NASA Astrophysics Data System (ADS)
Song, Xianfeng; Setayeshgar, Sima; Cole, Bryan; Hamdoun, Amro; Epel, David
2008-03-01
Experiments have shown upregulation of multidrug efflux transporter activity approximately 30 min after fertilization in the sea urchin embryo [1]. These ATP-hydrolyzing transporter proteins pump moderately hydrophobic molecules out of the cell and represent the cell's first line of defense againstexogenous toxins. It has also been shown that transporters are moved in vesicles along microfilaments and localized to tips of microvilli prior to activation. We have constructed a geometrically realistic model of the embryo, including microvilli, to explore the functional role of this localization in the efficient elimination of toxins from the standpoint of diffusion. We compute diffusion of toxins in extracellular, membrane and intracellular spaces coupled with transporter activity, using experimentally derived values for physical parameters. For transporters uniformly distributed along microvilli and tip-localized transporters we compare regions in parameter space where each distribution provides diffusive advantage, and comment on the physically expected conditions. [1] A. M. Hamdoun, G. N. Cherr, T. A. Roepke and D. Epel, Developmental Biology 276 452 (2004).
Brillault, Julien; De Castro, Whocely Victor; Couet, William
2010-01-01
The transport characteristics of six fluoroquinolones (FQs) with various lipophilicities were compared in a Calu-3 cell model. For each FQ, an active polarized transport was observed in the direction of the apical side. However, the apparent permeability of FQs resulted from active transport and passive diffusion that were highly variable between compounds and mainly governed by lipophilicity. Therefore, active transport was predominant for compounds with relatively low lipophilicity but minor for FQs with higher lipophilicity.
Dispersion-relation phase spectroscopy of neuron transport
NASA Astrophysics Data System (ADS)
Wang, Ru; Wang, Zhuo; Millet, Larry; Gillette, Martha; Leigh, Joseph Robert; Sobh, Nahil; Levine, Alex; Popescu, Gabreil
2012-02-01
Molecular motors move materials along prescribed biopolymer tracks. This sort of active transport is required to rapidly move products over large distances within the cell, where passive diffusion is too slow. We examine intracellular traffic patterns using a new application of spatial light interference microscopy (SLIM) and measure the dispersion relation, i.e. decay rate vs. spatial mode, associated with mass transport in live cells. This approach applies equally well to both discrete and continuous mass distributions without the need for particle tracking. From the quadratic experimental curve specific to diffusion, we extracted the diffusion coefficient as the only fitting parameter. The linear portion of the dispersion relation reveals the deterministic component of the intracellular transport. Our data show a universal behavior where the intracellular transport is diffusive at small scales and deterministic at large scales. We further applied this method to studying transport in neurons and are able to use SLIM to map the changes in index of refraction across the neuron and its extended processes. We found that in dendrites and axons, the transport is mostly active, i.e., diffusion is subdominant.
Coupling of active motion and advection shapes intracellular cargo transport.
Khuc Trong, Philipp; Guck, Jochen; Goldstein, Raymond E
2012-07-13
Intracellular cargo transport can arise from passive diffusion, active motor-driven transport along cytoskeletal filament networks, and passive advection by fluid flows entrained by such cargo-motor motion. Active and advective transport are thus intrinsically coupled as related, yet different representations of the same underlying network structure. A reaction-advection-diffusion system is used here to show that this coupling affects the transport and localization of a passive tracer in a confined geometry. For sufficiently low diffusion, cargo localization to a target zone is optimized either by low reaction kinetics and decoupling of bound and unbound states, or by a mostly disordered cytoskeletal network with only weak directional bias. These generic results may help to rationalize subtle features of cytoskeletal networks, for example as observed for microtubules in fly oocytes.
Active transport of vesicles in neurons is modulated by mechanical tension.
Ahmed, Wylie W; Saif, Taher A
2014-03-27
Effective intracellular transport of proteins and organelles is critical in cells, and is especially important for ensuring proper neuron functionality. In neurons, most proteins are synthesized in the cell body and must be transported through thin structures over long distances where normal diffusion is insufficient. Neurons transport subcellular cargo along axons and neurites through a stochastic interplay of active and passive transport. Mechanical tension is critical in maintaining proper function in neurons, but its role in transport is not well understood. To this end, we investigate the active and passive transport of vesicles in Aplysia neurons while changing neurite tension via applied strain, and quantify the resulting dynamics. We found that tension in neurons modulates active transport of vesicles by increasing the probability of active motion, effective diffusivity, and induces a retrograde bias. We show that mechanical tension modulates active transport processes in neurons and that external forces can couple to internal (subcellular) forces and change the overall transport dynamics.
Active transport of vesicles in neurons is modulated by mechanical tension
Ahmed, Wylie W.; Saif, Taher A.
2014-01-01
Effective intracellular transport of proteins and organelles is critical in cells, and is especially important for ensuring proper neuron functionality. In neurons, most proteins are synthesized in the cell body and must be transported through thin structures over long distances where normal diffusion is insufficient. Neurons transport subcellular cargo along axons and neurites through a stochastic interplay of active and passive transport. Mechanical tension is critical in maintaining proper function in neurons, but its role in transport is not well understood. To this end, we investigate the active and passive transport of vesicles in Aplysia neurons while changing neurite tension via applied strain, and quantify the resulting dynamics. We found that tension in neurons modulates active transport of vesicles by increasing the probability of active motion, effective diffusivity, and induces a retrograde bias. We show that mechanical tension modulates active transport processes in neurons and that external forces can couple to internal (subcellular) forces and change the overall transport dynamics. PMID:24670781
Payvandi, S; Daly, K R; Zygalakis, K C; Roose, T
2014-11-01
Plants rely on the conducting vessels of the phloem to transport the products of photosynthesis from the leaves to the roots, or to any other organs, for growth, metabolism, and storage. Transport within the phloem is due to an osmotically-generated pressure gradient and is hence inherently nonlinear. Since convection dominates over diffusion in the main bulk flow, the effects of diffusive transport have generally been neglected by previous authors. However, diffusion is important due to boundary layers that form at the ends of the phloem, and at the leaf-stem and stem-root boundaries. We present a mathematical model of transport which includes the effects of diffusion. We solve the system analytically in the limit of high Münch number which corresponds to osmotic equilibrium and numerically for all parameter values. We find that the bulk solution is dependent on the diffusion-dominated boundary layers. Hence, even for large Péclet number, it is not always correct to neglect diffusion. We consider the cases of passive and active sugar loading and unloading. We show that for active unloading, the solutions diverge with increasing Péclet. For passive unloading, the convergence of the solutions is dependent on the magnitude of loading. Diffusion also permits the modelling of an axial efflux of sugar in the root zone which may be important for the growing root tip and for promoting symbiotic biological interactions in the soil. Therefore, diffusion is an essential mechanism for transport in the phloem and must be included to accurately predict flow.
Surface diffusion of astrocytic glutamate transporters shapes synaptic transmission.
Murphy-Royal, Ciaran; Dupuis, Julien P; Varela, Juan A; Panatier, Aude; Pinson, Benoît; Baufreton, Jérôme; Groc, Laurent; Oliet, Stéphane H R
2015-02-01
Control of the glutamate time course in the synapse is crucial for excitatory transmission. This process is mainly ensured by astrocytic transporters, high expression of which is essential to compensate for their slow transport cycle. Although molecular mechanisms regulating transporter intracellular trafficking have been identified, the relationship between surface transporter dynamics and synaptic function remains unexplored. We found that GLT-1 transporters were highly mobile on rat astrocytes. Surface diffusion of GLT-1 was sensitive to neuronal and glial activities and was strongly reduced in the vicinity of glutamatergic synapses, favoring transporter retention. Notably, glutamate uncaging at synaptic sites increased GLT-1 diffusion, displacing transporters away from this compartment. Functionally, impairing GLT-1 membrane diffusion through cross-linking in vitro and in vivo slowed the kinetics of excitatory postsynaptic currents, indicative of a prolonged time course of synaptic glutamate. These data provide, to the best of our knowledge, the first evidence for a physiological role of GLT-1 surface diffusion in shaping synaptic transmission.
Petrowsky, Matt; Frech, Roger
2010-07-08
Self-diffusion coefficients are measured from -5 to 80 degrees C in a series of linear alcohols using pulsed field gradient NMR. The temperature dependence of these data is studied using a compensated Arrhenius formalism that assumes an Arrhenius-like expression for the diffusion coefficient; however, this expression includes a dielectric constant dependence in the exponential prefactor. Scaling temperature-dependent diffusion coefficients to isothermal diffusion coefficients so that the exponential prefactors cancel results in calculated energies of activation E(a). The exponential prefactor is determined by dividing the temperature-dependent diffusion coefficients by the Boltzmann term exp(-E(a)/RT). Plotting the prefactors versus the dielectric constant places the data on a single master curve. This procedure is identical to that previously used to study the temperature dependence of ionic conductivities and dielectric relaxation rate constants. The energies of activation determined from self-diffusion coefficients in the series of alcohols are strikingly similar to those calculated for the same series of alcohols from both dielectric relaxation rate constants and ionic conductivities of dilute electrolytes. The experimental results are described in terms of an activated transport mechanism that is mediated by relaxation of the solution molecules. This microscopic picture of transport is postulated to be common to diffusion, dielectric relaxation, and ionic transport.
Generic Transport Mechanisms for Molecular Traffic in Cellular Protrusions
NASA Astrophysics Data System (ADS)
Graf, Isabella R.; Frey, Erwin
2017-03-01
Transport of molecular motors along protein filaments in a half-closed geometry is a common feature of biologically relevant processes in cellular protrusions. Using a lattice-gas model we study how the interplay between active and diffusive transport and mass conservation leads to localized domain walls and tip localization of the motors. We identify a mechanism for task sharing between the active motors (maintaining a gradient) and the diffusive motion (transport to the tip), which ensures that energy consumption is low and motor exchange mostly happens at the tip. These features are attributed to strong nearest-neighbor correlations that lead to a strong reduction of active currents, which we calculate analytically using an exact moment identity, and might prove useful for the understanding of correlations and active transport also in more elaborate systems.
Pruijn, Frederik B; Sturman, Joanna R; Liyanage, H D Sarath; Hicks, Kevin O; Hay, Michael P; Wilson, William R
2005-02-24
The extravascular diffusion of antitumor agents is a key determinant of their therapeutic activity, but the relationships between physicochemical properties of drugs and their extravascular transport are poorly understood. It is well-known that drug lipophilicity plays an important role in transport across biological membranes, but the net effect of lipophilicity on transport through multiple layers of tumor cells is less clear. This study examines the influence of lipophilicity (measured as the octanol-water partition coefficient P) on the extravascular transport properties of the hypoxic cytotoxin tirapazamine (TPZ, 1) and a series of 13 neutral analogues, using multicellular layers (MCLs) of HT29 human colon carcinoma cells as an in vitro model for the extravascular compartment of tumors. Flux of drugs across MCLs was determined using diffusion chambers, with the concentration-time profile on both sides of the MCL measured by HPLC. Diffusion coefficients in the MCLs (D(MCL)) were inversely proportional to M(r)(0.5) (M(r), relative molecular weight), although this was a minor contributor to differences between compounds over the narrow M(r) range investigated. Differences in lipophilicity had a larger effect, with a sigmoidal dependence of D(MCL) on log P. Correcting for M(r) differences, lipophilic compounds (log P > 1.5) had ca. 15-fold higher D(MCL) than hydrophilic compounds (log P < -1). Using a pharmacokinetic/pharmacodynamic (PK/PD) model in which diffusion in the extravascular compartment of tumors is considered explicitly, we demonstrated that hypoxic cell kill is very sensitive to changes in extravascular diffusion coefficient of TPZ analogues within this range. This study shows that simple monosubstitution of TPZ can alter log P enough to markedly improve extravascular transport and activity against target cells, especially if rates of metabolic activation are also optimized.
Specific features of defect and mass transport in concentrated fcc alloys
Osetsky, Yuri N.; Béland, Laurent K.; Stoller, Roger E.
2016-06-15
We report that diffusion and mass transport are basic properties that control materials performance, such as phase stability, solute decomposition and radiation tolerance. While understanding diffusion in dilute alloys is a mature field, concentrated alloys are much less studied. Here, atomic-scale diffusion and mass transport via vacancies and interstitial atoms are compared in fcc Ni, Fe and equiatomic Ni-Fe alloy. High temperature properties were determined using conventional molecular dynamics on the microsecond timescale, whereas the kinetic activation-relaxation (k-ART) approach was applied at low temperatures. The k-ART was also used to calculate transition states in the alloy and defect transport coefficients.more » The calculations reveal several specific features. For example, vacancy and interstitial defects migrate via different alloy components, diffusion is more sluggish in the alloy and, notably, mass transport in the concentrated alloy cannot be predicted on the basis of diffusion in its pure metal counterparts. Lastly, the percolation threshold for the defect diffusion in the alloy is discussed and it is suggested that this phenomenon depends on the properties and diffusion mechanisms of specific defects.« less
Lysosome Transport as a Function of Lysosome Diameter
Bandyopadhyay, Debjyoti; Cyphersmith, Austin; Zapata, Jairo A.; Kim, Y. Joseph; Payne, Christine K.
