −4} Torr) argon plasma at a constant radio-frequency (13.56 MHz) power of 300 W. After the ion beam exits the annular structure, it merges into a solid centrally peaked structure in the diffusion chamber. As the annular ion beam moves towards the inner region in the diffusion chamber, a reversed-cone plasma wake (with a half opening angle of about 30°) is formed. This process is verified by measuring both the radial and axial distributions of the beam potential and beammore » current. The beam potential changes from a two-peak radial profile (maximum value ∼ 30 V, minimum value ∼ 22.5 V) to a flat (∼28 V) along the axial direction; similarly, the beam current changes from a two-peak to one-peak radial profile and the maximum value decreases by half. The inward cross-magnetic-field motion of the beam ions is caused by a divergent electric field in the source. Cross-field diffusion of electrons is also observed in the inner plume and is determined as being of non-ambipolar origin.« less

  10. Simulations of phase space distributions of storm time proton ring current

    NASA Technical Reports Server (NTRS)

    Chen, Margaret W.; Lyons, Larry R.; Schulz, Michael

    1994-01-01

    We use results of guiding-center simulations of ion transport to map phase space densities of the stormtime proton ring current. We model a storm as a sequence of substorm-associated enhancements in the convection electric field. Our pre-storm phase space distribution is an analytical solution to a steady-state transport model in which quiet-time radial diffusion balances charge exchange. This pre-storm phase space spectra at L approximately 2 to 4 reproduce many of the features found in observed quiet-time spectra. Using results from simulations of ion transport during model storms having main phases of 3, 6, and 12 hr, we map phase space distributions from the pre-storm distribution in accordance with Liouville's theorem. We find stormtime enhancements in the phase space densities at energies E approximately 30-160 keV for L approximately 2.5 to 4. These enhancements agree well with the observed stormtime ring current. For storms with shorter main phases (approximately 3 hr), the enhancements are caused mainly by the trapping of ions injected from open night side trajectories, and diffusive transport of higher-energy (greater than or approximately 160 keV) ions contributes little to the stormtime ring current. However, the stormtime ring current is augmented also by the diffusive transport of higher-energy ions (E greater than or approximately 160 keV) durinng stroms having longer main phases (greater than or approximately 6 hr). In order to account for the increase in Dst associated with the formation of the stormtime ring current, we estimate the enhancement in particle-energy content that results from stormtime ion transport in the equatorial magnetosphere. We find that transport alone cannot account for the entire increase in absolute value of Dst typical of a major storm. However, we can account for the entire increase in absolute value of Dst by realistically increasing the stormtime outer boundary value of the phase space density relative to the quiet-time value. We compute the magnetic field produced by the ring current itself and find that radial profiles of the magnetic field depression resemble those obtained from observational data.

  11. Diffusive, Supersonic X-ray Transport in Foam Cylinders

    NASA Astrophysics Data System (ADS)

    Back, Christina A.

    1999-11-01

    Diffusive supersonic radiation transport, where the ratio of the diffusive radiation front velocity to the material sound speed >2 has been studied in a series of laboratory experiments on low density foams. This work is of interest for radiation transport in basic science and astrophysics. The Marshak radiation wave transport is studied for both low and high Z foam materials and for different length foams in a novel hohlraum geometry that allows direct comparisons with 2-dimensional analytic models and code simulations. The radiation wave is created by a ~ 80 eV near blackbody 12-ns long drive or a ~ 200 eV 1.2-2.4 ns long drive generated by laser-heated Au hohlraums. The targets are SiO2 and Ta2O5 aerogel foams of varying lengths which span 10 to 50 mg/cc densities. Clean signatures of radiation breakout were observed by radially resolved face-on transmission measurements of the radiation flux at a photon energy of 250 eV or 550 eV. The high quality data provides new detailed information on the importance of both the fill and wall material opacities and heat capacities in determining the radiation front speed and curvature. note number.

  12. DREAM3D simulations of inner-belt dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cunningham, Gregory Scott

    2015-05-26

    A 1973 paper by Lyons and Thorne explains the two-belt structure for electrons in the inner magnetosphere as a balance between inward radial diffusion and loss to the atmosphere, where the loss to the atmosphere is enabled by pitch-angle scattering from Coulomb and wave-particle interactions. In the 1973 paper, equilibrium solutions to a decoupled set of 1D radial diffusion equations, one for each value of the first invariant of motion, μ, were computed to produce the equilibrium two-belt structure. Each 1D radial diffusion equation incorporated an L-and μ-dependent `lifetime' due to the Coulomb and wave-particle interactions. This decoupling of themore » problem is appropriate under the assumption that radial diffusion is slow in comparison to pitch-angle scattering. However, for some values of μ and L the lifetime associated with pitch-angle scattering is comparable to the timescale associated with radial diffusion, suggesting that the true equilibrium solutions might reflect `coupled modes' involving pitch-angle scattering and radial diffusion and thus requiring a 3D diffusion model. In the work we show here, we have computed the equilibrium solutions using our 3D diffusion model, DREAM3D, that allows for such coupling. We find that the 3D equilibrium solutions are quite similar to the solutions shown in the 1973 paper when we use the same physical models for radial diffusion and pitch-angle scattering from hiss. However, we show that the equilibrium solutions are quite sensitive to various aspects of the physics model employed in the 1973 paper that can be improved, suggesting that additional work needs to be done to understand the two-belt structure.« less

  13. Neoclassical Diffusion of Radiation-Belt Electrons Across Very Low L -shells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cunningham, Gregory S.; Loridan, Vivien; Ripoll, Jean-Francois

    In the presence of drift-shell splitting intrinsic to the IGRF magnetic field model, pitch-angle scattering from Coulomb collisions experienced by radiation-belt electrons in the upper atmosphere and ionosphere produces extra radial diffusion, a form of neoclassical diffusion. The strength of the neoclassical radial diffusion at L < 1.2 exceeds that expected there from radial-diffusion mechanisms traditionally considered, and decreases with increasing L-shell. In this study we construct a numerical model for this coupled (radial and pitch-angle) collisional diffusion process and apply it to simulate raw count-rate data observed aboard the Gemini spacecraft for several years after the 1962 Starfish nuclearmore » detonation. The data show apparent lifetimes 10-100 times as long as would have been expected from collisional pitch-angle diffusion and Coulomb drag alone. Our model reproduces apparent lifetimes for >0.5-MeV electrons in the region 1.14 < L < 1.26 to within a factor of two (comparable to the uncertainty quoted for the observations). We conclude that neoclassical radial diffusion (resulting from drift-shell splitting intrinsic to IGRF's azimuthal asymmetries) mitigates the decay expected from collisional pitch-angle diffusion and inelastic energy loss alone and thus contributes importantly to the long apparent lifetimes observed at these low L-shells.« less

  14. Neoclassical Diffusion of Radiation-Belt Electrons Across Very Low L -shells

    DOE PAGES

    Cunningham, Gregory S.; Loridan, Vivien; Ripoll, Jean-Francois; ...

    2018-03-30

    In the presence of drift-shell splitting intrinsic to the IGRF magnetic field model, pitch-angle scattering from Coulomb collisions experienced by radiation-belt electrons in the upper atmosphere and ionosphere produces extra radial diffusion, a form of neoclassical diffusion. The strength of the neoclassical radial diffusion at L < 1.2 exceeds that expected there from radial-diffusion mechanisms traditionally considered, and decreases with increasing L-shell. In this study we construct a numerical model for this coupled (radial and pitch-angle) collisional diffusion process and apply it to simulate raw count-rate data observed aboard the Gemini spacecraft for several years after the 1962 Starfish nuclearmore » detonation. The data show apparent lifetimes 10-100 times as long as would have been expected from collisional pitch-angle diffusion and Coulomb drag alone. Our model reproduces apparent lifetimes for >0.5-MeV electrons in the region 1.14 < L < 1.26 to within a factor of two (comparable to the uncertainty quoted for the observations). We conclude that neoclassical radial diffusion (resulting from drift-shell splitting intrinsic to IGRF's azimuthal asymmetries) mitigates the decay expected from collisional pitch-angle diffusion and inelastic energy loss alone and thus contributes importantly to the long apparent lifetimes observed at these low L-shells.« less

  15. Neoclassical Diffusion of Radiation-Belt Electrons Across Very Low L-Shells

    NASA Astrophysics Data System (ADS)

    Cunningham, Gregory S.; Loridan, Vivien; Ripoll, Jean-François; Schulz, Michael

    2018-04-01

    In the presence of drift-shell splitting intrinsic to the International Geomagnetic Reference Field magnetic field model, pitch angle scattering from Coulomb collisions experienced by radiation-belt electrons in the upper atmosphere and ionosphere produces extra radial diffusion, a form of neoclassical diffusion. The strength of the neoclassical radial diffusion at L < 1.2 exceeds that expected there from radial-diffusion mechanisms traditionally considered and decreases with increasing L-shell. In this work we construct a numerical model for this coupled (radial and pitch angle) collisional diffusion process and apply it to simulate raw count-rate data observed aboard the Gemini spacecraft for several years after the 1962 Starfish nuclear detonation. The data show apparent lifetimes 10-100 times as long as would have been expected from collisional pitch angle diffusion and Coulomb drag alone. Our model reproduces apparent lifetimes for >0.5-MeV electrons in the region 1.14 < L < 1.26 to within a factor of 2 (comparable to the uncertainty quoted for the observations). We conclude that neoclassical radial diffusion (resulting from drift-shell splitting intrinsic to International Geomagnetic Reference Field's azimuthal asymmetries) mitigates the decay expected from collisional pitch angle diffusion and inelastic energy loss alone and thus contributes importantly to the long apparent lifetimes observed at these low L-shells.

  16. Stimulated echo diffusion tensor imaging (STEAM-DTI) with varying diffusion times as a probe of breast tissue.

    PubMed

    Teruel, Jose R; Cho, Gene Y; Moccaldi Rt, Melanie; Goa, Pål E; Bathen, Tone F; Feiweier, Thorsten; Kim, Sungheon G; Moy, Linda; Sigmund, Eric E

    2017-01-01

    To explore the application of diffusion tensor imaging (DTI) for breast tissue and breast pathologies using a stimulated-echo acquisition mode (STEAM) with variable diffusion times. In this Health Insurance Portability and Accountability Act-compliant study, approved by the local institutional review board, eight patients and six healthy volunteers underwent an MRI examination at 3 Tesla including STEAM-DTI with several diffusion times ranging from 68.5 to 902.5 ms. A DTI model was fitted to the data for each diffusion time, and parametric maps of mean diffusivity, fractional anisotropy, axial diffusivity, and radial diffusivity were computed for healthy fibroglandular tissue (FGT) and lesions. The median value of radial diffusivity for FGT was fitted to a linear decay to obtain an estimation of the surface-to-volume ratio, from which the radial diameter was calculated. For healthy FGT, radial diffusivity presented a linear decay with the square root of the diffusion time resulting in a range of estimated radial diameters from 202 to 496 µm, while axial diffusivity presented a nearly time-independent diffusion. Residual fat signal was reduced at longer diffusion times due to the shorter T1 of fat. Residual fat signal to the overall signal in the healthy volunteers' FGT was found to range from 2.39% to 2.55% (shortest mixing time), and from 0.40% to 0.51% (longest mixing time) for the b500 images. The use of variable diffusion times may provide an in vivo noninvasive tool to probe diffusion lengths in breast tissue and breast pathology, and might aid by improving fat suppression at longer diffusion times. 2 J. Magn. Reson. Imaging 2017;45:84-93. © 2016 International Society for Magnetic Resonance in Medicine.

  17. Measurements and modeling of the impact of weak magnetic fields on the plasma properties of a planar slot antenna driven plasma source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshikawa, Jun, E-mail: jun.yoshikawa@tel.com; Susa, Yoshio; Ventzek, Peter L. G.

    The radial line slot antenna plasma source is a type of surface wave plasma source driven by a planar slot antenna. Microwave power is transmitted through a slot antenna structure and dielectric window to a plasma characterized by a generation zone adjacent to the window and a diffusion zone that contacts a substrate. The diffusion zone is characterized by a very low electron temperature. This renders the source useful for soft etch applications and thin film deposition processes requiring low ion energy. Another property of the diffusion zone is that the plasma density tends to decrease from the axis tomore » the walls under the action of ambipolar diffusion at distances far from where the plasma is generated. A previous simulation study [Yoshikawa and. Ventzek, J. Vac. Sci. Technol. A 31, 031306 (2013)] predicted that the anisotropy in transport parameters due to weak static magnetic fields less than 50 G could be leveraged to manipulate the plasma profile in the radial direction. These simulations motivated experimental tests in which weak magnetic fields were applied to a radial line slot antenna source. Plasma absorption probe measurements of electron density and etch rate showed that the magnetic fields remote from the wafer were able to manipulate both parameters. A summary of these results is presented in this paper. Argon plasma simulation trends are compared with experimental plasma and etch rate measurements. A test of the impact of magnetic fields on charge up damage showed no perceptible negative effect.« less

  18. Hall Effect–Mediated Magnetic Flux Transport in Protoplanetary Disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Xue-Ning; Stone, James M.

    2017-02-10

    The global evolution of protoplanetary disks (PPDs) has recently been shown to be largely controlled by the amount of poloidal magnetic flux threading the disk. The amount of magnetic flux must also coevolve with the disk, as a result of magnetic flux transport, a process that is poorly understood. In weakly ionized gas as in PPDs, magnetic flux is largely frozen in the electron fluid, except when resistivity is large. When the disk is largely laminar, we show that the relative drift between the electrons and ions (the Hall drift), and the ions and neutral fluids (ambipolar drift) can playmore » a dominant role on the transport of magnetic flux. Using two-dimensional simulations that incorporate the Hall effect and ambipolar diffusion (AD) with prescribed diffusivities, we show that when large-scale poloidal field is aligned with disk rotation, the Hall effect rapidly drags magnetic flux inward at the midplane region, while it slowly pushes flux outward above/below the midplane. This leads to a highly radially elongated field configuration as a global manifestation of the Hall-shear instability. This field configuration further promotes rapid outward flux transport by AD at the midplane, leading to instability saturation. In quasi-steady state, magnetic flux is transported outward at approximately the same rate at all heights, and the rate is comparable to the Hall-free case. For anti-aligned field polarity, the Hall effect consistently transports magnetic flux outward, leading to a largely vertical field configuration in the midplane region. The field lines in the upper layer first bend radially inward and then outward to launch a disk wind. Overall, the net rate of outward flux transport is about twice as fast as that of the aligned case. In addition, the rate of flux transport increases with increasing disk magnetization. The absolute rate of transport is sensitive to disk microphysics, which remains to be explored in future studies.« less

  19. Coupled low-energy - ring current plasma diffusion in the Jovian magnetosphere

    NASA Technical Reports Server (NTRS)

    Summers, D.; Siscoe, G. L.

    1985-01-01

    The outwardly diffusing Iogenic plasma and the simultaneously inwardly diffusing ring current plasma in the Jovian magnetosphere are described using a coupled diffusion model which incorporates the effects of the pressure gradient of the ring current into the cross-L diffusion coefficient. The coupled diffusion coefficient is derived by calculating the total energy available to drive the diffusion process. The condition is imposed that the diffusion coefficient takes on a local minimum value at some point in the region L = 7-8, at which point the gradient of the Io plasma density is specified as ramp value given by Siscoe et al. (1981). The hypothesis that the pressure gradient of the ring current causes the diminution of radial plasma transport is tested, and solution profiles for the Iogenic and ring current plasma densities are obtained which imply that the Io plasma ramp is caused by a high-density, low-energy component of the ring current hitherto unobserved directly.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karpetis, Adionos N.; Chen, J. Y.; Barlow, Robert S.

    Previously unpublished results from multiscalar point measurements in the series of piloted CH{sub 4}/air jet flames [R.S. Barlow, J.H. Frank, Proc. Combust. Inst. 27 (1998) 1087-1095] are presented and analyzed. The emphasis is on features of the data that reveal the relative importance of molecular diffusion and turbulent transport in these flames. The complete series A-F is considered. This includes laminar, transitional, and turbulent flames spanning a range in Reynolds number from 1100 to 44,800. Results on conditional means of species mass fractions, the differential diffusion parameter, and the state of the water-gas shift reaction all show that there ismore » an evolution in these flames from a scalar structure dominated by molecular diffusion to one dominated by turbulent transport. Long records of 6000 single-point samples at each of several selected locations in flame D are used to quantify the cross-stream (radial) dependence of conditional statistics of measured scalars. The cross-stream dependence of the conditional scalar dissipation is determined from 6000-shot, line-imaging measurements at selected locations. The cross-stream dependence of reactive scalars, which is most significant in the near field of the jet flame, is attributed to radial differences in both convective and local time scales of the flow. Results illustrate some potential limitations of common modeling assumptions when applied to laboratory-scale flames and, thus, provide a more complete context for interpretation of comparisons between experiments and model calculations.« less

  1. MODELING AND ANALYSIS OF FISSION PRODUCT TRANSPORT IN THE AGR-3/4 EXPERIMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humrickhouse, Paul W.; Collin, Blaise P.; Hawkes, Grant L.

    In this work we describe the ongoing modeling and analysis efforts in support of the AGR-3/4 experiment. AGR-3/4 is intended to provide data to assess fission product retention and transport (e.g., diffusion coefficients) in fuel matrix and graphite materials. We describe a set of pre-test predictions that incorporate the results of detailed thermal and fission product release models into a coupled 1D radial diffusion model of the experiment, using diffusion coefficients reported in the literature for Ag, Cs, and Sr. We make some comparisons of the predicted Cs profiles to preliminary measured data for Cs and find these to bemore » reasonable, in most cases within an order of magnitude. Our ultimate objective is to refine the diffusion coefficients using AGR-3/4 data, so we identify an analytical method for doing so and demonstrate its efficacy via a series of numerical experiments using the model predictions. Finally, we discuss development of a post-irradiation examination plan informed by the modeling effort and simulate some of the heating tests that are tentatively planned.« less

  2. Combined convective and diffusive simulations: VERB-4D comparison with 17 March 2013 Van Allen Probes observations: VERB-4D

    DOE PAGES

    Shprits, Yuri Y.; Kellerman, Adam C.; Drozdov, Alexander Y.; ...

    2015-11-19

    Our study focused on understanding the coupling between different electron populations in the inner magnetosphere and the various physical processes that determine evolution of electron fluxes at different energies. Observations during the 17 March 2013 storm and simulations with a newly developed Versatile Electron Radiation Belt-4D (VERB-4D) are presented. This analysis of the drift trajectories of the energetic and relativistic electrons shows that electron trajectories at transitional energies with a first invariant on the scale of ~100 MeV/G may resemble ring current or relativistic electron trajectories depending on the level of geomagnetic activity. Simulations with the VERB-4D code including convection,more » radial diffusion, and energy diffusion are presented. Sensitivity simulations including various physical processes show how different acceleration mechanisms contribute to the energization of energetic electrons at transitional energies. In particular, the range of energies where inward transport is strongly influenced by both convection and radial diffusion are studied. Our results of the 4-D simulations are compared to Van Allen Probes observations at a range of energies including source, seed, and core populations of the energetic and relativistic electrons in the inner magnetosphere.« less

  3. Experiments with a Supersonic Multi-Channel Radial Diffuser.

    DTIC Science & Technology

    1980-09-01

    unlimited. 17 . DISTRIBUTION STATEMENT (o the *bsta~c entered nRItok 20, it dffttt Iton, Report) IS. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue o...Improvements 17 VI SIGNIFICANT TEST RESULTS 20 1. General Considerations 20 2. Typical Radial Diffuser Performance 20 3. Flow Stability Experiments 22 VIII...Adjustments Indicated 39 16 Comparison of the Single Channel Performances for Two Extreme Channel Geometries 40 17 Typical Radial Diffuser Performance

  4. Radial q-space sampling for DSI.

    PubMed

    Baete, Steven H; Yutzy, Stephen; Boada, Fernando E

    2016-09-01

    Diffusion spectrum imaging (DSI) has been shown to be an effective tool for noninvasively depicting the anatomical details of brain microstructure. Existing implementations of DSI sample the diffusion encoding space using a rectangular grid. Here we present a different implementation of DSI whereby a radially symmetric q-space sampling scheme for DSI is used to improve the angular resolution and accuracy of the reconstructed orientation distribution functions. Q-space is sampled by acquiring several q-space samples along a number of radial lines. Each of these radial lines in q-space is analytically connected to a value of the orientation distribution functions at the same angular location by the Fourier slice theorem. Computer simulations and in vivo brain results demonstrate that radial diffusion spectrum imaging correctly estimates the orientation distribution functions when moderately high b-values (4000 s/mm2) and number of q-space samples (236) are used. The nominal angular resolution of radial diffusion spectrum imaging depends on the number of radial lines used in the sampling scheme, and only weakly on the maximum b-value. In addition, the radial analytical reconstruction reduces truncation artifacts which affect Cartesian reconstructions. Hence, a radial acquisition of q-space can be favorable for DSI. Magn Reson Med 76:769-780, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  5. Stormtime ring current and radiation belt ion transport: Simulations and interpretations

    NASA Technical Reports Server (NTRS)

    Lyons, Larry R.; Gorney, David J.; Chen, Margaret W.; Schulz, Michael

    1995-01-01

    We use a dynamical guiding-center model to investigate the stormtime transport of ring current and radiation-belt ions. We trace the motion of representative ions' guiding centers in response to model substorm-associated impulses in the convection electric field for a range of ion energies. Our simple magnetospheric model allows us to compare our numerical results quantitatively with analytical descriptions of particle transport, (e.g., with the quasilinear theory of radial diffusion). We find that 10-145-keV ions gain access to L approximately 3, where they can form the stormtime ring current, mainly from outside the (trapping) region in which particles execute closed drift paths. Conversely, the transport of higher-energy ions (approximately greater than 145 keV at L approximately 3) turns out to resemble radial diffusion. The quasilinear diffusion coefficient calculated for our model storm does not vary smoothly with particle energy, since our impulses occur at specific (although randomly determined) times. Despite the spectral irregularity, quasilinear theory provides a surprisingly accurate description of the transport process for approximately greater than 145-keV ions, even for the case of an individual storm. For 4 different realizations of our model storm, the geometric mean discrepancies between diffusion coefficients D(sup sim, sub LL) obtained from the simulations and the quasilinear diffusion coefficient D(sup ql, sub LL) amount to factors of 2.3, 2.3, 1.5, and 3.0, respectively. We have found that these discrepancies between D(sup sim, sub LL) and D(sup ql, sub LL) can be reduced slightly by invoking drift-resonance broadening to smooth out the sharp minima and maxima in D(sup ql, sub LL). The mean of the remaining discrepancies between D(sup sim, sub LL) and D(sup ql, sub LL) for the 4 different storms then amount to factors of 1.9, 2.1, 1.5, and 2.7, respectively. We find even better agreement when we reduce the impulse amplitudes systematically in a given model storm (e.g., reduction of all the impulse amplitudes by half reduces the discrepancy factor by at least its square root) and also when we average our results over an ensemble of 20 model storms (agreement is within a factor of 1.2 without impulse-amplitude reduction). We use our simulation results also to map phase-space densities f in accordance with Liouville's theorem. We find that the stormtime transport of approximately greater than 145-keV ions produces little change in f-bar the drift-averaged phase-space density on any drift shell of interest. However, the stormtime transport produces a major enhancement from the pre-storm phase-space density at energies approximately 30-145 keV, which are representative of the stormtime ring current.

  6. BABCOCK–LEIGHTON SOLAR DYNAMO: THE ROLE OF DOWNWARD PUMPING AND THE EQUATORWARD PROPAGATION OF ACTIVITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karak, Bidya Binay; Cameron, Robert, E-mail: bkarak@ucar.edu

    The key elements of the Babcock–Leighton dynamos are the generation of poloidal field through decay and the dispersal of tilted bipolar active regions and the generation of toroidal field through the observed differential rotation. These models are traditionally known as flux transport dynamo models as the equatorward propagations of the butterfly wings in these models are produced due to an equatorward flow at the bottom of the convection zone. Here we investigate the role of downward magnetic pumping near the surface using a kinematic Babcock–Leighton model. We find that the pumping causes the poloidal field to become predominately radial inmore » the near-surface shear layer, which allows the negative radial shear to effectively act on the radial field to produce a toroidal field. We observe a clear equatorward migration of the toroidal field at low latitudes as a consequence of the dynamo wave even when there is no meridional flow in the deep convection zone. Both the dynamo wave and the flux transport type solutions are thus able to reproduce some of the observed features of the solar cycle including the 11-year periodicity. The main difference between the two types of solutions is the strength of the Babcock–Leighton source required to produce the dynamo action. A second consequence of the magnetic pumping is that it suppresses the diffusion of fields through the surface, which helps to allow an 11-year cycle at (moderately) larger values of magnetic diffusivity than have previously been used.« less

  7. The measurement of solute diffusion coefficients in dilute liquid alloys: the influence of unit gravity and g-jitter on buoyancy convection.

    PubMed

    Smith, R W; Yang, B J; Huang, W D

    2004-11-01

    Liquid diffusion experiments conducted on the MIR space station using the Canadian Space Agency QUELD II processing facility and the microgravity isolation mount (MIM) showed that g-jitter significantly increased the measured solute diffusion coefficients. In some experiments, milli-g forced vibration was superimposed on the sample when isolated from the ambient g-jitter; this resulted in markedly increased solute transport. To further explore the effects arising in these long capillary diffusion couples from the absence of unit-gravity and the presence of the forced g-jitter, the effects of a 1 milli-g forcing vibration on the mass transport in a 1.5 mm diameter long capillary diffusion couple have been simulated. In addition, to increase understanding of the role of unit gravity in determining the extent to which gravity can influence measured diffusion coefficient values, comparative experiments involving gold, silver, and antimony diffusing in liquid lead have been carried out using a similar QUELD II facility to that employed in the QUELD II/MIM/MIR campaign but under terrestrial conditions. It was found that buoyancy-driven convection may still persist in the liquid even when conditions are arranged for a continuously decreasing density gradient up the axis of a vertical long capillary diffusion couple due to the presence of small radial temperature gradients.

  8. Quantitative comparison between radial and cylindrically diffusing fibers for photothermal treatment of varicose vein disease (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Truong Van, Gia; Kang, Hyun Wook

    2017-02-01

    For last two decades, endovenous laser therapy (EVLT) is one of the most widely accepted surgical options for treating incompetent great and small saphenous veins. However, due to excessive heating during EVLT, the major complications include pain and burning that often increase the risk of dermatitis disease. The aim of the current study was to quantitatively compare commercially-available radial fibers with newly-developed diffusing applicators for 1470 nm-EVLA in terms of temperature elevation and vein deformation. Rabbit veins were used as an ex vivo model for EVLA. A 5-W 1470 nm laser system in conjunction with the radial and diffusing fibers was employed to thermally coagulate the venous tissue. A goniometric measurement validated uniform and isotropic distribution of laser light in polar and longitudinal directions (i.e., normalized intensity = 0.84±0.08). The diffusing applicator induced a 20 % lower maximum temperature than the radial fiber did (maximum temperature = 79.2 °C for radial vs. 63.3 °C for diffusing). Due to higher irradiance, the radial fiber was associated with a transient temperature change of 5.9 °C/s, which was 1.5-fold faster than the diffusing applicator (i.e., 2.4 °C/s). However, the degree of cross-sectional area reduction in the veins was almost comparable for both the fibers (i.e., 53% for radial vs. 48% for diffusing). Due to longer irradiation length, the diffusing applicator demonstrated wider treatment coverage and less fiber speed-dependent. On account of easy pullback technique and uniform thermal effect, the proposed cylindrically diffusing applicator can be a feasible optical device to effectively treat varicose veins. Further in vivo studies will be performed to identify the complete removal of the vein disease and healing response of the venous tissue.

  9. Control of radial propagation and polarity in a plasma jet in surrounding Ar

    NASA Astrophysics Data System (ADS)

    Gong, W.; Yue, Y.; Ma, F.; Yu, F.; Wan, J.; Nie, L.; Bazaka, K.; Xian, Y.; Lu, X.; Ostrikov, K.

    2018-01-01

    In recent years, the use of shielding gas to prevent the diffusion of the ambient air, particularly oxygen and nitrogen species, into the effluent of the atmospheric pressure plasma jet, and thus control the nature of chemical species used in the plasma treatment has increased. In this paper, the radial propagation of a plasma jet in ambient Ar is examined to find the key determinants of the polarity of plasma jets. The dynamics of the discharge reveal that the radial diffusion discharge is a special phenomenon observed only at the falling edge of the pulses. The radial transport of electrons, which is driven by the radial component of the applied electric field at the falling edge of the pulse, is shown to play an important role in increasing the seed electron density in the surrounding Ar. This result suggests a method to provide seed electrons at atmospheric pressure with a negative discharge. The polarity of the plasma jet is found to be determined by the pulse width rather than the polarity of the applied voltage, as it dictates the relative difference in the intensity of the two discharges in a single pulse, where the stronger discharge in a pulse dominates the behavior of the plasma jet. Accordingly, a method to control the polarity of a plasma jet through varying the pulse width is developed. Since plasma jets of different polarities differ remarkably in terms of their characteristics, the method to control the polarity reported in this paper will be of use for such applications as plasma-enhanced processing of materials and plasma biomedicine.

  10. Effects of Anomalous Cosmic Rays on the Structure of the Outer Heliosphere

    NASA Astrophysics Data System (ADS)

    Guo, Xiaocheng; Florinski, Vladimir; Wang, Chi

    2018-06-01

    Based on Voyager 1 observations, some anomalous cosmic rays (ACRs) may have crossed the heliopause and escaped into the interstellar medium, providing a mechanism of energy transfer between the inner and outer heliosheaths that is not included in conventional magnetohydrodynamics (MHD) models. In this paper, we study the effect of energetic particles’ escape through the heliopause on the size and shape of the heliosphere using a simple model that includes diffusive transport of cosmic rays. We show that the presence of ACRs significantly changes the heliosphere structure, including the location of the heliopause and termination shock. It was found that the heliopause would contract for certain values of the ACR diffusion coefficients when the diffusive particles’ pressure is comparable to the pressure of the plasma background. The difference in Voyager 1 and 2 observations of energetic particles during their respective termination shock crossings is interpreted here as due to the differences in diffusion environments during the different phases of the solar cycle. The shorter period of enhanced ACR intensities upstream of the shock measured by Voyager 2 may have been caused by weaker radial diffusive transport compared with the time of Voyager 1 crossing. We conclude that ACR diffusive effects could be prominent and should be included in MHD models of the heliosphere.

  11. Evolution of Edge Pedestal Profiles Between ELMs

    NASA Astrophysics Data System (ADS)

    Floyd, J. P.; Stacey, W. M.; Groebner, R. J.

    2012-10-01

    The measured edge profile evolution in DIII-D discharges is analyzed in terms of the implied thermal diffusivities, ion diffusion coefficients and pinch velocities, using the momentum-balance methodology of Ref. [1], extended to take into account ion orbit loss and X-point loss. The evolution of the density, temperature, rotation and radial electric field profiles in the edge pedestal between edge localized modes (ELMs) provides information of these diffusive and non-diffusive transport processes in the pedestal of H-mode plasmas. This methodology is incorporated in the GTEDGE code developed for DIII-D data interpretation. Using a smaller integration time for the charge exchange recombination measurements than in Ref. [1] allows a more detailed examination of the time evolution of the ion temperature and rotation profiles. 6pt [1] W.M. Stacey and R.J. Groebner, Nucl. Fusion 51, 063024 (2011).

  12. Nebula Models of Non-Equilibrium Mineralogy: Wark-Lovering Rims

    NASA Technical Reports Server (NTRS)

    Cuzzi, J. N.; Petaev, M.; Krot, A. N.

    2005-01-01

    Introduction: The meteorite record contains several examples of minerals that would not persist if allowed to come to equilibrium with a cooling gas of solar composition. This includes all minerals in CAIs and AOAs. Their survival is generally ascribed to physical removal of the object from the gas (isolation into a large parent object, or ejection by a stellar wind), but could also result from outward radial diffusion into cooler regions, which we discuss here. Accretion of CAIs into planetesimals has also been relied on to preserve them against loss into the sun. However, this suggestion faces several objections. Simple outward diffusion in turbulence has recently been modeled in some detail, and can preserve CAIs against loss into the sun [2]. Naturally, outward radial diffusion in turbulence is slower than immediate ejection by a stellar wind, which occurs on an orbital timescale. Here we ask whether these different transport mechanisms can be distinguished by nonequilibrium mineralogy, which provides a sort of clock. Our application here is to one aspect of CAI mineralogy - the Wark-Lovering rims (WLR); even more specifically, to alteration of one layer in the WLR sequence from melilite (Mel) to anorthite (An).

  13. Reactive Radial Diffusion Model for the Aging/Sequestration Process

    NASA Astrophysics Data System (ADS)

    Ginn, T. R.; Basagaoglu, H.; McCoy, B. J.; Scow, K. M.

    2001-12-01

    A radial diffusion model has been formulated to simulate age-dependent bioavailability of chemical compounds to micro-organisms residing outside (and/or inside) the porous soil particles. Experimental findings in the literature indicate that the sequestration and reduction in bioavailability of contaminants are controlled presumably by the diffusion-limited sorption kinetics and the time-variant desorption process. Here we combine radial-diffusion mass transfer modeling with the exposure-time concept to generate mass-balance equations for the intra- and extra-particle concentrations. The model accomodates reversible sorption kinetics involving sorption time-dependence of the rate coefficients, distinct intra- and extra-particle biodegradation rates; and a dynamic mass interaction between the intra- and extra-particle concentrations arising from the radial diffusion concept. The model explicitly treats multiple particle classes distributed in size and chemical properties in a bulk aquifer or soil volume, which allows the simulation of the sequestration and bioavailability of contaminants in different particle size classes that have distinct diffusion, reaction, and aging properties.

  14. Simultaneous Modeling of Gradual SEP Events at the Earth and the Mars

    NASA Astrophysics Data System (ADS)

    Hu, J.; Li, G.

    2017-12-01

    Solar Energetic Particles (SEP) event is the number one space hazard for spacecraft instruments and astronauts' safety. Recent studies have shown that both longitudinal and radial extent of SEP events can be very significant. In this work, we use the improved Particle Acceleration and Transport in the Heliosphere (iPATH) model to simulate gradual SEP events that have impacts upon both the Earth and the Mars. We follow the propagation of a 2D CME-driven shock. Particles are accelerated at the shock via the diffusive shock acceleration (DSA) mechanism. Transport of the escaped particles to the Earth and the Mars is then followed using a backward stochastic differential equation method. Perpendicular diffusion is considered in both the DSA and the transport process. Model results such as time intensity profile and energetic particle spectrum at the two locations are compared to understand the spatial extent of an SEP event. Observational data at the Earth and the Mars are also studied to validate the model.

  15. Efficiency of radial transport of ices in protoplanetary disks probed with infrared observations: the case of CO2

    NASA Astrophysics Data System (ADS)

    Bosman, Arthur D.; Tielens, Alexander G. G. M.; van Dishoeck, Ewine F.

    2018-04-01

    Context. Radial transport of icy solid material from the cold outer disk to the warm inner disk is thought to be important for planet formation. However, the efficiency at which this happens is currently unconstrained. Efficient radial transport of icy dust grains could significantly alter the composition of the gas in the inner disk, enhancing the gas-phase abundances of the major ice constituents such as H2O and CO2. Aim. Our aim is to model the gaseous CO2 abundance in the inner disk and use this to probe the efficiency of icy dust transport in a viscous disk. From the model predictions, infrared CO2 spectra are simulated and features that could be tracers of icy CO2, and thus dust, radial transport efficiency are investigated. Methods: We have developed a 1D viscous disk model that includes gas accretion and gas diffusion as well as a description for grain growth and grain transport. Sublimation and freeze-out of CO2 and H2O has been included as well as a parametrisation of the CO2 chemistry. The thermo-chemical code DALI was used to model the mid-infrared spectrum of CO2, as can be observed with JWST-MIRI. Results: CO2 ice sublimating at the iceline increases the gaseous CO2 abundance to levels equal to the CO2 ice abundance of 10-5, which is three orders of magnitude more than the gaseous CO2 abundances of 10-8 observed by Spitzer. Grain growth and radial drift increase the rate at which CO2 is transported over the iceline and thus the gaseous CO2 abundance, further exacerbating the problem. In the case without radial drift, a CO2 destruction rate of at least 10-11 s-1 or a destruction timescale of at most 1000 yr is needed to reconcile model prediction with observations. This rate is at least two orders of magnitude higher than the fastest destruction rate included in chemical databases. A range of potential physical mechanisms to explain the low observed CO2 abundances are discussed. Conclusions: We conclude that transport processes in disks can have profound effects on the abundances of species in the inner disk such as CO2. The discrepancy between our model and observations either suggests frequent shocks in the inner 10 AU that destroy CO2, or that the abundant midplane CO2 is hidden from our view by an optically thick column of low abundance CO2 due to strong UV and/or X-rays in the surface layers. Modelling and observations of other molecules, such as CH4 or NH3, can give further handles on the rate of mass transport.

  16. Hydrodynamics of steady state phloem transport with radial leakage of solute

    PubMed Central

    Cabrita, Paulo; Thorpe, Michael; Huber, Gregor

    2013-01-01

    Long-distance phloem transport occurs under a pressure gradient generated by the osmotic exchange of water associated with solute exchange in source and sink regions. But these exchanges also occur along the pathway, and yet their physiological role has almost been ignored in mathematical models of phloem transport. Here we present a steady state model for transport phloem which allows solute leakage, based on the Navier-Stokes and convection-diffusion equations which describe fluid motion rigorously. Sieve tube membrane permeability Ps for passive solute exchange (and correspondingly, membrane reflection coefficient) influenced model results strongly, and had to lie in the bottom range of the values reported for plant cells for the results to be realistic. This smaller permeability reflects the efficient specialization of sieve tube elements, minimizing any diffusive solute loss favored by the large concentration difference across the sieve tube membrane. We also found there can be a specific reflection coefficient for which pressure profiles and sap velocities can both be similar to those predicted by the Hagen-Poiseuille equation for a completely impermeable tube. PMID:24409189

  17. Radiation Belt Transport Driven by Solar Wind Dynamic Pressure Fluctuations

    NASA Astrophysics Data System (ADS)

    Kress, B. T.; Hudson, M. K.; Ukhorskiy, A. Y.; Mueller, H.

    2012-12-01

    The creation of the Earth's outer zone radiation belts is attributed to earthward transport and adiabatic acceleration of electrons by drift-resonant interactions with electromagnetic fluctuations in the magnetosphere. Three types of radial transport driven by solar wind dynamic pressure fluctuations that have been identified are: (1) radial diffusion [Falthammer, 1965], (2) significant changes in the phase space density radial profile due to a single or few ULF drift-resonant interactions [Ukhorskiy et al., 2006; Degeling et al., 2008], and (3) shock associated injections of radiation belt electrons occurring in less than a drift period [Li et al., 1993]. A progress report will be given on work to fully characterize different forms of radial transport and their effect on the Earth's radiation belts. The work is being carried out by computing test-particle trajectories in electric and magnetic fields from a simple analytic ULF field model and from global MHD simulations of the magnetosphere. Degeling, A. W., L. G. Ozeke, R. Rankin, I. R. Mann, and K. Kabin (2008), Drift resonant generation of peaked relativistic electron distributions by Pc 5 ULF waves, textit{J. Geophys. Res., 113}, A02208, doi:10.1029/2007JA012411. Fälthammar, C.-G. (1965), Effects of Time-Dependent Electric Fields on Geomagnetically Trapped Radiation, J. Geophys. Res., 70(11), 2503-2516, doi:10.1029/JZ070i011p02503. Li, X., I. Roth, M. Temerin, J. R. Wygant, M. K. Hudson, and J. B. Blake (1993), Simulation of the prompt energization and transport of radiation belt particles during the March 24, 1991 SSC, textit{Geophys. Res. Lett., 20}(22), 2423-2426, doi:10.1029/93GL02701. Ukhorskiy, A. Y., B. J. Anderson, K. Takahashi, and N. A. Tsyganenko (2006), Impact of ULF oscillations in solar wind dynamic pressure on the outer radiation belt electrons, textit{Geophys. Res. Lett., 33}(6), L06111, doi:10.1029/2005GL024380.

  18. Modeling radiation belt electron dynamics during GEM challenge intervals with the DREAM3D diffusion model

    NASA Astrophysics Data System (ADS)

    Tu, Weichao; Cunningham, G. S.; Chen, Y.; Henderson, M. G.; Camporeale, E.; Reeves, G. D.

    2013-10-01

    a response to the Geospace Environment Modeling (GEM) "Global Radiation Belt Modeling Challenge," a 3D diffusion model is used to simulate the radiation belt electron dynamics during two intervals of the Combined Release and Radiation Effects Satellite (CRRES) mission, 15 August to 15 October 1990 and 1 February to 31 July 1991. The 3D diffusion model, developed as part of the Dynamic Radiation Environment Assimilation Model (DREAM) project, includes radial, pitch angle, and momentum diffusion and mixed pitch angle-momentum diffusion, which are driven by dynamic wave databases from the statistical CRRES wave data, including plasmaspheric hiss, lower-band, and upper-band chorus. By comparing the DREAM3D model outputs to the CRRES electron phase space density (PSD) data, we find that, with a data-driven boundary condition at Lmax = 5.5, the electron enhancements can generally be explained by radial diffusion, though additional local heating from chorus waves is required. Because the PSD reductions are included in the boundary condition at Lmax = 5.5, our model captures the fast electron dropouts over a large L range, producing better model performance compared to previous published results. Plasmaspheric hiss produces electron losses inside the plasmasphere, but the model still sometimes overestimates the PSD there. Test simulations using reduced radial diffusion coefficients or increased pitch angle diffusion coefficients inside the plasmasphere suggest that better wave models and more realistic radial diffusion coefficients, both inside and outside the plasmasphere, are needed to improve the model performance. Statistically, the results show that, with the data-driven outer boundary condition, including radial diffusion and plasmaspheric hiss is sufficient to model the electrons during geomagnetically quiet times, but to best capture the radiation belt variations during active times, pitch angle and momentum diffusion from chorus waves are required.

  19. Axial and radial diffusivity in preterm infants who have diffuse white matter changes on magnetic resonance imaging at term-equivalent age.

    PubMed

    Counsell, Serena J; Shen, Yuji; Boardman, James P; Larkman, David J; Kapellou, Olga; Ward, Philip; Allsop, Joanna M; Cowan, Frances M; Hajnal, Joseph V; Edwards, A David; Rutherford, Mary A

    2006-02-01

    Diffuse excessive high signal intensity (DEHSI) is observed in the majority of preterm infants at term-equivalent age on conventional MRI, and diffusion-weighted imaging has shown that apparent diffusion coefficient values are elevated in the white matter (WM) in DEHSI. Our aim was to obtain diffusion tensor imaging on preterm infants at term-equivalent age and term control infants to test the hypothesis that radial diffusivity was significantly different in the WM in preterm infants with DEHSI compared with both preterm infants with normal-appearing WM on conventional MRI and term control infants. Diffusion tensor imaging was obtained on 38 preterm infants at term-equivalent age and 8 term control infants. Values for axial (lambda1) and radial [(lambda2 + lambda3)/2] diffusivity were calculated in regions of interest positioned in the central WM at the level of the centrum semiovale, frontal WM, posterior periventricular WM, occipital WM, anterior and posterior portions of the posterior limb of the internal capsule, and the genu and splenium of the corpus callosum. Radial diffusivity was elevated significantly in the posterior portion of the posterior limb of the internal capsule and the splenium of the corpus callosum, and both axial and radial diffusivity were elevated significantly in the WM at the level of the centrum semiovale, the frontal WM, the periventricular WM, and the occipital WM in preterm infants with DEHSI compared with preterm infants with normal-appearing WM and term control infants. There was no significant difference between term control infants and preterm infants with normal-appearing WM in any region studied. These findings suggest that DEHSI represents an oligodendrocyte and/or axonal abnormality that is widespread throughout the cerebral WM.

  20. The effects of nonuniform magnetic field strength on density flux and test particle transport in drift wave turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dewhurst, J. M.; Hnat, B.; Dendy, R. O.

    2009-07-15

    The extended Hasegawa-Wakatani equations generate fully nonlinear self-consistent solutions for coupled density n and vorticity {nabla}{sup 2}{phi}, where {phi} is electrostatic potential, in a plasma with background density inhomogeneity {kappa}=-{partial_derivative} ln n{sub 0}/{partial_derivative}x and magnetic field strength inhomogeneity C=-{partial_derivative} ln B/{partial_derivative}x. Finite C introduces interchange effects and {nabla}B drifts into the framework of drift turbulence through compressibility of the ExB and diamagnetic drifts. This paper addresses the direct computation of the radial ExB density flux {gamma}{sub n}=-n{partial_derivative}{phi}/{partial_derivative}y, tracer particle transport, the statistical properties of the turbulent fluctuations that drive {gamma}{sub n} and tracer motion, and analytical underpinnings. Systematic trends emergemore » in the dependence on C of the skewness of the distribution of pointwise {gamma}{sub n} and in the relative phase of density-velocity and density-potential pairings. It is shown how these effects, together with conservation of potential vorticity {pi}={nabla}{sup 2}{phi}-n+({kappa}-C)x, account for much of the transport phenomenology. Simple analytical arguments yield a Fickian relation {gamma}{sub n}=({kappa}-C)D{sub x} between the radial density flux {gamma}{sub n} and the radial tracer diffusivity D{sub x}, which is shown to explain key trends in the simulations.« less

  1. Development of a Radial Deconsolidation Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helmreich, Grant W.; Montgomery, Fred C.; Hunn, John D.

    2015-12-01

    A series of experiments have been initiated to determine the retention or mobility of fission products* in AGR fuel compacts [Petti, et al. 2010]. This information is needed to refine fission product transport models. The AGR-3/4 irradiation test involved half-inch-long compacts that each contained twenty designed-to-fail (DTF) particles, with 20-μm thick carbon-coated kernels whose coatings were deliberately fabricated such that they would crack under irradiation, providing a known source of post-irradiation isotopes. The DTF particles in these compacts were axially distributed along the compact centerline so that the diffusion of fission products released from the DTF kernels would be radiallymore » symmetric [Hunn, et al. 2012; Hunn et al. 2011; Kercher, et al. 2011; Hunn, et al. 2007]. Compacts containing DTF particles were irradiated at Idaho National Laboratory (INL) at the Advanced Test Reactor (ATR) [Collin, 2015]. Analysis of the diffusion of these various post-irradiation isotopes through the compact requires a method to radially deconsolidate the compacts so that nested-annular volumes may be analyzed for post-irradiation isotope inventory in the compact matrix, TRISO outer pyrolytic carbon (OPyC), and DTF kernels. An effective radial deconsolidation method and apparatus appropriate to this application has been developed and parametrically characterized.« less

  2. Design of an efficient space constrained diffuser for supercritical CO2 turbines

    NASA Astrophysics Data System (ADS)

    Keep, Joshua A.; Head, Adam J.; Jahn, Ingo H.

    2017-03-01

    Radial inflow turbines are an arguably relevant architecture for energy extraction from ORC and supercritical CO 2 power cycles. At small scale, design constraints can prescribe high exit velocities for such turbines, which lead to high kinetic energy in the turbine exhaust stream. The inclusion of a suitable diffuser in a radial turbine system allows some exhaust kinetic energy to be recovered as static pressure, thereby ensuring efficient operation of the overall turbine system. In supercritical CO 2 Brayton cycles, the high turbine inlet pressure can lead to a sealing challenge if the rotor is supported from the rotor rear side, due to the seal operating at rotor inlet pressure. An alternative to this is a cantilevered layout with the rotor exit facing the bearing system. While such a layout is attractive for the sealing system, it limits the axial space claim of any diffuser. Previous studies into conical diffuser geometries for supercritical CO 2 have shown that in order to achieve optimal static pressure recovery, longer geometries of a shallower cone angle are necessitated when compared to air. A diffuser with a combined annular-radial arrangement is investigated as a means to package the aforementioned geometric characteristics into a limited space claim for a 100kW radial inflow turbine. Simulation results show that a diffuser of this design can attain static pressure rise coefficients greater than 0.88. This confirms that annular-radial diffusers are a viable design solution for supercritical CO2 radial inflow turbines, thus enabling an alternative cantilevered rotor layout.

  3. Azimuthal ULF Structure and Radial Transport of Charged Particles

    NASA Astrophysics Data System (ADS)

    Ali, A.; Elkington, S. R.

    2015-12-01

    The Van Allen radiation belts contain highly energetic particles which interact with a variety of plasma and MHD waves. Waves with frequencies in the ULF range are understood to play an important role in loss and acceleration of energetic particles. There is still much to be understood about the interaction between charged particles and ULF waves in the inner magnetosphere and how they influence particle diffusion. We investigate how ULF wave power distribution in azimuth affects radial diffusion of charged particles. Analytic treatments of the diffusion coefficients generally assume uniform distribution of power in azimuth but in situ measurements suggest otherwise. The power profiles obtained from in situ measurements will be used to conduct particle simulations to see how well do the simulated diffusion coefficients agree with diffusion coefficients estimated directly from in situ measurements. We also look at the ULF wave power distribution across different modes. In order to use in situ point measurements from spacecraft, it is typically assumed that all of the wave power exists in m=1 mode. How valid is this assumption? Do higher modes contain a major fraction of the total power? If yes, then under what conditions? One strategy is to use the obtained realistic azimuthal power profiles from in situ measurements (such as from the Van Allen Probes) to drive simulations and see how the power distributions across modes larger than one depends on parameters such as the level of geomagnetic activity.

  4. Interstellar Pickup Ion Acceleration in the Turbulent Magnetic Field at the Solar Wind Termination Shock Using a Focused Transport Approach

    NASA Astrophysics Data System (ADS)

    Ye, Junye; le Roux, Jakobus A.; Arthur, Aaron D.

    2016-08-01

    We study the physics of locally born interstellar pickup proton acceleration at the nearly perpendicular solar wind termination shock (SWTS) in the presence of a random magnetic field spiral angle using a focused transport model. Guided by Voyager 2 observations, the spiral angle is modeled with a q-Gaussian distribution. The spiral angle fluctuations, which are used to generate the perpendicular diffusion of pickup protons across the SWTS, play a key role in enabling efficient injection and rapid diffusive shock acceleration (DSA) when these particles follow field lines. Our simulations suggest that variation of both the shape (q-value) and the standard deviation (σ-value) of the q-Gaussian distribution significantly affect the injection speed, pitch-angle anisotropy, radial distribution, and the efficiency of the DSA of pickup protons at the SWTS. For example, increasing q and especially reducing σ enhances the DSA rate.

  5. Startup analysis for a high temperature gas loaded heat pipe

    NASA Technical Reports Server (NTRS)

    Sockol, P. M.

    1973-01-01

    A model for the rapid startup of a high-temperature gas-loaded heat pipe is presented. A two-dimensional diffusion analysis is used to determine the rate of energy transport by the vapor between the hot and cold zones of the pipe. The vapor transport rate is then incorporated in a simple thermal model of the startup of a radiation-cooled heat pipe. Numerical results for an argon-lithium system show that radial diffusion to the cold wall can produce large vapor flow rates during a rapid startup. The results also show that startup is not initiated until the vapor pressure p sub v in the hot zone reaches a precise value proportional to the initial gas pressure p sub i. Through proper choice of p sub i, startup can be delayed until p sub v is large enough to support a heat-transfer rate sufficient to overcome a thermal load on the heat pipe.

  6. A new solar cycle model including meridional circulation

    NASA Technical Reports Server (NTRS)

    Wang, Y.-M.; Sheeley, N. R., Jr.; Nash, A. G.

    1991-01-01

    A kinematic model is presented for the solar cycle which includes not only the transport of magnetic flux by supergranular diffusion and a poleward bulk flow at the sun's surface, but also the effects of turbulent diffusion and an equatorward 'return flow' beneath the surface. As in the earlier models of Babcock and Leighton, the rotational shearing of a subsurface poloidal field generates toroidal flux that erupts at the surface in the form of bipolar magnetic regions. However, such eruptions do not result in any net loss of toroidal flux from the sun (as assumed by Babcock and Leighton); instead, the large-scale toroidal field is destroyed both by 'unwinding' as the local poloidal field reverses its polarity, and by diffusion as the toroidal flux is transported equatorward by the subsurface flow and merged with its opposite hemisphere counterpart. The inclusion of meridional circulation allows stable oscillations of the magnetic field, accompanied by the equatorward progression of flux eruptions, to be achieved even in the absence of a radial gradient in the angular velocity. An illustrative case in which a subsurface flow speed of order 1 m/s and subsurface diffusion rate of order 10 sq km/s yield 22-yr oscillations in qualitative agreement with observations.

  7. Analysis of a dusty wall jet

    NASA Technical Reports Server (NTRS)

    Lim, Hock-Bin; Roberts, Leonard

    1991-01-01

    An analysis is given for the entrainment of dust into a turbulent radial wall jet. Equations are solved based on incompressible flow of a radial wall jet into which dust is entrained from the wall and transported by turbulent diffusion and convection throughout the flow. It is shown that the resulting concentration of dust particles in the flow depends on the difference between the applied shear stress at the surface and the maximum level of shear stress that the surface can withstand (varies as rho(sub d)a(sub g)D) i.e., the pressure due to the weight of a single layer of dust. The analysis is expected to have application to the downflow that results from helicopter and VTOL aircraft.

  8. In vivo quantification of demyelination and recovery using compartment-specific diffusion MRI metrics validated by electron microscopy.

    PubMed

    Jelescu, Ileana O; Zurek, Magdalena; Winters, Kerryanne V; Veraart, Jelle; Rajaratnam, Anjali; Kim, Nathanael S; Babb, James S; Shepherd, Timothy M; Novikov, Dmitry S; Kim, Sungheon G; Fieremans, Els

    2016-05-15

    There is a need for accurate quantitative non-invasive biomarkers to monitor myelin pathology in vivo and distinguish myelin changes from other pathological features including inflammation and axonal loss. Conventional MRI metrics such as T2, magnetization transfer ratio and radial diffusivity have proven sensitivity but not specificity. In highly coherent white matter bundles, compartment-specific white matter tract integrity (WMTI) metrics can be directly derived from the diffusion and kurtosis tensors: axonal water fraction, intra-axonal diffusivity, and extra-axonal radial and axial diffusivities. We evaluate the potential of WMTI to quantify demyelination by monitoring the effects of both acute (6weeks) and chronic (12weeks) cuprizone intoxication and subsequent recovery in the mouse corpus callosum, and compare its performance with that of conventional metrics (T2, magnetization transfer, and DTI parameters). The changes observed in vivo correlated with those obtained from quantitative electron microscopy image analysis. A 6-week intoxication produced a significant decrease in axonal water fraction (p<0.001), with only mild changes in extra-axonal radial diffusivity, consistent with patchy demyelination, while a 12-week intoxication caused a more marked decrease in extra-axonal radial diffusivity (p=0.0135), consistent with more severe demyelination and clearance of the extra-axonal space. Results thus revealed increased specificity of the axonal water fraction and extra-axonal radial diffusivity parameters to different degrees and patterns of demyelination. The specificities of these parameters were corroborated by their respective correlations with microstructural features: the axonal water fraction correlated significantly with the electron microscopy derived total axonal water fraction (ρ=0.66; p=0.0014) but not with the g-ratio, while the extra-axonal radial diffusivity correlated with the g-ratio (ρ=0.48; p=0.0342) but not with the electron microscopy derived axonal water fraction. These parameters represent promising candidates as clinically feasible biomarkers of demyelination and remyelination in the white matter. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Surface Based Analysis of Diffusion Orientation for Identifying Architectonic Domains in the In Vivo Human Cortex

    PubMed Central

    McNab, Jennifer A.; Polimeni, Jonathan R.; Wang, Ruopeng; Augustinack, Jean C.; Fujimoto, Kyoko; Player, Allison; Janssens, Thomas; Farivar, Reza; Folkerth, Rebecca D.; Vanduffel, Wim; Wald, Lawrence L.

    2012-01-01

    Diffusion tensor MRI is sensitive to the coherent structure of brain tissue and is commonly used to study large-scale white matter structure. Diffusion in grey matter is more isotropic, however, several groups have observed coherent patterns of diffusion anisotropy within the cerebral cortical grey matter. We extend the study of cortical diffusion anisotropy by relating it to the local coordinate system of the folded cerebral cortex. We use 1mm and sub-millimeter isotropic resolution diffusion imaging to perform a laminar analysis of the principal diffusion orientation, fractional anisotropy, mean diffusivity and partial volume effects. Data from 6 in vivo human subjects, a fixed human brain specimen and an anesthetized macaque were examined. Large regions of cortex show a radial diffusion orientation. In vivo human and macaque data displayed a sharp transition from radial to tangential diffusion orientation at the border between primary motor and somatosensory cortex, and some evidence of tangential diffusion in secondary somatosensory cortex and primary auditory cortex. Ex vivo diffusion imaging in a human tissue sample showed some tangential diffusion orientation in S1 but mostly radial diffusion orientations in both M1 and S1. PMID:23247190

  10. Computation of flow in radial- and mixed-flow cascades by an inviscid-viscous interaction method

    NASA Technical Reports Server (NTRS)

    Serovy, G. K.; Hansen, E. C.

    1980-01-01

    The use of inviscid-viscous interaction methods for the case of radial or mixed-flow cascade diffusers is discussed. A literature review of investigations considering cascade flow-field prediction by inviscid-viscous iterative computation is given. Cascade aerodynamics in the third blade row of a multiple-row radial cascade diffuser are specifically investigated.

  11. Structure of chaotic magnetic field lines in IR-T1 tokamak due to ergodic magnetic limiter

    NASA Astrophysics Data System (ADS)

    Ahmadi, S.; Salar Elahi, A.; Ghorannevis, M.

    2018-03-01

    In this paper we have studied an Ergodic Magnetic Limiter (EML) based chaotic magnetic field for transport control in the edge plasma of IR-T1 tokamak. The resonance created by the EML causes perturbation of the equilibrium field line in tokamak and as a result, the field lines are chaotic in the vicinity of the dimerized island chains. Transport barriers are formed in the chaotic field line and actually observe in tokamak with reverse magnetic shear. We used area-preserving non-twist (and twist) Poincaré maps to describe the formation of transport barriers, which are actually features of Hamiltonian systems. This transport barrier is useful in reducing radial diffusion of the field line and thus improving the plasma confinement.

  12. Recent radial turbine research at the NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Rohlik, H. E.; Kofskey, M. G.

    1971-01-01

    The high efficiencies of small radial turbines led to their application in space power systems and numerous APU and shaft power engines. Experimental and analytical work associated with these systems included examination of blade-shroud clearance, blade loading, and exit diffuser design. Results indicate high efficiency over a wide range of specific speed and also insensitivity to clearance and blade loading in the radial part of the rotor. The exit diffuser investigation indicated that a conventional conical outer wall may not provide the velocity variation consistent with minimum overall diffuser loss.

  13. In Vivo Evaluation of White Matter Integrity and Anterograde Transport in Visual System After Excitotoxic Retinal Injury With Multimodal MRI and OCT

    PubMed Central

    Ho, Leon C.; Wang, Bo; Conner, Ian P.; van der Merwe, Yolandi; Bilonick, Richard A.; Kim, Seong-Gi; Wu, Ed X.; Sigal, Ian A.; Wollstein, Gadi; Schuman, Joel S.; Chan, Kevin C.

    2015-01-01

    Purpose. Excitotoxicity has been linked to the pathogenesis of ocular diseases and injuries and may involve early degeneration of both anterior and posterior visual pathways. However, their spatiotemporal relationships remain unclear. We hypothesized that the effects of excitotoxic retinal injury (ERI) on the visual system can be revealed in vivo by diffusion tensor magnetic resonance imagining (DTI), manganese-enhanced magnetic resonance imagining (MRI), and optical coherence tomography (OCT). Methods. Diffusion tensor MRI was performed at 9.4 Tesla to monitor white matter integrity changes after unilateral N-methyl-D-aspartate (NMDA)-induced ERI in six Sprague-Dawley rats and six C57BL/6J mice. Additionally, four rats and four mice were intravitreally injected with saline to compare with NMDA-injected animals. Optical coherence tomography of the retina and manganese-enhanced MRI of anterograde transport were evaluated and correlated with DTI parameters. Results. In the rat optic nerve, the largest axial diffusivity decrease and radial diffusivity increase occurred within the first 3 and 7 days post ERI, respectively, suggestive of early axonal degeneration and delayed demyelination. The optic tract showed smaller directional diffusivity changes and weaker DTI correlations with retinal thickness compared with optic nerve, indicative of anterograde degeneration. The splenium of corpus callosum was also reorganized at 4 weeks post ERI. The DTI profiles appeared comparable between rat and mouse models. Furthermore, the NMDA-injured visual pathway showed reduced anterograde manganese transport, which correlated with diffusivity changes along but not perpendicular to optic nerve. Conclusions. Diffusion tensor MRI, manganese-enhanced MRI, and OCT provided an in vivo model system for characterizing the spatiotemporal changes in white matter integrity, the eye–brain relationships and structural–physiological relationships in the visual system after ERI. PMID:26066747

  14. A Numerical Study of Forbush Decreases with a 3D Cosmic-Ray Modulation Model Based on an SDE Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Xi; Feng, Xueshang; Potgieter, Marius S.

    Based on the reduced diffusion mechanism for producing Forbush decreases (Fds) in the heliosphere, we constructed a three-dimensional (3D) diffusion barrier, and by incorporating it into a stochastic differential equation (SDE) based time-dependent, cosmic-ray transport model, a 3D numerical model for simulating Fds is built and applied to a period of relatively quiet solar activity. This SDE model generally corroborates previous Fd simulations concerning the effects of the solar magnetic polarity, the tilt angle of the heliospheric current sheet (HCS), and cosmic-ray particle energy. Because the modulation processes in this 3D model are multi-directional, the barrier’s geometrical features affect themore » intensity profiles of Fds differently. We find that both the latitudinal and longitudinal extent of the barrier have relatively fewer effects on these profiles than its radial extent and the level of decreased diffusion inside the disturbance. We find, with the 3D approach, that the HCS rotational motion causes the relative location from the observation point to the HCS to vary, so that a periodic pattern appears in the cosmic-ray intensity at the observing location. Correspondingly, the magnitude and recovery time of an Fd change, and the recovering intensity profile contains oscillation as well. Investigating the Fd magnitude variation with heliocentric radial distance, we find that the magnitude decreases overall and, additionally, that the Fd magnitude exhibits an oscillating pattern as the radial distance increases, which coincides well with the wavy profile of the HCS under quiet solar modulation conditions.« less

  15. Effects of radial diffuser hydraulic design on a double-suction centrifugal pump

    NASA Astrophysics Data System (ADS)

    Hou, H. C.; Zhang, Y. X.; Xu, C.; Zhang, J. Y.; Li, Z. L.

    2016-05-01

    In order to study effects of radial diffuser on hydraulic performance of crude oil pump, the steady CFD numerical method is applied and one large double-suction oil pump running in long-distance pipeline is considered. The research focuses on analysing the influence of its diffuser vane profile on hydraulic performance of oil pump. The four different types of cylindrical vane have been designed by in-house codes mainly including double arcs (DA), triple arcs (TA), equiangular spiral line (ES) and linear variable angle spiral line (LVS). During design process diffuser vane angles at inlet and outlet are tentatively given within a certain range and then the wrapping angle of the four types of diffuser vanes can be calculated automatically. Under the given inlet and outlet angles, the linear variable angle spiral line profile has the biggest wrapping angle and profile length which is good to delay channel diffusion but bring more friction hydraulic loss. Finally the vane camber line is thickened at the certain uniform thickness distribution and the 3D diffuser models are generated. The whole flow passage of oil pump with different types of diffusers under various flow rate conditions are numerically simulated based on RNG k-ɛ turbulent model and SIMPLEC algorithm. The numerical results show that different types of diffusers can bring about great difference on the hydraulic performance of oil pump, of which the ES profile diffuser with its proper setting angle shows the best hydraulic performance and its inner flow field is improved obviously. Compared with the head data from model sample, all designed diffusers can make a certain improvement on head characteristic. At the large flow rate conditions the hydraulic efficiency increases obviously and the best efficiency point shift to the large flow rate range. The ES profile diffuser embodies the better advantages on pump performance which can be explained theoretically that the diffuser actually acts as a diffusion device and is good to transform the dynamic energy to pressure energy. Then through the hydraulic loss analysis of each pump component for all diffusers, it shows that the impeller takes up the biggest part of the whole loss about 8.19% averagely, the radial diffuser about 3.70% and the volute about 1.65%. The hydraulic loss of impeller is dominant at the large flow rate while the radial diffuser is at the small flow rate. Among all diffusers, the ES profile diffuser generates the least loss and combined to the distribution of velocity vector and turbulent kinetic energy for two kinds of diffusers it also shows that ES profile is fit to apply in radial diffuser. This research can offer a significant reference for the radial diffuser hydraulic design of such centrifugal pumps.

  16. Simulation of energy-dependent electron diffusion processes in the Earth's outer radiation belt

    DOE PAGES

    Ma, Q.; Li, W.; Thorne, R. M.; ...

    2016-04-28

    The radial and local diffusion processes induced by various plasma waves govern the highly energetic electron dynamics in the Earth's radiation belts, causing distinct characteristics in electron distributions at various energies. In this study, we present our simulation results of the energetic electron evolution during a geomagnetic storm using the University of California, Los Angeles 3-D diffusion code. Following the plasma sheet electron injections, the electrons at different energy bands detected by the Magnetic Electron Ion Spectrometer (MagEIS) and Relativistic Electron Proton Telescope (REPT) instruments on board the Van Allen Probes exhibit a rapid enhancement followed by a slow diffusivemore » movement in differential energy fluxes, and the radial extent to which electrons can penetrate into depends on energy with closer penetration toward the Earth at lower energies than higher energies. We incorporate radial diffusion, local acceleration, and loss processes due to whistler mode wave observations to perform a 3-D diffusion simulation. Here, our simulation results demonstrate that chorus waves cause electron flux increase by more than 1 order of magnitude during the first 18 h, and the subsequent radial extents of the energetic electrons during the storm recovery phase are determined by the coupled radial diffusion and the pitch angle scattering by EMIC waves and plasmaspheric hiss. The radial diffusion caused by ULF waves and local plasma wave scattering are energy dependent, which lead to the observed electron flux variations with energy dependences. Lastly, this study suggests that plasma wave distributions in the inner magnetosphere are crucial for the energy-dependent intrusions of several hundred keV to several MeV electrons.« less

  17. Thermal plasma and fast ion transport in electrostatic turbulence in the large plasma devicea)

    NASA Astrophysics Data System (ADS)

    Zhou, Shu; Heidbrink, W. W.; Boehmer, H.; McWilliams, R.; Carter, T. A.; Vincena, S.; Tripathi, S. K. P.; Van Compernolle, B.

    2012-05-01

    The transport of thermal plasma and fast ions in electrostatic microturbulence is studied. Strong density and potential fluctuations (δn /n˜δφ/kTe ˜ 0.5, f ˜ 5-50 kHz) are observed in the large plasma device (LAPD) [W. Gekelman, H. Pfister, Z. Lucky et al., Rev. Sci. Instrum. 62, 2875 (1991)] in density gradient regions produced by obstacles with slab or cylindrical geometry. Wave characteristics and the associated plasma transport are modified by driving sheared E × B drift through biasing the obstacle and by modification of the axial magnetic fields (Bz) and the plasma species. Cross-field plasma transport is suppressed with small bias and large Bz and is enhanced with large bias and small Bz. The transition in thermal plasma confinement is well explained by the cross-phase between density and potential fluctuations. Large gyroradius lithium fast ion beam (ρfast/ρs ˜ 10) orbits through the turbulent region. Scans with a collimated analyzer give detailed profiles of the fast ion spatial-temporal distribution. Fast-ion transport decreases rapidly with increasing fast-ion energy and gyroradius. Background waves with different scale lengths also alter the fast ion transport. Experimental results agree well with gyro-averaging theory. When the fast ion interacts with the wave for most of a wave period, a transition from super-diffusive to sub-diffusive transport is observed, as predicted by diffusion theory. Besides turbulent-wave-induced fast-ion transport, the static radial electric field (Er) from biasing the obstacle leads to drift of the fast-ion beam centroid. The drift and broadening of the beam due to static Er are evaluated both analytically and numerically. Simulation results indicate that the Er induced transport is predominately convective.

