Diffusive smoothing of surfzone bathymetry by gravity-driven sediment transport
NASA Astrophysics Data System (ADS)
Moulton, M. R.; Elgar, S.; Raubenheimer, B.
2012-12-01
Gravity-driven sediment transport often is assumed to have a small effect on the evolution of nearshore morphology. Here, it is shown that down-slope gravity-driven sediment transport is an important process acting to smooth steep bathymetric features in the surfzone. Gravity-driven transport can be modeled as a diffusive term in the sediment continuity equation governing temporal (t) changes in bed level (h): ∂h/∂t ≈ κ ▽2h, where κ is a sediment diffusion coefficient that is a function of the bed shear stress (τb) and sediment properties, such as the grain size and the angle of repose. Field observations of waves, currents, and the evolution of large excavated holes (initially 10-m wide and 2-m deep, with sides as steep as 35°) in an energetic surfzone are consistent with diffusive smoothing by gravity. Specifically, comparisons of κ estimated from the measured bed evolution with those estimated with numerical model results for several transport theories suggest that gravity-driven sediment transport dominates the bed evolution, with κ proportional to a power of τb. The models are initiated with observed bathymetry and forced with observed waves and currents. The diffusion coefficients from the measurements and from the model simulations were on average of order 10-5 m2/s, implying evolution time scales of days for features with length scales of 10 m. The dependence of κ on τb varies for different transport theories and for high and low shear stress regimes. The US Army Corps of Engineers Field Research Facility, Duck, NC provided excellent logistical support. Funded by a National Security Science and Engineering Faculty Fellowship, a National Defense Science and Engineering Graduate Fellowship, and the Office of Naval Research.
Suspended sediment diffusion mechanisms in the Yangtze Estuary influenced by wind fields
NASA Astrophysics Data System (ADS)
Wang, Lihua; Zhou, Yunxuan; Shen, Fang
2018-01-01
The complexity of suspended sediment concentration (SSC) distribution and diffusion has been widely recognized because it is influenced by sediment supply and various hydrodynamic forcing conditions that vary over space and over time. Sediment suspended by waves and transported by currents are the dominant sediment transport mechanisms in estuarine and coastal areas. However, it is unclear to what extent the SSC distribution is impacted by each hydrodynamic factor. Research on the quantitative influence of wind fields on the SSC diffusion range will contribute to a better understanding of the characteristics of sediment transport change and sedimentary geomorphic evolution. This study determined SSC from three Envisat Medium-Resolution Imaging Spectrometer acquisitions, covering the Yangtze Estuary and adjacent water area under the same season and tidal conditions but with varying wind conditions. SSC was examined based on the Semi-Empirical Radiative Transfer model, which has been well validated with the observation data. Integrating the corresponding wind field information from European Centre for Medium-Range Weather Forecasts further facilitated the discussion of wind fields affecting SSC, and in turn the influence of water and suspended sediment transportation and diffusion in the Yangtze estuarine and coastal area. The results demonstrated that the SSC present much more distinctive fluvial features in the inner estuary and wind fields are one of the major factors controlling the range of turbid water diffusion.
Transport mechanisms of contaminants released from fine sediment in rivers
NASA Astrophysics Data System (ADS)
Cheng, Pengda; Zhu, Hongwei; Zhong, Baochang; Wang, Daozeng
2015-12-01
Contaminants released from sediment into rivers are one of the main problems to study in environmental hydrodynamics. For contaminants released into the overlying water under different hydrodynamic conditions, the mechanical mechanisms involved can be roughly divided into convective diffusion, molecular diffusion, and adsorption/desorption. Because of the obvious environmental influence of fine sediment (D_{90}= 0.06 mm), non-cohesive fine sediment, and cohesive fine sediment are researched in this paper, and phosphorus is chosen for a typical adsorption of a contaminant. Through theoretical analysis of the contaminant release process, according to different hydraulic conditions, the contaminant release coupling mathematical model can be established by the N-S equation, the Darcy equation, the solute transport equation, and the adsorption/desorption equation. Then, the experiments are completed in an open water flume. The simulation results and experimental results show that convective diffusion dominates the contaminant release both in non-cohesive and cohesive fine sediment after their suspension, and that they contribute more than 90 % of the total release. Molecular diffusion and desorption have more of a contribution for contaminant release from unsuspended sediment. In unsuspension sediment, convective diffusion is about 10-50 times larger than molecular diffusion during the initial stages under high velocity; it is close to molecular diffusion in the later stages. Convective diffusion is about 6 times larger than molecular diffusion during the initial stages under low velocity, it is about a quarter of molecular diffusion in later stages, and has a similar level with desorption/adsorption. In unsuspended sediment, a seepage boundary layer exists below the water-sediment interface, and various release mechanisms in that layer mostly dominate the contaminant release process. In non-cohesive fine sediment, the depth of that layer increases linearly with shear stress. In cohesive fine sediment, the range seepage boundary is different from that in non-cohesive sediment, and that phenomenon is more obvious under a lower shear stress.
Modeling of sediment transport in a saltwater lake with supplemental sandy freshwater.
Liang, Li; Deng, Yun; Li, Ran; Li, Jia
2018-06-22
Considering the highly complex flow structure of saltwater lakes during freshwater supplementation, a three-dimensional numerical model was developed to simulate suspended sediment transport in saltwater lakes. The model was validated using measurements of the salinity and sediment concentration during a pumping test at Yamdrok Lake. The simulation results were in quantitative agreement with the measured data. The observed and simulated results also indicated that the wind stress and vertical salinity gradient have a significant influence on salinity and sediment transport in a saltwater lake. The validated model was then used to predict and analyze the contributions of wind, the supplement flow rate and salinity stratification to the sediment transport process in Yamdrok Lake during continuous river water supplementation. The simulation results showed that after the sandy river water was continuously discharged into the saltwater lake, the lateral diffusion trends of the sediment exhibited three stages: linear growth in the inflow direction, logarithmic growth in the wind direction, and stabilization. Furthermore, wind was the dominant factor in driving the lake flow pattern and sediment transport. Specifically, wind can effectively reduce the area of the sediment diffusion zone by increasing the lateral sediment carrying and dilution capacities. The effect of inflow on the lake current is negligible, but the extent of the sediment turbidity zone mainly depends on the inflow. Reducing the inflow discharge can decrease the area of the sediment turbidity zone to proportions that far exceed the proportions of inflow discharge reductions. In addition, the high-salinity lake water can support the supplemented freshwater via buoyancy forces, which weaken vertical mixing and sediment settlement and increase lake currents and sediment diffusion near the surface.
The Influence of Turbulent Coherent Structure on Suspended Sediment Transport
NASA Astrophysics Data System (ADS)
Huang, S. H.; Tsai, C.
2017-12-01
The anomalous diffusion of turbulent sedimentation has received more and more attention in recent years. With the advent of new instruments and technologies, researchers have found that sediment behavior may deviate from Fickian assumptions when particles are heavier. In particle-laden flow, bursting phenomena affects instantaneous local concentrations, and seems to carry suspended particles for a longer distance. Instead of the pure diffusion process in an analogy to Brownian motion, Levy flight which allows particles to move in response to bursting phenomena is suspected to be more suitable for describing particle movement in turbulence. And the fractional differential equation is a potential candidate to improve the concentration profile. However, stochastic modeling (the Differential Chapmen-Kolmogorov Equation) also provides an alternative mathematical framework to describe system transits between different states through diffusion/the jump processes. Within this framework, the stochastic particle tracking model linked with advection diffusion equation is a powerful tool to simulate particle locations in the flow field. By including the jump process to this model, a more comprehensive description for suspended sediment transport can be provided with a better physical insight. This study also shows the adaptability and expandability of the stochastic particle tracking model for suspended sediment transport modeling.
Harris, C.K.; Wiberg, P.L.
2001-01-01
A two-dimensional, time-dependent solution to the transport equation is formulated to account for advection and diffusion of sediment suspended in the bottom boundary layer of continental shelves. This model utilizes a semi-implicit, upwind-differencing scheme to solve the advection-diffusion equation across a two-dimensional transect that is configured so that one dimension is the vertical, and the other is a horizontal dimension usually aligned perpendicular to shelf bathymetry. The model calculates suspended sediment concentration and flux; and requires as input wave properties, current velocities, sediment size distributions, and hydrodynamic sediment properties. From the calculated two-dimensional suspended sediment fluxes, we quantify the redistribution of shelf sediment, bed erosion, and deposition for several sediment sizes during resuspension events. The two-dimensional, time-dependent approach directly accounts for cross-shelf gradients in bed shear stress and sediment properties, as well as transport that occurs before steady-state suspended sediment concentrations have been attained. By including the vertical dimension in the calculations, we avoid depth-averaging suspended sediment concentrations and fluxes, and directly account for differences in transport rates and directions for fine and coarse sediment in the bottom boundary layer. A flux condition is used as the bottom boundary condition for the transport equation in order to capture time-dependence of the suspended sediment field. Model calculations demonstrate the significance of both time-dependent and spatial terms on transport and depositional patterns on continental shelves. ?? 2001 Elsevier Science Ltd. All rights reserved.
Patterson, David Albert; Strehmel, Alexander; Erzgräber, Beate; Hammel, Klaus
2017-12-01
In a recent scientific opinion of the European Food Safety Authority it is argued that the accumulation of plant protection products in sediments over long time periods may be an environmentally significant process. Therefore, the European Food Safety Authority proposed a calculation to account for plant protection product accumulation. This calculation, however, considers plant protection product degradation within sediment as the only dissipation route, and does not account for sediment dynamics or back-diffusion into the water column. The hydraulic model Hydrologic Engineering Center-River Analysis System (HEC-RAS; US Army Corps of Engineers) was parameterized to assess sediment transport and deposition dynamics within the FOrum for Co-ordination of pesticide fate models and their USe (FOCUS) scenarios in simulations spanning 20 yr. The results show that only 10 to 50% of incoming sediment would be deposited. The remaining portion of sediment particles is transported across the downstream boundary. For a generic plant protection product substance this resulted in deposition of only 20 to 50% of incoming plant protection product substance. In a separate analysis, the FOCUS TOXSWA model was utilized to examine the relative importance of degradation versus back-diffusion as loss processes from the sediment compartment for a diverse range of generic plant protection products. In simulations spanning 20 yr, it was shown that back-diffusion was generally the dominant dissipation process. The results of the present study show that sediment dynamics and back-diffusion should be considered when calculating long-term plant protection product accumulation in sediment. Neglecting these may lead to a systematic overestimation of accumulation. Environ Toxicol Chem 2017;36:3223-3231. © 2017 SETAC. © 2017 SETAC.
Unexpected consequences of bedload diffusion
NASA Astrophysics Data System (ADS)
Devauchelle, O.; Abramian, A.; Lajeunesse, E.
2017-12-01
Sedimentary grains transported as bedload bump and bounce on the rough bed of the river that entrains them. The succession of these random events causes bedload particles to diffuse across the flow, towards the less active areas of the bed. In a fashion reminiscent of that proposed by Parker (1978) for suspended load, this mechanism opposes gravity to maintain the banks of alluvial rivers. In fact, diffusion is so tightly linked to bedload that it appears in the most basic sediment transport experiment--the straight channel we use to calibrate transport laws. Indeed, the fixed sides of the channel cause the flow, and thus the bed shear stress, to vary across the flume. This variation induces bedload diffusion, which in turn deforms the bed. As a consequence, to reliably calibrate a transport law, we need to measure the full profiles of shear stress and bedload transport, rather than bulk-average these quantities. Unfortunately, using a larger channel does not solve the problem, as a large aspect ratio favors the growth of streaks caused by a diffusion-induced instability. Based on these observations, we propose a different design for sediment transport experiments.
Multimodel analysis of anisotropic diffusive tracer-gas transport in a deep arid unsaturated zone
Green, Christopher T.; Walvoord, Michelle Ann; Andraski, Brian J.; Striegl, Robert G.; Stonestrom, David A.
2015-01-01
Gas transport in the unsaturated zone affects contaminant flux and remediation, interpretation of groundwater travel times from atmospheric tracers, and mass budgets of environmentally important gases. Although unsaturated zone transport of gases is commonly treated as dominated by diffusion, the characteristics of transport in deep layered sediments remain uncertain. In this study, we use a multimodel approach to analyze results of a gas-tracer (SF6) test to clarify characteristics of gas transport in deep unsaturated alluvium. Thirty-five separate models with distinct diffusivity structures were calibrated to the tracer-test data and were compared on the basis of Akaike Information Criteria estimates of posterior model probability. Models included analytical and numerical solutions. Analytical models provided estimates of bulk-scale apparent diffusivities at the scale of tens of meters. Numerical models provided information on local-scale diffusivities and feasible lithological features producing the observed tracer breakthrough curves. The combined approaches indicate significant anisotropy of bulk-scale diffusivity, likely associated with high-diffusivity layers. Both approaches indicated that diffusivities in some intervals were greater than expected from standard models relating porosity to diffusivity. High apparent diffusivities and anisotropic diffusivity structures were consistent with previous observations at the study site of rapid lateral transport and limited vertical spreading of gas-phase contaminants. Additional processes such as advective oscillations may be involved. These results indicate that gases in deep, layered unsaturated zone sediments can spread laterally more quickly, and produce higher peak concentrations, than predicted by homogeneous, isotropic diffusion models.
Parsing anomalous versus normal diffusive behavior of bedload sediment particles
Fathel, Siobhan; Furbish, David; Schmeeckle, Mark
2016-01-01
Bedload sediment transport is the basic physical ingredient of river evolution. Formulae exist for estimating transport rates, but the diffusive contribution to the sediment flux, and the associated spreading rate of tracer particles, are not clearly understood. The start-and-stop motions of sediment particles transported as bedload on a streambed mimic aspects of the Einstein–Smoluchowski description of the random-walk motions of Brownian particles. Using this touchstone description, recent work suggests the presence of anomalous diffusion, where the particle spreading rate differs from the linear dependence with time of Brownian behavior. We demonstrate that conventional measures of particle spreading reveal different attributes of bedload particle behavior depending on details of the calculation. When we view particle motions over start-and-stop timescales obtained from high-speed (250 Hz) imaging of coarse-sand particles, high-resolution measurements reveal ballistic-like behavior at the shortest (10−2 s) timescale, followed by apparent anomalous behavior due to correlated random walks in transition to normal diffusion (>10−1 s) – similar to Brownian particle behavior but involving distinctly different physics. However, when treated as a ‘virtual plume’ over this timescale range, particles exhibit inhomogeneous diffusive behavior because both the mean and the variance of particle travel distances increase nonlinearly with increasing travel times, a behavior that is unrelated to anomalous diffusion or to Brownian-like behavior. Our results indicate that care is needed in suggesting anomalous behavior when appealing to conventional measures of diffusion formulated for ideal particle systems.
Modeling Nitrogen Fate and Transport at the Sediment-Water ...
Diffusive mass transfer at media interfaces exerts control on the fate and transport of pollutants originating from agricultural and urban landscapes and affects the con-ditions of water bodies. Diffusion is essentially a physical process affecting the distribution and fate of various environmental pollutants such as nutrients, pesticides, metals, PCBs, PAHs, etc. Environmental problems caused by excessive use of agricultural chemicals (e.g., pesticides and fertilizers) and improper discharge of industrial waste and fuel leaks are all influenced by the diffusive nature of pollutants in the environment. Eutrophication is one such environmental problem where the sediment-water interface exerts a significant physical and geochemical control on the eutrophic condition of the stressed water body. Exposure of streams and lakes to contaminated sediment is another common environmental problem whereby transport of the contaminant (PCBs, PAHs, and other organic contaminants) across the sediment water can increase the risk for exposure to the chemicals and pose a significant health hazard to aquatic life and human beings. This chapter presents analytical and numerical models describing fate and transport phenomena at the sediment-water interface in freshwater ecosystems, with the primary focus on nitrogen cycling and the applicability of the models to real-world environmental problems and challenges faced in their applications. The first model deals with nitrogen cycling
Nitrate consumption in sediments of the German Bight (North Sea)
NASA Astrophysics Data System (ADS)
Neumann, Andreas; van Beusekom, Justus E. E.; Holtappels, Moritz; Emeis, Kay-Christian
2017-09-01
Denitrification on continental margins and in coastal sediments is a major sink of reactive N in the present nitrogen cycle and a major ecosystem service of eutrophied coastal waters. We analyzed the nitrate removal in surface sediments of the Elbe estuary, Wadden Sea, and adjacent German Bight (SE North Sea) during two seasons (spring and summer) along a eutrophication gradient ranging from a high riverine nitrate concentrations at the Elbe Estuary to offshore areas with low nitrate concentrations. The gradient encompassed the full range of sediment types and organic carbon concentrations of the southern North Sea. Based on nitrate penetration depth and concentration gradient in the porewater we estimated benthic nitrate consumption rates assuming either diffusive transport in cohesive sediments or advective transport in permeable sediments. For the latter we derived a mechanistic model of porewater flow. During the peak nitrate discharge of the river Elbe in March, the highest rates of diffusive nitrate uptake were observed in muddy sediments (up to 2.8 mmol m- 2 d- 1). The highest advective uptake rate in that period was observed in permeable sediment and was tenfold higher (up to 32 mmol m- 2 d- 1). The intensity of both diffusive and advective nitrate consumption dropped with the nitrate availability and thus decreased from the Elbe estuary towards offshore stations, and were further decreased during late summer (minimum nitrate discharge) compared to late winter (maximum nitrate discharge). In summary, our rate measurements indicate that the permeable sediment accounts for up to 90% of the total benthic reactive nitrogen consumption in the study area due to the high efficiency of advective nitrate transport into permeable sediment. Extrapolating the averaged nitrate consumption of different sediment classes to the areas of Elbe Estuary, Wadden Sea and eastern German Bight amounts to an N-loss of 3.1 ∗ 106 mol N d- 1 from impermeable, diffusion-controlled sediment, and 5.2 ∗ 107 mol N d- 1 from permeable sediment with porewater advection.
(99)Tc(VII) Retardation, Reduction, and Redox Rate Scaling in Naturally Reduced Sediments.
Liu, Yuanyuan; Liu, Chongxuan; Kukkadapu, Ravi K; McKinley, James P; Zachara, John; Plymale, Andrew E; Miller, Micah D; Varga, Tamas; Resch, Charles T
2015-11-17
An experimental and modeling study was conducted to investigate pertechnetate (Tc(VII)O4(-)) retardation, reduction, and rate scaling in three sediments from Ringold formation at U.S. Department of Energy's Hanford site, where (99)Tc is a major contaminant in groundwater. Tc(VII) was reduced in all the sediments in both batch reactors and diffusion columns, with a faster rate in a sediment containing a higher concentration of HCl-extractable Fe(II). Tc(VII) migration in the diffusion columns was reductively retarded with retardation degrees correlated with Tc(VII) reduction rates. The reduction rates were faster in the diffusion columns than those in the batch reactors, apparently influenced by the spatial distribution of redox-reactive minerals along transport paths that supplied Tc(VII). X-ray computed tomography and autoradiography were performed to identify the spatial locations of Tc(VII) reduction and transport paths in the sediments, and results generally confirmed the newly found behavior of reaction rate changes from batch to column. The results from this study implied that Tc(VII) migration can be reductively retarded at Hanford site with a retardation degree dependent on reactive Fe(II) content and its distribution in sediments. This study also demonstrated that an effective reaction rate may be faster in transport systems than that in well-mixed reactors.
USER'S MANUAL FOR THE INSTREAM SEDIMENT-CONTAMINANT TRANSPORT MODEL SERATRA
This manual guides the user in applying the sediment-contaminant transport model SERATRA. SERATRA is an unsteady, two-dimensional code that uses the finite element computation method with the Galerkin weighted residual technique. The model has general convection-diffusion equatio...
Modeling Nitrogen Fate and Transport at the Sediment-Water Interface
Diffusive mass transfer at media interfaces exerts control on the fate and transport of pollutants originating from agricultural and urban landscapes and affects the con-ditions of water bodies. Diffusion is essentially a physical process affecting the distribution and fate of va...
NASA Astrophysics Data System (ADS)
Maldonado, Sergio; Borthwick, Alistair G. L.
2018-02-01
We derive a two-layer depth-averaged model of sediment transport and morphological evolution for application to bedload-dominated problems. The near-bed transport region is represented by the lower (bedload) layer which has an arbitrarily constant, vanishing thickness (of approx. 10 times the sediment particle diameter), and whose average sediment concentration is free to vary. Sediment is allowed to enter the upper layer, and hence the total load may also be simulated, provided that concentrations of suspended sediment remain low. The model conforms with established theories of bedload, and is validated satisfactorily against empirical expressions for sediment transport rates and the morphodynamic experiment of a migrating mining pit by Lee et al. (1993 J. Hydraul. Eng. 119, 64-80 (doi:10.1061/(ASCE)0733-9429(1993)119:1(64))). Investigation into the effect of a local bed gradient on bedload leads to derivation of an analytical, physically meaningful expression for morphological diffusion induced by a non-zero local bed slope. Incorporation of the proposed morphological diffusion into a conventional morphodynamic model (defined as a coupling between the shallow water equations, Exner equation and an empirical formula for bedload) improves model predictions when applied to the evolution of a mining pit, without the need either to resort to special numerical treatment of the equations or to use additional tuning parameters.
Maldonado, Sergio; Borthwick, Alistair G L
2018-02-01
We derive a two-layer depth-averaged model of sediment transport and morphological evolution for application to bedload-dominated problems. The near-bed transport region is represented by the lower (bedload) layer which has an arbitrarily constant, vanishing thickness (of approx. 10 times the sediment particle diameter), and whose average sediment concentration is free to vary. Sediment is allowed to enter the upper layer, and hence the total load may also be simulated, provided that concentrations of suspended sediment remain low. The model conforms with established theories of bedload, and is validated satisfactorily against empirical expressions for sediment transport rates and the morphodynamic experiment of a migrating mining pit by Lee et al. (1993 J. Hydraul. Eng. 119 , 64-80 (doi:10.1061/(ASCE)0733-9429(1993)119:1(64))). Investigation into the effect of a local bed gradient on bedload leads to derivation of an analytical, physically meaningful expression for morphological diffusion induced by a non-zero local bed slope. Incorporation of the proposed morphological diffusion into a conventional morphodynamic model (defined as a coupling between the shallow water equations, Exner equation and an empirical formula for bedload) improves model predictions when applied to the evolution of a mining pit, without the need either to resort to special numerical treatment of the equations or to use additional tuning parameters.
Investigations of grain size dependent sediment transport phenomena on multiple scales
NASA Astrophysics Data System (ADS)
Thaxton, Christopher S.
Sediment transport processes in coastal and fluvial environments resulting from disturbances such as urbanization, mining, agriculture, military operations, and climatic change have significant impact on local, regional, and global environments. Primarily, these impacts include the erosion and deposition of sediment, channel network modification, reduction in downstream water quality, and the delivery of chemical contaminants. The scale and spatial distribution of these effects are largely attributable to the size distribution of the sediment grains that become eligible for transport. An improved understanding of advective and diffusive grain-size dependent sediment transport phenomena will lead to the development of more accurate predictive models and more effective control measures. To this end, three studies were performed that investigated grain-size dependent sediment transport on three different scales. Discrete particle computer simulations of sheet flow bedload transport on the scale of 0.1--100 millimeters were performed on a heterogeneous population of grains of various grain sizes. The relative transport rates and diffusivities of grains under both oscillatory and uniform, steady flow conditions were quantified. These findings suggest that boundary layer formalisms should describe surface roughness through a representative grain size that is functionally dependent on the applied flow parameters. On the scale of 1--10m, experiments were performed to quantify the hydrodynamics and sediment capture efficiency of various baffles installed in a sediment retention pond, a commonly used sedimentation control measure in watershed applications. Analysis indicates that an optimum sediment capture effectiveness may be achieved based on baffle permeability, pond geometry and flow rate. Finally, on the scale of 10--1,000m, a distributed, bivariate watershed terain evolution module was developed within GRASS GIS. Simulation results for variable grain sizes and for distributed rainfall infiltration and land cover matched observations. Although a unique set of governing equations applies to each scale, an improved physics-based understanding of small and medium scale behavior may yield more accurate parameterization of key variables used in large scale predictive models.
NASA Astrophysics Data System (ADS)
Ancey, Christophe; Bohorquez, Patricio; Heyman, Joris
2016-04-01
The advection-diffusion equation arises quite often in the context of sediment transport, e.g., for describing time and space variations in the particle activity (the solid volume of particles in motion per unit streambed area). Stochastic models can also be used to derive this equation, with the significant advantage that they provide information on the statistical properties of particle activity. Stochastic models are quite useful when sediment transport exhibits large fluctuations (typically at low transport rates), making the measurement of mean values difficult. We develop an approach based on birth-death Markov processes, which involves monitoring the evolution of the number of particles moving within an array of cells of finite length. While the topic has been explored in detail for diffusion-reaction systems, the treatment of advection has received little attention. We show that particle advection produces nonlocal effects, which are more or less significant depending on the cell size and particle velocity. Albeit nonlocal, these effects look like (local) diffusion and add to the intrinsic particle diffusion (dispersal due to velocity fluctuations), with the important consequence that local measurements depend on both the intrinsic properties of particle displacement and the dimensions of the measurement system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Lirong; Szecsody, James E.; Truex, Michael J.
Use of gas-phase amendments for in situ remediation of inorganic contaminants in unsaturated sediments of the vadose zone may be advantageous, but there has been limited development and testing of gas remediation technologies. Treatment with ammonia gas has been studied and has a potential for use in treating inorganic contaminants such as uranium because it induces a high pore-water pH causing mineral dissolution and subsequent formation of stable precipitates that decrease the mobility of some contaminants. For field application, knowledge of ammonia transport and the geochemical reactions induced by ammonia is needed. Laboratory studies were conducted to support calculations neededmore » for field treatment design, to quantify advective and diffusive ammonia transport in unsaturated sediments, to evaluate reactions among gas, sediment, and water, and to study reaction-induced pore-water chemistry changes as a function of ammonia delivery conditions. Ammonia gas quickly partitions into sediment pore water and increases pH up to 13.2. Injected ammonia gas front movement can be reasonably predicted by gas flow rate and equilibrium partitioning. The ammonia gas diffusion rate is a function of the water content in the sediment. Measured diffusion front movement was 0.05, 0.03, and 0.02 cm/hr. in sediments with 2.0%, 8.7%, and 13.0% water content, respectively. Sodium, aluminum, and silica pore-water concentrations increase on exposure to ammonia and then decline as aluminosilicates precipitate with declining pH. When uranium is present in the sediment and pore water, up to 85% of the water-leachable uranium was immobilized by ammonia treatment.« less
Testing the Validity of Local Flux Laws in an Experimental Eroding Landscape
NASA Astrophysics Data System (ADS)
Sweeney, K. E.; Roering, J. J.; Ellis, C.
2015-12-01
Linking sediment transport to landscape evolution is fundamental to interpreting climate and tectonic signals from topography and sedimentary deposits. Most geomorphic process laws consist of simple continuum relationships between sediment flux and local topography. However, recent work has shown that nonlocal formulations, whereby sediment flux depends on upslope conditions, are more accurate descriptions of sediment motion, particularly in steep topography. Discriminating between local and nonlocal processes in natural landscapes is complicated by the scarcity of high-resolution topographic data and by the difficulty of measuring sediment flux. To test the validity of local formulations of sediment transport, we use an experimental erosive landscape that combines disturbance-driven, diffusive sediment transport and surface runoff. We conducted our experiments in the eXperimental Landscape Model at St. Anthony Falls Laboratory a 0.5 x 0.5 m test flume filled with crystalline silica (D50 = 30μ) mixed with water to increase cohesion and preclude surface infiltration. Topography is measured with a sheet laser scanner; total sediment flux is tracked with a series of load cells. We simulate uplift (relative baselevel fall) by dropping two parallel weirs at the edges of the experiment. Diffusive sediment transport in our experiments is driven by rainsplash from a constant head drip tank fitted with 625 blunt needles of fixed diameter; sediment is mobilized both through drop impact and the subsequent runoff of the drops. To drive advective transport, we produce surface runoff via a ring of misters that produce droplets that are too small to disturb the sediment surface on impact. Using the results from five experiments that systematically vary the time of drip box rainfall relative to misting rainfall, we calculate local erosion in our experiments by differencing successive time-slices of topography and test whether these patterns are related to local topographic metrics. By examining these patterns over different timescales, we are able to assess whether there is a signature of nonlocal transport in long-term topographic evolution or if, instead, local formulations are appropriate over timescales much greater than individual transport events.
Bioturbation, advection, and diffusion of a conserved tracer in a laboratory flume
NASA Astrophysics Data System (ADS)
Work, P. A.; Moore, P. R.; Reible, D. D.
2002-06-01
Laboratory experiments indicating the relative influences of advection, diffusion, and bioturbation on transport of NaCl tracer between a stream and streambed are described. Data were collected in a recirculating flume housing a box filled with test sediments. Peclet numbers ranged from 0 to 1.5. Sediment components included a medium sand (d50 = 0.31 mm), kaolinite, and topsoil. Lumbriculus variegatus were introduced as bioturbators. Conductivity probes were employed to document the flux of the tracer solution out of the bed. Measurements are compared to one-dimensional effective diffusion models assuming one or two horizontal sediment layers. These simple models provide a good indication of tracer half-life in the bed if a suitable effective diffusion coefficient is chosen but underpredict initial flux and overpredict flux at long times. Organism activity was limited to the upper reaches of the sediment test box but eventually exerts a secondary influence on flux from deeper regions.
Modeling Biogeochemical Cycling of Heavy Metals in Lake Coeur d'Alene Sediments
NASA Astrophysics Data System (ADS)
Sengor, S. S.; Spycher, N.; Belding, E.; Curthoys, K.; Ginn, T. R.
2005-12-01
Mining of precious metals since the late 1800's have left Lake Coeur d'Alene (LCdA) sediments heavily enriched with toxic metals, including Cd, Cu, Pb, and Zn. Indigenous microbes however are capable of catalyzing reactions that detoxify the benthic and aqueous lake environments, and thus constitute an important driving component in the biogeochemical cycles of these metals. Here we report on the development of a quantitative model of transport, fate, exposure and effects of toxic compounds on benthic microbial communities at LCdA. First, chemical data from the LCdA area have been compiled from multiple sources to investigate trends in chemical occurrence, as well as to define model boundary conditions. The model is structured as 1-D diffusive reactive transport model to simulate spatial and temporal distribution of metals through the benthic sediments. Inorganic reaction processes included in the model are aqueous speciation, surface complexation, mineral precipitation/dissolution and abiotic redox reactions. Simulations with and without surface complexation are carried out to evaluate the effect of sorption and the conservative behaviour of metals within the benthic sediments under abiotic and purely diffusive transport. The 1-D inorganic diffusive transport model is then coupled to a biotic reaction network including consortium biodegradation kinetics with multiple electron acceptors, product toxicity, and energy partitioning. Multiyear simulations are performed, with water column chemistry established as a boundary condition from extant data, to explore the role of biogeochemical dynamics on benthic fluxes of metals in the long term.
Pore Water PAH Transport in Amended Sediment Caps
NASA Astrophysics Data System (ADS)
Gidley, P. T.; Kwon, S.; Ghosh, U.
2009-05-01
Capping is a common remediation strategy for contaminated sediments that creates a physical barrier between contaminated sediments and the water column. Diffusive flux of contaminants through a sediment cap is small. However, under certain hydrodynamic conditions such as groundwater potential and tidal pumping, groundwater advection can accelerate contaminant transport. Hydrophobic organic contaminants such as polycyclic aromatic hydrocarbons (PAHs) could be transported through the cap under advective conditions. To better understand PAH migration under these conditions, physical models of sediment caps were evaluated in the laboratory through direct measurement of pore water using solid phase micro-extraction with gas chromatography and mass spectrometry. Contaminated sediment and capping material was obtained from an existing Superfund site that was capped at Eagle Harbor, Washington. A PAH dissolution model linked to an advection-dispersion equation with retardation using published organic carbon-water partitioning coefficients (Koc) was compared to measured PAHs in the sediment and cap porewater of the physical model.
Formation Mechanisms for Spur and Groove Features on Fringing Reefs
NASA Astrophysics Data System (ADS)
Bramante, J. F.; Ashton, A. D.; Perron, J. T.
2016-12-01
Spur and groove systems (SAGs) are ubiquitous morphological features found on fore-reef slopes globally. SAGs consist of parallel, roughly shore-normal ridges of actively growing coral and coralline algae (spurs) separated by offshore-sloping depressions typically carpeted by a veneer of sediment (grooves). Although anecdotal observations and recent statistical analyses have reported correlations between wave exposure and the distribution of SAGs on fore-reef slopes, the physical mechanisms driving SAG formation remain poorly understood. For example, there remains significant debate regarding the importance of coral growth versus bed erosion for SAG formation. Here we investigate a hypothesis that SAG formation is controlled by feedbacks between sediment production and diffusion and coral growth. Using linear stability analysis, we find that sediment production, coral growth, and the feedbacks between them are unable to produce stable periodic structures without a sediment sink. However, if incipient grooves act as conduits for sediment transport offshore, a positive feedback can develop as the groove bed erodes through wave-driven abrasion during offshore transport. Eventually a negative feedback slows groove deepening when the groove bed is armored by sediment, and the groove bed relaxes to a sediment-veneered equilibrium profile analogous to sediment-rich shorefaces. To test this hypothesis, we apply a numerical model that incorporates coral growth and sediment production, sediment diffusion, non-linear wave-driven abrasion, and sediment advection offshore. This model produces the periodic, linear features characteristic of SAG morphology. The relative magnitude of growth, production, diffusion, abrasion, and advection rates affect periodic spacing or wavelength of the modeled SAGs. Finally, we evaluate the ability of the model to replicate geographical variability in SAG characteristics using previously published datasets and reanalysis wave data.
NASA Astrophysics Data System (ADS)
Wang, Daosheng; Cao, Anzhou; Zhang, Jicai; Fan, Daidu; Liu, Yongzhi; Zhang, Yue
2018-06-01
Based on the theory of inverse problems, a three-dimensional sigma-coordinate cohesive sediment transport model with the adjoint data assimilation is developed. In this model, the physical processes of cohesive sediment transport, including deposition, erosion and advection-diffusion, are parameterized by corresponding model parameters. These parameters are usually poorly known and have traditionally been assigned empirically. By assimilating observations into the model, the model parameters can be estimated using the adjoint method; meanwhile, the data misfit between model results and observations can be decreased. The model developed in this work contains numerous parameters; therefore, it is necessary to investigate the parameter sensitivity of the model, which is assessed by calculating a relative sensitivity function and the gradient of the cost function with respect to each parameter. The results of parameter sensitivity analysis indicate that the model is sensitive to the initial conditions, inflow open boundary conditions, suspended sediment settling velocity and resuspension rate, while the model is insensitive to horizontal and vertical diffusivity coefficients. A detailed explanation of the pattern of sensitivity analysis is also given. In ideal twin experiments, constant parameters are estimated by assimilating 'pseudo' observations. The results show that the sensitive parameters are estimated more easily than the insensitive parameters. The conclusions of this work can provide guidance for the practical applications of this model to simulate sediment transport in the study area.
Onset of sediment transport is a continuous transition driven by fluid shear and granular creep.
Houssais, Morgane; Ortiz, Carlos P; Durian, Douglas J; Jerolmack, Douglas J
2015-03-09
Fluid-sheared granular transport sculpts landscapes and undermines infrastructure, yet predicting the onset of sediment transport remains notoriously unreliable. For almost a century, this onset has been treated as a discontinuous transition at which hydrodynamic forces overcome gravity-loaded grain-grain friction. Using a custom laminar-shear flume to image slow granular dynamics deep into the bed, here we find that the onset is instead a continuous transition from creeping to granular flow. This transition occurs inside the dense granular bed at a critical viscous number, similar to granular flows and colloidal suspensions and inconsistent with hydrodynamic frameworks. We propose a new phase diagram for sediment transport, where 'bed load' is a dense granular flow bounded by creep below and suspension above. Creep is characteristic of disordered solids and reminiscent of soil diffusion on hillslopes. Results provide new predictions for the onset and dynamics of sediment transport that challenge existing models.
Chanton, J.P.; Martens, C.S.; Goldhaber, M.B.
1987-01-01
The sulfur isotopic composition of the sulfur fluxes occurring in the anoxic marine sediments of Cape Lookout Bight, N.C., U.S.A., was determined, and the result of isotopic mass balance was obtained via the differential diffusion model. Seasonal pore water sulfate ??34S measurements yielded a calculated sulfate input of 0.6%.. Sulfate transported into the sediments via diffusion appeared to be enriched in the lighter isotope because its concentration gradient was steeper, due to the increase in the measured isotopic composition of sulfate with depth. Similarly, the back diffusion of dissolved sulfide towards the sediment-water interface appeared enriched in the heavier isotope. The isotopic composition of this flux was calculated from measurements of the ??34S of dissolved sulfide and was determined to be 15.9%.. The isotopic composition of buried sulfide was determined to be -5.2%. and the detrital sulfur input was estimated to be -6.2%.. An isotope mass balance equation based upon the fluxes at the sediment-water interface successfully predicted the isotopic composition of the buried sulfur flux within 0.5%., thus confirming that isotopes diffuse in response to their individual concentration gradients. ?? 1987.
Anomalous diffusion for bed load transport with a physically-based model
NASA Astrophysics Data System (ADS)
Fan, N.; Singh, A.; Foufoula-Georgiou, E.; Wu, B.
2013-12-01
Diffusion of bed load particles shows both normal and anomalous behavior for different spatial-temporal scales. Understanding and quantifying these different types of diffusion is important not only for the development of theoretical models of particle transport but also for practical purposes, e.g., river management. Here we extend a recently proposed physically-based model of particle transport by Fan et al. [2013] to further develop an Episodic Langevin equation (ELE) for individual particle motion which reproduces the episodic movement (start and stop) of sediment particles. Using the proposed ELE we simulate particle movements for a large number of uniform size particles, incorporating different probability distribution functions (PDFs) of particle waiting time. For exponential PDFs of waiting times, particles reveal ballistic motion in short time scales and turn to normal diffusion at long time scales. The PDF of simulated particle travel distances also shows a change in its shape from exponential to Gamma to Gaussian with a change in timescale implying different diffusion scaling regimes. For power-law PDF (with power - μ) of waiting times, the asymptotic behavior of particles at long time scales reveals both super-diffusion and sub-diffusion, however, only very heavy tailed waiting times (i.e. 1.0 < μ < 1.5) could result in sub-diffusion. We suggest that the contrast between our results and previous studies (for e.g., studies based on fractional advection-diffusion models of thin/heavy tailed particle hops and waiting times) results could be due the assumption in those studies that the hops are achieved instantaneously, but in reality, particles achieve their hops within finite times (as we simulate here) instead of instantaneously, even if the hop times are much shorter than waiting times. In summary, this study stresses on the need to rethink the alternative models to the previous models, such as, fractional advection-diffusion equations, for studying the anomalous diffusion of bed load particles. The implications of these results for modeling sediment transport are discussed.
Onset of sediment transport is a continuous transition driven by fluid shear and granular creep
Houssais, Morgane; Ortiz, Carlos P.; Durian, Douglas J.; Jerolmack, Douglas J.
2015-01-01
Fluid-sheared granular transport sculpts landscapes and undermines infrastructure, yet predicting the onset of sediment transport remains notoriously unreliable. For almost a century, this onset has been treated as a discontinuous transition at which hydrodynamic forces overcome gravity-loaded grain–grain friction. Using a custom laminar-shear flume to image slow granular dynamics deep into the bed, here we find that the onset is instead a continuous transition from creeping to granular flow. This transition occurs inside the dense granular bed at a critical viscous number, similar to granular flows and colloidal suspensions and inconsistent with hydrodynamic frameworks. We propose a new phase diagram for sediment transport, where ‘bed load’ is a dense granular flow bounded by creep below and suspension above. Creep is characteristic of disordered solids and reminiscent of soil diffusion on hillslopes. Results provide new predictions for the onset and dynamics of sediment transport that challenge existing models. PMID:25751296
Mineral paragenesis on Mars: The roles of reactive surface area and diffusion
Gil‐Lozano, Carolina; Uceda, Esther R.; Losa‐Adams, Elisabeth; Davila, Alfonso F.; Gago‐Duport, Luis
2017-01-01
Abstract Geochemical models of secondary mineral precipitation on Mars generally assume semiopen systems (open to the atmosphere but closed at the water‐sediment interface) and equilibrium conditions. However, in natural multicomponent systems, the reactive surface area of primary minerals controls the dissolution rate and affects the precipitation sequences of secondary phases, and simultaneously, the transport of dissolved species may occur through the atmosphere‐water and water‐sediment interfaces. Here we present a suite of geochemical models designed to analyze the formation of secondary minerals in basaltic sediments on Mars, evaluating the role of (i) reactive surface areas and (ii) the transport of ions through a basalt sediment column. We consider fully open conditions, both to the atmosphere and to the sediment, and a kinetic approach for mineral dissolution and precipitation. Our models consider a geochemical scenario constituted by a basin (i.e., a shallow lake) where supersaturation is generated by evaporation/cooling and the starting point is a solution in equilibrium with basaltic sediments. Our results show that cation removal by diffusion, along with the input of atmospheric volatiles and the influence of the reactive surface area of primary minerals, plays a central role in the evolution of the secondary mineral sequences formed. We conclude that precipitation of evaporites finds more restrictions in basaltic sediments of small grain size than in basaltic sediments of greater grain size. PMID:29104844
Mineral paragenesis on Mars: The roles of reactive surface area and diffusion.
Fairén, Alberto G; Gil-Lozano, Carolina; Uceda, Esther R; Losa-Adams, Elisabeth; Davila, Alfonso F; Gago-Duport, Luis
2017-09-01
Geochemical models of secondary mineral precipitation on Mars generally assume semiopen systems (open to the atmosphere but closed at the water-sediment interface) and equilibrium conditions. However, in natural multicomponent systems, the reactive surface area of primary minerals controls the dissolution rate and affects the precipitation sequences of secondary phases, and simultaneously, the transport of dissolved species may occur through the atmosphere-water and water-sediment interfaces. Here we present a suite of geochemical models designed to analyze the formation of secondary minerals in basaltic sediments on Mars, evaluating the role of (i) reactive surface areas and (ii) the transport of ions through a basalt sediment column. We consider fully open conditions, both to the atmosphere and to the sediment, and a kinetic approach for mineral dissolution and precipitation. Our models consider a geochemical scenario constituted by a basin (i.e., a shallow lake) where supersaturation is generated by evaporation/cooling and the starting point is a solution in equilibrium with basaltic sediments. Our results show that cation removal by diffusion, along with the input of atmospheric volatiles and the influence of the reactive surface area of primary minerals, plays a central role in the evolution of the secondary mineral sequences formed. We conclude that precipitation of evaporites finds more restrictions in basaltic sediments of small grain size than in basaltic sediments of greater grain size.
Influence of bioturbation on sediment respiration in advection- and diffusion-dominated systems
NASA Astrophysics Data System (ADS)
Baranov, Viktor; Krause, Stefan; Lewandowski, Jörg
2017-04-01
Ecosystem engineers are organisms, whose impact on ecosystem functioning is large compared to their abundance and biomass. Classic examples of ecosystem engineers are burrowing organisms whose activity is affecting the sediment matrix and pore solutes in aquatic sediments; this is called bioturbation. Constant reworking of the sediment matrix and transport of solutes caused by activities of sediment-dwelling organisms are modifying habitats and resource availability. Despite that progress of studies on the interactions between the animal bioturbation and the sediment respiration was rather slow, mostly due to the existing methodological limitations. Conceptual framework, formulated by Mermelloid-Blondin and Rosenberg (2006) is suggesting that impact of bioturbation on the sediment biogeochemistry will be much larger in sediments with low hydraulic conductivities (diffusion-dominated) than in sediments with high hydraulic conductivities (advection-dominated). In order to test this hypothesis in application to the sediment respiration, we have used the resazurin-resorufin bioreactive tracer system, which allowed us to decouple respiration of the sediment of microbiota. Our work has shown that in diffusion-dominated sediments (organic rich lake sediments) bioturbator's (bloodworms, larvae of Diptera, Chironomidae) activity could increase sediment aerobic respiration by 300%. In addition to that, impact of the bioturbators on the diffusion-dominated sediments respiration is growing with increasing temperature. Total oxygen consumption (TOU) in such sediments is also increasing by about 50% in bioturbated sediments in comparison with uninhabited sediments. On the other hand, in advection-dominated sediments (sandy sediments from marine tidal flats, bioturbated by brittlestars) we have observed no increase in TOU, and only slight (25%) increase in aerobic respiration in the presence of bioturbators. It became evident that due to the high hydraulic conductivity of advection-dominated sediments, alteration in solutes and nutrient distribution are minimal, hence no increase in TOU occurs. Still, presence of bioturbators has increased aerobic respiration of the system (probably due to animals' own respiration and the burrow-associated microbiota), thus not increasing but re-structuring TOU.
Studying Suspended Sediment Mechanism with Two-Phase PIV
NASA Astrophysics Data System (ADS)
Matinpour, H.; Atkinson, J. F.; Bennett, S. J.; Guala, M.
2017-12-01
Suspended sediment transport affects soil erosion, agriculture and water resources quality. Turbulent diffusion is the most primary force to maintain sediments in suspension. Although extensive previous literature have been studying the interactions between turbulent motion and suspended sediment, mechanism of sediments in suspension is still poorly understood. In this study, we investigate suspension of sediments as two distinct phases: one phase of sediments and another phase of fluid with turbulent motions. We designed and deployed a state-of-the-art two-phase PIV measurement technique to discriminate these two phases and acquire velocities of each phase separately and simultaneously. The technique that we have developed is employing a computer-vision based method, which enables us to discriminate sediment particles from fluid tracer particles based on two thresholds, dissimilar particle sizes and different particle intensities. Results indicate that fluid turbulence decreases in the presence of suspended sediments. Obtaining only sediment phase consecutive images enable us to compute fluctuation sediment concentration. This result enlightens understanding of complex interaction between the fluctuation velocities and the fluctuation of associated mass and compares turbulent viscosity with turbulent eddy diffusivity experimentally.
Exchanges of sediment between the flood plain and channel of the Amazon River in Brazil
Dunne, T.; Mertes, L.A.K.; Meade, R.H.; Richey, J.E.; Forsberg, B.R.
1998-01-01
Sediment transport through the Brazilian sector of the Amazon River valley, a distance of 2010 km, involves exchanges between the channel and the flood plain that in each direction exceed the annual flux of sediment out of the river at O??bidos (???1200 Mt yr-1). The exchanges occur through bank erosion, bar deposition, settling from diffuse overbank flow, and sedimentation in flood-plain channels. We estimated the magnitude of these exchanges for each of 10 reaches of the valley, and combined them with calculations of sediment transport into and out of the reaches based on sediment sampling and flow records to define a sediment budget for each reach. Residuals in the sediment budget of a reach include errors of estimation and erosion or deposition within the channel. The annual supply of sediment entering the channel from bank erosion was estimated to average 1570 Mt yr-1 (1.3 ?? the O??bidos flux) and the amount transferred from channel transport to the bars (380 Mt yr-1) and the flood plain (460 Mt yr-1 in channelized flow; 1230 Mt yr-1 in diffuse overbank flow) totaled 2070 Mt yr-1 (1.7 ?? the O??bidos flux). Thus, deposition on the bars and flood plain exceeded bank erosion by 500 Mt yr-1 over a 10-16 yr period. Sampling and calculation of sediment loads in the channel indicate a net accumulation in the valley floor of approximately 200 Mt yr-1 over 16 yr, crudely validating the process-based calculations of the sediment budget, which in turn illuminate the physical controls on each exchange process. Another 300-400 Mt yr-1 are deposited in a delta plain downstream of O??bidos. The components of the sediment budget reflect hydrologie characteristics of the valley floor and geomorphic characteristics of the channel and flood plain, which in turn are influenced by tectonic features of the Amazon structural trough.
Impacts of Cropland Changes on Water Balance, Sediment and Nutrient Transport in Eden River, UK
NASA Astrophysics Data System (ADS)
Huang, Yumei; Quinn, Paul; Liang, Qiuhua; Adams, Russell
2017-04-01
Water is the key to food and human life. Farming is the main part of economic and society in Eden, with approximately 2000 farms which covers 95% of under crops. However, with the growth of farming practice and global climate changes, Eden has presented great challenges and bringing uncertainty in the water quality caused by the agricultural diffuse pollution. This expected to reduce negative impacts of the water diffuse pollution from agriculture in Eden. Therefore, there is a high need to ensure effective water resource management to enhance water quality, to address the flow pathways and sediment transport in different farming practice and cropland changes. Hence we need to understand nutrient and the hydrological flow pathways from soil to Hillslope to channel. The aim of this research is to evaluate the impacts of different cropland changes on water balance, sediment and nutrient transport. By using the hydrological models Soil and Water Assessment Tool (SWAT) and the Catchment Runoff Attenuation Flux Tool (CRAFT), it can show the sediment and nutrient export from the load for each flow pathways (overland flow, soil water flow and ground water flow). We will show results from a small research catchment (10km2) area to the whole of Eden (800km2) at a daily time step.
NASA Technical Reports Server (NTRS)
Pavish, D. L.; Spaulding, M. L.
1977-01-01
A computer coded Lagrangian marker particle in Eulerian finite difference cell solution to the three dimensional incompressible mass transport equation, Water Advective Particle in Cell Technique, WAPIC, was developed, verified against analytic solutions, and subsequently applied in the prediction of long term transport of a suspended sediment cloud resulting from an instantaneous dredge spoil release. Numerical results from WAPIC were verified against analytic solutions to the three dimensional incompressible mass transport equation for turbulent diffusion and advection of Gaussian dye releases in unbounded uniform and uniformly sheared uni-directional flow, and for steady-uniform plug channel flow. WAPIC was utilized to simulate an analytic solution for non-equilibrium sediment dropout from an initially vertically uniform particle distribution in one dimensional turbulent channel flow.
NASA Astrophysics Data System (ADS)
Shobe, Charles M.; Tucker, Gregory E.; Barnhart, Katherine R.
2017-12-01
Models of landscape evolution by river erosion are often either transport-limited (sediment is always available but may or may not be transportable) or detachment-limited (sediment must be detached from the bed but is then always transportable). While several models incorporate elements of, or transition between, transport-limited and detachment-limited behavior, most require that either sediment or bedrock, but not both, are eroded at any given time. Modeling landscape evolution over large spatial and temporal scales requires a model that can (1) transition freely between transport-limited and detachment-limited behavior, (2) simultaneously treat sediment transport and bedrock erosion, and (3) run in 2-D over large grids and be coupled with other surface process models. We present SPACE (stream power with alluvium conservation and entrainment) 1.0, a new model for simultaneous evolution of an alluvium layer and a bedrock bed based on conservation of sediment mass both on the bed and in the water column. The model treats sediment transport and bedrock erosion simultaneously, embracing the reality that many rivers (even those commonly defined as bedrock
rivers) flow over a partially alluviated bed. SPACE improves on previous models of bedrock-alluvial rivers by explicitly calculating sediment erosion and deposition rather than relying on a flux-divergence (Exner) approach. The SPACE model is a component of the Landlab modeling toolkit, a Python-language library used to create models of Earth surface processes. Landlab allows efficient coupling between the SPACE model and components simulating basin hydrology, hillslope evolution, weathering, lithospheric flexure, and other surface processes. Here, we first derive the governing equations of the SPACE model from existing sediment transport and bedrock erosion formulations and explore the behavior of local analytical solutions for sediment flux and alluvium thickness. We derive steady-state analytical solutions for channel slope, alluvium thickness, and sediment flux, and show that SPACE matches predicted behavior in detachment-limited, transport-limited, and mixed conditions. We provide an example of landscape evolution modeling in which SPACE is coupled with hillslope diffusion, and demonstrate that SPACE provides an effective framework for simultaneously modeling 2-D sediment transport and bedrock erosion.
Effects of energy-related activities on the Atlantic Continental Shelf
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manowitz, B
1975-01-01
Sixteen papers were presented and are announced separately. Coastal waters, continental shelf geology and aquatic ecosystems are studied for modelling basic data for assessment of possible environmental impacts from offshore energy development. Sediment transport and wave phenomena are modelled for understanding water pollution transport and diffusion. (PCS)
Oxidative Uranium Release from Anoxic Sediments under Diffusion-Limited Conditions.
Bone, Sharon E; Cahill, Melanie R; Jones, Morris E; Fendorf, Scott; Davis, James; Williams, Kenneth H; Bargar, John R
2017-10-03
Uranium (U) contamination occurs as a result of mining and ore processing; often in alluvial aquifers that contain organic-rich, reduced sediments that accumulate tetravalent U, U(IV). Uranium(IV) is sparingly soluble, but may be mobilized upon exposure to nitrate (NO 3 - ) and oxygen (O 2 ), which become elevated in groundwater due to seasonal fluctuations in the water table. The extent to which oxidative U mobilization can occur depends upon the transport properties of the sediments, the rate of U(IV) oxidation, and the availability of inorganic reductants and organic electron donors that consume oxidants. We investigated the processes governing U release upon exposure of reduced sediments to artificial groundwater containing O 2 or NO 3 - under diffusion-limited conditions. Little U was mobilized during the 85-day reaction, despite rapid diffusion of groundwater within the sediments and the presence of nonuraninite U(IV) species. The production of ferrous iron and sulfide in conjunction with rapid oxidant consumption suggested that the sediments harbored large concentrations of bioavailable organic carbon that fueled anaerobic microbial respiration and stabilized U(IV). Our results suggest that seasonal influxes of O 2 and NO 3 - may cause only localized mobilization of U without leading to export of U from the reducing sediments when ample organic carbon is present.
Ellis, Laura-Jayne A; Valsami-Jones, Eugenia; Lead, Jamie R; Baalousha, Mohammed
2016-10-15
The role of surface coating (polyvinylpyrrolidone (PVP) and citrate) and water chemistry on the fate and behavior of AgNPs in aquatic microcosms is reported in this study. The migration and transformation of the AgNPs was examined in low (ultrapure water-UPW) and high ionic strength (moderately hard water - MHW) preparations, and in the presence of modeled natural organic matter (NOM) of Suwannee River Fulvic Acid (SRFA). The migration and fate of the AgNPs in the microcosms was validated using a sedimentation-diffusion model and the aggregation behavior was monitored by UV-visible spectrometry (UV-vis). Dissolved and particulate Ag concentrations (% Ag) were analyzed by ultrafiltration methods. Imaging of the AgNPs was captured using transmission electron microscopy (TEM). Results indicate that PVP-coated AgNPs (PVP-AgNPs) remained stable for 28days with similarly distributed concentrations of the PVP-AgNPs throughout the columns in each of the water conditions after approximately 96h (4days). The sedimentation-diffusion model confirmed PVP-AgNP stability in each condition, by showing diffusion dominated transport by using the original unaltered AgNP sizes to fit the parameters. In comparison, citrate AgNPs were largely unstable in the more complex water preparations (MHW). In MHW, aggregation dominated behavior followed by sedimentation/dissolution controlled transport was observed. The addition of SRFA to MHW resulted in small stabilizing effects, to the citrate coated AgNPs, producing smaller sized AgNPs (TEM) and mixed sedimentation and diffusion migration compared the studies absent of SRFA. The results suggest that surface coating and solution chemistry has a major impact on AgNP stability, furthermore the corresponding modeling will support the experimental understanding of the overall fate of AgNPs in the environment. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Foufoula-Georgiou, E.; Ganti, V. K.; Dietrich, W. E.
2009-12-01
Sediment transport on hillslopes can be thought of as a hopping process, where the sediment moves in a series of jumps. A wide range of processes shape the hillslopes which can move sediment to a large distance in the downslope direction, thus, resulting in a broad-tail in the probability density function (PDF) of hopping lengths. Here, we argue that such a broad-tailed distribution calls for a non-local computation of sediment flux, where the sediment flux is not only a function of local topographic quantities but is an integral flux which takes into account the upslope topographic “memory” of the point of interest. We encapsulate this non-local behavior into a simple fractional diffusive model that involves fractional (non-integer) derivatives. We present theoretical predictions from this nonlocal model and demonstrate a nonlinear dependence of sediment flux on local gradient, consistent with observations. Further, we demonstrate that the non-local model naturally eliminates the scale-dependence exhibited by any local (linear or nonlinear) sediment transport model. An extension to a 2-D framework, where the fractional derivative can be cast into a mixture of directional derivatives, is discussed together with the implications of introducing non-locality into existing landscape evolution models.
A sediment-dispersal model for the South Texas continental shelf, northwest Gulf of Mexico
Shideler, G.L.
1978-01-01
Textural-distribution patterns of sea-floor sediments on the South Texas continental shelf between Matagorda Bay and the U.S.-Mexico international boundary were evaluated as part of a regional environmental-studies program. Sediment textural gradients support a conceptual model for the regional sediment-dispersal system, which is characterized by both net offshore transport and net south-trending coastwise transport components on a wind-dominated shelf. Coastwise transport results in the net southward migration of both palimpsest sandy mud composing the ancestral Brazos-Colorado delta flank in the northern sector, and modern mud composing the central sector; these migrating sediments are encroaching southward onto immobile relict muddy sands composing the ancestral Rio Grande delta in the southern sector. In the proposed model, the suspension transport of modern silt-enriched mud derived mainly from coastal sources is the dominant dispersal mechanism. Net offshore transport is attributed both to diffusion, and to the advective ebb-tide discharge of turbid lagoonal-estuarine waters from coastal inlets. Net southward transport is attributed mainly to advection by seasonally residual coastwise drift currents reflecting a winter-dominated hydraulic regime. Frequent winter storms characterized by relatively high-speed northerly winds that accompany the passage of cold fronts appear to be dominant regional dispersal agents. ?? 1978.
Curtis, Gary P.; Kohler, Matthias; Kannappan, Ramakrishnan; Briggs, Martin A.; Day-Lewis, Frederick D.
2015-01-01
Scientifically defensible predictions of field scale U(VI) transport in groundwater requires an understanding of key processes at multiple scales. These scales range from smaller than the sediment grain scale (less than 10 μm) to as large as the field scale which can extend over several kilometers. The key processes that need to be considered include both geochemical reactions in solution and at sediment surfaces as well as physical transport processes including advection, dispersion, and pore-scale diffusion. The research summarized in this report includes both experimental and modeling results in batch, column and tracer tests. The objectives of this research were to: (1) quantify the rates of U(VI) desorption from sediments acquired from a uranium contaminated aquifer in batch experiments;(2) quantify rates of U(VI) desorption in column experiments with variable chemical conditions, and(3) quantify nonreactive tracer and U(VI) transport in field tests.
Scaling hyporheic exchange and its influence on biogeochemical reactions in aquatic ecosystems
O'Connor, Ben L.; Harvey, Judson W.
2008-01-01
Hyporheic exchange and biogeochemical reactions are difficult to quantify because of the range in fluid‐flow and sediment conditions inherent to streams, wetlands, and nearshore marine ecosystems. Field measurements of biogeochemical reactions in aquatic systems are impeded by the difficulty of measuring hyporheic flow simultaneously with chemical gradients in sediments. Simplified models of hyporheic exchange have been developed using Darcy's law generated by flow and bed topography at the sediment‐water interface. However, many modes of transport are potentially involved (molecular diffusion, bioturbation, advection, shear, bed mobility, and turbulence) with even simple models being difficult to apply in complex natural systems characterized by variable sediment sizes and irregular bed geometries. In this study, we synthesize information from published hyporheic exchange investigations to develop a scaling relationship for estimating mass transfer in near‐surface sediments across a range in fluid‐flow and sediment conditions. Net hyporheic exchange was quantified using an effective diffusion coefficient (De) that integrates all of the various transport processes that occur simultaneously in sediments, and dimensional analysis was used to scale De to shear stress velocity, roughness height, and permeability that describe fluid‐flow and sediment characteristics. We demonstrated the value of the derived scaling relationship by using it to quantify dissolved oxygen (DO) uptake rates on the basis of DO profiles in sediments and compared them to independent flux measurements. The results support a broad application of the De scaling relationship for quantifying coupled hyporheic exchange and biogeochemical reaction rates in streams and other aquatic ecosystems characterized by complex fluid‐flow and sediment conditions.
Doan, Phuong T K; Watson, Sue B; Markovic, Stefan; Liang, Anqi; Guo, Jay; Mugalingam, Shan; Stokes, Jonathan; Morley, Andrew; Zhang, Weitao; Arhonditsis, George B; Dittrich, Maria
2018-04-24
Internal phosphorus (P) loading significantly contributes to hysteresis in ecosystem response to nutrient remediation, but the dynamics of sediment P transformations are often poorly characterized. Here, we applied a reaction-transport diagenetic model to investigate sediment P dynamics in the Bay of Quinte, a polymictic, spatially complex embayment of Lake Ontario, (Canada). We quantified spatial and temporal variability of sediment P binding forms and estimated P diffusive fluxes and sediment P retention in different parts of the bay. Our model supports the notion that diagenetic recycling of redox sensitive and organic bound P forms drive sediment P release. In the recent years, summer sediment P diffusive fluxes varied in the range of 3.2-3.6 mg P m -2 d -1 in the upper bay compared to 1.5 mg P m -2 d -1 in the middle-lower bay. Meanwhile sediment P retention ranged between 71% and 75% in the upper and middle-lower bay, respectively. The reconstruction of temporal trends of internal P loading in the past century, suggests that against the backdrop of reduced external P inputs, sediment P exerts growing control over the lake nutrient budget. Higher sediment P diffusive fluxes since mid-20th century with particular increase in the past 20 years in the shallower upper basins, emphasize limited sediment P retention potential and suggest prolonged ecosystem recovery, highlighting the importance of ongoing P control measures. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Tang, H.; Weiss, R.
2016-12-01
GeoClaw-STRICHE is designed for simulating the physical impacts of tsunami as it relates to erosion, transport and deposition. GeoClaw-STRICHE comprises GeoClaw for the hydrodynamics and the sediment transport model we refer to as STRICHE, which includes an advection diffusion equation as well as bed-updating. Multiple grain sizes and sediment layers are added into GeoClaw-STRICHE to simulate grain-size distribution and add the capability to develop grain-size trends from bottom to the top of a simulated deposit as well as along the inundation. Unlike previous models based on empirical equations or sediment concentration gradient, the standard Van Leer method is applied to calculate sediment flux. We tested and verified GeoClaw-STRICHE with flume experiment by Johnson et al. (2016) and data from the 2004 Indian Ocean tsunami in Kuala Meurisi as published in Apotsos et al. (2011). The comparison with experimental data shows GeoClaw-STRICHE's capability to simulate sediment thickness and grain-size distribution in experimental conditions, which builds confidence that sediment transport is correctly predicted by this model. The comparison with the data from the 2004 Indian Ocean tsunami reveals that the pattern of sediment thickness is well predicted and is of similar quality, if not better than the established computational models such as Delft3D.
NASA Astrophysics Data System (ADS)
Hostache, R.; Hissler, C.; Matgen, P.; Guignard, C.; Bates, P.
2014-09-01
Fine sediments represent an important vector of pollutant diffusion in rivers. When deposited in floodplains and riverbeds, they can be responsible for soil pollution. In this context, this paper proposes a modelling exercise aimed at predicting transport and diffusion of fine sediments and dissolved pollutants. The model is based upon the Telemac hydro-informatic system (dynamical coupling Telemac-2D-Sysiphe). As empirical and semiempirical parameters need to be calibrated for such a modelling exercise, a sensitivity analysis is proposed. An innovative point in this study is the assessment of the usefulness of dissolved trace metal contamination information for model calibration. Moreover, for supporting the modelling exercise, an extensive database was set up during two flood events. It includes water surface elevation records, discharge measurements and geochemistry data such as time series of dissolved/particulate contaminants and suspended-sediment concentrations. The most sensitive parameters were found to be the hydraulic friction coefficients and the sediment particle settling velocity in water. It was also found that model calibration did not benefit from dissolved trace metal contamination information. Using the two monitored hydrological events as calibration and validation, it was found that the model is able to satisfyingly predict suspended sediment and dissolve pollutant transport in the river channel. In addition, a qualitative comparison between simulated sediment deposition in the floodplain and a soil contamination map shows that the preferential zones for deposition identified by the model are realistic.
Measurements of near-bed intra-wave sediment entrainment above vortex ripples
NASA Astrophysics Data System (ADS)
Thorne, Peter D.; Davies, Alan G.; Williams, Jon J.
2003-10-01
In general, descriptions of suspended sediment transport beneath surface waves are based on the turbulent diffusion concept. However, it is recognised that this approach is questionable for the suspension of sediment when the seabed is rippled. In this case, at least if the ripples are sufficiently steep, the entrainment process is likely to be well organised, and associated with vortex formation and shedding from the ripples. To investigate the entrainment process above ripples, a study was carried out in a large-scale wave flume facility. Utilising acoustic techniques, visualisations of the intra-wave sediment entrainment above vortex ripples have been generated. The observations provide a detailed description of entrainment, which is interpreted here in relation to the process of vortex formation and shedding. It is anticipated that such measurements will contribute to the development of improved physical process models of sediment transport in the rippled bed regime.
NASA Astrophysics Data System (ADS)
Ancey, C.; Bohorquez, P.; Heyman, J.
2015-12-01
The advection-diffusion equation is one of the most widespread equations in physics. It arises quite often in the context of sediment transport, e.g., for describing time and space variations in the particle activity (the solid volume of particles in motion per unit streambed area). Phenomenological laws are usually sufficient to derive this equation and interpret its terms. Stochastic models can also be used to derive it, with the significant advantage that they provide information on the statistical properties of particle activity. These models are quite useful when sediment transport exhibits large fluctuations (typically at low transport rates), making the measurement of mean values difficult. Among these stochastic models, the most common approach consists of random walk models. For instance, they have been used to model the random displacement of tracers in rivers. Here we explore an alternative approach, which involves monitoring the evolution of the number of particles moving within an array of cells of finite length. Birth-death Markov processes are well suited to this objective. While the topic has been explored in detail for diffusion-reaction systems, the treatment of advection has received no attention. We therefore look into the possibility of deriving the advection-diffusion equation (with a source term) within the framework of birth-death Markov processes. We show that in the continuum limit (when the cell size becomes vanishingly small), we can derive an advection-diffusion equation for particle activity. Yet while this derivation is formally valid in the continuum limit, it runs into difficulty in practical applications involving cells or meshes of finite length. Indeed, within our stochastic framework, particle advection produces nonlocal effects, which are more or less significant depending on the cell size and particle velocity. Albeit nonlocal, these effects look like (local) diffusion and add to the intrinsic particle diffusion (dispersal due to velocity fluctuations), with the important consequence that local measurements depend on both the intrinsic properties of particle displacement and the dimensions of the measurement system.
Tansel, Berrin; Lee, Mengshan; Tansel, Derya Z
2013-08-15
First order removal rates for 15 polyaromatic hydrocarbons (PAHs) in soil, sediments and mangrove leaves were compared in relation to the parameters used in fate transport analyses (i.e., octanol-water partition coefficient, organic carbon-water partition coefficient, solubility, diffusivity in water, HOMO-LUMO gap, molecular size, molecular aspect ratio). The quantitative structure activity relationships (QSAR) and quantitative structure property relationships (QSPR) showed that the rate of disappearance of PAHs is correlated with their diffusivities in water as well as molecular volumes in different media. Strong correlations for the rate of disappearance of PAHs in sediments could not be obtained in relation to most of the parameters evaluated. The analyses showed that the QSAR and QSPR correlations developed for removal rates of PAHs in soils would not be adequate for sediments and plant tissues. Copyright © 2013 Elsevier Ltd. All rights reserved.
Development of Sediment Deposition Height Capacity Equation in Sewer Networks
NASA Astrophysics Data System (ADS)
Song, Yangho; Jo, Deokjun; Lee, Jungho
2017-04-01
Sediment characteristics and transport processes in sewers are markedly different from river. There is a wide range of particle densities and smaller particle size variation in sewers. Sediment supply and the available erodible material are more limited in sewers, and the diverse hydraulic characteristics in sewer systems are more unsteady. Prevention of sewer sediment accumulation, which can cause major sewer operational problems, is imperative and has been an immense concern for engineers. The effects of sediment formation in sewer systems, an appropriate sediment transport modelling with the ability to determine the location and depth of sediment deposit is needed. It is necessary to design efficiently considering the transfer and settling phenomena of the sediment coming into the sewer systems. During transport in the sewer, the minimum shear flow velocity and possible shear stress at which the sediment is transported smoothly. However, the interaction of sediment and fluid within the sewer systems has been very complex and the rigorous theoretical handling of this problem has not been developed. It is derived from the empirical values obtained from the river bed. The basic theory that particles float is based on the balance between sedimentation of particles by gravity and turbulent diffusion of fluids. There are many variables related. Representative parameters include complex phenomena due to collisions between particles, particles and fluids, and interactions between particles and tube walls. In general, the main parameters that form the boundary between the main transport and sediment are particle size, density, volume fraction, pipe diameter and gravity. As the particle size and volume concentration increase, the minimum feed rate increases and the same tendency is observed for the change of the capillary diameter. Based on this tendency, this study has developed a sediment deposition height capacity formula to take into consideration the sewer discharge capacity. The main objective in undertaking this research is the assessment of the sediment scouring and transporting capacity of the discharged. Acknowledgements This research was supported by a grant(13AWMP-B066744-01) from Advanced Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.
NASA Astrophysics Data System (ADS)
Kasten, S.; Mewes, K.; Mogollón, J.; Picard, A.; Rühlemann, C.; Eisenhauer, A.; Kuhn, T.; Ziebis, W.
2015-12-01
Within the Clarion-Clipperton Fracture Zone (CCFZ) located in the equatorial Pacific Ocean numerous seamounts, with diameters ranging from 3 to 30 km and varying heights above the surrounding seafloor of up to 2500 m, occur throughout the deep-sea plain. There is evidence that these may serve as conduits for low-temperature hydrothermal circulation of seawater through the oceanic crust. During RV SONNE cruise SO205 in April/May 2010 and BIONOD cruise with RV ĹATALANTE in spring 2012 we took piston and gravity cores for geochemical analyses, as well as for high-resolution pore-water oxygen and nutrient measurements. Specifically, we took cores along a transect at three sites, located 400, 700 and 1000 m away from the foot of a 240 m high seamount, called 'Teddy Bare'. At all 3 sites oxygen penetrates the entire sediment column of the organic carbon-poor sediment. More importantly, oxygen concentrations initially decrease with sediment depth but increase again at depths of 3 m and 7 m above the basaltic basement, suggesting an upward diffusion of oxygen from seawater circulating within the seamount crust into the overlying basal sediments. This is the first time this has been shown for the deep subsurface in the Pacific Ocean. Mirroring the oxygen concentrations nitrate concentrations accumulate with sediment depth but decrease towards the basement. Transport-reaction modeling revealed that (1) the diffusive flux of oxygen from the basaltic basement exceeds the oxygen consumption through organic matter oxidation and nitrification in the basal sediments and (2) the nutrient exchange between the sediment and the underlying basaltic crust occurs at orders-of-magnitude lower rates than between the sediment surface and the overlying bottom water. We furthermore show that the upward diffusion of oxygen from the basaltic basement affects the preservation of organic compounds within the oxic sediment column at all 3 sites. Our investigations indicate that an upward diffusion of oxygen from the basalt into the overlying sediment may be a widespread phenomenon in this area of the Pacific Ocean that is characterized by numerous seamounts.
NASA Astrophysics Data System (ADS)
Laginha Silva, Patricia; Martins, Flávio A.; Boski, Tomász; Sampath, Dissanayake M. R.
2010-05-01
Fluvial sediment transport creates great challenges for river scientists and engineers. The interaction between the fluid (water) and the solid (dispersed sediment particles) phases is crucial in morphodynamics. The process of sediment transport and the resulting morphological evolution of rivers get more complex with the exposure of the fluvial systems to the natural and variable environment (climatic, geological, ecological and social, etc.). The earlier efforts in mathematical river modelling were almost exclusively built on traditional fluvial hydraulics. The last half century has seen more and more developments and applications of mathematical models for fluvial flow, sediment transport and morphological evolution. The first attempts for a quantitative description and simulation of basin filling in geological time scales started in the late 60´s of the last century (eg. Schwarzacher, 1966; Briggs & Pollack, 1967). However, the quality of this modelling practice has emerged as a crucial issue for concern, which is widely viewed as the key that could unlock the full potential of computational fluvial hydraulics. Most of the models presently used to study fluvial basin filling are of the "diffusion type" (Flemmings and Jordan, 1989). It must be noted that this type of models do not assume that the sediment transport is performed by a physical diffusive process. Rather they are synthetic models based on mass conservation. In the "synthesist" viewpoint (Tipper, 1992; Goldenfeld & Kadanoff, 1999; Werner, 1999 in Paola, 2000) the dynamics of complex systems may occur on many levels (time or space scales) and the dynamics of higher levels may be more or less independent of that at lower levels. In this type of models the low frequency dynamics is controlled by only a few important processes and the high frequency processes are not included. In opposition to this is the "reductionist" viewpoint that states that there is no objective reason to discard high frequency processes. In this viewpoint the system is broken down into its fundamental components and processes and the model is build up by selecting the important processes regardless of its time and space scale. This viewpoint was only possible to pursue in the recent years due to improvement in system knowledge and computer power (Paola, 2000). The primary aim of this paper is to demonstrate that it is possible to simulate the evolution of the sediment river bed, traditionally studied with synthetic models, with a process-based hydrodynamic, sediment transport and morphodynamic model, solving explicitly the mass and momentum conservation equations. With this objective, a comparison between two mathematical models for alluvial rivers is made to simulate the evolution of the sediment river bed of a conceptual 1D embayment for periods in the order of a thousand years: the traditional synthetic basin infilling aggregate diffusive type model based on the diffusion equation (Paola, 2000), used in the "synthesist" viewpoint and the process-based model MOHID (Miranda et al., 2000). The simulation of the sediment river bed evolution achieved by the process-based model MOHID is very similar to those obtained by the diffusive type model, but more complete due to the complexity of the process-based model. In the MOHID results it is possible to observe a more comprehensive and realistic results because this type of model include processes that is impossible to a synthetic model to describe. At last the combined effect of tide, sea level rise and river discharges was investigated in the process based model. These effects cannot be simulated using the diffusive type model. The results demonstrate the feasibility of using process based models to perform studies in scales of 10000 years. This is an advance relative to the use of synthetic models, enabling the use of variable forcing. REFERENCES • Briggs, L.I. and Pollack, H.N., 1967. Digital model of evaporate sedimentation. Science, 155, 453-456. • Flemmings, P.B. and Jordan, T.E., 1989. A synthetic stratigraphic model of foreland basin development. J. Geophys. Res., 94, 3851-3866. • Miranda, R., Braunschweig, F., Leitão, P., Neves, R., Martins, F. & Santos A., 2000. MOHID 2000 - A coastal integrated object oriented model. Proc. Hydraulic Engineering Software VIII, Lisbon, 2000, 393-401, Ed. W.R. Blain & C.A. Brebbia, WITpress. • Paola, C., 2000. Quantitative models of sedimentary basin filing. Sedimentology, 47, 121-178. • Schwarzacher, W., 1966. Sedimentation in a subsiding basin. Nature, 5043, 1349-1350. ACKNOWLEDGMENTS This work was supported by the EVEDUS PTDC/CLI/68488/2006 Research Project
NASA Astrophysics Data System (ADS)
Kemner, K. M.; Boyanov, M.; Flynn, T. M.; O'Loughlin, E. J.; Antonopoulos, D. A.; Kelly, S.; Skinner, K.; Mishra, B.; Brooks, S. C.; Watson, D. B.; Wu, W. M.
2015-12-01
FeIII- and SO42--reducing microorganisms and the mineral phases they produce have profound implications for many processes in aquatic and terrestrial systems. In addition, many of these microbially-catalysed geochemical transformations are highly dependent upon introduction of reactants via advective and diffusive hydrological transport. We have characterized microbial communities from a set of static microcosms to test the effect of ethanol diffusion and sulfate concentration on UVI-contaminated sediment. The spatial distribution, valence states, and speciation of both U and Fe were monitored in situ throughout the experiment by synchrotron x-ray absorption spectroscopy, in parallel with solution measurements of pH and the concentrations of sulfate, ethanol, and organic acids. After reaction initiation, a ~1-cm thick layer of sediment near the sediment-water (S-W) interface became visibly dark. Fe XANES spectra of the layer were consistent with the formation of FeS. Over the 4 year duration of the experiment, U LIII-edge XANES indicated reduction of U, first in the dark layer and then throughout the sediment. Next, the microcosms were disassembled and samples were taken from the overlying water and different sediment regions. We extracted DNA and characterized the microbial community by sequencing 16S rRNA gene amplicons with the Illumina MiSeq platform and found that the community evolved from its originally homogeneous composition, becoming significantly spatially heterogeneous. We have also developed an x-ray accessible column to probe elemental transformations as they occur along the flow path in a porous medium with the purpose of refining reactive transport models (RTMs) that describe coupled physical and biogeochemical processes in environmental systems. The elemental distribution dynamics and the RTMs of the redox driven processes within them will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevenson, A.J.; Scholl, D.W.; Vallier, T.L.
1990-05-01
The central segment of the Aleutian Trench (162{degree}W to 175{degree}E) is an intraoceanic subduction zone that contains an anomalously thick sedimentary fill (4 km maximum). The fill is an arcward-thickening and slightly tilted wedge of sediment characterized acoustically by laterally continuous, closely spaced, parallel reflectors. These relations are indicative of turbidite deposition. The trench floor and reflection horizons are planar, showing no evidence of an axial channel or any transverse fan bodies. Cores of surface sediment recover turbidite layers, implying that sediment transport and deposition occur via diffuse, sheetlike, fine-grained turbidite flows that occupy the full width of the trench.more » The mineralogy of Holocene trench sediments document a mixture of island-arc (dominant) and continental source terranes. GLORIA side-scan sonar images reveal a westward-flowing axial trench channel that conducts sediment to the eastern margin of the central segment, where channelized flow cases. Much of the sediment transported in this channel is derived from glaciated drainages surrounding the Gulf of Alaska which empty into the eastern trench segment via deep-sea channel systems (Surveyor and others) and submarine canyons (Hinchinbrook and others). Insular sediment transport is more difficult to define. GLORIA images show the efficiency with which the actively growing accretionary wedge impounds sediment that manages to cross a broad fore-arc terrace. It is likely that island-arc sediment reaches the trench either directly via air fall, via recycling of the accretionary prism, or via overtopping of the accretionary ridges by the upper parts of thick turbidite flows.« less
Mechanisms controlling the complete accretionary beach state sequence
NASA Astrophysics Data System (ADS)
Dubarbier, Benjamin; Castelle, Bruno; Ruessink, Gerben; Marieu, Vincent
2017-06-01
Accretionary downstate beach sequence is a key element of observed nearshore morphological variability along sandy coasts. We present and analyze the first numerical simulation of such a sequence using a process-based morphodynamic model that solves the coupling between waves, depth-integrated currents, and sediment transport. The simulation evolves from an alongshore uniform barred beach (storm profile) to an almost featureless shore-welded terrace (summer profile) through the highly alongshore variable detached crescentic bar and transverse bar/rip system states. A global analysis of the full sequence allows determining the varying contributions of the different hydro-sedimentary processes. Sediment transport driven by orbital velocity skewness is critical to the overall onshore sandbar migration, while gravitational downslope sediment transport acts as a damping term inhibiting further channel growth enforced by rip flow circulation. Accurate morphological diffusivity and inclusion of orbital velocity skewness opens new perspectives in terms of morphodynamic modeling of real beaches.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curtis, Gary P.; Kohler, Matthias; Kannappan, Ramakrishnan
2015-02-24
Scientifically defensible predictions of field scale U(VI) transport in groundwater requires an understanding of key processes at multiple scales. These scales range from smaller than the sediment grain scale (less than 10 μm) to as large as the field scale which can extend over several kilometers. The key processes that need to be considered include both geochemical reactions in solution and at sediment surfaces as well as physical transport processes including advection, dispersion, and pore-scale diffusion. The research summarized in this report includes both experimental and modeling results in batch, column and tracer tests. The objectives of this research weremore » to: (1) quantify the rates of U(VI) desorption from sediments acquired from a uranium contaminated aquifer in batch experiments;(2) quantify rates of U(VI) desorption in column experiments with variable chemical conditions, and(3) quantify nonreactive tracer and U(VI) transport in field tests.« less
NASA Technical Reports Server (NTRS)
Lee, Cin-Ty Aeolus; Wasserburg, Gerald J.; Kyte, Frank T.
2003-01-01
The nature of Re-platinum-group element (PGE; Pt, Pd, Ir, Os, Ru) transport in the marine environment was investigated by means of marine sediments at and across the Cretaceous-Tertiary boundary (KTB) at two hemipelagic sites in Europe and two pelagic sites in the North and South Pacific. A traverse across the KTB in the South Pacific pelagic clay core found elevated levels of Re, Pt, Ir, Os, and Ru, each of which is approximately symmetrically distributed over a distance of approx. 1.8 m across the KTB. The Re-PGE abundance patterns are fractionated from chondritic relative abundances: Ru, Pt, Pd, and Re contents are slightly subchondritic relative to Ir, and Os is depleted by approx. 95% relative to chondritic Ir proportions. A similar depletion in Os (approx. 90%) was found in a sample of the pelagic KTB in the North Pacific, but it is enriched in Ru, Pt, Pd, and Re relative to Ir. The two hemipelagic KTB clays have near-chondritic abundance patterns. The approx. 1.8-m-wide Re-PGE peak in the pelagic South Pacific section cannot be reconciled with the fallout of a single impactor, indicating that postdepositional redistribution has occurred. The elemental profiles appear to fit diffusion profiles, although bioturbation could have also played a role. If diffusion had occurred over approx. 65 Ma, the effective diffusivities are approx. 10(exp -13)sq cm/s, much smaller than that of soluble cations in pore waters (approx. 10(exp -5) sq cm/s). The coupling of Re and the PGEs during redistribution indicates that postdepositional processes did not significantly fractionate their relative abundances. If redistribution was caused by diffusion, then the effective diffusivities are the same. Fractionation of Os from Ir during the KTB interval must therefore have occurred during aqueous transport in the marine environment. Distinctly subchondritic Os/Ir ratios throughout the Cenozoic in the South Pacific core further suggest that fractionation of Os from Ir in the marine environment is a general process throughout geologic time because most of the inputs of Os and Ir into the ocean have OsAr ratios greater than or = 1. Mass balance calculations show that Os and Re burial fluxes in pelagic sediments account for only a small fraction of the riverine Os (less than 10%) and Re (less than 0.1%) inputs into the oceans. In contrast, burial of Ir in pelagic sediments is similar to the riverine Ir input, indicating that pelagic sediments are a much larger repository for Ir than for Os and Re. If all of the missing Os and Re is assumed to reside in anoxic sediments in oceanic margins, the calculated burial fluxes in anoxic sediments are similar to observed burial fluxes. However, putting all of the missing Os and Re into estuarine sediments would require high concentrations to balance the riverine input and would also fail to explain the depletion of Os at pelagic KTB sites, where at most approx. 25% of the K-T impactor's Os could have passed through estuaries. If Os is preferentially sequestered in anoxic marine environments, it follows that the OsAr ratio of pelagic sediments should be sensitive to changes in the rates of anoxic sediment deposition. There is thus a clear fractionation of Os and Re from Ir in precipitation out of sea water in pelagic sections. Accordingly, it is inferred here that Re and Os are removed from sea water in anoxic marine depositional regimes.
Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model
Warner, J.C.; Sherwood, C.R.; Signell, R.P.; Harris, C.K.; Arango, H.G.
2008-01-01
We are developing a three-dimensional numerical model that implements algorithms for sediment transport and evolution of bottom morphology in the coastal-circulation model Regional Ocean Modeling System (ROMS v3.0), and provides a two-way link between ROMS and the wave model Simulating Waves in the Nearshore (SWAN) via the Model-Coupling Toolkit. The coupled model is applicable for fluvial, estuarine, shelf, and nearshore (surfzone) environments. Three-dimensional radiation-stress terms have been included in the momentum equations, along with effects of a surface wave roller model. The sediment-transport algorithms are implemented for an unlimited number of user-defined non-cohesive sediment classes. Each class has attributes of grain diameter, density, settling velocity, critical stress threshold for erosion, and erodibility constant. Suspended-sediment transport in the water column is computed with the same advection-diffusion algorithm used for all passive tracers and an additional algorithm for vertical settling that is not limited by the CFL criterion. Erosion and deposition are based on flux formulations. A multi-level bed framework tracks the distribution of every size class in each layer and stores bulk properties including layer thickness, porosity, and mass, allowing computation of bed morphology and stratigraphy. Also tracked are bed-surface properties including active-layer thickness, ripple geometry, and bed roughness. Bedload transport is calculated for mobile sediment classes in the top layer. Bottom-boundary layer submodels parameterize wave-current interactions that enhance bottom stresses and thereby facilitate sediment transport and increase bottom drag, creating a feedback to the circulation. The model is demonstrated in a series of simple test cases and a realistic application in Massachusetts Bay.
1979-02-01
coefficient (at equilibrium) when hysteresis is apparent. 6. Coefficient n in Freundlich equation for 1/n soil or sediment adsorption isotherms ýX - KC . 7...Biodegradation Chemical structures cal clasaes (e.g., Diffusion Correlations phenols). General Diffusion coefficients Equations terms for organic...OF THE FATE AND TRANSPORT OF ORGANIC CHEMICALS Adsorption coefficients: K, n* from Freundlich equation + Desorption coefficients: K’*, n’* from
NASA Astrophysics Data System (ADS)
Smith, J. T.; Comans, R. N. J.
1996-03-01
In determining the mobility of ions in sediments it is important to take account of the solid phase sorption and speciation. Measurements were made of activity depth profiles of 137Cs from fallout from Nuclear Weapons Testing and from the Chernobyl accident in two lake sediments. The fraction of 137Cs in the aqueous, exchangeably sorbed and "fixed" phases was determined at each depth interval. A model was developed to simulate the transport of 137Cs in these sediments, taking account of changes in sorption properties as the concentration of the competing ammonium ion changes with depth, as well as transfers of activity to less-exchangeable sites on the solids. The model simulations give reasonable agreement with experimental data, and the fitted rate constant for slow transfers to less-exchangeable sites ( T1/2 = 50-125 d) is in agreement with independent measurements. The modelling gave evidence for a reverse reaction from less-exchangeable to exchangeable sites with a half-life of order 10 y. Model results were compared with those generated by a physical mixing model and the standard molecular diffusion model assuming equilibrium sorption to the solid phase. Estimates were made of the remobilisation of Chernobyl 137Cs from these sediments to the water column: predicted rates vary from around 3% of the inventory per year 2 years after the fallout event to 0.04% per year 30 years after the fallout.
NASA Astrophysics Data System (ADS)
Friedson, A. James; Gonzales, Erica J.
2017-11-01
We explore the conditions under which ordinary and double-diffusive thermal convection may be inhibited by water condensation in the hydrogen atmospheres of the ice giants and examine the consequences. The saturation of vapor in the condensation layer induces a vertical gradient in the mean molecular weight that stabilizes the layer against convective instability when the abundance of vapor exceeds a critical value. In this instance, the layer temperature gradient can become superadiabatic and heat must be transported vertically by another mechanism. On Uranus and Neptune, water is inferred to be sufficiently abundant for inhibition of ordinary convection to take place in their respective condensation zones. We find that suppression of double-diffusive convection is sensitive to the ratio of the sedimentation time scale of the condensates to the buoyancy period in the condensation layer. In the limit of rapid sedimentation, the layer is found to be stable to diffusive convection. In the opposite limit, diffusive convection can occur. However, if the fluid remains saturated, then layered convection is generally suppressed and the motion is restricted in form to weak, homogeneous, oscillatory turbulence. This form of diffusive convection is a relatively inefficient mechanism for transporting heat, characterized by low Nusselt numbers. When both ordinary and layered convection are suppressed, the condensation zone acts effectively as a thermal insulator, with the heat flux transported across it only slightly greater than the small value that can be supported by radiative diffusion. This may allow a large superadiabatic temperature gradient to develop in the layer over time. Once the layer has formed, however, it is vulnerable to persistent erosion by entrainment of fluid into the overlying convective envelope of the cooling planet, potentially leading to its collapse. We discuss the implications of our results for thermal evolution models of the ice giants, for understanding Uranus' anomalously low intrinsic luminosity, and for inducing episodes of intense convection in the atmospheres of Saturn, Uranus, and Neptune.
Ter Horst, Mechteld M S; Koelmans, Albert A
2016-10-04
The assessment of chemical degradation rates from water-sediment experiments like for instance OECD 308 is challenging due to parallel occurrence of processes like degradation, sorption and diffusive transport, at different rates in water and sediment or at their interface. To systematically and quantitatively analyze this limitation, we generated artificial experiment data sets using model simulations and then used these data sets in an inverse modeling exercise to estimate degradation half-lives in water and sediment (DegT50 wat and DegT50 sed ), which then were evaluated against their true values. Results were visualized by chemical space diagrams that identified those substance property combinations for which the OECD 308 test is fundamentally inappropriate. We show that the uncertainty in estimated degradation half-lives in water increases as the process of diffusion to the sediment becomes dominant over degradation in the water. We show that in theory the uncertainty in the estimated DegT50 sed is smaller than the uncertainty in the DegT50 wat . The predictive value of our chemical space diagrams was validated using literature transformation rates and their uncertainties that were inferred from real water-sediment experiments.
Barnard, P.L.; Warrick, J.A.
2010-01-01
Record flooding on the Santa Clara River of California (USA) during January 2005 injected ∼ 5 million m3 of littoral-grade sediment into the Santa Barbara Littoral Cell, approximately an order of magnitude more than both the average annual river loads and the average annual alongshore littoral transport in this portion of the cell. This event appears to be the largest sediment transport event on record for a Southern California river. Over 170 m of local shoreline (mean high water (MHW)) progradation was observed as a result of the flood, followed by 3 years of rapid local shoreline recession. During this post-flood stage, linear regression-determined shoreline change rates are up to −45 m a− 1 on the subaerial beach (MHW) and − 114 m a− 1 on the submarine delta (6 m isobath). Starting approximately 1 km downdrift of the river mouth, shoreline progradation persisted throughout the 3-year post-flood monitoring period, with rates up to + 19 m a− 1. Post-flood bathymetric surveys show nearshore (0 to 12 m depth) erosion on the delta exceeding 400 m3/m a− 1, more than an order of magnitude higher than mean seasonal cross-shore sediment transport rates in the region. Changes were not constant with depth, however; sediment accumulation and subsequent erosion on the delta were greatest at − 5 to − 8 m, and accretion in downdrift areas was greatest above –2 m. Thus, this research shows that the topographic bulge (or “wave”) of sediment exhibited both advective and diffusive changes with time, although there were significant variations in the rates of change with depth. The advection and diffusion of the shoreline position was adequately reproduced with a simple “one line” model, although these modeling techniques miss the important cross-shore variations observed in this area. This study illustrates the importance of understanding low-frequency, high volume coastal discharge events for understanding short- and long-term sediment supply, littoral transport, and beach and nearshore evolution in coastal systems adjacent to river mouths.
Three-Dimensional Modeling of Fluid and Heat Transport in an Accretionary Complex
NASA Astrophysics Data System (ADS)
Paula, C. A.; Ge, S.; Screaton, E. J.
2001-12-01
As sediments are scraped off of the subducting oceanic crust and accreted to the overriding plate, the rapid loading causes pore pressures in the underthrust sediments to increase. The change in pore pressure drives fluid flow and heat transport within the accretionary complex. Fluid is channeled along higher permeability faults and fractures and expelled at the seafloor. In this investigation, we examined the effects of sediment loading on fluid flow and thermal transport in the decollement at the Barbados Ridge subduction zone. Both the width and thickness of the Barbados Ridge accretionary complex increase from north to south. The presence of mud diapers south of the Tiburon Rise and an observed southward decrease in heat flow measurements indicate that the increased thickness of the southern Barbados accretionary prism affects the transport of chemicals and heat by fluids. The three-dimensional geometry and physical properties of the accretionary complex were utilized to construct a three-dimensional fluid flow/heat transport model. We calculated the pore pressure change due to a period of sediment loading and added this to steady-state pressure conditions to generate initial conditions for transient simulations. We then examined the diffusion of pore pressure and possible perturbation of the thermal regime over time due to loading of the underthrust sediments. The model results show that the sediment-loading event was sufficient to create small temperature fluctuations in the decollement zone. The magnitude of temperature fluctuation in the decollement was greatest at the deformation front but did not vary significantly from north to south of the Tiburon Rise.