2014-01-01
Lysosomes are membrane-bound organelles responsible for the transport and degradation of intracellular and extracellular cargo. The intracellular motion of lysosomes is both diffusive and active, mediated by motor proteins moving lysosomes along microtubules. We sought to determine how lysosome diameter influences lysosome transport. We used osmotic swelling to double the diameter of lysosomes, creating a population of enlarged lysosomes. This allowed us to directly examine the intracellular transport of the same organelle as a function of diameter. Lysosome transport was measured using live cell fluorescence microscopy and single particle tracking. We find, as expected, the diffusive component of intracellular transport is decreased proportional to the increased lysosome diameter. Active transport of the enlarged lysosomes is not affected by the increased lysosome diameter. PMID:24497985
Lin, Congping; Schuster, Martin; Guimaraes, Sofia Cunha; Ashwin, Peter; Schrader, Michael; Metz, Jeremy; Hacker, Christian; Gurr, Sarah Jane; Steinberg, Gero
2016-01-01
Even distribution of peroxisomes (POs) and lipid droplets (LDs) is critical to their role in lipid and reactive oxygen species homeostasis. How even distribution is achieved remains elusive, but diffusive motion and directed motility may play a role. Here we show that in the fungus Ustilago maydis ∼95% of POs and LDs undergo diffusive motions. These movements require ATP and involve bidirectional early endosome motility, indicating that microtubule-associated membrane trafficking enhances diffusion of organelles. When early endosome transport is abolished, POs and LDs drift slowly towards the growing cell end. This pole-ward drift is facilitated by anterograde delivery of secretory cargo to the cell tip by myosin-5. Modelling reveals that microtubule-based directed transport and active diffusion support distribution, mobility and mixing of POs. In mammalian COS-7 cells, microtubules and F-actin also counteract each other to distribute POs. This highlights the importance of opposing cytoskeletal forces in organelle positioning in eukaryotes. PMID:27251117
Schaffhauser, Daniel Felix; Patti, Monica; Goda, Tatsuro; Miyahara, Yuji; Forster, Ian Cameron; Dittrich, Petra Stephanie
2012-01-01
An integrated microdevice for measuring proton-dependent membrane activity at the surface of Xenopus laevis oocytes is presented. By establishing a stable contact between the oocyte vitelline membrane and an ion-sensitive field-effect (ISFET) sensor inside a microperfusion channel, changes in surface pH that are hypothesized to result from facilitated proton lateral diffusion along the membrane were detected. The solute diffusion barrier created between the sensor and the active membrane area allowed detection of surface proton concentration free from interference of solutes in bulk solution. The proposed sensor mechanism was verified by heterologously expressing membrane transport proteins and recording changes in surface pH during application of the specific substrates. Experiments conducted on two families of phosphate-sodium cotransporters (SLC20 & SLC34) demonstrated that it is possible to detect phosphate transport for both electrogenic and electroneutral isoforms and distinguish between transport of different phosphate species. Furthermore, the transport activity of the proton/amino acid cotransporter PAT1 assayed using conventional whole cell electrophysiology correlated well with changes in surface pH, confirming the ability of the system to detect activity proportional to expression level.
Multimodal transport and dispersion of organelles in narrow tubular cells
NASA Astrophysics Data System (ADS)
Mogre, Saurabh S.; Koslover, Elena F.
2018-04-01
Intracellular components explore the cytoplasm via active motor-driven transport in conjunction with passive diffusion. We model the motion of organelles in narrow tubular cells using analytical techniques and numerical simulations to study the efficiency of different transport modes in achieving various cellular objectives. Our model describes length and time scales over which each transport mode dominates organelle motion, along with various metrics to quantify exploration of intracellular space. For organelles that search for a specific target, we obtain the average capture time for given transport parameters and show that diffusion and active motion contribute to target capture in the biologically relevant regime. Because many organelles have been found to tether to microtubules when not engaged in active motion, we study the interplay between immobilization due to tethering and increased probability of active transport. We derive parameter-dependent conditions under which tethering enhances long-range transport and improves the target capture time. These results shed light on the optimization of intracellular transport machinery and provide experimentally testable predictions for the effects of transport regulation mechanisms such as tethering.
Modeling cytoskeletal traffic: an interplay between passive diffusion and active transport.
Neri, Izaak; Kern, Norbert; Parmeggiani, Andrea
2013-03-01
We introduce the totally asymmetric simple exclusion process with Langmuir kinetics on a network as a microscopic model for active motor protein transport on the cytoskeleton, immersed in the diffusive cytoplasm. We discuss how the interplay between active transport along a network and infinite diffusion in a bulk reservoir leads to a heterogeneous matter distribution on various scales: we find three regimes for steady state transport, corresponding to the scale of the network, of individual segments, or local to sites. At low exchange rates strong density heterogeneities develop between different segments in the network. In this regime one has to consider the topological complexity of the whole network to describe transport. In contrast, at moderate exchange rates the transport through the network decouples, and the physics is determined by single segments and the local topology. At last, for very high exchange rates the homogeneous Langmuir process dominates the stationary state. We introduce effective rate diagrams for the network to identify these different regimes. Based on this method we develop an intuitive but generic picture of how the stationary state of excluded volume processes on complex networks can be understood in terms of the single-segment phase diagram.
Astrocytic GABA transporter activity modulates excitatory neurotransmission
Boddum, Kim; Jensen, Thomas P.; Magloire, Vincent; Kristiansen, Uffe; Rusakov, Dmitri A.; Pavlov, Ivan; Walker, Matthew C.
2016-01-01
Astrocytes are ideally placed to detect and respond to network activity. They express ionotropic and metabotropic receptors, and can release gliotransmitters. Astrocytes also express transporters that regulate the extracellular concentration of neurotransmitters. Here we report a previously unrecognized role for the astrocytic GABA transporter, GAT-3. GAT-3 activity results in a rise in astrocytic Na+ concentrations and a consequent increase in astrocytic Ca2+ through Na+/Ca2+ exchange. This leads to the release of ATP/adenosine by astrocytes, which then diffusely inhibits neuronal glutamate release via activation of presynaptic adenosine receptors. Through this mechanism, increases in astrocytic GAT-3 activity due to GABA released from interneurons contribute to 'diffuse' heterosynaptic depression. This provides a mechanism for homeostatic regulation of excitatory transmission in the hippocampus. PMID:27886179
NASA Astrophysics Data System (ADS)
Ancey, Christophe; Bohorquez, Patricio; Heyman, Joris
2016-04-01
The advection-diffusion equation arises quite often in the context of sediment transport, e.g., for describing time and space variations in the particle activity (the solid volume of particles in motion per unit streambed area). Stochastic models can also be used to derive this equation, with the significant advantage that they provide information on the statistical properties of particle activity. Stochastic models are quite useful when sediment transport exhibits large fluctuations (typically at low transport rates), making the measurement of mean values difficult. We develop an approach based on birth-death Markov processes, which involves monitoring the evolution of the number of particles moving within an array of cells of finite length. While the topic has been explored in detail for diffusion-reaction systems, the treatment of advection has received little attention. We show that particle advection produces nonlocal effects, which are more or less significant depending on the cell size and particle velocity. Albeit nonlocal, these effects look like (local) diffusion and add to the intrinsic particle diffusion (dispersal due to velocity fluctuations), with the important consequence that local measurements depend on both the intrinsic properties of particle displacement and the dimensions of the measurement system.
GALACTIC WINDS DRIVEN BY ISOTROPIC AND ANISOTROPIC COSMIC-RAY DIFFUSION IN DISK GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pakmor, R.; Pfrommer, C.; Simpson, C. M.
2016-06-20
The physics of cosmic rays (CRs) is a promising candidate for explaining the driving of galactic winds and outflows. Recent galaxy formation simulations have demonstrated the need for active CR transport either in the form of diffusion or streaming to successfully launch winds in galaxies. However, due to computational limitations, most previous simulations have modeled CR transport isotropically. Here, we discuss high-resolution simulations of isolated disk galaxies in a 10{sup 11} M {sub ⊙} halo with the moving-mesh code Arepo that include injection of CRs from supernovae, advective transport, CR cooling, and CR transport through isotropic or anisotropic diffusion. Wemore » show that either mode of diffusion leads to the formation of strong bipolar outflows. However, they develop significantly later in the simulation with anisotropic diffusion compared to the simulation with isotropic diffusion. Moreover, we find that isotropic diffusion allows most of the CRs to quickly diffuse out of the disk, while in the simulation with anisotropic diffusion, most CRs remain in the disk once the magnetic field becomes dominated by its azimuthal component, which occurs after ∼300 Myr. This has important consequences for the gas dynamics in the disk. In particular, we show that isotropic diffusion strongly suppresses the amplification of the magnetic field in the disk compared to anisotropic or no diffusion models. We therefore conclude that reliable simulations which include CR transport inevitably need to account for anisotropic diffusion.« less
Marchadour, Charlotte; Brouillet, Emmanuel; Hantraye, Philippe; Lebon, Vincent; Valette, Julien
2012-01-01
Translational displacement of molecules within cells is a key process in cellular biology. Molecular motion potentially depends on many factors, including active transport, cytosol viscosity and molecular crowding, tortuosity resulting from cytoskeleton and organelles, and restriction barriers. However, the relative contribution of these factors to molecular motion in the cytoplasm remains poorly understood. In this work, we designed an original diffusion-weighted magnetic resonance spectroscopy strategy to probe molecular motion at subcellular scales in vivo. This led to the first observation of anomalous diffusion, that is, dependence of the apparent diffusion coefficient (ADC) on the diffusion time, for endogenous intracellular metabolites in the brain. The observed increase of the ADC at short diffusion time yields evidence that metabolite motion is characteristic of hindered random diffusion rather than active transport, for time scales up to the dozen milliseconds. Armed with this knowledge, data modeling based on geometrically constrained diffusion was performed. Results suggest that metabolite diffusion occurs in a low-viscosity cytosol hindered by ∼2-μm structures, which is consistent with known intracellular organization. PMID:22929443
Unexpected consequences of bedload diffusion
NASA Astrophysics Data System (ADS)
Devauchelle, O.; Abramian, A.; Lajeunesse, E.
2017-12-01
Sedimentary grains transported as bedload bump and bounce on the rough bed of the river that entrains them. The succession of these random events causes bedload particles to diffuse across the flow, towards the less active areas of the bed. In a fashion reminiscent of that proposed by Parker (1978) for suspended load, this mechanism opposes gravity to maintain the banks of alluvial rivers. In fact, diffusion is so tightly linked to bedload that it appears in the most basic sediment transport experiment--the straight channel we use to calibrate transport laws. Indeed, the fixed sides of the channel cause the flow, and thus the bed shear stress, to vary across the flume. This variation induces bedload diffusion, which in turn deforms the bed. As a consequence, to reliably calibrate a transport law, we need to measure the full profiles of shear stress and bedload transport, rather than bulk-average these quantities. Unfortunately, using a larger channel does not solve the problem, as a large aspect ratio favors the growth of streaks caused by a diffusion-induced instability. Based on these observations, we propose a different design for sediment transport experiments.
Cytoskeletal Network Morphology Regulates Intracellular Transport Dynamics
Ando, David; Korabel, Nickolay; Huang, Kerwyn Casey; Gopinathan, Ajay
2015-01-01
Intracellular transport is essential for maintaining proper cellular function in most eukaryotic cells, with perturbations in active transport resulting in several types of disease. Efficient delivery of critical cargos to specific locations is accomplished through a combination of passive diffusion and active transport by molecular motors that ballistically move along a network of cytoskeletal filaments. Although motor-based transport is known to be necessary to overcome cytoplasmic crowding and the limited range of diffusion within reasonable timescales, the topological features of the cytoskeletal network that regulate transport efficiency and robustness have not been established. Using a continuum diffusion model, we observed that the time required for cellular transport was minimized when the network was localized near the nucleus. In simulations that explicitly incorporated network spatial architectures, total filament mass was the primary driver of network transit times. However, filament traps that redirect cargo back to the nucleus caused large variations in network transport. Filament polarity was more important than filament orientation in reducing average transit times, and transport properties were optimized in networks with intermediate motor on and off rates. Our results provide important insights into the functional constraints on intracellular transport under which cells have evolved cytoskeletal structures, and have potential applications for enhancing reactions in biomimetic systems through rational transport network design. PMID:26488648
ERIC Educational Resources Information Center
Kutzner, Mickey; Pearson, Bryan
2017-01-01
Diffusion is a truly interdisciplinary topic bridging all areas of STEM education. When biomolecules are not being moved through the body by fluid flow through the circulatory system or by molecular motors, diffusion is the primary mode of transport over short distances. The direction of the diffusive flow of particles is from high concentration…
An in vitro assay for entry into cilia reveals unique properties of the soluble diffusion barrier
Breslow, David K.; Koslover, Elena F.; Seydel, Federica; Spakowitz, Andrew J.
2013-01-01
Specific proteins are concentrated within primary cilia, whereas others remain excluded. To understand the mechanistic basis of entry into cilia, we developed an in vitro assay using cells in which the plasma membrane was permeabilized, but the ciliary membrane was left intact. Using a diffusion-to-capture system and quantitative analysis, we find that proteins >9 nm in diameter (∼100 kD) are restricted from entering cilia, and we confirm these findings in vivo. Interference with the nuclear pore complex (NPC) or the actin cytoskeleton in permeabilized cells demonstrated that the ciliary diffusion barrier is mechanistically distinct from those of the NPC or the axon initial segment. Moreover, applying a mass transport model to this system revealed diffusion coefficients for soluble and membrane proteins within cilia that are compatible with rapid exploration of the ciliary space in the absence of active transport. Our results indicate that large proteins require active transport for entry into cilia but not necessarily for movement inside cilia. PMID:24100294
Kinetics of dodecanoic acid adsorption from caustic solution by activated carbon.