  18. Field-scale effective matrix diffusion coefficient for fractured rock: results from literature survey.

    PubMed

    Zhou, Quanlin; Liu, Hui-Hai; Molz, Fred J; Zhang, Yingqi; Bodvarsson, Gudmundur S

    2007-08-15

    Matrix diffusion is an important mechanism for solute transport in fractured rock. We recently conducted a literature survey on the effective matrix diffusion coefficient, D(m)(e), a key parameter for describing matrix diffusion processes at the field scale. Forty field tracer tests at 15 fractured geologic sites were surveyed and selected for the study, based on data availability and quality. Field-scale D(m)(e) values were calculated, either directly using data reported in the literature, or by reanalyzing the corresponding field tracer tests. The reanalysis was conducted for the selected tracer tests using analytic or semi-analytic solutions for tracer transport in linear, radial, or interwell flow fields. Surveyed data show that the scale factor of the effective matrix diffusion coefficient (defined as the ratio of D(m)(e) to the lab-scale matrix diffusion coefficient, D(m), of the same tracer) is generally larger than one, indicating that the effective matrix diffusion coefficient in the field is comparatively larger than the matrix diffusion coefficient at the rock-core scale. This larger value can be attributed to the many mass-transfer processes at different scales in naturally heterogeneous, fractured rock systems. Furthermore, we observed a moderate, on average trend toward systematic increase in the scale factor with observation scale. This trend suggests that the effective matrix diffusion coefficient is likely to be statistically scale-dependent. The scale-factor value ranges from 0.5 to 884 for observation scales from 5 to 2000 m. At a given scale, the scale factor varies by two orders of magnitude, reflecting the influence of differing degrees of fractured rock heterogeneity at different geologic sites. In addition, the surveyed data indicate that field-scale longitudinal dispersivity generally increases with observation scale, which is consistent with previous studies. The scale-dependent field-scale matrix diffusion coefficient (and dispersivity) may have significant implications for assessing long-term, large-scale radionuclide and contaminant transport events in fractured rock, both for nuclear waste disposal and contaminant remediation.

  19. Understanding the spectral hardenings and radial distribution of Galactic cosmic rays and Fermi diffuse γ rays with spatially-dependent propagation

    NASA Astrophysics Data System (ADS)

    Guo, Yi-Qing; Yuan, Qiang

    2018-03-01

    Recent direct measurements of Galactic cosmic ray spectra by balloon/space-borne detectors reveal spectral hardenings of all major nucleus species at rigidities of a few hundred GV. The all-sky diffuse γ -ray emissions measured by the Fermi Large Area Telescope also show spatial variations of the intensities and spectral indices of cosmic rays. These new observations challenge the traditional simple acceleration and/or propagation scenario of Galactic cosmic rays. In this work, we propose a spatially dependent diffusion scenario to explain all these phenomena. The diffusion coefficient is assumed to be anticorrelated with the source distribution, which is a natural expectation from the charged particle transportation in a turbulent magnetic field. The spatially dependent diffusion model also gives a lower level of anisotropies of cosmic rays, which are consistent with observations by underground muons and air shower experiments. The spectral variations of cosmic rays across the Galaxy can be properly reproduced by this model.

  20. A Finite-Orbit-Width Fokker-Planck solver for modeling of energetic particle interactions with waves, with application to Helicons in ITER

    NASA Astrophysics Data System (ADS)

    Petrov, Yuri V.; Harvey, R. W.

    2017-10-01

    The bounce-average (BA) finite-difference Fokker-Planck (FP) code CQL3D [1,2] now includes the essential physics to describe the RF heating of Finite-Orbit-Width (FOW) ions in tokamaks. The FP equation is reformulated in terms of Constants-Of-Motion coordinates, which we select to be particle speed, pitch angle, and major radius on the equatorial plane thus obtaining the distribution function directly at this location. Full-orbit, low collisionality neoclassical radial transport emerges from averaging the local friction and diffusion coefficients along guiding center orbits. Similarly, the BA of local quasilinear RF diffusion terms gives rise to additional radial transport. The local RF electric field components needed for the BA operator are usually obtained by a ray-tracing code, such as GENRAY, or in conjunction with full-wave codes. As a new, practical application, the CQL3D-FOW version is used for simulation of alpha-particle heating by high-harmonic waves in ITER. Coupling of high harmonic or helicon fast waves power to electrons is a promising current drive (CD) scenario for high beta plasmas. However, the efficiency of current drive can be diminished by parasitic channeling of RF power into fast ions, such as alphas, through finite Larmor-radius effects. We investigate possibilities to reduce the fast ion heating in CD scenarios.

  1. A NUMERICAL SIMULATION OF COSMIC RAY MODULATION NEAR THE HELIOPAUSE. II. SOME PHYSICAL INSIGHTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Xi; Feng, Xueshang; Potgieter, Marius S.

    Cosmic ray (CR) transport near the heliopause (HP) is studied using a hybrid transport model, with the parameters constrained by observations from the Voyager 1 spacecraft. We simulate the CR radial flux along different directions in the heliosphere. There is no well-defined thin layer between the solar wind region and the interstellar region along the tail and polar directions of the heliosphere. By analyzing the radial flux curve along the direction of Voyager 2 , together with its trajectory information, the crossing time of the HP by Voyager 2 is predicted to be in 2017.14. We simulate the CR radialmore » flux for different energy values along the direction of Voyager 1 . We find that there is only a modest modulation region of about 10 au wide beyond the HP, so that Voyager 1 observing the Local Interstellar Spectra is justified in numerical modeling. We analyze the heliospheric exit information of pseudo-particles in our stochastic numerical (time-backward) method, conjecturing that they represent the behavior of CR particles, and we find that pseudo-particles that have been traced from the nose region exit in the tail region. This implies that many CR particles diffuse directly from the heliospheric tail region to the nose region near the HP. In addition, when pseudo-particles were traced from the Local Interstellar Medium (LISM), it is found that their exit location (entrance for real particles) from the simulation domain is along the prescribed Interstellar Magnetic Field direction. This indicates that parallel diffusion dominates CR particle transport in the LISM.« less

  2. Ion transport and loss in the Earth's quiet ring current. 2: Diffusion and magnetosphere-ionosphere coupling

    NASA Technical Reports Server (NTRS)

    Sheldon, R. B.

    1994-01-01

    We have studied the transport and loss of H(+), He(+), and He(++) ions in the Earth's quiet time ring current (1 to 300 keV/e, 3 to 7 R(sub E), Kp less than 2+, absolute value of Dst less than 11, 70 to 110 degs pitchangles, all LT) comparing the standard radial diffusion model developed for the higher-energy radiation belt particles with measurements of the lower energy ring current ions in a previous paper. Large deviations of that model, which fit only 50% of the data to within a factor of 10, suggested that another transport mechanism is operating in the ring current. Here we derive a modified diffusion coefficient corrected for electric field effects on ring current energy ions that fit nearly 80% of the data to within a factor of 2. Thus we infer that electric field fluctuations from the low-latitude to midlatitude ionosphere (ionospheric dynamo) dominated the ring current transport, rather than high-latitude or solar wind fluctuations. Much of the remaining deviation may arise from convective electric field transport of the E less than 30 keV particles. Since convection effects cannot be correctly treated with this azimuthally symmetric model, we defer treatment of the lowest-energy ions to a another paper. We give chi(exp 2) contours for the best fit, showing the dependence of the fit upon the internal/external spectral power of the predicted electric and magnetic field fluctuations.

  3. Recent radial turbine research at the NASA Lewis Research Center.

    NASA Technical Reports Server (NTRS)

    Rohlik, H. E.; Kofskey, M. G.

    1972-01-01

    The major results obtained in several recent experimental programs on small radial inflow turbines for space applications are presented and discussed. Specifically, experimental and analytical work associated with these systems that has included examination of blade-shroud clearance, blade loading, and exit diffuser design, is considered. Results indicate high efficiency over a wide range of specific speed, and also insensitivity to clearance and blade loading in the radial part of the rotor. The exit diffuser investigation indicated that a conventional conical outer wall may not provide the velocity variation consistent with minimum overall diffuser loss.

  4. Circulation of Plasma in the Jovian Magnetosphere as Inferred from the Galileo Magnetometer Observations

    NASA Astrophysics Data System (ADS)

    Yu, Z. J.; Russell, C. T.; Kivelson, M. G.; Khurana, K. K.

    2000-10-01

    Massloading of the jovian magnetosphere by the addition of ions at the moon Io is the ultimate engine of the circulation of the magnetospheric plasma. In steady state the radial density profile enables the radial outflow velocity to be calculated from the mass addition rate. Some of these ions are lost from the field lines through pitch angle diffusion. Expected loss rates can be calculated from the fluctuation level in the magnetic field. Radial velocities can be calculated from observations of the Europa wake and force balance in the magnetodisk. The resulting transport times are shorter than the pitch angle scattering loss times so that most of the plasma is transported to the tail and lost by magnetic island formation. In turn the island formation process (reconnection) depletes magnetic field lines making them buoyant and allowing them to "float" back to the inner magnetosphere. In the torus these depleted flux tubes can be seen as thin tubes with stronger than the ambient field strength, implying plasma pressures about 2% of the magnetic field and ion temperatures principally in the range 30-150 eV. When the depleted flux tubes reach the orbit of Io where the energy density of the plasma drops these depleted flux tubes become indistinguishable from the ambient plasma, completing the circulation loop.

  5. Physics of GAM-initiated L-H transition in a tokamak

    NASA Astrophysics Data System (ADS)

    Askinazi, L. G.; Belokurov, A. A.; Bulanin, V. V.; Gurchenko, A. D.; Gusakov, E. Z.; Kiviniemi, T. P.; Lebedev, S. V.; Kornev, V. A.; Korpilo, T.; Krikunov, S. V.; Leerink, S.; Machielsen, M.; Niskala, P.; Petrov, A. V.; Tukachinsky, A. S.; Yashin, A. Yu; Zhubr, N. A.

    2017-01-01

    Based on experimental observations using the TUMAN-3M and FT-2 tokamaks, and the results of gyrokinetic modeling of the interplay between turbulence and the geodesic acoustic mode (GAM) in these installations, a simple model is proposed for the analysis of the conditions required for L-H transition triggering by a burst of radial electric field oscillations in a tokamak. In the framework of this model, one-dimensional density evolution is considered to be governed by an anomalous diffusion coefficient dependent on radial electric field shear. The radial electric field is taken as the sum of the oscillating term and the quasi-stationary one determined by density and ion temperature gradients through a neoclassical formula. If the oscillating field parameters (amplitude, frequency, etc) are properly adjusted, a transport barrier forms at the plasma periphery and sustains after the oscillations are switched off, manifesting a transition into the high confinement mode with a strong inhomogeneous radial electric field and suppressed transport at the plasma edge. The electric field oscillation parameters required for L-H transition triggering are compared with the GAM parameters observed at the TUMAN-3M (in the discharges with ohmic L-H transition) and FT-2 tokamaks (where no clear L-H transition was observed). It is concluded based on this comparison that the GAM may act as a trigger for the L-H transition, provided that certain conditions for GAM oscillation and tokamak discharge are met.

  6. The Analytical Solution of the Transient Radial Diffusion Equation with a Nonuniform Loss Term.

    NASA Astrophysics Data System (ADS)

    Loridan, V.; Ripoll, J. F.; De Vuyst, F.

    2017-12-01

    Many works have been done during the past 40 years to perform the analytical solution of the radial diffusion equation that models the transport and loss of electrons in the magnetosphere, considering a diffusion coefficient proportional to a power law in shell and a constant loss term. Here, we propose an original analytical method to address this challenge with a nonuniform loss term. The strategy is to match any L-dependent electron losses with a piecewise constant function on M subintervals, i.e., dealing with a constant lifetime on each subinterval. Applying an eigenfunction expansion method, the eigenvalue problem becomes presently a Sturm-Liouville problem with M interfaces. Assuming the continuity of both the distribution function and its first spatial derivatives, we are able to deal with a well-posed problem and to find the full analytical solution. We further show an excellent agreement between both the analytical solutions and the solutions obtained directly from numerical simulations for different loss terms of various shapes and with a diffusion coefficient DLL L6. We also give two expressions for the required number of eigenmodes N to get an accurate snapshot of the analytical solution, highlighting that N is proportional to 1/√t0, where t0 is a time of interest, and that N increases with the diffusion power. Finally, the equilibrium time, defined as the time to nearly reach the steady solution, is estimated by a closed-form expression and discussed. Applications to Earth and also Jupiter and Saturn are discussed.

  7. Improved diffusivity of NaOH solution in autohydrolyzed poplar sapwood chips for chemi-mechanical pulp production.

    PubMed

    Zhang, Honglei; Hou, Qingxi; Liu, Wei; Yue, Zhen; Jiang, Xiaoya; Ma, Xixi

    2018-07-01

    This work investigated the changes in the physical structure of autohydrolyzed poplar sapwood chips and the effect on the subsequent alkali liquor diffusion properties for chemi-mechanical pulping (CMP). An alkali impregnation process was conducted by using the autohydrolyzed poplar sapwood with different levels of autohydrolysis intensity. The results showed that the volume porosity, water constraint capacity, and saturated water absorption of the autohydrolyzed poplar sapwood chips increased. Also, the effective capillary cross-sectional area (ECCSA) in the radial direction and the diffusion coefficients of NaOH solution in both the radial and axial directions all increased. Autohydrolysis pretreatment enhanced the alkali liquor diffusion properties in poplar sapwood chips, and the diffusion coefficient was increased more greatly in the radial direction than that in the axial direction. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. A dynamic model of the radiation-belt electron phase-space density based on POLAR/HIST measurements

    NASA Astrophysics Data System (ADS)

    Vassiliadis, D.; Green, J. C.

    2007-12-01

    The response of the energetic-electron phase-space density (PSD) in the radiation belts is subject to a delicate combination of acceleration and loss processes which are strongly determined by the magnetospheric configuration and field disturbance level. We quantify the response of the density to stormtime fields as observed by the HIST detector on board POLAR. Several distinct modes are identified, characterized by peak second- and third- adiabatic invariants and peak delay time. The modes represent quasiadiabatic transport due to ring current activity; high L* (~6), day-long acceleration linked to ULF wave-particle interaction; and low-L* (~3), minute- to hour-long acceleration interpreted to be due to transient inductive fields or VLF wave-particle interaction. The net transport due to these responses is not always or everywhere diffusive, therefore we quantify the degree of departure from diffusive transport for specific storm intervals and radial ranges. Taken together the response modes comprise a dynamic, nonlinear model which allows us to better understand the historic variability of the high-energy tail of the electron distribution in the inner magnetosphere.

  9. Investigation of impurity transport using laser blow-off technique in the HL-2A Ohmic and ECRH plasmas

    NASA Astrophysics Data System (ADS)

    Kai, Zhang; Zheng-Ying, Cui; Ping, Sun; Chun-Feng, Dong; Wei, Deng; Yun-Bo, Dong; Shao-Dong, Song; Min, Jiang; Yong-Gao, Li; Ping, Lu; Qing-Wei, Yang

    2016-06-01

    Impurity transports in two neighboring discharges with and without electron cyclotron resonance heating (ECRH) are studied in the HL-2A tokamak by laser blow-off (LBO) technique. The progression of aluminium ions as the trace impurity is monitored by soft x-ray (SXR) and bolometer detector arrays with good temporal and spatial resolutions. Obvious difference in the time trace of the signal between the Ohmic and ECRH L-mode discharges is observed. Based on the numerical simulation with one-dimensional (1D) impurity transport code STRAHL, the radial profiles of impurity diffusion coefficient D and convective velocity V are obtained for each shot. The result shows that the diffusion coefficient D significantly increases throughout the plasma minor radius for the ECRH case with respect to the Ohmic case, and that the convection velocity V changes from negative (inward) for the Ohmic case to partially positive (outward) for the ECRH case. The result on HL-2A confirms the pump out effect of ECRH on impurity profile as reported on various other devices.

  10. Effects of radial distribution of entropy diffusivity on critical modes of anelastic thermal convection in rotating spherical shells

    NASA Astrophysics Data System (ADS)

    Sasaki, Youhei; Takehiro, Shin-ichi; Ishiwatari, Masaki; Yamada, Michio

    2018-03-01

    Linear stability analysis of anelastic thermal convection in a rotating spherical shell with entropy diffusivities varying in the radial direction is performed. The structures of critical convection are obtained in the cases of four different radial distributions of entropy diffusivity; (1) κ is constant, (2) κT0 is constant, (3) κρ0 is constant, and (4) κρ0T0 is constant, where κ is the entropy diffusivity, T0 is the temperature of basic state, and ρ0 is the density of basic state, respectively. The ratio of inner and outer radii, the Prandtl number, the polytropic index, and the density ratio are 0.35, 1, 2, and 5, respectively. The value of the Ekman number is 10-3 or 10-5 . In the case of (1), where the setup is same as that of the anelastic dynamo benchmark (Jones et al., 2011), the structure of critical convection is concentrated near the outer boundary of the spherical shell around the equator. However, in the cases of (2), (3) and (4), the convection columns attach the inner boundary of the spherical shell. A rapidly rotating annulus model for anelastic systems is developed by assuming that convection structure is uniform in the axial direction taking into account the strong effect of Coriolis force. The annulus model well explains the characteristics of critical convection obtained numerically, such as critical azimuthal wavenumber, frequency, Rayleigh number, and the cylindrically radial location of convection columns. The radial distribution of entropy diffusivity, or more generally, diffusion properties in the entropy equation, is important for convection structure, because it determines the distribution of radial basic entropy gradient which is crucial for location of convection columns.

  11. Diffusion tensor imaging demonstrates brainstem and cerebellar abnormalities in congenital central hypoventilation syndrome.

    PubMed

    Kumar, Rajesh; Macey, Paul M; Woo, Mary A; Alger, Jeffry R; Harper, Ronald M

    2008-09-01

    Congenital central hypoventilation syndrome (CCHS) patients show reduced breathing drive during sleep, decreased hypoxic and hypercapnic ventilatory responses, and autonomic and affective deficits, suggesting both brainstem and forebrain injuries. Forebrain damage was previously described in CCHS, but methodological limitations precluded detection of brainstem injury, a concern because genetic mutations in CCHS target brainstem autonomic nuclei. To assess brainstem and cerebellar areas, we used diffusion tensor imaging-based measures, namely axial diffusivity, reflecting water diffusion parallel to fibers, and sensitive to axonal injury, and radial diffusivity, measuring diffusion perpendicular to fibers, and indicative of myelin injury. Diffusion tensor imaging was performed in 12 CCHS and 26 controls, and axial and radial diffusivity maps were compared between groups using analysis of covariance (covariates; age and gender). Increased axial diffusivity in CCHS appeared within the lateral medulla and clusters with injury extended from the dorsal midbrain through the periaqueductal gray, raphé, and superior cerebellar decussation, ventrally to the basal-pons. Cerebellar cortex and deep nuclei, and the superior and inferior cerebellar peduncles showed increased radial diffusivity. Midbrain, pontine, and lateral medullary structures, and the cerebellum and its fiber systems are injured in CCHS, likely contributing to the characteristics found in the syndrome.

  12. Three-dimensional stochastic modeling of radiation belts in adiabatic invariant coordinates

    NASA Astrophysics Data System (ADS)

    Zheng, Liheng; Chan, Anthony A.; Albert, Jay M.; Elkington, Scot R.; Koller, Josef; Horne, Richard B.; Glauert, Sarah A.; Meredith, Nigel P.

    2014-09-01

    A 3-D model for solving the radiation belt diffusion equation in adiabatic invariant coordinates has been developed and tested. The model, named Radbelt Electron Model, obtains a probabilistic solution by solving a set of Itô stochastic differential equations that are mathematically equivalent to the diffusion equation. This method is capable of solving diffusion equations with a full 3-D diffusion tensor, including the radial-local cross diffusion components. The correct form of the boundary condition at equatorial pitch angle α0=90° is also derived. The model is applied to a simulation of the October 2002 storm event. At α0 near 90°, our results are quantitatively consistent with GPS observations of phase space density (PSD) increases, suggesting dominance of radial diffusion; at smaller α0, the observed PSD increases are overestimated by the model, possibly due to the α0-independent radial diffusion coefficients, or to insufficient electron loss in the model, or both. Statistical analysis of the stochastic processes provides further insights into the diffusion processes, showing distinctive electron source distributions with and without local acceleration.

  13. Analytical estimates of radial segregation in Bridgman growth from low-level steady and periodic accelerations

    NASA Astrophysics Data System (ADS)

    Naumann, Robert J.; Baugher, Charles

    1992-08-01

    Estimates of the convective flows driven by horizontal temperature gradients in the vertical Bridgman configuration are made for dilute systems subject to the low level accelerations typical of the residual accelerations experienced by a spacecraft in low Earth orbit. The estimates are made by solving the Navier-Stokes momentum equation in one dimension. The mass transport equation is then solved in two dimensions using a first-order perturbation method. This approach is valid provided the convective velocities are small compared to the growth velocity which generally requires a reduced gravity environment. If this condition is satisfied, there will be no circulating cells, and hence no convective transport along the vertical axis. However, the variations in the vertical velocity with radius will give rise to radial segregation. The approximate analytical model developed here can predict the degree of radial segregation for a variety of material and processing parameters to an accuracy well within a factor of two as compared against numerical computations of the full set of Navier-Stokes equations for steady accelerations. It has the advantage of providing more insight into the complex interplay of the processing parameters and how they affect the solute distribution in the grown crystal. This could be extremely valuable in the design of low-gravity experiments in which the intent is to control radial segregation. Also, the analysis can be extended to consider transient and periodic accelerations, which is difficult and costly to do numerically. Surprisingly, it was found that the relative radial segregation falls as the inverse cube of the frequency for periodic accelerations whose periods are short compared with the characteristic diffusion time.

  14. Quasi-symmetry and the nature of radial turbulent transport in quasi-poloidal stellarators

    NASA Astrophysics Data System (ADS)

    Alcuson, J. A.; Reynolds-Barredo, J. M.; Bustos, A.; Sanchez, R.; Tribaldos, V.; Xanthopoulos, P.; Goerler, T.; Newman, D. E.

    2016-10-01

    Quasi-symmetric configurations have a better neoclassical confinement compared to that of standard stellarators. The reduction of the neoclassical viscosity along the direction of quasi-symmetry should facilitate the self-generation of zonal flows and, consequently, the mitigation of turbulent fluctuations and the ensuing radial transport. Therefore, it is expected that quasi-symmetries should also result in better confinement properties regarding radial turbulent transport. In this paper we show that, at least for quasi-poloidal configurations, the influence of quasi-symmetry on radial transport exceeds the expected reduction of fluctuation levels and associated effective transport coefficients, and that the intimate nature of transport itself is affected. In particular, radial turbulent transport becomes increasingly subdiffusive as the degree of quasi-symmetry becomes larger. This behavior is somewhat reminiscent of what has been previously reported in tokamaks with strong radially sheared zonal flows.

  15. Interpreting tracer breakthrough tailing from different forced-gradient tracer experiment configurations in fractured bedrock

    USGS Publications Warehouse

    Becker, M.W.; Shapiro, A.M.

    2003-01-01

    Conceptual and mathematical models are presented that explain tracer breakthrough tailing in the absence of significant matrix diffusion. Model predictions are compared to field results from radially convergent, weak-dipole, and push-pull tracer experiments conducted in a saturated crystalline bedrock. The models are based upon the assumption that flow is highly channelized, that the mass of tracer in a channel is proportional to the cube of the mean channel aperture, and the mean transport time in the channel is related to the square of the mean channel aperture. These models predict the consistent -2 straight line power law slope observed in breakthrough from radially convergent and weak-dipole tracer experiments and the variable straight line power law slope observed in push-pull tracer experiments with varying injection volumes. The power law breakthrough slope is predicted in the absence of matrix diffusion. A comparison of tracer experiments in which the flow field was reversed to those in which it was not indicates that the apparent dispersion in the breakthrough curve is partially reversible. We hypothesize that the observed breakthrough tailing is due to a combination of local hydrodynamic dispersion, which always increases in the direction of fluid velocity, and heterogeneous advection, which is partially reversed when the flow field is reversed. In spite of our attempt to account for heterogeneous advection using a multipath approach, a much smaller estimate of hydrodynamic dispersivity was obtained from push-pull experiments than from radially convergent or weak dipole experiments. These results suggest that although we can explain breakthrough tailing as an advective phenomenon, we cannot ignore the relationship between hydrodynamic dispersion and flow field geometry at this site. The design of the tracer experiment can severely impact the estimation of hydrodynamic dispersion and matrix diffusion in highly heterogeneous geologic media.

  16. A radial basis function Galerkin method for inhomogeneous nonlocal diffusion

    DOE PAGES

    Lehoucq, Richard B.; Rowe, Stephen T.

    2016-02-01

    We introduce a discretization for a nonlocal diffusion problem using a localized basis of radial basis functions. The stiffness matrix entries are assembled by a special quadrature routine unique to the localized basis. Combining the quadrature method with the localized basis produces a well-conditioned, sparse, symmetric positive definite stiffness matrix. We demonstrate that both the continuum and discrete problems are well-posed and present numerical results for the convergence behavior of the radial basis function method. As a result, we explore approximating the solution to anisotropic differential equations by solving anisotropic nonlocal integral equations using the radial basis function method.

  17. Determining Enzyme Activity by Radial Diffusion

    ERIC Educational Resources Information Center

    Davis, Bill D.

    1977-01-01

    Discusses advantages of radial diffusion assay in determining presence of enzyme and/or rough approximation of amount of enzyme activities. Procedures are included for the preparation of starch-agar plates, and the application and determination of enzyme. Techniques using plant materials (homogenates, tissues, ungerminated embryos, and seedlings)…

  18. Effect of magnetic fluctuations on the confinement and dynamics of runaway electrons in the HT-7 tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, R. J.; Hu, L. Q.; Li, E. Z.

    2013-03-15

    The nature of runaway electrons is such that the confinement and dynamics of the electrons can be strongly affected by magnetic fluctuations in plasma. Experimental results in the HT-7 tokamak indicated significant losses of runaway electrons due to magnetic fluctuations, but the loss processes did not only rely on the fluctuation amplitude. Efficient radial runaway transport required that there were no more than small regions of the plasma volume in which there was very low transport of runaways. A radial runaway diffusion coefficient of D{sub r} Almost-Equal-To 10 m{sup 2}s{sup -1} was derived for the loss processes, and diffusion coefficientmore » near the resonant magnetic surfaces and shielding factor #Greek Upsilon With Hook Symbol#=0.8 were deduced. Test particle equations were used to analyze the effect of magnetic fluctuations on runaway dynamics. It was found that the maximum energy that runaways can gain is very sensitive to the value of {alpha}{sub s} (i.e., the fraction of plasma volume with reduced transport). {alpha}{sub s}=(0.28-0.33) was found for the loss processes in the experiment, and maximum runaway energy could be controlled in the range of E=(4 MeV-6 MeV) in this case. Additionally, to control the maximum runaway energy below 5 MeV, the normalized electric field needed to be under a critical value D{sub {alpha}}=6.8, and the amplitude normalized magnetic fluctuations b(tilde sign) needed to be at least of the order of b(tilde sign) Almost-Equal-To 3 Multiplication-Sign 10{sup -5}.« less

  19. Efficient Conservative Reformulation Schemes for Lithium Intercalation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urisanga, PC; Rife, D; De, S

    Porous electrode theory coupled with transport and reaction mechanisms is a widely used technique to model Li-ion batteries employing an appropriate discretization or approximation for solid phase diffusion with electrode particles. One of the major difficulties in simulating Li-ion battery models is the need to account for solid phase diffusion in a second radial dimension r, which increases the computation time/cost to a great extent. Various methods that reduce the computational cost have been introduced to treat this phenomenon, but most of them do not guarantee mass conservation. The aim of this paper is to introduce an inherently mass conservingmore » yet computationally efficient method for solid phase diffusion based on Lobatto III A quadrature. This paper also presents coupling of the new solid phase reformulation scheme with a macro-homogeneous porous electrode theory based pseudo 20 model for Li-ion battery. (C) The Author(s) 2015. Published by ECS. All rights reserved.« less

  20. Mapping carrier diffusion in single silicon core-shell nanowires with ultrafast optical microscopy.

    PubMed

    Seo, M A; Yoo, J; Dayeh, S A; Picraux, S T; Taylor, A J; Prasankumar, R P

    2012-12-12

    Recent success in the fabrication of axial and radial core-shell heterostructures, composed of one or more layers with different properties, on semiconductor nanowires (NWs) has enabled greater control of NW-based device operation for various applications. (1-3) However, further progress toward significant performance enhancements in a given application is hindered by the limited knowledge of carrier dynamics in these structures. In particular, the strong influence of interfaces between different layers in NWs on transport makes it especially important to understand carrier dynamics in these quasi-one-dimensional systems. Here, we use ultrafast optical microscopy (4) to directly examine carrier relaxation and diffusion in single silicon core-only and Si/SiO(2) core-shell NWs with high temporal and spatial resolution in a noncontact manner. This enables us to reveal strong coherent phonon oscillations and experimentally map electron and hole diffusion currents in individual semiconductor NWs for the first time.

  1. Characterizing Intraorbital Optic Nerve Changes on Diffusion Tensor Imaging in Thyroid Eye Disease Before Dysthyroid Optic Neuropathy.

    PubMed

    Lee, Hwa; Lee, Young Hen; Suh, Sang-Il; Jeong, Eun-Kee; Baek, Sehyun; Seo, Hyung Suk

    The aim of this study was to determine whether the optic nerve is affected by thyroid eye disease (TED) before the development of dysthyroid optic neuropathy with diffusion-tensor imaging (DTI). Twenty TED patients and 20 controls were included. The mean, axial, and radial diffusivities and fractional anisotropy (FA) value were measured at the optic nerves in DTI. Extraocular muscle diameters were measured on computed tomography. The diffusivities and FA of the optic nerves were compared between TED and controls and between active and inactive stages of TED. The correlations between these DTI parameters and the clinical features were determined. The mean, axial, and radial diffusivities were lower in TED compared with the controls (P < 0.05). In contrast, FA was higher in TED (P = 0.001). Radial diffusivity was lower in the active stage of TED than the inactive stage (P = 0.035). The FA was higher in the TED group than in the control group (P = 0.021) and was positively correlated with clinical activity score (r = 0.364, P = 0.021), modified NOSPECS score (r = 0.469, P = 0.002), and extraocular muscle thickness (r = 0.325, P = 0.041) in the TED group. Radial diffusivity was negatively correlated with modified NOSPECS score (r = -0.384, P = 0.014), and axial diffusivity was positively correlated with exophthalmos degree (r = 0.363, P = 0.025). The diffusivities and FA reflected changes in the optic nerve before dysthyroid optic neuropathy in TED. The FA, in particular, reflected TED activity and severity.

  2. Inward transport of a toroidally confined plasma subject to strong radial electric fields

    NASA Technical Reports Server (NTRS)

    Roth, J. R.; Krawczonek, W. M.; Powers, E. J.; Hong, J.; Kim, Y.

    1977-01-01

    The paper aims at showing that the density and confinement time of a toroidal plasma can be enhanced by radial electric fields far stronger than the ambipolar values, and that, if such electric fields point into the plasma, radially inward transport can result. The investigation deals with low-frequency fluctuation-induced transport using digitally implemented spectral analysis techniques and with the role of strong applied radial electric fields and weak vertical magnetic fields on plasma density and particle confinement times in a Bumpy Torus geometry. Results indicate that application of sufficiently strong radially inward electric fields results in radially inward fluctuation-induced transport into the toroidal electrostatic potential well; this inward transport gives rise to higher average electron densities and longer particle confinement times in the toroidal plasma.

  3. Radial Coherence of Diffusion Tractography in the Cerebral White Matter of the Human Fetus: Neuroanatomic Insights

    PubMed Central

    Xu, Gang; Takahashi, Emi; Folkerth, Rebecca D.; Haynes, Robin L.; Volpe, Joseph J.; Grant, P. Ellen; Kinney, Hannah C.

    2014-01-01

    High angular resolution diffusion imaging (HARDI) demonstrates transient radial coherence of telencephalic white matter in the human fetus. Our objective was to define the neuroanatomic basis of this radial coherence through correlative HARDI- and postmortem tissue analyses. Applying immunomarkers to radial glial fibers (RGFs), axons, and blood vessels in 18 cases (19 gestational weeks to 3 postnatal years), we compared their developmental profiles to HARDI tractography in brains of comparable ages (n = 11). At midgestation, radial coherence corresponded with the presence of RGFs. At 30–31 weeks, the transition from HARDI-defined radial coherence to corticocortical coherence began simultaneously with the transformation of RGFs to astrocytes. By term, both radial coherence and RGFs had disappeared. White matter axons were radial, tangential, and oblique over the second half of gestation, whereas penetrating blood vessels were consistently radial. Thus, radial coherence in the fetal white matter likely reflects a composite of RGFs, penetrating blood vessels, and radial axons of which its transient expression most closely matches that of RGFs. This study provides baseline information for interpreting radial coherence in tractography studies of the preterm brain in the assessment of the encephalopathy of prematurity. PMID:23131806

  4. Radial Distribution Functions of Strongly Coupled Two-Temperature Plasmas

    NASA Astrophysics Data System (ADS)

    Shaffer, Nathaniel R.; Tiwari, Sanat Kumar; Baalrud, Scott D.

    2017-10-01

    We present tests of three theoretical models for the radial distribution functions (RDFs) in two-temperature strongly coupled plasmas. RDFs are useful in extending plasma thermodynamics and kinetic theory to strong coupling, but they are usually known only for thermal equilibrium or for approximate one-component model plasmas. Accurate two-component modeling is necessary to understand the impact of strong coupling on inter-species transport, e.g., ambipolar diffusion and electron-ion temperature relaxation. We demonstrate that the Seuferling-Vogel-Toeppfer (SVT) extension of the hypernetted chain equations not only gives accurate RDFs (as compared with classical molecular dynamics simulations), but also has a simple connection with the Yukawa OCP model. This connection gives a practical means to recover the structure of the electron background from knowledge of the ion-ion RDF alone. Using the model RDFs in Effective Potential Theory, we report the first predictions of inter-species transport coefficients of strongly coupled plasmas far from equilibrium. This work is supported by NSF Grant No. PHY-1453736, AFSOR Award No. FA9550-16-1-0221, and used XSEDE computational resources.

  5. Study the Precipitation of Radiation Belt Electrons during the Rapid Dropout Events

    NASA Astrophysics Data System (ADS)

    Tu, W.; Cunningham, G.; Li, X.; Chen, Y.

    2015-12-01

    During the main phase of storms, the relativistic electron flux in the radiation belt can drop by orders of magnitude on timescales of a few hours. Where do the electrons go? This is one of the most important outstanding questions in radiation belt studies. Radiation belt electrons can be lost either by transport across the magnetopause into interplanetary space or by precipitation into the atmosphere. In this work we first conduct a survey of the MeV electron dropouts using the Van Allen Probes data in conjunction with the low-altitude measurements of precipitating electrons by 6 NOAA/POES satellites. The dropout events are categorized into three types: precipitation-loss dominant, outward radial diffusion dominant, or with contributions from both mechanisms. The survey results suggest the relative importance of precipitation and outward radial diffusion to the fast dropouts of radiation belt electrons, and their extent in L-shell and electron energy. Then, for specific events identified as dominated by precipitation loss, we use the Drift-Diffusion model, which includes the effects of azimuthal drift and pitch angle diffusion, to simulate both the electron dropout observed by Van Allen Probes and the distributions of drift-loss-cone electrons observed by multiple low-earth-orbit satellites (6 POES and the Colorado Student Space Weather Experiment). The model quantifies the electron precipitation loss and pitch angle diffusion coefficient, Dxx, with high temporal and spatial resolution. Finally, by comparing the Dxx derived from the model with those estimated from the quasi-linear theory using wave data from Van Allen Probes and other event-specific wave models, we are able to test the validity of quasi-linear theory and seek direct evidence of the wave-particle interactions during the dropouts.

  6. Lognormal-like statistics of a stochastic squeeze process

    NASA Astrophysics Data System (ADS)

    Shapira, Dekel; Cohen, Doron

    2017-10-01

    We analyze the full statistics of a stochastic squeeze process. The model's two parameters are the bare stretching rate w and the angular diffusion coefficient D . We carry out an exact analysis to determine the drift and the diffusion coefficient of log(r ) , where r is the radial coordinate. The results go beyond the heuristic lognormal description that is implied by the central limit theorem. Contrary to the common "quantum Zeno" approximation, the radial diffusion is not simply Dr=(1 /8 ) w2/D but has a nonmonotonic dependence on w /D . Furthermore, the calculation of the radial moments is dominated by the far non-Gaussian tails of the log(r ) distribution.

  7. Neoclassical diffusion at low L-shel

    NASA Astrophysics Data System (ADS)

    Cunningham, G.; Ripoll, J. F.; Loridan, V.; Schulz, M.

    2017-12-01

    At very low L-shell, the lifetime of MeV electrons is dominated by pitch-angle scattering due to Coulomb collisions with background neutrals and ions. Walt's evaluation of this lifetime explained Van Allen's observations of the decay of the radiation belts in the early 1960's, for L<1.25 but Imhof et al showed that the apparent lifetime of >500 keV electrons for L=[1.15,1.21] was much greater than predicted by Walt's model when the decay was observed over 3 years rather than just a few months. Imhof et al argued that inward radial diffusion from larger L would be a source of electrons at low L, thus increasing the apparent lifetimes that were observed, but did not speculate on the cause of such diffusion across L. Newkirk and Walt estimated the radial diffusion coefficient that would be needed to explain the apparent lifetimes observed by Imhof et al. The radial diffusion coefficients they inferred dropped sharply as L increased, contrasting with the radial diffusion coefficients that had been recently developed by Falthammar [1965], which increase as a power law in L. Newkirk and Walt noted Falthammar's speculation that pitch-angle diffusion caused by Coulomb scattering, when coupled to drift-shell splitting associated with non-dipolar terms in the near-Earth geomagnetic field, might be the physical basis for the radial diffusion, but they did not attempt to quantify this effect. Roederer et al demonstrated that Coulomb scattering plus drift-shell splitting could explain the Newkirk and Walt results but they did not perform an exhaustive study. In the field of magnetically confined fusion, the movement of charged particles to different drift-shells caused by the combination of collisions and drift-shell splitting is labeled `neoclassical' diffusion. By contrast, `anomalous' diffusion results from pitch-angle diffusion caused by wave turbulence combined with drift-shell splitting, an effect recently studied by O'Brien in the outer radiation belt. We have constructed a comprehensive model of neoclassical diffusion at low L as a function of pitch-angle, energy and L-shell, and find that we quantitatively reproduce the results in Newkirk and Walt and Imhof et al, conclusively demonstrating that neoclassical diffusion is an important effect for energetic electrons in the deep inner belt.

  8. Comparison of LFM-test particle simulations and radial diffusion models of radiation belt electron injection into the slot region

    NASA Astrophysics Data System (ADS)

    Chu, F.; Hudson, M.; Kress, B.

    2008-12-01

    The physics-based Lyon-Fedder-Mobarry (LFM) code simulates Earth's magnetospheric topology and dynamics by solving the equations of ideal MHD using input solar wind parameters at the upstream boundary. Comparison with electron phase space density evolution during storms using a radial diffusion code, as well as spacecraft measurements where available, will tell us when diffusion is insufficiently accurate for radiation belt simulation, for example, during CME-shock injection events like March 24, 1991, which occurred on MeV electron drift time scales of minutes (Li et al., 1993). The 2004 July and 2004 November storms, comparable in depth of penetration into the slot region to the Halloween 2003 storm, have been modeled with both approaches. The November 8, 2004 storm was preceded by a Storm Sudden Commencement produced by a CME-shock followed by minimum Dst = -373 nT, while the July 23 to July 28 storm interval had milder consecutive drops in Dst, corresponding to multiple CME shocks and southward IMF Bz turnings. We have run the November and July storms with LFM using ACE data as upstream input, running the July storm with lower temporal resolution over a longer time interval. The November storm was different because the SCC shock was unusually intense, therefore the possibility of drift time scale acceleration by the associated magnetosonic impulse produced by the shock exists, as in March 1991 and also Halloween 2003 events (Kress et al., 2007). It can then take a short time (minutes) for electrons to be transported to low L shell while conserving their first invariant, resulting in a peak in energy and phase space density in the slot region. Radial diffusion suffices for some storm periods like the July 2004 sequence of three storms, while the guiding center test particle simulation in MHD fields is necessary to describe prompt injections which occur faster than diffusive time scales, for which November 2004 is a likely candidate. Earlier examples have been studied, including the Kress et al., 2007 study of the Halloween 2003 storm and Li et al., 1993 study of the March 24, 1991 injection event with MHD simulation carried out by Elkington et al. (2002) for this event. Radial diffusion remains the best approach for extended relatively quiet periods like the two month interval following the March 1991 prompt injection. Strong shocks will inject particles into lower L shell within a few minutes violating the third adiabatic invariant, so the diffusion mechanism cannot be adopted for sudden commencements, when Dst increases then decreases drastically; however particle tracing in time-dependent MHD fields will give an accurate estimation, so radial diffusion and particle tracing in MHD fields complement each other in radiation belt studies. Elkington, S. R., M.K. Hudson, M.J. Wiltberger, J.G. Lyon (2002) JASTP, 64, p. 607-615; Kress B. T., M. K. Hudson, M. D. Looper, J. Albert, J. G. Lyon, C. C. Goodrich (2007), J. Geophys. Res., 112, A09215, doi:10.1029/2006JA012218; Li, X., I. Roth, M. Temerin, J. R. Wygant, M. K. Hudson, and J. B. Blake (1993), Geophys. Res. Lett., 20, p. 2423-2426.

  9. Characteristic Length Scales in Fracture Networks: Hydraulic Connectivity through Periodic Hydraulic Tests

    NASA Astrophysics Data System (ADS)

    Becker, M.; Bour, O.; Le Borgne, T.; Longuevergne, L.; Lavenant, N.; Cole, M. C.; Guiheneuf, N.

    2017-12-01

    Determining hydraulic and transport connectivity in fractured bedrock has long been an important objective in contaminant hydrogeology, petroleum engineering, and geothermal operations. A persistent obstacle to making this determination is that the characteristic length scale is nearly impossible to determine in sparsely fractured networks. Both flow and transport occur through an unknown structure of interconnected fracture and/or fracture zones making the actual length that water or solutes travel undetermined. This poses difficulties for flow and transport models. For, example, hydraulic equations require a separation distance between pumping and observation well to determine hydraulic parameters. When wells pairs are close, the structure of the network can influence the interpretation of well separation and the flow dimension of the tested system. This issue is explored using hydraulic tests conducted in a shallow fractured crystalline rock. Periodic (oscillatory) slug tests were performed at the Ploemeur fractured rock test site located in Brittany, France. Hydraulic connectivity was examined between three zones in one well and four zones in another, located 6 m apart in map view. The wells are sufficiently close, however, that the tangential distance between the tested zones ranges between 6 and 30 m. Using standard periodic formulations of radial flow, estimates of storativity scale inversely with the square of the separation distance and hydraulic diffusivity directly with the square of the separation distance. Uncertainty in the connection paths between the two wells leads to an order of magnitude uncertainty in estimates of storativity and hydraulic diffusivity, although estimates of transmissivity are unaffected. The assumed flow dimension results in alternative estimates of hydraulic parameters. In general, one is faced with the prospect of assuming the hydraulic parameter and inverting the separation distance, or vice versa. Similar uncertainties exist, for instance, when trying to invert transport parameters from tracer mean residence time. This field test illustrates that when dealing with fracture networks, there is a need for analytic methods of complexity that lie between simple radial solutions and discrete fracture network models.

  10. Lossy radial diffusion of relativistic Jovian electrons. [calculation of synchrotron radiation and electron radiation for Jupiter

    NASA Technical Reports Server (NTRS)

    Barbosa, D. D.; Coroniti, F. V.

    1976-01-01

    The radial diffusion equation with synchrotron losses was solved by the Laplace transform method for near-equatorially mirroring relativistic electrons. The evolution of a power law distribution function was found and the characteristics of synchrotron burn-off are stated in terms of explicit parameters for an arbitrary diffusion coefficient. Emissivity from the radiation belts of Jupiter was studied. Asymptotic forms for the distribution in the strong synchrotron loss regime are provided.

  11. An analysis of the flow field near the fuel injection location in a gas core reactor.

    NASA Technical Reports Server (NTRS)

    Weinstein, H.; Murty, B. G. K.; Porter, R. W.

    1971-01-01

    An analytical study is presented which shows the effects of large energy release and the concurrent high acceleration of inner stream fluid on the coaxial flow field in a gas core reactor. The governing equations include the assumptions of only radial radiative transport of energy represented as an energy diffusion term in the Euler equations. The method of integral relations is used to obtain the numerical solution. Results show that the rapidly accelerating, heat generating inner stream actually shrinks in radius as it expands axially.

  12. Transport of carbon ion test particles and hydrogen recycling in the plasma of the Columbia tokamak HBT'' (High Beta Tokamak)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jian-Hua.

    Carbon impurity ion transport is studied in the Columbia High Beta Tokamak (HBT), using a carbon tipped probe which is inserted into the plasma (n{sub e} {approx} 1 {minus} 5 {times} 10{sup 14} (cm{sup {minus}3}), T{sub e} {approx} 4 {minus} 10 (eV), B{sub t} {approx} 0.2 {minus} 0.4(T)). Carbon impurity light, mainly the strong lines of C{sub II}(4267A, emitted by the C{sup +} ions) and C{sub III} (4647A, emitted by the C{sup ++} ions), is formed by the ablation or sputtering of plasma ions and by the discharge of the carbon probe itself. The diffusion transport of the carbon ionsmore » is modeled by measuring the space-and-time dependent spectral light emission of the carbon ions with a collimated optical beam and photomultiplier. The point of emission can be observed in such a way as to sample regions along and transverse to the toroidal magnetic field. The carbon ion diffusion coefficients are obtained by fitting the data to a diffusion transport model. It is found that the diffusion of the carbon ions is classical'' and is controlled by the high collisionality of the HBT plasma; the diffusion is a two-dimensional problem and the expected dependence on the charge of the impurity ion is observed. The measurement of the spatial distribution of the H{sub {alpha}} emissivity was obtained by inverting the light signals from a 4-channel polychromator, the data were used to calculate the minor-radial influx, the density, and the recycling time of neutral hydrogen atoms or molecules. The calculation shows that the particle recycling time {tau}{sub p} is comparable with the plasma energy confinement time {tau}{sub E}; therefore, the recycling of the hot plasma ions with the cold neutrals from the walls is one of the main mechanisms for loss of plasma energy.« less

  13. Transport of Solar Energetic Particles across the Parker field direction due to field line meandering

    NASA Astrophysics Data System (ADS)

    Laitinen, T. L.; Kopp, A.; Effenberger, F.; Dalla, S.; Marsh, M. S.

    2014-12-01

    Multi-spacecraft observations of Solar Energetic Particles (SEPs) show that the SEPs can spread large distances across the mean Parker spiral field. The SEPs accelerated during a solar eruption can be observed 360° around the Sun, and the dependence of SEP peak intensity on heliographic longitude at 1 AU has been fitted with Gaussian profiles with σ=30-50° for several events (e.g., Dresing et al 2014; Richardson et al 2014). SEP anisotropy measurements suggest that interplanetary transport is an important factor to the SEP cross-field extent (Dresing et al 2014). However, the currently used diffusive Fokker Planck (FP) description of SEP transport, with realistic diffusion coefficients, has been found insufficient to explain the SEP event cross-field extents. Recently Laitinen et al (2013) emphasised the importance of particle propagation along meandering field lines, which cannot be described as diffusion. They showed that early in an event field line meandering dominates particle cross-field transport and produces events wider than the FP description. They also introduced a new FP model that incorporates both field line meandering and SEP cross-field diffusion using stochastic differential equations and a constant background magnetic field. In this work, we implement the new FP model into Parker field geometry, to study the evolution of an SEP event in the interplanetary space. We compare the new model to the traditional FP approach by using particle and field line diffusion coefficients that are calculated consistently for both models using an assumed radial and spectral description of the turbulence evolution. We find that while the traditional SEP propagation modelling gives typically longitudinal extent with σ=10-20°, the new model results in values σ=30-50°, which is consistent with SEP observations. We conclude that field line meandering must be taken into account when modelling SEP propagation in the interplanetary space.

  14. Regional Microstructural and Volumetric Magnetic Resonance Imaging (MRI) Abnormalities in the Corpus Callosum of Neonates With Congenital Heart Defect Undergoing Cardiac Surgery.

    PubMed

    Hagmann, Cornelia; Singer, Jitka; Latal, Beatrice; Knirsch, Walter; Makki, Malek

    2016-03-01

    The purpose of the study is to investigate the structural development of the corpus callosum in term neonates with congenital heart defect before and after surgery using diffusion tensor imaging and 3-dimensional T1-weighted magnetic resonance imaging (MRI). We compared parallel and radial diffusions, apparent diffusion coefficient (ADC), fractional anisotropy, and volume of 5 substructures of the corpus callosum: genu, rostral body, body, isthmus, and splenium. Compared to healthy controls, we found a significantly lower volume of the splenium and total corpus callosum and a higher radial diffusion and lower fractional anisotropy in the splenium of patients presurgery; a lower volume in all substructures in the postsurgery group; higher radial diffusion in the rostral body, body, and splenium; and a higher apparent diffusion coefficient in the splenium of postsurgery patients. Similar fractional anisotropy changes in congenital heart defect patients were reported in preterm infants. Our findings in apparent diffusion coefficient in the splenium of these patients (pre and postsurgery) are comparable to findings in preterm neonates with psychomotor delay. Delayed maturation of the isthmus was also reported in preterm infants. © The Author(s) 2015.

  15. Structure-correlated diffusion anisotropy in nanoporous channel networks by Monte Carlo simulations and percolation theory

    NASA Astrophysics Data System (ADS)

    Kondrashova, Daria; Valiullin, Rustem; Kärger, Jörg; Bunde, Armin

    2017-07-01

    Nanoporous silicon consisting of tubular pores imbedded in a silicon matrix has found many technological applications and provides a useful model system for studying phase transitions under confinement. Recently, a model for mass transfer in these materials has been elaborated [Kondrashova et al., Sci. Rep. 7, 40207 (2017)], which assumes that adjacent channels can be connected by "bridges" (with probability pbridge) which allows diffusion perpendicular to the channels. Along the channels, diffusion can be slowed down by "necks" which occur with probability pneck. In this paper we use Monte-Carlo simulations to study diffusion along the channels and perpendicular to them, as a function of pbridge and pneck, and find remarkable correlations between the diffusivities in longitudinal and radial directions. For clarifying the diffusivity in radial direction, which is governed by the concentration of bridges, we applied percolation theory. We determine analytically how the critical concentration of bridges depends on the size of the system and show that it approaches zero in the thermodynamic limit. Our analysis suggests that the critical properties of the model, including the diffusivity in radial direction, are in the universality class of two-dimensional lattice percolation, which is confirmed by our numerical study.

  16. Radial diffusion comparing a THEMIS statistical model with geosynchronous measurements as the outer boundary

    NASA Astrophysics Data System (ADS)

    Li, Z.; Hudson, M. K.; Chen, Y.

    2013-12-01

    The outer boundary energetic electron flux is used as a driver in radial diffusion calculations, and its precise determination is critical to the solution. A new model was proposed recently based on THEMIS measurements to express the boundary flux as three fit functions of solar wind parameters in a response window, that depend on energy and which solar parameter is used: speed, density, or both (Shin and Lee, 2013). The Dartmouth radial diffusion model has been run using LANL geosynchronous satellite measurements as the outer boundary for a one-month interval in July to August 2004 and the calculated phase space density (PSD) is compared with GPS measurements at the GPS orbit (L=4.16), at magnetic equatorial plane crossings, as a test of the model. We also used the outer boundary generated from the Shin and Lee model and examined this boundary condition by computing the error relative to the simulation using a LANL geosynchronous spacecraft data-driven outer boundary. The calculation shows that there is overestimation and underestimation at different times, however the new boundary condition can be used to drive the radial diffusion model generally, producing the phase space density increase and dropout during a storm with a relatively small error. Having this new method based on a solar wind parametrized data set, we can run the radial diffusion model for storms when particle measurements are not available at the outer boundary. We chose the Whole Heliosphere Interval (WHI) as an example and compared the result with MHD/test-particle simulations (Hudson et al., 2012), obtaining much better agreement with PSD based on GPS measurements at L=4.16 using the diffusion model, which incorporates atmospheric losses.

  17. Experiments and Simulations on Magnetically Driven Implosions in High Repetition Rate Dense Plasma Focus

    NASA Astrophysics Data System (ADS)

    Caballero Bendixsen, Luis; Bott-Suzuki, Simon; Cordaro, Samuel; Krishnan, Mahadevan; Chapman, Stephen; Coleman, Phil; Chittenden, Jeremy

    2015-11-01

    Results will be shown on coordinated experiments and MHD simulations on magnetically driven implosions, with an emphasis on current diffusion and heat transport. Experiments are run at a Mather-type dense plasma focus (DPF-3, Vc: 20 kV, Ip: 480 kA, E: 5.8 kJ). Typical experiments are run at 300 kA and 0.33 Hz repetition rate with different gas loads (Ar, Ne, and He) at pressures of ~ 1-3 Torr, usually gathering 1000 shots per day. Simulations are run at a 96-core HP blade server cluster using 3GHz processors with 4GB RAM per node.Preliminary results show axial and radial phase plasma sheath velocity of ~ 1x105 m/s. These are in agreement with the snow-plough model of DPFs. Peak magnetic field of ~ 1 Tesla in the radial compression phase are measured. Electron densities on the order of 1018 cm-3 anticipated. Comparison between 2D and 3D models with empirical results show a good agreement in the axial and radial phase.

  18. Comparison of ACCENT 2000 Shuttle Plume Data with SIMPLE Model Predictions

    NASA Astrophysics Data System (ADS)

    Swaminathan, P. K.; Taylor, J. C.; Ross, M. N.; Zittel, P. F.; Lloyd, S. A.

    2001-12-01

    The JHU/APL Stratospheric IMpact of PLume Effluents (SIMPLE)model was employed to analyze the trace species in situ composition data collected during the ACCENT 2000 intercepts of the space shuttle Space Transportation Launch System (STS) rocket plume as a function of time and radial location within the cold plume. The SIMPLE model is initialized using predictions for species depositions calculated using an afterburning model based on standard TDK/SPP nozzle and SPF plume flowfield codes with an expanded chemical kinetic scheme. The time dependent ambient stratospheric chemistry is fully coupled to the plume species evolution whose transport is based on empirically derived diffusion. Model/data comparisons are encouraging through capturing observed local ozone recovery times as well as overall morphology of chlorine chemistry.

  19. DREAM3D simulations of inner-belt dynamics

    NASA Astrophysics Data System (ADS)

    Cunningham, G.

    2015-12-01

    A 1973 paper by Lyons and Thorne explains the two-belt structure for electrons in the inner magnetosphere as a balance between inward radial diffusion and loss to the atmosphere due to pitch-angle scattering from Coulomb and VLF wave-particle interactions. In this paper, equilibrium solutions to a set of 1D radial diffusion equations, one for each value of the first invariant of motion, μ, were computed to produce the equilibrium structure. Each diffusion equation incorporated an L- and μ-dependent `lifetime' due to the Coulomb and wave-particle interactions. This model is appropriate under the assumption that radial diffusion is slow in comparison to pitch-angle scattering, and that there is no acceleration caused by the VLF wave-particle interactions. We have revisited this model using our DREAM3D 3D diffusion code, which allows the user to explicitly model the diffusion in pitch-angle and momentum rather than using a lifetime. We find that a) replacing the lifetimes with an explicit model of pitch-angle diffusion, thus allowing for coupling between radial and pitch-angle diffusion, affects the equilibrium structure, and b) over the long time scales needed to reach equilibrium, significant acceleration due to VLF wave particle interactions takes place due to the 'cross-terms' in pitch-angle and momentum and the sharp gradient in the equilibrium pitch-angle distributions. We also find that the equilibrium solutions are quite sensitive to various aspects of the physics model employed in the 1973 paper that can be improved, suggesting that additional work needs to be done to fully understand the equilibirum nature of the trapped electron radiation belts.

  20. Observation of Electron Bernstein Wave Heating in the RFP

    NASA Astrophysics Data System (ADS)

    Seltzman, Andrew; Anderson, Jay; Goetz, John; Forest, Cary

    2017-10-01

    The first observation of RF heating in a reversed field pinch (RFP) using the electron Bernstein wave (EBW) has been demonstrated on MST. Efficient mode conversion of an outboard-launched X mode wave at 5.5 GHz leads to Doppler-shifted resonant absorption (ωrf = nωce-k||v||) for a broad range (n =1-7) of harmonics. The dynamics of EBW-heated electrons are measured using a spatial distribution of solid targets with diametrically opposed x-ray detectors. EBW heating produces a clear supra-thermal electron tail in MST. Radial deposition of the EBW is controlled with |B|and is measured using the HXR flux emitted from an insertable probe. In the thick-shelled MST RFP, the radial accessibility of EBW is limited to r/a >0.8 ( 10cm) by magnetic field error induced by the porthole necessary for the antenna. Experimental measurements show EBW propagation inward through a stochastic magnetic field. EBW-heated test electrons are used as a direct probe of edge (r/a >0.9) radial transport, showing a modest transition from `standard' to reduced-tearing RFP operation. Electron loss is too fast for collisional effects and implies a large non-collisional radial diffusivity. EBW heating has been demonstrated in reduced magnetic stochasticity plasmas with β = 15-20%. Work supported by USDOE.

  1. Characterization of non-diffusive transport in plasma turbulence by means of flux-gradient integro-differential kernels

    NASA Astrophysics Data System (ADS)

    Alcuson, J. A.; Reynolds-Barredo, J. M.; Mier, J. A.; Sanchez, Raul; Del-Castillo-Negrete, Diego; Newman, David E.; Tribaldos, V.

    2015-11-01

    A method to determine fractional transport exponents in systems dominated by fluid or plasma turbulence is proposed. The method is based on the estimation of the integro-differential kernel that relates values of the fluxes and gradients of the transported field, and its comparison with the family of analytical kernels of the linear fractional transport equation. Although use of this type of kernels has been explored before in this context, the methodology proposed here is rather unique since the connection with specific fractional equations is exploited from the start. The procedure has been designed to be particularly well-suited for application in experimental setups, taking advantage of the fact that kernel determination only requires temporal data of the transported field measured on an Eulerian grid. The simplicity and robustness of the method is tested first by using fabricated data from continuous-time random walk models built with prescribed transport characteristics. Its strengths are then illustrated on numerical Eulerian data gathered from simulations of a magnetically confined turbulent plasma in a near-critical regime, that is known to exhibit superdiffusive radial transport

  2. Diffuser for augmenting a wind turbine

    DOEpatents

    Foreman, Kenneth M.; Gilbert, Barry L.

    1984-01-01

    A diffuser for augmenting a wind turbine having means for energizing the boundary layer at several locations along the diffuser walls is improved by the addition of a short collar extending radially outward from the outlet of the diffuser.

  3. Performance of an asymmetric short annular diffuser with a nondiverging inner wall using suction. [control of radial profiles of diffuser exit velocity

    NASA Technical Reports Server (NTRS)

    Juhasz, A.

    1974-01-01

    The performance of a short highly asymmetric annular diffuser equipped with wall bleed (suction) capability was evaluated at nominal inlet Mach numbers of 0.188, 0.264, and 0.324 with the inlet pressure and temperature at near ambient values. The diffuser had an area ratio of 2.75 and a length- to inlet-height ratio of 1.6. Results show that the radial profiles of diffuser exit velocity could be controlled from a severely hub peaked to a slightly tip biased form by selective use of bleed. At the same time, other performance parameters were also improved. These results indicate the possible application of the diffuser bleed technique to control flow profiles to gas turbine combustors.

  4. Accounting for magnetic diffusion in core flow inversions from geomagnetic secular variation

    NASA Astrophysics Data System (ADS)

    Amit, Hagay; Christensen, Ulrich R.

    2008-12-01

    We use numerical dynamos to investigate the possible role of magnetic diffusion at the top of the core. We find that the contribution of radial magnetic diffusion to the secular variation is correlated with that of tangential magnetic diffusion for a wide range of control parameters. The correlation between the two diffusive terms is interpreted in terms of the variation in the strength of poloidal flow along a columnar flow tube. The amplitude ratio of the two diffusive terms is used to estimate the probable contribution of radial magnetic diffusion to the secular variation at Earth-like conditions. We then apply a model where radial magnetic diffusion is proportional to tangential diffusion to core flow inversions of geomagnetic secular variation data. We find that including magnetic diffusion does not change dramatically the global flow but some significant local variations appear. In the non frozen-flux core flow models (termed `diffusive'), the hemispherical dichotomy between the active Atlantic and quiet Pacific is weaker, a cyclonic vortex below North America emerges and the vortex below Asia is stronger. Our results have several important geophysical implications. First, our diffusive flow models contain some flow activity at low latitudes in the Pacific, suggesting a local balance between magnetic field advection and diffusion in that region. Second, the cyclone below North America in our diffusive flows reconciles the difference between mantle-driven thermal wind predictions and frozen-flux core flow models, and is consistent with the prominent intense magnetic flux patch below North America in geomagnetic field models. Finally, we hypothesize that magnetic diffusion near the core surface plays a larger role in the geomagnetic secular variation than usually assumed.

  5. Evaluation of Particle Pinch and Diffusion Coefficients in the Edge Pedestal of DIII-D H-mode Discharges

    NASA Astrophysics Data System (ADS)

    Stacey, W. M.; Groebner, R. J.

    2009-11-01

    Momentum balance requires that the radial particle flux satisfy a pinch-diffusion relationship. The pinch can be evaluated in terms of measurable quantities (rotation velocities, Er, etc.) by the use of momentum and particle balance [1,2], the radial particle flux can be determined by momentum balance, and then the diffusion coefficient can be evaluated from the pinch diffusion relation using the measured density gradient. Applications to several DIII-D H-mode plasmas are presented. 6pt [1] W.M. Stacey, Contr. Plasma Phys. 48, 94 (2008). [2] W.M. Stacey and R.J. Groebner, Phys. Plasmas 15, 012503 (2008).

  6. Wave Augmented Diffusers for Centrifugal Compressors

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.; Skoch, Gary J.

    1998-01-01

    A conceptual device is introduced which would utilize unsteady wave motion to slow and turn flows in the diffuser section of a centrifugal compressor. The envisioned device would substantially reduce the size of conventional centrifugal diffusers by eliminating the relatively large ninety degree bend needed to turn the flow from the radial/tangential to the axial direction. The bend would be replaced by a wall and the flow would instead exit through a series of rotating ports located on a disk, adjacent to the diffuser hub, and fixed to the impeller shaft. The ports would generate both expansion and compression waves which would rapidly transition from the hub/shroud (axial) direction to the radial/tangential direction. The waves would in turn induce radial/tangential and axial flow. This paper presents a detailed description of the device. Simplified cycle analysis and performance results are presented which were obtained using a time accurate, quasi-one-dimensional CFD code with models for turning, port flow conditions, and losses due to wall shear stress. The results indicate that a periodic wave system can be established which yields diffuser performance comparable to a conventional diffuser. Discussion concerning feasibility, accuracy, and integration follow.

  7. Effect of Different Angular Momentum Transport Mechanisms on the Radial Volatile Distribution in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Kalyaan, Anusha; Desch, Steven

    2018-01-01

    How circumstellar disks evolve and transport angular momentum is a mystery even until today. Magnetorotational instability (MRI; [1]) earlier thought to be a primary driver of disk evolution, has been found to be not as strong a candidate in cold insufficiently ionized protoplanetary disks where non-ideal MHD effects take over to efficiently suppress the instability [2][3]. In the past few years, recent studies have proposed different mechanisms such as magnetically-driven disk winds [4][5], convective overstability [6], and the vertical shear instability (VSI)[7] to be likely drivers of disk evolution. In this work, we consider numerically [8] and/or parametrically derived radial α profiles of three different mechanisms of angular momentum transport (hydrodynamic instabilities such as VSI, disk winds, and MRI) to understand how the underlying disk structure changes and evolves with each mechanism. We overlay our snowline model that incorporates the advection and diffusion of volatiles as well as radial drift of solids [9] to understand how different α profiles can affect the distribution of water in the disk. References: [1] Balbus, S.A., & Hawley, J.F.,1998, Rev. of Mod. Phys., 70, 1 [2] Bai, X.-N., & Stone, J.M. 2011, ApJ, 736, 144 [3] Bai, X.-N., & Stone, J.M., 2013, ApJ, 769, 76 [4] Bai, X.-N., 2016, ApJ, 821, 80 [5] Suzuki, T.K., Ogihara, M., Morbidelli, A., Crida, A., & Guillot, T., 2016, A&A, 596, A74 [6] Klahr, H., & Hubbard, A. 2014, ApJ, 788, 21 [7] Stoll, M.H.R., & Kley, W. 2014, A&A, 572, A77 [8] Kalyaan, A., Desch, S.J., & Monga, N., 2015, ApJ, 815, 112 [9] Desch, S.J., Estrada, P.R., Kalyaan, A., & Cuzzi, J.N., 2017, ApJ, 840, 86

  8. White Matter Microstructure in Transsexuals and Controls Investigated by Diffusion Tensor Imaging

    PubMed Central

    Kranz, Georg S.; Hahn, Andreas; Kaufmann, Ulrike; Küblböck, Martin; Hummer, Allan; Ganger, Sebastian; Seiger, Rene; Winkler, Dietmar; Swaab, Dick F.; Windischberger, Christian; Kasper, Siegfried; Lanzenberger, Rupert

    2015-01-01

    Biological causes underpinning the well known gender dimorphisms in human behavior, cognition, and emotion have received increased attention in recent years. The advent of diffusion-weighted magnetic resonance imaging has permitted the investigation of the white matter microstructure in unprecedented detail. Here, we aimed to study the potential influences of biological sex, gender identity, sex hormones, and sexual orientation on white matter microstructure by investigating transsexuals and healthy controls using diffusion tensor imaging (DTI). Twenty-three female-to-male (FtM) and 21 male-to-female (MtF) transsexuals, as well as 23 female (FC) and 22 male (MC) controls underwent DTI at 3 tesla. Fractional anisotropy, axial, radial, and mean diffusivity were calculated using tract-based spatial statistics (TBSS) and fiber tractography. Results showed widespread significant differences in mean diffusivity between groups in almost all white matter tracts. FCs had highest mean diffusivities, followed by FtM transsexuals with lower values, MtF transsexuals with further reduced values, and MCs with lowest values. Investigating axial and radial diffusivities showed that a transition in axial diffusivity accounted for mean diffusivity results. No significant differences in fractional anisotropy maps were found between groups. Plasma testosterone levels were strongly correlated with mean, axial, and radial diffusivities. However, controlling for individual estradiol, testosterone, or progesterone plasma levels or for subjects’ sexual orientation did not change group differences. Our data harmonize with the hypothesis that fiber tract development is influenced by the hormonal environment during late prenatal and early postnatal brain development. PMID:25392513

  9. Ex vivo laser lipolysis assisted with radially diffusing optical applicator

    NASA Astrophysics Data System (ADS)

    Hwang, Jieun; Hau, Nguyen Trung; Park, Sung Yeon; Rhee, Yun-Hee; Ahn, Jin-Chul; Kang, Hyun Wook

    2016-05-01

    Laser-assisted lipolysis has been implemented to reduce body fat in light of thermal interactions with adipose tissue. However, using a flat fiber with high irradiance often needs rapid cannula movements and even undesirable thermal injury due to direct tissue contact. The aim of the current study was to explore the feasibility of a radially diffusing optical applicator to liquefy the adipose tissue for effective laser lipolysis. The proposed diffuser was evaluated with a flat fiber in terms of temperature elevation and tissue liquefaction after laser lipolysis with a 980-nm wavelength. Given the same power (20 W), the diffusing applicator generated a 30% slower temperature increase with a 25% lower maximum temperature (84±3.2°C in 1 min p<0.001) in the tissue, compared with the flat fiber. Under the equivalent temperature development, the diffuser induced up to fivefold larger area of the adipose liquefaction due to radial light emission than the flat fiber. Ex vivo tissue tests for 5-min irradiation demonstrated that the diffuser (1.24±0.15 g) liquefied 66% more adipose tissue than the flat fiber (0.75±0.05 g). The proposed diffusing applicator can be a feasible therapeutic device for laser lipolysis due to low temperature development and wide coverage of thermal treatment.