Numerical modelling of landscape and sediment flux response to precipitation rate change
NASA Astrophysics Data System (ADS)
Armitage, John J.; Whittaker, Alexander C.; Zakari, Mustapha; Campforts, Benjamin
2018-02-01
Laboratory-scale experiments of erosion have demonstrated that landscapes have a natural (or intrinsic) response time to a change in precipitation rate. In the last few decades there has been growth in the development of numerical models that attempt to capture landscape evolution over long timescales. However, there is still an uncertainty regarding the validity of the basic assumptions of mass transport that are made in deriving these models. In this contribution we therefore return to a principal assumption of sediment transport within the mass balance for surface processes; we explore the sensitivity of the classic end-member landscape evolution models and the sediment fluxes they produce to a change in precipitation rates. One end-member model takes the mathematical form of a kinetic wave equation and is known as the stream power model, in which sediment is assumed to be transported immediately out of the model domain. The second end-member model is the transport model and it takes the form of a diffusion equation, assuming that the sediment flux is a function of the water flux and slope. We find that both of these end-member models have a response time that has a proportionality to the precipitation rate that follows a negative power law. However, for the stream power model the exponent on the water flux term must be less than one, and for the transport model the exponent must be greater than one, in order to match the observed concavity of natural systems. This difference in exponent means that the transport model generally responds more rapidly to an increase in precipitation rates, on the order of 105 years for post-perturbation sediment fluxes to return to within 50 % of their initial values, for theoretical landscapes with a scale of 100×100 km. Additionally from the same starting conditions, the amplitude of the sediment flux perturbation in the transport model is greater, with much larger sensitivity to catchment size. An important finding is that both models respond more quickly to a wetting event than a drying event, and we argue that this asymmetry in response time has significant implications for depositional stratigraphies. Finally, we evaluate the extent to which these constraints on response times and sediment fluxes from simple models help us understand the geological record of landscape response to rapid environmental changes in the past, such as the Paleocene-Eocene thermal maximum (PETM). In the Spanish Pyrenees, for instance, a relatively rapid (10 to 50 kyr) duration of the deposition of gravel is observed for a climatic shift that is thought to be towards increased precipitation rates. We suggest that the rapid response observed is more easily explained through a diffusive transport model because (1) the model has a faster response time, which is consistent with the documented stratigraphic data, (2) there is a high-amplitude spike in sediment flux, and (3) the assumption of instantaneous transport is difficult to justify for the transport of large grain sizes as an alluvial bedload. Consequently, while these end-member models do not reproduce all the complexity of processes seen in real landscapes, we argue that variations in long-term erosional dynamics within source catchments can fundamentally control when, how, and where sedimentary archives can record past environmental change.
NASA Astrophysics Data System (ADS)
Moodie, A. J.; Nittrouer, J. A.; Ma, H.; Lamb, M. P.; Carlson, B.; Kineke, G. C.; Parker, G.
2017-12-01
High concentrations of suspended sediment in channelized fluid flow produces density stratification that can alter the turbulent flow structure, thus limiting fluid momentum redistribution and affecting sediment transport capacity. A low channel-bed slope and large flow depth are hypothesized to be additional important factors contributing to density stratification. However, there are limited observations of density stratification in large rivers, especially those that carry significant fluxes of mud, and so the conditions leading to the development of density stratification are poorly constrained. The Yellow River, China, is a fine-grained and low-sloping river that maintains some of the highest suspended sediment concentrations in large rivers worldwide, making it an ideal natural laboratory for studying density stratification and its impact on sediment transport. Suspended sediment samples from the lower Yellow River, collected over a range of discharge conditions, produced sediment concentration profiles that are used in conjunction with velocity profiles to determine the threshold shear velocity for density stratification effects to develop. Comparing measured and predicted concentration and velocity profiles demonstrates that, there is no significant density stratification for base flow conditions; however, above a shear velocity value of 0.05 m/s, there is a progressive offset between the measured and predicted profiles, indicating that density stratification is increasingly important with higher shear stress values. The analyses further indicate that sediment entrainment from the bed and sediment diffusivity within the water column are significantly impacted by density stratification, suggesting that shear stress and sediment transport rates are inhibited by the development of density stratification. Near-bed concentration measurements are used to assess a stress-to-entrainment relationship, accounting for density stratification. These measurements are being used to refine relations for sediment entrainment and sediment flux in sandy and muddy, lowland rivers and deltas.
NASA Astrophysics Data System (ADS)
You, K.; Flemings, P. B.
2016-12-01
We developed two 2-D numerical models to simulate hydrate formation by long range methane gas transport and short-range methane diffusion. We interpret that methane hydrates in thick sands are most likely formed by long range gas transport where methane gas is transported upward into the hydrate stability zone (HSZ) under buoyancy and locally forms hydrate to its stability limit. In short-range methane diffusion, methane is generated locally by biodegradation of organic matter in mud and diffused into bounding sands where it forms hydrate. We could not simulate enough methane transport by diffusion to account for its observed concentration in thick sands. In our models, we include the capillary effect on dissolved methane solubility and on the hydrate phase boundary, sedimentation and different compaction in sand and mud, fracture generation as well as the fully coupled multiphase flow and multicomponent transport. We apply our models to a 12 meter-thick hydrate-bearing sand layer at Walker Ridge 313, Northern Gulf of Mexico. With the long-range gas transport, hydrate saturation is greater than 90% and salinity is increased from seawater to about 8 wt.% through the entire sand. With short-range diffusion, hydrate saturation is more than 90% at the sand base and is less than 10% in the overlying section; salinity is close to seawater when sand is deposited to 800 meter below seafloor by short-range methane diffusion. With short-range diffusion, the amount of hydrate formed is much less than that interpreted from the well log data. Two transient gas layers separated by a hydrate layer are formed from short-range diffusion caused by capillary effect. This could be interpreted as a double bottom simulating reflector. This study provides further insights into different hydrate formation mechanisms, and could serve as a base to confirm the hydrate formation mechanism in fields.
Consistency between 2D-3D Sediment Transport models
NASA Astrophysics Data System (ADS)
Villaret, Catherine; Jodeau, Magali
2017-04-01
Sediment transport models have been developed and applied by the engineering community to estimate transport rates and morphodynamic bed evolutions in river flows, coastal and estuarine conditions. Environmental modelling systems like the open-source Telemac modelling system include a hierarchy of models from 1D (Mascaret), 2D (Telemac-2D/Sisyphe) and 3D (Telemac-3D/Sedi-3D) and include a wide range of processes to represent sediment flow interactions under more and more complex situations (cohesive, non-cohesive and mixed sediment). Despite some tremendous progresses in the numerical techniques and computing resources, the quality/accuracy of model results mainly depend on the numerous choices and skills of the modeler. In complex situations involving stratification effects, complex geometry, recirculating flows… 2D model assumptions are no longer valid. A full 3D turbulent flow model is then required in order to capture the vertical mixing processes and to represent accurately the coupled flow/sediment distribution. However a number of theoretical and numerical difficulties arise when dealing with sediment transport modelling in 3D which will be high-lighted : (1) Dependency of model results to the vertical grid refinement and choice of boundary conditions and numerical scheme (2) The choice of turbulence model determines also the sediment vertical distribution which is governed by a balance between the downward settling term and upward turbulent diffusion. (3) The use of different numerical schemes for both hydrodynamics (mean and turbulent flow) and sediment transport modelling can lead to some inconsistency including a mismatch in the definition of numerical cells and definition of boundary conditions. We discuss here those present issues and present some detailed comparison between 2D and 3D simulations on a set of validation test cases which are available in the Telemac 7.2 release using both cohesive and non-cohesive sediments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tedesco, L.P.; Aller, R.C.
A variety of sedimentological criteria and direct field observations indicate that deposits of shallow carbonate platforms and mud banks are extensively transformed during megafaunal bioturbation by deep-burrowing crustaceans. {sup 210}Pb dating of surficial sediment and burrow fills dissected from the upper 1--3 m of sediments at four sites on the Caicos Platform and in South Florida corroborates sedimentologic descriptions of rapid biogenic alteration of entire facies. {sup 210}Pb distributions from the study sites show that at least some infill is predominantly surficial sediment. Assuming that all identifiable deep burrow fills containing excess {sup 210}Pb derive from the uppermost 0--5 cmmore » interval, an estimate of facies replacement by nonlocal transport can be made based on measured excess {sup 210}Pb values of fill and the corresponding total discernible fill volume in cores. Calculations indicate that at the sites studied, burrow excavation and infilling can completely transform the upper 1--2 m, and possibly 3.5 m, of deposits in 100--600 yr. More rapid transformation of deposits is required if fill is derived from below 5 cm. Biogenic transformation rates are sufficiently fast compared to net sedimentation that burrow infills, not primarily physical deposition, determine the composition, porosity, fabric, and texture of the preserved facies. The {sup 210}Pb profiles in the deepest regions of deposits in the present cases are further complicated by basal enrichments of {sup 226}Ra, which apparently diffuses upwards from Pleistocene calcrete surfaces into overlying Holocene sediment. This diffusion requires careful documentation of supported {sup 210}Pb near this contact, but also offers the potential for an additional transport tracer internal to the deposits.« less
NASA Astrophysics Data System (ADS)
Freed, R.; Smith, L.; Bugai, D.
2001-12-01
In the Borschi watershed, 3 km south of the Chernobyl nuclear power plant, we have found the transfer of 90Sr in wetlands pore waters to surface waters and the subsequent flow of wetland surface waters to the stream, largely effect the concentration of 90Sr in the Borschi channel. In Borschi, we have observed that during most of the year, wetlands are the main source of 90Sr contributing to the Borschi stream and channel bottom sediments are a secondary source. Wetland pore waters have at least an order of magnitude higher concentration of 90Sr than all other surface and subsurface waters. Pore water data obtained using peepers shows the 90Sr diffusion gradient is high in near-surface wetland sediments while the 90Sr diffusion gradient is moderate to insignificant in near-surface channel sediments. Channel and wetland sediments are highly depleted in 90Sr compared with immobile nuclear fission products such as europium-154 and can account for all of the 90Sr removed by the stream since the accident. While channel sediments are largely depleted in exchangeable 90Sr, wetland sediments represent a large source of exchangeable 90Sr. Removal of 90Sr by the stream from the wetland and channel sediments is on the same order as mass loss by decay.
NASA Technical Reports Server (NTRS)
Happell, James D.; Chanton, Jeffrey P.; Whiting, Gary J.; Showers, William J.
1993-01-01
The stable carbon isotopic composition of CH4 is used to study the processes that affect it during transport through plants from sediment to the atmosphere. The enhancement of CH4 flux from Cladium and Eleocharis over the flux from open water or clipped sites indicated that these plants served as gas conduits between the sediments and the atmosphere. Lowering of the water table below the sediment surface caused an Everglades sawgrass marsh to shift from emission of CH4 to consumption of atmospheric CH4. Cladium transported gases passively mainly via molecular diffusion and/or effusion instead of actively via bulk flow. Stable isotropic data gave no evidence that CH4 oxidation was occurring in the rhizosphere of Cladium. Both CH4 stable carbon isotope and flux data indicated a lack of CH4 oxidation at the sediment-water interface in Everglades marl soils and its presence in peat soils where 40 to 92 percent of the flux across the sediment-water interface was oxidized.
NASA Astrophysics Data System (ADS)
Benda, L. E.
2009-12-01
Stochastic geomorphology refers to the interaction of the stochastic field of sediment supply with hierarchically branching river networks where erosion, sediment flux and sediment storage are described by their probability densities. There are a number of general principles (hypotheses) that stem from this conceptual and numerical framework that may inform the science of erosion and sedimentation in river basins. Rainstorms and other perturbations, characterized by probability distributions of event frequency and magnitude, stochastically drive sediment influx to channel networks. The frequency-magnitude distribution of sediment supply that is typically skewed reflects strong interactions among climate, topography, vegetation, and geotechnical controls that vary between regions; the distribution varies systematically with basin area and the spatial pattern of erosion sources. Probability densities of sediment flux and storage evolve from more to less skewed forms downstream in river networks due to the convolution of the population of sediment sources in a watershed that should vary with climate, network patterns, topography, spatial scale, and degree of erosion asynchrony. The sediment flux and storage distributions are also transformed downstream due to diffusion, storage, interference, and attrition. In stochastic systems, the characteristically pulsed sediment supply and transport can create translational or stationary-diffusive valley and channel depositional landforms, the geometries of which are governed by sediment flux-network interactions. Episodic releases of sediment to the network can also drive a system memory reflected in a Hurst Effect in sediment yields and thus in sedimentological records. Similarly, discreet events of punctuated erosion on hillslopes can lead to altered surface and subsurface properties of a population of erosion source areas that can echo through time and affect subsequent erosion and sediment flux rates. Spatial patterns of probability densities have implications for the frequency and magnitude of sediment transport and storage and thus for the formation of alluvial and colluvial landforms throughout watersheds. For instance, the combination and interference of probability densities of sediment flux at confluences creates patterns of riverine heterogeneity, including standing waves of sediment with associated age distributions of deposits that can vary from younger to older depending on network geometry and position. Although the watershed world of probability densities is rarified and typically confined to research endeavors, it has real world implications for the day-to-day work on hillslopes and in fluvial systems, including measuring erosion, sediment transport, mapping channel morphology and aquatic habitats, interpreting deposit stratigraphy, conducting channel restoration, and applying environmental regulations. A question for the geomorphology community is whether the stochastic framework is useful for advancing our understanding of erosion and sedimentation and whether it should stimulate research to further develop, refine and test these and other principles. For example, a changing climate should lead to shifts in probability densities of erosion, sediment flux, storage, and associated habitats and thus provide a useful index of climate change in earth science forecast models.
The diffusion of ions in unconsolidated sediments
Manheim, F.T.
1970-01-01
Diffusion in unconsolidated sediments generally proceeds at rates ranging from half to one twentieth of those applying to diffusion of ions and molecules in free solution. Diffusion rates are predictable with respect to porosity and path tortuosity in host sediments, and can be conveniently measured by determinations of electrical resistivity on bulk sediment samples. Net ion flux is further influenced by reactions of diffusing species with enclosing sediments, but such influences should not be confused with or lumped with diffusion processes. ?? 1970.
Molins, S.; Mayer, K.U.
2007-01-01
The two‐way coupling that exists between biogeochemical reactions and vadose zone transport processes, in particular gas phase transport, determines the composition of soil gas. To explore these feedback processes quantitatively, multicomponent gas diffusion and advection are implemented into an existing reactive transport model that includes a full suite of geochemical reactions. Multicomponent gas diffusion is described on the basis of the dusty gas model, which accounts for all relevant gas diffusion mechanisms. The simulation of gas attenuation in partially saturated landfill soil covers, methane production, and oxidation in aquifers contaminated by organic compounds (e.g., an oil spill site) and pyrite oxidation in mine tailings demonstrate that both diffusive and advective gas transport can be affected by geochemical reactions. Methane oxidation in landfill covers reduces the existing upward pressure gradient, thereby decreasing the contribution of advective methane emissions to the atmosphere and enhancing the net flux of atmospheric oxygen into the soil column. At an oil spill site, methane oxidation causes a reversal in the direction of gas advection, which results in advective transport toward the zone of oxidation both from the ground surface and the deeper zone of methane production. Both diffusion and advection contribute to supply atmospheric oxygen into the subsurface, and methane emissions to the atmosphere are averted. During pyrite oxidation in mine tailings, pressure reduction in the reaction zone drives advective gas flow into the sediment column, enhancing the oxidation process. In carbonate‐rich mine tailings, calcite dissolution releases carbon dioxide, which partly offsets the pressure reduction caused by O2 consumption.
Effect of Sediment Gas Voids and Ebullition on Benthic Solute Exchange.
Flury, Sabine; Glud, Ronnie N; Premke, Katrin; McGinnis, Daniel F
2015-09-01
The presence of free gas in sediments and ebullition events can enhance the pore water transport and solute exchange across the sediment-water interface. However, we experimentally and theoretically document that the presence of free gas in sediments can counteract this enhancement effect. The apparent diffusivities (Da) of Rhodamine WT and bromide in sediments containing 8-18% gas (Da,YE) were suppressed by 7-39% compared to the control (no gas) sediments (Da,C). The measured ratios of Da,YE:Da,C were well within the range of ratios predicted by a theoretical soil model for gas-bearing soils. Whereas gas voids in sediments reduce the Da for soluble species, they represent a shortcut for low-soluble species such as methane and oxygen. Therefore, the presence of even minor amounts of gas can increase the fluxes of low-soluble species (i.e., gases) by several factors, while simultaneously suppressing fluxes of dissolved species.
Erosional dynamics, flexural isostasy, and long-lived escarpments: A numerical modeling study
NASA Technical Reports Server (NTRS)
Tucker, Gregory E.; Slingerland, Rudy L.
1994-01-01
Erosional escarpments common features of high-elevation rifted continets. Fission track data suffest that these escarpments form by base level lowering and/or marginal uplift during rifting, followed by lateral retreat of an erosion front across tens to hundreds of kioometers. Previous modeling studies have shown that this characteristic pattern of denudation can have a profound impact upon marginal isostatic uplift and the evolution of offshore sedimentary basins. Yet at present there is only a rudimentary understanding of the geomorphic mechanisms capable of driving such prolonged escarpment retreat. In this study we present a nonlinear, two-dimensional landscape evolution model tha tis used to asses the necessary and sufficient conditions for long-term retreat of a rift-generated escarpment. The model represents topography as a grid of cells, with drainage networkds evolving as water flows across the grid in the direction of steepest descent. The model accounts for sediment production by weathering, fluvial sediment transport, bedrock channel erosion, and hillslope sediment transport by diffusive mechanisms and by mass failure. Numerical experiments presented explore the effects of different combinations of erosion processes and of dynamic coupling between denudation and flexural isostatic uplift. Model results suggest that the necessary and sufficient conditions for long-term escarpment retreat are (1) incising bedrock channels in which the erosion rate increases with increasing drainage area, so that the channels steepen and propagate headward; (2) a low rate of sediment production relative to sediment transport efficiency, which promotes relief-generating processes over diffusive ones; (3) high continental elevation, which allows greater freedom for fluvial dissection; and (4) any process, including flexural isostatic uplift, that helps to maintain a drainage divide near an escarpment crest. Flexural isostatic uplift also facilitates escarpment, thereby increasing channel gradients and accelerating erosion which in turn generates additional isostatic uplift. Of all the above conditions, high continental elevation is common ot most rift margin escarpments and may ultimately be the most important factor.
NASA Astrophysics Data System (ADS)
Devauchelle, O.; Abramian, A.; Seizilles, G.; Lajeunesse, E.
2015-12-01
By which physical mechanisms does a river select its shape and size? We investigate this question using small laboratory rivers formed by laminar flows.In its simplest form, this experiment consists in a flow of glycerol over a uniform layer of plastic sediments. After a few hours, a channel forms spontaneously, and eventually reaches a stable geometry. This equilibrium state corresponds accurately to the force balance proposed by Henderson (1961).If we impose a sediment discharge at the inlet of the experiment, the river adjusts to this boundary condition by widening its channel. Observation suggests that this new equilibrium results from the balance between gravity, which pulls the entrained grains towards the center of the channel, and bedload diffusion, which returns them towards the banks. This balance explains why experimental rivers get wider and shallower as their sediment load increases.However, to test quantitatively this theory against observation, we need to evaluate independently the effect of transverse slope on bedload transport. We propose to use an instability generated by bedload diffusion to do so.
The effect of sediments on turbulent plume dynamics in a stratified fluid
NASA Astrophysics Data System (ADS)
Stenberg, Erik; Ezhova, Ekaterina; Brandt, Luca
2017-11-01
We report large eddy simulation results of sediment-loaded turbulent plumes in a stratified fluid. The configuration, where the plume is discharged from a round source, provides an idealized model of subglacial discharge from a submarine tidewater glacier and is a starting point for understanding the effect of sediments on the dynamics of the rising plume. The transport of sediments is modeled by means of an advection-diffusion equation where sediment settling velocity is taken into account. We initially follow the experimental setup of Sutherland (Phys. Rev. Fluids, 2016), considering uniformly stratified ambients and further extend the work to pycnocline-type stratifications typical of Greenland fjords. Apart from examining the rise height, radial spread and intrusion of the rising plume, we gain further insights of the plume dynamics by extracting turbulent characteristics and the distribution of the sediments inside the plume.
The impact of flow focusing on gas hydrate accumulations in overpressured marine sediments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nole, Michael; Daigle, Hugh; Cook, Ann
This study demonstrates the potential for flow focusing due to overpressuring in marine sedimentary environments to act as a significant methane transport mechanism from which methane hydrate can precipitate in large quantities in dipping sandstone bodies. Traditionally, gas hydrate accumulations in nature are discussed as resulting from either short-range diffusive methane migration or from long-range advective fluid transport sourced from depth. However, 3D simulations performed in this study demonstrate that a third migration mechanism, short-range advective transport, can provide a significant methane source that is unencumbered by limitations of the other two end-member mechanisms. Short-range advective sourcing is advantageous overmore » diffusion because it can convey greater amounts of methane to sands over shorter timespans, yet it is not necessarily limited by down-dip pore blocking in sands as is typical of updip advection from a deep source. These results are novel because they integrate pore size impacts on spatial solubility gradients, grid block properties that evolve through time, and methane sourcing through microbial methanogenesis into a holistic characterization of environments exposed to multiple methane hydrate sourcing mechanisms. We show that flow focusing toward sand bodies transports large quantities of methane, the magnitude of which are determined by the sand-clay solubility contrast, and generates larger quantities of hydrate in sands than a solely diffusive system; after depositing methane as hydrate, fluid exiting a sand body is depleted in methane and leaves a hydrate free region in its wake above the sand. Additionally, we demonstrate that in overpressured environments, hydrate growth is initially diffusively dominated before transitioning to an advection-dominated regime. The timescale and depth at which this transition takes place depends primarily on the rate of microbial metabolism and the sedimentation rate but only depends loosely on the degree of overpressuring.« less
Short-range, overpressure-driven methane migration in coarse-grained gas hydrate reservoirs
Nole, Michael; Daigle, Hugh; Cook, Ann E.; ...
2016-08-31
Two methane migration mechanisms have been proposed for coarse-grained gas hydrate reservoirs: short-range diffusive gas migration and long-range advective fluid transport from depth. Herein we demonstrate that short-range fluid flow due to overpressure in marine sediments is a significant additional methane transport mechanism that allows hydrate to precipitate in large quantities in thick, coarse-grained hydrate reservoirs. Two-dimensional simulations demonstrate that this migration mechanism, short-range advective transport, can supply significant amounts of dissolved gas and is unencumbered by limitations of the other two end-member mechanisms. Here, short-range advective migration can increase the amount of methane delivered to sands as compared tomore » the slow process of diffusion, yet it is not necessarily limited by effective porosity reduction as is typical of updip advection from a deep source.« less
Short-range, overpressure-driven methane migration in coarse-grained gas hydrate reservoirs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nole, Michael; Daigle, Hugh; Cook, Ann E.
Two methane migration mechanisms have been proposed for coarse-grained gas hydrate reservoirs: short-range diffusive gas migration and long-range advective fluid transport from depth. Herein we demonstrate that short-range fluid flow due to overpressure in marine sediments is a significant additional methane transport mechanism that allows hydrate to precipitate in large quantities in thick, coarse-grained hydrate reservoirs. Two-dimensional simulations demonstrate that this migration mechanism, short-range advective transport, can supply significant amounts of dissolved gas and is unencumbered by limitations of the other two end-member mechanisms. Here, short-range advective migration can increase the amount of methane delivered to sands as compared tomore » the slow process of diffusion, yet it is not necessarily limited by effective porosity reduction as is typical of updip advection from a deep source.« less
Physical effects at the cellular level under altered gravity conditions
NASA Technical Reports Server (NTRS)
Todd, Paul
1992-01-01
Several modifications of differentiated functions of animal cells cultivated in vitro have been reported when cultures have been exposed to increased or decreased inertial acceleration fields by centrifugation, clinorotation, and orbital space flight. Variables modified by clinorotation conditions include inertial acceleration, convection, hydrostatic pressure, sedimentation, and shear stress, which also affect transport processes in the extracellular chemical environment. Autocrine, paracrine and endocrine substances, to which cells are responsive via specific receptors, are usually transported in vitro (and possibly in certain embryos) by convection and in vivo by a circulatory system or ciliary action. Increased inertial acceleration increases convective flow, while microgravity nearly abolishes it. In the latter case the extracellular transport of macromolecules is governed by diffusion. By making certain assumptions it is possible to calculate the Peclet number, the ratio of convective transport to diffusive transport. Some, but not all, responses of cells in vitro to modified inertial environments could be manifestations of modified extracellular convective flow.
Connecting source aggregating areas with distributive regions via Optimal Transportation theory.
NASA Astrophysics Data System (ADS)
Lanzoni, S.; Putti, M.
2016-12-01
We study the application of Optimal Transport (OT) theory to the transfer of water and sediments from a distributed aggregating source to a distributing area connected by a erodible hillslope. Starting from the Monge-Kantorovich equations, We derive a global energy functional that nonlinearly combines the cost of constructing the drainage network over the entire domain and the cost of water and sediment transportation through the network. It can be shown that the minimization of this functional is equivalent to the infinite time solution of a system of diffusion partial differential equations coupled with transient ordinary differential equations, that closely resemble the classical conservation laws of water and sediments mass and momentum. We present several numerical simulations applied to realstic test cases. For example, the solution of the proposed model forms network configurations that share strong similiratities with rill channels formed on an hillslope. At a larger scale, we obtain promising results in simulating the network patterns that ensure a progressive and continuous transition from a drainage drainage area to a distributive receiving region.
Effects Of Spatial Variability In Marshes On Coastal Erosion Under Storm Conditions
NASA Astrophysics Data System (ADS)
Lunghino, B.; Suckale, J.; Fringer, O. B.; Maldonado, S.; Ferreira, C.; Marras, S.; Mandel, T.
2016-12-01
To quantify the contribution of marshes in protecting coastlines, engineers and planners need to evaluate how variability in marsh characteristics and storm conditions affect erosion in the inundation zone. Previous studies show that spatial patterns in marshes significantly affect flow and sediment transport under normal tidal conditions [1, 2]. This study investigates the effect of spatial variability on floodplain sediment transport under a range of extreme hydrodynamic conditions that occur during storm events. We model the hydrodynamics of storm surge conditions on an idealized coastal floodplain by solving the 2D shallow water equations. We approximate the effect of vegetation on hydrodynamics as a constant drag coefficient. The model calculates suspended sediment transport with the advection-diffusion equation and updates morphology with erosional and depositional fluxes. We conduct numerical experiments in which we vary both the scale of the storm event and the spatial patterns of vegetation and evaluate the impact on erosion and deposition on the floodplain. We find that the alongshore extent of the vegetation is the primary control on the net volume of sediment eroded. Scour occurs in narrow channels between vegetated areas, but this does not significantly alter the net volume of sediment transported. Deposition occurs in vegetated areas under the full range of flow velocities we test. These results suggest that resolving all variability in vegetation is not necessary to quantify net sediment transport volumes at the floodplain scale. Increasing the scale of the storm event does not alter the role of spatial variability. References [1] Meire, D. W., Kondziolka, J. M., and Nepf, H. M. Interaction between neighboring vegetation patches: Impact on flow and deposition. Water Resources Research 50, 5 (2014), 3809-3825. [2] Temmerman, S., Bouma, T., Govers, G., Wang, Z., De Vries, M., and Her- man, P. Impact of vegetation on flow routing and sedimentation patterns: Three-dimensional modeling for a tidal marsh. Journal of Geophysical Research: Earth Surface 110, F4 (2005).
NASA Astrophysics Data System (ADS)
Vercruysse, Kim; Grabowski, Robert
2017-04-01
The natural sediment balance of rivers is often disturbed as a result of increased fine sediment influx from soil erosion and/or modifications to the river channel and floodplains, causing numerous problems related to ecology, water quality, flood risk and infrastructure. It is of great importance to understand fine sediment dynamics in rivers in order to manage the problems appropriately. However, despite decades of research, our understanding of fine sediment transport is not yet sufficient to fully explain the spatial and temporal variability in sediment concentrations in rivers. To this end, the study aims to investigate the importance of sediment source variations to explain hysteresis patterns in suspended sediment transport. A sediment fingerprinting technique based on infrared spectrometry was applied in the highly urbanized River Aire catchment in northern England to identify the dominant sources of suspended sediment. Three types of potential sediment source samples were collected: soil samples from pasture in three lithological areas (limestone, millstone grit and coal measures), eroding riverbanks and urban street dust. All source samples were analyzed with Diffuse Reflectance Infrared Fourier Transform spectrometry (DRIFTS). Discriminant analysis demonstrated that the source materials could be discriminated based on their respective infrared spectra. Infrared spectra of experimental mixtures were then used to develop statistical models to estimate relative source contributions from suspended sediment samples. Suspended sediment samples were collected during a set of high flow events between 2015 and 2016, showing different hysteresis patterns between suspended sediment concentration and discharge. The fingerprinting results suggest that pasture from the limestone area is the dominant source of fine sediment. However, significant variations in source contributions during and between events are present. Small events, in terms of discharge, are marked by relatively high contributions of urban street dust, while high stream flows correspond with higher sediment contributions from riverbanks and pasture. Seasonal variations in the dominant sources are also present. The results emphasize the importance of capturing sediment source variations to gain better insights into the drivers of fine sediment transport over various timescales.
Universal shape evolution of particles by bed-load
NASA Astrophysics Data System (ADS)
Jerolmack, D. J.; Domokos, G.; Shaw, S.; Sipos, A.; Szabo, T.
2016-12-01
River currents, wind and waves drive bed-load transport, in which sediment particles collide with each other and the Earth's surface. A generic consequence is erosion and rounding of particles as a result of chipping, often referred to in geological literature as abrasion. Recent studies have shown that the erosion of river pebbles can be modeled as diffusion of surface curvature, indicating that geometric aspects of chipping erosion are insensitive to details of collisions and material properties. Here we present data from fluvial, aeolian and coastal environments that suggest a universal relation between particle circularity and mass lost due to bed-load chipping. Simulations and experiments support the diffusion model and demonstrate that three constraints are required to produce this universal curve: (i) initial particles are fragments; (ii) erosion is dominated by collisions among like-sized particles; and (iii) collision energy is small enough that chipping dominates over fragmentation. We show that the mechanics of bedrock weathering and bed-load transport select these constraints, providing the foundation to estimate a particle's erosion rate from its shape alone in most sedimentary environments. These findings may be used to determine the contribution of chipping to downstream fining in rivers and deserts, and to infer transport conditions using only images of sediment grains.
Diffusive flux of PAHs across sediment-water and water-air interfaces at urban superfund sites.
Minick, D James; Anderson, Kim A
2017-09-01
Superfund sites may be a source of polycyclic aromatic hydrocarbons (PAHs) to the surrounding environment. These sites can also act as PAH sinks from present-day anthropogenic activities, especially in urban locations. Understanding PAH transport across environmental compartments helps to define the relative contributions of these sources and is therefore important for informing remedial and management decisions. In the present study, paired passive samplers were co-deployed at sediment-water and water-air interfaces within the Portland Harbor Superfund Site and the McCormick and Baxter Superfund Site. These sites, located along the Willamette River (Portland, OR, USA), have PAH contamination from both legacy and modern sources. Diffusive flux calculations indicate that the Willamette River acts predominantly as a sink for low molecular weight PAHs from both the sediment and the air. The sediment was also predominantly a source of 4- and 5-ring PAHs to the river, and the river was a source of these same PAHs to the air, indicating that legacy pollution may be contributing to PAH exposure for residents of the Portland urban center. At the remediated McCormick and Baxter Superfund Site, flux measurements highlight locations within the sand and rock sediment cap where contaminant breakthrough is occurring. Environ Toxicol Chem 2017;36:2281-2289. © 2017 SETAC. © 2017 SETAC.
Turbulence- and particle-resolved modeling of self-formed channels
NASA Astrophysics Data System (ADS)
Schmeeckle, M. W.
2016-12-01
A numerical model is presented that combines a large eddy simulation (LES) of turbulent water motion and a discrete element method (DEM) simulation of all sediment particles forming a small alluvial river. All simulations are begun with a relatively narrow and deep channel and a constant body force is applied to the fluid. At very small applied force at the critical shear stress for sediment motion the channel becomes wider and shallower. Transport on the banks becomes very small with larger transport at the center of the channel. However, even the very small bank transport resulted in continued net downslope motion and channel widening; bedload diffusion from higher transport areas of the channel is not sufficient to counteract downslope transport. This simulation will be extended over much longer times to determine whether an equilibrium straight channel with transport is possible without varying the water discharge. Simulations at slightly higher fluid forcing results in the development of alternate bars. Particle size segregation occurs in all simulations at multiple scales. At the smallest scale, turbulent structures induce small scale depressions; larger particles preferentially move to lower elevations of the depressions. Sloping beds at banks and bars also increase size segregation. However, bar translation mixes segregated sediments. Granular modeling of river channels appears to be a fruitful method for testing and developing continuum ideas of channel pattern formation and size segregation.
Turbulence-and particle-resolved modeling of self-formed channels
NASA Astrophysics Data System (ADS)
Schmeeckle, M. W.
2017-12-01
A numerical model is presented that combines a large eddy simulation (LES) of turbulent water motion and a discrete element method (DEM) simulation of all sediment particles forming a small alluvial river. All simulations are begun with a relatively narrow and deep channel and a constant body force is applied to the fluid. At very small applied force at the critical shear stress for sediment motion the channel becomes wider and shallower. Transport on the banks becomes very small with larger transport at the center of the channel. However, even the very small bank transport resulted in continued net downslope motion and channel widening; bedload diffusion from higher transport areas of the channel is not sufficient to counteract downslope transport. This simulation will be extended over much longer times to determine whether an equilibrium straight channel with transport is possible without varying the water discharge. Simulations at slightly higher fluid forcing results in the development of alternate bars. Particle size segregation occurs in all simulations at multiple scales. At the smallest scale, turbulent structures induce small scale depressions; larger particles preferentially move to lower elevations of the depressions. Sloping beds at banks and bars also increase size segregation. However, bar translation mixes segregated sediments. Granular modeling of river channels appears to be a fruitful method for testing and developing continuum ideas of channel pattern formation and size segregation.
NASA Astrophysics Data System (ADS)
Brovchenko, Igor; Maderich, Vladimir; Jung, Kyung Tae
2015-04-01
We developed new radionuclide dispersion model that may be used in coastal areas, rivers and estuaries with non-uniform distribution of suspended and bed sediments both cohesive and non-cohesive types. Model describes radionuclides concentration in dissolved phase in water column, particulated phase on suspended sediments on each sediment class types, bed sediments and pore water. The transfer of activity between the water column and the pore water in the upper layer of the bottom sediment is governed by diffusion processes. The phase exchange between dissolved and particulate radionuclides is written in terms of desorption rate a12 (s-1) and distribution coefficient Kd,iw and Kd,ib (m3/kg) for water column and for bottom deposit, respectively. Following (Periáñez et al., 1996) the dependence of distribution coefficients is inversely proportional to the sediment particle size. For simulation of 3D circulation, turbulent diffusion and wave fields a hydrostatic model SELFE (Roland et. al. 2010) that solves Reynolds-stress averaged Navier-Stokes (RANS) equations and Wave Action transport equation on the unstructured grids was used. Simulation of suspended sediment concentration and bed sediments composition is based on (L. Pinto et. al., 2012) approach that originally was developed for non-cohesive sediments. In present study we modified this approach to include possibility of simulating mixture of cohesive and non-cohesive sediments by implementing parameterizations for erosion and deposition fluxes for cohesive sediments and by implementing flocculation model for determining settling velocity of cohesive flocs. Model of sediment transport was calibrated on measurements in the Yellow Sea which is shallow tidal basin with strongly non-uniform distribution of suspended and bed sediments. Model of radionuclide dispersion was verified on measurements of 137Cs concentration in surface water and bed sediments after Fukushima Daiichi nuclear accident. References Periáñez, R. Abril, J.M., Garcia-Leon, M. (1996). Modelling the dispersion of non-conservative radionuclides in tidal waters'Part 1: conceptual and mathematical model. Journal of Environmental Radioactivity 31 (2), 127-141 Roland, A., Y. J. Zhang, H. V. Wang, Y. Meng, Y.-C. Teng, V. Maderich, I. Brovchenko, M. Dutour-Sikiric, and U. Zanke (2012), A fully coupled 3D wave-current interaction model on unstructured grids, J. Geophys. Res., 117, C00J33 Pinto L., Fortunato A.B., Zhang Y., Oliveira A., Sancho F.E.P. (2012) Development and validation of a three-dimensional morphodynamic modelling system for non-cohesive sediments, Ocean Modell., (57-58), 1-14
NASA Astrophysics Data System (ADS)
Tanikawa, W.; Tadai, O.; Morita, S.; Lin, W.; Yamada, Y.; Sanada, Y.; Moe, K.; Kubo, Y.; Inagaki, F.
2014-12-01
Heat transport properties such as thermal conductivity, heat capacity, and thermal diffusivity are significant parameters that influence on geothermal process in sedimentary basins at depth. We measured the thermal properties of sediment core samples at off-Shimokita basin obtained from the IODP Expedition 337 and Expedition CK06-06 in D/V Chikyu shakedown cruise. Overall, thermal conductivity and thermal diffusivity increased with depth and heat capacity decreased with depth, although the data was highly scattered at the depth of approximately 2000 meters below sea floor, where coal-layers were formed. The increase of thermal conductivity is mainly explained by the porosity reduction of sediment by the consolidation during sedimentation. The highly variation of the thermal conductivity at the same core section is probably caused by the various lithological rocks formed at the same section. Coal shows the lowest thermal conductivity of 0.4 Wm-1K-1, and the calcite cemented sandstone/siltstone shows highest conductivity around 3 Wm-1K-1. The thermal diffusivity and heat capacity are influenced by the porosity and lithological contrast as well. The relationship between thermal conductivity and porosity in this site is well explained by the mixed-law model of Maxwell or geometric mean. One dimensional temperature-depth profile at Site C0020 in Expedition 337 estimated from measured physical properties and radiative heat production data shows regression of thermal gradient with depth. Surface heat flow value was evaluated as 29~30 mWm-2, and the value is consistent with the heat flow data near this site. Our results suggest that increase of thermal conductivity with depth significantly controls on temperature profile at depth of basin. If we assume constant thermal conductivity or constant geothermal gradient, we might overestimate temperature at depth, which might cause big error to predict the heat transport or hydrocarbon formation in deepwater sedimentary basins.
NASA Astrophysics Data System (ADS)
Hernandez-Gonzalez, L. M.; Roche, K. R.; Xie, M.; Packman, A. I.
2014-12-01
Important biological, physical and chemical processes, such as fluxes of oxygen, nutrients and contaminants, occur across sediment-water interfaces. These processes are influenced by bioturbation activities of benthic animals. Bioturbation is thought to be significant in releasing metals to the water column from contaminated sediments, but metals contamination also affects organism activity. Consequently, the aim of this study was to consider the interactions of biological activity, sediment chemistry, pore water transport, and chemical reactions in sediment mixing and the flux and toxicity of metals in sediments. Prior studies have modeled bioturbation as a diffusive process. However, diffusion models often do not describe accurately sediment mixing due to bioturbation. To this end, we used the continuous time random walk (CTRW) model to assess sediment mixing caused by bioturbation activity of Lumbriculus variegatus worms. We performed experiments using fine-grained sediments with different levels of zinc contamination from Lake DePue, which is a Superfund Site in Illinois. The tests were conducted in an aerated fresh water chamber. Fluorescent particulate tracers were added to the sediment surface to quantify mixing processes and the influence of metals contaminants on L. variegatus bioturbation activity. We observed sediment mixing and organism activity by time-lapse photography over 14 days. Then, we analyzed the images to characterize the fluorescent particle concentration as a function of sediment depth and time. Results reveal that sediment mixing caused by L. variegatus is subdiffusive in time and superdiffusive in space. These results suggest that anomalous sediment mixing is probably a ubiquitous process, as this behavior has only been observed previously in marine sediments. Also, the experiments indicate that bioturbation and sediment mixing decreased in the presence of higher metals concentrations in sediments. This process is expected to decrease efflux of metals from highly contaminated sediments by reducing biological activity.
Scaling oxygen microprofiles at the sediment interface of deep stratified waters
NASA Astrophysics Data System (ADS)
Schwefel, Robert; Hondzo, Miki; Wüest, Alfred; Bouffard, Damien
2017-02-01
Dissolved oxygen microprofiles at the sediment-water interface of Lake Geneva were measured concurrently with velocities 0.25 to 2 m above the sediment. The measurements and scaling analyses indicate dissolved oxygen fluctuations and turbulent fluxes in exceedance of molecular diffusion in the proximity of the sediment-water interface. The measurements allowed the parameterization of the turbulent diffusion as a function of the dimensionless height above the sediment and the turbulence above the sediment-water interface. Turbulent diffusion depended strongly on the friction velocity and differed from formulations reported in the literature that are based on concepts of turbulent and developed wall-bounded flows. The dissolved oxygen microprofiles and proposed parameterization of turbulent diffusion enable a foundation for the similarity scaling of oxygen microprofiles in proximity to the sediment. The proposed scaling allows the estimation of diffusive boundary layer thickness, oxygen flux, and oxygen microprofile distribution in the near-sediment boundary layer.
Quantifying the Benthic Source of Nutrients to the Water Column of Upper Klamath Lake, Oregon
Kuwabara, James S.; Lynch, Dennis D.; Topping, Brent R.; Murphy, Fred; Carter, James L.; Simon, Nancy S.; Parcheso, Francis; Wood, Tamara M.; Lindenberg, Mary K.; Wiese, Katryn; Avanzino, Ronald J.
2007-01-01
Executive Summary Five sampling trips were coordinated in April, May and August 2006, and May and July 2007 to sample the water column and benthos of Upper Klamath Lake, OR (Fig. 1; Table 1), before, during and after the annual cyanophyte bloom of Aphanizomenon flos-aquae (AFA). A pore-water profiler was designed and fabricated to obtain the first high-resolution (centimeter-scale) estimates of the vertical concentration gradients for diffusive-flux determinations. Estimates based on molecular diffusion may underestimate benthic flux because solute transport across the sediment-water interface can be enhanced by processes including bioturbation, bioirrigation and ground-water advection. Water-column and benthic samples were also collected to help interpret spatial and temporal trends in diffusive-flux estimates. Data from these samples complement geochemical analyses of bottom-sediments taken from Upper Klamath Lake (UKL) in 2005. This ongoing study provides information necessary for developing process-interdependent solute-transport models for the watershed (that is, models integrating physical, geochemical and biological processes), and supports efforts to evaluate remediation or load-allocation strategies. To augment studies funded by the U.S. Bureau of Reclamation (USBR), the Department of Interior supported an additional full deployment of pore-water profilers in July 2007, during the summer AFA bloom. Results from this recent field trip are not fully completed. Data not presented herein will be included in a subsequent publication, scheduled for March 2009.
Wu, M; Li, J; Ludwig, A; Kharicha, A
2014-09-01
Part 1 of this two-part investigation presented a multiphase solidification model incorporating the finite diffusion kinetics and ternary phase diagram with the macroscopic transport phenomena (Wu et al., 2013). In Part 2, the importance of proper treatment of the finite diffusion kinetics in the calculation of macrosegregation is addressed. Calculations for a two-dimensional (2D) square casting (50 × 50 mm 2 ) of Fe-0.45 wt.%C-1.06 wt.%Mn considering thermo-solutal convection and crystal sedimentation are performed. The modeling result indicates that the infinite liquid mixing kinetics as assumed by classical models (e.g., the Gulliver-Scheil or lever rule), which cannot properly consider the solute enrichment of the interdendritic or inter-granular melt at the early stage of solidification, might lead to an erroneous estimation of the macrosegregation. To confirm this statement, further theoretical and experimental evaluations are desired. The pattern and intensity of the flow and crystal sedimentation are dependent on the crystal morphologies (columnar or equiaxed); hence, the potential error of the calculated macrosegregation caused by the assumed growth kinetics depends on the crystal morphology. Finally, an illustrative simulation of an engineering 2.45-ton steel ingot is performed, and the results are compared with experimental results. This example demonstrates the model applicability for engineering castings regarding both the calculation efficiency and functionality.
NASA Astrophysics Data System (ADS)
Croissant, Thomas; Lague, Dimitri; Davy, Philippe; Steer, Philippe
2016-04-01
In active mountain ranges, large earthquakes (Mw > 5-6) trigger numerous landslides that impact river dynamics. These landslides bring local and sudden sediment piles that will be eroded and transported along the river network causing downstream changes in river geometry, transport capacity and erosion efficiency. The progressive removal of landslide materials has implications for downstream hazards management and also for understanding landscape dynamics at the timescale of the seismic cycle. The export time of landslide-derived sediments after large-magnitude earthquakes has been studied from suspended load measurements but a full understanding of the total process, including the coupling between sediment transfer and channel geometry change, still remains an issue. Note that the transport of small sediment pulses has been studied in the context of river restoration, but the magnitude of sediment pulses generated by landslides may make the problem different. Here, we study the export of large volumes (>106 m3) of sediments with the 2D hydro-morphodynamic model, Eros. This model uses a new hydrodynamic module that resolves a reduced form of the Saint-Venant equations with a particle method. It is coupled with a sediment transport and lateral and vertical erosion model. Eros accounts for the complex retroactions between sediment transport and fluvial geometry, with a stochastic description of the floods experienced by the river. Moreover, it is able to reproduce several features deemed necessary to study the evacuation of large sediment pulses, such as river regime modification (single-thread to multi-thread), river avulsion and aggradation, floods and bank erosion. Using a synthetic and simple topography we first present how granulometry, landslide volume and geometry, channel slope and flood frequency influence 1) the dominance of pulse advection vs. diffusion during its evacuation, 2) the pulse export time and 3) the remaining volume of sediment in the catchment. The model is then applied to a high resolution (5-10 m) digital elevation model of the Poerua catchment in New Zealand which has been impacted by the effect of a large landslide during the last 15 years. We investigate several plausible Alpine Faults earthquake scenarios to study the propagation of the sediment along a complex river network. We characterize and quantify the sediment pulse export time and mechanism for this river configuration and show its impact on the alluvial plain evolution. Our findings have strong implications for the understanding of aggradation rates and the temporal persistence of induced hazards in the alluvial plain as well as of sediment transfers in active mountain belts.
Weng, Shenglin; Li, Yiping; Wei, Jin; Du, Wei; Gao, Xiaomeng; Wang, Wencai; Wang, Jianwei; Acharya, Kumud; Luo, Liancong
2018-05-01
The identification of coherent structures is very important in investigating the sediment transport mechanism and controlling the eutrophication in shallow lakes. This study analyzed the turbulence characteristics and the sensitivity of quadrant analysis to threshold level. Simultaneous in situ measurements of velocities and suspended sediment concentration (SSC) were conducted in Lake Taihu with acoustic Doppler velocimeter (ADV) and optical backscatter sensor (OBS) instruments. The results show that the increase in hole size makes the difference between dominant and non-dominant events more distinct. Wind velocity determines the frequency of occurrence of sweep and ejection events, which provide dominant contributions to the Reynolds stress. The increase of wind velocity enlarges the magnitude of coherent events but has little impact on the events frequency with the same hole size. The events occurring within short periods provide large contributions to the momentum flux. Transportation and diffusion of sediment are in control of the intermittent coherent events to a large extent.
A laboratory study of sediment and contaminant release during gas ebullition.
Yuan, Qingzhong; Valsaraj, Kalliat T; Reible, Danny D; Willson, Clinton S
2007-09-01
Significant quantities of gas are generated from labile organic matter in contaminated sediments. The implications for the gas generation and subsequent release of contaminants from sediments are unknown but may include enhanced direct transport such as pore water advection and diffusion. The behavior of gas in sediments and the resulting migration of a polyaromatic hydrocarbon, viz phenanthrene, were investigated in an experimental system with methane injection at the base of a sediment column. Hexane above the overlying water layer was used to trap any phenanthrene migrating out of the sediment layer. The rate of suspension of solid particulate matter from the sediment bed into the overlying water layer was also monitored. The experiments indicated that significant amounts of both solid particulate matter and contaminant can be released from a sediment bed by gas movement with the amount of release related to the volume of gas released. The effective mass transfer coefficient of gas bubble-facilitated contaminant release was estimated under field conditions, being around three orders of magnitude smaller than that of bioturbation. A thin sand-capping layer (2 cm) was found to dramatically reduce the amount of contaminant or particles released with the gas because it could prevent or at least reduce sediment suspension. Based on the experimental observations, gas bubble-facilitated contaminant transport pathways for both uncapped and capped systems were proposed. Sediment cores were sliced to obtain phenanthrene concentration. X-ray computed tomography (CT) was used to investigate the void space distribution in the sediment penetrated by gas bubbles. The results showed that gas bubble migration could redistribute the sediment void spaces and may facilitate pore water circulation in the sediment.
A Poor Relationship Between Sea Level and Deep-Water Sand Delivery
NASA Astrophysics Data System (ADS)
Harris, Ashley D.; Baumgardner, Sarah E.; Sun, Tao; Granjeon, Didier
2018-08-01
The most commonly cited control on delivery of sand to deep water is the rate of relative sea-level fall. The rapid rate of accommodation loss on the shelf causes sedimentation to shift basinward. Field and experimental numerical modeling studies have shown that deep-water sand delivery can occur during any stage of relative sea level position and across a large range of values of rate of relative sea-level change. However, these studies did not investigate the impact of sediment transport efficiency on the relationship between rate of relative sea-level change and deep-water sand delivery rate. We explore this relationship using a deterministic nonlinear diffusion-based numerical stratigraphic forward model. We vary across three orders of magnitude the diffusion coefficient value for marine settings, which controls sediment transport efficiency. We find that the rate of relative sea-level change can explain no more than 1% of the variability in deep-water sand delivery rates, regardless of sediment transport efficiency. Model results show a better correlation with relative sea level, with up to 55% of the variability in deep water sand delivery rates explained. The results presented here are consistent with studies of natural settings which suggest stochastic processes such as avulsion and slope failure, and interactions among such processes, may explain the remaining variance. Relative sea level is a better predictor of deep-water sand delivery than rate of relative sea-level change because it is the sea-level fall itself which promotes sand delivery, not the rate of the fall. We conclude that the poor relationship between sea level and sand delivery is not an artifact of the modeling parameters but is instead due to the inadequacy of relative sea level and the rate of relative sea-level change to fully describe the dimensional space in which depositional systems reside. Subsequently, sea level itself is unable to account for the interaction of multiple processes that contribute to sand delivery to deep water.
Radiogenic helium in shallow groundwater within a clay till, southwestern Ontario
Sheldon, Amy L.; Solomon, D. Kip; Poreda, Robert J.; Hunt, Andrew
2003-01-01
Profiles of 4He in pore water were measured in clay aquitards in SW Ontario. The 4He distributions are consistent with groundwater velocities that are <6 mm yr−1, and thus diffusion is the dominant transport mechanism for 4He. Modeling indicates that the effective diffusion coefficient for 4He is 6.3 ± 1.6 × 10−6 cm2 s−1. Furthermore, the profiles are consistent with the internal release of 4He from aquitard sediments at a rate of 0.03–0.13 μcc(STP) kg−1 yr−1. These rates are also consistent with laboratory release experiments and, on average, are 600 times greater than the production of 4He from U/Th decay. Modeling and the ratio of 21Ne to 4He within the sediments indicate that although the aquitards were deposited about 13 kA BP, the sediments released >70% of initial 4He for 50 to 60 kA prior to incorporation into the till.
Benthic Oxygen Demand in Three Former Salt Ponds Adjacent to South San Francisco Bay, California
Topping, Brent R.; Kuwabara, James S.; Athearn, Nicole D.; Takekawa, John Y.; Parcheso, Francis; Henderson, Kathleen D.; Piotter, Sara
2009-01-01
Sampling trips were coordinated in the second half of 2008 to examine the interstitial water in the sediment and the overlying bottom waters of three shallow (average depth 2 meters). The water column at all deployment sites was monitored with dataloggers for ancillary water-quality parameters (including dissolved oxygen, salinity, specific conductance, temperature, and pH) to facilitate the interpretation of benthic-flux results. Calculated diffusive benthic flux of dissolved (0.2-micron filtered) oxygen was consistently negative (that is, drawn from the water column into the sediment) and ranged between -0.5 x 10-6 and -37 x 10-6 micromoles per square centimeter per second (site averages depicted in table 2). Assuming pond areas of 1.0, 1.4, and 2.3 square kilometers for ponds A16, A14, and A3W, respectively, this converts to an oxygen mass flux into the ponds' sediment ranging from -1 to -72 kilograms per day. Diffusive oxygen flux into the benthos (listed as negative) was lowest in pond A14 (-0.5 x 10-6 to -1.8 x 10-6 micromoles per square centimeter per second) compared with diffusive flux estimates for ponds A16 and A3W (site averages -26 x 10-6 to -35 x 10-6 and -34 x 10-6 to -37 x 10-6 micromoles per square centimeter per second, respectively). These initial diffusive-flux estimates are of the order of magnitude of those measured in the South Bay using core-incubation experiments (Topping and others, 2004), which include bioturbation and bioirrigation effects. Estimates of benthic oxygen demand reported herein, based on molecular diffusion, serve as conservative estimates of benthic flux because solute transport across the sediment-water interface can be enhanced by multidisciplinary processes including bioturbation, bioirrigation, ground-water advection, and wind resuspension (Kuwabara and others, 2009).
NASA Astrophysics Data System (ADS)
Vink, Rona; Behrendt, Horst
2002-11-01
Pollutant transport and management in the Rhine and Elbe basins is still of international concern, since certain target levels set by the international committees for protection of both rivers have not been reached. The analysis of the chain of emissions of point and diffuse sources to river loads will provide policy makers with a tool for effective management of river basins. The analysis of large river basins such as the Elbe and Rhine requires information on the spatial and temporal characteristics of both emissions and physical information of the entire river basin. In this paper, an analysis has been made of heavy metal emissions from various point and diffuse sources in the Rhine and Elbe drainage areas. Different point and diffuse pathways are considered in the model, such as inputs from industry, wastewater treatment plants, urban areas, erosion, groundwater, atmospheric deposition, tile drainage, and runoff. In most cases the measured heavy metal loads at monitoring stations are lower than the sum of the heavy metal emissions. This behaviour in large river systems can largely be explained by retention processes (e.g. sedimentation) and is dependent on the specific runoff of a catchment. Independent of the method used to estimate emissions, the source apportionment analysis of observed loads was used to determine the share of point and diffuse sources in the heavy metal load at a monitoring station by establishing a discharge dependency. The results from both the emission analysis and the source apportionment analysis of observed loads were compared and gave similar results. Between 51% (for Hg) and 74% (for Pb) of the total transport in the Elbe basin is supplied by inputs from diffuse sources. In the Rhine basin diffuse source inputs dominate the total transport and deliver more than 70% of the total transport. The diffuse hydrological pathways with the highest share are erosion and urban areas.
NASA Astrophysics Data System (ADS)
Willgoose, G. R.; Cohen, S.; Svoray, T.; Sela, S.; Hancock, G. R.
2010-12-01
Numerical models are an important tool for studying landscape processes as they allow us to isolate specific processes and drivers and test various physics and spatio-temporal scenarios. Here we use a distributed physically-based soil evolution model (mARM4D) to describe the drivers and processes controlling soil-landscape evolution on a field-site at the fringe between the Mediterranean and desert regions of Israel. This study is an initial effort in a larger project aimed at improving our understanding of the mechanisms and drivers that led to the extensive removal of soils from the loess covered hillslopes of this region. This specific region is interesting as it is located between the Mediterranean climate region in which widespread erosion from hillslopes was attributed to human activity during the Holocene and the arid region in which extensive removal of loess from hillslopes was shown to have been driven by climatic changes during the late-Pleistocene. First we study the sediment transport mechanism of the soil-landscape evolution processes in our study-site. We simulate soil-landscape evolution with only one sediment transport process (fluvial or diffusive) at a time. We find that diffusive sediment transport is likely the dominant process in this site as it resulted in soil distributions that better corresponds to current observations. We then simulate several realistic climatic/anthropogenic scenarios (based on the literature) in order to quantify the sensitivity of the soil-landscape evolution process to temporal fluctuations. We find that this site is relatively insensitive to short term (several thousands of years) sharp, changes. This suggests that climate, rather then human activity, was the main driver for the extensive removal of loess from the hillslopes.
James, W.F.; Richardson, W.B.; Soballe, D.M.
2008-01-01
Routing nitrate through backwaters of regulated floodplain rivers to increase retention could decrease loading to nitrogen (N)-sensitive coastal regions. Sediment core determinations of N flux were combined with inflow-outflow fluxes to develop mass balance approximations of N uptake and transformations in a flow-controlled backwater of the Upper Mississippi River (USA). Inflow was the dominant nitrate source (>95%) versus nitrification and varied as a function of source water concentration since flow was constant. Nitrate uptake length increased linearly, while uptake velocity decreased linearly, with increasing inflow concentration to 2 mg l-1, indicating limitation of N uptake by loading. N saturation at higher inflow concentration coincided with maximum uptake capacity, 40% uptake efficiency, and an uptake length 2 times greater than the length of the backwater. Nitrate diffusion and denitrification in sediment accounted for 27% of the backwater nitrate retention, indicating that assimilation by other biota or denitrification on other substrates were the dominant uptake mechanisms. Ammonium export from the backwater was driven by diffusive efflux from the sediment. Ammonium increased from near zero at the inflow to a maximum mid-lake, then declined slightly toward the outflow due to uptake during transport. Ammonium export was small compared to nitrate retention. ?? 2007 Springer Science+Business Media B.V.
Use of vertical temperature gradients for prediction of tidal flat sediment characteristics
Miselis, Jennifer L.; Holland, K. Todd; Reed, Allen H.; Abelev, Andrei
2012-01-01
Sediment characteristics largely govern tidal flat morphologic evolution; however, conventional methods of investigating spatial variability in lithology on tidal flats are difficult to employ in these highly dynamic regions. In response, a series of laboratory experiments was designed to investigate the use of temperature diffusion toward sediment characterization. A vertical thermistor array was used to quantify temperature gradients in simulated tidal flat sediments of varying compositions. Thermal conductivity estimates derived from these arrays were similar to measurements from a standard heated needle probe, which substantiates the thermistor methodology. While the thermal diffusivities of dry homogeneous sediments were similar, diffusivities for saturated homogeneous sediments ranged approximately one order of magnitude. The thermal diffusivity of saturated sand was five times the thermal diffusivity of saturated kaolin and more than eight times the thermal diffusivity of saturated bentonite. This suggests that vertical temperature gradients can be used for distinguishing homogeneous saturated sands from homogeneous saturated clays and perhaps even between homogeneous saturated clay types. However, experiments with more realistic tidal flat mixtures were less discriminating. Relationships between thermal diffusivity and percent fines for saturated mixtures varied depending upon clay composition, indicating that clay hydration and/or water content controls thermal gradients. Furthermore, existing models for the bulk conductivity of sediment mixtures were improved only through the use of calibrated estimates of homogeneous end-member conductivity and water content values. Our findings suggest that remotely sensed observations of water content and thermal diffusivity could only be used to qualitatively estimate tidal flat sediment characteristics.
Modeling Sediment Detention Ponds Using Reactor Theory and Advection-Diffusion Concepts
NASA Astrophysics Data System (ADS)
Wilson, Bruce N.; Barfield, Billy J.
1985-04-01
An algorithm is presented to model the sedimentation process in detention ponds. This algorithm is based on a mass balance for an infinitesimal layer that couples reactor theory concepts with advection-diffusion processes. Reactor theory concepts are used to (1) determine residence time of sediment particles and to (2) mix influent sediment with previously stored flow. Advection-diffusion processes are used to model the (1) settling characteristics of sediment and the (2) vertical diffusion of sediment due to turbulence. Predicted results of the model are compared to those observed on two pilot scale ponds for a total of 12 runs. The average percent error between predicted and observed trap efficiency was 5.2%. Overall, the observed sedimentology values were predicted with reasonable accuracy.
The Use of Position-Tracking Drifters in Riverine Environments
2010-06-01
provide information of the particle pathways and material transport for sediment, biotic , abiotic and pollutants . Moreover, drifter position data can...Measurements. Proceedings, Lamont Geological Observatory Symposium on Diffusion in Oceans and Fresh Waters. Pallisades, N.Y., 1964-1965. pp. 1-18. [3...38(8), 927-957. [19] LaCasce, J.H., 2008. Lagrangian statistics from oceanic and atmospheric observations. Lect. Notes Phys. 744, 165-218. [20
Exploring Regolith Depth and Cycling on Mars
NASA Astrophysics Data System (ADS)
Fassett, C.; Needham, D. H.; Watters, W. A.; Hundal, C.
2017-12-01
Regolith or loose sediment is ubiquitous on the surface of Mars, but our understanding of how this fragmental layer forms and evolves with time is limited. In particular, how regolith thickness varies spatially on Mars is not well known. A common perspective is to start from the canonical model for lunar regolith, which is not unreasonable, given that both Mars and the Moon are heavily cratered surfaces. However, this lunar-like paradigm is not supported by observations of Mars from recent missions. On Mars, bedrock exposures are more common and bedrock is generally closer to the surface than on the Moon, and the processes modifying the regolith differ substantially on the two bodies. Moreover, boulders on the Moon have much shorter lifetimes than on Mars, so boulders are much less common on the lunar surface. The sediment transport processes infilling craters differs dramatically on these two bodies as well. On Mars, fine-grained sediment is efficiently transported (advectively) by wind and trapped in craters rapidly after they form. Lateral transport of lunar regolith is comparatively inefficient and dominated by slow impact-driven (diffusive) transport of regolith. The goal of this contribution is to discuss observational constraints on Mars' regolith depth, and to place observations into a model for Mars landform evolution and regolith cycle. Our operating hypothesis is that the inter-crater surface on Mars is comparatively starved of fine-grained sediment (compared to the Moon), because transport and trapping of fines in craters out-competes physical weathering. Moreover, thick sedimentary bodies on Mars often get (weakly) cemented and lithified due to interactions with fluids, even in the most recent, Amazonian epoch. This is consistent with what is observed at the MER and MSL landing sites and what is known from the SNC meteorites.
Mercury contaminated sediment sites-an evaluation of remedial options.
Randall, Paul M; Chattopadhyay, Sandip
2013-08-01
Mercury (Hg) is a naturally-occurring element that is ubiquitous in the aquatic environment. Though efforts have been made in recent years to decrease Hg emissions, historically-emitted Hg can be retained in the sediments of aquatic bodies where they may be slowly converted to methylmercury (MeHg). Consequently, Hg in historically-contaminated sediments can result in high levels of significant exposure for aquatic species, wildlife and human populations consuming fish. Even if source control of contaminated wastewater is achievable, it may take a very long time, perhaps decades, for Hg-contaminated aquatic systems to reach relatively safe Hg levels in both water and surface sediment naturally. It may take even longer if Hg is present at higher concentration levels in deep sediment. Hg contaminated sediment results from previous releases or ongoing contributions from sources that are difficult to identify. Due to human activities or physical, chemical, or biological processes (e.g. hydrodynamic flows, bioturbation, molecular diffusion, and chemical transformation), the buried Hg can be remobilized into the overlying water. Hg speciation in the water column and sediments critically affect the reactivity (i.e. conversion of inorganic Hg(II) to MeHg), transport, and its exposure to living organisms. Also, geochemical conditions affect the activity of methylating bacteria and its availability for methylation. This review paper discusses remedial considerations (e.g. key chemical factors in fate and transport of Hg, source characterization and control, environmental management procedures, remediation options, modeling tools) and includes practical case studies for cleaning up Hg-contaminated sediment sites. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Carroll, R. W.; Warwick, J. J.
2009-12-01
Past mercury modeling studies of the Carson River-Lahontan Reservoir (CRLR) system have focused on total Hg and total MeHg transport in the Carson River, most of which is cycled through the river via sediment transport processes of bank erosion and over bank deposition during higher flow events. Much less attention has been given to low flow events and dissolved species. Four flow regimes are defined to capture significant mechanisms of mercury loading for total and dissolved species at all flow regimes. For extremely low flows, only gradient driven diffusion of mercury from the bottom sediments occurs. At low flows, diffusional loads are augmented with turbulent mixing of channel bed material. Mercury loading into the river during medium to higher flows is driven by bank erosion process, but flows remain within the confines of the river’s channel. Finally, mercury cycling during overbank flows is dominated by both bank erosion as well as floodplain deposition. Methylation and demethylation are allowed to occur in the channel and reservoir bed sediments as well as in channel bank sediments and are described by the first order kinetic equations using observed methylation and demethylation rates. Calibration and verification is divided into geomorphic as well as mercury geochemical and transport processes with evaluation done for pre- and post- 1997 flood conditions to determine systematic changes to mercury cycling as a result of the January 1997 flood. Preliminary results for a Monte Carlo simulation are presented. Monte Carlo couples output uncertainty due to ranges in bank erosion rates, inorganic mercury in the channel banks, floodplain transport capacity during over bank flows, methylation and demethylation rates and diffusional distance in the reservoir bottom sediments. Uncertainty is compared to observed variability in water column mercury concentrations and discussed in the context of flow regime and reservoir residence time.
NASA Astrophysics Data System (ADS)
Yuan, X.; Braun, J.; Guerit, L.; Simon, B.
2017-12-01
Limited attention has been given to linking continental erosion to transport and deposition of sediments in the marine environment in large-scale landscape evolution models. Although both environments have been thoroughly investigated, the details of how erosional or climatic events are recorded in the sedimentary and stratigraphic records have not been studied in a consistent quantitative manner. Here we propose a new numerical model for marine multi-lithology (sand and silt) coupling transport and deposition that is directly coupled to FastScape, a landscape evolution model that solves the continental stream power law and hillslope diffusion equation using implicit and O(n) algorithms. Marine transport and deposition is simulated by a nonlinear 2D diffusion model that incorporates a dual lithology (sand and slit) and where source terms represent the sediment flux from continental river erosion. Sediment compaction effects are also incorporated, taking into account the dual lithology, and are important to properly compute the details of the synthetic stratigraphic record. The algorithm used to represent marine transport and deposition is also implicit and O(n). The main purpose of our work is to invert stratigraphic data from offshore marginal basins to provide constraints on the tectonic, climatic and sea-level conditions that have affected the adjacent continental areas. In order to do so, we have incorporated the new model into a Bayesian inversion and optimisation scheme and tested and validated the approach with synthetic data. This is made possible due to the high efficient of the forward model. We are in the process of applying the inversion scheme to stratigraphic data from the Ogooue Delta (Gabon). By comparing real and synthetic stratigraphic geometries along cross-section of the delta, the shape and slope of seismic/time markers, and the sand to silt fraction in wells, we hope to obtain good constraints, not only of the value of the transport coefficients for sand and silt in the marine environment, but also of the uplift, erosional and climate history of the adjacent continental areas, as well as the amplitude of sea level variations.
Methane flux from the Central Amazonian Floodplain
NASA Technical Reports Server (NTRS)
Bartlett, Karen B.; Crill, Patrick M.; Sebacher, Daniel I.; Harriss, Robert C.; Wilson, John O.; Melack, John M.
1987-01-01
A total of 186 methane measurements from the three primary Amazon floodplain environments of open water lakes, flood forests, and floating grass mats were made over the period 18 July through 2 September 1985. These data indicate that emissions were lowest over open water lakes. Flux from flooded forests and grass mats was significantly higher. At least three transport processes contribute to tropospheric emissions: ebullition from sediments, diffusion along the concentration gradient from sediment to overlaying water to air, and transport through the roots and stems of aquatic plants. Measurements indicate that the first two of these processes are most significant. It was estimated that on the average bubbling makes up 49% of the flux from open water, 54% of that from flooded forests, and 64% of that from floating mats. If the measurements were applied to the entire Amazonian floodplain, it is calculated that the region could supply up to 12% of the estimated global natural sources of methane.
Optimal control of suspended sediment distribution model of Talaga lake
NASA Astrophysics Data System (ADS)
Ratianingsih, R.; Resnawati, Azim, Mardlijah, Widodo, B.
2017-08-01
Talaga Lake is one of several lakes in Central Sulawesi that potentially to be managed in multi purposes scheme because of its characteristic. The scheme is addressed not only due to the lake maintenance because of its sediment but also due to the Algae farming for its biodiesel fuel. This paper governs a suspended sediment distribution model of Talaga lake. The model is derived from the two dimensional hydrodynamic shallow water equations of the mass and momentum conservation law of sediment transport. An order reduction of the model gives six equations of hyperbolic systems of the depth, two dimension directional velocities and sediment concentration while the bed elevation as the second order of turbulent diffusion and dispersion are neglected. The system is discreted and linearized such that could be solved numerically by box-Keller method for some initial and boundary condition. The solutions shows that the downstream velocity is play a role in transversal direction of stream function flow. The downstream accumulated sediment indicate that the suspended sediment and its changing should be controlled by optimizing the downstream velocity and transversal suspended sediment changing due to the ideal algae growth need.
Sediments in Arctic sea ice: Implications for entrainment, transport and release
Nurnberg, D.; Wollenburg, I.; Dethleff, D.; Eicken, H.; Kassens, H.; Letzig, T.; Reimnitz, E.; Thiede, Jorn
1994-01-01
Despite the Arctic sea ice cover's recognized sensitivity to environmental change, the role of sediment inclusions in lowering ice albedo and affecting ice ablation is poorly understood. Sea ice sediment inclusions were studied in the central Arctic Ocean during the Arctic 91 expedition and in the Laptev Sea (East Siberian Arctic Region Expedition 1992). Results from these investigations are here combined with previous studies performed in major areas of ice ablation and the southern central Arctic Ocean. This study documents the regional distribution and composition of particle-laden ice, investigates and evaluates processes by which sediment is incorporated into the ice cover, and identifies transport paths and probable depositional centers for the released sediment. In April 1992, sea ice in the Laptev Sea was relatively clean. The sediment occasionally observed was distributed diffusely over the entire ice column, forming turbid ice. Observations indicate that frazil and anchor ice formation occurring in a large coastal polynya provide a main mechanism for sediment entrainment. In the central Arctic Ocean sediments are concentrated in layers within or at the surface of ice floes due to melting and refreezing processes. The surface sediment accumulation in central Arctic multi-year sea ice exceeds by far the amounts observed in first-year ice from the Laptev Sea in April 1992. Sea ice sediments are generally fine grained, although coarse sediments and stones up to 5 cm in diameter are observed. Component analysis indicates that quartz and clay minerals are the main terrigenous sediment particles. The biogenous components, namely shells of pelecypods and benthic foraminiferal tests, point to a shallow, benthic, marine source area. Apparently, sediment inclusions were resuspended from shelf areas before and incorporated into the sea ice by suspension freezing. Clay mineralogy of ice-rafted sediments provides information on potential source areas. A smectite maximum in sea ice sediment samples repeatedly occurred between 81??N and 83??N along the Arctic 91 transect, indicating a rather stable and narrow smectite rich ice drift stream of the Transpolar Drift. The smectite concentrations are comparable to those found in both Laptev Sea shelf sediments and anchor ice sediments, pointing to this sea as a potential source area for sea ice sediments. In the central Arctic Ocean sea ice clay mineralogy is significantly different from deep-sea clay mineral distribution patterns. The contribution of sea ice sediments to the deep sea is apparently diluted by sedimentary material provided by other transport mechanisms. ?? 1994.
The Effect of Low Energy Turbulence in Estuary Margins on Fine Sediment Settling
NASA Astrophysics Data System (ADS)
Allen, R. M.; MacVean, L. J.; Tse, I.; Mazzaro, L. J.; Stacey, M. T.; Variano, E. A.
2014-12-01
Sediment dynamics in estuaries and near shore regions control the growth or erosion of the bed and fringing wetlands, determine the spread of sediment-associated contaminants, and limit the light availability for primary productivity through turbidity. In estuaries such as San Francisco Bay, this sediment is often cohesive, and can flocculate. Changes to the composition of the sediment and waters, the suspended sediment concentration, and the turbulence can all affect the flocculation of suspended sediment. In turn, flocculation controls the particle diameter, settling velocity, density, and particle inertia. These sediment properties drive the turbulent diffusivity, which balances with the settling velocity to impact the vertical distribution of sediment in the water column. The vertical profile strongly affects how sediment is transported through the estuary by lateral flow. Turbulence may also impact settling velocity in non-cohesive particles. In turbulence, dense particles may get trapped in convergent flow regions, thus particles are more likely to get swept along the downward side of a turbulent eddy than the upward side, resulting in enhanced settling velocities. We isolated the impacts of turbulence level, particle size and type, and suspended sediment concentration on particle settling velocities using uniform grain size particles in homogeneous isotropic turbulence. Controlling the turbulence in a well-defined turbulence tank, we used Two Acoustic Doppler Velocimeters, separated vertically, to measure turbulent velocities (w') and suspended sediment concentrations (C), which yield condition dependent settling velocities (ws), via equation 1. Lab characterization of particle settling velocities help to validate the method for measuring settling velocities in the field, and will serve as a foundation for an extensive field experiment in San Francisco Bay. Characterizing the velocity enhancement relative to the Stokes number, the Rouse number, and the turbulent Reynolds number will enable more mechanistic predictions of sediment transport in low energy environments like protected estuary margins.
NASA Astrophysics Data System (ADS)
Kwang, J. S.; Parker, G.
2017-12-01
Many landscape evolution models incorporate sediment removal as a quasi-equilibrium process via the Stream Power Incision Model, or otherwise incorporate sediment supply to mixed bedrock-alluvial channels according to a quasi-steady relation between channel incision and hillslope production. Yet in actively uplifting landscapes, hillslope production is often a highly punctuated phenomenon governed by landslides. We investigate the following key question: how does a landscape subject to punctuated sediment supply differ from one with a steady supply at the same rate? To do this, we incorporate punctuated supply into the Macro Roughness Saltation Abrasion Alluviation model [Zhang et al., 2015], a descendant of the Capacity Saltation Abrasion model [Sklar and Dietrich, 2004, 2006], that is specifically designed to capture unsteady alluvial morphodynamics. Our model has three modules: a) a bedrock-alluvial channel module, b) a hillslope diffusion module, and c) a stochastically-driven landslide supply module. Sediment in bedrock channels plays two roles in incision: 1) as an abrasive agent that incises the bed via collisions and 2) as a protector that inhibits collisions of sediment on the bed. The abrasion rate is proportional to a bedload transport rate times the areal fraction of bedrock surface that is exposed. The transport rate is equal to the capacity transport rate times the areal fraction of bedrock surface that is covered with alluvium, i.e. cover factor. Here, the incision rate vanishes with either vanishing cover (no tools) or complete cover (no bedrock exposed for abrasion). The properties of and amount of sediment delivered to the channel heavily depend on hillslope dynamics. Therefore, hillslope dynamics are important in determining the rate of incision of bedrock channels. Conversely, bedrock incision drives the production of sediment by lowering the base of hillslopes, creating a feedback. We explore this feedback in our landscape evolution model by adjusting our landslide model so that it supplies sediment at a steady rate or according to a stochastic algorithm chosen to characterize landslide size and frequency in such settings as Taiwan or Sichuan near the 2008 Wenchuan Earthquake epicenter. We use our model to study the signature of punctuated sediment delivery on the landscape.
Mathematical Model of Estuarial Sediment Transport.
1977-10-01
This experience showed the central importance of the vertical diffusion coefficient and of the settling velocities of suspended aggregates. 150...34Report of Radioactive Tracer Studies, Sumatra ," Report prepared for Government Offices of Sumatra , 1975. 28. Strang, Gilbert and Fix, G. J., An...of the overall system as it is located at a turning basin . * Krone, R. B., "A Field Study of Flocculation as a Factor in Estuarial Shoaling
Transport and transportation pathways of hazardous chemicals from solid waste disposal.
Van Hook, R I
1978-01-01
To evaluate the impact of hazardous chemicals in solid wastes on man and other organisms, it is necessary to have information about amounts of chemical present, extent of exposure, and chemical toxicity. This paper addresses the question of organism exposure by considering the major physical and biological transport pathways and the physicochemical and biochemical transformations that may occur in sediments, soils, and water. Disposal of solid wastes in both terrestrial and oceanic environments is considered. Atmospheric transport is considered for emissions from incineration of solid wastes and for wind resuspension of particulates from surface waste deposits. Solid wastes deposited in terrestrial environments are subject to leaching by surface and ground waters. Leachates may then be transported to other surface waters and drinking water aquifers through hydrologic transport. Leachates also interact with natural organic matter, clays, and microorganisms in soils and sediments. These interactions may render chemical constituents in leachates more or less mobile, possibly change chemical and physical forms, and alter their biological activity. Oceanic waste disposal practices result in migration through diffusion and ocean currents. Surface area-to-volume ratios play a major role in the initial distributions of chemicals in the aquatic environment. Sediments serve as major sources and sinks of chemical contaminants. Food chain transport in both aquatic and terrestrial environments results in the movement of hazardous chemicals from lower to higher positions in the food web. Bioconcentration is observed in both terrestrial and aquatic food chains with certain elements and synthetic organics. Bioconcentration factors tend to be higher for synthetic organics, and higher in aquatic than in terrestrial systems. Biodilution is not atypical in terrestrial environments. Synergistic and antagonistic actions are common occurrences among chemical contaminants and can be particularly important toxicity considerations in aquatic environments receiving runoff from several terrestrial sources. PMID:367772
NASA Astrophysics Data System (ADS)
Leary, K. P.; Buscombe, D.; Schmeeckle, M.; Kaplinski, M. A.
2017-12-01
Bedforms are ubiquitous in sand-bedded rivers, and understanding their morphodynamics is key to quantifying bedload transport. As such, mechanistic understanding of the spatiotemporal details of sand transport through and over bedforms is paramount to quantifying total sediment flux in sand-bedded river systems. However, due to the complexity of bedform field geometries and migration in natural settings, our ability to relate migration to bedload flux, and to quantify the relative role of tractive and suspended processes in their dynamics, is incomplete. Recent flume and numerical investigations indicate the potential importance of cross-stream transport, a process previously regarded as secondary and diffusive, to the three-dimensionality of bedforms and spatially variable translation and deformation rates. This research seeks to understand and quantify the importance of cross-stream transport in bedform three-dimensionality in a field setting. This work utilizes a high-resolution (0.25 m grid) data set of bedforms migrating in the channel of the Colorado River in Grand Canyon National Park. This data set comprises multi-beam sonar surveys collected at 3 different flow discharges ( 283, 566, and 1076 m3/s) along a reach of the Colorado River just upstream of the Diamond Creek USGS gage. Data were collected every 6 minutes almost continuously for 12 hours. Using bed elevation profiles (BEPs), we extract detailed bedform geometrical data (i.e. bedform height, wavelength) and spatial sediment flux data over a suite of bedforms at each flow. Coupling this spatially extensive data with a generalized Exner equation, we conduct mass balance calculations that evaluate the possibility, and potential importance, of cross-stream transport in the spatial variability of translation and deformation rates. Preliminary results suggest that intra-dune cross-stream transport can partially account for changes in the planform shape of dunes and may play an important role in spatially variable translation and deformation rates. Parameterization of cross-stream sediment transport could lead to accounting for ambiguities in bedload flux calculations caused by dune deformation, which in turn could significantly improve overall calculation of bedload and total load sediment transport in sand bedded rivers.
NASA Astrophysics Data System (ADS)
Yu, X.; Salama, S.; Shen, F.
2016-08-01
During the Dragon-3 project (ID: 10555) period, we developed and improved the atmospheric correction algorithms (AC) and retrieval models of suspended sediment concentration ( ) and diffuse attenuation coefficient ( ) for the Yangtze estuarine and coastal waters. The developed models were validated by measurements with consistently stable and fairly accurate estimations, reproducing reasonable distribution maps of and over the study area. Spatial-temporal variations of were presented and the mechanisms of the sediment transport were discussed. We further examined the compatibility of the developed AC algorithms and retrieval model and the consistency of satellite products for multi-sensor such as MODIS/Terra/Aqua, MERIS/Envisat, MERSI/ FY-3 and GOCI. The inter-comparison of multi- sensor suggested that different satellite products can be combined to increase revisit frequency and complement a temporal gap of time series satellites that may exist between on-orbit and off- orbit, facilitating a better monitor on the spatial- temporal dynamics of .
Numerical Modeling of Large-Scale Rocky Coastline Evolution
NASA Astrophysics Data System (ADS)
Limber, P.; Murray, A. B.; Littlewood, R.; Valvo, L.
2008-12-01
Seventy-five percent of the world's ocean coastline is rocky. On large scales (i.e. greater than a kilometer), many intertwined processes drive rocky coastline evolution, including coastal erosion and sediment transport, tectonics, antecedent topography, and variations in sea cliff lithology. In areas such as California, an additional aspect of rocky coastline evolution involves submarine canyons that cut across the continental shelf and extend into the nearshore zone. These types of canyons intercept alongshore sediment transport and flush sand to abyssal depths during periodic turbidity currents, thereby delineating coastal sediment transport pathways and affecting shoreline evolution over large spatial and time scales. How tectonic, sediment transport, and canyon processes interact with inherited topographic and lithologic settings to shape rocky coastlines remains an unanswered, and largely unexplored, question. We will present numerical model results of rocky coastline evolution that starts with an immature fractal coastline. The initial shape is modified by headland erosion, wave-driven alongshore sediment transport, and submarine canyon placement. Our previous model results have shown that, as expected, an initial sediment-free irregularly shaped rocky coastline with homogeneous lithology will undergo smoothing in response to wave attack; headlands erode and mobile sediment is swept into bays, forming isolated pocket beaches. As this diffusive process continues, pocket beaches coalesce, and a continuous sediment transport pathway results. However, when a randomly placed submarine canyon is introduced to the system as a sediment sink, the end results are wholly different: sediment cover is reduced, which in turn increases weathering and erosion rates and causes the entire shoreline to move landward more rapidly. The canyon's alongshore position also affects coastline morphology. When placed offshore of a headland, the submarine canyon captures local sediment, increases weathering and erosion around the headland, and eventually changes the headland into an embayment! Improvements to our modeling approach include refining the initial conditions. To create a fractal, immature rocky coastline, self-similar river networks with random side branches were drawn on the shoreline domain. River networks and side branches were scaled according to Horton's law and Tokunaga statistics, respectively, and each river pathway was assigned a simple exponential longitudinal profile. Topography was generated around the river networks to create drainage basins and, on a larger scale, represent a mountainous, fluvially-sculpted landscape. The resultant morphology was then flooded to a given elevation, leaving a fractal rocky coastline. In addition to the simulated terrain, actual digital elevation models will also be used to derive the initial conditions. Elevation data from different mountainous geomorphic settings such as the decaying Appalachian Mountains or actively uplifting Sierra Nevada can be effectively flooded to a given sea level, resulting in a fractal and immature coastline that can be input to the numerical model. This approach will offer insight into how rocky coastlines in different geomorphic settings evolve, and provide a useful complement to results using the simulated terrain.
NASA Astrophysics Data System (ADS)
Guan, Mingfu; Ahilan, Sangaralingam; Yu, Dapeng; Peng, Yong; Wright, Nigel
2018-01-01
Fine sediment plays crucial and multiple roles in the hydrological, ecological and geomorphological functioning of river systems. This study employs a two-dimensional (2D) numerical model to track the hydro-morphological processes dominated by fine suspended sediment, including the prediction of sediment concentration in flow bodies, and erosion and deposition caused by sediment transport. The model is governed by 2D full shallow water equations with which an advection-diffusion equation for fine sediment is coupled. Bed erosion and sedimentation are updated by a bed deformation model based on local sediment entrainment and settling flux in flow bodies. The model is initially validated with the three laboratory-scale experimental events where suspended load plays a dominant role. Satisfactory simulation results confirm the model's capability in capturing hydro-morphodynamic processes dominated by fine suspended sediment at laboratory-scale. Applications to sedimentation in a stormwater pond are conducted to develop the process-based understanding of fine sediment dynamics over a variety of flow conditions. Urban flows with 5-year, 30-year and 100-year return period and the extreme flood event in 2012 are simulated. The modelled results deliver a step change in understanding fine sediment dynamics in stormwater ponds. The model is capable of quantitatively simulating and qualitatively assessing the performance of a stormwater pond in managing urban water quantity and quality.
Dissolved oxygen transfer to sediments by sweep and eject motions in aquatic environments
O'Connor, B.L.; Hondzo, Miki
2008-01-01
Dissolved oxygen (DO) concentrations were quantified near the sediment-water interface to evaluate DO transfer to sediments in a laboratory recirculating flume and open channel under varying fluid-flow conditions. DO concentration fluctuations were observed within the diffusive sublayer, as defined by the time-averaged DO concentration gradient near the sediment-water interface. Evaluation of the DO concentration fluctuations along with detailed fluid-flow characterizations were used to quantify quasi-periodic sweep and eject motions (bursting events) near the sediments. Bursting events dominated the Reynolds shear stresses responsible for momentum and mass fluctuations near the sediment bed. Two independent methods for detecting bursting events using DO concentration and velocity data produced consistent results. The average time between bursting events was scaled with wall variables and was incorporated into a similarity model to describe the dimensionless mass transfer coefficient (Sherwood number, Sh) in terms of the Reynolds number, Re, and Schmidt number, Sc, which described transport in the flow. The scaling of bursting events was employed with the similarity model to quantify DO transfer to sediments and results showed a high degree of agreement with experimental data. ?? 2008, by the American Society of Limnology and Oceanography, Inc.
NASA Astrophysics Data System (ADS)
McCray, J. E.; Downs, W.; Falta, R. W.; Housley, T.
2005-12-01
DNAPL sources of carbon tetrachloride (CT) vapors are of interest at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering and Environmental Laboratory (INEEL). The site is underlain by thick fractured basalt that includes sedimentary interbeds, each are a few meters thick. Daily atmospheric pressure fluctuations serve as driving forces for CT vapor transport in the subsurface. Other important transport processes for vapor movement include gas-phase diffusion and density-driven transport. The objective of this research is to investigate the influence and relative importance of these processes on gaseous transport of CT. Gas pressure and vapor concentration measurements were conducted at various depths in two wells. A numerical multiphase flow model (TOUGH2), calibrated to field pressure data, is used to conduct sensitivity analyses to elucidate the importance of the different transport mechanisms. Results show that the basalt is highly permeable to vertical air flow. The pressure dampening occurs mainly in the sedimentary interbeds. Model-calibrated permeability values for the interbeds are similar to those obtained in a study by the U.S. Geological Survey for shallow sediments, and an order of magnitude higher than column-scale values obtained by previous studies conducted by INEEL scientists. The transport simulations indicate that considering the effect of barometric pressure changes is critical to simulating transport of pollutants in the vadose zone above the DNAPL source. Predicted concentrations can be orders of magnitude smaller than actual concentrations if the effect is not considered. Below the DNAPL vapor source, accounting for density and diffusion alone would yield acceptable results provided that a 20% error in concentrations are acceptable, and that simulating concentrations trends (and not actual concentrations) is the primary goal.
Subgrid Modeling Geomorphological and Ecological Processes in Salt Marsh Evolution
NASA Astrophysics Data System (ADS)
Shi, F.; Kirby, J. T., Jr.; Wu, G.; Abdolali, A.; Deb, M.
2016-12-01
Numerical modeling a long-term evolution of salt marshes is challenging because it requires an extensive use of computational resources. Due to the presence of narrow tidal creeks, variations of salt marsh topography can be significant over spatial length scales on the order of a meter. With growing availability of high-resolution bathymetry measurements, like LiDAR-derived DEM data, it is increasingly desirable to run a high-resolution model in a large domain and for a long period of time to get trends of sedimentation patterns, morphological change and marsh evolution. However, high spatial-resolution poses a big challenge in both computational time and memory storage, when simulating a salt marsh with dimensions of up to O(100 km^2) with a small time step. In this study, we have developed a so-called Pre-storage, Sub-grid Model (PSM, Wu et al., 2015) for simulating flooding and draining processes in salt marshes. The simulation of Brokenbridge salt marsh, Delaware, shows that, with the combination of the sub-grid model and the pre-storage method, over 2 orders of magnitude computational speed-up can be achieved with minimal loss of model accuracy. We recently extended PSM to include a sediment transport component and models for biomass growth and sedimentation in the sub-grid model framework. The sediment transport model is formulated based on a newly derived sub-grid sediment concentration equation following Defina's (2000) area-averaging procedure. Suspended sediment transport is modeled by the advection-diffusion equation in the coarse grid level, but the local erosion and sedimentation rates are integrated over the sub-grid level. The morphological model is based on the existing morphological model in NearCoM (Shi et al., 2013), extended to include organic production from the biomass model. The vegetation biomass is predicted by a simple logistic equation model proposed by Marani et al. (2010). The biomass component is loosely coupled with hydrodynamic and sedimentation models owing to the different time scales of the physical and ecological processes. The coupled model is being applied to Delaware marsh evolution in response to rising sea level and changing sediment supplies.
NASA Astrophysics Data System (ADS)
Stoliker, D. L.; Hay, M. B.; Davis, J. A.; Zachara, J. M.
2008-12-01
The 300-Area of the Hanford reservation, a cold-war era nuclear processing facility, is plagued by long-term elevated concentrations of U(VI) in the underlying aquifer. While the sediment U(VI) concentration is relatively low, it continues to act as a source and sink for the contaminant, allowing for persistent groundwater concentrations well above the maximum contamination limit (MCL). Simple Kd modeling of the attenuation of U(VI) in the aquifer predicted that groundwater U(VI) concentrations would decrease to below the drinking water standard by the year 2002. However, grain-scale morphology of the aquifer material suggests that intra-grain flow paths and mineral coatings, in which sorption complexes and precipitates formed over years of waste disposal, provide a significant kinetic constraint that slows groundwater flushing of the sediments. In order to quantify the impact of diffusion kinetics on the release of U(VI), high-resolution, non-reactive tracer studies were conducted on vadose zone sediments in both column and batch reactors. Systems were equilibrated for long time scales with tritated artificial groundwater and then flushed with flow and stop-flow events included for columns. Previously collected U(VI) release data from batch dissolution/desorption studies is compared with tritium tracer diffusion kinetics as well as porosimetry and detailed microscopy characterization. The micro-scale and nano-scale diffusion regimes, including intra-granular regions as well as mineral coatings, represent a significant potential long-term source of contaminant U(VI). Understanding the physical kinetic limitations coupled with the complex chemistry of U(VI) sorption processes within natural systems is an important step forward in providing information to strengthen field-scale reactive transport simulations.
NASA Astrophysics Data System (ADS)
Glud, Ronnie Nøhr; Jensen, Kim; Revsbech, Niels Peter
1995-01-01
Diffusional characteristics of two biologically active surface sediments were determined by use of a combined N 2O-O 2 microsensor. By analyzing changes in the N2O-gradients in these sediments, it was possible to determine the product ( φDs) for this species with submillimetre depth resolution, where φ is the porosity and Ds the substrate diffusion coefficient. The ( φDs)-value for O 2 could be calculated then from ( φDs)-value for N 2O, because the diffusivity of the two molecules were modified in the same way within the sediment. Both sediments exhibited fine-scale horizontal and vertical variability in diffusion characteristics, and this must be accounted for when analyzing microprofile data. The average ( φDs)-value for N 2O at 20°C for an estuarine surface sediment was 0.93 × 10 -5 cm2 s -1 (at 0-4 mm depth), while the value for the upper 2 mm of a stream sediment covered by a microbial mat was 1.42 × 10 -5 cm 2 s -1. Biological inactivation and oxidation by exposure to an O 2 atmosphere had no effect on the measured ( φDs) for the estuarine sediment; however, the value for the sediment covered by a microbial mat, with dense populations of meiofauna, decreased by 20%. The method presented is ideal for measurements of diffusivity at a high spatial resolution in surficial sediments and densely packed microbial communities.
2010-01-01
Background The difficulty of directly measuring cellular dose is a significant obstacle to application of target tissue dosimetry for nanoparticle and microparticle toxicity assessment, particularly for in vitro systems. As a consequence, the target tissue paradigm for dosimetry and hazard assessment of nanoparticles has largely been ignored in favor of using metrics of exposure (e.g. μg particle/mL culture medium, particle surface area/mL, particle number/mL). We have developed a computational model of solution particokinetics (sedimentation, diffusion) and dosimetry for non-interacting spherical particles and their agglomerates in monolayer cell culture systems. Particle transport to cells is calculated by simultaneous solution of Stokes Law (sedimentation) and the Stokes-Einstein equation (diffusion). Results The In vitro Sedimentation, Diffusion and Dosimetry model (ISDD) was tested against measured transport rates or cellular doses for multiple sizes of polystyrene spheres (20-1100 nm), 35 nm amorphous silica, and large agglomerates of 30 nm iron oxide particles. Overall, without adjusting any parameters, model predicted cellular doses were in close agreement with the experimental data, differing from as little as 5% to as much as three-fold, but in most cases approximately two-fold, within the limits of the accuracy of the measurement systems. Applying the model, we generalize the effects of particle size, particle density, agglomeration state and agglomerate characteristics on target cell dosimetry in vitro. Conclusions Our results confirm our hypothesis that for liquid-based in vitro systems, the dose-rates and target cell doses for all particles are not equal; they can vary significantly, in direct contrast to the assumption of dose-equivalency implicit in the use of mass-based media concentrations as metrics of exposure for dose-response assessment. The difference between equivalent nominal media concentration exposures on a μg/mL basis and target cell doses on a particle surface area or number basis can be as high as three to six orders of magnitude. As a consequence, in vitro hazard assessments utilizing mass-based exposure metrics have inherently high errors where particle number or surface areas target cells doses are believed to drive response. The gold standard for particle dosimetry for in vitro nanotoxicology studies should be direct experimental measurement of the cellular content of the studied particle. However, where such measurements are impractical, unfeasible, and before such measurements become common, particle dosimetry models such as ISDD provide a valuable, immediately useful alternative, and eventually, an adjunct to such measurements. PMID:21118529
Vortex-induced suspension of sediment in the surf zone
NASA Astrophysics Data System (ADS)
Otsuka, Junichi; Saruwatari, Ayumi; Watanabe, Yasunori
2017-12-01
A major mechanism of sediment suspension by organized vortices produced under violent breaking waves in the surf zone was identified through physical and computational experiments. Counter-rotating flows within obliquely descending eddies produced between adjacent primary roller vortices induce transverse convergent near-bed flows, driving bed load transport to form regular patterns of transverse depositions. The deposited sediment is then rapidly ejected by upward carrier flows induced between the vortices. This mechanism of vortex-induced suspension is supported by experimental evidence that coherent sediment clouds are ejected where the obliquely descending eddies reach the sea bed after the breaking wave front has passed. In addition to the effects of settling and turbulent diffusion caused by breaking waves, the effect of the vortex-induced flows was incorporated into a suspension model on the basis of vorticity dynamics and parametric characteristics of transverse flows in breaking waves. The model proposed here reasonably predicts an exponential attenuation of the measured sediment concentration due to violent plunging waves and significantly improves the underprediction of the concentration produced by previous models.