Pendleton, Phillip; Wu, Sophie Hua
2003-10-15
This study examines the influences of adsorbent porosity and surface chemistry and of carbon dosage on dodecanoic acid adsorption kinetics from aqueous and 2 M NaOH solutions as batch adsorption processes. Both adsorbents are steam-activated carbons prepared from either coconut or coal precursors. Prior to use the adsorbents were washed in deionized water or 2 M NaOH. Mass transfer coefficients and effective overall diffusion coefficients indicate a minor contribution from adsorbent porosity. In contrast, high surface oxygen content impedes transport to and into the adsorbent structure. Carbon dosage shows a proportional increase in transport coefficients with increasing mass; these coefficients are constant when normalized per unit mass. Neither water nor NaOH treatment of the adsorbents has a significant influence on dodecanoic acid adsorption kinetics. Molecular and Knudsen diffusion coefficients are defined to demonstrate that the overall effective diffusion coefficient values and the diffusion process are controlled by surface diffusion.
Cytoskeletal Network Morphology Regulates Intracellular Transport Dynamics.
Ando, David; Korabel, Nickolay; Huang, Kerwyn Casey; Gopinathan, Ajay
2015-10-20
Intracellular transport is essential for maintaining proper cellular function in most eukaryotic cells, with perturbations in active transport resulting in several types of disease. Efficient delivery of critical cargos to specific locations is accomplished through a combination of passive diffusion and active transport by molecular motors that ballistically move along a network of cytoskeletal filaments. Although motor-based transport is known to be necessary to overcome cytoplasmic crowding and the limited range of diffusion within reasonable timescales, the topological features of the cytoskeletal network that regulate transport efficiency and robustness have not been established. Using a continuum diffusion model, we observed that the time required for cellular transport was minimized when the network was localized near the nucleus. In simulations that explicitly incorporated network spatial architectures, total filament mass was the primary driver of network transit times. However, filament traps that redirect cargo back to the nucleus caused large variations in network transport. Filament polarity was more important than filament orientation in reducing average transit times, and transport properties were optimized in networks with intermediate motor on and off rates. Our results provide important insights into the functional constraints on intracellular transport under which cells have evolved cytoskeletal structures, and have potential applications for enhancing reactions in biomimetic systems through rational transport network design. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Cocucci, E; Kim, J Y; Bai, Y; Pabla, N
2017-01-01
Intracellular drug accumulation is thought to be dictated by two major processes, passive diffusion through the lipid membrane or membrane transporters. The relative role played by these distinct processes remains actively debated. Moreover, the role of membrane-trafficking in drug transport remains underappreciated and unexplored. Here we discuss the distinct processes involved in cellular drug distribution and propose that better experimental models are required to elucidate the differential contributions of various processes in intracellular drug accumulation. © 2016 American Society for Clinical Pharmacology and Therapeutics.
Effective diffusion coefficient including the Marangoni effect
NASA Astrophysics Data System (ADS)
Kitahata, Hiroyuki; Yoshinaga, Natsuhiko
2018-04-01
Surface-active molecules supplied from a particle fixed at the water surface create a spatial gradient of the molecule concentration, resulting in Marangoni convection. Convective flow transports the molecules far from the particle, enhancing diffusion. We analytically derive the effective diffusion coefficient associated with the Marangoni convection rolls. The resulting estimated effective diffusion coefficient is consistent with our numerical results and the apparent diffusion coefficient measured in experiments.
Phenomenology and energetics of diffusion across cell phase states.
Ashrafuzzaman, Md
2015-11-01
Cell based transport properties have been mathematically addressed. Cell contained cross boundary diffusion of materials has been explained using valid formalisms and related analytical expressions have been developed. Various distinguishable physical structures and their properties raise different general structure specific diffusion mechanisms and controlled transport related parameters. Some of these parameters play phenomenological roles and some cause regulatory effects. The cell based compartments may be divided into three major physical phase states namely liquid, plasma and solid phase states. Transport of ions, nutrients, small molecules like proteins, etc. across inter phase states and intraphase states follows general transport related formalisms. Creation of some localized permanent and/or temporary structures e.g., ion channels, clustering of constituents, etc. and the transitions between such structures appear as regulators of the transport mechanisms. In this article, I have developed mainly a theoretical analysis of the commonly observed cell transport phenomena. I have attempted to develop formalisms on general cell based diffusion followed by a few numerical computations to address the analytical expression phenomenologically. I have then extended the analysis to adopting with the local structure originated energetics. Independent or correlated molecular transport naturally relies on some general parameters that define the nature of local cell environment as well as on some occasionally raised or transiently active stochastic resonance due to localized interactions. Short and long range interaction energies play crucial roles in this regard. Physical classification of cellular compartments has led us developing analytical expressions on both biologically observed diffusion mechanisms and the diffusions's occasional stochasticity causing energetics. These analytical expressions help us address the diffusion phenomena generally considering the physical properties of the biostructures across the diffusion pathways. A specific example case of single molecule transport and localized interaction energetics in a specific cell phase has been utilized to address the diffusion quite clearly. This article helps to address the mechanisms of cell based diffusion and nutrient movements and thus helps develop strategic templates to manipulate the diffusion mechanisms. Application of the theoretical knowledge into designing or discovering drugs or small molecule inhibitors targeting cell based structures may open up new avenues in biomedical sciences.
k-space image correlation to probe the intracellular dynamics of gold nanoparticles
NASA Astrophysics Data System (ADS)
Bouzin, M.; Sironi, L.; Chirico, G.; D'Alfonso, L.; Inverso, D.; Pallavicini, P.; Collini, M.
2016-04-01
The collective action of dynein, kinesin and myosin molecular motors is responsible for the intracellular active transport of cargoes, vesicles and organelles along the semi-flexible oriented filaments of the cytoskeleton. The overall mobility of the cargoes upon binding and unbinding to motor proteins can be modeled as an intermittency between Brownian diffusion in the cell cytoplasm and active ballistic excursions along actin filaments or microtubules. Such an intermittent intracellular active transport, exhibited by star-shaped gold nanoparticles (GNSs, Gold Nanostars) upon internalization in HeLa cancer cells, is investigated here by combining live-cell time-lapse confocal reflectance microscopy and the spatio-temporal correlation, in the reciprocal Fourier space, of the acquired image sequences. At first, the analytical theoretical framework for the investigation of a two-state intermittent dynamics is presented for Fourier-space Image Correlation Spectroscopy (kICS). Then simulated kICS correlation functions are employed to evaluate the influence of, and sensitivity to, all the kinetic and dynamic parameters the model involves (the transition rates between the diffusive and the active transport states, the diffusion coefficient and drift velocity of the imaged particles). The optimal procedure for the analysis of the experimental data is outlined and finally exploited to derive whole-cell maps for the parameters underlying the GNSs super-diffusive dynamics. Applied here to the GNSs subcellular trafficking, the proposed kICS analysis can be adopted for the characterization of the intracellular (super-) diffusive dynamics of any fluorescent or scattering biological macromolecule.
NASA Astrophysics Data System (ADS)
DSouza, Alisha V.; Marra, Kayla; Gunn, Jason R.; Samkoe, Kimberley S.; Pogue, Brian W.
2016-10-01
Lymphatic uptake of interstitially administered agents occurs by passive convective-diffusive inflow driven by interstitial concentration and pressure, while the downstream lymphatic transport is facilitated by active propulsive contractions of lymphatic vessel walls. Near-infrared fluorescence imaging in mice was used to measure these central components of lymphatic transport for the first time, using two different-sized molecules-methylene blue (MB) and fluorescence-labeled antibody immunoglobulin G (IgG)-IRDye 680RD. This work confirms the hypothesis that lymphatic passive inflow and active propulsion rates can be separated based upon the relative differences in Stokes-Einstein diffusion coefficient. This coefficient specifically affects the passive-diffusive uptake when the interstitial volume and pressure are constant. Parameters such as mean time-to-peak signal, overall fluorescence signal intensities, and number of active peristaltic pulses, were estimated from temporal imaging data. While the mean time to attain peak signal representative of diffusion-dominated flow in the lymph vessels was 0.6±0.2 min for MB and 8±6 min for IgG, showing a size dependence, the active propulsion rates were 3.4±0.8 pulses/min and 3.3±0.5 pulses/min, respectively, appearing size independent. The propulsion rates for both dyes decreased with clearance from the interstitial injection-site, indicating intrinsic control of the smooth muscles in response to interstitial pressure. This approach to size-comparative agent flow imaging of lymphatic function can enable noninvasive characterization of diseases related to uptake and flow in lymph networks.
Active Nuclear Import of Membrane Proteins Revisited
Laba, Justyna K.; Steen, Anton; Popken, Petra; Chernova, Alina; Poolman, Bert; Veenhoff, Liesbeth M.
2015-01-01
It is poorly understood how membrane proteins destined for the inner nuclear membrane pass the crowded environment of the Nuclear Pore Complex (NPC). For the Saccharomyces cerevisiae proteins Src1/Heh1 and Heh2, a transport mechanism was proposed where the transmembrane domains diffuse through the membrane while the extralumenal domains encoding a nuclear localization signal (NLS) and intrinsically disordered linker (L) are accompanied by transport factors and travel through the NPC. Here, we validate the proposed mechanism and explore and discuss alternative interpretations of the data. First, to disprove an interpretation where the membrane proteins become membrane embedded only after nuclear import, we present biochemical and localization data to support that the previously used, as well as newly designed reporter proteins are membrane-embedded irrespective of the presence of the sorting signals, the specific transmembrane domain (multipass or tail anchored), independent of GET, and also under conditions that the proteins are trapped in the NPC. Second, using the recently established size limit for passive diffusion of membrane proteins in yeast, and using an improved assay, we confirm active import of polytopic membrane protein with extralumenal soluble domains larger than those that can pass by diffusion on similar timescales. This reinforces that NLS-L dependent active transport is distinct from passive diffusion. Thirdly, we revisit the proposed route through the center of the NPC and conclude that the previously used trapping assay is, unfortunately, poorly suited to address the route through the NPC, and the route thus remains unresolved. Apart from the uncertainty about the route through the NPC, the data confirm active, transport factor dependent, nuclear transport of membrane-embedded mono- and polytopic membrane proteins in baker’s yeast. PMID:26473931
NASA Astrophysics Data System (ADS)
Ancey, C.; Bohorquez, P.; Heyman, J.
2015-12-01
The advection-diffusion equation is one of the most widespread equations in physics. It arises quite often in the context of sediment transport, e.g., for describing time and space variations in the particle activity (the solid volume of particles in motion per unit streambed area). Phenomenological laws are usually sufficient to derive this equation and interpret its terms. Stochastic models can also be used to derive it, with the significant advantage that they provide information on the statistical properties of particle activity. These models are quite useful when sediment transport exhibits large fluctuations (typically at low transport rates), making the measurement of mean values difficult. Among these stochastic models, the most common approach consists of random walk models. For instance, they have been used to model the random displacement of tracers in rivers. Here we explore an alternative approach, which involves monitoring the evolution of the number of particles moving within an array of cells of finite length. Birth-death Markov processes are well suited to this objective. While the topic has been explored in detail for diffusion-reaction systems, the treatment of advection has received no attention. We therefore look into the possibility of deriving the advection-diffusion equation (with a source term) within the framework of birth-death Markov processes. We show that in the continuum limit (when the cell size becomes vanishingly small), we can derive an advection-diffusion equation for particle activity. Yet while this derivation is formally valid in the continuum limit, it runs into difficulty in practical applications involving cells or meshes of finite length. Indeed, within our stochastic framework, particle advection produces nonlocal effects, which are more or less significant depending on the cell size and particle velocity. Albeit nonlocal, these effects look like (local) diffusion and add to the intrinsic particle diffusion (dispersal due to velocity fluctuations), with the important consequence that local measurements depend on both the intrinsic properties of particle displacement and the dimensions of the measurement system.