  10. Particle transport characteristics of the RT-1 magnetospheric plasma using gas-puffing modulation technique

    NASA Astrophysics Data System (ADS)

    Kenmochi, Naoki; Nishiura, Masaki; Yoshida, Zensho; Sugata, Tetsuya; Nakamura, Kaori; Katsura, Shotaro

    2017-10-01

    The Ring Trap 1 (RT-1) device creates a laboratory magnetosphere that is realized by a levitated superconducting ring magnet in vacuum. The RT-1 experiment has demonstrated the self-organization of a plasma clump with a steep density gradient; a peaked density distribution is spontaneously created through `inward diffusion'. In order to evaluate particle transport characteristics in the RT-1 magnetospheric plasmas which cause these inward diffusion, density modulation experiments were performed in the RT-1. Density modulation is a powerful method for estimating a diffusion coefficient D and a convection velocity V by puffing a periodic neutral gas. The gas puff modulation causes the change in the electron density measured by two chords of microwave interferometer (the radial positions r = 60 and 70 cm, vertical chord). In the case of 2 Hz gas puff modulation, the phase delay and the modulation-amplitude decay at the chord r = 60 cm are obtained with 15 degree and 0.8, respectively, with respect to the phase and the amplitude at r = 70 cm. The particle balance equations are solved on the assumption of profile shapes for D to evaluate D, V and particle source rate. The result suggests the inward convection in high beta magnetospheric plasmas.

  11. Improved diffuser for augmenting a wind turbine

    DOEpatents

    Foreman, K.M.; Gilbert, B.L.

    A diffuser for augmenting a wind turbine having means for energizing the boundary layer at several locations along the diffuser walls is improved by the addition of a short collar extending radially outward from the outlet of the diffuser.

  12. Comparison of Observed Toroidal Rotation with Neoclassical Transport Theory

    NASA Astrophysics Data System (ADS)

    Wong, S. K.; Chan, V. S.; Hinton, F. L.

    2000-10-01

    Toroidal rotations have been observed in Ohmic and ICRF discharges(J.E. Rice et al.), Nucl. Fusion 39 (1999) 1175. which have little overall momentum input. They are found to correlate with the thermal energy content and the magnitude of the plasma current and change sign relative to the plasma current in different conditions. Existing comparisons with neoclassical transport theory either focus on the relation of the rotation with the radial electric field or fail to use the full expression of the angular momentum flux. We seek to remedy this by invoking the correct expressions(M.N. Rosenbluth et al.), Plasma Phys. Contr. Nucl. Fusion Research (IAEA, Vienna, 1971), Vol. 1, p. 495.^,(R.D. Hazeltine, Phys. Fluids 17) (1974) 961.^,(F.L. Hinton and S.K. Wong, Phys. Fluids 28) (1985) 3082. which contain both diffusive and non-diffusive terms. Developmental work is performed to consider such issues as the presence of impurity ions, the occurrence of near-sonic flows, and the lack of up-down symmetry of flux surfaces. Comparison with experiments will be presented.

  13. THE SPATIO-TEMPORAL EVOLUTION OF SOLAR FLARES OBSERVED WITH AIA/SDO: FRACTAL DIFFUSION, SUB-DIFFUSION, OR LOGISTIC GROWTH?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aschwanden, Markus J., E-mail: aschwanden@lmsal.com

    2012-09-20

    We explore the spatio-temporal evolution of solar flares by fitting a radial expansion model r(t) that consists of an exponentially growing acceleration phase, followed by a deceleration phase that is parameterized by the generalized diffusion function r(t){proportional_to}{kappa}(t - t{sub 1}){sup {beta}/2}, which includes the logistic growth limit ({beta} = 0), sub-diffusion ({beta} = 0-1), classical diffusion ({beta} = 1), super-diffusion ({beta} = 1-2), and the linear expansion limit ({beta} = 2). We analyze all M- and X-class flares observed with Geostationary Operational Environmental Satellite and Atmospheric Imaging Assembly/Solar Dynamics Observatory (SDO) during the first two years of the SDO mission,more » amounting to 155 events. We find that most flares operate in the sub-diffusive regime ({beta} = 0.53 {+-} 0.27), which we interpret in terms of anisotropic chain reactions of intermittent magnetic reconnection episodes in a low plasma-{beta} corona. We find a mean propagation speed of v = 15 {+-} 12 km s{sup -1}, with maximum speeds of v{sub max} = 80 {+-} 85 km s{sup -1} per flare, which is substantially slower than the sonic speeds expected for thermal diffusion of flare plasmas. The diffusive characteristics established here (for the first time for solar flares) is consistent with the fractal-diffusive self-organized criticality model, which predicted diffusive transport merely based on cellular automaton simulations.« less

  14. Propagation of Solar Energetic Particles in Three-dimensional Interplanetary Magnetic Fields: Radial Dependence of Peak Intensities

    NASA Astrophysics Data System (ADS)

    He, H.-Q.; Zhou, G.; Wan, W.

    2017-06-01

    A functional form {I}\\max (R)={{kR}}-α , where R is the radial distance of a spacecraft, was usually used to model the radial dependence of peak intensities {I}\\max (R) of solar energetic particles (SEPs). In this work, the five-dimensional Fokker-Planck transport equation incorporating perpendicular diffusion is numerically solved to investigate the radial dependence of SEP peak intensities. We consider two different scenarios for the distribution of a spacecraft fleet: (1) along the radial direction line and (2) along the Parker magnetic field line. We find that the index α in the above expression varies in a wide range, primarily depending on the properties (e.g., location and coverage) of SEP sources and on the longitudinal and latitudinal separations between the sources and the magnetic foot points of the observers. Particularly, whether the magnetic foot point of the observer is located inside or outside the SEP source is a crucial factor determining the values of index α. A two-phase phenomenon is found in the radial dependence of peak intensities. The “position” of the break point (transition point/critical point) is determined by the magnetic connection status of the observers. This finding suggests that a very careful examination of the magnetic connection between the SEP source and each spacecraft should be taken in the observational studies. We obtain a lower limit of {R}-1.7+/- 0.1 for empirically modeling the radial dependence of SEP peak intensities. Our findings in this work can be used to explain the majority of the previous multispacecraft survey results, and especially to reconcile the different or conflicting empirical values of the index α in the literature.

  15. Numerical study of a high-speed miniature centrifugal compressor

    NASA Astrophysics Data System (ADS)

    Li, Xiaoyi

    A miniature centrifugal compressor is a key component of reverse Brayton cycle cryogenic cooling system. The system is commonly used to generate a low cryogenic temperature environment for electronics to increase their efficiency, or generate, store and transport cryogenic liquids, such as liquid hydrogen and oxygen, where space limit is also an issue. Because of space limitation, the compressor is composed of a radial IGV, a radial impeller and an axial-direction diffuser (which reduces the radial size because of smaller diameter). As a result of reduction in size, rotating speed of the impeller is as high as 313,000 rpm, and Helium is used as the working fluid, in order to obtain the required static pressure ratio/rise. Two main characteristics of the compressor---miniature and high-speed, make it distinct from conventional compressors. Higher compressor efficiency is required to obtain a higher COP (coefficient of performance) system. Even though miniature centrifugal compressors start to draw researchers' attention in recent years, understanding of the performance and loss mechanism is still lacking. Since current experimental techniques are not advanced enough to capture details of flow at miniature scale, numerical methods dominate miniature turbomachinery study. This work numerically studied a high speed miniature centrifugal compressor with commercial CFD code. The overall performance of the compressor was predicted with consideration of interaction between blade rows by using sliding mesh model. The law of similarity of turbomachinery was validated for small scale machines. It was found that the specific ratio effect needs to be considered when similarity law is applied. But Reynolds number effect can be neglected. The loss mechanism of each component was analyzed. Loss due to turning bend was significant in each component. Tip leakage loss of small scale turbomachines has more impact on the impeller performance than that of large scale ones. Because the splitter was located at downstream of the impeller leading edge, any incidence at the impeller leading edge could deteriorate the splitter performance. Therefore, the impeller with twenty blades had, higher isentropic efficiency than the impeller with ten blades and ten splitters. Based on numerical study, a four-row vaned diffuser replaced a two-row vaned diffuser. It was found that the four-row vaned diffuser had much higher pressure recovery coefficient than the two-row vaned diffuser. However, most of pressure numerically is found to be recovered at the first two rows of diffuser vanes. Consequently, the following suggestions were given to further improve the performance of the miniature centrifugal compressor. (1) Redesign inlet guide vane based on the numerical simulation and experimental results. (2) Add de-swirl vanes in front of the diffuser and before the bend. (3) Replace the current impeller with a twenty-blade impeller. (4) Remove the last two rows of diffuser.

  16. Magnetic Field Transport in Accretion Disks

    NASA Astrophysics Data System (ADS)

    Jafari, Amir; Vishniac, Ethan T.

    2018-02-01

    The leading models for launching astrophysical jets rely on strong poloidal magnetic fields threading the central parts of their host accretion disks. Numerical simulations of magneto-rotationally turbulent disks suggest that such fields are actually advected from the environment by the accreting matter rather than generated by internal dynamos. This is puzzling from a theoretical point of view, since the reconnection of the radial field across the midplane should cause an outward drift on timescales much shorter than the accretion time. We suggest that a combination of effects are responsible for reducing the radial field near the midplane, causing efficient inward advection of the poloidal field. Magnetic buoyancy in subsonic turbulence pushes the field lines away from the midplane, decreasing the large-scale radial field in the main body of the disk. In magneto-rotationally driven turbulence, magnetic buoyancy dominates over the effects of turbulent pumping, which works against it, and turbulent diamagnetism, which works with it, in determining the vertical drift of the magnetic field. Balancing buoyancy with diffusion implies that the bending angle of the large-scale poloidal field can be very large near the surface, as required for outflows, but vanishes near the midplane, which impedes turbulent reconnection and outward diffusion. This effect becomes less efficient as the poloidal flux increases. This suggests that accretion disks are less likely to form jets if they have a modest ratio of outer to inner radii or if the ambient field is very weak. The former effect is probably responsible for the scarcity of jets in cataclysmic variable systems.

  17. Global Search of a Three-dimensional Low Solidity Circular Cascade Diffuser for Centrifugal Blowers by Meta-model Assisted Optimization

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Daisaku; Sakue, Daiki; Tun, Min Thaw

    2018-04-01

    A three-dimensional blade of a low solidity circular cascade diffuser in centrifugal blowers is designed by means of a multi-point optimization technique. The optimization aims at improving static pressure coefficient at a design point and at a small flow rate condition. Moreover, a clear definition of secondary flow expressed by positive radial velocity at hub side is taken into consideration in constraints. The number of design parameters for three-dimensional blade reaches to 10 in this study, such as a radial gap, a radial chord length and mean camber angle distribution of the LSD blade with five control points, control point between hub and shroud with two design freedom. Optimization results show clear Pareto front and selected optimum design shows good improvement of pressure rise in diffuser at small flow rate conditions. It is found that three-dimensional blade has advantage to stabilize the secondary flow effect with improving pressure recovery of the low solidity circular cascade diffuser.

  18. Bayesian inference of radiation belt loss timescales.

    NASA Astrophysics Data System (ADS)

    Camporeale, E.; Chandorkar, M.

    2017-12-01

    Electron fluxes in the Earth's radiation belts are routinely studied using the classical quasi-linear radial diffusion model. Although this simplified linear equation has proven to be an indispensable tool in understanding the dynamics of the radiation belt, it requires specification of quantities such as the diffusion coefficient and electron loss timescales that are never directly measured. Researchers have so far assumed a-priori parameterisations for radiation belt quantities and derived the best fit using satellite data. The state of the art in this domain lacks a coherent formulation of this problem in a probabilistic framework. We present some recent progress that we have made in performing Bayesian inference of radial diffusion parameters. We achieve this by making extensive use of the theory connecting Gaussian Processes and linear partial differential equations, and performing Markov Chain Monte Carlo sampling of radial diffusion parameters. These results are important for understanding the role and the propagation of uncertainties in radiation belt simulations and, eventually, for providing a probabilistic forecast of energetic electron fluxes in a Space Weather context.

  19. ULF Wave Analysis and Radial Diffusion Calculation Using a Global MHD Model for the 17 March 2015 Storm and Comparison with the 17 March 2013 Storm

    NASA Astrophysics Data System (ADS)

    Li, Z.; Hudson, M.; Paral, J.; Wiltberger, M. J.; Boyd, A. J.; Turner, D. L.

    2016-12-01

    The 17 March 2015 `St. Patrick's Day Storm' is the largest geomagnetic storm to date of Solar Cycle 24, with a Dst of -223 nT. The magnetopause moved inside geosynchronous orbit under high solar wind dynamic pressure and strong southward IMF Bz causing loss, however a subsequent drop in pressure allowed for rapid rebuilding of the radiation belts. Local heating has been modeled by other groups for this and the 17 March 2013 storm, only slightly weaker and showing a similar effect on electrons: first a rapid dropout due to inward motion of the magnetopause followed by rapid increase in flux above the pre-storm level and an even greater slow increase likely due to radial diffusion. The latter can be seen in temporal evolution of the electron phase space density measured by the Energetic Particle, Composition, and Thermal Plasma Suite (ECT) instrument on Van Allen Probes. Using the Lyon-Fedder-Mobarry global MHD model driven by upstream solar wind measurements with the Magneotsphere-Ionosphere Coupler (MIX), we have simulated both `St. Patrick's Day'events, analyzing LFM electric and magnetic fields to calculate radial diffusion coefficients. These coefficients have been implemented in a radial diffusion code using the measured electron phase space density profile following the local heating and as the outer boundary condition for subsequent temporally evolution over the next 12 days, beginning 18 March 2015. Agreement with electron phase space density at 1000 MeV/G measured by the MagEIS component of the ECT instrument on Van Allen Probes (30 keV - 4 MeV) was much improved using radial diffusion coefficients from the MHD simulations relative to coefficients parametrized by a global geomagnetic activity index.

  20. Effects of inlet flow field conditions on the performance of centrifugal compressor diffusers: Part 1 -- Discrete-passage diffuser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filipenco, V.G.; Deniz, S.; Johnston, J.M.

    2000-01-01

    This is Part 1 of a two-part paper considering the performance of radial diffusers for use in a high-performance centrifugal compressor. Part 1 reports on discrete-passage diffusers, while Part 2 describes a test of a straight-channel diffuser designed for equivalent duty. Two builds of discrete-passage diffuser were tested, with 30 and 38 separate passages. Both the 30 and 38 passage diffusers investigated showed comparable range of unstalled operation and similar level of overall diffuser pressure recovery. The paper concentrates on the influence of inlet flow conditions on the pressure recovery and operating range of radial diffusers for centrifugal compressor stages.more » The flow conditions examined include diffuser inlet Mach number, flow angle, blockage, and axial flow nonuniformity. The investigation was carried out in a specially built test facility, designed to provide a controlled inlet flow field to the test diffusers. The facility can provide a wide range of diffuser inlet velocity profile distortion and skew with Mach numbers up to unity and flow angles of 63 to 75 deg from the radical direction. The consequences of different averaging methods for the inlet total pressure distributions, which are needed in the definition of diffuser pressure recovery coefficient for nonuniform diffuser inlet conditions, were also assessed. The overall diffuser pressure recovery coefficient, based on suitably averaged inlet total pressure, was found to correlate well with the momentum-averaged flow angle into the diffuser. It is shown that the generally accepted sensitivity of diffuser pressure recovery performance to inlet flow distortion and boundary layer blockage can be largely attributed to inappropriate quantification of the average dynamic pressure at diffuser inlet. Use of an inlet dynamic pressure based on availability or mass-averaging in combination with definition of inlet flow angle based on mass average of the radial and tangential velocity at diffuser inlet removes this sensitivity.« less

  1. Analysis and Comparison with DNS of a Stochastic Model for the Relative Motion of High-Stokes-Number Particles in Isotropic Turbulence

    NASA Astrophysics Data System (ADS)

    Dhariwal, Rohit; Rani, Sarma; Koch, Donald

    2015-11-01

    In an earlier work, Rani, Dhariwal, and Koch (JFM, Vol. 756, 2014) developed an analytical closure for the diffusion current in the PDF transport equation describing the relative motion of high-Stokes-number particle pairs in isotropic turbulence. In this study, an improved closure was developed for the diffusion coefficient, such that the motion of the particle-pair center of mass is taken into account. Using the earlier and the new analytical closures, Langevin simulations of pair relative motion were performed for four particle Stokes numbers, Stη = 10 , 20 , 40 , 80 and at two Taylor micro-scale Reynolds numbers Reλ = 76 , 131 . Detailed comparisons of the analytical model predictions with those of DNS were undertaken. It is seen that the pair relative motion statistics obtained from the improved theory show excellent agreement with the DNS statistics. The radial distribution functions (RDFs), and relative velocity PDFs obtained from the improved-closure-based Langevin simulations are found to be in very good agreement with those from DNS. It was found that the RDFs and relative velocity RMS increased with Reλ for all Stη . The collision kernel also increased strongly with Reλ , since it depended on the RDF and the radial relative velocities.

  2. Semiempirical models of H-mode discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singer, C.E.; Redi, M.; Boyd, D.

    1985-05-01

    The H-mode transition can lead to a rapid increase in tokamak plasma confinement. A semiempirical transport model was derived from global OH and L-mode confinement scalings and then applied to simulation of H-mode discharges. The radial diffusivities in the model also depend on local density and pressure gradients and satisfy an appropriate dimensional constraint. Examples are shown of the application of this and similar models to the detailed simulation of two discharges which exhibit an H-mode transition. The models reproduce essential features of plasma confinement in the ohmic heating, low and high confinement phases of these discharges. In particular, themore » evolution of plasma energy content through the H-mode transition can be reproduced without any sudden or ad hoc modification of the plasma transport formulation.« less

  3. White matter microstructure in transsexuals and controls investigated by diffusion tensor imaging.

    PubMed

    Kranz, Georg S; Hahn, Andreas; Kaufmann, Ulrike; Küblböck, Martin; Hummer, Allan; Ganger, Sebastian; Seiger, Rene; Winkler, Dietmar; Swaab, Dick F; Windischberger, Christian; Kasper, Siegfried; Lanzenberger, Rupert

    2014-11-12

    Biological causes underpinning the well known gender dimorphisms in human behavior, cognition, and emotion have received increased attention in recent years. The advent of diffusion-weighted magnetic resonance imaging has permitted the investigation of the white matter microstructure in unprecedented detail. Here, we aimed to study the potential influences of biological sex, gender identity, sex hormones, and sexual orientation on white matter microstructure by investigating transsexuals and healthy controls using diffusion tensor imaging (DTI). Twenty-three female-to-male (FtM) and 21 male-to-female (MtF) transsexuals, as well as 23 female (FC) and 22 male (MC) controls underwent DTI at 3 tesla. Fractional anisotropy, axial, radial, and mean diffusivity were calculated using tract-based spatial statistics (TBSS) and fiber tractography. Results showed widespread significant differences in mean diffusivity between groups in almost all white matter tracts. FCs had highest mean diffusivities, followed by FtM transsexuals with lower values, MtF transsexuals with further reduced values, and MCs with lowest values. Investigating axial and radial diffusivities showed that a transition in axial diffusivity accounted for mean diffusivity results. No significant differences in fractional anisotropy maps were found between groups. Plasma testosterone levels were strongly correlated with mean, axial, and radial diffusivities. However, controlling for individual estradiol, testosterone, or progesterone plasma levels or for subjects' sexual orientation did not change group differences. Our data harmonize with the hypothesis that fiber tract development is influenced by the hormonal environment during late prenatal and early postnatal brain development. Copyright © 2014 the authors 0270-6474/14/3415466-10$15.00/0.

  4. Energization of Radiation Belt Electrons by High and Low Azimuthal Mode Number Poloidal Mode ULF Waves

    NASA Astrophysics Data System (ADS)

    Hudson, M. K.; Brito, T.; Elkington, S. R.; Kress, B. T.; Liang, Y.

    2011-12-01

    CME-shock and CIR-driven geomagnetic storms are characterized by enhanced ULF wave activity in the magnetosphere. This enhanced ULF wave power produces both coherent and diffusive transport and energization, as well as pitch angle modification of radiation belt electrons in drift resonance with azimuthally propagating ULF waves. Recent observations of two CME-driven storms1,2 have suggested that poloidal mode waves with both low and high azimuthal mode number may be efficient at accelerating radiation belt electrons. We extend up to m = 50 the analysis of Ozeke and Mann3 who examined drift resonance for poloidal modes up to m = 40. We calculate radial diffusion coefficients for source population electrons in the 50 -500 keV range, and continued resonance with lower m-numbers at higher energies for ULF waves in the Pc 5, 0.4 - 10 mHz range. We use an analytic model for ULF waves superimposed on a compressed dipole, developed for equatorial plane studies by Elkington et al.4 and extended to 3D by Perry et al.4 Assuming a power spectrum which varies as ω-2, consistent with earlier observations, we find greater efficiency for radial transport and acceleration at lower m number where there is greater power for drift resonance at a given frequency. This assumption is consistent with 3D global MHD simulations using the Lyon-Fedder-Mobarry code which we have carried out for realistic solar wind driving conditions during storms. Coherent interaction with ULF waves can also occur at a rate which exceeds nominal radial diffusion estimates but is slower than prompt injection on a drift time scale. Depending on initial electron drift phase, some electrons are accelerated due to the westward azimuthal electric field Eφ, while others are decelerated by eastward Eφ, decreasing their pitch angle. A subset of trapped electrons are seen to precipitate to the atmosphere in 3D LFM simulations, showing modulation at the coherent poloidal mode ULF wave frequency in both simulations and MINIS balloon observations for the January 21, 2005 CME-driven storm. Thus Pc 5 poloidal mode ULF waves cause competing increase and decrease in relativistic electron flux. The relative efficiencies of both coherent and diffusive processes will be examined. 1Zong et al., JGR, doi:10.1029/2009JA014393, 2009. 2Tan et al., JGR, doi:10.1029/2010JA016226, 2011. 3Ozeke and Mann, JGR, doi:10.1029/2007JA012468, 2008. 4Elkington et al., doi:10.1029/2001JA009202, 2003, 2003. 5Perry et al., doi:10.1029/2004JA010760, 2005.

  5. A model-based reconstruction for undersampled radial spin echo DTI with variational penalties on the diffusion tensor

    PubMed Central

    Knoll, Florian; Raya, José G; Halloran, Rafael O; Baete, Steven; Sigmund, Eric; Bammer, Roland; Block, Tobias; Otazo, Ricardo; Sodickson, Daniel K

    2015-01-01

    Radial spin echo diffusion imaging allows motion-robust imaging of tissues with very low T2 values like articular cartilage with high spatial resolution and signal-to-noise ratio (SNR). However, in vivo measurements are challenging due to the significantly slower data acquisition speed of spin-echo sequences and the less efficient k-space coverage of radial sampling, which raises the demand for accelerated protocols by means of undersampling. This work introduces a new reconstruction approach for undersampled DTI. A model-based reconstruction implicitly exploits redundancies in the diffusion weighted images by reducing the number of unknowns in the optimization problem and compressed sensing is performed directly in the target quantitative domain by imposing a Total Variation (TV) constraint on the elements of the diffusion tensor. Experiments were performed for an anisotropic phantom and the knee and brain of healthy volunteers (3 and 2 volunteers, respectively). Evaluation of the new approach was conducted by comparing the results to reconstructions performed with gridding, combined parallel imaging and compressed sensing, and a recently proposed model-based approach. The experiments demonstrated improvement in terms of reduction of noise and streaking artifacts in the quantitative parameter maps as well as a reduction of angular dispersion of the primary eigenvector when using the proposed method, without introducing systematic errors into the maps. This may enable an essential reduction of the acquisition time in radial spin echo diffusion tensor imaging without degrading parameter quantification and/or SNR. PMID:25594167

  6. A quiescent state of 3 to 8 MeV radiation belt electrons

    NASA Astrophysics Data System (ADS)

    Selesnick, R. S.; Blake, J. B.; Kolasinski, W. A.; Fritz, T. A.

    During a ∼3 month period in mid-1996 outer radiation belt electrons in the energy range from ∼ 3 to 8 MeV were diffusing inward and decaying in intensity with no internal or external source. Measurements from the HIST instrument on POLAR are used to constrain a model for time dependent lossy radial diffusion of these electrons, and to obtain estimates of a parameterized radial diffusion coefficient and lifetime. For lower energy electrons, of ∼ 1 to 3 MeV, a source at L > 6 is apparent throughout most of the same period.

  7. Radial q-space sampling for DSI

    PubMed Central

    Baete, Steven H.; Yutzy, Stephen; Boada, Fernando, E.

    2015-01-01

    Purpose Diffusion Spectrum Imaging (DSI) has been shown to be an effective tool for non-invasively depicting the anatomical details of brain microstructure. Existing implementations of DSI sample the diffusion encoding space using a rectangular grid. Here we present a different implementation of DSI whereby a radially symmetric q-space sampling scheme for DSI (RDSI) is used to improve the angular resolution and accuracy of the reconstructed Orientation Distribution Functions (ODF). Methods Q-space is sampled by acquiring several q-space samples along a number of radial lines. Each of these radial lines in q-space is analytically connected to a value of the ODF at the same angular location by the Fourier slice theorem. Results Computer simulations and in vivo brain results demonstrate that RDSI correctly estimates the ODF when moderately high b-values (4000 s/mm2) and number of q-space samples (236) are used. Conclusion The nominal angular resolution of RDSI depends on the number of radial lines used in the sampling scheme, and only weakly on the maximum b-value. In addition, the radial analytical reconstruction reduces truncation artifacts which affect Cartesian reconstructions. Hence, a radial acquisition of q-space can be favorable for DSI. PMID:26363002

  8. Generation and Sustainment of Plasma Rotation by ICRF Heating

    NASA Astrophysics Data System (ADS)

    Perkins, F. W.

    2000-10-01

    When tokamak plasmas are heated by the fundamental minority ion-cyclotron process, they are observed to rotate toroidally, even though this heating process introduces negligable angular momentum. This work proposes and evaluates a physics mechanism which resolves this apparent conflict. The argument has two elements. First, it is assumed that angular momentum transport is governed by a diffusion equation with a v_tor = 0 boundary condition at the plasma surface and a torque-density source. When the source consists of separated regions of positive and negative torque density, a finite central rotation velocity results, even though the volume integrated torque density - the angular momentum input - vanishes. Secondly, ions energized by the ICRF process can generate separated regions of positive and negative torque density. Heating increases their banana widths which leads to radial energetic-particle transport that must be balanced by neutralizing radial currents and a j_rB_pR torque density in the bulk plasma. Additional, comparable torque density results from collisional transfer of mechanical angular momentum from energetic particles to the bulk plasma and particle loss through banana particles impacting the wall. Monte-Carlo calculations utilizing the ORBIT code evaluate all sources of torque density and rigorously assure that no net angular momentum is introduced. Two models of ICRF heating, diffusive and instantaneous, give similar results. When the resonance location is on the LFS, the calculated rotation has the magnitude, profile, and co-current sense of Alcator C-Mod observations. For HFS resonance locations, the model predicts counter-current rotation. Scans of rotational profiles vs. resonance location, initial energy, particle loss, pitch, and qm will be presented as will the location of the velocity shear layer its scaling to a reactor.

  9. Influence of Applied Thermal Gradients and a Static Magnetic Field on Bridgman-Grown GeSi Alloys

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Szofran, F. R.; Cobb, S. D.; Ritter, T. M.

    1999-01-01

    The effect of applied axial and radial thermal gradients and an axial static magnetic field on the macrosegregation profiles of Bridgman-grown GeSi alloy crystals has been assessed. The axial thermal gradients were adjusted by changing the control setpoints of a seven-zone vertical Bridgman furnace. The radial thermal gradients were affected by growing samples in ampoules with different thermal conductivities, namely graphite, hot-pressed boron nitride (BN), and pyrolytic boron nitride (PBN). Those samples grown in a graphite ampoule exhibited radial profiles consistent with a highly concave interface and axial profiles indicative of complete mixing in the melt. The samples grown in BN and PBN ampoules had less radial variation. Axial macrosegregation profiles of these samples fell between the predictions for a completely mixed melt and one where solute transport is dominated by diffusion. All of the samples were grown on Ge seeds. This resulted in a period of free growth until the Si concentration in the solid was in equilibrium with the Si concentration in the liquid. The length of crystal grown during this period was inversely proportional to the applied axial thermal gradient. Several samples were grown in an axial 5 Tesla magnetic field. Measured macroscopic segregation profiles on these samples indicate that the magnetic field did not, in general, reduce the melt flow velocities to below the growth velocities.

  10. Effect of External Photoevaporation on the Radial Transport of Volatiles and the Water Snowline in the Solar Nebula

    NASA Astrophysics Data System (ADS)

    Kalyaan, Anusha; Desch, Steven

    2017-01-01

    The Sun was likely born in a high mass star forming region [1]. Such a birth environment with a proximity to a nearby O or B star would photoevaporate the sun’s protoplanetary disk and cause an outward mass flow from the outer edge, as well as truncation of the disk, as seen in the Orion proplyds (although not as intensely)[2]. Photoevaporation likely explains the currently observed ~47 AU edge of the Kuiper Belt in our solar system [3], and more compellingly, the origin of certain short-lived radionuclides (such as Fe60), which cannot be successfully explained by a nebular origin [4][5]. Such a mass loss mechanism should affect the radial transport processes in the snowline region and along with temperature, has the potential to alter the location of the snowline.In this context, and in the light of recent ALMA observational results indicative of non-traditional behavior of snowlines and volatile transport in disks [6][7], this work studies what effect a photoevaporative mass loss from the outer disk may have on the volatile transport around the snowline region between ~1-10 AU in the disk. We build on the model of [8] and explore the effects of a steep photoevaporated non-uniform $\\alpha$ disk on radial transport of volatiles and small icy solids by incorporating the advection-diffusion equations as in [9] and condensation/evaporation of volatiles. We present results of these simulations, including volatile mass fluxes, ice/rock ratios, and snow line locations, in protoplanetary disks like the solar nebula.References: [1] Adams, F.C., 2010, ARAA 48,47 [2] Henney, W.J., & O’Dell, C.R., 1999, AJ, 118, 2350 [3] Trujillo,C.A. & Brown,M.E., 2001, ApJL,554,L95 [4] Hester, J.J., & Desch, S.J., 2005,ASPC, 341,107 [5] Wadhwa, M. et al. , 2007, Protostars & Planets V, 835 [5 [6] Cieza, L.A., et al., 2016, Nature,535,258 [7] Huang, J, et al. et al., 2016, ApJL, 823, L18 [8] Kalyaan, A., et al., 2015, ApJ, 815, 112 [9] Desch, S.J., et al., (in review).

  11. Quantifying white matter tract diffusion parameters in the presence of increased extra-fiber cellularity and vasogenic edema

    PubMed Central

    Chiang, Chia-Wen; Wang, Yong; Sun, Peng; Lin, Tsen-Hsuan; Trinkaus, Kathryn; Cross, Anne H.; Song, Sheng-Kwei

    2014-01-01

    The effect of extra-fiber structural and pathological components confounding diffusion tensor imaging (DTI) computation was quantitatively investigated using data generated by both Monte-Carlo simulations and tissue phantoms. Increased extent of vasogenic edema, by addition of various amount of gel to fixed normal mouse trigeminal nerves or by increasing non-restricted isotropic diffusion tensor components in Monte-Carlo simulations, significantly decreased fractional anisotropy (FA), increased radial diffusivity, while less significantly increased axial diffusivity derived by DTI. Increased cellularity, mimicked by graded increase of the restricted isotropic diffusion tensor component in Monte-Carlo simulations, significantly decreased FA and axial diffusivity with limited impact on radial diffusivity derived by DTI. The MC simulation and tissue phantom data were also analyzed by the recently developed diffusion basis spectrum imaging (DBSI) to simultaneously distinguish and quantify the axon/myelin integrity and extra-fiber diffusion components. Results showed that increased cellularity or vasogenic edema did not affect the DBSI-derived fiber FA, axial or radial diffusivity. Importantly, the extent of extra-fiber cellularity and edema estimated by DBSI correlated with experimentally added gel and Monte-Carlo simulations. We also examined the feasibility of applying 25-direction diffusion encoding scheme for DBSI analysis on coherent white matter tracts. Results from both phantom experiments and simulations suggested that the 25-direction diffusion scheme provided comparable DBSI estimation of both fiber diffusion parameters and extra-fiber cellularity/edema extent as those by 99-direction scheme. An in vivo 25-direction DBSI analysis was performed on experimental autoimmune encephalomyelitis (EAE, an animal model of human multiple sclerosis) optic nerve as an example to examine the validity of derived DBSI parameters with post-imaging immunohistochemistry verification. Results support that in vivo DBSI using 25-direction diffusion scheme correctly reflect the underlying axonal injury, demyelination, and inflammation of optic nerves in EAE mice. PMID:25017446

  12. Radial distribution of the contributions to band broadening of a silica-based semi-preparative monolithic column.

    PubMed

    Abia, Jude A; Mriziq, Khaled S; Guiochon, Georges A

    2009-04-01

    Using an on-column local electrochemical microdetector operated in the amperometric mode, band elution profiles were recorded at different radial locations at the exit of a 10 mm id, 100 mm long silica-based monolithic column. HETP plots were then acquired at each of these locations, and all these results were fitted to the Knox equation. This provided a spatial distribution of the values of the eddy diffusion (A), the molecular diffusion (B), and the resistance to the kinetics of mass transfer (C) terms. Results obtained indicate that the wall region yields higher A values and smaller C values than the central core region. Significant radial fluctuations of these contributions to band broadening occur throughout the exit column cross-section. This phenomenon is due to the structural radial heterogeneity of the column.

  13. Study on method to simulate light propagation on tissue with characteristics of radial-beam LED based on Monte-Carlo method.

    PubMed

    Song, Sangha; Elgezua, Inko; Kobayashi, Yo; Fujie, Masakatsu G

    2013-01-01

    In biomedical, Monte-carlo simulation is commonly used for simulation of light diffusion in tissue. But, most of previous studies did not consider a radial beam LED as light source. Therefore, we considered characteristics of a radial beam LED and applied them on MC simulation as light source. In this paper, we consider 3 characteristics of radial beam LED. The first is an initial launch area of photons. The second is an incident angle of a photon at an initial photon launching area. The third is the refraction effect according to contact area between LED and a turbid medium. For the verification of the MC simulation, we compared simulation and experimental results. The average of the correlation coefficient between simulation and experimental results is 0.9954. Through this study, we show an effective method to simulate light diffusion on tissue with characteristics for radial beam LED based on MC simulation.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaggero, Daniele; Urbano, Alfredo; Valli, Mauro

    We compute the γ-ray and neutrino diffuse emission of the Galaxy on the basis of a recently proposed phenomenological model characterized by radially dependent cosmic-ray (CR) transport properties. We show how this model, designed to reproduce both Fermi-LAT γ-ray data and local CR observables, naturally reproduces the anomalous TeV diffuse emission observed by Milagro in the inner Galactic plane. Above 100 TeV our picture predicts a neutrino flux that is about five (two) times larger than the neutrino flux computed with conventional models in the Galactic Center region (full-sky). Explaining in that way up to ∼25% of the flux measuredmore » by IceCube, we reproduce the full-sky IceCube spectrum adding an extra-Galactic component derived from the muonic neutrinos flux in the northern hemisphere. We also present precise predictions for the Galactic plane region where the flux is dominated by the Galactic emission.« less

  15. An axisymmetric non-hydrostatic model for double-diffusive water systems

    NASA Astrophysics Data System (ADS)

    Hilgersom, Koen; Zijlema, Marcel; van de Giesen, Nick

    2018-02-01

    The three-dimensional (3-D) modelling of water systems involving double-diffusive processes is challenging due to the large computation times required to solve the flow and transport of constituents. In 3-D systems that approach axisymmetry around a central location, computation times can be reduced by applying a 2-D axisymmetric model set-up. This article applies the Reynolds-averaged Navier-Stokes equations described in cylindrical coordinates and integrates them to guarantee mass and momentum conservation. The discretized equations are presented in a way that a Cartesian finite-volume model can be easily extended to the developed framework, which is demonstrated by the implementation into a non-hydrostatic free-surface flow model. This model employs temperature- and salinity-dependent densities, molecular diffusivities, and kinematic viscosity. One quantitative case study, based on an analytical solution derived for the radial expansion of a dense water layer, and two qualitative case studies demonstrate a good behaviour of the model for seepage inflows with contrasting salinities and temperatures. Four case studies with respect to double-diffusive processes in a stratified water body demonstrate that turbulent flows are not yet correctly modelled near the interfaces and that an advanced turbulence model is required.

  16. A Fast-Ion Source for LAPD

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Boehmer, H.; Edrich, D.; Heidbrink, W. W.; McWilliams, R.; Leneman, D.

    2002-11-01

    To measure the fast-ion transport as a function of gyroradius, a 3-cm diameter, 17 MHz, ˜ 80 W, ˜ 3 mA, argon source is under development for use in the LArge Plasma Device (LAPD). In tests on the Irvine Mirror, the source performs reliably when oriented either parallel to the magnetic field or at an oblique angle and in either a CW or pulsed mode of operation. A radial energy analyzer measures the profile of the 200-500 eV beam. Laser-induced fluorescence (LIF) of cold 3d^2G_9/2 argon metastables excited by the source is readily measured but the hot argon ions in the beam itself are more difficult to detect. In preliminary tests on LAPD, the source operated successfully. Planned physics experiments include measurements of collisional fast-ion diffusion and fluctuation-induced transport.

  17. Temporal and spatial patterns of internal and external stem CO2 fluxes in a sub-Mediterranean oak.

    PubMed

    Salomón, Roberto L; Valbuena-Carabaña, María; Gil, Luis; McGuire, Mary Anne; Teskey, Robert O; Aubrey, Doug P; González-Doncel, Inés; Rodríguez-Calcerrada, Jesús

    2016-11-01

    To accurately estimate stem respiration (R S ), measurements of both carbon dioxide (CO 2 ) efflux to the atmosphere (E A ) and internal CO 2 flux through xylem (F T ) are needed because xylem sap transports respired CO 2 upward. However, reports of seasonal dynamics of F T and E A are scarce and no studies exist in Mediterranean species under drought stress conditions. Internal and external CO 2 fluxes at three stem heights, together with radial stem growth, temperature, sap flow and shoot water potential, were measured in Quercus pyrenaica Willd. in four measurement campaigns during one growing season. Substantial daytime depressions in temperature-normalized E A were observed throughout the experiment, including prior to budburst, indicating that diel hysteresis between stem temperature and E A cannot be uniquely ascribed to diversion of CO 2 in the transpiration stream. Low internal [CO 2 ] (<0.5%) resulted in low contributions of F T to R S throughout the growing season, and R S was mainly explained by E A (>90%). Internal [CO 2 ] was found to vary vertically along the stems. Seasonality in resistance to radial CO 2 diffusion was related to shoot water potential. The low internal [CO 2 ] and F T observed in our study may result from the downregulation of xylem respiration in response to a legacy of coppicing as well as high radial diffusion of CO 2 through cambium, phloem and bark tissues, which was related to low water content of stems. Long-term studies analyzing temporal and spatial variation in internal and external CO 2 fluxes and their interactions are needed to mechanistically understand and model respiration of woody tissues. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Measurement and Interpretation of DT Neutron Emission from Tftr.

    NASA Astrophysics Data System (ADS)

    McCauley, John Scott, Jr.

    A fast-ion diffusion coefficient of 0.1 +/- 0.1 m^2s ^{-1} has been deduced from the triton burnup neutron emission profile measured by a collimated array of helium-4 spectrometers. The experiment was performed with high-power deuterium discharges produced by Princeton University's Tokamak Fusion Test Reactor (TFTR). The fast ions monitored were the 1.0 MeV tritons produced from the d(d,t)p triton burnup reaction. These tritons "burn up" with deuterons and emit a 14 MeV neutron by the d(t, alpha)n reaction. The measured radial profiles of DT emission were compared with the predictions of a computer transport code. The ratio of the measured-to -calculated DT yield is typically 70%. The measured DT profile width is typically 5 cm larger than predicted by the transport code. The radial 14 MeV neutron profile was measured by a radial array of helium-4 recoil neutron spectrometers installed in the TFTR Multichannel Neutron Collimator (MCNC). The spectrometers are capable of measuring the primary and secondary neutron fluxes from deuterium discharges. The response to 14 MeV neutrons of the array has been measured by cross calibrating with the MCNC ZnS detector array when the emission from TFTR is predominantly DT neutrons. The response was also checked by comparing a model of the recoil spectrum based on nuclear physics data to the observed spectrum from ^{252 }Cf, ^{238}Pu -Be, and DT neutron sources. Extensions of this diagnostic to deuterium-tritium plasma and the implications for fusion research are discussed.

  19. Observational constraints on relativistic electron dynamics: temporal evolution of electron spectra and flux isotropization

    NASA Astrophysics Data System (ADS)

    Kanekal, S. G.; Selesnick, R. S.; Baker, D. N.; Blake, J. B.

    2007-05-01

    Models of energization of electrons in the Earth's outer radiation belts invoke two classes of processes, radial transport and in-situ wave-particle interactions. Temporal evolution of electron spectra and flux isotropization during energization events provide useful observational constraints on models of electron energization. Events dominated by radial diffusion result in pancake type pitch angle distributions whereas some in-situ wave-particle energization mechanisms include pitch angle scattering leading to rapid flux isotropization. We present a survey of flux isotrpization time scales and electron spectra during relativstic electron enhancement events. We will use data collected by detectors onboard SAMPEX in low earth orbit and Polar which measures electron fluxes at higher altitude to measure flux isotropization. Electron spectra are obtained by pulse height analyzed data from the PET detector onboard SAMPEX.SAMPEX measurements cover the entire outer zone for more than a decade from mid 1992 to mid 2004 and Polar covers the time period from mid 1996 to the present.

  20. Gray Matter Atrophy Is Primarily Related to Demyelination of Lesions in Multiple Sclerosis: A Diffusion Tensor Imaging MRI Study.

    PubMed

    Tóth, Eszter; Szabó, Nikoletta; Csete, Gergõ; Király, András; Faragó, Péter; Spisák, Tamás; Bencsik, Krisztina; Vécsei, László; Kincses, Zsigmond T

    2017-01-01

    Objective: Cortical pathology, periventricular demyelination, and lesion formation in multiple sclerosis (MS) are related (Hypothesis 1). Factors in the cerebrospinal fluid close to these compartments could possibly drive the parallel processes. Alternatively, the cortical atrophy could be caused by remote axonal transection (Hypothesis 2). Since MRI can differentiate between demyelination and axon loss, we used this imaging modality to investigate the correlation between the pattern of diffusion parameter changes in the periventricular- and deep white matter and the gray matter atrophy. Methods: High-resolution T1-weighted, FLAIR, and diffusion MRI images were acquired in 52 RRMS patients and 50 healthy, age-matched controls. We used EDSS to estimate the clinical disability. We used Tract Based Spatial Statistics to compare diffusion parameters (fractional anisotropy, mean, axial, and radial diffusivity) between groups. We evaluated global brain, white, and gray matter atrophy with SIENAX. Averaged, standard diffusion parameters were calculated in four compartment: periventricular lesioned and normal appearing white matter, non-periventricular lesioned and normal appearing white matter. PLS regression was used to identify which diffusion parameter and in which compartment best predicts the brain atrophy and clinical disability. Results: In our diffusion tensor imaging study compared to controls we found extensive alterations of fractional anisotropy, mean and radial diffusivity and smaller changes of axial diffusivity (maximal p > 0.0002) in patients that suggested demyelination in the lesioned and in the normal appearing white matter. We found significant reduction in total brain, total white, and gray matter (patients: 718.764 ± 14.968, 323.237 ± 7.246, 395.527 ± 8.050 cm 3 , controls: 791.772 ± 22.692, 355.350 ± 10.929, 436.422 ± 12.011 cm 3 ; mean ± SE), ( p < 0.015; p < 0.0001; p < 0.009; respectively) of patients compared to controls. The PLS analysis revealed a combination of demyelination-like diffusion parameters (higher mean and radial diffusivity in patients) in the lesions and in the non-lesioned periventricular white matter, which best predicted the gray matter atrophy ( p < 0.001). Similarly, EDSS was best predicted by the radial diffusivity of the lesions and the non-lesioned periventricular white matter, but axial diffusivity of the periventricular lesions also contributed significantly ( p < 0.0001). Interpretation: Our investigation showed that gray matter atrophy and white matter demyelination are related in MS but white matter axonal loss does not significantly contribute to the gray matter pathology.

  1. Design and optimization of a single stage centrifugal compressor for a solar dish-Brayton system

    NASA Astrophysics Data System (ADS)

    Wang, Yongsheng; Wang, Kai; Tong, Zhiting; Lin, Feng; Nie, Chaoqun; Engeda, Abraham

    2013-10-01

    According to the requirements of a solar dish-Brayton system, a centrifugal compressor stage with a minimum total pressure ratio of 5, an adiabatic efficiency above 75% and a surge margin more than 12% needs to be designed. A single stage, which consists of impeller, radial vaned diffuser, 90° crossover and two rows of axial stators, was chosen to satisfy this system. To achieve the stage performance, an impeller with a 6:1 total pressure ratio and an adiabatic efficiency of 90% was designed and its preliminary geometry came from an in-house one-dimensional program. Radial vaned diffuser was applied downstream of the impeller. Two rows of axial stators after 90° crossover were added to guide the flow into axial direction. Since jet-wake flow, shockwave and boundary layer separation coexisted in the impeller-diffuser region, optimization on the radius ratio of radial diffuser vane inlet to impeller exit, diffuser vane inlet blade angle and number of diffuser vanes was carried out at design point. Finally, an optimized centrifugal compressor stage fulfilled the high expectations and presented proper performance. Numerical simulation showed that at design point the stage adiabatic efficiency was 79.93% and the total pressure ratio was 5.6. The surge margin was 15%. The performance map including 80%, 90% and 100% design speed was also presented.

  2. Whole-brain diffusion tensor imaging in correlation to visual-evoked potentials in multiple sclerosis: a tract-based spatial statistics analysis.

    PubMed

    Lobsien, D; Ettrich, B; Sotiriou, K; Classen, J; Then Bergh, F; Hoffmann, K-T

    2014-01-01

    Functional correlates of microstructural damage of the brain affected by MS are incompletely understood. The purpose of this study was to evaluate correlations of visual-evoked potentials with microstructural brain changes as determined by DTI in patients with demyelinating central nervous disease. Sixty-one patients with clinically isolated syndrome or MS were prospectively recruited. The mean P100 visual-evoked potential latencies of the right and left eyes of each patient were calculated and used for the analysis. For DTI acquisition, a single-shot echo-planar imaging pulse sequence with 80 diffusion directions was performed at 3T. Fractional anisotropy, radial diffusivity, and axial diffusivity were calculated and correlated with mean P100 visual-evoked potentials by tract-based spatial statistics. Significant negative correlations between mean P100 visual-evoked potentials and fractional anisotropy and significant positive correlations between mean P100 visual-evoked potentials and radial diffusivity were found widespread over the whole brain. The highest significance was found in the optic radiation, frontoparietal white matter, and corpus callosum. Significant positive correlations between mean P100 visual-evoked potentials and axial diffusivity were less widespread, notably sparing the optic radiation. Microstructural changes of the whole brain correlated significantly with mean P100 visual-evoked potentials. The distribution of the correlations showed clear differences among axial diffusivity, fractional anisotropy, and radial diffusivity, notably in the optic radiation. This finding suggests a stronger correlation of mean P100 visual-evoked potentials to demyelination than to axonal damage. © 2014 by American Journal of Neuroradiology.

  3. Calculations of neoclassical impurity transport in stellarators

    NASA Astrophysics Data System (ADS)

    Mollén, Albert; Smith, Håkan M.; Langenberg, Andreas; Turkin, Yuriy; Beidler, Craig D.; Helander, Per; Landreman, Matt; Newton, Sarah L.; García-Regaña, José M.; Nunami, Masanori

    2017-10-01

    The new stellarator Wendelstein 7-X has finished the first operational campaign and is restarting operation in the summer 2017. To demonstrate that the stellarator concept is a viable candidate for a fusion reactor and to allow for long pulse lengths of 30 min, i.e. ``quasi-stationary'' operation, it will be important to avoid central impurity accumulation typically governed by the radial neoclassical transport. The SFINCS code has been developed to calculate neoclassical quantities such as the radial collisional transport and the ambipolar radial electric field in 3D magnetic configurations. SFINCS is a cutting-edge numerical tool which combines several important features: the ability to model an arbitrary number of kinetic plasma species, the full linearized Fokker-Planck collision operator for all species, and the ability to calculate and account for the variation of the electrostatic potential on flux surfaces. In the present work we use SFINCS to study neoclassical impurity transport in stellarators. We explore how flux-surface potential variations affect the radial particle transport, and how the radial electric field is modified by non-trace impurities and flux-surface potential variations.

  4. Modeling drug release from PVAc/PVP matrix tablets.

    PubMed

    Siepmann, F; Eckart, K; Maschke, A; Kolter, K; Siepmann, J

    2010-01-25

    Kollidon SR-based matrix tablets containing various amounts of diprophylline were prepared and thoroughly characterized in vitro. This includes drug release measurements in 0.1M HCl and phosphate buffer pH 7.4, monitoring of changes in the tablet's height and diameter, morphology as well as dry mass upon exposure to the release media. Based on these experimental results, a mechanistic realistic mathematical theory is proposed, taking into account the given initial and boundary conditions as well as radial and axial mass transport in cylinders. Importantly, good agreement between theory and experiment was obtained in all cases, indicating that drug diffusion with constant diffusivity is the dominant mass transport mechanism in these systems. Furthermore, the proposed theory was used to quantitatively predict the effects of the initial tablet height and diameter on the resulting drug release patterns. These theoretical predictions were compared with independently measured drug release kinetics. Good agreement was observed in all cases, proving the validity of the mathematical theory and illustrating the latter's practical benefit: The model can help to significantly facilitate the recipe optimization of this type of advanced drug delivery systems in order to achieve a desired release profile. Copyright 2009 Elsevier B.V. All rights reserved.

  5. A Model for Plasma Transport in a Corotation-Dominated Magnetosphere.

    NASA Astrophysics Data System (ADS)

    Pontius, Duane Henry, Jr.

    1988-06-01

    The gross structures of the magnetospheres of the outer planets are decided by processes quite different from those predominant in that of the earth. The terrestrial plasmapause, the boundary beyond which plasma motion is principally determined by magnetospheric interaction with the solar wind, is typically inside geosynchronous orbit. Within the plasmasphere, rotational effects are present, but gravity exceeds the centrifugal force of corotation. In contrast, the Jovian plasmasphere extends to a distance at least twenty times farther than synchronous orbit, affording a large region where rotational effects are expected to he clearly manifest (Brice and Ioannidis, 1970). The goal of this thesis is to develop an appropriate theoretical model for treating the problem of plasma transport in a corotation dominated plasmasphere. The model presented here is intended to describe the radial transport of relatively cold plasma having an azimuthally uniform distribution in a dipolar magnetic field. The approach is conceptually similar to that of the radial diffusion model in that small scale motions are examined to infer global consequences, but the physical understanding of those small scale motions is quite different. In particular, discrete flux tubes of small cross section are assumed to move over distances large compared to their widths. The present model also differs from the corotating convection model by introducing a mechanism whereby the conservation of flux tube content along flowlines is violated. However, it is quite possible that a global convection pattern co -exists with the motions described here, leading to longitudinal asymmetries in the plasma distribution.

  6. Turbine exhaust diffuser with region of reduced flow area and outer boundary gas flow

    DOEpatents

    Orosa, John

    2014-03-11

    An exhaust diffuser system and method for a turbine engine. The outer boundary may include a region in which the outer boundary extends radially inwardly toward the hub structure and may direct at least a portion of an exhaust flow in the diffuser toward the hub structure. At least one gas jet is provided including a jet exit located on the outer boundary. The jet exit may discharge a flow of gas downstream substantially parallel to an inner surface of the outer boundary to direct a portion of the exhaust flow in the diffuser toward the outer boundary to effect a radially outward flow of at least a portion of the exhaust gas flow toward the outer boundary to balance an aerodynamic load between the outer and inner boundaries.

  7. Gestational Age at Birth and Brain White Matter Development in Term-Born Infants and Children.

    PubMed

    Ou, X; Glasier, C M; Ramakrishnaiah, R H; Kanfi, A; Rowell, A C; Pivik, R T; Andres, A; Cleves, M A; Badger, T M

    2017-12-01

    Studies on infants and children born preterm have shown that adequate gestational length is critical for brain white matter development. Less is known regarding how variations in gestational age at birth in term infants and children affect white matter development, which was evaluated in this study. Using DTI tract-based spatial statistics methods, we evaluated white matter microstructures in 2 groups of term-born (≥37 weeks of gestation) healthy subjects: 2-week-old infants ( n = 44) and 8-year-old children ( n = 63). DTI parameters including fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity were calculated by voxelwise and ROI methods and were correlated with gestational age at birth, with potential confounding factors such as postnatal age and sex controlled. Fractional anisotropy values, which are markers for white matter microstructural integrity, positively correlated ( P < .05, corrected) with gestational age at birth in most major white matter tracts/regions for the term infants. Mean diffusivity values, which are measures of water diffusivities in the brain, and axial and radial diffusivity values, which are markers for axonal growth and myelination, respectively, negatively correlated ( P < .05, corrected) with gestational age at birth in all major white matter tracts/regions excluding the body and splenium of the corpus callosum for the term infants. No significant correlations with gestational age were observed for any tracts/regions for the term-born 8-year-old children. Our results indicate that longer gestation during the normal term period is associated with significantly greater infant white matter development (as reflected by higher fractional anisotropy and lower mean diffusivity, axial diffusivity, and radial diffusivity values); however, similar associations were not observable in later childhood. © 2017 by American Journal of Neuroradiology.

  8. White matter alterations in the brains of patients with active, remitted, and cured cushing syndrome: a DTI study.

    PubMed

    Pires, P; Santos, A; Vives-Gilabert, Y; Webb, S M; Sainz-Ruiz, A; Resmini, E; Crespo, I; de Juan-Delago, M; Gómez-Anson, B

    2015-06-01

    Cushing syndrome appears after chronic exposure to elevated glucocorticoid levels. Cortisol excess may alter white matter microstructure. Our purpose was to study WM changes in patients with Cushing syndrome compared with controls by using DTI and the influence of hypercortisolism. Thirty-five patients with Cushing syndrome and 35 healthy controls, matched for age, education, and sex, were analyzed through DTI (tract-based spatial statistics) for fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity (general linear model, family-wise error, and threshold-free cluster enhancement corrections, P < .05). Furthermore, the influence of hypercortisolism on WM DTI changes was studied by comparing 4 subgroups: 8 patients with Cushing syndrome with active hypercortisolism, 7 with Cushing syndrome with medication-remitted cortisol, 20 surgically cured, and 35 controls. Cardiovascular risk factors were used as covariates. In addition, correlations were analyzed among DTI values, concomitant 24-hour urinary free cortisol levels, and disease duration. There were widespread alterations (reduced fractional anisotropy, and increased mean diffusivity, axial diffusivity, and radial diffusivity values; P < .05) in patients with Cushing syndrome compared with controls, independent of the cardiovascular risk factors present. Both active and cured Cushing syndrome subgroups showed similar changes compared with controls. Patients with medically remitted Cushing syndrome also had reduced fractional anisotropy and increased mean diffusivity and radial diffusivity values, compared with controls. No correlations were found between DTI maps and 24-hour urinary free cortisol levels or with disease duration. Diffuse WM alterations in patients with Cushing syndrome suggest underlying loss of WM integrity and demyelination. Once present, they seem to be independent of concomitant hypercortisolism, persisting after remission/cure. © 2015 by American Journal of Neuroradiology.

  9. ULF wave analysis and radial diffusion calculation using a global MHD model for the 17 March 2013 and 2015 storms

    NASA Astrophysics Data System (ADS)

    Li, Zhao; Hudson, Mary; Patel, Maulik; Wiltberger, Michael; Boyd, Alex; Turner, Drew

    2017-07-01

    The 17 March 2015 St. Patrick's Day Storm is the largest geomagnetic storm to date of Solar Cycle 24, with a Dst of -223 nT. The magnetopause moved inside geosynchronous orbit under high solar wind dynamic pressure and strong southward interplanetary magnetic field Bz causing loss; however, a subsequent drop in pressure allowed for rapid rebuilding of the radiation belts. The 17 March 2013 storm also shows similar effects on outer zone electrons: first, a rapid dropout due to inward motion of the magnetopause followed by rapid increase in flux above the prestorm level early in the recovery phase and a slow increase over the next 12 days. These phases can be seen in temporal evolution of the electron phase space density measured by the Energetic Particle, Composition, and Thermal Plasma Suite (ECT) instruments on Van Allen Probes. Using the Lyon-Fedder-Mobarry global MHD model driven by upstream solar wind measurements, we simulated both St. Patrick's Day 2013 and 2015 events, analyzing Lyon-Fedder-Mobarry electric and magnetic fields to calculate radial diffusion coefficients. These coefficients have been implemented in a radial diffusion code, using the measured electron phase space density following the local heating as the initial radial profile and outer boundary condition for subsequent temporal evolution over the next 12 days, beginning 18 March. Agreement with electron phase space density at 1000 MeV/G measured by the MagEIS component of the ECT instrument suite on Van Allen Probes was much improved using radial diffusion coefficients from the MHD simulations relative to coefficients parameterized by a global geomagnetic activity index.

  10. Effect of Nonlocal Electron Transport in Both Directions on the Symmetry of Polar-Drive--Ignition Targets

    NASA Astrophysics Data System (ADS)

    Delettrez, J. A.; Collins, T. J. B.; Shvydky, A.; Moses, G.; Cao, D.; Marinak, M. M.

    2012-10-01

    A nonlocal, multigroup diffusion model for thermal electron transportfootnotetextG. P. Schurtz, Ph. D. Nicola"i, and M. Busquet, Phys. Plasmas 7, 4238 (2000). has been added to the 2-D hydrodynamic code DRACO. This model has been applied to simulations of polar-drive (PD) NIF ignition designs. Previous simulations were carried out with a constant flux-limiter model in both the radial and transverse directions. Due to the nonsymmetry of PD illumination, these implosions suffer from low-mode nonuniformities that affect their performance. Nonlocal electron transport in both directions is expected to reduce these nonuniformities. The 2-D thermal electron flux from simulations, using either the nonlocal model or the standard flux-limited approach, will be compared and the effect of the nonlocal transport model on the growth of the nonuniformities and on target performance will be presented. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-08NA28302.

  11. A model relating radiated power and impurity concentrations during Ne, N and Ar injection in Tore Supra

    NASA Astrophysics Data System (ADS)

    Hogan, J.; Demichelis, C.; Monier-Garbet, P.; Guirlet, R.; Hess, W.; Schunke, B.

    2000-10-01

    A model combining the MIST (core symmetric) and BBQ (SOL asymmetric) codes is used to study the relation between impurity density and radiated power for representative cases from Tore Supra experiments on strong radiation regimes using the ergodic divertor. Transport predictions of external radiation are compared with observation to estimate the absolute impurity density. BBQ provides the incoming distribution of recycling impurity charge states for the radial transport calculation. The shots studied use the ergodic divertor and high ICRH power. Power is first applied and then the extrinsic impurity (Ne, N or Ar) is injected. Separate time dependent intrinsic (C and O) impurity transport calculations match radiation levels before and during the high power and impurity injection phases. Empirical diffusivities are sought to reproduce the UV (CV R, I lines), CVI Lya, OVIII Lya, Zeff, and horizontal bolometer data. The model has been used to calculate the relative radiative efficiency (radiated power / extrinsically contributed electron) for the sample database.

  12. Transport with Reversed Er in Gamma -10, LAPD and the Sao Paulo Tokamak

    NASA Astrophysics Data System (ADS)

    Fu, Sean; Morrison, P. J.; Horton, W.; Caldas, Ibere

    2009-11-01

    The understanding of how and when the reversed radial electric field produces an internal transport barrier is still poorly understood. There are two linked aspects to the problem: (i) the change in the plasma instabilities and thus the fluctuation spectrum from changes away from or towards the generalized Rayleigh condition for destabilizing the drift wave/ Rossby wave instabilities and (2) for a fixed fluctuation spectrum the role of the Er reversal in creating a layer where the resonant surfaces do not overlap so the condition for the onset of diffusion from overlapping resonances in phase space is not satisfied. We look at a model that is representative of the externally controlled Er shear in the G-10 Tsukuba tandem mirror and in the wall biasing experiments in the LAPD and the Sao Paulo Tokamak to ask when the effects are dominant and how they may compete with each other to determine the conditions for the transport suppression that is reported in numerous plasma experiments.

  13. Plasma Transport and Magnetic Flux Circulation in Saturn's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Neupane, B. R.; Delamere, P. A.; Ma, X.; Wilson, R. J.

    2017-12-01

    Radial transport of plasma in the rapidly rotating magnetospheres is an important dynamical process. Radial transport is due to the centrifugally driven interchange instability and magnetodisc reconnection, allowing net mass to be transported outward while conserving magnetic flux. Using Cassini Plasma Spectrometer instrument (CAPS) data products (e.g., Thomsen et al., [2010]; Wilson et al., [2017]) we estimate plasma mass and magnetic flux transport rates as functions of radial distance and local time. The physical requirement for zero net magnetic flux transport provides a key benchmark for assessing the validity of our mass transport estimate. We also evaluate magnetodisc stability using a two-dimensional axisymmetric equilibrium model [Caudal, 1986]. Observed local properties (e.g., specific entropy and estimates of flux tube mass and entropy content) are compared with modeled equilibrium conditions such that departures from equilibrium can be correlated with radial flows and local magnetic field structure. Finally, observations of specific entropy indicate that plasma is non-adiabatic heated during transport. However, the values of specific entropy are well organized in inner magnetosphere (i.e. L<10), and become widely scattered in the middle magnetosphere, suggesting that the transport dynamics of the inner and middle magnetosphere are different.

  14. Nondestructive estimation of wood chemical composition of sections of radial wood strips by diffuse reflectance near infrared spectroscopy

    Treesearch

    P. David Jones; Laurence R. Schimleck; Gary F. Peter; Richard F. Daniels; Alexander Clark

    2006-01-01

    The use of calibrated near infrared (NIR) spectroscopy for predicting the chemical composition of Pirus taeda L. (loblolly pine) wood samples is investigated. Seventeen P. taeda radial strips, representing seven different sites were selected and NlR spectra were obtained from the radial longitudinal face of each strip. The spectra...

  15. The Interplay between Proto--Neutron Star Convection and Neutrino Transport in Core-Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Mezzacappa, A.; Calder, A. C.; Bruenn, S. W.; Blondin, J. M.; Guidry, M. W.; Strayer, M. R.; Umar, A. S.

    1998-01-01

    We couple two-dimensional hydrodynamics to realistic one-dimensional multigroup flux-limited diffusion neutrino transport to investigate proto-neutron star convection in core-collapse supernovae, and more specifically, the interplay between its development and neutrino transport. Our initial conditions, time-dependent boundary conditions, and neutrino distributions for computing neutrino heating, cooling, and deleptonization rates are obtained from one-dimensional simulations that implement multigroup flux-limited diffusion and one-dimensional hydrodynamics. The development and evolution of proto-neutron star convection are investigated for both 15 and 25 M⊙ models, representative of the two classes of stars with compact and extended iron cores, respectively. For both models, in the absence of neutrino transport, the angle-averaged radial and angular convection velocities in the initial Ledoux unstable region below the shock after bounce achieve their peak values in ~20 ms, after which they decrease as the convection in this region dissipates. The dissipation occurs as the gradients are smoothed out by convection. This initial proto-neutron star convection episode seeds additional convectively unstable regions farther out beneath the shock. The additional proto-neutron star convection is driven by successive negative entropy gradients that develop as the shock, in propagating out after core bounce, is successively strengthened and weakened by the oscillating inner core. The convection beneath the shock distorts its sphericity, but on the average the shock radius is not boosted significantly relative to its radius in our corresponding one-dimensional models. In the presence of neutrino transport, proto-neutron star convection velocities are too small relative to bulk inflow velocities to result in any significant convective transport of entropy and leptons. This is evident in our two-dimensional entropy snapshots, which in this case appear spherically symmetric. The peak angle-averaged radial and angular convection velocities are orders of magnitude smaller than they are in the corresponding ``hydrodynamics-only'' models. A simple analytical model supports our numerical results, indicating that the inclusion of neutrino transport reduces the entropy-driven (lepton-driven) convection growth rates and asymptotic velocities by a factor ~3 (50) at the neutrinosphere and a factor ~250 (1000) at ρ = 1012 g cm-3, for both our 15 and 25 M⊙ models. Moreover, when transport is included, the initial postbounce entropy gradient is smoothed out by neutrino diffusion, whereas the initial lepton gradient is maintained by electron capture and neutrino escape near the neutrinosphere. Despite the maintenance of the lepton gradient, proto-neutron star convection does not develop over the 100 ms duration typical of all our simulations, except in the instance where ``low-test'' intial conditions are used, which are generated by core-collapse and bounce simulations that neglect neutrino-electron scattering and ion-ion screening corrections to neutrino-nucleus elastic scattering. Models favoring the development of proto-neutron star convection either by starting with more favorable, albeit artificial (low-test), initial conditions or by including transport corrections that were ignored in our ``fiducial'' models were considered. Our conclusions nonetheless remained the same. Evidence of proto-neutron star convection in our two-dimensional entropy snapshots was minimal, and, as in our fiducial models, the angle-averaged convective velocities when neutrino transport was included remained orders of magnitude smaller than their counterparts in the corresponding hydrodynamics-only models.

  16. Inward transport of a toroidally confined plasma subject to strong radial electric fields

    NASA Technical Reports Server (NTRS)

    Roth, J. R.; Krawczonek, W. M.; Powers, E. J.; Hong, J.; Kim, Y. H.

    1977-01-01

    Digitally implemented spectral analysis techniques were used to investigate the frequency-dependent fluctuation-induced particle transport across a toroidal magnetic field. When the electric field pointed radially inward, the transport was inward and a significant enhancement of the plasma density and confinement time resulted.

  17. A determination of the L dependence of the radial diffusion coefficient for protons in Jupiter's inner magnetosphere

    NASA Technical Reports Server (NTRS)

    Thomsen, M. F.; Goertz, C. K.; Van Allen, J. A.

    1977-01-01

    In a previous paper (Thomsen et al., 1977), a technique was proposed for estimating the radial diffusion coefficient (n) in the inner magnetosphere of Jupiter from the observations of the sweeping effect of the inner Jovian satellites on the fluxes of the energetic charged particles. The present paper extends this technique to permit the unique identification of the parameters D sub O and n, where the diffusion coefficient is assumed to be of the form D = D sub O L to the nth. The derived value of D sub O depends directly on assumptions regarding the nature and efficiency of the loss mechanism operating on the particles, while the value of n depends only on the assumed width of the loss region. The extended technique is applied to the University of Iowa Pioneer 11 proton data, leading to values of n of about O and D(6) of about 3 x 10 to the -8th (R sub J)-squared/sec, when satellite sweepup losses are assumed to be the only loss operating on the protons. The small value of n is strong evidence that the radial diffusion is driven by ionospheric winds.

  18. Ion confinement and transport in a toroidal plasma with externally imposed radial electric fields

    NASA Technical Reports Server (NTRS)

    Roth, J. R.; Krawczonek, W. M.; Powers, E. J.; Kim, Y. C.; Hong, H. Y.

    1979-01-01

    Strong electric fields were imposed along the minor radius of the toroidal plasma by biasing it with electrodes maintained at kilovolt potentials. Coherent, low-frequency disturbances characteristic of various magnetohydrodynamic instabilities were absent in the high-density, well-confined regime. High, direct-current radial electric fields with magnitudes up to 135 volts per centimeter penetrated inward to at least one-half the plasma radius. When the electric field pointed radially toward, the ion transport was inward against a strong local density gradient; and the plasma density and confinement time were significantly enhanced. The radial transport along the electric field appeared to be consistent with fluctuation-induced transport. With negative electrode polarity the particle confinement was consistent with a balance of two processes: a radial infusion of ions, in those sectors of the plasma not containing electrodes, that resulted from the radially inward fields; and ion losses to the electrodes, each of the which acted as a sink and drew ions out of the plasma. A simple model of particle confinement was proposed in which the particle confinement time is proportional to the plasma volume. The scaling predicted by this model was consistent with experimental measurements.

  19. Diffusivity measurements of volatile organics in levitated viscous aerosol particles

    NASA Astrophysics Data System (ADS)

    Bastelberger, Sandra; Krieger, Ulrich K.; Luo, Beiping; Peter, Thomas

    2017-07-01

    Field measurements indicating that atmospheric secondary organic aerosol (SOA) particles can be present in a highly viscous, glassy state have spurred numerous studies addressing low diffusivities of water in glassy aerosols. The focus of these studies is on kinetic limitations of hygroscopic growth and the plasticizing effect of water. In contrast, much less is known about diffusion limitations of organic molecules and oxidants in viscous matrices. These may affect atmospheric chemistry and gas-particle partitioning of complex mixtures with constituents of different volatility. In this study, we quantify the diffusivity of a volatile organic in a viscous matrix. Evaporation of single particles generated from an aqueous solution of sucrose and small amounts of volatile tetraethylene glycol (PEG-4) is investigated in an electrodynamic balance at controlled relative humidity (RH) and temperature. The evaporative loss of PEG-4 as determined by Mie resonance spectroscopy is used in conjunction with a radially resolved diffusion model to retrieve translational diffusion coefficients of PEG-4. Comparison of the experimentally derived diffusivities with viscosity estimates for the ternary system reveals a breakdown of the Stokes-Einstein relationship, which has often been invoked to infer diffusivity from viscosity. The evaporation of PEG-4 shows pronounced RH and temperature dependencies and is severely depressed for RH ≲ 30 %, corresponding to diffusivities < 10-14 cm2 s-1 at temperatures < 15 °C. The temperature dependence is strong, suggesting a diffusion activation energy of about 300 kJ mol-1. We conclude that atmospheric volatile organic compounds can be subject to severe diffusion limitations in viscous organic aerosol particles. This may enable an important long-range transport mechanism for organic material, including pollutant molecules such as polycyclic aromatic hydrocarbons (PAHs).