Feng, Yan; Wu, Chen-Chou; Bao, Lian-Jun; Shi, Lei; Song, Lin; Zeng, Eddy Y
2016-12-01
The fate of hydrophobic organic compounds in aquatic environment are largely determined by their exchange at sediment-water interface, which is highly dynamic and subject to rapidly evolving environmental conditions. In turn, environmental conditions may be governed by both physicochemical parameters and anthropogenic events. To examine the importance of various impact factors, passive sampling devices were deployed at the seafloor of Hailing Bay, an urbanized estuarine bay in Guangdong Province of South China to measure the sediment-water diffusion fluxes of several metabolites of dichlorodiphenyltrichloroethane (DDT), p,p'-DDE, p,p'-DDD and o,p'-DDD. The physicochemical properties of water (temperature, pH, salinity and dissolved oxygen) and surface sediment (sediment organic matter, physical composition, pH, water content, colony forming unit and catalase activity) were also measured. The results showed that the diffusion fluxes of o,p'-DDD, p,p'-DDD and p,p'-DDE at sites A1 and A2 near a fishing boat maintenance facility ranged from 0.42 to 4.73 ng m -2 d -1 (from sediment to overlying water), whereas those at offshore sites varied between -0.03 and -3.02 ng m -2 d -1 (from overlying water to sediment), implicating A1 and A2 as the sources of the target compounds. The distribution patterns of the diffusion fluxes of the target compounds were different from those of water and sediment parameters (water temperature, salinity, sediment texture, pH, colony forming unit and catalase activity) at six sampling sites. This finding suggested that none of these parameters were critical in dictating the sediment-water diffusion fluxes. Besides, decreases in the contents of kerogen and black carbon by 6.7% and 11% would enhance the diffusion fluxes of the target compounds by 11-14% and 12-23%, respectively, at site A1, indicating that kerogen and black carbon were the key factors in mediating the sediment-water diffusion fluxes of DDT-related compounds in field environments. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wang, Hongfang; Mason, J.A.; Balsam, W.L.
2006-01-01
The loess-paleosol succession in the Peoria Loess in southern Illinois is characterized as alternating loess layers and weathering bands, known as paleosol A horizons. The fast loess accumulation during the late Wisconsin glaciation interacted with the incipient pedogenesis and caused unclear boundaries of loess-paleosol alternations in soil horizonation and mineralogy. Parameters of grain size distribution, sedimentation rate, matrix carbonate content and diffuse reflectance (i.e. soil colors and iron oxides) are used in this paper to discuss the geological and pedological influences for the Peoria Loess in Keller Farm section in southern Illinois. The multi-proxy analysis revealed that many paleosol A horizons, defined by the diffuse reflectance variability, contain finer-grained materials with a relatively higher sedimentation rate. It suggests that glaciofluvial sediments were available in the source areas for uploading eolian dust during the temporary ice sheet retreats. The denser vegetation and wetter surface soils on the loess deposit area could increase the dust trapping efficiency and caused a greater accumulation rate of loess deposits. The coarser-grained materials and slower sedimentation rate are often found in loess layers. It suggests that strong surface winds transported the coarser-grained materials from local dust sources and sparse vegetation and dry surface soils reduced the dust trapping efficiency during the ice sheet readvance. The strong interactions between the geological and pedological processes played an important role on the loess-paleosol alternations in southern Illinois during the late Wisconsin glaciation. ?? 2006 Elsevier B.V. All rights reserved.
Sediment diffusion method improves wastewater nitrogen removal in the receiving lake sediments.
Aalto, Sanni L; Saarenheimo, Jatta; Ropponen, Janne; Juntunen, Janne; Rissanen, Antti J; Tiirola, Marja
2018-07-01
Sediment microbes have a great potential to transform reactive N to harmless N 2 , thus decreasing wastewater nitrogen load into aquatic ecosystems. Here, we examined if spatial allocation of the wastewater discharge by a specially constructed sediment diffuser pipe system enhanced the microbial nitrate reduction processes. Full-scale experiments were set on two Finnish lake sites, Keuruu and Petäjävesi, and effects on the nitrate removal processes were studied using the stable isotope pairing technique. All nitrate reduction rates followed nitrate concentrations, being highest at the wastewater-influenced sampling points. Complete denitrification with N 2 as an end-product was the main nitrate reduction process, indicating that the high nitrate and organic matter concentrations of wastewater did not promote nitrous oxide (N 2 O) production (truncated denitrification) or ammonification (dissimilatory nitrate reduction to ammonium; DNRA). Using 3D simulation, we demonstrated that the sediment diffusion method enhanced the contact time and amount of wastewater near the sediment surface especially in spring and in autumn, altering organic matter concentration and oxygen levels, and increasing the denitrification capacity of the sediment. We estimated that natural denitrification potentially removed 3-10% of discharged wastewater nitrate in the 33 ha study area of Keuruu, and the sediment diffusion method increased this areal denitrification capacity on average 45%. Overall, our results indicate that sediment diffusion method can supplement wastewater treatment plant (WWTP) nitrate removal without enhancing alternative harmful processes. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Syngouna, Vasiliki I; Chrysikopoulos, Constantinos V
2016-03-01
The cotransport of clay colloids and viruses in vertically oriented laboratory columns packed with glass beads was investigated. Bacteriophages MS2 and ΦX174 were used as model viruses, and kaolinite (ΚGa-1b) and montmorillonite (STx-1b) as model clay colloids. A steady flow rate of Q=1.5 mL/min was applied in both vertical up (VU) and vertical down (VD) flow directions. In the presence of KGa-1b, estimated mass recovery values for both viruses were higher for VD than VU flow direction, while in the presence of STx-1b the opposite was observed. However, for all cases examined, the produced mass of viruses attached onto suspended clay particles were higher for VD than VU flow direction, suggesting that the flow direction significantly influences virus attachment onto clays, as well as packed column retention of viruses attached onto suspended clays. KGa-1b hindered the transport of ΦX174 under VD flow, while STx-1b facilitated the transport of ΦX174 under both VU and VD flow directions. Moreover, KGa-1b and STx-1b facilitated the transport of MS2 in most of the cases examined except of the case where KGa-1b was present under VD flow. Also, the experimental data were used for the estimation of virus surface-coverages and virus surface concentrations generated by virus diffusion-limited attachment, as well as virus attachment due to sedimentation. Both sedimentation and diffusion limited virus attachment were higher for VD than VU flow, except the case of MS2 and STx-1b cotransport. The diffusion-limited attachment was higher for MS2 than ΦΧ174 for all cases examined. Copyright © 2015 Elsevier B.V. All rights reserved.
Cui, Qing; Brandt, Nils; Sinha, Rajib; Malmström, Maria E
2010-06-01
A coupled source-transport-storage model was developed to determine the origin and path of copper from materials/goods in use in the urban drainage area and the fate of copper in local recipient lakes. The model was applied and tested using five small lakes in Stockholm, Sweden. In the case of the polluted lakes Råcksta Träsk, Trekanten and Långsjön, the source strengths of copper identified by the model were found to be well linked with independently observed copper contents in the lake sediments through the model. The model results also showed that traffic emissions, especially from brake linings, dominated the total load in all five cases. Sequential sedimentation and burial proved to be the most important fate processes of copper in all lakes, except Råcksta Träsk, where outflow dominated. The model indicated that the sediment copper content can be used as a tracer of the urban diffuse copper source strength, but that the response to changes in source strength is fairly slow (decades). Major uncertainties in the source model were related to management of stormwater in the urban area, the rate of wear of brake linings and weathering of copper roofs. The uncertainty of the coupled model is in addition affected mainly by parameters quantifying the sedimentation and bury processes, such as particulate fraction, settling velocity of particles, and sedimentation rate. As a demonstration example, we used the model to predict the response of the sediment copper level to a decrease in the copper load from the urban catchment in one of the case study lakes. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Al-Mur, Bandar A; Quicksall, Andrew N; Kaste, James M
2017-09-15
The Red Sea is a unique ecosystem with high biodiversity in one of the warmest regions of the world. In the last five decades, Red Sea coastal development has rapidly increased. Sediments from continental margins are delivered to depths by advection and diffusion-like processes which are difficult to quantify yet provide invaluable data to researchers. Beryllium-7, lead-210 and ceseium-137 were analyzed from sediment cores from the near-coast Red Sea near Jeddah, Saudi Arabia. The results of this work are the first estimates of diffusion, mixing, and sedimentation rates of the Red Sea coastal sediments. Maximum chemical diffusion and particle mixing rates range from 69.1 to 380cm -2 y -1 and 2.54 to 6.80cm -2 y -1 , respectively. Sedimentation rate is constrained to approximately 0.6cm/yr via multiple methods. These data provide baselines for tracking changes in various environmental problems including erosion, marine benthic ecosystem silting, and particle-bound contaminant delivery to the seafloor. Copyright © 2017. Published by Elsevier Ltd.
Pischedda, L; Poggiale, J C; Cuny, P; Gilbert, F
2008-06-01
The influence of sediment oxygen heterogeneity, due to bioturbation, on diffusive oxygen flux was investigated. Laboratory experiments were carried out with 3 macrobenthic species presenting different bioturbation behaviour patterns: the polychaetes Nereis diversicolor and Nereis virens, both constructing ventilated galleries in the sediment column, and the gastropod Cyclope neritea, a burrowing species which does not build any structure. Oxygen two-dimensional distribution in sediments was quantified by means of the optical planar optode technique. Diffusive oxygen fluxes (mean and integrated) and a variability index were calculated on the captured oxygen images. All species increased sediment oxygen heterogeneity compared to the controls without animals. This was particularly noticeable with the polychaetes because of the construction of more or less complex burrows. Integrated diffusive oxygen flux increased with oxygen heterogeneity due to the production of interface available for solute exchanges between overlying water and sediments. This work shows that sediment heterogeneity is an important feature of the control of oxygen exchanges at the sediment-water interface.
Performance of four turbulence closure models implemented using a generic length scale method
Warner, J.C.; Sherwood, C.R.; Arango, H.G.; Signell, R.P.
2005-01-01
A two-equation turbulence model (one equation for turbulence kinetic energy and a second for a generic turbulence length-scale quantity) proposed by Umlauf and Burchard [J. Marine Research 61 (2003) 235] is implemented in a three-dimensional oceanographic model (Regional Oceanographic Modeling System; ROMS v2.0). These two equations, along with several stability functions, can represent many popular turbulence closures, including the k-kl (Mellor-Yamada Level 2.5), k-??, and k-?? schemes. The implementation adds flexibility to the model by providing an unprecedented range of turbulence closure selections in a single 3D oceanographic model and allows comparison and evaluation of turbulence models in an otherwise identical numerical environment. This also allows evaluation of the effect of turbulence models on other processes such as suspended-sediment distribution or ecological processes. Performance of the turbulence models and sediment-transport schemes is investigated with three test cases for (1) steady barotropic flow in a rectangular channel, (2) wind-induced surface mixed-layer deepening in a stratified fluid, and (3) oscillatory stratified pressure-gradient driven flow (estuarine circulation) in a rectangular channel. Results from k-??, k-??, and gen (a new closure proposed by Umlauf and Burchard [J. Marine Research 61 (2003) 235]) are very similar for these cases, but the k-kl closure results depend on a wall-proximity function that must be chosen to suit the flow. Greater variations appear in simulations of suspended-sediment concentrations than in salinity simulations because the transport of suspended-sediment amplifies minor variations in the methods. The amplification is caused by the added physics of a vertical settling rate, bottom stress dependent resuspension, and diffusive transport of sediment in regions of well mixed salt and temperature. Despite the amplified sensitivity of sediment to turbulence models in the estuary test case, the four closures investigated here all generated estuarine turbidity maxima that were similar in their shape, location, and concentrations.
Microbial production of organic acids in aquitard sediments and its role in aquifer geochemistry
McMahon, P.B.; Chapelle, F.H.
1991-01-01
MICROBIAL activity in aquifers plays an important part in the chemical evolution of ground water1-5. The most important terminal electron-accepting microbial processes in deeply buried anaerobic aquifers are iron reduction, sulphate reduction and methanogenesis5-8, each of which requires simple organic compounds or hydrogen (H2) as electron donors. Until now, the source of these compounds was unknown because the concentrations of dissolved organic carbon and sedimentary organic carbon in aquifers are extremely low9-11. Here we show that rates of microbial fermentation exceed rates of respiration in organic-rich aquitards (low-permeability sediments stratigraphically adjacent to higher-permeability aquifer sediments), resulting in a net accumulation of simple organic acids in pore waters. In aquifers, however, respiration outpaces fermentation, resulting in a net consumption of organic acids. The concentration gradient that develops in response to these two processes drives a net diffusive flux of organic acids from aquitards to aquifers. Diffusion calculations demonstrate that rates of organic acid transport are sufficient to account for observed rates of microbial respiration in aquifers. This overall process effectively links the large pool of sedimentary organic carbon in aquitards to microbial respiration in aquifers, and is a principal mechanism driving groundwater chemistry changes in aquifers.
2011-02-01
of either trade or manufacturers’ names in this report does not constitute an official endorsement of any commercial products. This report may not be...different mechanisms (Cox and Wathes , 1995). Mechanisms include impaction, interception, sedimentation, diffusion, and electrostatic attraction. A brief...forces can also be a source of surface deposition on the inlet and the transport tube prior to the collection area (Cox and Wathes , 1995
Particle Tracking Model Transport Process Verification: Diffusion Algorithm
2015-07-01
sediment densities in space and time along with final particle fates (Demirbilek et al. 2004; Davies et al. 2005; McDonald et al. 2006; Lackey and... McDonald 2007). Although a versatile model currently utilized in various coastal, estuarine, and riverine applications, PTM is specifically designed to...Algorithm 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7
Physical phenomena and the microgravity response
NASA Technical Reports Server (NTRS)
Todd, Paul
1989-01-01
The living biological cell is not a sack of Newtonian fluid containing systems of chemical reactions at equilibrium. It is a kinetically driven system, not a thermodynamically driven system. While the cell as a whole might be considered isothermal, at the scale of individual macromolecular events there is heat generated, and presumably sharp thermal gradients exist at the submicron level. Basic physical phenomena to be considered when exploring the cell's response to inertial acceleration include particle sedimentation, solutal convection, motility electrokinetics, cytoskeletal work, and hydrostatic pressure. Protein crystal growth experiments, for example, illustrate the profound effects of convection currents on macromolecular assembly. Reaction kinetics in the cell vary all the way from diffusion-limited to life-time limited. Transport processes vary from free diffusion, to facilitated and active transmembrane transport, to contractile-protein-driven motility, to crystalline immobilization. At least four physical states of matter exist in the cell: aqueous, non-aqueous, immiscible-aqueous, and solid. Levels of order vary from crystalline to free solution. The relative volumes of these states profoundly influence the cell's response to inertial acceleration. Such subcellular phenomena as stretch-receptor activation, microtubule re-assembly, synaptic junction formation, chemotactic receptor activation, and statolith sedimentation were studied recently with respect to both their basic mechanisms and their responsiveness to inertial acceleration. From such studies a widespread role of cytoskeletal organization is becoming apparent.
Methane flux from the central Amazonian floodplain
NASA Technical Reports Server (NTRS)
Bartlett, Karen B.; Crill, Patrick M.; Sebacher, Daniel I.; Harriss, Robert C.; Wilson, John O.
1988-01-01
A total of 186 methane measurements from the three primary Amazon floodplain environments of open water lakes, flood forests, and floating grass mats were made over the period 18 July through 2 September 1985. These data indicate that emissions were lowest over open water lakes. Flux from flooded forests and grass mats was significantly higher. At least three transport processes contribute to tropospheric emissions: ebullition from sediments, diffusion along the concentration gradient from sediment to overlaying water to air, and transport through the roots and stems of aquatic plants. Measurements indicate that the first two of these processes are most significant. It was estimated that on the average bubbling makes up 49 percent of the flux from open water, 54 percent of that from flooded forests, and 64 percent of that from floating mats. If the measurements were applied to the entire Amazonian floodplain, it is calculated that the region could supply up to 12 percent of the estimated global natural sources of methane.
Zambon, Joseph B.; He, Ruoying; Warner, John C.
2014-01-01
The coupled ocean–atmosphere–wave–sediment transport (COAWST) model is used to hindcast Hurricane Ivan (2004), an extremely intense tropical cyclone (TC) translating through the Gulf of Mexico. Sensitivity experiments with increasing complexity in ocean–atmosphere–wave coupled exchange processes are performed to assess the impacts of coupling on the predictions of the atmosphere, ocean, and wave environments during the occurrence of a TC. Modest improvement in track but significant improvement in intensity are found when using the fully atmosphere–ocean-wave coupled configuration versus uncoupled (e.g., standalone atmosphere, ocean, or wave) model simulations. Surface wave fields generated in the fully coupled configuration also demonstrates good agreement with in situ buoy measurements. Coupled and uncoupled model-simulated sea surface temperature (SST) fields are compared with both in situ and remote observations. Detailed heat budget analysis reveals that the mixed layer temperature cooling in the deep ocean (on the shelf) is caused primarily by advection (equally by advection and diffusion).
Sedimentation dynamics and diffusion of suspensions of swimming E. coli
NASA Astrophysics Data System (ADS)
Arratia, Paulo; Patteson, Alison; Singh, Jaspreet; Purohit, Prashant
2017-11-01
Sedimentation in active fluids has come into focus due to the ubiquity of swimming micro-organisms in natural and man-made environments. Here, we experimentally investigate sedimentation of passive particles in water containing various concentrations of the bacterium E. coli. Results show that the presence of live bacteria reduces the velocity of the sedimentation front even in the dilute regime, where constant sedimentation velocity is expected to be independent of particle concentration. The presence of live bacteria increases the effective diffusion coefficient, which determines the width of the sedimentation front. For higher bacteria concentration, we find the development of two sedimentation fronts due to bacterial death. A model in which the advection-diffusion equation describing the settling of particles under gravity is coupled to the population dynamics of the bacteria captures the experimental trends relatively well. This work is supported by NSF-CBET-1437482.
NASA Astrophysics Data System (ADS)
Goto, Shusaku; Yamano, Makoto; Morita, Sumito; Kanamatsu, Toshiya; Hachikubo, Akihiro; Kataoka, Satsuki; Tanahashi, Manabu; Matsumoto, Ryo
2017-12-01
Physical properties (bulk density and porosity) and thermal properties (thermal conductivity, heat capacity, specific heat, and thermal diffusivity) of sediment are crucial parameters for basin modeling. We measured these physical and thermal properties for mud-dominant sediment recovered from the Joetsu Basin, in the eastern margin of the Japan Sea. To determine thermal conductivity, heat capacity, and thermal diffusivity, the dual-needle probe method was applied. Grain density and grain thermal properties for the mud-dominant sediment were estimated from the measured physical and thermal properties by applying existing models of physical and thermal properties of sediment. We suggest that the grain density, grain thermal conductivity, and grain thermal diffusivity depend on the sediment mineral composition. Conversely, the grain heat capacity and grain specific heat showed hardly any dependency on the mineral composition. We propose empirical formulae for the relationships between: thermal diffusivity and thermal conductivity, and heat capacity and thermal conductivity for the sediment in the Joetsu Basin. These relationships are different from those for mud-dominant sediment in the eastern flank of the Juan de Fuca Ridge presented in previous work, suggesting a difference in mineral composition, probably mainly in the amount of quartz, between the sediments in that area and the Joetsu Basin. Similar studies in several areas of sediments with various mineral compositions would enhance knowledge of the influence of mineral composition.
NASA Astrophysics Data System (ADS)
Rouvinskaya, Ekaterina; Kurkin, Andrey; Kurkina, Oxana
2017-04-01
Intensive internal gravity waves influence bottom topography in the coastal zone. They induce substantial flows in the bottom layer that are essential for the formation of suspension and for the sediment transport. It is necessary to develop a mathematical model to predict the state of the seabed near the coastline to assess and ensure safety during the building and operation of the hydraulic engineering constructions. There are many models which are used to predict the impact of storm waves on the sediment transport processes. Such models for the impact of the tsunami waves are also actively developing. In recent years, the influence of intense internal waves on the sedimentation processes is also of a special interest. In this study we adapt one of such models, that is based on the advection-diffusion equation and allows to study processes of resuspension under the influence of internal gravity waves in the coastal zone, for solving the specific practical problems. During the numerical simulation precomputed velocity values are substituted in the advection - diffusion equation for sediment concentration at each time step and each node of the computational grid. Velocity values are obtained by the simulation of the internal waves' dynamics by using the IGW Research software package for numerical integration of fully nonlinear two-dimensional (vertical plane) system of equations of hydrodynamics of inviscid incompressible stratified fluid in the Boussinesq approximation bearing in mind the impact of barotropic tide. It is necessary to set the initial velocity and density distribution in the computational domain, bottom topography, as well as the value of the Coriolis parameter and, if necessary, the parameters of the tidal wave to carry out numerical calculations in the software package IGW Research. To initialize the background conditions of the numerical model we used data records obtained in the summer in the southern part of the shelf zone of Sakhalin Island from 1999 to 2003, provided by SakhNIRO, Russia. The process of assimilation of field data with numerical model is described in detail in our previous studies. It has been shown that process of suspension formation is quite intense for the investigated condition. Concentration of suspended particles significantly increases during the tide, especially on naturally uneven bottom relief as well as on the right boundary of the computational domain (near shoreline). Pronounced nepheloid layer is produced. Its thickness is about 5.6 m. At the phase of low tide, the process of suspension sediment production stops, and suspended particles are beginning to settle because of the small vertical velocities. Thickness of nepheloid layer is actively reduced. Obviously, this should lead to a change in the bottom relief. The presented results of research were obtained with the support of the Russian President's scholarship for young scientists and graduate students SP-2311.2016.5.
Jung, Hun Bok; Charette, Matthew A.; Zheng, Yan
2009-01-01
A field, laboratory, and modeling study of As in groundwater discharging to Waquoit Bay, MA, shed light on coupled control of chemistry and hydrology on reactive transport of As in a coastal aquifer. Dissolved Fe(II) and As(III) in a reducing groundwater plume bracketed by an upper and a lower redox interface are oxidized as water flows towards the bay. This results in precipitation of Fe(III) oxides, along with oxidation and adsorption of As to sediment at the redox interfaces where concentrations of sedimentary HCl-leachable Fe (80~90% Fe(III)) are 734±232 mg kg-1, sedimentary phosphate extractable As (90~100% As(V)) are 316±111 μg kg-1, and are linearly correlated. Batch adsorption of As(III) onto orange, brown and gray sediments follows Langmuir isotherms, and can be fitted by a surface complexation model (SCM) assuming a diffuse layer for ferrihydrite. The sorption capacity and distribution coefficient for As increase with decreasing sediment Fe(II)/Fe. To allow accumulation of the amount of sediment As, similar hydrogeochemical conditions would have been operating for thousands of years at Waquoit Bay. The SCM simulated the observed dissolved As concentration better than a parametric approach based on Kd. Site specific isotherms should be established for Kd or SCM based models. PMID:19708362
Role of seagrass photosynthesis in root aerobic processes.
Smith, R D; Dennison, W C; Alberte, R S
1984-04-01
The role of shoot photosynthesis as a means of supporting aerobic respiration in the roots of the seagrass Zostera marina was examined. O(2) was transported rapidly (10-15 minutes) from the shoots to the root-rhizome tissues upon shoot illumination. The highest rates of transport were in shoots possessing the greatest biomass and leaf area. The rates of O(2) transport do not support a simple gas phase diffusion mechanism. O(2) transport to the root-rhizome system supported aerobic root respiration and in many cases exceeded respiratory requirements leading to O(2) release from the subterranean tissue. Release of O(2) can support aerobic processes in reducing sediments typical of Z. marina habitats. Since the root-rhizome respiration is supported primarily under shoot photosynthetic conditions, then the daily period of photosynthesis determines the diurnal period of root aerobiosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nole, Michael; Daigle, Hugh; Cook, Ann E.
The goal of this study is to computationally determine the potential distribution patterns of diffusion-driven methane hydrate accumulations in coarse-grained marine sediments. Diffusion of dissolved methane in marine gas hydrate systems has been proposed as a potential transport mechanism through which large concentrations of hydrate can preferentially accumulate in coarse-grained sediments over geologic time. Using one-dimensional compositional reservoir simulations, we examine hydrate distribution patterns at the scale of individual sand layers (1 to 20 m thick) that are deposited between microbially active fine-grained material buried through the gas hydrate stability zone (GHSZ). We then extrapolate to two- dimensional and basin-scalemore » three-dimensional simulations, where we model dipping sands and multilayered systems. We find that properties of a sand layer including pore size distribution, layer thickness, dip, and proximity to other layers in multilayered systems all exert control on diffusive methane fluxes toward and within a sand, which in turn impact the distribution of hydrate throughout a sand unit. In all of these simulations, we incorporate data on physical properties and sand layer geometries from the Terrebonne Basin gas hydrate system in the Gulf of Mexico. We demonstrate that diffusion can generate high hydrate saturations (upward of 90%) at the edges of thin sands at shallow depths within the GHSZ, but that it is ineffective at producing high hydrate saturations throughout thick (greater than 10 m) sands buried deep within the GHSZ. As a result, we find that hydrate in fine-grained material can preserve high hydrate saturations in nearby thin sands with burial.« less
Nole, Michael; Daigle, Hugh; Cook, Ann E.; ...
2017-02-01
The goal of this study is to computationally determine the potential distribution patterns of diffusion-driven methane hydrate accumulations in coarse-grained marine sediments. Diffusion of dissolved methane in marine gas hydrate systems has been proposed as a potential transport mechanism through which large concentrations of hydrate can preferentially accumulate in coarse-grained sediments over geologic time. Using one-dimensional compositional reservoir simulations, we examine hydrate distribution patterns at the scale of individual sand layers (1 to 20 m thick) that are deposited between microbially active fine-grained material buried through the gas hydrate stability zone (GHSZ). We then extrapolate to two- dimensional and basin-scalemore » three-dimensional simulations, where we model dipping sands and multilayered systems. We find that properties of a sand layer including pore size distribution, layer thickness, dip, and proximity to other layers in multilayered systems all exert control on diffusive methane fluxes toward and within a sand, which in turn impact the distribution of hydrate throughout a sand unit. In all of these simulations, we incorporate data on physical properties and sand layer geometries from the Terrebonne Basin gas hydrate system in the Gulf of Mexico. We demonstrate that diffusion can generate high hydrate saturations (upward of 90%) at the edges of thin sands at shallow depths within the GHSZ, but that it is ineffective at producing high hydrate saturations throughout thick (greater than 10 m) sands buried deep within the GHSZ. As a result, we find that hydrate in fine-grained material can preserve high hydrate saturations in nearby thin sands with burial.« less
Transport mechanisms of biological colloids.
Anderson, J L
1986-01-01
An effort was made to distinguish among various mechanisms by which colloidal particles can be transported through liquid solutions. Figures 1-3 provide a visual (Figure: see text) summary of these differences. The various "phoretic" motions (electrophoresis, diffusiophoresis, osmophoresis) differ from sedimentation in that the driving forces operate within a thin interfacial layer at the surface of a particle rather than on the bulk of the article. Because of these surface forces, the velocity field of solvent dragged by a particle undergoing phoretic motion is much weaker (O(r-3)) than in the case of sedimentation (O(r-1)). As a consequence, particle-particle and particle-pore interactions are weak for the phoretic motions; Figures 4 and 5 demonstrate this point. It should be emphasized that the results presented in this paper are strictly valid only for very thin interfacial layers (kappa-1 much less than a, L and K much less than a). The Einstein relation (Eq. 1), which applies to sedimentation and diffusion with Equation 2 used for f, has been incorrect for the phoretic transport. As shown in Table 2, there is no unique value of f that fits all the phenomena, and in fact the magnitude of f for phoretic motion greatly exceeds the Stokes' law coefficient. Unfortunately, Equation 1 is well ingrained in the literature; one objective here was to bring its inadequacies to light. The phoretic transport processes offer important advantages in separations because of the selectivity that may be achieved through surface chemistry. For example, experiments are underway that demonstrate transport of particles across porous membranes by diffusiophoresis. It may prove economically attractive to develop both analytical and preparative separation methods that rely more on the surface properties of biological colloids rather than just their size.
Universal characteristics of particle shape evolution by bed-load chipping
Sipos, András Árpád; Shaw, Sam; Sarti, Giovanni; Domokos, Gábor
2018-01-01
River currents, wind, and waves drive bed-load transport, in which sediment particles collide with each other and Earth’s surface. A generic consequence is impact attrition and rounding of particles as a result of chipping, often referred to in geological literature as abrasion. Recent studies have shown that the rounding of river pebbles can be modeled as diffusion of surface curvature, indicating that geometric aspects of impact attrition are insensitive to details of collisions and material properties. We present data from fluvial, aeolian, and coastal environments and laboratory experiments that suggest a common relation between circularity and mass attrition for particles transported as bed load. Theory and simulations demonstrate that universal characteristics of shape evolution arise because of three constraints: (i) Initial particles are mildly elongated fragments, (ii) particles collide with similarly-sized particles or the bed, and (iii) collision energy is small enough that chipping dominates over fragmentation but large enough that sliding friction is negligible. We show that bed-load transport selects these constraints, providing the foundation to estimate a particle’s attrition rate from its shape alone in most sedimentary environments. These findings may be used to determine the contribution of attrition to downstream fining in rivers and deserts and to infer transport conditions using only images of sediment grains. PMID:29670937
Universal characteristics of particle shape evolution by bed-load chipping.
Novák-Szabó, Tímea; Sipos, András Árpád; Shaw, Sam; Bertoni, Duccio; Pozzebon, Alessandro; Grottoli, Edoardo; Sarti, Giovanni; Ciavola, Paolo; Domokos, Gábor; Jerolmack, Douglas J
2018-03-01
River currents, wind, and waves drive bed-load transport, in which sediment particles collide with each other and Earth's surface. A generic consequence is impact attrition and rounding of particles as a result of chipping, often referred to in geological literature as abrasion. Recent studies have shown that the rounding of river pebbles can be modeled as diffusion of surface curvature, indicating that geometric aspects of impact attrition are insensitive to details of collisions and material properties. We present data from fluvial, aeolian, and coastal environments and laboratory experiments that suggest a common relation between circularity and mass attrition for particles transported as bed load. Theory and simulations demonstrate that universal characteristics of shape evolution arise because of three constraints: (i) Initial particles are mildly elongated fragments, (ii) particles collide with similarly-sized particles or the bed, and (iii) collision energy is small enough that chipping dominates over fragmentation but large enough that sliding friction is negligible. We show that bed-load transport selects these constraints, providing the foundation to estimate a particle's attrition rate from its shape alone in most sedimentary environments. These findings may be used to determine the contribution of attrition to downstream fining in rivers and deserts and to infer transport conditions using only images of sediment grains.
Gravitational dynamics of biosystems - Some speculations
NASA Technical Reports Server (NTRS)
Kessler, J. O.; Bier, M.
1976-01-01
The response of organisms to gravity is generally discussed in terms of hypotheses involving sedimentation and other static effects. This paper considers several complex, inhomogeneous fluid-containing systems that are intended to model some possible dynamic effects of gravity on biosystems. It is shown that the presence of gravity may result in modified long range transport, concentration oscillations, and broken symmetries. The magnitude of density-gradient-driven convective transport times, and their ratios to diffusive transport times, are calculated for cell dimensions of six different plant varieties. The results indicate that further investigation of gravitational convection effects may be realistic in some cases and is definitely not in others. The results of this paper should aid in the planning of 'zero-gravity' experiments concerning plant geotropism and bio-materials processing.
NASA Astrophysics Data System (ADS)
Nägele, G.; Heinen, M.; Banchio, A. J.; Contreras-Aburto, C.
2013-11-01
Dynamic processes in dispersions of charged spherical particles are of importance both in fundamental science, and in technical and bio-medical applications. There exists a large variety of charged-particles systems, ranging from nanometer-sized electrolyte ions to micron-sized charge-stabilized colloids. We review recent advances in theoretical methods for the calculation of linear transport coefficients in concentrated particulate systems, with the focus on hydrodynamic interactions and electrokinetic effects. Considered transport properties are the dispersion viscosity, self- and collective diffusion coefficients, sedimentation coefficients, and electrophoretic mobilities and conductivities of ionic particle species in an external electric field. Advances by our group are also discussed, including a novel mode-coupling-theory method for conduction-diffusion and viscoelastic properties of strong electrolyte solutions. Furthermore, results are presented for dispersions of solvent-permeable particles, and particles with non-zero hydrodynamic surface slip. The concentration-dependent swelling of ionic microgels is discussed, as well as a far-reaching dynamic scaling behavior relating colloidal long- to short-time dynamics.
Transport of microplastics in coastal seas
NASA Astrophysics Data System (ADS)
Zhang, Hua
2017-12-01
Microplastic pollution of the marine environment has received increasing attention from scientists, the public, and policy makers over the last few years. Marine microplastics predominantly originate near the coast and can remain in the nearshore zone for some time. However, at present, there is little understanding of the fate and transport of microplastics in coastal regions. This paper provides a comprehensive overview of the physical processes involved in the movement of microplastics from estuaries to the continental shelf. The trajectory and speed of microplastics are controlled by their physical characteristics (density, size, and shape) and ocean dynamic conditions (wind, waves, tides, thermohaline gradients, and the influence of benthic sediments). Microplastic particles can be subjected to beaching, surface drifting, vertical mixing, and biofouling, as well as bed-load and suspended load transport processes, until reaching terminal deposition on beaches, in coastal marshes, in benthic sediments or until they are carried by ocean currents to subtropical convergence zones. The dynamic interaction of released microplastics with the shoreline is regulated by onshore/offshore transport, which is impacted by the source location as well as the geometry, vegetation, tidal regime, and wave direction. Wind and wave conditions dominate surface drifting of buoyant particles through Ekman drift, windage, and Stokes drift mechanisms. Neustic microplastic particles travel in the subsurface because of vertical mixing through wind-driven Langmuir circulation and heat cycling. Increasing accumulation of microplastics in benthic sediments needs to be quantitatively explored in terms of biofouling, deposition, entrainment, and transport dynamics. Further studies are required to understand the following: 1) the primary parameters (e.g., windage, terminal velocity, diffusivity, critical shear stress) that determine microplastic transport in different pathways; 2) dynamic distribution of microplastics in various coastal landscapes (e.g., wetlands, beaches, estuaries, lagoons, barrier islands, depocenters) regulated by hydrodynamic conditions; and 3) interactions between the physical transport processes and biochemical reactions (degradation, flocculation, biofouling, ingestions).
NASA Astrophysics Data System (ADS)
Hu, Ching-Yi; Frank Yang, Tsanyao; Burr, George S.; Chuang, Pei-Chuan; Chen, Hsuan-Wen; Walia, Monika; Chen, Nai-Chen; Huang, Yu-Chun; Lin, Saulwood; Wang, Yunshuen; Chung, San-Hsiung; Huang, Chin-Da; Chen, Cheng-Hong
2017-11-01
In this study, we used pore water dissolved inorganic carbon (DIC), SO42-, Ca2+ and Mg2+ gradients at the sulfate-methane transition zone (SMTZ) to estimate biogeochemical fluxes for cored sediments collected offshore SW Taiwan. Net DIC flux changes (ΔDIC-Prod) were applied to determine the proportion of sulfate consumption by organic matter oxidation (heterotrophic sulfate reduction) and anaerobic oxidation of methane (AOM), and to determine reliable CH4 fluxes at the SMTZ. Our results show that SO42- profiles are mainly controlled by AOM rather than heterotrophic sulfate reduction. Refinement of CH4 flux estimates enhance our understanding of methane abundance from deep carbon reservoirs to the SMTZ. Concentrations of chloride (Cl-), bromide (Br-) and iodide (I-) dissolved in pore water were used to identify potential sources that control fluid compositions and the behavior of dissolved ions. Constant Cl- concentrations throughout ∼30 m sediment suggest no influence of gas hydrates for the compositions within the core. Bromide (Br-) and Iodine (I-) concentrations increase with sediment depth. The I-/Br- ratio appears to reflect organic matter degradation. SO42- concentrations decrease with sediment depth at a constant rate, and sediment depth profiles of Br- and I- concentrations suggests diffusion as the main transport mechanism. Therefore diffusive flux calculations are reasonable. Coring sites with high CH4 fluxes are more common in the accretionary wedge, amongst thrust faults and fractures, than in the passive continental margin offshore southwestern Taiwan. AOM reactions are a major sink for CH4 passing upward through the SMTZ and prevent high methane fluxes in the water column and to the atmosphere.
Modeling sediment transport with an integrated view of the biofilm effects
NASA Astrophysics Data System (ADS)
Fang, H. W.; Lai, H. J.; Cheng, W.; Huang, L.; He, G. J.
2017-09-01
Most natural sediment is invariably covered by biofilms in reservoirs and lakes, which have significant influence on bed form dynamics and sediment transport, and also play a crucial role in natural river evolution, pollutant transport, and habitat changes. However, most models for sediment transport are based on experiments using clean sediments without biological materials. In this study, a three-dimensional mathematical model of hydrodynamics and sediment transport is presented with a comprehensive consideration of the biofilm effects. The changes of the bed resistance mainly due to the different bed form dynamics of the biofilm-coated sediment (biosediment), which affect the hydrodynamic characteristics, are considered. Moreover, the variations of parameters related to sediment transport after the biofilm growth are integrated, including the significant changes of the incipient velocity, settling velocity, reference concentration, and equilibrium bed load transport rate. The proposed model is applied to evaluate the effects of biofilms on the hydrodynamic characteristics and sediment transport in laboratory experiments. Results indicate that the mean velocity increases after the biofilm growth, and the turbulence intensity near the river bed decreases under the same flow condition. Meanwhile, biofilm inhibits sediment from moving independently. Thus, the moderate erosion is observed for biosediment resulting in smaller suspended sediment concentrations. The proposed model can reasonably reflect these sediment transport characteristics with biofilms, and the approach to integration of the biological impact could also be used in other modeling of sediment transport, which can be further applied to provide references for the integrated management of natural aqueous systems.
Dynamics of the Sediment Plume Over the Yangtze Bank in the Yellow and East China Seas
NASA Astrophysics Data System (ADS)
Luo, Zhifa; Zhu, Jianrong; Wu, Hui; Li, Xiangyu
2017-12-01
A distinct sediment plume exists over the Yangtze Bank in the Yellow and East China Seas (YECS) in winter, but it disappears in summer. Based on satellite color images, there are two controversial viewpoints about the formation mechanism for the sediment plume. One viewpoint is that the sediment plume forms because of cross-shelf sediment advection of highly turbid water along the Jiangsu coast. The other viewpoint is that the formation is caused by local bottom sediment resuspension and diffused to the surface layer through vertical turbulent mixing. The dynamic mechanism of the sediment plume formation has been unclear until now. This issue was explored by using a numerical sediment model in the present paper. Observed wave, current, and sediment data from 29 December 2016 to 16 January 2017 were collected near the Jiangsu coast and used to validate the model. The results indicated that the model can reproduce the hydrodynamic and sediment processes. Numerical experiments showed that the bottom sediment could be suspended by the bottom shear stress and diffuse to the surface layer by vertical mixing in winter; however, the upward diffusion is restricted by the strong stratification in summer. The sediment plume is generated locally due to bottom sediment resuspension primarily via tide-induced bottom shear stress rather than by cross-shelf sediment advection over the Yangtze Bank.
NASA Astrophysics Data System (ADS)
Nole, M.; Daigle, H.; Cook, A.; Malinverno, A.; Hillman, J. I. T.
2016-12-01
We explore the gas hydrate-generating capacity of diffusive methane transport induced by solubility gradients due to pore size contrasts in lithologically heterogeneous marine sediments. Through the use of 1D, 2D, and 3D reactive transport simulations, we investigate scale-dependent processes in diffusion-dominated gas hydrate systems. These simulations all track a sand body, or series of sands, surrounded by clays as they are buried through the gas hydrate stability zone. Methane is sourced by microbial methanogenesis in the clays surrounding the sand layers. In 1D, simulations performed in a Lagrangian reference frame demonstrate that gas hydrate in thin sands (3.6 m thick) can occur in high saturations (upward of 70%) at the edges of sand bodies within the upper 400 meters below the seafloor. Diffusion of methane toward the center of the sand layer depends on the concentration gradient within the sand: broader sand pore size distributions with smaller median pore sizes enhance diffusive action toward the sand's center. Incorporating downhole log- and laboratory-derived sand pore size distributions, gas hydrate saturations in the center of the sand can reach 20% of the hydrate saturations at the sand's edges. Furthermore, we show that hydrate-free zones exist immediately above and below the sand and are approximately 5 m thick, depending on the sand-clay solubility contrast. A moving reference frame is also adopted in 2D, and the angle of gravity is rotated relative to the grid system to simulate a dipping sand layer. This is important to minimize diffusive edge effects or numerical diffusion that might be associated with a dipping sand in an Eulerian grid system oriented orthogonal to gravity. Two-dimensional simulations demonstrate the tendency for gas hydrate to accumulate downdip in a sand body because of greater methane transport at depth due to larger sand-clay solubility contrasts. In 3D, basin-scale simulations illuminate how convergent sand layers in a multilayered system can compete for diffusion from clays between them, resulting in relatively low hydrate saturations. All simulations suggest that when hydrate present in clays dissociates with burial, the additional dissolved methane is soaked up by nearby sands preserving high hydrate saturations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nole, Michael; Daigle, Hugh; Cook, Ann
We explore the gas hydrate-generating capacity of diffusive methane transport induced by solubility gradients due to pore size contrasts in lithologically heterogeneous marine sediments. Through the use of 1D, 2D, and 3D reactive transport simulations, we investigate scale-dependent processes in diffusion-dominated gas hydrate systems. These simulations all track a sand body, or series of sands, surrounded by clays as they are buried through the gas hydrate stability zone. Methane is sourced by microbial methanogenesis in the clays surrounding the sand layers. In 1D, simulations performed in a Lagrangian reference frame demonstrate that gas hydrate in thin sands (3.6 m thick)more » can occur in high saturations (upward of 70%) at the edges of sand bodies within the upper 400 meters below the seafloor. Diffusion of methane toward the center of the sand layer depends on the concentration gradient within the sand: broader sand pore size distributions with smaller median pore sizes enhance diffusive action toward the sand’s center. Incorporating downhole log- and laboratory-derived sand pore size distributions, gas hydrate saturations in the center of the sand can reach 20% of the hydrate saturations at the sand’s edges. Furthermore, we show that hydrate-free zones exist immediately above and below the sand and are approximately 5 m thick, depending on the sand-clay solubility contrast. A moving reference frame is also adopted in 2D, and the angle of gravity is rotated relative to the grid system to simulate a dipping sand layer. This is important to minimize diffusive edge effects or numerical diffusion that might be associated with a dipping sand in an Eulerian grid system oriented orthogonal to gravity. Two-dimensional simulations demonstrate the tendency for gas hydrate to accumulate downdip in a sand body because of greater methane transport at depth due to larger sand-clay solubility contrasts. In 3D, basin-scale simulations illuminate how convergent sand layers in a multilayered system can compete for diffusion from clays between them, resulting in relatively low hydrate saturations. All simulations suggest that when hydrate present in clays dissociates with burial, the additional dissolved methane is soaked up by nearby sands preserving high hydrate saturations.« less
Contrasting Patterns of Fine Fluvial Sediment Delivery in Two Adjacent Upland Catchments
NASA Astrophysics Data System (ADS)
Perks, M.; Bracken, L.; Warburton, J.
2010-12-01
Quantifying patterns of fine suspended sediment transfer in UK upland rivers is of vital importance in combating the damaging effects of elevated fluxes of suspended sediment, and sediment associated transport of contaminants, on in-stream biota. In many catchments of the UK there is still a lack of catchment-wide understanding of both the spatial patterns and temporal variation in fine sediment delivery. This poster describes the spatial and temporal distribution of in-stream fine sediment delivery from a network of 44 time-integrated mass flux samplers (TIMs) in two adjacent upland catchments. The two catchments are the Esk (210 km2) and Upper Derwent (236 km2) which drain the North York Moors National Park. Annual suspended sediment loads in the Upper Derwent are 1273 t, whereas in the Esk catchment they are greater at 1778 t. Maximum yields of 22 t km-2 yr -1 were measured in the headwater tributaries of the Rye River (Derwent), whereas peak yields in the Esk are four times greater (98 t km-2 yr-1) on the Butter Beck subcatchment. Analysis of the within-storm sediment dynamics, indicates that the sediment sources within the Upper Derwent catchment are from distal locations possibly mobilised by hillslope runoff processes, whereas in the Esk, sediment sources are more proximal to the channel e.g. within channel stores or bank failures. These estimates of suspended sediment flux are compared with the diffuse pollution potential generated by a risk-based model of sediment transfer (SCIMAP) in order to assess the similarity between the model predictions and observed fluxes.
How do Colluvial Hollows Fill?
NASA Astrophysics Data System (ADS)
Hales, T. C.; Parker, R.; Mudd, S. M.; Grieve, S. W. D.
2016-12-01
In humid, soil-mantled mountains shallow landslides commonly initiate in colluvial hollows, areas where convergent topography can lead to high pore pressures during storms. Immediately post-landslide initiation, a thin veneer of colluvial material accumulates by small-scale slumping from landslide headscarps. Thereafter colluvium accumulates in hollows primarily through creep-dominated processes like tree throw and animal burrowing, recording the hillslope sediment flux since the last landslide event. We measured the post-landslide hillslope sediment flux in 30 colluvial hollows in the southern Appalachians using radiocarbon measurements collected from soil pits excavated at the centre of steep, landslide-prone hollows. We collected material from the soil-saprolite/bedrock boundary at each location for radiocarbon dating and dated different chemical fractions of the soil (humic acid, humin, charcoal) in an attempt to bracket the "true" age of the soil. We calculated infilling rates of each hollow by measuring soil depths in cross-hollow transects and dividing this by the age of the hollow. The interquartile range of hollow basal ages is 2278-8184 cal. yrs B.P., demonstrating the long return period of landslides in most colluvial hollows. Hillslope erosion rates calculated assuming a linear diffusion transport law show that the transport coefficient (diffusivity) of the hollows varied by 4 orders of magnitude 10-5 to 10-1 m2 yr-1, despite the hollows being formed in regionally consistent geology and vegetation. Uncertainty in the dating and hollow geometry measurements can, at most, account for an order of magnitude of that variability. Our results show that hollows have a phase of rapid infilling that slows through time, consistent with previous observations. Despite this, the oldest hollows show several orders of magnitude variation in the transport coefficient, suggesting local, hollow scale variations in process significantly affect hillslope erosion rates.
NASA Astrophysics Data System (ADS)
Guala, M.; Liu, M.
2017-12-01
The kinematics of sediment particles is investigated by non-intrusive imaging methods to provide a statistical description of bedload transport in conditions near the threshold of motion. In particular, we focus on the cyclic transition between motion and rest regimes to quantify the waiting time statistics inferred to be responsible for anomalous diffusion, and so far elusive. Despite obvious limitations in the spatio-temporal domain of the observations, we are able to identify the probability distributions of the particle step time and length, velocity, acceleration, waiting time, and thus distinguish which quantities exhibit well converged mean values, based on the thickness of their respective tails. The experimental results shown here for four different transport conditions highlight the importance of the waiting time distribution and represent a benchmark dataset for the stochastic modeling of bedload transport.
Generation of net sediment transport by velocity skewness in oscillatory sheet flow
NASA Astrophysics Data System (ADS)
Chen, Xin; Li, Yong; Chen, Genfa; Wang, Fujun; Tang, Xuelin
2018-01-01
This study utilizes a qualitative approach and a two-phase numerical model to investigate net sediment transport caused by velocity skewness beneath oscillatory sheet flow and current. The qualitative approach is derived based on the pseudo-laminar approximation of boundary layer velocity and exponential approximation of concentration. The two-phase model can obtain well the instantaneous erosion depth, sediment flux, boundary layer thickness, and sediment transport rate. It can especially illustrate the difference between positive and negative flow stages caused by velocity skewness, which is considerably important in determining the net boundary layer flow and sediment transport direction. The two-phase model also explains the effect of sediment diameter and phase-lag to sediment transport by comparing the instantaneous-type formulas to better illustrate velocity skewness effect. In previous studies about sheet flow transport in pure velocity-skewed flows, net sediment transport is only attributed to the phase-lag effect. In the present study with the qualitative approach and two-phase model, phase-lag effect is shown important but not sufficient for the net sediment transport beneath pure velocity-skewed flow and current, while the asymmetric wave boundary layer development between positive and negative flow stages also contributes to the sediment transport.
NASA Astrophysics Data System (ADS)
Poulton, Simon W.; Canfield, Donald E.
2006-12-01
We present a detailed study of the co-diagenesis of Fe and P in hydrothermal plume fallout sediments from ˜19°S on the southern East Pacific Rise. Three distal sediment cores from 340-1130 km from the ridge crest, collected during DSDP Leg 92, were analysed for solid phase Fe and P associations using sequential chemical extraction techniques. The sediments at all sites are enriched in hydrothermal Fe (oxyhydr)oxides, but during diagenesis a large proportion of the primary ferrihydrite precipitates are transformed to the more stable mineral form of goethite and to a lesser extent to clay minerals, resulting in the release to solution of scavenged P. However, a significant proportion of this P is retained within the sediment, by incorporation into secondary goethite, by precipitation as authigenic apatite, and by readsorption to Fe (oxyhydr)oxides. Molar P/Fe ratios for these sediments are significantly lower than those measured in plume particles from more northern localities along the southern East Pacific Rise, and show a distinct downcore decrease to a depth of ˜12 m. Molar P/Fe ratios are then relatively constant to a depth of ˜35 m. The Fe and P speciation data indicate that diagenetic modification of the sediments is largely complete by a depth of 2.5 m, and thus depth trends in molar P/Fe ratios can not solely be explained by losses of P from the sediment by diffusion to the overlying water column during early diagenesis. Instead, these sediments are likely recording changes in dissolved P concentrations off the SEPR, possibly as a result of redistribution of nutrients in response to changes in oceanic circulation over the last 10 million years. Furthermore, the relatively low molar P/Fe ratios observed throughout these sediments are not necessarily solely due to losses of scavenged P by diffusion to the overlying water column during diagenesis, but may also reflect post-depositional oxidation of pyrite originating from the volatile-rich vents of the southern East Pacific Rise. This study suggests that the molar P/Fe ratio of oxic Fe-rich sediments may serve as a proxy of relative changes in paleoseawater phosphate concentrations, particularly if Fe sulfide minerals are not an important component during transport and deposition.
NASA Astrophysics Data System (ADS)
Malinverno, Alberto; Goldberg, David S.
2015-07-01
Methane gas hydrates in marine sediments often concentrate in coarse-grained layers surrounded by fine-grained marine muds that are hydrate-free. Methane in these hydrate deposits is typically microbial, and must have migrated from its source as the coarse-grained sediments contain little or no organic matter. In "long-range" migration, fluid flow through permeable layers transports methane from deeper sources into the gas hydrate stability zone (GHSZ). In "short-range" migration, microbial methane is generated within the GHSZ in fine-grained sediments, where small pore sizes inhibit hydrate formation. Dissolved methane can then diffuse into adjacent sand layers, where pore size does not restrict hydrate formation and hydrates can accumulate. Short-range migration has been used to explain hydrate accumulations in sand layers observed in drill sites on the northern Cascadia margin and in the Gulf of Mexico. Here we test the feasibility of short-range migration in two additional locations, where gas hydrates have been found in coarse-grained volcanic ash layers (Site NGHP-01-17, Andaman Sea, Indian Ocean) and turbidite sand beds (Site IODP-C0002, Kumano forearc basin, Nankai Trough, western Pacific). We apply reaction-transport modeling to calculate dissolved methane concentration and gas hydrate amounts resulting from microbial methane generated within the GHSZ. Model results show that short-range migration of microbial methane can explain the overall amounts of methane hydrate observed at the two sites. Short-range migration has been shown to be feasible in diverse margin environments and is likely to be a widespread methane transport mechanism in gas hydrate systems. It only requires a small amount of organic carbon and sediment sequences consisting of thin coarse-grained layers that can concentrate microbial methane generated within thick fine-grained sediment beds; these conditions are common along continental margins around the globe.
Gandhi, N.; Bhavsar, S.P.; Diamond, M.L.; Kuwabara, J.S.; Marvin-DiPasquale, M.; Krabbenhoft, D.P.
2007-01-01
A mathematically linked mercury transport, speciation, kinetic, and simple biotic uptake (BIOTRANSPEC) model has been developed. An extension of the metal transport and speciation (TRANSPEC) model, BIOTRANSPEC estimates the fate and biotic uptake of inorganic (Hg(II)), elemental (Hg(0)) and organic (MeHg) forms of mercury and their species in the dissolved, colloidal (e.g., dissolved organic matter [DOM]), and particulate phases of surface aquatic systems. A pseudo-steady state version of the model was used to describe mercury dynamics in Lahontan Reservoir (near Carson City, NV, USA), where internal loading of the historically deposited mercury is remobilized, thereby maintaining elevated water concentrations. The Carson River is the main source of total mercury (THg), of which more than 90% is tightly bound in a gold-silver-mercury amalgam, to the system through loadings in the spring, with negligible input from the atmospheric deposition. The speciation results suggest that aqueous species are dominated by Hg-DOM, Hg(OH)2, and HgClOH. Sediment-to-water diffusion of MeHg and Hg-DOM accounts for approximately 10% of total loadings to the water column. The water column acts as a net sink for MeHg by reducing its levels through two competitive processes: Uptake by fish, and net MeHg demethylation. Although reservoir sediments produce significant amounts of MeHg (4 g/d), its transport from sediment to water is limited (1.6 g/d), possibly because of its adsorption on metal oxides of iron and manganese at the sediment-water interface. Fish accumulate approximately 45% of the total MeHg mass in the water column, and 9% of total MeHg uptake by fish leaves the system because of fishing. Results from this new model reiterate the previous conclusion that more than 90% of THg input is retained in sediment, which perpetuates elevated water concentrations. ?? 2007 SETAC.
Reexamining ultrafiltration and solute transport in groundwater
NASA Astrophysics Data System (ADS)
Neuzil, C. E.; Person, Mark
2017-06-01
Geologic ultrafiltration—slowing of solutes with respect to flowing groundwater—poses a conundrum: it is consistently observed experimentally in clay-rich lithologies, but has been difficult to identify in subsurface data. Resolving this could be important for clarifying clay and shale transport properties at large scales as well as interpreting solute and isotope patterns for applications ranging from nuclear waste repository siting to understanding fluid transport in tectonically active environments. Simulations of one-dimensional NaCl transport across ultrafiltering clay membrane strata constrained by emerging data on geologic membrane properties showed different ultrafiltration effects than have often been envisioned. In relatively high-permeability advection-dominated regimes, salinity increases occurred mostly within membrane units while their effluent salinity initially fell and then rose to match solute delivery. In relatively low-permeability diffusion-dominated regimes, salinity peaked at the membrane upstream boundary and effluent salinity remained low. In both scenarios, however, only modest salinity changes (up to ˜3 g L-1) occurred because of self-limiting tendencies; membrane efficiency declines as salinity rises, and although sediment compaction increases efficiency, it is also decreases permeability and allows diffusive transport to dominate. It appears difficult for ultrafiltration to generate brines as speculated, but widespread and less extreme ultrafiltration effects in the subsurface could be unrecognized. Conditions needed for ultrafiltration are present in settings that include topographically-driven flow systems, confined aquifer systems subjected to injection or withdrawal, compacting basins, and accretionary complexes.
Reexamining ultrafiltration and solute transport in groundwater
Neuzil, Christopher E.; Person, Mark
2017-01-01
Geologic ultrafiltration—slowing of solutes with respect to flowing groundwater—poses a conundrum: it is consistently observed experimentally in clay-rich lithologies, but has been difficult to identify in subsurface data. Resolving this could be important for clarifying clay and shale transport properties at large scales as well as interpreting solute and isotope patterns for applications ranging from nuclear waste repository siting to understanding fluid transport in tectonically active environments. Simulations of one-dimensional NaCl transport across ultrafiltering clay membrane strata constrained by emerging data on geologic membrane properties showed different ultrafiltration effects than have often been envisioned. In relatively high-permeability advection-dominated regimes, salinity increases occurred mostly within membrane units while their effluent salinity initially fell and then rose to match solute delivery. In relatively low-permeability diffusion-dominated regimes, salinity peaked at the membrane upstream boundary and effluent salinity remained low. In both scenarios, however, only modest salinity changes (up to ∼3 g L−1) occurred because of self-limiting tendencies; membrane efficiency declines as salinity rises, and although sediment compaction increases efficiency, it is also decreases permeability and allows diffusive transport to dominate. It appears difficult for ultrafiltration to generate brines as speculated, but widespread and less extreme ultrafiltration effects in the subsurface could be unrecognized. Conditions needed for ultrafiltration are present in settings that include topographically-driven flow systems, confined aquifer systems subjected to injection or withdrawal, compacting basins, and accretionary complexes.
Jackman, A.P.; Walters, R.A.; Kennedy, V.C.
1984-01-01
Three models describing solute transport of conservative ion species and another describing transport of species which adsorb linearly and reversibly on bed sediments are developed and tested. The conservative models are based on three different conceptual models of the transient storage of solute in the bed. One model assumes the bed to be a well-mixed zone with flux of solute into the bed proportional to the difference between stream concentration and bed concentration. The second model assumes solute in the bed is transported by a vertical diffusion process described by Fick's law. The third model assumes that convection occurs in a selected portion of the bed while the mechanism of the first model functions everywhere. The model for adsorbing species assumes that the bed consists of particles of uniform size with the rate of uptake controlled by an intraparticle diffusion process. All models are tested using data collected before, during and after a 24-hr. pulse injection of chloride, strontium, potassium and lead ions into Uvas Creek near Morgan Hill, California, U.S.A. All three conservative models accurately predict chloride ion concentrations in the stream. The model employing the diffusion mechanism for bed transport predicts better than the others. The adsorption model predicts both strontium and potassium ion concentrations well during the injection of the pulse but somewhat overestimates the observed concentrations after the injection ceases. The overestimation may be due to the convection of solute deep into the bed where it is retained longer than the 3-week post-injection observation period. The model, when calibrated for strontium, predicts potassium equally well when the adsorption equilibrium constant for strontium is replaced by that for potassium. ?? 1984.
Bottom boundary layer spectral dissipation estimates in the presence of wave motions
NASA Astrophysics Data System (ADS)
Gross, T. F.; Williams, A. J.; Terray, E. A.
1994-08-01
Turbulence measurements are an essential element of the Sediment TRansport Events on Shelves and Slopes experiment (STRESS). Sediment transport under waves is initiated within the wave boundary layer at the seabed, at most a few tens of centimeters deep. The suspended load is carried by turbulent diffusion above the wave boundary layer. Quantification of the turbulent diffusion active above the wave boundary layer requires estimates of shear stress or energy dissipation in the presence of oscillating flows. Measurements by Benthic Acoustic Stress Sensors of velocity fluctuations were used to derive the dissipation rate from the energy level of the spectral inertial range (the -5/3 spectrum). When the wave orbital velocity is of similar magnitude to the mean flow, kinematic effects on the estimation techniques of stress and dissipation must be included. Throughout the STRESS experiment there was always significant wave energy affecting the turbulent bottom boundary layer. LUMLEY and TERRAY [(1983) Journal of Physical Oceanography, 13, 2000-2007] presented a theory describing the effect of orbital motions on kinetic energy spectra. Their model is used here with observations of spectra taken within a turbulent boundary layer which is affected by wave motion. While their method was an explicit solution for circular wave orbits aligned with mean current we extrapolated it to the case of near bed horizontal motions, not aligned with the current. The necessity of accounting for wave orbital motion is demonstrated, but variability within the field setting limited our certainty of the improvement in accuracy the corrections afforded.
Stratigraphic controls on fluid and solute fluxes across the sediment-water interface of an estuary
Sawyer, Audrey H.; Lazareva, Olesya; Kroeger, Kevin D.; Crespo, Kyle; Chan, Clara S.; Stieglitz, Thomas; Michael, Holly A.
2014-01-01
Shallow stratigraphic features, such as infilled paleovalleys, modify fresh groundwater discharge to coastal waters and fluxes of saltwater and nutrients across the sediment–water interface. We quantify the spatial distribution of shallow surface water–groundwater exchange and nitrogen fluxes near a paleovalley in Indian River Bay, Delaware, using a hand resistivity probe, conventional seepage meters, and pore-water samples. In the interfluve (region outside the paleovalley) most nitrate-rich fresh groundwater discharges rapidly near the coast with little mixing of saline pore water, and nitrogen transport is largely conservative. In the peat-filled paleovalley, fresh groundwater discharge is negligible, and saltwater exchange is deep (∼1 m). Long pore-water residence times and abundant sulfate and organic matter promote sulfate reduction and ammonium production in shallow sediment. Reducing, iron-rich fresh groundwater beneath paleovalley peat discharges diffusely around paleovalley margins offshore. In this zone of diffuse fresh groundwater discharge, saltwater exchange and dispersion are enhanced, ammonium is produced in shallow sediments, and fluxes of ammonium to surface water are large. By modifying patterns of groundwater discharge and the nature of saltwater exchange in shallow sediments, paleovalleys and other stratigraphic features influence the geochemistry of discharging groundwater. Redox reactions near the sediment–water interface affect rates and patterns of geochemical fluxes to coastal surface waters. For example, at this site, more than 99% of the groundwater-borne nitrate flux to the Delaware Inland Bays occurs within the interfluve portion of the coastline, and more than 50% of the ammonium flux occurs at the paleovalley margin.
NASA Astrophysics Data System (ADS)
Martin, Y. E.; Johnson, E. A.; Gallaway, J.; Chaikina, O.
2011-12-01
Herein we conduct a followup investigation to an earlier research project in which we developed a numerical model of tree population dynamics, tree throw, and sediment transport associated with the formation of pit-mound features for Hawk Creek watershed, Canadian Rockies (Gallaway et al., 2009). We extend this earlier work by exploring the most appropriate transport relations to simulate the diffusion over time of newly-formed pit-pound features due to tree throw. We combine our earlier model with a landscape development model that can incorporate these diffusive transport relations. Using these combined models, changes in hillslope microtopography over time associated with the formation of pit-mound features and their decay will be investigated. The following ideas have motivated this particular study: (i) Rates of pit-mound degradation remain a source of almost complete speculation, as there is almost no long-term information on process rates. Therefore, we will attempt to tackle the issue of pit-mound degradation in a methodical way that can guide future field studies; (ii) The degree of visible pit-mound topography at any point in time on the landscape is a joint function of the rate of formation of new pit-mound features due to tree death/topple and their magnitude vs. the rate of decay of pit-mound features. An example of one interesting observation that arises is the following: it appears that pit-mound topography is often more pronounced in some eastern North American forests vs. field sites along the eastern slopes of the Canadian Rockies. Why is this the case? Our investigation begins by considering whether pit-mound decay might occur by linear or nonlinear diffusion. What differences might arise depending on which diffusive approach is adopted? What is the magnitude of transport rates associated with these possible forms of transport relations? We explore linear and nonlinear diffusion at varying rates and for different sizes of pit-mound pairs using a numerical modelling approach. Model results suggest that longevity of pit-mound features is dependent on: (i) magnitude/dimensions of initial pit-mound features for forests in different regions; (ii) defining appropriate pit-mound diffusion rates for these different forests (unfortunately, almost no appropriate field observations exist for calibration of these transport relations). In the next stage of this research, we will combine our earlier model of forest disturbance/tree population dynamics, tree throw and pit-mound formation with the numerical model LandMod (Martin, 1998, 2000, 2007); the latter will be used to simulate pit-mound diffusion over time. In this way, we can observe changes in hillslope microtopographic signatures over time that are found in different forest settings.
Rapid Dissolution of Soluble Uranyl Phases in Arid, Mine-Impacted Catchments Near Church Rock, NM
DOE Office of Scientific and Technical Information (OSTI.GOV)
deLemos, J.L.; Bostick, B.C.; Quicksall, A.N.
2009-05-14
We tested the hypothesis that runoff of uranium-bearing particles from mining waste disposal areas was a significant mechanism for redistribution of uranium in the northeastern part of the Upper Puerco River watershed (New Mexico). However, our results were not consistent with this hypothesis. Analysis of >100 sediment and suspended sediment samples collected adjacent to and downstream from uranium source areas indicated that uranium levels in the majority of the samples were not elevated above background. Samples collected within 50 m of a known waste disposal site were subjected to detailed geochemical characterization. Uranium in these samples was found to bemore » highly soluble; treatment with synthetic pore water for 24 h caused dissolution of 10-50% of total uranium in the samples. Equilibrium uranium concentrations in pore water were >4.0 mg/L and were sustained in repeated wetting events, effectively depleting soluble uranium from the solid phase. The dissolution rate of uranium appeared to be controlled by solid-phase diffusion of uranium from within uranium-bearing mineral particles. X-ray adsorption spectroscopy indicated the presence of a soluble uranyl silicate, and possibly a uranyl phosphate. These phases were exhausted in transported sediment suggesting that uranium was readily mobilized from sediments in the Upper Puerco watershed and transported in the dissolved load. These results could have significance for uranium risk assessment as well as mining waste management and cleanup efforts.« less
Rapid Dissolution of Soluble Uranyl Phases in Arid, Mine-Impacted Catchments near Church Rock, NM
DELEMOS, JAMIE L.; BOSTICK, BENJAMIN C.; QUICKSALL, ANDREW N.; LANDIS, JOSHUA D.; GEORGE, CHRISTINE C.; SLAGOWSKI, NAOMI L.; ROCK, TOMMY; BRUGGE, DOUG; LEWIS, JOHNNYE; DURANT, JOHN L.
2008-01-01
We tested the hypothesis that runoff of uranium-bearing particles from mining waste disposal areas was a significant mechanism for redistribution of uranium in the northeastern part of the Upper Puerco River watershed (New Mexico). However, our results were not consistent with this hypothesis. Analysis of >100 sediment and suspended sediment samples collected adjacent to and downstream from uranium source areas indicated that uranium levels in the majority of the samples were not elevated above background. Samples collected within 50 m of a known waste disposal site were subjected to detailed geochemical characterization. Uranium in these samples was found to be highly soluble; treatment with synthetic pore water for 24 h caused dissolution of 10–50% of total uranium in the samples. Equilibrium uranium concentrations in pore water were >4.0 mg/L and were sustained in repeated wetting events, effectively depleting soluble uranium from the solid phase. The dissolution rate of uranium appeared to be controlled by solid-phase diffusion of uranium from within uranium-bearing mineral particles. X-ray adsorption spectroscopy indicated the presence of a soluble uranyl silicate, and possibly a uranyl phosphate. These phases were exhausted in transported sediment suggesting that uranium was readily mobilized from sediments in the Upper Puerco watershed and transported in the dissolved load. These results could have significance for uranium risk assessment as well as mining waste management and cleanup efforts. PMID:18589950
NASA Astrophysics Data System (ADS)
Orsburn, C.; Ortiz, J. D.; Polyak, L.; Grebmeier, J. M.; Darby, D.
2007-12-01
Sediment clay mineral assemblages provide an excellent means of assessing the provenance of Arctic sediment due to the variety of sediment transport mechanisms at work and the existence of distinct weathering sources from differing bedrock geology. During HOTRAX Leg 1 aboard the USCG Ice breaker Healy (cruise HLY0501), we collected jumbo piston cores on the Alaskan margin near Barrow Canyon which provide detailed Holocene sedimentary records. Measurements of Diffuse Spectral Reflectance (DSR) were collected at 1cm resolution from the split surface of the cores using a Minolta CM-2600d UV/VIS spectrophotometer (400-700nm wavelength range; 10nm resolution; 3mm spot size). To interpret the resulting downcore records, we present a preliminary study using 28 coretop sediment samples collected by the Shelf-Basin Interaction program in 2004 arrayed in four transects across the shelf near Barrow Canyon. The samples were analyzed using an ASD Labspec Pro FR UV/VIS/NIR spectrometer (250-2500nm wavelength range, 2-10nm resolution; 20mm spot size). Our results indicate that the measurements from the two instruments are offset by constant factors, but can be easily compared. To estimate the clay mineralogy of the cores, we decomposed the matrix of DSR measurements from the coretop and downcore samples using principle component analysis and compared the resulting factor score patterns with mineral diffuse spectral reflectance signatures from known samples measured in our lab or available from version 5 of the USGS Digital Spectral Library. The three leading modes extracted by principle component analysis of the downcore samples are applicable to the coretops. We infer that the first principle component mode relates to smectite, the second to chlorite, and the third to a mixture of illite and goethite (herein referred to as illite - goethite). The geographic and bathymetric trends in the coretop data indicate that (1) the smectite and illite - goethite components both increase with depth and reach greater values in the two western transects than in the two eastern transects closest to the coast and Barrow Canyon, (2) the smectite and illite- goethite components are anticorrelated in the two western transects, but not in the two eastern transects, (3) chlorite decreases with depth and is highest in the two transects closest to Barrow Canyon. These results suggest that the chlorite on the Alaskan margin is transported by nearshore currents from the Bering Straight and then by bottom currents flowing through the Barrow Canyon. Accordingly, we interpret downcore chlorite peaks inferred from DSR measurements in our sediment cores as evidence of times of enhanced input of Pacific water to the Alaskan Margin.
2014-06-01
Integration of Advanced Sediment Transport Tools into HEC-RAS by Paul M. Boyd and Stanford A. Gibson PURPOSE: This Coastal and Hydraulics Engineering...Technical Note (CHETN) summarizes the development and initial testing of new sediment transport and modeling tools developed by the U.S. Army Corps...sediment transport within the USACE HEC River Analysis System (HEC-RAS) software package and to determine its applicability to Regional Sediment
Holden, A A; Haque, S E; Mayer, K U; Ulrich, A C
2013-08-01
Increased production and expansion of the oil sand industry in Alberta are of great benefit to the economy, but they carry major environmental challenges. The volume of fluid fine tailings requiring storage is 840×10(6) m(3) and growing, making it imperative that we better understand the fate and transport of oil sand process-affected water (OSPW) seepage from these facilities. Accordingly, the current study seeks to characterize both a) the potential for major ion and trace element release, and b) the principal biogeochemical processes involved, as tailing pond OSPW infiltrates into, and interacts with, underlying glacial till sediments prior to reaching down gradient aquifers or surface waters. Objectives were addressed through a series of aqueous and solid phase experiments, including radial diffusion cells, an isotope analysis, X-ray diffraction, and sequential extractions. The diffusion cells were also simulated in a reactive transport framework to elucidate key reaction processes. The experiments indicate that the ingress and interaction of OSPW with the glacial till sediment-pore water system will result in: a mitigation of ingressing Na (retardation), displacement and then limited precipitation of exchangeable Ca and Mg (as carbonates), sulfate reduction and subsequent precipitation of the produced sulfides, as well as biodegradation of organic carbon. High concentrations of ingressing Cl (~375 mg L(-1)) and Na (~575 mg L(-1)) (even though the latter is delayed, or retarded) are expected to migrate through the till and into the underlying sand channel. Trace element mobility was influenced by ion exchange, oxidation-reduction, and mineral phase reactions including reductive dissolution of metal oxyhydroxides - in accordance with previous observations within sandy aquifer settings. Furthermore, although several trace elements showed the potential for release (Al, B, Ba, Cd, Mn, Pb, Si, Sr), large-scale mobilization is not supported. Thus, the present results suggest that in addition to the commonly cited naphthenic acids, remediation of OSPW-impacted groundwater will need to address high concentrations of major ions contributing to salinization. Copyright © 2013 Elsevier B.V. All rights reserved.
Hydrocarbons in sediments from the edge of the Bermuda platform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sleeter, T.D.; Butler, J.N.; Barbash, J.E.
1979-01-01
Surficial and subsurface (10-13 cm) sediment samples were taken at seven stations (17 cores) on the northern margin of the Bermuda seamount, remote from ship traffic, beaches, and atmospheric fallout from aircraft. Their aliphatic (pentane-extractable) hydrocarbon content was very low, comparable with samples from the North Atlantic Abyssal plain, and two orders of magnitude lower than for typical coastal samples. About half of the aliphatic hydrocarbons are clearly biogenic, and the remainder are characteristic of petroleum residues. Petroleum hydrocarbon concentrations are lower in subsurface (e.g., 0.11 jg/g dry weight) than surface samples (0.47 jg/g), and are lower outside the reefmore » (0.25 jg/g) than inside (0.47 jg/g). These results are qualitatively consistent with a diffusion model. Extremely rapid bioturbation or totally quiescent deposition on a stable sedimentary facies can pobably be eliminated as hypotheses for the deposition and transport mechanism within the sediment. Further studies are needed to determine whether degradation is important.« less
Temporal variability and memory in sediment transport in an experimental step-pool channel
NASA Astrophysics Data System (ADS)
Saletti, Matteo; Molnar, Peter; Zimmermann, André; Hassan, Marwan A.; Church, Michael
2015-11-01
Temporal dynamics of sediment transport in steep channels using two experiments performed in a steep flume (8%) with natural sediment composed of 12 grain sizes are studied. High-resolution (1 s) time series of sediment transport were measured for individual grain-size classes at the outlet of the flume for different combinations of sediment input rates and flow discharges. Our aim in this paper is to quantify (a) the relation of discharge and sediment transport and (b) the nature and strength of memory in grain-size-dependent transport. None of the simple statistical descriptors of sediment transport (mean, extreme values, and quantiles) display a clear relation with water discharge, in fact a large variability between discharge and sediment transport is observed. Instantaneous transport rates have probability density functions with heavy tails. Bed load bursts have a coarser grain-size distribution than that of the entire experiment. We quantify the strength and nature of memory in sediment transport rates by estimating the Hurst exponent and the autocorrelation coefficient of the time series for different grain sizes. Our results show the presence of the Hurst phenomenon in transport rates, indicating long-term memory which is grain-size dependent. The short-term memory in coarse grain transport increases with temporal aggregation and this reveals the importance of the sampling duration of bed load transport rates in natural streams, especially for large fractions.
Differences between evolution of Titan's and Earth's rivers - further conclusions
NASA Astrophysics Data System (ADS)
Misiura, Katarzyna; Czechowski, Leszek
2014-05-01
Titan is the only celestial body, beside the Earth, where liquid is present on the surface. Liquid forms a number of lakes and rivers. In our research we use numerical model of the river to determine differences of evolution of rivers on the Earth and on Titan. We have found that transport of sediments on Titan is more effective than on Earth for the same river geometry and discharge. We have found also the theoretical explanations for this conclusion. 2.Introduction Titan is a very special body in the Solar System. It is the only moon that has dense atmosphere and flowing liquid on its surface. The Cassini-Huygens mission has found on Titan meandering rivers, and indicated processes of erosion, transport of solid material and its sedimentation. This paper is aimed to investigate the similarity and differences between these processes on Titan and the Earth. 3. Basic equations of our model The dynamical analysis of the considered rivers is performed using the package CCHE modified for the specific conditions on Titan. The package is based on the Navier-Stokes equations for depth-integrated two dimensional, turbulent flow and three dimensional convection-diffusion equation of sediment transport. 4. Parameters of the model We considered our model for a few kinds of liquid found on Titan. The liquid that falls as a rain (75% methane, 25% nitrogen) has different properties than the fluid forming lakes (74% ethane, 10% methane, 7% propane, 8.5% butane, 0.5% nitrogen). Other parameters of our model are: inflow discharge, outflow level, grain size of sediments etc. For every calculation performed for Titan's river similar calculations are performed for terrestrial ones. 5. Results and Conclusions The results of our simulation show the differences in behaviour of the flow and of sedimentation on Titan and on the Earth. Our preliminary results indicate that transport of material by Titan's rivers is more efficient than by terrestrial rivers of the same geometry parameters. We also distinguish that suspended load is the main way of transport in simulated Titan's conditions. In future we will do the experimental modelling in sediment basin to confirm results from computer modelling. Acknowledgements We are very grateful to Yaoxin Zhang and Yafei Jia from National Center for Computational Hydroscience and Engineering for providing their program - CCHE2D. This work was partially supported by the National Science Centre (grant 2011/01/B/ST10/06653).
Global diffusive fluxes of methane in marine sediments
NASA Astrophysics Data System (ADS)
Egger, Matthias; Riedinger, Natascha; Mogollón, José M.; Jørgensen, Bo Barker
2018-06-01
Anaerobic oxidation of methane provides a globally important, yet poorly constrained barrier for the vast amounts of methane produced in the subseafloor. Here we provide a global map and budget of the methane flux and degradation in diffusion-controlled marine sediments in relation to the depth of the methane oxidation barrier. Our new budget suggests that 45-61 Tg of methane are oxidized with sulfate annually, with approximately 80% of this oxidation occurring in continental shelf sediments (<200 m water depth). Using anaerobic oxidation as a nearly quantitative sink for methane in steady-state diffusive sediments, we calculate that 3-4% of the global organic carbon flux to the seafloor is converted to methane. We further report a global imbalance of diffusive methane and sulfate fluxes into the sulfate-methane transition with no clear trend with respect to the corresponding depth of the methane oxidation barrier. The observed global mean net flux ratio between sulfate and methane of 1.4:1 indicates that, on average, the methane flux to the sulfate-methane transition accounts for only 70% of the sulfate consumption in the sulfate-methane transition zone of marine sediments.
Schoellhamer, David H.
2011-01-01
The quantity of suspended sediment in an estuary is regulated either by transport, where energy or time needed to suspend sediment is limiting, or by supply, where the quantity of erodible sediment is limiting. This paper presents a hypothesis that suspended-sediment concentration (SSC) in estuaries can suddenly decrease when the threshold from transport to supply regulation is crossed as an erodible sediment pool is depleted. This study was motivated by a statistically significant 36% step decrease in SSC in San Francisco Bay from water years 1991–1998 to 1999–2007. A quantitative conceptual model of an estuary with an erodible sediment pool and transport or supply regulation of sediment transport is developed. Model results confirm that, if the regulation threshold was crossed in 1999, SSC would decrease rapidly after water year 1999 as observed. Estuaries with a similar history of a depositional sediment pulse followed by erosion may experience sudden clearing.
NASA Astrophysics Data System (ADS)
Kilham, N. E.
2009-12-01
Image analysis was applied to assess suspended sediment concentrations (SSC) predicted by a numerical model of 2D hydraulics and sediment transport (Telemac-2D), coupled to a solver for the advection-diffusion equation (SISYPHE) and representing 18 days of flooding over 70 kilometers of the lower Feather-Yuba Rivers. Sisyphe treats the suspended load as a tracer, removed from the flow if the bed shear velocity, u* is lower than an empirically derived threshold (ud* = 7.8E-3 m s-1). Agreement between model (D50 = 0.03 mm) and image-derived SSC (mg L-1) suggests that image interpretation could prove to be a viable approach for verifying spatially-distributed models of floodplain sediment transport if imagery is acquired for a particular flood and at a sufficient spatial and radiometric resolution. However, remotely derived SSC represents the integrated concentration of suspended sediment at the water surface. Hence, comparing SSC magnitudes derived from imagery and numerical modeling requires that a relationship is first established between the total suspended load and the portion of this load suspended within the optical range of the sensor (e.g., Aalto, 1995). Using the optical depth (0.5 m) determined from radiative transfer modeling, surface SSC measured from a 1/14/97 Landsat TM5 image (30 m) were converted to depth-integrated SSC with the Rouse (1937) equation. Surface concentrations were derived using a look-up table for the sensor to convert endmember fractions obtained from a spectral mixture analysis of the image. A two-endmember model (2.0 and 203 mg L-1) was used, with synthetic endmembers derived from optical and radiative transfer modeling and inversion of field spectra collected from the Sacramento and Feather Rivers and matched to measured SSC values. Remotely sensed SSC patterns were then compared to the Telemac results for the same day and time. Modeled concentrations are a function of both the rating curve boundary conditions, and the transport and deposition calculations. At each of three upstream channel boundaries, hourly SSC was derived from instantaneous discharge and SSC records at USGS gages for winter months (December-April) following dam closure on the Feather, Yuba, and Bear Rivers (r2 = 0.61; r2 = 0.81; r2 = 0.55). Model channel concentrations declined downstream from about 90 mg L-1 to 40 mg L-1 as sediment input was depleted through decanting of river water overbank, advection through floodplain channels, and deposition onto the floodplain. Similar downstream declines in the image values suggest that bed and bank erosion downstream of the major gages did not contribute much new sediment two weeks following the flood peak. Model predicted concentrations agree with image derived concentrations to within 10 mg L-1, although the model predicts a more rapid drawdown of floodplain flow than is apparent from the image. Aalto, R., 1995. Discordance between suspended sediment diffusion theory and observed sediment concentration profiles in rivers. M.S., University of Washington, Seattle, WA. Rouse, H.R., 1937. Modern conceptions of the mechanics of turbulence. Transactions, American Society of Civil Engineers, 102: 463-543.
NASA Astrophysics Data System (ADS)
Kerboas, Camille; Pena, Jasquelin; De Anna, Pietro
2017-04-01
In aquatic and subsurface environments, sedimentation may influence bacterial transport. Microorganisms that carry out biomineralization reactions may exhibit distinct transport properties from non-biomineralizing organisms due an apparent increase in density caused by biomineral production. For several decades, the biomineralization of manganese (Mn) has been recognized to be a major environmental process, whereby Mn oxide (MnO2(s)) minerals participate in a plethora of biogeochemical processes including contaminant adsorption, organic matter oxidation. Typically, manganese biomineralization proceeds through the enzymatic oxidation of aqueous Mn2+ to Mn4+ and precipitation of MnO2(s) in a biofilm matrix outside the bacterial cell. Here, we present a study of the impact of biomineralization on the sedimentation properties of bacteria at small scales (over mm distances) under hydrostatic conditions. We hypothesize that bacteria will sediment faster when biomineralization is active due to encrustation of the organisms by mineral particles. To test this hypothesis, we tracked the vertical notion of individual bacteria (Pseudomonas putida GB-1) using time-lapse video-microscopy. We compared the sedimentation velocity of bacteria in the case where significant biomineralization had occurred, as inferred from bulk measurements of solid phase Mn, with the sinking velocity of bacteria grown without Mn. We calibrated the proposed method by comparing velocity measurements of sinking polystyrene micro-sphere of known density and size with Stokes law, obtaining results that were accurate within 1% of the theoretical value (29.4 nm/s). We also measured a diffusion coefficient of 7x10-13 m2/s for the particles. Following this approach, we measured the sedimentation velocity of P. putida with and without MnO2(s). Our results show that biomineralization leads to faster sedimentation of the bacteria. In natural environments, biomineralization reactions may increase the sinking velocity of bacteria and therefore contribute to the physical separation of organisms according to phenotype and give rise to localized spots of high mineralization rates.
Interaction of Strontium-90 in Sediment and Porewater in a Stream Near Chernobyl
NASA Astrophysics Data System (ADS)
Freed, R.; Smith, L.; Bugai, D.
2002-12-01
We investigated the interaction of 90Sr in sediments and pore waters of wetlands and stream hyporheic zones at a stream near Chernobyl. A non-dimensional activity ratio was formulated, the ratio of 90Sr in the pore waters compared with exchangeable 90Sr in the sediment on a volume basis. The average activity ratio for the wetland and channel sediments was 0.028 +/- 0.005. The activity ratio decreased when the sediment and porewaters were not in equilibrium. The change in the activity ratio was documented during two observational periods in a wetland: initially during a time when groundwater was discharging to the wetland (snowmelt, 2000) and subsequently at a time of near-stagnant groundwater flow (late fall in 2001 after a dry three month period). In both the discharge and stagnant periods, the exchangeable 90Sr concentration in sediment increased with depth by a factor of five to a peak concentration at 10 cm. In contrast, the 90Sr concentration in porewater differed significantly in the two observational periods. During the groundwater discharge period, the porewater concentration was relatively constant over the 30 cm depth of observation (120 +/-12 Bq/L) and surface water concentrations were similar. During the near-stagnant period, the porewater concentration increased with depth from 20+/-2 Bq/L in surface waters to 400 +/-40 Bq/L at a depth of 10 cm. We hypothesize that during discharge periods, the porewaters in the wetland represent the 90Sr concentration of advecting groundwater while during stagnant periods, the porewaters represent the concentration of 90Sr in equilibrium with the sediment. This proposed explanation is supported using PHREEQC in a dual porosity mode. Using independent estimates of the model parameters, the concentration profiles could be successfully matched with the assumption of advective transport during the discharge period and diffusive transport of 90Sr during near-stagnant conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nole, Michael; Daigle, Hugh; Mohanty, Kishore
We have developed a 3D methane hydrate reservoir simulator to model marine methane hydrate systems. Our simulator couples highly nonlinear heat and mass transport equations and includes heterogeneous sedimentation, in-situ microbial methanogenesis, the influence of pore size contrast on solubility gradients, and the impact of salt exclusion from the hydrate phase on dissolved methane equilibrium in pore water. Using environmental parameters from Walker Ridge in the Gulf of Mexico, we first simulate hydrate formation in and around a thin, dipping, planar sand stratum surrounded by clay lithology as it is buried to 295mbsf. We find that with sufficient methane beingmore » supplied by organic methanogenesis in the clays, a 200x pore size contrast between clays and sands allows for a strong enough concentration gradient to significantly drop the concentration of methane hydrate in clays immediately surrounding a thin sand layer, a phenomenon that is observed in well log data. Building upon previous work, our simulations account for the increase in sand-clay solubility contrast with depth from about 1.6% near the top of the sediment column to 8.6% at depth, which leads to a progressive strengthening of the diffusive flux of methane with time. By including an exponentially decaying organic methanogenesis input to the clay lithology with depth, we see a decrease in the aqueous methane supplied to the clays surrounding the sand layer with time, which works to further enhance the contrast in hydrate saturation between the sand and surrounding clays. Significant diffusive methane transport is observed in a clay interval of about 11m above the sand layer and about 4m below it, which matches well log observations. The clay-sand pore size contrast alone is not enough to completely eliminate hydrate (as observed in logs), because the diffusive flux of aqueous methane due to a contrast in pore size occurs slower than the rate at which methane is supplied via organic methanogenesis. Therefore, it is likely that additional mechanisms are at play, notably bound water activity reduction in clays. Three-dimensionality allows for inclusion of lithologic heterogeneities, which focus fluid flow and subsequently allow for heterogeneity in the methane migration mechanisms that dominate in marine sediments at a local scale. Incorporating recently acquired 3D seismic data from Walker Ridge to inform the lithologic structure of our modeled reservoir, we show that even with deep adjective sourcing of methane along highly permeable pathways, local hydrate accumulations can be sourced either by diffusive or advective methane flux; advectively-sourced hydrates accumulate evenly in highly permeable strata, while diffusively-sourced hydrates are characterized by thin strata-bound intervals with high clay-sand pore size contrasts.« less
Rice piles and sticky deltas: Sediment transport fluctuations in threshold-dominated systems
NASA Astrophysics Data System (ADS)
Jerolmack, D. J.
2008-12-01
Sediment transport is an intermittent process. Even under perfectly steady boundary conditions, sediment flux in systems as diverse as rivers and rice piles undergoes wild fluctuations as a result of the inherent nonlinear dynamics of transport. This variability confounds geologic interpretation and prediction: "mean" transport rates may be dominated by rare but extreme events such that short-term measurements are not directly comparable to longer-time integrated measurements; autogenic (internally-generated) erosion and depositon events may be mistaken for changes in climate and tectonics where their temporal and spatial scales overlap; and sediment transport may act as a nonlinear filter that obliterates signals of environmental forcing. Sediment transport fluctuations generally result from slow storage and rapid release of sediment within the transport system itself. We hypothesize that the presence of a strong process threshold, and a high degree of internal friction (or "stickiness"), are sufficient conditions to generate intermittent sediment transport behavior. We present experimental data showing similarities in transport fluctuations from three very different systems: gravel bed load transport in a large flume, avalanching in a table-top pile of rice, and shoreline migration in an experimental river delta. Numerical models of a rice pile and an avulsing river delta reproduce these fluctuations, and are used to explore both their origin and also their influence on environmental perturbations. We impose an environmental perturbation on our model systems in the form of cyclically-varying sediment supply. Physical and numerical experiments demonstrate that when the timescale of environmental forcing overlaps with the timescales of autogenic sediment transport fluctuations, the input signal is obliterated and cannot be detected in sediment output from the system. We also demonstrate how variability in transport introduces a dependence of mean transport rate on the time interval over which it is measured, which finds support in compilations of sedimentation rate from the field. Results suggest that the nonlinear dynamics of sediment transport sets a hard lower limit on our ability to resolve environmental forcing in sedimentary systems. The ubiquity of autogenic sediment storage and release in river systems suggests a new interpretation for common stacking patterns of stratigraphic sequences.
Role of organic phosphorus in sediment in a shallow eutrophic lake
NASA Astrophysics Data System (ADS)
Shinohara, Ryuichiro; Hiroki, Mikiya; Kohzu, Ayato; Imai, Akio; Inoue, Tetsunori; Furusato, Eiichi; Komatsu, Kazuhiro; Satou, Takayuki; Tomioka, Noriko; Shimotori, Koichi; Miura, Shingo
2017-08-01
We tested the hypothesis that mineralization of molybdenum unreactive phosphorus (MUP) in pore water is the major pathway for the changes in the concentration of molybdenum-reactive P (MRP) in pore water and inorganic P in sediment particles. The concentration of inorganic P in the sediment particles increased from December to April in Lake Kasumigaura, whereas concentrations of organic P in the sediment particles and MUP in pore water decreased. These results suggest that MUP mineralization plays a key role as the source of MRP, whereas desorption of inorganic P from the sediment particles into the pore water is a minor process. One-dimensional numerical simulation of sediment particles and the pore water supported the hypothesis. Diffusive flux of MUP was small in pore water, even in near-surface layers, so mineralization was the dominant process for changing the MUP concentration in the pore water. For MRP, diffusion was the dominant process in the surface layer, whereas adsorption onto the sediment was the dominant process in deeper layers. Researchers usually ignore organic P in the sediment, but organic P in sediment particles and the pore water is a key source of inorganic P in the sediment particles and pore water; our results suggest that in Lake Kasumigaura, organic P in the sediment is an important source, even at depths more than 1 cm below the sediment surface. In contrast, the large molecular size of MUP in pore water hampers diffusion of MUP from the sediment into the overlying water.
Effective particle sizes of cohesive sediment in north Mississippi streams
USDA-ARS?s Scientific Manuscript database
Knowledge of the size of cohesive sediment particles transported in streams is important information for predicting how the sediment and contaminants the sediment may be carrying will be transported by the flow. Cohesive sediments (less than 0.062 mm in diameter) generally are not transported in th...
The diffusive boundary layer of sediments: oxygen microgradients over a microbial mat
NASA Technical Reports Server (NTRS)
Jorgensen, B. B.; Des Marais, D. J.
1990-01-01
Oxygen microelectrodes were used to analyze the distribution of the diffusive boundary layer (DBL) at the sediment-water interface in relation to surface topography and flow velocity. The sediment, collected from saline ponds, was covered by a microbial mat that had high oxygen consumption rate and well-defined surface structure. Diffusion through the DBL constituted an important rate limitation to the oxygen uptake of the sediment. The mean effective DBL thickness decreased from 0.59 to 0.16 mm as the flow velocity of the overlying water was increased from 0.3 to 7.7 cm s-1 (measured 1 cm above the mat). The oxygen uptake rate concurrently increased from 3.9 to 9.4 nmol cm-2 min-1. The effects of surface roughness and topography on the thickness and distribution of the DBL were studied by three-dimensional mapping of the sediment-water interface and the upper DBL boundary at 0.1-mm spatial resolution. The DBL boundary followed mat structures that had characteristic dimensions > 1/2 DBL thickness but the DBL had a dampened relief relative to the mat. The effective surface area of the sediment-water interface and of the upper DBL boundary were 31 and 14% larger, respectively, than a flat plane. Surface topography thereby increased the oxygen flux across the sediment-water interface by 49% relative to a one-dimensional diffusion flux calculated from the vertical oxygen microgradients.