Need-based activation of ammonium uptake in Escherichia coli
Kim, Minsu; Zhang, Zhongge; Okano, Hiroyuki; Yan, Dalai; Groisman, Alexander; Hwa, Terence
2012-01-01
The efficient sequestration of nutrients is vital for the growth and survival of microorganisms. Some nutrients, such as CO2 and NH3, are readily diffusible across the cell membrane. The large membrane permeability of these nutrients obviates the need of transporters when the ambient level is high. When the ambient level is low, however, maintaining a high intracellular nutrient level against passive back diffusion is both challenging and costly. Here, we study the delicate management of ammonium (NH4+/NH3) sequestration by E. coli cells using microfluidic chemostats. We find that as the ambient ammonium concentration is reduced, E. coli cells first maximize their ability to assimilate the gaseous NH3 diffusing into the cytoplasm and then abruptly activate ammonium transport. The onset of transport varies under different growth conditions, but always occurring just as needed to maintain growth. Quantitative modeling of known interactions reveals an integral feedback mechanism by which this need-based uptake strategy is implemented. This novel strategy ensures that the expensive cost of upholding the internal ammonium concentration against back diffusion is kept at a minimum. PMID:23010999
Finite Difference Formulation for Prediction of Water Pollution
NASA Astrophysics Data System (ADS)
Johari, Hanani; Rusli, Nursalasawati; Yahya, Zainab
2018-03-01
Water is an important component of the earth. Human being and living organisms are demand for the quality of water. Human activity is one of the causes of the water pollution. The pollution happened give bad effect to the physical and characteristic of water contents. It is not practical to monitor all aspects of water flow and transport distribution. So, in order to help people to access to the polluted area, a prediction of water pollution concentration must be modelled. This study proposed a one-dimensional advection diffusion equation for predicting the water pollution concentration transport. The numerical modelling will be produced in order to predict the transportation of water pollution concentration. In order to approximate the advection diffusion equation, the implicit Crank Nicolson is used. For the purpose of the simulation, the boundary condition and initial condition, the spatial steps and time steps as well as the approximations of the advection diffusion equation have been encoded. The results of one dimensional advection diffusion equation have successfully been used to predict the transportation of water pollution concentration by manipulating the velocity and diffusion parameters.
Ganas, Petra; Brandsch, Roderich
2009-06-01
The mechanism by which l-nicotine is taken up by bacteria that are able to grow on it is unknown. Nicotine degradation by Arthrobacter nicotinovorans, a Gram-positive soil bacterium, is linked to the presence of the catabolic megaplasmid pAO1. l-[(14)C]Nicotine uptake assays with A. nicotinovorans showed transport of nicotine across the cell membrane to be energy-independent and saturable with a K(m) of 6.2+/-0.1 microM and a V(max) of 0.70+/-0.08 micromol min(-1) (mg protein)(-1). This is in accord with a mechanism of facilitated diffusion, driven by the nicotine concentration gradient. Nicotine uptake was coupled to its intracellular degradation, and an A. nicotinovorans strain unable to degrade nicotine (pAO1(-)) showed no nicotine import. However, when the nicotine dehydrogenase genes were expressed in this strain, import of l-[(14)C]nicotine took place. A. nicotinovorans pAO1(-) and Escherichia coli were also unable to import 6-hydroxy-l-nicotine, but expression of the 6-hydroxy-l-nicotine oxidase gene allowed both bacteria to take up this compound. l-Nicotine uptake was inhibited by d-nicotine, 6-hydroxy-l-nicotine and 2-amino-l-nicotine, which may indicate transport of these nicotine derivatives by a common permease. Attempts to correlate nicotine uptake with pAO1 genes possessing similarity to amino acid transporters failed. In contrast to the situation at the blood-brain barrier, nicotine transport across the cell membrane by these bacteria was not by passive diffusion or active transport but by facilitated diffusion.
Recycling of Kinesin-1 Motors by Diffusion after Transport
Blasius, T. Lynne; Reed, Nathan; Slepchenko, Boris M.; Verhey, Kristen J.
2013-01-01
Kinesin motors drive the long-distance anterograde transport of cellular components along microtubule tracks. Kinesin-dependent transport plays a critical role in neurogenesis and neuronal function due to the large distance separating the soma and nerve terminal. The fate of kinesin motors after delivery of their cargoes is unknown but has been postulated to involve degradation at the nerve terminal, recycling via retrograde motors, and/or recycling via diffusion. We set out to test these models concerning the fate of kinesin-1 motors after completion of transport in neuronal cells. We find that kinesin-1 motors are neither degraded nor returned by retrograde motors. By combining mathematical modeling and experimental analysis, we propose a model in which the distribution and recycling of kinesin-1 motors fits a “loose bucket brigade” where individual motors alter between periods of active transport and free diffusion within neuronal processes. These results suggest that individual kinesin-1 motors are utilized for multiple rounds of transport. PMID:24098765
Active transport improves the precision of linear long distance molecular signalling
NASA Astrophysics Data System (ADS)
Godec, Aljaž; Metzler, Ralf
2016-09-01
Molecular signalling in living cells occurs at low copy numbers and is thereby inherently limited by the noise imposed by thermal diffusion. The precision at which biochemical receptors can count signalling molecules is intimately related to the noise correlation time. In addition to passive thermal diffusion, messenger RNA and vesicle-engulfed signalling molecules can transiently bind to molecular motors and are actively transported across biological cells. Active transport is most beneficial when trafficking occurs over large distances, for instance up to the order of 1 metre in neurons. Here we explain how intermittent active transport allows for faster equilibration upon a change in concentration triggered by biochemical stimuli. Moreover, we show how intermittent active excursions induce qualitative changes in the noise in effectively one-dimensional systems such as dendrites. Thereby they allow for significantly improved signalling precision in the sense of a smaller relative deviation in the concentration read-out by the receptor. On the basis of linear response theory we derive the exact mean field precision limit for counting actively transported molecules. We explain how intermittent active excursions disrupt the recurrence in the molecular motion, thereby facilitating improved signalling accuracy. Our results provide a deeper understanding of how recurrence affects molecular signalling precision in biological cells and novel medical-diagnostic devices.
Garcia, Jose; Markovski, Jasmina; McKay Gifford, J; Apul, Onur; Hristovski, Kiril D
2017-05-15
The overarching goal of this study was to ascertain the changes in intraparticle mass transport rates for organic contaminants resulting from nano-enabled hybridization of commercially available granular activated carbon (GAC). Three different nano-enabled hybrid media were fabricated by in-situ synthesizing titanium dioxide nanoparticles inside the pores of GAC sorbent, characterized, and evaluated for removal of two model organic contaminants under realistic conditions to obtain the intraparticle mass transport (pore and surface diffusion) coefficients. The results validated the two hypotheses that: (H1) the pore diffusion rates of organic contaminants linearly decrease with decrease in cumulative pore volume caused by increase in metal (hydr)oxide nanoparticle content inside the pores of the hybrid GAC sorbent; and (H2) introduction of metal (hydr)oxide nanoparticles initially increases surface diffusivity, but additional loading causes its decrease as the increase in metal (hydr)oxide nanoparticles content continues to reduce the porosity of the GAC sorbent. Nano-enabled hybridization of commercially available GAC with metal (hydr)oxides has the potential to significantly increase the intraparticle mass transport limitations for organic contaminants. Introduction of metal (hydr)oxide nanoparticles inside the pores of a pristine sorbent causes the pore diffusion rates of organic contaminants to decrease as the cumulative pore volume is reduced. In contrast, the introduction of limited amounts of metal (hydr)oxide nanoparticles appears to facilitate the surface diffusion rates of these contaminants. Copyright © 2017 Elsevier B.V. All rights reserved.
Diffusion of One-Dimensional Crystals in Channels of Single-Walled Carbon Nanotubes
NASA Astrophysics Data System (ADS)
Zhigalina, V. G.; Kumskov, A. S.; Falaleev, N. S.; Vasiliev, A. L.; Kiselev, N. A.
2018-05-01
The transport of one-dimensional CuI crystals in channels of single-walled carbon nanotubes (SWCNTs) has been studied by high resolution electron microscopy. The diffusion kinetics has been investigated by counting the number of CuI atoms escaping from the nanotube channel. The diffusivity is calculated to be 6.8 × 10-21 m2/s, which corresponds to an activation-barrier height of 1 eV/atom. A comparison with the theoretically estimated height of the energy barrier for molecular transport through a graphene layer is indicative of mass transfer through vacancy defects in graphene.
Winkler, E; Klingenberg, M
1992-07-01
An improved procedure for reincorporation of isolated uncoupling protein (UCP) from brown adipose tissue into phospholipid vesicles is reported and H+ uptake in K(+)-driven exchange diffusion quantitatively analyzed. UCP is isolated and reconstituted with medium-length linear-chain alkyl polyoxyethylene. In the critical step of vesicle formation, the stepwise removal of the detergent by polystyrene beads is applied. Vesicles are generated in the presence of solutes and buffers to be internalized which are then removed by gel filtration. The internal volume is about 4 microliters/mg phospholipid with a vesicle diameter of 100 nm. One vesicle contains, on average, six molecules UCP. The best results are obtained with purified egg yolk phosphatidylcholine. Addition of PtdEtn, PtdSer decreases the vesicle size and, still more, H(+)-transport activity by UCP. Asolectin completely inactivates UCP. K(+)-gradient-driven H+ uptake is 80% inhibited by external GTP and 95% by internal plus external GTP. When H+ transport is recorded externally by a pH electrode and internally by pyranine, the kinetics show no delay resulting from intervening membrane-bound H+ pools. Total H+ uptake after addition of carbonylcyanine m-chlorophenylhydrazone (CCCP) and valinomycin corresponds to the diffusion between H+ and K+ and is unchanged by GTP. The linear correlation of H(+)-transport inhibition to GTP binding demonstrates that all UCP molecules incorporated are equally active. The exchange diffusion between H+ uptake and K+ efflux is demonstrated using a K+ electrode and 86Rb measurements. Recording delta psi using 3,3'-diispropylthiadicarbocyanine shows a rapid generation of delta psi on valinomycin addition, which decreases only slightly with H+ uptake, even after addition of CCCP or gramicidin. The delta psi collapses only after addition of external K+. By demonstrating that valinomycin-induced K+ and H+ fluxes reflect relaxation into the diffusion equilibrium state, the transport rate of UCP can be evaluated as a first-order rate, VH+/CH+, in which the rate, VH+, is related to H(+)-uptake capacity, CH+. This allows quantitative comparison of transport rates independently of the variable CH+. The dependence on delta psi of H+ transport is measured by varying external K+ concentration. A virtually linear relation of the rate to the K(+)-diffusion potential is observed, although the capacity is only slightly changed. The linear VH+/delta psi relationship resembles an open-channel type of transport, but is discussed in terms of a low-activation-barrier type of carrier mechanism, in contrast to the log (VH+/delta psi) relation found for the ADP/ATP carrier with high activation barriers.
Transport of active ellipsoidal particles in ratchet potentials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ai, Bao-Quan, E-mail: aibq@scnu.edu.cn; Wu, Jian-Chun
2014-03-07
Rectified transport of active ellipsoidal particles is numerically investigated in a two-dimensional asymmetric potential. The out-of-equilibrium condition for the active particle is an intrinsic property, which can break thermodynamical equilibrium and induce the directed transport. It is found that the perfect sphere particle can facilitate the rectification, while the needlelike particle destroys the directed transport. There exist optimized values of the parameters (the self-propelled velocity, the torque acting on the body) at which the average velocity takes its maximal value. For the ellipsoidal particle with not large asymmetric parameter, the average velocity decreases with increasing the rotational diffusion rate, whilemore » for the needlelike particle (very large asymmetric parameter), the average velocity is a peaked function of the rotational diffusion rate. By introducing a finite load, particles with different shapes (or different self-propelled velocities) will move to the opposite directions, which is able to separate particles of different shapes (or different self-propelled velocities)« less
NASA Astrophysics Data System (ADS)
Baricci, Andrea; Casalegno, Andrea
2016-09-01
Limiting current density of oxygen reduction reaction in polymer electrolyte fuel cells is determined by several mass transport resistances that lower the concentration of oxygen on the catalyst active site. Among them, diffusion across porous media plays a significant role. Despite the extensive experimental activity documented in PEMFC literature, only few efforts have been dedicated to the measurement of the effective transport properties in porous layers. In the present work, a methodology for ex situ measurement of the effective diffusion coefficient and Knudsen radius of porous layers for polymer electrolyte fuel cells (gas diffusion layer, micro porous layer and catalyst layer) is described and applied to high temperature polymer fuel cells State of Art materials. Regression of the measured quantities by means of a quasi 2D physical model is performed to quantify the Knudsen effect, which is reported to account, respectively, for 30% and 50% of the mass transport resistance in micro porous layer and catalyst layer. On the other side, the model reveals that pressure gradient consequent to permeation in porous layers of high temperature polymer fuel cells has a negligible effect on oxygen concentration in relevant operating conditions.
Humplik, Thomas; Stirrup, Emily K.; Grillet, Anne M.; ...
2016-04-30
The transient transport of electrolytes in thermally-activated batteries is studied in this paper using electron probe micro-analysis (EPMA), demonstrating the robust capability of EPMA as a useful tool for studying and quantifying mass transport within porous materials, particularly in difficult environments where classical flow measurements are challenging. By tracking the mobility of bromine and potassium ions from the electrolyte stored within the separator into the lithium silicon anode and iron disulfide cathode, we are able to quantify the transport mechanisms and physical properties of the electrodes including permeability and tortuosity. Due to the micron to submicron scale porous structure ofmore » the initially dry anode, a fast capillary pressure driven flow is observed into the anode from which we are able to set a lower bound on the permeability of 10 -1 mDarcy. The transport into the cathode is diffusion-limited because the cathode originally contained some electrolyte before activation. Finally, using a transient one-dimensional diffusion model, we estimate the tortuosity of the cathode electrode to be 2.8 ± 0.8.« less
Striatal dopamine neurotransmission: regulation of release and uptake
Sulzer, David; Cragg, Stephanie J.; Rice, Margaret E.