  20. Calculation of the Neoclassical Radial Electric Field using a Gyrokinetic δ f Code

    NASA Astrophysics Data System (ADS)

    Lewandowski, J. L. V.; Boozer, A.; Williams, J.; Lin, Z.; Zarnstorff, M.

    2000-10-01

    The calculation of the radial electric field in stellarator devices is an important issue in neoclassical transport. The radial electric field, which is also related to the formation of transport barriers, can affect the anomalous transport. In stellarator configurations which depart only weakly from axi-symmetry, a direct Monte Carlo calculations of the radial electric is difficult due to the large statistical fluctuations. We present a novel method based on the evaluation of the perpendicular ( p_⊥ ) and parallel ( p_|| ) pressures. The variation of widehatp ≡ ( p_|| + p_⊥ ) /2 on the magnetic surface provides a low-noise calculation of the radial electric field. The low-noise method has been implemented in a three-dimensional gyro-kinetic particle code [1]. The calculation of the radial electric field for the National Compact Stellarator Experiment [2] will be presented. [ 1 ] Z. Lin, T. S. Hahm, W. W. Lee, W. M. Tang, and R. White Science 281, 1835 (1998). [ 2 ] A. Reiman et al, invited talk (this conference).

  1. Separation of Electric Fields Into Potential and Inductive Parts, and Implications for Radial Diffusion

    NASA Astrophysics Data System (ADS)

    Chan, A. A.; Ilie, R.; Elkington, S. R.; Albert, J.; Huie, W.

    2017-12-01

    It has been traditional to separate radiation belt radial-diffusion coefficients into two contributions: an "electrostatic" diffusion coefficient, which is assumed to be due to a potential (non-inductive) electric field, and an "electromagnetic" diffusion coefficient , which is assumed to be due to the combined effect of an inductive electric field and the corresponding time-dependent magnetic field. One difficulty in implementing this separation when using magnetospheric fields obtained from measurements, or from MHD simulations, is that only the total electric field is given; the separation of the electric field into potential and inductive parts is not readily available. In this work we separate the electric field using a numerical method based on the Helmholtz decomposition of the total motional electric field calculated by the BATS-R-US MHD code. The inner boundary for the electric potential is based on the Ridley Ionospheric Model solution and we assume floating boundary conditions in the solar wind. Using different idealized solar wind drivers, including a solar wind density that is oscillating at a single frequency or with a broad spectrum of frequencies, we calculate potential and inductive electric fields, electric and magnetic power spectral densities, and corresponding radial diffusion coefficients. Simulations driven by idealized solar wind conditions show a clear separation of the potential and inductive contributions to the power spectral densities and diffusion coefficients. Simulations with more realistic solar wind drivers are underway to better assess the use of electrostatic and electromagnetic diffusion coefficients in understanding ULF wave-particle interactions in Earth's radiation belts.

  2. Reproducing the observed energy-dependent structure of Earth's electron radiation belts during storm recovery with an event-specific diffusion model

    DOE PAGES

    Ripoll, J. -F.; Reeves, Geoffrey D.; Cunningham, Gregory Scott; ...

    2016-06-11

    Here, we present dynamic simulations of energy-dependent losses in the radiation belt “slot region” and the formation of the two-belt structure for the quiet days after the 1 March storm. The simulations combine radial diffusion with a realistic scattering model, based data-driven spatially and temporally resolved whistler-mode hiss wave observations from the Van Allen Probes satellites. The simulations reproduce Van Allen Probes observations for all energies and L shells (2–6) including (a) the strong energy dependence to the radiation belt dynamics (b) an energy-dependent outer boundary to the inner zone that extends to higher L shells at lower energies andmore » (c) an “S-shaped” energy-dependent inner boundary to the outer zone that results from the competition between diffusive radial transport and losses. We find that the characteristic energy-dependent structure of the radiation belts and slot region is dynamic and can be formed gradually in ~15 days, although the “S shape” can also be reproduced by assuming equilibrium conditions. The highest-energy electrons (E > 300 keV) of the inner region of the outer belt (L ~ 4–5) also constantly decay, demonstrating that hiss wave scattering affects the outer belt during times of extended plasmasphere. Through these simulations, we explain the full structure in energy and L shell of the belts and the slot formation by hiss scattering during storm recovery. We show the power and complexity of looking dynamically at the effects over all energies and L shells and the need for using data-driven and event-specific conditions.« less

  3. On plasma convection in Saturn's magnetosphere

    NASA Astrophysics Data System (ADS)

    Livi, Roberto

    We use CAPS plasma data to derive particle characteristics within Saturn's inner magnetosphere. Our approach is to first develop a forward-modeling program to derive 1-dimensional (1D) isotropic plasma characteristics in Saturn's inner, equatorial magnetosphere using a novel correction for the spacecraft potential and penetrating background radiation. The advantage of this fitting routine is the simultaneous modeling of plasma data and systematic errors when operating on large data sets, which greatly reduces the computation time and accurately quantifies instrument noise. The data set consists of particle measurements from the Electron Spectrometer (ELS) and the Ion Mass Spectrometer (IMS), which are part of the Cassini Plasma Spectrometer (CAPS) instrument suite onboard the Cassini spacecraft. The data is limited to peak ion flux measurements within +/-10° magnetic latitude and 3-15 geocentric equatorial radial distance (RS). Systematic errors such as spacecraft charging and penetrating background radiation are parametrized individually in the modeling and are automatically addressed during the fitting procedure. The resulting values are in turn used as cross-calibration between IMS and ELS, where we show a significant improvement in magnetospheric electron densities and minor changes in the ion characteristics due to the error adjustments. Preliminary results show ion and electron densities in close agreement, consistent with charge neutrality throughout Saturn's inner magnetosphere and confirming the spacecraft potential to be a common influence on IMS and ELS. Comparison of derived plasma parameters with results from previous studies using CAPS data and the Radio And Plasma Wave Science (RPWS) investigation yields good agreement. Using the derived plasma characteristics we focus on the radial transport of hot electrons. We present evidence of loss-free adiabatic transport of equatorially mirroring electrons (100 eV - 10 keV) in Saturn's magnetosphere between 10-19 RS and from July 1st, 2004 to . Hot electron densities peak near 9 RS and decrease radially at a rate of 1/r3, which suggests a source in the inner magnetosphere. We also observe a decrease in electron energy at a rate of 1/r3 due to the conservation of the first adiabatic invariant, consistent with radial transport through a magnetic dipole. Data from the magnetic field instrument is used to derive the magnetic moment of hot electrons which shows a constant value of 103.4 kgm2s-2 nT-1 +/-10 between 10-19 RS, indicating a loss-free adiabatic transport with minor fluctuations. Plasma transport at Saturn can occur through flux tube interchange instabilities within the magnetosphere, where cold dense plasma is transported radially outward while hot tenuous plasma from the outer magnetosphere moves radially inward. Gradient-curvature drifts cause these hot electrons leave the injection and superimpose on the ambient cold plasma, consequently forcing it to move radially outward. This implies flux-tube interchange to be the main source for hot electrons. Hot electrons are part of the plasma analysis for which CAPS was designed, while the MIMI-LEMMS instrument measures higher energy electrons. Taking into account the penetrating background radiation, we are able to derive information for these energetic particles using our plasma instruments. We present CAPS-IMS background measurements derived from plasma data and show strong correlation with high energy particle data from MIMI-LEMMS. IMS background is generated via two main processes: 1) Collisions between the instrument walls and ambient energetic particles, which cause X-rays to trigger count signals in the instrument optics, and 2) backscatter of energetic particles in the electrostatic analyzer. We quantify these effects and use the results to identify Saturn's radiation belt peaks and nadirs, and magnetospheric regions of depleted particle fluxes, or microsignatures, which are formed through interactions with moons and ring systems. Using methods described in [119] we analyze a moon microsignatures during the outbound phase of Saturn orbit insertion (2004-183) and inside the orbit of Mimas, a region of intense radiation. Using the physical characteristics and radial locations of Atlas, Prometheus, and Pandora we derive the radial diffusion coefficient to be less than 1 x10-9 and particle energies to be below 1 MeV.

  4. A Radiation Chemistry Code Based on the Greens Functions of the Diffusion Equation

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Wu, Honglu

    2014-01-01

    Ionizing radiation produces several radiolytic species such as.OH, e-aq, and H. when interacting with biological matter. Following their creation, radiolytic species diffuse and chemically react with biological molecules such as DNA. Despite years of research, many questions on the DNA damage by ionizing radiation remains, notably on the indirect effect, i.e. the damage resulting from the reactions of the radiolytic species with DNA. To simulate DNA damage by ionizing radiation, we are developing a step-by-step radiation chemistry code that is based on the Green's functions of the diffusion equation (GFDE), which is able to follow the trajectories of all particles and their reactions with time. In the recent years, simulations based on the GFDE have been used extensively in biochemistry, notably to simulate biochemical networks in time and space and are often used as the "gold standard" to validate diffusion-reaction theories. The exact GFDE for partially diffusion-controlled reactions is difficult to use because of its complex form. Therefore, the radial Green's function, which is much simpler, is often used. Hence, much effort has been devoted to the sampling of the radial Green's functions, for which we have developed a sampling algorithm This algorithm only yields the inter-particle distance vector length after a time step; the sampling of the deviation angle of the inter-particle vector is not taken into consideration. In this work, we show that the radial distribution is predicted by the exact radial Green's function. We also use a technique developed by Clifford et al. to generate the inter-particle vector deviation angles, knowing the inter-particle vector length before and after a time step. The results are compared with those predicted by the exact GFDE and by the analytical angular functions for free diffusion. This first step in the creation of the radiation chemistry code should help the understanding of the contribution of the indirect effect in the formation of DNA damage and double-strand breaks.

  5. Diffusing, side-firing, and radial delivery laser balloon catheters for creating subsurface thermal lesions in tissue

    NASA Astrophysics Data System (ADS)

    Chang, Chun-Hung; Fried, Nathaniel M.

    2016-02-01

    Infrared lasers have been used in combination with applied cooling methods to preserve superficial skin layers during cosmetic surgery. Similarly, combined laser irradiation and tissue cooling may also allow development of minimally invasive laser therapies beyond dermatology. This study compares diffusing, side-firing, and radial delivery laser balloon catheter designs for creation of subsurface lesions in tissue, ex vivo, using a near-IR laser and applied contact cooling. An Ytterbium fiber laser with 1075 nm wavelength delivered energy through custom built 18 Fr (6-mm-OD) balloon catheters incorporating either 10-mm-long diffusing fiber tip, 90 degree side-firing fiber, or radial delivery cone mirror, through a central lumen. A chilled solution was flowed through a separate lumen into 9-mm-diameter balloon to keep probe cooled at 7°C. Porcine liver tissue samples were used as preliminary tissue model for immediate observation of thermal lesion creation. The diffusing fiber produced subsurface thermal lesions measuring 49.3 +/- 10.0 mm2 and preserved 0.8 +/- 0.1 mm of surface tissue. The side-firing fiber produced subsurface thermal lesions of 2.4 +/- 0.9 mm2 diameter and preserved 0.5 +/- 0.1 mm of surface tissue. The radial delivery probe assembly failed to produce subsurface thermal lesions, presumably due to the small effective spot diameter at the tissue surface, which limited optical penetration depth. Optimal laser power and irradiation time measured 15 W and 100 s for diffusing fiber and 1.4 W and 20 s, for side-firing fiber, respectively. Diffusing and side-firing laser balloon catheter designs provided subsurface thermal lesions in tissue. However, the divergent laser beam in both designs limited the ability to preserve a thicker layer of tissue surface. Further optimization of laser and cooling parameters may be necessary to preserve thicker surface tissue layers.

  6. Effects of applied dc radial electric fields on particle transport in a bumpy torus plasma

    NASA Technical Reports Server (NTRS)

    Roth, J. R.

    1978-01-01

    The influence of applied dc radial electric fields on particle transport in a bumpy torus plasma is studied. The plasma, magnetic field, and ion heating mechanism are operated in steady state. Ion kinetic temperature is more than a factor of ten higher than electron temperature. The electric fields raise the ions to energies on the order of kilovolts and then point radially inward or outward. Plasma number density profiles are flat or triangular across the plasma diameter. It is suggested that the radial transport processes are nondiffusional and dominated by strong radial electric fields. These characteristics are caused by the absence of a second derivative in the density profile and the flat electron temperature profiles. If the electric field acting on the minor radius of the toroidal plasma points inward, plasma number density and confinement time are increased.

  7. Radial variation in sap velocity as a function of stem diameter and sapwood thickness in yellow-poplar trees.

    PubMed

    Wullschleger, Stan D.; King, Anthony W.

    2000-04-01

    Canopy transpiration and forest water use are frequently estimated as the product of sap velocity and cross-sectional sapwood area. Few studies, however, have considered whether radial variation in sap velocity and the proportion of sapwood active in water transport are significant sources of uncertainty in the extrapolation process. Therefore, radial profiles of sap velocity were examined as a function of stem diameter and sapwood thickness for yellow-poplar (Liriodendron tulipifera L.) trees growing on two adjacent watersheds in eastern Tennessee. The compensation heat pulse velocity technique was used to quantify sap velocity at four equal-area depths in 20 trees that ranged in stem diameter from 15 to 69 cm, and in sapwood thickness from 2.1 to 14.8 cm. Sap velocity was highly dependent on the depth of probe insertion into the sapwood. Rates of sap velocity were greatest for probes located in the two outer sapwood annuli (P1 and P2) and lowest for probes in closest proximity to the heartwood (P3 and P4). Relative sap velocities averaged 0.98 at P1, 0.66 at P2, 0.41 at P3 and 0.35 at P4. Tree-specific sap velocities measured at each of the four probe positions, divided by the maximum sap velocity measured (usually at P1 or P2), indicated that the fraction of sapwood functional in water transport (f(S)) varied between 0.49 and 0.96. There was no relationship between f(S) and sapwood thickness, or between f(S) and stem diameter. The fraction of functional sapwood averaged 0.66 +/- 0.13 for trees on which radial profiles were determined. No significant depth-related differences were observed for sapwood density, which averaged 469 kg m(-3) across all four probe positions. There was, however, a significant decline in sapwood water content between the two outer probe positions (1.04 versus 0.89 kg kg(-1)). This difference was not sufficient to account for the observed radial variation in sap velocity. A Monte-Carlo analysis indicated that the standard error in estimated mean f(S) declined rapidly with increasing sample size. At n = 10, the coefficient of variation in mean f(S) was 7% and at n = 15 it was slightly less than 5%. These observations indicate that radial variation in sap velocity is an important, albeit often overlooked, source of uncertainty in the scaling process. Failure to recognize that not all sapwood is functional in water transport will introduce systematic bias into estimates of both tree and stand water use. Future studies should devise sampling strategies for assessing radial variation in sap velocity and such strategies should be used to identify the magnitude of this variation in a range of non-, diffuse- and ring-porous trees.

  8. Axial and radial water transport and internal water storage in tropical forest canopy trees.

    Treesearch

    Shelley A. James; Frederick C. Meinzer; Guillermo Goldstein; David Woodruff; Timothy Jones; Teresa Restom; Monica Mejia; Michael Clearwater; Paula Campanello

    2003-01-01

    Heat and stable isotope tracers were used to study axial and radial water transport in relation to sapwood anatomical characteristics and internal water storage in four canopy tree species of a seasonally dry tropical forest in Panama. Anatomical characteristics of the wood and radial profiles of sap flow were measured at the base, upper trunk, and crown of a single...

  9. Kinetic neoclassical transport in the H-mode pedestal

    DOE PAGES

    Battaglia, D. J.; Burrell, K. H.; Chang, C. S.; ...

    2014-07-16

    Multi-species kinetic neoclassical transport through the QH-mode pedestal and scrapeoff layer on DIII-D is calculated using XGC0, a 5D full-f particle-in-cell drift-kinetic solver with self-consistent neutral recycling and sheath potentials. We achieved quantitative agreement between the fluxdriven simulation and the experimental electron density, impurity density and orthogonal measurements of impurity temperature and flow profiles by adding random-walk particle diffusion to the guiding-center drift motion. Furthermore, we computed the radial electric field (Er) that maintains ambipolar transport across flux surfaces and to the wall self-consistently on closed and open magnetic field lines, and is in excellent agreement with experiment. The Ermore » inside the separatrix is the unique solution that balances the outward flux of thermal tail deuterium ions against the outward neoclassical electron flux and inward pinch of impurity and colder deuterium ions. Particle transport in the pedestal is primarily due to anomalous transport, while the ion heat and momentum transport is primarily due to the neoclassical transport. The full-f treatment quantifies the non-Maxwellian energy distributions that describe a number of experimental observations in low-collisionallity pedestals on DIII-D, including intrinsic co-Ip parallel flows in the pedestal, ion temperature anisotropy and large impurity temperatures in the scrape-off layer.« less

  10. Gas turbine engine with radial diffuser and shortened mid section

    DOEpatents

    Charron, Richard C.; Montgomery, Matthew D.

    2015-09-08

    An industrial gas turbine engine (10), including: a can annular combustion assembly (80), having a plurality of discrete flow ducts configured to receive combustion gas from respective combustors (82) and deliver the combustion gas along a straight flow path at a speed and orientation appropriate for delivery directly onto the first row (56) of turbine blades (62); and a compressor diffuser (32) having a redirecting surface (130, 140) configured to receive an axial flow of compressed air and redirect the axial flow of compressed air radially outward.

  11. Air cycle machine for an aircraft environmental control system

    NASA Technical Reports Server (NTRS)

    Decrisantis, Angelo A. (Inventor); O'Coin, James R. (Inventor); Taddey, Edmund P. (Inventor)

    2010-01-01

    An ECS system includes an ACM mounted adjacent an air-liquid heat exchanger through a diffuser that contains a diffuser plate. The diffuser plate receives airflow from the ACM which strikes the diffuser plate and flows radially outward and around the diffuser plate and into the air-liquid heat exchanger to provide minimal pressure loss and proper flow distribution into the air-liquid heat exchanger with significantly less packaging space.

  12. Transverse particle acceleration and diffusion in a planetary magnetic field

    NASA Technical Reports Server (NTRS)

    Barbosa, D. D.

    1994-01-01

    A general model of particle acceleration by plasma waves coupled with adiabatic radial diffusion in a planetary magnetic field is developed. The model assumes that a spectrum of lower hybird waves is present to resonantly accelerate ions transverse to the magnetic field. The steady state Green's function for the combined radial diffusion and wave acceleration equation is found in terms of a series expansion. The results provide a rigorous demonstration of how a quasi-Maxwellian distribution function is formed in the absence of particle collisons and elucidate the nature of turbulent heating of magnetospheric plasmas. The solution is applied to the magnetosphere of Neptune for which a number of examples are given illustrating how the spectrum of pickup N(+) ions from Triton evolves.

  13. Variability in radial sap flux density patterns and sapwood area among seven co-occurring temperate broad-leaved tree species.

    PubMed

    Gebauer, Tobias; Horna, Viviana; Leuschner, Christoph

    2008-12-01

    Forest transpiration estimates are frequently based on xylem sap flux measurements in the outer sections of the hydro-active stem sapwood. We used Granier's constant-heating technique with heating probes at various xylem depths to analyze radial patterns of sap flux density in the sapwood of seven broad-leaved tree species differing in wood density and xylem structure. Study aims were to (1) compare radial sap flux density profiles between diffuse- and ring-porous trees and (2) analyze the relationship between hydro-active sapwood area and stem diameter. In all investigated species except the diffuse-porous beech (Fagus sylvatica L.) and ring-porous ash (Fraxinus excelsior L.), sap flux density peaked at a depth of 1 to 4 cm beneath the cambium, revealing a hump-shaped curve with species-specific slopes. Beech and ash reached maximum sap flux densities immediately beneath the cambium in the youngest annual growth rings. Experiments with dyes showed that the hydro-active sapwood occupied 70 to 90% of the stem cross-sectional area in mature trees of diffuse-porous species, whereas it occupied only about 21% in ring-porous ash. Dendrochronological analyses indicated that vessels in the older sapwood may remain functional for 100 years or more in diffuse-porous species and for up to 27 years in ring-porous ash. We conclude that radial sap flux density patterns are largely dependent on tree species, which may introduce serious bias in sap-flux-derived forest transpiration estimates, if non-specific sap flux profiles are assumed.

  14. Modeling the Evolution of the System IV Period of the Io Torus

    NASA Astrophysics Data System (ADS)

    Coffin, D. A.; Delamere, P. A.

    2017-12-01

    The response of the Io plasma torus to superthermal electron modulation and volcanic eruptions is studied using a physical chemistry and radial/azimuthal transport model (Copper et al., 2016). The model includes radial and azimuthal transport, latitudinally-averaged physical chemistry, and prescribed System III superthermal electron modulation following Steffl et al., [2008]. Volcanic eruptions are modelled as a temporal Gaussian enhancement (e.g., 2x) of the neutral source rate and hot electron fraction (e.g., <1%). However, we adopt an alternative approach for the Steffl et al., [2008] System IV electron modulation. Radially-dependent subcorotation is prescribed, consistent with observations [Brown, 1994; Thomas et al., 2001], as well as a hot electron modulation proportional to the radial flux tube content gradient. Coupling hot electron modulation to radial transport and subcorotation, we seek to analyze magnetosphere-ionosphere coupling. We find that the model produces a radially-independent periodicity and that eruptions can alter the modeled period, consistent with multi-epoch observations of a variable System IV. This periodicity remains consistent with the prescribed subcorotation period at L = 6.3.

  15. Structure, thermodynamic and transport properties of imidazolium-based bis(trifluoromethylsulfonyl)imide ionic liquids from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Androulaki, Eleni; Vergadou, Niki; Ramos, Javier; Economou, Ioannis G.

    2012-06-01

    Molecular dynamics (MD) simulations have been performed in order to investigate the properties of [C n mim+][Tf2N-] (n = 4, 8, 12) ionic liquids (ILs) in a wide temperature range (298.15-498.15 K) and at atmospheric pressure (1 bar). A previously developed methodology for the calculation of the charge distribution that incorporates ab initio quantum mechanical calculations based on density functional theory (DFT) was used to calculate the partial charges for the classical molecular simulations. The wide range of time scales that characterize the segmental dynamics of these ILs, especially at low temperatures, required very long MD simulations, on the order of several tens of nanoseconds, to calculate the thermodynamic (density, thermal expansion, isothermal compressibility), structural (radial distribution functions between the centers of mass of ions and between individual sites, radial-angular distribution functions) and dynamic (relaxation times of the reorientation of the bonds and the torsion angles, self-diffusion coefficients, shear viscosity) properties. The influence of the temperature and the cation's alkyl chain length on the above-mentioned properties was thoroughly investigated. The calculated thermodynamic (primary and derivative) and structural properties are in good agreement with the experimental data, while the extremely sluggish dynamics of the ILs under study renders the calculation of their transport properties a very complicated and challenging task, especially at low temperatures.

  16. Obstructed metabolite diffusion within skeletal muscle cells in silico.

    PubMed

    Aliev, Mayis K; Tikhonov, Alexander N

    2011-12-01

    Using a Monte Carlo simulation technique, we have modeled 3D diffusion of low molecular weight metabolites inside a skeletal muscle cell. The following structural elements are considered: (i) a regular lattice of actin and myosin filaments inside a myofibril, (ii) the membranes of sarcoplasmic reticulum and mitochondria surrounding the myofibrils, (iii) a set of myofibrils inside a skeletal muscle cell encircled by the outer cell membrane, and (iv) an additional set of regular intracellular structures ("macrocompartments") embedded into the cell interior. The macrocompartments are considered to simulate diffusion restrictions because of hypothetical cylindrical structures (16-22 μm in diameter) suggested earlier (de Graaf et al. Biophys J 78: 1657-1664, 2000). This model allowed us to calculate the apparent coefficients of particle diffusion in the radial and axial directions, D(app)(⊥) and D(app)(II), respectively. Particle movements in the axial direction are considered, at first approximation, as unrestricted diffusion (D(app)(II) = const). The apparent coefficient of radial diffusion, D(app)(⊥), decreases with time because of particle collisions with myofilaments and other rigid obstacles. Results of our random walk simulations are in fairly good agreement with experimental data on NMR measurements of restricted radial diffusion of phosphocreatine in white and red skeletal muscles of goldfish (Kinsey et al. NMR Biomed 12:1-7, 1999). Particle reflections from the low-permeable borders of macrocompartments (efficient diameter, D(eff)(MC) ≈ 9.2-10.4 μm) are the prerequisite for agreeing theoretical and experimental data. The low-permeable coverage of hypothetical macrocompartments (99.8% of coverage) provides the main contribution to time-dependent decrease in D(app)(⊥).

  17. Root cortical aerenchyma inhibits radial nutrient transport in maize (Zea mays).

    PubMed

    Hu, Bo; Henry, Amelia; Brown, Kathleen M; Lynch, Jonathan P

    2014-01-01

    Formation of root cortical aerenchyma (RCA) can be induced by nutrient deficiency. In species adapted to aerobic soil conditions, this response is adaptive by reducing root maintenance requirements, thereby permitting greater soil exploration. One trade-off of RCA formation may be reduced radial transport of nutrients due to reduction in living cortical tissue. To test this hypothesis, radial nutrient transport in intact roots of maize (Zea mays) was investigated in two radiolabelling experiments employing genotypes with contrasting RCA. In the first experiment, time-course dynamics of phosphate loading into the xylem were measured from excised nodal roots that varied in RCA formation. In the second experiment, uptake of phosphate, calcium and sulphate was measured in seminal roots of intact young plants in which variation in RCA was induced by treatments altering ethylene action or genetic differences. In each of three paired genotype comparisons, the rate of phosphate exudation of high-RCA genotypes was significantly less than that of low-RCA genotypes. In the second experiment, radial nutrient transport of phosphate and calcium was negatively correlated with the extent of RCA for some genotypes. The results support the hypothesis that RCA can reduce radial transport of some nutrients in some genotypes, which could be an important trade-off of this trait.

  18. Sensitive period for white-matter connectivity of superior temporal cortex in deaf people.

    PubMed

    Li, Yanyan; Ding, Guosheng; Booth, James R; Huang, Ruiwang; Lv, Yating; Zang, Yufeng; He, Yong; Peng, Danling

    2012-02-01

    Previous studies have shown that white matter in the deaf brain changes due to hearing loss. However, how white-matter development is influenced by early hearing experience of deaf people is still unknown. Using diffusion tensor imaging and tract-based spatial statistics, we compared white-matter structures among three groups of subjects including 60 congenitally deaf individuals, 36 acquired deaf (AD) individuals, and 38 sex- and age-matched hearing controls (HC). The result showed that the deaf individuals had significantly reduced fractional anisotropy (FA) values in bilateral superior temporal cortex and the splenium of corpus callosum compared to HC. The reduction of FA values in acquired deafness correlated with onset age of deafness, but not the duration of deafness. To explore the underlying mechanism of FA changes in the deaf groups, we further analyzed radial and axial diffusivities and found that (1) the reduced FA values in deaf individuals compared to HC is primarily driven by higher radial diffusivity values and (2) in the AD, higher radial diffusivity was correlated with earlier onset age of deafness, but not the duration of deafness. These findings imply that early sensory experience is critical for the growth of fiber myelination, and anatomical reorganization following auditory deprivation is sensitive to early plasticity in the brain. Copyright © 2010 Wiley Periodicals, Inc.

  19. Quantitative MRI in hypomyelinating disorders: Correlation with motor handicap.

    PubMed

    Steenweg, Marjan E; Wolf, Nicole I; van Wieringen, Wessel N; Barkhof, Frederik; van der Knaap, Marjo S; Pouwels, Petra J W

    2016-08-23

    To assess the correlation of tissue parameters estimated by quantitative magnetic resonance (MR) techniques and motor handicap in patients with hypomyelination. Twenty-eight patients with different causes of hypomyelination (12 males, 16 females; mean age 10 years) and 61 controls (33 males, 28 females; mean age 8 years) were prospectively investigated. We quantified T2 relaxation time, magnetization transfer ratio, fractional anisotropy, mean, axial, and radial diffusivities, and brain metabolites. We performed measurements in the splenium, parietal deep white matter, and corticospinal tracts in the centrum semiovale. We further analyzed diffusion measures using tract-based spatial statistics. We estimated severity of motor handicap by the gross motor function classification system. We evaluated correlation of handicap with MR measures by linear regression analyses. Fractional anisotropy, magnetization transfer ratio, choline, and N-acetylaspartate/creatine ratio were lower and diffusivities, T2 values, and inositol were higher in patients than in controls. Tract-based spatial statistics showed that these changes were widespread for fractional anisotropy (96% of the white matter skeleton), radial (93%) and mean (84%) diffusivity, and less so for axial diffusivity (20%). Correlation with handicap yielded radial diffusivity and N-acetylaspartate/creatine ratio as strongest independent explanatory variables. Gross motor function classification system grades are in part explained by MR measures. They indicate that mainly lack of myelin and, to a lesser degree, loss of axonal integrity codetermine the degree of motor handicap in patients with hypomyelinating disorders. These MR measures can be used to evaluate strategies that are aimed at promotion of myelination. © 2016 American Academy of Neurology.

  20. Two-dimensional single-shot diffusion-weighted stimulated EPI with reduced FOV for ultrahigh-b radial diffusion-weighted imaging of spinal cord.

    PubMed

    Sapkota, Nabraj; Shi, Xianfeng; Shah, Lubdha M; Bisson, Erica F; Rose, John W; Jeong, Eun-Kee

    2017-06-01

    High-resolution diffusion-weighted imaging (DWI) of the spinal cord (SC) is problematic because of the small cross-section of the SC and the large field inhomogeneity. Obtaining the ultrahigh-b DWI poses a further challenge. The purpose of the study was to design and validate two-dimensional (2D) single-shot diffusion-weighted stimulated echo planar imaging with reduced field of view (2D ss-DWSTEPI-rFOV) for ultrahigh-b radial DWI (UHB-rDWI) of the SC. A novel time-efficient 2D ss-DWSTEPI-rFOV sequence was developed based on the stimulated echo sequence. Reduced-phase field of view was obtained by using two slice-selective 90 ° radiofrequency pulses in the presence of the orthogonal slice selection gradients. The sequence was validated on a cylindrical phantom and demonstrated on SC imaging. Ultrahigh-b radial diffusion-weighted ( bmax = 7300 s/mm2) images of the SC with greatly reduced distortion were obtained. The exponential plus constant fitting of the diffusion-decay curve estimated the constant fraction (restricted water fraction) as 0.36 ± 0.05 in the SC white matter. A novel 2D ss-DWSTEPI-rFOV sequence has been designed and demonstrated for high-resolution UHB-rDWI of localized anatomic structures with significantly reduced distortion induced by nonlinear static field inhomogeneity. Magn Reson Med 77:2167-2173, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  1. On the role of structure-dynamic relationship in determining the excess entropy of mixing and chemical ordering in binary square-well liquid alloys

    NASA Astrophysics Data System (ADS)

    Lalneihpuii, R.; Shrivastava, Ruchi; Mishra, Raj Kumar

    2018-05-01

    Using statistical mechanical model with square-well (SW) interatomic potential within the frame work of mean spherical approximation, we determine the composition dependent microscopic correlation functions, interdiffusion coefficients, surface tension and chemical ordering in Ag-Cu melts. Further Dzugutov universal scaling law of normalized diffusion is verified with SW potential in binary mixtures. We find that the excess entropy scaling law is valid for SW binary melts. The partial and total structure factors in the attractive and repulsive regions of the interacting potential are evaluated and then Fourier transformed to get partial and total radial distribution functions. A good agreement between theoretical and experimental values for total structure factor and the reduced radial distribution function are observed, which consolidates our model calculations. The well-known Bhatia-Thornton correlation functions are also computed for Ag-Cu melts. The concentration-concentration correlations in the long wavelength limit in liquid Ag-Cu alloys have been analytically derived through the long wavelength limit of partial correlation functions and apply it to demonstrate the chemical ordering and interdiffusion coefficients in binary liquid alloys. We also investigate the concentration dependent viscosity coefficients and surface tension using the computed diffusion data in these alloys. Our computed results for structure, transport and surface properties of liquid Ag-Cu alloys obtained with square-well interatomic interaction are fully consistent with their corresponding experimental values.

  2. Description of sorbing tracers transport in fractured media using the lattice model approach

    NASA Astrophysics Data System (ADS)

    Jiménez-Hornero, Francisco J.; Giráldez, Juan V.; Laguna, Ana

    2005-12-01

    The transport of contaminants in fractured media is a complex phenomenon with a great environmental impact. It has been described with several models, most of them based on complex partial differential equations, that are difficult to apply when equilibrium and nonequilibrium dynamics are considered in complex boundaries. With the aim of overcoming this limitation, a combination of two lattice Bathnagar, Gross and Krook (BGK) models, derived from the lattice Boltzmann model, is proposed in this paper. The fractured medium is assumed to be a single fissure in a porous rock matrix. The proposed approach permits us to deal with two processes with different length scales: advection-dispersion in the fissure and diffusion within the rock matrix. In addition to the mentioned phenomena, sorption reactions are also considered. The combined model has been tested using the experimental breakthrough curves obtained by Garnier et al. (Garnier, J.M., Crampon, N., Préaux, C., Porel, G., Vreulx, M., 1985. Traçage par 13C, 2H, I - et uranine dans la nappe de la craie sénonienne en écoulement radial convergent (Béthune, France). J. Hidrol. 78, 379-392.) giving acceptable results. A study on the influence of the lattice BGK models parameters controlling sorption and matrix diffusion on the breakthrough curves shape is included.

  3. Kinetic theory of passing energetic ion transport in presence of the resonant interactions with a rotating magnetic island

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Jinjia; Gong, Xueyu; Xiang, Dong

    The enhanced transport of passing energetic ions (PEIs) in presence of the resonant interactions with a rotating magnetic island is investigated within the drift kinetic framework. When the island rotation plays a role in the resonant interaction, we find that the velocities of PEIs satisfy a constraint relation of resonant flux surface in phase space. The resonant flux surfaces overlap with the magnetic flux surfaces in real space. A new transport channel responsible for the PEIs moving across the magnetic flux surfaces, i.e., continuously overlapping, is found. Two kinds of radial motions can be induced by the surface overlapping: onemore » arises from the coupling between the resonance and the collision with the background plasma and the other from not completely overlapping of the two surfaces. The two radial motions and the symmetry-breaking induced radial motion constitute the total radial motion. When the pitch-angle scattering rate is very weak, the surface-shear induced transport is dominant. Only a small increase in the collision rate can significantly influence the total transport.« less

  4. Modelling Solar Energetic Particle Events Using the iPATH Model

    NASA Astrophysics Data System (ADS)

    Li, G.; Hu, J.; Ao, X.; Zank, G. P.; Verkhoglyadova, O. P.

    2016-12-01

    Solar Energetic Particles (SEPs) is the No. 1 space weather hazard. Understanding how particles are energized and propagated in these events is of practical concerns to the manned space missions. In particular, both the radial evolution and the longitudinal extent of a gradual solarenergetic particle (SEP) event are central topics for space weather forecasting. In this talk, I discuss the improved Particle Acceleration and Transport in the Heliosphere (iPATH) model. The iPATH model consists of three parts: (1) an updated ZEUS3D V3.5 MHD module that models thebackground solar wind and the initiation of a CME in a 2D domain; (2) an updated shock acceleration module where we investigate particle acceleration at different longitudinal locations along the surface of a CME-driven shock. Accelerated particle spectrum are obtained at the shock under the diffusive shock acceleration mechanism. Shock parameters and particle distributions are recorded and used as inputs for the later part. (3) an updated transport module where we follow the transport of accelerated particles from the shock to any destinations (Earth and/or Mars, e.g.) using a Monte-Carlo method. Both pitch angle scattering due to MHD turbulence and perpendicular diffusion across magnetic field are included. Our iPATH model is therefore intrinsically 2D in nature. The model is capable of generating time intensity profiles and instantaneous particle spectra atvarious locations and can greatly improve our current space weather forecasting capability.

  5. Diffusive Transport and Structural Properties of Liquid Iron Alloys at High Pressure

    NASA Astrophysics Data System (ADS)

    Posner, E.; Rubie, D. C.; Steinle-Neumann, G.; Frost, D. J.

    2017-12-01

    Diffusive transport properties of liquid iron alloys at high pressures (P) and temperatures (T) place important kinetic constraints on processes related to the origin and evolution of planetary cores. Earth's core composition is largely controlled by the extent of chemical equilibration achieved between liquid metal bodies and a silicate magma ocean during core formation, which can be estimated using chemical diffusion data. In order to estimate the time and length scales of metal-silicate chemical equilibration, we have measured chemical diffusion rates of Si, O and Cr in liquid iron over the P-T range of 1-18 GPa and 1873-2643 K using a multi-anvil apparatus. We have also performed first-principles molecular dynamic simulations of comparable binary liquid compositions, in addition to pure liquid Fe, over a much wider P-T range (1 bar-330 GPa, 2200-5500 K) in order to both validate the simulation results with experimental data at conditions accessible in the laboratory and to extend our dataset to conditions of the Earth's core. Over the entire P-T range studied using both methods, diffusion coefficients are described consistently and well using an exponential function of the homologous temperature relation. Si, Cr and Fe diffusivities of approximately 5 × 10-9 m2 s-1 are constant along the melting curve from ambient to core pressures, while oxygen diffusion is 2-3 times faster. Our results indicate that in order for the composition of the Earth's core to represent chemical equilibrium, impactor cores must have broken up into liquid droplet sizes no larger than a few tens of cm. Structural properties, analyzed using partial radial distribution functions from the molecular dynamics simulations, reveal a pressure-induced structural change in liquid Fe0.96O0.04 at densities of 8 g cm-3, in agreement with previous experimental studies. For densities above 8 g cm-3, the liquid is essentially close packed with a local CsCl-like (B2) packing of Fe around O under conditions of the Earth's core.

  6. Scanning thermal probe microscope method for the determination of thermal diffusivity of nanocomposite thin films

    NASA Astrophysics Data System (ADS)

    Varandani, Deepak; Agarwal, Khushboo; Brugger, Juergen; Mehta, Bodh Raj

    2016-08-01

    A commercial scanning thermal microscope has been upgraded to facilitate its use in estimating the radial thermal diffusivity of thin films close to room temperature. The modified setup includes a microcontroller driven microhotplate coupled with a Bluetooth module for wireless control. The microcontroller board (Arduino Leonardo) is used to generate a bias of suitable voltage amplitude and pulse duration which is applied across the microhotplate contact pads. A corresponding heat pulse from the Pt heating element (1 mm2) embedded within the microhotplate is delivered to the lower surface of the thin film (25 mm2) deposited over it. The large difference in the dimensions of the heating source and the thin film surface causes heat to flow radially outwards on the top surface of the latter. The decay of this radial heat wave as it flows outwards is recorded by the scanning thermal microscope in terms of temperature-time (T-t) profiles at varying positions around the central heating zone. A fitting procedure is suggested to extract the thermal diffusivity value from the array of T-t profiles. The efficacy of the above setup has been established by evaluating the thermal diffusivities of Bi2Te3 and Bi2Te3:Si thin film samples. Further, with only minor alterations in design the capabilities of the above setup can be extended to estimate the axial thermal diffusivity and specific heat of thin films, as a function of temperature.

  7. An inverse moisture diffusion algorithm for the determination of diffusion coefficient

    Treesearch

    Jen Y. Liu; William T. Simpson; Steve P. Verrill

    2000-01-01

    The finite difference approximation is applied to estimate the moisture-dependent diffusion coefficient by utilizing test data of isothermal moisture desorption in northern red oak (Quercus rubra). The test data contain moisture distributions at discrete locations across the thickness of specimens, which coincides with the radial direction of northern red oak, and at...

  8. An inverse moisture diffusion algorithm for the determination of diffusion coefficient

    Treesearch

    Jen Y. Liu; William T. Simpson; Steve P. Verrill

    2001-01-01

    The finite difference approximation is applied to estimate the moisture-dependent diffusion coefficient by utilizing test data of isothermal moisture desorption in northern red oak (Quercus rubra). The test data contain moisture distributions at discrete locations across the thickness of specimens, which coincides with the radial direction of northern red oak, and at...

  9. Drift-resonant, relativistic electron acceleration at the outer planets: Insights from the response of Saturn's radiation belts to magnetospheric storms

    NASA Astrophysics Data System (ADS)

    Roussos, E.; Kollmann, P.; Krupp, N.; Paranicas, C.; Dialynas, K.; Sergis, N.; Mitchell, D. G.; Hamilton, D. C.; Krimigis, S. M.

    2018-05-01

    The short, 7.2-day orbital period of Cassini's Ring Grazing Orbits (RGO) provided an opportunity to monitor how fast the effects of an intense magnetospheric storm-time period (days 336-343/2016) propagated into Saturn's electron radiation belts. Following the storms, Cassini's MIMI/LEMMS instrument detected a transient extension of the electron radiation belts that in subsequent orbits moved towards the inner belts, intensifying them in the process. This intensification was followed by an equally fast decay, possibly due to the rapid absorption of MeV electrons by the planet's main rings. Surprisingly, all this cycle was completed within four RGOs, effectively in less than a month. That is considerably faster than the year-long time scales of Saturn's proton radiation belt evolution. In order to explain this difference, we propose that electron radial transport is partly controlled by the variability of global scale electric fields which have a fixed local time pointing. Such electric fields may distort significantly the orbits of a particular class of energetic electrons that cancel out magnetospheric corotation due to their westward gradient and curvature drifts (termed "corotation-resonant" or "local-time stationary" electrons) and transport them radially between the ring current and the radiation belts within several days and few weeks. The significance of the proposed process is highlighted by the fact that corotation resonance at Saturn occurs for electrons of few hundred keV to several MeV. These are the characteristic energies of seed electrons from the ring current that sustain the radiation belts of the planet. Our model's feasibility is demonstrated through the use of a simple test-particle simulation, where we estimate that uniform but variable electric fields with magnitudes lower that 1.0 mV/m can lead to a very efficient transport of corotation resonant electrons. Such electric fields have been consistently measured in the magnetosphere, and here we provide additional evidence showing that they may be constantly present all the way down to the outer edge of Saturn's main rings, further supporting our model. The implications of our findings are not limited to Saturn. Corotation resonance at Jupiter occurs for electrons with energies above about 10 MeV throughout the quasi-dipolar, energetic particle-trapping region of the magnetosphere. The proposed process could in principle then lead to rapid transport and adiabatic acceleration electrons into ultra-relativistic energies. The observation by Galileo's EPD/LEMMS instrument of an intense Jovian acceleration event at the orbital distance of Ganymede during the mission's C22 orbit, when > 11 MeV electron fluxes were preferentially enhanced, provides additional support to our transport model and insights on the origin of that orbit's extreme energetic electron environment. Finally, if the mode of radial transport that we describe here is a dominant one, radial diffusion coefficients (DLL) would be subject to strong energy, pitch angle and species dependencies.

  10. An experimental investigation of two large annular diffusers with swirling and distorted inflow

    NASA Technical Reports Server (NTRS)

    Eckert, W. T.; Johnston, J. P.; Simons, T. D.; Mort, K. W.; Page, V. R.

    1980-01-01

    Two annular diffusers downstream of a nacelle-mounted fan were tested for aerodynamic performance, measured in terms of two static pressure recovery parameters (one near the diffuser exit plane and one about three diameters downstream in the settling duct) in the presence of several inflow conditions. The two diffusers each had an inlet diameter of 1.84 m, an area ratio of 2.3, and an equivalent cone angle of 11.5, but were distinguished by centerbodies of different lengths. The dependence of diffuser performance on various combinations of swirling, radially distorted, and/or azimuthally distorted inflow was examined. Swirling flow and distortions in the axial velocity profile in the annulus upstream of the diffuser inlet were caused by the intrinsic flow patterns downstream of a fan in a duct and by artificial intensification of the distortions. Azimuthal distortions or defects were generated by the addition of four artificial devices (screens and fences). Pressure recovery data indicated beneficial effects of both radial distortion (for a limited range of distortion levels) and inflow swirl. Small amounts of azimuthal distortion created by the artificial devices produced only small effects on diffuser performance. A large artificial distortion device was required to produce enough azimuthal flow distortion to significantly degrade the diffuser static pressure recovery.

  11. 14 CFR 71.7 - Bearings, radials, and mileages.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Bearings, radials, and mileages. 71.7 Section 71.7 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... REPORTING POINTS § 71.7 Bearings, radials, and mileages. All bearings and radials in this part are true and...

  12. Kinetic studies of divertor heat fluxes in Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Pankin, A. Y.; Bateman, G.; Kritz, A. H.; Rafiq, T.; Park, G. Y.; Chang, C. S.; Brunner, D.; Hughes, J. W.; Labombard, B.; Terry, J.

    2010-11-01

    The kinetic XGC0 code [C.S. Chang et al, Phys. Plasmas 11 (2004) 2649] is used to model the H- mode pedestal and SOL regions in Alcator C-Mod discharges. The self-consistent simulations in this study include kinetic neoclassical physics and anomalous transport models along with the ExB flow shear effects. The heat fluxes on the divertor plates are computed and the fluxes to the outer plate are compared with experimental observations. The dynamics of the radial electric field near the separatrix and in the SOL region are computed with the XGC0 code, and the effect of the anomalous transport on the heat fluxes in the SOL region is investigated. In particular, the particle and thermal diffusivities obtained in the analysis mode are compared with predictions from the theory-based anomalous transport models such as MMM95 [G. Bateman et al, Phys. Plasmas 5 (1998) 1793] and DRIBM [T. Rafiq et al, to appear in Phys. Plasmas (2010)]. It is found that there is a notable pinch effect in the inner separatrix region. Possible physical mechanisms for the particle and thermal pinches are discussed.

  13. Controlled Formation of Radial Core-Shell Si/Metal Silicide Crystalline Heterostructures.

    PubMed

    Kosloff, Alon; Granot, Eran; Barkay, Zahava; Patolsky, Fernando

    2018-01-10

    The highly controlled formation of "radial" silicon/NiSi  core-shell nanowire heterostructures has been demonstrated for the first time. Here, we investigated the "radial" diffusion of nickel atoms into crystalline nanoscale silicon pillar 11 cores, followed by nickel silicide phase formation and the creation of a well-defined shell structure. The described approach is based on a two-step thermal process, which involves metal diffusion at low temperatures in the range of 200-400 °C, followed by a thermal curing step at a higher temperature of 400 °C. In-depth crystallographic analysis was performed by nanosectioning the resulting silicide-shelled silicon nanopillar heterostructures, giving us the ability to study in detail the newly formed silicide shells. Remarkably, it was observed that the resulting silicide shell thickness has a self-limiting behavior, and can be tightly controlled by the modulation of the initial diffusion-step temperature. In addition, electrical measurements of the core-shell structures revealed that the resulting shells can serve as an embedded conductive layer in future optoelectronic applications. This research provides a broad insight into the Ni silicide "radial" diffusion process at the nanoscale regime, and offers a simple approach to form thickness-controlled metal silicide shells in the range of 5-100 nm around semiconductor nanowire core structures, regardless the diameter of the nanowire cores. These high quality Si/NiSi core-shell nanowire structures will be applied in the near future as building blocks for the creation of utrathin highly conductive optically transparent top electrodes, over vertical nanopillars-based solar cell devices, which may subsequently lead to significant performance improvements of these devices in terms of charge collection and reduced recombination.

  14. Hybrid finite element and Brownian dynamics method for diffusion-controlled reactions.

    PubMed

    Bauler, Patricia; Huber, Gary A; McCammon, J Andrew

    2012-04-28

    Diffusion is often the rate determining step in many biological processes. Currently, the two main computational methods for studying diffusion are stochastic methods, such as Brownian dynamics, and continuum methods, such as the finite element method. This paper proposes a new hybrid diffusion method that couples the strengths of each of these two methods. The method is derived for a general multidimensional system, and is presented using a basic test case for 1D linear and radially symmetric diffusion systems.

  15. The electron diffusion coefficient in Jupiter's magnetosphere

    NASA Technical Reports Server (NTRS)

    Birmingham, T.; Northrop, T.; Baxter, R.; Hess, W.; Lojko, M.

    1974-01-01

    A steady-state model of Jupiter's electron radiation belt is developed. The model includes injection from the solar wind, radial diffusion, energy degradation by synchrotron radiation, and absorption at Jupiter's surface. A diffusion coefficient of the form D sub RR/R sub J squared = k times R to the m-th power is assumed, and then observed data on synchrotron radiation are used to fit the model. The free parameters determined from this fit are m = 1.95 plus or minus 0.5, k = 1.7 plus or minus 0.5 x 10 to the 9th power per sec, and the magnetic moment of injected particles equals 770 plus or minus 300 MeV/G. The value of m shows quite clearly that the diffusion is not caused by magnetic pumping by a variable solar wind or by a fluctuating convection electric field. The process might be field line exchange driven by atmospheric-ionospheric winds; our diffusion coefficient has roughly the same radial dependence but is considerably smaller in magnitude than the upper bound diffusion coefficients recently suggested for this process by Brice and McDonough (1973) and Jacques and Davis (1972).

  16. Confinement of the solar tachocline by a cyclic dynamo magnetic field

    NASA Astrophysics Data System (ADS)

    Barnabé, Roxane; Strugarek, Antoine; Charbonneau, Paul; Brun, Allan Sacha; Zahn, Jean-Paul

    2017-05-01

    Context. The surprising thinness of the solar tachocline is still not understood with certainty today. Among the numerous possible scenarios suggested to explain its radial confinement, one hypothesis is based on Maxwell stresses that are exerted by the cyclic dynamo magnetic field of the Sun penetrating over a skin depth below the turbulent convection zone. Aims: Our goal is to assess under which conditions (turbulence level in the tachocline, strength of the dynamo-generated field, spreading mechanism) this scenario can be realized in the solar tachocline. Methods: We develop a simplified 1D model of the upper tachocline under the influence of an oscillating magnetic field imposed from above. The turbulent transport is parametrized with enhanced turbulent diffusion (or anti-diffusion) coefficients. Two main processes that thicken the tachocline are considered; either turbulent viscous spreading or radiative spreading. An extensive parameter study is carried out to establish the physical parameter regimes under which magnetic confinement of the tachocline that is due to a surface dynamo field can be realized. Results: We have explored a large range of magnetic field amplitudes, viscosities, ohmic diffusivities and thermal diffusivities. We find that, for large but still realistic magnetic field strengths, the differential rotation can be suppressed in the upper radiative zone (and hence the tachocline confined) if weak turbulence is present (with an enhanced ohmic diffusivity of η> 107-8 cm2/ s), even in the presence of radiative spreading. Conclusions: Our results show that a dynamo magnetic field can, in the presence of weak turbulence, prevent the inward burrowing of a tachocline subject to viscous diffusion or radiative spreading.

  17. Anomalous, non-Gaussian tracer diffusion in crowded two-dimensional environments

    NASA Astrophysics Data System (ADS)

    Ghosh, Surya K.; Cherstvy, Andrey G.; Grebenkov, Denis S.; Metzler, Ralf

    2016-01-01

    A topic of intense current investigation pursues the question of how the highly crowded environment of biological cells affects the dynamic properties of passively diffusing particles. Motivated by recent experiments we report results of extensive simulations of the motion of a finite sized tracer particle in a heterogeneously crowded environment made up of quenched distributions of monodisperse crowders of varying sizes in finite circular two-dimensional domains. For given spatial distributions of monodisperse crowders we demonstrate how anomalous diffusion with strongly non-Gaussian features arises in this model system. We investigate both biologically relevant situations of particles released either at the surface of an inner domain or at the outer boundary, exhibiting distinctly different features of the observed anomalous diffusion for heterogeneous distributions of crowders. Specifically we reveal an asymmetric spreading of tracers even at moderate crowding. In addition to the mean squared displacement (MSD) and local diffusion exponent we investigate the magnitude and the amplitude scatter of the time averaged MSD of individual tracer trajectories, the non-Gaussianity parameter, and the van Hove correlation function. We also quantify how the average tracer diffusivity varies with the position in the domain with a heterogeneous radial distribution of crowders and examine the behaviour of the survival probability and the dynamics of the tracer survival probability. Inter alia, the systems we investigate are related to the passive transport of lipid molecules and proteins in two-dimensional crowded membranes or the motion in colloidal solutions or emulsions in effectively two-dimensional geometries, as well as inside supercrowded, surface adhered cells.

  18. Numerical investigation of a centrifugal compressor with circumferential grooves in vane diffuser

    NASA Astrophysics Data System (ADS)

    Chen, X. F.; Qin, G. L.; Ai, Z. J.

    2015-08-01

    Enhancing stall and surge margin has a great importance for the development of turbo compressors. The application of casing treatment is an effective measure to expand the stall margin and stable operation range. Numerical investigations were conducted to predict the performance of a low flow rate centrifugal compressor with circumferential groove casing treatment in vane diffuser. Numerical cases with different radial location, radial width and axial depth of a circumferential single groove and different numbers of circumferential grooves were carried out to compare the results. The CFD analyses results show that the centrifugal compressor with circumferential grooves in diffuser can extend stable range by about 9% while the efficiency over the whole operating range decreases by 0.2 to 1.7%. The evaluation based on stall margin improvement showed the optimal position for the groove to be located was indicated to exist near the leading edge of the diffuser, and a combination of position, width, depth and numbers of circumferential grooves that will maximize both surge margin range and efficiency.

  19. Design of Multishell Sampling Schemes with Uniform Coverage in Diffusion MRI

    PubMed Central

    Caruyer, Emmanuel; Lenglet, Christophe; Sapiro, Guillermo; Deriche, Rachid

    2017-01-01

    Purpose In diffusion MRI, a technique known as diffusion spectrum imaging reconstructs the propagator with a discrete Fourier transform, from a Cartesian sampling of the diffusion signal. Alternatively, it is possible to directly reconstruct the orientation distribution function in q-ball imaging, providing so-called high angular resolution diffusion imaging. In between these two techniques, acquisitions on several spheres in q-space offer an interesting trade-off between the angular resolution and the radial information gathered in diffusion MRI. A careful design is central in the success of multishell acquisition and reconstruction techniques. Methods The design of acquisition in multishell is still an open and active field of research, however. In this work, we provide a general method to design multishell acquisition with uniform angular coverage. This method is based on a generalization of electrostatic repulsion to multishell. Results We evaluate the impact of our method using simulations, on the angular resolution in one and two bundles of fiber configurations. Compared to more commonly used radial sampling, we show that our method improves the angular resolution, as well as fiber crossing discrimination. Discussion We propose a novel method to design sampling schemes with optimal angular coverage and show the positive impact on angular resolution in diffusion MRI. PMID:23625329

  20. Fuel Preheat Effects on Soot-Field Structure in Laminar Gas Jet Diffusion Flames Burning in 0-g and 1-g

    NASA Technical Reports Server (NTRS)

    Konsur, Bogdan; Megaridis, Constantine M.; Griffin, Devon W.

    1999-01-01

    An experimental investigation conducted at the 2.2-s drop tower of the NASA Lewis Research Center is presented to quantify the influence of moderate fuel preheat on soot-field structure within 0-g laminar gas jet diffusion flames. Parallel work in 1-g is also presented to delineate the effect of elevated fuel temperatures on soot-field structure in buoyant flames. The experimental methodology implements jet diffusion flames of nitrogen-diluted acetylene fuel burning in quiescent air at atmospheric pressure. Fuel preheat of approximately 100 K in the 0-g laminar jet diffusion flames is found to reduce soot loadings in the annular region, but causes an increase in soot volume fractions at the centerline. In addition, fuel preheat reduces the radial extent of the soot field in 0-g. In 1-g, the same fuel preheat levels have a more moderated influence on soot loadings in the annular region, but are also seen to enhance soot concentrations near the axis low in the flame. The increased soot loadings near the flame centerline, as caused by fuel preheat, are consistent with the hypothesis that preheat levels of approximately 100 K enhance fuel pyrolysis rates. The results show that the growth stage of particles transported along the soot annulus is shortened both in 1-g and 0-g when elevated fuel temperatures are used.

  1. Reduction of ion thermal diffusivity associated with the transition of the radial electric field in neutral-beam-heated plasmas in the large helical device.

    PubMed

    Ida, K; Funaba, H; Kado, S; Narihara, K; Tanaka, K; Takeiri, Y; Nakamura, Y; Ohyabu, N; Yamazaki, K; Yokoyama, M; Murakami, S; Ashikawa, N; deVries, P C; Emoto, M; Goto, M; Idei, H; Ikeda, K; Inagaki, S; Inoue, N; Isobe, M; Itoh, K; Kaneko, O; Kawahata, K; Khlopenkov, K; Komori, A; Kubo, S; Kumazawa, R; Liang, Y; Masuzaki, S; Minami, T; Miyazawa, J; Morisaki, T; Morita, S; Mutoh, T; Muto, S; Nagayama, Y; Nakanishi, H; Nishimura, K; Noda, N; Notake, T; Kobuchi, T; Ohdachi, S; Ohkubo, K; Oka, Y; Osakabe, M; Ozaki, T; Pavlichenko, R O; Peterson, B J; Sagara, A; Saito, K; Sakakibara, S; Sakamoto, R; Sanuki, H; Sasao, H; Sasao, M; Sato, K; Sato, M; Seki, T; Shimozuma, T; Shoji, M; Suzuki, H; Sudo, S; Tamura, N; Toi, K; Tokuzawa, T; Torii, Y; Tsumori, K; Yamamoto, T; Yamada, H; Yamada, I; Yamaguchi, S; Yamamoto, S; Yoshimura, Y; Watanabe, K Y; Watari, T; Hamada, Y; Motojima, O; Fujiwara, M

    2001-06-04

    Recent large helical device experiments revealed that the transition from ion root to electron root occurred for the first time in neutral-beam-heated discharges, where no nonthermal electrons exist. The measured values of the radial electric field were found to be in qualitative agreement with those estimated by neoclassical theory. A clear reduction of ion thermal diffusivity was observed after the mode transition from ion root to electron root as predicted by neoclassical theory when the neoclassical ion loss is more dominant than the anomalous ion loss.

  2. Modeling the Magnetopause Shadowing and Drift Orbit Bifurcation Loss during the June 2015 Dropout Event

    NASA Astrophysics Data System (ADS)

    Tu, W.; Cunningham, G.

    2017-12-01

    The relativistic electron flux in Earth's radiation belt are observed to drop by orders of magnitude on timescale of a few hours. Where do the electrons go during the dropout? This is one of the most important outstanding questions in radiation belt studies. Here we will study the 22 June 2015 dropout event which occurred during one of the largest geomagnetic storms in the last decade. A sudden and nearly complete loss of all the outer zone relativistic and ultra-relativistic electrons were observed after a strong interplanetary shock. The Last Closed Drift Shell (LCDS) calculated using the TS04 model reached as low as L*=3.7 during the shock and stay below L*=4 for 1 hour. The unusually low LCDS values suggest that magnetopause shadowing and the associated outward radial diffusion can contribute significantly to the observed dropout. In addition, Drift Orbit Bifurcation (DOB) has been suggested as an important loss mechanism for radiation belt electrons, especially when the solar wind dynamic pressure is high, but its relative importance has not been quantified. Here, we will model the June 2015 dropout event using a radial diffusion model that includes physical and event-specific inputs. First, we will trace electron drift shells based on TS04 model to identify the LCDS and bifurcation regions as a function of the 2nd adiabatic invariant (K) and time. To model magnetopause shadowing, electron lifetimes in our model will be set to electron drift periods at L*>LCDS. Electron lifetimes inside the bifurcation region have been estimated by Ukhorskiy et al. [JGR 2011, doi:10.1029/2011JA016623] as a function of L* and K, which will also be implemented in the model. This will be the first effort to include the DOB loss in a comprehensive radiation belt model. Furthermore, to realistically simulate outward radial diffusion, the new radial diffusion coefficients that are calculated based on the realistic TS04 model and include physical K dependence [Cunningham, JGR 2016, doi:10.1002/2015JA021981] will be achieved and included here. With these event-specific and physical model inputs, we will test how well the observed fast dropout during the June 2015 event can be reproduced by our model, and quantify the relative contribution of magnetopause shadowing, outward radial diffusion, and DOB to the fast electron depletion.

  3. The Evolution of the Solar Magnetic Field: A Comparative Analysis of Two Models

    NASA Astrophysics Data System (ADS)

    McMichael, K. D.; Karak, B. B.; Upton, L.; Miesch, M. S.; Vierkens, O.

    2017-12-01

    Understanding the complexity of the solar magnetic cycle is a task that has plagued scientists for decades. However, with the help of computer simulations, we have begun to gain more insight into possible solutions to the plethora of questions inside the Sun. STABLE (Surface Transport and Babcock Leighton) is a newly developed 3D dynamo model that can reproduce features of the solar cycle. In this model, the tilted bipolar sunspots are formed on the surface (based on the toroidal field at the bottom of the convection zone) and then decay and disperse, producing the poloidal field. Since STABLE is a 3D model, it is able to solve the full induction equation in the entirety of the solar convection zone as well as incorporate many free parameters (such as spot depth and turbulent diffusion) which are difficult to observe. In an attempt to constrain some of these free parameters, we compare STABLE to a surface flux transport model called AFT (Advective Flux Transport) which solves the radial component of the magnetic field on the solar surface. AFT is a state-of-the-art surface flux transport model that has a proven record of being able to reproduce solar observations with great accuracy. In this project, we implement synthetic bipolar sunspots into both models, using identical surface parameters, and run the models for comparison. We demonstrate that the 3D structure of the sunspots in the interior and the vertical diffusion of the sunspot magnetic field play an important role in establishing the surface magnetic field in STABLE. We found that when a sufficient amount of downward magnetic pumping is included in STABLE, the surface magnetic field from this model becomes insensitive to the internal structure of the sunspot and more consistent with that of AFT.

  4. Quantitative MRI of the spinal cord and brain in adrenomyeloneuropathy: in vivo assessment of structural changes.

    PubMed

    Castellano, Antonella; Papinutto, Nico; Cadioli, Marcello; Brugnara, Gianluca; Iadanza, Antonella; Scigliuolo, Graziana; Pareyson, Davide; Uziel, Graziella; Köhler, Wolfgang; Aubourg, Patrick; Falini, Andrea; Henry, Roland G; Politi, Letterio S; Salsano, Ettore

    2016-06-01

    Adrenomyeloneuropathy is the late-onset form of X-linked adrenoleukodystrophy, and is considered the most frequent metabolic hereditary spastic paraplegia. In adrenomyeloneuropathy the spinal cord is the main site of pathology. Differently from quantitative magnetic resonance imaging of the brain, little is known about the feasibility and utility of advanced neuroimaging in quantifying the spinal cord abnormalities in hereditary diseases. Moreover, little is known about the subtle pathological changes that can characterize the brain of adrenomyeloneuropathy subjects in the early stages of the disease. We performed a cross-sectional study on 13 patients with adrenomyeloneuropathy and 12 age-matched healthy control subjects who underwent quantitative magnetic resonance imaging to assess the structural changes of the upper spinal cord and brain. Total cord areas from C2-3 to T2-3 level were measured, and diffusion tensor imaging metrics, i.e. fractional anisotropy, mean, axial and radial diffusivity values were calculated in both grey and white matter of spinal cord. In the brain, grey matter regions were parcellated with Freesurfer and average volume and thickness, and mean diffusivity and fractional anisotropy from co-registered diffusion maps were calculated in each region. Brain white matter diffusion tensor imaging metrics were assessed using whole-brain tract-based spatial statistics, and tractography-based analysis on corticospinal tracts. Correlations among clinical, structural and diffusion tensor imaging measures were calculated. In patients total cord area was reduced by 26.3% to 40.2% at all tested levels (P < 0.0001). A mean 16% reduction of spinal cord white matter fractional anisotropy (P ≤ 0.0003) with a concomitant 9.7% axial diffusivity reduction (P < 0.009) and 34.5% radial diffusivity increase (P < 0.009) was observed, suggesting co-presence of axonal degeneration and demyelination. Brain tract-based spatial statistics showed a marked reduction of fractional anisotropy, increase of radial diffusivity (P < 0.001) and no axial diffusivity changes in several white matter tracts, including corticospinal tracts and optic radiations, indicating predominant demyelination. Tractography-based analysis confirmed the results within corticospinal tracts. No significant cortical volume and thickness reduction or grey matter diffusion tensor imaging values alterations were observed in patients. A correlation between radial diffusivity and disease duration along the corticospinal tracts (r = 0.806, P < 0.01) was found. In conclusion, in adrenomyeloneuropathy patients quantitative magnetic resonance imaging-derived measures identify and quantify structural changes in the upper spinal cord and brain which agree with the expected histopathology, and suggest that the disease could be primarily caused by a demyelination rather than a primitive axonal damage. The results of this study may also encourage the employment of quantitative magnetic resonance imaging in other hereditary diseases with spinal cord involvement. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Molecular dynamics simulations of lithium silicate/vanadium pentoxide interfacial lithium ion diffusion in thin film lithium ion-conducting devices

    NASA Astrophysics Data System (ADS)

    Li, Weiqun

    The lithium ion diffusion behavior and mechanism in the glassy electrolyte and the electrolyte/cathode interface during the initial stage of lithium ion diffusing from electrolyte into cathode were investigated using Molecular Dynamics simulation technique. Lithium aluminosilicate glass electrolytes with different R (ratio of the concentration of Al to Li) were simulated. The structural features of the simulated glasses are analyzed using Radial Distribution Function (RDF) and Pair Distribution Function (PDF). The diffusion coefficient and activation energy of lithium ion diffusion in simulated lithium aluminosilicate glasses were calculated and the values are consistent with those in experimental glasses. The behavior of lithium ion diffusion from the glassy electrolyte into a polycrystalline layered intercalation cathode has been studied. The solid electrolyte was a model lithium silicate glass while the cathode was a nanocrystalline vanadia with amorphous V2O5 intergranular films (IGF) between the V2O5 crystals. Two different orientations between the V2O5 crystal planes are presented for lithium ion intercalation via the amorphous vanadia IGF. A series of polycrystalline vanadia cathodes with 1.3, 1.9, 2.9 and 4.4 nm thickness IGFs were simulated to examine the effects of the IGF thickness on lithium ion transport in the polycrystalline vanadia cathodes. The simulated results showed that the lithium ions diffused from the glassy electrolyte into the IGF of the polycrystalline vanadia cathode and then part of those lithium ions diffused into the crystalline V2O5 from the IGF. The simulated results also showed an ordering of the vanadium ion structure in the IGF near the IGF/V2 O5 interface. The ordering structure still existed with glass former silica additive in IGF. Additionally, 2.9 run is suggested to be the optimal thickness of the IGF, which is neither too thick to decrease the capacity of the cathode nor too thin to impede the transport of lithium from glassy electrolyte into the cathode. Parallel molecular dynamic simulation technique was also used for a larger electrolyte/cathode interface system, which include more atoms and more complicated microstructures. Simulation results from larger electrolyte/cathode interface system prove that there is no size effect on simulation of smaller electrolyte/cathode interface system from statistical point of view.

  6. Poloidal rotation dynamics, radial electric field, and neoclassical theory in the jet internal-transport-barrier region.

    PubMed

    Crombé, K; Andrew, Y; Brix, M; Giroud, C; Hacquin, S; Hawkes, N C; Murari, A; Nave, M F F; Ongena, J; Parail, V; Van Oost, G; Voitsekhovitch, I; Zastrow, K-D

    2005-10-07

    Results from the first measurements of a core plasma poloidal rotation velocity (upsilontheta) across internal transport barriers (ITB) on JET are presented. The spatial and temporal evolution of the ITB can be followed along with the upsilontheta radial profiles, providing a very clear link between the location of the steepest region of the ion temperature gradient and localized spin-up of upsilontheta. The upsilontheta measurements are an order of magnitude higher than the neoclassical predictions for thermal particles in the ITB region, contrary to the close agreement found between the determined and predicted particle and heat transport coefficients [K.-D. Zastrow, Plasma Phys. Controlled Fusion 46, B255 (2004)]. These results have significant implications for the understanding of transport barrier dynamics due to their large impact on the measured radial electric field profile.