Carbon transport in Monterey Submarine Canyon
NASA Astrophysics Data System (ADS)
Barry, J.; Paull, C. K.; Xu, J. P.; Clare, M. A.; Gales, J. A.; Buck, K. R.; Lovera, C.; Gwiazda, R.; Maier, K. L.; McGann, M.; Parsons, D. R.; Simmons, S.; Rosenberger, K. J.; Talling, P. J.
2017-12-01
Submarine canyons are important conduits for sediment transport from continental margins to the abyss, but the rate, volume, and time scales of material transport have been measured only rarely. Using moorings with current meters, sediment traps (10 m above bottom) and optical backscatter sensors, we measured near-bottom currents, suspended sediment concentrations, and sediment properties at 1300 m depth in Monterey Canyon and at a non-canyon location on the continental slope at the same depth. Flow and water column backscatter were used to characterize "ambient" conditions when tidal currents dominated the flow field, and occasional "sediment transport events" when anomalously high down-canyon flow with sediment-laden waters arrived at the canyon mooring. The ambient sediment flux measured in sediment traps in Monterey Canyon was 350 times greater than measured at the non-canyon location. Although the organic carbon content of the canyon sediment flux during ambient periods was low (1.8 %C) compared to the slope location (4.9 %C), the ambient carbon transport in the canyon was 130 times greater than at the non-canyon site. Material fluxes during sediment transport events were difficult to measure owing to clogging of sediment traps, but minimal estimates indicate that mass transport during events exceeds ambient sediment fluxes through the canyon by nearly 3 orders of magnitude, while carbon transport is 380 times greater. Estimates of the instantaneous and cumulative flux of sediment and carbon from currents, backscatter, and sediment properties indicated that: 1) net flux is down-canyon, 2) flux is dominated by sediment transport events, and 3) organic carbon flux through 1300 m in Monterey Canyon was ca. 1500 MT C per year. The injection of 1500 MTCy-1 into the deep-sea represents ca. 260 km2 of the sediment C flux measured at the continental slope station (5.8 gCm-2y-1) and is sufficient to support a benthic community carbon demand of 5 gCm-2y-1 over 300 km2.
NASA Astrophysics Data System (ADS)
Wei, Xiaoyan; Kumar, Mohit; Schuttelaars, Henk M.
2018-02-01
To investigate the dominant sediment transport and trapping mechanisms, a semi-analytical three-dimensional model is developed resolving the dynamic effects of salt intrusion on sediment in well-mixed estuaries in morphodynamic equilibrium. As a study case, a schematized estuary with a converging width and a channel-shoal structure representative for the Delaware estuary is considered. When neglecting Coriolis effects, sediment downstream of the estuarine turbidity maximum (ETM) is imported into the estuary through the deeper channel and exported over the shoals. Within the ETM region, sediment is transported seaward through the deeper channel and transported landward over the shoals. The largest contribution to the cross-sectionally integrated seaward residual sediment transport is attributed to the advection of tidally averaged sediment concentrations by river-induced flow and tidal return flow. This contribution is mainly balanced by the residual landward sediment transport due to temporal correlations between the suspended sediment concentrations and velocities at the M2 tidal frequency. The M2 sediment concentration mainly results from spatial settling lag effects and asymmetric bed shear stresses due to interactions of M2 bottom velocities and the internally generated M4 tidal velocities, as well as the salinity-induced residual currents. Residual advection of tidally averaged sediment concentrations also plays an important role in the landward sediment transport. Including Coriolis effects hardly changes the cross-sectionally integrated sediment balance, but results in a landward (seaward) sediment transport on the right (left) side of the estuary looking seaward, consistent with observations from literature. The sediment transport/trapping mechanisms change significantly when varying the settling velocity and river discharge.
On extracting sediment transport information from measurements of luminescence in river sediment
Gray, Harrison J.; Tucker, Gregory E.; Mahan, Shannon; McGuire, Chris; Rhodes, Edward J.
2017-01-01
Accurately quantifying sediment transport rates in rivers remains an important goal for geomorphologists, hydraulic engineers, and environmental scientists. However, current techniques for measuring long-time scale (102–106 years) transport rates are laborious, and formulae to predict transport are notoriously inaccurate. Here we attempt to estimate sediment transport rates by using luminescence, a property of common sedimentary minerals that is used by the geoscience community for geochronology. This method is advantageous because of the ease of measurement on ubiquitous quartz and feldspar sand. We develop a model from first principles by using conservation of energy and sediment mass to explain the downstream pattern of luminescence in river channel sediment. We show that the model can accurately reproduce the luminescence observed in previously published field measurements from two rivers with very different sediment transport styles. The model demonstrates that the downstream pattern of river sand luminescence should show exponential-like decay in the headwaters which asymptotes to a constant value with further downstream distance. The parameters from the model can then be used to estimate the time-averaged virtual velocity, characteristic transport lengthscale, storage time scale, and floodplain exchange rate of fine sand-sized sediment in a fluvial system. The sediment transport values predicted from the luminescence method show a broader range than those reported in the literature, but the results are nonetheless encouraging and suggest that luminescence demonstrates potential as a sediment transport indicator. However, caution is warranted when applying the model as the complex nature of sediment transport can sometimes invalidate underlying simplifications.
Sediment Transport Over Run-of-River Dams
NASA Astrophysics Data System (ADS)
O'Brien, M.; Magilligan, F. J.; Renshaw, C. E.
2016-12-01
Dams have numerous documented effects that can degrade river habitat downstream. One significant effect of large dams is their ability to trap sediment delivered from upstream. This trapping can alter sediment transport and grain size downstream - effects that often motivate dam removal decisions. However, recent indirect observations and modeling studies indicate that small, run-of-river (ROR) dams, which do not impede discharge, may actually leak sediment downstream. However, there are no direct measurements of sediment flux over ROR dams. This study investigates flow and sediment transport over four to six different New England ROR dams over a summer-fall field season. Sediment flux was measured using turbidity meters and tracer (RFID) cobbles. Sediment transport was also monitored through an undammed control site and through a river where two ROR dams were recently removed. These data were used to predict the conditions that contribute to sediment transport and trapping. Year 1 data show that tracer rocks of up to 61 mm were transported over a 3 m ROR dam in peak flows of 84% of bankfull stage. These tracer rocks were transported over and 10 m beyond the dam and continue to move downstream. During the same event, comparable suspended sediment fluxes of up to 81 g/s were recorded both upstream and downstream of the dam at near-synchronous timestamps. These results demonstrate the potential for sediment transport through dammed rivers, even in discharge events that do not exceed bankfull. This research elucidates the effects of ROR dams and the controls on sediment transport and trapping, contributions that may aid in dam management decisions.
Ya, Miaolei; Wu, Yuling; Li, Yongyu; Wang, Xinhong
2017-10-01
Coastal upwelling prevails in the coast of Hainan Island, the northern South China Sea (SCS) during summer. We studied the influences of the upwelling on the horizontal and vertical transport of terrigenous polycyclic aromatic hydrocarbons (PAHs). PAHs in dissolved and suspended particulate phase of water samples were determined in the upper (depth < 1 m) and water column (depth > 10 m). PAH levels decreased sharply from inshore to offshore to open sea. The results showed that terrestrial input was the main source of coastal PAHs. Perylene, an important indicator of land plant-derived PAH, showed the significant correlation with PAHs (p < 0.005). This implied that fluvial transport was the primary pathway of terrigenous PAHs into the coast of northern SCS. Variations of the concentrations, compositions and diagnostic ratios of PAHs, accompanied the partition equilibrium in the water column, could indicate the selective degradation of PAHs by the plankton affected by upwelling. Different from the "traditional" transport pathway of PAHs in the water column (surface enrichment-depth depletion distribution), the upwelling could provide the original driver to elevate the upward diffusion of sediment entrained contaminants towards the intermediate even the upper waters. It could also enhance the outward diffusion of terrigenous PAHs accompanied by the offshore transport of the upper waters. Therefore, the transport pathway of PAHs can be summarized by the coastal upwelling rising PAHs with their subsequent transport offshore and settling in the adjacent open sea. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sediment transport-storage relations for degrading, gravel bed channels
Thomas E. Lisle; Michael Church
2002-01-01
In a drainage network,sediment is transferred through a series of channel/valley segments (natural sediment storage reservoirs) that are distinguished from their neighbors by their particular capacity to store and transport sediment. We propose that the sediment transport capacity of each reservoir is a unique positive function of storage volume, which influences...
Sediment sources and transport in Kings Bay and vicinity, Georgia and Florida, July 8-16, 1982
Radtke, D.B.
1985-01-01
Water quality, bottom-material, suspended-sediment, and current velocity data were collected during July 1982 in Kings Bay and vicinity to provide information on the source and transport of estuarine sediments. Kings Bay and Cumberland Sound, the site of the Poseidon Submarine Base in southeast Georgia, are experiencing high rates of sediment deposition and accumulation, which are causing serious navigational and operational problems. Velocity, bathymetry, turbidity, and bottom-material data suggest sediment transported from lower Kings Bay is accumulating deposits of suspended sediment transported from Cumberland Sound on the floodtide and from upper Kings Bay and the tidal march drained by Marianna Creek on the ebbtide. Suspended-sediment discharges computed for consecutive 13-hr ebbtides and floodtides showed that a net quantity of suspended sediment was transported seaward from upper Kings Bay and Marianna Creek. A net landward transport of suspended sediment computed at the St. Marys Entrance indicated areas seaward of St. Marys Entrance may be supplying sediment to the shoaling areas of the estuary, including lower Kings Bay. (USGS)
Kunte, Pravin D; Alagarsamy, R; Hursthouse, A S
2013-06-01
The littoral drift regime along the northeastern coast of India was investigated by analyzing coastal drift indicators and shoreline changes based on multitemporal satellite images. The study of offshore turbidity patterns and quantitative estimation of suspended sediments was undertaken to understand the magnitude and direction of movement of sediment fluxes. The study revealed that: (1) the character of coastal landforms and sedimentation processes indicate that the sediment transport is bidirectional and monsoon dependent; (2) multidate, multitemporal analysis of satellite images helps to show the nature of sediment transport along the coast. The dominant net sediment transport is in a NE direction along the eastern coast of India. Finally, this assessment demonstrates the potential of remote sensing technology in understanding the coastal morphometric changes, long-term sediment transport, shoreline changes, and offshore turbidity distribution pattern and the implications for the transport of sediment-associated pollutants.
CROSS-SHORE TRANSPORT OF BIMODAL SANDS.
Richmond, Bruce M.; Sallenger,, Asbury H.; Edge, Billy L.
1985-01-01
Foreshore sediment level and sediment size were monitored as part of an extensive nearshore processes experiment - DUCK 82. Changes in foreshore texture were compared with computed values of onshore transported material based on current measurements from the surf zone and sediment transport theory. Preliminary results indicate reasonable agreement between predicted size of sediment transported onshore and beach texture changes. It is also demonstrated that coarse sediment may move onshore while finer material may simultaneously move offshore. Refs.
Tidal and meteorological forcing of sediment transport in tributary mudflat channels.
Ralston, David K; Stacey, Mark T
2007-06-01
Field observations of flow and sediment transport in a tributary channel through intertidal mudflats indicate that suspended sediment was closely linked to advection and dispersion of a tidal salinity front. During calm weather when tidal forcing was dominant, high concentrations of suspended sediment advected up the mudflat channel in the narrow region between salty water from San Francisco Bay and much fresher runoff from the small local watershed. Salinity and suspended sediment dispersed at similar rates through each tidal inundation, such that during receding ebbs the sediment pulse had spread spatially and maximum concentrations had decreased. Net sediment transport was moderately onshore during the calm weather, as asymmetries in stratification due to tidal straining of the salinity front enhanced deposition, particularly during weaker neap tidal forcing. Sediment transport by tidal forcing was periodically altered by winter storms. During storms, strong winds from the south generated wind waves and temporarily increased suspended sediment concentrations. Increased discharge down the tributary channels due to precipitation had more lasting impact on sediment transport, supplying both buoyancy and fine sediment to the system. Net sediment transport depended on the balance between calm weather tidal forcing and perturbations by episodic storms. Net transport in the tributary channel was generally off-shore during storms and during calm weather spring tides, and on-shore during calm weather neap tides.
Tidal and meteorological forcing of sediment transport in tributary mudflat channels
Ralston, David K.; Stacey, Mark T.
2011-01-01
Field observations of flow and sediment transport in a tributary channel through intertidal mudflats indicate that suspended sediment was closely linked to advection and dispersion of a tidal salinity front. During calm weather when tidal forcing was dominant, high concentrations of suspended sediment advected up the mudflat channel in the narrow region between salty water from San Francisco Bay and much fresher runoff from the small local watershed. Salinity and suspended sediment dispersed at similar rates through each tidal inundation, such that during receding ebbs the sediment pulse had spread spatially and maximum concentrations had decreased. Net sediment transport was moderately onshore during the calm weather, as asymmetries in stratification due to tidal straining of the salinity front enhanced deposition, particularly during weaker neap tidal forcing. Sediment transport by tidal forcing was periodically altered by winter storms. During storms, strong winds from the south generated wind waves and temporarily increased suspended sediment concentrations. Increased discharge down the tributary channels due to precipitation had more lasting impact on sediment transport, supplying both buoyancy and fine sediment to the system. Net sediment transport depended on the balance between calm weather tidal forcing and perturbations by episodic storms. Net transport in the tributary channel was generally off-shore during storms and during calm weather spring tides, and on-shore during calm weather neap tides. PMID:21499572
NASA Astrophysics Data System (ADS)
Abe, D. S.; Sidagis-Galli, C.; Grimberg, D. E.; Blanco, F. D.; Rodrigues-Filho, J. L.; Tundisi, J. G.; Matsumura-Tundisi, T.; Tundisi, J. E.; Cimbleris, A. C.; Damázio, J. M.; Project Balcar
2013-05-01
The concentrations of methane and carbon dioxide in the sediments pore water were quantified by gas chromatography in three hydroelectric reservoirs under construction during the pre-impoundment phase. Sediment sampling was performed in ten to twelve stations in each river by a Kajak-Brinkhurst corer coupled to a 3 m long aluminum rod in four seasons. The theoretical diffusive fluxes of these gases at the sediment-water interface were also calculated using the Fick's first law of diffusion. The mean annual concentration and diffusive flux of methane were highest in the sediments of the Xingu River (12.71 ± 3.03 mmol CH4 m-2 and 3.84 ± 0.91 mmol CH4 m-2 d-1), located in the Amazon, influenced by the presence of organic matter originating from the surrounding forest. The mean annual concentration of carbon dioxide was highest in the São Marcos River (71.36 ± 10.36 mmol CO2 m-2), located in an area of cerrado savanna, while the highest diffusive flux of carbon dioxide was observed in the Madeira River (30.23 ± 2.41 mmol CO2 m-2 d-1), which rises in the Andes Cordillera and has a very high water flow. The mean concentration and diffusive flux of carbon dioxide in the three studied systems were much higher (64-98%) in comparison with the methane, influenced by the oxic condition in these lotic systems. Nevertheless, the present study shows that the sediments of these systems, especially in the Xingu River, have significant amount of methane dissolved in the pore water which is being diffused to the overlying water. The information obtained in this study during the pre-filling phase will be important for the calculation of net flows of greenhouse gases after the impoundment of these future reservoirs. This study is part of the Strategic Project "Monitoring Emissions of Greenhouse Gases in Hydroelectric Reservoirs" - Call 099/2008 of the Brazilian Agency of Electric Energy (ANEEL) and sponsored by ELETRONORTE, FURNAS and CHESF.
An analysis of bedload and suspended load interactions
NASA Astrophysics Data System (ADS)
Recking, alain; Navratil, Oldrich
2013-04-01
Several approaches were used to develop suspension equations. It includes semi-theoretical equations based on the convection diffusion equation (Einstein 1950; Van Rijn 1984; Camenen and Larson 2008; Julien 2010), semi-empirical tools based on energy concept (Velikanov 1954; Bagnold 1966), empirical adjustments (Prosser and Rusttomji 2000). One essential characteristic of all these equations is that most of them were developed by considering continuity between bedload and suspended load, and that the partitioning between these two modes of transport evolves progressively with increasing shear stress, which is the case for fine bed materials. The use of these equations is thus likely to be welcome in estuaries or lowland sandy rivers, but may be questionable in gravel-bed rivers and headwater streams where the bed is usually structured vertically and fine sediments potentially contributing to suspension are stored under a poorly mobile surface armour comprising coarse sediments. Thus one question this work aimed to answer is does the presence of an armour at the bed surface influence suspended load? This was investigated through a large field data set comprising instantaneous measurements of both bedload and suspension. We also considered the river characteristics, distinguishing between lowland rivers, gravel bed rivers and headwater streams. The results showed that a correlation exist between bedload and suspension for lowland and gravel bed rivers. This suggests that in gravel bed rivers a large part of the suspended load is fed by subsurface material, and depends on the remobilization of the surface material. No correlation was observed for head water streams where the sediment production is more likely related to hillslope processes. These results were used with a bedload transport equation for proposing a method for suspended load estimate. The method is rough, but especially for gravel bed rivers, it predicts suspended load reasonably well when compared to standard convection diffusion equations.
NASA Astrophysics Data System (ADS)
Wang, Fangli; Ouyang, Wei; Hao, Fanghua; Jiao, Wei; Shan, Yushu; Lin, Chunye
2016-06-01
Freeze-thaw cycles are predicted to increase in cold temperate regions. The potential influence of the interactions of freeze-thaw cycles and agrochemicals on the release of Cd into river water is unknown. In this study, the interactions of freeze-thaw cycles and chlorpyrifos (FC) on Cd mobility in soils were analysed. The spatial variability of soil Cd under long-term intensive tillage in a freeze-thaw agro-system was also identified. The temporal variation of sediment Cd was detected based on analysis of the sediment geochemistry. The results showed that FC increased soil Cd mobility, with an increase of approximately 10% in CaCl2-extractable Cd. The increased mobile fractions of water-soluble and exchangeable Cd originated from the decreased fraction of Fe-Mn-oxide-associated Cd and organic matter-bound Cd. The total Cd content in the surface soil followed the zonally decreasing trend of dry land > paddy land > natural land. The Cd concentrations and sedimentation rates of the sediment core generally increased from 1943 to 2013 due to agricultural exploration and farmland irrigation system construction, indicating an increase of the Cd input flux into water. The results provide valuable information about the soil Cd transport response to the influence of climatic and anthropogenic factors in cold intensive agro-systems.
Sediment transport through self-adjusting, bedrock-walled waterfall plunge pools
NASA Astrophysics Data System (ADS)
Scheingross, Joel S.; Lamb, Michael P.
2016-05-01
Many waterfalls have deep plunge pools that are often partially or fully filled with sediment. Sediment fill may control plunge-pool bedrock erosion rates, partially determine habitat availability for aquatic organisms, and affect sediment routing and debris flow initiation. Currently, there exists no mechanistic model to describe sediment transport through waterfall plunge pools. Here we develop an analytical model to predict steady-state plunge-pool depth and sediment-transport capacity by combining existing jet theory with sediment transport mechanics. Our model predicts plunge-pool sediment-transport capacity increases with increasing river discharge, flow velocity, and waterfall drop height and decreases with increasing plunge-pool depth, radius, and grain size. We tested the model using flume experiments under varying waterfall and plunge-pool geometries, flow hydraulics, and sediment size. The model and experiments show that through morphodynamic feedbacks, plunge pools aggrade to reach shallower equilibrium pool depths in response to increases in imposed sediment supply. Our theory for steady-state pool depth matches the experiments with an R2 value of 0.8, with discrepancies likely due to model simplifications of the hydraulics and sediment transport. Analysis of 75 waterfalls suggests that the water depths in natural plunge pools are strongly influenced by upstream sediment supply, and our model provides a mass-conserving framework to predict sediment and water storage in waterfall plunge pools for sediment routing, habitat assessment, and bedrock erosion modeling.
Sediment chemoautotrophy in the coastal ocean
NASA Astrophysics Data System (ADS)
Vasquez-Cardenas, Diana; Meysman, Filip J. R.; van Breugel, Peter; Boschker, Henricus T. S.
2016-04-01
A key process in the biogeochemistry of coastal sediments is the reoxidation of reduced intermediates formed during anaerobic mineralization which in part is performed by chemoautotrophic micro-organisms. These microbes fix inorganic carbon using the energy derived from reoxidation reactions and in doing so can fix up to 32% of the CO2 released by mineralization. However the importance and distribution of chemoautotrophy has not been systematically investigated in these environments. To address these issues we surveyed nine coastal sediments by means of bacterial biomarker analysis (phospholipid derived fatty acids) combined with stable isotope probing (13C-bicarbonate) which resulted in an almost doubling of the number of observations on coastal sedimentary chemoautotrophy. Firstly, sediment chemoautotrophy rates from this study and rates compiled from literature (0.07 to 36 mmol C m-2 d-1) showed a power-law relation with benthic oxygen uptake (3.4 to 192 mmol O2 m-2 d-1). Benthic oxygen uptake was used as a proxy for carbon mineralization to calculate the ratio of the CO2 fixed by chemoautotrophy over the total CO2 released through mineralization. This CO2 efficiency was 3% in continental shelf, 9% in nearshore and 21% in salt marsh sediments. These results suggest that chemoautotrophy plays an important role in C-cycling in reactive intertidal sediments such as salt marshes rather than in the organic-poor, permeable continental shelf sediments. Globally in the coastal ocean our empirical results show that chemoautotrophy contributes ˜0.05 Pg C y-1 which is four times less than previous estimates. Secondly, five coastal sediment regimes were linked to the depth-distribution of chemoautotrophy: 1) permeable sediments dominated by advective porewater transport, 2) bioturbated sediments, and cohesive sediments dominated by diffusive porewater transport characterized by either 3) canonical sulfur oxidation, 4) nitrate-storing Beggiatoa, or 5) electrogenic sulfur oxidation. Sediments with an O2-H2S interface exhibited highest chemoautotrophy activity in the top centimeter via canonical sulfur oxidation, whereas in the presence of electrogenic sulfur oxidation a uniform distribution of chemoautotrophy throughout the top centimeters of the sediment was evidenced. Lowest dark carbon fixation was found in permeable advective-driven sediments with deep oxygen penetration resulting in higher subsurface than surface activity. Hence, the depth-distribution of chemoautotrophy in coastal sediments varies due to several biogeochemical characteristics such as grain size, organic carbon content, presence of filamentous sulfur oxidizing bacteria, and macrofaunal activity.
Adsorption-desorption of oxytetracycline on marine sediments: Kinetics and influencing factors.
Li, Jia; Zhang, Hua
2016-12-01
To reveal the kinetics and mechanisms of antibiotic adsorption/desorption processes, batch and stirred flow chamber (SFC) experiments were carried out with oxytetracycline (OTC) on two marine sediments. The OTC adsorption capacities of the marine sediments were relatively weak and related to their organic carbon (OC) and contents of fine particles. Sorption isotherms of OTC on marine sediment can be well described by both the Langmuir and Freundlich models. Langmuir adsorption maxima (q max ) and Freundlich distribution coefficients (K f ) increased with the decrease of salinity and pH, which indicated the importance of variable charged sites on sediment surfaces. A second order kinetic model successfully described adsorption and desorption kinetics of OTC and well reproduced the concentration change during stop-flow. The adsorption kinetic rates (k a ) for OTC under different experimental conditions ranged from 2.00 × 10 -4 to 1.97 × 10 -3 L (mg min) -1 . Results of SFC experiments indicated that diffusive mass transfer was the dominant mechanism of the time-dependent adsorption of OTC and its release from marine sediment was mildly hysteretic. The high desorption percentage (43-75% for LZB and 58-75% for BHB) implied that binding strength of OTC on two marine sediments was weak. In conclusion, marine sediment characteristics and environmental factors such as salinity, pH, and flow rate are critical factors determine extent of OTC sorption on marine sediment and need to be incorporated in modeling fate and transport of OTC in marine environment. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sciberras, M.; Hiddink, J. G.; Powell, C.; Parker, R.; Krӧger, S.; Bolam, S. G.; Robertson, C.
2016-02-01
Sediment resuspension and bed reworking by tides, waves and biological activity are frequent in the energetic coastal environments. Sediment mixing by tides and waves are generally more important in regulating sediment processes in advection-dominated system such as sandy sediments, whereas sediment reworking by bioturbation is more important in diffusion-dominated systems such as muddy sediments. Bottom fishing constitutes an additional significant impact on benthic communities and sediment biogeochemical processes in coastal areas through physical changes in sediment resuspension and mixing and changes to bioturbating fauna. This study examined the biological (macro-infaunal) and biogeochemical responses to fishing at a muddy and sandy site in the Irish Sea that were predominantly impacted by otter trawls and scallop dredges, respectively. The sandy habitat (>90% sand) was typical of a hydrodynamic environment characterized by a diverse array of small infaunal species, low organic carbon levels and fast remineralisation of organic matter in the sediment. The muddier habitat (>65% fines) was dominated by fewer but larger bioturbating species compared to sand, and illustrated highly diffusional solute transport, higher organic carbon content and a shallower oxygen penetration depth. Generally there appeared to be no clear statistically significant changes in the biogeochemistry of the sandy or muddy habitat that could be attributed to different intensities of fishing. However, pore-water nutrient profiles of ammonium, phosphate and silicate provided clear evidence of organic matter burial and/or mixing as a result of trawling at the muddy site. The biogeochemistry at the sandy site appeared to remain dominated by the natural physical environment, so impact of fishing disturbance was less evident. These results suggest that fishing does not have comparable effects on the biology and biogeochemical processes in all benthic habitats.
NASA Astrophysics Data System (ADS)
Mahoney, D. T.; al Aamery, N. M. H.; Fox, J.
2017-12-01
The authors find that sediment (dis)connectivity has seldom taken precedence within watershed models, and the present study advances this modeling framework and applies the modeling within a bedrock-controlled system. Sediment (dis)connectivity, defined as the detachment and transport of sediment from source to sink between geomorphic zones, is a major control on sediment transport. Given the availability of high resolution geospatial data, coupling sediment connectivity concepts within sediment prediction models offers an approach to simulate sediment sources and pathways within a watershed's sediment cascade. Bedrock controlled catchments are potentially unique due to the presence of rock outcrops causing longitudinal impedance to sediment transport pathways in turn impacting the longitudinal distribution of the energy gradient responsible for conveying sediment. Therefore, the authors were motivated by the need to formulate a sediment transport model that couples sediment (dis)connectivity knowledge to predict sediment flux for bedrock controlled catchments. A watershed-scale sediment transport model was formulated that incorporates sediment (dis)connectivity knowledge collected via field reconnaissance and predicts sediment flux through coupling with the Partheniades equation and sediment continuity model. Sediment (dis)connectivity was formulated by coupling probabilistic upland lateral connectivity prediction with instream longitudinal connectivity assessments via discretization of fluid and sediment pathways. Flux predictions from the upland lateral connectivity model served as an input to the instream longitudinal connectivity model. Disconnectivity in the instream model was simulated via the discretization of stream reaches due to barriers such as bedrock outcroppings and man-made check dams. The model was tested for a bedrock controlled catchment in Kentucky, USA for which extensive historic water and sediment flux data was available. Predicted sediment flux was validated via sediment flux measurements collected by the authors. Watershed configuration and the distribution of lateral and longitudinal impedances to sediment transport were found to have significant influence on sediment connectivity and thus sediment flux.
Reconstructing Sediment Supply, Transport and Deposition Behind the Elwha River Dams
NASA Astrophysics Data System (ADS)
Beveridge, C.
2017-12-01
The Elwha River watershed in Olympic National Park of Washington State, USA is predominantly a steep, mountainous landscape where dominant geomorphic processes include landslides, debris flows and gullying. The river is characterized by substantial variability of channel morphology and fluvial processes, and alternates between narrow bedrock canyons and wider alluvial reaches for much of its length. Literature suggests that the Elwha watershed is topographically and tectonically in steady state. The removal of the two massive hydropower dams along the river in 2013 marked the largest dam removal in history. Over the century long lifespan of the dams, approximately 21 million cubic meters of sediment was impounded behind them. Long term erosion rates documented in this region and reservoir sedimentation data give unprecedented opportunities to test watershed sediment yield models and examine dominant processes that control sediment yield over human time scales. In this study, we aim to reconstruct sediment supply, transport and deposition behind the Glines Canyon Dam (most upstream dam) over its lifespan using a watershed modeling approach. We developed alternative models of varying complexity for sediment production and transport at the network scale driven by hydrologic forcing. We simulate sediment supply and transport in tributaries upstream of the dam. The modeled sediment supply and transport dynamics are based on calibrated formulae (e.g., bedload transport is simulated using Wilcock-Crowe 2003 with modification based on observed bedload transport in the Elwha River). Observational data that aid in our approach include DEM, channel morphology, meteorology, and streamflow and sediment (bedload and suspended load) discharge. We aim to demonstrate how the observed sediment yield behind the dams was influenced by upstream transport supply and capacity limitations, thereby demonstrating the scale effects of flow and sediment transport processes in the Elwha River watershed.
Sediment Suspension by Straining-Induced Convection at the Head of Salinity Intrusion
NASA Astrophysics Data System (ADS)
Zhang, Qianjiang; Wu, Jiaxue
2018-01-01
The tidal straining can generate convective motions and exert a periodic modification of turbulence and sediment transport in estuarine and coastal bottom boundary layers. However, the evidence and physics of convection and sediment suspension induced by tidal straining have not been straightforward. To examine these questions, mooring and transect surveys have been conducted in September 2015 in the region of the Yangtze River plume influence. Field observations and scaling analyses indicate an occurrence of convective motions at the head of saline wedge. Theoretical analyses of stratification evolution in the saline wedge show that unstable stratification and resultant convection are induced by tidal straining. Vertical turbulent velocity and eddy viscosity at the head of saline wedge are both larger than their neutral counterparts in the main body, largely enhancing sediment suspension at the head of saline wedge. Moreover, sediment suspension in both neutral and convection-affected flows is supported by the variance of vertical turbulent velocity, rather than the shearing stress. Finally, the stability correction functions in the Monin-Obukhov similarity theory can be simply derived from the local turbulent kinetic energy balance to successfully describe the effects of tidal straining on turbulent length scale, eddy viscosity, and sediment diffusivity in the convection-affected flow. These recognitions may provide novel understanding of estuarine turbidity maxima, and the dynamical structure and processes for coastal hypoxia.
Dinn, Pamela M; Johannessen, Sophia C; Macdonald, Robie W; Lowe, Christopher J; Whiticar, Michael J
2012-03-01
The fate of contaminants entering the marine environment through wastewater outfalls depends on the contaminant's persistence and affinity for particles. However, the physical characteristics of the receiving environment, for example, current velocity and sedimentary processes, may be even more important. Because of the complexity of natural settings and the lack of appropriate comparative settings, this is not frequently evaluated quantitatively. The authors investigated the near-field accumulation of particle-reactive polybrominated diphenyl ethers (PBDEs) entering coastal waters by way of two municipal outfalls: one discharging into a high-energy, low-sedimentation environment near Victoria, BC, Canada; the other into a low-energy, high-sedimentation environment, near Vancouver, BC. The authors used ²¹⁰Pb profiles in box cores together with an advection-diffusion model to determine surface mixing and sedimentation rates, and to model the depositional history of PBDEs at these sites. Surprisingly, 88 to 99% of PBDEs were dispersed beyond the near-field at both sites, but a greater proportion of PBDEs was captured in the sediment near the Vancouver outfall where rapid burial was facilitated by inorganic sediment supplied from the nearby Fraser River. Although the discharge of PBDEs was much lower from the Victoria outfall than from Vancouver, some sediment PBDE concentrations were higher near Victoria. Copyright © 2011 SETAC.
NASA Astrophysics Data System (ADS)
Casas-Mulet, Roser; Lakhanpal, Garima; Stewardson, Michael J.
2018-02-01
Understanding flow-sediment interactions is important for comprehending river functioning. Fine sediment accumulation processes, in particular, have key implications for ecosystem health. However, the amount of fines generated by intragravel flows and later accumulated in gravel streambeds may have been underestimated, as the hydraulic-related driving transport mechanisms in play are not clearly identified. Specifically, the relative contribution of fines from upper vs. lower sediment layers in gravel beds is not well understood. By recreating flooded and dewatered conditions in an experimental flume filled with natural sediment, we estimated such contributions by observing and collecting intragravel transported fines that were later accumulated into a void in the middle of the sediment matrix. Near-bed transport in the upper sediment layers (named Brinkman load) during flooded conditions accounted for most (90%) of the accumulated fines. Intragravel transport in the lower sediment layers (named Interstitial load) was the sole source of transport and accumulation during dewatered conditions with steeper hydraulic gradients. Interstitial load accounted for 10% of the total transport during flooded conditions. Although small, such estimations demonstrate that hydraulic-gradient transport in the lower sediment layers occurs in spite of the contradicting analytical assessments. We provide a case study to challenge the traditional approaches of assessing intragravel transport, and a useful framework to understand the origin and relative contribution of fine sediment accumulation in gravel beds. Such knowledge will be highly useful for the design of monitoring programs aiding river management, particularly in regulated rivers.
Storm-driven sediment transport in Massachusetts Bay
Warner, J.C.; Butman, B.; Dalyander, P.S.
2008-01-01
Massachusetts Bay is a semi-enclosed embayment in the western Gulf of Maine about 50 km wide and 100 km long. Bottom sediment resuspension is controlled predominately by storm-induced surface waves and transport by the tidal- and wind-driven circulation. Because the Bay is open to the northeast, winds from the northeast ('Northeasters') generate the largest surface waves and are thus the most effective in resuspending sediments. The three-dimensional oceanographic circulation model Regional Ocean Modeling System (ROMS) is used to explore the resuspension, transport, and deposition of sediment caused by Northeasters. The model transports multiple sediment classes and tracks the evolution of a multilevel sediment bed. The surficial sediment characteristics of the bed are coupled to one of several bottom-boundary layer modules that calculate enhanced bottom roughness due to wave-current interaction. The wave field is calculated from the model Simulating WAves Nearshore (SWAN). Two idealized simulations were carried out to explore the effects of Northeasters on the transport and fate of sediments. In one simulation, an initially spatially uniform bed of mixed sediments exposed to a series of Northeasters evolved to a pattern similar to the existing surficial sediment distribution. A second set of simulations explored sediment-transport pathways caused by storms with winds from the northeast quadrant by simulating release of sediment at selected locations. Storms with winds from the north cause transport southward along the western shore of Massachusetts Bay, while storms with winds from the east and southeast drive northerly nearshore flow. The simulations show that Northeasters can effectively transport sediments from Boston Harbor and the area offshore of the harbor to the southeast into Cape Cod Bay and offshore into Stellwagen Basin. This transport pattern is consistent with Boston Harbor as the source of silver found in the surficial sediments of Cape Cod Bay and Stellwagen Basin.
STAND, A DYNAMIC MODEL FOR SEDIMENT TRANSPORT AND WATER QUALITY. (R825758)
We introduce a new model–STAND (Sediment-Transport-Associated Nutrient Dynamics)–for simulating stream flow, sediment transport, and the interactions of sediment with other attributes of water quality. In contrast to other models, STAND employs a fully dynamic ba...
Sediment transport and resulting deposition in spawning gravels, north coastal California
Thomas E. Lisle
1989-01-01
Incubating salmonid eggs in streambeds are often threatened by deposition of fine sediment within the gravel. To relate sedimentation of spawning gravel beds to sediment transport, infiltration of fine sediment (
NASA Astrophysics Data System (ADS)
Rivier, Aurélie; Bennis, Anne-Claire; Pinon, Grégory; Magar, Vanesa; Gross, Markus
2015-04-01
Offshore monopile foundations of wind turbines modify hydrodynamics and sediment transport at local scale and also at regional scale. The aim of this work is to assess these changes and to parametrize them in a regional model. These modifications were previously evaluated using the regional circulation model MARS3D (Lazure and Dumas, 2008) in tests-cases (Rivier et al., 2014) using two approaches: in the first approach, monopiles are explicitly modelled in the mesh as dry cells and in the second approach a sub-grid parametrization which considers the drag force exerted by a monopile on the flow is used. The sub-grid parametrization is improved close to the bed in this paper by adding a drag force term in the momentum equations, source terms in the turbulence model and by increasing the bed shear stress at monopile location. Changes in hydrodynamics regime, especially near-bed, affect sediment transport regime and modifications due to monopiles on sediment dynamics is also investigated using the MARS3D sediment transport module (Le Hir et al., 2011) which solves the advection-diffusion equations. Test-cases are run using hydrodynamical conditions and sediment grain sizes typical from the area located off Courseulles-sur-Mer (Normandy, France) where an offshore wind farm is planned to be built. Velocity, turbulent kinetic energy and bed thickness changes due to the monopile simulated by both approaches are compared to each other and to experimental measurements made in a flume at the University of Caen or to published data (e.g. Roulund et al., 2005; Dargahi,1989). Then the model is applied in a real configuration on an area including the future offshore wind farm of Courseulles-sur-Mer. Four monopiles are represented in the model using both approaches and modifications of the hydrodynamics and sediment transport are assessed along a tidal cycle. Currents increase at the side edge of the monopile and decrease in front of and downstream the monopile. Turbulent kinetic energy strongly increase as expected upstream the monopile. Resuspension and erosion occurs around the monopile in locations where current speeds increase due to the monopile presence and sediments deposit downstream where the bed shear stress is lower. The pattern of bed erosion is modified depending of current velocity. References Dargahi, B. 1989. The turbulent flow field around a circular cylinder. Experiments in Fluids, 8(1-2), 1-12. Lazure, P. and Dumas, F. (2008). external-internal mode coupling for a 3D hydrodynamical model for applications at regional scale (MARS). Advances in Water Resources 31(2), 233-250. Le Hir, P., Cayocca, F. and Waeles, B. (2011). Dynamics of sand and mud mixtures: a multiprocess-based modelling strategy. Continental Shelf Research 31(10), 135-149. Rivier, A., Bennis, A.-C., Pinon, G., Gross, M. and Magar, V. (2014). Regional numerical modelling of offshore monopile wind turbine impacts on hydrodynamics and sediment transport. Proceeding of the 1st International Conference on Renewable Energies Offshore, November 2014, Lisbonne, Portugal. Roulund, A., Sumer, B. M., Fredsøe, J., & Michelsen, J. 2005. Numerical and experimental investigation of flow and scour around a circular pile. Journal of Fluid Mechanics, 534, 351-401.
Causal Loop Analysis of coastal geomorphological systems
NASA Astrophysics Data System (ADS)
Payo, Andres; Hall, Jim W.; French, Jon; Sutherland, James; van Maanen, Barend; Nicholls, Robert J.; Reeve, Dominic E.
2016-03-01
As geomorphologists embrace ever more sophisticated theoretical frameworks that shift from simple notions of evolution towards single steady equilibria to recognise the possibility of multiple response pathways and outcomes, morphodynamic modellers are facing the problem of how to keep track of an ever-greater number of system feedbacks. Within coastal geomorphology, capturing these feedbacks is critically important, especially as the focus of activity shifts from reductionist models founded on sediment transport fundamentals to more synthesist ones intended to resolve emergent behaviours at decadal to centennial scales. This paper addresses the challenge of mapping the feedback structure of processes controlling geomorphic system behaviour with reference to illustrative applications of Causal Loop Analysis at two study cases: (1) the erosion-accretion behaviour of graded (mixed) sediment beds, and (2) the local alongshore sediment fluxes of sand-rich shorelines. These case study examples are chosen on account of their central role in the quantitative modelling of geomorphological futures and as they illustrate different types of causation. Causal loop diagrams, a form of directed graph, are used to distil the feedback structure to reveal, in advance of more quantitative modelling, multi-response pathways and multiple outcomes. In the case of graded sediment bed, up to three different outcomes (no response, and two disequilibrium states) can be derived from a simple qualitative stability analysis. For the sand-rich local shoreline behaviour case, two fundamentally different responses of the shoreline (diffusive and anti-diffusive), triggered by small changes of the shoreline cross-shore position, can be inferred purely through analysis of the causal pathways. Explicit depiction of feedback-structure diagrams is beneficial when developing numerical models to explore coastal morphological futures. By explicitly mapping the feedbacks included and neglected within a model, the modeller can readily assess if critical feedback loops are included.
Temporal pattern and memory in sediment transport in an experimental step-pool channel
NASA Astrophysics Data System (ADS)
Saletti, Matteo; Molnar, Peter; Zimmermann, André; Hassan, Marwan A.; Church, Michael; Burlando, Paolo
2015-04-01
In this work we study the complex dynamics of sediment transport and bed morphology in steep streams, using a dataset of experiments performed in a steep flume with natural sediment. High-resolution (1 sec) time series of sediment transport were measured for individual size classes at the outlet of the flume for different combinations of sediment input rates, discharges, and flume slopes. The data show that the relation between instantaneous discharge and sediment transport exhibits large variability on different levels. After dividing the time series into segments of constant water discharge, we quantify the statistical properties of transport rates by fitting the data with a Generalized Extreme Value distribution, whose 3 parameters are related to the average sediment flux. We analyze separately extreme events of transport rate in terms of their fractional composition; if only events of high magnitude are considered, coarse grains become the predominant component of the total sediment yield. We quantify the memory in grain size dependent sediment transport with variance scaling and autocorrelation analyses; more specifically, we study how the variance changes with different aggregation scales and how the autocorrelation coefficient changes with different time lags. Our results show that there is a tendency to an infinite memory regime in transport rate signals, which is limited by the intermittency of the largest fractions. Moreover, the structure of memory is both grain size-dependent and magnitude-dependent: temporal autocorrelation is stronger for small grain size fractions and when the average sediment transport rate is large. The short-term memory in coarse grain transport increases with temporal aggregation and this reveals the importance of the sampling frequency of bedload transport rates in natural streams, especially for large fractions.
Warrick, Jonathan A.; Rosenberger, Kurt J.; Lam, Angela; Ferreiera, Joanne; Miller, Ian M.; Rippy, Meg; Svejkovsky, Jan; Mustain, Neomi
2012-01-01
Coastal restoration and management must address the presence, use, and transportation of fine sediment, yet little information exists on the patterns and/or processes of fine-sediment transport and deposition for these systems. To fill this information gap, a number of State of California, Federal, and private industry partners developed the Tijuana Estuary Fine Sediment Fate and Transport Demonstration Project ("Demonstration Project") with the purpose of monitoring the transport, fate, and impacts of fine sediment from beach-sediment nourishments in 2008 and 2009 near the Tijuana River estuary, Imperial Beach, California. The primary purpose of the Demonstration Project was to collect and provide information about the directions, rates, and processes of fine-sediment transport along and across a California beach and nearshore setting. To achieve these goals, the U.S. Geological Survey monitored water, beach, and seafloor properties during the 2008–2009 Demonstration Project. The project utilized sediment with ~40 percent fine sediment by mass so that the dispersal and transport of fine sediment would be easily recognizable. The purpose of this report is to present and disseminate the data collected during the physical monitoring of the Demonstration Project. These data are available online at the links noted in the "Additional Digital Information" section. Synthesis of these data and results will be provided in subsequent publications.
Adjustable shear stress erosion and transport flume
Roberts, Jesse D.; Jepsen, Richard A.
2002-01-01
A method and apparatus for measuring the total erosion rate and downstream transport of suspended and bedload sediments using an adjustable shear stress erosion and transport (ASSET) flume with a variable-depth sediment core sample. Water is forced past a variable-depth sediment core sample in a closed channel, eroding sediments, and introducing suspended and bedload sediments into the flow stream. The core sample is continuously pushed into the flow stream, while keeping the surface level with the bottom of the channel. Eroded bedload sediments are transported downstream and then gravitationally separated from the flow stream into one or more quiescent traps. The captured bedload sediments (particles and aggregates) are weighed and compared to the total mass of sediment eroded, and also to the concentration of sediments suspended in the flow stream.
Workshop discusses community models for coastal sediment transport
NASA Astrophysics Data System (ADS)
Sherwood, Christopher R.; Signell, Richard P.; Harris, Courtney K.; Butman, Bradford
Numerical models of coastal sediment transport are increasingly used to address problems ranging from remediation of contaminated sediments, to siting of sewage outfalls and disposal sites, to evaluating impacts of coastal development. They are also used as a test bed for sediment-transport algorithms, to provide realistic settings for biological and geochemical models, and for a variety of other research, both fundamental and applied. However, there are few full-featured, publicly available coastal sediment-transport models, and fewer still that are well tested and have been widely applied.This was the motivation for a workshop in Woods Hole, Massachusetts, on June 22-23, 2000, that explored the establishment of community models for coastal sediment-transport processes.
NASA Astrophysics Data System (ADS)
Muraoka, M.; Ohtake, M.; Susuki, N.; Yamamoto, Y.; Suzuki, K.; Tsuji, T.
2014-12-01
This study presents the results of the measurements of the thermal constants of natural methane-hydrate-bearing sediments samples recovered from the Tokai-oki test wells (Nankai-Trough, Japan) in 2004. The thermal conductivity, thermal diffusivity, and specific heat of the samples were simultaneously determined using the hot-disk transient method. The thermal conductivity of natural hydrate-bearing sediments decreases slightly with increasing porosity. In addition, the thermal diffusivity of hydrate-bearing sediment decrease as porosity increases. We also used simple models to calculate the thermal conductivity and thermal diffusivity. The results of the distribution model (geometric-mean model) are relatively consistent with the measurement results. In addition, the measurement results are consistent with the thermal diffusivity, which is estimated by dividing the thermal conductivity obtained from the distribution model by the specific heat obtained from the arithmetic mean. In addition, we discuss the relation between the thermal conductivity and mineral composition of core samples in conference. Acknowledgments. This work was financially supported by MH21 Research Consortium for Methane Hydrate Resources in Japan on the National Methane Hydrate Exploitation Program planned by the Ministry of Economy, Trade and Industry.
Variations in Gas and Water Pulses at an Arctic Seep: Fluid Sources and Methane Transport
NASA Astrophysics Data System (ADS)
Hong, W.-L.; Torres, M. E.; Portnov, A.; Waage, M.; Haley, B.; Lepland, A.
2018-05-01
Methane fluxes into the oceans are largely dependent on the methane phase as it migrates upward through the sediments. Here we document decoupled methane transport by gaseous and aqueous phases in Storfjordrenna (offshore Svalbard) and propose a three-stage evolution model for active seepage in the region where gas hydrates are present in the shallow subsurface. In a preactive seepage stage, solute diffusion is the primary transport mechanism for methane in the dissolved phase. Fluids containing dissolved methane have high 87Sr/86Sr ratios due to silicate weathering in the microbial methanogenesis zone. During the active seepage stage, migration of gaseous methane results in near-seafloor gas hydrate formation and vigorous seafloor gas discharge with a thermogenic fingerprint. In the postactive seepage stage, the high concentration of dissolved lithium points to the contribution of a deeper-sourced aqueous fluid, which we postulate advects upward following cessation of gas discharge.
Oscillatory bedload transport: Data review and simple formulation
NASA Astrophysics Data System (ADS)
Hallermeier, Robert J.
1982-11-01
This review displays over 700 rates of sediment transport by oscillatory flow from 20 sources. Sediments include fine sands to pebbles, both of quartz and of lightweight materials, and the transport rates in water range over seven orders of magnitude. Most data are average gross (to and fro) bedload rates collinear with laboratory flow over a horizontal sediment bed, although other situations with net transport, suspended load, or oblique field waves are considered. As peak flow velocity nears twice the threshold velocity for sediment motion, bedload appears to be fully developed and the transport rate is near that given by a simple formula including flow frequency and peak velocity, and sediment size and density. At lesser peak velocities, bedload rates are markedly smaller and distinctly different regimes of sediment mobilization and transport may be identified.
Skibinski, David O. F.
2018-01-01
Nutrient acquisition is a critical determinant for the competitive advantage for auto- and osmohetero- trophs alike. Nutrient limited growth is commonly described on a whole cell basis through reference to a maximum growth rate (Gmax) and a half-saturation constant (KG). This empirical application of a Michaelis-Menten like description ignores the multiple underlying feedbacks between physiology contributing to growth, cell size, elemental stoichiometry and cell motion. Here we explore these relationships with reference to the kinetics of the nutrient transporter protein, the transporter rate density at the cell surface (TRD; potential transport rate per unit plasma-membrane area), and diffusion gradients. While the half saturation value for the limiting nutrient increases rapidly with cell size, significant mitigation is afforded by cell motion (swimming or sedimentation), and by decreasing the cellular carbon density. There is thus potential for high vacuolation and high sedimentation rates in diatoms to significantly decrease KG and increase species competitive advantage. Our results also suggest that Gmax for larger non-diatom protists may be constrained by rates of nutrient transport. For a given carbon density, cell size and TRD, the value of Gmax/KG remains constant. This implies that species or strains with a lower Gmax might coincidentally have a competitive advantage under nutrient limited conditions as they also express lower values of KG. The ability of cells to modulate the TRD according to their nutritional status, and hence change the instantaneous maximum transport rate, has a very marked effect upon transport and growth kinetics. Analyses and dynamic models that do not consider such modulation will inevitably fail to properly reflect competitive advantage in nutrient acquisition. This has important implications for the accurate representation and predictive capabilities of model applications, in particular in a changing environment. PMID:29702650
Transport of particle-associated elements in two agriculture-dominated boreal river systems.
Marttila, Hannu; Saarinen, Tuomas; Celebi, Ahmet; Kløve, Bjørn
2013-09-01
Transport of particulate pollutants in fluvial systems can contribute greatly to total loads. Understanding transport mechanics under different hydrological conditions is key in successful load estimation. This study analysed trace elements and physico-chemical parameters in time-integrated suspended sediment samples, together with dissolved and total concentrations of pollutants, along two agriculture- and peatland-dominated boreal river systems. The samples were taken in a spatially and temporally comprehensive sampling programme during the ice-free seasons of 2010 and 2011. The hydrochemistry and transport of particle-bound elements in the rivers were strongly linked to intense land use and acid sulphate soils in the catchment area, with arable, pasture and peat areas in particular being main diffuse sources. There were significant seasonal and temporal variations in dissolved and particulate fluxes, but spatial variations were small. Continuous measurements of EC, turbidity and discharge proved to be an accurate indicator of dissolved and particulate fluxes. Overall, the results show that transport of particle-bound elements makes a major contribution to total transport fluxes in agriculture-dominated boreal rivers. Copyright © 2013 Elsevier B.V. All rights reserved.
Dynamics of bedload size and rate during snow and glacier melting in a high-gradient Andean stream
NASA Astrophysics Data System (ADS)
Mao, Luca; Carrillo, Ricardo
2016-04-01
The evaluation and prediction of coarse sediment movement and transport is crucial for understanding and predicting fluvial morphodynamics, and for designing flood hazard mitigation structures and stream habitat restoration. At the scale of single flood event, the relationship between water discharge (Q) and bedload rate (Qs) often reveals hysteretic loops. If Qs peaks before Q the hysteresis is clockwise and this suggests a condition of unlimited sediment supply. In contrast, counterclockwise hysteresis would suggest limited sediment supply conditions. Understanding the direction and magnitude of hysteresis at the single flood event can thus reveal the sediment availability. Also, interpreting temporal trend of hysteresis could be used to infer the dynamics of sediment sources. This work is focused in the temporal trend of hysteresis pattern of bedload transport in a small (27 km2) glaciarized catchment in the Andes of central Chile (Estero Morales) from 2014 to 2015. Bedload is measured using a 0.5 m long Japanese acoustic pipe sensor fixed on the channel bed, which register the intensity of impulses generated by the impact of sediments on the sensor. Based on flume and field measurements, the sensor was calibrated as to provide intensity of transported sediments. Also, direct bedload samplings were taken within a range of 0.01 - 1000 g s-1 m-1) sediment transport rates, and allowed to assess median and maximum grain size of transported sediments. The analysis reveals that hysteresis at the scale of single flood tends to be clockwise during snowmelt and early glaciermelting, whereas counterclockwise hysteresis is dominant during the late glaciermelting. Also, bedload transport rates and grain size of transported sediments reduces progressively from early to late glaciermelting. Interestingly, direct bedload samplings revealed that grain size of transported sediments tends to exhibit a counterclockwise hysteresis when the sediment transport is clockwise. Thus during the snowmelt and early glaciermelting, sediment availability appears to be unlimited and hysteresis can be ascribed to pulses of sediments coming from the proglacial area. Instead, as the glaciermelting season progresses, sediment availability decreases probably due to the progressive exhaustion of sediments stored in the channel bed, and counterclockwise hysteresis can be ascribed to changes in the organization of the surface sediments at the scale of clusters. Results highlight the complex relationships between dynamics of sediment sources at the basin scale and changes in channel sediment storage overtime, resulting in abrupt changes in rate and size of sediment transport. Long-term assessment of these dynamics using indirect methods to assess bedload transport can provide important insights for understanding probable trajectories of morphological evolution of glacierized streams which are subject to rapid environmental changes. This research is being developed within the framework of Project FONDECYT 1130378.
NASA Astrophysics Data System (ADS)
Floyd, I. E.; Downer, C. W.; Brown, G.; Pradhan, N. R.
2017-12-01
The Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model is the US Army Corps of Engineers' (USACE)'s only fully coupled overland/in-stream sediment transport model. While the overland sediment transport formulation in GSSHA is considered state of the art, the existing in-stream sediment transport formulation is less robust. A major omission in the formulation of the existing GSSHA in-stream model is the lack of in-stream sources of fine materials. In this effort, we enhanced the in-stream sediment transport capacity of GSSHA by linking GSSHA to the SEDLIB sediment transport library. SEDLIB was developed at the Coastal and Hydraulics Laboratory (CHL) under the System Wide Water Resources Program (SWWRP) and Flood and Coastal (F&C) research program. It is designed to provide a library of sediment flux formulations for hydraulic and hydrologic models, such as GSSHA. This new version of GSSHA, with the updated in-stream sediment transport simulation capability afforded by the linkage to SEDLIB, was tested in against observations in an experimental watershed that had previously been used as a test bed for GSSHA. The results show a significant improvement in the ability to model in-stream sources of fine sediment. This improved capability will broaden the applicability of GSSHA to larger watersheds and watersheds with complex sediment dynamics, such as those subjected to fire hydrology.
Lee, Casey J.; Rasmussen, Patrick P.; Ziegler, Andrew C.; Fuller, Christopher C.
2009-01-01
The U.S. Geological Survey, in cooperation with the Johnson County Stormwater Management Program, evaluated suspended-sediment transport and sources in the urbanizing, 57.4 mi2 Mill Creek watershed from February 2006 through June 2007. Sediment transport and sources were assessed spatially by continuous monitoring of streamflow and turbidity as well as sampling of suspended sediment at nine sites in the watershed. Within Mill Creek subwatersheds (2.8-16.9 mi2), sediment loads at sites downstream from increased construction activity were substantially larger (per unit area) than those at sites downstream from mature urban areas or less-developed watersheds. Sediment transport downstream from construction sites primarily was limited by transport capacity (streamflow), whereas availability of sediment supplies primarily influenced transport downstream from mature urban areas. Downstream sampling sites typically had smaller sediment loads (per unit area) than headwater sites, likely because of sediment deposition in larger, less sloping stream channels. Among similarly sized storms, those with increased precipitation intensity transported more sediment at eight of the nine monitoring sites. Storms following periods of increased sediment loading transported less sediment at two of the nine monitoring sites. In addition to monitoring performed in the Mill Creek watershed, sediment loads were computed for the four other largest watersheds (48.6-65.7 mi2) in Johnson County (Blue River, Cedar, Indian, and Kill Creeks) during the study period. In contrast with results from smaller watersheds in Mill Creek, sediment load (per unit area) from the most urbanized watershed in Johnson County (Indian Creek) was more than double that of other large watersheds. Potential sources of this sediment include legacy sediment from earlier urban construction, accelerated stream-channel erosion, or erosion from specific construction sites, such as stream-channel disturbance during bridge renovation. The implication of this finding is that sediment yields from larger watersheds may remain elevated after the majority of urban development is complete. Surface soil, channel-bank, suspended-sediment, and streambed-sediment samples were analyzed for grain size, nutrients, trace elements, and radionuclides in the Mill Creek watershed to characterize suspended sediment between surface or channel-bank sources. Although concentrations and activities of cobalt, nitrogen, selenium, total organic carbon, cesium-137, and excess lead-210 had significant differences between surface and channel-bank samples, biases resulting from urban construction, additional sorption of constituents during sediment transport, and inability to accurately represent erosion from rills and gullies precluded accurate characterization of suspended-sediment source.
NASA Astrophysics Data System (ADS)
Shafei, Babak; Schmid, Martin; Müller, Beat; Chwalek, Thomas
2014-05-01
Sediment diagenesis can significantly impact on lake water quality through depleting hypolimnion oxygen and acting as a sink or source of nutrients and contaminants. In this study, we apply MATsedLAB, a sediment diagenesis module developed in MATLAB [1, 2] to quantify benthic oxygen consumption and biogeochemical cycling of phosphate (P) in lacustrine sediments of Lake Baldegg, located in central Switzerland. MATsedLAB provides an access to the advanced computational and visualization capabilities of the interactive programming environment of MATLAB. It allows for a flexible definition of non steady-state boundary conditions at the sediment-water interface (SWI), the model parameters as well as transport and biogeochemical reactions. The model has been extended to facilitate the model-independent parameter estimation and uncertainty analysis using the software package, PEST. Lake Baldegg represents an interesting case where sediment-water interactions control P loading in an eutrophic lake. It is of 5.2 km2 surface area and has been artificially aerated since 1982. Between 1960 and 1980, low oxygen concentrations and meromictic condition were established as a result of high productivity. Here, we use the cores for the measurements of anions and cations which were collected in April and June 2012 respectively from the deepest location (66 m), by Torres et al. (2013) to calibrate the developed model [3]. Depth profiles of thirty three species were simulated by including thirty mixed kinetic-equilibrium biogeochemical processes as well as imposing the fluxes of organic and inorganic matters along with solute concentrations at the SWI as dynamic boundary conditions. The diffusive transport in the boundary layer (DBL) above the SWI was included as the supply of O2 to the sediment surface can be diffusion-limited, and applying a constant O2 concentration at the sediment surface may overestimate O2 consumption. Benthic oxygen consumption was calculated as a function of the present and past deposited OM. The results revealed the transient nature of sediment oxygen uptake and existence of temporal lag associated with benthic oxygen consumption for the aerated versus non-aerated scenarios. The model closely reproduced phosphate partitioning among OM and various redox-sensitive inorganic minerals. The results showed that P associated with OM is the dominant pool as inorganic binding P such as apatite, vivinite and adsorbed P contain a minor fraction of solid phase P. The calculated flux of dissolved P through the SWI under seasonal and decadal variations suggest that oxygen concentration at the SWI and the flux of settling OM along with its composition expressed as the ratio of degradable to inert OM are the major factors that control P release to the overlying water under dynamic forcing. References [1] Couture, R., et al. (2009). "Non steady-stae modeling of arsenic diagenesis in lake sediments." Environmental Science and Technology 44 (1): 197-203. [2] Shafei, B., et al. (2010). "Arsenic sorption in aquatic sediments: equilibrium, kinetic and mixed modeling approaches." Geochimica et cosmochimica acta 74 (12): A938-A938. [3] Torres, N. T., et al. (2013). "Sediment porewater extraction and analysis combining filter tube samplers and capillary electrophoresis." Environmental Science-Processes & Impacts 15(4): 715-720.
Role of sediment transport model to improve the tsunami numerical simulation
NASA Astrophysics Data System (ADS)
Sugawara, D.; Yamashita, K.; Takahashi, T.; Imamura, F.
2015-12-01
Are we overlooking an important factor for improved numerical prediction of tsunamis in shallow sea to onshore? In this presentation, several case studies on numerical modeling of tsunami-induced sediment transport are reviewed, and the role of sediment transport models for tsunami inundation simulation is discussed. Large-scale sediment transport and resulting geomorphological change occurred in the coastal areas of Tohoku, Japan, due to the 2011 Tohoku Earthquake Tsunami. Datasets obtained after the tsunami, including geomorphological and sedimentological data as well as hydrodynamic records, allows us to validate the numerical model in detail. The numerical modeling of the sediment transport by the 2011 tsunami depicted the severest erosion of sandy beach, as well as characteristic spatial patterns of erosion and deposition on the seafloor, which have taken place in Hirota Bay, Sanriku Coast. Quantitative comparisons of observation and simulation of the geomorphological changes in Sanriku Coast and Sendai Bay showed that the numerical model can predict the volumes of erosion and deposition with a right order. In addition, comparison of the simulation with aerial video footages demonstrated the numerical model is capable of tracking the overall processes of tsunami sediment transport. Although tsunami-induced sediment erosion and deposition sometimes cause significant geomorphological change, and may enhance tsunami hydrodynamic impact to the coastal zones, most tsunami simulations do not include sediment transport modeling. A coupled modeling of tsunami hydrodynamics and sediment transport draws a different picture of tsunami hazard, comparing with simple hydrodynamic modeling of tsunami inundation. Since tsunami-induced erosion, deposition and geomorphological change sometimes extend more than several kilometers across the coastline, two-dimensional horizontal model are typically used for the computation of tsunami hydrodynamics and sediment transport. Limitations of the conventional model and future challenges are discussed regarding further improvement of numerical modeling of tsunami and sediment transport. Improved numerical modeling may provide useful information for assessing sediment-related damages and planning post-disaster recovery.
A New Measure for Transported Suspended Sediment
NASA Astrophysics Data System (ADS)
Yang, Q.
2017-12-01
Non-uniform suspended sediment plays an important role in many geographical and biological processes. Despite extensive study, understanding to it seems to stagnate when times to consider non-uniformity and non-equilibrium scenarios comes. Due to unsatisfactory reproducibility, large-scaled flume seems to be incompetent to conduct more fundamental research in this area. To push the realm a step further, experiment to find how suspended sediment exchanges is conducted in a new validated equipment, in which turbulence is motivated by oscillating grids. Analysis shows that 1) suspended sediment exchange is constrained by ωS invariance, 2) ωS of the suspended sediment that certain flow regime could support is unique regardless of the sediment gradation and 3) the more turbulent the flow, the higher ωS of the suspension the flow could achieve. A new measure for suspended sediment ωS, the work required to sustain sediment in suspension transport mode if multiplied by gravitational acceleration, is thus proposed to better describe the dynamics of transported suspended sediment. Except for the further understanding towards suspended sediment transportation mechanics, with this energy measure, a strategy to distribute total transport capacity to different fractions could be derived and rational calculation of non-uniform sediment transport capacity under non-equilibrium conditions be possible.
NASA Astrophysics Data System (ADS)
Sholtes, Joel; Werbylo, Kevin; Bledsoe, Brian
2014-10-01
Theoretical approaches to magnitude-frequency analysis (MFA) of sediment transport in channels couple continuous flow probability density functions (PDFs) with power law flow-sediment transport relations (rating curves) to produce closed-form equations relating MFA metrics such as the effective discharge, Qeff, and fraction of sediment transported by discharges greater than Qeff, f+, to statistical moments of the flow PDF and rating curve parameters. These approaches have proven useful in understanding the theoretical drivers behind the magnitude and frequency of sediment transport. However, some of their basic assumptions and findings may not apply to natural rivers and streams with more complex flow-sediment transport relationships or management and design scenarios, which have finite time horizons. We use simple numerical experiments to test the validity of theoretical MFA approaches in predicting the magnitude and frequency of sediment transport. Median values of Qeff and f+ generated from repeated, synthetic, finite flow series diverge from those produced with theoretical approaches using the same underlying flow PDF. The closed-form relation for f+ is a monotonically increasing function of flow variance. However, using finite flow series, we find that f+ increases with flow variance to a threshold that increases with flow record length. By introducing a sediment entrainment threshold, we present a physical mechanism for the observed diverging relationship between Qeff and flow variance in fine and coarse-bed channels. Our work shows that through complex and threshold-driven relationships sediment transport mode, channel morphology, flow variance, and flow record length all interact to influence estimates of what flow frequencies are most responsible for transporting sediment in alluvial channels.
NASA Astrophysics Data System (ADS)
Taylor, Stephen B.; Steven Kite, J.
2006-08-01
Factors that control the routing and storage of sediments in the Appalachian region are poorly understood. This study involves a comparative geomorphic analysis of three watersheds underlain by sandstones and shales of the Acadian clastic wedge. These areas include the Fernow Experimental Forest, Tucker County, West Virginia; the North Fork basin, Pocahontas County, West Virginia; and the Little River basin, Augusta County, Virginia. GIS-based analyses of surficial map units allow first-order approximation of sediment-storage volumes in valley bottoms. Estimates of volumes are examined in tandem with morphometric analyses and the distribution of bedrock channels to make inferences regarding controls on sediment-transport efficiency in the central Appalachians. The Fernow and North Fork areas are characterized by V-shaped valleys with mixed reaches of alluvial-bedrock channels distributed throughout the drainage network. In contrast, the Little River valley is notably wider and gravelly alluvial fill is abundant. Comparator watershed parameters for the Fernow, North Fork and Little River areas include, respectively: (1) basin area = 15.2 km 2, 49.3 km 2, 41.5 km 2; (2) basin relief = 0.586 km, 0.533 km, 0.828 km; (3) drainage density = 4.2 km - 1 , 3.3 km - 1 , 4.7 km - 1 ; (4) ruggedness = 2.5, 1.7, 3.9; (5) Shreve magnitude = 139, 287, 380; (6) total valley-bottom area (km 2) = 0.76 km 2, 1.86 km 2, 3.09 km 2; (7) average hillslope gradients = 17.2°, 18.4°, 22.1°; (8) total debris-fan surface area = 0.113 km 2, 0.165 km 2, 0.486 km 2; and (9) debris-fan frequency = 2.0 km - 2 , 1.0 km - 2 , 2.8 km - 2 . The storage volumes in valley bottoms were estimated using map polygon areas and surface heights above channel grade. The Little River contains significantly higher sediment volumes in floodplain, terrace and fan storage compartments; total volumes of the valley bottoms are approximately twice that of the Fernow and North Fork areas combined. Unit storage volumes for the Fernow, North Fork and Little River are 5.2 × 10 4 m 3 km - 2 , 5.5 × 10 4 m 3 km - 2 and 1.6 × 10 5 m 3 km - 2 , respectively. A conceptual model postulates that valley-width morphometry and style of delivery from hillslopes are the primary factors controlling the efficiency of sediment transport. Steep, debris-flow-prone hillslopes at the Little River deliver high volumes of gravelly sediment at magnitudes greater than transport capacity of the channel. Patterns of stream power are complex, as low-order tributaries are under capacity and high-order tributaries over capacity with respect to sediment load. Aggraded alluvial fill insulates valley-floor bedrock from vertical erosion and valley widening dominates. Expansion of the valley width creates a positive response via increased storage capacity and lower unit stream power. Conversely, the Fernow and North Fork are characterized by diffusive mass movement on hillslopes with incremental bedload transport to higher-order tributaries. Rates of hillslope delivery are balanced by the rate of channel export. Mixed alluvial-bedrock reaches provide the optimal channel configuration for active incision of the valley floor. Low expansion of valley width promotes high unit stream power and processes of vertical erosion. The model implies that the Fernow and North Fork have been more effective at sediment transport during the Late Quaternary. Given similar climatic and tectonic settings, variation in bedrock lithofacies is likely the primary factor modulating the efficiency of sediment transport.
NASA Astrophysics Data System (ADS)
Fisher-Power, L.; Cheng, T.
2017-12-01
Transport of engineered nanoparticles (ENP) in subsurface environments has important implications to water quality and soil contamination. Although extensive research has been conducted to understand the effects of water chemistry on ENP transport, less attention has been paid to influences from the transport medium/matrix. The objective of this research is to investigate the effects of natural organic matter (NOM) and Fe/Al oxyhydroxides in a natural sediment on ENP transport. A sediment was collected and separated into four portions, one of which was unmodified, and the others treated to remove specific components (organic matter, Fe/Al oxyhydroxides, or both organic matter and Fe/Al oxyhydroxides). Transport of nanoscale titanium dioxide (nTiO2) in columns packed with quartz sand and each of the four types of the sediment under water-saturated conditions was studied. Our results showed that nTiO2 transport was strongly influenced by pH and sediment composition. When influent pH = 5, nTiO2 transport in all the sediments was low, as positively-charged nTiO2 was attracted to negatively charged NOM, quartz, and other minerals. nTiO2 transport was slightly enhanced in columns packed with untreated sediment or Fe/Al oxyhydroxides removed sediment due to dissolved organic matter generated by the partial dissolution of NOM, which adsorbed onto nTiO2 surface and reversed its zeta potential to negative. When influent pH = 9, nTiO2 transport was generally high since negatively-charged nTiO2 was repelled by negatively charged transport medium. However, in columns packed with the organic matter removed sediment or the Fe/Al oxyhydroxides removed sediment, nTiO2 transport was low. This was attributable to pH buffering by the sediment, which decreased pore water pH in the column, resulting in zeta potential change and electrostatic attraction between Fe/Al oxyhydroxides and nTiO2. This research demonstrates that electrostatic forces between nTiO2 and mineral/organic components in natural sediments is a key factor that controls nTiO2 retention and transport, and that both NOM and Fe/Al oxyhydroxides may substantially influence nTiO2 transport.
NASA Astrophysics Data System (ADS)
Jones, M. E.; Janot, N.; Bargar, J.; Fendorf, S. E.
2013-12-01
Previous studies have illustrated the importance of Naturally Reduced Zones (NRZs) within saturated sediments for the cycling of metals and redox sensitive contaminants. NRZs can provide a source of reducing equivalents such as reduced organic compounds or hydrogen to stimulate subsurface microbial communities. These NRZ's are typically characterized by low permeability and elevated concentrations of organic carbon and trace metals. However, both the formation of NRZs and their importance to the overall aquifer carbon remineralization is not fully understood. Within NRZs the hydrolysis of particulate organic carbon (POC) and subsequent fermentation of dissolved organic carbon (DOC) to form low molecular weight dissolved organic carbon (LMW-DOC) provides electron donors necessary for the respiration of Fe, S, and in the case of the Rifle aquifer, U. Rates of POC hydrolysis and subsequent fermentation have been poorly constrained and rates in excess and deficit to the rates of subsurface anaerobic respiratory processes have been suggested. In this study, we simulate the development of NRZ sediments in diffusion-limited aggregates to investigate the physical and chemical conditions required for NRZ formation. Effects of sediment porosity and POC loading on Fe, S, and U cycling on molecular and nanoscale are investigated with synchrotron-based Near Edge X-ray Absorption Fine Structure Spectroscopy (NEXAFS). Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) and Fourier Transform Infrared spectroscopy (FTIR) are used to characterize the transformations in POC and DOC. Sediment aggregates are inoculated with the natural microbial biota from the Rifle aquifer and population dynamics are monitored by 16S RNA analysis. Overall, establishment of low permeability NRZs within the aquifer stimulate microbial respiration beyond the diffusion-limited zones and can limit the transport of U through a contaminated aquifer. However, the long-term stability of NRZs and the co-located U is unknown and requires further study.
1989-07-01
TECHNICAL REPORT HL-89-14 VERIFICATION OF THE HYDRODYNAMIC AND Si SEDIMENT TRANSPORT HYBRID MODELING SYSTEM FOR CUMBERLAND SOUND AND I’) KINGS BAY...Hydrodynamic and Sediment Transport Hybrid Modeling System for Cumberland Sound and Kings Bay Navigation Channel, Georgia 12 PERSONAL AUTHOR(S) Granat...Hydrodynamic results from RMA-2V were used in the numerical sediment transport code STUDH in modeling the interaction of the flow transport and
NASA Astrophysics Data System (ADS)
Baskaran, M. M.
2016-12-01
Short-lived naturally-occurring Pb-210 and anthropogenically-delivered Cs-137 are the two most extensively utilized chronometers over the time scale of less than a decade to 60 (Cs-137) to 120 yrs (Pb-210) in a variety of environment including terrestrial and aqueous systems and glaciers. Despite all the advances in the field, still major issues, we confront several issues on the robustness of their applications in these environments. Those include: i) how does the temporal and spatial variations of Pb-210 input to an aqueous environment affect the Pb-210 chronology? ii) how well we are able to quantify the multiple source inputs (atmospheric fallout, watershed erosional input, production of Pb-210 from the decay of SGD-derived Rn-222 and Ra-226, etc); iii) How well are we able to sort out a number of processes that affect the vertical profiles of both Cs-137 and Pb-210 which include sediment mixing (biological and/or physical), sediment focusing/erosion due to bottom currents and transport of sediments in subsurface environment and post-depositional mobility of Cs-137 and Pb-210. In this presentation, the following case studies will be discussed: 1) where there is excellent as well non-agreement between Pb-210 and Cs-137-based chronologies; 2) agreement between Cs-137-based chronology with historical time-marker from Hg mining, while no chronology obtainable from Pb-210; 3) agreement between five different methods of dating in a reservoir; 4) evidence of Cs-137 diffusion in some of the sediment cores, but not in all cores in a small reservoir; and 5) evidence of long-term remineralization based on a comparison of C-14-based ages with those of Pb-210, Cs-137 and Pu-239,240-based methods. We also show evidence Cs-137 diffusion based on a set of laboratory-based diffusion experiments under different pore water chemical conditions. A brief discussion on time resolution and error estimation on ages will be discussed. The challenges in the field of `Anthropocene geochronology' will be discussed. In view of the recent technological developments in gamma-ray spectrometry and ICPMS and analytical methodology for Pu analysis, the new opportunities to move forward this research area will be presented.
Vertical suspsended sediment fluxes observed from ocean gliders
NASA Astrophysics Data System (ADS)
Merckelbach, Lucas; Carpenter, Jeffrey
2016-04-01
Many studies trying to understand a coastal system in terms of sediment transport paths resort to numerical modelling - combining circulation models with sediment transport models. Two aspects herein are crucial: sediment fluxes across the sea bed-water column interface, and the subsequent vertical mixing by turbulence. Both aspects are highly complex and have relatively short time scales, so that the processes involved are implemented in numerical models as parameterisations. Due to the effort required to obtain field observations of suspended sediment concentrations (and other parameters), measurements are scarce, which makes the development and tuning of parameterisations a difficult task. Ocean gliders (autonomous underwater vehicles propelled by a buoyancy engine) provide a platform complementing more traditional methods of sampling. In this work we present observations of suspended sediment concentration (SSC) and dissipation rate taken by two gliders, each equipped with optical sensors and a microstructure sensor, along with current observations from a bottom mounted ADCP, all operated in the German Bight sector of the North Sea in Summer 2014. For about two weeks of a four-week experiment, the gliders were programmed to fly in a novel way as Lagrangian profilers to water depths of about 40 m. The benefit of this approach is that the rate of change of SSC - and other parameters - is local to the water column, as opposed to an unknown composition of temporal and spatial variability when gliders are operated in the usual way. Therefore, vertical sediment fluxes can be calculated without the need of the - often dubious - assumption that spatial variability can be neglected. During the experiment the water column was initially thermally stratified, with a cross-pycnocline diffusion coefficient estimated at 7\\cdot10-5 m2 s-1. Halfway through the experiment the remnants of tropical storm Bertha arrived at the study site and caused a complete mixing of the water column. An analysis of the data showed that resuspension and deposition were solely tidally-driven and in equilibrium prior to the arrival of the storm, with an averaged resuspension rate of 3-4 g m-2 s-1. During the storm the effect of surface waves increased the resuspension rate by an order of magnitude. The data suggest that after the passing of the storm, when the tide was the main driver again, resuspension rates are generally higher than before the storm. This provides a further indication that although a (Summer) storm might be a short-term event, its effects on sediment transport may be felt on much longer time scales.
Mayer, Philipp; Parkerton, Thomas F; Adams, Rachel G; Cargill, John G; Gan, Jay; Gouin, Todd; Gschwend, Philip M; Hawthorne, Steven B; Helm, Paul; Witt, Gesine; You, Jing; Escher, Beate I
2014-01-01
Passive sampling methods (PSMs) allow the quantification of the freely dissolved concentration (Cfree) of an organic contaminant even in complex matrices such as sediments. Cfree is directly related to a contaminant's chemical activity, which drives spontaneous processes including diffusive uptake into benthic organisms and exchange with the overlying water column. Consequently, Cfree provides a more relevant dose metric than total sediment concentration. Recent developments in PSMs have significantly improved our ability to reliably measure even very low levels of Cfree. Application of PSMs in sediments is preferably conducted in the equilibrium regime, where freely dissolved concentrations in the sediment are well-linked to the measured concentration in the sampler via analyte-specific partition ratios. The equilibrium condition can then be assured by measuring a time series or a single time point using passive samplers with different surface to volume ratios. Sampling in the kinetic regime is also possible and generally involves the application of performance reference compounds for the calibration. Based on previous research on hydrophobic organic contaminants, it is concluded that Cfree allows a direct assessment of 1) contaminant exchange and equilibrium status between sediment and overlying water, 2) benthic bioaccumulation, and 3) potential toxicity to benthic organisms. Thus, the use of PSMs to measure Cfree provides an improved basis for the mechanistic understanding of fate and transport processes in sediments and has the potential to significantly improve risk assessment and management of contaminated sediments. Integr Environ Assess Manag 2014;10:197–209. © 2014 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of SETAC. PMID:24288295
NASA Astrophysics Data System (ADS)
Bachir-Bey, Nassim; Matray, Jean-Michel
2014-05-01
This work is part of research conducted by the Institute of Radiological and Nuclear Safety (IRSN) on the geological disposal of High-Level and Intermediate-Level Long-Lived (HL-ILLL) radioactive waste in deep clayrocks. In France, the choice of the potential host rock for the geological storage is focused on the Callovian-Oxfordian (COx) of Meuse/Haute-Marne from its low permeability, capacity for self- sealing, high sorption and ability to radionuclide (RN) transport by diffusion. IRSN, which plays an expert role for ASN has its own underground research laboratory in a clayrock which has strong analogies to the COx. This is the Toarcian/Domerian clayrock located at Tournemire in southern Aveyron in France. The purpose of this study was to assess the transfer of RN in the Tournemire clayrock through the study of halides contents and of their stable isotopes (Cl-, Br-, Cl-/Br-, d37Cl, d81Br). The approach used was multiple and consisted for halides to: 1) Assess their stock in different fractions of the rock by applying several techniques including i) alkaline fusion for their total stock, ii) leaching to access their stock in porewater and to mineral phases sensitive to dissolution iii) cubic diffusion for their stock in porewater, 2) Get their diffusive transport parameters of a selection of samples from the upper Toarcian by cubic diffusion experiments modelled using the Hytec transport code developed by Mines ParisTech and 3) Model their transport after palaeohydrogeological known changes of the Tournemire massif. The experimental approach, conducted at the LAME lab, did not lead to an operational protocol for the alkaline fusion due to an incomplete rock dissolution. Leaching was used to characterize the concentrations of halides in the fractions of pore water and of minerals sensitive to dissolution. The results show levels of halides much higher than those of pore water with very low Cl/Br ratios likely resulting from the dissolution of mineral species. The cubic diffusion produced the pore diffusion coefficients for Cl and Br as well as their concentration in the porewater. Cubic diffusion also allowed to estimate a Cl to Br pore diffusion coefficient ratio, necessary to calculate the profiles of Cl/Br. These estimates have required the use of the transport code Hytec i) for dimensioning and implementing the experiment in a time frame compatible with the work period, ii) for analysing the sensitiveness of the model to the accessible porosity and to the diffusion coefficient which act respectively to the steady phase and transient phase of the experiments, and finally, iii ) for adjusting the pore diffusion coefficients of Cl and Br to an accessible porosity of 3-4%. The Hytec code was then used to check the consistency of the current profiles of chlorides, bromides, 35Cl , 37Cl , d37Cl, Cl/Br in 1D, a fake drilling assumed crossing the entire clayrock. The assumption is that halides have undergone a diffusive transport between seawater trapped during sedimentation and meteoric waters infiltrated at different times to domain boundaries. Four scenarios were tested according to the paleohydrogeological history of the massif. All tracers and scenarios are consistent with a unique marine source of halides more or less diluted by meteoric waters. The duration of the diffusive exchange initially suggested 85 ± 10 Ma (Bensenouci, 2010) is never contradicted despite uncertainties related to changes in boundary conditions. This body of evidence would suggest that molecular diffusion is the transport process which has affected and still affect the Tournemire clayrock, outside fault zones. The d37Cl results expected on the surrounding carbonated aquifers, leachates and fracture waters (including d81Br values) should help to refine the models and the results.
Input-variable sensitivity assessment for sediment transport relations
NASA Astrophysics Data System (ADS)
Fernández, Roberto; Garcia, Marcelo H.
2017-09-01
A methodology to assess input-variable sensitivity for sediment transport relations is presented. The Mean Value First Order Second Moment Method (MVFOSM) is applied to two bed load transport equations showing that it may be used to rank all input variables in terms of how their specific variance affects the overall variance of the sediment transport estimation. In sites where data are scarce or nonexistent, the results obtained may be used to (i) determine what variables would have the largest impact when estimating sediment loads in the absence of field observations and (ii) design field campaigns to specifically measure those variables for which a given transport equation is most sensitive; in sites where data are readily available, the results would allow quantifying the effect that the variance associated with each input variable has on the variance of the sediment transport estimates. An application of the method to two transport relations using data from a tropical mountain river in Costa Rica is implemented to exemplify the potential of the method in places where input data are limited. Results are compared against Monte Carlo simulations to assess the reliability of the method and validate its results. For both of the sediment transport relations used in the sensitivity analysis, accurate knowledge of sediment size was found to have more impact on sediment transport predictions than precise knowledge of other input variables such as channel slope and flow discharge.
NASA Astrophysics Data System (ADS)
Striberger, J.; Bjorck, S.; Ingolfsson, O.; Kjaer, K.; Snowball, I.; Uvo, C. B.
2009-12-01
Properties of varved lake sediments from Lake Lögurinn on eastern Iceland and their link to glacial processes of Eyjabakkajökull, a surging outlet glacier of the Vatnajökull ice cap, is examined. An 18 m long sediment sequence obtained from the lake, covering at least the past ~ 9 200 years, displays a distinct recurring pattern of light-coloured clay dominated laminae sections. The thickness of the light-coloured laminae is mainly controlled by the amount of glacial rock flour transported from Eyjabakkajökull. These light laminae are interlaid by coarser dark-coloured laminae mainly formed by suspended matter transported to the lake by the large non-glacial river Grímsá. During the recent surge of Eyjabakkajökull in 1972, the amount of suspended matter transported to the lake increased significantly. The surge was followed by years of recurring drainages of Lake Háöldulón, an ice-dammed lake that was formed shortly after the surge. As a result, the amount of glacial rock flour transported to Lake Lögurinn was higher than usual as long as Lake Háöldulón continued to drain (i.e. as long as the ice front was in an advanced position enough to dam the lake). This increase in glacially derived rock flour is reflected in the sediments, as the varve that was formed in 1972 constitutes the thickest light-coloured laminae deposited during the 20th century, which is followed by the second thickest light-coloured laminae, deposited in 1973. From there on, the thicknesses of the light-coloured laminae gradually fade out. Based on these modern observations, we suggest that the recurring cyclic pattern of light-coloured clay dominated laminae sections in the sediment sequence is related to past surges of Eyjabakkajökull, followed by drainages of Lake Háöldulón. Recurring cycles of light-coloured clay dominated laminae began to develop close to the Hekla-3 and Hekla-4 tephras (ca. 3000-4000 years BP), which also coincides with the time when the varves became more distinct. Further down in the sequence, the recurring cycles of light-coloured laminae are not found and any varves are in general diffuse or missing. Hypothetically, the reason for this might be that the suspended matter delivered from the glacier was transported elsewhere at this time. However, based on the large-scale morphology of the area, we find it more likely that Eyjabakkajökull, and thus parts of, or the whole Vatnajökull ice cap, was smaller or perhaps not present during the mid-Holocene and thus had little or no influence on the sedimentation in Lake Lögurinn.
Self-organized behavior of modeled shoreline shapes
NASA Astrophysics Data System (ADS)
Ashton, A.; Murray, A. B.
2003-04-01
Whenever waves approach a coast and break at oblique angles, they drive a current along the shore. This current, along with wave-induced sediment suspension, transports relatively large amounts of sediment, affecting the shape and evolution of a coastline. Traditionally, researchers have assumed that alongshore sediment transport will diffuse, or smooth, bumps along a shoreline. Recent research, however, shows that when the angle between wave crests in deep water and the shoreline is sufficiently high (greater than approximately 45 degrees), a shoreline is unstable. Linear stability analysis does not predict that this instability will cause a preferred wavelength of shoreline perturbation growth or that organized patterns will emerge. However, a simple numerical model of shoreline change shows those when there is a predominance of high angle waves approaching a shoreline, finite-amplitude features will develop that interact with each other and increase in wavelength over time, translating in the direction of net alongshore sediment transport. Some of these simulated features resemble naturally occurring shoreline features, such as 'alongshore sandwaves', 'ords', 'cuspate spits', and 'cuspate forelands'. By varying two wave climate parameters, one describing the relative dominance of waves approaching at high angles and the other controlling the signs of the approach angle of incoming waves (i.e., the asymmetry of waves approaching from the right vs. the left), we investigate how the attributes of the input wave climate determine the aspect ratio and characteristic form of the simulated features. Varying these two parameters also affects the wavelength of the initially fastest growing perturbation. By tracking the average wavelength of simulated features, which increases over time for all simulations, we show that more complicated phenomena, such as rapid period doubling, can dominate simulated shoreline evolution. These rich behaviors result from large-scale emergent interactions. Although the wave distribution determines the character of shoreline features, their specific configuration and evolution is sensitively dependant on both initial conditions and the stochastic sequencing of wave approach angles.
NASA Astrophysics Data System (ADS)
Chantha, Oeurng; Sabine, Sauvage; David, Baqué; Alexandra, Coynel; Eric, Maneux; Henri, Etcheber; José-Miguel, Sánchez-Pérez
2010-05-01
Intensive agriculture has led to environmental degradation through soil erosion and carbon loss transferred from agricultural land to the stream networks. Suspended sediment transport from the agricultural catchment to the watercourses is responsible for aquatic habitat degradation, reservoir sedimentation, and for transporting sediment associated pollutants (pesticides, nutrient, heavy metals and other toxic substances). Consequently, the temporal transport of suspended sediment (SS), dissolved and particulate organic carbon (DOC and POC) was investigated during 18 months from January 2008 to June 2009 within a large agricultural catchment in southwest France. This study is based on an extensive dataset with high temporal resolution using manual and automatic sampling, especially during 15 flood events. Two main objectives aim at: (i) studying temporal transport in suspended sediment (SS), DOC and POC with factors explaining their dynamics and (ii) analysing the relationships between discharge, SSC, DOC and POC during flood events. The study demonstrates there is a strong variability of SS, POC and DOC during flood events. The SS transport during different seasonal floods varied by event from 513 to 41 750 t; POC transport varied from 12 to 748 t and DOC transport varied from 9 to 218 t. The specific yield of the catchment represents 76 t km-2 y-1 of sediment, 1.8 t km-2 y-1 of POC and 0.7 t km-2 y-1 of DOC, respectively. The POC associated with sediment transport from the catchment accounted for ~2.5% of the total sediment load. Flood duration and flood magnitude are key factors in determining the sediment and organic carbon transport. Statistical analyses revealed strong correlations between total precipitation, flood discharge, total water yield with suspended sediment and organic transport. The relationships of SSC, POC and DOC versus discharge over temporal flood events resulted in different hysteresis patterns which were used to suggest those dissolved and particulate origins. POC for both clockwise and anticlockwise also mostly followed the same patterns of discharge and suspended sediment hysteresis. DOC and discharge relationship were mainly dominated by mixing pattern of clockwise and anticlockwise due to dilution effects of water originating from different sources in the whole catchment.
Large sized non-uniform sediment transport at high capacity on steep slopes
NASA Astrophysics Data System (ADS)
Fu, X.; Zhang, L.; Duan, J. G.
2015-12-01
Transport of large-sized particles such as cobbles in steep streams still remains poorly understood in spite of its importance in mountain stream morphdynamics. Here we explored the law of cobble transport and the effect of cobble existence on gravel bed material transport, using flume experiments with a steep slope (4.9%) and water and sediment constantly supplying. The experiments were conducted in an 8 m long and 0.6 m wide circulating flume with the maximal size up to 90 mm and cobble concentrations in the sediment bed ranging from 22 percent to 6 percent. The sediment transport rate is on the order of 1000 g/m/s, which could be taken as high rate transport compared with existing researches. Bed load transport rate and flow variables were measured after the flume reached an equilibrium state. Bed surface topography was also measured by applying Kinect range camera before and after each run in order to analyze the fractal characteristics of the bed surface under different flow conditions. Critical shear stress of each size friction was estimated from the reference transport method (RTM) and a new hiding function was recommended. Preliminary results show that the bed was nearly in an equal mobility transport regime. We then plot dimensionless fractional transport rate versus dimensionless shear stress and assess the existing bed load transport formulas of non-uniform sediments for their applicability at high sediment transport capacity. This study contributes to the comprehension of high rate sediment transport on steep slopes.
NASA Astrophysics Data System (ADS)
Garzanti, Eduardo; Andó, Sergio; France-Lanord, Christian; Censi, Paolo; Vignola, Pietro; Galy, Valier; Lupker, Maarten
2011-02-01
Sediments carried in suspension represent a fundamental part of fluvial transport. Nonetheless, largely because of technical problems, they have been hitherto widely neglected in provenance studies. In order to determine with maximum possible precision the mineralogy of suspended load collected in vertical profiles from water surface to channel bottom of Rivers Ganga and Brahmaputra, we combined Raman spectroscopy with traditional heavy-mineral and X-ray diffraction analyses, carried out separately on low-density and dense fractions of all significant size classes in each sample (multiple-window approach). Suspended load resulted to be a ternary mixture of dominant silt enriched in phyllosilicates, subordinate clay largely derived from weathered floodplains, and sand mainly produced by physical erosion and mechanical grinding during transport in Himalayan streams. Sediment concentration and grain size increase steadily with water depth. Whereas absolute concentration of clay associated with Fe-oxyhydroxides and organic matter is almost depth-invariant, regular mineralogical and consequently chemical changes from shallow to deep load result from marked increase of faster-settling, coarser, denser, or more spherical grains toward the bed. Such steady intersample compositional variability can be modeled as a mixture of clay, silt and sand modes with distinct mineralogical and chemical composition. With classical formulas describing sediment transport by turbulent diffusion, absolute and relative concentrations can be predicted at any depth for each textural mode and each detrital component. Based on assumptions on average chemistry of detrital minerals and empirical formulas to calculate their settling velocities, the suspension-sorting model successfully reproduces mineralogy and chemistry of suspended load at different depths. Principal outputs include assessment of contributions by each detrital mineral to the chemical budget, and calibration of dense minerals too rare to be precisely estimated by optical or Raman analysis but crucial in both detrital-geochronology and settling-equivalence studies. Hydrodynamic conditions during monsoonal discharge could also be evaluated. Understanding compositional variability of suspended load is a fundamental pre-requisite to correctly interpret mineralogical and geochemical data in provenance analysis of modern and ancient sedimentary deposits, to accurately assess weathering processes, sediment fluxes and erosion patterns, and to unambiguously evaluate the effects of anthropogenic modifications on the natural environment.
Unravelling the relative contribution of bed and suspended sediment load on a large alluvial river
NASA Astrophysics Data System (ADS)
Darby, S. E.; Hackney, C. R.; Parsons, D. R.; Leyland, J.; Aalto, R. E.; Nicholas, A. P.; Best, J.
2017-12-01
The world's largest rivers transport 19 billion tonnes of sediment to the coastal zone annually, often supporting large deltas that rely on this sediment load to maintain their elevation in the face of rising sea level, and to sustain high levels of agricultural productivity and biodiversity. However, the majority of estimates of sediment delivery to coastal regions pertain solely to the suspended fraction of the sediment load, with the bedload fraction often being neglected due to the difficulty in estimating bedload flux and the assumption that bedload contributes a minor (<10%) fraction of the total sediment load. In large rivers, capturing accurate estimates of the suspended- and bed- load fractions is difficult given the large channel widths and depths and the intrusive nature of typical methodologies. Yet, for the successful implementation of sustainable river, and delta, management plans, improved estimates of all fractions of the sediment load are essential. Recent advances in non-intrusive, high-resolution, technology have begun to enable more accurate estimates of bedload transport rates. However, the characterisation of the holistic sediment transport regime of large alluvial rivers is still lacking. Here, we develop a sediment transport rating curve, combining both suspended- and bed- load sediment fractions, for the Lower Mekong River. We define suspended sediment rating curves using the inversion of acoustic return data from a series of acoustic Doppler current profiler surveys conducted through the Lower Mekong River in Cambodia, and into the bifurcating channels of the Mekong delta in Vietnam. Additionally, we detail estimates of bed-load sediment transport determined using repeat multibeam echo sounder surveys of the channel bed. By combining estimates of both fractions of the sediment load, we show the spatial and temporal contribution of bedload to the total sediment load of the Mekong and refine estimates of sediment transport to the Mekong delta. Our results indicate that the time-averaged suspended load transport rates for the Mekong River are 87 MT/yr, whilst bedload transport forms c. < 5% of the total sediment load within the Mekong River. Such estimates are integral to future channel management within this highly threatened river basin.