2016-01-01
Dopamine (DA) transmission is governed by processes that regulate release from axonal boutons in the forebrain and the somatodendritic compartment in midbrain, and by clearance by the DA transporter, diffusion, and extracellular metabolism. We review how axonal DA release is regulated by neuronal activity and by autoreceptors and heteroreceptors, and address how quantal release events are regulated in size and frequency. In brain regions densely innervated by DA axons, DA clearance is due predominantly to uptake by the DA transporter, whereas in cortex, midbrain, and other regions with relatively sparse DA inputs, the norepinephrine transporter and diffusion are involved. We discuss the role of DA uptake in restricting the sphere of influence of DA and in temporal accumulation of extracellular DA levels upon successive action potentials. The tonic discharge activity of DA neurons may be translated into a tonic extracellular DA level, whereas their bursting activity can generate discrete extracellular DA transients. PMID:27141430
Kinetics of pack aluminization of nickel
NASA Technical Reports Server (NTRS)
Seigle, L. L.; Gupta, B. K.; Shankar, R.; Sarkhel, A. K.
1978-01-01
The kinetics of pack aluminization of unalloyed nickel in packs of varying aluminum activity with various halide activators were studied. Surface compositions of the coatings as functions of time, temperature, and pack composition were obtained in order to establish the boundary conditions for diffusion in the system. The structure of the packs was also examined in order to clarify the mechanism of aluminum transport. The results indicate that the kinetics of pack aluminization are controlled jointly by gas diffusion in the pack and solid diffusion in the coating. Levine and Caves' model for gas diffusion was combined with calculations of rates of diffusion in the solid to formulate a more complete theory for the kinetics of pack aluminization.
Single Molecule Analysis of Serotonin Transporter Regulation Using Quantum Dots
NASA Astrophysics Data System (ADS)
Chang, Jerry; Tomlinson, Ian; Warnement, Michael; Ustione, Alessandro; Carneiro, Ana; Piston, David; Blakely, Randy; Rosenthal, Sandra
2011-03-01
For the first time, we implement a novel, single molecule approach to define the localization and mobility of the brain's major target of widely prescribed antidepressant medications, the serotonin transporter (SERT). SERT labeled with single quantum dot (Qdot) revealed unsuspected features of transporter mobility with cholesterol-enriched membrane microdomains (often referred to as ``lipid rafts'') and cytoskeleton network linked to transporter activation. We document two pools of surface SERT proteins defined by their lateral mobility, one that exhibits relatively free diffusion in the plasma membrane and a second that displays significantly restricted mobility and localizes to cholesterol-enriched microdomains. Diffusion model prediction and instantaneous velocity analysis indicated that stimuli that act through p38 MAPK-dependent signaling pathways to activate SERT trigger rapid SERT movements within membrane microdomains. Cytoskeleton disruption showed that SERT lateral mobility behaves a membrane raft-constrained, cytoskeleton-associated manner. Our results identify an unsuspected aspect of neurotransmitter transporter regulation that we propose reflects the dissociation of inhibitory, SERT-associated cytoskeletal anchors.
Transcellular movement of hydroxyurea is mediated by specific solute carrier transporters
Walker, Aisha L.; Franke, Ryan M.; Sparreboom, Alex; Ware, Russell E.
2015-01-01
Objective Hydroxyurea has proven laboratory and clinical therapeutic benefits for sickle cell anemia (SCA) and other diseases, yet many questions remain regarding its in vivo pharmacokinetic and pharmacodynamic profiles. Previous reports suggest that hydroxyurea passively diffuses across cells, but its observed rapid absorption and distribution are more consistent with facilitated or active transport. We investigated the potential role of solute carrier (SLC) transporters in cellular uptake and accumulation of hydroxyurea. Materials and Methods Passive diffusion of hydroxyurea across cell membranes was determined using the parallel artificial membrane permeability assay. SLC transporter screens were conducted using in vitro intracellular drug accumulation and transcellular transport assays in cell lines and oocytes overexpressing SLC transporters. Gene expression of SLC transporters was measured by real-time PCR in human tissues and cell lines. Results Hydroxyurea had minimal diffusion across a lipid bilayer but was a substrate for 5 different SLC transporters belonging to the OCTN and OATP families of transporters and urea transporters A and B. Further characterization of hydroxyurea transport revealed that cellular uptake by OATP1B3 is time and temperature dependent and inhibited by known substrates of OATP1B3. Urea transporters A and B are expressed differentially in human tissues and erythroid cells, and transport hydroxyurea bidirectionally via facilitated diffusion. Conclusions These studies provide new insight into drug transport proteins that may be involved in the in vivo absorption, cellular distribution, and elimination of hydroxyurea. Elucidation of hydroxyurea transcellular movement should improve our understanding of its pharmacokinetics and pharmacodynamics, and may help explain some of the inter-patient drug variability observed in patients with SCA. PMID:21256917
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loyalka, Sudarshan
High and Very High Temperatures Gas Reactors (HTGRs/VHTRs) have five barriers to fission product (FP) release: the TRISO fuel coating, the fuel elements, the core graphite, the primary coolant system, and the reactor building. This project focused on measurements and computations of FP diffusion in graphite, FP adsorption on graphite and FP interactions with dust particles of arbitrary shape. Diffusion Coefficients of Cs and Iodine in two nuclear graphite were obtained by the release method and use of Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS) and Instrumented Neutron Activation Analysis (INAA). A new mathematical model for fission gas release from nuclear fuelmore » was also developed. Several techniques were explored to measure adsorption isotherms, notably a Knudsen Effusion Mass Spectrometer (KEMS) and Instrumented Neutron Activation Analysis (INAA). Some of these measurements are still in progress. The results will be reported in a supplemental report later. Studies of FP interactions with dust and shape factors for both chain-like particles and agglomerates over a wide size range were obtained through solutions of the diffusion and transport equations. The Green's Function Method for diffusion and Monte Carlo technique for transport were used, and it was found that the shape factors are sensitive to the particle arrangements, and that diffusion and transport of FPs can be hindered. Several journal articles relating to the above work have been published, and more are in submission and preparation.« less
Kook, Seungho; Swetha, Chivukula D; Lee, Jangho; Lee, Chulmin; Fane, Tony; Kim, In S
2018-03-20
Forward osmosis (FO) membranes fall into the category of nonporous membranes, based on the assumption that water and solute transport occur solely based on diffusion. The solution-diffusion (S-D) model has been widely used in predicting their performances in the coexistence of hydraulic and osmotic driving forces, a model that postulates the hydraulic and osmotic driving forces have identical nature. It was suggested, however, such membranes may have pores and mass transport could occur both by convection (i.e., volumetric flow) as well as by diffusion assuming that the dense active layer of the membranes is composed of a nonporous structure with defects which induce volumetric flow through the membranes. In addition, the positron annihilation technique has revealed that the active layers can involve relatively uniform porous structures. As such, the assumption of a nonporous active layer in association with hydraulic pressure is questionable. To validate this assumption, we have tested FO membranes under the conditions where hydraulic and osmotic pressures are equivalent yet in opposite directions for water transport, namely the null-pressure condition. We have also established a practically valid characterization method which quantifies the vulnerability of the FO membranes to hydraulic pressure.
Signal focusing through active transport
NASA Astrophysics Data System (ADS)
Godec, Aljaž; Metzler, Ralf
2015-07-01
The accuracy of molecular signaling in biological cells and novel diagnostic devices is ultimately limited by the counting noise floor imposed by the thermal diffusion. Motivated by the fact that messenger RNA and vesicle-engulfed signaling molecules transiently bind to molecular motors and are actively transported in biological cells, we show here that the random active delivery of signaling particles to within a typical diffusion distance to the receptor generically reduces the correlation time of the counting noise. Considering a variety of signaling particle sizes from mRNA to vesicles and cell sizes from prokaryotic to eukaryotic cells, we show that the conditions for active focusing—faster and more precise signaling—are indeed compatible with observations in living cells. Our results improve the understanding of molecular cellular signaling and novel diagnostic devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwong, S.; Jivkov, A.P.
2013-07-01
Deep geologic disposal of high activity and long-lived radioactive waste is being actively considered and pursued in many countries, where low permeability geological formations are used to provide long term waste contaminant with minimum impact to the environment and risk to the biosphere. A multi-barrier approach that makes use of both engineered and natural barriers (i.e. geological formations) is often used to further enhance the containment performance of the repository. As the deep repository system subjects to a variety of thermo-hydro-chemo-mechanical (THCM) effects over its long 'operational' lifespan (e.g. 0.1 to 1.0 million years, the integrity of the barrier systemmore » will decrease over time (e.g. fracturing in rock or clay)). This is broadly referred as media degradation in the present study. This modelling study examines the effects of media degradation on diffusion dominant solute transport in fractured media that are typical of deep geological environment. In particular, reactive solute transport through fractured media is studied using a 2-D model, that considers advection and diffusion, to explore the coupled effects of kinetic and equilibrium chemical processes, while the effects of degradation is studied using a pore network model that considers the media diffusivity and network changes. Model results are presented to demonstrate the use of a 3D pore-network model, using a novel architecture, to calculate macroscopic properties of the medium such as diffusivity, subject to pore space changes as the media degrade. Results from a reactive transport model of a representative geological waste disposal package are also presented to demonstrate the effect of media property change on the solute migration behaviour, illustrating the complex interplay between kinetic biogeochemical processes and diffusion dominant transport. The initial modelling results demonstrate the feasibility of a coupled modelling approach (using pore-network model and reactive transport model) to examine the long term behaviour of deep geological repositories with media property change under complex geochemical conditions. (authors)« less
Lessing, Paul A [Idaho Falls, ID
2008-07-22
An electrochemically active hydrogen diffusion barrier which comprises an anode layer, a cathode layer, and an intermediate electrolyte layer, which is conductive to protons and substantially impermeable to hydrogen. A catalytic metal present in or adjacent to the anode layer catalyzes an electrochemical reaction that converts any hydrogen that diffuses through the electrolyte layer to protons and electrons. The protons and electrons are transported to the cathode layer and reacted to form hydrogen. The hydrogen diffusion barrier is applied to a polymeric substrate used in a storage tank to store hydrogen under high pressure. A storage tank equipped with the electrochemically active hydrogen diffusion barrier, a method of fabricating the storage tank, and a method of preventing hydrogen from diffusing out of a storage tank are also disclosed.
Lessing, Paul A.
2004-09-07
An electrochemically active hydrogen diffusion barrier which comprises an anode layer, a cathode layer, and an intermediate electrolyte layer, which is conductive to protons and substantially impermeable to hydrogen. A catalytic metal present in or adjacent to the anode layer catalyzes an electrochemical reaction that converts any hydrogen that diffuses through the electrolyte layer to protons and electrons. The protons and electrons are transported to the cathode layer and reacted to form hydrogen. The hydrogen diffusion barrier is applied to a polymeric substrate used in a storage tank to store hydrogen under high pressure. A storage tank equipped with the electrochemically active hydrogen diffusion barrier, a method of fabricating the storage tank, and a method of preventing hydrogen from diffusing out of a storage tank are also disclosed.
Jaworski, Jacek; Redlarski, Grzegorz
2014-08-01
This paper presents a model of alveolar-capillary oxygen diffusion with dynamics of air transport through the respiratory tract. For this purpose electrical model representing the respiratory tract mechanics and differential equations representing oxygen membrane diffusion are combined. Relevant thermodynamic relations describing the mass of oxygen transported into the human body are proposed as the connection between these models, as well as the influence of ventilation-perfusion mismatch on the oxygen diffusion. The model is verified based on simulation results of varying exercise intensities and statistical calculations of the results obtained during various clinical trials. The benefit of the approach proposed is its application in simulation-based research aimed to generate quantitative data of normal and pathological conditions. Based on the model presented, taking into account many essential physiological processes and air transport dynamics, comprehensive and combined studies of the respiratory efficiency can be performed. The impact of physical exercise, precise changes in respiratory tract mechanics and alterations in breathing pattern can be analyzed together with the impact of various changes in alveolar-capillary oxygen diffusion. This may be useful in simulation of effects of many severe medical conditions and increased activity level. Copyright © 2014 Elsevier Ltd. All rights reserved.
Separation of extra- and intracellular metabolites using hyperpolarized 13C diffusion weighted MR
NASA Astrophysics Data System (ADS)
Koelsch, Bertram L.; Sriram, Renuka; Keshari, Kayvan R.; Leon Swisher, Christine; Van Criekinge, Mark; Sukumar, Subramaniam; Vigneron, Daniel B.; Wang, Zhen J.; Larson, Peder E. Z.; Kurhanewicz, John
2016-09-01
This work demonstrates the separation of extra- and intracellular components of glycolytic metabolites with diffusion weighted hyperpolarized 13C magnetic resonance spectroscopy. Using b-values of up to 15,000 s mm-2, a multi-exponential signal response was measured for hyperpolarized [1-13C] pyruvate and lactate. By fitting the fast and slow asymptotes of these curves, their extra- and intracellular weighted diffusion coefficients were determined in cells perfused in a MR compatible bioreactor. In addition to measuring intracellular weighted diffusion, extra- and intracellular weighted hyperpolarized 13C metabolites pools are assessed in real-time, including their modulation with inhibition of monocarboxylate transporters. These studies demonstrate the ability to simultaneously assess membrane transport in addition to enzymatic activity with the use of diffusion weighted hyperpolarized 13C MR. This technique could be an indispensible tool to evaluate the impact of microenvironment on the presence, aggressiveness and metastatic potential of a variety of cancers.