  7. Simulation of Plasma Transport in a Toroidal Annulus with TEMPEST

    NASA Astrophysics Data System (ADS)

    Xiong, Z.

    2005-10-01

    TEMPEST is an edge gyro-kinetic continuum code currently under development at LLNL to study boundary plasma transport over a region extending from inside the H-mode pedestal across the separatrix to the divertor plates. Here we report simulation results from the 4D (θ, ψ, E, μ) TEMPEST, for benchmark purpose, in an annulus region immediately inside the separatrix of a large aspect ratio, circular cross-section tokamak. Besides the normal poloidal trapping regions, there are radial inaccessible regions at a fixed poloid angle, energy and magnetic moment due to the radial variation of the B field. To handle such cases, a fifth-order WENO differencing scheme is used in the radial direction. The particle and heat transport coefficients are obtained for different collisional regimes and compared with the neo-classical transport theory.

  8. Diffusion tensor imaging of the brainstem in children with achondroplasia

    PubMed Central

    BOSEMANI, THANGAMADHAN; ORMAN, GUNES; CARSON, KATHRYN A; MEODED, AVNER; HUISMAN, THIERRY A G M; PORETTI, ANDREA

    2014-01-01

    Aim The aims of this study were to compare, using diffusion tensor imaging (DTI) of the brainstem, microstructural integrity of the white matter in children with achondroplasia and age-matched participants and to correlate the severity of craniocervical junction (CCJ) narrowing and neurological findings with DTI scalars in children with achondroplasia. This study also aimed to assess the potential role of fibroblast growth factor receptor type 3 on white matter microstructure. Method Diffusion tensor imaging was performed using a 1.5T magnetic resonance scanner and balanced pairs of diffusion gradients along 20 non-collinear directions. Measurements were obtained from regions of interest, sampled in each pontine corticospinal tract (CST), medial lemniscus, and middle cerebellar peduncle, as well as in the lower brainstem and centrum semiovale, for fractional anisotropy and for mean, axial and radial diffusivity. In addition, a severity score for achondroplasia was assessed by measuring CCJ narrowing. Result Eight patients with achondroplasia (seven males, one female; mean age 5y 6mo, range 1y 1mo–15y 1mo) and eight age- and sex-matched comparison participants (mean age 5y 2mo, range 1y 1mo–14y 11mo) were included in this study. Fractional anisotropy was lower and mean diffusivity and radial diffusivity were higher in the lower brainstem of patients with achondroplasia than in age-matched comparison participants. The CST and middle cerebellar peduncle of the participants showed increases in mean, axial, and radial diffusivity. Fractional anisotropy in the lower brainstem was negatively correlated with the degree of CCJ narrowing. No differences in the DTI metrics of the centrum semiovale were observed between the two groups. Interpretation The reduction in fractional anisotropy and increase in diffusivities in the lower brainstem of participants with achondroplasia may reflect secondary encephalomalacic degeneration and cavitation of the affected white matter tracts as shown by histology. In children with achondroplasia, DTI may serve as a potential biomarker for brainstem white matter injury and aid in the care and management of these patients. PMID:24825324

  9. Diffusion tensor imaging of the brainstem in children with achondroplasia.

    PubMed

    Bosemani, Thangamadhan; Orman, Gunes; Carson, Kathryn A; Meoded, Avner; Huisman, Thierry A G M; Poretti, Andrea

    2014-11-01

    The aims of this study were to compare, using diffusion tensor imaging (DTI) of the brainstem, microstructural integrity of the white matter in children with achondroplasia and age-matched participants and to correlate the severity of craniocervical junction (CCJ) narrowing and neurological findings with DTI scalars in children with achondroplasia. This study also aimed to assess the potential role of fibroblast growth factor receptor type 3 on white matter microstructure. Diffusion tensor imaging was performed using a 1.5T magnetic resonance scanner and balanced pairs of diffusion gradients along 20 non-collinear directions. Measurements were obtained from regions of interest, sampled in each pontine corticospinal tract (CST), medial lemniscus, and middle cerebellar peduncle, as well as in the lower brainstem and centrum semiovale, for fractional anisotropy and for mean, axial, and radial diffusivity. In addition, a severity score for achondroplasia was assessed by measuring CCJ narrowing. Eight patients with achondroplasia (seven males, one female; mean age 5y 6mo, range 1y 1mo-15y 1mo) and eight age- and sex-matched comparison participants (mean age 5y 2mo, range 1y 1mo-14y 11mo) were included in this study. Fractional anisotropy was lower and mean diffusivity and radial diffusivity were higher in the lower brainstem of patients with achondroplasia than in age-matched comparison participants. The CST and middle cerebellar peduncle of the participants showed increases in mean, axial, and radial diffusivity. Fractional anisotropy in the lower brainstem was negatively correlated with the degree of CCJ narrowing. No differences in the DTI metrics of the centrum semiovale were observed between the two groups. The reduction in fractional anisotropy and increase in diffusivities in the lower brainstem of participants with achondroplasia may reflect secondary encephalomalacic degeneration and cavitation of the affected white matter tracts as shown by histology. In children with achondroplasia, DTI may serve as a potential biomarker for brainstem white matter injury and aid in the care and management of these patients. © 2014 Mac Keith Press.

  10. Measured and simulated electron thermal transport in the Madisom symmetric torus reversed field pinch

    NASA Astrophysics Data System (ADS)

    Rodrigue Mbombo, Brice

    New high time resolution measurements of the evolution of the electron temperature profile through a sawtooth event in high current reversed-field pinch (RFP) discharges in the Madison Symmetric Torus (MST) have been made using the enhanced capabilities of the multipoint, multi-pulse Thomson scattering system. Using this and other data, the electron thermal diffusion chie determined and is found to vary by orders of magnitude over the course of the sawtooth cycle. This experimental data is compared directly to simulations run at experimentally relevant parameters. This includes zero beta, single fluid, nonlinear, resistive magnetohydrodynamic (MHD) simulations run with the aspect ratio, resistivity profile, and Lundquist number (S ˜ 4 x 106) of high current RFP discharges in MST. These simulations display MHD activity and sawtooth like behavior similar to that observed in the MST. This includes both the sawtooth period and the duration of the sawtooth crash. The radial shape of the magnetic mode amplitudes, scaled to match edge measurements made in MST, are then used to compute the expected level of thermal diffusion due to parallel losses along diffusing magnetic field lines, chiMD = upsilon∥Dmag. The evolution of the Dmag profile was determined for over 20 sawteeth so that the ensemble averaged evolution could be compared to the sawtooth ensembled data from MST. The resulting comparison to the measured chi e shows that chiMD is larger than chi e at most times. However, if electrons are trapped in a magnetic well, they cannot carry energy along the diffusing magnetic field lines, reducing the thermal transport. Accounting for trapped particles brings chi MD to within uncertainty of chie in the mid radius at most times throughout the sawtooth cycle. In the core, the measured chie is greater than chi MD leading up to and including the sawtooth crash, suggesting other transport mechanisms are important at these times. Additionally, in a simulation including pressure evolution, a striking agreement is found between the temperature fluctuations seen in the simulation and those previously measured in MST. This work supported by the US DOE and NSF.

  11. Gyrokinetic simulation of residual turbulence in transport barriers

    NASA Astrophysics Data System (ADS)

    Jenko, Frank; Told, Daniel; Goerler, Tobias; Brunner, Stephan; Sautter, Olivier

    2011-10-01

    One of the ultimate aims for gyrokinetic simulation is to describe the formation and evolution of transport barriers. An important step in that direction is the study of the residual turbulence in established barriers - a challenging task in itself, given that a wide range of spatio-temporal scales can be involved. In the present work, we employ the physically comprehensive, nonlocal gyrokinetic turbulence code GENE to study turbulence in both core and edge transport barriers. First, we apply GENE to a set of discharges in the TCV tokamak which exhibit electron ITBs. Nonlinear gyrokinetic simulations are used to examine the influence of a varying current profile on the strength of the barrier. For each case, the transport spectra reveal how much transport (for each channel) is done in the low-k, medium-k, and high-k regimes, respectively. The role of ETG turbulence is discussed. Second, we explore the role of ETG turbulence in a typical ASDEX Upgrade H-mode discharge. Numerical convergence is carefully examined, and new insights on the characteristics of ETG turbulence in the edge will be discussed, focusing particularly on the role of streamers, which had been found to be a necessary ingredient for experimentally relevant ETG transport in core plasmas. The radial dependence of the resulting electron heat diffusivity is also examined and a simple ETG model is presented which can be used in future edge modeling efforts.

  12. An analytical model for solute transport in an infiltration tracer test in soil with a shallow groundwater table

    NASA Astrophysics Data System (ADS)

    Liang, Ching-Ping; Hsu, Shao-Yiu; Chen, Jui-Sheng

    2016-09-01

    It is recommended that an in-situ infiltration tracer test is considered for simultaneously determining the longitudinal and transverse dispersion coefficients in soil. Analytical solutions have been derived for two-dimensional advective-dispersive transport in a radial geometry in the literature which can be used for interpreting the result of such a tracer test. However, these solutions were developed for a transport domain with an unbounded-radial extent and an infinite thickness of vadose zone which might not be realistically manifested in the actual solute transport during a field infiltration tracer test. Especially, the assumption of infinite thickness of vadose zone should be invalid for infiltration tracer tests conducted in soil with a shallow groundwater table. This paper describes an analytical model for interpreting the results of an infiltration tracer test based on improving the transport domain with a bounded-radial extent and a finite thickness of vadose zone. The analytical model is obtained with the successive application of appropriate integral transforms and their corresponding inverse transforms. A comparison of the newly derived analytical solution against the previous analytical solutions in which two distinct sets of radial extent and thickness of vadose zone are considered is conducted to determine the influence of the radial and exit boundary conditions on the solute transport. The results shows that both the radial and exit boundary conditions substantially affect the trailing segment of the breakthrough curves for a soil medium with large dispersion coefficients. Previous solutions derived for a transport domain with an unbounded-radial and an infinite thickness of vadose zone boundary conditions give lower concentration predictions compared with the proposed solution at late times. Moreover, the differences between two solutions are amplified when the observation positions are near the groundwater table. In addition, we compare our solution against the approximate solutions that derived from the previous analytical solution and has been suggested to serve as fast tools for simultaneously estimating the longitudinal and transverse dispersion coefficients. The results indicate that the approximate solutions offer predictions that are markedly distinct from our solution for the entire range of dispersion coefficient values. Thus, it is not appropriate to use the approximate solution for interpreting the results of an infiltration tracer test.

  13. Relativistic Electron Response to the Combined Magnetospheric Impact of a Coronal Mass Ejection Overlapping with a High-Speed Stream: Van Allen Probes Observations

    NASA Technical Reports Server (NTRS)

    Kanekal, S. G.; Baker, D. N.; Henderson, M. G.; Li, W.; Fennell, J. F.; Zheng, Y.; Richardson, I. G.; Jones, A.; Ali, A. F.; Elkington, S. R.; hide

    2015-01-01

    During early November 2013, the magnetosphere experienced concurrent driving by a coronal mass ejection (CME) during an ongoing high-speed stream (HSS) event. The relativistic electron response to these two kinds of drivers, i.e., HSS and CME, is typically different, with the former often leading to a slower buildup of electrons at larger radial distances, while the latter energizing electrons rapidly with flux enhancements occurring closer to the Earth. We present a detailed analysis of the relativistic electron response including radial profiles of phase space density as observed by both Magnetic Electron and Ion Sensor (MagEIS) and Relativistic Electron Proton Telescope instruments on the Van Allen Probes mission. Data from the MagEIS instrument establish the behavior of lower energy (<1 MeV) electrons which span both intermediary and seed populations during electron energization. Measurements characterizing the plasma waves and magnetospheric electric and magnetic fields during this period are obtained by the Electric and Magnetic Field Instrument Suite and Integrated Science instrument on board Van Allen Probes, Search Coil Magnetometer and Flux Gate Magnetometer instruments on board Time History of Events and Macroscale Interactions during Substorms, and the low-altitude Polar-orbiting Operational Environmental Satellites. These observations suggest that during this time period, both radial transport and local in situ processes are involved in the energization of electrons. The energization attributable to radial diffusion is most clearly evident for the lower energy (<1 MeV) electrons, while the effects of in situ energization by interaction of chorus waves are prominent in the higher-energy electrons.

  14. Longitudinal brain white matter alterations in minimal hepatic encephalopathy before and after liver transplantation.

    PubMed

    Lin, Wei-Che; Chou, Kun-Hsien; Chen, Chao-Long; Chen, Hsiu-Ling; Lu, Cheng-Hsien; Li, Shau-Hsuan; Huang, Chu-Chung; Lin, Ching-Po; Cheng, Yu-Fan

    2014-01-01

    Cerebral edema is the common pathogenic mechanism for cognitive impairment in minimal hepatic encephalopathy. Whether complete reversibility of brain edema, cognitive deficits, and their associated imaging can be achieved after liver transplantation remains an open question. To characterize white matter integrity before and after liver transplantation in patients with minimal hepatic encephalopathy, multiple diffusivity indices acquired via diffusion tensor imaging was applied. Twenty-eight patients and thirty age- and sex-matched healthy volunteers were included. Multiple diffusivity indices were obtained from diffusion tensor images, including mean diffusivity, fractional anisotropy, axial diffusivity and radial diffusivity. The assessment was repeated 6-12 month after transplantation. Differences in white matter integrity between groups, as well as longitudinal changes, were evaluated using tract-based spatial statistical analysis. Correlation analyses were performed to identify first scan before transplantation and interval changes among the neuropsychiatric tests, clinical laboratory tests, and diffusion tensor imaging indices. After transplantation, decreased water diffusivity without fractional anisotropy change indicating reversible cerebral edema was found in the left anterior cingulate, claustrum, postcentral gyrus, and right corpus callosum. However, a progressive decrease in fractional anisotropy and an increase in radial diffusivity suggesting demyelination were noted in temporal lobe. Improved pre-transplantation albumin levels and interval changes were associated with better recoveries of diffusion tensor imaging indices. Improvements in interval diffusion tensor imaging indices in the right postcentral gyrus were correlated with visuospatial function score correction. In conclusion, longitudinal voxel-wise analysis of multiple diffusion tensor imaging indices demonstrated different white matter changes in minimal hepatic encephalopathy patients. Transplantation improved extracellular cerebral edema and the results of associated cognition tests. However, white matter demyelination may advance in temporal lobe.

  15. Quasiballistic heat removal from small sources studied from first principles

    NASA Astrophysics Data System (ADS)

    Vermeersch, Bjorn; Mingo, Natalio

    2018-01-01

    Heat sources whose characteristic dimension R is comparable to phonon mean free paths display thermal resistances that exceed conventional diffusive predictions. This has direct implications to (opto)electronics thermal management and phonon spectroscopy. Theoretical analyses have so far limited themselves to particular experimental configurations. Here, we build upon the multidimensional Boltzmann transport equation (BTE) to derive universal expressions for the apparent conductivity suppression S (R ) =κeff(R ) /κbulk experienced by radially symmetric 2D and 3D sources. In striking analogy to cross-plane heat conduction in thin films, a distinct quasiballistic regime emerges between ballistic (κeff˜R ) and diffusive (κeff≃κbulk ) asymptotes that displays a logarithmic dependence κeff˜ln(R ) in single crystals and fractional power dependence κeff˜R2 -α in alloys (with α the Lévy superdiffusion exponent). Analytical solutions and Monte Carlo simulations for spherical and circular heat sources in Si, GaAs, Si0.99Ge0.01 , and Si0.82Ge0.18 , all carried out from first principles, confirm the predicted generic tendencies. Contrary to the thin film case, common approximations like kinetic theory estimates κeff≃∑Sωgreyκω and modified Fourier temperature curves perform relatively poorly. Up to threefold deviations from the BTE solutions for sub-100 nm sources underline the need for rigorous treatment of multidimensional nondiffusive transport.

  16. Toroidal rotation and ion heating during neutral beam injection in PBX-M

    NASA Astrophysics Data System (ADS)

    Asakura, N.; Fonck, R. J.; Jaehnig, K. P.; Kaye, S. M.; LeBlanc, B.; Okabayashi, M.

    1993-08-01

    Determination of the profiles of the ion temperature and the plasma toroidal rotation has been accomplished by charge exchange recombination spectroscopy in PBX-M. The angular momentum and the thermal ion energy transport have been studied mainly during the H mode phase of a high βp discharge (Ip approx 330 kA, 3.5 × 1019 <= ne <= 6.5 × 1019 m-3) having different heating beam configurations (combination of two perpendicular and two tangential neutral beam injections, abbreviated as 2 perp. NBI and 2 parall. NBI). The toroidal rotation velocity Vphi rises substantially in the region of r/a >= 0.5 after the L-H transition, and the Vphi profile (peakedness) is more highly dependent on the beam configuration than the Ti profile. The angular momentum confinement time varies from 147 ms (rigid rotation for 2 perp. NBI) to 39 ms (viscous rotation for 2 parall. NBI). In contrast, the thermal energy confinement time is 44-48 ms and is almost independent of the configuration. The transport analysis shows that the radial angular momentum diffusion is caused mainly by the viscous losses and that the angular momentum diffusivity χphi is reduced substantially in the outer minor radius region during the 2 perp. NBI H mode. The neoclassical friction effect between the bulk ions and the impurities may influence the χphi profiles locally, where the ion temperature gradient is steep

  17. Micro-CT based modelling for characterising injection-moulded porous titanium implants.

    PubMed

    Chen, Junning; Chen, Liangjian; Chang, Che-Cheng; Zhang, Zhongpu; Li, Wei; Swain, Michael V; Li, Qing

    2017-01-01

    Design of prosthetic implants to ensure rapid and stable osseointegration remains a significant challenge, and continuous efforts have been directed to new implant materials, structures and morphology. This paper aims to develop and characterise a porous titanium dental implant fabricated by metallic powder injection-moulding. The surface morphology of the specimens was first examined with a scanning electron microscope (SEM), followed by microscopic computerised tomography (μ-CT) scanning to capture its 3D microscopic features non-destructively. The nature of porosity and pore sizes were determined statistically. A homogenisation technique based on the Hills-energy theorem was adopted to evaluate its directional elastic moduli, and the conservation of mass theorem was employed to quantify the oxygen diffusivity for bio-transportation feature. This porous medium was found to have pore sizes varying from 50 to 400 µm and the average porosity of 46.90 ± 1.83%. The anisotropic principal elastic moduli were found fairly close to the upper range of cortical bone, and the directional diffusivities could potentially enable radial osseous tissue ingrowth and vascularisation. This porous titanium successfully reduces the elastic modulus mismatch between implant and bone for dental and orthopaedic applications, and provides improved capacity for transporting oxygen, nutrient and waste for pre-vascular network formation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Density perturbation mode structure of high frequency compressional and global Alfvén eigenmodes in the National Spherical Torus Experiment using a novel reflectometer analysis technique

    NASA Astrophysics Data System (ADS)

    Crocker, N. A.; Kubota, S.; Peebles, W. A.; Rhodes, T. L.; Fredrickson, E. D.; Belova, E.; Diallo, A.; LeBlanc, B. P.; Sabbagh, S. A.

    2018-01-01

    Reflectometry measurements of compressional (CAE) and global (GAE) Alfvén eigenmodes are analyzed to obtain the amplitude and spatial structure of the density perturbations associated with the modes. A novel analysis technique developed for this purpose is presented. The analysis also naturally yields the amplitude and spatial structure of the density contour radial displacement, which is found to be 2-4 times larger than the value estimated directly from the reflectometer measurements using the much simpler ‘mirror approximation’. The modes were driven by beam ions in a high power (6 MW) neutral beam heated H-mode discharge (#141398) in the National Spherical Torus Experiment. The results of the analysis are used to assess the contribution of the modes to core energy transport and ion heating. The total displacement amplitude of the modes, which is shown to be larger than previously estimated (Crocker et al 2013 Nucl. Fusion 53 43017), is compared to the predicted threshold (Gorelenkov et al 2010 Nucl. Fusion 50 84012) for the anomalously high heat diffusion inferred from transport modeling in similar NSTX discharges. The results of the analysis also have strong implications for the energy transport via coupling of CAEs to kinetic Alfvén waves seen in simulations with the Hybrid MHD code (Belova et al 2015 Phys. Rev. Lett. 115 15001). Finally, the amplitudes of the observed CAEs fall well below the threshold for causing significant ion heating by stochastic velocity space diffusion (Gates et al 2001 Phys. Rev. Lett. 87 205003).

  19. An axisymmetric single-path model for gas transport in the conducting airways.

    PubMed

    Madasu, Srinath; Borhan, All; Ultman, James S

    2006-02-01

    In conventional one-dimensional single-path models, radially averaged concentration is calculated as a function of time and longitudinal position in the lungs, and coupled convection and diffusion are accounted for with a dispersion coefficient. The axisymmetric single-path model developed in this paper is a two-dimensional model that incorporates convective-diffusion processes in a more fundamental manner by simultaneously solving the Navier-Stokes and continuity equations with the convection-diffusion equation. A single airway path was represented by a series of straight tube segments interconnected by leaky transition regions that provide for flow loss at the airway bifurcations. As a sample application, the model equations were solved by a finite element method to predict the unsteady state dispersion of an inhaled pulse of inert gas along an airway path having dimensions consistent with Weibel's symmetric airway geometry. Assuming steady, incompressible, and laminar flow, a finite element analysis was used to solve for the axisymmetric pressure, velocity and concentration fields. The dispersion calculated from these numerical solutions exhibited good qualitative agreement with the experimental values, but quantitatively was in error by 20%-30% due to the assumption of axial symmetry and the inability of the model to capture the complex recirculatory flows near bifurcations.

  20. Predictive models for radial sap flux variation in coniferous, diffuse-porous and ring-porous temperate trees

    Treesearch

    Aaron B. Berdanier; Chelcy F. Miniat; James S. Clark

    2016-01-01

    Accurately scaling sap flux observations to tree or stand levels requires accounting for variation in sap flux between wood types and by depth into the tree. However, existing models for radial variation in axial sap flux are rarely used because they are difficult to implement, there is uncertainty about their predictive ability and calibration measurements...

  1. Computations for nanofluid flow near a stretchable rotating disk with axial magnetic field and convective conditions

    NASA Astrophysics Data System (ADS)

    Mushtaq, A.; Mustafa, M.

    In this paper, the classical Von Kármán problem of infinite disk is extended when an electrically conducting nanofluid fills the space above the rotating disk which also stretches uniformly in the radial direction. Buongiorno model is considered in order to incorporate the novel Brownian motion and thermophoresis effects. Heat transport mechanism is modeled through more practically feasible convective conditions while Neumann type condition for nanoparticle concentration is adopted. Modified Von Kármán transformations are utilized to obtain self-similar differential system which is treated through a numerical method. Stretching phenomenon yields an additional parameter c which compares the stretch rate with the swirl rate. The effect of parameter c is to reduce the temperature and nanoparticle concentration profiles. Torque required to main steady rotation of the disk increases for increasing values of c while an improvement in cooling rate is anticipated in case of radial stretching, which is important in engineering processes. Brownian diffusion does not influence the heat flux from the stretching wall. Moreover, the wall heat flux has the maximum value for the situation in which thermoporetic force is absent.

  2. Strain effects on the anisotropic thermal transport in crystalline polyethylene

    NASA Astrophysics Data System (ADS)

    He, Jixiong; Kim, Kyunghoon; Wang, Yangchao; Liu, Jun

    2018-01-01

    Thermal transport in the axial direction of polymers has been extensively studied, while the strain effect on the thermal conductivity, especially in the radial direction, remains unknown. In this work, we calculated the thermal conductivity in the radial direction of a crystalline polyethylene model and simulated the uniaxial strain effect on the thermal conductivity tensor by molecular dynamics simulations. We found a strong size effect of the thermal transport in the radial direction and estimated that the phonon mean free path can be much larger than the prediction from the classic kinetic theory. We also found that the thermal conductivity in the axial direction increases dramatically with strain, while the thermal conductivity in the radial direction decreases with uniaxial strain. We attribute the reduction of thermal conductivity in the radial direction to the decreases in inter-chain van der Waals forces with strains. The facts that the chains in the crystalline polyethylene became stiffer and more ordered along the chain direction could be the reasons for the increasing thermal conductivity in the axial direction during stretching. Besides, we observed longer phonon lifetime in acoustic branches and higher group velocity in optical branches after uniaxial stretching. Our work provides fundamental understandings on the phonon transport in crystalline polymers, the structure-property relationship in crystalline polymers, and the strain effect in highly anisotropic materials.

  3. Sparse and optimal acquisition design for diffusion MRI and beyond

    PubMed Central

    Koay, Cheng Guan; Özarslan, Evren; Johnson, Kevin M.; Meyerand, M. Elizabeth

    2012-01-01

    Purpose: Diffusion magnetic resonance imaging (MRI) in combination with functional MRI promises a whole new vista for scientists to investigate noninvasively the structural and functional connectivity of the human brain—the human connectome, which had heretofore been out of reach. As with other imaging modalities, diffusion MRI data are inherently noisy and its acquisition time-consuming. Further, a faithful representation of the human connectome that can serve as a predictive model requires a robust and accurate data-analytic pipeline. The focus of this paper is on one of the key segments of this pipeline—in particular, the development of a sparse and optimal acquisition (SOA) design for diffusion MRI multiple-shell acquisition and beyond. Methods: The authors propose a novel optimality criterion for sparse multiple-shell acquisition and quasimultiple-shell designs in diffusion MRI and a novel and effective semistochastic and moderately greedy combinatorial search strategy with simulated annealing to locate the optimum design or configuration. The goal of the optimality criteria is threefold: first, to maximize uniformity of the diffusion measurements in each shell, which is equivalent to maximal incoherence in angular measurements; second, to maximize coverage of the diffusion measurements around each radial line to achieve maximal incoherence in radial measurements for multiple-shell acquisition; and finally, to ensure maximum uniformity of diffusion measurement directions in the limiting case when all the shells are coincidental as in the case of a single-shell acquisition. The approach taken in evaluating the stability of various acquisition designs is based on the condition number and the A-optimal measure of the design matrix. Results: Even though the number of distinct configurations for a given set of diffusion gradient directions is very large in general—e.g., in the order of 10232 for a set of 144 diffusion gradient directions, the proposed search strategy was found to be effective in finding the optimum configuration. It was found that the square design is the most robust (i.e., with stable condition numbers and A-optimal measures under varying experimental conditions) among many other possible designs of the same sample size. Under the same performance evaluation, the square design was found to be more robust than the widely used sampling schemes similar to that of 3D radial MRI and of diffusion spectrum imaging (DSI). Conclusions: A novel optimality criterion for sparse multiple-shell acquisition and quasimultiple-shell designs in diffusion MRI and an effective search strategy for finding the best configuration have been developed. The results are very promising, interesting, and practical for diffusion MRI acquisitions. PMID:22559620

  4. Multimodal Imaging Evidence for Axonal and Myelin Deterioration in Amnestic Mild Cognitive Impairment

    PubMed Central

    Gold, Brian T.; Jiang, Yang; Powell, David K.; Smith, Charles D.

    2012-01-01

    White matter (WM) microstructural declines have been demonstrated in Alzheimer’s disease and amnestic mild cognitive impairment (aMCI). However, the pattern of WM microstructural changes in aMCI after controlling for WM atrophy is unknown. Here, we address this issue through joint consideration of aMCI alterations in fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity, as well as macrostructural volume in WM and gray matter compartments. Participants were 18 individuals with aMCI and 24 healthy seniors. Voxelwise analyses of diffusion tensor imaging data was carried out using tract-based spatial statistics (TBSS) and voxelwise analyses of high-resolution structural data was conducted using voxel based morphometry. After controlling for WM atrophy, the main pattern of TBSS findings indicated reduced fractional anisotropy with only small alterations in mean diffusivity/radial diffusivity/axial diffusivity. These WM microstructural declines bordered and/or were connected to gray matter structures showing volumetric declines. However, none of the potential relationships between WM integrity and volume in connected gray matter structures was significant, and adding fractional anisotropy information improved the classificatory accuracy of aMCI compared to the use of hippocampal atrophy alone. These results suggest that WM microstructural declines provide unique information not captured by atrophy measures that may aid the magnetic resonance imaging contribution to aMCI detection. PMID:22460327

  5. Interactions in charged colloidal suspensions: A molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Padidela, Uday Kumar; Behera, Raghu Nath

    2017-07-01

    Colloidal suspensions are extensively used in everyday life and find several applications in the pharmaceutical, chemical, food industries, etc. We present the classical molecular dynamics simulation results of the structural and transport properties of charged colloidal suspensions as a function of its size, charge and concentration. The system is viewed as a two-component (colloids and counterions) primitive model consisting of spherical colloid particle (macroion) and the counterions (micro-particles), which are treated explicitly. The solvent is treated as dielectric continuum. A systematic trend in the radial distribution functions g(r), potential of mean force W(r), different thermodynamic properties and diffusion coefficients is obtained as a function of colloid charge, size and concentration. An attractive minimum in W(r) is obtained at short interparticle distance.

  6. The influence of ambipolarity on plasma confinement and on the performance of electron cyclotron resonance ion sources.

    PubMed

    Schachter, L; Dobrescu, S; Stiebing, K E; Thuillier, T; Lamy, T

    2008-02-01

    Charge diffusion in an electron cyclotron resonance ion source (ECRIS) discharge is usually characterized by nonambipolar behavior. While the ions are transported to the radial walls, electrons are lost axially from the magnetic trap. Global neutrality is maintained via compensating currents in the conducting walls of the vacuum chamber. It is assumed that this behavior reduces the ion breeding times compared to a truly ambipolar plasma. We have carried out a series of dedicated experiments in which the ambipolarity of the ECRIS plasma was influenced by inserting special metal-dielectric structures (MD layers) into the plasma chamber of the Frankfurt 14 GHz ECRIS. The measurements demonstrate the positive influence on the source performance when the ECR plasma is changed toward more ambipolar behavior.

  7. Effects of low-level sarin and cyclosarin exposure on white matter integrity in Gulf War Veterans.

    PubMed

    Chao, Linda L; Zhang, Yu; Buckley, Shannon

    2015-05-01

    We previously found evidence of reduced gray and white matter volume in Gulf War (GW) veterans with predicted low-level exposure to sarin (GB) and cyclosarin (GF). Because loss of white matter tissue integrity has been linked to both gray and white matter atrophy, the current study sought to test the hypothesis that GW veterans with predicted GB/GF exposure have evidence of disrupted white matter microstructural integrity. Measures of fractional anisotropy and directional (i.e., axial and radial) diffusivity were assessed from the 4T diffusion tensor images (DTI) of 59 GW veterans with predicted GB/GF exposure and 59 "matched" unexposed GW veterans (mean age: 48 ± 7 years). The DTI data were analyzed using regions of interest (ROI) analyses that accounted for age, sex, total brain gray and white matter volume, trauma exposure, posttraumatic stress disorder, current major depression, and chronic multisymptom illness status. There were no significant group differences in fractional anisotropy or radial diffusivity. However, there was increased axial diffusivity in GW veterans with predicted GB/GF exposure compared to matched, unexposed veterans throughout the brain, including the temporal stem, corona radiata, superior and inferior (hippocampal) cingulum, inferior and superior fronto-occipital fasciculus, internal and external capsule, and superficial cortical white matter blades. Post hoc analysis revealed significant correlations between higher fractional anisotropy and lower radial diffusivity with better neurobehavioral performance in unexposed GW veterans. In contrast, only increased axial diffusivity in posterior limb of the internal capsule was associated with better psychomotor function in GW veterans with predicted GB/GF exposure. The finding that increased axial diffusivity in a region of the brain that contains descending corticospinal fibers was associated with better psychomotor function and the lack of significant neurobehavioral deficits in veterans with predicted GB/GF exposure hint at the possibility that the widespread increases in axial diffusivity that we observed in GW veterans with predicted GB/GF exposure relative to unexposed controls may reflect white matter reorganization after brain injury (i.e., exposure to GB/GF). Published by Elsevier B.V.

  8. White Matter Damage Relates to Oxygen Saturation in Children With Sickle Cell Anemia Without Silent Cerebral Infarcts.

    PubMed

    Kawadler, Jamie M; Kirkham, Fenella J; Clayden, Jonathan D; Hollocks, Matthew J; Seymour, Emma L; Edey, Rosanna; Telfer, Paul; Robins, Andrew; Wilkey, Olu; Barker, Simon; Cox, Tim C S; Clark, Chris A

    2015-07-01

    Sickle cell anemia is associated with compromised oxygen-carrying capability of hemoglobin and a high incidence of overt and silent stroke. However, in children with no evidence of cerebral infarction, there are changes in brain morphometry relative to healthy controls, which may be related to chronic anemia and oxygen desaturation. A whole-brain tract-based spatial statistics analysis was carried out in 25 children with sickle cell anemia with no evidence of abnormality on T2-weighted magnetic resonance imaging (13 male, age range: 8-18 years) and 14 age- and race-matched controls (7 male, age range: 10-19 years) to determine the extent of white matter injury. The hypotheses that white matter damage is related to daytime peripheral oxygen saturation and steady-state hemoglobin were tested. Fractional anisotropy was found to be significantly lower in patients in the subcortical white matter (corticospinal tract and cerebellum), whereas mean diffusivity and radial diffusivity were higher in patients in widespread areas. There was a significant negative relationship between radial diffusivity and oxygen saturation (P<0.05) in the anterior corpus callosum and a trend-level negative relationship between radial diffusivity and hemoglobin (P<0.1) in the midbody of the corpus callosum. These data show widespread white matter abnormalities in a sample of asymptomatic children with sickle cell anemia, and provides for the first time direct evidence of a relationship between brain microstructure and markers of disease severity (eg, peripheral oxygen saturation and steady-state hemoglobin). This study suggests that diffusion tensor imaging metrics may serve as a biomarker for future trials of reducing hypoxic exposure. © 2015 American Heart Association, Inc.

  9. Association between left ventricular mechanics and diffuse myocardial fibrosis in patients with repaired Tetralogy of Fallot: a cross-sectional study.

    PubMed

    Haggerty, Christopher M; Suever, Jonathan D; Pulenthiran, Arichanah; Mejia-Spiegeler, Abba; Wehner, Gregory J; Jing, Linyuan; Charnigo, Richard J; Fornwalt, Brandon K; Fogel, Mark A

    2017-12-11

    Patients with repaired tetralogy of Fallot (TOF) have progressive, adverse biventricular remodeling, leading to abnormal contractile mechanics. Defining the mechanisms underlying this dysfunction, such as diffuse myocardial fibrosis, may provide insights into poor long-term outcomes. We hypothesized that left ventricular (LV) diffuse fibrosis is related to impaired LV mechanics. Patients with TOF were evaluated with cardiac magnetic resonance in which modified Look-Locker (MOLLI) T1-mapping and spiral cine Displacement encoding (DENSE) sequences were acquired at three LV short-axis positions. Linear mixed modeling was used to define the association between regional LV mechanics from DENSE based on regional T1-derived diffuse fibrosis measures, such as extracellular volume fraction (ECV). Forty patients (26 ± 11 years) were included. LV ECV was generally within normal range (0.24 ± 0.05). For LV mechanics, peak circumferential strains (-15 ± 3%) and dyssynchrony indices (16 ± 8 ms) were moderately impaired, while peak radial strains (29 ± 8%) were generally normal. After adjusting for patient age, sex, and regional LV differences, ECV was associated with log-adjusted LV dyssynchrony index (β = 0.67) and peak LV radial strain (β = -0.36), but not LV circumferential strain. Moreover, post-contrast T1 was associated with log-adjusted LV diastolic circumferential strain rate (β = 0.37). We observed several moderate associations between measures of fibrosis and impaired mechanics, particularly the LV dyssynchrony index and peak radial strain. Diffuse fibrosis may therefore be a causal factor in some ventricular dysfunction in TOF.

  10. Experimental investigation on pressurization performance of cryogenic tank during high-temperature helium pressurization process

    NASA Astrophysics Data System (ADS)

    Lei, Wang; Yanzhong, Li; Yonghua, Jin; Yuan, Ma

    2015-03-01

    Sufficient knowledge of thermal performance and pressurization behaviors in cryogenic tanks during rocket launching period is of importance to the design and optimization of a pressurization system. In this paper, ground experiments with liquid oxygen (LO2) as the cryogenic propellant, high-temperature helium exceeding 600 K as the pressurant gas, and radial diffuser and anti-cone diffuser respectively at the tank inlet were performed. The pressurant gas requirements, axial and radial temperature distributions, and energy distributions inside the propellant tank were obtained and analyzed to evaluate the comprehensive performance of the pressurization system. It was found that the pressurization system with high-temperature helium as the pressurant gas could work well that the tank pressure was controlled within a specified range and a stable discharging liquid rate was achieved. For the radial diffuser case, the injected gas had a direct impact on the tank inner wall. The severe gas-wall heat transfer resulted in about 59% of the total input energy absorbed by the tank wall. For the pressurization case with anti-cone diffuser, the direct impact of high-temperature gas flowing toward the liquid surface resulted in a greater deal of energy transferred to the liquid propellant, and the percentage even reached up to 38%. Moreover, both of the two cases showed that the proportion of energy left in ullage to the total input energy was quite small, and the percentage was only about 22-24%. This may indicate that a more efficient diffuser should be developed to improve the pressurization effect. Generally, the present experimental results are beneficial to the design and optimization of the pressurization system with high-temperature gas supplying the pressurization effect.

  11. Melanophores for microtubule dynamics and motility assays.

    PubMed

    Ikeda, Kazuho; Semenova, Irina; Zhapparova, Olga; Rodionov, Vladimir

    2010-01-01

    Microtubules (MTs) are cytoskeletal structures essential for cell division, locomotion, intracellular transport, and spatial organization of the cytoplasm. In most interphase cells, MTs are organized into a polarized radial array with minus-ends clustered at the centrosome and plus-ends extended to the cell periphery. This array directs transport of organelles driven by MT-based motor proteins that specifically move either to plus- or to minus-ends. Along with using MTs as tracks for cargo, motor proteins can organize MTs into a radial array in the absence of the centrosome. Transport of organelles and motor-dependent radial organization of MTs require MT dynamics, continuous addition and loss of tubulin subunits at minus- and plus-ends. A unique experimental system for studying the role of MT dynamics in these processes is the melanophore, which provides a useful tool for imaging of both dynamic MTs and moving membrane organelles. Melanophores are filled with pigment granules that are synchronously transported by motor proteins in response to hormonal stimuli. The flat shape of the cell and the radial organization of MTs facilitate imaging of dynamic MT plus-ends and monitoring of their interaction with membrane organelles. Microsurgically produced cytoplasmic fragments of melanophores are used to study the centrosome-independent rearrangement of MTs into a radial array. Here we describe the experimental approaches to study the role of MT dynamics in intracellular transport and centrosome-independent MT organization in melanophores. We focus on the preparation of cell cultures, microsurgery and microinjection, fluorescence labeling, and live imaging of MTs. 2010 Elsevier Inc. All rights reserved.

  12. Characterization of spinal cord white matter by suppressing signal from hindered space. A Monte Carlo simulation and an ex vivo ultrahigh-b diffusion-weighted imaging study.

    PubMed

    Sapkota, Nabraj; Yoon, Sook; Thapa, Bijaya; Lee, YouJung; Bisson, Erica F; Bowman, Beth M; Miller, Scott C; Shah, Lubdha M; Rose, John W; Jeong, Eun-Kee

    2016-11-01

    Signal measured from white matter in diffusion-weighted imaging is difficult to interpret because of the heterogeneous structure of white matter. Characterization of the white matter will be straightforward if the signal contributed from the hindered space is suppressed and purely restricted signal is analyzed. In this study, a Monte Carlo simulation (MCS) of water diffusion in white matter was performed to understand the behavior of the diffusion-weighted signal in white matter. The signal originating from the hindered space of an excised pig cervical spinal cord white matter was suppressed using the ultrahigh-b radial diffusion-weighted imaging. A light microscopy image of a section of white matter was obtained from the excised pig cervical spinal cord for the MCS. The radial diffusion-weighted signals originating from each of the intra-axonal, extra-axonal, and total spaces were studied using the MCS. The MCS predicted that the radial diffusion-weighted signal remains almost constant in the intra-axonal space and decreases gradually to about 2% of its initial value in the extra-axonal space when the b-value is increased to 30,000s/mm 2 . The MCS also revealed that the diffusion-weighted signal for a b-value greater than 20,000s/mm 2 is mostly from the intra-axonal space. The decaying behavior of the signal-b curve obtained from ultrahigh-b diffusion-weighted imaging (b max ∼30,000s/mm 2 ) of the excised pig cord was very similar to the decaying behavior of the total signal-b curve synthesized in the MCS. A mono-exponential plus constant fitting of the signal-b curve obtained from a white matter pixel estimated the values of constant fraction and apparent diffusion coefficient of decaying fraction as 0.32±0.05 and (0.16±0.01)×10 -3 mm 2 /s, respectively, which agreed well with the results of the MCS. The signal measured in the ultrahigh-b region (b>20,000s/mm 2 ) is mostly from the restricted (intra-axonal) space. Integrity and intactness of the axons can be evaluated by assessing the remaining signal in the ultrahigh-b region. Published by Elsevier Inc.

  13. Molecular dynamics simulation of diffusion of gases in a carbon-nanotube-polymer composite

    NASA Astrophysics Data System (ADS)

    Lim, Seong Y.; Sahimi, Muhammad; Tsotsis, Theodore T.; Kim, Nayong

    2007-07-01

    Extensive molecular dynamics (MD) simulations were carried out to compute the solubilities and self-diffusivities of CO2 and CH4 in amorphous polyetherimide (PEI) and mixed-matrix PEI generated by inserting single-walled carbon nanotubes into the polymer. Atomistic models of PEI and its composites were generated using energy minimizations, MD simulations, and the polymer-consistent force field. Two types of polymer composite were generated by inserting (7,0) and (12,0) zigzag carbon nanotubes into the PEI structure. The morphologies of PEI and its composites were characterized by their densities, radial distribution functions, and the accessible free volumes, which were computed with probe molecules of different sizes. The distributions of the cavity volumes were computed using the Voronoi tessellation method. The computed self-diffusivities of the gases in the polymer composites are much larger than those in pure PEI. We find, however, that the increase is not due to diffusion of the gases through the nanotubes which have smooth energy surfaces and, therefore, provide fast transport paths. Instead, the MD simulations indicate a squeezing effect of the nanotubes on the polymer matrix that changes the composite polymers’ free-volume distributions and makes them more sharply peaked. The presence of nanotubes also creates several cavities with large volumes that give rise to larger diffusivities in the polymer composites. This effect is due to the repulsive interactions between the polymer and the nanotubes. The solubilities of the gases in the polymer composites are also larger than those in pure PEI, hence indicating larger gas permeabilities for mixed-matrix PEI than PEI itself.

  14. Transport of elemental mercury in the unsaturated zone from a waste disposal site in an arid region

    USGS Publications Warehouse

    Walvoord, Michelle Ann; Andraski, Brian J.; Krabbenhoft, D.P.; Striegl, Robert G.

    2008-01-01

    Mercury contained in buried landfill waste may be released via upward emission to the atmosphere or downward leaching to groundwater. Data from the US Geological Survey’s Amargosa Desert Research Site (ADRS) in arid southwestern Nevada reveal another potential pathway of Hg release: long-distance (102 m) lateral migration of elemental Hg (Hg0) through the unsaturated zone. Gas collected from multiple depths from two instrumented boreholes that sample the entire 110-m unsaturated zone thickness and are located 100 and 160 m away from the closest waste burial trench exhibit gaseous Hg concentrations of up to 33 and 11 ng m−3, respectively. The vertical distribution of gaseous Hg in the borehole closest to the disposal site shows distinct subsurface peaks in concentration at depths of 1.5 and 24 m that cannot be explained by radial diffusive transport through a heterogeneous layered unsaturated zone. The inability of current models to explain gaseous Hg distribution at the ADRS highlights the need to advance the understanding of gas-phase contaminant transport in unsaturated zones to attain a comprehensive model of landfill Hg release.

  15. Core heat convection in NSTX-U via modification of electron orbits by high frequency Alfvén eigenmodes

    NASA Astrophysics Data System (ADS)

    Crocker, N. A.; Tritz, K.; White, R. B.; Fredrickson, E. D.; Gorelenkov, N. N.; NSTX-U Team

    2015-11-01

    New simulation results demonstrate that high frequency compressional (CAE) and global (GAE) Alfvén eigenmodes cause radial convection of electrons, with implications for particle and energy confinement, as well as electric field formation in NSTX-U. Simulations of electron orbits in the presence of multiple experimentally determined CAEs and GAEs, using the gyro-center code ORBIT, have revealed substantial convective transport, in addition to the expected diffusion via orbit stochastization. These results advance understanding of anomalous core energy transport expected in high performance, beam-heated NSTX-U plasmas. The simulations make use of experimentally determined density perturbation (δn) amplitudes and mode structures obtained by inverting measurements from 16 a channel reflectometer array using a synthetic diagnostic. Combined with experimentally determined mode polarizations (i.e. CAE or GAE), the δn are used to estimate the ExB displacements for use in ORBIT. Preliminary comparison of the simulation results with transport modeling by TRANSP indicate that the convection is currently underestimated. Supported by US DOE Contracts DE-SC0011810, DE-FG02-99ER54527 & DE-AC02-09CH11466.

  16. Brain aging in humans, chimpanzees (Pan troglodytes), and rhesus macaques (Macaca mulatta): magnetic resonance imaging studies of macro- and microstructural changes

    PubMed Central

    Chen, Xu; Errangi, Bhargav; Li, Longchuan; Glasser, Matthew F.; Westlye, Lars T.; Fjell, Anders M.; Walhovd, Kristine B.; Hu, Xiaoping; Herndon, James G.; Preuss, Todd M.; Rilling, James K.

    2013-01-01

    Among primates, humans are uniquely vulnerable to many age-related neurodegenerative disorders. We used structural and diffusion magnetic resonance imaging (MRI) to examine the brains of chimpanzees and rhesus monkeys across each species' adult lifespan, and compared these results with published findings in humans. As in humans, gray matter volume decreased with age in chimpanzees and rhesus monkeys. Also like humans, chimpanzees showed a trend for decreased white matter volume with age, but this decrease occurred proportionally later in the chimpanzee lifespan than in humans. Diffusion MRI revealed widespread age-related decreases in fractional anisotropy and increases in radial diffusivity in chimpanzees and macaques. However, both the fractional anisotropy decline and the radial diffusivity increase started at a proportionally earlier age in humans than in chimpanzees. Thus, even though overall patterns of gray and white matter aging are similar in humans and chimpanzees, the longer lifespan of humans provides more time for white matter to deteriorate before death, with the result that some neurological effects of aging may be exacerbated in our species. PMID:23623601

  17. Calculation of the second term of the exact Green's function of the diffusion equation for diffusion-controlled chemical reactions

    NASA Astrophysics Data System (ADS)

    Plante, Ianik

    2016-01-01

    The exact Green's function of the diffusion equation (GFDE) is often considered to be the gold standard for the simulation of partially diffusion-controlled reactions. As the GFDE with angular dependency is quite complex, the radial GFDE is more often used. Indeed, the exact GFDE is expressed as a Legendre expansion, the coefficients of which are given in terms of an integral comprising Bessel functions. This integral does not seem to have been evaluated analytically in existing literature. While the integral can be evaluated numerically, the Bessel functions make the integral oscillate and convergence is difficult to obtain. Therefore it would be of great interest to evaluate the integral analytically. The first term was evaluated previously, and was found to be equal to the radial GFDE. In this work, the second term of this expansion was evaluated. As this work has shown that the first two terms of the Legendre polynomial expansion can be calculated analytically, it raises the question of the possibility that an analytical solution exists for the other terms.

  18. Final Technical Report for Department of Energy award number DE-FG02-06ER54882, Revised

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eggleston, Dennis L.

    The research reported here involves studies of radial particle transport in a cylindrical, low-density Malmberg-Penning non-neutral plasma trap. The research is primarily experimental but involves careful comparisons to analytical theory and includes the results of a single-particle computer code. The transport is produced by applied electric fields that break the cylindrical symmetry of the trap, hence the term ``asymmetry-induced transport.'' Our computer studies have revealed the importance of a previously ignored class of particles that become trapped in the asymmetry potential. In many common situations these particles exhibit large radial excursions and dominate the radial transport. On the experimental side,more » we have developed new data analysis techniques that allowed us to determine the magnetic field dependence of the transport and to place empirical constraints on the form on the transport equation. Experiments designed to test the computer code results gave varying degrees of agreement with further work being necessary to understand the results. This work expands our knowledge of the varied mechanisms of cross-magnetic-field transport and should be of use to other workers studying plasma confinement.« less

  19. Dual view FIDA measurements on MAST

    NASA Astrophysics Data System (ADS)

    Michael, C. A.; Conway, N.; Crowley, B.; Jones, O.; Heidbrink, W. W.; Pinches, S.; Braeken, E.; Akers, R.; Challis, C.; Turnyanskiy, M.; Patel, A.; Muir, D.; Gaffka, R.; Bailey, S.

    2013-09-01

    A fast-ion deuterium alpha (FIDA) spectrometer was installed on MAST to measure radially resolved information about the fast-ion density and its distribution in energy and pitch angle. Toroidally and vertically directed collection lenses are employed, to detect both passing and trapped particle dynamics, and reference views are installed to subtract the background. This background is found to contain a substantial amount of passive FIDA emission driven by edge neutrals, and to depend delicately on viewing geometry. Results are compared with theoretical expectations based on the codes NUBEAM (for fast-ion distributions) and FIDASIM. Calibrating via the measured beam emission peaks, the toroidal FIDA signal profile agrees with classical simulations in magnetohydrodynamic quiescent discharges where the neutron rate is also classical. Long-lived modes (LLMs) and chirping modes decrease the core FIDA signal significantly, and the profile can be matched closely to simulations using anomalous diffusive transport; a spatially uniform diffusion coefficient is sufficient for chirping modes, while a core localized diffusion is better for a LLM. Analysis of a discharge with chirping mode activity shows a dramatic drop in the core FIDA signal and rapid increase in the edge passive signal at the onset of the burst indicating a very rapid redistribution towards the edge. Vertical-viewing measurements show a discrepancy with simulations at higher Doppler shifts when the neutron rate is classical, which, combined with the fact that the toroidal signals agree, means that the difference must be occurring for pitch angles near the trapped-passing boundary, although uncertainties in the background subtraction, which are difficult to assess, may contribute to this. Further evidence of an anomalous transport mechanism for these particles is provided by the fact that an increase of beam power does not increase the higher energy vertical FIDA signals, while the toroidal signals do increase.

  20. Numerical evaluation of static-chamber measurements of soil-atmospheric gas exchange--Identification of physical processes

    USGS Publications Warehouse

    Healy, Richard W.; Striegl, Robert G.; Russell, Thomas F.; Hutchinson, Gordon L.; Livingston, Gerald P.

    1996-01-01

    The exchange of gases between soil and atmosphere is an important process that affects atmospheric chemistry and therefore climate. The static-chamber method is the most commonly used technique for estimating the rate of that exchange. We examined the method under hypothetical field conditions where diffusion was the only mechanism for gas transport and the atmosphere outside the chamber was maintained at a fixed concentration. Analytical and numerical solutions to the soil gas diffusion equation in one and three dimensions demonstrated that gas flux density to a static chamber deployed on the soil surface was less in magnitude than the ambient exchange rate in the absence of the chamber. This discrepancy, which increased with chamber deployment time and air-filled porosity of soil, is attributed to two physical factors: distortion of the soil gas concentration gradient (the magnitude was decreased in the vertical component and increased in the radial component) and the slow transport rate of diffusion relative to mixing within the chamber. Instantaneous flux density to a chamber decreased continuously with time; steepest decreases occurred so quickly following deployment and in response to such slight changes in mean chamber headspace concentration that they would likely go undetected by most field procedures. Adverse influences of these factors were reduced by mixing the chamber headspace, minimizing deployment time, maximizing the height and radius of the chamber, and pushing the rim of the chamber into the soil. Nonlinear models were superior to a linear regression model for estimating flux densities from mean headspace concentrations, suggesting that linearity of headspace concentration with time was not necessarily a good indicator of measurement accuracy.

  1. Entire radial solutions of elliptic systems and inequalities of the mean curvature type

    NASA Astrophysics Data System (ADS)

    Filippucci, Roberta

    2007-10-01

    In this paper we study first nonexistence of radial entire solutions of elliptic systems of the mean curvature type with a singular or degenerate diffusion depending on the solution u. In particular we extend a previous result given in [R. Filippucci, Nonexistence of radial entire solutions of elliptic systems, J. Differential Equations 188 (2003) 353-389]. Moreover, in the scalar case we obtain nonexistence of all entire solutions, radial or not, of differential inequalities involving again operators of the mean curvature type and a diffusion term. We prove that in the scalar case, nonexistence of entire solutions is due to the explosion of the derivative of every nonglobal radial solution in the right extremum of the maximal interval of existence, while in that point the solution is bounded. This behavior is qualitatively different with respect to what happens for the m-Laplacian operator, studied in [R. Filippucci, Nonexistence of radial entire solutions of elliptic systems, J. Differential Equations 188 (2003) 353-389], where nonexistence of entire solutions is due, even in the vectorial case, to the explosion in norm of the solution at a finite point. Our nonexistence theorems for inequalities extend previous results given by Naito and Usami in [YE Naito, H. Usami, Entire solutions of the inequality div(A(=u)=u)[greater-or-equal, slanted]f(u), Math. Z. 225 (1997) 167-175] and Ghergu and Radulescu in [M. Ghergu, V. Radulescu, Existence and nonexistence of entire solutions to the logistic differential equation, Abstr. Appl. Anal. 17 (2003) 995-1003].

  2. Anatomical explanations for acute depressions in radial pattern of axial sap flow in two diffuse-porous mangrove species: implications for water use.

    PubMed

    Zhao, Hewei; Yang, Shengchang; Guo, Xudong; Peng, Congjiao; Gu, Xiaoxuan; Deng, Chuanyuan; Chen, Luzhen

    2018-02-01

    Mangrove species have developed uniquely efficient water-use strategies in order to survive in highly saline and anaerobic environments. Herein, we estimated the stand water use of two diffuse-porous mangrove species of the same age, Sonneratia apetala Buch. Ham and Sonneratia caseolaris (L.) Engl., growing in a similar intertidal environment. Specifically, to investigate the radial patterns of axial sap flow density (Js) and understand the anatomical traits associated with them, we measured axial sap flow density in situ together with micromorphological observations. A significant decrease of Js was observed for both species. This result was accompanied by the corresponding observations of wood structure and blockages in xylem sapwood, which appeared to influence and, hence, explained the acute radial reductions of axial sap flow in the stems of both species. However, higher radial resistance in sapwood of S. caseolaris caused a steeper decline of Js radially when compared with S. apetala, thus explaining the latter's more efficient use of water. Without first considering acute reductions in Js into the sapwood from the outer bark, a total of ~55% and 51% of water use would have been overestimated, corresponding to average discrepancies in stand water use of 5.6 mm day-1 for S. apetala trees and 2.5 mm day-1 for S. caseolaris trees. This suggests that measuring radial pattern of Js is a critical factor in determining whole-tree or stand water use. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. MRI assessment of the thigh musculature in dermatomyositis and healthy subjects using diffusion tensor imaging, intravoxel incoherent motion and dynamic DTI.

    PubMed

    Sigmund, E E; Baete, S H; Luo, T; Patel, K; Wang, D; Rossi, I; Duarte, A; Bruno, M; Mossa, D; Femia, A; Ramachandran, S; Stoffel, D; Babb, J S; Franks, A; Bencardino, J

    2018-06-04

    Dermatomyositis (DM) is an idiopathic inflammatory myopathy involving severe debilitation in need of diagnostics. We evaluated the proximal lower extremity musculature with diffusion tensor imaging (DTI), intravoxel incoherent motion (IVIM) and dynamic DTI in DM patients and controls and compared with standard clinical workup.  METHODS: In this IRB-approved, HIPAA-compliant study with written informed consent, anatomical, Dixon fat/water and diffusion imaging were collected in bilateral thigh MRI of 22 controls and 27 DM patients in a 3T scanner. Compartments were scored on T1/T2 scales. Single voxel dynamic DTI metrics in quadriceps before and after 3-min leg exercise were measured. Spearman rank correlation and mixed model analysis of variance/covariance (ANOVA/ANCOVA) were used to correlate with T1 and T2 scores and to compare patients with controls. DM patients showed significantly lower pseudo-diffusion and volume in quadriceps than controls. All subjects showed significant correlation between T1 score and signal-weighted fat fraction; tissue diffusion and pseudo-diffusion varied significantly with T1 and T2 score in patients. Radial and mean diffusion exercise response in patients was significantly higher than controls. Static and dynamic diffusion imaging metrics show correlation with conventional imaging scores, reveal spatial heterogeneity, and provide means to differentiate dermatomyositis patients from controls. • Diffusion imaging shows regional differences between thigh muscles of dermatomyositis patients and controls. • Signal-weighted fat fraction and diffusion metrics correlate with T1/T2 scores of disease severity. • Dermatomyositis patients show significantly higher radial diffusion exercise response than controls.

  4. Two-dimensional transport in structured optical force landscapes

    NASA Astrophysics Data System (ADS)

    Xiao, Ke

    The overdamped transport of a Brownian particle in a structured force landscape has been studied extensively for a century. Even such well-studied examples as Brownian transport in a one-dimensional tilted washboard potential continue to yield surprising results, with recent discoveries including the giant enhancement of diffusion at the depinning transition, and the so-called "thermal ratchet effect". The transport phenomena in higher-dimensional systems should be substantially richer, but remain largely unexplored. In this Thesis we study the biased diffusion of colloidal spheres through two-dimensional force landscapes created with holographic optical tweezers (HOT). These studies take advantage of holographic video microscopy (HVM), which enables us to follow spheres' three-dimensional motions with nanometer resolution while simultaneously measuring their radii and refractive indexes with part-per-thousand resolution. Using these techniques we investigated the kinetically and statistically locked-in transport of colloidal spheres through arrays of optical traps, and confirmed previously untested predictions for kinetically locked-in transport that can be used for sorting applications with previously unheard finesse. Extending this result to highly structured two-dimensional landscapes, we developed prismatic optical fractionation, in which objects with different physical properties are deflected into different directions, a phenomenon analogous to a prism dispersing different wavelengths of light into different directions. Our simulational and experimental studies revealed the important role that thermal fluctuations play in establishing the hierarchy of kinetically locked-in states. We also investigated Brownian motion in a two-dimensional optical force landscape that varies in time. The traps for these studies were arranged in particular pattern called a "Fibonacci spiral" that is both the densest arrangement of circular objects with a circular domain and also particularly endowed with useful and interesting symmetries. Periodically rotating this pattern gives rise to transport in the both radial and azimuthal dimensions, whose direction depends on the angle and speed of rotation as well as the inter-trap separation. This deceptively simple system displays an extremely rich pattern of flux reversals in both dimensions and creates new avenues for studying the departure from equilibrium in noise-driven machines.

  5. The ionizing effect of low-energy cosmic rays from a class II object on its protoplanetary disc

    NASA Astrophysics Data System (ADS)

    Rodgers-Lee, D.; Taylor, A. M.; Ray, T. P.; Downes, T. P.

    2017-11-01

    We investigate the ionizing effect of low-energy cosmic rays (CRs) from a young star on its protoplanetary disc (PPD). We consider specifically the effect of ∼3 GeV protons injected at the inner edge of the PPD. An increase in the ionization fraction as a result of these CRs could allow the magnetorotational instability to operate in otherwise magnetically dead regions of the disc. For the typical values assumed we find an ionization rate of ζCR ∼ 10-17 s-1 at 1 au. The transport equation is solved by treating the propagation of the CRs as diffusive. We find for increasing diffusion coefficients the CRs penetrate further in the PPD, while varying the mass density profile of the disc is found to have little effect. We investigate the effect of an energy spectrum of CRs. The influence of a disc wind is examined by including an advective term. For advective wind speeds between 1 and 100 km s-1 diffusion dominates at all radii considered here (out to 10 au) for reasonable diffusion coefficients. Overall, we find that low-energy CRs can significantly ionize the mid-plane of PPDs out to ∼1 au. By increasing the luminosity or energy of the CRs, within plausible limits, their radial influence could increase to ∼2 au at the mid-plane but it remains challenging to significantly ionize the mid-plane further out.

  6. High Aspect Ratio Semiconductor Heterojunction Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Redwing, Joan; Mallouk, Tom; Mayer, Theresa

    2013-05-17

    The project focused on the development of high aspect ratio silicon heterojunction (HARSH) solar cells. The solar cells developed in this study consisted of high density vertical arrays of radial junction silicon microwires/pillars formed on Si substrates. Prior studies have demonstrated that vertical Si wire/pillar arrays enable reduced reflectivity and improved light trapping characteristics compared to planar solar cells. In addition, the radial junction structure offers the possibility of increased carrier collection in solar cells fabricated using material with short carrier diffusion lengths. However, the high junction and surface area of radial junction Si wire/pillar array devices can be problematicmore » and lead to increased diode leakage and enhanced surface recombination. This study investigated the use of amorphous hydrogenated Si in the form of a heterojunction-intrinsic-thin layer (HIT) structure as a junction formation method for these devices. The HIT layer structure has widely been employed to reduce surface recombination in planar crystalline Si solar cells. Consequently, it was anticipated that it would also provide significant benefits to the performance of radial junction Si wire/pillar array devices. The overall goals of the project were to demonstrate a HARSH cell with a HIT-type structure in the radial junction Si wire/pillar array configuration and to develop potentially low cost pathways to fabricate these devices. Our studies demonstrated that the HIT structure lead to significant improvements in the open circuit voltage (V oc>0.5) of radial junction Si pillar array devices compared to devices fabricated using junctions formed by thermal diffusion or low pressure chemical vapor deposition (LPCVD). In addition, our work experimentally demonstrated that the radial junction structure lead to improvements in efficiency compared to comparable planar devices for devices fabricated using heavily doped Si that had reduced carrier diffusion lengths. Furthermore, we made significant advances in employing the bottom-up vapor-liquid-solid (VLS) growth technique for the fabrication of the Si wire arrays. Our work elucidated the effects of growth conditions and substrate pattern geometry on the growth of large area Si microwire arrays grown with SiCl4. In addition, we also developed a process to grow p-type Si nanowire arrays using aluminum as the catalyst metal instead of gold. Finally, our work demonstrated the feasibility of growing vertical arrays of Si wires on non-crystalline glass substrates using polycrystalline Si template layers. The accomplishments demonstrated in this project will pave the way for future advances in radial junction wire array solar cells.« less

  7. Do ray cells provide a pathway for radial water movement in the stems of conifer trees?

    PubMed

    Barnard, David M; Lachenbruch, Barbara; McCulloh, Katherine A; Kitin, Peter; Meinzer, Frederick C

    2013-02-01

    The pathway of radial water movement in tree stems presents an unknown with respect to whole-tree hydraulics. Radial profiles have shown substantial axial sap flow in deeper layers of sapwood (that may lack direct connection to transpiring leaves), which suggests the existence of a radial pathway for water movement. Rays in tree stems include ray tracheids and/or ray parenchyma cells and may offer such a pathway for radial water transport. This study investigated relationships between radial hydraulic conductivity (k(s-rad)) and ray anatomical and stem morphological characteristics in the stems of three conifer species whose distributions span a natural aridity gradient across the Cascade Mountain range in Oregon, United States. The k(s-rad) was measured with a high-pressure flow meter. Ray tracheid and ray parenchyma characteristics and water transport properties were visualized using autofluorescence or confocal microscopy. The k(s-rad) did not vary predictably with sapwood depth among species and populations. Dye tracer did not infiltrate ray tracheids, and infiltration into ray parenchyma was limited. Regression analyses revealed inconsistent relationships between k(s-rad) and selected anatomical or growth characteristics when ecotypes were analyzed individually and weak relationships between k(s-rad) and these characteristics when data were pooled by tree species. The lack of significant relationships between k(s-rad) and the ray and stem morphologies we studied, combined with the absence of dye tracer in ray tracheid and limited movement of dye into ray parenchyma suggests that rays may not facilitate radial water transport in the three conifer species studied.

  8. JIP3 regulates neuronal radial migration by mediating TrkB axonal anterograde transport in the developing cerebral cortex.

    PubMed

    Ma, Huixian; Yu, Hui; Li, Ting; Zhao, Yan; Hou, Ming; Chen, Zheyu; Wang, Yue; Sun, Tao

    2017-04-15

    Radial migration is essential for the precise lamination and the coordinated function of the cerebral cortex. However, the molecular mechanisms for neuronal radial migration are not clear. Here, we report that c-Jun NH2-terminal kinase (JNK)-interacting protein-3 (JIP3) is highly expressed in the brain of embryonic mice and essential for radial migration. Knocking down JIP3 by in utero electroporation specifically perturbs the radial migration of cortical neurons but has no effect on neurogenesis and neuronal differentiation. Furthermore, we illustrate that JIP3 knockdown delays but does not block the migration of cortical neurons by investigating the distribution of neurons with JIP3 knocked down in the embryo and postnatal mouse. Finally, we find that JIP3 regulates cortical neuronal migration by mediating TrkB axonal anterograde transport during brain development. These findings deepen our understanding of the regulation of neuronal development by JIP3 and provide us a novel view on the regulating mechanisms of neuronal radial migration. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Outcome, transport times, and costs of patients evacuated by helicopter versus fixed-wing aircraft.

    PubMed Central

    Thomas, F.; Wisham, J.; Clemmer, T. P.; Orme, J. F.; Larsen, K. G.

    1990-01-01

    We determined the differences in transport times and costs for patients transported by fixed-wing aircraft versus helicopter at ranges of 101 to 150 radial miles, where fixed-wing and helicopter in-hospital transports commonly overlap. Statistical analysis failed to show a significant difference between the trauma-care patients transported by helicopter (n = 109) and those transported by fixed-wing (n = 86) for age, injury severity score, hospital length of stay, hospital mortality, or discharge disability score. The times in returning patients to the receiving hospital by helicopter (n = 104) versus fixed-wing (n = 509) did not differ significantly. Helicopter transport costs per mile ($24), however, were 400% higher than those of fixed-wing aircraft with its associated ground ambulance transport costs ($6). Thus, helicopter transport is economically unjustified for interhospital transports exceeding 100 radial miles when an efficient fixed-wing service exists. PMID:2389575

  10. Gravity influence on the clustering of charged particles in turbulence

    NASA Astrophysics Data System (ADS)

    Lu, Jiang; Nordsiek, Hansen; Shaw, Raymond

    2010-11-01

    We report results aimed at studying the interactions of bidisperse charged inertial particles in homogeneous, isotropic turbulence, under the influence of gravitational settling. We theoretically and experimentally investigate the impact of gravititational settling on particle clustering, which is quantified by the radial distribution function (RDF). The theory is based on a drift-diffusion (Fokker-Planck) model with gravitational settling appearing as a diffusive term depending on a dimensionless settling parameter. The experiments are carried out in a laboratory chamber with nearly homogeneous, isotropic turbulence in which the flow is seeded with charged particles and digital holography used to obtain 3D particle positions and velocities. The derived radial distribution function for bidisperse settling charged particles is compared to the experimental RDFs.

  11. Axial diffusivity of the corona radiata correlated with ventricular size in adult hydrocephalus.

    PubMed

    Cauley, Keith A; Cataltepe, Oguz

    2014-07-01

    Hydrocephalus causes changes in the diffusion-tensor properties of periventricular white matter. Understanding the nature of these changes may aid in the diagnosis and treatment planning of this relatively common neurologic condition. Because ventricular size is a common measure of the severity of hydrocephalus, we hypothesized that a quantitative correlation could be made between the ventricular size and diffusion-tensor changes in the periventricular corona radiata. In this article, we investigated this relationship in adult patients with hydrocephalus and in healthy adult subjects. Diffusion-tensor imaging metrics of the corona radiata were correlated with ventricular size in 14 adult patients with acute hydrocephalus, 16 patients with long-standing hydrocephalus, and 48 consecutive healthy adult subjects. Regression analysis was performed to investigate the relationship between ventricular size and the diffusion-tensor metrics of the corona radiata. Subject age was analyzed as a covariable. There is a linear correlation between fractional anisotropy of the corona radiata and ventricular size in acute hydrocephalus (r = 0.784, p < 0.001), with positive correlation with axial diffusivity (r = 0.636, p = 0.014) and negative correlation with radial diffusivity (r = 0.668, p = 0.009). In healthy subjects, axial diffusion in the periventricular corona radiata is more strongly correlated with ventricular size than with patient age (r = 0.466, p < 0.001, compared with r = 0.058, p = 0.269). Axial diffusivity of the corona radiata is linearly correlated with ventricular size in healthy adults and in patients with hydrocephalus. Radial diffusivity of the corona radiata decreases linearly with ventricular size in acute hydrocephalus but is not significantly correlated with ventricular size in healthy subjects or in patients with long-standing hydrocephalus.