Bever, A.J.; Harris, C.K.; Sherwood, C.R.; Signell, R.P.
2009-01-01
Recent studies of sediment dynamics and clinoform development in the northern Adriatic Sea focused on winter 2002-2003 and provided the data and motivation for development of a detailed sediment-transport model for the area near the Po River delta. We used both idealized test cases and more realistic simulations to improve our understanding of seasonal sediment dynamics there. We also investigated the relationship between physical processes and the observed depositional products; e.g. the accumulation of sediment very near the Po River distributary mouths. Sediment transport near the Po River was evaluated using a three-dimensional ocean model coupled to sediment-transport calculations that included wave- and current-induced resuspension, suspended-sediment transport, multiple grain classes, and fluvial input from the Po River. High-resolution estimates from available meteorological and wave models were used to specify wind, wave, and meteorological forcing. Model results indicated that more than half of the discharged sediment remained within 15??km of the Po River distributary mouths, even after two months of intensive reworking by winter storms. During floods of the Po River, transport in the middle to upper water column dominated sediment fluxes. Otherwise, sediment fluxes from the subaqueous portion of the delta were confined to the bottom few meters of the water column, and correlated with increases in current speed and wave energy. Spatial and temporal variation in wind velocities determined depositional patterns and the directions of sediment transport. Northeasterly Bora winds produced relatively more eastward transport, while southwesterly Sirocco winds generated fluxes towards both the north and the south. Eastward transport accounted for the majority of the sediment exported from the subaqueous delta, most likely due to the frequent occurrence of Bora conditions. Progradation of the Po River delta into the Adriatic Sea may restrict the formation of the Western Adriatic Coastal Current, increasing sediment retention at the Po delta and reducing the supply of sediment to the Apennine margin. A positive morphodynamic feedback may therefore be present whereby the extension of the delta into the Adriatic increases sediment accumulation at the delta and facilitates further progradation. ?? 2009 Elsevier B.V.
Sedimentation and gravitational instability of Escherichia coli Suspension
NASA Astrophysics Data System (ADS)
Salin, Dominique; Douarche, Carine
2017-11-01
The successive runs and tumbles of Escherichia coli bacteria provide an active matter suspension of rod-like particles with a large swimming, Brownian like, diffusion. As opposed to inactive elongated particles, this diffusion prevents clustering of the particles and hence instability in the gravity field. We measure the time dependent E . coli concentration profile during their sedimentation. After some hours, due to the dioxygen consumption, a motile / non-motile front forms leading to a Rayleigh-Taylor type gravitational instability. Analysing both sedimentation and instability in the framework of active particle suspensions, we can measure the relevant bacteria hydrodynamic characteristics such as its single particle sedimentation velocity and its hindrance volume. Comparing these quantities to the ones of equivalent passive particles (ellipsoid, rod) we tentatively infer the effective shape and size of the bacteria involved in its buoyancy induced advection and diffusion. Laboratoire FAST University Paris Saclay France.
The Dynamics of Coarse Sediment Transfer in an Upland Bedrock River
NASA Astrophysics Data System (ADS)
Warburton, J.; Hardy, R. J.; Ferguson, R. I.; Cray, A.
2010-12-01
Bedrock channels in UK environments have received relatively little attention despite their importance within upland river systems and their influence on controlling the conveyance of sediment downstream. This poster describes the transfer of coarse sediment through Trout Beck, an upland bedrock reach in the North Pennines, UK. The transport of coarse sediment has been quantified through field monitoring of sediment characteristics, repeat magnetic tracer surveys and in-situ bed load impact sensors. This was carried out in conjunction with surveys of channel morphology (using terrestrial laser scanning and repeat dGPS measurements) and continuous flow monitoring. The interaction between mobile sediment and channel morphology is partly conditioned by the extent of alluvial sediment cover. Sediment storage is patchy with partially alluvial and alluvial sections of the channel, interspersed with bedrock reaches containing very little sediment except in hydraulically sheltered sites. There are notable differences in sediment dynamics between these different sections of the river channel which have a considerable influence on conveyance of sediment through the reach. In bedrock sections the low resistance to flow and stable channel boundaries result in little sediment storage and during periods when flow is competent there is downstream conveyance of the full grain-size distribution of sediment. Detailed morphological survey has provided the necessary boundary conditions, along with the flow data, to apply a one-dimensional hydraulic model (HEC-RAS) of the bedrock study reach. The modelling results have quantified the hydraulic regime of the channel. Using local shear stress as a proxy for sediment transport, sediment transport potential for the dominant grain-size distribution of the reach (16-256 mm) has been assessed for different locations in the channel. There are significant differences in the critical threshold of shear stress for sediment transport down the reach. Sediment which is transported through the bedrock reach will be deposited and stored, in the partially alluvial and alluvial sections of the channel. As the flow magnitude increases above the critical entrainment threshold, sediment transport potential increases throughout the whole channel until hydraulic conditions in the whole reach have the potential to transport sediment. Hence, sediment storage in the channel fluctuates through time depending on the frequency of ‘channel clearing’ floods; however, the overall pattern (template) of sedimentation is predictable based on local hydraulics. By combining the field and modelling approaches an improved understanding of the flow thresholds and spatial variations in sediment transport, in an upland bedrock channel, has been achieved.
NASA Astrophysics Data System (ADS)
Cordier, Florian; Tassi, Pablo; Claude, Nicolas; Crosato, Alessandra; Rodrigues, Stéphane; Pham van Bang, Damien
2017-04-01
Numerical modelling of graded sediment transport in rivers remains a challenge [Siviglia and Crosato, 2016] and only few studies have considered the non-uniform distribution of sediment, although sediment grading is an inherent characteristic of natural rivers. The present work aims at revisiting the morphodynamics module of the Telemac-Mascaret modelling system and to integrate the latest developments to model the effects of non-uniform sediment on i) the sediment transport capacity estimated at the interface between the flow and the riverbed and on ii) the vertical sorting of sediment deposits in response to sediment supply changes. The implementation of these two processes has a key role on the modelling of bar dynamics in aggrading/degrading channels [Blom, 2008]. Numerical modelling of graded sediment transport remains a challenge due to the difficulty to reproduce the non-linear interactions between grains of different shape and size. Application of classical bedload equations usually fails in reproducing relevant transport rates [Recking, 2010 and references therein]. In this work, the graded sediment transport model of Wilcock and Crowe [2003] and the active layer concept of Hirano [1971] for the formulation of the exchange layer are implemented. The ability to reproduce the formation and evolution of graded-sediment bars is assessed on the basis of laboratory experiences from the literature. References: Blom, A., Ribberink, J. S., and Parker, G. 2008. Vertical sorting and the morphodynamics of bed form-dominated rivers: A sorting evolution model. Journal of Geophysical Research: Earth Surface, 113(F1). Lauer, J. W., Viparelli, E., and Piégay, H. 2016. Morphodynamics and sediment tracers in 1-d (mast-1d): 1-d sediment transport that includes exchange with an off-channel sediment reservoir. Advances in Water Resources. Recking, A. 2010. A comparison between flume and field bed load transport data and consequences for surface-based bed load transport prediction. Water Resources Research, 46(3). W03518. Siviglia, A. and Crosato, A. 2016. Numerical modelling of river morphodynamics: latest developments and remaining challenges. Advances in Water Resources, 90:1-9. Wilcock, P. R. and Crowe, J. C. 2003. Surface-based transport model for mixed-size sediment. Journal of Hydraulic Engineering, 129(2):120-128.
Methane Bubbles Transport Particles From Contaminated Sediment to a Lake Surface
NASA Astrophysics Data System (ADS)
Delwiche, K.; Hemond, H.
2017-12-01
Methane bubbling from aquatic sediments has long been known to transport carbon to the atmosphere, but new evidence presented here suggests that methane bubbles also transport particulate matter to a lake surface. This transport pathway is of particular importance in lakes with contaminated sediments, as bubble transport could increase human exposure to toxic metals. The Upper Mystic Lake in Arlington, MA has a documented history of methane bubbling and sediment contamination by arsenic and other heavy metals, and we have conducted laboratory and field studies demonstrating that methane bubbles are capable of transporting sediment particles over depths as great as 15 m in Upper Mystic Lake. Methane bubble traps were used in-situ to capture particles adhered to bubble interfaces, and to relate particle mass transport to bubble flux. Laboratory studies were conducted in a custom-made 15 m tall water column to quantify the relationship between water column height and the mass of particulate transport. We then couple this particle transport data with historical estimates of ebullition from Upper Mystic Lake to quantify the significance of bubble-mediated particle transport to heavy metal cycling within the lake. Results suggest that methane bubbles can represent a significant pathway for contaminated sediment to reach surface waters even in relatively deep water bodies. Given the frequent co-occurrence of contaminated sediments and high bubble flux rates, and the potential for human exposure to heavy metals, it will be critical to study the significance of this transport pathway for a range of sediment and contaminant types.
Elias, Edwin P.L.; Hansen, Jeff E.; Barnard, P.L.; Jaffee, B.E.; Schoellhamer, D.H.
2013-01-01
San Francisco Bay is one of the largest estuaries along the U.S. West Coast and is linked to the Pacific Ocean through the Golden Gate, a 100 m deep bedrock inlet. A coupled wave, flow and sediment transport model is used to quantify the sediment linkages between San Francisco Bay, the Golden Gate, and the adjacent open coast. Flow and sediment transport processes are investigated using an ensemble average of 24 climatologically derived wave cases and a 24.8 h representative tidal cycle. The model simulations show that within the inlet, flow and sediment transport is tidally dominated and driven by asymmetry of the ebb and flood tides. Peak ebb velocities exceed the peak flood velocities in the narrow Golden Gate channel as a result of flow convergence and acceleration. Persistent flow and sediment gyres at the headland tips are formed that limit sediment transfer from the ebb-tidal delta to the inlet and into the bay. The residual transport pattern in the inlet is dominated by a lateral segregation with a large ebb-dominant sediment transport (and flow) prevailing along the deeper north side of the Golden Gate channel, and smaller flood dominant transports along the shallow southern margin. The seaward edge of the ebb-tidal delta largely corresponds to the seaward extent of strong tidal flows. On the ebb-tidal delta, both waves and tidal forcing govern flow and sediment transport. Wave focusing by the ebb-tidal delta leads to strong patterns of sediment convergence and divergence along the adjacent Ocean Beach.
McGuire, Luke; Kean, Jason W.; Staley, Dennis M.; Rengers, Francis K.; Wasklewicz, Thad A.
2016-01-01
Mountain watersheds recently burned by wildfire often experience greater amounts of runoff and increased rates of sediment transport relative to similar unburned areas. Given the sedimentation and debris flow threats caused by increases in erosion, more work is needed to better understand the physical mechanisms responsible for the observed increase in sediment transport in burned environments and the time scale over which a heightened geomorphic response can be expected. In this study, we quantified the relative importance of different hillslope erosion mechanisms during two postwildfire rainstorms at a drainage basin in Southern California by combining terrestrial laser scanner-derived maps of topographic change, field measurements, and numerical modeling of overland flow and sediment transport. Numerous debris flows were initiated by runoff at our study area during a long-duration storm of relatively modest intensity. Despite the presence of a well-developed rill network, numerical model results suggest that the majority of eroded hillslope sediment during this long-duration rainstorm was transported by raindrop-induced sediment transport processes, highlighting the importance of raindrop-driven processes in supplying channels with potential debris flow material. We also used the numerical model to explore relationships between postwildfire storm characteristics, vegetation cover, soil infiltration capacity, and the total volume of eroded sediment from a synthetic hillslope for different end-member erosion regimes. This study adds to our understanding of sediment transport in steep, postwildfire landscapes and shows how data from field monitoring can be combined with numerical modeling of sediment transport to isolate the processes leading to increased erosion in burned areas.
McConnell, J.B.; Radtke, D.B.; Hale, T.W.; Buell, G.R.
1983-01-01
Water-quality, bottom-material, suspended-sediment, and current-velocity data were collected during November 1981 in Kings Bay and vicinity to provide information on the sources and transport of estuarine sediments. Kings Bay and Cumberland Sound , the site of the Poseidon Submarine Base in southeast Georgia, are experiencing high rates of sediment deposition and accumulation, which are causing serious navigational and operational problems. Velocity, bathymetry, turbidity, and bottom-material data suggest that the area in the vicinity of lower Kings Bay is accumulating deposits of suspended sediment transported from Cumberland Sound on the floodtide and from upper Kings Bay and the tidal marsh drained by Marianna Creek on the ebbtide. Suspended-sediment discharges computed for consecutive 13-hour ebbtides and floodtides showed that a net quantity of suspended sediment was transported seaward from upper Kings Bay and Marianna Creek. A net landward transport of suspended sediment computed at the St. Marys Entrance indicated areas seaward of St. Marys Entrance may be supplying sediment to the shoaling areas of the estuary, including lower Kings Bay. (USGS)
NASA Astrophysics Data System (ADS)
An, C.; Parker, G.; Ma, H.; Naito, K.; Moodie, A. J.; Fu, X.
2017-12-01
Models of river morphodynamics consist of three elements: (1) a treatment of flow hydraulics, (2) a formulation relating some aspect of sediment transport to flow hydraulics, and (3) a description of sediment conservation. In the case of unidirectional river flow, the Exner equation of sediment conservation is commonly described in terms of a flux-based formulation, in which bed elevation variation is related to the streamwise gradient of sediment transport rate. An alternate formulation of the Exner equation, however, is the entrainment-based formulation in which bed elevation variation is related to the difference between the entrainment rate of bed sediment into suspension and the deposition rate of suspended sediment onto the bed. In the flux-based formulation, sediment transport is regarded to be in a local equilibrium state (i.e., sediment transport rate locally equals sediment transport capacity). However, the entrainment-based formulation does not require this constraint; the sediment transport rate may lag in space and time behind the changing flow conditions. In modeling the fine-grained Lower Yellow River, it is usual to treat sediment conservation in terms of an entrainment-based (nonequilibrium) rather than a flux-based (equilibrium) formulation with the consideration that fine-grained sediment may be entrained at one place but deposited only at some distant location downstream. However, the differences in prediction between the two formulations are still not well known, and the entrainment formulation may not always be necessary for the Lower Yellow River. Here we study this problem by comparing the results of flux-based and entrainment-based morphodynamics under conditions typical of the Yellow River, using sediment transport equations specifically designed for the Lower Yellow River. We find, somewhat unexpectedly, that in a treatment of a 200-km reach using uniform sediment, there is little difference between the two formulations unless the sediment fall velocity is arbitrarily greatly reduced. A consideration of sediment mixtures, however, shows that the two formulations give very different patterns of grain sorting. We explain this in terms of the structures of the two Exner equations for sediment mixtures, and define conditions for applicability of each formulation.
NASA Astrophysics Data System (ADS)
Simmons, S.; Azpiroz, M.; Cartigny, M.; Clare, M. A.; Parsons, D. R.; Sumner, E.; Talling, P. J.
2016-12-01
Turbidity currents that transport sediment to the deep ocean deposit a greater volume of sediment than any other process on Earth. To date, only a handful of studies have directly measured turbidity currents, with flow durations ranging from a few minutes to a few hours. Our understanding of turbidity current dynamics is therefore largely derived from scaled laboratory experiments and numerical modelling. Recent years have seen the first field-scale measurements of depth-resolved velocity profiles, but sediment concentration (a key parameter for turbidity currents) remains elusive. Here, we present high resolution measurements of deep-water turbidity currents from the Congo Canyon; one of the world's largest submarine canyons. Direct measurements using acoustic Doppler current profilers (ADCPs) show that flows can last for many days, rather than hours as seen elsewhere, and provide the first quantification of concentration and grain size within deep-water turbidity currents.Velocity and backscatter were measured at 5 second intervals by an ADCP suspended 80 m above the canyon floor, at 2000 m water depth. A novel inversion method using multiple ADCP frequencies enabled quantification of sediment concentration and grain size within the flows. We identify high concentrations of coarse sediment within a thin frontal cell, which outruns a thicker, trailing body. Thus, the flows grow in length while propagating down-canyon. This is distinct from classical models and other field-scale measurements of turbidity currents. The slow-moving body is dominated by suspended fine-grained sediment. The body mixes with the surrounding fluid leaving diffuse clouds of sediment that persist for days after initial entrainment. Ambient tidal flow also controls the mixing within the body and the surrounding fluid. Our results provide a new quantification of suspended sediment within flows and the interaction with the surrounding fluid.
Directed transport of active magnetotactic bacteria in porous media flow
NASA Astrophysics Data System (ADS)
Waisbord, Nicolas; Dehkharghani, Amin; Coons, Thomas; Guasto, Jeffrey S.
2017-11-01
Swimming cell migration through porous media is a topic of ecological and technical relevance for understanding sediment ecosystems and bioremediation of soil for decontamination. We focus on magnetotactic bacteria - which align passively with Earth's magnetic field and migrate in such sediment environments - as a model system. The transport properties of magnetotactic bacteria are measured in a 2D microfluidic porous medium as a function of the porous microstructure geometry and under a variety of environmental conditions. In a quiescent fluid and in the absence of an external, guiding magnetic field, the effective diffusion of cells' random walk is unsurprisingly hindered with decreasing porosity due to cell-surface interactions. When guided by a magnetic field, cell trajectories acquire a net direction and form lanes, a behavior that is enhanced with increasing magnetic field. When the directed motility is coupled with an opposing fluid flow through the porous medium, convective cells form and locally trap the swimming bacteria. These results, which are corroborated by Langevin Simulations are an important step toward understanding magnetotactic bacterial ecology as well as for the magnetic guidance of microrobots in complex environments. Supported by NSF Grant CBET-1511340.
Sedimentation and gravitational instability of Escherichia coli Suspension
NASA Astrophysics Data System (ADS)
Douarche, Carine; Salin, Dominique; Collaboration between Laboratory FAST; LPS Collaboration
2016-11-01
The successive run and tumble of Escherichia coli bacteria provides an active matter suspension of rod-like particles with a large swimming diffusion. As opposed to inactive elongated particles, this diffusion prevents clustering and instability in the gravity field. We measure the time dependent E . coli concentration profile during their sedimentation. After some hours, due to the dioxygen consumption, a motile / non-motile front forms leading to a Rayleigh-Taylor type gravitational instability. Analyzing both sedimentation and instability in the framework of active particle suspensions, we can measure the relevant bacteria hydrodynamic characteristics such as its single particle sedimentation velocity and its hindrance volume.
Modeling of the Contaminated Sediment in the Erft River
NASA Astrophysics Data System (ADS)
Hu, Wei; Westrich, Bernhard; Rode, Michael
2010-05-01
Sediment transport processes play an important role in the surface water systems coupled with rainfall-runoff and contaminant transport. Pollutants like heavy metals adsorbed mainly by fine sediment particles can be deposited, eroded or transported further downstream. When the toxic pollutants deposited before and covered by cleaner sediment are remobilized by large flow events such as floods, they pose a hidden threat to the human health and environment. In the Erft River, due to mining activities in the past, the heavy metals release from the tributary Veybach on the downstream water and sediment quality is significant. Recent measurements prove the decreasing concentration trend of heavy metals in the river bed sediment from the Veybach. One-dimensional hydrodynamic model COSMOS is used to model the complicated water flow, sediment erosion, deposition and contaminant mixing and transport in the mainstream of the Erft River. It is based on a finite-difference formulation and consists of one-dimensional, unsteady sub-model of flow and transport, coupled with a sub-model of the layered sediment bed. The model accounts for the following governing physical-chemical processes: convective and dispersive transport, turbulent mixing deposited sediment surface, deposition, consolidation, aging and erosion of sediment, adsorption-desorption of pollutants to suspended particles and losses of pollutants due to decay or volatilization. The results reproduce the decreasing profile of the pollutant concentration in the river bed sediment nicely. Further modeling is to analysis the influence of the mixing process at the water-riverbed interface on the contaminant transport, hydrological scenarios impact on the remobilization of the sink of pollutant and its negative consequences on the river basin.
Sediment delivery after a wildfire
Reneau, Steven L.; Katzman, D.; Kuyumjian, G.A.; Lavine, A.; Malmon, D.V.
2007-01-01
We use a record of sedimentation a small reservoir within the Cerro Grande burn area, New Mexico, to document postfire delivery of ash, other fine-grained sediment carried in suspension within floods, and coarse-grained sediment transported as bedload over a five-year period. Ash content of sediment layers is estimated using fallout 137Cs as a tracer, and ash concentrations are shown to rapidly decrease through a series of moderate-intensity convective storms in the first rainy season after the fire. Over 90% of the ash was delivered to the reservoir in the first year, and ash concentrations in suspended sediment were negligible after the second year. Delivery of the remainder of the fine sediment also declined rapidly after the first year despite the occurrence of higher-intensity storms in the second year. Fine sediment loads after five years remained significantly above prefire averages. Deposition of coarse-grained sediment was irregular in time and was associated with transport by snowmelt runoff of sediment stored along the upstream channel during short-duration summer floods. Coarse sediment delivery in the first four years was strongly correlated with snowmelt volume, suggesting a transport-limited system with abundant available sediment. Transport rates of coarse sediment declined in the fifth year, consistent with a transition to a more stable channel as the accessible sediment supply was depleted and the channel bed coarsened. Maximum impacts from ash and other fine-grained sediment therefore occurred soon after the fire, whereas the downstream impacts from coarse-grained sediment were attenuated by the more gradual process of bedload sediment transport. ?? 2007 Geological Society of America.
Wu, Zhihao; Wang, Shengrui; Luo, Jun
2018-05-15
DGT (diffusive gradients in thin films) technique and DIFS (DGT induced fluxes in sediment) model are firstly designed for macrophyte-rhizobox system and in-situ macrophytes in Lake Erhai. Dynamics of phosphorus (P) transfer in Zizania latifolia (ZL) and Myriophyllum verticiilatur (MV) rhizosphere is revealed and phytoremediation performance for P in sediment is evaluated. Dynamic transfer process of P at DGT/sediment interface includes (i) diffusion flux and concentration gradients at DGT(root)/porewater interface leading to porewater concentration (C 0 ) depletion and (ii) P desorption from labile P pool in sediment solid to resupply C 0 depletion. Fe-redox controlled P release from Fe-bound P (BD-P2) and then NH 4 Cl-P1 in rhizosphere sediment resupplies porewater depletion due to DGT (root) sink. K d (labile P pool size in solid phase), r (resupply ratio) and kinetic exchange (Tc and k -1 ) lead to change characters of DIFS curves of (1) r against deployment time and (2) C solu (dissolved concentration) against distance at 24 h. They include two opposite types of "fast" and "slow" rate of resupplies. Sediment properties and DIFS parameters control P diffusion and resupply in rhizosphere sediment. Phytoremoval ability for sediment P in lake is estimated to be 23.4 (ZL) or 15.0 t a -1 (MV) by "DGT-flux" method. Copyright © 2018 Elsevier B.V. All rights reserved.
Tracing sediment dispersal on nourished beaches: Two case studies
Thieler, E. Robert; Gayes, Paul T.; Schwab, William C.; Harris, M. Scott
1999-01-01
The event- to decade-scale patterns of sediment dispersal on two artificially nourished beaches have been mapped using a combination of geophysical surveys, closely-spaced vibracores, and repeated beach profiles. At both Wrightsville Beach, NC and Folly Island, SC the sediment used for beach nourishment is macroscopically distinct from native sediment and can be used to identify sediment transport pathways and infer mechanisms for across-shelf transport. The data from both sites demonstrate that significant quantities of nourishment sediment are being transported seaward onto the inner continental shelf. The time and space scales of this transport are of engineering interest for the planning, design and long-term maintenance of nourished beaches.
Erosion of an ancient mountain range, the Great Smoky Mountains, North Carolina and Tennessee
Matmon, A.; Bierman, P.R.; Larsen, J.; Southworth, S.; Pavich, M.; Finkel, R.; Caffee, M.
2003-01-01
Analysis of 10Be and 26Al in bedrock (n=10), colluvium (n=5 including grain size splits), and alluvial sediments (n=59 including grain size splits), coupled with field observations and GIS analysis, suggest that erosion rates in the Great Smoky Mountains are controlled by subsurface bedrock erosion and diffusive slope processes. The results indicate rapid alluvial transport, minimal alluvial storage, and suggest that most of the cosmogenic nuclide inventory in sediments is accumulated while they are eroding from bedrock and traveling down hill slopes. Spatially homogeneous erosion rates of 25 - 30 mm Ky-1 are calculated throughout the Great Smoky Mountains using measured concentrations of cosmogenic 10Be and 26Al in quartz separated from alluvial sediment. 10Be and 26Al concentrations in sediments collected from headwater tributaries that have no upstream samples (n=18) are consistent with an average erosion rate of 28 ?? 8 mm Ky-1, similar to that of the outlet rivers (n=16, 24 ?? 6 mm Ky-1), which carry most of the sediment out of the mountain range. Grain-size-specific analysis of 6 alluvial sediment samples shows higher nuclide concentrations in smaller grain sizes than in larger ones. The difference in concentrations arises from the large elevation distribution of the source of the smaller grains compared with the narrow and relatively low source elevation of the large grains. Large sandstone clasts disaggregate into sand-size grains rapidly during weathering and downslope transport; thus, only clasts from the lower parts of slopes reach the streams. 26Al/10Be ratios do not suggest significant burial periods for our samples. However, alluvial samples have lower 26Al/10Be ratios than bedrock and colluvial samples, a trend consistent with a longer integrated cosmic ray exposure history that includes periods of burial during down-slope transport. The results confirm some of the basic ideas embedded in Davis' geographic cycle model, such as the reduction of relief through slope processes, and of Hack's dynamic equilibrium model such as the similarity of erosion rates across different lithologies. Comparing cosmogenic nuclide data with other measured and calculated erosion rates for the Appalachians, we conclude that rates of erosion, integrated over varying time periods from decades to a hundred million years are similar, the result of equilibrium between erosion and isostatic uplift in the southern Appalachian Mountains.
Preferential flow, diffuse flow, and perching in an interbedded fractured-rock unsaturated zone
NASA Astrophysics Data System (ADS)
Nimmo, John R.; Creasey, Kaitlyn M.; Perkins, Kim S.; Mirus, Benjamin B.
2017-03-01
Layers of strong geologic contrast within the unsaturated zone can control recharge and contaminant transport to underlying aquifers. Slow diffuse flow in certain geologic layers, and rapid preferential flow in others, complicates the prediction of vertical and lateral fluxes. A simple model is presented, designed to use limited geological site information to predict these critical subsurface processes in response to a sustained infiltration source. The model is developed and tested using site-specific information from the Idaho National Laboratory in the Eastern Snake River Plain (ESRP), USA, where there are natural and anthropogenic sources of high-volume infiltration from floods, spills, leaks, wastewater disposal, retention ponds, and hydrologic field experiments. The thick unsaturated zone overlying the ESRP aquifer is a good example of a sharply stratified unsaturated zone. Sedimentary interbeds are interspersed between massive and fractured basalt units. The combination of surficial sediments, basalts, and interbeds determines the water fluxes through the variably saturated subsurface. Interbeds are generally less conductive, sometimes causing perched water to collect above them. The model successfully predicts the volume and extent of perching and approximates vertical travel times during events that generate high fluxes from the land surface. These developments are applicable to sites having a thick, geologically complex unsaturated zone of substantial thickness in which preferential and diffuse flow, and perching of percolated water, are important to contaminant transport or aquifer recharge.
Preferential flow, diffuse flow, and perching in an interbedded fractured-rock unsaturated zone
Nimmo, John R.; Creasey, Kaitlyn M; Perkins, Kimberlie; Mirus, Benjamin B.
2017-01-01
Layers of strong geologic contrast within the unsaturated zone can control recharge and contaminant transport to underlying aquifers. Slow diffuse flow in certain geologic layers, and rapid preferential flow in others, complicates the prediction of vertical and lateral fluxes. A simple model is presented, designed to use limited geological site information to predict these critical subsurface processes in response to a sustained infiltration source. The model is developed and tested using site-specific information from the Idaho National Laboratory in the Eastern Snake River Plain (ESRP), USA, where there are natural and anthropogenic sources of high-volume infiltration from floods, spills, leaks, wastewater disposal, retention ponds, and hydrologic field experiments. The thick unsaturated zone overlying the ESRP aquifer is a good example of a sharply stratified unsaturated zone. Sedimentary interbeds are interspersed between massive and fractured basalt units. The combination of surficial sediments, basalts, and interbeds determines the water fluxes through the variably saturated subsurface. Interbeds are generally less conductive, sometimes causing perched water to collect above them. The model successfully predicts the volume and extent of perching and approximates vertical travel times during events that generate high fluxes from the land surface. These developments are applicable to sites having a thick, geologically complex unsaturated zone of substantial thickness in which preferential and diffuse flow, and perching of percolated water, are important to contaminant transport or aquifer recharge.
Assessment tools are being developed to predict diffuse NPS effects from watershed development and distinguish these from local impacts (point sources, contaminated sediments). Using EMAP data from the New England Wadeable Stream Survey and two state datasets (CT, ME), we are de...
Breshears, D.D.; Whicker, J.J.; Zou, C.B.; Field, J.P.; Allen, Craig D.
2009-01-01
Aeolian processes are of particular importance in dryland ecosystems where ground cover is inherently sparse because of limited precipitation. Dryland ecosystems include grassland, shrubland, savanna, woodland, and forest, and can be viewed collectively as a continuum of woody plant cover spanning from grasslands with no woody plant cover up to forests with nearly complete woody plant cover. Along this continuum, the spacing and shape of woody plants determine the spatial density of roughness elements, which directly affects aeolian sediment transport. Despite the extensiveness of dryland ecosystems, studies of aeolian sediment transport have generally focused on agricultural fields, deserts, or highly disturbed sites where rates of transport are likely to be greatest. Until recently, few measurements have been made of aeolian sediment transport over multiple wind events and across a variety of types of dryland ecosystems. To evaluate potential trends in aeolian sediment transport as a function of woody plant cover, estimates of aeolian sediment transport from recently published studies, in concert with rates from four additional locations (two grassland and two woodland sites), are reported here. The synthesis of these reports leads to the development of a new conceptual framework for aeolian sediment transport in dryland ecosystems along the grassland–forest continuum.The findings suggest that: (1) for relatively undisturbed ecosystems, shrublands have inherently greater aeolian sediment transport because of wake interference flow associated with intermediate levels of density and spacing of woody plants; and (2) for disturbed ecosystems, the upper bound for aeolian sediment transport decreases as a function of increasing amounts of woody plant cover because of the effects of the height and density of the canopy on airflow patterns and ground cover associated with woody plant cover. Consequently, aeolian sediment transport following disturbance spans the largest range of rates in grasslands and associated systems with no woody plants (e.g., agricultural fields), an intermediate range in shrublands, and a relatively small range in woodlands and forests. These trends are consistent with previous observations relating large rates of wind erosion to intermediate values for spatial density of roughness elements. The framework for aeolian sediment transport, which is also relevant to dust fluxes, wind erosion, and related aeolian processes, is applicable to a diverse suite of environmental challenges, including land degradation and desertification, dust storms, contaminant transport, and alterations of the hydrological cycle.
NASA Astrophysics Data System (ADS)
Breshears, David D.; Whicker, Jeffrey J.; Zou, Chris B.; Field, Jason P.; Allen, Craig D.
2009-04-01
Aeolian processes are of particular importance in dryland ecosystems where ground cover is inherently sparse because of limited precipitation. Dryland ecosystems include grassland, shrubland, savanna, woodland, and forest, and can be viewed collectively as a continuum of woody plant cover spanning from grasslands with no woody plant cover up to forests with nearly complete woody plant cover. Along this continuum, the spacing and shape of woody plants determine the spatial density of roughness elements, which directly affects aeolian sediment transport. Despite the extensiveness of dryland ecosystems, studies of aeolian sediment transport have generally focused on agricultural fields, deserts, or highly disturbed sites where rates of transport are likely to be greatest. Until recently, few measurements have been made of aeolian sediment transport over multiple wind events and across a variety of types of dryland ecosystems. To evaluate potential trends in aeolian sediment transport as a function of woody plant cover, estimates of aeolian sediment transport from recently published studies, in concert with rates from four additional locations (two grassland and two woodland sites), are reported here. The synthesis of these reports leads to the development of a new conceptual framework for aeolian sediment transport in dryland ecosystems along the grassland-forest continuum. The findings suggest that: (1) for relatively undisturbed ecosystems, shrublands have inherently greater aeolian sediment transport because of wake interference flow associated with intermediate levels of density and spacing of woody plants; and (2) for disturbed ecosystems, the upper bound for aeolian sediment transport decreases as a function of increasing amounts of woody plant cover because of the effects of the height and density of the canopy on airflow patterns and ground cover associated with woody plant cover. Consequently, aeolian sediment transport following disturbance spans the largest range of rates in grasslands and associated systems with no woody plants (e.g., agricultural fields), an intermediate range in shrublands, and a relatively small range in woodlands and forests. These trends are consistent with previous observations relating large rates of wind erosion to intermediate values for spatial density of roughness elements. The framework for aeolian sediment transport, which is also relevant to dust fluxes, wind erosion, and related aeolian processes, is applicable to a diverse suite of environmental challenges, including land degradation and desertification, dust storms, contaminant transport, and alterations of the hydrological cycle.
Modelling the cohesive sediment transport in the marine environment: the case of Thermaikos Gulf
NASA Astrophysics Data System (ADS)
Krestenitis, Y. N.; Kombiadou, K. D.; Savvidis, Y. G.
2007-02-01
The transport of fine-grained sediments in the marine environment entails risks of pollutant intrusions from substances absorbed onto the cohesive flocks' surface, gradually released to the aquatic field. These substances include nutrients such as nitrate, phosphate and silicate compounds from drainage from fertilization of adjacent cultivated areas that enter the coastal areas through rivers and streams, or trace metals as remainders from urban and industrial activities. As a consequence, knowledge on the motion and distribution of sediment particles coming from a given pollutant source is expected to provide the 'bulk' information on pollutant distribution, necessary for determining the region of influence of the source and to estimate probable trophic levels of the seawater and potential environmental risks. In that aim a numerical model has been developed to predict the fate of the sediments introduced to the marine environment from different pollution sources, such as river outflows, erosion of the seabed, aeolian transported material and drainage systems. The proposed three-dimensional mathematical model is based on the particle tracking method, according to which matter concentration is expressed by particles, each representing a particular amount of sedimentary mass, passively advected and dispersed by the currents. The processes affecting characteristics and propagation of sedimentary material in the marine environment, incorporated in the parameterization, apart from advection and dispersion, include cohesive sediment and near-bed processes. The movement of the particles along with variations in sedimentary characteristics and state, carried by each particle as personal information, are traced with time. Specifically, concerning transport processes, the local seawater velocity and the particle's settling control advection, whereas the random Brownian motion due to turbulence simulates turbulent diffusion. The vertical stratification of the water-column is taken into consideration by appropriate damping of the vertical diffusion term. Variations in cohesive sediment properties during the abidance in the aquatic environment include coagulation and flock break-up processes, quantification of the effects of ambient density to the density of the cohesive aggregate and the associated alterations to the falling speed of the particle. In the vicinity of the seabed, particles may deposit and gradually consolidate with time, the particles remain settled onto the bed, re-enter the flow at a later temporal point or may enter the water column for the first time, originating from the erosion of the bed. The occurrence of each of the aforementioned near-bed processes is defined according to the prevailing benthic shear stress conditions. The mathematical model has been applied to the Thermaikos Gulf, an area of high environmental and socioeconomic importance but also a region of significant pollutant forcing from various anthropogenic activities taking place in the adjoining land. Various kinds of outputs can be extracted, such as trajectories of the overall movement of specific particles and related alterations of their characteristics with time, snapshots of the domain with respect to suspended or deposited matter and natural concentrations of sediments at every required temporal and spatial point. Indicative results from yearly and monthly simulations, using input baroclinic circulation data from the North Aegean Sea model and river discharges are presented and discussed, including outputs from a Typical One-Year Simulation (TOYS), the simulation of the period from 3 September 2001 to 31 August 2002 (S1A2) and the January 2003 experiment (J03). The description of the processes that have been incorporated in the parameterization covers the most significant factors controlling transport and mixing of fine grained sediments in the marine environment, thus validating the accuracy and completeness of the model. One of the major advantages, apart from the observation of the phenomena in scales smaller than the grid size, describing the natural processes more accurately, is the flexibility in accepting various pollutant sources and the applicability to different domains with minor modifications. The model has been incorporated in the MFSTEP project, as part of the developed operational forecasting system for the Mediterranean Sea. The application can be used for the prognosis of the seawater quality for current and for future conditions, enabling employment as part of a near-real time observation system or to formulate decisions for the protection of the seawater environment.
Modelling the cohesive sediment transport in the marine environment: the case of Thermaikos Gulf
NASA Astrophysics Data System (ADS)
Krestenitis, Y. N.; Kombiadou, K. D.; Savvidis, Y. G.
2006-07-01
The transport of fine-grained sediments in the marine environment entails risks of pollutant intrusions from substances absorbed onto the cohesive flocks' surface, gradually released to the aquatic field. These substances include nutrients such as nitrate, phosphate and silicate compounds from drainage from fertilization of adjacent cultivated areas that enter the coastal areas through rivers and streams, or trace metals as remainders from urban and industrial activities. As a consequence, knowledge on the motion and distribution of sediment particles coming from a given pollutant source is expected to provide the ''bulk'' information on pollutant distribution, necessary for determining the region of influence of the source and to estimate probable trophic levels of the seawater and potential environmental risks. In that aim a numerical model has been developed to predict the fate of the sediments introduced to the marine environment from different pollution sources, such as river outflows, erosion of the seabed, aeolian transported material and drainage systems. The proposed three-dimensional mathematical model is based on the particle tracking method, according to which matter concentration is expressed by particles, each representing a particular amount of sedimentary mass, passively advected and dispersed by the currents. The processes affecting characteristics and propagation of sedimentary material in the marine environment, incorporated in the parameterization, apart from advection and dispersion, include cohesive sediment and near-bed processes. The movement of the particles along with variations in sedimentary characteristics and state, carried by each particle as personal information, are traced with time. Specifically, concerning transport processes, the local seawater velocity and the particle's settling control advection, whereas the random Brownian motion due to turbulence simulates turbulent diffusion. The vertical stratification of the water-column is taken into consideration by appropriate damping of the vertical diffusion term. Variations in cohesive sediment properties during the abidance in the aquatic environment include coagulation and flock break-up processes, quantification of the effects of ambient density to the density of the cohesive aggregate and the associated alterations to the falling speed of the particle. In the vicinity of the seabed particles may deposit and gradually consolidate with time, remain settled onto the bed, or renter the flow at a later temporal point. Other particle may enter the water column for the first time, originating from the erosion of the bed. The occurrence of each of the aforementioned near-bed processes is defined accordingly to the prevailing benthic shear stress conditions. The mathematical model has been applied to the Thermaikos Gulf, an area of high environmental and socioeconomic importance but also a region of significant pollutant forcing from various anthropogenic activities taking place in the adjoining land. Various kinds of outputs can be extracted, such as trajectories of the overall movement of specific particles and related alterations of their characteristics with time, snapshots of the domain with respect to suspended or deposited matter and naturally concentrations of sediments at every required temporal and spatial point. Indicative results from yearly and monthly simulations, using input baroclinic circulation data from the North Aegean Sea model and river discharges are presented and discussed, including outputs from a Typical One-Year Simulation (TOYS), the simulation of the period from 3 September 2001 to 31 August 2002 (S1A2) and the January 2003 experiment (J03). The description of the processes that have been incorporated in the parameterization covers the most significant factors controlling transport and mixing of fine grained sediments in the marine environment, thus validating the accuracy and completeness of the model. One of the major advantages, apart from the observation of the phenomena in scales smaller than the grid size, hence describing the natural processes more accurately, is the flexibility in accepting various pollutant sources and the applicability to different domains with minor modifications. The model has been incorporated in the MFSTEP project, as part of the developed operational forecasting system for the Mediterranean Sea. The application can be used for the prognosis of the seawater quality for current and for future conditions, enabling employment as part of a near-real time observation system or to formulate decisions for the protection of the seawater environment.
Sedimentary links between hillslopes and channels in a dryland basin
NASA Astrophysics Data System (ADS)
Hollings, R.
2016-12-01
The interface between hillslopes and channels is recognised as playing an important role in basin evolution and functioning. However, this interaction has not been described well in landscapes such as drylands, in which the diffuse process of runoff-driven sediment transport is important for sediment communication to the channel and to the basin outlet. This paper combines field measurements of surface sediment grain sizes in channels and on hillslopes with high resolution topography, >60 years of rainfall and runoff data from the Walnut Gulch Experimental Watershed (WGEW) in Arizona, and simple calculations of spatial stress distributions for various hydrologic scenarios to explore the potential for sediment to move from hillslopes to channels and through channels across the entire basin. Here we generalise the net movement of sediment in to or out of channel reaches, at high resolution in WGEW, as the balance between hillslope sediment supply to the channel and channel evacuation, in response to a variety of storms and discharge events. Our results show that downstream of small, unit source area watersheds, the balance in the channel often switches from being supply-dominated to being evacuation dominated for all scenarios. The low frequency but high discharge event in the channel seems to control the long term evolution of the channel, as stress is far greater for this scenario than other scenarios tested. The results draw on the high variability of rainfall characteristics to drive runoff events and so provides a physical explanation for long-term evolution of the channel network in drylands.
Paired measurements of K and Mg isotopes and clay authigenesis in marine sediments
NASA Astrophysics Data System (ADS)
Santiago Ramos, D. P.; Dunlea, A. G.; Higgins, J. A.
2016-12-01
Despite its importance as a major sink for seawater K and Mg, estimates of clay authigenesis in marine sediments remain poorly constrained. Previous work on Mg isotope fractionation during clay formation has revealed a preferential uptake of 26Mg, yielding authigenic clay products with potentially distinct δ26Mg compared to the detrital component. In a similar manner, we aim to quantify the K isotope fractionation during authigenic clay formation and to use paired δ26Mg and δ41K measurements as proxies for the identification and quantification of authigenic clays in shallow and deep marine sedimentary systems. To better understand the behavior of paired Mg and K isotopes during authigenic clay formation in marine sediments, we measured δ26Mg and δ41K values of pore-fluids and sediments from ODP/IODP sites 1052, U1395, U1403 and U1366. We find that while pore-fluid K concentrations at sites 1052, U1395 and U1403 all decline with depth, δ41K profiles differ significantly. These differences might be a result of a complex interplay between clay authigenesis, sedimentation rate, and fractionation of K isotopes during diffusion. Results from 1-D diffusion-advection-reaction models suggest that, in contrast to Mg, diffusion may play an important role in determining the overall K isotope fractionation during clay authigenesis in sites with low-sedimentation rates. Sites with high sedimentation rates may act as close systems where diffusion is negligible. In such cases, K uptake can be modeled as a Rayleigh distillation process and K isotope fractionation can be estimated. Measurements of δ26Mg and δ41K of pore-fluids from site U1395 and bulk sediments from U1366 suggest that paired measurements of these isotopic systems in siliciclastic marine sediments can provide new insights into rates of marine clay authigenesis, a globally important but understudied component of many geochemical cycles.
Numerical model on the material circulation for coastal sediment in Ago Bay, Japan
NASA Astrophysics Data System (ADS)
Anggara Kasih, G. A.; Chiba, Satoshi; Yamagata, Youichi; Shimizu, Yasuhiro; Haraguchi, Koichi
2009-04-01
In this paper, we study the sediment in Ago Bay from the aspects of the biogeochemical cycle and the mass transport by means of a numerical model. We developed the model by adopting the basic idea of Berg et al. (Berg, P., Rysgaard, S., Thamdrup, B., 2003. Dynamic modeling of early diagenesis and nutrient cycling: A case study in Artic marine sediment. Am. J. Sci. 303, 905-955.), Fossing et al. [Fossing, H., Berg, P., Thamdrup, B., Rysgaard, S., Sorensen, H.M., Nielsen, K.A., 2004. Model set-up for an oxygen and nutrient flux for Aarhus Bay (Denmark). National Environmental Research Institute (NERI) Technical Report No. 483. Ministry of the Environment, Denmark, 65 pp.] and Sayama [Sayama, M., 2000. Analytical technique for the nitrogen circulation in the boundary layer of the coastal sediment. Isao Koike edited, Japan Environmental Management Association for Industry, Tokyo, pp. 51-103. (in Japanese)]. In the model, the biogeochemical processes involve five primary reactions and sixteen secondary reactions. The primary reactions describe the degradation of organic matters, and the secondary reactions describe the miscellaneous reactions such as re-oxidation of reduced species formed as a product from primary reactions, and the crystallizing process of oxidized particles. The transports process includes molecular diffusion, advection, bioturbation and bioirrigation. The model performance is verified by comparing the model predicted data to the observed data. The comparison involves data of vertical distribution of material concentrations and the material fluxes at the sediment-water interface. The comparison shows that the model can reproduce the observed vertical profile and the observed material fluxes at the sediment-water interface. The material circulation result shows that about 42% of dissolved organic matter (DOM) is mineralized by sulfate reduction, around 41% by oxygen respiration, and the remaining is mineralized by denitrification, manganese and iron reduction. As a result, about 47% of the O 2 taken by the sediment is directly used through bacterial oxygen respiration and 34% is used through sulfate reduction. The sensitivity study on the impact of flux change of particulate organic matter shows that 30% reduction of deposition OM flux to the sediment suppresses the oxygen consumption in the sediment from 7.3 mmol O 2/m 2 day to 5.1 mmol O 2/m 2 day.
Diffuse pollution of soil and water: Long term trends at large scales?
NASA Astrophysics Data System (ADS)
Grathwohl, P.
2012-04-01
Industrialization and urbanization, which consequently increased pressure on the environment to cause degradation of soil and water quality over more than a century, is still ongoing. The number of potential environmental contaminants detected in surface and groundwater is continuously increasing; from classical industrial and agricultural chemicals, to flame retardants, pharmaceuticals, and personal care products. While point sources of pollution can be managed in principle, diffuse pollution is only reversible at very long time scales if at all. Compounds which were phased out many decades ago such as PCBs or DDT are still abundant in soils, sediments and biota. How diffuse pollution is processed at large scales in space (e.g. catchments) and time (centuries) is unknown. The relevance to the field of processes well investigated at the laboratory scale (e.g. sorption/desorption and (bio)degradation kinetics) is not clear. Transport of compounds is often coupled to the water cycle and in order to assess trends in diffuse pollution, detailed knowledge about the hydrology and the solute fluxes at the catchment scale is required (e.g. input/output fluxes, transformation rates at the field scale). This is also a prerequisite in assessing management options for reversal of adverse trends.
Numerical modelling of sedimentary structures in rivers on Titan and Earth
NASA Astrophysics Data System (ADS)
Misiura, Katarzyna; Czechowski, Leszek
2016-04-01
On Titan surface we can expect a few different geomorphological forms, e.g. fluvial valley and river channels. In our research we use numerical model of the river to determine the limits of different fluvial parameters that play important roles in evolution of the rivers on Titan and on Earth. We have found that transport of sediments as suspended load is the main way of transport for Titan. We also determined the range of the river's parameters for which braided river is developed rather than meandering river. 2. Introduction Titan is a very special body in the Solar System. It is the only moon that has dense atmosphere and flowing liquid on its surface. The Cassini-Huygens mission has found on Titan meandering rivers, and indicated processes of erosion, transport of solid material and its sedimentation. This work is aimed to investigate the similarity and differences between these processes on Titan and the Earth. 3. Numerical model The dynamical analysis of the considered rivers is performed using the package CCHE modified for the specific conditions on Titan. The package is based on the Navier-Stokes equations for depth-integrated two dimensional, turbulent flow and three dimensional convection-diffusion equation of sediment transport. For more information about equations see [1]. 4. Parameters of the model We considered our model for a few different parameters of liquid and material transported by a river. For Titan we consider liquid corresponding to a Titan's rain (75% methane, 25% nitrogen), for Earth, of course, the water. Material transported in rivers on Titan is water ice, for Earth - quartz. Other parameters of our model are: inflow discharge, outflow level, grain size of sediments etc. For every calculation performed for Titan's river similar calculations are performed for terrestrial ones. 5. Results and Conclusions The results of our simulation show the differences in behaviour of the flow and of sedimentation on Titan and on the Earth. Our preliminary results indicate that suspended load is the main way of transport in simulated Titan's conditions. We also indicate that braided rivers appears for larger range of slope on Titan (e.g. S=0.01-0.04) than on Earth (e.g. S=0.004-0.009). Also, for the same type of river, the grain size on Titan is at least 10 times larger than on Earth (1 cm for Titan versus 1 mm for the Earth). It is very interesting that on Titan braided rivers appear even for very little discharge (e.g. Q=30m3/s) and for very large grain size (e.g. 10 cm). In the future we plan the experimental modelling in sediment basin to confirm results from computer modelling. Acknowledgements We are very grateful to Yaoxin Zhang and Yafei Jia from National Center for Computational Hydroscience and Engineering for providing their program - CCHE2D. References [1] Misiura, K., Czechowski, L., 2015. Numerical modelling of sedimentary structures in rivers on Earth and Titan. Geological Quarterly, 59(3): 565-580.
Rivers on Titan - numerical modelling of sedimentary structures
NASA Astrophysics Data System (ADS)
Misiura, Katarzyna; Czechowski, Leszek
2016-07-01
On Titan surface we can expect a few different geomorphological forms, e.g. fluvial valley and river channels. In our research we use numerical model of the river to determine the limits of different fluvial parameters that play important roles in evolution of the rivers on Titan and on Earth. We have found that transport of sediments as suspended load is the main way of transport for Titan [1]. We also determined the range of the river's parameters for which braided river is developed rather than meandering river. Similar, parallel simulations for rivers deltas are presented in [2]. Introduction Titan is a very special body in the Solar System. It is the only moon that has dense atmosphere and flowing liquid on its surface. The Cassini-Huygens mission has found on Titan meandering rivers, and indicated processes of erosion, transport of solid material and its sedimentation. This work is aimed to investigate the similarity and differences between these processes on Titan and the Earth. Numerical model The dynamical analysis of the considered rivers is performed using the package CCHE modified for the specific conditions on Titan. The package is based on the Navier-Stokes equations for depth-integrated two dimensional, turbulent flow and three dimensional convection-diffusion equation of sediment transport. For more information about equations see [1]. Parameters of the model We considered our model for a few different parameters of liquid and material transported by a river. For Titan we consider liquid corresponding to a Titan's rain (75% methane, 25% nitrogen), for Earth, of course, the water. Material transported in rivers on Titan is water ice, for Earth - quartz. Other parameters of our model are: inflow discharge, outflow level, grain size of sediments etc. For every calculation performed for Titan's river similar calculations are performed for terrestrial ones. Results and Conclusions The results of our simulation show the differences in behaviour of the flow and of the sedimentation on Titan and on the Earth. Our preliminary results indicate that suspended load is the main way of transport in simulated Titan's conditions. We also indicate that braided rivers appears for larger range of slope on Titan (e.g. S=0.01-0.04) than on Earth (e.g. S=0.004-0.009). Also, for the same type of river, the grain size on Titan is at least 10 times larger than on Earth (1 cm for Titan versus 1 mm for the Earth). It is very interesting that on Titan braided rivers appear even for very little discharge (e.g. Q=30m3/s) and for very large grain size (e.g. 10 cm). In the future we plan the experimental modelling in sediment basin to confirm results from computer modelling. Acknowledgements We are very grateful to Yaoxin Zhang and Yafei Jia from National Center for Computational Hydroscience and Engineering for providing their program - CCHE2D. References [1] Misiura, K., Czechowski, L., 2015. Numerical modelling of sedimentary structures in rivers on Earth and Titan. Geological Quarterly, 59(3): 565-580. [2] Witek, P., Czechowski, L., 2015. Dynamical modeling of river deltas on Titan and Earth. Planet. Space. Sci., 105: 65-79.
Suspended-Sediment Budget for the North Santiam River Basin, Oregon, Water Years 2005-08
Bragg, Heather M.; Uhrich, Mark A.
2010-01-01
Significant Findings An analysis of sediment transport in the North Santiam River basin during water years 2005-08 indicated that: Two-thirds of sediment input to Detroit Lake originated in the upper North Santiam River subbasin. Two-thirds of the sediment transported past Geren Island originated in the Little North Santiam River subbasin. The highest annual suspended-sediment load at any of the monitoring stations was the result of a debris flow on November 6, 2006, on Mount Jefferson. About 86 percent of the total sediment input to Detroit Lake was trapped in the lake, whereas 14 percent was transported farther downstream. More than 80 percent of the sediment transport in the basin was in November, December, and January. The variance in the annual suspended-sediment loads was better explained by the magnitude of the annual peak streamflow than by the annual mean streamflow.
Syed, Atiq U.; Bennett, James P.; Rachol, Cynthia M.
2005-01-01
Four dams on the Kalamazoo River between the cities of Plainwell and Allegan, Mich., are in varying states of disrepair. The Michigan Department of Environmental Quality (MDEQ) and U.S. Environmental Protection Agency (USEPA) are considering removing these dams to restore the river channels to pre-dam conditions. This study was initiated to identify sediment characteristics, monitor sediment transport, and predict sediment resuspension and deposition under varying hydraulic conditions. The mathematical model SEDMOD was used to simulate streamflow and sediment transport using three modeling scenarios: (1) sediment transport simulations for 730 days (Jan. 2001 to Dec. 2002), with existing dam structures, (2) sediment transport simulations based on flows from the 1947 flood at the Kalamazoo River with existing dam structures, and (3) sediment transport simulations based on flows from the 1947 flood at the Kalamazoo River with dams removed. Sediment transport simulations based on the 1947 flood hydrograph provide an estimate of sediment transport rates under maximum flow conditions. These scenarios can be used as an assessment of the sediment load that may erode from the study reach at this flow magnitude during a dam failure. The model was calibrated using suspended sediment as a calibration parameter and root mean squared error (RMSE) as an objective function. Analyses of the calibrated model show a slight bias in the model results at flows higher than 75 m3/s; this means that the model-simulated suspended-sediment transport rates are higher than the observed rates; however, the overall calibrated model results show close agreement between simulated and measured values of suspended sediment. Simulation results show that the Kalamazoo River sediment transport mechanism is in a dynamic equilibrium state. Model results during the 730-day simulations indicate significant sediment erosion from the study reach at flow rates higher than 55 m3/s. Similarly, significant sediment deposition occurs during low to average flows (monthly mean flows between 25.49 m3/s and 50.97 m3/s) after a high-flow event. If the flow continues to stay in the low to average range the system shifts towards equilibrium, resulting in a balancing effect between sediment deposition and erosion rates. The 1947 flood-flow simulations show approximately 30,000 m3 more instream sediments erosion for the first 21 days of the dams removed scenario than for the existing-dams scenario, with the same initial conditions for both scenarios. Application of a locally weighted regression smoothing (LOWESS) function to simulation results of the dams removed scenario indicates a steep downtrend with high sediment transport rates during the first 21 days. In comparison, the LOWESS curve for the existing-dams scenario shows a smooth transition of sediment transport rates in response to the change in streamflow. The high erosion rates during the dams-removed scenario are due to the absence of the dams; in contrast, the presence of dams in the existing-dams scenario helps reduce sediment erosion to some extent. The overall results of 60-day simulations for the 1947 flood show no significant difference in total volume of eroded sediment between the two scenarios, because the dams in the study reach have low heads and no control gates. It is important to note that the existing-dams and dams-removed scenarios simulations are run for only 60 days; therefore, the simulations take into account the changes in sediment erosion and deposition rates only during that time period. Over an extended period, more erosion of instream sediments would be expected to occur if the dams are not properly removed than under the existing conditions. On the basis of model simulations, removal of dams would further lower the head in all the channels. This lowering of head could produce higher flow velocities in the study reach, which ultimately would result in accelerated erosion rates.
NASA Astrophysics Data System (ADS)
Li, Tao; Li, Tuan-Jie
2018-04-01
The analysis of grain-size distribution enables us to decipher sediment transport processes and understand the causal relations between dynamic processes and grain-size distributions. In the present study, grain sizes were measured from surface sediments collected in the Pearl River Estuary and its adjacent coastal areas. End-member modeling analysis attempts to unmix the grain sizes into geologically meaningful populations. Six grain-size end-members were identified. Their dominant modes are 0 Φ, 1.5 Φ, 2.75 Φ, 4.5 Φ, 7 Φ, and 8 Φ, corresponding to coarse sand, medium sand, fine sand, very coarse silt, silt, and clay, respectively. The spatial distributions of the six end-members are influenced by sediment transport and depositional processes. The two coarsest end-members (coarse sand and medium sand) may reflect relict sediments deposited during the last glacial period. The fine sand end-member would be difficult to transport under fair weather conditions, and likely indicates storm deposits. The three remaining fine-grained end-members (very coarse silt, silt, and clay) are recognized as suspended particles transported by saltwater intrusion via the flood tidal current, the Guangdong Coastal Current, and riverine outflow. The grain-size trend analysis shows distinct transport patterns for the three fine-grained end-members. The landward transport of the very coarse silt end-member occurs in the eastern part of the estuary, the seaward transport of the silt end-member occurs in the western part, and the east-west transport of the clay end-member occurs in the coastal areas. The results show that grain-size end-member modeling analysis in combination with sediment trend analysis help to better understand sediment transport patterns and the associated transport mechanisms.
NASA Astrophysics Data System (ADS)
Passeri, D.; Hagen, S. C.; Daranpob, A.; Smar, D. E.
2011-12-01
River competence is an important parameter in understanding sediment transport in fluvial systems. Competence is defined as the measure of a stream's ability to transport a certain maximum grain size of sediment. Studies have shown that bed sediment particle size in rivers and streams tends to vary spatially along the direction of stream flow. Over a river section several reaches long, variability of sediment particle sizes can be seen, often becoming finer downstream. This phenomenon is attributed to mechanisms such as local control of stream gradient, coarse tributary sediment supply or particle breakdown. Average particle size may also be smaller in tributary sections of rivers due to river morphology. The relationship between river mean velocity and particle size that can be transported has also been explored. The Hjulstrom curve classifies this relationship by relating particle size to velocity, dividing the regions of sedimentation, transportation, and erosion. The curve can also be used to find values such as the critical erosion velocity (the velocity required to transport particles of various sizes in suspension) and settling velocity (the velocity at which particles of a given size become too heavy to be transported and fall out of suspension, consequently causing deposition). The purpose of this research is to explore the principles of river competence through field reconnaissance collection and laboratory analysis of fluvial sediment core samples along the Apalachicola River, FL and its distributaries. Sediment core samples were collected in the wetlands and estuarine regions of the Apalachicola River. Sieve and hydrometer analyses were performed to determine the spatial distribution of particle sizes along the river. An existing high resolution hydrodynamic model of the study domain was used to simulate tides and generate river velocities. The Hjulstrom curve and the generated river velocities were used to define whether sediment was being transported, eroded or deposited at the different locations in the river and its distributaries. Parameters such as critical erosion velocity and settling velocity were also calculated to describe sediment transport along the channel. This research provides a better understanding of the fluvial geomorphic system, particularly sediment transport in channels. It also provides excellent validation data for future sediment transport studies in similar fluvial study domains.
NASA Astrophysics Data System (ADS)
Berlok, Thomas; Pessah, Martin E.
2015-11-01
Understanding whether Helium can sediment to the core of galaxy clusters is important for a number of problems in cosmology and astrophysics. All current models addressing this question are one-dimensional and do not account for the fact that magnetic fields can effectively channel ions and electrons, leading to anisotropic transport of momentum, heat, and particle diffusion in the weakly collisional intracluster medium (ICM). This anisotropy can lead to a wide variety of instabilities, which could be relevant for understanding the dynamics of heterogeneous media. In this paper, we consider the radial temperature and composition profiles as obtained from a state-of-the-art Helium sedimentation model and analyze its stability properties. We find that the associated radial profiles are unstable to different kinds of instabilities depending on the magnetic field orientation at all radii. The fastest growing modes are usually related to generalizations of the magnetothermal instability (MTI) and the heat-flux-driven buoyancy instability which operate in heterogeneous media. We find that the effect of sedimentation is to increase (decrease) the predicted growth rates in the inner (outer) cluster region. The unstable modes grow quickly compared to the sedimentation timescale. This suggests that the composition gradients as inferred from sedimentation models, which do not fully account for the anisotropic character of the weakly collisional environment, might not be very robust. Our results emphasize the subtleties involved in understanding the gas dynamics of the ICM and argue for the need of a comprehensive approach to address the issue of Helium sedimentation beyond current models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berlok, Thomas; Pessah, Martin E., E-mail: berlok@nbi.dk, E-mail: mpessah@nbi.dk
2015-11-01
Understanding whether Helium can sediment to the core of galaxy clusters is important for a number of problems in cosmology and astrophysics. All current models addressing this question are one-dimensional and do not account for the fact that magnetic fields can effectively channel ions and electrons, leading to anisotropic transport of momentum, heat, and particle diffusion in the weakly collisional intracluster medium (ICM). This anisotropy can lead to a wide variety of instabilities, which could be relevant for understanding the dynamics of heterogeneous media. In this paper, we consider the radial temperature and composition profiles as obtained from a state-of-the-artmore » Helium sedimentation model and analyze its stability properties. We find that the associated radial profiles are unstable to different kinds of instabilities depending on the magnetic field orientation at all radii. The fastest growing modes are usually related to generalizations of the magnetothermal instability (MTI) and the heat-flux-driven buoyancy instability which operate in heterogeneous media. We find that the effect of sedimentation is to increase (decrease) the predicted growth rates in the inner (outer) cluster region. The unstable modes grow quickly compared to the sedimentation timescale. This suggests that the composition gradients as inferred from sedimentation models, which do not fully account for the anisotropic character of the weakly collisional environment, might not be very robust. Our results emphasize the subtleties involved in understanding the gas dynamics of the ICM and argue for the need of a comprehensive approach to address the issue of Helium sedimentation beyond current models.« less
Oxygen and the spatial structure of microbial communities.
Fenchel, Tom; Finlay, Bland
2008-11-01
Oxygen has two faces. On one side it is the terminal electron acceptor of aerobic respiration - the most efficient engine of energy metabolism. On the other hand, oxygen is toxic because the reduction of molecular O2 creates reactive oxygen species such as the superoxide anion, peroxide, and the hydroxyl radical. Probably most prokaryotes, and virtually all eukaryotes, depend on oxygen respiration, and we show that the ambiguous relation to oxygen is both an evolutionary force and a dominating factor driving functional interactions and the spatial structure of microbial communities.We focus on microbial communities that are specialised for life in concentration gradients of oxygen, where they acquire the full panoply of specific requirements from limited ranges of PO2, which also support the spatial organisation of microbial communities. Marine and lake sediments provide examples of steep O2 gradients, which arise because consumption or production of oxygen exceeds transport rates of molecular diffusion. Deep lakes undergo thermal stratification in warm waters, resulting in seasonal anaerobiosis below the thermocline, and lakes with a permanent pycnocline often have permanent anoxic deep water. The oxycline is here biologically similar to sediments, and it harbours similar microbial biota, the main difference being the spatial scale. In sediments, transport is dominated by molecular diffusion, and in the water column, turbulent mixing dominates vertical transport. Cell size determines the minimum requirement of aerobic organisms. For bacteria (and mitochondria), the half-saturation constant for oxygen uptake ranges within 0.05-0.1% atmospheric saturation; for the amoeba Acanthamoeba castellanii it is 0.2%, and for two ciliate species measuring around 150 microm, it is 1-2 % atmospheric saturation. Protection against O2 toxicity has an energetic cost that increases with increasing ambient O2 tension. Oxygen sensing seems universal in aquatic organisms. Many aspects of oxygen sensing are incompletely understood, but the mechanisms seem to be evolutionarily conserved. A simple method of studying oxygen preference in microbes is to identify the preferred oxygen tension accumulating in O2 gradients. Microorganisms cannot sense the direction of a chemical gradient directly, so they use other devices to orient themselves. Different mechanisms in different prokaryotic and eukaryotic microbes are described. In O2 gradients, many bacteria and protozoa are vertically distributed according to oxygen tension and they show a very limited range of preferred PO2. In some pigmented protists the required PO2 is contingent on light due to photochemically generated reactive oxygen species. In protists that harbour endosymbiotic phototrophs, orientation towards light is mediated through the oxygen production of their photosynthetic symbionts. Oxygen plays a similar role for the distribution of small metazoans (meiofauna) in sediments, but there is little experimental evidence for this. Thus the oxygenated sediments surrounding ventilated animal burrows provide a special habitat for metazoan meiofauna as well as unicellular organisms.
NASA Astrophysics Data System (ADS)
Field, J. P.; Breshears, D. D.; Whicker, J. J.; Zou, C. B.; Allen, C. D.
2007-12-01
Aeolian sediment transport and associated dust flux are important processes in dryland ecosystems where vegetation cover is inherently sparse relative to more mesic ecosystems. Aeolian processes in dryland ecosystems are strongly influenced by the spatial density of roughness elements, which is largely determined by woody plant height and spacing. Despite the global extent of dryland ecosystems, relatively few measurements of aeolian sediment transport have been made within these systems, and these few existing measurements have not been systematically evaluated with respect to gradients of woody plant cover. We report measured aeolian sediment transport in an undisturbed and disturbed semiarid grasslands in southern Arizona. To place our estimate in a broader context, we compared our site-specific findings to other recently published measurements of aeolian sediment transport in disturbed and undisturbed dryland ecosystems. We propose a new conceptual framework for dryland aeolian sediment transport and dust flux as a function of woody plant cover that integrates our site-specific data with the broader literature base. Our findings suggest that for relatively undisturbed ecosystems, shrublands have inherently greater aeolian sediment transport and associated dust flux than grasslands, woodlands and forests due to wake interference flow associated with the height and spacing of woody roughness elements. Furthermore, the proposed framework suggests that for disturbed ecosystems, the upper bound for aeolian sediment transport increases as a function of decreasing woody plant cover. As a result, aeolian sediment transport spans a relatively small range in woodlands and forests, an intermediate range in shrublands, and the largest range in grasslands. Our framework is applicable both within locations and across broad gradients
The influence of sediment transport rate on the development of structure in gravel bed rivers
NASA Astrophysics Data System (ADS)
Ockelford, Annie; Rice, Steve; Powell, Mark; Reid, Ian; Nguyen, Thao; Tate, Nick; Wood, Jo
2013-04-01
Although adjustments of surface grain size are known to be strongly influenced by sediment transport rate little work has systematically explored how different transport rates can affect the development of surface structure in gravel bed rivers. Specifically, it has been well established that the transport of mixed sized sediments leads to the development of a coarser surface or armour layer which occurs over larger areas of the gravel bed. Armour layer development is known to moderate overall sediment transport rate as well as being extremely sensitive to changes in applied shear stress. However, during this armouring process a bed is created where, smaller gain scale changes, to the bed surface are also apparent such as the development of pebble clusters and imbricate structures. Although these smaller scale changes affect the overall surface grain size distribution very little their presence has the ability to significantly increase the surface stability and hence alter overall sediment transport rates. Consequently, the interplay between the moderation of transport rate as a function of surface coarsening at a larger scale and moderation of transport rate as a function of the development of structure on the bed surface at the smaller scale is complicated and warrants further investigation. During experiments a unimodal grain size distribution (σg = 1.30, D50 = 8.8mm) was exposed to 3 different levels of constant discharge that produced sediment transport conditions ranging from marginal transport to conditions approaching full mobility of all size fractions. Sediment was re-circulated during the experiments surface grain size distribution bed load and fractional transport rates were measured at a high temporal resolution such that the time evolution of the beds could be fully described. Discussion concentrates on analysing the effects of the evolving bed condition sediment transport rate (capacity) and transported grain size (competence). The outcome of this research is pertinent to developing new methods of linking the development of bed surface organisation with near bed flow characteristics and bed load transport in gravel bed rivers. Keywords: Graded, Sediment, Structure
MODELING FINE SEDIMENT TRANSPORT IN ESTUARIES
A sediment transport model (SEDIMENT IIIA) was developed to assist in predicting the fate of chemical pollutants sorbed to cohesive sediments in rivers and estuaries. Laboratory experiments were conducted to upgrade an existing two-dimensional, depth-averaged, finite element, coh...
Conceptual model of sedimentation in the Sacramento-San Joaquin River Delta
Schoellhamer, David H.; Wright, Scott A.; Drexler, Judith Z.
2012-01-01
Sedimentation in the Sacramento–San Joaquin River Delta builds the Delta landscape, creates benthic and pelagic habitat, and transports sediment-associated contaminants. Here we present a conceptual model of sedimentation that includes submodels for river supply from the watershed to the Delta, regional transport within the Delta and seaward exchange, and local sedimentation in open water and marsh habitats. The model demonstrates feedback loops that affect the Delta ecosystem. Submerged and emergent marsh vegetation act as ecosystem engineers that can create a positive feedback loop by decreasing suspended sediment, increasing water column light, which in turn enables more vegetation. Sea-level rise in open water is partially countered by a negative feedback loop that increases deposition if there is a net decrease in hydrodynamic energy. Manipulation of regional sediment transport is probably the most feasible method to control suspended sediment and thus turbidity. The conceptual model is used to identify information gaps that need to be filled to develop an accurate sediment transport model.
NASA Astrophysics Data System (ADS)
Keeler, J. J.; Pizzuto, J. E.; Skalak, K.; Karwan, D. L.; Benthem, A.; Ackerman, T. R.
2015-12-01
Quantifying the delivery of suspended sediment from upland sources to downstream receiving waters is important for watershed management, but current routing models fail to accurately represent lag times in delivery resulting from sediment storage. In this study, we route suspended sediment tagged by a characteristic tracer using a 1-dimensional model that implicitly includes storage and remobilization processes and timescales. From an input location where tagged sediment is added, the model advects suspended sediment downstream at the velocity of the stream (adjusted for the intermittency of transport events). Deposition rates are specified by the fraction of the suspended load stored per kilometer of downstream transport (presumably available from a sediment budget). Tagged sediment leaving storage is evaluated from a convolution equation based on the probability distribution function (pdf) of sediment storage waiting times; this approach avoids the difficulty of accurately representing complex processes of sediment remobilization from floodplain and other deposits. To illustrate the role of storage on sediment delivery, we compare exponential and bounded power-law waiting time pdfs with identical means of 94 years. In both cases, the median travel time for sediment to reach the depocenter in fluvial systems less than 40km long is governed by in-channel transport and is unaffected by sediment storage. As the channel length increases, however, the median sediment travel time reflects storage rather than in-channel transport; travel times do not vary significantly between the two different waiting time functions. At distances of 50, 100, and 200 km, the median travel time for suspended sediment is 36, 136, and 325 years, orders of magnitude slower than travel times associated with in-channel transport. These computations demonstrate that storage can be neglected for short rivers, but for longer systems, storage controls the delivery of suspended sediment.
NASA Astrophysics Data System (ADS)
Zheleznyak, M.; Kivva, S.; Onda, Y.; Nanba, K.; Wakiyama, Y.; Konoplev, A.
2015-12-01
The reliable modeling tools for prediction wash - off radionuclides from watersheds are needed as for assessment the consequences of accidental and industrial releases of radionuclides, as for soil erosion studies using the radioactive tracers. The distributed model of radionuclide transport through watershed in exchangeable and nonexchangeable forms in solute and with sediments was developed and validated for small Chernobyl watersheds in 90th within EU SPARTACUS project (van der Perk et al., 1996). New tendency is coupling of radionuclide transport models and the widely validated hydrological distributed models. To develop radionuclide transport model DHSVM-R the open source Distributed Hydrology Soil Vegetation Model -DHSVM http://www.hydro.washington.edu/Lettenmaier/Models/DHSVM was modified and extended. The main changes provided in the hydrological and sediment transport modules of DHSVM are as follows: Morel-Seytoux infiltration model is added; four-directions schematization for the model's cells flows (D4) is replaced by D8 approach; the finite-difference schemes for solution of kinematic wave equations for overland water flow, stream net flow, and sediment transport are replaced by new computationally efficient scheme. New radionuclide transport module, coupled with hydrological and sediment transport modules, continues SPARTACUS's approach, - it describes radionuclide wash-off from watershed and transport via stream network in soluble phase and on suspended sediments. The hydrological module of DHSVM-R was calibrated and validated for the watersheds of Ukrainian Carpathian mountains and for the subwatersheds of Niida river flowing 137Cs in solute and with suspended sediments to Pacific Ocean at 30 km north of the Fukushima Daiichi NPP. The modules of radionuclide and sediment transport were calibrated and validated versus experimental data for USLE experimental plots in Fukushima Prefecture and versus monitoring data collected in Niida watershed. The role of sediment transport in radionuclide wash-off from mountain and lowland watersheds is analyzed in comparison of modeling results for Chernobyl and Fukushima watersheds.
The exceptional sediment load of fine-grained dispersal systems: Example of the Yellow River, China.
Ma, Hongbo; Nittrouer, Jeffrey A; Naito, Kensuke; Fu, Xudong; Zhang, Yuanfeng; Moodie, Andrew J; Wang, Yuanjian; Wu, Baosheng; Parker, Gary
2017-05-01
Sedimentary dispersal systems with fine-grained beds are common, yet the physics of sediment movement within them remains poorly constrained. We analyze sediment transport data for the best-documented, fine-grained river worldwide, the Huanghe (Yellow River) of China, where sediment flux is underpredicted by an order of magnitude according to well-accepted sediment transport relations. Our theoretical framework, bolstered by field observations, demonstrates that the Huanghe tends toward upper-stage plane bed, yielding minimal form drag, thus markedly enhancing sediment transport efficiency. We present a sediment transport formulation applicable to all river systems with silt to coarse-sand beds. This formulation demonstrates a remarkably sensitive dependence on grain size within a certain narrow range and therefore has special relevance to silt-sand fluvial systems, particularly those affected by dams.
The exceptional sediment load of fine-grained dispersal systems: Example of the Yellow River, China
Ma, Hongbo; Nittrouer, Jeffrey A.; Naito, Kensuke; Fu, Xudong; Zhang, Yuanfeng; Moodie, Andrew J.; Wang, Yuanjian; Wu, Baosheng; Parker, Gary
2017-01-01
Sedimentary dispersal systems with fine-grained beds are common, yet the physics of sediment movement within them remains poorly constrained. We analyze sediment transport data for the best-documented, fine-grained river worldwide, the Huanghe (Yellow River) of China, where sediment flux is underpredicted by an order of magnitude according to well-accepted sediment transport relations. Our theoretical framework, bolstered by field observations, demonstrates that the Huanghe tends toward upper-stage plane bed, yielding minimal form drag, thus markedly enhancing sediment transport efficiency. We present a sediment transport formulation applicable to all river systems with silt to coarse-sand beds. This formulation demonstrates a remarkably sensitive dependence on grain size within a certain narrow range and therefore has special relevance to silt-sand fluvial systems, particularly those affected by dams. PMID:28508078
Conceptual Regional Sediment Budget for USACE North Atlantic Division
2015-03-01
sediment budget is the first phase in development of the working budget and is intended to provide a general framework based on existing transport ...existing literature and databases were reviewed and analyzed to characterize sediment transport pathways and magnitudes, and morphologic zones of...net sediment transport pathways for Region 1 (includes NACCS planning regions VA1 through VA6 and MD2 through MD5
Littoral Hydrodynamics and Sediment Transport Around a Semi-Permeable Breakwater
2015-09-18
Australasian Coasts & Ports Conference 2015 15 - 18 September 2015, Auckland , New Zealand Li, H et al. Littoral Hydrodynamics and Sediment...Coasts and Ports 2015, Auckland , New Zealand, 15-18 September, 2015, 7 pp. Littoral Hydrodynamics and Sediment Transport Around a Semi...Conference 2015 15 - 18 September 2015, Auckland , New Zealand Li, H et al. Littoral Hydrodynamics and Sediment Transport 2 The bathymetric and side
Guo, Ming-ming; Wang, Wen-long; Li, Jian-ming; Huang, Peng-fei; Zhu, Bao-cai; Wang, Zhen; Luo, Ting
2015-02-01
Non-hardened roads formed in the production of the Shenfu Coalfield have a unique condition of underlying surface. The road surface is composed of a regolith layer with a certain thickness resulted from long-term rolling and thus, is characterized by weakened anti-scourabilty and anti-erodibility. In contrast, soil layer below the regolith has a higher bulk density and anti-erodibility. The processes of soil erosion on the non-hardened roads exhibit some differences under rainfall condition. The process of sediment transport and the relationship between sediment transport rate and erosion factors at different erosion stages were studied on non-hardened roads with slope degrees ranging from 3° to 12° (3°, 6°, 9°, 12°) by a field experiment under artificial rainfall. Results showed that the first peak of sediment transport on the regolith surface was observed at the sheet erosion stage. Sheet erosion occurred only at 3° slope degree, with an average variation coefficient of 0.07 for sediment transport rate. Rills in every testing began to develop at slope degrees of 6° to 12° about 15 min after runoff initiation. At the sheet erosion stage, the process of sediment transport fluctuated considerably at rainfall intensities of > 1.5 mm · min(-1), but the differences in its variation were little at the three slope degrees, with average variation coefficients of 0.20, 0.19 and 0.16, respectively. Rainfall intensity had a more significant impact on sediment transport rate than slope degree. The process of sediment transport at the rill erosion stage fluctuated, but the fluctuation was obviously smaller than that at the sheet erosion stage, with average variation coefficients of 0.05, 0.09 and 0.10 at the three slope degrees. Many wide and shallow rills evolved at the rill erosion stage. The sediment transport rate could be well predicted by a power function of rainfall intensity and slope degree at the sheet and rill erosion stages. The stable sediment transport rate for all the tests was linearly related to runoff rate and sediment concentration.
Identification of varying time scales in sediment transport using the Hilbert-Huang Transform method
NASA Astrophysics Data System (ADS)
Kuai, Ken Z.; Tsai, Christina W.
2012-02-01
SummarySediment transport processes vary at a variety of time scales - from seconds, hours, days to months and years. Multiple time scales exist in the system of flow, sediment transport and bed elevation change processes. As such, identification and selection of appropriate time scales for flow and sediment processes can assist in formulating a system of flow and sediment governing equations representative of the dynamic interaction of flow and particles at the desired details. Recognizing the importance of different varying time scales in the fluvial processes of sediment transport, we introduce the Hilbert-Huang Transform method (HHT) to the field of sediment transport for the time scale analysis. The HHT uses the Empirical Mode Decomposition (EMD) method to decompose a time series into a collection of the Intrinsic Mode Functions (IMFs), and uses the Hilbert Spectral Analysis (HSA) to obtain instantaneous frequency data. The EMD extracts the variability of data with different time scales, and improves the analysis of data series. The HSA can display the succession of time varying time scales, which cannot be captured by the often-used Fast Fourier Transform (FFT) method. This study is one of the earlier attempts to introduce the state-of-the-art technique for the multiple time sales analysis of sediment transport processes. Three practical applications of the HHT method for data analysis of both suspended sediment and bedload transport time series are presented. The analysis results show the strong impact of flood waves on the variations of flow and sediment time scales at a large sampling time scale, as well as the impact of flow turbulence on those time scales at a smaller sampling time scale. Our analysis reveals that the existence of multiple time scales in sediment transport processes may be attributed to the fractal nature in sediment transport. It can be demonstrated by the HHT analysis that the bedload motion time scale is better represented by the ratio of the water depth to the settling velocity, h/ w. In the final part, HHT results are compared with an available time scale formula in literature.
Fernandez, Loretta A; Lao, Wenjian; Maruya, Keith A; Burgess, Robert M
2014-04-01
Passive samplers were deployed to the seafloor at a marine Superfund site on the Palos Verdes Shelf, California, USA, and used to determine water concentrations of persistent organic pollutants (POPs) in the surface sediments and near-bottom water. A model of Fickian diffusion across a thin water boundary layer at the sediment-water interface was used to calculate flux of contaminants due to molecular diffusion. Concentrations at four stations were used to calculate the flux of DDE, DDD, DDMU, and selected PCB congeners from sediments to the water column. Three passive sampling materials were compared: PE strips, POM strips, and SPME fibers. Performance reference compounds (PRCs) were used with PE and POM to correct for incomplete equilibration, and the resulting POP concentrations, determined by each material, agreed within 1 order of magnitude. SPME fibers, without PRC corrections, produced values that were generally much lower (1 to 2 orders of magnitude) than those measured using PE and POM, indicating that SPME may not have been fully equilibrated with waters being sampled. In addition, diffusive fluxes measured using PE strips at stations outside of a pilot remedial sand cap area were similar to those measured at a station inside the capped area: 240 to 260 ng cm(-2) y(-1) for p,p'-DDE. The largest diffusive fluxes of POPs were calculated at station 8C, the site where the highest sediment concentrations have been measured in the past, 1100 ng cm(-2) y(-1) for p,p'-DDE.
Suspended sediments of the modern Amazon and Orinoco rivers
Meade, R.H.
1994-01-01
The Amazon and Orinoco Rivers are massive transcontinental conveyance systems for suspended sediment. They derive about 90% of their sediment from the Andes that support their western headwaters, transport it for thousands of kilometers across the breadth of the continent and deposit it in the coastal zones of the Atlantic. At their points of maximum suspended-sediment discharge, the Amazon transports an average of 1100-1300 ?? 106 tons per year and the Orinoco transports about 150 ?? 106 tons per year. Relations of sediment discharge to water discharge are complicated by unusual patterns of seasonal storage and remobilization, increased storage and reduced transport of sediment in the middle Orinoco during periods of peak water discharge, and storage of suspended sediment in the lower Amazon during rising discharge and resuspension during falling discharge. Spatial distributions of suspended sediment in cross-sections of both rivers are typically heterogeneous, not only in the vertical sense but also in the lateral. The cross-channel mixing of tributary inputs into the mainstem waters is a slow process that requires several hundred kilometers of downriver transport to complete. Considerable fine-grained sediment is exchanged between rivers and floodplains by the combination of overbank deposition and bank erosion. ?? 1994.
Using repeat lidar to estimate sediment transport in a steep stream
NASA Astrophysics Data System (ADS)
Anderson, Scott; Pitlick, John
2014-03-01
Sediment fluxes in steep mountain streams remain difficult to quantify, despite their importance in geomorphology, ecology, and hazard analysis. In this work, aerial lidar surveys, acquired in 2002, 2008, and 2012, are used to quantify such fluxes in Tahoma Creek, a proglacial stream on Mount Rainier, Washington. As these surveys encompass all coarse sediment sources in the basin, we are able to translate geomorphic change into total bed material transport volumes for the time steps between surveys. By assuming that the relationship between daily sediment transport and daily mean discharge is of the form Qs=a(Q-Qc)b, our two observed total loads and estimates of daily mean discharge allow us to numerically solve for values of a and b to create a bed material sediment rating curve. Comparisons of our transport estimates with sediment deposition in a downstream reservoir indicate that our transport estimates and derived rating curve are reasonable. The method we present thus represents a plausible means of estimating transport rates in energetic settings or during extreme events, applicable whenever at least two cumulative sediment loads and the driving hydrology are known. We use these results to assess the performance of several bed load transport equations. The equations generally overpredict transport at low to moderate flows but significantly underpredict transport rates during an extreme event. Using a critical shear stress value appropriate for steep streams improves agreement at lower flows, whereas a shear-partitioning technique accounting for form drag losses significantly underpredicts transport at all flows.
Chen, Baowei; Liang, Ximei; Xu, Weihai; Huang, Xiaoping; Li, Xiangdong
2012-11-15
Surface sediments can provide useful information on the recent pollution status of an estuary. One recent field survey was carried out in the Pearl River Estuary (PRE), South China in 2011. The comparisons with previous surveys demonstrated that the concentrations of Ni and Pb in the PRE declined over the last decade, but the concentration of Cu increased in the same time frame. The significant decreases in the concentrations of Ni and Pb were probably due to a reduction of anthropogenic inputs, such as industrial wastewater, into the PRE environment, and the ban imposed on leaded gasoline. Statistical analyses have consistently demonstrated that the process of the sedimentation of fine particles was the dominant factor in controlling the transport and distribution of trace metals in the PRE. The riverine trace metals generally displayed a pattern of diffusion from the northwest to the southeast in the estuary. However, the riparian industrial activities at the east bank of the inner PRE caused significant metal contamination in sediments. In general, effective pollution control measures in the PRD region have decreased the levels of some trace metals in the entire PRE over the last decade with the exception of Cu. Copyright © 2012 Elsevier B.V. All rights reserved.
Effect of ship locking on sediment oxygen uptake in impounded rivers
NASA Astrophysics Data System (ADS)
Lorke, A.; McGinnis, D. F.; Maeck, A.; Fischer, H.
2012-12-01
In the majority of large river systems, flow is regulated and/or otherwise affected by operational and management activities, such as ship locking. The effect of lock operation on sediment-water oxygen fluxes was studied within a 12.9 km long impoundment at the Saar River (Germany) using eddy-correlation flux measurements. The continuous observations cover a time period of nearly 5 days and 39 individual locking events. Ship locking is associated with the generation of surges propagating back and forth through the impoundment which causes strong variations of near-bed current velocity and turbulence. These wave-induced flow variations cause variations in sediment-water oxygen fluxes. While the mean flux during time periods without lock operation was 0.5 ± 0.1 g m-2 d-1, it increased by about a factor of 2 to 1.0 ± 0.5 g m-2 d-1within time periods with ship locking. Following the daily schedule of lock operations, fluxes are predominantly enhanced during daytime and follow a pronounced diurnal rhythm. The driving force for the increased flux is the enhancement of diffusive transport across the sediment-water interface by bottom-boundary layer turbulence and perhaps resuspension. Additional means by which the oxygen budget of the impoundment is affected by lock-induced flow variations are discussed.
Goldman, M.; Gvirtzman, H.; Hurwitz, S.
2004-01-01
An extensive time domain electromagnetic (TDEM) survey covering the Sea of Galilee with a dense grid of points has been recently carried out. A total of 269 offshore and 33 supplementary onshore TDEM soundings were performed along six N-S and ten W-E profiles and at selected points both offshore and onshore along the whole coastal line. The interpreted resistivities were calibrated with the direct salinity measurements in the Haon-2 borehole and relatively deep (5 m) cores taken from the lake bottom. It was found that resistivities below 1 ohm-m are solely indicative of groundwater salinity exceeding 10,000 mg Cl/l. Such low resistivities (high salinities) were detected at depths greater than 15 m below almost the entire bottom of the lake. At some parts of the lake, particularly in the south, the saline water was detected at shallower depths, sometimes at a few meters below the bottom. Relatively high resistivity (fresh groundwater) was found along the margins of the lake down to roughly 100 m, the maximum exploration depth of the system. The detected sharp lateral contrasts at the lake margin between high and low resistivities coincide with the faults separating the carbonate and clastic units, respectively. The geometry of the fresh/saline groundwater interface below the central part of the lake is very similar to the shape of the lake bottom, probably due to the diffusive salt transport from the bottom sediments to the lake water. The above geophysical observations suggest differentsalt transport mechanisms from the sediments to the central part of the lake (diffusion) and from regional aquifers to the margins of the lake (advection). ?? 2004 Science From Israel/LPPLtd.
NASA Astrophysics Data System (ADS)
Roth, Danica L.; Finnegan, Noah J.; Brodsky, Emily E.; Rickenmann, Dieter; Turowski, Jens M.; Badoux, Alexandre; Gimbert, Florent
2017-05-01
Hysteresis in the relationship between bed load transport and river stage is a well-documented phenomenon with multiple known causes. Consequently, numerous studies have interpreted hysteresis in the relationship between seismic ground motion near rivers and some measure of flow strength (i.e., discharge or stage) as the signature of bed load transport. Here we test this hypothesis in the Erlenbach stream (Swiss Prealps) using a metric to quantitatively compare hysteresis in seismic data with hysteresis recorded by geophones attached beneath steel plates within the streambed, a well-calibrated proxy for direct sediment transport measurements. We find that while both the geophones and seismometers demonstrate hysteresis, the magnitude and direction of hysteresis are not significantly correlated between these data, indicating that the seismic signal at this site is primarily reflecting hysteresis in processes other than sediment transport. Seismic hysteresis also does not correlate significantly with the magnitude of sediment transport recorded by the geophones, contrary to previous studies' assumptions. We suggest that hydrologic sources and changes in water turbulence, for instance due to evolving boundary conditions at the bed, rather than changes in sediment transport rates, may sometimes contribute to or even dominate the hysteresis observed in seismic amplitudes near steep mountain rivers.
Water induced sediment levitation enhances downslope transport on Mars.
Raack, Jan; Conway, Susan J; Herny, Clémence; Balme, Matthew R; Carpy, Sabrina; Patel, Manish R
2017-10-27
On Mars, locally warm surface temperatures (~293 K) occur, leading to the possibility of (transient) liquid water on the surface. However, water exposed to the martian atmosphere will boil, and the sediment transport capacity of such unstable water is not well understood. Here, we present laboratory studies of a newly recognized transport mechanism: "levitation" of saturated sediment bodies on a cushion of vapor released by boiling. Sediment transport where this mechanism is active is about nine times greater than without this effect, reducing the amount of water required to transport comparable sediment volumes by nearly an order of magnitude. Our calculations show that the effect of levitation could persist up to ~48 times longer under reduced martian gravity. Sediment levitation must therefore be considered when evaluating the formation of recent and present-day martian mass wasting features, as much less water may be required to form such features than previously thought.
Uncertainty in tsunami sediment transport modeling
Jaffe, Bruce E.; Goto, Kazuhisa; Sugawara, Daisuke; Gelfenbaum, Guy R.; La Selle, SeanPaul M.
2016-01-01
Erosion and deposition from tsunamis record information about tsunami hydrodynamics and size that can be interpreted to improve tsunami hazard assessment. We explore sources and methods for quantifying uncertainty in tsunami sediment transport modeling. Uncertainty varies with tsunami, study site, available input data, sediment grain size, and model. Although uncertainty has the potential to be large, published case studies indicate that both forward and inverse tsunami sediment transport models perform well enough to be useful for deciphering tsunami characteristics, including size, from deposits. New techniques for quantifying uncertainty, such as Ensemble Kalman Filtering inversion, and more rigorous reporting of uncertainties will advance the science of tsunami sediment transport modeling. Uncertainty may be decreased with additional laboratory studies that increase our understanding of the semi-empirical parameters and physics of tsunami sediment transport, standardized benchmark tests to assess model performance, and development of hybrid modeling approaches to exploit the strengths of forward and inverse models.
A method for improving predictions of bed-load discharges to reservoirs
Lopes, V.L.; Osterkamp, W.R.; Bravo-Espinosa, M.
2007-01-01
Effective management options for mitigating the loss of reservoir water storage capacity to sedimentation depend on improved predictions of bed-load discharges into the reservoirs. Most predictions of bed-load discharges, however, are based on the assumption that the rates of bed-load sediment availability equal the transport capacity of the flow, ignoring the spatio-temporal variability of the sediment supply. This paper develops a semiquantitative method to characterize bed-load sediment transport in alluvial channels, assuming a channel reach is non-supply limited when the bed-load discharge of a given sediment particle-size class is functionally related to the energy that is available to transport that fraction of the total bed-load. The method was applied to 22 alluvial stream channels in the USA to determine whether a channel reach had a supply-limited or non-supply-limited bed-load transport regime. The non-supply-limited transport regime was further subdivided into two groups on the basis of statistical tests. The results indicated the pattern of bed-load sediment transport in alluvial channels depends on the complete spectrum of sediment particle sizes available for transport rather than individual particle-size fractions represented by one characteristic particle size. The application of the method developed in this paper should assist reservoir managers in selecting bed-load sediment transport equations to improve predictions of bed-load discharge in alluvial streams, thereby significantly increasing the efficiency of management options for maintaining the storage capacity of waterbodies. ?? 2007 Blackwell Publishing Asia Pty Ltd.
Jaffe, Bruce E.
2015-01-01
Suspension of sand in the surf zone is intermittent. Especially striking in a time series of concentration are periods of intense suspension, suspension events, when the water column suspended sediment concentration is an order of magnitude greater than the mean concentration. The prevalence, timing, and contribution of suspension events to cross-shore and longshore suspended sediment transport are explored using field data collected in the inner half of the surf zone during a large storm at Duck, NC. Suspension events are defined as periods when the concentration is above a threshold. Events tended to occur during onshore flow under the wave crest, resulting in an onshore contribution to the suspended sediment transport. Even though large events occurred less than 10 percent of the total time, at some locations onshore transport associated with suspension events was greater than mean-current driven offshore-directed transport during non-event periods, causing the net suspended sediment transport to be onshore. Events and fluctuations in longshore velocity were not correlated. However, events did increase the longshore suspended sediment transport by approximately the amount they increase the mean concentration, which can be up to 35%. Because of the lack of correlation, the longshore suspended sediment transport can be modeled without considering the details of the intensity and time of events as the vertical integration of the product of the time-averaged longshore velocity and an event-augmented time-averaged concentration. However, to accurately model cross-shore suspended sediment transport, the timing and intensity of suspension events must be reproduced.