The role of boundary variability in polycrystalline grain-boundary diffusion
NASA Astrophysics Data System (ADS)
Moghadam, M. M.; Rickman, J. M.; Harmer, M. P.; Chan, H. M.
2015-01-01
We investigate the impact of grain-boundary variability on mass transport in a polycrystal. More specifically, we perform both numerical and analytical studies of steady-state diffusion in prototypical microstructures in which there is either a discrete spectrum of grain-boundary activation energies or else a complex distribution of grain-boundary character, and hence a continuous spectrum of boundary activation energies. An effective diffusivity is calculated for these structures using simplified multi-state models and, for the case of a continuous spectrum, employing experimentally obtained grain-boundary energy data. We identify different diffusive regimes for these cases and quantify deviations from Arrhenius behavior using effective medium theory. Finally, we examine the diffusion kinetics of a simplified model of an interfacial layering (i.e., complexion) transition.
Active Brownian motion in a narrow channel
NASA Astrophysics Data System (ADS)
Ao, X.; Ghosh, P. K.; Li, Y.; Schmid, G.; Hänggi, P.; Marchesoni, F.
2014-12-01
We review recent advances in rectification control of artificial microswimmers, also known as Janus particles, diffusing along narrow, periodically corrugated channels. The swimmer self-propulsion mechanism is modeled so as to incorporate a nonzero torque (propulsion chirality). We first summarize the effects of chirality on the autonomous current of microswimmers freely diffusing in channels of different geometries. In particular, left-right and upside-down asymmetric channels are shown to exhibit different transport properties. We then report new results on the dependence of the diffusivity of chiral microswimmers on the channel geometry and their own self-propulsion mechanism. The self-propulsion torque turns out to play a key role as a transport control parameter.
Diffusion of oxygen through cork stopper: is it a Knudsen or a Fickian mechanism?
Lagorce-Tachon, Aurélie; Karbowiak, Thomas; Simon, Jean-Marc; Gougeon, Régis; Bellat, Jean-Pierre
2014-09-17
The aim of this work is to identify which law governs oxygen transfer through cork: Knudsen or Fickian mechanism. This is important to better understand wine oxidation during post-bottling aging. Oxygen transfer through cork wafers is measured at 298 K using a manometric permeation technique. Depending on the mechanism, we can extract the transport coefficients. Increasing the initial pressure of oxygen from 50 to 800 hPa leads to a change in the values of the transport coefficients. This implies that oxygen transport through cork does not obey the Knudsen law. From these results, we conclude that the limiting step of oxygen transport through cork occurs in the cell wall following Fickian law. From the diffusion dependence's coefficients with pressure, we also extract by applying transition state theory an apparent activation volume of 45 ± 4 nm(3). This high value indicates that oxygen molecules also diffuse from one site to another by passing through a gas phase.
Spatially Different Tissue-Scale Diffusivity Shapes ANGUSTIFOLIA3 Gradient in Growing Leaves.
Kawade, Kensuke; Tanimoto, Hirokazu; Horiguchi, Gorou; Tsukaya, Hirokazu
2017-09-05
The spatial gradient of signaling molecules is pivotal for establishing developmental patterns of multicellular organisms. It has long been proposed that these gradients could arise from the pure diffusion process of signaling molecules between cells, but whether this simplest mechanism establishes the formation of the tissue-scale gradient remains unclear. Plasmodesmata are unique channel structures in plants that connect neighboring cells for molecular transport. In this study, we measured cellular- and tissue-scale kinetics of molecular transport through plasmodesmata in Arabidopsis thaliana developing leaf primordia by fluorescence recovery assays. These trans-scale measurements revealed biophysical properties of diffusive molecular transport through plasmodesmata and revealed that the tissue-scale diffusivity, but not the cellular-scale diffusivity, is spatially different along the leaf proximal-to-distal axis. We found that the gradient in cell size along the developmental axis underlies this spatially different tissue-scale diffusivity. We then asked how this diffusion-based framework functions in establishing a signaling gradient of endogenous molecules. ANGUSTIFOLIA3 (AN3) is a transcriptional co-activator, and as we have shown here, it forms a long-range signaling gradient along the leaf proximal-to-distal axis to determine a cell-proliferation domain. By genetically engineering AN3 mobility, we assessed each contribution of cell-to-cell movement and tissue growth to the distribution of the AN3 gradient. We constructed a diffusion-based theoretical model using these quantitative data to analyze the AN3 gradient formation and demonstrated that it could be achieved solely by the diffusive molecular transport in a growing tissue. Our results indicate that the spatially different tissue-scale diffusivity is a core mechanism for AN3 gradient formation. This provides evidence that the pure diffusion process establishes the formation of the long-range signaling gradient in leaf development. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Hemoglobin diffusion and the dynamics of oxygen capture by red blood cells.
Longeville, Stéphane; Stingaciu, Laura-Roxana
2017-09-05
Translational diffusion of macromolecules in cell is generally assumed to be anomalous due high macromolecular crowding of the milieu. Red blood cells are a special case of cells filled quasi exclusively (95% of the dry weight of the cell) with an almost spherical protein: hemoglobin. Hemoglobin diffusion has since a long time been recognized as facilitating the rate of oxygen diffusion through a solution. We address in this paper the question on how hemoglobin diffusion in the red blood cells can help the oxygen capture at the cell level and hence to improve oxygen transport. We report a measurement by neutron spin echo spectroscopy of the diffusion of hemoglobin in solutions with increasing protein concentration. We show that hemoglobin diffusion in solution can be described as Brownian motion up to physiological concentration and that hemoglobin diffusion in the red blood cells and in solutions at similar concentration are the same. Finally, using a simple model and the concentration dependence of the diffusion of the protein reported here, we show that hemoglobin concentration observed in human red blood cells ([Formula: see text]330 g.L -1 ) corresponds to an optimum for oxygen transport for individuals under strong activity.
Hemoglobin diffusion and the dynamics of oxygen capture by red blood cells
Longeville, Stéphane; Stingaciu, Laura-Roxana
2017-09-05
Translational diffusion of macromolecules in cell is generally assumed to be anomalous due high macromolecular crowding of the milieu. Red blood cells are a special case of cells filled quasi exclusively (95% of the dry weight of the cell) with an almost spherical protein: hemoglobin. Hemoglobin diffusion has since a long time been recognized as facilitating the rate of oxygen diffusion through a solution. We address in this paper the question on how hemoglobin diffusion in the red blood cells can help the oxygen capture at the cell level and hence to improve oxygen transport. We report a measurement bymore » neutron spin echo spectroscopy of the diffusion of hemoglobin in solutions with increasing protein concentration. We show that hemoglobin diffusion in solution can be described as Brownian motion up to physiological concentration and that hemoglobin diffusion in the red blood cells and in solutions at similar concentration are the same. Finally, using a simple model and the concentration dependence of the diffusion of the protein reported here, we show that hemoglobin concentration observed in human red blood cells (≃330 g.L -1) corresponds to an optimum for oxygen transport for individuals under strong activity.« less
Hemoglobin diffusion and the dynamics of oxygen capture by red blood cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Longeville, Stéphane; Stingaciu, Laura-Roxana
Translational diffusion of macromolecules in cell is generally assumed to be anomalous due high macromolecular crowding of the milieu. Red blood cells are a special case of cells filled quasi exclusively (95% of the dry weight of the cell) with an almost spherical protein: hemoglobin. Hemoglobin diffusion has since a long time been recognized as facilitating the rate of oxygen diffusion through a solution. We address in this paper the question on how hemoglobin diffusion in the red blood cells can help the oxygen capture at the cell level and hence to improve oxygen transport. We report a measurement bymore » neutron spin echo spectroscopy of the diffusion of hemoglobin in solutions with increasing protein concentration. We show that hemoglobin diffusion in solution can be described as Brownian motion up to physiological concentration and that hemoglobin diffusion in the red blood cells and in solutions at similar concentration are the same. Finally, using a simple model and the concentration dependence of the diffusion of the protein reported here, we show that hemoglobin concentration observed in human red blood cells (≃330 g.L -1) corresponds to an optimum for oxygen transport for individuals under strong activity.« less
Lithium Transport in an Amorphous Li xSi Anode Investigated by Quasi-elastic Neutron Scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sacci, Robert L.; Lehmann, Michelle L.; Diallo, Souleymane O.
Here, we demonstrate the room temperature mechanochemical synthesis of highly defective Li xSi anode materials and characterization of the Li transport. We probed the Li + self-diffusion using quasi-elastic neutron scattering (QENS) to measure the Li self-diffusion in the alloy. Li diffusion was found to be significantly greater (3.0 × 10 –6 cm 2 s –1) than previously measured crystalline and electrochemically made Li–Si alloys; the energy of activation was determined to be 0.20 eV (19 kJ mol –1). Amorphous Li–Si structures are known to have superior Li diffusion to their crystalline counterparts; therefore, the isolation and stabilization of defectivemore » Li–Si structures may improve the utility of Si anodes for Li-ion batteries.« less
Lithium Transport in an Amorphous Li xSi Anode Investigated by Quasi-elastic Neutron Scattering
Sacci, Robert L.; Lehmann, Michelle L.; Diallo, Souleymane O.; ...
2017-04-27
Here, we demonstrate the room temperature mechanochemical synthesis of highly defective Li xSi anode materials and characterization of the Li transport. We probed the Li + self-diffusion using quasi-elastic neutron scattering (QENS) to measure the Li self-diffusion in the alloy. Li diffusion was found to be significantly greater (3.0 × 10 –6 cm 2 s –1) than previously measured crystalline and electrochemically made Li–Si alloys; the energy of activation was determined to be 0.20 eV (19 kJ mol –1). Amorphous Li–Si structures are known to have superior Li diffusion to their crystalline counterparts; therefore, the isolation and stabilization of defectivemore » Li–Si structures may improve the utility of Si anodes for Li-ion batteries.« less
Kassem, M; Alekseev, I; Bokova, M; Le Coq, D; Bychkov, E
2018-04-12
Conductivity isotherms of (CdTe) x (AgI) 0.5- x/2 (As 2 Te 3 ) 0.5- x/2 glasses (0.0 ≤ x ≤ 0.15) reveal a nonmonotonic behavior with increasing CdTe content reminiscent of mixed cation effect in oxide and chalcogenide glasses. Nevertheless, the apparent similarity appears to be partly incorrect. Using 110m Ag tracer diffusion measurements, we show that semiconducting CdTe additions produce a dual effect: (i) decreasing the Ag + ion transport by a factor of ≈200 with a simultaneous increase of the diffusion activation energy and (ii) increasing the electronic conductivity by 1.5 orders of magnitude. Consequently, the conductivity minimum at x = 0.05 reflects an ionic-to-electronic transport crossover; the silver-ion transport number decreases by 3 orders of magnitude with increasing x.
The paper presents an analysis of steady-state diffusion in the soil for two different conditions of moisture. The model accounts for multiphase emanation and transport. When the position dependence of the moisture profile is taken into account, the model and measurements agree w...
Uptake of 2, 4-Dichlorophenoxyacetic acid by Pseudomonas fluorescens
Wedemeyer, G.A.
1966-01-01
Factors influencing the uptake of the sodium salt of 2,4-dichlorophenoxyacetic acid (2,4-D), under conditions in which no net metabolism occurred, were investigated in an effort to determine both the significance of “nonmetabolic” uptake as a potential agent in reducing pesticide levels and the mechanisms involved. Uptake of 2,4-D was affected by pH, temperature, and the presence of other organic and inorganic compounds. Uptake was more pronounced at pH values less than 6, which implies that there may be some interaction between charged groups on the cell and the ionized carboxyl group of 2,4-D. Active transport, carriermediated diffusion, passive diffusion, and adsorption were considered as possible mechanisms. Though uptake was inhibited by glucose, sodium azide, and fluorodinitrobenzene (but not by uranylion), 2,4-D was not accumulated against a concentration gradient, a necessary consequence of an active transport system, nor was isotope counterflow found to occur. Thus, carrier-mediated diffusion was finally precluded, implying that uptake probably occurs by a two-step process: sorption onto the cell wall followed by passive diffusion into the cytoplasm.
Uptake of 2,4-dichlorophenoxyacetic acid by Pseudomonas fluorescens
Wedemeyer, Gary
1966-01-01
Factors influencing the uptake of the sodium salt of 2,4-dichlorophenoxyacetic acid (2,4-D), under conditions in which no net metabolism occurred, were investigated in an effort to determine both the significance of “non-metabolic” uptake as a potential agent in reducing pesticide levels and the mechanisms involved. Uptake of 2,4-D was affected by pH, temperature, and the presence of other organic and inorganic compounds. Uptake was more pronounced at pH values less than 6, which implies that there may be some interaction between charged groups on the cell and the ionized carboxyl group of 2,4-D. Active transport, carrier-mediated diffusion, passive diffusion, and adsorption were considered as possible mechanisms. Though uptake was inhibited by glucose, sodium azide, and fluorodinitrobenzene (but not by uranyl ion), 2,4-D was not accumulated against a concentration gradient, a necessary consequence of an active transport system, nor was isotope counterflow found to occur. Thus, carrier-mediated diffusion was finally precluded, implying that uptake probably occurs by a two-step process: sorption onto the cell wall followed by passive diffusion into the cytoplasm.