  12. Loss and source mechanisms of Jupiter's radiation belts near the inner boundary of trapping regions

    NASA Astrophysics Data System (ADS)

    Santos-Costa, Daniel; Bolton, Scott J.; Becker, Heidi N.; Clark, George; Kollmann, Peter; Paranicas, Chris; Mauk, Barry; Joergensen, John L.; Adriani, Alberto; Thorne, Richard M.; Bagenal, Fran; Janssen, Mike A.; Levin, Steve M.; Oyafuso, Fabiano A.; Williamson, Ross; Adumitroaie, Virgil; Ingersoll, Andrew P.; Kurth, Bill; Connerney, John E. P.

    2017-04-01

    We have merged a set of physics-based and empirical models to investigate the energy and spatial distributions of Jupiter's electron and proton populations in the inner and middle magnetospheric regions. Beyond the main source of plasma (> 5 Rj) where interchange instability is believed to drive the radial transport of charged particles, the method originally developed by Divine and Garrett [J. Geophys. Res., 88, 6889-6903, 1983] has been adapted. Closer to the planet where field fluctuations control the radial transport, a diffusion theory approach is used. Our results for the equatorial and mid-latitude regions are compared with Pioneer and Galileo Probe measurements. Data collected along Juno's polar orbit allow us to examine the features of Jupiter's radiation environment near the inner boundary of trapping regions. Significant discrepancies between Juno (JEDI keV energy particles and high energy radiation environment measurements made by Juno's SRU and ASC star cameras and the JIRAM infrared imager) and Galileo Probe data sets and models are observed close to the planet. Our simulations of Juno MWR observations of Jupiter's electron-belt emission confirm the limitation of our model to realistically depict the energy and spatial distributions of the ultra-energetic electrons. In this paper, we present our modeling approach, the data sets and resulting data-model comparisons for Juno's first science orbits. We describe our effort to improve our models of electron and proton belts. To gain a physical understanding of the dissimilarities with observations, we revisit the magnetic environment and the mechanisms of loss and source in our models.

  13. Transport diffusion in deformed carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Feng, Jiamei; Chen, Peirong; Zheng, Dongqin; Zhong, Weirong

    2018-03-01

    Using non-equilibrium molecular dynamics and Monte Carlo methods, we have studied the transport diffusion of gas in deformed carbon nanotubes. Perfect carbon nanotube and various deformed carbon nanotubes are modeled as transport channels. It is found that the transport diffusion coefficient of gas does not change in twisted carbon nanotubes, but changes in XY-distortion, Z-distortion and local defect carbon nanotubes comparing with that of the perfect carbon nanotube. Furthermore, the change of transport diffusion coefficient is found to be associated with the deformation factor. The relationship between transport diffusion coefficient and temperature is also discussed in this paper. Our results may contribute to understanding the mechanism of molecular transport in nano-channel.

  14. Two-dimensional simulation of argon dielectric barrier discharge excited by a Gaussian voltage at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Xu, Yonggang; Wang, Jing; Li, Jing; Lei, Bingying; Tang, Jie; Wang, Yishan; Li, Yongfang; Zhao, Wei; Duan, Yixiang

    2017-04-01

    A two-dimensional self-consistent fluid model was employed to investigate the spatiotemporal characteristics of discharges in atmospheric pressure argon (Ar) dielectric barrier discharge driven by a Gaussian voltage. The simulation results show that a discharge with multiple current pulses occurs each half-cycle in the gas gap. A transition from the Townsend mode to the glow mode is observed with the increasing applied voltage each half-cycle at a lower driving frequency (7.5 kHz). It is also found that the glow mode survives all the discharge phases at a higher driving frequency (12.5 kHz and 40 kHz). The change in the discharge mode with the driving frequency mainly lies in the fact that a lot of charged particles created in the discharge gap have no enough time to drift and diffuse around, and then these particles are assembled in the discharge space at higher frequency. Additionally, the spatial distributions of the electron density indicate that a center-advantage discharge is ignited at the driving frequencies of interest, resulting in the radial non-uniformity of discharge because of the edge effects. However, this overall non-uniformity is weakened with the driving frequency increased to 40 kHz, at which concentric ring patterns are observed. These distinct behaviors are mainly attributed to the fact that many charged particles generated are trapped in the gas gap and then accumulated to make the extension along the radial direction due to the charged particles transport and diffusion, and that the effective overlapping of a large number of avalanches induced by the increased "seed" electron density with the driving frequency. Meanwhile, the surface charged particles accumulated on the dielectric barriers are also shown to play a role in the formation of the discharge structure.

  15. Continuum kinetic modeling of the tokamak plasma edge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorf, M. A.; Dorr, M. R.; Hittinger, J. A.

    2016-05-15

    The first 4D (axisymmetric) high-order continuum gyrokinetic transport simulations that span the magnetic separatrix of a tokamak are presented. The modeling is performed with the COGENT code, which is distinguished by fourth-order finite-volume discretization combined with mapped multiblock grid technology to handle the strong anisotropy of plasma transport and the complex X-point divertor geometry with high accuracy. The calculations take into account the effects of fully nonlinear Fokker-Plank collisions, electrostatic potential variations, and anomalous radial transport. Topics discussed include: (a) ion orbit loss and the associated toroidal rotation and (b) edge plasma relaxation in the presence of anomalous radial transport.

  16. Aerodynamically induced radial forces in a centrifugal gas compressor: Part 2 -- Computational investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flathers, M.B.; Bache, G.E.

    1999-10-01

    Radial loads and direction of a centrifugal gas compressor containing a high specific speed mixed flow impeller and a single tongue volute were determined both experimentally and computationally at both design and off-design conditions. The experimental methodology was developed in conjunction with a traditional ASME PTC-10 closed-loop test to determine radial load and direction. The experimental study is detailed in Part 1 of this paper (Moore and Flathers, 1998). The computational method employs a commercially available, fully three-dimensional viscous code to analyze the impeller and the volute interaction. An uncoupled scheme was initially used where the impeller and volute weremore » analyzed as separate models using a common vaneless diffuser geometry. The two calculations were then repeated until the boundary conditions at a chosen location in the common vaneless diffuser were nearly the same. Subsequently, a coupled scheme was used where the entire stage geometry was analyzed in one calculation, thus eliminating the need for manual iteration of the two independent calculations. In addition to radial load and direction information, this computational procedure also provided aerodynamic stage performance. The effect of impeller front face and rear face cavities was also quantified. The paper will discuss computational procedures, including grid generation and boundary conditions, as well as comparisons of the various computational schemes to experiment. The results of this study will show the limitations and benefits of Computational Fluid Dynamics (CFD) for determination of radial load, direction, and aerodynamic stage performance.« less

  17. Core radial electric field and transport in Wendelstein 7-X plasmas

    NASA Astrophysics Data System (ADS)

    Pablant, N. A.; Langenberg, A.; Alonso, A.; Beidler, C. D.; Bitter, M.; Bozhenkov, S.; Burhenn, R.; Beurskens, M.; Delgado-Aparicio, L.; Dinklage, A.; Fuchert, G.; Gates, D.; Geiger, J.; Hill, K. W.; Höfel, U.; Hirsch, M.; Knauer, J.; Krämer-Flecken, A.; Landreman, M.; Lazerson, S.; Maaßberg, H.; Marchuk, O.; Massidda, S.; Neilson, G. H.; Pasch, E.; Satake, S.; Svennson, J.; Traverso, P.; Turkin, Y.; Valson, P.; Velasco, J. L.; Weir, G.; Windisch, T.; Wolf, R. C.; Yokoyama, M.; Zhang, D.; W7-X Team

    2018-02-01

    The results from the investigation of neoclassical core transport and the role of the radial electric field profile (Er) in the first operational phase of the Wendelstein 7-X (W7-X) stellarator are presented. In stellarator plasmas, the details of the Er profile are expected to have a strong effect on both the particle and heat fluxes. Investigation of the radial electric field is important in understanding neoclassical transport and in validation of neoclassical calculations. The radial electric field is closely related to the perpendicular plasma flow (u⊥) through the force balance equation. This allows the radial electric field to be inferred from measurements of the perpendicular flow velocity, which can be measured using the x-ray imaging crystal spectrometer and correlation reflectometry diagnostics. Large changes in the perpendicular rotation, on the order of Δu⊥˜ 5 km/s (ΔEr ˜ 12 kV/m), have been observed within a set of experiments where the heating power was stepped down from 2 MW to 0.6 MW. These experiments are examined in detail to explore the relationship between heating power temperature, and density profiles and the radial electric field. Finally, the inferred Er profiles are compared to initial neoclassical calculations based on measured plasma profiles. The results from several neoclassical codes, sfincs, fortec-3d, and dkes, are compared both with each other and the measurements. These comparisons show good agreement, giving confidence in the applicability of the neoclassical calculations to the W7-X configuration.

  18. Noble internal transport barriers and radial subdiffusion of toroidal magnetic lines

    NASA Astrophysics Data System (ADS)

    Misguich, J. H.; Reuss, J.-D.; Constantinescu, D.; Steinbrecher, G.; Vlad, M.; Spineanu, F.; Weyssow, B.; Balescu, R.

    2003-11-01

    Internal transport barriers (ITB's) observed in tokamaks are described by a purely magnetic approach. Magnetic line motion in toroidal geometry with broken magnetic surfaces is studied from a previously derived Hamiltonian map in situation of incomplete chaos. This appears to reproduce in a realistic way the main features of a tokamak, for a given safety factor profile and in terms of a single parameter L representing the amplitude of the magnetic perturbation. New results are given concerning the Shafranov shift as function of L. The phase space (psi ,θ ) of the "tokamap" describes the poloidal section of the line trajectories, where psi is the toroidal flux labelling the surfaces. For small values of L, closed magnetic surfaces exist (KAM tori) and island chains begin to appear on rational surfaces for higher values of L, with chaotic zones around hyperbolic points, as expected. Island remnants persist in the chaotic domain for all relevant values of L at the main rational q-values. Single trajectories of magnetic line motion indicate the persistence of a central protected plasma core, surrounded by a chaotic shell enclosed in a double-sided transport barrier: the latter is identified as being composed of two Cantori located on two successive “most-noble” numbers values of the perturbed safety factor, and forming an internal transport barrier (ITB). Magnetic lines which succeed to escape across this barrier begin to wander in a wide chaotic sea extending up to a very robust barrier (as long as Lprecsim 1) which is identified mathematically as a robust KAM surface at the plasma edge. In this case the motion is shown to be intermittent, with long stages of pseudo-trapping in the chaotic shell, or of sticking around island remnants, as expected for a continuous time random walk. For values of Lsucceq 1, above the escape threshold, most magnetic lines succeed to escape out of the external barrier which has become a permeable Cantorus. Statistical analysis of a large number of trajectories, representing the evolution of a bunch of magnetic lines, indicate that the flux variable psi asymptotically grows in a diffusive manner as (L2t) with a L2 scaling as expected, but that the average radial position rm(t) asymptotically grows as (L2t)^{1/4} while the mean square displacement around this average radius asymptotically grows in a subdiffusive manner as (L2t)^{1/2}. This result shows the slower dispersion in the present incomplete chaotic regime, which is different from the usual quasilinear diffusion in completely chaotic situations. For physical times t_{\\varphi } of the order of the escape time defined by xm(t_{\\varphi })sim 1, the motion appears to be superdiffusive, however, but less dangerous than the generally admitted quasi-linear diffusion. The orders of magnitude of the relevant times in Tore Supra are finally discussed. Barrières internes de transport " nobles " et sous-diffusion radiale des lignes magnétiques toroïdales Les barrières internes de transport observées dans les tokamaks sont décrites ici dans une approche purement magnétique. Le mouvement des lignes magnétiques en géométrie toroïdale avec brisure des surfaces magnétiques est étudié à partir d'une application hamiltonienne "tokamap" développée précédemment en situation de chaos incomplet, et dans laquelle le "temps" est représenté par la coordonnée toroïdale. Cette application reproduit de façon réaliste les principales caractéristiques d'un tokamak, pour un profil donné du facteur de sécurité q, et en terme d'un seul paramètre L représentant l'amplitude de la perturbation magnétique. On obtient des résultats nouveaux concernant le déplacement de Shafranov en fonction de L. L'espace des phases (psi,θ) du "tokamap" décrit la section poloïdale des trajectoires des lignes, où psisim r^2 est le flux toroïdal caractérisant les surfaces magnétiques (proportionnel au carré du rayon r de cette surface). Pour de faibles valeurs de L, des surfaces magnétiques fermées existent (tores de KAM) et des chaînes d'îlots commencent à apparaître sur les surfaces rationnelles pour des valeurs de L supérieures, avec, comme attendu, des zones chaotiques autour des points hyperboliques. Des résidus d'îlots magnétiques persistent dans le domaine chaotique pour toutes les valeurs de L, sur les surfaces caractérisées par les principales valeurs rationnelles de q. Des trajectoires individuelles de ligne magnétique indiquent la persistance d'un cœur protégé au sein du plasma, entouré d'une couche chaotique, incluse dans une double barrière de transport : celle-ci est composée de deux Cantori situés sur deux valeurs successives du facteur de sécurité perturbé que l'on a pu identifier comme étant les nombres "les plus nobles", formant ainsi une barrière de transport interne. Les lignes magnétiques qui réussissent à s'échapper à travers cette barrière commencent à voyager dans une vaste mer chaotique qui s'étend jusqu'à une barrière très robuste (tant que Lprecsim 1) qui a été identifiée mathématiquement comme étant une surface KAM robuste au bord du plasma. Dans ce cas le mouvement observé est intermittent, avec de longues périodes de pseudo-piégeage dans la couche chaotique, ou du collage (sticking) autour des îlots résiduels, comme attendu pour une marche aléatoire en temps continu. Pour des valeurs de Lsucceq 1, au-dessus du seuil d'échappement, la plupart des lignes magnétiques parviennent à s'échapper à travers la barrière externe qui est devenue un Cantorus perméable. L'analyse statistique d'un grand nombre de trajectoires, représentant l'évolution d'un faisceau de lignes magnétiques, indique qu'en moyenne la variable de flux psi croît asymptotiquement de manière diffusive (comme L^2t) avec une loi d'échelle en L^2 comme attendu, mais avec une position radiale moyenne r_m(t) croissant asymptotiquement comme (L^2t)^{1/4}, tandis que le déplacement quadratique moyen autour de ce rayon moyen croît asymptotiquement de manière sous-diffusive comme (L^2t)^{1/2}. Ce résultat indique une dispersion plus lente dans le cas étudié d'un régime de chaos incomplet, qui est différente de la diffusion quasi-linéaire en situation de chaos complet. Pour des temps physiques t_{\\varphi} de l'ordre du temps d'échappement, défini par r_m(t_{\\varphi}) sim 1, le mouvement apparaît comme super-diffusif, mais cependant moins " dangereux " que la diffusion quasi-linéaire généralement admise. On discute finalement les ordres de grandeur des temps caractéristiques dans le tokamak TORE SUPRA.

  19. ECRH and its effects on neoclassical transport in a stellarator

    NASA Astrophysics Data System (ADS)

    Seol, Jaechun

    The banana center orbit deviates significantly from the magnetic surface due to the symmetry-breaking term in the magnetic field configuration. Energetic electrons can escape the plasma without collision, since the drift speed is proportional to the perpendicular energy of electron and the collision frequency is reduced as the electron energy goes up. A direct loss flux can be generated from energetic electron population in a stellarator. Thus energetic electron populations can substantially modify the neoclassical transport properties in stellarators. A model accounting for this change in transport is developed assuming the presence of electron cyclotron resonance heating (ECRH). The quasilinear diffusion coefficient for second harmonic X-mode ECRH is developed for a bumpy stellarator. Care is taken in accounting for the pitch-angle dependence of the quasilinear diffusion coefficient since application to experiments with narrow resonance zones is of interest. Weakly relativistic effects are considered through the mass effect on the cyclotron frequency. For trapped particles in a three dimensional configuration, collisionless loss zones exist in velocity space. Radio-frequency (rf) waves accelerate trapped electrons into the direct loss zone in bumpy stellarators and produce a direct loss flux. An analytic expression for this loss flux is derived; it is proportional to the rf field strength and the value of the zeroth order distribution function at the minimum speed for collisionless loss. The direct loss flux of electrons is another source of a non-ambipolar particle flux in bumpy stellarators. This additional non-ambipolar flux modifies the ambipolarity equation which generally has multiple roots for the radial electric field. An electron root (large positive Er) is easily obtained if the electrons are in the 1/nu regime and the ions are in the nu regime.

  20. Effects of cell geometry on reversible vesicular transport

    NASA Astrophysics Data System (ADS)

    Karamched, Bhargav R.; Bressloff, Paul C.

    2017-02-01

    A major question in cell biology concerns the biophysical mechanism underlying delivery of newly synthesized macromolecules to specific targets within a cell. A recent modeling paper investigated this phenomenon in the context of vesicular delivery to en passant synapses in neurons (Bressloff and Levien 2015 Phys. Rev. Lett.). It was shown how reversibility in vesicular delivery to synapses could play a crucial role in achieving uniformity in the distribution of resources throughout an axon, which is consistent with experimental observations in C. elegans and Drosophila. In this work we generalize the previous model by investigating steady-state vesicular distributions on a Cayley tree, a disk, and a sphere. We show that for irreversible transport on a tree, branching increases the rate of decay of the steady-state distribution of vesicles. On the other hand, the steady-state profiles for reversible transport are similar to the 1D case. In the case of higher-dimensional geometries, we consider two distinct types of radially-symmetric microtubular network: (i) a continuum and (ii) a discrete set. In the continuum case, we model the motor-cargo dynamics using a phenomenologically-based advection-diffusion equation in polar (2D) and spherical (3D) coordinates. On the other-hand, in the discrete case, we derive the population model from a stochastic model of a single motor switching between ballistic motion and diffusion. For all of the geometries we find that reversibility in vesicular delivery to target sites allows for a more uniform distribution of vesicles, provided that cargo-carrying motors are not significantly slowed by their cargo. In each case we characterize the loss of uniformity as a function of the dispersion in velocities.

  1. Ultra-low-frequency wave-driven diffusion of radiation belt relativistic electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang

    The Van Allen radiation belts are typically two zones of energetic particles encircling the Earth separated by the slot region. How the outer radiation belt electrons are accelerated to relativistic energies remains an unanswered question. Recent studies have presented compelling evidence for the local acceleration by very-low-frequency (VLF) chorus waves. However, there has been a competing theory to the local acceleration, radial diffusion by ultra-low-frequency (ULF) waves, whose importance has not yet been determined definitively. Here we report a unique radiation belt event with intense ULF waves but no detectable VLF chorus waves. So, our results demonstrate that the ULFmore » waves moved the inner edge of the outer radiation belt earthward 0.3 Earth radii and enhanced the relativistic electron fluxes by up to one order of magnitude near the slot region within about 10 h, providing strong evidence for the radial diffusion of radiation belt relativistic electrons.« less

  2. Ultra-low-frequency wave-driven diffusion of radiation belt relativistic electrons

    DOE PAGES

    Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; ...

    2015-12-22

    The Van Allen radiation belts are typically two zones of energetic particles encircling the Earth separated by the slot region. How the outer radiation belt electrons are accelerated to relativistic energies remains an unanswered question. Recent studies have presented compelling evidence for the local acceleration by very-low-frequency (VLF) chorus waves. However, there has been a competing theory to the local acceleration, radial diffusion by ultra-low-frequency (ULF) waves, whose importance has not yet been determined definitively. Here we report a unique radiation belt event with intense ULF waves but no detectable VLF chorus waves. So, our results demonstrate that the ULFmore » waves moved the inner edge of the outer radiation belt earthward 0.3 Earth radii and enhanced the relativistic electron fluxes by up to one order of magnitude near the slot region within about 10 h, providing strong evidence for the radial diffusion of radiation belt relativistic electrons.« less

  3. A comprehensive model of ion diffusion and charge exchange in the cold Io torus

    NASA Technical Reports Server (NTRS)

    Barbosa, D. D.; Moreno, M. A.

    1988-01-01

    A comprehensive analytic model of radial diffusion in the cold Io torus is developed. The model involves a generalized molecular cloud theory of SO2 and its dissociation fragments SO, O2, S, and O, which are formed at a relatively large rate by solar UV photodissociation of SO2. The key component of the new theory is SO, which can react with S(+) through a near-resonant charge exchange process that is exothermic. This provides a mechanism for the rapid depletion of singly ionized sulfur in the cold torus and can account for the large decrease in the total flux tube content inward of Io's orbit. The model is used to demonstrate quantitatively the effects of radial diffusion in a charge exchange environment that acts as a combined source and sink for ions in various charge states. A detailed quantitative explanation for the O(2+) component of the cold torus is given, and insight is derived into the workings of the so-called plasma 'ribbon'.

  4. Long-term white matter tract reorganization following prolonged febrile seizures.

    PubMed

    Pujar, Suresh S; Seunarine, Kiran K; Martinos, Marina M; Neville, Brian G R; Scott, Rod C; Chin, Richard F M; Clark, Chris A

    2017-05-01

    Diffusion magnetic resonance imaging (MRI) studies have demonstrated acute white matter changes following prolonged febrile seizures (PFS), but their longer-term evolution is unknown. We investigated a population-based cohort to determine white matter diffusion properties 8 years after PFS. We used diffusion tensor imaging (DTI) and applied Tract-Based Spatial Statistics for voxel-wise comparison of white matter microstructure between 26 children with PFS and 27 age-matched healthy controls. Age, gender, handedness, and hippocampal volumes were entered as covariates for voxel-wise analysis. Mean duration between the episode of PFS and follow-up was 8.2 years (range 6.7-9.6). All children were neurologically normal, and had normal conventional neuroimaging. On voxel-wise analysis, compared to controls, the PFS group had (1) increased fractional anisotropy in early maturing central white matter tracts, (2) increased mean and axial diffusivity in several peripheral white matter tracts and late-maturing central white matter tracts, and (3) increased radial diffusivity in peripheral white matter tracts. None of the tracts had reduced fractional anisotropy or diffusivity indices in the PFS group. In this homogeneous, population-based sample, we found increased fractional anisotropy in early maturing central white matter tracts and increased mean and axial diffusivity with/without increased radial diffusivity in several late-maturing peripheral white matter tracts 8 years post-PFS. We propose disruption in white matter maturation secondary to seizure-induced axonal injury, with subsequent neuroplasticity and microstructural reorganization as a plausible explanation. © 2017 The Authors. Epilepsia published by Wiley Periodicals, Inc. on behalf of International League Against Epilepsy.

  5. Effects of magnetic drift tangential to magnetic surfaces on neoclassical transport in non-axisymmetric plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuoka, Seikichi, E-mail: matsuoka@rist.or.jp; Satake, Shinsuke; Kanno, Ryutaro

    2015-07-15

    In evaluating neoclassical transport by radially local simulations, the magnetic drift tangential to a flux surface is usually ignored in order to keep the phase-space volume conservation. In this paper, effect of the tangential magnetic drift on the local neoclassical transport is investigated. To retain the effect of the tangential magnetic drift in the local treatment of neoclassical transport, a new local formulation for the drift kinetic simulation is developed. The compressibility of the phase-space volume caused by the tangential magnetic drift is regarded as a source term for the drift kinetic equation, which is solved by using a two-weightmore » δf Monte Carlo method for non-Hamiltonian system [G. Hu and J. A. Krommes, Phys. Plasmas 1, 863 (1994)]. It is demonstrated that the effect of the drift is negligible for the neoclassical transport in tokamaks. In non-axisymmetric systems, however, the tangential magnetic drift substantially changes the dependence of the neoclassical transport on the radial electric field E{sub r}. The peaked behavior of the neoclassical radial fluxes around E{sub r }={sub  }0 observed in conventional local neoclassical transport simulations is removed by taking the tangential magnetic drift into account.« less

  6. EXor OUTBURSTS FROM DISK AMPLIFICATION OF STELLAR MAGNETIC CYCLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armitage, Philip J., E-mail: pja@jilau1.colorado.edu

    EXor outbursts—moderate-amplitude disk accretion events observed in Class I and Class II protostellar sources—have timescales and amplitudes that are consistent with the viscous accumulation and release of gas in the inner disk near the dead zone boundary. We suggest that outbursts are indirectly triggered by stellar dynamo cycles, via poloidal magnetic flux that diffuses radially outward through the disk. Interior to the dead zone the strength of the net field modulates the efficiency of angular momentum transport by the magnetorotational instability. In the dead zone changes in the polarity of the net field may lead to stronger outbursts because ofmore » the dominant role of the Hall effect in this region of the disk. At the level of simple estimates we show that changes to kG-strength stellar fields could stimulate disk outbursts on 0.1 au scales, though this optimistic conclusion depends upon the uncertain efficiency of net flux transport through the inner disk. The model predicts a close association between observational tracers of stellar magnetic activity and EXor events.« less

  7. Direct measurements of classical and enhanced gradient-aligned cross-field ion flows in a helicon plasma source using laser-induced fluorescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siddiqui, M. Umair, E-mail: musiddiqui@mail.wvu.edu; Thompson, Derek S.; McIlvain, Julianne M.

    2015-12-15

    Direct laser induced fluorescence measurements are shown of cross-field ion flows normal to an absorbing boundary that is aligned parallel to the axial magnetic field in a helicon plasma. We show Langmuir and emissive probe measurements of local density and plasma potential in the same region, as well as floating probe spectra near the boundary. With these measurements, we investigate the influence of ion-neutral collisionality on radial ion transport by varying the ratio of the ion gyro-radius, ρ{sub i}, to the ion-neutral collision length, λ, over the range 0.34 ≤ ρ{sub i}λ{sup −1} ≤ 1.60. Classical drift-diffusion transport along density and potential gradients ismore » sufficient to describe flow profiles for most cases. For two parameter regimes (ρ{sub i}λ{sup −1} = 0.65 and 0.44), low-frequency electrostatic fluctuations (f < 10 kHz) and enhanced cross-field bulk ion flow to the boundary are observed.« less

  8. Flux-driven algebraic damping of m = 1 diocotron mode

    NASA Astrophysics Data System (ADS)

    Chim, Chi Yung; O'Neil, Thomas M.

    2016-07-01

    Recent experiments with pure electron plasmas in a Malmberg-Penning trap have observed the algebraic damping of m = 1 diocotron modes. Transport due to small field asymmetries produces a low density halo of electrons moving radially outward from the plasma core, and the mode damping begins when the halo reaches the resonant radius r = Rw at the wall of the trap. The damping rate is proportional to the flux of halo particles through the resonant layer. The damping is related to, but distinct from, spatial Landau damping, in which a linear wave-particle resonance produces exponential damping. This paper explains with analytic theory the new algebraic damping due to particle transport by both mobility and diffusion. As electrons are swept around the "cat's eye" orbits of the resonant wave-particle interaction, they form a dipole (m = 1) density distribution. From this distribution, the electric field component perpendicular to the core displacement produces E × B-drift of the core back to the axis, that is, damps the m = 1 mode. The parallel component produces drift in the azimuthal direction, that is, causes a shift in the mode frequency.

  9. Molecular dynamics insight to phase transition in n-alkanes with carbon nanofillers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rastogi, Monisha; Vaish, Rahul, E-mail: rahul@iitmandi.ac.in; Materials Research Centre, Indian Institute of Science, Bangalore 560 012

    2015-05-15

    The present work aims to investigate the phase transition, dispersion and diffusion behavior of nanocomposites of carbon nanotube (CNT) and straight chain alkanes. These materials are potential candidates for organic phase change materials(PCMs) and have attracted flurry of research recently. Accurate experimental evaluation of the mass, thermal and transport properties of such composites is both difficult as well as economically taxing. Additionally it is crucial to understand the factors that results in modification or enhancement of their characteristic at atomic or molecular level. Classical molecular dynamics approach has been extended to elucidate the same. Bulk atomistic models have been generatedmore » and subjected to rigorous multistage equilibration. To reaffirm the approach, both canonical and constant-temperature, constant- pressure ensembles were employed to simulate the models under consideration. Explicit determination of kinetic, potential, non-bond and total energy assisted in understanding the enhanced thermal and transport property of the nanocomposites from molecular point of view. Crucial parameters including mean square displacement and simulated self diffusion coefficient precisely define the balance of the thermodynamic and hydrodynamic interactions. Radial distribution function also reflected the density variation, strength and mobility of the nanocomposites. It is expected that CNT functionalization could improve the dispersion within n-alkane matrix. This would further ameliorate the mass and thermal properties of the composite. Additionally, the determined density was in good agreement with experimental data. Thus, molecular dynamics can be utilized as a high throughput technique for theoretical investigation of nanocomposites PCMs.« less

  10. BDNF Val66Met polymorphism modulates the effect of loneliness on white matter microstructure in young adults.

    PubMed

    Meng, Jie; Hao, Lei; Wei, Dongtao; Sun, Jiangzhou; Li, Yu; Qiu, Jiang

    2017-12-01

    Loneliness is a common experience. Susceptibility to loneliness is a stable trait and is heritable. Previous studies have suggested that loneliness may impact regional gray matter density and brain activation to social stimuli, but its relation to white matter structure and how it may interact with genetic factors remains unclear. In this study, we investigated whether and how a common polymorphism (Val66Met) in the brain-derived neurotrophic factor gene modulated the association between loneliness and white matter microstructure in 162 young adults. The tract-based spatial statistics analyses revealed that the relationships between loneliness and white matter microstructures were significantly different between Val/Met heterozygotes and Val/Val homozygotes. Specifically, loneliness was significantly correlated with reduced fractional anisotropy and increased radial diffusivity in widespread white matter fibers within Val/Met heterozygotes. It was also significantly correlated with increased radial diffusivity in Met/Met genotypes but showed no significant association with white matter measures in Val/Val genotypes. Furthermore, the associations between loneliness and fractional anisotropy (or radial diffusivity) in Val/Met heterozygotes turned out to be global effects. These results provide evidence that loneliness may interact with the BDNF Val66Met polymorphism to shape the microstructures of white matter, and the Val/Met heterozygotes may be more susceptible to social environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. The Steady-State Transport of Oxygen through Hemoglobin Solutions

    PubMed Central

    Keller, K. H.; Friedlander, S. K.

    1966-01-01

    The steady-state transport of oxygen through hemoglobin solutions was studied to identify the mechanism of the diffusion augmentation observed at low oxygen tensions. A novel technique employing a platinum-silver oxygen electrode was developed to measure the effective diffusion coefficient of oxygen in steady-state transport. The measurements were made over a wider range of hemoglobin and oxygen concentrations than previously reported. Values of the Brownian motion diffusion coefficient of oxygen in hemoglobin solution were obtained as well as measurements of facilitated transport at low oxygen tensions. Transport rates up to ten times greater than ordinary diffusion rates were found. Predictions of oxygen flux were made assuming that the oxyhemoglobin transport coefficient was equal to the Brownian motion diffusivity which was measured in a separate set of experiments. The close correlation between prediction and experiment indicates that the diffusion of oxyhemoglobin is the mechanism by which steady-state oxygen transport is facilitated. PMID:5943608

  12. Kinetic multi-layer model of aerosol surface and bulk chemistry (KM-SUB): the influence of interfacial transport and bulk diffusion on the oxidation of oleic acid by ozone

    NASA Astrophysics Data System (ADS)

    Shiraiwa, Manabu; Pfrang, Christian; Pöschl, Ulrich

    2010-05-01

    Aerosols are ubiquitous in the atmosphere and have strong effects on climate and public health. Gas-particle interactions can significantly change the physical and chemical properties of aerosols such as toxicity, reactivity, hygroscopicity and radiative properties. Chemical reactions and mass transport lead to continuous transformation and changes in the composition of atmospheric aerosols ("chemical aging"). Resistor model formulations are widely used to describe and investigate heterogeneous reactions and multiphase processes in laboratory, field and model studies of atmospheric chemistry. The traditional resistor models, however, are usually based on simplifying assumptions such as steady state conditions, homogeneous mixing, and limited numbers of non-interacting species and processes. In order to overcome these limitations, Pöschl, Rudich and Ammann have developed a kinetic model framework (PRA framework) with a double-layer surface concept and universally applicable rate equations and parameters for mass transport and chemical reactions at the gas-particle interface of aerosols and clouds [1]. Based on the PRA framework, we present a novel kinetic multi-layer model that explicitly resolves mass transport and chemical reaction at the surface and in the bulk of aerosol particles (KM-SUB) [2]. The model includes reversible adsorption, surface reactions and surface-bulk exchange as well as bulk diffusion and reaction. Unlike earlier models, KM-SUB does not require simplifying assumptions about steady-state conditions and radial mixing. The temporal evolution and concentration profiles of volatile and non-volatile species at the gas-particle interface and in the particle bulk can be modeled along with surface concentrations and gas uptake coefficients. In this study we explore and exemplify the effects of bulk diffusion on the rate of reactive gas uptake for a simple reference system, the ozonolysis of oleic acid particles, in comparison to experimental data and earlier model studies. We demonstrate how KM-SUB can be used to interpret and analyze experimental data from laboratory studies, and how the results can be extrapolated to atmospheric conditions. In particular, we show how interfacial transport and bulk transport, i.e., surface accommodation, bulk accommodation and bulk diffusion, influence the kinetics of the chemical reaction. Sensitivity studies suggest that in fine air particulate matter oleic acid and compounds with similar reactivity against ozone (C=C double bonds) can reach chemical life-times of multiple hours only if they are embedded in a (semi-)solid matrix with very low diffusion coefficients (~10-10 cm2 s-1). Depending on the complexity of the investigated system, unlimited numbers of volatile and non-volatile species and chemical reactions can be flexibly added and treated with KM-SUB. We propose and intend to pursue the application of KM-SUB as a basis for the development of a detailed master mechanism of aerosol chemistry as well as for the derivation of simplified but realistic parameterizations for large-scale atmospheric and climate models. References [1] Pöschl et al., Atmos. Chem. and Phys., 7, 5989-6023 (2007). [2] Shiraiwa et al., Atmos. Chem. Phys. Discuss., 10, 281-326 (2010).

  13. Brain aging in humans, chimpanzees (Pan troglodytes), and rhesus macaques (Macaca mulatta): magnetic resonance imaging studies of macro- and microstructural changes.

    PubMed

    Chen, Xu; Errangi, Bhargav; Li, Longchuan; Glasser, Matthew F; Westlye, Lars T; Fjell, Anders M; Walhovd, Kristine B; Hu, Xiaoping; Herndon, James G; Preuss, Todd M; Rilling, James K

    2013-10-01

    Among primates, humans are uniquely vulnerable to many age-related neurodegenerative disorders. We used structural and diffusion magnetic resonance imaging (MRI) to examine the brains of chimpanzees and rhesus monkeys across each species' adult lifespan, and compared these results with published findings in humans. As in humans, gray matter volume decreased with age in chimpanzees and rhesus monkeys. Also like humans, chimpanzees showed a trend for decreased white matter volume with age, but this decrease occurred proportionally later in the chimpanzee lifespan than in humans. Diffusion MRI revealed widespread age-related decreases in fractional anisotropy and increases in radial diffusivity in chimpanzees and macaques. However, both the fractional anisotropy decline and the radial diffusivity increase started at a proportionally earlier age in humans than in chimpanzees. Thus, even though overall patterns of gray and white matter aging are similar in humans and chimpanzees, the longer lifespan of humans provides more time for white matter to deteriorate before death, with the result that some neurological effects of aging may be exacerbated in our species. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Effect of lost charged particles on the breakdown characteristics of the gaseous electrical discharge in non-uniform axial electric field

    NASA Astrophysics Data System (ADS)

    Noori, H.; Ranjbar, A. H.

    2017-10-01

    The secondary emission coefficient is a valuable parameter for numerical modeling of the discharge process in gaseous insulation. A theoretical model has been developed to consider the effects of the radial electric field, non-uniformity of the axial electric field, and radial diffusion of charged particles on the secondary emission coefficient. In the model, a modified breakdown criterion is employed to determine the effective secondary electron emission, γeff. Using the geometry factor gi which is introduced based on the effect of radial diffusion of charged particles on the fraction of ions which arrive at the cathode, the geometry-independent term of γeff (Δi) was obtained as a function of the energy of the incident ions on the cathode. The results show that Δi is approximately a unique function of the ion energy for the ratios of d/R = 39, 50, 77, 115, and 200. It means that the considered mechanisms in the model are responsible for the deviation from Paschen's law.

  15. Disturbance severity and canopy position control the radial growth response of maple trees (Acer spp.) in forests of northwest Ohio impacted by emerald ash borer (Agrilus planipennis)

    Treesearch

    K.C. Costilow; Kathleen Knight; Charles Flower

    2017-01-01

    Key message. Radial growth of silver and red maples was investigated across three forests in northwest Ohio following the outbreak of the invasive emerald ash borer. The growth response of maples was driven by an advancement in canopy class and disturbance severity. Context. Forest disturbances resulting in species-specific diffuse mortality cause shifts in aboveground...

  16. New constraints on all flavor Galactic diffuse neutrino emission with the ANTARES telescope

    NASA Astrophysics Data System (ADS)

    Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Belhorma, B.; Bertin, V.; Biagi, S.; Bormuth, R.; Bourret, S.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; Cherkaoui El Moursli, R.; Chiarusi, T.; Circella, M.; Coelho, J. A. B.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Díaz, A. F.; Deschamps, A.; de Bonis, G.; Distefano, C.; di Palma, I.; Domi, A.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; El Khayati, N.; Elsässer, D.; Enzenhöfer, A.; Ettahiri, A.; Fassi, F.; Felis, I.; Fusco, L. A.; Galatà, S.; Gay, P.; Giordano, V.; Glotin, H.; Grégoire, T.; Gracia Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.; Hofestädt, J.; Hugon, C.; Illuminati, G.; James, C. W.; de Jong, M.; Jongen, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Lotze, M.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J. A.; Mele, R.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Navas, S.; Nezri, E.; Organokov, M.; Pǎvǎlaş, G. E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Quinn, L.; Racca, C.; Riccobene, G.; Sánchez-Losa, A.; Saldaña, M.; Salvadori, I.; Samtleben, D. F. E.; Sanguineti, M.; Sapienza, P.; Schüssler, F.; Sieger, C.; Spurio, M.; Stolarczyk, Th.; Taiuti, M.; Tayalati, Y.; Trovato, A.; Turpin, D.; Tönnis, C.; Vallage, B.; van Elewyck, V.; Versari, F.; Vivolo, D.; Vizzoca, A.; Wilms, J.; Zornoza, J. D.; Zúñiga, J.; Gaggero, D.; Grasso, D.; ANTARES Collaboration

    2017-09-01

    The flux of very high-energy neutrinos produced in our Galaxy by the interaction of accelerated cosmic rays with the interstellar medium is not yet determined. The characterization of this flux will shed light on Galactic accelerator features, gas distribution morphology and Galactic cosmic ray transport. The central Galactic plane can be the site of an enhanced neutrino production, thus leading to anisotropies in the extraterrestrial neutrino signal as measured by the IceCube Collaboration. The ANTARES neutrino telescope, located in the Mediterranean Sea, offers a favorable view of this part of the sky, thereby allowing for a contribution to the determination of this flux. The expected diffuse Galactic neutrino emission can be obtained, linking a model of generation and propagation of cosmic rays with the morphology of the gas distribution in the Milky Way. In this paper, the so-called "gamma model" introduced recently to explain the high-energy gamma-ray diffuse Galactic emission is assumed as reference. The neutrino flux predicted by the "gamma model" depends on the assumed primary cosmic ray spectrum cutoff. Considering a radially dependent diffusion coefficient, this proposed scenario is able to account for the local cosmic ray measurements, as well as for the Galactic gamma-ray observations. Nine years of ANTARES data are used in this work to search for a possible Galactic contribution according to this scenario. All flavor neutrino interactions are considered. No excess of events is observed, and an upper limit is set on the neutrino flux of 1.1 (1.2) times the prediction of the "gamma model," assuming the primary cosmic ray spectrum cutoff at 5 (50) PeV. This limit excludes the diffuse Galactic neutrino emission as the major cause of the "spectral anomaly" between the two hemispheres measured by IceCube.

  17. Influence of the Solar Cycle on Turbulence Properties and Cosmic-Ray Diffusion

    NASA Astrophysics Data System (ADS)

    Zhao, L.-L.; Adhikari, L.; Zank, G. P.; Hu, Q.; Feng, X. S.

    2018-04-01

    The solar cycle dependence of various turbulence quantities and cosmic-ray (CR) diffusion coefficients is investigated by using OMNI 1 minute resolution data over 22 years. We employ Elsässer variables z ± to calculate the magnetic field turbulence energy and correlation lengths for both the inwardly and outwardly directed interplanetary magnetic field (IMF). We present the temporal evolution of both large-scale solar wind (SW) plasma variables and small-scale magnetic fluctuations. Based on these observed quantities, we study the influence of solar activity on CR parallel and perpendicular diffusion using quasi-linear theory and nonlinear guiding center theory, respectively. We also evaluate the radial evolution of the CR diffusion coefficients by using the boundary conditions for different solar activity levels. We find that in the ecliptic plane at 1 au (1), the large-scale SW temperature T, velocity V sw, Alfvén speed V A , and IMF magnitude B 0 are positively related to solar activity; (2) the fluctuating magnetic energy density < {{z}+/- }2> , residual energy E D , and corresponding correlation functions all have an obvious solar cycle dependence. The residual energy E D is always negative, which indicates that the energy in magnetic fluctuations is larger than the energy in kinetic fluctuations, especially at solar maximum; (3) the correlation length λ for magnetic fluctuations does not show significant solar cycle variation; (4) the temporally varying shear source of turbulence, which is most important in the inner heliosphere, depends on the solar cycle; (5) small-scale fluctuations may not depend on the direction of the background magnetic field; and (6) high levels of SW fluctuations will increase CR perpendicular diffusion and decrease CR parallel diffusion, but this trend can be masked if the background IMF changes in concert with turbulence in response to solar activity. These results provide quantitative inputs for both turbulence transport models and CR diffusion models, and also provide valuable insight into the long-term modulation of CRs in the heliosphere.

  18. Multispacecraft Observations of Solar Flare Particles in the Inner Heliosphere

    NASA Technical Reports Server (NTRS)

    Wibberenz, G.; Cane, H. V.

    2007-01-01

    For a number of impulsive solar particle events we examine variations of maximum intensities and times to maximum intensity as a function of longitude, using observations from the two Helios spacecraft and near the Earth. We find that electrons in the MeV range can be detected more than 80 deg. from the flare longitude, corresponding to a considerably wider "well connected" region than that (approx. 20 deg. half width) reported for He-3-rich impulsive solar events. This wide range and the decrease of peak intensities with increasing connection angle revive the concept of some propagation process in the low corona that has a diffusive nature. Delays to the intensity maximum are not systematically correlated with connection angles. We argue that interplanetary scattering parallel to the average interplanetary magnetic field, that varies with position in space, plays an important role in flare particle events. In a specific case variations of the time profiles with radial distance and with particle rigidity are used to quantitatively confirm spatial diffusion. For a few cases near the edges of the well connected region the very long times to maximum intensity might result from interplanetary lateral transport.

  19. Core radial electric field and transport in Wendelstein 7-X plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pablant, N. A.; Langenberg, A.; Alonso, A.

    The results from the investigation of neoclassical core transport and the role of the radial electric field profile (E r) in the first operational phase of the Wendelstein 7-X (W7-X) stellarator are presented. In stellarator plasmas, the details of the E r profile are expected to have a strong effect on both the particle and heat fluxes. Investigation of the radial electric field is important in understanding neoclassical transport and in validation of neoclassical calculations. The radial electric field is closely related to the perpendicular plasma flow (u ⊥) through the force balance equation. This allows the radial electric fieldmore » to be inferred from measurements of the perpendicular flow velocity, which can be measured using the x-ray imaging crystal spectrometer and correlation reflectometry diagnostics. Large changes in the perpendicular rotation, on the order of Δu ⊥~ 5 km/s (ΔE r ~12 kV/m), have been observed within a set of experiments where the heating power was stepped down from 2 MW to 0.6 MW. These experiments are examined in detail to explore the relationship between heating power temperature, and density profiles and the radial electric field. Finally, the inferred E r profiles are compared to initial neoclassical calculations based on measured plasma profiles. The results from several neoclassical codes, sfincs, fortec-3d, and dkes, are compared both with each other and the measurements. Finally, these comparisons show good agreement, giving confidence in the applicability of the neoclassical calculations to the W7-X configuration.« less

  20. Core radial electric field and transport in Wendelstein 7-X plasmas

    DOE PAGES

    Pablant, N. A.; Langenberg, A.; Alonso, A.; ...

    2018-02-12

    The results from the investigation of neoclassical core transport and the role of the radial electric field profile (E r) in the first operational phase of the Wendelstein 7-X (W7-X) stellarator are presented. In stellarator plasmas, the details of the E r profile are expected to have a strong effect on both the particle and heat fluxes. Investigation of the radial electric field is important in understanding neoclassical transport and in validation of neoclassical calculations. The radial electric field is closely related to the perpendicular plasma flow (u ⊥) through the force balance equation. This allows the radial electric fieldmore » to be inferred from measurements of the perpendicular flow velocity, which can be measured using the x-ray imaging crystal spectrometer and correlation reflectometry diagnostics. Large changes in the perpendicular rotation, on the order of Δu ⊥~ 5 km/s (ΔE r ~12 kV/m), have been observed within a set of experiments where the heating power was stepped down from 2 MW to 0.6 MW. These experiments are examined in detail to explore the relationship between heating power temperature, and density profiles and the radial electric field. Finally, the inferred E r profiles are compared to initial neoclassical calculations based on measured plasma profiles. The results from several neoclassical codes, sfincs, fortec-3d, and dkes, are compared both with each other and the measurements. Finally, these comparisons show good agreement, giving confidence in the applicability of the neoclassical calculations to the W7-X configuration.« less

  1. Effects of oil on internal gas transport, radial oxygen loss, gas films and bud growth in Phragmites australis.

    PubMed

    Armstrong, Jean; Keep, Rory; Armstrong, William

    2009-01-01

    Oil pollution of wetlands is a world-wide problem but, to date, research has concentrated on its influences on salt marsh rather than freshwater plant communities. The effects of water-borne light oils (liquid paraffin and diesel) were investigated on the fresh/brackish wetland species Phragmites australis in terms of routes of oil infiltration, internal gas transport, radial O(2) loss (ROL), underwater gas films and bud growth. Pressure flow resistances of pith cavities of nodes and aerenchyma of leaf sheaths, with or without previous exposure to oil, were recorded from flow rates under applied pressure. Convective flows were measured from living excised culms with oiled and non-oiled nodes and leaf sheaths. The effect of oil around culm basal nodes on ROL from rhizome and root apices was measured polarographically. Surface gas films on submerged shoots with and without oil treatment were recorded photographically. Growth and emergence of buds through water with and without an oil film were measured. Internodes are virtually impermeable, but nodes of senesced and living culms are permeable to oils which can block pith cavity diaphragms, preventing flows at applied pressures of 1 kPa, natural convective transport to the rhizome, and greatly decreasing ROL to phyllospheres and rhizospheres. Oil infiltrating or covering living leaf sheaths prevents humidity-induced convection. Oil displaces surface gas films from laminae and leaf sheaths. Buds emerge only a few centimetres through oil and die. Oil infiltrates the gas space system via nodal and leaf sheath stomata, reducing O(2) diffusion and convective flows into the rhizome system and decreasing oxygenation of phyllospheres and rhizospheres; underwater gas exchange via gas films will be impeded. Plants can be weakened by oil-induced failure of emerging buds. Plants will be most at risk during the growing season.

  2. Radial junction solar cells based on heterojunction with intrinsic thin layer (HIT) structure

    NASA Astrophysics Data System (ADS)

    Shen, Haoting

    The radial junction wire array structure was previously proposed as a solar cell geometry to separate the direction of carrier collection from the direction of light absorption, thereby circumventing the need to use high quality but expensive single crystal silicon (c-Si) material that has long minority carrier diffusion lengths. The Si radial junction structure can be realized by forming radial p-n junctions on Si pillar/wire arrays that have a diameter comparable to the minority carrier diffusion length. With proper design, the Si pillar arrays are also able to enhance light trapping and thereby increase the light absorption. However, the larger junction area and surface area on the pillar arrays compared to traditional planar junction Si solar cells makes it challenging to fabricate high performance devices due an in increase in surface defects. Therefore, effective surface passivation strategies are essential for radial junction devices. Hydrogenated amorphous silicon (a-Si:H) deposited by plasma-enhanced chemical vapor deposition (PECVD) using a heterojunction with intrinsic thin layer (HIT) structure has previously been demonstrated as a very effective surface passivation layer for planar c-Si solar cells. It is therefore of interest to use a-Si:H in a HIT layer structure for radial p-n junction c-Si pillar array solar cells. This poses several challenges, however, including the need to fabricate ultra-thin a-Si:H layers conformally on high aspect ratio Si pillars, control the crystallinity at the a-Si:H/c-Si interface to yield a low interface state density and optimize the layer thicknesses, doping and contacts to yield high performance devices. This research in this thesis was aimed at developing the processing technology required to apply the HIT structure to radial junction Si pillar array solar cell devices and to evaluate the device characteristics. Initial studies focused on understanding the effects of process conditions on the growth rate and conformality of a-Si:H deposited by PECVD using SiH4 and H 2 on high aspect ratio trench structures. Experimentally, it was found that the a-Si:H growth rate increased with increasing SiH4 flow rate up to a point after which it saturated at a maximum growth rate. In addition, it was found that higher SiH4 flow rates resulted in improved thickness uniformity along the trenches. A model based on gas transport and surface reaction of SiH3 in trenches was developed and was used to explain the experimental results and predict conditions that would yield improved thickness uniformity. The knowledge gained in the PECVD deposition studies was then used to prepare HIT radial junction Si pillar array solar cell devices. Deep reactive ion etching (DRIE) was used to prepare Si pillar arrays on p-type (111) c-Si wafers. A process was developed to prepare n-type a-Si:H films from SiH 4 and H2, with PH3 as doping gas. Indium tin oxide (ITO) deposited by sputter deposition and Al-doped ZnO deposited by atomic layer deposition (ALD) were evaluated as transparent conductive top contacts to the n-type a-Si:H layer. By adjusting the SiH4/H2 gas flow ratio, intrinsic a-Si:H was grown on the c-Si surface without epitaxial micro-crystalline growth. Continuous and pulsed deposition modes were investigated for deposition of the intrinsic and n-type a-Si:H layers on the c-Si pillars. The measurements of device light performance shown that slightly lower short circuit current density (Jsc, 32 mA/cm2 to 35 mA/cm 2) but higher open circuit voltage (Voc, 0.56 V to .47 V) were obtained on the pulsed devices. As the result, higher efficiency (11.6%) was achieved on the pulsed devices (10.6% on the continuous device). The improved performance of the pulsed deposition devices was explained as arising from a higher SiH3 concentration in the initial plasma which lead to a more uniform layer thickness. Planar and radial junction Si wire array HIT solar cell devices were then fabricated and the device performance was compared. A series of p-type c-Si wafers with varying resistivity/doping density were used for this study in order to evaluate the effect of carrier diffusion length on device performance. The saturation current densities (J0) of the radial junction devices were consistently larger than that of the planar devices as a result of the larger junction area. Despite the increased leakage currents, the radial junction HIT cells exhibited similar Voc compared to the planar cells. In addition, at high doping densities (5˜1018 cm-3), the J sc (16.7mA/cm2) and collection efficiency (6.3%) of the radial junction devices was higher than that of comparable planar cells (J sc 12.7 mA/cm2 and efficiency 5.2%), demonstrating improved collection of photogenerated carriers in this geometry.

  3. Reduced integrity of the left arcuate fasciculus is specifically associated with auditory verbal hallucinations in schizophrenia.

    PubMed

    McCarthy-Jones, Simon; Oestreich, Lena K L; Whitford, Thomas J

    2015-03-01

    Schizophrenia patients with auditory verbal hallucinations (AVH) have reduced structural integrity in the left arcuate fasciculus (AFL) compared to healthy controls. However, it is neither known whether these changes are specific to AVH, as opposed to hallucinations or schizophrenia per se, nor how radial and/or axial diffusivity are altered. This study aimed to test the hypothesis that reductions to the structural integrity of the AFL are specifically associated with AVH in schizophrenia. Diffusion tensor imaging scans and clinical data were obtained from the Australian Schizophrenia Research Bank for 39 schizophrenia patients with lifetime AVH (18 current, 21 remitted), 74 schizophrenia patients with no lifetime AVH (40 with lifetime hallucinations in other modalities, 34 no lifetime hallucinations) and 40 healthy controls. Fractional anisotropy was significantly reduced in the AFL of patients with lifetime AVH compared to both healthy controls (Cohen's d=1.24) and patients without lifetime AVH (d=.72), including compared to the specific subsets of patients without AVH who either had hallucinations in other modalities (d=.69) or no history of any hallucinations (d=.73). Radial, but not axial, diffusivity was significantly increased in patients with lifetime AVH compared to both healthy controls (d=.89) and patients without lifetime AVH (d=.39). Evidence was found for a non-linear relation between fractional anisotropy in the AFL and state AVH. Reduced integrity of the AFL is specifically associated with AVH, as opposed to schizophrenia in general or hallucinations in other modalities. Increased radial diffusivity suggests dysmyelination or demyelination of the AFL may play a role in AVH. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Computing eddy-driven effective diffusivity using Lagrangian particles

    DOE PAGES

    Wolfram, Phillip J.; Ringler, Todd D.

    2017-08-14

    A novel method to derive effective diffusivity from Lagrangian particle trajectory data sets is developed and then analyzed relative to particle-derived meridional diffusivity for eddy-driven mixing in an idealized circumpolar current. Quantitative standard dispersion- and transport-based mixing diagnostics are defined, compared and contrasted to motivate the computation and use of effective diffusivity derived from Lagrangian particles. We compute the effective diffusivity by first performing scalar transport on Lagrangian control areas using stored trajectories computed from online Lagrangian In-situ Global High-performance particle Tracking (LIGHT) using the Model for Prediction Across Scales Ocean (MPAS-O). Furthermore, the Lagrangian scalar transport scheme is comparedmore » against an Eulerian scalar transport scheme. Spatially-variable effective diffusivities are computed from resulting time-varying cumulative concentrations that vary as a function of cumulative area. The transport-based Eulerian and Lagrangian effective diffusivity diagnostics are found to be qualitatively consistent with the dispersion-based diffusivity. All diffusivity estimates show a region of increased subsurface diffusivity within the core of an idealized circumpolar current and results are within a factor of two of each other. The Eulerian and Lagrangian effective diffusivities are most similar; smaller and more spatially diffused values are obtained with the dispersion-based diffusivity computed with particle clusters.« less

  5. Computing eddy-driven effective diffusivity using Lagrangian particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfram, Phillip J.; Ringler, Todd D.

    A novel method to derive effective diffusivity from Lagrangian particle trajectory data sets is developed and then analyzed relative to particle-derived meridional diffusivity for eddy-driven mixing in an idealized circumpolar current. Quantitative standard dispersion- and transport-based mixing diagnostics are defined, compared and contrasted to motivate the computation and use of effective diffusivity derived from Lagrangian particles. We compute the effective diffusivity by first performing scalar transport on Lagrangian control areas using stored trajectories computed from online Lagrangian In-situ Global High-performance particle Tracking (LIGHT) using the Model for Prediction Across Scales Ocean (MPAS-O). Furthermore, the Lagrangian scalar transport scheme is comparedmore » against an Eulerian scalar transport scheme. Spatially-variable effective diffusivities are computed from resulting time-varying cumulative concentrations that vary as a function of cumulative area. The transport-based Eulerian and Lagrangian effective diffusivity diagnostics are found to be qualitatively consistent with the dispersion-based diffusivity. All diffusivity estimates show a region of increased subsurface diffusivity within the core of an idealized circumpolar current and results are within a factor of two of each other. The Eulerian and Lagrangian effective diffusivities are most similar; smaller and more spatially diffused values are obtained with the dispersion-based diffusivity computed with particle clusters.« less

  6. Genetic relatedness of axial and radial diffusivity indices of cerebral white matter microstructure in late middle age.

    PubMed

    Hatton, Sean N; Panizzon, Matthew S; Vuoksimaa, Eero; Hagler, Donald J; Fennema-Notestine, Christine; Rinker, Daniel; Eyler, Lisa T; Franz, Carol E; Lyons, Michael J; Neale, Michael C; Tsuang, Ming T; Dale, Anders M; Kremen, William S

    2018-05-01

    Two basic neuroimaging-based characterizations of white matter tracts are the magnitude of water diffusion along the principal tract orientation (axial diffusivity, AD) and water diffusion perpendicular to the principal orientation (radial diffusivity, RD). It is generally accepted that decreases in AD reflect disorganization, damage, or loss of axons, whereas increases in RD are indicative of disruptions to the myelin sheath. Previous reports have detailed the heritability of individual AD and RD measures, but have not examined the extent to which the same or different genetic or environmental factors influence these two phenotypes (except for corpus callosum). We implemented bivariate twin analyses to examine the shared and independent genetic influences on AD and RD. In the Vietnam Era Twin Study of Aging, 393 men (mean age = 61.8 years, SD = 2.6) underwent diffusion-weighted magnetic resonance imaging. We derived fractional anisotropy (FA), mean diffusivity (MD), AD, and RD estimates for 11 major bilateral white matter tracts and the mid-hemispheric corpus callosum, forceps major, and forceps minor. Separately, AD and RD were each highly heritable. In about three-quarters of the tracts, genetic correlations between AD and RD were >.50 (median = .67) and showed both unique and common variance. Genetic variance of FA and MD were predominately explained by RD over AD. These findings are important for informing genetic association studies of axonal coherence/damage and myelination/demyelination. Thus, genetic studies would benefit from examining the shared and unique contributions of AD and RD. © 2018 Wiley Periodicals, Inc.

  7. Segmentation of the canine corpus callosum using diffusion-tensor imaging tractography.

    PubMed

    Pierce, Theodore T; Calabrese, Evan; White, Leonard E; Chen, Steven D; Platt, Simon R; Provenzale, James M

    2014-01-01

    We set out to determine functional white matter (WM) connections passing through the canine corpus callosum; these WM connections would be useful for subsequent studies of canine brains that serve as models for human WM pathway disease. Based on prior studies, we anticipated that the anterior corpus callosum would send projections to the anterior cerebral cortex whereas progressively posterior segments would send projections to more posterior cortex. A postmortem canine brain was imaged using a 7-T MRI system producing 100-μm-isotropic-resolution diffusion-tensor imaging analyzed by tractography. Using regions of interest (ROIs) within cortical locations, which were confirmed by a Nissl stain that identified distinct cortical architecture, we successfully identified six important WM pathways. We also compared fractional anisotropy (FA), apparent diffusion coefficient (ADC), radial diffusivity, and axial diffusivity in tracts passing through the genu and splenium. Callosal fibers were organized on the basis of cortical destination (e.g., fibers from the genu project to the frontal cortex). Histologic results identified the motor cortex on the basis of cytoarchitectonic criteria that allowed placement of ROIs to discriminate between frontal and parietal lobes. We also identified cytoarchitecture typical of the orbital frontal, anterior frontal, and occipital regions and placed ROIs accordingly. FA, ADC, radial diffusivity, and axial diffusivity values were all higher in posterior corpus callosum fiber tracts. Using six cortical ROIs, we identified six major WM tracts that reflect major functional divisions of the cerebral hemispheres, and we derived quantitative values that can be used for study of canine models of human WM pathologic states.

  8. What does anisotropy measure? Insights from increased and decreased anisotropy in selective fiber tracts in schizophrenia.

    PubMed

    Alba-Ferrara, L M; de Erausquin, Gabriel A

    2013-01-01

    Schizophrenia is a common, severe, and chronically disabling mental illness of unknown cause. Recent MRI studies have focused attention on white matter abnormalities in schizophrenia using diffusion tensor imaging (DTI). Indices commonly derived from DTI include (1) mean diffusivity, independent of direction, (2) fractional anisotropy (FA) or relative anisotropy (RA), (3) axial diffusivity, and (4) radial diffusivity. In cerebral white matter, contributions to these indices come from fiber arrangements, degree of myelination, and axonal integrity. Relatively pure deficits in myelin result in a modest increase in radial diffusivity, without affecting axial diffusivity and with preservation of anisotropy. Although schizophrenia is not characterized by gross abnormalities of white matter, it does involve a profound dysregulation of myelin-associated gene expression, reductions in oligodendrocyte numbers, and marked abnormalities in the ultrastructure of myelin sheaths. Since each oligodendrocyte myelinates as many as 40 axon segments, changes in the number of oligodendrocytes (OLG), and/or in the integrity of myelin sheaths, and/or axoglial contacts can have a profound impact on signal propagation and the integrity of neuronal circuits. Whereas a number of studies have revealed inconsistent decreases in anisotropy in schizophrenia, we and others have found increased FA in key subcortical tracts associated with the circuits underlying symptom generation in schizophrenia. We review data revealing increased anisotropy in dopaminergic tracts in the mesencephalon of schizophrenics and their unaffected relatives, and discuss the possible biological underpinnings and physiological significance of this finding.

  9. Detailed flow measurements in a centrifugal compressor vaneless diffuser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinarbasi, A.; Johnson, M.W.

    1994-07-01

    Hot-wire anemometer measurements have been made in the vaneless diffuser of a 1-m-dia low-speed backswept centrifugal compressor using a phase lock loop technique. Radial, tangential, and axial velocity measurements have been made on eight measurement planes through the diffuser. The flow field at the diffuser entry clearly shows the impeller jet-wake flow pattern and the blade wakes. The passage wake is located on the shroud side of the diffuser and mixes out slowly as the flow moves through the diffuser. The blade wakes, on the other hand, distort and mix out rapidly in the diffuser. Contours of turbulent kinetic energymore » are also presented on each of the measurement stations, from which the regions of turbulent mixing can be deduced.« less

  10. Diffuse reflectance spectra measured in vivo in human tissues during Photofrin-mediated pleural photodynamic therapy: updated results

    NASA Astrophysics Data System (ADS)

    Finlay, Jarod C.; Zhu, Timothy C.; Dimofte, Andreea; Friedberg, Joseph S.; Cengel, Keith A.; Hahn, Stephen M.

    2009-02-01

    We present the results of a series of spectroscopic measurements made in vivo in patients undergoing photodynamic therapy (PDT). The patients studied here were enrolled in Phase II clinical trials of Photofrin-mediated PDT for the treatment of non-small cell lung cancer and cancers with pleural effusion. Patients were given Photofrin at dose of 2 mg per kg body weight 24 hours prior to treatment. Each patient received surgical debulking of the tumor followed by intracavity PDT at 630nm to a dose of 60 J/cm2. Dose was monitored continuously using implanted isotropic fiber-based light detectors. We measured the diffuse reflectance spectra before and after PDT in various positions within the cavity, including tumor, diaphragm, pericardium, skin, and chest wall muscle in 10 patients. The measurements were acquired using a specially designed fiber optic-based probe consisting of one fluorescence excitation fiber, one white light delivery fiber, and 9 detection fibers spaced at distances from 0.36 to 7.8 mm from the source, all of which are imaged via a spectrograph onto a CCD, allowing measurement of radially-resolved diffuse reflectance and fluorescence spectra. The absorption spectra were analyzed using an analytical model of light propagation in diffuse media based on the P3 approximation to radiative transport, assuming a known basis set of absorbers including hemoglobin in its oxygenated and deoxygenated forms and Photofrin. We find significant variation in hemodynamics and sensitizer concentration among patients and within tissues in a single patient.

  11. Effects of anisotropies in turbulent magnetic diffusion in mean-field solar dynamo models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pipin, V. V.; Kosovichev, A. G.

    2014-04-10

    We study how anisotropies of turbulent diffusion affect the evolution of large-scale magnetic fields and the dynamo process on the Sun. The effect of anisotropy is calculated in a mean-field magnetohydrodynamics framework assuming that triple correlations provide relaxation to the turbulent electromotive force (so-called the 'minimal τ-approximation'). We examine two types of mean-field dynamo models: the well-known benchmark flux-transport model and a distributed-dynamo model with a subsurface rotational shear layer. For both models, we investigate effects of the double- and triple-cell meridional circulation, recently suggested by helioseismology and numerical simulations. To characterize the anisotropy effects, we introduce a parameter ofmore » anisotropy as a ratio of the radial and horizontal intensities of turbulent mixing. It is found that the anisotropy affects the distribution of magnetic fields inside the convection zone. The concentration of the magnetic flux near the bottom and top boundaries of the convection zone is greater when the anisotropy is stronger. It is shown that the critical dynamo number and the dynamo period approach to constant values for large values of the anisotropy parameter. The anisotropy reduces the overlap of toroidal magnetic fields generated in subsequent dynamo cycles, in the time-latitude 'butterfly' diagram. If we assume that sunspots are formed in the vicinity of the subsurface shear layer, then the distributed dynamo model with the anisotropic diffusivity satisfies the observational constraints from helioseismology and is consistent with the value of effective turbulent diffusion estimated from the dynamics of surface magnetic fields.« less

  12. An MRI study of white matter tract integrity in regular cannabis users: effects of cannabis use and age.

    PubMed

    Jakabek, David; Yücel, Murat; Lorenzetti, Valentina; Solowij, Nadia

    2016-10-01

    Conflicting evidence exists on the effects of cannabis use on brain white matter integrity. The extant literature has exclusively focused on younger cannabis users, with no studies sampling older cannabis users. We recruited a sample with a broad age range to examine the integrity of major white matter tracts in association with cannabis use parameters and neurodevelopmental stage. Regular cannabis users (n = 56) and non-users (n = 20) with a mean age of 32 (range 18-55 years) underwent structural and diffusion MRI scans. White matter was examined using voxel-based statistics and via probabilistic tract reconstruction. The integrity of tracts was assessed using average fractional anisotropy, axial diffusivity and radial diffusivity. Diffusion measures were compared between users and non-users and as group-by-age interactions. Correlations between diffusion measures and age of onset, duration, frequency and dose of current cannabis use were examined. Cannabis users overall had lower fractional anisotropy than healthy non-users in the forceps minor tract only (p = .015, partial eta = 0.07), with no voxel-wise differences observed. Younger users showed predominantly reduced axial diffusivity, whereas older users had higher radial diffusivity in widespread tracts. Higher axial diffusivity was associated with duration of cannabis use in the cingulum angular bundle (beta = 5.00 × 10(-5), p = .003). Isolated higher AD in older cannabis users was also observed. The findings suggest that exogenous cannabinoids alter normal brain maturation, with differing effects at various neurodevelopmental stages of life. These age-related differences are posited to account for the disparate results described in the literature.

  13. Correlations of diffusion tensor imaging values and symptom scores in patients with schizophrenia.

    PubMed

    Michael, Andrew M; Calhoun, Vince D; Pearlson, Godfrey D; Baum, Stefi A; Caprihan, Arvind

    2008-01-01

    Abnormalities in white matter (WM) brain regions are attributed as a possible biomarker for schizophrenia (SZ). Diffusion tensor imaging (DTI) is used to capture WM tracts. Psychometric tests that evaluate the severity of symptoms of SZ are clinically used in the diagnosis process. In this study we investigate the correlates of scalar DTI measures, such as fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity with behavioral test scores. The correlations were found by different schemes: mean correlation with WM atlas regions and multiple regression of DTI values with test scores. The corpus callosum, superior longitudinal fasciculus right and inferior longitudinal fasciculus left were found to be having high correlations with test scores.

  14. Transient and diffusion analysis of HgCdTe

    NASA Technical Reports Server (NTRS)

    Clayton, J. C.

    1982-01-01

    Solute redistribution during directional solidification of HgCdTe is addressed. Both one-dimensional and two-dimensional models for solute redistribution are treated and model results compared to experiment. The central problem studied is the cause of radial inhomogeneities found in directionally solidified HgCdTe. A large scale gravity-driven interface instability, termed shape instability, is postulated to be the cause of radial inhomogeneities. Recommendations for future work, along with appropriate computer programs, are included.

  15. Dielectric-barrier-discharge plasma-assisted hydrogen diffusion flame. Part 1: Temperature, oxygen, and fuel measurements by one-dimensional fs/ps rotational CARS imaging

    DOE PAGES

    Retter, Jonathan E.; Elliott, Gregory S.; Kearney, Sean P.