The natural sediment regime in rivers: broadening the foundation for ecosystem management
Wohl, Ellen E.; Bledsoe, Brian P.; Jacobson, Robert B.; Poff, N. LeRoy; Rathburn, Sara L.; Walters, David M.; Wilcox, Andrew C.
2015-01-01
Water and sediment inputs are fundamental drivers of river ecosystems, but river management tends to emphasize flow regime at the expense of sediment regime. In an effort to frame a more inclusive paradigm for river management, we discuss sediment inputs, transport, and storage within river systems; interactions among water, sediment, and valley context; and the need to broaden the natural flow regime concept. Explicitly incorporating sediment is challenging, because sediment is supplied, transported, and stored by nonlinear and episodic processes operating at different temporal and spatial scales than water and because sediment regimes have been highly altered by humans. Nevertheless, managing for a desired balance between sediment supply and transport capacity is not only tractable, given current geomorphic process knowledge, but also essential because of the importance of sediment regimes to aquatic and riparian ecosystems, the physical template of which depends on sediment-driven river structure and function.
NASA Astrophysics Data System (ADS)
Comer-Warner, S.; Krause, S.; Gooddy, D.; Blaen, P.; Brekenfeld, N.; Wexler, S.; Kaiser, J.
2017-12-01
Hotspots of enhanced biogeochemical reactivity are produced where groundwater and surface water mixes in streambed sediments. This enhanced reactivity is due to elevated residence times and nutrient concentrations found in these areas, leading to increased rates of microbial metabolic activity. Streambed sediments, therefore, may be important in reducing catchment-wide nutrient concentrations through increased cycling. However, they also have the potential to produce high concentrations of greenhouse gases (CO2, CH4 and N2O), as end-products of respiration and intermediate products of denitrification. The hydrological and biogeochemical drivers of streambed C and N cycling, are still insufficiently understood. Here we present results from biogeochemical sampling and tracer experiments in an agricultural sandstone stream in the UK. Nutrient, DOC and greenhouse gas concentrations, as well as d13CCO2, were measured in the streambed sediment in multilevel piezometers, and nutrient concentrations, as well as d15NNO3 and d18ONO3, were measured in Diffusive Equilibrium in Thin-film Gels. Tracer experiments using both conservative (Fluorescein and NaCl) and smart (Resazurin-Resorufin) tracers were performed to determine in-stream metabolism, transient storage and solute transport times in sub-reaches of the stream. Our results show large differences in nutrient and greenhouse gas concentrations between sub-reaches dominated by gravel sediments and those dominated by sandy sediments, as well as seasonally. This suggests temperature, sediment type and residence time are key controls on streambed nutrient cycling and greenhouse gas production. The results of this study have important implications for future greenhouse gas estimates from streams and rivers, particularly as the contribution of sediment greenhouse gas production is recognised as increasingly significant.
Chen, Zhu-hong; Chen, Neng-wang; Wu, Yin-qi; Mo, Qiong-li; Zhou, Xing-peng; Lu, Ting; Tian, Yun
2014-09-01
The key processes and fluxes of nutrients (N and P) and gaseous N (N2 and N2O) across the sediment-water interface in a river reservoir (Xipi) of the Jiulong River watershed in southeast China were studied. Intact core sediment incubation of nutrients exchange, in-situ observation and lab incubation of excess dissolved N2 and N2O (products of nitrification, denitrification and Anammox), and determination of physiochemical and microbe parameters were carried out in 2013 for three representative sites along the lacustrine zone of the reservoir. Results showed that ammonium and phosphate were generally released from sediment to overlying water [with averaged fluxes of N (479.8 ± 675.4) mg. (m2. d)-1 and P (4. 56 ± 0.54) mg. (m2 d) -1] , while nitrate and nitrite diffused into the sediment. Flood events in the wet season could introduce a large amount of particulate organic matter that would be trapped by the dam reservoir, resulting in the high release fluxes of ammonium and phosphate observed in the following low-flow season. No clear spatial variation of sediment nutrient release was found in the lacustrine zone of the reservoir. Gaseous N release was dominated by excess dissolved N2 (98% of total), and the N2 flux from sediment was (15.8 ± 12. 5) mg (m2. d) -1. There was a longitudinal and vertical variation of excess dissolved N2, reflecting the combined results of denitrification and Anammox occurring in anoxic sediment and fluvial transport. Nitrification mainly occurred in the lower lacustrine zone, and the enrichment of N2O was likely regulated by the ratio of ammonium to DIN in water.
Sediment transport data and related information for selected coarse-bed streams and rivers in Idaho
John G. King; William W. Emmett; Peter J. Whiting; Robert P. Kenworthy; Jeffrey J. Barry
2004-01-01
This report and associated web site files provide sediment transport and related data for coarse-bed streams and rivers to potential users. Information on bedload and suspended sediment transport, streamflow, channel geometry, channel bed material, floodplain material, and large particle transport is provided for 33 study reaches in Idaho that represent a wide range of...
NASA Astrophysics Data System (ADS)
Tucker, G. E.; Bradley, D. N.
2008-12-01
Many geomorphic transport laws assume that the transport process is local, meaning that the space and time scales of particle displacement are short relative to those of the system as a whole. This assumption allows one to express sediment flux in terms of at-a-point properties such as the local surface gradient. However, while this assumption is quite reasonable for some processes (for example, grain displacement by raindrop impact), it is questionable for others (such as landsliding). Moreover, particle displacement distance may also depend on slope angle, becoming longer as gradient increases. For example, the average motion distance during sediment ravel events on very steep slopes may approach the length of the entire hillslope. In such cases, the mass flux through a given point may depend not only on the local topography but also on topography some distance upslope, thus violating the locality assumption. Here we use a stochastic, particle- based model of hillslope evolution to gain insight into the potential for, and consequences of, nonlocality in sediment transport. The model is designed as a simple analogy for a host of different processes that displace sediment grains on hillslopes. The hillslope is represented as a two-dimensional pile of particles. These particles undergo quasi-random motion according to the following rules: (1) during each iteration, a particle and a direction are selected at random; (2) the particle hops in the direction of motion with a probability that depends on the its height relative to that of its immediate neighbor; (3) the particle continues making hops in the same direction and with the same probability dependence, until coming to rest or exiting the base of the slope. The topography and motion statistics that emerge from these rules show a range of behavior that depends on a dimensionless relief parameter. At low relief, hillslope shape is parabolic, mean displacement length is on the order of two particle widths, and the probability distribution of displacement length is thin- tailed (approximately exponential). At high relief, hillslopes become planar, average displacement length increases by an order of magnitude, and the displacement-length distribution becomes heavy-tailed (albeit truncated at the slope length). Across the spectrum of relief values, the relationship between mean flux and gradient resembles the family of nonlinear flux-gradient curves that has been used to model hillslope evolution. We compare the emergent morphology and transport statistics with linear, nonlinear, and fractional diffusion models of hillslope transport.
NASA Astrophysics Data System (ADS)
Gurer, M.; Sullivan, S.; Masteller, C.
2016-12-01
Bedload is a regime of sediment transport that occurs when particles roll, hop, or bounce downstream. This mode of transport represents an important portion of the sediment load in a gravel river. Despite numerous studies focused on bedload transport, it still remains difficult to predict accurately due to the complex arrangement of riverbed particles. The formation of gravel clusters, stones being imbricated, or streamlined, and other interlocked arrangements, as well as grains armoring the bed, all tend to stabilize gravel channels and decrease bed mobility. Typically, the development of bed structure usually occurs as sediment moves downstream. However, it is unclear that gravel bed structure can be developed during weaker flows that do not generate significant sediment transport. We examine how individual sediment grains reorient themselves during low flow conditions, in the absence of sediment transport, and during high flow conditions, as bedload transport occurs. We then perform flume experiments where we expose a gravel bed to varying durations of low flow and raise the water level, simulating a flood and transporting sediment. We also compare the long-axis orientations of grains before and after each low flow period and transport. We find that sediment grains reorient themselves differently during low and high flows. During low flow, grains appear to reorient themselves with the long-axes towards cross-stream direction, or perpendicular to the flow, with longer duration flows resulting in more pronounced cross-stream orientation. During high flow, grains orient themselves with their long-axes facing downstream or parallel to the flow, similar to imbricated grains observed in the sedimentary record. Further, when transport occurs, we find that median grain orientation is strongly correlated with bedload transport rates (R^2 = 0.98). We also observe that median grain orientations more perpendicular to downstream flow result in reduced transport rates. This new result suggests that the low flow reorientation of grains perpendicular to downstream flow drives observed differences in bedload transport during high flows. We conclude that low flow periods are important for the creation of bed structure and the stabilization of gravel river channels.
Fluvial sediment transport in a glacier-fed high-mountain river (Riffler Bach, Austrian Alps)
NASA Astrophysics Data System (ADS)
Morche, David; Weber, Martin; Faust, Matthias; Schuchardt, Anne; Baewert, Henning
2017-04-01
High-alpine environments are strongly affected by glacier retreat since the Little Ice Age (LIA). Due to ongoing climate change the hydrology of proglacial rivers is also influenced. It is expected that the growing proportions of snow melt and rainfall events will change runoff characteristics of proglacial rivers. Additionally, the importance of paraglacial sediment sources in recently deglaciating glacier forefields is increasing, while the role of glacial erosion is declining. Thus complex environmental conditions leading to a complex pattern of fluvial sediment transport in partly glaciated catchments of the European Alps. Under the umbrella of the joint PROSA-project the fluvial sediment transport of the river Riffler Bach (Kaunertal, Tyrol, Austria) was studied in 3 consecutive ablation seasons in order to quantify sediment yields. In June 2012 a probe for water level and an automatic water sampler (AWS) were installed at the outlet of the catchment (20km2). In order to calculate annual stage-discharge-relations by the rating-curve approach, discharge (Q) was repeatedly measured with current meters and by salt dilution. Concurrent to the discharge measurements bed load was collected using a portable Helley-Smith sampler. Bed load samples were weighted and sieved in the laboratory to gain annual bed load rating curves and grain size distributions. In total 564 (2012: 154, 2013: 209, 2014: 201) water samples were collected and subsequently filtered to quantify suspended sediment concentrations (SSC). Q-SSC-relations were calculated for single flood events due to the high variability of suspended sediment transport. The results show a high inter- and intra-annual variability of solid fluvial sediment transport, which can be explained by the characteristics of suspended sediment transport. Only 13 of 22 event-based Q-SSC-relations show causal dependency. In 2012, during a period with multiple pluvial-induced peak discharges most sediment was transported. On the contrary the importance of snow melt for sediment transport was indicated during the ablation season 2013. In total 3582 t of sediment were exported out of the Riffler Bach catchment in 2012, which is almost twice the solid sediment load of the ablation season 2013 (1953 t). Total solid load of the Riffler Bach River was 3511 t in 2014 Suspended sediment load was dominant in all ablation seasons. The result of additional DEM analysis reveals that 37 % of the catchment do not contribute or only contribute to a lesser amount to the fluvial sediment export out of the catchment. The findings of the grain size analysis imply glacigenic origin of the transported particles. Thus, the results indicate that solid sediment transport is not only a function of discharge. Also availability of sediment and the systems state of (dis-)connectivity, e.g. coupling of sediment sources to the river, need to be considered.
PROFILE: Hungry Water: Effects of Dams and Gravel Mining on River Channels
Kondolf
1997-07-01
/ Rivers transport sediment from eroding uplands to depositional areas near sea level. If the continuity of sediment transport is interrupted by dams or removal of sediment from the channel by gravel mining, the flow may become sediment-starved (hungry water) and prone to erode the channel bed and banks, producing channel incision (downcutting), coarsening of bed material, and loss of spawning gravels for salmon and trout (as smaller gravels are transported without replacement from upstream). Gravel is artificially added to the River Rhine to prevent further incision and to many other rivers in attempts to restore spawning habitat. It is possible to pass incoming sediment through some small reservoirs, thereby maintaining the continuity of sediment transport through the system. Damming and mining have reduced sediment delivery from rivers to many coastal areas, leading to accelerated beach erosion. Sand and gravel are mined for construction aggregate from river channel and floodplains. In-channel mining commonly causes incision, which may propagate up- and downstream of the mine, undermining bridges, inducing channel instability, and lowering alluvial water tables. Floodplain gravel pits have the potential to become wildlife habitat upon reclamation, but may be captured by the active channel and thereby become instream pits. Management of sand and gravel in rivers must be done on a regional basis, restoring the continuity of sediment transport where possible and encouraging alternatives to river-derived aggregate sources.KEY WORDS: Dams; Aquatic habitat; Sediment transport; Erosion; Sedimentation; Gravel mining
Dispersal and transport of river sediment on the Catalan Shelf (NW Mediterranean Sea).
NASA Astrophysics Data System (ADS)
Grifoll, Manel; Gracia, Vicente; Espino, Manuel; Sánchez-Arcilla, Agustín
2014-05-01
A three-dimensional coupled hydrodynamics-sediment transport model for the Catalan shelf (NW Mediterranean Sea) is implemented and used to represent the fluvial sediment transport and depositional patterns. The modelling system COAWST (Warner et al., 2010) allows to exchange field from the water circulation model ROMS and the wave model SWAN including combined wave-current bed stress and both sediment transport mechanisms: bed and suspended load. Two rivers surrounding Barcelona harbour are considered in the numerical experiments. Different temporal and spatial scales are modelled in order to evaluate physical mechanisms such as: fine deposits formation in the inner-shelf, harbour siltation or sediment exporting to the outer shelf. Short-time simulations in a high-resolution mesh have been used to reproduce the initial stages of the sediment dispersal. In this case, sediment accumulation occurs confined in an area attached to the coastline. A subsequent reworking is observed due to the wave-induced bottom stresses which resuspend fine material exported then towards the mid-shelf by seawards fluxes. The long-term water circulation simulations explains the observed fine deposits over the shelf. The results provide knowledge of sediment transport processes in the near-shore area of a micro-tidal domain. REFERENCES: Warner, J.C., Armstrong, B., He, R., and Zambon, J.B., 2010, Development of a Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system: Ocean Modeling, v. 35, no. 3, p. 230-244.
The fluvial sediment budget of a dammed river (upper Muga, southern Pyrenees)
NASA Astrophysics Data System (ADS)
Piqué, G.; Batalla, R. J.; López, R.; Sabater, S.
2017-09-01
Many rivers in the Mediterranean region are regulated for urban and agricultural purposes. Reservoir presence and operation results in flow alteration and sediment discontinuity, altering the longitudinal structure of the fluvial system. This study presents a 3-year sediment budget of a highly dammed Mediterranean river (the Muga, southern Pyrenees), which has experienced flow regulation since the 1969 owing to a 61-hm3 reservoir. Flow discharge and suspended sediment concentration were monitored immediately upstream and downstream from the reservoir, whereas bedload transport was estimated by means of bedload formulae and estimated from regional data. Results show how the dam modifies river flow, reducing the magnitude of floods and shortening its duration. At the same time, duration of low flows increases. The downstream flow regime follows reservoir releases that are mostly driven by the irrigation needs in the lowlands. Likewise, suspended sediment and bedload transport are shown to be notably affected by the dam. Sediment transport upstream was mainly associated with floods and was therefore concentrated in short periods of time (i.e., > 90% of the sediment load occurred in < 1% of the time). Downstream from the dam, sediments were transported more constantly (i.e., 90% of the load was carried during 50% of the time). Total sediment load upstream from the dam equalled 23,074 t, while downstream it was < 1000 t. Upstream, sediment load was equally distributed between suspension and bedload (i.e., 10,278 and 12,796 t respectively), whereas suspension dominated sediment transport downstream. More than 95% of the sediments transported from the upstream basins were trapped in the reservoir, a fact that explains the sediment deficit and the river bed armouring observed downstream. Overall, the dam disrupted the natural water and sediment fluxes, generating a highly modified environment downstream. Below the dam, the whole ecosystem shifted to stable conditions owing to the reduction of water and sediment loads.
Wilson, P.A.; Roberts, Harry H.
1993-01-01
Existing theories of off-bank sediment transport cannot account for rapid rates of sedimentation observed in Bahama bank and Florida shelf periplatform environments. Analysis of the physical processes operating during winter cold fronts suggests that accelerated off-bank transport of shallow-water mud may be achieved by sinking off-bank flows of sediment-charged hyperpycnal (super-dense) platform waters.
Windblown sediment transport and loss in a desert-oasis ecotone in the Tarim Basin.
Pi, Huawei; Sharratt, Brenton; Lei, Jiaqiang
2017-08-10
The Tarim Basin is regarded as one of the most highly erodible areas in China. Desert comprises 64% of the land use in the Basin, but the desert-oasis ecotone plays a prominent role in maintaining oasis ecological security and stability. Yet, little is known concerning the magnitude of windblown sediment transport in a desert-oasis ecotone. Therefore, aeolian sediment transport and loss was assessed from a desert-oasis experimental site located near Alaer City in the northwestern Tarim Basin. Sediment transport and factors governing transport were measured during three high wind events in 2012 and four events in 2013. Sediment transport was measured to a height of 10 m using passive aeolian airborne sediment samplers. The mass flux profile over the eroding surface was well represented by the power-law (R 2 > 0.77). Sediment loss from the site ranged from 118 g m -2 for the 20-24Apr 2012 wind event to 2925 g m -2 for the 31Mar-11Apr 2012 event. Suspension accounted for 67.4 to 84.8% of sediment loss across all high wind events. Our results indicate the severity of wind erosion in a desert-oasis ecotone and thus encourage adoption of management practices that will enhance oasis ecological security.
The Growth and Decay of Hydrate Anomalies in Marine Sediments
NASA Astrophysics Data System (ADS)
Irizarry, J. T.; Rempel, A. W.
2014-12-01
Natural gas hydrates, stored in huge quantities beneath permafrost, and in submarine sediments on the continental shelf, have the potential to become a vital clean-burning energy source. However, clear evidence is recorded in coastal sediments worldwide that past changes in environmental conditions have caused hydrates to become unstable and trigger both massive submarine landslides and the development of crater-like pockmarks, thereby releasing methane into the overlying seawater and atmosphere, where it acts as a powerful greenhouse gas. Arctic permafrost is thawing, and environmental changes can alter ocean circulation to warm the seafloor, causing hydrates to dissociate or dissolve in the sediments beneath. Decades of focused research provide a firm understanding of laboratory conditions under which hydrates become unstable and dissociate, and how hydrate reserves form when microbes convert organic material into methane, which can also dissolve and be carried by pore waters into the hydrate stability zone. Despite these advances, many key questions that concern both the resource potential of hydrates and their role in causing environmental geohazards, are intimately tied to the more poorly understood behavior of hydrate anomalies, which tend to be concentrated in the large pores of sand layers and form segregated lenses and nodules in muds. We present simple models designed to unravel the importance of the diverse physical interactions (i.e. flow focusing, free-gas infiltration, and pore-scale solubility effects) that help control how hydrate anomalies form. Predicted hydrate distributions are qualitatively different when accumulation in anomalies is supplied primarily by: 1. aqueous flow through sediments with enhanced permeability, 2. free-gas transport high above the three-phase stability boundary, or 3. diffusive transport along solubility gradients associated with pore-scale effects. We discuss examples that illustrate each of these distinct generation modes, in hopes of providing a framework for interpreting field observations of hydrate anomalies and their geomechanical properties in terms of the history of environmental forcing that led to their development.
Majcher, Emily H.; Phelan, Daniel J.; Lorah, Michelle M.; McGinty, Angela L.
2007-01-01
Wetlands act as natural transition zones between ground water and surface water, characterized by the complex interdependency of hydrology, chemical and physical properties, and biotic effects. Although field and laboratory demonstrations have shown efficient natural attenuation processes in the non-seep wetland areas and stream bottom sediments of West Branch Canal Creek, chlorinated volatile organic compounds are present in a freshwater tidal creek at Aberdeen Proving Ground, Maryland. Volatile organic compound concentrations in surface water indicate that in some areas of the wetland, preferential flow paths or seeps allow transport of organic compounds from the contaminated sand aquifer to the overlying surface water without undergoing natural attenuation. From 2002 through 2004, the U.S. Geological Survey, in cooperation with the Environmental Conservation and Restoration Division of the U.S. Army Garrison, Aberdeen Proving Ground, characterized preferential ground-water seepage as part of an ongoing investigation of contaminant distribution and natural attenuation processes in wetlands at this site. Seep areas were discrete and spatially consistent during thermal infrared surveys in 2002, 2003, and 2004 throughout West Branch Canal Creek wetlands. In these seep areas, temperature measurements in shallow pore water and sediment more closely resembled those in ground water than those in nearby surface water. Generally, pore water in seep areas contaminated with chlorinated volatile organic compounds had lower methane and greater volatile organic compound concentrations than pore water in non-seep wetland sediments. The volatile organic compounds detected in shallow pore water in seeps were spatially similar to the dominant volatile organic compounds in the underlying Canal Creek aquifer, with both parent and anaerobic daughter compounds detected. Seep locations characterized as focused seeps contained the highest concentrations of chlorinated parent compounds, relatively low concentrations of chlorinated daughter compounds, and insignificant concentrations of methane in shallow pore water samples. These seeps were primarily along the creek edge or formed a dendritic-like pattern between the wetland and creek channel. In contrast, seep locations characterized as diffuse seeps contained relatively high concentrations of chlorinated daughter compounds (or a mixture of daughter and parent compounds) and detectable methane concentrations in shallow pore water samples. These seeps were primarily along the wetland boundary. Qualitative thermal infrared surveys coupled with quantitative verification of temperature differences, and screening for volatile organic compound and methane concentrations proved to be effective tools in determining the overall extent of preferential seepage. Hydrologic and physical properties of wetland sediments were characterized at two focused and one diffuse seep location. In the seeps with focused discharge, measured seepage was consistent over the tidal cycle, whereas more variability with tidal fluctuation was measured in the diffuse seep location. At all locations, areas were identified within the general seep boundaries where discharge was minimal. In all cases, the geometric mean of non-zero vertical flux measurements was greater than those previously reported in the non-seep wetland sediments using flow-net analysis. Flux was greater in the focused discharge areas than in the diffuse discharge area, and all fluxes were within the range reported in the literature for wetland discharge. Vertical hydraulic conductivity estimated from seepage flux and a mean vertical gradient at seeps with focused discharge resulted in a minimum hydraulic conductivity two orders of magnitude greater than those estimated in the non-seep sediment. In contrast, vertical conductivity estimates at a diffuse seep were similar to estimates along a nearby line of section through a non-seep area. Horizontal hydraulic cond
MODELLING SEDIMENT TRANSPORT FOR THE LAKE MICHIGAN MASS BALANCE PROJECT
A sediment transport model is one component of the overall ensemble of models being developed for the Lake Michigan Mass Balance. The SEDZL model is being applied to simulate the fine-grained sediment transport in Lake Michigan for the 1982-1983 and 1994-1995 periods. Model perf...
EVALUATION OF THE STATE-OF-THE-ART CONTAMINATED SEDIMENT TRANSPORT AND FATE MODELING SYSTEM
Modeling approaches for evaluating the transport and fate of sediment and associated contaminants are briefly reviewed. The main emphasis is on: 1) the application of EFDC (Environmental Fluid Dynamics Code), the state-of-the-art contaminated sediment transport and fate public do...
Dynamic transport capacity in gravel-bed river systems
T. E. Lisle; B. Smith
2003-01-01
Abstract - Sediment transport capacity mediates the transfer and storage of bed material between alluvial reservoirs in a drainage system. At intermediate time scales corresponding to the evolution of sediment pulses, conditions governing bed-material transport capacity under the hydrologic regime respond to variations in storage and sediment flux as pulses extend,...
Bedform Dimensions and Suspended Sediment Observations in a Mixed Sand-Mud Intertidal Environment
NASA Astrophysics Data System (ADS)
Lichtman, I. D.; Amoudry, L.; Peter, T.; Jaco, B.
2016-02-01
Small-scale bedforms, such as ripples, can profoundly modify near-bed hydrodynamics, near-bed sediment transport and resuspension, and benthic-pelagic fluxes. Knowledge of their dimensions is important for a number of applications. Fundamentally different processes can occur depending on the dimensions of ripples: for low and long ripples, the bed remains dynamically flat and diffusive processes dominate sediment entrainment; for steep ripples, flow separation occurs above the ripples creating vortices, which are far more efficient at entraining sediment into the water column. Recent laboratory experiments for mixtures of sand and mud have shown that bedform dimensions decrease with increasing sediment mud content. However, these same experiments also showed that mud is selectively taken into suspension when bedforms are created and migrate on the bed, leaving sandy bedforms. This entrainment process, selectively suspending fine sediment, is referred to as winnowing. To improve our understanding of bedform and entrainment dynamics of mixed sediments, in situ observations were made on intertidal flats in the Dee Estuary, United Kingdom. A suite of instruments were deployed collecting co-located measurements of the near-bed hydrodynamics, waves, small-scale bed morphology and suspended sediment. Three sites were occupied consecutively, over a Spring-Neap cycle, collecting data for different bed compositions, tide levels and wind conditions. Bed samples were taken when the flats became exposed at low water and a sediment trap collected suspended load when inundated. This study will combine these measurements to investigate the interactions between small-scale bed morphology, near-bed hydrodynamics and sediment entrainment. We will examine bedform development in the complex hydrodynamic and wave climate of tidal flats, in relation to standard ripple predictors. We will also relate the variability in small-scale bedforms to variation in hydrodynamic and wave conditions, and to suspension and entrainment processes for mixed sediments.
Modifying Bagnold's Sediment Transport Equation for Use in Watershed-Scale Channel Incision Models
NASA Astrophysics Data System (ADS)
Lammers, R. W.; Bledsoe, B. P.
2016-12-01
Destabilized stream channels may evolve through a sequence of stages, initiated by bed incision and followed by bank erosion and widening. Channel incision can be modeled using Exner-type mass balance equations, but model accuracy is limited by the accuracy and applicability of the selected sediment transport equation. Additionally, many sediment transport relationships require significant data inputs, limiting their usefulness in data-poor environments. Bagnold's empirical relationship for bedload transport is attractive because it is based on stream power, a relatively straightforward parameter to estimate using remote sensing data. However, the equation is also dependent on flow depth, which is more difficult to measure or estimate for entire drainage networks. We recast Bagnold's original sediment transport equation using specific discharge in place of flow depth. Using a large dataset of sediment transport rates from the literature, we show that this approach yields similar predictive accuracy as other stream power based relationships. We also explore the applicability of various critical stream power equations, including Bagnold's original, and support previous conclusions that these critical values can be predicted well based solely on sediment grain size. In addition, we propagate error in these sediment transport equations through channel incision modeling to compare the errors associated with our equation to alternative formulations. This new version of Bagnold's bedload transport equation has utility for channel incision modeling at larger spatial scales using widely available and remote sensing data.
Performance of a novel multiple-signal luminescence sediment tracing method
NASA Astrophysics Data System (ADS)
Reimann, Tony
2014-05-01
Optically Stimulated Luminescence (OSL) is commonly used for dating sediments. Luminescence signals build up due to exposure of mineral grains to natural ionizing radiation, and are reset when these grains are exposed to (sun)light during sediment transport and deposition. Generally, luminescence signals can be read in two ways, potentially providing information on the burial history (dating) or the transport history (sediment tracing) of mineral grains. In this study we use a novel luminescence measurement procedure (Reimann et al., submitted) that simultaneously monitors six different luminescence signals from the same sub-sample (aliquot) to infer the transport history of sand grains. Daylight exposure experiments reveal that each of these six signals resets (bleaches) at a different rate, thus allowing to trace the bleaching history of the sediment in six different observation windows. To test the feasibility of luminescence sediment tracing in shallow-marine coastal settings we took eight sediment samples from the pilot mega-nourishment Zandmotor in Kijkduin (South-Holland). This site provides relatively controlled conditions as the morphological evolution of this nourishment is densely monitored (Stive et al., 2013). After sampling the original nourishment source we took samples along the seaward facing contour of the spit that was formed from August 2011 (start of nourishment) to June 2012 (sampling). It is presumed that these samples originate from the source and were transported and deposited within the first year after construction. The measured luminescence of a sediment sample was interpolated onto the daylight bleaching curve of each signal to assign the Equivalent Exposure Time (EET) to a sample. The EET is a quantitative measure of the full daylight equivalent a sample was exposed to during sediment transport, i.e. the higher the EET the longer the sample has been transported or the more efficient it has been exposed to day-light during sediment transport. The EET increases with increasing distance from the nourishment source, indicating that our method is capable to quantify sediment transport distances. We furthermore observed that the EET of an aeolian analogue is orders of magnitudes higher than those of the water-lain transported Zandmotor samples, suggesting that our approach is also able to differentiate between different modes of coastal sediment transport. This new luminescence approach offers new possibilities to decipher the sedimentation history of palaeo-environmental archives e.g. in coastal, fluvial or aeolian settings. References: Reimann, T.et al. Quantifying the degreeof bleaching during sediment transport using a polymineral multiple-signalluminescence approach. Submitted. Stive, M.J.F. et al. 2013. A New Alternative to Saving Our Beaches from Sea-Level Rise: The SandEngine. Journal of Coastal research 29, 1001-1008.
Sediment transport processes in estuaries: An introduction
NASA Astrophysics Data System (ADS)
Perillo, Gerardo M. E.; Lavelle, J. William
1989-10-01
Research on estuarine sediment transport processes has received increasing attention in recent years, attention related to concerns about water clarity, pollutant distribution and transport, dredge spoil disposal, creation and maintenance of channels and basins for navigational purposes, and shoreline erosion. Still, the geophysical community that addresses these concerns and the underlying fundamentals of sediment transport in an estuary is widely but relatively sparsely distributed around the world. The need to draw these researchers together to discuss ideas and outlooks led to the AGU Chapman Conference on Sediment Transport Processes in Estuaries that was held at the Universidad Nacional del Sur in Bahía Bianca, Argentina, from June 13 to June 17, 1988 [Perillo and Lavelle, 1988]. The meeting sought to provide a timely impetus to further progress in sediment transport research in estuaries, promote communication among researchers using different investigatory approaches, and develop collaborations among estuarine scientists in developed and developing nations.
NASA Astrophysics Data System (ADS)
Lynch, J. F.; Gross, T. F.; Sherwood, C. R.; Irish, J. D.; Brumley, B. H.
1997-04-01
During the 1988-1989 Sediment Transport Events on Shelves and Slopes (STRESS) experiment, a 1-MHz acoustic backscatter system (ABSS), deployed in 90 m of water off the California coast measured vertical profiles of suspended sediment concentration from 1.5 to (nominally) 26 meters above bottom (m.a.b.). An 8-week-long time series was obtained, showing major sediment transport events (storms) in late December and early January. Comparison of the acoustics measurements from 1.5 m.a.b. are made with optical backscatter system (OBS) concentration estimates lower in the boundary layer (0.25 m.a.b.). Correlations between ABSS and OBS concentration measurements and the boundary layer forcing functions (waves, currents, and their non-linear interaction) provided a variety of insights into the nature of the sediment transport of the STRESS site. Transport rates and integrated transport are seen to be dominated by the largest storm events.
NASA Technical Reports Server (NTRS)
Komar, P. D.
1980-01-01
The paper discusses application to Martian water flows of the criteria that determine which grain-size ranges are transported as bed load, suspension, and wash load. The results show nearly all sand-sized material and finer would have been transported as wash load and that basalt pebbles and even cobbles could have been transported at rapid rates of suspension. An analysis of the threshold of sediment motion on Mars further indicates that the flows would have been highly competent, the larger flows having been able to transport boulder-sized material. Comparisons with terrestrial rivers which transport hyperconcentration levels of sediments suggest that the Martian water flows could have achieved sediment concentrations up to 70% in weight. Although it is possible that flows could have picked up enough sediment to convert to pseudolaminar mud flows, they probably remained at hyperconcentration levels and fully turbulent in flow character.
An Experimental Study of Diffusivity of Technetium-99 in Hanford Vadose Zone Sediments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mattigod, Shas V.; Bovaird, Chase C.; Wellman, Dawn M.
2012-11-01
One of the methods being considered at the Hanford site in Washington for safely disposing of low-level radioactive wastes (LLW) is to encase the waste in concrete and entomb the packages in the Hanford vadose zone sediments. The current plan for waste isolation consists of stacking low-level waste packages on a trench floor, surrounding the stacks with reinforced steel, and encasing these packages with concrete. Any failure of the concrete encasement may result in water intrusion and consequent mobilization of radionuclides from the waste packages. The mobilized radionuclides may escape from the encased concrete by mass flow and/or diffusion andmore » move into the surrounding subsurface sediments. It is therefore necessary to conduct an assessment of the performance of the concrete encasement structure and the surrounding soil’s ability to retard radionuclide migration. The retardation factors for radionuclides contained in the waste packages can be determined from measurements of diffusion coefficients for these contaminants through concrete and fill material. Because of their anionic nature in aqueous solutions, the radionuclides, 99Tc and 129I were identified as long-term dose contributors in LLW. The leachability and/or diffusion of these radionuclide species must be measured in order to assess the long-term performance of waste grouts when contacted with vadose-zone porewater or groundwater. To measure the diffusivity, a set of experiments were conducted using 99Tc-spiked concrete (with 0 and 4% metallic iron additions) in contact with unsaturated soil half-cells that reflected the typical moisture contents of Hanford vadose zone sediments. The 99Tc diffusion profiles in the soil half cells were measured after a time lapse of ~1.9 yr. Using the concentration profiles, the 99Tc diffusivity coefficients were calculated based on Fick’s Second Law.« less
NASA Astrophysics Data System (ADS)
Deal, E.; Carazzo, G.; Jellinek, M.
2013-12-01
The longevity of volcanic ash clouds generated by explosive volcanic plumes is difficult to predict. Diffusive convective instabilities leading to the production of internal layering are known to affect the stability and longevity of these clouds, but the detailed mechanisms controlling particle dynamics and sedimentation are poorly understood. We present results from a series of analog experiments reproducing diffusive convection in a 2D (Hele-Shaw) geometry, which allow us to constrain conditions for layer formation, sedimentation regime and cloud residence time as a function of only the source conditions. We inject a turbulent particle-laden jet sideways into a tank containing a basal layer of salt water and an upper layer of fresh water, which ultimately spreads as a gravity current. After the injection is stopped, particles in suspension settle through the cloud to form particle boundary layers (PBL) at the cloud base. We vary the initial particle concentration of the plume and the injection velocity over a wide range of conditions to identify and characterize distinct regimes of sedimentation. Our experiments show that convective instabilities driven as a result of differing diffusivities of salt and particles lead to periodic layering over a wide range of conditions expected in nature. The flux of particles from layered clouds and the thicknesses of the layers are understood using classical theory for double diffusive convection adjusted for the hydrodynamic diffusion of particles. Although diffusive convection increases sedimentation rates for the smallest particles (<30 μm) its overall effect is to extend the cloud residence time to several hours by maintaining larger particles in suspension within the layers, which is several orders of magnitude longer than expected when considering individual settling rates.
Dispersal of fine sediment in nearshore coastal waters
Warrick, Jonathan A.
2013-01-01
Fine sediment (silt and clay) plays an important role in the physical, ecological, and environmental conditions of coastal systems, yet little is known about the dispersal and fate of fine sediment across coastal margin settings outside of river mouths. Here I provide simple physical scaling and detailed monitoring of a beach nourishment project near Imperial Beach, California, with a high portion of fines (40% silt and clay by weight). These results provide insights into the pathways and residence times of fine sediment transport across a wave-dominated coastal margin. Monitoring of the project used physical, optical, acoustic, and remote sensing techniques to track the fine portion of the nourishment sediment. The initial transport of fine sediment from the beach was influenced strongly by longshore currents of the surf zone that were established in response to the approach angles of the waves. The mean residence time of fine sediment in the surf zone—once it was suspended—was approximately 1 hour, and rapid decreases in surf zone fine sediment concentrations along the beach resulted from mixing and offshore transport in turbid rip heads. For example, during a day with oblique wave directions and surf zone longshore currents of approximately 25 cm/s, the offshore losses of fine sediment in rips resulted in a 95% reduction in alongshore surf zone fine sediment flux within 1 km of the nourishment site. However, because of the direct placement of nourishment sediment on the beach, fine suspended-sediment concentrations in the swash zone remained elevated for several days after nourishment, while fine sediment was winnowed from the beach. Once offshore of the surf zone, fine sediment settled downward in the water column and was observed to transport along and across the inner shelf. Vertically sheared currents influenced the directions and rates of fine sediment transport on the shelf. Sedimentation of fine sediment was greatest on the seafloor directly offshore of the nourishment site. However, a mass balance of sediment suggests that the majority of the fine sediment moved far away (over 2 km) from the nourishment site or to water depths greater than 10 m, where fine sediment represents a substantial portion of the bed material. Thus, the fate of fine sediment in nearshore waters was influenced strongly by wave conditions, surf zone and rip current transport, and the vertical density and flow conditions of coastal waters.
Sediment transport in the area of the Sopot pier
NASA Astrophysics Data System (ADS)
Przyborska, Anna; Jakacki, Jaromir; Andrzejewski, Jan
2017-04-01
Coastal sediment transport is a natural process that appears when energy of waves is sufficient for moving solid particles from the bottom. Sediment transport rate depends on the median diameter of local sand and it is compatible with the direction of wave propagation. Also it is natural, that any protruded from the beach construction disturbs continuity of beach transport caused by waves. The Sopot pier has been built over 100 years ago and it is the longest wooden pier on the Baltic Sea coast, it is about half kilometre long. The pier is located at the end of the Monte Casino street and it is one of the biggest attractions of the city as well as in the country. In the past and now we have observed the disturbed sediment transport in the area of the Sopot pier. But during recent years, this process has gained greater momentum. The beach at the Sopot pier has been growing by several meters. All indicates that the cause of the observed phenomenon is the marina. The marina structure which is in some distance from the shore, has been acting as a powerful, emerged breakwater boundary. As a tool the sediment transport model was implemented for Sopot pier area. The implemented numerical forecasting sediment transport model in the area of the Sopot pier reflects well the deposit growth rate for the archived data from 2010 to 2015. On the basis of differences in bathymetry data provided by the Maritime office and the analysis the model results the average deposits in accumulation in the pear area was determined to be about 16,000 m3 / year for the assumed area of analysis, the model have shown similar result. The analysis suggests that strong winds generating significant waves as well as meaningful sediment transport dominate in the autumn and winter. You cannot, however, rule out strong waves in summer. Under moderate waves the sediment transport is insignificant. The most intense movement of the sediment is observed in the vicinity of the shoreline, it disappears with distance from the shoreline. Numerical sediment transport model DHI MIKE also shows that the Sopot marina generates a 'shadow' of waves. The shadow causes a disturbance in the continuity of natural sediment transport along the beach, the consequence of which is the creation of the sand shapes at the bottom in the form of convexity of coastline known as a spit. The model results also shows that 80% of the accumulated sand near the pier come from local beaches south-east of the pier. The remaining 20% was transported from the north-west. The direction of sediment transport corresponds to the directions of local waves
NASA Astrophysics Data System (ADS)
Bates, B.; Lowell, T. V.; Diefendorf, A. F.; Freimuth, E. J.; Stewart, A. K.
2017-12-01
Plant wax compounds preserved in lake sediments are used as proxies for paleohydrologic reconstructions. Despite their presence in lake sediments, little is known about their transport from plants to their deposition in lake sediments. By drawing on the leaf and pollen taphonomy literature combined with sediment focusing models, it is possible to develop several working hypotheses for the transport and deposition of plant waxes in lake sediments. An improved understanding of plant wax transport and deposition into lake sediments is necessary to increase the accuracy of paleohydrologic reconstructions. To better understand the controls on plant wax transport and deposition in lake sediment, we analyzed the sedimentary plant waxes from 3 lakes in the Adirondack Mountains of New York. These lakes were chosen to capture a range of basin-specific properties to evaluate their influences on the transport and deposition of plant wax compounds in surface sediments. We spatially characterized sediment properties with surface sediment samples and high-resolution underwater imaging, acoustically profiled the sub-bottom, and measured temperature profiles. From each site, we measured n-alkanes, bulk organic content (loss-on-ignition), bulk carbon and nitrogen concentrations, C:N ratios, and bulk carbon isotopes. Preliminary n-alkane concentrations and chain length distributions, as well as bulk carbon isotopes, are variable within each lake basin suggesting a mix of aquatic and terrestrial sources. The bulk carbon isotope values for two of the three lakes show a similar range of -2‰ compared to a range of -6.3‰ at the third lake. Likewise, the range of total n-alkane concentrations is much higher in the third lake suggesting that the controls on the distribution of n-alkanes and organic carbon are different between lakes. For terrestrial plant waxes, we find low n-alkane concentrations in sandy nearshore sediments relative to higher n-alkane concentrations in deeper fine-grained sediments. Combined, this information suggests that littoral processes focus organic compounds and fine sediments towards the main depo-center of the lake. These and other observations highlight important relationships between basin-specific properties and processes controlling the transport and deposition of plant wax compounds.
NASA Astrophysics Data System (ADS)
Czuba, Jonathan A.; Foufoula-Georgiou, Efi; Gran, Karen B.; Belmont, Patrick; Wilcock, Peter R.
2017-05-01
Understanding how sediment moves along source to sink pathways through watersheds—from hillslopes to channels and in and out of floodplains—is a fundamental problem in geomorphology. We contribute to advancing this understanding by modeling the transport and in-channel storage dynamics of bed material sediment on a river network over a 600 year time period. Specifically, we present spatiotemporal changes in bed sediment thickness along an entire river network to elucidate how river networks organize and process sediment supply. We apply our model to sand transport in the agricultural Greater Blue Earth River Basin in Minnesota. By casting the arrival of sediment to links of the network as a Poisson process, we derive analytically (under supply-limited conditions) the time-averaged probability distribution function of bed sediment thickness for each link of the river network for any spatial distribution of inputs. Under transport-limited conditions, the analytical assumptions of the Poisson arrival process are violated (due to in-channel storage dynamics) where we find large fluctuations and periodicity in the time series of bed sediment thickness. The time series of bed sediment thickness is the result of dynamics on a network in propagating, altering, and amalgamating sediment inputs in sometimes unexpected ways. One key insight gleaned from the model is that there can be a small fraction of reaches with relatively low-transport capacity within a nonequilibrium river network acting as "bottlenecks" that control sediment to downstream reaches, whereby fluctuations in bed elevation can dissociate from signals in sediment supply.
Seismic Monitoring of Bedload Transport in a Steep Mountain Catchment
NASA Astrophysics Data System (ADS)
Roth, D. L.; Finnegan, N. J.; Brodsky, E. E.; Turowski, J. M.; Wyss, C. R.; Badoux, A.
2014-12-01
Predicting river channel evolution relies on an understanding of when and at what rate coarse sediment moves in a channel. Unfortunately, our predictive abilities are limited by the logistical challenges and potential dangers inherent in current techniques for monitoring sediment transport during flood events, especially in steep, highly active landscapes. However, the use of seismic signals near rivers shows promise as a safe, low-cost method for studying sediment transport in these settings. Seismic signals near rivers are partially generated by both water turbulence and bedload sediment particles impacting the river bed during transport. Here, we attempt to isolate the seismic signatures of discharge and bedload transport in a steep mountain channel by examining high-frequency broadband seismic data from the well-studied Erlenbach stream (local slope of ~10%) in the Swiss Prealps. The extensive monitoring infrastructure and long history of sediment transport data at this field site allow us to independently constrain discharge, precipitation, and bedload transport during flood events over a two month field campaign. We perform a general linear least squares inversion of the seismic data, exploiting times with isolated rain or discharge events, to identify the spectral signals of water turbulence, rain, and bedload sediment transport. We find that the signal generated by rain exhibits a roughly broadband spectrum, while discharge and sediment transport exhibit power primarily in lower frequency bands. Our preliminary results indicate that with only precipitation and discharge data, it is possible to isolate the seismic signal of bedload transport in steep fluvial environments. Seismic studies may therefore have the potential to revolutionize our ability to monitor and understand these environments.
Large-scale suspended sediment transport and sediment deposition in the Mekong Delta
NASA Astrophysics Data System (ADS)
Manh, N. V.; Dung, N. V.; Hung, N. N.; Merz, B.; Apel, H.
2014-08-01
Sediment dynamics play a major role in the agricultural and fishery productivity of the Mekong Delta. However, the understanding of sediment dynamics in the delta, one of the most complex river deltas in the world, is very limited. This is a consequence of its large extent, the intricate system of rivers, channels and floodplains, and the scarcity of observations. This study quantifies, for the first time, the suspended sediment transport and sediment deposition in the whole Mekong Delta. To this end, a quasi-2D hydrodynamic model is combined with a cohesive sediment transport model. The combined model is calibrated using six objective functions to represent the different aspects of the hydraulic and sediment transport components. The model is calibrated for the extreme flood season in 2011 and shows good performance for 2 validation years with very different flood characteristics. It is shown how sediment transport and sediment deposition is differentiated from Kratie at the entrance of the delta on its way to the coast. The main factors influencing the spatial sediment dynamics are the river and channel system, dike rings, sluice gate operations, the magnitude of the floods, and tidal influences. The superposition of these factors leads to high spatial variability of sediment transport, in particular in the Vietnamese floodplains. Depending on the flood magnitude, annual sediment loads reaching the coast vary from 48 to 60% of the sediment load at Kratie. Deposited sediment varies from 19 to 23% of the annual load at Kratie in Cambodian floodplains, and from 1 to 6% in the compartmented and diked floodplains in Vietnam. Annual deposited nutrients (N, P, K), which are associated with the sediment deposition, provide on average more than 50% of mineral fertilizers typically applied for rice crops in non-flooded ring dike floodplains in Vietnam. Through the quantification of sediment and related nutrient input, the presented study provides a quantitative basis for estimating the benefits of annual Mekong floods for agriculture and fishery, and is an important piece of information with regard to the assessment of the impacts of deltaic subsidence and climate-change-related sea level rise on delta morphology.
Rainfall, runoff and sediment transport in a Mediterranean mountainous catchment.
Tuset, J; Vericat, D; Batalla, R J
2016-01-01
The relation between rainfall, runoff, erosion and sediment transport is highly variable in Mediterranean catchments. Their relation can be modified by land use changes and climate oscillations that, ultimately, will control water and sediment yields. This paper analyses rainfall, runoff and sediment transport relations in a meso-scale Mediterranean mountain catchment, the Ribera Salada (NE Iberian Peninsula). A total of 73 floods recorded between November 2005 and November 2008 at the Inglabaga Sediment Transport Station (114.5 km(2)) have been analysed. Suspended sediment transport and flow discharge were measured continuously. Rainfall data was obtained by means of direct rain gauges and daily rainfall reconstructions from radar information. Results indicate that the annual sediment yield (2.3 t km(-1) y(-1) on average) and the flood-based runoff coefficients (4.1% on average) are low. The Ribera Salada presents a low geomorphological and hydrological activity compared with other Mediterranean mountain catchments. Pearson correlations between rainfall, runoff and sediment transport variables were obtained. The hydrological response of the catchment is controlled by the base flows. The magnitude of suspended sediment concentrations is largely correlated with flood magnitude, while sediment load is correlated with the amount of direct runoff. Multivariate analysis shows that total suspended load can be predicted by integrating rainfall and runoff variables. The total direct runoff is the variable with more weight in the equation. Finally, three main hydro-sedimentary phases within the hydrological year are defined in this catchment: (a) Winter, where the catchment produces only water and very little sediment; (b) Spring, where the majority of water and sediment is produced; and (c) Summer-Autumn, when little runoff is produced but significant amount of sediments is exported out of the catchment. Results show as land use and climate change may have an important role in modifying the cycles of water and sediment yields in Mediterranean mountain catchments. Copyright © 2015 Elsevier B.V. All rights reserved.
Sediment transport-storage functions for alluvial reservoirs
Thomas E. Lisle; Michael Church
2000-01-01
In a drainage network, sediment is routed through a linked series of channel/valley segments (alluvial reservoirs) that are distinguished from their neighbors by their capacity to store and transport sediment.
Schoellhamer, David H.
1994-01-01
Sediments are an important component of the San Francisco Bay estuarine system. Potentially toxic substances, such as metals and pesticides, adsorb to sediment particles. The sediments on the bottom of the Bay provide the habitat for benthic communities which can ingest these substances and introduce them into the food web. The bottom sediments are also a reservoir of nutrients. The transport and fate of suspended sediment is an important factor in determining the transport and fate of the constituents adsorbed on the sediment. Suspended sediments also limit light availability in the bay, which limits photosynthesis and primary production, and deposit in ports and shipping channels, which require dredging. Dredged materials are disposed in Central San Francisco Bay.
NASA Astrophysics Data System (ADS)
Xiang, Aishuang; Zhou, Sheng; Koel, Bruce E.; Jaffé, Peter R.
2014-04-01
Groundwater remediation using iron oxide and zero-valent iron nanoparticles (NPs) can be effective, but is limited in many applications due to the NP strong retention in groundwater-saturated porous media after injection, the passivation of the porous surface, and the high cost of nanomaterials versus macro scale iron. In this study, we investigated transport of bare and polymer-coated 2-line ferrihydrite NPs (30-300 nm) in saturated aquifer sediments. The influence of poly(acrylic acid) (PAA) polymer coatings was studied on the colloidal stability and transport in sediments packed column tests simulating groundwater flow in saturated sediments. In addition, the influence of calcium cations was investigated by transport measurements using sediments with calcium concentrations in the aqueous phase ranging from 0.5 (typical for most sediments) to 2 mM. Measurements were also made of zeta potential, hydrodynamic diameter, polymer adsorption and desorption properties, and bio-availability of PAA-coated NPs. We found that NP transport through the saturated aquifer sediments was improved by PAA coating and that the transport properties could be tuned by adjusting the polymer concentration. We further discovered that PAA coatings enhanced NP transport, compared to bare NPs, in all calcium-containing experiments tested, however, the presence of calcium always exhibited a negative effect on NP transport. In tests of bioavailability, the iron reduction rate of the coated and bare NPs by Geobacter sulfurreducens was the same, which shows that the PAA coating does not significantly reduce NP Fe(III) bioavailability. Our results demonstrate that much improved transport of iron oxide NP can be achieved in saturated aquifer sediments by introducing negatively charged polyelectrolytes and optimizing polymer concentrations, and furthermore, these coated NPs retain their bioavailability that is needed for applications in bio-environmental remediation.
NASA Astrophysics Data System (ADS)
Lynch, K.; Jackson, D.; Delgado-Fernandez, I.; Cooper, J. A.; Baas, A. C.; Beyers, M.
2010-12-01
This study examines sand transport and wind speed across a beach at Magilligan Strand, Northern Ireland, under offshore wind conditions. Traditionally the offshore component of local wind regimes has been ignored when quantifying beach-dune sediment budgets, with the sheltering effect of the foredune assumed to prohibit grain entrainment on the adjoining beach. Recent investigations of secondary airflow patterns over coastal dunes have suggested this may not be the case, that the turbulent nature of the airflow in these zones enhances sediment transport potential. Beach sediment may be delivered to the dune toe by re-circulating eddies under offshore winds in coastal areas, which may explain much of the dynamics of aeolian dunes on coasts where the dominant wind direction is offshore. The present study investigated aeolian sediment transport patterns under an offshore wind event. Empirical data were collected using load cell traps, for aeolian sediment transport, co-located with 3-D ultrasonic anemometers. The instrument positioning on the sub-aerial beach was informed by prior analysis of the airflow patterns using computational fluid dynamics. The array covered a total beach area of 90 m alongshore by 65 m cross-shore from the dune crest. Results confirm that sediment transport occurred in the ‘sheltered’ area under offshore winds. Over short time and space scales the nature of the transport is highly complex; however, preferential zones for sand entrainment may be identified. Alongshore spatial heterogeneity of sediment transport seems to show a relationship to undulations in the dune crest, while temporal and spatial variations may also be related to the position of the airflow reattachment zone. These results highlight the important feedbacks between flow characteristics and transport in a complex three dimensional surface.
ONE-DIMENSIONAL HYDRODYNAMIC/SEDIMENT TRANSPORT MODEL FOR STREAM NETWORKS: TECHNICAL REPORT
This technical report describes a new sediment transport model and the supporting post-processor, and sampling procedures for sediments in streams. Specifically, the following items are described herein:
EFDC1D - This is a new one-dimensional hydrodynamic and sediment tr...
Construction of sediment budgets for drainage basins
William E. Dietrich; Thomas Dunne; Neil F. Humphrey; Leslie M. Reid
1982-01-01
Abstract - A sediment budget for a drainage basin is a quantitative statement of the rates of production, transport, and discharge of detritus. To construct a sediment budget for a drainage basin, one must integrate the temporal and spatial variations of transport and storage processes. This requires: recognition and quantification of transport processes, recognition...
Uncertainty in the Modeling of Tsunami Sediment Transport
NASA Astrophysics Data System (ADS)
Jaffe, B. E.; Sugawara, D.; Goto, K.; Gelfenbaum, G. R.; La Selle, S.
2016-12-01
Erosion and deposition from tsunamis record information about tsunami hydrodynamics and size that can be interpreted to improve tsunami hazard assessment. A recent study (Jaffe et al., 2016) explores sources and methods for quantifying uncertainty in tsunami sediment transport modeling. Uncertainty varies with tsunami properties, study site characteristics, available input data, sediment grain size, and the model used. Although uncertainty has the potential to be large, case studies for both forward and inverse models have shown that sediment transport modeling provides useful information on tsunami inundation and hydrodynamics that can be used to improve tsunami hazard assessment. New techniques for quantifying uncertainty, such as Ensemble Kalman Filtering inversion, and more rigorous reporting of uncertainties will advance the science of tsunami sediment transport modeling. Uncertainty may be decreased with additional laboratory studies that increase our understanding of the semi-empirical parameters and physics of tsunami sediment transport, standardized benchmark tests to assess model performance, and the development of hybrid modeling approaches to exploit the strengths of forward and inverse models. As uncertainty in tsunami sediment transport modeling is reduced, and with increased ability to quantify uncertainty, the geologic record of tsunamis will become more valuable in the assessment of tsunami hazard. Jaffe, B., Goto, K., Sugawara, D., Gelfenbaum, G., and La Selle, S., "Uncertainty in Tsunami Sediment Transport Modeling", Journal of Disaster Research Vol. 11 No. 4, pp. 647-661, 2016, doi: 10.20965/jdr.2016.p0647 https://www.fujipress.jp/jdr/dr/dsstr001100040647/
Hajigholizadeh, Mohammad; Melesse, Assefa M; Fuentes, Hector R
2018-03-14
The erosion and sediment transport processes in shallow waters, which are discussed in this paper, begin when water droplets hit the soil surface. The transport mechanism caused by the consequent rainfall-runoff process determines the amount of generated sediment that can be transferred downslope. Many significant studies and models are performed to investigate these processes, which differ in terms of their effecting factors, approaches, inputs and outputs, model structure and the manner that these processes represent. This paper attempts to review the related literature concerning sediment transport modelling in shallow waters. A classification based on the representational processes of the soil erosion and sediment transport models (empirical, conceptual, physical and hybrid) is adopted, and the commonly-used models and their characteristics are listed. This review is expected to be of interest to researchers and soil and water conservation managers who are working on erosion and sediment transport phenomena in shallow waters. The paper format should be helpful for practitioners to identify and generally characterize the types of available models, their strengths and their basic scope of applicability.
Fuentes, Hector R.
2018-01-01
The erosion and sediment transport processes in shallow waters, which are discussed in this paper, begin when water droplets hit the soil surface. The transport mechanism caused by the consequent rainfall-runoff process determines the amount of generated sediment that can be transferred downslope. Many significant studies and models are performed to investigate these processes, which differ in terms of their effecting factors, approaches, inputs and outputs, model structure and the manner that these processes represent. This paper attempts to review the related literature concerning sediment transport modelling in shallow waters. A classification based on the representational processes of the soil erosion and sediment transport models (empirical, conceptual, physical and hybrid) is adopted, and the commonly-used models and their characteristics are listed. This review is expected to be of interest to researchers and soil and water conservation managers who are working on erosion and sediment transport phenomena in shallow waters. The paper format should be helpful for practitioners to identify and generally characterize the types of available models, their strengths and their basic scope of applicability. PMID:29538335
Florsheim, J.L.; Pellerin, B.A.; Oh, N.H.; Ohara, N.; Bachand, P.A.M.; Bachand, Sandra M.; Bergamaschi, B.A.; Hernes, P.J.; Kavvas, M.L.
2011-01-01
The spatial and temporal variability of sediment sources, storage, and transport were investigated in a small agricultural watershed draining the Coast Ranges and Sacramento Valley in central California. Results of field, laboratory, and historical data analysis in the Willow Slough fluvial system document changes that transformed a transport-limited depositional system to an effective erosion and transport system, despite a large sediment supply. These changes were caused by a combination of factors: (i) an increase in transport capacity, and (ii) hydrologic alteration. Alteration of the riparian zone and drainage network pattern during the past ~ 150 years included a twofold increase in straightened channel segments along with a baselevel change from excavation that increased slope, and increased sediment transport capacity by ~ 7%. Hydrologic alteration from irrigation water contributions also increased transport capacity, by extending the period with potential for sediment transport and erosion by ~ 6 months/year. Field measurements document Quaternary Alluvium as a modern source of fine sediment with grain size distributions characterized by 5 to 40% fine material. About 60% of an upland and 30% of a lowland study reach incised into this deposit exhibit bank erosion. During this study, the wet 2006 and relatively dry 2007 water years exhibited a range of total annual suspended sediment load spanning two orders of magnitude: ~ 108,500 kg/km2/year during 2006 and 5,950 kg/km2/year during 2007, only 5% of that during the previous year. Regional implications of this work are illustrated by the potential for a small tributary such as Willow Slough to contribute sediment – whereas large dams limit sediment supply from larger tributaries – to the Sacramento River and San Francisco Bay Delta and Estuary. This work is relevant to lowland agricultural river–floodplain systems globally in efforts to restore aquatic and riparian functions and where water quality management includes reducing fine sediment contributions that can couple with other pollutants.
NASA Astrophysics Data System (ADS)
Karwan, D. L.; Pizzuto, J. E.; Skalak, K.; Benthem, A.
2016-12-01
The sources and transport of suspended sediments within watersheds of varying sizes remain an important area of study within the geosciences. Short term fallout radionuclides, such as Beryllium-7 (7Be) and Lead-210 (210Pb), and their ratios can be a valuable tool for gaining insight into suspended sediment transport dynamics. We use these techniques in combination with other sediment exchange and transport models to estimate residence and transport time of suspended sediment in nested reaches of the Difficult Run watershed (Virginia, USA) on timescales from storm events to centuries and longer. During several winter and spring 2015-2016 precipitation events, Beryllium-7 to excess Lead-210 ratios vary from 0.4 - 2.5 in direct channel precipitation and 0.2 - 1 on suspended sediment. Previously published age dating models would suggest that the suspended sediments were originally "tagged" by, or in contact with wet fallout of, by Beryllium7 fallout approximately 20-80 days before sampling. Sediments at the upstream reach (watershed size 14 km2) tend to be older ( 75 days), while sediments at the downstream reach (watershed size 117 km2) tend to be newer ( 20 days). We use multiple sediment transport models and hypothesize that fluvial sediments are tagged with direct channel precipitation between the upstream and downstream reach, explaining their apparently younger age. Our analysis includes error propagation as well as a comparison of radioisotope gamma analyses from different labs across multiple institutions.
NASA Astrophysics Data System (ADS)
Boudet, L.; Sabatier, F.; Radakovitch, O.
2017-11-01
The delta of the Rhone River is one of the most important in the Mediterranean Sea. Beach erosion problems along its coasts have developed in recent decades, raising the need for a better understanding of the sediment transport processes at the Rhone mouth and the adjacent beaches. Because field data are very difficult to obtain in such an energetic environment, a high-resolution numerical model (Delft3D) is applied to this area. This model is calibrated by taking into account hydrodynamical and morphological observations. Special attention is given to storm and flood events, which are the major morphological drivers. Therefore, scenarios with different wave and flow conditions are run to estimate the influence of these events on the sediment transport. The analysis of historical hydrological data shows that storms from the southeast represent 70% of the events between 1979 to 2010 and that 20% of them were followed by a flood within a few days. Consequently, specific simulations for such conditions are performed using Delft3D. The model simulates trends in the bedload sediment transport that are consistent with the bedforms observed in the bathymetry data. The total sediment transport at the outlet is only influenced by the river flow, but sediment transport at the mouth-bar depends on an equilibrium between the influence of floods and storms and the succession of these events. A period of 2 or 3 days separating the storm and flood peaks is sufficient to differentiate wave and river flow-induced sediment transport. The waves constrain the total transport on the mouth-bar and shallow mouth-lobe and induce a longshore transfer towards the adjacent beaches. The riverine sediments can be exported seaward only if a flood is energetic enough compared to the storm intensity. Regardless, when a flood is greater than the decadal return period (7800 m3 s-1), the sediment is transported from the outlet across the mouth-bar and is directed offshore.
Effect of sediment transport boundary conditions on the numerical modeling of bed morphodynamics
USDA-ARS?s Scientific Manuscript database
Experimental sediment transport studies in laboratory flumes can use two sediment-supply methods: an imposed feed at the upstream end or recirculation of sediment from the downstream end to the upstream end. These methods generally produce similar equilibrium bed morphology, but temporal evolution c...
NASA Astrophysics Data System (ADS)
Amiruddin
2018-03-01
This study entitled "Distribution of Bedload Transport Against Coastline Changes in Donggala Coast", the formulation of the problem (1) how much of the estimated bedload transport in Donggala Bodies; (2) where were the location of erosion and sedimentation strong point based on the estimation of bed load transport; (3) the extent to which the prediction of shoreline change rate of transport of sediments in coastal areas Donggala. This study aims to: (1) the calculation of estimated bed load transport in Donggala waters; (2) determining the location of the point of erosion and sedimentation strong basis of estimated bedload transport; (3) the prediction of shoreline change rate of transport of sediments in coastal areas Donggala.The survey method used in this research to collect primary data include: (1) decision point waypoint coordinates of each location of measurement; (2) measurement of height, period and direction of the waves; (3) a large measurement of sediment transport; (4) The angle measurement coastline, angle of attack and wave direction, and secondary data include: (1) information from the public; (2) the physical condition data field. The results showed that: (1) general estimate sediment transport base in each location data collection is varied. This is due to the different points of the coastline as well as the angle of attack of the shoreline waters broke Donggala; (2) strong abrasion at the study site occurs at the point Ts4 (622.75 m3/yr) and TS11 (755.25 m3/yr) located in the Village Tosale and point Tw7 and Tw17 (649.25 m3/yr) in Village of Towale. As for the strong sedimentation occurs at the point Ts3 (450.50 m3/yr) located in the Village Tosale and Tg3 point (357.75 m3/yr) located in the Village Tolonggano; (3) of the predicted outcome coastline changes based on the input data estimate sediment transport, beaches and waves parameters is seen that the changes in the location prophyl coastline tends toward research into or undergo a process of abrasion.
Friedly, J.C.; Davis, J.A.; Kent, D.B.
1995-01-01
A plausible and consistent model is developed to obtain a quantitative description of the gradual disappearance of hexavalent chromium (Cr(VI)) from groundwater in a small-scale field tracer test and in batch kinetic experiments using aquifer sediments under similar chemical conditions. The data exhibit three distinct timescales. Fast reduction occurs in well-stirred batch reactors in times much less than 1 hour and is followed by slow reduction over a timescale of the order of 2 days. In the field, reduction occurs on a timescale of the order of 8 days. The model is based on the following hypotheses. The chemical reduction reaction occurs very fast, and the longer timescales are caused by diffusion resistance. Diffusion into the secondary porosity of grains causes the apparent slow reduction rate in batch experiments. In the model of the field experiments, the reducing agent, heavy Fe(II)-bearing minerals, is heterogeneously distributed in thin strata located between larger nonreducing sand lenses that comprise the bulk of the aquifer solids. It is found that reducing strata of the order of centimeters thick are sufficient to contribute enough diffusion resistance to cause the observed longest timescale in the field. A one-dimensional advection/dispersion model is formulated that describes the major experimental trends. Diffusion rates are estimated in terms of an elementary physical picture of flow through a stratified medium containing identically sized spherical grains. Both reduction and sorption reactions are included. Batch simulation results are sensitive to the fraction of reductant located at or near the surface of grains, which controls the amount of rapid reduction, and the secondary porosity, which controls the rate of slow reduction observed in batch experiments. Results of Cr(VI) transport simulations are sensitive to the thickness and relative size of the reducing stratum. Transport simulation results suggest that nearly all of the reductant must be located in the reducing stratum. Within this context and as long as there is adequate reductive capacity present, the transport simulation results are insensitive to the parameters important for the batch simulations. The results illustrate how a combination of field measurements and batch laboratory studies can be used to improve predictive modeling of contaminant transport.
A detrital sediment budget of a Maldivian reef platform
NASA Astrophysics Data System (ADS)
Morgan, K. M.; Kench, P. S.
2014-10-01
Sediment dynamics are an important control on the morphology and development of reef systems by actively removing and redistributing excess detrital sediment. This study presents quantitative data from direct point measurements of sediment transport on the platform surface and fore-reef slope of Vabbinfaru reef, North Malé Atoll, Maldives. A suite of sediment traps were used to construct actual rates of platform sediment fluxes and off-reef export over different spatial and temporal (seasonal) scales to establish key sediment transport pathways. Findings showed that high sediment fluxes occur on Vabbinfaru platform in the absence of major storm activity (up to 1905 g m- 1 d- 1), with 95% of annual transport occurring during the southwest monsoon as a result of increased wave energy. Climate-driven changes in the platform process regime caused a reversal of net sediment transport pathways between each monsoon season. Off-reef export rates were high, reaching a maximum of 12.58 kg m- 1 y- 1 for gravel and 407 g m- 1 d- 1 for sand-sized sediment. An estimated 127,120 kg is exported from the platform annually equating to a significant loss from the reef sediment budget and contributing to the long-term geomorphic development of the fore-reef slope and atoll basin. Detrital sediment reservoirs on Vabbinfaru are not purely depositional carbonate sinks, but rather temporary stores that are important in the transfer of sediment between reef zones.
Post-depositional formation of vivianite-type minerals alters sediment phosphorus records
NASA Astrophysics Data System (ADS)
Dijkstra, Nikki; Hagens, Mathilde; Egger, Matthias; Slomp, Caroline P.
2018-02-01
Phosphorus (P) concentrations in sediments are frequently used to reconstruct past environmental conditions in freshwater and marine systems, with high values thought to be indicative of a high biological productivity. Recent studies suggest that the post-depositional formation of vivianite, an iron(II)-phosphate mineral, might significantly alter trends in P with sediment depth. To assess its importance, we investigate a sediment record from the Bornholm Basin that was retrieved during the Integrated Ocean Drilling Program (IODP) Baltic Sea Paleoenvironment Expedition 347 in 2013, consisting of lake sediments overlain by brackish-marine deposits. Combining bulk sediment geochemistry with microanalysis using scanning electron microscope energy dispersive spectroscopy (SEM-EDS) and synchrotron-based X-ray absorption spectroscopy (XAS), we demonstrate that vivianite-type minerals rich in manganese and magnesium are present in the lake deposits just below the transition to the brackish-marine sediments (at 11.5 to 12 m sediment depth). In this depth interval, phosphate that diffuses down from the organic-rich, brackish-marine sediments meets porewaters rich in dissolved iron in the lake sediments, resulting in the precipitation of iron(II) phosphate. Results from a reactive transport model suggest that the peak in iron(II) phosphate originally occurred at the lake-marine transition (9 to 10 m) and moved downwards due to changes in the depth of a sulfidization front. However, its current position relative to the lake-marine transition is stable as the vivianite-type minerals and active sulfidization fronts have been spatially separated over time. Experiments in which vivianite was subjected to sulfidic conditions demonstrate that incorporation of manganese or magnesium in vivianite does not affect its susceptibility to sulfide-induced dissolution. Our work highlights that post-depositional formation of iron(II) phosphates such as vivianite has the potential to strongly alter sedimentary P records particularly in systems that are subject to environmental perturbation, such as a change in primary productivity, which can be associated with a lake-marine transition.
Morphodynamics and Sediment Transport on the Huanghe (Yellow River) Delta: Work in Progress
NASA Astrophysics Data System (ADS)
Kineke, G. C.; Calson, B.; Chadwick, A. J.; Chen, L.; Hobbs, B. F.; Kumpf, L. L.; Lamb, M. P.; Ma, H.; Moodie, A. J.; Mullane, M.; Naito, K.; Nittrouer, J. A.; Parker, G.
2017-12-01
Deltas are perhaps the most dynamic of coastal landforms with competing processes that deliver and disperse sediment. As part of the NSF Coastal SEES program, an interdisciplinary team of scientists from the US and China are investigating processes that link river and coastal sediment transport responsible for morphodynamic change of the Huanghe delta- an excellent study site due to its high sediment load and long history of natural and engineered avulsions, that is, abrupt shifts in the river course. A fundamental component of the study is a better understanding of sediment transport physics in a river system that transports mostly silt. Through theory and data analysis, we find that fine-grained rivers fail to develop full scale dunes, which results in faster water flow and substantially larger sediment fluxes as compared to sandy rivers (e.g. the Mississippi River). We also have developed new models for sediment-size dependent entrainment that are needed to make longer term predictions of river sedimentation patterns. On the delta front, we are monitoring the high sediment flux to the coast, which results in steep foresets and ideal conditions for off-shore sediment delivery via gravity flows. These constraints on sediment transport are being used to develop new theory for where and when rivers avulse - including the effects of variable flood discharge, sediment supply, and sea level rise -and how deltas ultimately grow through repeated cycles of lobe development. Flume experiments and field observations are being used to test these models, both in the main channel of the Huanghe and in channels abandoned after historic avulsions. Abandoned channels and floodplains are now dominated by coastal sediment transport through a combination of wave resuspension and tidal transport, settling lag and reverse estuarine circulation. Finally, the field and laboratory tested numerical models are being used as inputs to define a cost curve for efficient avulsion management of the Huanghe delta by minimizing expected flood-damage cost. Taken together, these studies can inform management policies and promote consideration of the natural evolution of deltas to achieve sustainability.
McGann, Mary; Erikson, Li H.; Wan, Elmira; Powell, Charles; Maddocks, Rosalie F.; Barnard, P.L.; Jaffee, B.E.; Schoellhamer, D.H.
2013-01-01
Although conventional sediment parameters (mean grain size, sorting, and skewness) and provenance have typically been used to infer sediment transport pathways, most freshwater, brackish, and marine environments are also characterized by abundant sediment constituents of biological, and possibly anthropogenic and volcanic, origin that can provide additional insight into local sedimentary processes. The biota will be spatially distributed according to its response to environmental parameters such as water temperature, salinity, dissolved oxygen, organic carbon content, grain size, and intensity of currents and tidal flow, whereas the presence of anthropogenic and volcanic constituents will reflect proximity to source areas and whether they are fluvially- or aerially-transported. Because each of these constituents have a unique environmental signature, they are a more precise proxy for that source area than the conventional sedimentary process indicators. This San Francisco Bay Coastal System study demonstrates that by applying a multi-proxy approach, the primary sites of sediment transport can be identified. Many of these sites are far from where the constituents originated, showing that sediment transport is widespread in the region. Although not often used, identifying and interpreting the distribution of naturally-occurring and allochthonous biologic, anthropogenic, and volcanic sediment constituents is a powerful tool to aid in the investigation of sediment transport pathways in other coastal systems.
NASA Astrophysics Data System (ADS)
Schmitt, R. J. P.; Bizzi, S.; Kondolf, G. M.; Rubin, Z.; Castelletti, A.
2016-12-01
Field and laboratory evidence indicates that the spatial distribution of transport in both alluvial and bedrock rivers is an adaptation to sediment supply. Sediment supply, in turn, depends on spatial distribution and properties (e.g., grain sizes and supply rates) of individual sediment sources. Analyzing the distribution of transport capacity in a river network could hence clarify the spatial distribution and properties of sediment sources. Yet, challenges include a) identifying magnitude and spatial distribution of transport capacity for each of multiple grain sizes being simultaneously transported, and b) estimating source grain sizes and supply rates, both at network scales. Herein, we approach the problem of identifying the spatial distribution of sediment sources and the resulting network sediment fluxes in a major, poorly monitored tributary (80,000 km2) of the Mekong. Therefore, we apply the CASCADE modeling framework (Schmitt et al. (2016)). CASCADE calculates transport capacities and sediment fluxes for multiple grainsizes on the network scale based on remotely-sensed morphology and modelled hydrology. CASCADE is run in an inverse Monte Carlo approach for 7500 random initializations of source grain sizes. In all runs, supply of each source is inferred from the minimum downstream transport capacity for the source grain size. Results for each realization are compared to sparse available sedimentary records. Only 1 % of initializations reproduced the sedimentary record. Results for these realizations revealed a spatial pattern in source supply rates, grain sizes, and network sediment fluxes that correlated well with map-derived patterns in lithology and river-morphology. Hence, we propose that observable river hydro-morphology contains information on upstream source properties that can be back-calculated using an inverse modeling approach. Such an approach could be coupled to more detailed models of hillslope processes in future to derive integrated models of hillslope production and fluvial transport processes, which is particularly useful to identify sediment provenance in poorly monitored river basins.
Sadeghian, Amir; Hudson, Jeff; Wheater, Howard; Lindenschmidt, Karl-Erich
2017-08-01
In this study, we built a two-dimensional sediment transport model of Lake Diefenbaker, Saskatchewan, Canada. It was calibrated by using measured turbidity data from stations along the reservoir and satellite images based on a flood event in 2013. In June 2013, there was heavy rainfall for two consecutive days on the frozen and snow-covered ground in the higher elevations of western Alberta, Canada. The runoff from the rainfall and the melted snow caused one of the largest recorded inflows to the headwaters of the South Saskatchewan River and Lake Diefenbaker downstream. An estimated discharge peak of over 5200 m 3 /s arrived at the reservoir inlet with a thick sediment front within a few days. The sediment plume moved quickly through the entire reservoir and remained visible from satellite images for over 2 weeks along most of the reservoir, leading to concerns regarding water quality. The aims of this study are to compare, quantitatively and qualitatively, the efficacy of using turbidity data and satellite images for sediment transport model calibration and to determine how accurately a sediment transport model can simulate sediment transport based on each of them. Both turbidity data and satellite images were very useful for calibrating the sediment transport model quantitatively and qualitatively. Model predictions and turbidity measurements show that the flood water and suspended sediments entered upstream fairly well mixed and moved downstream as overflow with a sharp gradient at the plume front. The model results suggest that the settling and resuspension rates of sediment are directly proportional to flow characteristics and that the use of constant coefficients leads to model underestimation or overestimation unless more data on sediment formation become available. Hence, this study reiterates the significance of the availability of data on sediment distribution and characteristics for building a robust and reliable sediment transport model.
The effect of flow data resolution on sediment yield estimation and channel design
NASA Astrophysics Data System (ADS)
Rosburg, Tyler T.; Nelson, Peter A.; Sholtes, Joel S.; Bledsoe, Brian P.
2016-07-01
The decision to use either daily-averaged or sub-daily streamflow records has the potential to impact the calculation of sediment transport metrics and stream channel design. Using bedload and suspended load sediment transport measurements collected at 138 sites across the United States, we calculated the effective discharge, sediment yield, and half-load discharge using sediment rating curves over long time periods (median record length = 24 years) with both daily-averaged and sub-daily streamflow records. A comparison of sediment transport metrics calculated with both daily-average and sub-daily stream flow data at each site showed that daily-averaged flow data do not adequately represent the magnitude of high stream flows at hydrologically flashy sites. Daily-average stream flow data cause an underestimation of sediment transport and sediment yield (including the half-load discharge) at flashy sites. The degree of underestimation was correlated with the level of flashiness and the exponent of the sediment rating curve. No consistent relationship between the use of either daily-average or sub-daily streamflow data and the resultant effective discharge was found. When used in channel design, computed sediment transport metrics may have errors due to flow data resolution, which can propagate into design slope calculations which, if implemented, could lead to unwanted aggradation or degradation in the design channel. This analysis illustrates the importance of using sub-daily flow data in the calculation of sediment yield in urbanizing or otherwise flashy watersheds. Furthermore, this analysis provides practical charts for estimating and correcting these types of underestimation errors commonly incurred in sediment yield calculations.
NASA Astrophysics Data System (ADS)
Schuchardt, Anne; Pöppl, Ronald; Morche, David
2016-04-01
Large wood (LW) provides various ecological and morphological functions. Recent research has focused on habitat diversity and abundance, effects on channel planforms, pool formation, flow regimes and increased storage of organic matter as well as storage of fine sediment. While LW studies and sediment transport rates are the focus of numerous research questions, the influence of large channel blocking barriers (e.g. LW) and their impact on sediment trapping and decoupling transportation pathways is less studied. This project tries to diminish the obvious gap and deals with the modifications of the sediment connectivity by LW. To investigate the influence of large wood on sediment transporting processes and sediment connectivity, the spatial distribution and characterization of LW (>1 m in length and >10 cm in diameter) in channels is examined by field mapping and dGPS measurements. Channel hydraulic parameters are determined by field measurements of channel long profiles and cross sections. To quantify the direct effects of LW on discharge and bed load transport the flow velocity and bed load up- and downstream of LW is measured using an Ott-Nautilus and a portable Helley-Smith bed load sampler during different water stages. Sediment storages behind LWD accumulations will be monitored with dGPS. While accumulation of sediment indicates in-channel sediment storage and thus disconnection from downstream bed load transport, erosion of sediment evidences downstream sediment connectivity. First results will be presented from two study areas in mountain ranges in Germany (Wetterstein Mountain Range) and Austria (Bohemian Massif).
Wu, Zhihao; Wang, Shengrui; He, Mengchang; Zhang, Li; Jiao, Lixin
2015-10-01
Labile P, Fe, and sulfide with the high spatial resolution in sediment porewater of five sites (A-E) of Dianchi Lake (China) were measured at same locations using AgI/Chelex-100, Chelex-100, and ferrihydrite DGT (diffusive gradients in thin films) probes. DGT derived P/Fe/S concentrations in sediment porewater on millimeter or sub-millimeter scale in order to reveal the element remobilization process and the mechanism of "internal P-loading" of sediments in Dianchi Lake. Decomposition of alga biomass in the uppermost sediment layer and the reductive dissolution of Fe-bound P in the anoxic sediment were the two main processes causing P release. A dynamic numerical model-DIFS (DGT-induced flux in sediments) was used to assess sediment-P reactivity (capacity of solid pool and rate of transfer) and P release risk by kinetic parameter-T C (1089∼20,450 s), distribution coefficient-K d (167.09∼502.0 cm(3) g(-1)), resupply parameter-R (from 0.242 to 0.518), and changes of dissolved/sorbed concentration, R and M at the microzone of DGT/porewater/sediment.
Barnard, Patrick L.; Erikson, Li H.; Elias, Edwin P.L.; Dartnell, Peter
2013-01-01
The morphology of ~ 45,000 bedforms from 13 multibeam bathymetry surveys was used as a proxy for identifying net bedload sediment transport directions and pathways throughout the San Francisco Bay estuary and adjacent outer coast. The spatially-averaged shape asymmetry of the bedforms reveals distinct pathways of ebb and flood transport. Additionally, the region-wide, ebb-oriented asymmetry of 5% suggests net seaward-directed transport within the estuarine-coastal system, with significant seaward asymmetry at the mouth of San Francisco Bay (11%), through the northern reaches of the Bay (7-8%), and among the largest bedforms (21% for λ > 50 m). This general indication for the net transport of sand to the open coast strongly suggests that anthropogenic removal of sediment from the estuary, particularly along clearly defined seaward transport pathways, will limit the supply of sand to chronically eroding, open-coast beaches. The bedform asymmetry measurements significantly agree (up to ~ 76%) with modeled annual residual transport directions derived from a hydrodynamically-calibrated numerical model, and the orientation of adjacent, flow-sculpted seafloor features such as mega-flute structures, providing a comprehensive validation of the technique. The methods described in this paper to determine well-defined, cross-validated sediment transport pathways can be applied to estuarine-coastal systems globally where bedforms are present. The results can inform and improve regional sediment management practices to more efficiently utilize often limited sediment resources and mitigate current and future sediment supply-related impacts.
Barnard, Patrick L.; Erikson, Li H.; Elias, Edwin P.L.; Dartnell, Peter; Barnard, P.L.; Jaffee, B.E.; Schoellhamer, D.H.
2013-01-01
The morphology of ~ 45,000 bedforms from 13 multibeam bathymetry surveys was used as a proxy for identifying net bedload sediment transport directions and pathways throughout the San Francisco Bay estuary and adjacent outer coast. The spatially-averaged shape asymmetry of the bedforms reveals distinct pathways of ebb and flood transport. Additionally, the region-wide, ebb-oriented asymmetry of 5% suggests net seaward-directed transport within the estuarine-coastal system, with significant seaward asymmetry at the mouth of San Francisco Bay (11%), through the northern reaches of the Bay (7–8%), and among the largest bedforms (21% for λ > 50 m). This general indication for the net transport of sand to the open coast strongly suggests that anthropogenic removal of sediment from the estuary, particularly along clearly defined seaward transport pathways, will limit the supply of sand to chronically eroding, open-coast beaches. The bedform asymmetry measurements significantly agree (up to ~ 76%) with modeled annual residual transport directions derived from a hydrodynamically-calibrated numerical model, and the orientation of adjacent, flow-sculpted seafloor features such as mega-flute structures, providing a comprehensive validation of the technique. The methods described in this paper to determine well-defined, cross-validated sediment transport pathways can be applied to estuarine-coastal systems globally where bedforms are present. The results can inform and improve regional sediment management practices to more efficiently utilize often limited sediment resources and mitigate current and future sediment supply-related impacts.
Toward a unifying constitutive relation for sediment transport across environments
NASA Astrophysics Data System (ADS)
Houssais, Morgane; Jerolmack, Douglas J.
2017-01-01
Landscape evolution models typically parse the environment into different process domains, each with its own sediment transport law: e.g., soil creep, landslides and debris flows, and river bed-load and suspended-sediment transport. Sediment transport in all environments, however, contains many of the same physical ingredients, albeit in varying proportions: grain entrainment due to a shear force, that is a combination of fluid flow, particle-particle friction and gravity. We present a new take on the perspective originally advanced by Bagnold, that views the long profile of a hillsope-river-shelf system as a continuous gradient of decreasing granular friction dominance and increasing fluid drag dominance on transport capacity. Recent advances in understanding the behavior and regime transitions of dense granular systems suggest that the entire span of granular-to-fluid regimes may be accommodated by a single-phase rheology. This model predicts a material-flow effective friction (or viscosity) that changes with the degree of shear rate and confining pressure. We present experimental results confirming that fluid-driven sediment transport follows this same rheology, for bed and suspended load. Surprisingly, below the apparent threshold of motion we observe that sediment particles creep, in a manner characteristic of glassy systems. We argue that this mechanism is relevant for both hillslopes and rivers. We discuss the possibilities of unifying sediment transport across environments and disciplines, and the potential consequences for modeling landscape evolution.
Palmer-Felgate, Elizabeth J; Mortimer, Robert J G; Krom, Michael D; Jarvie, Helen P; Williams, Richard J; Spraggs, Rachael E; Stratford, Charlie J
2011-05-01
Sedimentation ponds are widely believed to act as a primary removal process for phosphorus (P) in nutrient treatment wetlands. High frequency in-situ P, ammonium (NH(4)(+)) and dissolved oxygen measurements, alongside occasional water quality measurements, assessed changes in nutrient concentrations and productivity in the sedimentation pond of a treatment wetland between March and June. Diffusive equilibrium in thin films (DET) probes were used to measure in-situ nutrient and chemistry pore-water profiles. Diffusive fluxes across the sediment-water interface were calculated from the pore-water profiles, and dissolved oxygen was used to calculate rates of primary productivity and respiration. The sedimentation pond was a net sink for total P (TP), soluble reactive P (SRP) and NH(4)(+) in March, but became subject to a net internal loading of TP, SRP and NH(4)(+) in May, with SRP concentrations increasing by up to 41μM (1300μl(-1)). Reductions in chlorophyll a and dissolved oxygen concentrations also occurred at this time. The sediment changed from a small net sink of SRP in March (average diffusive flux: -8.2μmolm(-2)day(-1)) to a net source of SRP in June (average diffusive flux: +1324μmolm(-2)day(-1)). A diurnal pattern in water column P concentrations, with maxima in the early hours of the morning, and minima in the afternoon, occurred during May. The diurnal pattern and release of SRP from the sediment were attributed to microbial degradation of diatom biomass, causing reduction of the dissolved oxygen concentration and leading to redox-dependent release of P from the sediment. In June, 2.7mol-Pday(-1) were removed by photosynthesis and 23mol-Pday(-1) were supplied by respiration in the lake volume. SRP was also released through microbial respiration within the water column, including the decomposition of algal matter. It is imperative that consideration to internal recycling is given when maintaining sedimentation ponds, and before the installation of new ponds designed to treat nutrient waste. Copyright © 2011 Elsevier B.V. All rights reserved.
Lee, Casey J.; Glysson, G. Douglas
2013-01-01
Human-induced and natural changes to the transport of sediment and sediment-associated constituents can degrade aquatic ecosystems and limit human uses of streams and rivers. The lack of a dedicated, easily accessible, quality-controlled database of sediment and ancillary data has made it difficult to identify sediment-related water-quality impairments and has limited understanding of how human actions affect suspended-sediment concentrations and transport. The purpose of this report is to describe the creation of a quality-controlled U.S. Geological Survey suspended-sediment database, provide guidance for its use, and summarize characteristics of suspended-sediment data through 2010. The database is provided as an online application at http://cida.usgs.gov/sediment to allow users to view, filter, and retrieve available suspended-sediment and ancillary data. A data recovery, filtration, and quality-control process was performed to expand the availability, representativeness, and utility of existing suspended-sediment data collected by the U.S. Geological Survey in the United States before January 1, 2011. Information on streamflow condition, sediment grain size, and upstream landscape condition were matched to sediment data and sediment-sampling sites to place data in context with factors that may influence sediment transport. Suspended-sediment and selected ancillary data are presented from across the United States with respect to time, streamflow, and landscape condition. Examples of potential uses of this database for identifying sediment-related impairments, assessing trends, and designing new data collection activities are provided. This report and database can support local and national-level decision making, project planning, and data mining activities related to the transport of suspended-sediment and sediment-associated constituents.
NASA Technical Reports Server (NTRS)
Nitsche, Ludwig C.; Nitsche, Johannes M.; Brenner, Howard
1988-01-01
The sedimentation and diffusion of a nonneutrally buoyant Brownian particle in vertical fluid-filled cylinder of finite length which is instantaneously inverted at regular intervals are investigated analytically. A one-dimensional convective-diffusive equation is derived to describe the temporal and spatial evolution of the probability density; a periodicity condition is formulated; the applicability of Fredholm theory is established; and the parameter-space regions are determined within which the existence and uniqueness of solutions are guaranteed. Numerical results for sample problems are presented graphically and briefly characterized.
Langland, Michael J.
2015-01-01
The U.S. Geological Survey (USGS) has conducted numerous sediment transport studies in the Susquehanna River and in particular in three reservoirs in the Lower Susquehanna River Basin to determine sediment transport rates over the past century and to document changes in storage capacity. The Susquehanna River is the largest tributary to Chesapeake Bay and transports about one-half of the total freshwater input and substantial amounts of sediment and nutrients to the bay. The transported loads are affected by deposition in reservoirs (Lake Clarke, Lake Aldred, and Conowingo Reservoir) behind three hydropower dams. The geometry and texture of the deposited sediments in each reservoir upstream from the three dams has been a subject of research in recent decades. Particle size deposition and sediment scouring processes are part of the reservoir dynamics. A Total Maximum Daily Load (TMDL) for nitrogen, phosphorus, and sediment was established for Chesapeake Bay to attain water-quality standards. Six states and the District of Columbia agreed to reduce loads to the bay and to meet load allocation goals for the TMDL. The USGS has been estimating annual sediment loads at the Susquehanna River at Marietta, Pennsylvania (above Lake Clarke), and Susquehanna River at Conowingo, Maryland (below Conowingo Reservoir), since the mid-1980s to predict the mass balance of sediment transport through the reservoir system. Using streamflow and sediment data from the Susquehanna River at Harrisburg, Pennsylvania (upstream from the reservoirs), from 1900 to 1981, sediment loads were greatest in the early to mid-1900s when land disturbance activities from coal production and agriculture were at their peak. Sediment loads declined in the 1950s with the introduction of agricultural soil conservation practices. Loads were dominated by climatic factors in the 1960s (drought) and 1970s (very wet) and have been declining since the 1980s through 2012. The USGS developed a regression equation to predict the sediment scour load for daily mean streamflows greater than 300,000 cubic feet per second for the Lower Susquehanna River reservoirs. A compilation of data from various sources produced a range in total sediment transported through the reservoir system and allowed for apportioning to source (watershed or scour) for various streamflows. In 2011, Conowingo Reservoir was estimated to be about 92 percent of sediment storage capacity. Since construction of Conowingo Dam in 1929 through 2012, approximately 470 million tons of sediment was transported down the Susquehanna River into the reservoir system, approximately 290 million tons were trapped, and approximately 180 million tons were transported to Chesapeake Bay. Spatial and estimated total sand deposition in Conowingo Reservoir based on historical sediment cores indicated continued migration of sand downgradient toward the dam and the winnowing of silts and clays near the dam due to scour.
Fate and Transport of Cohesive Sediment and HCB in the Middle Elbe River Basin
NASA Astrophysics Data System (ADS)
Moshenberg, Kari; Heise, Susanne; Calmano, Wolfgang
2014-05-01
Chemical contamination of waterways and floodplains is a pervasive environmental problem that threatens aquatic ecosystems worldwide. Due to extensive historical contamination and redistribution of contaminated sediments throughout the basin, the Elbe River transports significant loads of contaminants downstream, particularly during flood events. This study focuses on Hexachlorobenzene (HCB), a persistent organic pollutant that has been identified as a contaminant of concern in the Elbe Basin. To better understand the fate and transport of cohesive sediments and sediment-sorbed HCB, a hydrodynamic, suspended sediment, and contaminated transport model for the 271-km reach of the Elbe River basin between Dresden and Magdeburg was developed. Additionally, trends in suspended sediment and contaminant transport were investigated in the context of the recent high frequency of floods in the Elbe Basin. This study presents strong evidence that extreme high water events, such as the August, 2002 floods, have a permanent effect on the sediment transport regime in the Elbe River. Additionally, results indicate that a significant component annual HCB loads are transported downstream during floods. Additionally, modeled results for suspended sediment and HCB accumulation on floodplains are presented and discussed. Uncertainty and issues related to model development are also addressed. A worst case analysis of HCB uptake by dairy cows and beef cattle indicate that significant, biologically relevant quantities of sediment-sorbed HCB accumulate on the Elbe floodplains following flood events. Given both the recent high frequency of floods in the Elbe Basin, and the potential increase in flood frequency due to climate change, an evaluation of source control measures and/or additional monitoring of floodplain soils and grasses is recommended.
Dissolved gaseous mercury formation and mercury volatilization in intertidal sediments.
Cesário, Rute; Poissant, Laurier; Pilote, Martin; O'Driscoll, Nelson J; Mota, Ana M; Canário, João
2017-12-15
Intertidal sediments of Tagus estuary regularly experiences complex redistribution due to tidal forcing, which affects the cycling of mercury (Hg) between sediments and the water column. This study quantifies total mercury (Hg) and methylmercury (MMHg) concentrations and fluxes in a flooded mudflat as well as the effects on water-level fluctuations on the air-surface exchange of mercury. A fast increase in dissolved Hg and MMHg concentrations was observed in overlying water in the first 10min of inundation and corresponded to a decrease in pore waters, suggesting a rapid export of Hg and MMHg from sediments to the water column. Estimations of daily advective transport exceeded the predicted diffusive fluxes by 5 orders of magnitude. A fast increase in dissolved gaseous mercury (DGM) concentration was also observed in the first 20-30min of inundation (maximum of 40pg L -1 ). Suspended particulate matter (SPM) concentrations were inversely correlated with DGM concentrations. Dissolved Hg variation suggested that biotic DGM production in pore waters is a significant factor in addition to the photochemical reduction of Hg. Mercury volatilization (ranged from 1.1 to 3.3ngm -2 h -1 ; average of 2.1ngm -2 h -1 ) and DGM production exhibited the same pattern with no significant time-lag suggesting a fast release of the produced DGM. These results indicate that Hg sediment/water exchanges in the physical dominated estuaries can be underestimated when the tidal effect is not considered. Copyright © 2017 Elsevier B.V. All rights reserved.
Sediment Transport Dynamics and Bedform Evolution During Unsteady Flows
NASA Astrophysics Data System (ADS)
Hu, H.; Parsons, D. R.; Ockelford, A.; Hardy, R. J.; Ashworth, P. J.; Best, J.