Zheng, Yi; Benet, Leslie Z; Okochi, Hideaki; Chen, Xijing
2015-08-01
Recent controversial publications, citing studies purporting to show that P-gp mediates the transport of propranolol, proposed that passive biological membrane transport is negligible. Based on the BDDCS, the extensively metabolized-highly permeable-highly soluble BDDCS class 1 drug, propranolol, shows a high passive permeability at concentrations unrestricted by solubility that can overwhelm any potential transporter effects. Here we reinvestigate the effects of passive diffusion and carrier-mediated transport on S-propranolol. Bidirectional permeability and inhibition of efflux transport studies were carried out in MDCK, MDCK-MDR1 and Caco-2 cell lines at different concentrations. Transcellular permeability studies were conducted at different apical pHs in the rat jejunum Ussing chamber model and PAMPA system. S-propranolol exhibited efflux ratios lower than 1 in MDCK, MDCK-MDR1 and Caco-2 cells. No significant differences of Papp, B->A in the presence and absence of the efflux inhibitor GG918 were observed. However, an efflux ratio of 3.63 was found at apical pH 6.5 with significant decrease in Papp, A->B and increase in Papp, B->A compared to apical pH 7.4 in Caco-2 cell lines. The pH dependent permeability was confirmed in the Ussing chamber model. S-propranolol flux was unchanged during inhibition by verapamil and rifampin. Furthermore, pH dependent permeability was also observed in the PAMPA system. S-propranolol does not exhibit active transport as proposed previously. The "false" positive efflux ratio can be explained by the pH partition theory. As expected, passive diffusion, but not active transport, plays the primary role in the permeability of the BDDCS class 1 drug propranolol.
Zheng, Yi; Benet, Leslie Z.; Okochi, Hideaki; Chen, Xijing
2016-01-01
Purpose Recent controversial publications, citing studies purporting to show that P-gp mediates the transport of propranolol, proposed that passive biological membrane transport is negligible. Based on the BDDCS, the extensively metabolized-highly permeable-highly soluble BDDCS class 1 drug, propranolol, shows a high passive permeability at concentrations unrestricted by solubility that can overwhelm any potential transporter effects. Here we reinvestigate the effects of passive diffusion and carrier-mediated transport on S-propranolol. Methods Bidirectional permeability and inhibition of efflux transport studies were carried out in MDCK, MDCK-MDR1 and Caco-2 cell lines at different concentrations. Transcellular permeability studies were conducted at different apical pHs in the rat jejunum Ussing chamber model and PAMPA system. Results S-propranolol exhibited efflux ratios lower than 1 in MDCK, MDCK-MDR1 and Caco-2 cells. No significant differences of Papp, B->A in the presence and absence of the efflux inhibitor GG918 were observed. However, an efflux ratio of 3.63 was found at apical pH 6.5 with significant decrease in Papp, A->B and increase in Papp, B->A compared to apical pH 7.4 in Caco-2 cell lines. The pH dependent permeability was confirmed in the Ussing chamber model. S-propranolol flux was unchanged during inhibition by verapamil and rifampin. Furthermore, pH dependent permeability was also observed in the PAMPA system. Conclusions S-propranolol does not exhibit active transport as proposed previously. The "false" positive efflux ratio can be explained by the pH partition theory. As expected, passive diffusion, but not active transport, plays the primary role in the permeability of the BDDCS class 1 drug propranolol. PMID:25690341
Oxygen diffusion in Gd-doped mixed oxides
Galvin, C. O. T.; Cooper, M. W. D.; Rushton, M. J. D.; ...
2017-10-23
Molecular dynamics simulations have been performed to investigate oxygen transport in (U xPu x-1) 0.95Gd 0.05O 1.975, (U xTh x-1) 0.95Gd 0.05O 1.975 and (Pu xTh x-1) 0.95Gd 0.05O 1.975 between 1000 and 3200 K. Oxygen diffusivity and corresponding activation energies are examined and compared to values for the undoped (U xPu x-1)O 2, (U xTh x-1)O 2 and (Pu xTh x-1)O 2 systems where compositions between end members display enhanced diffusivity. Below the superionic transition oxygen diffusivity for the Gd doped systems is orders of magnitude greater compared to their undoped counterparts. But, enhanced diffusivity for doped mixed actinidemore » cation compositions is not observed compared to doped end members. Furthermore, changes in activation energy suggest changes in diffusion regime, which correspond to the creation of thermally activated oxygen defects.« less
Oxygen diffusion in Gd-doped mixed oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galvin, C. O. T.; Cooper, M. W. D.; Rushton, M. J. D.
Molecular dynamics simulations have been performed to investigate oxygen transport in (U xPu x-1) 0.95Gd 0.05O 1.975, (U xTh x-1) 0.95Gd 0.05O 1.975 and (Pu xTh x-1) 0.95Gd 0.05O 1.975 between 1000 and 3200 K. Oxygen diffusivity and corresponding activation energies are examined and compared to values for the undoped (U xPu x-1)O 2, (U xTh x-1)O 2 and (Pu xTh x-1)O 2 systems where compositions between end members display enhanced diffusivity. Below the superionic transition oxygen diffusivity for the Gd doped systems is orders of magnitude greater compared to their undoped counterparts. But, enhanced diffusivity for doped mixed actinidemore » cation compositions is not observed compared to doped end members. Furthermore, changes in activation energy suggest changes in diffusion regime, which correspond to the creation of thermally activated oxygen defects.« less
Effects of High Pressure on Membrane Ion Binding and Transport.
1980-12-31
diffusion in red cell membranes have appar- ent activation volumes of 40 ml/mol in agreement with data on liposomes, and ,6) perturbations in osmotic...Extrapolated to the Red Cell? (page 15) B. Pressure Dependence of Butanol Diffusion (page 17) C. Development of a High Pressure Stop-Flow (page 19...page 16 Figure 3 -- Pressure effect on the diffusion coefficient n-butanol in packed human red cells ................... page 18 Figure 9
Role of Water Activity on Intergranular Transport at High Pressure
NASA Astrophysics Data System (ADS)
Gasc, J.; Brunet, F.; Brantut, N.; Corvisier, J.; Findling, N.; Verlaguet, A.; Lathe, C.
2016-12-01
The kinetics of the reaction Ca(OH)2 + MgCO3 = CaCO3 + Mg(OH)2 were investigated at a pressure of 1.8 GPa and temperatures of 120-550°C, using synchrotron X-ray diffraction and analysis of reaction rims on recovered samples. Comparable reaction kinetics were obtained under water saturated ( 10 wt.%), intermediate (0.1-1 wt.%) and dry conditions at 150, 400 and 550°C, respectively, where, in the latter case, water activity was buffered below one (no free water). At a given temperature, these gaps imply differences of several orders of magnitude in terms of reaction kinetics. Microscopy analysis shows that intergranular transport of Ca controls the reaction progress. Grain boundary diffusivities were retrieved from measurements of reaction rim widths on recovered samples. In addition, an innovative reaction rim growth model was developed to simulate and fit kinetic data. The diffusion values thus obtained show that both dry and intermediate datasets are in fact consistent with a water saturated intergranular medium with different levels of connectivity. Diffusivity of Ca in the CaCO3 + Mg(OH)2 rims is found to be much larger than that of Mg in enstatite rims, which emphasizes the prominent role of interactions between diffusing species and mineral surfaces on diffusion. We suggest that diffusivity of major species (Mg, Ca) in low-porosity metamorphic rocks is not only water-content dependent but also strongly depends on the interaction between diffusing species and mineral surfaces. This parameter, which will vary from one rock-type to the other, needs to be considered when extrapolating (P,T,t, xH2O) laboratory diffusion data to metamorphic processes. The present study, along with previous data from the literature, will help quantify the tremendous effect of small water content variations, i.e., within the 0-1 wt. % range, on intergranular transport and reaction kinetics (Gasc et al., J. Pet., In press).
Colloidal transport by active filaments
NASA Astrophysics Data System (ADS)
Manna, Raj Kumar; Kumar, P. B. Sunil; Adhikari, R.
2017-01-01
Enhanced colloidal transport beyond the limit imposed by diffusion is usually achieved through external fields. Here, we demonstrate the ballistic transport of a colloidal sphere using internal sources of energy provided by an attached active filament. The latter is modeled as a chain of chemo-mechanically active beads connected by potentials that enforce semi-flexibility and self-avoidance. The fluid flow produced by the active beads and the forces they mediate are explicitly taken into account in the overdamped equations of motion describing the colloid-filament assembly. The speed and efficiency of transport depend on the dynamical conformational states of the filament. We characterize these states using filament writhe as an order parameter and identify ones yielding maxima in speed and efficiency of transport. The transport mechanism reported here has a remarkable resemblance to the flagellar propulsion of microorganisms which suggests its utility in biomimetic systems.
ERIC Educational Resources Information Center
DeVore, Paul W.
The background and objectives of the 1985-1986 Transportation Education Project of the Urban Mass Transportation Agency (UMTA) are discussed, along with project activities. The project was undertaken to transfer knowledge gained from federally-sponsored research and demonstrations to transit systems and to include the knowledge in college courses…
Quantifying TEMPO Redox Polymer Charge Transport toward the Organic Radical Battery.
Karlsson, Christoffer; Suga, Takeo; Nishide, Hiroyuki
2017-03-29
To design new and better organic active battery materials in a rational fashion, fundamental parameters of the charge transport must be studied. Herein we report on the electronic conductivity by electron diffusion in a TEMPO-containing redox polymer, and the reorganization energy of the TEMPO self-exchange in an organic solvent is determined for the first time. The electronic conductivity was 8.5 μS/cm at E 0 and corresponded to a redox hopping mechanism. The apparent electron diffusion coefficient was 1.9 × 10 -9 cm 2 /s at room temperature, and at short times the ion diffusion was limiting with a diffusion coefficient of 6.5 × 10 -10 cm 2 /s. The reorganization energy was determined to be 1.01 eV, indicating a rather polar chemical environment for the TEMPO groups. The implications for the usage of this type of materials in organic energy storage are discussed. As conductivity through 10 μm was demonstrated, we show that, if sufficient swellability can be ensured, charge can be transported through several micrometer thick layers in a battery electrode without any conducting additive.
Glucose diffusion in pancreatic islets of Langerhans.
Bertram, R; Pernarowski, M
1998-01-01
We investigate the time required for glucose to diffuse through an isolated pancreatic islet of Langerhans and reach an equilibrium. This question is relevant in the context of in vitro electrophysiological studies of the response of an islet to step changes in the bath glucose concentration. Islet cells are electrically coupled by gap junctions, so nonuniformities in islet glucose concentration may be reflected in the activity of cells on the islet periphery, where electrical recordings are made. Using a mathematical model of hindered glucose diffusion, we investigate the effects of the islet porosity and the permeability of a surrounding layer of acinar cells. A major factor in the determination of the equilibrium time is the transport of glucose into islet beta-cells, which removes glucose from the interstitial spaces where diffusion occurs. This transport is incorporated by using a model of the GLUT-2 glucose transporter. We find that several minutes are required for the islet to equilibrate to a 10 mM change in bath glucose, a typical protocol in islet experiments. It is therefore likely that in electrophysiological islet experiments the glucose distribution is nonuniform for several minutes after a step change in bath glucose. The delay in glucose penetration to the inner portions of the islet may be a major contributing factor to the 1-2-min delay in islet electrical activity typically observed after bath application of a stimulatory concentration of glucose. PMID:9545035
Effects of energy-related activities on the Atlantic Continental Shelf
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manowitz, B
1975-01-01
Sixteen papers were presented and are announced separately. Coastal waters, continental shelf geology and aquatic ecosystems are studied for modelling basic data for assessment of possible environmental impacts from offshore energy development. Sediment transport and wave phenomena are modelled for understanding water pollution transport and diffusion. (PCS)
Separation of extra- and intracellular metabolites using hyperpolarized 13C diffusion weighted MR✩
Koelsch, Bertram L.; Sriram, Renuka; Keshari, Kayvan R.; Swisher, Christine Leon; Van Criekinge, Mark; Sukumar, Subramaniam; Vigneron, Daniel B.; Wang, Zhen J.; Larson, Peder E.Z.; Kurhanewicz, John
2017-01-01
This work demonstrates the separation of extra- and intracellular components of glycolytic metabolites with diffusion weighted hyperpolarized 13C magnetic resonance spectroscopy. Using b-values of up to 15,000 s mm−2, a multi-exponential signal response was measured for hyperpolarized [1-13C] pyruvate and lactate. By fitting the fast and slow asymptotes of these curves, their extra- and intracellular weighted diffusion coefficients were determined in cells perfused in a MR compatible bioreactor. In addition to measuring intracellular weighted diffusion, extra- and intracellular weighted hyperpolarized 13C metabolites pools are assessed in real-time, including their modulation with inhibition of monocarboxylate transporters. These studies demonstrate the ability to simultaneously assess membrane transport in addition to enzymatic activity with the use of diffusion weighted hyperpolarized 13C MR. This technique could be an indispensible tool to evaluate the impact of microenvironment on the presence, aggressiveness and metastatic potential of a variety of cancers. PMID:27434780
2010-08-01
a mathematical equation relates the cathode reaction reversible electric potential to the lithium content of the cathode electrode. Based on the...Transport of Lithium in the Cell Cathode Active Material The Nernst -Einstein relation linking the lithium-ion mass diffusivity and its ionic...transient, isothermal and isobaric conditions. The differential model equation describing the lithium diffusion and accumulation in a spherical, active
Active and passive transport of cargo in a corrugated channel: A lattice model study
NASA Astrophysics Data System (ADS)
Dey, Supravat; Ching, Kevin; Das, Moumita
2018-04-01
Inside cells, cargos such as vesicles and organelles are transported by molecular motors to their correct locations via active motion on cytoskeletal tracks and passive, Brownian diffusion. During the transportation of cargos, motor-cargo complexes (MCCs) navigate the confining and crowded environment of the cytoskeletal network and other macromolecules. Motivated by this, we study a minimal two-state model of motor-driven cargo transport in confinement and predict transport properties that can be tested in experiments. We assume that the motion of the MCC is directly affected by the entropic barrier due to confinement if it is in the passive, unbound state but not in the active, bound state where it moves with a constant bound velocity. We construct a lattice model based on a Fokker Planck description of the two-state system, study it using a kinetic Monte Carlo method and compare our numerical results with analytical expressions for a mean field limit. We find that the effect of confinement strongly depends on the bound velocity and the binding kinetics of the MCC. Confinement effectively reduces the effective diffusivity and average velocity, except when it results in an enhanced average binding rate and thereby leads to a larger average velocity than when unconfined.