    2018-02-21

    One-dimensional hybrid fs/ps CARS imaging provides single-laser-shot measurements of temperature, oxygen, and hydrogen in a plasma-assisted hydrogen diffusion flame. The coaxial dielectric-barrier-discharge burner collapses the Re ~50 hydrogen diffusion flame to within ~5 mm of the burner surface at an applied AC potential of 8.75 kV at 18 kHz, coinciding nicely with the full spatial extent of the 1D CARS measurements. Translating the burner through the measurement volume allowed for measurements at numerous radial locations in increments of 1 mm with a resolution of 140 µm × 30 µm × 600 µm, sufficient to resolve spatial gradients in this unsteadymore » flame. Longer probe delays, required for improved dynamic range in regions of high temperature fluctuations, proved difficult to model as a result of a nontrivial decay in the O 2 Raman coherence arising from complexities associated with the triplet ground electronic state of the O 2 molecule. Oxygen linewidths were treated empirically using the observed O 2 coherence decay in spectra acquired from the product gases of lean, near-adiabatic H 2/air flames stabilized on a Hencken flat-flame burner. While still leading to errors up to 10% at worst, the empirically determined Raman linewidth factors eliminated any systematic error in the O 2/N 2 measurements with probe delay. Temperature measurements in the Hencken Burner flames proved to be insensitive to probe pulse delay, providing robust thermometry. Here, demonstration of this technique in both the canonical Hencken burner flames and a new DBD burner validates its effectiveness in producing multiple spatially resolved measurements in combustion environments. Measurements in the DBD burner revealed an unsteady, counterflow flattened flame structure near the fuel orifice which became unsteady as the reaction zone curves towards the surface for larger radial positions. Lastly, fluctuations in the fuel concentration were largest at the source, as the large, plasma-generated, unsteady external toroidal vortex that dominates the transport in this flame provides enhanced ventilation of the flame surface in close proximity to the fuel tube.« less

  16. Dielectric-barrier-discharge plasma-assisted hydrogen diffusion flame. Part 1: Temperature, oxygen, and fuel measurements by one-dimensional fs/ps rotational CARS imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Retter, Jonathan E.; Elliott, Gregory S.; Kearney, Sean P.

    One-dimensional hybrid fs/ps CARS imaging provides single-laser-shot measurements of temperature, oxygen, and hydrogen in a plasma-assisted hydrogen diffusion flame. The coaxial dielectric-barrier-discharge burner collapses the Re ~50 hydrogen diffusion flame to within ~5 mm of the burner surface at an applied AC potential of 8.75 kV at 18 kHz, coinciding nicely with the full spatial extent of the 1D CARS measurements. Translating the burner through the measurement volume allowed for measurements at numerous radial locations in increments of 1 mm with a resolution of 140 µm × 30 µm × 600 µm, sufficient to resolve spatial gradients in this unsteadymore » flame. Longer probe delays, required for improved dynamic range in regions of high temperature fluctuations, proved difficult to model as a result of a nontrivial decay in the O 2 Raman coherence arising from complexities associated with the triplet ground electronic state of the O 2 molecule. Oxygen linewidths were treated empirically using the observed O 2 coherence decay in spectra acquired from the product gases of lean, near-adiabatic H 2/air flames stabilized on a Hencken flat-flame burner. While still leading to errors up to 10% at worst, the empirically determined Raman linewidth factors eliminated any systematic error in the O 2/N 2 measurements with probe delay. Temperature measurements in the Hencken Burner flames proved to be insensitive to probe pulse delay, providing robust thermometry. Here, demonstration of this technique in both the canonical Hencken burner flames and a new DBD burner validates its effectiveness in producing multiple spatially resolved measurements in combustion environments. Measurements in the DBD burner revealed an unsteady, counterflow flattened flame structure near the fuel orifice which became unsteady as the reaction zone curves towards the surface for larger radial positions. Lastly, fluctuations in the fuel concentration were largest at the source, as the large, plasma-generated, unsteady external toroidal vortex that dominates the transport in this flame provides enhanced ventilation of the flame surface in close proximity to the fuel tube.« less

  17. Effect of cerebral spinal fluid suppression for diffusional kurtosis imaging.

    PubMed

    Yang, Alicia W; Jensen, Jens H; Hu, Caixia C; Tabesh, Ali; Falangola, Maria F; Helpern, Joseph A

    2013-02-01

    To evaluate the cerebral spinal fluid (CSF) partial volume effect on diffusional kurtosis imaging (DKI) metrics in white matter and cortical gray matter. Four healthy volunteers participated in this study. Standard DKI and fluid-attenuated inversion recovery (FLAIR) DKI experiments were performed using a twice-refocused-spin-echo diffusion sequence. The conventional diffusion tensor imaging (DTI) metrics of fractional anisotropy (FA), mean, axial, and radial diffusivity (MD, D[symbol in text], D[symbol in text] together with DKI metrics of mean, axial, and radial kurtosis (MK, K[symbol in text], K[symbol in text], were measured and compared. Single image slices located above the lateral ventricles, with similar anatomical features for each subject, were selected to minimize the effect of CSF from the ventricles. In white matter, differences of less than 10% were observed between diffusion metrics measured with standard DKI and FLAIR-DKI sequences, suggesting minimal CSF contamination. For gray matter, conventional DTI metrics differed by 19% to 52%, reflecting significant CSF partial volume effects. Kurtosis metrics, however, changed by 11% or less, indicating greater robustness with respect to CSF contamination. Kurtosis metrics are less sensitive to CSF partial voluming in cortical gray matter than conventional diffusion metrics. The kurtosis metrics may then be more specific indicators of changes in tissue microstructure, provided the effect sizes for the changes are comparable. Copyright © 2012 Wiley Periodicals, Inc.

  18. Diffusion Tensor Imaging of Heterotopia: Changes of Fractional Anisotropy during Radial Migration of Neurons

    PubMed Central

    Kim, Jinna

    2010-01-01

    Purpose Diffusion tensor imaging provides better understanding of pathophysiology of congenital anomalies, involving central nervous system. This study was aimed to specify the pathogenetic mechanism of heterotopia, proved by diffusion tensor imaging, and establish new findings of heterotopia on fractional anisotropy maps. Materials and Methods Diffusion-weighted imaging data from 11 patients (M : F = 7 : 4, aged from 1 to 22 years, mean = 12.3 years) who visited the epilepsy clinic and received a routine seizure protocol MRI exam were retrospectively analyzed. Fractional anisotropy (FA) maps were generated from diffusion tensor imaging of 11 patients with heterotopia. Regions of interests (ROI) were placed in cerebral cortex, heterotopic gray matter and deep gray matter, including putamen. ANOVA analysis was performed for comparison of different gray matter tissues. Results Heterotopic gray matter showed signal intensities similar to normal gray matter on T1 and T2 weighted MRI. The measured FA of heterotopic gray matter was higher than that of cortical gray matter (0.236 ± 0.011 vs. 0.169 ± 0.015, p < 0.01, one way ANOVA), and slightly lower than that of deep gray matter (0.236 ± 0.011 vs. 0.259 ± 0.016, p < 0.01). Conclusion Increased FA of heterotopic gray matter suggests arrested neuron during radial migration and provides better understanding of neurodevelopment. PMID:20499428

  19. Development And Testing Of The Inertial Electrostatic Confinement Diffusion Thruster

    NASA Technical Reports Server (NTRS)

    Becnel, Mark D.; Polzin, Kurt A.

    2013-01-01

    The Inertial Electrostatic Confinement (IEC) diffusion thruster is an experiment in active development that takes advantage of physical phenomenon that occurs during operation of an IEC device. The IEC device has been proposed as a fusion reactor design that relies on traditional electrostatic ion acceleration and is typically arranged in a spherical geometry. The design incorporates two radially-symmetric spherical electrodes. Often the inner electrode utilizes a grid of wire shaped in a sphere with a radius 15 to 50 percent of the radius of the outer electrode. The inner electrode traditionally has 90 percent or more transparency to allow particles (ions) to pass to the center of the spheres and collide/recombine in the dense plasma core at r=0. When operating the IEC, an unsteady plasma leak is typically observed passing out one of the gaps in the lattice grid of the inner electrode. The IED diffusion thruster is based upon the idea that this plasma leak can be used for propulsive purposes. The IEC diffusion thruster utilizes the radial symmetry found in the IEC device. A cylindrical configuration is employed here as it will produce a dense core of plasma the length of the cylindrical grid while promoting the plasma leak to exhaust through an electromagnetic nozzle at one end of the apparatus. A proof-of-concept IEC diffusion thruster is operational and under testing using argon as propellant (Figure 1).

  20. Development and aging of the healthy human brain uncinate fasciculus across the lifespan using diffusion tensor tractography.

    PubMed

    Hasan, Khader M; Iftikhar, Amal; Kamali, Arash; Kramer, Larry A; Ashtari, Manzar; Cirino, Paul T; Papanicolaou, Andrew C; Fletcher, Jack M; Ewing-Cobbs, Linda

    2009-06-18

    The human brain uncinate fasciculus (UF) is an important cortico-cortical white matter pathway that directly connects the frontal and temporal lobes, although there is a lack of conclusive support for its exact functional role. Using diffusion tensor tractography, we extracted the UF, calculated its volume and normalized it with respect to each subject's intracranial volume (ICV) and analyzed its corresponding DTI metrics bilaterally on a cohort of 108 right-handed children and adults aged 7-68 years. Results showed inverted U-shaped curves for fractional anisotropy (FA) with advancing age and U-shaped curves for radial and axial diffusivities reflecting white matter progressive and regressive myelination and coherence dynamics that continue into young adulthood. The mean FA values of the UF were significantly larger on the left side in children (p=0.05), adults (p=0.0012) and the entire sample (p=0.0002). The FA leftward asymmetry (Left>Right) is shown to be due to increased leftward asymmetry in the axial diffusivity (p<0.0001) and a lack of asymmetry (p>0.23) for the radial diffusivity. This is the first study to provide baseline normative macro and microstructural age trajectories of the human UF across the lifespan. Results of this study may lend themselves to better understanding of UF role in future behavioral and clinical studies.

  1. Multimodel analysis of anisotropic diffusive tracer-gas transport in a deep arid unsaturated zone

    USGS Publications Warehouse

    Green, Christopher T.; Walvoord, Michelle Ann; Andraski, Brian J.; Striegl, Robert G.; Stonestrom, David A.

    2015-01-01

    Gas transport in the unsaturated zone affects contaminant flux and remediation, interpretation of groundwater travel times from atmospheric tracers, and mass budgets of environmentally important gases. Although unsaturated zone transport of gases is commonly treated as dominated by diffusion, the characteristics of transport in deep layered sediments remain uncertain. In this study, we use a multimodel approach to analyze results of a gas-tracer (SF6) test to clarify characteristics of gas transport in deep unsaturated alluvium. Thirty-five separate models with distinct diffusivity structures were calibrated to the tracer-test data and were compared on the basis of Akaike Information Criteria estimates of posterior model probability. Models included analytical and numerical solutions. Analytical models provided estimates of bulk-scale apparent diffusivities at the scale of tens of meters. Numerical models provided information on local-scale diffusivities and feasible lithological features producing the observed tracer breakthrough curves. The combined approaches indicate significant anisotropy of bulk-scale diffusivity, likely associated with high-diffusivity layers. Both approaches indicated that diffusivities in some intervals were greater than expected from standard models relating porosity to diffusivity. High apparent diffusivities and anisotropic diffusivity structures were consistent with previous observations at the study site of rapid lateral transport and limited vertical spreading of gas-phase contaminants. Additional processes such as advective oscillations may be involved. These results indicate that gases in deep, layered unsaturated zone sediments can spread laterally more quickly, and produce higher peak concentrations, than predicted by homogeneous, isotropic diffusion models.

  2. Fluid self-diffusion in Scots pine sapwood tracheid cells.

    PubMed

    Johannessen, Espen H; Hansen, Eddy W; Rosenholm, Jarl B

    2006-02-09

    The self-diffusion coefficients of water and toluene in Scots pine sapwood was measured using low field pulsed field gradient nuclear magnetic resonance (PFG-NMR). Wood chips of 8 mm diameter were saturated with the respective liquids, and liquid self-diffusion was then traced in one dimension orthogonal to the tracheid cell walls in the wood's radial direction. The experimental echo attenuation curves were exponential, and characteristic self-diffusion coefficients were produced for diffusion times spanning from very short times to times on the order of magnitude of seconds. Observed self-diffusion coefficients were decaying asymptotically as a function of diffusion time, an effect which was ascribed to the cell walls' restriction on confined liquid diffusion. The observed self-diffusion behavior in Scots pine sapwood was compared to self-diffusion coefficients obtained from simulations of diffusion in a square. Principles of molecular displacements in confined geometries were used for elucidating the wood's cellular structure from the observed diffusion coefficients. The results were compared with a mathematical model for diffusion between parallel planes.

  3. Aerodynamically induced radial forces in a centrifugal gas compressor. Part 1: Experimental measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, J.J.; Flathers, M.B.

    1998-04-01

    Net radial loading arising from asymmetric pressure fields in the volutes of centrifugal pumps during off-design operation is well known and has been studied extensively. In order to achieve a marked improvement in overall efficiency in centrifugal gas compressors, vaneless volute diffusers are matched to specific impellers to yield improved performance over a wide application envelope. As observed in centrifugal pumps, nonuniform pressure distributions that develop during operation above and below the design flow create static radial loads on the rotor. In order to characterize these radial forces, a novel experimental measurement and post-processing technique is employed that yields bothmore » the magnitude and direction of the load by measuring the shaft centerline locus in the tilt-pad bearings. The method is applicable to any turbomachinery operating on fluid film radial bearings equipped with proximity probes. The forces are found to be a maximum near surge and increase with higher pressures and speeds. The results are nondimensionalized, allowing the radial loading for different operating conditions to be predicted.« less

  4. Analysis of Radial Segregation in Directionally Solidified Hg(0.89)Mn(0.11)Te

    NASA Technical Reports Server (NTRS)

    Price, M. W.; Scripa, R. N.; Szofran, F. R.; Motakef, S.; Hanson, B.

    2003-01-01

    Bridgman growth experiments were performed on Hg(0.89)Mn(0.11)Te (MMT) to determine the extent of radial Manganese segregation during directional solidification. MMT crystals were directionally solidified at rates of 0.09 and 0.18 p d s and in axial thermal gradients of 83 and 68"C/cm. Wavelength Dispersive Spectroscopy (WDS) and Fourier Transform Infra-Red (FTIR) analytical techniques were used to determine the radial homogeneity in all boules and the deflection of the solid-liquid interface (SLI) in two boules that were rapidly quenched after 5 to 6 cm of directional solidification. For all growth runs, the measured radial coinpositional variations were on the order of 0.01 molar percent MnTe in the steady state region of growth. Comparison of the measured radial compositional results of the crystals to predicted values in the diffusion-limited regime indicate a strong influence of convection near the solid-liquid interface. This conclusion is supported by the weak influence of the translation rates and axial thermal gradients utilized in this study upon radial compositional homogeneity.

  5. Lean direct injection diffusion tip and related method

    DOEpatents

    Varatharajan, Balachandar [Cincinnati, OH; Ziminsky, Willy S [Simpsonville, SC; Lipinski, John [Simpsonville, SC; Kraemer, Gilbert O [Greer, SC; Yilmaz, Ertan [Niskayuna, NY; Lacy, Benjamin [Greer, SC

    2012-08-14

    A nozzle for a gas turbine combustor includes a first radially outer tube defining a first passage having an inlet and an outlet, the inlet adapted to supply air to a reaction zone of the combustor. A center body is located within the first radially outer tube, the center body including a second radially intermediate tube for supplying fuel to the reaction zone and a third radially inner tube for supplying air to the reaction zone. The second intermediate tube has a first outlet end closed by a first end wall that is formed with a plurality of substantially parallel, axially-oriented air outlet passages for the additional air in the third radially inner tube, each air outlet passage having a respective plurality of associated fuel outlet passages in the first end wall for the fuel in the second radially intermediate tube. The respective plurality of associated fuel outlet passages have non-parallel center axes that intersect a center axis of the respective air outlet passage to locally mix fuel and air exiting said center body.

  6. Modelling of the EAST lower-hybrid current drive experiment using GENRAY/CQL3D and TORLH/CQL3D

    NASA Astrophysics Data System (ADS)

    Yang, C.; Bonoli, P. T.; Wright, J. C.; Ding, B. J.; Parker, R.; Shiraiwa, S.; Li, M. H.

    2014-12-01

    The coupled GENRAY-CQL3D code has been used to do systematic ray-tracing and Fokker-Planck analysis for EAST Lower Hybrid wave Current Drive (LHCD) experiments. Despite being in the weak absorption regime, the experimental level of LH current drive is successfully simulated, by taking into account the variations in the parallel wavenumber due to the toroidal effect. The effect of radial transport of the fast LH electrons in EAST has also been studied, which shows that a modest amount of radial transport diffusion can redistribute the fast LH current significantly. Taking advantage of the new capability in GENRAY, the actual Scrape Off Layer (SOL) model with magnetic field, density, temperature, and geometry is included in the simulation for both the lower and the higher density cases, so that the collisional losses of Lower Hybrid Wave (LHW) power in the SOL has been accounted for, which together with fast electron losses can reproduce the LHCD experimental observations in different discharges of EAST. We have also analyzed EAST discharges where there is a significant ohmic contribution to the total current, and good agreement with experiment in terms of total current has been obtained. Also, the full-wave code TORLH has been used for the simulation of the LH physics in the EAST, including full-wave effects such as diffraction and focusing which may also play an important role in bridging the spectral gap. The comparisons between the GENRAY and the TORLH codes are done for both the Maxwellian and the quasi-linear electron Landau damping cases. These simulations represent an important addition to the validation studies of the GENRAY-CQL3D and TORLH models being used in weak absorption scenarios of tokamaks with large aspect ratio.

  7. Reverse-Tangent Injection in a Centrifugal Compressor

    NASA Technical Reports Server (NTRS)

    Skoch, Gary J.

    2007-01-01

    Injection of working fluid into a centrifugal compressor in the reverse tangent direction has been invented as a way of preventing flow instabilities (stall and surge) or restoring stability when stall or surge has already commenced. The invention applies, in particular, to a centrifugal compressor, the diffuser of which contains vanes that divide the flow into channels oriented partly radially and partly tangentially. In reverse-tangent injection, a stream or jet of the working fluid (the fluid that is compressed) is injected into the vaneless annular region between the blades of the impeller and the vanes of the diffuser. As used here, "reverse" signifies that the injected flow opposes (and thereby reduces) the tangential component of the velocity of the impeller discharge. At the same time, the injected jet acts to increase the radial component of the velocity of the impeller discharge.

  8. Magneto-Hydrodynamic Damping of Convection During Vertical Bridgman-Stockbarger Growth of HgCdTe

    NASA Technical Reports Server (NTRS)

    Watring, D. A.; Lehoczky, S. L.

    1996-01-01

    In order to quantify the effects of convection on segregation, Hg(0.8)Cd(0.2)Te crystals were grown by the vertical Bridgman-Stockbarger method in the presence of an applied axial magnetic field of 50 kG. The influence of convection, by magneto-hydrodynamic damping, on mass transfer in the melt and segregation at the solid-liquid interface was investigated by measuring the axial and radial compositional variations in the grown samples. The reduction of convective mixing in the melt through the application of the magnetic field is found to decrease radial segregation to the diffusion-limited regime. It was also found that the suppression of the convective cell near the solid-liquid interface results in an increase in the slope of the diffusion-controlled solute boundary layer, which can lead to constitutional supercooling.

  9. Molecular dynamics simulation of polyacrylamides in potassium montmorillonite clay hydrates

    NASA Astrophysics Data System (ADS)

    Zhang, Junfang; Rivero, Mayela; Choi, S. K.

    2007-02-01

    We present molecular dynamics simulation results for polyacrylamide in potassium montmorillonite clay-aqueous systems. Interlayer molecular structure and dynamics properties are investigated. The number density profile, radial distribution function, root-mean-square deviation (RMSD), mean-square displacement (MSD) and diffusion coefficient are reported. The calculations are conducted in constant NVT ensembles, at T = 300 K and with layer spacing of 40 Å. Our simulation results showed that polyacrylamides had little impact on the structure of interlayer water. Density profiles and radial distribution function indicated that hydration shells were formed. In the presence of polyacrylamides more potassium counterions move close to the clay surface while water molecules move away, indicating that potassium counterions are hydrated to a lesser extent than the system in which no polyacrylamides were added. The diffusion coefficients for potassium and water decreased when polyacrylamides were added.

  10. Spatial distribution of protons at high and low altitudes in the radiation belts. Comparison of theory and experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panasyuk, M.I.; Reizman, S.Y.; Sosnovets, E.N.

    1986-05-01

    A comparative analysis of experimental data on the spatial distributions of protons with energies (E) greater than 0.1 MeV at high and low latitudes, which were obtained on the Molniya-1, Kosmos-900, Elektron, and 1964-45A satellites, is carried out. As a result of the comparison of the experimental data relating to the measurements of protons with E - 0.2 MeV with the calculation including radial drift of particles under the action of electric and magnetic field fluctuations, it is shown that radial diffusion with a diffusion coefficient independent of geomagnetic latitude is the primary mechanism shaping the spatial distributions of protonsmore » at geomagnetic latitudes up to ..lambda.. approx. = 40/sup 0/. The results of the experiments and the calculations agree under the assumption of both magnetic and electric diffusion, but the latter case requires the inclusion of the model of a spatially inhomogeneous convection electric field. At ..lambda.. greater than or equal to 50/sup 0/ pitchangle scattering makes the primary contribution to the shaping of the spatial structure of the protons at low altitudes. A value of 2 less than or equal to n less than or equal to 4 is obtained for the exponent of the slope of the radial distribution of cold electrons N /sub e/ (r)..cap alpha.. /sup -n/ at 2 less than or equal to L less than or equal to 4.« less

  11. Quantitatively in Situ Imaging Silver Nanowire Hollowing Kinetics

    DOE PAGES

    Yu, Le; Yan, Zhongying; Cai, Zhonghou; ...

    2016-09-28

    We report the in-situ investigation of the morphological evolution of silver nanowires to hollow silver oxide nanotubes using transmission x-ray microscopy (TXM). Complex silver diffusion kinetics and hollowing process via the Kirkendall effect have been captured in real time. Further quantitative x-ray absorption analysis reveals the difference between the longitudinal and radial diffusions. In conclusion, the diffusion coefficient of silver in its oxide nanoshell is, for the first time, calculated to be 1.2 × 10 -13 cm 2/s from the geometrical parameters extracted from the TXM images.

  12. Modeling and Simulation of Used Nuclear Fuel During Transportation with Consideration of Hydride Effects and Cyclic Fatigue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Pritam; Sabharwall, Piyush; Spears, Robert Edward

    2015-09-30

    The objective of this work is to understand the integrity of Used Nuclear Fuel (UNF) during transportation. Previous analysis work has been performed to look at the integrity of UNF during transportation but these analyses have neglected to analyze the effect of hydrides and flaws (fracture mechanics models to capture radial cracking in the cladding). In this study, the clad regions of interest are near the pellet-pellet interfaces. These regions can experience more complex stress-states than the rest of the clad during cooling and have a greater possibility to develop radially reoriented hydrides during vacuum drying.

  13. The Role of Ring Current on Slot Region Penetration

    NASA Technical Reports Server (NTRS)

    Fok, Mei-Ching; Elkington, Scot

    2006-01-01

    During magnetic quiet times, the inner belt, slot region and the outer belt are well defined regions. However, during some major storms, outer belt particles penetrate inward and significantly fill the slot region. In some extreme events, the outer belt particles travel through the slot and create a new belt in the inner region that persists from months to years. In this paper, we examine the role of the ring current on this radiation belt penetration into the slot region. The storm-time intensification of the ring current produces strong magnetic depression in the inner magnetosphere. This perturbation and its fluctuation enhance the radial transport and diffusion of the outer radiation belt particles. We perform kinetic and test-particle calculations to quantitatively assess the effects of the ring current field on filling of the slot region. Simulation results during major storms will be presented and discussed.

  14. The effect of sediments on turbulent plume dynamics in a stratified fluid

    NASA Astrophysics Data System (ADS)

    Stenberg, Erik; Ezhova, Ekaterina; Brandt, Luca

    2017-11-01

    We report large eddy simulation results of sediment-loaded turbulent plumes in a stratified fluid. The configuration, where the plume is discharged from a round source, provides an idealized model of subglacial discharge from a submarine tidewater glacier and is a starting point for understanding the effect of sediments on the dynamics of the rising plume. The transport of sediments is modeled by means of an advection-diffusion equation where sediment settling velocity is taken into account. We initially follow the experimental setup of Sutherland (Phys. Rev. Fluids, 2016), considering uniformly stratified ambients and further extend the work to pycnocline-type stratifications typical of Greenland fjords. Apart from examining the rise height, radial spread and intrusion of the rising plume, we gain further insights of the plume dynamics by extracting turbulent characteristics and the distribution of the sediments inside the plume.

  15. Surface diffusion of astrocytic glutamate transporters shapes synaptic transmission.

    PubMed

    Murphy-Royal, Ciaran; Dupuis, Julien P; Varela, Juan A; Panatier, Aude; Pinson, Benoît; Baufreton, Jérôme; Groc, Laurent; Oliet, Stéphane H R

    2015-02-01

    Control of the glutamate time course in the synapse is crucial for excitatory transmission. This process is mainly ensured by astrocytic transporters, high expression of which is essential to compensate for their slow transport cycle. Although molecular mechanisms regulating transporter intracellular trafficking have been identified, the relationship between surface transporter dynamics and synaptic function remains unexplored. We found that GLT-1 transporters were highly mobile on rat astrocytes. Surface diffusion of GLT-1 was sensitive to neuronal and glial activities and was strongly reduced in the vicinity of glutamatergic synapses, favoring transporter retention. Notably, glutamate uncaging at synaptic sites increased GLT-1 diffusion, displacing transporters away from this compartment. Functionally, impairing GLT-1 membrane diffusion through cross-linking in vitro and in vivo slowed the kinetics of excitatory postsynaptic currents, indicative of a prolonged time course of synaptic glutamate. These data provide, to the best of our knowledge, the first evidence for a physiological role of GLT-1 surface diffusion in shaping synaptic transmission.

  16. Inter-machine validation study of neoclassical transport modelling in medium- to high-density stellarator-heliotron plasmas

    NASA Astrophysics Data System (ADS)

    Dinklage, A.; Yokoyama, M.; Tanaka, K.; Velasco, J. L.; López-Bruna, D.; Beidler, C. D.; Satake, S.; Ascasíbar, E.; Arévalo, J.; Baldzuhn, J.; Feng, Y.; Gates, D.; Geiger, J.; Ida, K.; Isaev, M.; Jakubowski, M.; López-Fraguas, A.; Maaßberg, H.; Miyazawa, J.; Morisaki, T.; Murakami, S.; Pablant, N.; Kobayashi, S.; Seki, R.; Suzuki, C.; Suzuki, Y.; Turkin, Yu.; Wakasa, A.; Wolf, R.; Yamada, H.; Yoshinuma, M.; LHD Exp. Group; TJ-II Team; W7-AS Team

    2013-06-01

    A comparative study of energy transport for medium- to high-density discharges in the stellarator-heliotrons TJ-II, W7-AS and LHD is carried out. The specific discharge parameters are chosen to apply a recently concluded benchmarking study of neoclassical (NC) transport coefficients (Beidler et al 2011 Nucl. Fusion 51 076001) to perform this validation study. In contrast to previous experiments at low densities for which electron transport was predominant (Yokoyama et al 2007 Nucl. Fusion 47 1213), the current discharges also exhibit significant ion energy transport. As it affects the energy transport in 3D devices, the ambipolar radial electric field is addressed as well. For the discharges described, ion-root conditions, i.e. a small negative radial electric field were found. The energy transport in the peripheral region cannot be explained by NC theory. Within a ‘core region’(r/a < 1/2 ˜ 2/3), the predicted NC energy fluxes comply with experimental findings for W7-AS. For TJ-II, compliance in the core region is found for the particle transport and the electron energy transport. For the specific LHD discharges, the core energy transport complied with NC theory except for the electron energy transport in the inward-shifted magnetic configuration. The NC radial electric field tends to agree with experimental results for all devices but is measured to be more negative in the core of both LHD and TJ-II. As a general observation, the energy confinement time approaches the gyro-Bohm-type confinement scaling ISS04 (Yamada et al 2005 Nucl. Fusion 45 1684). This work is carried out within the International Stellarator-Heliotron Profile Database (www.ipp.mpg.de/ISS and http://ishpdb.nifs.ac.jp/index.html).

  17. Augmentation of oxygen transport by various hemoglobins as determined by pulsed field gradient NMR.

    PubMed

    Budhiraja, Vikas; Hellums, J David; Post, Jan F M

    2002-11-01

    Diffusion of oxyhemoglobin has been shown to augment the oxygen transport inside the red blood cells. Measurement of hemoglobin diffusion coefficients by pulsed-field gradient (PFG) nuclear magnetic resonance (NMR) technique can be used for estimating this augmentation effect. Self-diffusion coefficients of polymerized and unpolymerized bovine hemoglobin (Hb) and several other proteins were measured using this technique. The Hb diffusion coefficient was used to determine the effective permeability of oxygen and augmentation of oxygen transport through samples of Hb solutions due to diffusion of oxyhemoglobin. The values compared well with our previous diffusion cell measurements of effective diffusivity and augmentation. Our NMR studies show that even at low concentrations the augmentation of oxygen transport due to diffusion can be significant. The PFG NMR technique can thus provide an accurate and easy method for measuring augmentation of oxygen transport, especially in dilute samples of Hb. The results on polyhemoglobin and high-molecular-weight hemoglobin are of both basic interest and practical value in assessing the promise and performance of hemoglobin-based blood substitutes.

  18. A consistent transported PDF model for treating differential molecular diffusion

    NASA Astrophysics Data System (ADS)

    Wang, Haifeng; Zhang, Pei

    2016-11-01

    Differential molecular diffusion is a fundamentally significant phenomenon in all multi-component turbulent reacting or non-reacting flows caused by the different rates of molecular diffusion of energy and species concentrations. In the transported probability density function (PDF) method, the differential molecular diffusion can be treated by using a mean drift model developed by McDermott and Pope. This model correctly accounts for the differential molecular diffusion in the scalar mean transport and yields a correct DNS limit of the scalar variance production. The model, however, misses the molecular diffusion term in the scalar variance transport equation, which yields an inconsistent prediction of the scalar variance in the transported PDF method. In this work, a new model is introduced to remedy this problem that can yield a consistent scalar variance prediction. The model formulation along with its numerical implementation is discussed, and the model validation is conducted in a turbulent mixing layer problem.

  19. An Investigation of Unsteady Impeller-Diffuser Interactions in a Centrifugal Compressor

    DTIC Science & Technology

    1992-08-01

    120 6.20 IDV Measument Positios ............................................................. 121 6.21 LDV...The motivation for radially oriented blades includes ease of manufacture and reduced stress in high speed machines. Backswept blades are used to

  20. Nonlocal transport in the presence of transport barriers

    NASA Astrophysics Data System (ADS)

    Del-Castillo-Negrete, D.

    2013-10-01

    There is experimental, numerical, and theoretical evidence that transport in plasmas can, under certain circumstances, depart from the standard local, diffusive description. Examples include fast pulse propagation phenomena in perturbative experiments, non-diffusive scaling in L-mode plasmas, and non-Gaussian statistics of fluctuations. From the theoretical perspective, non-diffusive transport descriptions follow from the relaxation of the restrictive assumptions (locality, scale separation, and Gaussian/Markovian statistics) at the foundation of diffusive models. We discuss an alternative class of models able to capture some of the observed non-diffusive transport phenomenology. The models are based on a class of nonlocal, integro-differential operators that provide a unifying framework to describe non- Fickian scale-free transport, and non-Markovian (memory) effects. We study the interplay between nonlocality and internal transport barriers (ITBs) in perturbative transport including cold edge pulses and power modulation. Of particular interest in the nonlocal ``tunnelling'' of perturbations through ITBs. Also, flux-gradient diagrams are discussed as diagnostics to detect nonlocal transport processes in numerical simulations and experiments. Work supported by the US Department of Energy.

  1. Measurements of water uptake of maize roots: the key function of lateral roots

    NASA Astrophysics Data System (ADS)

    Ahmed, M. A.; Zarebanadkouki, M.; Kroener, E.; Kaestner, A.; Carminati, A.

    2014-12-01

    Maize (Zea mays L.) is one of the most important crop worldwide. Despite its importance, there is limited information on the function of different root segments and root types of maize in extracting water from soils. Therefore, the aim of this study was to investigate locations of root water uptake in maize. We used neutron radiography to: 1) image the spatial distribution of maize roots in soil and 2) trace the transport of injected deuterated water (D2O) in soil and roots. Maizes were grown in aluminum containers (40×38×1 cm) filled with a sandy soil. When the plants were 16 days old, we injected D2O into selected soil regions containing primary, seminal and lateral roots. The experiments were performed during the day (transpiring plants) and night (not transpiring plants). The transport of D2O into roots was simulated using a new convection-diffusion numerical model of D2O transport into roots. By fitting the observed D2O transport we quantified the diffusional permeability and the water uptake of the different root segments. The maize root architecture consisted of a primary root, 4-5 seminal roots and many lateral roots connected to the primary and seminal roots. Laterals emerged from the proximal 15 cm of the primary and seminal roots. Water uptake occurred primarily in lateral roots. Lateral roots had the highest diffusional permeability (9.4×10-7), which was around six times higher that the diffusional permeability of the old seminal segments (1.4×10-7), and two times higher than the diffusional permeability of the young seminal segments (4.7×10-7). The radial flow of D2O into the lateral (6.7×10-5 ) was much higher than in the young seminal roots (1.1×10-12). The radial flow of D2O into the old seminal was negligible. We concluded that the function of the primary and seminal roots was to collect water from the lateral roots and transport it to the shoot. A maize root system with lateral roots branching from deep primary and seminal roots would be efficient in extracting water from the subsoil and better tolerate periods of water shortage. However, in this case the xylem axial resistance could be the limiting factor for the uptake of water.

  2. Radial transport processes as a precursor to particle deposition in drinking water distribution systems.

    PubMed

    van Thienen, P; Vreeburg, J H G; Blokker, E J M

    2011-02-01

    Various particle transport mechanisms play a role in the build-up of discoloration potential in drinking water distribution networks. In order to enhance our understanding of and ability to predict this build-up, it is essential to recognize and understand their role. Gravitational settling with drag has primarily been considered in this context. However, since flow in water distribution pipes is nearly always in the turbulent regime, turbulent processes should be considered also. In addition to these, single particle effects and forces may affect radial particle transport. In this work, we present an application of a previously published turbulent particle deposition theory to conditions relevant for drinking water distribution systems. We predict quantitatively under which conditions turbophoresis, including the virtual mass effect, the Saffman lift force, and the Magnus force may contribute significantly to sediment transport in radial direction and compare these results to experimental observations. The contribution of turbophoresis is mostly limited to large particles (>50 μm) in transport mains, and not expected to play a major role in distribution mains. The Saffman lift force may enhance this process to some degree. The Magnus force is not expected to play any significant role in drinking water distribution systems. © 2010 Elsevier Ltd. All rights reserved.

  3. Local texture descriptors for the assessment of differences in diffusion magnetic resonance imaging of the brain.

    PubMed

    Thomsen, Felix Sebastian Leo; Delrieux, Claudio Augusto; de Luis-García, Rodrigo

    2017-03-01

    Descriptors extracted from magnetic resonance imaging (MRI) of the brain can be employed to locate and characterize a wide range of pathologies. Scalar measures are typically derived within a single-voxel unit, but neighborhood-based texture measures can also be applied. In this work, we propose a new set of descriptors to compute local texture characteristics from scalar measures of diffusion tensor imaging (DTI), such as mean and radial diffusivity, and fractional anisotropy. We employ weighted rotational invariant local operators, namely standard deviation, inter-quartile range, coefficient of variation, quartile coefficient of variation and skewness. Sensitivity and specificity of those texture descriptors were analyzed with tract-based spatial statistics of the white matter on a diffusion MRI group study of elderly healthy controls, patients with mild cognitive impairment (MCI), and mild or moderate Alzheimer's disease (AD). In addition, robustness against noise has been assessed with a realistic diffusion-weighted imaging phantom and the contamination of the local neighborhood with gray matter has been measured. The new texture operators showed an increased ability for finding formerly undetected differences between groups compared to conventional DTI methods. In particular, the coefficient of variation, quartile coefficient of variation, standard deviation and inter-quartile range of the mean and radial diffusivity detected significant differences even between previously not significantly discernible groups, such as MCI versus moderate AD and mild versus moderate AD. The analysis provided evidence of low contamination of the local neighborhood with gray matter and high robustness against noise. The local operators applied here enhance the identification and localization of areas of the brain where cognitive impairment takes place and thus indicate them as promising extensions in diffusion MRI group studies.

  4. Evidence-based approach to assess passive diffusion and carrier-mediated drug transport.

    PubMed

    Di, Li; Artursson, Per; Avdeef, Alex; Ecker, Gerhard F; Faller, Bernard; Fischer, Holger; Houston, J Brian; Kansy, Manfred; Kerns, Edward H; Krämer, Stefanie D; Lennernäs, Hans; Sugano, Kiyohiko

    2012-08-01

    Evidence supporting the action of passive diffusion and carrier-mediated (CM) transport in drug bioavailability and disposition is discussed to refute the recently proposed theory that drug transport is CM-only and that new transporters will be discovered that possess transport characteristics ascribed to passive diffusion. Misconceptions and faulty speculations are addressed to provide reliable guidance on choosing appropriate tools for drug design and optimization. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. A comment on the position dependent diffusion coefficient representation of structural heterogeneity

    NASA Astrophysics Data System (ADS)

    Wolfson, Molly; Liepold, Christopher; Lin, Binhua; Rice, Stuart A.

    2018-05-01

    Experimental studies of the variation of the mean square displacement (MSD) of a particle in a confined colloid suspension that exhibits density variations on the scale length of the particle diameter are not in agreement with the prediction that the spatial variation in MSD should mimic the spatial variation in density. The predicted behavior is derived from the expectation that the MSD of a particle depends on the system density and the assumption that the force acting on a particle is a point function of position. The experimental data are obtained from studies of the MSDs of particles in narrow ribbon channels and between narrowly spaced parallel plates and from new data, reported herein, of the radial and azimuthal MSDs of a colloid particle in a dense colloid suspension confined to a small circular cavity. In each of these geometries, a dense colloid suspension exhibits pronounced density oscillations with spacing of a particle diameter. We remove the discrepancy between prediction and experiment using the Fisher-Methfessel interpretation of how local equilibrium in an inhomogeneous system is maintained to argue that the force acting on a particle is delocalized over a volume with radius equal to a particle diameter. Our interpretation has relevance to the relationship between the scale of inhomogeneity and the utility of translation of the particle MSD into a position dependent diffusion coefficient and to the use of a spatially dependent diffusion coefficient to describe mass transport in a heterogeneous system.

  6. Continuum kinetic modeling of the tokamak plasma edge

    DOE PAGES

    Dorf, M. A.; Dorr, M.; Rognlien, T.; ...

    2016-03-10

    In this study, the first 4D (axisymmetric) high-order continuum gyrokinetic transport simulations that span the magnetic separatrix of a tokamak are presented. The modeling is performed with the COGENT code, which is distinguished by fourth-order finite-volume discretization combined with mapped multiblock grid technology to handle the strong anisotropy of plasmatransport and the complex X-point divertor geometry with high accuracy. The calculations take into account the effects of fully nonlinear Fokker-Plank collisions, electrostatic potential variations, and anomalous radial transport. Topics discussed include: (a) ion orbit loss and the associated toroidal rotation and (b) edge plasma relaxation in the presence of anomalousmore » radial transport.« less

  7. From migration to settlement: the pathways, migration modes and dynamics of neurons in the developing brain

    PubMed Central

    HATANAKA, Yumiko; ZHU, Yan; TORIGOE, Makio; KITA, Yoshiaki; MURAKAMI, Fujio

    2016-01-01

    Neuronal migration is crucial for the construction of the nervous system. To reach their correct destination, migrating neurons choose pathways using physical substrates and chemical cues of either diffusible or non-diffusible nature. Migrating neurons extend a leading and a trailing process. The leading process, which extends in the direction of migration, determines navigation, in particular when a neuron changes its direction of migration. While most neurons simply migrate radially, certain neurons switch their mode of migration between radial and tangential, with the latter allowing migration to destinations far from the neurons’ site of generation. Consequently, neurons with distinct origins are intermingled, which results in intricate neuronal architectures and connectivities and provides an important basis for higher brain function. The trailing process, in contrast, contributes to the late stage of development by turning into the axon, thus contributing to the formation of neuronal circuits. PMID:26755396

  8. Reactive nanolaminate pulsed-laser ignition mechanism: Modeling and experimental evidence of diffusion limited reactions

    DOE PAGES

    Yarrington, C. D.; Abere, M. J.; Adams, D. P.; ...

    2017-04-03

    We irradiated Al/Pt nanolaminates with a bilayer thickness (tb, width of an Al/Pt pair-layer) of 164 nm with single laser pulses with durations of 10 ms and 0.5 ms at 189 W/cm 2 and 1189 W/cm 2, respectively. The time to ignition was measured for each pulse, and shorter ignition times were observed for the higher power/shorter pulse width. While the shorter pulse shows uniform brightness, videographic images of the irradiated area shortly after ignition show a non-uniform radial brightness for the longer pulse. A diffusion-limited single step reaction mechanism was implemented in a finite element package to model themore » progress from reactants to products at both pulse widths. Finally, the model captures well both the observed ignition delay and qualitative observations regarding the non-uniform radial temperature.« less

  9. Computations of the three-dimensional flow and heat transfer within a coolant passage of a radial turbine blade

    NASA Technical Reports Server (NTRS)

    Shih, T. I.-P.; Roelke, R. J.; Steinthorsson, E.

    1991-01-01

    A numerical code is developed for computing three-dimensional, turbulent, compressible flow within coolant passages of turbine blades. The code is based on a formulation of the compressible Navier-Stokes equations in a rotating frame of reference in which the velocity dependent variable is specified with respect to the rotating frame instead of the inertial frame. The algorithm employed to obtain solutions to the governing equation is a finite-volume LU algorithm that allows convection, source, as well as diffusion terms to be treated implicitly. In this study, all convection terms are upwind differenced by using flux-vector splitting, and all diffusion terms are centrally differenced. This paper describes the formulation and algorithm employed in the code. Some computed solutions for the flow within a coolant passage of a radial turbine are also presented.

  10. Using the Ab Initio Molecular Dynamics Method for Simulating the Peculiarities in the Temperature Dependence of Liquid Bismuth Properties

    NASA Astrophysics Data System (ADS)

    Yuryev, A. A.; Gelchinski, B. R.; Vatolin, N. A.

    2018-03-01

    The specific features pertinent to the temperature dependence of the electronic and atomic properties of liquid bismuth that have been observed in experiments are investigated according to the ab initio molecular dynamics method using the SIESTA open software package. The density of electronic states, the radial distribution function of atoms, and the self-diffusion coefficient are calculated for the temperature range from the melting point equal to 545 K to 1500 K. The calculated data are in good agreement with the experimental data. It is found that the position of the first peak in the radial distribution function of atoms and the self-diffusion coefficient are characterized by a nonmonotonic dependence under the conditions of superheating by approximately 150 K above the melting temperature. In the authors' opinion, this dependence feature is attributed to a change in the liquid short-range order structure.

  11. An experimental description of the flow in a centrifugal compressor from alternate stall to surge

    NASA Astrophysics Data System (ADS)

    Moënne-Loccoz, V.; Trébinjac, I.; Benichou, E.; Goguey, S.; Paoletti, B.; Laucher, P.

    2017-08-01

    The present paper gives the experimental results obtained in a centrifugal compressor stage designed and built by SAFRAN Helicopter Engines. The compressor is composed of inlet guide vanes, a backswept splittered unshrouded impeller, a splittered vaned radial diffuser and axial outlet guide vanes. Previous numerical simulations revealed a particular S-shape pressure rise characteristic at partial rotation speed and predicted an alternate flow pattern in the vaned radial diffuser at low mass flow rate. This alternate flow pattern involves two adjacent vane passages. One passage exhibits very low momentum and a low pressure recovery, whereas the adjacent passage has very high momentum in the passage inlet and diffuses efficiently. Experimental measurements confirm the S-shape of the pressure rise characteristic even if the stability limit experimentally occurs at higher mass flow than numerically predicted. At low mass flow the alternate stall pattern is confirmed thanks to the data obtained by high-frequency pressure sensors. As the compressor is throttled the path to instability has been registered and a first scenario of the surge inception is given. The compressor first experiences a steady alternate stall in the diffuser. As the mass flow decreases, the alternate stall amplifies and triggers the mild surge in the vaned diffuser. An unsteady behavior results from the interaction of the alternate stall and the mild surge. Finally, when the pressure gradient becomes too strong, the alternate stall blows away and the compressor enters into deep surge.

  12. Inward diffusion and loss of radiation belt protons

    NASA Astrophysics Data System (ADS)

    Selesnick, R. S.; Baker, D. N.; Jaynes, A. N.; Li, X.; Kanekal, S. G.; Hudson, M. K.; Kress, B. T.

    2016-03-01

    Radiation belt protons in the kinetic energy range 24 to 76 MeV are being measured by the Relativistic Electron Proton Telescope on each of the two Van Allen Probes. Data have been processed for the purpose of studying variability in the trapped proton intensity during October 2013 to August 2015. For the lower energies (≲32 MeV), equatorial proton intensity near L = 2 showed a steady increase that is consistent with inward diffusion of trapped solar protons, as shown by positive radial gradients in phase space density at fixed values of the first two adiabatic invariants. It is postulated that these protons were trapped with enhanced efficiency during the 7 March 2012 solar proton event. A model that includes radial diffusion, along with known trapped proton source and loss processes, shows that the observed average rate of increase near L = 2 is predicted by the same model diffusion coefficient that is required to form the entire proton radiation belt, down to low L, over an extended (˜103 year) interval. A slower intensity decrease for lower energies near L = 1.5 may also be caused by inward diffusion, though it is faster than predicted by the model. Higher-energy (≳40 MeV) protons near the L = 1.5 intensity maximum are from cosmic ray albedo neutron decay. Their observed intensity is lower than expected by a factor ˜2, but the discrepancy is resolved by adding an unspecified loss process to the model with a mean lifetime ˜120 years.

  13. GALACTIC WINDS DRIVEN BY ISOTROPIC AND ANISOTROPIC COSMIC-RAY DIFFUSION IN DISK GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pakmor, R.; Pfrommer, C.; Simpson, C. M.

    2016-06-20

    The physics of cosmic rays (CRs) is a promising candidate for explaining the driving of galactic winds and outflows. Recent galaxy formation simulations have demonstrated the need for active CR transport either in the form of diffusion or streaming to successfully launch winds in galaxies. However, due to computational limitations, most previous simulations have modeled CR transport isotropically. Here, we discuss high-resolution simulations of isolated disk galaxies in a 10{sup 11} M {sub ⊙} halo with the moving-mesh code Arepo that include injection of CRs from supernovae, advective transport, CR cooling, and CR transport through isotropic or anisotropic diffusion. Wemore » show that either mode of diffusion leads to the formation of strong bipolar outflows. However, they develop significantly later in the simulation with anisotropic diffusion compared to the simulation with isotropic diffusion. Moreover, we find that isotropic diffusion allows most of the CRs to quickly diffuse out of the disk, while in the simulation with anisotropic diffusion, most CRs remain in the disk once the magnetic field becomes dominated by its azimuthal component, which occurs after ∼300 Myr. This has important consequences for the gas dynamics in the disk. In particular, we show that isotropic diffusion strongly suppresses the amplification of the magnetic field in the disk compared to anisotropic or no diffusion models. We therefore conclude that reliable simulations which include CR transport inevitably need to account for anisotropic diffusion.« less

  14. Analysis of higher harmonics on bidirectional heat pulse propagation experiment in helical and tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Kobayashi, T.; Ida, K.; Inagaki, S.; Tsuchiya, H.; Tamura, N.; Choe, G. H.; Yun, G. S.; Park, H. K.; Ko, W. H.; Evans, T. E.; Austin, M. E.; Shafer, M. W.; Ono, M.; López-bruna, D.; Ochando, M. A.; Estrada, T.; Hidalgo, C.; Moon, C.; Igami, H.; Yoshimura, Y.; Tsujimura, T. Ii.; Itoh, S.-I.; Itoh, K.

    2017-07-01

    In this contribution we analyze modulation electron cyclotron resonance heating (MECH) experiment and discuss higher harmonic frequency dependence of transport coefficients. We use the bidirectional heat pulse propagation method, in which both inward propagating heat pulse and outward propagating heat pulse are analyzed at a radial range, in order to distinguish frequency dependence of transport coefficients due to hysteresis from that due to other reasons, such as radially dependent transport coefficients, a finite damping term, or boundary effects. The method is applied to MECH experiments performed in various helical and tokamak devices, i.e. Large Helical Device (LHD), TJ-II, Korea Superconducting Tokamak Advanced Research (KSTAR), and Doublet III-D (DIII-D) with different plasma conditions. The frequency dependence of transport coefficients are clearly observed, showing a possibility of existence of transport hysteresis in flux-gradient relation.

  15. Mutual influence of molecular diffusion in gas and surface phases

    NASA Astrophysics Data System (ADS)

    Hori, Takuma; Kamino, Takafumi; Yoshimoto, Yuta; Takagi, Shu; Kinefuchi, Ikuya

    2018-01-01

    We develop molecular transport simulation methods that simultaneously deal with gas- and surface-phase diffusions to determine the effect of surface diffusion on the overall diffusion coefficients. The phenomenon of surface diffusion is incorporated into the test particle method and the mean square displacement method, which are typically employed only for gas-phase transport. It is found that for a simple cylindrical pore, the diffusion coefficients in the presence of surface diffusion calculated by these two methods show good agreement. We also confirm that both methods reproduce the analytical solution. Then, the diffusion coefficients for ink-bottle-shaped pores are calculated using the developed method. Our results show that surface diffusion assists molecular transport in the gas phase. Moreover, the surface tortuosity factor, which is known to be uniquely determined by physical structure, is influenced by the presence of gas-phase diffusion. This mutual influence of gas-phase diffusion and surface diffusion indicates that their simultaneous calculation is necessary for an accurate evaluation of the diffusion coefficients.

  16. Turbulence-driven anisotropic electron tail generation during magnetic reconnection

    NASA Astrophysics Data System (ADS)

    DuBois, A. M.; Scherer, A.; Almagri, A. F.; Anderson, J. K.; Pandya, M. D.; Sarff, J. S.

    2018-05-01

    Magnetic reconnection (MR) plays an important role in particle transport, energization, and acceleration in space, astrophysical, and laboratory plasmas. In the Madison Symmetric Torus reversed field pinch, discrete MR events release large amounts of energy from the equilibrium magnetic field, a fraction of which is transferred to electrons and ions. Previous experiments revealed an anisotropic electron tail that favors the perpendicular direction and is symmetric in the parallel. New profile measurements of x-ray emission show that the tail distribution is localized near the magnetic axis, consistent modeling of the bremsstrahlung emission. The tail appears first near the magnetic axis and then spreads radially, and the dynamics in the anisotropy and diffusion are discussed. The data presented imply that the electron tail formation likely results from a turbulent wave-particle interaction and provides evidence that high energy electrons are escaping the core-localized region through pitch angle scattering into the parallel direction, followed by stochastic parallel transport to the plasma edge. New measurements also show a strong correlation between high energy x-ray measurements and tearing mode dynamics, suggesting that the coupling between core and edge tearing modes is essential for energetic electron tail formation.

  17. Dynamic characterization of external and internal mass transport in heterotrophic biofilms from microsensors measurements.

    PubMed

    Guimerà, Xavier; Dorado, Antonio David; Bonsfills, Anna; Gabriel, Gemma; Gabriel, David; Gamisans, Xavier

    2016-10-01

    Knowledge of mass transport mechanisms in biofilm-based technologies such as biofilters is essential to improve bioreactors performance by preventing mass transport limitation. External and internal mass transport in biofilms was characterized in heterotrophic biofilms grown on a flat plate bioreactor. Mass transport resistance through the liquid-biofilm interphase and diffusion within biofilms were quantified by in situ measurements using microsensors with a high spatial resolution (<50 μm). Experimental conditions were selected using a mathematical procedure based on the Fisher Information Matrix to increase the reliability of experimental data and minimize confidence intervals of estimated mass transport coefficients. The sensitivity of external and internal mass transport resistances to flow conditions within the range of typical fluid velocities over biofilms (Reynolds numbers between 0.5 and 7) was assessed. Estimated external mass transfer coefficients at different liquid phase flow velocities showed discrepancies with studies considering laminar conditions in the diffusive boundary layer near the liquid-biofilm interphase. The correlation of effective diffusivity with flow velocities showed that the heterogeneous structure of biofilms defines the transport mechanisms inside biofilms. Internal mass transport was driven by diffusion through cell clusters and aggregates at Re below 2.8. Conversely, mass transport was driven by advection within pores, voids and water channels at Re above 5.6. Between both flow velocities, mass transport occurred by a combination of advection and diffusion. Effective diffusivities estimated at different biofilm densities showed a linear increase of mass transport resistance due to a porosity decrease up to biofilm densities of 50 g VSS·L(-1). Mass transport was strongly limited at higher biofilm densities. Internal mass transport results were used to propose an empirical correlation to assess the effective diffusivity within biofilms considering the influence of hydrodynamics and biofilm density. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Enhancement of diffusive transport in oscillatory flows

    NASA Technical Reports Server (NTRS)

    Knobloch, E.; Merryfield, W. J.

    1992-01-01

    The theory of transport of passive scalars in oscillatory flows is reexamined. The differences between transport in standing and traveling waves are emphasized. Both Lagrangian and Eulerian diffusivities are calculated, and the conditions for their applicability are discussed. Numerical simulations are conducted to understand the expulsion of gradients from time-dependent eddies and the resulting transport. The results indicate that it is the Eulerian diffusivity that is of primary relevance for describing enhanced transport on spatial scales larger than that of the eddies.

  19. Ionic-Electronic Ambipolar Transport in Metal Halide Perovskites: Can Electronic Conductivity Limit Ionic Diffusion?

    PubMed

    Kerner, Ross A; Rand, Barry P

    2018-01-04

    Ambipolar transport describes the nonequilibrium, coupled motion of positively and negatively charged particles to ensure that internal electric fields remain small. It is commonly invoked in the semiconductor community where the motion of excess electrons and holes drift and diffuse together. However, the concept of ambipolar transport is not limited to semiconductor physics. Materials scientists working on ion conducting ceramics understand ambipolar transport dictates the coupled diffusion of ions and the rate is limited by the ion with the lowest diffusion coefficient. In this Perspective, we review a third application of ambipolar transport relevant to mixed ionic-electronic conducting materials for which the motion of ions is expected to be coupled to electronic carriers. In this unique situation, the ambipolar diffusion model has been successful at explaining the photoenhanced diffusion of metal ions in chalcogenide glasses and other properties of materials. Recent examples of photoenhanced phenomena in metal halide perovskites are discussed and indicate that mixed ionic-electronic ambipolar transport is similarly important for a deep understanding of these emerging materials.

  20. Unifying diffusion and seepage for nonlinear gas transport in multiscale porous media

    NASA Astrophysics Data System (ADS)

    Song, Hongqing; Wang, Yuhe; Wang, Jiulong; Li, Zhengyi

    2016-09-01

    We unify the diffusion and seepage process for nonlinear gas transport in multiscale porous media via a proposed new general transport equation. A coherent theoretical derivation indicates the wall-molecule and molecule-molecule collisions drive the Knudsen and collective diffusive fluxes, and constitute the system pressure across the porous media. A new terminology, nominal diffusion coefficient can summarize Knudsen and collective diffusion coefficients. Physical and numerical experiments show the support of the new formulation and provide approaches to obtain the diffusion coefficient and permeability simultaneously. This work has important implication for natural gas extraction and greenhouse gases sequestration in geological formations.

  1. Specific features of defect and mass transport in concentrated fcc alloys

    DOE PAGES

    Osetsky, Yuri N.; Béland, Laurent K.; Stoller, Roger E.

    2016-06-15

    We report that diffusion and mass transport are basic properties that control materials performance, such as phase stability, solute decomposition and radiation tolerance. While understanding diffusion in dilute alloys is a mature field, concentrated alloys are much less studied. Here, atomic-scale diffusion and mass transport via vacancies and interstitial atoms are compared in fcc Ni, Fe and equiatomic Ni-Fe alloy. High temperature properties were determined using conventional molecular dynamics on the microsecond timescale, whereas the kinetic activation-relaxation (k-ART) approach was applied at low temperatures. The k-ART was also used to calculate transition states in the alloy and defect transport coefficients.more » The calculations reveal several specific features. For example, vacancy and interstitial defects migrate via different alloy components, diffusion is more sluggish in the alloy and, notably, mass transport in the concentrated alloy cannot be predicted on the basis of diffusion in its pure metal counterparts. Lastly, the percolation threshold for the defect diffusion in the alloy is discussed and it is suggested that this phenomenon depends on the properties and diffusion mechanisms of specific defects.« less

  2. Magnetic flux concentration and zonal flows in magnetorotational instability turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Xue-Ning; Stone, James M., E-mail: xbai@cfa.harvard.edu

    2014-11-20

    Accretion disks are likely threaded by external vertical magnetic flux, which enhances the level of turbulence via the magnetorotational instability (MRI). Using shearing-box simulations, we find that such external magnetic flux also strongly enhances the amplitude of banded radial density variations known as zonal flows. Moreover, we report that vertical magnetic flux is strongly concentrated toward low-density regions of the zonal flow. Mean vertical magnetic field can be more than doubled in low-density regions, and reduced to nearly zero in high-density regions in some cases. In ideal MHD, the scale on which magnetic flux concentrates can reach a few diskmore » scale heights. In the non-ideal MHD regime with strong ambipolar diffusion, magnetic flux is concentrated into thin axisymmetric shells at some enhanced level, whose size is typically less than half a scale height. We show that magnetic flux concentration is closely related to the fact that the turbulent diffusivity of the MRI turbulence is anisotropic. In addition to a conventional Ohmic-like turbulent resistivity, we find that there is a correlation between the vertical velocity and horizontal magnetic field fluctuations that produces a mean electric field that acts to anti-diffuse the vertical magnetic flux. The anisotropic turbulent diffusivity has analogies to the Hall effect, and may have important implications for magnetic flux transport in accretion disks. The physical origin of magnetic flux concentration may be related to the development of channel flows followed by magnetic reconnection, which acts to decrease the mass-to-flux ratio in localized regions. The association of enhanced zonal flows with magnetic flux concentration may lead to global pressure bumps in protoplanetary disks that helps trap dust particles and facilitates planet formation.« less

  3. Effect of the radial buoyancy on a circular Couette flow

    NASA Astrophysics Data System (ADS)

    Meyer, Antoine; Yoshikawa, Harunori N.; Mutabazi, Innocent

    2015-11-01

    The effect of a radial temperature gradient on the stability of a circular Couette flow is investigated when the gravitational acceleration is neglected. The induced radial stratification of the fluid density coupled with the centrifugal acceleration generates radial buoyancy which is centrifugal for inward heating and centripetal for outward heating. This radial buoyancy modifies the Rayleigh discriminant and induces the asymmetry between inward heating and outward heating in flow behavior. The critical modes are axisymmetric and stationary for inward heating while for outward heating, they can be oscillatory axisymmetric or nonaxisymmetric depending on fluid diffusion properties, i.e., on the Prandtl number Pr. The dependence of the critical modes on Pr is explored for different values of the radius ratio of the annulus. The power input of the radial buoyancy is compared with other power terms. The critical frequency of the oscillatory axisymmetric modes is linked to the Brunt-Väisälä frequency due to the density stratification in the radial gravity field induced by the rotation. These modes are associated with inertial waves. The dispersion relation of the oscillatory axisymmetric modes is derived in the vicinity of the critical conditions. A weakly nonlinear amplitude equation with a forcing term is proposed to explain the domination of these axisymmetric oscillatory modes over the stationary centrifugal mode.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, R.; Rudakov, D. L.; Stangeby, P. C.

    Dedicated DIII-D experiments coupled with modeling reveal that the net erosion rate of high-Z materials, i.e. Mo and W, is strongly affected by carbon concentration in the plasma and the magnetic pre-sheath properties. We have investigated different methods such as electrical biasing and local gas injection to control high-Z material erosion. The net erosion rate of high-Z materials is significantly reduced due to the high local re-deposition ratio. The ERO modeling shows that the local re-deposition ratio is mainly controlled by the electric field and plasma density within the magnetic pre-sheath. The net erosion can be significantly suppressed by reducingmore » the sheath potential drop. A high carbon impurity concentration in the background plasma is also found to reduce the net erosion rate of high-Z materials. Both DIII-D experiments and modeling show that local 13CH 4 injection can create a carbon coating on the metal surface. The profile of 13C deposition provides quantitative information on radial transport due to E × B drift and the cross-field diffusion. The deuterium gas injection upstream of the W sample can reduce W net erosion rate by plasma perturbation. The inter-ELM W erosion we measured in H-mode plasmas, rates at different radial locations are well reproduced by ERO modeling taking into account charge-state-resolved carbon ion flux in the background plasma calculated using the OEDGE code.« less

  5. Phase equilibria in the UO 2-PuO 2 system under a temperature gradient

    NASA Astrophysics Data System (ADS)

    Kleykamp, Heiko

    2001-04-01

    The phase behaviour of U 0.80Pu 0.20O 1.95 was investigated under a steady-state temperature gradient between the solidus and liquidus by a short-time power-to-melt irradiation experiment. The radial U, Pu, Am and O profiles in the fuel pin after redistribution were measured by X-ray microanalysis. During irradiation, an inner fuel melt forms which is separated from the outer solid only by one concentric liquid-solid-phase boundary. The UO 2 concentration increases to 85% and the PuO 2 concentration decreases to 15% on the solid side of the interface. Opposite gradients occur on the liquid side of the interface. The concentration discontinuity is a consequence of the necessary equality of the chemical potentials of UO 2 and PuO 2 on both sides of the phase boundary which corresponds to a 2750°C isotherm. The radial oxygen profile results in an O/(U + Pu) ratio of 2.00 at the fuel surface and 1.92 at the central void of the fuel. The redistribution is caused by the thermal diffusion of oxygen vacancies in the lattice along the temperature gradient. This process is quantified by the heat of transport Q*v which ranges between -10 kJ/mol at the central void and about -230 kJ/mol near the fuel surface.

  6. The formation of rings and gaps in magnetically coupled disc-wind systems: ambipolar diffusion and reconnection

    NASA Astrophysics Data System (ADS)

    Suriano, Scott S.; Li, Zhi-Yun; Krasnopolsky, Ruben; Shang, Hsien

    2018-06-01

    Radial substructures in circumstellar discs are now routinely observed by Atacama Large Millimeter/submillimeter Array. There is also growing evidence that disc winds drive accretion in such discs. We show through 2D (axisymmetric) simulations that rings and gaps develop naturally in magnetically coupled disc-wind systems on the scale of tens of au, where ambipolar diffusion (AD) is the dominant non-ideal magnetohydrodynamic effect. In simulations where the magnetic field and matter are moderately coupled, the disc remains relatively laminar with the radial electric current steepened by AD into a thin layer near the mid-plane. The toroidal magnetic field sharply reverses polarity in this layer, generating a large magnetic torque that drives fast accretion, which drags the poloidal field into a highly pinched radial configuration. The reconnection of this pinched field creates magnetic loops where the net poloidal magnetic flux (and thus the accretion rate) is reduced, yielding dense rings. Neighbouring regions with stronger poloidal magnetic fields accrete faster, forming gaps. In better magnetically coupled simulations, the so-called avalanche accretion streams develop continuously near the disc surface, rendering the disc-wind system more chaotic. Nevertheless, prominent rings and gaps are still produced, at least in part, by reconnection, which again enables the segregation of the poloidal field and the disc material similar to the more diffusive discs. However, the reconnection is now driven by the non-linear growth of magnetorotational instability channel flows. The formation of rings and gaps in rapidly accreting yet laminar discs has interesting implications for dust settling and trapping, grain growth, and planet formation.

  7. Bound Pool Fractions Complement Diffusion Measures to Describe White Matter Micro and Macrostructure

    PubMed Central

    Stikov, Nikola; Perry, Lee M.; Mezer, Aviv; Rykhlevskaia, Elena; Wandell, Brian A.; Pauly, John M.; Dougherty, Robert F.

    2010-01-01

    Diffusion imaging and bound pool fraction (BPF) mapping are two quantitative magnetic resonance imaging techniques that measure microstructural features of the white matter of the brain. Diffusion imaging provides a quantitative measure of the diffusivity of water in tissue. BPF mapping is a quantitative magnetization transfer (qMT) technique that estimates the proportion of exchanging protons bound to macromolecules, such as those found in myelin, and is thus a more direct measure of myelin content than diffusion. In this work, we combine BPF estimates of macromolecular content with measurements of diffusivity within human white matter tracts. Within the white matter, the correlation between BPFs and diffusivity measures such as fractional anisotropy and radial diffusivity was modest, suggesting that diffusion tensor imaging and bound pool fractions are complementary techniques. We found that several major tracts have high BPF, suggesting a higher density of myelin in these tracts. We interpret these results in the context of a quantitative tissue model. PMID:20828622

  8. Distributed modeling of diffusive solute transport in peritoneal dialysis.

    PubMed

    Waniewski, Jacek

    2002-01-01

    The diffusive transport between blood and an ex-tissue medium (dialysis fluid) is evaluated using a mathematical model that takes into account the (quasicontinuous) distribution of capillaries within the tissue at various distances from the tissue surface, and includes diffusive-convective transport through the capillary wall and lymphatic absorption from the tissue. General formulas for solute penetration depth, lambda, and for the diffusive mass transport coefficient for the transport between blood and dialysis fluid, K(BD), are provided in terms of local transport coefficients for capillary wall, tissue, and lymphatic absorption. For pure diffusive transport between blood and dialysis fluid and thick tissue layers (i.e., if the solute penetration depth is much lower than the tissue thickness) these formulas yield previously known expressions. It is shown that apparent tissue layers, with widths lambdaTBL and lambdaT, respectively, may be defined according to the values of local transport parameters in such a way that K(BD) is equal to the solute clearance K(TBL) from the tissue by blood and lymph for a layer with width lambdaTBL or to the solute clearance K(T) from blood to dialysate by diffusion through the tissue layer with width lambdaT. For tissue layers with width much higher than the penetration depth: lambdaT approximately = lambdaTBL approximately = lambda. These characteristic width lengths depend on the transport parameters (and thus on the size) of solutes. Effective blood flow, which may be related to the exchange of the solute between blood and dialysate, is defined using an analogy to the extraction/absorption coefficients for blood-tissue exchange. Various approximations for the distributed model formula for diffusive mass transport coefficient (K(BD)) are possible. The appropriate range for their application is obtained from the general formula.

  9. AFWAL FY80 Technical Accomplishments Report.

    DTIC Science & Technology

    1981-12-01

    through cooperative effort of the Materials and Certain compositions in the titanium aluminide Propulsion Laboratories. In addition to an extensive system...Bonded Structures Technology Transitioned .................................................. 43 Superplastically Formed and Diffusion Bonded Titanium ...Technology ................................................................................................. 75 First RSR Radial Wafer Blade Engine Test

  10. Confined trapped alpha behaviour in TFTR deuterium-tritium plasmas

    NASA Astrophysics Data System (ADS)

    Medley, S. S.; Budny, R. V.; Duong, H. H.; Fisher, R. K.; Petrov, M. P.; Gorelenkov, N. N.; Redi, M. H.; Roquemore, A. L.; White, R. B.

    1998-09-01

    Confined trapped alpha energy spectra and differential radial density profiles in TFTR D-T plasmas were obtained with the pellet charge exchange (PCX) diagnostic, which measures high energy (Eα = 0.5-3.5 MeV) trapped alphas (v||/v = -0.048) at a single time slice (Δt approx 1 ms) with a spatial resolution of Δr approx 5 cm. Tritons produced in D-D plasmas and RF driven ion tails (H, 3He or T) were also observed and energetic tritium ion tail measurements are discussed. PCX alpha and triton energy spectra extending up to their birth energies were measured in the core of MHD quiescent discharges where the expected classical slowing down and pitch angle scattering effects are not complicated by stochastic ripple diffusion and sawtooth activity. Both the shape of the measured alpha and triton energy distributions and their density ratios are in good agreement with TRANSP predictions, indicating that the PCX measurements are consistent with classical thermalization of the fusion generated alphas and tritons. From calculations, these results set an upper limit on possible anomalous radial diffusion for trapped alphas of Dα <= 0.01 m2·s-1. Outside the core, where the trapped alphas are influenced by stochastic ripple diffusion effects, the PCX measurements are consistent with the functional dependence of the Goldston-White-Boozer stochastic ripple threshold on the alpha energy and the q profile. In the presence of strong sawtooth activity, the PCX diagnostic observes significant redistribution of the alpha signal radial profile wherein alphas are depleted in the core and redistributed to well outside the q = 1 radius, but apparently not beyond the energy dependent stochastic ripple loss boundary. The helical electric field produced during the sawtooth crash plays an essential role in modelling the sawtooth redistribution data. In sawtooth free discharge scenarios with reversed shear operation, the PCX diagnostic also observes radial profiles of the alpha signal that are significantly broader than those for supershots. ORBIT modelling of reversed shear and monotonic shear discharges is in agreement with the q dependent alpha profiles observed. Redistribution of trapped alpha particles in the presence of core localized toroidal Alfvén eigenmode (TAE) activity was observed and modelling of the PCX measurements based on a synergism involving the α-TAE resonance and the effect of stochastic ripple diffusion is in progress.