2016-12-01
Dunes are ubiquitous features in sand bed rivers and estuaries, and their formation, growth and kinematics play a dominant role in boundary flow structure, flow resistance and sediment transport processes. However, bedform evolution and dynamics during the rising/falling limb of a flood wave remain poorly understood. Herein, we report on a series of flume experiments, undertaken at the University of Hull's Total Environment Simulator flume/wave tank facility, with imposed flow variations and different hydrographs: i) a sudden (shock) change, ii) a fast flood wave and iii) a slow flood wave. Our analysis shows that, because of changes of sediment transport mechanisms with discharge, the sediment flux rather than bedform migration rate is a more appropriate parameter to relate to transport stage. This is particularly the case during bedload transport dominated periods at lower flow discharge, where a strong power law relationship was detected. In terms of varying processes across the hydrograph limbs, bedform evolution during the rising limb is dominated not only by bedform amalgamation but also by the washing out of smaller-scale bedforms. Furthermore, bedform growth is independent of the rising rate of the hydrograph limb, while evolution of bedform decay is affected by the rate of discharge decrease. This results in an anticlockwise hysteresis between transport stage and total flux was found in fast wave experiment, indicating a significant role of the change in sediment transport mechanisms on bedform evolution. Moreover, analysis on the variation of deformation fraction (F, ratio of the deformation flux to the total bed material flux) suggests that net degradation of the bed enhances bedform deformation and leads to a higher F ( 0.65). This work extends our knowledge on how dunes generate and develop under variable flows and has begun to explore how variations in transport stage can be coupled with the variation in sediment transport mechanisms, and/or sediment supply which can help improve the modelling of sediment transport processes.
A field experiment on the controls of sediment transport on bedrock erosion
NASA Astrophysics Data System (ADS)
Beer, A. R.; Turowski, J. M.; Fritschi, B.; Rieke-Zapp, D.; Campana, L.; Lavé, J.
2012-12-01
The earth`s surface is naturally shaped by interactions of physical and chemical processes. In mountainous regions with steep topography river incision fundamentally controls the geomorphic evolution of the whole landscape. There, erosion of exposed bedrock sections by fluvial sediment transport is an important mechanism forming mountain river channels. The links between bedload transport and bedrock erosion has been firmly established using laboratory experiments. However, there are only few field datasets linking discharge, sediment transport, impact energy and erosion that can be used for process understanding and model evaluation. To fill this gap, a new measuring setup has been commissioned to raise an appropriate simultaneous dataset of hydraulics, sediment transport and bedrock erosion at high temporal and spatial resolution. Two natural stone slabs were installed flush with the streambed of the Erlenbach, a gauged stream in the Swiss Pre-Alps. They are mounted upon force sensors recording vertical pressure und downstream shear caused by passing sediment particles. The sediment transport rates can be assessed using geophone plates and an automated moving basket system taking short-term sediment samples. These devices are located directly downstream of the stone slabs. Bedrock erosion rates are measured continuously with erosion sensors at sub-millimeter accuracy at three points on each slab. In addition, the whole slab topography is surveyed with photogrammetry and a structured-light 3D scanner after individual flood events. Since the installation in 2011, slab bedrock erosion has been observed during several transport events. We discuss the relation between hydraulics, bedload transport, resulting pressure forces on the stone slabs and erosion rates. The aim of the study is the derivation of an empirical process law for fluvial bedrock erosion driven by moving sediment particles.
Modeling transport and deposition of the Mekong River sediment
Xue, Zuo; He, Ruoying; Liu, J. Paul; Warner, John C.
2012-01-01
A Coupled Wave–Ocean–SedimentTransport Model was used to hindcast coastal circulation and fine sedimenttransport on the Mekong shelf in southeastern Asian in 2005. Comparisons with limited observations showed that the model simulation captured the regional patterns and temporal variability of surface wave, sea level, and suspended sediment concentration reasonably well. Significant seasonality in sedimenttransport was revealed. In summer, a large amount of fluvial sediments was delivered and deposited near the MekongRiver mouth. In the following winter, strong ocean mixing, and coastal current lead to resuspension and southwestward dispersal of a small fraction of previously deposited sediments. Model sensitivity experiments (with reduced physics) were performed to investigate the impact of tides, waves, and remotely forced ambient currents on the transport and dispersal of the fluvial sediment. Strong wave mixing and downwelling-favorable coastal current associated with the more energetic northeast monsoon in the winter season are the main factors controlling the southwestward along-shelf transport.
Multiscale Sediment-Laden Flow Theory and Its Application in Flood Risk Management
NASA Astrophysics Data System (ADS)
Cao, Z. X.; Pender, G.; Hu, P.
2011-09-01
Sediment-laden flows over erodible bed normally feature multiple time scales. The time scales of sediment transport and bed deformation relative to the flow essentially measure how fast sediment transport adapts to capacity regime in line with local flow scenario and the bed deforms as compared to the flow, which literally dictate if a capacity based and/or decoupled model is justified. This paper synthesizes the recently developed multiscale theory for sediment-laden flows over erodible bed, with bed load and suspended load transport respectively. It is unravelled that bed load transport can adapt to capacity sufficiently rapidly even under highly unsteady flows and thus a capacity model is mostly applicable, whereas a non-capacity model is critical for suspended sediment because of the lower rate of adaptation to capacity. Physically coupled modeling is critical for cases characterized by rapid bed variation. Applications are outlined on flash floods and landslide dam break floods.
Trouble with diffusion: Reassessing hillslope erosion laws with a particle-based model
NASA Astrophysics Data System (ADS)
Tucker, Gregory E.; Bradley, D. Nathan
2010-03-01
Many geomorphic systems involve a broad distribution of grain motion length scales, ranging from a few particle diameters to the length of an entire hillslope or stream. Studies of analogous physical systems have revealed that such broad motion distributions can have a significant impact on macroscale dynamics and can violate the assumptions behind standard, local gradient flux laws. Here, a simple particle-based model of sediment transport on a hillslope is used to study the relationship between grain motion statistics and macroscopic landform evolution. Surface grains are dislodged by random disturbance events with probabilities and distances that depend on local microtopography. Despite its simplicity, the particle model reproduces a surprisingly broad range of slope forms, including asymmetric degrading scarps and cinder cone profiles. At low slope angles the dynamics are diffusion like, with a short-range, thin-tailed hop length distribution, a parabolic, convex upward equilibrium slope form, and a linear relationship between transport rate and gradient. As slope angle steepens, the characteristic grain motion length scale begins to approach the length of the slope, leading to planar equilibrium forms that show a strongly nonlinear correlation between transport rate and gradient. These high-probability, long-distance motions violate the locality assumption embedded in many common gradient-based geomorphic transport laws. The example of a degrading scarp illustrates the potential for grain motion dynamics to vary in space and time as topography evolves. This characteristic renders models based on independent, stationary statistics inapplicable. An accompanying analytical framework based on treating grain motion as a survival process is briefly outlined.
Littoral transport rates in the Santa Barbara Littoral Cell: a process-based model analysis
Elias, E. P. L.; Barnard, Patrick L.; Brocatus, John
2009-01-01
Identification of the sediment transport patterns and pathways is essential for sustainable coastal zone management of the heavily modified coastline of Santa Barbara and Ventura County (California, USA). A process-based model application, based on Delft3D Online Morphology, is used to investigate the littoral transport potential along the Santa Barbara Littoral Cell (between Point Conception and Mugu Canyon). An advanced optimalization procedure is applied to enable annual sediment transport computations by reducing the ocean wave climate in 10 wave height - direction classes. Modeled littoral transport rates compare well with observed dredging volumes, and erosion or sedimentation hotspots coincide with the modeled divergence and convergence of the transport gradients. Sediment transport rates are strongly dependent on the alongshore variation in wave height due to wave sheltering, diffraction and focusing by the Northern Channel Islands, and the local orientation of the geologically-controlled coastline. Local transport gradients exceed the net eastward littoral transport, and are considered a primary driver for hot-spot erosion.
Controls on sediment cover in bedrock-alluvial channels of the Henry Mountains, Utah
NASA Astrophysics Data System (ADS)
Hodge, R. A.; Yager, E.; Johnson, J. P.; Tranmer, A.
2017-12-01
The location and extent of sediment cover in bedrock-alluvial channels influences sediment transport rates, channel incision and instream ecology. However, factors affecting sediment cover and how it responds to changes in relative sediment supply have rarely been quantitatively evaluated in field settings. Using field surveys and SFM analysis of channel reach topography, we quantified sediment cover and channel properties including slope, width, grain size distributions, and bedrock and alluvial roughness in North Wash and Chelada Creek in the Henry Mountains, Utah. Along reaches where upstream sediment supply does not appear to be restricted, we find that the fraction of local bedrock exposure increases as a function of local relative transport capacity . In a downstream section of Chelada Creek, decadal-scale sediment supply has been restricted by an upstream culvert that has caused a backwater effect and corresponding upstream deposition. In this section, alluvial cover is uncorrelated with local stream power. To test the impact of relative sediment supply on sediment cover, a 1D sediment transport model was used to predict the equilibrium sediment cover in Chelada Creek under varying flow and sediment supply conditions. Sediment transport in each model section was predicted using the partial cover model of Johnson (2015), which accounts for differences in bedrock and alluvial roughness on critical shear stress and flow resistance. Model runs in which sediment supply was approximately equal to mean transport capacity produced a pattern of sediment cover which best matched the field observations upstream of the culvert. However, runs where sediment supply was under-capacity produced the pattern most similar to field observations downstream of the culvert, consistent with our field-based interpretations. Model results were insensitive to initial sediment cover, and equilibrium was relatively quickly reached, suggesting that the channel is responsive to changes in imposed conditions. Overall, our results suggest that alluvial cover fractions may be predictable at spatial scales relevant for landscape evolution modelling, but that local bed roughness and thresholds in relative sediment supply may need to be accounted for.
In situ removal of copper from sediments by a galvanic cell.
Yuan, Songhu; Wu, Chan; Wan, Jinzhong; Lu, Xiaohua
2009-01-01
This study dealt with in situ removal of copper from sediments through an electrokinetic (EK) process driven by a galvanic cell. Iron (Fe) and carbon (C) were placed separately and connected with a conductive wire. Polluted sediments were put between them and water was filled above the sediments. The galvanic cell was thus formed due to the different electrode potentials of Fe and C. The cell could remove the pollutants in the sediments by electromigration and/or electroosmosis. Results showed that a weak voltage less than 1V was formed by the galvanic cell. The voltage decreased with the increase of time. A slight increase of sediment pH from the anode (Fe) to the cathode (C) was observed. The presence of supernatant water inhibited the variation of sediment pH because H(+) and OH(-) could diffuse into the water. The removal of copper was affected by the sediment pH and the distribution of electrolyte in sediment and supernatant water. Lower pH led to higher removal efficiency. More electrolyte in the sediment and/or less electrolyte in the supernatant water favored the removal of copper. The major removal mechanism was proposed on the basis of the desorption of copper from sediment to pore solution and the subsequent electromigration of copper from the anode to the cathode. The diffusion of copper from sediment to supernatant water was negligible.
Controls on Filling and Evacuation of Sediment in Waterfall Plunge Pools
NASA Astrophysics Data System (ADS)
Scheingross, J. S.; Lamb, M. P.
2014-12-01
Many waterfalls are characterized by the presence of deep plunge pools that experience periods of sediment fill and evacuation. These cycles of sediment fill are a first order control on the relative magnitude of lateral versus vertical erosion at the base of waterfalls, as vertical incision requires cover-free plunge pools to expose the bedrock floor, while lateral erosion can occur when pools are partially filled and plunge-pool walls are exposed. Currently, there exists no mechanistic model describing sediment transport through waterfall plunge pools, limiting our ability to predict waterfall retreat. To address this knowledge gap, we performed detailed laboratory experiments measuring plunge-pool sediment transport capacity (Qsc_pool) under varying waterfall and plunge-pool geometries, flow hydraulics, and sediment size. Our experimental plunge-pool sediment transport capacity measurements match well with a mechanistic model we developed which combines existing waterfall jet theory with a modified Rouse profile to predict sediment transport capacity as a function of water discharge and suspended sediment concentration at the plunge-pool lip. Comparing the transport capacity of plunge pools to lower gradient portions of rivers (Qsc_river) shows that, for transport limited conditions, plunge pools fill with sediment under modest water discharges when Qsc_river > Qsc_pool, and empty to bedrock under high discharges when Qsc_pool > Qsc_river. These results are consistent with field observations of sand-filled plunge pools with downstream boulder rims, implying filling and excavation of plunge pools over single-storm timescales. Thus, partial filling of waterfall plunge pools may provide a mechanism to promote lateral undercutting and retreat of waterfalls in homogeneous rock in which plunge-pool vertical incision occurs during brief large floods that expose bedrock, whereas lateral erosion may prevail during smaller events.
NASA Astrophysics Data System (ADS)
Ma, H.; Nittrouer, J. A.; Wu, B.; Zhang, Y.; Mohrig, D. C.; Lamb, M. P.; Wang, Y.; Fu, X.; Moodie, A. J.; Naito, K.; Parker, G.
2017-12-01
Sediment dispersal and deposition creates deltaic landscapes, establishes coastlines, and produces fertile floodplains, all of which serve as critical landforms inhabited by a large proportion of humankind. If poorly managed, sediment loads in these environments can elevate and clog channels, thereby enhancing hazards such as severe flooding. Predictive descriptions of sediment loads, however, are not well constrained, especially for fine-grained (silt and very-fine sand) dispersal systems, which often include river deltas and coastlines. Here, we show efforts to collect and analyze an extensive sediment load database for fine-grained channels, spanning from small flume experiments to large rivers, in order to evaluate the nature of sediment flux. Our analyses determined that sediment transport exhibits two distinct transport phases, separated by a discontinuous transition, whereby sediment flux differs by one to two orders of magnitude. It is determined that the transition responds to the bed material grain size, and we propose a phase diagram based on this metric alone. These findings help elucidate why previous theories of sediment transport at the sand-silt interface, which are typically continuous, are not able to give satisfactory predictions across different scales and environments. Our work serves to help evaluate anthropic influences on rivers, deltas, and coastlines, and can be applied to better constrain sediment flux of paleo-fluvial systems found on Earth and Mars. For example, in situ measurements of sediment flux for the silty-sandy bed of the lower Yellow River, China, validate the aforementioned phase transition behavior, and illustrate that the channel resides near the transition of high to low efficiency transport modes. Recent dam construction and resulting downstream coarsening of the bed via armoring, however, might lead to the unintended consequence of enhancing flood risk by driving the system to a low efficiency transport mode with high resistance to sediment-laden flow, which in turn will elevate the water stage under the same flood discharge.
Mineralogical Controls on Carbon Cycling in a Floodplain Environment
NASA Astrophysics Data System (ADS)
Arora, B.; Dwivedi, D.; Steefel, C. I.; Spycher, N.; Fox, P. M.; Nico, P. S.
2016-12-01
With the overarching goal of understanding mineral-organic-microbe interactions on carbon and nutrient cycles, we are developing a reactive transport model that includes carbon (C) pools and transformations, a realistic treatment of protected C pools, multiple decomposition pathways, and radiocarbon (14C) dynamics. The objective of the modeling is to understand the impact of mineralogy on carbon turnover and residence times in a floodplain site in Rifle, CO. Previous studies have identified naturally reduced zones (NRZs) in the saturated zone of the Rifle site to be C hotspots and regions characterized by diffusion-limited transport and high rates of microbially-mediated biogeochemical reactions. Detailed characterization of the soil organic matter in both the NRZ and non-NRZ sediments at the Rifle site including radiocarbon dating, and extraction and chemical characterization of mineral-bound pool of organic matter, is used to inform the modeling. In this study, we describe the development of a coupled unsaturated-saturated flow and biogeochemical reactive transport model of the Rifle site along a two-dimensional cross-section (parallel to groundwater flow). The biogeochemical reaction network includes representations of bacterial and fungal activity, archetypal polymer and monomer carbon substrate groups, kinetic and equilibrium mineral precipitation and dissolution reactions, and aqueous and surface complexation. We use this model to explore fungal and bacterial community emergence at the site and compare organo-mineral interactions across NRZ and non-NRZ regions. Observed 14C profiles suggest that sediment-associated carbon in NRZ locations is much older than both the depositional age of the floodplain sediments and dissolved organic carbon in the groundwater. Model simulations were able to capture the observed soil organic matter (SOM) and Δ14C profiles across the Rifle site. Modeling results show higher lignin content in the NRZ sediments and greater Fe-associated organic carbon as compared to non-NRZ locations. Results therefore suggest that soil mineralogy constitutes a dominant control over organic carbon stocks and residence times. A mechanistic representation of soil mineral-organic-microbe interactions is necessary to reproduce SOM profiles at the site.
Modes and emergent time scales of embayed beach dynamics
NASA Astrophysics Data System (ADS)
Ratliff, Katherine M.; Murray, A. Brad
2014-10-01
In this study, we use a simple numerical model (the Coastline Evolution Model) to explore alongshore transport-driven shoreline dynamics within generalized embayed beaches (neglecting cross-shore effects). Using principal component analysis (PCA), we identify two primary orthogonal modes of shoreline behavior that describe shoreline variation about its unchanging mean position: the rotation mode, which has been previously identified and describes changes in the mean shoreline orientation, and a newly identified breathing mode, which represents changes in shoreline curvature. Wavelet analysis of the PCA mode time series reveals characteristic time scales of these modes (typically years to decades) that emerge within even a statistically constant white-noise wave climate (without changes in external forcing), suggesting that these time scales can arise from internal system dynamics. The time scales of both modes increase linearly with shoreface depth, suggesting that the embayed beach sediment transport dynamics exhibit a diffusive scaling.
Stevens, Andrew W.; Gelfenbaum, Guy; Elias, Edwin; Jones, Craig
2008-01-01
Capitol Lake was created in 1951 with the construction of a concrete dam and control gate that prevented salt-water intrusion into the newly formed lake and regulated flow of the Deschutes River into southern Puget Sound. Physical processes associated with the former tidally dominated estuary were altered, and the dam structure itself likely caused an increase in retention of sediment flowing into the lake from the Deschutes River. Several efforts to manage sediment accumulation in the lake, including dredging and the construction of sediment traps upriver, failed to stop the lake from filling with sediment. The Deschutes Estuary Feasibility Study (DEFS) was carried out to evaluate the possibility of removing the dam and restoring estuarine processes as an alternative ongoing lake management. An important component of DEFS was the creation of a hydrodynamic and sediment transport model of the restored Deschutes Estuary. Results from model simulations indicated that estuarine processes would be restored under each of four restoration alternatives, and that over time, the restored estuary would have morphological features similar to the predam estuary. The model also predicted that after dam-removal, a large portion of the sediment eroded from the lake bottom would be deposited near the Port of Olympia and a marina located in lower Budd Inlet seaward of the present dam. The volume of sediment transported downstream was a critical piece of information that managers needed to estimate the total cost of the proposed restoration project. However, the ability of the model to predict the magnitude of sediment transport in general and, in particular, the volume of sediment deposition in the port and marina was limited by a lack of information on the erodibility of fine-grained sediments in Capitol Lake. Cores at several sites throughout Capitol Lake were collected between October 31 and November 1, 2007. The erodibility of sediments in the cores was later determined in the lab with Sedflume, an apparatus for measuring sediment erosion-parameters. In this report, we present results of the characterization of fine-grained sediment erodibility within Capitol Lake. The erodibility data were incorporated into the previously developed hydrodynamic and sediment transport model. Model simulations using the measured erodibility parameters were conducted to provide more robust estimates of the overall magnitudes and spatial patterns of sediment transport resulting from restoration of the Deschutes Estuary.
NASA Astrophysics Data System (ADS)
Nozaki, Yoshiyuki; Tsubota, Hlroyuki; Kasemsupaya, Vimonrut; Yashima, Mayumi; Naoko, Ikuta
1991-05-01
228Ra, 226Ra, 210Pb, and 210Po were measured in the surface waters of the East China and Yellow seas. Using mass balance equations for the Ra isotopes, we estimated the total flux of diffusion from sediments and desorption from suspended particles to be 0.1 dpm 226Ra cm -2 a -1 and 1 dpm 228Ra cm -2 a -1, and residence times to be 2-3 years for the waters on the East China Sea Shelf and 5-6 years for Yellow Sea waters. Box-model calculations yielded generally congruent scavenging residence times for 210Pb and 210Po in the waters of ~2 months on the shelf and ~7 months in the Kuroshio Current. These suggest that reactive heavy metals and pollutants discharged through rivers from the continent to the East Asian continental shelf are largely deposited on the bottom sediments prior to transport to the pelagic ocean by lateral mixing.
Denny, Jane F.; Schwab, William C.; Baldwin, Wayne E.; Barnhardt, Walter A.; Gayes, Paul T.; Morton, R.A.; Warner, John C.; Driscoll, Neal W.; Voulgaris, George
2013-01-01
High-resolution geophysical and sediment sampling surveys were conducted offshore of the Grand Strand, South Carolina to define the shallow geologic framework of the inner shelf. Results are used to identify and map Holocene sediment deposits, infer sediment transport pathways, and discuss implications for the regional coastal sediment budget. The thickest deposits of Holocene sediment observed on the inner shelf form shoal complexes composed of moderately sorted fine sand, which are primarily located offshore of modern tidal inlets. These shoal deposits contain ~67 M m3 of sediment, approximately 96% of Holocene sediment stored on the inner shelf. Due to the lack of any significant modern fluvial input of sand to the region, the Holocene deposits are likely derived from reworking of relict Pleistocene and older inner-shelf deposits during the Holocene marine transgression. The Holocene sediments are concentrated in the southern part of the study area, due to a combination of ancestral drainage patterns, a regional shift in sediment supply from the northeast to the southwest in the late Pleistocene, and proximity to modern inlet systems. Where sediment is limited, only small, low relief ridges have formed and Pleistocene and older deposits are exposed on the seafloor. The low-relief ridges are likely the result of a thin, mobile veneer of sediment being transported across an irregular, erosional surface formed during the last transgression. Sediment textural trends and seafloor morphology indicate a long-term net transport of sediment to the southwest. This is supported by oceanographic studies that suggest the long-term sediment transport direction is controlled by the frequency and intensity of storms that pass through the region, where low pressure systems yield net along-shore flow to the southwest and a weak onshore component. Current sediment budget estimates for the Grand Strand yield a deficit for the region. Volume calculations of Holocene deposits on the inner shelf suggest that there is sufficient sediment to balance the sediment budget and provide a source of sediment to the shoreline. Although the processes controlling cross-shelf sediment transport are not fully understood, in sediment-limited environments such as the Grand Strand, erosion of the inner shelf likely contributes significant sediment to the beach system.
W. J. Conroy; R. H. Hotchkiss; W. J. Elliot
2006-01-01
This article describes a prototype modeling system for assessing forest management-related erosion at its source and predicting sediment transport from hillslopes to stream channels and through channel networks to a watershed outlet. We demonstrate that it is possible to develop a land management tool capable of accurately assessing the primary impacts of...
NASA Astrophysics Data System (ADS)
Lind, P.; McDowell, P. F.
2017-12-01
Investigating sediment transport capacity as well as the spatial and temporal variations of sediment flux are critical component of river research, especially for applications in resource management and conservation, hazards assessment and planning, and riverine ecology. The bedload fraction of sediment transported through montane rivers often defines channel and bed form processes. It is understood that humid tropical montane rivers are capable of producing some of the largest quantities of sediment per unit drainage area. Bedload flux reported on a few Southeast Asian humid tropical montane rivers show that bedload constituted 16-75% of the total sediment load - this is notably higher than the generally accepted 10% of a channel's sediment load. However, to date almost all of the research done on sediment transport in humid tropical systems has focused on suspended load. This study presents annual bedload transport rate estimates for six field sites distributed within 45 river kilometers (Rkm) of the montane portion of the Rio Pacuare, located in the Talamanca Mountains of Costa Rica. This research reveals that flows capable of mobilizing the D84 occur on average at least once but often multiple times a year in this river system. The Rio Pacuare has a sufficient supply of sediment to meet its high transport capacity needs. As a result, large active bars composed of imbricated boulders define channel form at moderate and low flows throughout the study area. Differences in the magnitude, as well as the spatial and temporal variations of sediment flux at each field site are discussed in relation to stream power, and annual/inter-annual precipitation patterns. A unique mix of field and remote sensing techniques were applied to address these questions and to overcome some of the challenges of tropical river research. For example, due to the large grain size and high stream energy, grain mobilization and validation of modeled shear stress requirements for transport were made through high-resolution repeat photogrammetric surveys (Structure From Motion). As some of the first research of this type on a steep tropical montane system, this study expands our knowledge of tropical rivers and sediment transport by providing a broad view of bedload sediment flux in a hydrologically dynamic humid tropical montane system.
NASA Astrophysics Data System (ADS)
Costa, A.; Molnar, P.; Schmitt, R. J. P.
2017-12-01
The grain size distribution (GSD) of river bed sediment results from the long term balance between transport capacity and sediment supply. Changes in climate and human activities may alter the spatial distribution of transport capacity and sediment supply along channels and hence impact local bedload transport and GSD. The effects of changed flow are not easily inferable due the non-linear, threshold-based nature of the relation between discharge and sediment mobilization, and the network-scale control on local sediment supply. We present a network-scale model for fractional sediment transport to quantify the impact of hydropower (HP) operations on river network GSD. We represent the river network as a series of connected links for which we extract the geometric characteristics from satellite images and a digital elevation model. We assign surface roughness based on the channel bed GSD. Bed shear stress is estimated at link-scale under the assumptions of rectangular prismatic cross sections and normal flow. The mass balance between sediment supply and transport capacity, computed with the Wilcock and Crowe model, determines transport rates of multiple grain size classes and the resulting GSD. We apply the model to the upper Rhone basin, a large Alpine basin in Switzerland. Since 1960s, changed flow conditions due to HP operations and sediment storage behind dams have potentially altered the sediment transport of the basin. However, little is known on the magnitude and spatial distribution of these changes. We force the model with time series of daily discharge derived with a spatially distributed hydrological model for pre and post HP scenarios. We initialize GSD under the assumption that coarse grains (d90) are mobilized only during mean annual maximum flows, and on the basis of ratios between d90 and characteristic diameters estimated from field measurements. Results show that effects of flow regulation vary significantly in space and in time and are grain size dependent. HP operations led to an overall reduction of sediment transport at network scale, especially in summer and for coarser grains, leading to a general coarsening of the river bed sediments at the upstream reaches. The model allows investigating the impact of modified HP operations and climate change projections on sediment dynamics at the network scale.
NASA Astrophysics Data System (ADS)
Dale, A. W.; Regnier, P.; Knab, N. J.; Jørgensen, B. B.; Van Cappellen, P.
2008-06-01
A steady-state reaction-transport model is applied to sediments retrieved by gravity core from two stations (S10 and S13) in the Skagerrak to determine the main kinetic and thermodynamic controls on anaerobic oxidation of methane (AOM). The model considers an extended biomass-implicit reaction network for organic carbon degradation, which includes extracellular hydrolysis of macromolecular organic matter, fermentation, sulfate reduction, methanogenesis, AOM, acetogenesis and acetotrophy. Catabolic reaction rates are determined using a modified Monod rate expression that explicitly accounts for limitation by the in situ catabolic energy yields. The fraction of total sulfate reduction due to AOM in the sulfate-methane transition zone (SMTZ) at each site is calculated. The model provides an explanation for the methane tailing phenomenon which is observed here and in other marine sediments, whereby methane diffuses up from the SMTZ to the top of the core without being consumed. The tailing is due to bioenergetic limitation of AOM in the sulfate reduction zone, because the methane concentration is too low to engender favorable thermodynamic drive. AOM is also bioenergetically inhibited below the SMTZ at both sites because of high hydrogen concentrations (∼3-6 nM). The model results imply there is no straightforward relationship between pore water concentrations and the minimum catabolic energy needed to support life because of the highly coupled nature of the reaction network. Best model fits are obtained with a minimum energy for AOM of ∼11 kJ mol-1, which is within the range reported in the literature for anaerobic processes.
Process based modeling of total longshore sediment transport
Haas, K.A.; Hanes, D.M.
2004-01-01
Waves, currents, and longshore sand transport are calculated locally as a function of position in the nearshore region using process based numerical models. The resultant longshore sand transport is then integrated across the nearshore to provide predictions of the total longshore transport of sand due to waves and longshore currents. Model results are in close agreement with the I1-P1 correlation described by Komar and Inman (1970) and the CERC (1984) formula. Model results also indicate that the proportionality constant in the I1-P1 formula depends weakly upon the sediment size, the shape of the beach profile, and the particular local sediment flux formula that is employed. Model results indicate that the various effects and influences of sediment size tend to cancel out, resulting in little overall dependence on sediment size.
The rate of collisions due to Brownian or gravitational motion of small drops
NASA Technical Reports Server (NTRS)
Zhang, Xiaoguang; Davis, Robert H.
1991-01-01
Quantitative predictions of the collision rate of two spherical drops undergoing Brownian diffusion or gravitational sedimentation are presented. The diffusion equation for relative Brownian motion of two drops is derived, and the relative motion of pairs of drops in gravitational sedimentation is traced via a trajectory analysis in order to develop theoretical models to determine the collision efficiencies, both with and without interparticle forces applied between the drops. It is concluded that finite collision rates between nondeforming fluid drops are possible for Brownian diffusion or gravitational sedimentation in the absence of attractive forces, in stark contrast to the prediction that lubrication forces prevent rigid spheres from contacting each other unless an attractive force that becomes infinite as the separation approaches zero is applied. Collision rates are shown to increase as the viscosity of the drop-phase decreases. In general, hydrodynamic interactions reduce the collision rates more for gravitational collisions than for Brownian collisions.
Understanding controls on redox processes in floodplain sediments of the Upper Colorado River Basin
Noël, Vincent; Boye, Kristin; Kukkadapu, Ravi K.; ...
2017-12-15
Floodplains, heavily used for water supplies, housing, agriculture, mining, and industry, are important repositories of organic carbon, nutrients, and metal contaminants. The accumulation and release of these species is often mediated by redox processes. By understanding the physicochemical, hydrological, and biogeochemical controls on the distribution and variability of sediment redox conditions we can develop conceptual and numerical models of contaminant transport within floodplains. The Upper Colorado River Basin (UCRB) is impacted by former uranium and vanadium ore processing, resulting in contamination by V, Cr, Mn, As, Se, Mo and U. Previous authors have suggested that sediment redox activity occurring withinmore » organic carbon-enriched bodies located below the groundwater level may be regionally important to the maintenance and release of contaminant inventories, particularly uranium. To help assess this hypothesis, vertical distributions of Fe and S redox states and sulfide mineralogy were assessed in sediment cores from three floodplain sites spanning a 250 km transect of the central UCRB. Our results support the hypothesis that organic-enriched reduced sediments are important zones of biogeochemical activity within UCRB floodplains. Furthermore, we found that the presence of organic carbon, together with pore saturation, are the key requirements for maintaining reducing conditions, which were dominated by sulfate-reduction products. Sediment texture was found to be of secondary importance and to moderate the response of the system to external forcing, such as oxidant diffusion. Consequently, fine-grain sediments are relatively resistant to oxidation in comparison to coarser-grained sediments. Exposure to oxidants consumes precipitated sulfides, with a disproportionate loss of mackinawite (FeS) as compared to the more stable pyrite. The accompanying loss of redox buffering capacity creates the potential for release of sequestered radionuclides and metals. Because of their redox reactivity and stores of metals, C, and N, organic-enriched sediments are likely to be important to nutrient and contaminant mobility within UCRB floodplain aquifers.« less
Understanding controls on redox processes in floodplain sediments of the Upper Colorado River Basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noël, Vincent; Boye, Kristin; Kukkadapu, Ravi K.
Floodplains, heavily used for water supplies, housing, agriculture, mining, and industry, are important repositories of organic carbon, nutrients, and metal contaminants. The accumulation and release of these species is often mediated by redox processes. By understanding the physicochemical, hydrological, and biogeochemical controls on the distribution and variability of sediment redox conditions we can develop conceptual and numerical models of contaminant transport within floodplains. The Upper Colorado River Basin (UCRB) is impacted by former uranium and vanadium ore processing, resulting in contamination by V, Cr, Mn, As, Se, Mo and U. Previous authors have suggested that sediment redox activity occurring withinmore » organic carbon-enriched bodies located below the groundwater level may be regionally important to the maintenance and release of contaminant inventories, particularly uranium. To help assess this hypothesis, vertical distributions of Fe and S redox states and sulfide mineralogy were assessed in sediment cores from three floodplain sites spanning a 250 km transect of the central UCRB. Our results support the hypothesis that organic-enriched reduced sediments are important zones of biogeochemical activity within UCRB floodplains. Furthermore, we found that the presence of organic carbon, together with pore saturation, are the key requirements for maintaining reducing conditions, which were dominated by sulfate-reduction products. Sediment texture was found to be of secondary importance and to moderate the response of the system to external forcing, such as oxidant diffusion. Consequently, fine-grain sediments are relatively resistant to oxidation in comparison to coarser-grained sediments. Exposure to oxidants consumes precipitated sulfides, with a disproportionate loss of mackinawite (FeS) as compared to the more stable pyrite. The accompanying loss of redox buffering capacity creates the potential for release of sequestered radionuclides and metals. Because of their redox reactivity and stores of metals, C, and N, organic-enriched sediments are likely to be important to nutrient and contaminant mobility within UCRB floodplain aquifers.« less
Diffusion-driven magnesium and iron isotope fractionation in Hawaiian olivine
Teng, F.-Z.; Dauphas, N.; Helz, R.T.; Gao, S.; Huang, S.
2011-01-01
Diffusion plays an important role in Earth sciences to estimate the timescales of geological processes such as erosion, sediment burial, and magma cooling. In igneous systems, these diffusive processes are recorded in the form of crystal zoning. However, meaningful interpretation of these signatures is often hampered by the fact that they cannot be unambiguously ascribed to a single process (e.g., magmatic fractionation, diffusion limited transport in the crystal or in the liquid). Here we show that Mg and Fe isotope fractionations in olivine crystals can be used to trace diffusive processes in magmatic systems. Over sixty olivine fragments from Hawaiian basalts show isotopically fractionated Mg and Fe relative to basalts worldwide, with up to 0.4??? variation in 26Mg/24Mg ratios and 1.6??? variation in 56Fe/54Fe ratios. The linearly and negatively correlated Mg and Fe isotopic compositions [i.e., ??56Fe=(??3.3??0.3)????26Mg], co-variations of Mg and Fe isotopic compositions with Fe/Mg ratios of olivine fragments, and modeling results based on Mg and Fe elemental profiles demonstrate the coupled Mg and Fe isotope fractionation to be a manifestation of Mg-Fe inter-diffusion in zoned olivines during magmatic differentiation. This characteristic can be used to constrain the nature of mineral zoning in igneous and metamorphic rocks, and hence determine the residence times of crystals in magmas, the composition of primary melts, and the duration of metamorphic events. With improvements in methodology, in situ isotope mapping will become an essential tool of petrology to identify diffusion in crystals. ?? 2011 Elsevier B.V.
NASA Astrophysics Data System (ADS)
Gomi, Takashi; Sidle, Roy C.; Swanston, Douglas N.
2004-03-01
Hydrogemorphic linkages related to sediment transport in headwater streams following basin wide clear-cut logging on Prince of Wales Island, southeast Alaska, were investigated. Landslides and debris flows transported sediment and woody debris in headwater tributaries in 1961, 1979, and 1993. Widespread landsliding in 1961 and 1993 was triggered by rainstorms with recurrence intervals (24 h precipitation) of 7.0 years and 4.2 years respectively. Occurrence, distribution, and downstream effects of these mass movements were controlled by landform characteristics such as channel gradient and valley configuration. Landslides and channelized debris flows created exposed bedrock reaches, log jams, fans, and abandoned channels. The terminus of the deposits did not enter main channels because debris flows spread and thinned on the unconfined bottom of the U-shaped glaciated valley. Chronic sediment input to channels included surface erosion of exposed till (rain splash, sheet erosion, and freeze-thaw action) and bank failures. Bedload sediment transport in a channel impacted by 1993 landslides and debris flows was two to ten times greater and relatively finer compared with bedload transport in a young alder riparian channel that had last experienced a landslide and debris flow in 1961. Sediment transport and storage were influenced by regeneration of riparian vegetation, storage behind recruited woody debris, development of a streambed armour layer, and the decoupling of hillslopes and channels. Both spatial and temporal variations of sediment movement and riparian condition are important factors in understanding material transport within headwaters and through channel networks.
Harvey, J.W.; Noe, G.B.; Larsen, L.G.; Nowacki, D.J.; McPhillips, L.E.
2011-01-01
Flow interactions with aquatic vegetation and effects on sediment transport and nutrient redistribution are uncertain in shallow aquatic ecosystems. Here we quantified sediment transport in the Everglades by progressively increasing flow velocity in a field flume constructed around undisturbed bed sediment and emergent macrophytes. Suspended sediment 100 μm became dominant at higher velocity steps after a threshold shear stress for bed floc entrainment was exceeded. Shedding of vortices that had formed downstream of plant stems also occurred on that velocity step which promoted additional sediment detachment from epiphyton. Modeling determined that the potentially entrainable sediment reservoir, 46 g m−2, was similar to the reservoir of epiphyton (66 g m−2) but smaller than the reservoir of flocculent bed sediment (330 g m−2). All suspended sediment was enriched in phosphorus (by approximately twenty times) compared with bulk sediment on the bed surface and on plant stems, indicating that the most easily entrainable sediment is also the most nutrient rich (and likely the most biologically active).
Brakebill, J.W.; Ator, S.W.; Schwarz, G.E.
2010-01-01
We describe the sources and transport of fluvial suspended sediment in nontidal streams of the Chesapeake Bay watershed and vicinity. We applied SPAtially Referenced Regressions on Watershed attributes, which spatially correlates estimated mean annual flux of suspended sediment in nontidal streams with sources of suspended sediment and transport factors. According to our model, urban development generates on average the greatest amount of suspended sediment per unit area (3,928 Mg/km2/year), although agriculture is much more widespread and is the greatest overall source of suspended sediment (57 Mg/km2/year). Factors affecting sediment transport from uplands to streams include mean basin slope, reservoirs, physiography, and soil permeability. On average, 59% of upland suspended sediment generated is temporarily stored along large rivers draining the Coastal Plain or in reservoirs throughout the watershed. Applying erosion and sediment controls from agriculture and urban development in areas of the northern Piedmont close to the upper Bay, where the combined effects of watershed characteristics on sediment transport have the greatest influence may be most helpful in mitigating sedimentation in the bay and its tributaries. Stream restoration efforts addressing floodplain and bank stabilization and incision may be more effective in smaller, headwater streams outside of the Coastal Plain. ?? 2010 American Water Resources Association. No claim to original U.S. government works.
Li, Huizhen; Wei, Yanli; Lydy, Michael J; You, Jing
2014-07-01
The dynamic flux of an organophosphate and four pyrethroid pesticides was determined in an air-(soil)-water-sediment system based on monitoring data from Guangzhou, China. The total air-water flux, including air-water gaseous exchange and atmospheric deposition, showed deposition from air to water for chlorpyrifos, bifenthrin and cypermethrin, but volatilization for lambda-cyhalothrin and permethrin. The transport of the pesticides from overlying water to sediment suggested that sediment acted as a sink for the pesticides. Additionally, distinct annual atmospheric depositional fluxes between legacy and current-use pesticides suggested the role of consumer usage in their transport throughout the system. Finally, pesticide toxicity was estimated from annual air-water-sediment flux within an urban stream in Guangzhou. A dynamic flux-based risk assessment indicated that inter-compartmental transport of chlorpyrifos decreased its atmospheric exposure, but had little influence on its aquatic toxicity. Instead, water-to-sediment transport of pyrethroids increased their sediment toxicity, which was supported by previously reported toxicity data. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ecosystem impacts of Alpine water intakes for hydropower: the challenge of sediment management
NASA Astrophysics Data System (ADS)
Gabbud, Chrystelle; Lane, Stuart
2016-04-01
Natural Alpine flow regimes are strongly modified by anthropogenic activities, notably water abstraction or impoundment for hydroelectric power production, which impacts upon both river discharge and sediment transfer systems, and in turn upon flora and fauna downstream. These kinds of impacts are well studied where rivers are regulated by dams, with sediment retained in the associated reservoirs although occasional flushing may be required (a frequency typically of many years). Such impacts may be managed by environmental flows or e-flows, whose restoration value has been shown in a number of research publications. However, there has been less attention in relation to the e-flows needed at water intakes which in Alpine environments may be associated with serious sediment-related problems. Water intakes have a very smaller sediment storage capacity than dams and thus may need to be flushed of accumulated sediment more regularly. In an Alpine setting, because rates of erosion are naturally higher, sediment is flushed in 'purges' with a frequency that may even be sub-daily at certain times of the year. Purges feed the river with solid material, but as the means of transporting it, the water, is being abstracted, sediment transport capacity is reduced. In theory, this does not eliminate sediment connectivity, but rather reduces it: the sediment is still delivered, but it can only be transported for a reduced duration; and the results may be profound hydrogeomorphic and ecosystem impacts, including downstream aggradation. In this study, we present results from a combined study of fluvial geomorphology, hydrology and ecosystem impacts of flow abstraction at water intakes. Using hydrodynamic modelling, we show that because the duration of remobilisation of purges and the peak discharge are much shorter than under natural flows, this causes the formation of a zone of sediment aggradation that moves progressively downstream as a sediment wave, leading to sedimentation rates that are greater than the speed with which the ecosystem can adjust to them. The results is a clear ecological productivity and diversity decline. However, we also show that it is very difficult to design e-flows that can counter this process, because whilst sediment transport is a threshold-dependent non-linear transport process, in these kinds of streams, sediment transport under natural flows is almost continual during the summer months. The sediment transport capacity of the system is reduced in almost direct proportion to the volume of water abstracted, such that e-flows cannot be redesigned to manage sediment without completely undermining hydroelectric power production. This, we argue that managing the sediment regime in this kind of system needs a very different approach.
WATERSHED AND INSTREAM MODELING OF SEDIMENT FATE AND TRANSPORT
To effectively manage watersheds, the assessment of watershed ecological response to physicochemical stressors such as sediments over broad spatial and temporal scales is needed. Assessments at this level of complexity requires the development of sediment transport and fate model...
Transport diffusion in deformed carbon nanotubes
NASA Astrophysics Data System (ADS)
Feng, Jiamei; Chen, Peirong; Zheng, Dongqin; Zhong, Weirong
2018-03-01
Using non-equilibrium molecular dynamics and Monte Carlo methods, we have studied the transport diffusion of gas in deformed carbon nanotubes. Perfect carbon nanotube and various deformed carbon nanotubes are modeled as transport channels. It is found that the transport diffusion coefficient of gas does not change in twisted carbon nanotubes, but changes in XY-distortion, Z-distortion and local defect carbon nanotubes comparing with that of the perfect carbon nanotube. Furthermore, the change of transport diffusion coefficient is found to be associated with the deformation factor. The relationship between transport diffusion coefficient and temperature is also discussed in this paper. Our results may contribute to understanding the mechanism of molecular transport in nano-channel.
The 226Ra-Ba relationship in the North Atlantic during GEOTRACES-GA01
NASA Astrophysics Data System (ADS)
Le Roy, Emilie; Sanial, Virginie; Charette, Matthew A.; van Beek, Pieter; Lacan, François; Jacquet, Stéphanie H. M.; Henderson, Paul B.; Souhaut, Marc; García-Ibáñez, Maribel I.; Jeandel, Catherine; Pérez, Fiz F.; Sarthou, Géraldine
2018-05-01
We report detailed sections of radium-226 (226Ra, T1/2 = 1602 years) activities and barium (Ba) concentrations determined in the North Atlantic (Portugal-Greenland-Canada) in the framework of the international GEOTRACES program (GA01 section - GEOVIDE project, May-July 2014). Dissolved 226Ra and Ba are strongly correlated along the section, a pattern that may reflect their similar chemical behavior. Because 226Ra and Ba have been widely used as tracers of water masses and ocean mixing, we investigated their behavior more thoroughly in this crucial region for thermohaline circulation, taking advantage of the contrasting biogeochemical patterns existing along the GA01 section. We used an optimum multiparameter (OMP) analysis to distinguish the relative importance of physical transport (water mass mixing) from nonconservative processes (sedimentary, river or hydrothermal inputs, uptake by particles and dissolved-particulate dynamics) on the 226Ra and Ba distributions in the North Atlantic. Results show that the measured 226Ra and Ba concentrations can be explained by conservative mixing for 58 and 65 % of the samples, respectively, notably at intermediate depth, away from the ocean interfaces. 226Ra and Ba can thus be considered conservative tracers of water mass transport in the ocean interior on the space scales considered here, namely, on the order of a few thousand kilometers. However, regions in which 226Ra and Ba displayed nonconservative behavior and in some cases decoupled behaviors were also identified, mostly at the ocean boundaries (seafloor, continental margins and surface waters). Elevated 226Ra and Ba concentrations found in deepwater in the West European Basin suggest that lower Northeast Atlantic Deep Water (NEADWl) accumulates 226Ra and Ba from sediment diffusion and/or particle dissolution during transport. In the upper 1500 m of the West European Basin, deficiencies in 226Ra and Ba are likely explained by their incorporation in planktonic calcareous and siliceous shells, or in barite (BaSO4) by substitution or adsorption mechanisms. Finally, because Ba and 226Ra display different source terms (mostly deep-sea sediments for 226Ra and rivers for Ba), strong decoupling between 226Ra and Ba were observed at the land-ocean boundaries. This is especially true in the shallow stations near the coasts of Greenland and Newfoundland where high 226Ra / Ba ratios at depth reflect the diffusion of 226Ra from sediment and low 226Ra / Ba ratios in the upper water column reflect the input of Ba associated with meteoric waters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matty, J.M.; Anderson, J.B.; Dunbar, R.B.
1987-01-01
Lake Houston is a man-made reservoir located northeast of Houston, Texas. The purpose of this investigation was to document suspended sediment transport, sedimentation, and resuspension in the lake with a view towards estimating the influence of sedimentation on water quality. Sediment traps were placed in strategic locations in the lake to collect suspended sediments. Samples were analyzed for bulk density, grain size, organic carbon, and a number of trace elements. These data were analyzed along with meteorological data to examine those factors which regulate suspended sediment input and dispersal, and the role of suspended sediments in controlling water quality withinmore » the lake. Sediment input to the lake depends primarily on the intensity of rainfall in the watershed. Sediment movement within the lake is strongly influenced by wave activity, which resuspends sediments from shallow areas, and by wind-driven circulation. The increased residence time of suspended sediments due to resuspension allows greater decomposition of organic matter and the release of several trace elements from sediments to the water column. Virtually all samples from sediment traps suspended between 1 and 5 m above the lake bottom contain medium to coarse silt, and even some very fine sand-sized material. This implies that circulation in Lake Houston is periodically intense enough to transport this size material in suspension. During winter, northerly winds with sustained velocities of greater than 5 m/sec provide the most suitable condition for rapid (< 1 d) transport of suspended sediment down the length of the lake. Fluctuations in current velocities and the subsequent suspension/deposition of particles may explain variations in the abundance of coliform bacteria in Lake Houston.« less
Community Sediment Transport Model
2007-01-01
Woods Hole, MA 02543-1598 Phone: (508) 457-2269 Fax: (508) 457-2310 email: csherwood@usgs.gov Timothy Keen Naval Research Laboratory, Code...intended to be used as both a research tool and for practical applications. An accurate and useful model will require coupling sediment-transport with...and time steps range from seconds to minutes. We include higher-resolution sediment- transport calculation modules for research problems but, for
Sediment transport on the Palos Verdes shelf, California
Ferre, B.; Sherwood, C.R.; Wiberg, P.L.
2010-01-01
Sediment transport and the potential for erosion or deposition have been investigated on the Palos Verdes (PV) and San Pedro shelves in southern California to help assess the fate of an effluent-affected deposit contaminated with DDT and PCBs. Bottom boundary layer measurements at two 60-m sites in spring 2004 were used to set model parameters and evaluate a one-dimensional (vertical) model of local, steady-state resuspension, and suspended-sediment transport. The model demonstrated skill (Brier scores up to 0.75) reproducing the magnitudes of bottom shear stress, current speeds, and suspended-sediment concentrations measured during an April transport event, but the model tended to underpredict observed rotation in the bottom-boundary layer, possibly because the model did not account for the effects of temperature-salinity stratification. The model was run with wave input estimated from a nearby buoy and current input from four to six years of measurements at thirteen sites on the 35- and 65-m isobaths on the PV and San Pedro shelves. Sediment characteristics and erodibility were based on gentle wet-sieve analysis and erosion-chamber measurements. Modeled flow and sediment transport were mostly alongshelf toward the northwest on the PV shelf with a significant offshore component. The 95th percentile of bottom shear stresses ranged from 0.09 to 0.16 Pa at the 65-m sites, and the lowest values were in the middle of the PV shelf, near the Whites Point sewage outfalls where the effluent-affected layer is thickest. Long-term mean transport rates varied from 0.9 to 4.8 metric tons m-1 yr-1 along the 65-m isobaths on the PV shelf, and were much higher at the 35-m sites. Gradients in modeled alongshore transport rates suggest that, in the absence of a supply of sediment from the outfalls or PV coast, erosion at rates of ???0.2 mm yr-1 might occur in the region southeast of the outfalls. These rates are small compared to some estimates of background natural sedimentation rates (???5 mm yr-1), but do not preclude higher localized rates near abrupt transitions in sediment characteristics. However, low particle settling velocities and strong currents result in transport length-scales that are long relative to the narrow width of the PV shelf, which combined with the significant offshore component in transport, means that transport of resuspended sediment towards deep water is as likely as transport along the axis of the effluent-affected deposit.
Amato, Elvio D; Simpson, Stuart L; Jarolimek, Chad V; Jolley, Dianne F
2014-04-15
Many sediment quality assessment frameworks incorporate contaminant bioavailability as a critical factor regulating toxicity in aquatic ecosystems. However, current approaches do not always adequately predict metal bioavailability to organisms living in the oxidized sediment surface layers. The deployment of the diffusive gradients in thin films (DGT) probes in sediments allows labile metals present in pore waters and weakly bound to the particulate phase to be assessed in a time-integrated manner in situ. In this study, relationships between DGT-labile metal fluxes within 5 mm of the sediment-water interface and lethal and sublethal effects to the amphipod Melita plumulosa were assessed in a range of contaminated estuarine sediments during 10-day laboratory-based bioassays. To account for differing toxicities of metals, DGT fluxes were normalized to water (WQG) or sediment quality guidelines or toxicity thresholds specific for the amphipod. The better dose-response relationship appeared to be the one based on WQG-normalized DGT fluxes, which successfully predicted toxicity despite the wide range of metals and large variations in sediment properties. The study indicated that the labile fraction of metals measured by DGT is useful for predicting metal toxicity to benthic invertebrates, supporting the applicability of this technique as a rapid monitoring tool for sediments quality assessments.
Sediment transport by runoff on debris-mantled dryland hillslopes
NASA Astrophysics Data System (ADS)
Michaelides, Katerina; Martin, Gareth J.
2012-09-01
Hillslopes supply sediment to river channels, and therefore impact drainage basin functioning and evolution. The relationship between hillslope attributes and sediment flux forms the basis of geomorphic transport laws used to model the long-term topographic evolution of drainage basins, but their specific interactions during individual storm events are not well understood. Runoff-driven erosion of coarse particles, prevalent in dryland environments, presents a particular set of conditions for sediment transport that is poorly resolved in current models. In order to address this gap, we developed a particle-based, force-balance model for sheetwash sediment transport on coarse, debris-mantled hillslopes within a rainfall-runoff model. We use the model to examine how the interplay between hillslope attributes (gradient, length and grain size distribution) and runoff characteristics affects sediment transport, grain-size changes on the hillslope, and sediment supply to the slope base. The relationship between sediment flux and hillslope gradient was found to transition from linear above a threshold to sigmoidal depending on hillslope length, initial grain sizes, and runoff characteristics. Grain sizes supplied to the slope base vary in a complex manner with hillslope attributes but an overall coarsening of the hillslopes is found to occur with increasing gradient, corroborating previous findings from field measurements. Intense, short duration storms result in within-hillslope sediment redistribution and equifinality in sediment supply for different hillslope characteristics, which explain the lack of field evidence for any systematic relationships. Our model findings provide insights into hillslope responses to climatic forcing and have theoretical implications for modeling hillslope evolution in dry lands.
Wright, S.A.; Schoellhamer, D.H.
2005-01-01
[1] Where rivers encounter estuaries, a transition zone develops where riverine and tidal processes both affect sediment transport processes. One such transition zone is the Sacramento-San Joaquin River Delta, a large, complex system where several rivers meet to form an estuary (San Francisco Bay). Herein we present the results of a detailed sediment budget for this river/estuary transitional system. The primary regional goal of the study was to measure sediment transport rates and pathways in the delta in support of ecosystem restoration efforts. In addition to achieving this regional goal, the study has produced general methods to collect, edit, and analyze (including error analysis) sediment transport data at the interface of rivers and estuaries. Estimating sediment budgets for these systems is difficult because of the mixed nature of riverine versus tidal transport processes, the different timescales of transport in fluvial and tidal environments, and the sheer complexity and size of systems such as the Sacramento-San Joaquin River Delta. Sediment budgets also require error estimates in order to assess whether differences in inflows and outflows, which could be small compared to overall fluxes, are indeed distinguishable from zero. Over the 4 year period of this study, water years 1999-2002, 6.6 ?? 0.9 Mt of sediment entered the delta and 2.2 ?? 0.7 Mt exited, resulting in 4.4 ?? 1.1 Mt (67 ?? 17%) of deposition. The estimated deposition rate corresponding to this mass of sediment compares favorably with measured inorganic sediment accumulation on vegetated wetlands in the delta.
Senter, Craig A.; Conn, Kathleen E.; Black, Robert W.; Peterson, Norman; Vanderpool-Kimura, Ann M.; Foreman, James R.
2018-02-28
The Green-Duwamish River transports watershed-derived sediment to the Lower Duwamish Waterway Superfund site near Seattle, Washington. Understanding the amount of sediment transported by the river is essential to the bed sediment cleanup process. Turbidity, discharge, suspended-sediment concentration (SSC), and particle-size data were collected by the U.S. Geological Survey (USGS) from February 2013 to January 2017 at the Duwamish River, Washington, within the tidal influence at river kilometer 16.7 (USGS streamgage 12113390; Duwamish River at Golf Course at Tukwila, WA). This report quantifies the timing and magnitude of suspended-sediment transported in the Duwamish River. Regression models were developed between SSC and turbidity and SSC and discharge to estimate 15- minute SSC. Suspended-sediment loads were calculated from the computed SSC and time-series discharge data for every 15-minute interval during the study period. The 2014–16 average annual suspended-sediment load computed was 117,246 tons (106,364 metric tons), of which 73.5 percent or (86,191 tons; 78,191 metric tons) was fine particle (less than 0.0625 millimeter in diameter) suspended sediment. The seasonality of this site is apparent when you divide the year into "wet" (October 16– April 15) and "dry" (April 16–October 15) seasons. Most (97 percent) of the annual suspended sediment was transported during the wet season, when brief periods of intense precipitation from storms, large releases from the Howard Hanson Dam, or a combination of both were much more frequent.
NASA Astrophysics Data System (ADS)
Rainato, R.; Mao, L.; García-Rama, A.; Picco, L.; Cesca, M.; Vianello, A.; Preciso, E.; Scussel, G. R.; Lenzi, M. A.
2017-08-01
This paper investigates nearly 30 years of monitoring of sediment fluxes in an instrumented Alpine basin (Rio Cordon, Italy). The collected bedload and suspended sediment transport data allows sediment dynamics to be analyzed at different time scales, ranging from short- (single event) to long-term (three decades). The Rio Cordon monitoring station has been operating since 1986, continuously recording water discharge, bedload and suspended load. At the flood event scale, a good relationship was found between peak discharges (Qpeak) and sediment load (bedload and suspended load). The inter-annual sediment yields were analyzed, also assessing the contribution of the single floods to the total sediment budget. The annual suspended load ranges from 10 to 2524 t yr- 1, while the bedload varies from 0 to 1543 t yr- 1. The higher annual yields were recorded in the years when large floods occurred, highlighting that the sediment budget in the Rio Cordon is strongly controlled by the occurrence of high magnitude events. Investigation of the seasonal suspended load contribution demonstrated that from 1986 to 1993 most fine sediments were transported during the snowmelt/summer seasons, while autumn and snowmelt were the dominant seasons contributing to sediment yield in the periods 1994-2002 and 2003-2014, respectively. The mean annual sediment yield from 1986 to 2014 is equal to 103 t km- 2 yr- 1, and overall, bedload accounts for 21% of the total sediment yield. The ratio between the sediment transport and the effective runoff of the events allowed the temporal trends of transport efficiency to be inferred, highlighting the existence of periods characterized by different sediment availability. In particular, despite no significant changes in the hydrological variables (i.e. rainfall), nearly a decade (1994-2002) with high transport efficiency appears to have occurred after an exceptional event (recurrence interval > 100 years). This event affected the sediment availability at the basin and channel bed scales, and provided a legacy influencing the sediment dynamics in the basin over the long-term by increasing the transport efficiency for approximately a decade. This work benefits from the long-lasting monitoring program undertaken in the Rio Cordon and is the product of long-term data series. The quasi-unique dataset has provided detailed evidence of sediment dynamics over about three decades in a small Alpine basin, also enabling the effects triggered by an exceptional event to be analyzed.
NASA Technical Reports Server (NTRS)
Chapman, R. S.
1977-01-01
An explicit two-dimensional finite difference model, designed to investigate the influence of suspended sediment on the pollutant transport process, is presented. Specific attention is directed toward examining the role of suspended sediment in: (1) the turbulent vertical transport mechanism in a stratified flow, and (2) pollutant uptake due to sorption. Results presented indicate that suspended sediment plays a major role in the pollutant transport process, and subsequently, any meaningful attempt to model the fate of a pollutant in an alluvial channel must account for the presence of a suspended sediment concentration profile. Similarly, the vertical and longitudinal pollutant concentration distributions provided by the model may be utilized to improve upon the predictive capacities of existing water quality models.
Sediment dynamics and sources in a grazed hardwood rangeland watershed
Melvin R. George; Neil K. McDougald; Kenneth W. Tate; Royce Larsen
2002-01-01
From 1994 to 1998 we documented sediment transport dynamics and sources in a 137 ha grazed hardwood rangeland watershed on granitic soils at the San Joaquin Experimental Range in Madera County. Sediment transport for this watershed was determined by measuring total suspended solids, bedload and flow at an H-flume installed in 1994. Sediment movement as bedload is the...
Weijer, Wilbert; Maltrud, Mathew E.; Homoky, William B.; ...
2015-03-27
In this study, we address the question whether eddy-driven transports in the Argentine Basin can be held responsible for enhanced sediment accumulation over the Zapiola Rise, hence accounting for the existence and growth of this sediment drift. To address this question, we perform a 6 year simulation with a strongly eddying ocean model. We release two passive tracers, with settling velocities that are consistent with silt and clay size particles. Our experiments show contrasting behavior between the silt fraction and the lighter clay. Due to its larger settling velocity, the silt fraction reaches a quasisteady state within a few years,more » with abyssal sedimentation rates that match net input. In contrast, clay settles only slowly, and its distribution is heavily stratified, being transported mainly along isopycnals. Yet, both size classes display a significant and persistent concentration minimum over the Zapiola Rise. We show that the Zapiola Anticyclone, a strong eddy-driven vortex that circulates around the Zapiola Rise, is a barrier to sediment transport, and hence prevents significant accumulation of sediments on the Rise. We conclude that sediment transport by the turbulent circulation in the Argentine Basin alone cannot account for the preferred sediment accumulation over the Rise. We speculate that resuspension is a critical process in the formation and maintenance of the Zapiola Rise.« less
NASA Astrophysics Data System (ADS)
Ashley, T.; McElroy, B. J.; Buscombe, D.; Grams, P. E.; Kaplinski, M. A.
2015-12-01
Spatial variability in sediment flux is directly related to geomorphic change. Along the Colorado River, measurements of sediment flux are used to track changes in sediment storage and time the release of controlled floods aimed at building eroded sandbars. The very high uncertainty typical of measurements of sediment flux has been reduced by a program of continuous measurement of suspended-sediment concentration by acoustic surrogates. However, there is still significant uncertainty in calculations of total flux. A large fraction of that uncertainty may be caused by overly simplified treatment of bedload flux, which is currently estimated as a constant 5% of the suspended sand flux. That constant is based on estimates of bedform migration rate made with side-scan sonar. Here, we apply theory which relates bedform migration and streamwise sediment flux, to bathymetric data collected at unprecedented temporal and spatial resolution adjacent to the USGS sediment monitoring station above Diamond Creek (362 km downstream from Lees Ferry, AZ). Quantitative time series measurements of reach averaged bedform transport are calculated and compared to fluxes estimated by expressing bedload as a constant fraction of suspended load. Over the range of discharges expected during normal dam operations, bedload transport estimated from the migration of bedforms in the study reach is at least 20% of instantaneous suspended sand load measured at the gage. While bedload appears to be controlled primarily by discharge (and therefore transport capacity of the flow), suspended sand load varies inversely with the grain size of suspended material, suggesting dependence on sediment supply. Sediment transport capacity can vary significantly at a given discharge depending on local hydraulic geometry, so it is likely that there is more spatial variability in bedload transport than suspended sand transport.
NASA Astrophysics Data System (ADS)
Iverson, R. M.
2015-12-01
Episodic landslides and debris flows play a key role in sculpting many steep landscapes, and they also pose significant natural hazards. Field evidence, laboratory experiments, and theoretical analyses show that variations in the quantity, speed, and distance of sediment transport by landslides and debris flows can depend strongly on nuanced differences in initial conditions. Moreover, initial conditions themselves can be strongly dependent on the geological legacy of prior events. The scope of these dependencies is revealed by the results of landslide dynamics experiments [Iverson et al., Science, 2000], debris-flow erosion experiments [Iverson et al., Nature Geosci., 2011], and numerical simulations of the highly destructive 2014 Oso, Washington, landslide [Iverson et al., Earth Planet. Sci. Let., 2015]. In each of these cases, feedbacks between basal sediment deformation and pore-pressure generation cause the speed and distance of sediment transport to be very sensitive to subtle differences in the ambient sediment porosity and water content. On the other hand, the onset of most landslides and debris flows depends largely on pore-water pressure distributions and only indirectly on sediment porosity and water content. Thus, even if perfect predictions of the locations and timing of landslides and debris flows were available, the dynamics of the events - and their consequent hazards and sediment transport - would be difficult to predict. This difficulty is a manifestation of the nonlinear physics involved, rather than of poor understanding of those physics. Consequently, physically based models for assessing the hazards and sediment transport due to landslides and debris flows must take into account both evolving nonlinear dynamics and inherent uncertainties about initial conditions. By contrast, landscape evolution models that use prescribed algebraic formulas to represent sediment transport by landslides and debris flows lack a sound physical basis.
NASA Astrophysics Data System (ADS)
Pearson, S.; van Prooijen, B. C.; Zheng Bing, W.; Bak, J.
2017-12-01
Predicting the response of tidal inlets and adjacent coastlines to sea level rise and anthropogenic interventions (e.g. sand nourishments) requires understanding of sediment transport pathways. These pathways are strongly dependent on hydrodynamic forcing, grain size, underlying morphology, and the timescale considered. To map and describe these pathways, we considered the concept of sediment connectivity, which quantifies the degree to which sediment transport pathways link sources to receptors. In this study we established a framework for understanding sediment transport pathways in coastal environments, using Ameland Inlet in the Dutch Wadden Sea as a basis. We used the Delft3D morphodynamic model to assess the fate of sediment as it moved between specific morphological units defined in the model domain. Simulation data was synthesized in a graphical network and then graph theory used to analyze connectivity at different space and time scales. At decadal time scales, fine and very fine sand (<250μm) have greater connectivity with receptor areas further away from their sources. Conversely, medium sand (>250μm) shows lower connectivity, even in more energetic areas. Greater sediment connectivity was found under the influence of wind and waves when compared to purely tidal forcing. Connectivity shows considerable spatial variation in cross shore and alongshore directions, depending on proximity to the inlet and dominant wave direction. Furthermore, connectivity generally increases at longer timescales. Asymmetries in connectivity (i.e. unidirectional transport) can be used to explain long-term erosional or depositional trends. As such, an understanding of sediment connectivity as a function of grain size could yield useful insights for resolving sediment transport pathways and the fate of a nourishment in coastal environments.
Watershed erosion modeling using the probability of sediment connectivity in a gently rolling system
NASA Astrophysics Data System (ADS)
Mahoney, David Tyler; Fox, James Forrest; Al Aamery, Nabil
2018-06-01
Sediment connectivity has been shown in recent years to explain how the watershed configuration controls sediment transport. However, we find no studies develop a watershed erosion modeling framework based on sediment connectivity, and few, if any, studies have quantified sediment connectivity for gently rolling systems. We develop a new predictive sediment connectivity model that relies on the intersecting probabilities for sediment supply, detachment, transport, and buffers to sediment transport, which is integrated in a watershed erosion model framework. The model predicts sediment flux temporally and spatially across a watershed using field reconnaissance results, a high-resolution digital elevation models, a hydrologic model, and shear-based erosion formulae. Model results validate the capability of the model to predict erosion pathways causing sediment connectivity. More notably, disconnectivity dominates the gently rolling watershed across all morphologic levels of the uplands, including, microtopography from low energy undulating surfaces across the landscape, swales and gullies only active in the highest events, karst sinkholes that disconnect drainage areas, and floodplains that de-couple the hillslopes from the stream corridor. Results show that sediment connectivity is predicted for about 2% or more the watershed's area 37 days of the year, with the remaining days showing very little or no connectivity. Only 12.8 ± 0.7% of the gently rolling watershed shows sediment connectivity on the wettest day of the study year. Results also highlight the importance of urban/suburban sediment pathways in gently rolling watersheds, and dynamic and longitudinal distributions of sediment connectivity might be further investigated in future work. We suggest the method herein provides the modeler with an added tool to account for sediment transport criteria and has the potential to reduce computational costs in watershed erosion modeling.
SedFoam-2.0: a 3-D two-phase flow numerical model for sediment transport
NASA Astrophysics Data System (ADS)
Chauchat, Julien; Cheng, Zhen; Nagel, Tim; Bonamy, Cyrille; Hsu, Tian-Jian
2017-11-01
In this paper, a three-dimensional two-phase flow solver, SedFoam-2.0, is presented for sediment transport applications. The solver is extended from twoPhaseEulerFoam available in the 2.1.0 release of the open-source CFD (computational fluid dynamics) toolbox OpenFOAM. In this approach the sediment phase is modeled as a continuum, and constitutive laws have to be prescribed for the sediment stresses. In the proposed solver, two different intergranular stress models are implemented: the kinetic theory of granular flows and the dense granular flow rheology μ(I). For the fluid stress, laminar or turbulent flow regimes can be simulated and three different turbulence models are available for sediment transport: a simple mixing length model (one-dimensional configuration only), a k - ɛ, and a k - ω model. The numerical implementation is demonstrated on four test cases: sedimentation of suspended particles, laminar bed load, sheet flow, and scour at an apron. These test cases illustrate the capabilities of SedFoam-2.0 to deal with complex turbulent sediment transport problems with different combinations of intergranular stress and turbulence models.
Sediment transport by fishes in Harrington Sound, Bermuda
NASA Astrophysics Data System (ADS)
Alheit, Jürgen
1983-11-01
Harrington Sound, Bermuda, is a shallow subtropical lagoon with carbonate sediments. The most important fishes in this lagoon, in terms of biomass, are grunts (Haemulon aurolineatum, H. flavolineatum, H. sciurus) and a sea-bream (Diplodus bermudensis). These undertake diel feeding migrations from the shallow rocky zone towards the deeper sand and mud zones. When feeding on zoobenthos they cannot avoid swallowing carbonate sediment particles. These sediment particles pass through the alimentary canal of the fishes and are deposited again, after digestion of the food, as faeces in the shallow zones. Thus, the fishes transport the sediment in an unusual direction, from the deep to the shallow zones, in effect against the force of gravity. By recording the fish stock densities, digestion rates, and calcium carbonate content of fish stomach and guts, it was possible to estimate the amount of sediment transported by the fishes. In Harrington Sound, this amounts annually to 4530 kg calcium carbonate, 40% of which is deposited in the very shallow areas. The pH-values measured in fish stomachs seem to be acidic enough for the dissolution of carbonate sediment particles when transported by fishes.
NASA Astrophysics Data System (ADS)
Morche, D.; Schuchardt, A.; Baewert, H.; Weber, M.; Faust, M.
2016-12-01
Glaciers in the European Alps are retreating since the end of the Little Ice Age around 1850. Where the glaciers shrink, they leave unconsolidated sediment stores (moraines, till, glacifluvial deposits). These sediment stores are highly vulnerable for being subsequently eroded and are thus a key variable (source) in the fluvial sediment budget of proglacial areas. The fluvial system in proglacial areas is more or less continuously fed with (fine) sediment by glacial melt water (glacial milk) during the ablation period and infrequently (e.g. during rainstorm events) supplied with sediment by landslides, debris flows, rock fall or fluvial transport from the slopes. A part of the sediment input is temporary stored in intermitted sinks, such as the river bed, bars or braid plains. These storages can be reworked and then become sources for fluvial sediment transport mainly during floods. These sediment transporting processes are highly variable in both, the temporal and spatial scale. A research project has been set up in the Kaunertal valley, Austrian Alps. The presented part of this joint project is focussed on the quantification of recent fluvial sediment dynamics in the proglacial Fagge River below the glacier Gepatschferner. The glacier is located in the Eastern European Alps at the south end of the Kaunertal valley covering an area of 15.7 km² (2012) and is drained by the Fagge River. During the years 2012 to 2015 the Gepatschferner has shown an accelerated glacial retreat leading to the exposure of unconsolidated sediments as well as bedrock areas. The main aim of the presented part of the joint project is the investigation of the fluvial sediment transport rates in the proglacial Fagge River in the Kaunertal valley. Sediment output of the glacial meltwater stream was measured during the ablation periods at a gauging station installed in front of the glacier outlet. Water level was recorded every 15 minutes and discharge measurements were made at different stages. Using the derived stage-discharge relationships, a hydrograph was computed for each ablation season. Suspended sediment concentration (SSC) of several hundred water samples and bedload transport using a portable Helley-Smith sampler were measured. The solid sediment output was finally estimated using the discharge data as well as SSC and bedload data.
NASA Astrophysics Data System (ADS)
Nguyen, T. T.; Stattegger, K.; Nittrouer, C.; Phung, P. V.; Liu, P.; DeMaster, D. J.; Bui, D. V.; Le, A. D.; Nguyen, T. N.
2016-02-01
Collected surface-sediment samples in coastal water around Mekong Delta (from distributary channels to Ca Mau Peninsula) were analyzed to determine surface-sediment grain-size distribution and sediment-transport trend in the subaqueous Mekong Delta. The grain-size data set of 238 samples was obtained by using the laser instrument Mastersizer 2000 and LS Particle Size Analyzer. Fourteen samples were selected for geochemical analysis (total-organic and carbonate content). These geochemical results were used to assist in interpreting variations of granulometricparamenters along the cross-shore transects. Nine transects were examined from CungHau river mouth to Ca Mau Peninsula and six thematic maps on the whole study area were made. The research results indicate that: (1) generally, the sediment becomes finer from the delta front downwards to prodelta and becomes coarser again and poorer sorted on the adjacent inner shelf due to different sources of sediment; (2) sediment-granulometry parameters vary among sedimentary sub-environments of the underwater part of Mekong Delta, the distance from sediment source and hydrodynamic regime controlling each region; (3) the net sediment transport is southwest toward the Ca Mau Peninsula.
Sediment tracing by `customised' magnetic fingerprinting: from the sub-catchment to the ocean scale
NASA Astrophysics Data System (ADS)
Maher, B.
2009-04-01
Robust identification of catchment suspended sediment sources is a prerequisite both for understanding sediment delivery processes and targeting of effective mitigation measures. Fine sediment delivery can pose management problems, especially with regard to nutrient run-off and siltation of water courses and bodies. Suspended sediment load constitutes the dominant mode of particulate material loss from catchments but its transport is highly episodic. Identification of suspended sediment sources and fluxes is therefore a prerequisite both for understanding of fluvial geomorphic process and systems and for designing strategies to reduce sediment transport, delivery and yields. Here will be discussed sediment ‘fingerprinting', using the magnetic properties of soils and sediments to characterise sediment sources and transport pathways over a very wide variety of spatial scales, from Lake Bassenthwaite in the English Lake District to the Burdekin River in Queensland and even the North Atlantic Ocean during the last glacial maximum. The applicability of magnetic ‘fingerprinting' to such a range of scales and environments has been significantly improved recently through use of new and site-appropriate magnetic measurement techniques, statistical processing and sample treatment options.
Huh, C.-A.; Liu, J.T.; Lin, H.-L.; Xu, J. P.
2009-01-01
Sediment transport and sedimentation processes in the Gaoping submarine canyon were studied using sediment trap and current meter moorings deployed at a location during the winter (January-March) and the summer (July-September) months in 2008. At the end of each deployment, sediment cores were also collected from the canyon floor at the mooring site. Samples from sediment traps and sediment cores were analyzed for 210Pb and 234Th by gamma spectrometry. In conjunction with particle size and flow measurements, the datasets suggest that sediment transport in the canyon is tidally-modulated in the drier winter season and flood (river)-dominated in the wetter summer season. From the magnitude and temporal variation of sediment flux in the canyon with respect to the burial flux and sediment budget on the open shelf and slope region, we reaffirm that, on annual or longer timescales, the Gaoping submarine canyon is an effective conduit transporting sediments from the Gaoping River's drainage basin (the source) to the deep South China Sea (the ultimate sink). ?? 2009 Elsevier B.V.
Carbon isotope dynamics in the water column and surface sediments of marginal seas
NASA Astrophysics Data System (ADS)
Lipka, Marko; Liu, Bo; Schmiedinger, Iris; Böttcher, Michael E.
2017-04-01
The microbial mineralization of organic matter in marine sediments leads to the accumulation of dissolved inorganic carbon (DIC) and other metabolites into the interstitial waters. Pore water profiles sensitively reflect the zones of dominant biogeochemical processes, net trans-formation rates, and diffusive and advective transport of dissolved species across the sediment-water interface. They are controlled by different factors like sedimentology, bottom water currents and redox conditions, microbial activity, and the availability of electron acceptors/donors. The biogeochemical processes create steep gradients in DIC and its carbon isotope composition. One boundary condition for transport processes in the sediment is defined by the composition of the water column, which is under impact by physical mixing processes (e.g., salinity gradient; sediment-water exchange), biological activity and carbon dioxide exchange at the water-atmosphere interface. We present here the results of detailed biogeochemical investigations of vertical water column and pore water profiles from two brackish marginal seas: the Baltic Sea and the Black Sea. The water column on a transect between the North Sea and the southern Baltic Sea as well within the Black Sea were investigated on three cruises with RV MS Merian (MSM33, MSM50, MSM51). In addition, biogeochemical processes and associated element fluxes across the sediment-water interface were studied in key regions of Baltic Sea and Black Sea using pore water and sediment samples retrieved from sediment cores that were collected with a multi-coring device. Water samples were analyzed for metals, nutrients, and metabolites concentrations as well as stable carbon isotope composition of DIC to allow a modeling of steady-state transformation, volumetric transformation rates and element fluxes. The isotope composition of the dissolved inorganic carbon system shows a gradient between the North and the Baltic Sea, following the salinity during winter time. Element fluxes across the sediment-water interface depend on bottom water redox conditions, sedimentology and organic contents. Advective fluxes induced by sedimentation events, macro zoobenthos and wave action can affect the top sections of the sediment, thereby modifying shallow concentration gradients. By means of non-steady state modelling of pore water profiles we were able to identify the impact of mixing processes and sedimentation events in the oxic part of the Baltic Sea. In the Black Sea, on the other hand, anaerobic processes control the dynamics in DI13C under permanent euxinic conditions. A Keeling plot analysis was performed on pore waters to identify the δ13C of DIC released upon oxidation of DOC or methane. The carbon isotope composition of DIC is found to be a highly sensitive tool for understanding carbon cycling in the water column and sediments. Acknowledgements: The study is supported by BMBF during FONA-SECOS project, DFG (cruises MSM33, MSM50 and MSM51) and Leibniz IOW.
Geomorphic response of the Sandy River, Oregon, to removal of Marmot Dam
Major, Jon J.; O'Connor, Jim E.; Podolak, Charles J.; Keith, Mackenzie K.; Grant, Gordon E.; Spicer, Kurt R.; Pittman, Smokey; Bragg, Heather M.; Wallick, J. Rose; Tanner, Dwight Q.; Rhode, Abagail; Wilcock, Peter R.
2012-01-01
The October 2007 breaching of a temporary cofferdam constructed during removal of the 15-meter (m)-tall Marmot Dam on the Sandy River, Oregon, triggered a rapid sequence of fluvial responses as ~730,000 cubic meters (m3) of sand and gravel filling the former reservoir became available to a high-gradient river. Using direct measurements of sediment transport, photogrammetry, airborne light detection and ranging (lidar) surveys, and, between transport events, repeat ground surveys of the reservoir reach and channel downstream, we monitored the erosion, transport, and deposition of this sediment in the hours, days, and months following breaching of the cofferdam. Rapid erosion of reservoir sediment led to exceptional suspended-sediment and bedload-sediment transport rates near the dam site, as well as to elevated transport rates at downstream measurement sites in the weeks and months after breaching. Measurements of sediment transport 0.4 kilometers (km) downstream of the dam site during and following breaching show a spike in the transport of fine suspended sediment within minutes after breaching, followed by high rates of suspended-load and bedload transport of sand. Significant transport of gravel bedload past the measurement site did not begin until 18 to 20 hours after breaching. For at least 7 months after breaching, bedload transport rates just below the dam site during high flows remained as much as 10 times above rates measured upstream of the dam site and farther downstream. The elevated sediment load was derived from eroded reservoir sediment, which began eroding when a meters-tall knickpoint migrated about 200 m upstream in the first hour after breaching. Rapid knickpoint migration triggered vertical incision and bank collapse in unconsolidated sand and gravel, leading to rapid channel widening. Over the following days and months, the knickpoint migrated upstream more slowly, simultaneously decreasing in height and becoming less distinct. Within 7 months, the knickpoint had migrated 2 km upstream from the dam site and became a riffle-like feature approximately 1 m high and a few tens of meters long. Knickpoint migration, vertical incision, and lateral erosion evacuated about 15 percent of the initial reservoir volume (125,000 m3) within 60 hours following breaching, and by the end of the high flows in May 2008, about 50 percent of the volume had been evacuated. Large stormflows in November 2008 and January 2009 eroded another 6 percent of the original volume of impounded sediment. Little additional sediment eroded during the remainder of the second year following breaching. The rapid erosion of sediment by the modest flow that accompanied dam breaching was driven mainly by the steep hydraulic gradient associated with the abrupt change of base level and knickpoint formation and was aided by the unconsolidated and cohesionless character of the reservoir sediment. In the ensuing months, transport competence diminished as channel geometry evolved and the river gradient through the reservoir reach diminished. Changes in profile gradient in conjunction with channel coarsening and widening led to a rapid slowing of the rate of reservoir erosion. Sediment transport and deposition were strongly controlled by channel-gradient discontinuities and valley morphology downstream of the dam site. Those influences led to a strong divergence of sand and gravel transport and to deposition of a sediment wedge, as much as 4 m thick, that tapered to the preremoval channel bed 1.3 km downstream of the dam site. After 2 years, that deposit contained about 25 percent of the total volume of sediment eroded from the reservoir. The balance was distributed among pools within the Sandy River gorge, a narrow bedrock canyon extending 2 to 9 km downstream of the dam site, and along the channel farther downstream. A two-fraction sediment budget for the first year following breaching indicates that most of the gravel eroded from the reservoir reach was deposited within the sediment wedge and within the gorge, whereas eroded sand largely passed through the gorge and was broadly dispersed farther downstream. The sequence of transporting flows affected the specific trajectory of reservoir erosion and downstream sediment transport during the 2 years following breaching. However, because the overall erosion was largely a consequence of knickpoint retreat and channel widening, which in the 2 years after removal had affected most of the reservoir reach, it is unlikely that the specific sequence of flows significantly affected the overall outcome. Because the knickpoint had largely passed through the reservoir within 2 years, and the remaining reservoir sediment is mostly isolated high above armored or bedrock banks, it is unlikely that substantial additional sediment from the reservoir site will enter the system unless very large flows occur. Continued channel evolution downstream of the dam site is probable as deposits formed in the first 2 years are episodically mobilized. Below the Sandy River gorge, detection of effects related to release of reservoir sediment is challenging, especially in areas of sand deposition, because of the high background supply of sand in the river and substantial channel dynamism.
Urich, Tim; Lanzén, Anders; Stokke, Runar; Pedersen, Rolf B; Bayer, Christoph; Thorseth, Ingunn H; Schleper, Christa; Steen, Ida H; Ovreas, Lise
2014-09-01
Deep-sea hydrothermal vents are unique environments on Earth, as they host chemosynthetic ecosystems fuelled by geochemical energy with chemolithoautotrophic microorganisms at the basis of the food webs. Whereas discrete high-temperature venting systems have been studied extensively, the microbiotas associated with low-temperature diffuse venting are not well understood. We analysed the structure and functioning of microbial communities in two diffuse venting sediments from the Jan Mayen vent fields in the Norwegian-Greenland Sea, applying an integrated 'omics' approach combining metatranscriptomics, metaproteomics and metagenomics. Polymerase chain reaction-independent three-domain community profiling showed that the two sediments hosted highly similar communities dominated by Epsilonproteobacteria, Deltaproteobacteria and Gammaproteobacteria, besides ciliates, nematodes and various archaeal taxa. Active metabolic pathways were identified through transcripts and peptides, with genes of sulphur and methane oxidation, and carbon fixation pathways highly expressed, in addition to genes of aerobic and anaerobic (nitrate and sulphate) respiratory chains. High expression of chemotaxis and flagella genes reflected a lifestyle in a dynamic habitat rich in physico-chemical gradients. The major metabolic pathways could be assigned to distinct taxonomic groups, thus enabling hypotheses about the function of the different prokaryotic and eukaryotic taxa. This study advances our understanding of the functioning of microbial communities in diffuse hydrothermal venting sediments. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Pietroń, Jan; Jarsjö, Jerker
2014-05-01
Ongoing changes in the Central Asian climate including increasing temperatures can influence the hydrological regimes of rivers and the waterborne transport of sediments. Changes in the latter, especially in combination with adverse human activities, may severely impact water quality and aquatic ecosystems. However, waterborne transport of sediments is a result of complex processes and varies considerably between, and even within, river systems. There is therefore a need to increase our general knowledge about sediment transport under changing climate conditions. The Tuul River, the case site of this study, is located in the upper part of the basin of the Selenga River that is the main tributary to Lake Baikal, a UNESCO World Heritage Site. Like many other rivers located in the steppes of Northern Mongolia, the Tuul River is characterized by a hydrological regime that is not disturbed by engineered structures such as reservoirs and dams. However, the water quality of the downstream Tuul River is increasingly affected by adverse human activities - including placer gold mining. The largest contribution to the annual river discharge occurs during the relatively warm period in May to August. Typically, there are numerous rainfall events during this period that cause considerable river flow peaks. Parallel work has furthermore shown that due to climate change, the daily variability of discharge and numbers of peak flow events in the Tuul River Basin has increased during the past 60 years. This trend is expected to continue. We here aim at increasing our understanding of future sediment transport patterns in the Tuul River, specifically considering the scenario that peak flow events may become more frequent due to climate change. We use a one-dimensional sediment transport model of the downstream reach of the river to simulate natural patterns of sediment transport for a recent hydrological year. In general, the results show that sediment transport varies considerably spatially and temporally. Peak flow events during the warm period contribute largely to the total annual transport of sediments and also to the erosion of stored bed material. These results suggest that if the number of peak flow events will increase further due to climate change, there will be a significant increase in the annual sediment load and consequently in the load of contaminants that are attached to the sediments, in particular downstream of mining sites. The present results are furthermore consistent with parallel studies on sediment transport and climate change showing that increased water discharges and frequencies of rainfall/flow events can lead to enhanced erosion processes. Furthermore, in addition to climate change effects, human activates can change sediment loads in rivers to even greater extent, as pointed out in several studies. Thus, several different challenges can be expected to face the management of Central Asian rivers such as Tuul and their ecosystems in the future.
Wu, Lei; Long, Tian-Yu; Liu, Xia; Mmereki, Daniel
2012-06-01
Jialing River is the largest tributary in the catchment area of Three Gorges Reservoir, and it is also one of the important areas of sediment yield in the upper reaches of the Yangtze River. In recent years, significant changes of water and sediment characteristics have taken place. The "Long Control" Project implemented since 1989 had greatly changed the surface appearance of the Jialing River Watershed (JRW), and it had made the environments of the watershed sediment yield and sediment transport change significantly. In this research, the Revised Universal Soil Loss Equation was selected and used to predict the annual average amount of soil erosion for the special water and sediment environments in the JRW after the implementation of the "Long Control" Project, and then the rainfall-runoff modulus and the time factor of governance were both considered as dynamic factors, the dynamic sediment transport model was built for soil erosion monitoring and forecasting based on the average sediment yield model. According to the dynamic model, the spatial and temporal distribution of soil erosion amount and sediment transport amount of the JRW from 1990 to 2007 was simulated using geographic information system (GIS) technology and space-grid algorithm. Simulation results showed that the average relative error of sediment transport was less than 10% except for the extreme hydrological year. The relationship between water and sediment from 1990 to 2007 showed that sediment interception effects of the soil and water conservation projects were obvious: the annual average sediment discharge reduced from 145.3 to 35 million tons, the decrement of sediment amount was about 111 million tons, and decreasing amplitude was 76%; the sediment concentration was also decreased from 2.01 to 0.578 kg/m(3). These data are of great significance for the prediction and estimation of the future changing trends of sediment storage in the Three Gorges Reservoir and the particulate non-point source pollution load carried by sediment transport from watershed surface.
NASA Astrophysics Data System (ADS)
Kumar, Amit; Gokhale, Anupam Anand; Shukla, Tanuj; Dobhal, Dwarika Prasad
2016-07-01
Sediments released from high altitude glaciers exhibit varying evacuation patterns and transport characteristics owing to the presence of thick debris cover over the glacier. Despite the recent needs for integrated hydrometeorological studies in the Himalaya, little is known about the impacts of suspended sediment on hydropower generation, reservoir sedimentation, and abrasion of turbine components. Present study involves analysis of particle size distribution of suspended sediments to understand sediment evacuation patterns and transport characteristics in variable energy conditions during the ablation season. Peak suspended sediments were evacuated during extreme rainfall events. The estimated seasonal modern sediment erosion rate varies from 0.6 to 2.3 mm y- 1 for the study period (2009-2012). The analysis shows dominance of medium silt-sized to fine sand-sized particles having sediment size of 0.0156-0.25 mm corresponding to 70-80% without any significant seasonal variation. These transported sediments show that they are poorly sorted, coarser in nature with a nearly symmetrical to coarse skewed texture and kurtosis analysis suggesting mesokurtic distribution of sediments. The particle size fraction ranges between 4.65 and 5.23 ϕ, which is dominantly medium to coarse silty in texture. Results indicate that suspended sediments are evacuated in highly variable energy conditions through subglacial transport pathways because of increase in availability of meltwater with the progressive ablation season. Bulk geochemical characterization has been carried out to differentiate the source of suspended sediments and intensity of weathering. Chemical Index of Alterations (CIA) values of sediment flux range from 54.68 to 55.18 compared to the Upper Continental Crust (UCC) ~ 50, indicating moderate intensity of weathering. Mean seasonal (2009-2012) elemental fluxes and their contribution to the suspended sediment flux reflect that Si and Al are responsible for about 85% of the total detrital elemental flux. Trace elements show high concentrations of radioactive elements like U, Th, Pb, and Rb that suggest their high anomalous presence in the catchment lithology. An overall study indicates that the hydroclimatic conditions over the debris-covered glacier play a dominant controlling factor in erosion, transportation, and evacuation of suspended sediments during the ablation season.
Baldock, T E; Golshani, A; Atkinson, A; Shimamoto, T; Wu, S; Callaghan, D P; Mumby, P J
2015-08-15
A one-dimensional wave model is combined with an analytical sediment transport model to investigate the likely influence of sea-level rise on net cross-shore sediment transport on fetch-limited barrier reef and lagoon island beaches. The modelling considers if changes in the nearshore wave height and wave period in the lagoon induced by different water levels over the reef flat are likely to lead to net offshore or onshore movement of sediment. The results indicate that the effects of SLR on net sediment movement are highly variable and controlled by the bathymetry of the reef and lagoon. A significant range of reef-lagoon bathymetry, and notably shallow and narrow reefs, appears to lead hydrodynamic conditions and beaches that are likely to be stable or even accrete under SLR. Loss of reef structural complexity, particularly on the reef flat, increases the chance of sediment transport away from beaches and offshore. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pietroń, Jan; Jarsjö, Jerker
2013-04-01
The concentration of heavy metals in rivers is often greater in the sediment load than in the water solution. Overall, heavy metal conveyance with sediment transport is a significant contributor to the global transport of heavy metals. Heavy metals once released to a river system may remain in the deposits of the river from short to very long times, for instance depending on to which extent erosion and deposition can influence the sediment mass stored in the river bed. In general, the mobility of contaminated sediments to downstream water recipients may to large extent be governed by natural sediment transport dynamics during hydrological events, such as flow peaks following heavy rainfalls. The Tuul River (Northern Mongolia) belongs to a Tuul River-Orkhon River-Selenga River- transboundary river system that discharges into Lake Baikal. The river system is largely characterized by its natural hydrological regime with numerous rapid peak flow events of the spring-summer periods. However, recent studies indicate contamination of fine sediment with heavy metals coming from placer gold mining area (Zaamar Goldfield) located along the downstream Tuul River. In this work, the general idea is to create a one-dimensional sediment transport model of the downstream Tuul River, and use field-data supported modeling to investigate natural erosion-deposition rates and the role of peak flows in natural sediment transport at 14 km reach just downstream the gold mining area. The model results show that the sediment load of the finest investigated grain size has a great potential to be eroded from the bed of the studied reach, especially during the main peak flow events. However, the same events are associated with a significant deposition of the finest material. The model results also show different hysteresis behavior of the sediment load rating curves (clockwise and counter-clockwise) during the main peak flow events. These are interpreted as effects of changing in-channel sediment supplies due to sorting method applied in the model. More generally, the modelling may increase our knowledge about the sediment transport patterns of the reach downstream the mining area. This part of the river may be considered as a temporal sink of heavy metals which may accumulate and store sediments. The deposition in such sinks can considerably support attenuation of contaminated sediment loads. On the other hand, sediments that are accumulated in sinks can increase the concentration of contaminated sediment loads during peak flow events. Information about the rates of eroded and accumulated contaminated material in such sinks is important for future water protection planning, especially under changing climate conditions. This work may also provide scientific input to discussions on both adverse environmental consequences of placer mining, and suitable designs of sediment control measures in the Zaamar Goldfield and other continental river systems.
Sanay, Rosario; Voulgaris, George; Warner, John C.
2007-01-01
A series of process-oriented numerical simulations is carried out in order to evaluate the relative role of locally generated residual flow and overtides on net sediment transport over linear sandbanks. The idealized bathymetry and forcing are similar to those present in the Norfolk Sandbanks, North Sea. The importance of bottom drag parameterization and bank orientation with respect to the ambient flow is examined in terms of residual flow and overtide generation, and subsequent sediment transport implications are discussed. The results show that although the magnitudes of residual flow and overtides are sensitive to bottom roughness parameterization and bank orientation, the magnitude of the generated residual flow is always larger than that of the locally generated overtides. Also, net sediment transport is always dominated by the nonlinear interaction of the residual flow and the semidiurnal tidal currents, although cross-bank sediment transport can occur even in the absence of a cross-shore residual flow. On the other hand, net sediment divergence/convergence increases as the bottom drag decreases and as bank orientation increases. The sediment erosion/deposition is not symmetric about the crest of the bank, suggesting that originally symmetric banks would have the tendency to become asymmetric.
Causes for the decline of suspended-sediment discharge in the Mississippi River system, 1940-2007
Meade, R.H.; Moody, J.A.