  11. Normal and Anomalous Diffusion: An Analytical Study Based on Quantum Collision Dynamics and Boltzmann Transport Theory.

    PubMed

    Mahakrishnan, Sathiya; Chakraborty, Subrata; Vijay, Amrendra

    2016-09-15

    Diffusion, an emergent nonequilibrium transport phenomenon, is a nontrivial manifestation of the correlation between the microscopic dynamics of individual molecules and their statistical behavior observed in experiments. We present a thorough investigation of this viewpoint using the mathematical tools of quantum scattering, within the framework of Boltzmann transport theory. In particular, we ask: (a) How and when does a normal diffusive transport become anomalous? (b) What physical attribute of the system is conceptually useful to faithfully rationalize large variations in the coefficient of normal diffusion, observed particularly within the dynamical environment of biological cells? To characterize the diffusive transport, we introduce, analogous to continuous phase transitions, the curvature of the mean square displacement as an order parameter and use the notion of quantum scattering length, which measures the effective interactions between the diffusing molecules and the surrounding, to define a tuning variable, η. We show that the curvature signature conveniently differentiates the normal diffusion regime from the superdiffusion and subdiffusion regimes and the critical point, η = ηc, unambiguously determines the coefficient of normal diffusion. To solve the Boltzmann equation analytically, we use a quantum mechanical expression for the scattering amplitude in the Boltzmann collision term and obtain a general expression for the effective linear collision operator, useful for a variety of transport studies. We also demonstrate that the scattering length is a useful dynamical characteristic to rationalize experimental observations on diffusive transport in complex systems. We assess the numerical accuracy of the present work with representative experimental results on diffusion processes in biological systems. Furthermore, we advance the idea of temperature-dependent effective voltage (of the order of 1 μV or less in a biological environment, for example) as a dynamical cause of the perpetual molecular movement, which eventually manifests as an ordered motion, called the diffusion.

  12. Electron heat transport measured in a stochastic magnetic field.

    PubMed

    Biewer, T M; Forest, C B; Anderson, J K; Fiksel, G; Hudson, B; Prager, S C; Sarff, J S; Wright, J C; Brower, D L; Ding, W X; Terry, S D

    2003-07-25

    New profile measurements have allowed the electron thermal diffusivity profile to be estimated from power balance in the Madison Symmetric Torus where magnetic islands overlap and field lines are stochastic. The measurements show that (1) the electron energy transport is conductive not convective, (2) the measured thermal diffusivities are in good agreement with numerical simulations of stochastic transport, and (3) transport is greatly reduced near the reversal surface where magnetic diffusion is small.

  13. Diffusion of dissolved CO2 in water propagating from a cylindrical bubble in a horizontal Hele-Shaw cell

    NASA Astrophysics Data System (ADS)

    Peñas-López, Pablo; van Elburg, Benjamin; Parrales, Miguel A.; Rodríguez-Rodríguez, Javier

    2017-06-01

    The dissolution of a gas bubble in a confined geometry is a problem of interest in technological applications such as microfluidics or carbon sequestration, as well as in many natural flows of interest in geophysics. While the dissolution of spherical or sessile bubbles has received considerable attention in the literature, the case of a two-dimensional bubble in a Hele-Shaw cell, which constitutes perhaps the simplest possible confined configuration, has been comparatively less studied. Here, we use planar laser-induced fluorescence to experimentally investigate the diffusion-driven transport of dissolved CO2 that propagates from a cylindrical mm-sized bubble in air-saturated water confined in a horizontal Hele-Shaw cell. We observe that the radial trajectory of an isoconcentration front, rf(t ) , evolves in time as approximately rf-R0∝√{t } , where R0 denotes the initial bubble radius. We then characterize the unsteady CO2 concentration field via two simple analytical models, which are then validated against a numerical simulation. The first model treats the bubble as an instantaneous line source of CO2, whereas the second assumes a constant interfacial concentration. Finally, we provide an analogous Epstein-Plesset equation with the intent of predicting the dissolution rate of a cylindrical bubble.

  14. Protic ammonium carboxylate ionic liquids: insight into structure, dynamics and thermophysical properties by alkyl group functionalization.

    PubMed

    Reddy, Th Dhileep N; Mallik, Bhabani S

    2017-04-19

    This study is aimed at characterising the structure, dynamics and thermophysical properties of five alkylammonium carboxylate ionic liquids (ILs) from classical molecular dynamics simulations. The structural features of these ILs were characterised by calculating the site-site radial distribution functions, g(r), spatial distribution functions and structure factors. The structural properties demonstrate that ILs show greater interaction between cations and anions when alkyl chain length increases on the cation or anion. In all ILs, spatial distribution functions show that the anion is close to the acidic hydrogen atoms of the ammonium cation. We determined the role of alkyl group functionalization of the charged entities, cations and anions, in the dynamical behavior and the transport coefficients of this family of ionic liquids. The dynamics of ILs are described by studying the mean square displacement (MSD) of the centres of mass of the ions, diffusion coefficients, ionic conductivities and hydrogen bonds as well as residence dynamics. The diffusion coefficients and ionic conductivity decrease with an increase in the size of the cation or anion. The effect of alkyl chain length on ionic conductivity calculated in this article is consistent with the findings of other experimental studies. Hydrogen bond lifetimes and residence times along with structure factors were also calculated, and are related to alkyl chain length.

  15. Diffusion tensor imaging with direct cytopathological validation: characterisation of decorin treatment in experimental juvenile communicating hydrocephalus.

    PubMed

    Aojula, Anuriti; Botfield, Hannah; McAllister, James Patterson; Gonzalez, Ana Maria; Abdullah, Osama; Logan, Ann; Sinclair, Alexandra

    2016-05-31

    In an effort to develop novel treatments for communicating hydrocephalus, we have shown previously that the transforming growth factor-β antagonist, decorin, inhibits subarachnoid fibrosis mediated ventriculomegaly; however decorin's ability to prevent cerebral cytopathology in communicating hydrocephalus has not been fully examined. Furthermore, the capacity for diffusion tensor imaging to act as a proxy measure of cerebral pathology in multiple sclerosis and spinal cord injury has recently been demonstrated. However, the use of diffusion tensor imaging to investigate cytopathological changes in communicating hydrocephalus is yet to occur. Hence, this study aimed to determine whether decorin treatment influences alterations in diffusion tensor imaging parameters and cytopathology in experimental communicating hydrocephalus. Moreover, the study also explored whether diffusion tensor imaging parameters correlate with cellular pathology in communicating hydrocephalus. Accordingly, communicating hydrocephalus was induced by injecting kaolin into the basal cisterns in 3-week old rats followed immediately by 14 days of continuous intraventricular delivery of either human recombinant decorin (n = 5) or vehicle (n = 6). Four rats remained as intact controls and a further four rats served as kaolin only controls. At 14-days post-kaolin, just prior to sacrifice, routine magnetic resonance imaging and magnetic resonance diffusion tensor imaging was conducted and the mean diffusivity, fractional anisotropy, radial and axial diffusivity of seven cerebral regions were assessed by voxel-based analysis in the corpus callosum, periventricular white matter, caudal internal capsule, CA1 hippocampus, and outer and inner parietal cortex. Myelin integrity, gliosis and aquaporin-4 levels were evaluated by post-mortem immunohistochemistry in the CA3 hippocampus and in the caudal brain of the same cerebral structures analysed by diffusion tensor imaging. Decorin significantly decreased myelin damage in the caudal internal capsule and prevented caudal periventricular white matter oedema and astrogliosis. Furthermore, decorin treatment prevented the increase in caudal periventricular white matter mean diffusivity (p = 0.032) as well as caudal corpus callosum axial diffusivity (p = 0.004) and radial diffusivity (p = 0.034). Furthermore, diffusion tensor imaging parameters correlated primarily with periventricular white matter astrocyte and aquaporin-4 levels. Overall, these findings suggest that decorin has the therapeutic potential to reduce white matter cytopathology in hydrocephalus. Moreover, diffusion tensor imaging is a useful tool to provide surrogate measures of periventricular white matter pathology in communicating hydrocephalus.

  16. Perturbative studies of toroidal momentum transport in KSTAR H-mode and the effect of ion temperature perturbation

    NASA Astrophysics Data System (ADS)

    Yang, S. M.; Na, Yong-Su; Na, D. H.; Park, J.-K.; Shi, Y. J.; Ko, W. H.; Lee, S. G.; Hahm, T. S.

    2018-06-01

    Perturbative experiments have been carried out using tangential neutral beam injection (NBI) and non-resonant magnetic perturbation (NRMP) to analyze the momentum transport properties in KSTAR H-modes. Diffusive and non-diffusive terms of momentum transport are evaluated from the transient analysis. Although the operating conditions and methodologies applied in the two cases are similar, the momentum transport properties obtained show clear differences. The estimated momentum diffusivity and pinch obtained in the NBI modulation experiments is larger than that in the NRMP modulation experiments. We found that this discrepancy could be a result of uncertainties in the assumption for the analysis. By introducing time varying momentum transport coefficients depending on the temperature gradient, the linearized equation shows that if the temperature perturbation exists, the evolution of toroidal rotation perturbation could be faster than the transport rate of mean quantity, since the evolution of toroidal rotation perturbation is related to , a momentum diffusivity from perturbative analysis. This could explain the estimated higher momentum diffusivity using time independent transport coefficients in NBI experiments with higher ion temperature perturbation compared to that in NRMP modulation experiments. The differences in the momentum transport coefficient with NRMP and NBI are much reduced by considering time varying momentum transport coefficients in the time dependent transport simulation.

  17. Azimuthally averaged radial S(sub 100 microns)/S(sub 60 microns) dust color temperatures in spiral galaxies

    NASA Technical Reports Server (NTRS)

    Devereux, Nick A.

    1994-01-01

    The IRAS S(sub 100 micron)/S(sub 60 micron) dust color temperature profiles are presented for two nearby spiral galaxies M 101 and M 81. The radial dust temperature profiles provided an important constraint on the origin of the far-infrared luminosity. The observed dust temperature is compared with that expected for diffuse interstellar dust heated by the general interstellar radiation field within each galaxy. The implications for the contribution of cirrus to the far-infrared luminosity of M 101 and M 81 are discussed.

  18. Simultaneous event-specific estimates of transport, loss, and source rates for relativistic outer radiation belt electrons: Event-Specific 1-D Modeling

    DOE PAGES

    Schiller, Q.; Tu, W.; Ali, A. F.; ...

    2017-03-11

    The most significant unknown regarding relativistic electrons in Earth’s outer Van Allen radiation belt is the relative contribution of loss, transport, and acceleration processes within the inner magnetosphere. Detangling each individual process is critical to improve the understanding of radiation belt dynamics, but determining a single component is challenging due to sparse measurements in diverse spatial and temporal regimes. However, there are currently an unprecedented number of spacecraft taking measurements that sample different regions of the inner magnetosphere. With the increasing number of varied observational platforms, system dynamics can begin to be unraveled. In this work, we employ in-situ measurementsmore » during the 13-14 January 2013 enhancement event to isolate transport, loss, and source dynamics in a one dimensional radial diffusion model. We then validate the results by comparing them to Van Allen Probes and THEMIS observations, indicating that the three terms have been accurately and individually quantified for the event. Finally, a direct comparison is performed between the model containing event-specific terms and various models containing terms parameterized by geomagnetic index. Models using a simple 3/Kp loss timescale show deviation from the event specific model of nearly two orders of magnitude within 72 hours of the enhancement event. However, models using alternative loss timescales closely resemble the event specific model.« less

  19. Simultaneous event-specific estimates of transport, loss, and source rates for relativistic outer radiation belt electrons: Event-Specific 1-D Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiller, Q.; Tu, W.; Ali, A. F.

    The most significant unknown regarding relativistic electrons in Earth’s outer Van Allen radiation belt is the relative contribution of loss, transport, and acceleration processes within the inner magnetosphere. Detangling each individual process is critical to improve the understanding of radiation belt dynamics, but determining a single component is challenging due to sparse measurements in diverse spatial and temporal regimes. However, there are currently an unprecedented number of spacecraft taking measurements that sample different regions of the inner magnetosphere. With the increasing number of varied observational platforms, system dynamics can begin to be unraveled. In this work, we employ in-situ measurementsmore » during the 13-14 January 2013 enhancement event to isolate transport, loss, and source dynamics in a one dimensional radial diffusion model. We then validate the results by comparing them to Van Allen Probes and THEMIS observations, indicating that the three terms have been accurately and individually quantified for the event. Finally, a direct comparison is performed between the model containing event-specific terms and various models containing terms parameterized by geomagnetic index. Models using a simple 3/Kp loss timescale show deviation from the event specific model of nearly two orders of magnitude within 72 hours of the enhancement event. However, models using alternative loss timescales closely resemble the event specific model.« less

  20. N-acetyl-aspartate levels correlate with intra-axonal compartment parameters from diffusion MRI.

    PubMed

    Grossman, Elan J; Kirov, Ivan I; Gonen, Oded; Novikov, Dmitry S; Davitz, Matthew S; Lui, Yvonne W; Grossman, Robert I; Inglese, Matilde; Fieremans, Els

    2015-09-01

    Diffusion MRI combined with biophysical modeling allows for the description of a white matter (WM) fiber bundle in terms of compartment specific white matter tract integrity (WMTI) metrics, which include intra-axonal diffusivity (Daxon), extra-axonal axial diffusivity (De||), extra-axonal radial diffusivity (De┴), axonal water fraction (AWF), and tortuosity (α) of extra-axonal space. Here we derive these parameters from diffusion kurtosis imaging to examine their relationship to concentrations of global WM N-acetyl-aspartate (NAA), creatine (Cr), choline (Cho) and myo-Inositol (mI), as measured with proton MR spectroscopy ((1)H-MRS), in a cohort of 25 patients with mild traumatic brain injury (MTBI). We found statistically significant (p<0.05) positive correlations between NAA and Daxon, AWF, α, and fractional anisotropy; negative correlations between NAA and De,┴ and the overall radial diffusivity (D┴). These correlations were supported by similar findings in regional analysis of the genu and splenium of the corpus callosum. Furthermore, a positive correlation in global WM was noted between Daxon and Cr, as well as a positive correlation between De|| and Cho, and a positive trend between De|| and mI. The specific correlations between NAA, an endogenous probe of the neuronal intracellular space, and WMTI metrics related to the intra-axonal space, combined with the specific correlations of De|| with mI and Cho, both predominantly present extra-axonally, corroborate the overarching assumption of many advanced modeling approaches that diffusion imaging can disentangle between the intra- and extra-axonal compartments in WM fiber bundles. Our findings are also generally consistent with what is known about the pathophysiology of MTBI, which appears to involve both intra-axonal injury (as reflected by a positive trend between NAA and Daxon) as well as axonal shrinkage, demyelination, degeneration, and/or loss (as reflected by correlations between NAA and De┴, AWF, and α). Copyright © 2015 Elsevier Inc. All rights reserved.

  1. White matter damage in primary progressive aphasias: a diffusion tensor tractography study.

    PubMed

    Galantucci, Sebastiano; Tartaglia, Maria Carmela; Wilson, Stephen M; Henry, Maya L; Filippi, Massimo; Agosta, Federica; Dronkers, Nina F; Henry, Roland G; Ogar, Jennifer M; Miller, Bruce L; Gorno-Tempini, Maria Luisa

    2011-10-01

    Primary progressive aphasia is a clinical syndrome that encompasses three major phenotypes: non-fluent/agrammatic, semantic and logopenic. These clinical entities have been associated with characteristic patterns of focal grey matter atrophy in left posterior frontoinsular, anterior temporal and left temporoparietal regions, respectively. Recently, network-level dysfunction has been hypothesized but research to date has focused largely on studying grey matter damage. The aim of this study was to assess the integrity of white matter tracts in the different primary progressive aphasia subtypes. We used diffusion tensor imaging in 48 individuals: nine non-fluent, nine semantic, nine logopenic and 21 age-matched controls. Probabilistic tractography was used to identify bilateral inferior longitudinal (anterior, middle, posterior) and uncinate fasciculi (referred to as the ventral pathway); and the superior longitudinal fasciculus segmented into its frontosupramarginal, frontoangular, frontotemporal and temporoparietal components, (referred to as the dorsal pathway). We compared the tracts' mean fractional anisotropy, axial, radial and mean diffusivities for each tract in the different diagnostic categories. The most prominent white matter changes were found in the dorsal pathways in non-fluent patients, in the two ventral pathways and the temporal components of the dorsal pathways in semantic variant, and in the temporoparietal component of the dorsal bundles in logopenic patients. Each of the primary progressive aphasia variants showed different patterns of diffusion tensor metrics alterations: non-fluent patients showed the greatest changes in fractional anisotropy and radial and mean diffusivities; semantic variant patients had severe changes in all metrics; and logopenic patients had the least white matter damage, mainly involving diffusivity, with fractional anisotropy altered only in the temporoparietal component of the dorsal pathway. This study demonstrates that both careful dissection of the main language tracts and consideration of all diffusion tensor metrics are necessary to characterize the white matter changes that occur in the variants of primary progressive aphasia. These results highlight the potential value of diffusion tensor imaging as a new tool in the multimodal diagnostic evaluation of primary progressive aphasia.

  2. Insights into crystal growth rates from a study of orbicular granitoids from western Australia

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Lee, C. T.

    2017-12-01

    The purpose of this study is to develop new tools for constraining crystal growth rate in geologic systems. Of interest is the growth of crystals in magmatic systems because crystallization changes the rheology of a magma as well as provides surfaces on which bubbles can nucleate. To explore crystal growth in more detail, we conducted a case study of orbicular granitoids from western Australia. The orbicules occur as spheroids dispersed in a granitic matrix. Most orbicules have at least two to three concentric bands, composed of elongate and radially oriented hornblende surrounded by interstitial plagioclase. We show that mineral modes and hence bulk composition at the scale of the band is homogeneous from rim to core. Crystal number density decreases and crystal size increases from rim to core. These observations suggest that the orbicules crystallized rapidly from rim to core. We hypothesize that the orbicules are blobs of hot dioritic liquid injected into a cold granitic magma and subsequently cooled and solidified. Crystals stop growing when the mass transport rate tends to zero due to the low temperature. We estimated cooling timescales based on conductive cooling models, constraining crystal growth rates to be 10-6 to 10-5 m/s. We also show that the oscillatory banding is controlled by disequilibrium crystallization, wherein hornblende preferentially crystallizes, resulting in the diffusive growth of a chemical boundary layer enriched in plagioclase component, which in turns results in crystallization of plagioclase. We show that the correlation between the width of each crystallization couplet (band) with distance from orbicule rim is linear, with the slope corresponding to the square root of the ratio between chemical diffusivity in the growth medium and thermal diffusivity. We estimate chemical diffusivity of 2*10-7 m2/s, which is remarkably fast for silicate liquids but reasonable for diffusion in hot aqueous fluids, suggesting that crystallization occurred during water-saturated conditions. Combined with the estimate of the boundary layer thickness, we use the diffusivity to estimate the diffusive flux, arriving at crystal growth rates similar to that constrained by thermal modeling. In the presence of fluids, we show that crystal growth rates in magmatic systems may be under-estimated.

  3. Phenomenology and energetics of diffusion across cell phase states.

    PubMed

    Ashrafuzzaman, Md

    2015-11-01

    Cell based transport properties have been mathematically addressed. Cell contained cross boundary diffusion of materials has been explained using valid formalisms and related analytical expressions have been developed. Various distinguishable physical structures and their properties raise different general structure specific diffusion mechanisms and controlled transport related parameters. Some of these parameters play phenomenological roles and some cause regulatory effects. The cell based compartments may be divided into three major physical phase states namely liquid, plasma and solid phase states. Transport of ions, nutrients, small molecules like proteins, etc. across inter phase states and intraphase states follows general transport related formalisms. Creation of some localized permanent and/or temporary structures e.g., ion channels, clustering of constituents, etc. and the transitions between such structures appear as regulators of the transport mechanisms. In this article, I have developed mainly a theoretical analysis of the commonly observed cell transport phenomena. I have attempted to develop formalisms on general cell based diffusion followed by a few numerical computations to address the analytical expression phenomenologically. I have then extended the analysis to adopting with the local structure originated energetics. Independent or correlated molecular transport naturally relies on some general parameters that define the nature of local cell environment as well as on some occasionally raised or transiently active stochastic resonance due to localized interactions. Short and long range interaction energies play crucial roles in this regard. Physical classification of cellular compartments has led us developing analytical expressions on both biologically observed diffusion mechanisms and the diffusions's occasional stochasticity causing energetics. These analytical expressions help us address the diffusion phenomena generally considering the physical properties of the biostructures across the diffusion pathways. A specific example case of single molecule transport and localized interaction energetics in a specific cell phase has been utilized to address the diffusion quite clearly. This article helps to address the mechanisms of cell based diffusion and nutrient movements and thus helps develop strategic templates to manipulate the diffusion mechanisms. Application of the theoretical knowledge into designing or discovering drugs or small molecule inhibitors targeting cell based structures may open up new avenues in biomedical sciences.

  4. Radial diffusion of relativistic electrons into the radiation belt slot region during the 2003 Halloween geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Loto'Aniu, T. M.; Mann, I. R.; Ozeke, L. G.; Chan, A. A.; Dent, Z. C.; Milling, D. K.

    2006-04-01

    A study was undertaken to estimate the radial diffusion timescale, τLL, for relativistic electrons (2-6 MeV) to diffuse into the slot region due to drift-resonance with Pc5 ULF waves (2-10 mHz) on 29 October 2003. Large amplitude ULF waves were observed by ground-based magnetometer arrays to penetrate deep into the slot region (L ≃ 2-3) starting at 0600 UT and maximising (˜200 nT p-p) between 0930-1630 UT. Around the same time, the SAMPEX PET instrument measured an over two orders of magnitude increase in relativistic (2-6 MeV) electron flux levels in ˜24 hours within the slot region. The ground-based D-component magnetic power spectral densities (PSDδB) for 29 October were estimated for six latitudinally spaced ground stations covering L ˜ 2.3-4.3 for an observed ULF wave with central frequency ˜4 mHz. The PSDδB values were used to calculate the in situ equatorial poloidal wave electric field power spectral densities (PSDδEm) using a standing Alfvén wave model. The radial diffusion coefficients, DLL, were estimated using the PSDδEm values. The fastest τLL were 3-5 hours at L > 4, while τLL initially increased with decreasing L-value below L ≃ 4; peaking at L ≃ 3 with τLL ˜ 12-24 hours with PSDδEm estimated using a wave frequency bandwidth between Δf = 1 mHz and Δf = 2.5 mHz. The τLL over the L-range L ˜ 2.3-3.3 were consistent with the timescales observed by SAMPEX for the increase in relativistic fluxes in the slot region on 29 October. The authors believe that this is the first example of the ULF wave drift-resonance with relativistic electrons explaining a radiation belt slot region filling event.

  5. Scaling results for the magnetic field line trajectories in the stochastic layer near the separatrix in divertor tokamaks with high magnetic shear using the higher shear map

    NASA Astrophysics Data System (ADS)

    Punjabi, Alkesh; Ali, Halima; Farhat, Hamidullah

    2009-07-01

    Extra terms are added to the generating function of the simple map (Punjabi et al 1992 Phys. Rev. Lett. 69 3322) to adjust shear of magnetic field lines in divertor tokamaks. From this new generating function, a higher shear map is derived from a canonical transformation. A continuous analog of the higher shear map is also derived. The method of maps (Punjabi et al 1994 J. Plasma Phys. 52 91) is used to calculate the average shear, stochastic broadening of the ideal separatrix near the X-point in the principal plane of the tokamak, loss of poloidal magnetic flux from inside the ideal separatrix, magnetic footprint on the collector plate, and its area, and the radial diffusion coefficient of magnetic field lines near the X-point. It is found that the width of the stochastic layer near the X-point and the loss of poloidal flux from inside the ideal separatrix scale linearly with average shear. The area of magnetic footprints scales roughly linearly with average shear. Linear scaling of the area is quite good when the average shear is greater than or equal to 1.25. When the average shear is in the range 1.1-1.25, the area of the footprint fluctuates (as a function of average shear) and scales faster than linear scaling. Radial diffusion of field lines near the X-point increases very rapidly by about four orders of magnitude as average shear increases from about 1.15 to 1.5. For higher values of average shear, diffusion increases linearly, and comparatively very slowly. The very slow scaling of the radial diffusion of the field can flatten the plasma pressure gradient near the separatrix, and lead to the elimination of type-I edge localized modes.

  6. A unified model for galactic discs: star formation, turbulence driving, and mass transport

    NASA Astrophysics Data System (ADS)

    Krumholz, Mark R.; Burkhart, Blakesley; Forbes, John C.; Crocker, Roland M.

    2018-06-01

    We introduce a new model for the structure and evolution of the gas in galactic discs. In the model the gas is in vertical pressure and energy balance. Star formation feedback injects energy and momentum, and non-axisymmetric torques prevent the gas from becoming more than marginally gravitationally unstable. From these assumptions we derive the relationship between galaxies' bulk properties (gas surface density, stellar content, and rotation curve) and their star formation rates, gas velocity dispersions, and rates of radial inflow. We show that the turbulence in discs can be powered primarily by star formation feedback, radial transport, or a combination of the two. In contrast to models that omit either radial transport or star formation feedback, the predictions of this model yield excellent agreement with a wide range of observations, including the star formation law measured in both spatially resolved and unresolved data, the correlation between galaxies' star formation rates and velocity dispersions, and observed rates of radial inflow. The agreement holds across a wide range of galaxy mass and type, from local dwarfs to extreme starbursts to high-redshift discs. We apply the model to galaxies on the star-forming main sequence, and show that it predicts a transition from mostly gravity-driven turbulence at high redshift to star-formation-driven turbulence at low redshift. This transition and the changes in mass transport rates that it produces naturally explain why galaxy bulges tend to form at high redshift and discs at lower redshift, and why galaxies tend to quench inside-out.

  7. Dispersion-relation phase spectroscopy of neuron transport

    NASA Astrophysics Data System (ADS)

    Wang, Ru; Wang, Zhuo; Millet, Larry; Gillette, Martha; Leigh, Joseph Robert; Sobh, Nahil; Levine, Alex; Popescu, Gabreil

    2012-02-01

    Molecular motors move materials along prescribed biopolymer tracks. This sort of active transport is required to rapidly move products over large distances within the cell, where passive diffusion is too slow. We examine intracellular traffic patterns using a new application of spatial light interference microscopy (SLIM) and measure the dispersion relation, i.e. decay rate vs. spatial mode, associated with mass transport in live cells. This approach applies equally well to both discrete and continuous mass distributions without the need for particle tracking. From the quadratic experimental curve specific to diffusion, we extracted the diffusion coefficient as the only fitting parameter. The linear portion of the dispersion relation reveals the deterministic component of the intracellular transport. Our data show a universal behavior where the intracellular transport is diffusive at small scales and deterministic at large scales. We further applied this method to studying transport in neurons and are able to use SLIM to map the changes in index of refraction across the neuron and its extended processes. We found that in dendrites and axons, the transport is mostly active, i.e., diffusion is subdominant.

  8. Evaluation of liquid aerosol transport through porous media

    NASA Astrophysics Data System (ADS)

    Hall, R.; Murdoch, L.; Falta, R.; Looney, B.; Riha, B.

    2016-07-01

    Application of remediation methods in contaminated vadose zones has been hindered by an inability to effectively distribute liquid- or solid-phase amendments. Injection as aerosols in a carrier gas could be a viable method for achieving useful distributions of amendments in unsaturated materials. The objectives of this work were to characterize radial transport of aerosols in unsaturated porous media, and to develop capabilities for predicting results of aerosol injection scenarios at the field-scale. Transport processes were investigated by conducting lab-scale injection experiments with radial flow geometry, and predictive capabilities were obtained by developing and validating a numerical model for simulating coupled aerosol transport, deposition, and multi-phase flow in porous media. Soybean oil was transported more than 2 m through sand by injecting it as micron-scale aerosol droplets. Oil saturation in the sand increased with time to a maximum of 0.25, and decreased with radial distance in the experiments. The numerical analysis predicted the distribution of oil saturation with only minor calibration. The results indicated that evolution of oil saturation was controlled by aerosol deposition and subsequent flow of the liquid oil, and simulation requires including these two coupled processes. The calibrated model was used to evaluate field applications. The results suggest that amendments can be delivered to the vadose zone as aerosols, and that gas injection rate and aerosol particle size will be important controls on the process.

  9. Combustion rate limits of hydrogen plus hydrocarbon fuel: Air diffusion flames from an opposed jet burner technique

    NASA Technical Reports Server (NTRS)

    Pellett, Gerald L.; Guerra, Rosemary; Wilson, Lloyd G.; Reeves, Ronald N.; Northam, G. Burton

    1987-01-01

    Combustion of H2/hydrocarbon (HC) fuel mixtures may be considered in certain volume-limited supersonic airbreathing propulsion applications. Effects of HC addition to H2 were evaluated, using a recent argon-bathed, coaxial, tubular opposed jet burner (OJB) technique to measure the extinction limits of counterflow diffusion flames. The OJB flames were formed by a laminar jet of (N2 and/or HC)-diluted H2 mixture opposed by a similar jet of air at ambient conditions. The OJB data, derived from respective binary mixtures of H2 and methane, ethylene, or propane HCs, were used to characterize BLOWOFF and RESTORE. BLOWOFF is a sudden breaking of the dish-shaped OJB flame to a stable torus or ring shape, and RESTORE marks sudden restoration of the central flame by radial inward flame propagation. BLOWOFF is a measure of kinetically-limited flame reactivity/speed under highly stretched, but relatively ideal impingement flow conditions. RESTORE measures inward radial flame propagation rate, which is sensitive to ignition processes in the cool central core. It is concluded that relatively small molar amounts of added HC greatly reduce the reactivity characteristics of counterflow hydrogen-air diffusion flames, for ambient initial conditions.

  10. Age at First Exposure to Football Is Associated with Altered Corpus Callosum White Matter Microstructure in Former Professional Football Players

    PubMed Central

    Stamm, Julie M.; Koerte, Inga K.; Muehlmann, Marc; Pasternak, Ofer; Bourlas, Alexandra P.; Baugh, Christine M.; Giwerc, Michelle Y.; Zhu, Anni; Coleman, Michael J.; Bouix, Sylvain; Fritts, Nathan G.; Martin, Brett M.; Chaisson, Christine; McClean, Michael D.; Lin, Alexander P.; Cantu, Robert C.; Tripodis, Yorghos; Shenton, Martha E.

    2015-01-01

    Abstract Youth football players may incur hundreds of repetitive head impacts (RHI) in one season. Our recent research suggests that exposure to RHI during a critical neurodevelopmental period prior to age 12 may lead to greater later-life mood, behavioral, and cognitive impairments. Here, we examine the relationship between age of first exposure (AFE) to RHI through tackle football and later-life corpus callosum (CC) microstructure using magnetic resonance diffusion tensor imaging (DTI). Forty retired National Football League (NFL) players, ages 40–65, were matched by age and divided into two groups based on their AFE to tackle football: before age 12 or at age 12 or older. Participants underwent DTI on a 3 Tesla Siemens (TIM-Verio) magnet. The whole CC and five subregions were defined and seeded using deterministic tractography. Dependent measures were fractional anisotropy (FA), trace, axial diffusivity, and radial diffusivity. Results showed that former NFL players in the AFE <12 group had significantly lower FA in anterior three CC regions and higher radial diffusivity in the most anterior CC region than those in the AFE ≥12 group. This is the first study to find a relationship between AFE to RHI and later-life CC microstructure. These results suggest that incurring RHI during critical periods of CC development may disrupt neurodevelopmental processes, including myelination, resulting in altered CC microstructure. PMID:26200068

  11. White matter tract integrity and developmental outcome in newborn infants with hypoxic-ischemic encephalopathy treated with hypothermia.

    PubMed

    Massaro, An N; Evangelou, Iordanis; Fatemi, Ali; Vezina, Gilbert; Mccarter, Robert; Glass, Penny; Limperopoulos, Catherine

    2015-05-01

    To determine whether corpus callosum (CC) and corticospinal tract (CST) diffusion tensor imaging (DTI) measures relate to developmental outcome in encephalopathic newborn infants after therapeutic hypothermia. Encephalopathic newborn infants enrolled in a longitudinal study underwent DTI after hypothermia. Parametric maps were generated for fractional anisotropy, mean, radial, and axial diffusivity. CC and CST were segmented by DTI-based tractography. Multiple regression models were used to examine the association of DTI measures with Bayley-II Mental (MDI) and Psychomotor Developmental Index (PDI) at 15 months and 21 months of age. Fifty-two infants (males n=32, females n=20) underwent DTI at median age of 8 days. Two were excluded because of poor magnetic resonance imaging quality. Outcomes were assessed in 42/50 (84%) children at 15 months and 35/50 (70%) at 21 months. Lower CC and CST fractional anisotropy were associated with lower MDI and PDI respectively, even after controlling for gestational age, birth weight, sex, and socio-economic status. There was also a direct relationship between CC axial diffusivity and MDI, while CST radial diffusivity was inversely related to PDI. In encephalopathic newborn infants, impaired microstructural organization of the CC and CST predicts poorer cognitive and motor performance respectively. Tractography provides a reliable method for early assessment of perinatal brain injury. © 2014 Mac Keith Press.

  12. Supraspinal control of automatic postural responses in people with multiple sclerosis.

    PubMed

    Peterson, D S; Gera, G; Horak, F B; Fling, B W

    2016-06-01

    The neural underpinnings of delayed automatic postural responses in people with multiple sclerosis (PwMS) are unclear. We assessed whether white matter pathways of two supraspinal regions (the cortical proprioceptive Broadman's Area-3; and the balance/locomotor-related pedunculopontine nucleus) were related to delayed postural muscle response latencies in response to external perturbations. 19 PwMS (48.8±11.4years; EDSS=3.5 (range: 2-4)) and 12 healthy adults (51.7±12.2years) underwent 20 discrete, backward translations of a support surface. Onset latency of agonist (medial-gastrocnemius) and antagonist (tibialis anterior) muscles were assessed. Diffusion tensor imaging assessed white-matter integrity (i.e. radial diffusivity) of cortical proprioceptive and balance/locomotor-related tracts. Latency of the tibialis anterior, but not medial gastrocnemius was larger in PwMS than control subjects (p=0.012 and 0.071, respectively). Radial diffusivity of balance/locomotor tracts was higher (worse) in PwMS than control subjects (p=0.004), and was significantly correlated with tibialis (p=0.002), but not gastrocnemius (p=0.06) onset latency. Diffusivity of cortical proprioceptive tracts was not correlated with muscle onset. Lesions in supraspinal structures including the pedunculopontine nucleus balance/locomotor network may contribute to delayed onset of postural muscle activity in PwMS, contributing to balance deficits in PwMS. Published by Elsevier B.V.

  13. Age at First Exposure to Football Is Associated with Altered Corpus Callosum White Matter Microstructure in Former Professional Football Players.

    PubMed

    Stamm, Julie M; Koerte, Inga K; Muehlmann, Marc; Pasternak, Ofer; Bourlas, Alexandra P; Baugh, Christine M; Giwerc, Michelle Y; Zhu, Anni; Coleman, Michael J; Bouix, Sylvain; Fritts, Nathan G; Martin, Brett M; Chaisson, Christine; McClean, Michael D; Lin, Alexander P; Cantu, Robert C; Tripodis, Yorghos; Stern, Robert A; Shenton, Martha E

    2015-11-15

    Youth football players may incur hundreds of repetitive head impacts (RHI) in one season. Our recent research suggests that exposure to RHI during a critical neurodevelopmental period prior to age 12 may lead to greater later-life mood, behavioral, and cognitive impairments. Here, we examine the relationship between age of first exposure (AFE) to RHI through tackle football and later-life corpus callosum (CC) microstructure using magnetic resonance diffusion tensor imaging (DTI). Forty retired National Football League (NFL) players, ages 40-65, were matched by age and divided into two groups based on their AFE to tackle football: before age 12 or at age 12 or older. Participants underwent DTI on a 3 Tesla Siemens (TIM-Verio) magnet. The whole CC and five subregions were defined and seeded using deterministic tractography. Dependent measures were fractional anisotropy (FA), trace, axial diffusivity, and radial diffusivity. Results showed that former NFL players in the AFE <12 group had significantly lower FA in anterior three CC regions and higher radial diffusivity in the most anterior CC region than those in the AFE ≥12 group. This is the first study to find a relationship between AFE to RHI and later-life CC microstructure. These results suggest that incurring RHI during critical periods of CC development may disrupt neurodevelopmental processes, including myelination, resulting in altered CC microstructure.

  14. ANALYTIC FORMS OF THE PERPENDICULAR DIFFUSION COEFFICIENT IN NRMHD TURBULENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shalchi, A., E-mail: andreasm4@yahoo.com

    2015-02-01

    In the past different analytic limits for the perpendicular diffusion coefficient of energetic particles interacting with magnetic turbulence were discussed. These different limits or cases correspond to different transport modes describing how the particles are diffusing across the large-scale magnetic field. In the current paper we describe a new transport regime by considering the model of noisy reduced magnetohydrodynamic turbulence. We derive different analytic forms of the perpendicular diffusion coefficient, and while we do this, we focus on the aforementioned new transport mode. We show that for this turbulence model a small perpendicular diffusion coefficient can be obtained so thatmore » the latter diffusion coefficient is more than hundred times smaller than the parallel diffusion coefficient. This result is relevant to explain observations in the solar system where such small perpendicular diffusion coefficients have been reported.« less

  15. Simulations of eddy kinetic energy transport in barotropic turbulence

    NASA Astrophysics Data System (ADS)

    Grooms, Ian

    2017-11-01

    Eddy energy transport in rotating two-dimensional turbulence is investigated using numerical simulation. Stochastic forcing is used to generate an inhomogeneous field of turbulence and the time-mean energy profile is diagnosed. An advective-diffusive model for the transport is fit to the simulation data by requiring the model to accurately predict the observed time-mean energy distribution. Isotropic harmonic diffusion of energy is found to be an accurate model in the case of uniform, solid-body background rotation (the f plane), with a diffusivity that scales reasonably well with a mixing-length law κ ∝V ℓ , where V and ℓ are characteristic eddy velocity and length scales. Passive tracer dynamics are added and it is found that the energy diffusivity is 75 % of the tracer diffusivity. The addition of a differential background rotation with constant vorticity gradient β leads to significant changes to the energy transport. The eddies generate and interact with a mean flow that advects the eddy energy. Mean advection plus anisotropic diffusion (with reduced diffusivity in the direction of the background vorticity gradient) is moderately accurate for flows with scale separation between the eddies and mean flow, but anisotropic diffusion becomes a much less accurate model of the transport when scale separation breaks down. Finally, it is observed that the time-mean eddy energy does not look like the actual eddy energy distribution at any instant of time. In the future, stochastic models of the eddy energy transport may prove more useful than models of the mean transport for predicting realistic eddy energy distributions.

  16. Evidence for percolation diffusion of cations and reordering in disordered pyrochlore from accelerated molecular dynamics

    DOE PAGES

    Perriot, Romain; Uberuaga, Blas P.; Zamora, Richard J.; ...

    2017-09-20

    Diffusion in complex oxides is critical to ionic transport, radiation damage evolution, sintering, and aging. In complex oxides such as pyrochlores, anionic diffusion is dramatically affected by cation disorder. However, little is known about how disorder influences cation transport. Here, we report results from classical and accelerated molecular dynamics simulations of vacancy-mediated cation diffusion in Gd 2Ti 2O 7 pyrochlore, on the microsecond timescale. We find that diffusion is slow at low levels of disorder, while higher disorder allows for fast diffusion, which is then accompanied by antisite annihilation and reordering, and thus a slowing of cation transport. Cation diffusivitymore » is therefore not constant, but decreases as the material reorders. We also show that fast cation diffusion is triggered by the formation of a percolation network of antisites. This is in contrast with observations from other complex oxides and disordered media models, suggesting a fundamentally different relation between disorder and mass transport.« less

  17. Decreased and Increased Anisotropy along Major Cerebral White Matter Tracts in Preterm Children and Adolescents

    PubMed Central

    Ben-Shachar, Michal; Feldman, Heidi M.

    2015-01-01

    Premature birth is highly prevalent and associated with neurodevelopmental delays and disorders. Adverse outcomes, particularly in children born before 32 weeks of gestation, have been attributed in large part to white matter injuries, often found in periventricular regions using conventional imaging. To date, tractography studies of white matter pathways in children and adolescents born preterm have evaluated only a limited number of tracts simultaneously. The current study compares diffusion properties along 18 major cerebral white matter pathways in children and adolescents born preterm (n = 27) and full term (n = 19), using diffusion magnetic resonance imaging and tractography. We found that compared to the full term group, the preterm group had significantly decreased FA in segments of the bilateral uncinate fasciculus and anterior segments of the right inferior fronto-occipital fasciculus. Additionally, the preterm group had significantly increased FA in segments of the right and left anterior thalamic radiations, posterior segments of the right inferior fronto-occipital fasciculus, and the right and left inferior longitudinal fasciculus. Increased FA in the preterm group was generally associated with decreased radial diffusivity. These findings indicate that prematurity-related white matter differences in later childhood and adolescence do not affect all tracts in the periventricular zone and can involve both decreased and increased FA. Differences in the patterns of radial diffusivity and axial diffusivity suggest that the tissue properties underlying group FA differences may vary within and across white matter tracts. Distinctive diffusion properties may relate to variations in the timing of injury in the neonatal period, extent of white matter dysmaturity and/or compensatory processes in childhood. PMID:26560745

  18. Measurement of the eddy diffusion term in chromatographic columns. I. Application to the first generation of 4.6mm I.D. monolithic columns.

    PubMed

    Gritti, Fabrice; Guiochon, Georges

    2011-08-05

    The corrected heights equivalent to a theoretical plate (HETP) of three 4.6mm I.D. monolithic Onyx-C(18) columns (Onyx, Phenomenex, Torrance, CA) of different lengths (2.5, 5, and 10 cm) are reported for retained (toluene, naphthalene) and non-retained (uracil, caffeine) small molecules. The moments of the peak profiles were measured according to the accurate numerical integration method. Correction for the extra-column contributions was systematically applied. The peak parking method was used in order to measure the bulk diffusion coefficients of the sample molecules, their longitudinal diffusion terms, and the eddy diffusion term of the three monolithic columns. The experimental results demonstrate that the maximum efficiency was 60,000 plates/m for retained compounds. The column length has a large impact on the plate height of non-retained species. These observations were unambiguously explained by a large trans-column eddy diffusion term in the van Deemter HETP equation. This large trans-rod eddy diffusion term is due to the combination of a large trans-rod velocity bias (≃3%), a small radial dispersion coefficient in silica monolithic columns, and a poorly designed distribution and collection of the sample streamlets at the inlet and outlet of the monolithic rod. Improving the performance of large I.D. monolithic columns will require (1) a detailed knowledge of the actual flow distribution across and along these monolithic rod and (2) the design of appropriate inlet and outlet distributors designed to minimize the nefarious impact of the radial flow heterogeneity on band broadening. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Some experiments to study diffusive transport through a semi interpenetrating polymeric network in the absence and presence of aqueous electrolytes

    NASA Astrophysics Data System (ADS)

    Biswas, Pritha; Das, Atreyee; Yasmin, Tanvee; Kanjilal, Baishali; Chakrabarti, Haimanti

    2018-05-01

    The study of ion transport in biological system has become a topic of great current interest. This work presents the diffusive transport properties through a typical semi interpenetrating polymeric network (SIPN) which mimics many characteristic features of the walls of human food pipes. The SIPN matrix has been synthesised from Polyvinyl alcohol, Acrylamide monomer, Glutaraldehyde and Ammonium Per sulphate in our laboratory is utilised to study the diffusive transport in the absence and presence of aqueous electrolyte (KCl) at varying concentrations. The diffusivity of the SIPN polymer hydrogel was estimated by the `Theory of Elastomer' to get an insight into process of Potassium and Chlorine ion transport through the SIPN.

  20. Particle Transport through Scattering Regions with Clear Layers and Inclusions

    NASA Astrophysics Data System (ADS)

    Bal, Guillaume

    2002-08-01

    This paper introduces generalized diffusion models for the transport of particles in scattering media with nonscattering inclusions. Classical diffusion is known as a good approximation of transport only in scattering media. Based on asymptotic expansions and the coupling of transport and diffusion models, generalized diffusion equations with nonlocal interface conditions are proposed which offer a computationally cheap, yet accurate, alternative to solving the full phase-space transport equations. The paper shows which computational model should be used depending on the size and shape of the nonscattering inclusions in the simplified setting of two space dimensions. An important application is the treatment of clear layers in near-infrared (NIR) spectroscopy, an imaging technique based on the propagation of NIR photons in human tissues.

  1. Boundary effects in a quasi-two-dimensional driven granular fluid.

    PubMed

    Smith, N D; Smith, M I

    2017-12-01

    The effect of a confining boundary on the spatial variations in granular temperature of a driven quasi-two-dimensional layer of particles is investigated experimentally. The radial drop in the relative granular temperature ΔT/T exhibits a maximum at intermediate particle numbers which coincides with a crossover from kinetic to collisional transport of energy. It is also found that at low particle numbers, the distributions of radial velocities are increasingly asymmetric as one approaches the boundary. The radial and tangential granular temperatures split, and in the tails of the radial velocity distribution there is a higher population of fast moving particles traveling away rather than towards the boundary.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perriot, Romain; Uberuaga, Blas P.; Zamora, Richard J.

    Diffusion in complex oxides is critical to ionic transport, radiation damage evolution, sintering, and aging. In complex oxides such as pyrochlores, anionic diffusion is dramatically affected by cation disorder. However, little is known about how disorder influences cation transport. Here, we report results from classical and accelerated molecular dynamics simulations of vacancy-mediated cation diffusion in Gd 2Ti 2O 7 pyrochlore, on the microsecond timescale. We find that diffusion is slow at low levels of disorder, while higher disorder allows for fast diffusion, which is then accompanied by antisite annihilation and reordering, and thus a slowing of cation transport. Cation diffusivitymore » is therefore not constant, but decreases as the material reorders. We also show that fast cation diffusion is triggered by the formation of a percolation network of antisites. This is in contrast with observations from other complex oxides and disordered media models, suggesting a fundamentally different relation between disorder and mass transport.« less

  3. Conductor load bearing roller for a gas-insulated transmission line having a corrugated outer conductor

    DOEpatents

    Fischer, William H.; Yoon, Kue H.

    1984-04-10

    A gas-insulated transmission line includes a corrugated outer conductor, an inner conductor disposed within and insulated from the outer conductor by means of support insulators and an insulating gas, and a transport device for supporting and permitting movement of the inner conductor/insulating support assembly axially along the corrugated outer conductor without radial displacement. The transport device includes two movable contacts, such as skids or rollers, supported on a common pivot lever, the pivot lever being rotatably disposed about a pivot lever axis, which pivot lever axis is in turn disposed on the periphery of a support insulator or particle trap if one is used. The movable contacts are separated axially a distance equal to the axial distance between the peaks and valleys of the corrugations of the outer conductor and separated radially a distance equal to the radial distance between the peaks and valleys of the corrugations of the outer conductor. The transport device has the pivot lever axis disposed perpendicular to the direction of travel of the inner conductor/insulating support assembly.

  4. Elevated left and reduced right orbitomedial prefrontal fractional anisotropy in adults with bipolar disorder revealed by tract-based spatial statistics.

    PubMed

    Versace, Amelia; Almeida, Jorge R C; Hassel, Stefanie; Walsh, Nicholas D; Novelli, Massimiliano; Klein, Crystal R; Kupfer, David J; Phillips, Mary L

    2008-09-01

    Diffusion tensor imaging (DTI) studies in adults with bipolar disorder (BD) indicate altered white matter (WM) in the orbitomedial prefrontal cortex (OMPFC), potentially underlying abnormal prefrontal corticolimbic connectivity and mood dysregulation in BD. To use tract-based spatial statistics (TBSS) to examine WM skeleton (ie, the most compact whole-brain WM) in subjects with BD vs healthy control subjects. Cross-sectional, case-control, whole-brain DTI using TBSS. University research institute. Fifty-six individuals, 31 having a DSM-IV diagnosis of BD type I (mean age, 35.9 years [age range, 24-52 years]) and 25 controls (mean age, 29.5 years [age range, 19-52 years]). Fractional anisotropy (FA) longitudinal and radial diffusivities in subjects with BD vs controls (covarying for age) and their relationships with clinical and demographic variables. Subjects with BD vs controls had significantly greater FA (t > 3.0, P 3.0, P

  5. Verification of TEMPEST with neoclassical transport theory

    NASA Astrophysics Data System (ADS)

    Xiong, Z.; Cohen, B. I.; Cohen, R. H.; Dorr, M.; Hittinger, J.; Kerbel, G.; Nevins, W. M.; Rognlien, T.; Umansky, M.; Xu, X.

    2006-10-01

    TEMPEST is an edge gyro-kinetic continuum code developed to study boundary plasma transport over the region extending from the H-mode pedestal across the separatrix to the divertor plates. For benchmark purposes, we present results from the 4D (2r,2v) TEMPEST for both steady-state transport and time-dependent Geodesic Acoustic Modes (GAMs). We focus on an annular region inside the separatrix of a circular cross-section tokamak where analytical and numerical results are available. The parallel flow velocity and radial particle flux are obtained for different collisional regimes and compared with previous neoclassical results. The effect of radial electric field and the transition to steep edge gradients is emphasized. The dynamical response of GAMs is also shown and compared to recent theory.

  6. Diffusion of a particle in the spatially correlated exponential random energy landscape: Transition from normal to anomalous diffusion.

    PubMed

    Novikov, S V

    2018-01-14

    Diffusive transport of a particle in a spatially correlated random energy landscape having exponential density of states has been considered. We exactly calculate the diffusivity in the nondispersive quasi-equilibrium transport regime for the 1D transport model and found that for slow decaying correlation functions the diffusivity becomes singular at some particular temperature higher than the temperature of the transition to the true non-equilibrium dispersive transport regime. It means that the diffusion becomes anomalous and does not follow the usual ∝ t 1/2 law. In such situation, the fully developed non-equilibrium regime emerges in two stages: first, at some temperature there is the transition from the normal to anomalous diffusion, and then at lower temperature the average velocity for the infinite medium goes to zero, thus indicating the development of the true dispersive regime. Validity of the Einstein relation is discussed for the situation where the diffusivity does exist. We provide also some arguments in favor of conservation of the major features of the new transition scenario in higher dimensions.

  7. Divertor-leg instability for finite beta and radially-tilted divertor plate

    NASA Astrophysics Data System (ADS)

    Cohen, R. H.; Ryutov, D. D.

    2004-11-01

    Plasma in the divertor leg may experience a fast instability caused by sheath boundary conditions (BC). Perturbations cannot penetrate beyond the X point because of very strong shearing in its vicinity. Accordingly, this instability could increase cross-field transport in the divertor leg, and thereby reduce the heat load on the divertor plate, without having any appreciable negative effect on core plasma confinement. A way of describing the role of shearing in terms of the surface resistivity attributed to a ``control plane'' below the X point has recently been suggested (Contr. Plasma Phys., v. 44, p. 168, 2004). We use this BC, plus sheath BC at the divertor plate. We include effects of finite beta and of the radial tilt of the divertor plate. We optimize the radial tilt in order to maximize radial transport in divertor legs. We discuss experimental signatures of the instability: i) phase velocity and wave-numbers of the most unstable modes; ii) correlations between fluctuations of various parameters; and iii) the differences between fluctuations in the common and private flux regions.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Philippov, Alexander A.; Rafikov, Roman R., E-mail: sashaph@princeton.edu

    Radial transport of particles, elements and fluid driven by internal stresses in three-dimensional (3D) astrophysical accretion disks is an important phenomenon, potentially relevant for the outward dust transport in protoplanetary disks, origin of the refractory particles in comets, isotopic equilibration in the Earth–Moon system, etc. To gain better insight into these processes, we explore the dependence of meridional circulation in 3D disks with shear viscosity on their thermal stratification, and demonstrate a strong effect of the latter on the radial flow. Previous locally isothermal studies have normally found a pattern of the radial outflow near the midplane, switching to inflowmore » higher up. Here we show, both analytically and numerically, that a flow that is inward at all altitudes is possible in disks with entropy and temperature steeply increasing with height. Such thermodynamic conditions may be typical in the optically thin, viscously heated accretion disks. Disks in which these conditions do not hold should feature radial outflow near the midplane, as long as their internal stress is provided by the shear viscosity. Our results can also be used for designing hydrodynamical disk simulations with a prescribed pattern of the meridional circulation.« less

  9. The role of the density gradient on intermittent cross-field transport events in a simple magnetized toroidal plasma

    NASA Astrophysics Data System (ADS)

    Theiler, C.; Diallo, A.; Fasoli, A.; Furno, I.; Labit, B.; Podestà, M.; Poli, F. M.; Ricci, P.

    2008-04-01

    Intermittent cross-field particle transport events (ITEs) are studied in the basic toroidal device TORPEX [TORoidal Plasma EXperiment, A. Fasoli et al., Phys. Plasmas 13, 055902 (2006)], with focus on the role of the density gradient. ITEs are due to the intermittent radial elongation of an interchange mode. The elongating positive wave crests can break apart and form blobs. This is not necessary, however, for plasma particles to be convected a considerable distance across the magnetic field lines. Conditionally sampled data reveal two different scenarios leading to ITEs. In the first case, the interchange mode grows radially from a slab-like density profile and leads to the ITE. A novel analysis technique reveals a monotonic dependence between the vertically averaged inverse radial density scale length and the probability for a subsequent ITE. In the second case, the mode is already observed before the start of the ITE. It does not elongate radially in a first stage, but at a later time. It is shown that this elongation is preceded by a steepening of the density profile as well.

  10. A Survey of Phase Space Density Radial Distribution of Relativistic Electrons During a 2-year Time Period (2001-2002)

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Reeves, G.; Friedel, R. H.

    2005-12-01

    The source of relativistic electrons in the Earth's radiation belts in recovery phase of geomagnetic storms is still an open question which requires more observational analysis. To address this question, we first need to differentiate between two competing mechanisms, inward radial transport or in-situ energization. Recent work has focused on analysis of phase space density distribution for specific storms of interest. Here we expand on the results of earlier event studies by surveying the phase space density radial distribution and its temporal evolution during storms for a time period of 2 years (2001-2002). Data in this work are from the IES and HIST electron detectors on board POLAR, whose orbit crosses the outer part of outer radiation belt through equatorial plane almost every 18 hours during this period. The fact that detected electrons with given 1st and 2nd adiabatic invariants can cover L*~6-10, allows tracing the temporally evolving radial gradient which can help in determining the source of new electrons. Initial analysis of approximately 190 days suggests that the energization of relativistic electrons may result from a more complicated combination of radial transport and in-situ acceleration than is usually assumed.

  11. Mathematical modelling of the Phloem: the importance of diffusion on sugar transport at osmotic equilibrium.

    PubMed

    Payvandi, S; Daly, K R; Zygalakis, K C; Roose, T

    2014-11-01

    Plants rely on the conducting vessels of the phloem to transport the products of photosynthesis from the leaves to the roots, or to any other organs, for growth, metabolism, and storage. Transport within the phloem is due to an osmotically-generated pressure gradient and is hence inherently nonlinear. Since convection dominates over diffusion in the main bulk flow, the effects of diffusive transport have generally been neglected by previous authors. However, diffusion is important due to boundary layers that form at the ends of the phloem, and at the leaf-stem and stem-root boundaries. We present a mathematical model of transport which includes the effects of diffusion. We solve the system analytically in the limit of high Münch number which corresponds to osmotic equilibrium and numerically for all parameter values. We find that the bulk solution is dependent on the diffusion-dominated boundary layers. Hence, even for large Péclet number, it is not always correct to neglect diffusion. We consider the cases of passive and active sugar loading and unloading. We show that for active unloading, the solutions diverge with increasing Péclet. For passive unloading, the convergence of the solutions is dependent on the magnitude of loading. Diffusion also permits the modelling of an axial efflux of sugar in the root zone which may be important for the growing root tip and for promoting symbiotic biological interactions in the soil. Therefore, diffusion is an essential mechanism for transport in the phloem and must be included to accurately predict flow.

  12. Mass and momentum turbulent transport experiments with confined swirling coaxial jets

    NASA Technical Reports Server (NTRS)

    Roback, R.; Johnson, B. V.

    1983-01-01

    Swirling coaxial jets mixing downstream, discharging into an expanded duct was conducted to obtain data for the evaluation and improvement of turbulent transport models currently used in a variety of computational procedures throughout the combustion community. A combination of laser velocimeter (LV) and laser induced fluorescence (LIF) techniques was employed to obtain mean and fluctuating velocity and concentration distributions which were used to derive mass and momentum turbulent transport parameters currently incorporated into various combustor flow models. Flow visualization techniques were also employed to determine qualitatively the time dependent characteristics of the flow and the scale of turbulence. The results of these measurements indicated that the largest momentum turbulent transport was in the r-z plane. Peak momentum turbulent transport rates were approximately the same as those for the nonswirling flow condition. The mass turbulent transport process for swirling flow was complicated. Mixing occurred in several steps of axial and radial mass transport and was coupled with a large radial mean convective flux. Mixing for swirling flow was completed in one-third the length required for nonswirling flow.

  13. Simulation of radial solute segregation in vertical Bridgman growth of pyridine-doped benzene, a surrogate for binary organic nonlinear optical materials

    NASA Astrophysics Data System (ADS)

    Lee, Hanjie; Pearlstein, Arne J.

    2000-09-01

    We present steady axisymmetric computations of solute distributions and radial segregation for vertical Bridgman growth of pyridine-doped benzene, a binary aromatic system with anisotropic solid-phase thermal conductivity, that serves as a model of solute transport in crystal growth of organic nonlinear optical materials. The radial variation of solid-phase mass fraction ( Cs) of pyridine, which is rejected at the growing interface, depends strongly on growth conditions. High growth velocities tend to increase Cs near the centerline, the ampoule wall, or both, and low growth velocities give more nearly uniform radial distributions. The maximum ampoule-wall temperature gradient also affects radial segregation, with convex-to-the-liquid interfaces at small temperature gradients being associated with radially monotonic Cs distributions, and ridged interfaces at higher gradients being associated with nonmonotonic distributions having maxima at the centerline and ampoule wall. Nonuniformity is strongly determined by both interface shape and the nature of the flow near the interface. Solute is transported down to the interface by a large toroidal vortex, and swept radially inward to the centerline by a second, flattened toroidal cell. When the interface is depressed at its junction with the ampoule wall, rejected solute accumulates in the overlying liquid, where convection is relatively weak, resulting in local solute enrichment of the solid. Computations at normal and zero gravity show that for two very similar interface shapes, a maximum in the radial solid-phase solute distribution at the ampoule wall is associated with the interface shape, while the maximum on the centerline is associated with sweeping of solute to the centerline by a vortical flow on the interface. We also show that radial solute segregation depends significantly on whether account is taken of the anisotropy of the solid-phase thermal conductivity. Finally, the computations provide guidance as to the minimum ampoule length required to produce an axially uniform solute distribution over at least part of the length of a boule.

  14. Analysis of Conservative Tracer Tests in the Bullfrog, Tram, and Prow Pass Tuffs, 1996 to 1998, Yucca Mountain, Nye County, Nevada

    USGS Publications Warehouse

    Umari, Amjad; Fahy, Michael F.; Earle, John D.; Tucci, Patrick

    2008-01-01

    To evaluate the potential for transport of radionuclides in ground water from the proposed high-level nuclear-waste repository at Yucca Mountain, Nevada, conservative (nonsorbing) tracer tests were conducted among three boreholes, known as the C-hole Complex, and values for transport (or flow) porosity, storage (or matrix) porosity, longitudinal dispersivity, and the extent of matrix diffusion were obtained. The C-holes are completed in a sequence of Miocene tuffaceous rock, consisting of nonwelded to densely welded ash-flow tuff with intervals of ash-fall tuff and volcaniclastic rocks, covered by Quaternary alluvium. The lower part of the tuffaceous-rock sequence includes the Prow Pass, Bullfrog, and Tram Tuffs of the Crater Flat Group. The rocks are pervaded by tectonic and cooling fractures. Paleozoic limestone and dolomite underlie the tuffaceous rocks. Four radially convergent and one partially recirculating conservative (nonsorbing) tracer tests were conducted at the C-hole Complex from 1996 to 1998 to establish values for flow porosity, storage porosity, longitudinal dispersivity, and extent of matrix diffusion in the Bullfrog and Tram Tuffs and the Prow Pass Tuff. Tracer tests included (1) injection of iodide into the combined Bullfrog-Tram interval; (2) injection of 2,6 difluorobenzoic acid into the Lower Bullfrog interval; (3) injection of 3-carbamoyl-2-pyridone into the Lower Bullfrog interval; and (4) injection of iodide and 2,4,5 trifluorobenzoic acid, followed by 2,3,4,5 tetrafluorobenzoic acid, into the Prow Pass Tuff. All tracer tests were analyzed by the Moench single- and dual-porosity analytical solutions to the advection-dispersion equation or by superposition of these solutions. Nonlinear regression techniques were used to corroborate tracer solution results, to obtain optimal parameter values from the solutions, and to quantify parameter uncertainty resulting from analyzing two of the three radially convergent conservative tracer tests conducted in the Bullfrog and Tram intervals. Longitudinal dispersivity values in the Bullfrog and Tram Tuffs ranged from 1.83 to 2.6 meters, flow-porosity values from 0.072 to 0.099, and matrix-porosity values from 0.088 to 0.19. The flow-porosity values indicate that the pathways between boreholes UE-25 c#2 and UE-25 c#3 in the Bullfrog and Tram intervals are not connected well. Tracer testing in the Prow Pass interval indicates different transport characteristics than those obtained in the Bullfrog and Tram intervals. In the Prow Pass Tuff, longitudinal dispersivity was 0.27 meter, flow porosity was 4.5 ? 10?4, and matrix porosity was 0.01. This indicates that the flow network in the Prow Pass is dominated by interconnected fractures, whereas in the Bullfrog and Tram, the flow network is dominated by discontinuous fractures with connecting segments of matrix.

  15. MOFAT: A TWO-DIMENSIONAL FINITE ELEMENT PROGRAM FOR MULTIPHASE FLOW AND MULTICOMPONENT TRANSPORT - PROGRAM DOCUMENTATION AND USER'S GUIDE

    EPA Science Inventory

    This manual describes a two-dimensional, finite element model for coupled multiphase flow and multicomponent transport in planar or radially symmetric vertical sections. low and transport of three fluid phases, including water, nonaqueous phase liquid (NAPL), and gas are consider...

  16. Core Radial Electric Field and Transport in Wendelstein 7-X Plasmas

    NASA Astrophysics Data System (ADS)

    Pablant, Novimir

    2016-10-01

    Results from the investigation of core transport and the role of the radial electric field profile (Er) in the first operational phase of the Wendelstein 7-X (W7-X) stellarator are presented. In stellarator plasmas, the details of the Er profile are expected to have a strong effect on both the particle and heat fluxes. Neoclassical particle fluxes are not intrinsically ambipolar, which leads to the formation of a radial electric field that enforces ambipolarity. The radial electric field is closely related to the perpendicular plasma flow (u⊥) through the force balance equation. This allows the radial electric field to be inferred from measurements of the perpendicular flow velocity from the x-ray imaging crystal spectrometer (XICS) and correlation reflectometry diagnostics. Large changes in the perpendicular rotation, on the order of Δu⊥ 5km /s (ΔEr 12kV / m), have been observed within a set of experiments where the heating power was stepped down from 2 MW to 0.6 MW . These experiments are examined in detail to explore the relationship between, heating power, response of the temperature and density profiles and the response of the radial electric field. Estimations of the core transport are based on power balance and utilize electron temperature (Te) profiles from the ECE and Thomson scattering, electron density profiles (ne) from interferometry and Thomson scattering, ion temperature (Ti) profiles from XICS, along with measurements of the total stored energy and radiated power. Also described are a set core impurity confinement experiments and results. Impurity confinement has been investigated through the injection of trace amount of argon impurity gas at the plasma edge in conjunction with measurements of the density of various ionization states of argon from the XICS and High Efficiency eXtreme-UV Overview Spectrometer (HEXOS) diagnostics. Finally the inferred Er and heat flux profiles are compared to initial neoclassical calculations using measured plasma profiles. On behalf of the W7-X Team.

  17. Gas transport in unsaturated porous media: the adequacy of Fick's law

    USGS Publications Warehouse

    Thorstenson, D.C.; Pollock, D.W.

    1989-01-01

    The increasing use of natural unsaturated zones as repositories for landfills and disposal sites for hazardous wastes (chemical and radioactive) requires a greater understanding of transport processes in the unsaturated zone. For volatile constituents an important potential transport mechanism is gaseous diffusion. Diffusion, however, cannot be treated as an independent isolated transport mechanism. A complete understanding of multicomponent gas transport in porous media (unsaturated zones) requires a knowledge of Knudsen transport, the molecular and nonequimolar components of diffusive flux, and viscous (pressure driven) flux. This review presents a brief discussion of the underlying principles and interrelationships among each of the above flux mechanisms. -from Authors

  18. The time-fractional radiative transport equation—Continuous-time random walk, diffusion approximation, and Legendre-polynomial expansion

    NASA Astrophysics Data System (ADS)

    Machida, Manabu

    2017-01-01

    We consider the radiative transport equation in which the time derivative is replaced by the Caputo derivative. Such fractional-order derivatives are related to anomalous transport and anomalous diffusion. In this paper we describe how the time-fractional radiative transport equation is obtained from continuous-time random walk and see how the equation is related to the time-fractional diffusion equation in the asymptotic limit. Then we solve the equation with Legendre-polynomial expansion.

  19. Anomalous Transport of Cosmic Rays in a Nonlinear Diffusion Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litvinenko, Yuri E.; Fichtner, Horst; Walter, Dominik

    2017-05-20

    We investigate analytically and numerically the transport of cosmic rays following their escape from a shock or another localized acceleration site. Observed cosmic-ray distributions in the vicinity of heliospheric and astrophysical shocks imply that anomalous, superdiffusive transport plays a role in the evolution of the energetic particles. Several authors have quantitatively described the anomalous diffusion scalings, implied by the data, by solutions of a formal transport equation with fractional derivatives. Yet the physical basis of the fractional diffusion model remains uncertain. We explore an alternative model of the cosmic-ray transport: a nonlinear diffusion equation that follows from a self-consistent treatmentmore » of the resonantly interacting cosmic-ray particles and their self-generated turbulence. The nonlinear model naturally leads to superdiffusive scalings. In the presence of convection, the model yields a power-law dependence of the particle density on the distance upstream of the shock. Although the results do not refute the use of a fractional advection–diffusion equation, they indicate a viable alternative to explain the anomalous diffusion scalings of cosmic-ray particles.« less

  20. Symplastic Transport of Carboxyfluorescein in Staminal Hairs of Setcreasea purpurea Is Diffusive and Includes Loss to the Vacuole.

    PubMed

    Tucker, J E; Mauzerall, D; Tucker, E B

    1989-07-01

    The kinetics of symplastic transport in staminal hairs of Setcreasea purpurea was studied. The tip cell of a staminal hair was microinjected with carboxyfluorescein (CF) and the symplastic transport of this CF was videotaped and the digital data analyzed to produce kinetic curves. Using a finite difference equation for diffusion between cells and for loss of dye into the vacuole, kinetic curves were calculated and fitted to the observed data. These curves were matched with data from actual microinjection experiments by adjusting K (the coefficient of intercellular junction diffusion) and L (the coefficient of intracellular loss) until a minimum in the least squares difference between the curves was obtained. (a) Symplastic transport of CF was governed by diffusion through intercellular pores (plasmodesmata) and intracellular loss. Diffusion within the cell cytoplasm was never limiting. (b) Each cell and its plasmodesmata must be considered as its own diffusion system. Therefore, a diffusion coefficient cannot be calculated for an entire chain of cells. (c) The movement through plasmodesmata in either direction was the same since the data are fit by a diffusion equation. (d) Diffusion through the intercellular pores was estimated to be slower than diffusion through similar pores filled with water.

Top