2010-01-01
Before 1900, the Missouri-Mississippi River system transported an estimated 400 million metric tons per year of sediment from the interior of the United States to coastal Louisiana. During the last two decades (1987-2006), this transport has averaged 145 million metric tons per year. The cause for this substantial decrease in sediment has been attributed to the trapping characteristics of dams constructed on the muddy part of the Missouri River during the 1950s. However, reexamination of more than 60 years of water- and sediment-discharge data indicates that the dams alone are not the sole cause. These dams trap about 100-150 million metric tons per year, which represent about half the decrease in sediment discharge near the mouth of the Mississippi. Changes in relations between water discharge and suspended-sediment concentration suggest that the Missouri-Mississippi has been transformed from a transport-limited to a supply-limited system. Thus, other engineering activities such as meander cutoffs, river-training structures, and bank revetments as well as soil erosion controls have trapped sediment, eliminated sediment sources, or protected sediment that was once available for transport episodically throughout the year. Removing major engineering structures such as dams probably would not restore sediment discharges to pre-1900 state, mainly because of the numerous smaller engineering structures and other soil-retention works throughout the Missouri-Mississippi system. ?? 2009 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Wu, C.; Nittrouer, J. A.; Burmeister, K. C.
2017-12-01
River hydrodynamic conditions are modified where a system approaches its terminal basin, characterized by the onset of non-uniform "backwater" flow. A decrease in boundary shear stress in the backwater region reduces transport capacity and results in sediment deposition on the channel bed. Although such morphodynamic conditions are common in modern fluvial-deltaic channels, the extent to which these processes are prevalent in the stratigraphic record remains unclear. For example, a few studies documenting changes in fluvial sandstone channel dimensions and grain size distributions near a river terminus attributed this variability to backwater hydrodynamics. However, quantitative tests using morphodynamic models bolstered by a variety of field observations, which could then be linked to sediment depositional patterns and stratigraphy, have yet to be produced. Here we calibrate a one-dimensional river flow model with measurements of paleo-slope and channel depth, and use the output to constrain a sediment transport model, with data from the Tullig Sandstone in the Western Irish Namurian Basin. Based on the model results, our analyses indicate that: (1) backwater hydrodynamics influence the spatial variation of sandstone dimensions and grain size across the delta, and (2) backwater hydrodynamics drive channel bed aggradation and progradation of the river mouth for conditions of constant sea level. Field data indicate that the reach-average story thickness increases, and then decreases, progressing downstream over the backwater reach. Based on the inferred transport and depositional processes, the measured deltaic stratigraphy patterns shown here are assumed to be associated with backwater hydrodynamics, and are therefore largely autogenic in origin. These analyses indicate that non-uniform hydrodynamics can generate stratigraphic patterns that could be conflated as arising due to allogenic effects, based on traditional geometric or diffusion-based depositional models. Moreover, the signals of river hydrodynamics preserved in the stratigraphic record can be a useful tool for differentiating between short-term autogenic and long-term allogenic processes.
Mourad, D; van der Perk, M
2004-01-01
First results are presented of a large-scale GIS-based nutrient transport modelling for the 1985-1999 period in the Estonian part of the transboundary drainage basin of Lake Peipsi (Estonian)/Chudskoe (Russian), one of the largest lakes in Europe, shared by Russia and Estonia. Although the lake is relatively undisturbed by human pollution, it is vulnerable for eutrophication by increased river loads, as shown in the past, when the north-eastern part of the former Soviet Union suffered from intensive agriculture. The collapse of the Soviet Union caused a dramatic decline in fertilizer application rates and widespread abandonment of agricultural land. Although concentration measurements and modelling results indicate a general decrease in nutrient loads, modelling is complicated by the transfer of nutrients from diffuse emissions, which is strongly governed by retention and assumed periodic release from storages within the river basin, like the root zone, tile drains, ditches, channels, bed sediments, floodplains and lakes. Modelling diffuse emission contribution to river loads can be improved by better knowledge about the spatial and temporal distribution of this retention and release within the drainage basin.
Sediment Resuspension and Transport During Bora in the Western Adriatic Coastal Current
NASA Astrophysics Data System (ADS)
Mullenbach, B. L.; Geyer, W. R.; Sherwood, C. R.
2004-12-01
The Western Adriatic Coastal Current (WACC) is an important agent for along-shelf transport of sediment and fresh water in the western Adriatic Sea. The WACC is driven by a combination of buoyancy forcing from the Po River (northern Adriatic) and wind forcing from northeasterly Bora winds. The large seasonal pulse of freshwater (during the winter) from the Po River influences WACC strength; however, preliminary results from current measurements and model runs indicate that the WACC responds quickly and strongly to Bora wind events, with a strengthening of the current moving southward. Along-margin sediment transport to the south is significantly increased as a result of Bora wind events, presumably because of enhanced wave resuspension and WACC velocity. Elevated sediment fluxes have been observed in both the upper water column (i.e., core of the WACC) and bottom boundary layer (BBL) during these events, which suggests that wind-driven currents may be coupled with the near-bottom transport. This study addresses the interaction of the WACC with the BBL and the impact of this interaction on sediment transport in the western Adriatic. Two benthic tripods were deployed from November 2002 to June 2003 on an across-shelf transect near the Chienti River (at 10 and 20-m water depth), in the region where WACC begins to intensify (200 km south of Po River). Continuous measurements of suspended sediment concentration and current velocity were recorded in the upper-water column and BBL to document sediment transport events. A time series of sediment fluxes and shear velocities (from currents only, u*c; from waves and currents, u*wc) were calculated from these data. Results show that suspended sediment concentrations near the seabed (few cmab) during Bora wind events are strongly correlated with u*wc, which supports a previous hypothesis that wave resuspension (rather than direct fluvial input) is responsible for much of the suspended sediment available for transport southward of the Po River. In contrast, suspended sediment concentrations farther away from the bed (50 cmab) are highly correlated with u*c, but not with u*wc. These results suggest that WACC velocity during Bora events controls the ability of sediment to escape the wave boundary layer and be suspended farther away from the seabed. This implies that turbulence induced by currents, rather than waves, allows sediment to move higher in the water column and become available for transport by fast-moving currents generated by the WACC, thus producing strong southward sediment fluxes observed during Bora events. Specific mechanisms responsible for the vertical structure of suspended sediment and estimates of vertically integrated fluxes during these Bora events are yet to be established because of the difficulty in estimating suspended sediment concentrations throughout the water column from acoustic data; these issues are still under investigation and progress will be assessed.
The Steady-State Transport of Oxygen through Hemoglobin Solutions
Keller, K. H.; Friedlander, S. K.
1966-01-01
The steady-state transport of oxygen through hemoglobin solutions was studied to identify the mechanism of the diffusion augmentation observed at low oxygen tensions. A novel technique employing a platinum-silver oxygen electrode was developed to measure the effective diffusion coefficient of oxygen in steady-state transport. The measurements were made over a wider range of hemoglobin and oxygen concentrations than previously reported. Values of the Brownian motion diffusion coefficient of oxygen in hemoglobin solution were obtained as well as measurements of facilitated transport at low oxygen tensions. Transport rates up to ten times greater than ordinary diffusion rates were found. Predictions of oxygen flux were made assuming that the oxyhemoglobin transport coefficient was equal to the Brownian motion diffusivity which was measured in a separate set of experiments. The close correlation between prediction and experiment indicates that the diffusion of oxyhemoglobin is the mechanism by which steady-state oxygen transport is facilitated. PMID:5943608
Transport of bedload sediment and channel morphology of a southeast Alaska stream.
Margaret A. Estep; Robert L. Beschta
1985-01-01
During 1980-81, transport of bedload sediment and channel morphology were determined at Trap Bay Creek, a third-order stream that drains a 13.5-square kilometer watershed on Chichagof island in southeast Alaska. Bedload sediment was sampled for 10 storms: peak flows ranged from 0.6 to 19.0 cubic meters per second, and transport rates ranged from 4 to 4400 kilograms per...
NASA Astrophysics Data System (ADS)
Afan, Haitham Abdulmohsin; El-shafie, Ahmed; Mohtar, Wan Hanna Melini Wan; Yaseen, Zaher Mundher
2016-10-01
An accurate model for sediment prediction is a priority for all hydrological researchers. Many conventional methods have shown an inability to achieve an accurate prediction of suspended sediment. These methods are unable to understand the behaviour of sediment transport in rivers due to the complexity, noise, non-stationarity, and dynamism of the sediment pattern. In the past two decades, Artificial Intelligence (AI) and computational approaches have become a remarkable tool for developing an accurate model. These approaches are considered a powerful tool for solving any non-linear model, as they can deal easily with a large number of data and sophisticated models. This paper is a review of all AI approaches that have been applied in sediment modelling. The current research focuses on the development of AI application in sediment transport. In addition, the review identifies major challenges and opportunities for prospective research. Throughout the literature, complementary models superior to classical modelling.
Where on Earth can we find Mars? Characterization of an Aeolian Analogue in Northwestern Argentina
NASA Astrophysics Data System (ADS)
Favaro, E. A.; Hugenholtz, C.; Barchyn, T.
2017-12-01
The Puna Plateau of northwestern Argentina is as a promising analogue for Martian aeolian processes owing to its altitude, low atmospheric pressure, aridity, and widespread granular and bedrock aeolian features. The study was conducted in and surrounding the area known as the Campo de Piedra Pómez - a prominent expanse of wind-carved ignimbrite in Argentina's Catamarca Province. To interpret the evolution of this unique laboratory, which is limited by its isolated location and dearth of in situ measurements, we investigated contemporary aeolian sediment transport through a combination of modeled meteorological data, satellite imagery, field measurements, and sediment traps. Our objective is to utilize modeled meteorological data, satellite imagery, and field measurements and samples to characterize the aeolian environment here to base analogue studies. Satellite imagery from Terra MODIS, GeoEye, and Ikonos indicate recent large-scale aeolian sediment transport events and migration of gravel in the region. A prominent, region-wide sediment transport event on 14 August 2015 coincided with synoptic-scale pressure patterns indicating a strong Zonda (Foehn) winds. Sediment traps and marbles provide additional evidence of wind-driven transport of sand and gravel. Yet, despite the body of evidence for sediment transport on the Puna Plateau, modeled wind data from the European Center for Midrange Weather Forecasting suggest wind rarely attains the speeds necessary to initiate sediment transport. This disconnect is reminiscent of the Martian Saltation Paradox which suggested winds on Mars were incapable of mobilizing sediment, despite widespread evidence from rover, lander, and satellite observations. This raises questions about: (i) the suitability of modeled wind data for characterizing aeolian processes on both planets, and (ii) the possibility that most geomorphic work is conducted in extreme, but infrequent events in this region (possibly analogous to Mars). We suggest future research should attempt to reconcile disparities between sediment transport observations and modeled wind data.
Sediment transport and mixing depth on a coral reef sand apron
NASA Astrophysics Data System (ADS)
Vila-Concejo, Ana; Harris, Daniel L.; Power, Hannah E.; Shannon, Amelia M.; Webster, Jody M.
2014-10-01
This paper investigates the mechanics of sediment transport on a subtidal sand apron located on a coral reef environment. In this environment 100% of the sediment is carbonate bioclasts generated in situ. The sand apron is located on the back reef and only affected by waves during high tides. It is commonly accepted in the literature that sand aprons are features that prograde lagoonwards and that most of the progradation occurs during high-energy events. Measurements of water depths, waves, currents and near bed suspended sediment concentrations (all at 10 Hz) on the sand apron were undertaken over a nine day intensive field campaign over both spring and neap tides; waves and tides were also measured in the lagoon. The topography and bathymetry of the sand apron were measured and mixing depth was obtained on three transects using depth of disturbance rods. We found that sediment transport on sand aprons is not solely restricted to high-energy events but occurs on a daily basis during spring tides. The main factor controlling the sediment transport was the water depth above the bed, with depths of 2-2.3 m allowing waves to promote the most sediment transport. This corresponds to a depth over the reef crest of 1.6-1.9 m. The second most important control was waves; transport was observed when Hs on the apron was 0.1 m or greater. In contrast, current magnitude was not a controlling mechanism for sediment entrainment but did affect sediment transport. The morphology of the sand apron was shown to affect the direction of currents with the currents also expected to influence the morphology of the sand apron. The currents measured during this field campaign were aligned with a shallow channel in the sand apron. Mixing depths were small (< 2.5 cm) yet they were larger than the values predicted by empirical formulae for gentle siliciclastic ocean beaches.
NASA Astrophysics Data System (ADS)
Hsu, T. J.; Cheng, Z.; Yu, X.
2016-02-01
The wave bottom boundary layer is a major conduit delivering fine terrestrial sediments to the continental margin. Hence, studying the fine sediment resuspension in the wave boundary layer is crucial to the understanding of various components of the earth system, such as carbon cycle. By assuming the settling velocity to be a constant in each simulation, previous turbulence-resolving numerical simulations reveal the existence of three transport modes in the wave boundary layer associated with the sediment availability. As the sediment availability and hence the sediment-induced stable stratification increase, a sequence of transport modes, namely, (I) well-mixed transport, (II) formulation of lutocline resembling a two-layer system, and (III) completely laminarized transport are observed. In general, the settling velocity is a flow variable due to the floc dynamics and hindered settling. This study further investigate the effect of hindered settling. Particularly, for flocs with lower gelling concentrations, the hindered settling effect can play a key role in sustaining large amount of suspended sediment load and results in the laminarized transport (III). For the simulation with a very significant hindered settling effect due to a low gelling concentration, results also indicate the occurrence of gelling ignition, a state in which the erosion rate is always higher than the deposition rate. A condition for the occurrence of gelling ignition is proposed for a range of wave intensities as a function of sediment/floc properties and erodibility parameters. These aforementioned studies are limited to fine sediment transport over a flat bed. However, recent field and laboratory observation show that a small amount of sand fraction can lead to the formation of small bedforms, which can armor the bed while in the meantime enhance near bed turbulence. Preliminary investigation on the effect of bedforms on the resulting transport modes will also be presented.
Tu, Tongbi; Carr, Kara J; Ercan, Ali; Trinh, Toan; Kavvas, M Levent; Nosacka, John
2017-12-31
Extreme floods are regarded as one of the most catastrophic natural hazards and can result in significant morphological changes induced by pronounced sediment erosion and deposition processes over the landscape. However, the effects of extreme floods of different return intervals on the floodplain and river channel morphological evolution with the associated sediment transport processes are not well explored. Furthermore, different basin management action plans, such as engineering structure modifications, may also greatly affect the flood inundation, sediment transport, solute transport and morphological processes within extreme flood events. In this study, a coupled two-dimensional hydrodynamic, sediment transport and morphological model is applied to evaluate the impact of different river and basin management strategies on the flood inundation, sediment transport dynamics and morphological changes within extreme flood events of different magnitudes. The 10-year, 50-year, 100-year and 200-year floods are evaluated for the Lower Cache Creek system in California under existing condition and a potential future modification scenario. Modeling results showed that select locations of flood inundation within the study area tend to experience larger inundation depth and more sediment is likely to be trapped in the study area under potential modification scenario. The proposed two dimensional flow and sediment transport modeling approach implemented with a variety of inflow conditions can provide guidance to decision-makers when considering implementation of potential modification plans, especially as they relate to competing management strategies of large water bodies, such as the modeling area in this study. Copyright © 2017 Elsevier B.V. All rights reserved.
Suspended sediment transport trough a large fluvial-tidal channel network
Wright, Scott A.; Morgan-King, Tara L.
2015-01-01
The confluence of the Sacramento and San Joaquin Rivers, CA, forms a large network of interconnected channels, referred to as the Sacramento-San Joaquin Delta (the Delta). The Delta comprises the transition zone from the fluvial influences of the upstream rivers and tidal influences of San Francisco Bay downstream. Formerly an extensive tidal marsh, the hydrodynamics and geomorphology of Delta have been substantially modified by humans to support agriculture, navigation, and water supply. These modifications, including construction of new channels, diking and draining of tidal wetlands, dredging of navigation channels, and the operation of large pumping facilities for distribution of freshwater from the Delta to other parts of the state, have had a dramatic impact on the physical and ecological processes within the Delta. To better understand the current physical processes, and their linkages to ecological processes, the USGS maintains an extensive network of flow, sediment, and water quality gages in the Delta. Flow gaging is accomplished through use of the index-velocity method, and sediment monitoring uses turbidity as a surrogate for suspended-sediment concentration. Herein, we present analyses of the transport and dispersal of suspended sediment through the complex network of channels in the Delta. The primary source of sediment to the Delta is the Sacramento River, which delivers pulses of sediment primarily during winter and spring runoff events. Upon reaching the Delta, the sediment pulses move through the fluvial-tidal transition while also encountering numerous channel junctions as the Sacramento River branches into several distributary channels. The monitoring network allows us to track these pulses through the network and document the dominant transport pathways for suspended sediment. Further, the flow gaging allows for an assessment of the relative effects of advection (the fluvial signal) and dispersion (from the tides) on the sediment pulses as they move through the system. Herein, we present analyses of the “first flush” sediment pulse that occurred on the Sacramento River in December 2012, documenting the transport pathways as well as the effects of advection and dispersion on the sediment as it moved through the fluvial-tidal transition in the Delta. The analyses identified an important transport pathway through the interior of the Delta toward the large pumping facilities in the south Delta, which has important implications for native fish (because their movements are triggered by sediment/turbidity). The results also reveal the dramatic transition from fluvial-dominated transport (advection) to tidal-dominated transport (dispersion) as the sediment pulse approaches the estuary.
Turbulent Flow and Sand Dune Dynamics: Identifying Controls on Aeolian Sediment Transport
NASA Astrophysics Data System (ADS)
Weaver, C. M.; Wiggs, G.
2007-12-01
Sediment transport models are founded on cubic power relationships between the transport rate and time averaged flow parameters. These models have achieved limited success and recent aeolian and fluvial research has focused on the modelling and measurement of sediment transport by temporally varying flow conditions. Studies have recognised turbulence as a driving force in sediment transport and have highlighted the importance of coherent flow structures in sediment transport systems. However, the exact mechanisms are still unclear. Furthermore, research in the fluvial environment has identified the significance of turbulent structures for bedform morphology and spacing. However, equivalent research in the aeolian domain is absent. This paper reports the findings of research carried out to characterise the importance of turbulent flow parameters in aeolian sediment transport and determine how turbulent energy and turbulent structures change in response to dune morphology. The relative importance of mean and turbulent wind parameters on aeolian sediment flux was examined in the Skeleton Coast, Namibia. Measurements of wind velocity (using sonic anemometers) and sand transport (using grain impact sensors) at a sampling frequency of 10 Hz were made across a flat surface and along transects on a 9 m high barchan dune. Mean wind parameters and mass sand flux were measured using cup anemometers and wedge-shaped sand traps respectively. Vertical profile data from the sonic anemometers were used to compute turbulence and turbulent stress (Reynolds stress; instantaneous horizontal and vertical fluctuations; coherent flow structures) and their relationship with respect to sand transport and evolving dune morphology. On the flat surface time-averaged parameters generally fail to characterise sand transport dynamics, particularly as the averaging interval is reduced. However, horizontal wind speed correlates well with sand transport even with short averaging times. Quadrant analysis revealed that turbulent events with a positive horizontal component, such as sweeps and outward interactions, were responsible for the majority of sand transport. On the dune surface results demonstrate the development and modification of turbulence and sediment flux in key regions: toe, crest and brink. Analysis suggests that these modifications are directly controlled by streamline curvature and flow acceleration. Conflicting models of dune development, morphology and stability arise when based upon either the dynamics of measured turbulent flow or mean flow.
NASA Astrophysics Data System (ADS)
Warner, J. C.; Sullivan, C.; Voulgaris, G.; Work, P.; Haas, K.; Hanes, D. M.
2004-12-01
Long Bay, South Carolina, is a heavily populated coastal region that supports a large tourism industry. Sand resources are important for both recreation and coastal habitat. Earlier geological framework studies have identified a large sand deposit oblique to the shoreline, oriented clockwise in the offshore direction. This sand feature is ~ 10 km long, 2 km wide, and in excess of 3m thick, possibly providing a source for beach nourishment material. Objectives of this study are to describe the physical processes that control the transport of sediment in Long Bay, specifically off the coast of Myrtle Beach, South Carolina. Specifically we seek to 1) measure and model the oceanographic circulation in the region, 2) identify the processes that maintain the presence of the offshore sand feature, 3) quantify the control that the shoal exerts on the nearshore through changes in wave energy propagation, and 4) identify consequences of removal of the offshore sand feature. Both observational and numerical experiments are used to study the oceanographic circulation and transport of sediment. The observational study is described in an accompanying poster and consists of eight sites that measured tides, surface waves, currents, salinity, temperature, suspended sediment concentrations, and bed forms from October 2003 to April 2004. Numerical modeling for circulation and sediment transport in the study region uses a new version of ROMS (v2.1) that now includes transport of multiple grain sizes, coupling of sediment transport to wave bottom boundary layer models, and evolution of the bottom morphology. The SWAN model is used to compute wave propagation. Results indicate that currents in the study area are strongly influenced by both tidal motion and wind driven setup / setdown. The presence of the offshore sand feature alters the residual flows in the region. Sediment transport is more significant during periods of sustained strong winds that generate local waves. Wind direction plays a key role in determining the direction and magnitude of sediment transport.
NASA Astrophysics Data System (ADS)
Flores, R. P.; Rijnsburger, S.; Horner-Devine, A.; Souza, A. J.; Pietrzak, J.
2016-02-01
This work will describe dominant processes affecting suspended sediment transport along the Dutch coast, in the mid-field plume region of the Rhine River. We will present field observations from two long-term deployments conducted in the vicinity of the Sand Engine, a mega-nourishment experiment located 10 km north of the Rhine river mouth. To investigate the role of density stratification, winds, tides, waves and river plume processes on sediment transport, frames and moorings were deployed within the excursion of the tidal plume front generated by the freshwater outflow from the Rhine River for 4 and 6 weeks during years 2013 and 2014, respectively. The moorings were designed to measure vertical profiles of suspended sediment concentration (SSC) and salinity, using arrays of CTDs and OBS sensors. Mean tidal velocities were measured using bottom-mounted ADCPs. The near-bed dynamics and the near-bottom sediment concentrations were measured as well using a set of synchronized ADVs and OBSs. By combining the two deployments we observe hydrodynamics and suspended sediment dynamics under a wide range of forcing conditions. Preliminary observations indicate that stratification is highly dependent on wind magnitude and direction, and its role is primarily identified as to induce significant cross-shore sediment transport product of the generation of cross-shore velocities due to the modification of the tidal ellipses and the passage of the surface plume front. The passage of the surface plume front generates strong offshore currents near the bottom, producing transport events that can be similar in magnitude to the dominant alongshore transport. Preliminary results also indicate that storms play an important role in alongshore transport primarily by wave-induced sediment resuspension, but as stratification is suppressed due to the enhancement of mixing processes, no significant cross-shore transport is observed during very energetic conditions.
NASA Astrophysics Data System (ADS)
Lyle, Mitchell; Marcantonio, Franco; Moore, Willard S.; Murray, Richard W.; Huh, Chih-An; Finney, Bruce P.; Murray, David W.; Mix, Alan C.
2014-07-01
We use flux, dissolution, and excess 230Th data from the Joint Global Ocean Flux Study and Manganese Nodule Project equatorial Pacific study Site C to assess the extent of sediment focusing in the equatorial Pacific. Measured mass accumulation rates (MAR) from sediment cores were compared to reconstructed MAR by multiplying the particulate rain caught in sediment traps by the 230Th focusing factor and subtracting measured dissolution. CaCO3 MAR is severely overestimated when the 230Th focusing factor correction is large but is estimated correctly when the focusing factor is small. In contrast, Al fluxes in the sediment fine fraction are well matched when the focusing correction is used. Since CaCO3 is primarily a coarse sediment component, we propose that there is significant sorting of fine and coarse sediments during lateral sediment transport by weak currents. Because CaCO3 does not move with 230Th, normalization typically overcorrects the CaCO3 MAR; and because CaCO3 is 80% of the total sediment, 230Th normalization overestimates lateral sediment flux. Fluxes of 230Th in particulate rain caught in sediment traps agree with the water column production-sorption model, except within 500 m of the bottom. Near the bottom, 230Th flux measurements are as much as 3 times higher than model predictions. There is also evidence for lateral near-bottom 230Th transport in the bottom nepheloid layer since 230Th fluxes caught by near-bottom sediment traps are higher than predicted by resuspension of surface sediments alone. Resuspension and nepheloid layer transport under weak currents need to be better understood in order to use 230Th within a quantitative model of lateral sediment transport.
Modeling diffuse phosphorus emissions to assist in best management practice designing
NASA Astrophysics Data System (ADS)
Kovacs, Adam; Zessner, Matthias; Honti, Mark; Clement, Adrienne
2010-05-01
A diffuse emission modeling tool has been developed, which is appropriate to support decision-making in watershed management. The PhosFate (Phosphorus Fate) tool allows planning best management practices (BMPs) in catchments and simulating their possible impacts on the phosphorus (P) loads. PhosFate is a simple fate model to calculate diffuse P emissions and their transport within a catchment. The model is a semi-empirical, catchment scale, distributed parameter and long-term (annual) average model. It has two main parts: (a) the emission and (b) the transport model. The main input data of the model are digital maps (elevation, soil types and landuse categories), statistical data (crop yields, animal numbers, fertilizer amounts and precipitation distribution) and point information (precipitation, meteorology, soil humus content, point source emissions and reservoir data). The emission model calculates the diffuse P emissions at their source. It computes the basic elements of the hydrology as well as the soil loss. The model determines the accumulated P surplus of the topsoil and distinguishes the dissolved and the particulate P forms. Emissions are calculated according to the different pathways (surface runoff, erosion and leaching). The main outputs are the spatial distribution (cell values) of the runoff components, the soil loss and the P emissions within the catchment. The transport model joins the independent cells based on the flow tree and it follows the further fate of emitted P from each cell to the catchment outlets. Surface runoff and P fluxes are accumulated along the tree and the field and in-stream retention of the particulate forms are computed. In case of base flow and subsurface P loads only the channel transport is taken into account due to the less known hydrogeological conditions. During the channel transport, point sources and reservoirs are also considered. Main results of the transport algorithm are the discharge, dissolved and sediment-bounded P load values at any arbitrary point within the catchment. Finally, a simple design procedure has been built up to plan BMPs in the catchments and simulate their possible impacts on diffuse P fluxes as well as calculate their approximately costs. Both source and transport controlling measures have been involved into the planning procedure. The model also allows examining the impacts of alterations of fertilizer application, point source emissions as well as the climate change on the river loads. Besides this, a simple optimization algorithm has been developed to select the most effective source areas (real hot spots), which should be targeted by the interventions. The fate model performed well in Hungarian pilot catchments. Using the calibrated and validated model, different management scenarios were worked out and their effects and costs evaluated and compared to each other. The results show that the approach is suitable to effectively design BMP measures at local scale. Combinative application of the source and transport controlling BMPs can result in high P reduction efficiency. Optimization of the interventions can remarkably reduce the area demand of the necessary BMPs, consequently the establishment costs can be decreased. The model can be coupled with a larger scale catchment model to form a "screening and planning" modeling system.
NASA Astrophysics Data System (ADS)
Bachand, P.; Bachand, S. M.; Fleck, J.; Anderson, F.
2011-12-01
Hydrology arguably plays the most important role in biogeochemical cycling of mercury in wetlands and other shallow aquatic systems. CFSTR, PFR and non-ideal reactor models are oftentimes currently used to hydrologically assess these systems and to account for the fate, transport and cycling of constituents of concern (COC) with systems assumed to be non-leaky and with diffusion dominating soil transport. Yet a number of results in the literature imply transpiration drives soil transport: transpiration into the root zone is in the range of 50 - 75% of ET seasonally; gaseous emissions from aquatic systems show a diel pattern that tracks diel ET patterns; in long detention time aquatic systems ET is the largest sink for applied surface waters; and non-reactive tracers when applied to surface waters can find themselves in the root zone and within plants. All these findings strongly suggest transpiration driven infiltration into the root zone, is a significant hydrologic pathway for constituents and is an important transport mechanism. This paper examines the annual water budget for four shallow aquatic land uses in the Yolo Bypass, California: rice, wild rice, fallowed fields and wetlands. Results indicate that differences in hydrology between the fields, particularly the temporal nature of transpiration, play a significant role in mercury transformations and transport. During the irrigation period, fallowed fields discharged 6 cm of surface water (15% applied water), rice fields 31 - 43 cm (27 - 31% applied water), and wild rice fields 16 - 39 cm (15 - 31% applied water). Evapotranspiration rates were in the range of 120 - 130 cm/y for all land uses (i.e. rice, wild rice, fallowed fields and seasonal wetlands) except for the permanent wetland which was about 1/3 higher at about 170 cm/y. During the summer, approximately 50% of the applied surface water was drawn into the root zone to meet transpiration demands. Based upon results from our water budget and utilizing modified Peclet No. calculations, we quantified the relative importance of upward diffusion from the sediments and downward advection from transpiration as hydrologic transport mechanisms in the root zone. Transpiration driven infiltration moves water past the diffusive zone within 1 - 2 days in this system during the summer months. With the waning seasons, evapotranspiration diminishes until by winter diffusion dominates throughout the entire root zone. This model has great implications on the analyses of soil biogeochemical process in the root zone of shallow aquatic systems. Downward advection is a major transport mechanism into the root zone of shallow flooded aquatic systems and provides an important physical mechanism that drives variability in the seasonal and diel storage; release and cycling of COCs; and the creation of both a physical and chemical barrierd to upward diffusion of soil-borne COCs into the water column. Models that do not account for root zone interactions may not be able to capture diel and seasonal differences. Moreover, these interactions may lead to unanticipated environmental consequences as a result of cultural practices.
Impact of multicomponent ionic transport on pH fronts propagation in saturated porous media
NASA Astrophysics Data System (ADS)
Muniruzzaman, Muhammad; Rolle, Massimo
2016-04-01
Multicomponent ionic interactions have been increasingly recognized as important factors for the displacement of charged species in porous media under both diffusion- [1,2] and advection-dominated flow regimes [3,4]. In this study we investigate the propagation of pH fronts during multicomponent ionic transport in saturated porous media under flow-through conditions. By performing laboratory bench-scale experiments combined with numerical modeling we show the important influence of Coulombic effects on proton transport in the presence of ionic admixtures. The experiments were performed in a quasi two-dimensional flow-through setup under steady-state flow and transport conditions. Dilute solutions of hydrochloric acid with MgCl2 (1:2 strong electrolyte) were used as tracer solutions to experimentally test the effect of electrochemical cross-coupling on the migration of diffusive/dispersive pH fronts. We focus on two experimental scenarios, with different composition of tracer solutions, causing remarkably different effects on the propagation of the acidic fronts with relative differences in the penetration depth of pH fronts of 36% between the two scenarios and of 25% and 15% for each scenario with respect to the transport of ions at liberated state (i.e., without considering the charge effects). Also significant differences in the dilution of the distinct ionic plumes, quantified using the flux-related dilution index at the laboratory bench scale [5], were measured at the outflow of the flow-through system. The dilution of the pH plumes also changed considerably (26% relative difference) in the two flow-through experiments only due to the different composition of the pore water solution and to the electrostatic coupling of the ions in the flow-through setups. Numerical transport simulations were performed to interpret the laboratory experiments. The simulations were based on a multicomponent ionic formulation accurately capturing the Coulombic interactions between the transported ions in the flow-through system. The results of purely forward simulations show a very good agreement with the high-resolution measurements performed at the outlet of the flow-through setup and illustrate the importance of charge effects on pH fronts propagation in porous media. [1] Giambalvo, E. R., C. I. Steefel, A. T. Fisher, N. D. Rosenberg, and C. G. Wheat (2002), Effect of fluid-sediment reaction on hydrothermal fluxes of major elements, eastern flank of the Juan de Fuca Ridge, Geochim. Cosmochim. Acta, 66, 1739-1757. [2] Appelo, C. A. J., and P. Wersin (2007), Multicomponent diffusion modeling in clay systems with application to the diffusion of tritium, iodide, and sodium in opalinus clay, Environ. Sci. Technol., 41, 5002-5007. [3] Rolle, M., M. Muniruzzaman, C. M. Haberer, and P. Grathwohl (2013), Coulombic effects in advection-dominated transport of electrolytes in porous media: Multicomponent ionic dispersion, Geochim. Cosmochim. Acta, 120, 195-205. [4] Muniruzzaman, M., C. M. Haberer, P. Grathwohl, and M. Rolle (2014), Multicomponent ionic dispersion during transport of electrolytes in heterogeneous porous media: Experiments and model-based interpretation, Geochim. Cosmochim. Acta, 141, 656-669. [5] Rolle, M., G. Chiogna, D. L. Hochstetler, and P. K. Kitanidis (2013), On the importance of diffusion and compound-specific mixing for groundwater transport: An investigation from pore to field scale, J. Contam. Hydrol., 153, 51-68.
Bankfull discharge and sediment transport in northwestern California
K. M. Nolan; T. E. Lisle; H. M. Kelsey
1987-01-01
Abstract - High-magnitude, low-frequency discharges are more responsible for transporting suspended sediment and forming channels in northwestern California than in previously studied areas. Bankfull discharge and the magnitude and frequency of suspended sediment discharge were determined at five gaging stations in northwestern California. Although discharges below...
PREDICTION OF CONTAMINATED SEDIMENT TRANSPORT IN THE MAURICE RIVER-UNION LAKE, NEW JERSEY, USA
This paper describes a sediment and contaminant transport model and its application to the Maurice River-Union Lake system in southern New Jersey, USA for the purpose of characterizing and forecasting sediment and arsenic distributions before and after proposed dredging activitie...
Formation and mechanics of granular waves in gravity and shallow overland flow
USDA-ARS?s Scientific Manuscript database
Sediment transport in overland flow is a highly complex process involving many properties relative to the flow regime characteristics, soil surface conditions, and type of sediment. From a practical standpoint, most sediment transport studies are concerned with developing relationships of rates of s...
NASA Astrophysics Data System (ADS)
Hernandez, David; Sanchez, Miguel Angel; Medina, Pablo
2010-05-01
A laboratory experimental set - up for studying the behaviour of sediment in presence of a turbulent field with zero mean flow is compared with the behaviour of turbidity currents [1] . Particular interest is shown on the initiation of sediment motion and in the sediment lift - off. The behaviour of the turbidity current in a flat ground is compared with the zero mean flow oscilating grid generated turbulence as when wave flow lifts off suspended sediments [2,3]. Some examples of the results obtained with this set-up relating the height of the head of the turbidity current to the equilibrium level of stirred lutoclines are shown. A turbulent velocity u' lower than that estimated by the Shield diagram is required to start sediment motion. The minimum u' required to start sediment lift - off, is a function of sediment size, cohesivity and resting time. The lutocline height depends on u', and the vorticity at the lutocline seems constant for a fixed sediment size [1,3]. Combining grid stirring and turbidty current head shapes analyzed by means of advanced image analysis, sediment vertical fluxes and settling speeds can be measured [4,5]. [1] D. Hernandez Turbulent structure of turbidity currents and sediment transport Ms Thesis ETSECCPB, UPC. Barcelona 2009. [2] A. Sánchez-Arcilla; A. Rodríguez; J.C. Santás; J.M. Redondo; V. Gracia; R. K'Osyan; S. Kuznetsov; C. Mösso. Delta'96 Surf-zone and nearshore measurements at the Ebro Delta. A: International Conference on Coastal Research through large Scale Experiments (Coastal Dynamics '97). University of Plymouth, 1997, p. 186-187. [3] P. Medina, M. A. Sánchez and J. M. Redondo. Grid stirred turbulence: applications to the initiation of sediment motion and lift-off studies Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere. 26, Issue 4, 2001, Pages 299-304 [4] M.O. Bezerra, M. Diez, C. Medeiros, A. Rodriguez, E. Bahia., A. Sanchez-Arcilla and J.M. Redondo. Study on the influence of waves on coastal diffusion using image analysis. Applied Scientific Research 59,.191-204. 1998. [5] J.M. Redondo. Turbulent mixing in the Atmosphere and Ocean. Fluid Physics. 584-597. World Scientific. New York. 1994
Copper smelting and sediment pollution in Bronze Age China.
NASA Astrophysics Data System (ADS)
Zhang, S.; Dong, G.
2017-12-01
The emergence and diffusion of metallurgical technology had tremendous environmental consequence, however, the spatial-temporal consequences of the metallurgy during Bronze Age are not clear in China. Here, Xray fluorescence (XRF) measurement and principal component analysis (PCA) were conducted on heavy metal element (Cu, Ni, Pb, Zn, Cr and As) concentrations (HMEC) of natural and anthropogenic sediment samples systematically collected from 22 late Neolithic-Bronze Age sites in Hexi corridor to explore the potential for subcontinental-wide changes in soil geochemistry. We place this data within the context of the Cu concentrations in lacustrine sediments located near smelting and mining centers in Bronze Age China. Our results show that variation of HMEC in anthropogenic sediment in Hexi corridor is contemporaneous with the increases of the Cu concentrations in lacustrine sediment around 4000 BP. Comparative data suggests the metallurgical production diffused from the Hexi corridor to central and southwestern China around 3600 BP. We argue that sediment pollution is not an isolated phenomenon during the Bronze Age China, but rather occurred on regional scales and is closely related to the intensity of smelting activities.
Kuwabara, James S.; Topping, Brent R.; Carter, James L.; Parcheso, Francis; Cameron, Jason M.; Asbill, Jessica R.; Fend, Steven V.; Duff, John H.; Engelstad, Anita C.
2010-01-01
Four sampling trips were coordinated after planned levee breaches that hydrologically reconnected both Upper Klamath Lake and Agency Lake, Oregon, to adjacent wetlands. Sets of nonmetallic pore-water profilers were deployed during these trips in November 2007, June 2008, May 2009, and July 2009. Deployments temporally spanned the annual cyanophyte bloom of Aphanizomenon flos-aquae (AFA) and spatially involved three lake and four wetland sites. Profilers, typically deployed in triplicate at each lake or wetland site, provided high-resolution (centimeter-scale) estimates of the vertical concentration gradients for diffusive-flux determinations. Estimates based on molecular diffusion may underestimate benthic flux because solute transport across the sediment-water interface can be enhanced by processes including bioturbation, bioirrigation and groundwater advection. Water-column and benthic samples were also collected to help interpret spatial and temporal trends in diffusive-flux estimates. Data from these samples complement taxonomic and geochemical analyses of bottom-sediments taken from Upper Klamath Lake (UKL) in prior studies. This ongoing study provides information necessary for developing process-interdependent solute-transport models for the watershed (that is, models integrating physical, geochemical, and biological processes) and supports efforts to evaluate remediation or load-allocation strategies. To augment studies funded by the U.S. Bureau of Reclamation (USBR), the Department of the Interior supported an additional full deployment of pore-water profilers in November 2007 and July 2009, immediately following the levee breaches and after the crash of the annual summer AFA bloom. As observed consistently since 2006, benthic flux of 0.2-micron filtered, soluble reactive phosphorus (that is, biologically available phosphorus, primarily as orthophosphate; SRP) was consistently positive (that is, out of the sediment into the overlying water column) and ranged from a negligible value (-0.19?0.91 milligrams per square meter per day; mg m-2 d-1) within wetlands of the Upper Klamath National Wildlife Refuge to 74?48 mg m-2 d-1 at the newly restored wetland site removed from the levee breach (TNC1); both observed in May 2009 before the annual AFA bloom. When areally averaged (13 km2 for the newly restored wetlands), an SRP flux to the overlying water column is determined of approximately 87,000 kilograms (kg) over the 3-month AFA bloom season that exceeds the magnitude of riverine inputs (42,000 kg for the season). Elevated SRP benthic flux at TNC1 relative to all other lake and wetland sites (including TNC2 near the breached levee) in 2009 suggests that the restored wetlands, at least chemically, remain in a transition period after engineered blasts on October 30, 2007, restored hydrologic connectivity between lake and wetland environments. As reported in previous lake studies, ammonium fluxes to the water column were consistently positive, with the exception of two measurements at the restored wetland sites (TNC1 and TNC2) immediately following the levee breaches in November 2007. The flux of ammonia, particularly at elevated pH in the overlying water column, has toxicological implications for endangered fish populations in both lake and wetland environments. For dissolved nitrate, with the exception of a single positive flux measurement at TNC1 in June 2008 (0.16?0.02 mg m-2 d-1), consistently negative (consumed by the sediment) or undetectable nitrate-flux values were observed (-21?12 mg m-2 d-1 to undetectable fluxes due to concentrations for dissolved nitrate <0.03 milligrams per liter (mg L-1) in both porewaters and overlying waters near the sediment-water interface). Such negative fluxes for dissolved nitrate are typical of microbial transformations, such as dinitrification (dissimilatory nitrate reduction), that benthically consume nitrate from the water column. The diffusive-flux measurements reported herei
Topping, Brent R.; Kuwabara, James S.; Carter, James L.; Garrettt, Krista K.; Mruz, Eric; Piotter, Sarah; Takekawa, John Y.
2016-01-01
Understanding nutrient flux between the benthos and the overlying water (benthic flux) is critical to restoration of water quality and biological resources because it can represent a major source of nutrients to the water column. Extensive water management commenced in the San Francisco Bay, Beginning around 1850, San Francisco Bay wetlands were converted to salt ponds and mined extensively for more than a century. Long-term (decadal) salt pond restoration efforts began in 2003. A patented device for sampling porewater at varying depths, to calculate the gradient, was employed between 2010 and 2012. Within the former ponds, the benthic flux of soluble reactive phosphorus and that of dissolved ammonia were consistently positive (i.e., moving out of the sediment into the water column). The lack of measurable nitrate or nitrite concentration gradients across the sediment-water interface suggested negligible fluxes for dissolved nitrate and nitrite. The dominance of ammonia in the porewater indicated anoxic sediment conditions, even at only 1 cm depth, which is consistent with the observed, elevated sediment oxygen demand. Nearby openestuary sediments showed much lower benthic flux values for nutrients than the salt ponds under resortation. Allochthonous solute transport provides a nutrient advective flux for comparison to benthic flux. For ammonia, averaged for all sites and dates, benthic flux was about 80,000 kg/year, well above the advective flux range of −50 to 1500 kg/year, with much of the variability depending on the tidal cycle. By contrast, the average benthic flux of soluble reactive phosphorus was about 12,000 kg/year, of significant magnitude, but less than the advective flux range of 21,500 to 30,000 kg/year. These benthic flux estimates, based on solute diffusion across the sediment-water interface, reveal a significant nutrient source to the water column of the pond which stimulates algal blooms (often autotrophic). This benthic source may be augmented further by bioturbation, bioirrigation and episodic sediment resuspension events.
NASA Astrophysics Data System (ADS)
Ferrier, K.; Mitrovica, J. X.; Perron, T.; Milne, G. A.; Wickert, A. D.
2012-12-01
Spatial patterns in static sea level are controlled by the interplay between the history of ice mass variations and the associated deformational, gravitational and rotational perturbations in the Earth's state. Over the last decade, there has been a renewed effort to extend classic treatments of ice-age sea-level change (Farrell and Clark, 1976) to incorporate effects such as shoreline migration due to the local onlap or offlap of seawater and changes in the extent of grounded, marine-based ice, as well as feedbacks between sea level and the orientation of Earth's rotation axis. To date, the impact of sediment transport - whether in the context of glacial processes, or other processes such as fluvial deposition - has not been incorporated into a gravitationally self-consistent sea-level theory. Here we briefly summarize the main elements of a new sea-level theory that includes sediment transport, and we apply this new theory to investigate crustal deformation and sea-level changes driven by sediment deposition on the Mississippi fan in the Gulf of Mexico. The calculations incorporate sediment transport from the start of the last glacial cycle through to the present and are constrained to conserve sediment and ocean mass. We compare relative sea level histories predicted with and without sediment transport at sites in and around the Gulf of Mexico, and we quantify the relative impacts of gravitational and deformational effects of sediment deposition. We also explore the extent to which sea-level changes associated with sediment transport impact the interpretation of paleo-sea-level records. Our new sea-level formulation provides an important component of a comprehensive coupling between sediment transfer and sea level on local, regional and global spatial scales, and on time scales extending from decades to tens of thousands of years. References: Farrell, W.E., and Clark, J.A., 1976. On postglacial sea level: Geophysical Journal of the Royal Astronomical Society, v. 46, p. 647-667.
NASA Astrophysics Data System (ADS)
Furgerot, Lucille; Mouazé, Dominique; Tessier, Bernadette; Perez, Laurent; Haquin, Sylvain; Weill, Pierre; Crave, Alain
2016-07-01
Tidal bores are believed to induce significant sediment transport in macrotidal estuaries. However, due to high turbulence and very large suspended sediment concentration (SSC), the measurement of sediment transport induced by a tidal bore is actually a technical challenge. Consequently, very few quantitative data have been published so far. This paper presents SSC measurements performed in the Sée River estuary (Mont-Saint-Michel Bay, northwestern France) during the tidal bore passage with direct and indirect (optical) methods. Both methods are calibrated in laboratory in order to verify the consistency of measurements, to calculate the uncertainties, and to correct the raw data. The SSC measurements coupled with ADCP velocity data are used to calculate the instantaneous sediment transport (qs) associated with the tidal bore passage (up to 40 kg/m2/s).
Transport of fine sediment over a coarse, immobile riverbed
Grams, Paul E.; Wilcock, Peter R.
2014-01-01
Sediment transport in cobble-boulder rivers consists mostly of fine sediment moving over a coarse, immobile bed. Transport rate depends on several interrelated factors: boundary shear stress, the grain size and volume of fine sediment, and the configuration of fine sediment into interstitial deposits and bed forms. Existing models do not incorporate all of these factors. Approaches that partition stress face a daunting challenge because most of the boundary shear is exerted on immobile grains. We present an alternative approach that divides the bed into sand patches and interstitial deposits and is well constrained by two clear end-member cases: full sand cover and absence of sand. Entrainment from sand patches is a function of their aerial coverage. Entrainment from interstices among immobile grains is a function of sand elevation relative to the size of the immobile grains. The bed-sand coverage function is used to predict the ratio of the rate of entrainment from a partially covered bed to the rate of entrainment from a completely sand-covered bed, which is determined using a standard sand transport model. We implement the bed-sand coverage function in a morphodynamic routing model and test it against observations of sand bed elevation and suspended sand concentration for conditions of nonuniform fine sediment transport in a large flume with steady uniform flow over immobile hemispheres. The results suggest that this approach may provide a simple and robust method for predicting the transport and migration of fine sediment through rivers with coarse, immobile beds.
The effect of sedimentation and diffusion on cellular uptake of gold nanoparticles
Cho, Eun Chul; Zhang, Qiang; Xia, Younan
2011-01-01
In vitro experiments typically measure the uptake of nanoparticles by exposing cells at the bottom of a culture plate to a suspension of nanoparticles, which is assumed to be well-dispersed. However, nanoparticles can sediment and this means the concentration of particles on the cell surface and those actually taken up by the cells may be higher than the initial bulk concentration. Here we use upright and inverted cell culture configurations to show that cellular uptake of gold nanoparticles depends on the sedimentation and diffusion velocities of the nanoparticles and is independent of size, shape, density, surface coating and initial concentration of the nanoparticles. Generally more nanoparticles are taken up in the upright configuration than the inverted one and nanoparticles that sediment faster showed greater differences in uptake between the two configurations. Our results suggest that cellular uptake of nanoparticles is sensitive to the way cells are positioned and sedimentation need to be considered when performing in vitro studies for large and heavy nanoparticles. PMID:21516092
Simon, N.S.; Kennedy, M.M.; Massoni, C.S.
1985-01-01
Field and laboratory evaluations were made of a simple, inexpensive diffusion-controlled sampler with ports on two sides at each interval which incorporates 0.2-??m polycarbonate membrane to filter samples in situ. Monovalent and divalent ions reached 90% of equilibrium between sampler contents and the external solution within 3 and 6 hours, respectively. Sediment interstitial water chemical gradients to depths of tens of centimeters were obtained within several days after placement. Gradients were consistent with those determined from interstitial water obtained by centrifugation of adjacent sediment. Ten milliliter sample volumes were collected at 1-cm intervals to determine chemical gradients and dissolved oxygen profiles at depth and at the interface between the sediment and water column. The flux of dissolved species, including oxygen, across the sediment-water interface can be assessed more accurately using this sampler than by using data collected from benthic cores. ?? 1985 Dr W. Junk Publishers.
NASA Astrophysics Data System (ADS)
Gacutan, J.; Vila-Concejo, A.; Nothdurft, L. D.; Fellowes, T. E.; Cathey, H. E.; Opdyke, B. N.; Harris, D. L.; Hamylton, S.; Carvalho, R. C.; Byrne, M.; Webster, J. M.
2017-10-01
Sediment transport is a key driver of reef zonation and biodiversity, where an understanding of sediment dynamics gives insights into past reef processes and allows the prediction of geomorphic responses to changing environmental conditions. However, modal conditions within the back-reef seldom promote sediment transport, hence direct observation is inherently difficult. Large benthic foraminifera (LBF) have previously been employed as 'tracers' to infer sediment transport pathways on coral reefs, as their habitat is largely restricted to the algal flat and post-mortem, their calcium carbonate test is susceptible to sediment transport forces into the back-reef. Foraminiferal test abundance and post-depositional test alteration have been used as proxies for sediment transport, although the resolution of these measures becomes limited by low test abundance and the lack of variation within test alteration. Here we propose the novel use of elemental ratios as a proxy for sediment transport. Two species, Baculogypsina sphaerulata and Calcarina capricornia, were analysed using a taphonomic index within One Tree and Lady Musgrave reefs, Great Barrier Reef (Australia). Inductively coupled plasma-atomic emission spectrometry (ICP-AES) was used to determine Mg/Ca and Sr/Ca and these ratios were compared with taphonomic data. Decreases in test Mg/Ca accompany increases in Sr/Ca in specimens from algal-flat to lagoonal samples in both species, mirroring trends indicated by taphonomic values, therefore indicating a relationship with test alteration. To delineate mechanisms driving changes in elemental ratios, back-scattered electron (BSE) images, elemental mapping and in situ quantitative spot analyses by electron microprobe microanalysis (EPMA) using wavelength dispersive X-ray spectrometers (WDS) were performed on un-altered algal flat and heavily abraded tests for both species. EPMA analyses reveal heterogeneity in Mg/Ca between spines and the test wall, implying the loss of appendages results in a decrease in Mg/Ca. BSE imaging and WDS elemental mapping provided evidence for cementation, facilitated by microbial-boring as the primary cause of increasing Sr/Ca. These novel proxies hold advantages over taphonomic measures and further provide a rapid method to infer sediment transport pathways within back-reef environments.
Influencing factors on particle-bound contaminant transport in the Elbe estuary
NASA Astrophysics Data System (ADS)
Kleisinger, Carmen; Haase, Holger; Schubert, Birgit
2016-04-01
Particulate matter, i.e. suspended particulate matter and sediments in rivers and estuaries, often are contaminated with trace metals and selected organic contaminants and are mainly associated with fine-grained fractions. Transport processes and fate of particles in estuaries are influenced by several factors, e.g. freshwater discharge, tide, flow velocity and dredging activities (Kappenberg et al., 2007). Understanding the transport processes in estuaries may help to achieve the objectives of the Water Framework Directive and the Marine Strategy Framework Directive. The German Federal Institute of Hydrology (BfG) operates for more than 20 years five monitoring sites in the Elbe estuary in order to monitor the development of particle-bound contaminant concentrations over time and to understand their transport mechanisms. Results of the monitoring revealed freshwater discharge as an important influencing factor on the transport of contaminated particulate matter (Ackermann et al., 2007). The bidirectional transport of marine and fluvial water and particulate matter in estuaries results in a turbidity zone where large amounts of particulate matter are temporarily retained and thus in a delayed transport of particulate matter towards the sea. The extent and the location of the turbidity zone as well as the ratio of highly contaminated fluvial and less contaminated marine sediments at a given location are mainly influenced by the freshwater discharge (Kowalewska et al., 2011). Furthermore, at high freshwater discharge conditions the highly contaminated particulate matter from fluvial origin are transported downstream the estuary, whereas at low freshwater discharges, upstream transport of less contaminated marine sediments prevails. Hence, residence times of particulate matter in the estuary are difficult to estimate. Furthermore, sedimentation areas with flow reduced conditions, e.g. wadden areas or branches of the Elbe estuary, may act as sinks for particle bound contaminants and remove them temporarily or in long term from further transport. In the past, highly contaminated sediments were deposited in these retention areas. The estimated total contamination load in these areas exceeds the annual contamination load entering the estuary by a factor up to 11 (BfG, 2014). Monitoring in sedimentation areas by the means of sediment cores gave no indications for current distinct sedimentation or erosion. It is assumed that the highly contaminated sediments in greater depths are most likely to be resuspended only due to extreme events or human intervention (BfG, 2014). Additionally, dredging and depositing of dredged sediments in the Elbe estuary influence the transport of contaminated sediments. Deposition of dredged material further downstream the dredging site accelerates the transport of particulate matter towards the sea. As the residence time of particulate matter within the estuary varies by many influencing factors, mass balances are associated with large uncertainties and accordingly, annual particle-bound contaminant loads released into the North Sea cannot be calculated reliable. Ackermann, F. and Schubert, B. (2007): Trace metals as indicators for the dynamics of (suspended) particulate matter in the tidal reach of the River Elbe. Sediment Dynamics and Pollutant Mobility in Rivers. U. Förstner and B. Westrich. Heidelberg, Springer Verlag, 296-304. BfG (2014). Sedimentmanagement Tideelbe - Strategien und Potenziale - Systemstudie II. Ökologische Auswirkungen der Unterbringung von Feinmaterial. BfG-1763. Kappenberg, J. and Fanger, H.-U. (2007): "Sedimenttransportgeschehen in der tidebeeinflussten Elbe, der Deutschen Bucht und in der Nordsee." 2007/20, 123. Kowalewska, G., Belzunce-Segarra, M. J., Schubert, B., Heininger, P. and Heise, S. (2011): The Role of Sediments in Coastal Monitoring. Chemical Marine Monitoring. P. Quevauviller, P. Roose and G. Verreet. Chichester, West Sussex, UK, John Wiley & Sons Ltd., 384-388.
Dispersal of Sediment in the Western Adriatic during Energetic Wintertime Forcing
NASA Astrophysics Data System (ADS)
Harris, C. K.; Sherwood, C. R.; Mullenbach, B. L.; Pullen, J. D.
2003-12-01
EuroSTRATAFORM aims to relate sediment delivery and reworking to seabed morphology and stratigraphy through observations and modeling of water column transport. The Po River dominates buoyancy and sediment input into the Adriatic Sea, but small Apeninne rivers (the Chienti, Pescara, etc.) may produce locally important signals. Sedimentation is influenced by fluvial supply, resuspension by waves and currents, and transport by oceanographic currents forced by winds and buoyancy. Transport is likely highest during times of energetic forcing; including Bora events with northeasterly winds and Sirocco events with southeasterly winds. It is difficult, from field measurements alone, to characterize dispersal and convergence patterns over the relevant spatial scales. We applied a three-dimensional hydrodynamic model that includes fluvial delivery, transport, resuspension, and deposition of sediment to quantify sediment dispersal with a 2-km resolution over the entire Adriatic. Circulation calculations were driven by spatially- and temporally-varying wind fields for the Fall / Winter of 2002 / 2003 and realistic Po and Apennine river discharges. Waves were hindcast with the SWAN model. Dispersion of both resuspended and river-derived sediment was estimated for periods that contained intense Bora and Sirocco winds. Predicted sediment dispersal rates and patterns are sensitive to forcing winds, buoyancy flux, and wave patterns. Higher sediment flux was predicted during Bora conditions than during Sirocco conditions. Sirocco winds weaken the Western Adriatic Coastal Current (WACC), and because they tend to concentrate over the Eastern Adriatic, they often fail to create especially energetic waves in the Western Adriatic. Bora wind conditions, on the other hand, intensify the WACC and can build high wave energies over the northwestern Adriatic. Most of the sediment transport occurs during Bora, with a net southward flux. These predictions will be compared to field observations made as part of the EuroSTRATAFORM experiment.
Export Time of Earthquake-Derived Landslides in Active Mountain Ranges
NASA Astrophysics Data System (ADS)
Croissant, T.; Lague, D.; Steer, P.; Davy, P.
2016-12-01
In active mountain ranges, large earthquakes (Mw > 5-6) trigger numerous landslides that impact river dynamics. These landslides bring local and sudden sediment deposits which are eroded and transported along the river network, causing downstream changes in river geometry, transport capacity and erosion efficiency. The progressive removal of landslide materials has implications for downstream hazards management and for landscape dynamics at the timescale of the seismic cycle. Although the export time of suspended sediments from landslides triggered by large-magnitude earthquakes has been extensively studied, the processes and time scales associated to bedload transport remains poorly studied. Here, we study the sediment export of large landslides with the 2D morphodynamic model, Eros. This model combines: (i) an hydrodynamic model, (ii) a sediment transport and deposition model and (iii) a lateral erosion model. Eros is particularly well suited for this issue as it accounts for the complex retro-actions between sediment transport and fluvial geometry for rivers submitted to external forcings such as abrupt sediment supply increase. Using a simplified synthetic topography we systematically study the influence of pulse volume (Vs) and channel transport capacity (QT) on the export time of landslides. The range of simulated river behavior includes landslide vertical incision, its subsequent removal by lateral erosion and the river morphology modifications induced by downstream sediment propagation. The morphodynamic adaptation of the river increases its transport capacity along the channel and tends to accelerate the landslide evacuation. Our results highlight two regimes: (i) the export time is linearly related to Vs/QT when the sediment pulse introduced in the river does not affect significantly the river hydrodynamic (low Vs/QT) and (ii) the export time is a non-linear function of Vs/QT when the pulse undergoes significant morphodynamic modifications during its evacuation (high Vs/QT). By combining our newly derived export time functions with the frequency-magnitude of earthquake intensity and the induced sediment production, we investigate the sediment export of several plausible earthquake scenarii in different mountain ranges (New Zealand, Taiwan, Nepal).
Turbidite carbon distribution by Ramped PyrOx, Astoria Canyon
NASA Astrophysics Data System (ADS)
Childress, L. B.; Galy, V.; McNichol, A. P.
2017-12-01
The magnitude and nature of carbon preserved in marine sediments can be affected by long-term processes such as climate change and tectonic transport; preservation of carbon can also be affected by short-term, episodic disturbances such as storm events, landslides, and earthquakes. In margins with active canyons, these systems can be efficient burial networks for carbon. The downslope displacement and reorganization of sediment and associated organic carbon (OC) during turbidite formation alters oxygen diffusion and the potential for aerobic oxidation, thereby modifying the redox geochemistry of the sediment package. Generally termed as a `burn-down', reactions at the subsurface oxidation front are linked to a loss of OC preservation within turbidite sequences. Still debated is the source of the OC residual within `burn-down' events, primarily whether the preserved material is dominated by terrestrial or marine components. To better understand the significance of canyon systems and turbidite deposits in the transport, preservation, and `burn-down' of organic carbon, samples from these systems can be studied using the Ramped PyrOx (RPO) technique. Whereas bulk radiocarbon measurements are unsuitable within turbidite deposits, RPO is well suited for characterizing the distribution of carbon sources within a turbidite interval. To complement RPO analyses, OC and N content, stable carbon isotope composition, gamma ray attenuation bulk density, computerized tomography, and magnetic susceptibility were determined. The turbidite systems of the Cascadia Subduction Zone have been extensively studied in relation to the Holocene paleoseismic record. Gravity cores collected in 2011 aboard the R/V Wecoma capture turbidite deposits in Astoria Canyon and demonstrate characteristics of `burn down' intervals. RPO data from within a 15 cm turbidite interval indicate minimal variation in reactivity structure, stable carbon isotope values and radiocarbon age, suggesting a shared source of sediment input. Such similarities imply minimal source-selective OC alteration and are consistent with a singular event (e.g. - flood) associated with late Holocene warm interval influence on the Columbia River Basin.
Percak-Dennett, Elizabeth M; Roden, Eric E
2014-08-19
Pliocene-aged reduced lacustrine sediment from below a subsurface redox transition zone at the 300 Area of the Hanford site (southeastern Washington) was used in a study of the geochemical response to introduction of oxygen or nitrate in the presence or absence of microbial activity. The sediments contained large quantities of reduced Fe in the form of Fe(II)-bearing phyllosilicates, together with smaller quantities of siderite and pyrite. A loss of ca. 50% of 0.5 M HCl-extractable Fe(II) [5-10 mmol Fe(II) L(-1)] and detectable generation of sulfate (ca. 0.2 mM, equivalent to 10% of the reduced inorganic sulfur pool) occurred in sterile aerobic reactors. In contrast, no systematic loss of Fe(II) or production of sulfate was observed in any of the other oxidant-amended sediment suspensions. Detectable Fe(II) accumulation and sulfate consumption occurred in non-sterile oxidant-free reactors. Together, these results indicate the potential for heterotrophic carbon metabolism in the reduced sediments, consistent with the proliferation of known heterotrophic taxa (e.g., Pseudomonadaceae, Burkholderiaceae, and Clostridiaceae) inferred from 16S rRNA gene pyrosequencing. Microbial carbon oxidation by heterotrophic communities is likely to play an important role in maintaining the redox boundary in situ, i.e., by modulating the impact of downward oxidant transport on Fe/S redox speciation. Diffusion-reaction simulations of oxygen and nitrate consumption coupled to solid-phase organic carbon oxidation indicate that heterotrophic consumption of oxidants could maintain the redox boundary at its current position over millennial time scales.
Sources and Deposition of Polycyclic Aromatic Hydrocarbons to Western U.S. National Parks
USENKO, SASCHA; MASSEY SIMONICH, STACI L.; HAGEMAN, KIMBERLY J.; SCHRLAU, JILL E.; GEISER, LINDA; CAMPBELL, DON H.; APPLEBY, PETER G.; LANDERS, DIXON H.
2010-01-01
Seasonal snowpack, lichens, and lake sediment cores were collected from fourteen lake catchments in eight western U.S. National Parks and analyzed for sixteen polycyclic aromatic hydrocarbons (PAHs) in order to determine their current and historical deposition, as well as to identify their potential sources. Seasonal snowpack was measured to determine the current wintertime atmospheric PAH deposition; lichens were measured to determine the long-term, year around deposition; and the temporal PAH deposition trends were reconstructed using lake sediment cores dated using 210Pb and 137Cs. The fourteen remote lake catchments ranged from low-latitude catchments (36.6° N) at high elevation (2900 masl) in Sequoia National Park, CA to high-latitude catchments (68.4° N) at low elevation (427 masl) in the Alaskan Arctic. Over 75% of the catchments demonstrated statistically significant temporal trends in ΣPAH sediment flux, depending on catchment proximity to source regions and topographic barriers. The ΣPAH concentrations and fluxes in seasonal snowpack, lichens, and surficial sediment were 3.6 to 60,000 times greater in the Snyder Lake catchment of Glacier National Park than the other 13 lake catchments. The PAH ratios measured in snow, lichen, and sediment were used to identify a local aluminum smelter as a major source of PAHs to the Snyder Lake catchment. These results suggest that topographic barriers influence the atmospheric transport and deposition of PAHs in high-elevation ecosystems and that PAH sources to these national park ecosystems range from local point sources to diffuse regional and global sources. PMID:20465303
USDA-ARS?s Scientific Manuscript database
Shrub encroachment into perennial grasslands is occurring in many arid and semi-arid parts of the world. As shrubs displace perennial grasslands, bare patches coalesce to enhance soil erosion and sediment fluxes by wind and water transport. Reducing the connectedness of these sediment transport path...
PREDICTION OF CONTAMINATED SEDIMENT TRANSPORT IN THE MAURICE RIVER-UNION LAKE, NEW JERSEY, USA
A sediment and contaminant transport model and its application to the Maurice River-Union Lake system in southern New Jersey, USA is described. The application is meant to characterize and forecast sediment and arsenic (As) distributions before and after proposed dredging activit...
Water quality studies that quantify sediment and fecal bacteria loading commonly focus on suspended contaminants transported during high flows. Fecal contaminants in bed sediments are typically ignored and need to be considered because of their potential to increase pathogen load...
Suspended-sediment dynamics in the tidal reach of a San Francisco Bay tributary
Shellenbarger, Gregory; Downing-Kunz, Maureen; Schoellhamer, David H.
2015-01-01
To better understand suspended-sediment transport in a tidal slough adjacent to a large wetland restoration project, we deployed continuously measuring temperature, salinity, depth, turbidity, and velocity sensors in 2010 at a near-bottom location in Alviso Slough (Alviso, California, USA). Alviso Slough is the downstream reach of the Guadalupe River and flows into the far southern end of San Francisco Bay. River flow is influenced by the Mediterranean climate, with high flows (∼90 m3 s−1) correlated to episodic winter storms and low base flow (∼0.85 m3 s−1) during the summer. Storms and associated runoff have a large influence on sediment flux for brief periods, but the annual peak sediment concentrations in the slough, which occur in April and May, are similar to the rest of this part of the bay and are not directly related to peak discharge events. Strong spring tides promote a large upstream sediment flux as a front associated with the passage of a salt wedge during flood tide. Neap tides do not have flood-directed fronts, but a front seen sometimes during ebb tide appears to be associated with the breakdown of stratification in the slough. During neap tides, stratification likely suppresses sediment transport during weaker flood and ebb tides. The slough is flood dominant during spring tides, and ebb dominant during neap tides. Extreme events in landward (salt wedge) and bayward (rainfall events) suspended-sediment flux account for 5.0 % of the total sediment flux in the slough and only 0.55 % of the samples. The remaining 95 % of the total sediment flux is due to tidal transport, with an imbalance in the daily tidal transport producing net landward flux. Overall, net sediment transport during this study was landward indicating that sediment in the sloughs may not be flushed to the bay and are available for sedimentation in the adjacent marshes and ponds.
Initial Geomorphic Responses to Removal of Milltown Dam, Clark Fork River, Montana, USA
NASA Astrophysics Data System (ADS)
Wilcox, A. C.; Brinkerhoff, D.; Woelfle-Erskine, C.
2008-12-01
The removal of Milltown Dam on the Clark Fork River, Montana, USA, is creating a field-scale experiment on upstream and downstream responses to dam removal and on how gravel-bed rivers respond to sediment pulses. Milltown Dam was removed in 2008, reconnecting the Clark Fork River to its upstream basin in terms of sediment transport and fish passage. This dam removal is especially notable because (1) it is the largest dam removal to date in the United States in terms of the volume of reservoir sediment potentially available for downstream transport (over 3 million m3; 1.7 million m3 are being mechanically removed); and (2) the dam is the downstream end of the largest Superfund site in the United States, the Clark Fork Complex, and reservoir sediments are composed largely of contaminated mine tailings. Data collection on pre- and post-dam removal channel morphology, bed sediment characteristics, and sediment loads are being used to investigate spatial and temporal patterns of sediment transport and deposition associated with this dam removal. In the first several months following breaching of the dam, snowmelt runoff with a 3-year recurrence interval peak caused substantial erosion and downstream transport of metals-laden sediments from Milltown reservoir. Reservoir sediments in the Clark Fork arm of Milltown reservoir eroded at levels far exceeding modeling predictions as a result of both incision to the new base level created by dam removal and bank retreat of over 200 m in reaches upstream of a constructed bypass reach and remediation area. Copper and other metals in these eroded reservoir sediments provide a tracer for identifying whether sediment deposits observed downstream of the dam originated from Milltown reservoir or uncontaminated tributaries and indicate that Milltown sediments have reached over 200 km downstream. Downstream deposition has been greatest along channel margins and in side-channel areas, whereas the transport capacity of the active channel has limited channel changes there.
NASA Astrophysics Data System (ADS)
Holland, A.; Moses, C.; Sear, D. A.; Cope, S.
2016-12-01
As sediments containing significant gravel portions are increasingly used for beach replenishment projects globally, the total number of beaches classified as `mixed sand and gravel' (MSG) increases. Calculations for required replenishment sediment volumes usually assume a uniform layer of sediment transport across and along the beach, but research into active layer (AL) depth has shown variations both across shore and according to sediment size distribution. This study addresses the need for more accurate calculations of sediment transport volumes on MSG beaches by using more precise measurements of AL depth and width, and virtual velocity of tracer pebbles. Variations in AL depth were measured along three main profile lines (from MHWS to MLWN) at Eastoke, Hayling Island (Hampshire, UK). Passive Integrated Transponder (PIT) tagged pebbles were deployed in columns, and their new locations repeatedly surveyed with RFID technology. These data were combined with daily dGPS beach profiles and sediment sampling for detailed analysis of the influence of beach morphodynamics on sediment transport volumes. Data were collected over two consecutive winter seasons: 2014-15 (relatively calm, average wave height <1 m) and 2015-16 (prolonged periods of moderate storminess, wave heights of 1-2 m). The active layer was, on average, 22% of wave height where beach slope (tanβ) is 0.1, with variations noted according to slope angle, sediment distribution, and beach groundwater level. High groundwater levels and a change in sediment proportions in the sandy lower foreshore reduced the AL to 10% of wave height in this area. The disparity in AL depth across the beach profile indicates that traditional models are not accurately representing bulk sediment transport on MSG beaches. It is anticipated that by improving model inputs, beach managers will be better able to predict necessary volumes and sediment grain size proportions of replenishment material for effective management of MSG beaches.
NASA Astrophysics Data System (ADS)
Davis, J. A.; Guo, H.; Lai, B.; Kemner, K. M.; Ercius, P.; Fox, P. M.; Singer, D. M.; Minor, A.; Waychunas, G.
2012-12-01
Many important geochemical reactions occur at the mineral-water interface, including sorption and desorption reactions of contaminants. Fundamental knowledge of the kinetics of these processes is based primarily on experimental observations of reactions at faces of single crystals or macroscopic data from pure mineral powder suspensions. Sorption reactions at crystal faces are generally very fast, on the order of microseconds or less, with reaction times often limited only by film diffusion at the mineral-water interface. In well-stirred suspensions of aquifer sediments, however, sorptive equilibrium can take many hours or days to achieve steady-state concentrations. We have examined the potential reasons for sorption rate limitation using uranium(VI) sorption by sediments from a sandy aquifer in Savannah River, South Carolina (USA). U(VI) sorption by sand-sized grains from the aquifer is dominated by reaction with secondary mineral coatings on quartz and feldspar grains. The coatings studied were on the order of 15 microns in thickness (i.e., from quartz grain to aqueous solution) and composed primarily of clay minerals and hematite of varying particle size. Microfocused-XRF imaging of elemental concentrations (e.g., U, Fe) of polished cross-sections of the grain/coating contact showed strong spatial correlations of U and Fe within the coatings, regardless of the length of reaction time (30 minutes to 4 weeks). The spatial resolution of the μ-XRF technique is of the order of 2 microns in horizontal directions, but the uncertainty of the observed spatial gradients is high due to grain curvature away from the polished surface and fluorescence contributed from the entire 30 micron thickness of a typical grain/epoxy thin section. TEM characterization of focused-ion-beam (FIB), vertically-extracted samples of the grain-coating contact shows that complex pore networks exist within the coatings of variable dimensions and unknown connectivity. Using scanning TEM (STEM) tomography, it can be seen that there are large numbers of pore throat sizes less than 10 nm within the coatings. We hypothesize that diffusion through these pores, which likely have electrically charged surfaces, controls the observed macroscopic rates of U(VI) sorption in batch experiments with sand grains. Evidence to support this hypothesis was observed by studying U and Fe fluorescence spatial variation within FIB samples (1 micron thick) at 200 nm spatial resolution. With this greater spatial resolution, it is possible to see U concentration variations within the coatings that are dependent on the time of sorption reaction, and illustrates how the coating environment constitutes a diffusion constraint to achieve adsorptive equilibrium between an aqueous phase and the mineral surfaces. Including this diffusion constraint within conceptual models for reactive contaminant transport may be significant at the field scale, because secondary mineral coatings are potentially both sinks and sources of contaminants depending on the history of a contaminated site. This is important in resolving long-term transport predictions at DOE sites, such as Hanford and Savannah River, where equilibrium versus kinetic reactive transport models are being evaluated.
NASA Astrophysics Data System (ADS)
Thorne, Peter D.; Hurther, David
2014-02-01
For over two decades, coastal marine scientists studying boundary layer sediment transport processes have been using, and developing, the application of sound for high temporal-spatial resolution measurements of suspended particle size and concentration profiles. To extract the suspended sediment parameters from the acoustic data requires an understanding of the interaction of sound with a suspension of sediments and an inversion methodology. This understanding is distributed around journals in a number of scientific fields and there is no single article that succinctly draws together the different components. In the present work the aim is to provide an overview on the acoustic approach to measuring suspended sediment parameters and assess its application in the study of non-cohesive inorganic suspended sediment transport processes.
Laboratory alluvial fans in one dimension.
Guerit, L; Métivier, F; Devauchelle, O; Lajeunesse, E; Barrier, L
2014-08-01
When they reach a flat plain, rivers often deposit their sediment load into a cone-shaped structure called alluvial fan. We present a simplified experimental setup that reproduces, in one dimension, basic features of alluvial fans. A mixture of water and glycerol transports and deposits glass beads between two transparent panels separated by a narrow gap. As the beads, which mimic natural sediments, get deposited in this gap, they form an almost one-dimensional fan. At a moderate sediment discharge, the fan grows quasistatically and maintains its slope just above the threshold for sediment transport. The water discharge determines this critical slope. At leading order, the sediment discharge only controls the velocity at which the fan grows. A more detailed analysis reveals a slight curvature of the fan profile, which relates directly to the rate at which sediments are transported.
Bedload and Total Load Sediment Transport Equations for Rough Open-Channel Flow
NASA Astrophysics Data System (ADS)
Abrahams, A. D.; Gao, P.
2001-12-01
The total sediment load transported by an open-channel flow may be divided into bedload and suspended load. Bedload transport occurs by saltation at low shear stress and by sheetflow at high shear stress. Dimensional analysis is used to identify the dimensionless variables that control the transport rate of noncohesive sediments over a plane bed, and regression analysis is employed to isolate the significant variables and determine the values of the coefficients. In the general bedload transport equation (i.e. for saltation and sheetflow) the dimensionless bedload transport rate is a function of the dimensionless shear stress, the friction factor, and an efficiency coefficient. For sheetflow the last term approaches 1, so that the bedload transport rate becomes a function of just the dimensionless shear stress and the friction factor. The dimensional analysis indicates that the dimensionless total load transport rate is a function of the dimensionless bedload transport rate and the dimensionless settling velocity of the sediment. Predicted values of the transport rates are graphed against the computed values of these variables for 505 flume experiments reported in the literature. These graphs indicate that the equations developed in this study give good unbiased predictions of both the bedload transport rate and total load transport rate over a wide range of conditions.
Effects of Wildfire on Fluvial Sediment Regime through Perturbations in Dry-Ravel
NASA Astrophysics Data System (ADS)
Florsheim, J. L.; Chin, A.; Kinoshita, A. M.; Nourbakhshbeidokhti, S.; Storesund, R.; Keller, E. A.
2015-12-01
In steep chaparral ecosystems with Mediterranean climate, dry ravel is a natural process resulting from wildfire disturbance that supplies sediment to fluvial systems. When dense chaparral vegetation burns, sediment accumulated on steep hillslopes is released for dry-season transport (dry ravel) down steep hillslopes during or soon after the wildfire. Results of a field study in southern California's Transverse Ranges illustrate the effect of wildfire on fluvial sediment regime in an unregulated chaparral system. Big Sycamore Canyon in the steep Santa Monica Mountains burned during the May 2013 Springs Fire and experienced one small sediment-transporting stormflow during the following winter. We conducted pre- and post-storm field campaigns during the fall and winter following the fire to quantify the effect of wildfire on the fluvial sediment regime. We utilized a sediment mass balance approach in which: 1) sediment supply, consisting primarily of dry ravel-derived deposits composed of relatively fine grained-sediment, was measured in the upstream basin and in the hillslope-channel margin adjacent to the study reach; 2) changes in storage in the study reach were quantified by analyzing the difference between pre- and post-storm channel topography derived from Terrestrial LiDAR Scanning (TLS) and field surveys; and 3) transport from the study reach was estimated as the difference between supply and change in storage where uncertainty is estimated using calculated sediment transport as a comparison. Results demonstrate channel deposition caused by changes in the short-term post-wildfire sediment regime. The increased sediment supply and storage are associated with significant changes in morphology, channel bed-material characteristics, and ecology. These results suggest that dry-ravel processes are an important factor to consider in post-wildfire sediment management.
Storm impacts and shoreline recovery: Mechanisms and controls in the southern North Sea
NASA Astrophysics Data System (ADS)
Brooks, S. M.; Spencer, T.; Christie, E. K.
2017-04-01
Storm impacts play a significant role in shoreline dynamics on barrier coastlines. Furthermore, inter-storm recovery is a key parameter determining long-term coastal resilience to climate change, storminess variability and sea level rise. Over the last decade, four extreme storms, with strong energetic waves and high still water levels resulting from high spring tides and large skew surge residuals, have impacted the shoreline of the southern North Sea. The 5th December 2013 storm, with the highest run-up levels recorded in the last 60 years, resulted in large sections of the frontline of the North Norfolk coast being translated inland by over 10 m. Storms in March and November 2007 also generated barrier scarping and shoreline retreat, although not on the scale of 2013. Between 2008 and 2013, a calm period, recovery dominated barrier position and elevation but was spatially differentiated alongshore. For one study area, Scolt Head Island, no recovery was seen; this section of the coast is being reset episodically landwards during storms. By contrast, the study area at Holkham Bay showed considerable recovery between 2008 and 2013, with barrier sections developing seaward through foredune recovery. The third study area, Brancaster Bay, showed partial recovery in barrier location and elevation. Results suggest that recovery is promoted by high sediment supply and onshore intertidal bar migration, at rates of 40 m a- 1. These processes bring sand to elevations where substrate drying enables aeolian processes to entrain and transport sand from upper foreshores to foredunes. We identify three potential sediment transport pathways that create a region of positive diffusivity at Holkham Bay. During calm periods, a general westward movement of sediment from the drift divide at Sheringham sources the intertidal bar and foredune development at Holkham Bay. However, during and following storms the drift switches to eastward, not only on the beach itself but also below the - 7 m isobath. Sediment from the eroding barrier at Brancaster Bay, and especially Scolt Head Island, also sources the sediment sink of Holkham Bay. Knowledge of foredune growth and barrier recovery in natural systems are vital aspects of future coastal management planning with accelerated sea-level rise and storminess variability.
Rasa, Ehsan; Chapman, Steven W; Bekins, Barbara A; Fogg, Graham E; Scow, Kate M; Mackay, Douglas M
2011-11-01
A methyl tert-butyl ether (MTBE) / tert-butyl alcohol (TBA) plume originating from a gasoline spill in late 1994 at Vandenberg Air Force Base (VAFB) persisted for over 15 years within 200 feet of the original spill source. The plume persisted until 2010 despite excavation of the tanks and piping within months after the spill and excavations of additional contaminated sediments from the source area in 2007 and 2008. The probable history of MTBE concentrations along the plume centerline at its source was estimated using a wide variety of available information, including published details about the original spill, excavations and monitoring by VAFB consultants, and our own research data. Two-dimensional reactive transport simulations of MTBE along the plume centerline were conducted for a 20-year period following the spill. These analyses suggest that MTBE diffused from the thin anaerobic aquifer into the adjacent anaerobic silts and transformed to TBA in both aquifer and silt layers. The model reproduces the observation that after 2004 TBA was the dominant solute, diffusing back out of the silts into the aquifer and sustaining plume concentrations much longer than would have been the case in the absence of such diffusive exchange. Simulations also suggest that aerobic degradation of MTBE or TBA at the water table in the overlying silt layer significantly affected concentrations of MTBE and TBA by limiting the chemical mass available for back diffusion to the aquifer. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rasa, Ehsan; Chapman, Steven W.; Bekins, Barbara A.; Fogg, Graham E.; Scow, Kate M.; Mackay, Douglas M.
2011-11-01
A methyl tert-butyl ether (MTBE) / tert-butyl alcohol (TBA) plume originating from a gasoline spill in late 1994 at Vandenberg Air Force Base (VAFB) persisted for over 15 years within 200 feet of the original spill source. The plume persisted until 2010 despite excavation of the tanks and piping within months after the spill and excavations of additional contaminated sediments from the source area in 2007 and 2008. The probable history of MTBE concentrations along the plume centerline at its source was estimated using a wide variety of available information, including published details about the original spill, excavations and monitoring by VAFB consultants, and our own research data. Two-dimensional reactive transport simulations of MTBE along the plume centerline were conducted for a 20-year period following the spill. These analyses suggest that MTBE diffused from the thin anaerobic aquifer into the adjacent anaerobic silts and transformed to TBA in both aquifer and silt layers. The model reproduces the observation that after 2004 TBA was the dominant solute, diffusing back out of the silts into the aquifer and sustaining plume concentrations much longer than would have been the case in the absence of such diffusive exchange. Simulations also suggest that aerobic degradation of MTBE or TBA at the water table in the overlying silt layer significantly affected concentrations of MTBE and TBA by limiting the chemical mass available for back diffusion to the aquifer.
Rasa, Ehsan; Chapman, Steven W.; Bekins, Barbara A.; Fogg, Graham E.; Scow, Kate M.; Mackay, Douglas M.
2011-01-01
A methyl tert-butyl ether (MTBE) / tert-butyl alcohol (TBA) plume originating from a gasoline spill in late 1994 at Vandenberg Air Force Base (VAFB) persisted for over 15 years within 200 feet of the original spill source. The plume persisted until 2010 despite excavation of the tanks and piping within months after the spill and excavations of additional contaminated sediments from the source area in 2007 and 2008. The probable history of MTBE concentrations along the plume centerline at its source was estimated using a wide variety of available information, including published details about the original spill, excavations and monitoring by VAFB consultants, and our own research data. Two-dimensional reactive transport simulations of MTBE along the plume centerline were conducted for a 20-year period following the spill. These analyses suggest that MTBE diffused from the thin anaerobic aquifer into the adjacent anaerobic silts and transformed to TBA in both aquifer and silt layers. The model reproduces the observation that after 2004 TBA was the dominant solute, diffusing back out of the silts into the aquifer and sustaining plume concentrations much longer than would have been the case in the absence of such diffusive exchange. Simulations also suggest that aerobic degradation of MTBE or TBA at the water table in the overlying silt layer significantly affected concentrations of MTBE and TBA by limiting the chemical mass available for back diffusion to the aquifer.
Rasa, Ehsan; Chapman, Steven W.; Bekins, Barbara A.; Fogg, Graham E.; Scow, Kate M.; Mackay, Douglas M.
2012-01-01
A methyl tert-butyl ether (MTBE) / tert-butyl alcohol (TBA) plume originating from a gasoline spill in late 1994 at Vandenberg Air Force Base (VAFB) persisted for over 15 years within 200 feet of the original spill source. The plume persisted until 2010 despite excavation of the tanks and piping within months after the spill and excavations of additional contaminated sediments from the source area in 2007 and 2008. The probable history of MTBE concentrations along the plume centerline at its source was estimated using a wide variety of available information, including published details about the original spill, excavations and monitoring by VAFB consultants, and our own research data. Two-dimensional reactive transport simulations of MTBE along the plume centerline were conducted for a 20-year period following the spill. These analyses suggest that MTBE diffused from the thin anaerobic aquifer into the adjacent anaerobic silts and transformed to TBA in both aquifer and silt layers. The model reproduces the observation that after 2004 TBA was the dominant solute, diffusing back out of the silts into the aquifer and sustaining plume concentrations much longer than would have been the case in the absence of such diffusive exchange. Simulations also suggest that aerobic degradation of MTBE or TBA at the water table in the overlying silt layer significantly affected concentrations of MTBE and TBA by limiting the chemical mass available for back diffusion to the aquifer. PMID:22115089
Roles of back diffusion and biodegradation reactions in sustaining MTBE/TBA plumes in alluvial media
NASA Astrophysics Data System (ADS)
Mackay, D. M.; Rasa, E.
2011-12-01
A plume of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA) originating from a gasoline spill in late 1994 at Vandenberg Air Force Base (VAFB) persisted above regulatory concentration goals for over 15 years within 200 feet of the original spill source. The plume persisted until 2010 despite excavation of the tanks and piping within months after the spill and excavations of additional contaminated sediments from the source area in 2007 and 2008. Two-dimensional reactive transport simulations of MTBE and TBA along the plume centerline were conducted for a 20-year period following the spill. As previously reported by Rasa et al. (2011), these analyses suggest that MTBE diffused from the thin anaerobic aquifer into the adjacent anaerobic silts and transformed to TBA in both aquifer and silt layers. After 2004, TBA was the dominant solute, diffusing back out of the silts into the aquifer and sustaining plume concentrations. Simulations also suggest that aerobic degradation of MTBE or TBA at the water table in the overlying silt layer significantly reduced the time for MTBE and TBA concentrations to reach regulatory goals by limiting the chemical mass available for back diffusion to the aquifer. We have extended that prior work; using the same reaction and diffusion parameters, we explored the sensitivity of the results to thicknesses of the alluvial layers in order to determine under what sets of conditions a reaction zone accessed only by vertical diffusion through a silt from an underlying contaminated aquifer can significantly affect time to achievement of compliance goals within the aquifer.
Controls on the extent of sediment cover in bedrock-alluvial channels
NASA Astrophysics Data System (ADS)
Hodge, Rebecca; Johnson, Joel; Tranmer, Andy; Yager, Elowyn
2017-04-01
The amount and location of sediment cover in a bedrock-alluvial channel is a key factor that controls the morphological evolution of the channel, sediment transport pathways and channel roughness. The amount of sediment cover is often predicted as a function of relative sediment supply (sediment supply over transport capacity). However, several different forms of this relationship have been produced using a range of different approaches, and there is not yet agreement as to the controlling factors that need to be included. Part of this lack of agreement is because of the need for a more processed-based understanding of the way in which sediment cover is formed and eroded in bedrock-alluvial channels. We start to address this knowledge gap by assessing the factors that control the location of sediment cover in a field setting. We present field data from two channels in the Henry Mountains, USA. The field data includes measurement of channel geometry, slope, sediment cover location, bedrock roughness, grain size and boulder occurrence. Relative sediment supply is estimated by assuming that downstream changes are primarily accounted for by changes in transport capacity, rather than sediment supply. Preliminary results suggest that there is a relationship between local sediment cover extent and relative sediment supply, but that this relationship is altered as a function of local bedrock roughness. We consider the implications of our findings for the form of sediment cover relationships.
Draut, Amy E.; Conaway, Christopher H.; Echols, Kathy R.; Storlazzi, Curt D.; Ritchie, Andrew
2011-01-01
This report presents analyses of suspended sediment and organic contaminants measured during a two-year study of the San Lorenzo River, central California, which discharges into the Pacific Ocean within the Monterey Bay National Marine Sanctuary. Most suspended-sediment transport occurred during flooding caused by winter storms; 55 percent of the sediment load was transported by the river during a three-day flood in January 2010. Concentrations of polyaromatic hydrocarbons can exceed regulatory criteria during high-flow events in the San Lorenzo River. These results highlight the importance of episodic sediment and contaminant transport in steep, mountainous, coastal watersheds and emphasize the importance of understanding physical processes and quantifying chemical constituents in discharge from coastal watersheds on event-scale terms.
Is thermal dispersivity significant for the use of heat as a tracer?
NASA Astrophysics Data System (ADS)
Rau, G. C.; Andersen, M. S.; Acworth, I.
2011-12-01
Heat profiles are regularly used to estimate sediment thermal parameters and to quantify vertical water flow velocity in fully saturated porous media. However, it has been pointed out by several authors that there is disagreement regarding the use of thermal dispersivity in heat transport models [e.g. Anderson, 2005]. Some researchers argue that this term should be treated analogous to solute transport [e.g. de Marsily, 1986], whilst others state that because heat diffusion is much faster than solute diffusion the dispersivity term can be neglected [e.g. Ingebritsen and Sanford, 1998]. This issue has never been properly addressed experimentally for environmentally relevant conditions. In order to address this question a hydraulic laboratory experiment was designed to investigate heat transport for different steady-state uniform flow velocities in the Darcy range (between 0 and 100 m/d) through homogeneous sand. For each flow velocity a point heat source at the center of the tank was instantaneously activated, and the thermal response was measured at 27 different locations using high resolution temperature probes. For the same flow velocities, a solute slug was injected in the center of the tank and the solute slug breakthrough was measured using 3 fluid EC sensors at different distances downstream of the injection point. This enabled direct comparison of solute and heat transport under identical conditions. The recorded temperature time-series data were used to calculate the thermal properties of the sand for conduction only, and estimate water flow velocity and thermal dispersion. The recorded EC time-series data were used to independently estimate water flow velocity but also solute dispersivity. The analytical solution for the solute transport case [Hunt, 1978] was adapted for heat transport and extended to account for slightly non-ideal experiment conditions. Velocity results independently derived from solute and heat show a discrepancy of up to 20%. The reason for this is not clear. Furthermore, the results show that thermal dispersivity can best be approximated with a square dependency on flow velocity. This agrees with earlier experiments in ideal materials by Green et al. [1964] as well as theoretical derivations [Kaviany, 1995]. However, this is in contrast to the linear dispersion model which has been adapted from solute transport and is commonly used in groundwater studies. The experimental results can be visualized in a conceptual plot devised by Bear [1972] for solute dispersion data (Figure 1). From this it becomes clear that the heat and solute transport Peclet numbers differs by several orders of magnitude for the same flow velocity and material because diffusion of heat is much faster than solute diffusion. As a result, the same Darcy flow range covers a different Peclet number range in heat transport and solute transport. This explains the controversy in the hydrologic community regarding the use of thermal dispersivity in transport models. In summary, for this experiment thermal dispersivity can be neglected when thermal Pe < 0.5, but should be considered for Pe > 0.5 with a square dependency on velocity.
Elliott, John G.; Anders, Steven P.
2004-01-01
The water resources of the Upper Colorado River Basin have been extensively developed for water supply, irrigation, and power generation through water storage in upstream reservoirs during spring runoff and subsequent releases during the remainder of the year. The net effect of water-resource development has been to substantially modify the predevelopment annual hydrograph as well as the timing and amount of sediment delivery from the upper Green River and the Yampa River Basins tributaries to the main-stem reaches where endangered native fish populations have been observed. The U.S. Geological Survey, in cooperation with the Colorado Division of Wildlife and the U.S. Fish and Wildlife Service, began a study to identify sediment source reaches in the Green River main stem and the lower Yampa and Little Snake Rivers and to identify sediment-transport relations that would be useful in assessing the potential effects of hydrograph modification by reservoir operation on sedimentation at identified razorback spawning bars in the Green River. The need for additional data collection is evaluated at each sampling site. Sediment loads were calculated at five key areas within the watershed by using instantaneous measurements of streamflow, suspended-sediment concentration, and bedload. Sediment loads were computed at each site for two modes of transport (suspended load and bedload), as well as for the total-sediment load (suspended load plus bedload) where both modes were sampled. Sediment loads also were calculated for sediment particle-size range (silt-and-clay, and sand-and-gravel sizes) if laboratory size analysis had been performed on the sample, and by hydrograph season. Sediment-transport curves were developed for each type of sediment load by a least-squares regression of logarithmic-transformed data. Transport equations for suspended load and total load had coefficients of determination of at least 0.72 at all of the sampling sites except Little Snake River near Lily, Colorado. Bedload transport equations at the five sites had coefficients of determination that ranged from 0.40 (Yampa River at Deerlodge Park, Colorado) to 0.80 (Yampa River above Little Snake River near Maybell, Colorado). Transport equations for silt and clay-size material had coefficients of determination that ranged from 0.46 to 0.82. Where particle-size data were available (Yampa River at Deerlodge Park, Colorado, and Green River near Jensen, Utah), transport equations for the smaller particle sizes (fine sand) tended to have higher coefficients of determination than the equations for coarser sizes (medium and coarse sand, and very coarse sand and gravel). Because the data had to be subdivided into at least two subsets (rising-limb, falling-limb and, occasionally, base-flow periods), the seasonal transport equations generally were based on relatively few samples. All transport equations probably could be improved by additional data collected at strategically timed periods.
Computing eddy-driven effective diffusivity using Lagrangian particles
Wolfram, Phillip J.; Ringler, Todd D.
2017-08-14
A novel method to derive effective diffusivity from Lagrangian particle trajectory data sets is developed and then analyzed relative to particle-derived meridional diffusivity for eddy-driven mixing in an idealized circumpolar current. Quantitative standard dispersion- and transport-based mixing diagnostics are defined, compared and contrasted to motivate the computation and use of effective diffusivity derived from Lagrangian particles. We compute the effective diffusivity by first performing scalar transport on Lagrangian control areas using stored trajectories computed from online Lagrangian In-situ Global High-performance particle Tracking (LIGHT) using the Model for Prediction Across Scales Ocean (MPAS-O). Furthermore, the Lagrangian scalar transport scheme is comparedmore » against an Eulerian scalar transport scheme. Spatially-variable effective diffusivities are computed from resulting time-varying cumulative concentrations that vary as a function of cumulative area. The transport-based Eulerian and Lagrangian effective diffusivity diagnostics are found to be qualitatively consistent with the dispersion-based diffusivity. All diffusivity estimates show a region of increased subsurface diffusivity within the core of an idealized circumpolar current and results are within a factor of two of each other. The Eulerian and Lagrangian effective diffusivities are most similar; smaller and more spatially diffused values are obtained with the dispersion-based diffusivity computed with particle clusters.« less