Terry, Alan J; Chaplain, Mark A J
2011-12-07
The nuclear factor kappa B (NF-κB) intracellular signalling pathway is central to many stressful, inflammatory, and innate immune responses. NF-κB proteins themselves are transcription factors for hundreds of genes. Experiments have shown that the NF-κB pathway can exhibit oscillatory dynamics-a negative feedback loop causes oscillatory nuclear-cytoplasmic translocation of NF-κB. Given that cell size and shape are known to influence intracellular signal transduction, we consider a spatio-temporal model of partial differential equations for the NF-κB pathway, where we model molecular movement by diffusion and, for several key species including NF-κB, by active transport as well. Through numerical simulations we find values for model parameters such that sustained oscillatory dynamics occur. Our spatial profiles and animations bear a striking resemblance to experimental images and movie clips employing fluorescent fusion proteins. We discover that oscillations in nuclear NF-κB may occur when active transport is across the nuclear membrane only, or when no species are subject to active transport. However, when active transport is across the nuclear membrane and NF-κB is additionally actively transported through the cytoplasm, oscillations are lost. Hence transport mechanisms in a cell will influence its response to activation of its NF-κB pathway. We also demonstrate that sustained oscillations in nuclear NF-κB are somewhat robust to changes in the shape of the cell, or the shape, location, and size of its nucleus, or the location of ribosomes. Yet if the cell is particularly flat or the nucleus sufficiently small, then oscillations are lost. Thus the geometry of a cell may partly determine its response to NF-κB activation. The NF-κB pathway is known to be constitutively active in several human cancers. Our spatially explicit modelling approach will allow us, in future work, to investigate targeted drug therapy of tumours. Copyright © 2011 Elsevier Ltd. All rights reserved.
Transport diffusion in deformed carbon nanotubes
NASA Astrophysics Data System (ADS)
Feng, Jiamei; Chen, Peirong; Zheng, Dongqin; Zhong, Weirong
2018-03-01
Using non-equilibrium molecular dynamics and Monte Carlo methods, we have studied the transport diffusion of gas in deformed carbon nanotubes. Perfect carbon nanotube and various deformed carbon nanotubes are modeled as transport channels. It is found that the transport diffusion coefficient of gas does not change in twisted carbon nanotubes, but changes in XY-distortion, Z-distortion and local defect carbon nanotubes comparing with that of the perfect carbon nanotube. Furthermore, the change of transport diffusion coefficient is found to be associated with the deformation factor. The relationship between transport diffusion coefficient and temperature is also discussed in this paper. Our results may contribute to understanding the mechanism of molecular transport in nano-channel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Qingtao; Li, Liyu; Nie, Zimin
We will show a new method to differentiate the vanadium transport from concentration gradient and that from electric field. Flow batteries with vanadium and iron redox couples as the electro-active species were employed to investigate the transport behavior of vanadium ions in the presence of electric field. It was shown that electric field accelerated the positive-to-negative and reduced the negative-to-positive vanadium ions transport in charge process and affected the vanadium ions transport in an opposite way in discharge process. In addition, a method was designed to differentiate the concentration gradient-driven vanadium ions diffusion and electric field-driven vanadium ions migration. Simplifiedmore » mathematical model was established to simulate the vanadium ions transport in real charge-discharge operation of flow battery. The concentration gradient diffusion coefficients and electric-migration coefficients of V2+, V3+, VO2+, and VO2+ across Nafion membrane were obtained by fitting the experimental data.« less
Shen, Feng; Pompano, Rebecca R; Kastrup, Christian J; Ismagilov, Rustem F
2009-10-21
This study shows that environmental confinement strongly affects the activation of nonlinear reaction networks, such as blood coagulation (clotting), by small quantities of activators. Blood coagulation is sensitive to the local concentration of soluble activators, initiating only when the activators surpass a threshold concentration, and therefore is regulated by mass transport phenomena such as flow and diffusion. Here, diffusion was limited by decreasing the size of microfluidic chambers, and it was found that microparticles carrying either the classical stimulus, tissue factor, or a bacterial stimulus, Bacillus cereus, initiated coagulation of human platelet-poor plasma only when confined. A simple analytical argument and numerical model were used to describe the mechanism for this phenomenon: confinement causes diffusible activators to accumulate locally and surpass the threshold concentration. To interpret the results, a dimensionless confinement number, Cn, was used to describe whether a stimulus was confined, and a Damköhler number, Da(2), was used to describe whether a subthreshold stimulus could initiate coagulation. In the context of initiation of coagulation by bacteria, this mechanism can be thought of as "diffusion acting", which is distinct from "diffusion sensing". The ability of confinement and diffusion acting to change the outcome of coagulation suggests that confinement should also regulate other biological "on" and "off" processes that are controlled by thresholds.
Spin pumping and inverse spin Hall effects in heavy metal/antiferromagnet/Permalloy trilayers
NASA Astrophysics Data System (ADS)
Saglam, Hilal; Zhang, Wei; Jungfleisch, M. Benjamin; Jiang, Wanjun; Pearson, John E.; Hoffmann, Axel
Recent work shows efficient spin transfer via spin waves in insulating antiferromagnets (AFMs), suggesting that AFMs can play a more active role in the manipulation of ferromagnets. We use spin pumping and inverse spin Hall effect experiments on heavy metal (Pt and W)/AFMs/Py (Ni80Fe20) trilayer structures, to examine the possible spin transfer phenomenon in metallic AFMs, i . e . , FeMn and PdMn. Previous work has studied electronic effects of the spin transport in these materials, yielding short spin diffusion length on the order of 1 nm. However, the work did not examine whether besides diffusive spin transport by the conduction electrons, there are additional spin transport contributions from spin wave excitations. We clearly observe spin transport from the Py spin reservoir to the heavy metal layer through the sandwiched AFMs with thicknesses well above the previously measured spin diffusion lengths, indicating that spin transport by spin waves may lead to non-negligible contributions This work was supported by US DOE, OS, Materials Sciences and Engineering Division. Lithographic patterning was carried out at the CNM, which is supported by DOE, OS under Contract No. DE-AC02-06CH11357.
Properties of interfaces and transport across them.
Cabezas, H
2000-01-01
Much of the biological activity in cell cytoplasm occurs in compartments some of which may be formed, as suggested in this book, by phase separation, and many of the functions of such compartments depend on the transport or exchange of molecules across interfaces. Thus a fundamentally based discussion of the properties of phases, interfaces, and diffusive transport across interfaces has been given to further elucidate these phenomena. An operational criterion for the width of interfaces is given in terms of molecular and physical arguments, and the properties of molecules inside phases and interfaces are discussed in terms of molecular arguments. In general, the properties of the interface become important when the molecules diffusing across are smaller than the width of the interface. Equilibrium partitioning, Donnan phenomena, and electrochemical potentials at interfaces are also discussed in detail. The mathematical expressions for modeling transport across interfaces are discussed in detail. These describe a practical and detailed model for transport across interfaces. For molecules smaller than the width of the interface, this includes a detailed model for diffusion inside the interface. Last, the question of the time scale for phase formation and equilibration in biological systems is discussed.
The Steady-State Transport of Oxygen through Hemoglobin Solutions
Keller, K. H.; Friedlander, S. K.
1966-01-01
The steady-state transport of oxygen through hemoglobin solutions was studied to identify the mechanism of the diffusion augmentation observed at low oxygen tensions. A novel technique employing a platinum-silver oxygen electrode was developed to measure the effective diffusion coefficient of oxygen in steady-state transport. The measurements were made over a wider range of hemoglobin and oxygen concentrations than previously reported. Values of the Brownian motion diffusion coefficient of oxygen in hemoglobin solution were obtained as well as measurements of facilitated transport at low oxygen tensions. Transport rates up to ten times greater than ordinary diffusion rates were found. Predictions of oxygen flux were made assuming that the oxyhemoglobin transport coefficient was equal to the Brownian motion diffusivity which was measured in a separate set of experiments. The close correlation between prediction and experiment indicates that the diffusion of oxyhemoglobin is the mechanism by which steady-state oxygen transport is facilitated. PMID:5943608
APTWG: The 4th Asia-Pacific Transport Working Group Meeting
NASA Astrophysics Data System (ADS)
Ida, K.; Kwon, J. M.; Leconte, M.; Ko, W. H.; Inagaki, S.; Todo, Y.; Kosuga, Y.
2015-01-01
This conference report summarizes the contributions to, and discussions at, the 4th Asia-Pacific Transport Working Group Meeting held at Kyushu University, Japan, during 10-13 June 2014. The topics of the meeting were organized under five main headings: turbulence suppression and transport barrier formation, effect of magnetic topology on MHD activity and transport, non-diffusive contribution of momentum and particle transport, non-local transport and turbulence spreading and coupling, energetic particles and instability. The Young Researchers' Forum which was held in this meeting is also described in this report.
Hydroxide Solvation and Transport in Anion Exchange Membranes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Chen; Tse, Ying-Lung Steve; Lindberg, Gerrick E.
Understanding hydroxide solvation and transport in anion exchange membranes (AEMs) can provide important insight into the design principles of these new membranes. To accurately model hydroxide solvation and transport, we developed a new multiscale reactive molecular dynamics model for hydroxide in aqueous solution, which was then subsequently modified for an AEM material. With this model, we investigated the hydroxide solvation structure and transport mechanism in the membrane. We found that a relatively even separation of the rigid side chains produces a continuous overlapping region for hydroxide transport that is made up of the first hydration shell of the tethered cationicmore » groups. Our results show that hydroxide has a significant preference for this overlapping region, transporting through it and between the AEM side chains with substantial contributions from both vehicular (standard diffusion) and Grotthuss (proton hopping) mechanisms. Comparison of the AEM with common proton exchange membranes (PEMs) showed that the excess charge is less delocalized in the AEM than the PEMs, which is correlated with a higher free energy barrier for proton transfer reactions. The vehicular mechanism also contributes considerably more than the Grotthuss mechanism for hydroxide transport in the AEM, while our previous studies of PEM systems showed a larger contribution from the Grotthuss mechanism than the vehicular mechanism for proton transport. The activation energy barrier for hydroxide diffusion in the AEM is greater than that for proton diffusion in PEMs, implying a more significant enhancement of ion transport in the AEM at elevated temperatures.« less
Hydroxide Solvation and Transport in Anion Exchange Membranes.
Chen, Chen; Tse, Ying-Lung Steve; Lindberg, Gerrick E; Knight, Chris; Voth, Gregory A
2016-01-27
Understanding hydroxide solvation and transport in anion exchange membranes (AEMs) can provide important insight into the design principles of these new membranes. To accurately model hydroxide solvation and transport, we developed a new multiscale reactive molecular dynamics model for hydroxide in aqueous solution, which was then subsequently modified for an AEM material. With this model, we investigated the hydroxide solvation structure and transport mechanism in the membrane. We found that a relatively even separation of the rigid side chains produces a continuous overlapping region for hydroxide transport that is made up of the first hydration shell of the tethered cationic groups. Our results show that hydroxide has a significant preference for this overlapping region, transporting through it and between the AEM side chains with substantial contributions from both vehicular (standard diffusion) and Grotthuss (proton hopping) mechanisms. Comparison of the AEM with common proton exchange membranes (PEMs) showed that the excess charge is less delocalized in the AEM than the PEMs, which is correlated with a higher free energy barrier for proton transfer reactions. The vehicular mechanism also contributes considerably more than the Grotthuss mechanism for hydroxide transport in the AEM, while our previous studies of PEM systems showed a larger contribution from the Grotthuss mechanism than the vehicular mechanism for proton transport. The activation energy barrier for hydroxide diffusion in the AEM is greater than that for proton diffusion in PEMs, implying a more significant enhancement of ion transport in the AEM at elevated temperatures.
Carboxylic Acids Plasma Membrane Transporters in Saccharomyces cerevisiae.
Casal, Margarida; Queirós, Odília; Talaia, Gabriel; Ribas, David; Paiva, Sandra
2016-01-01
This chapter covers the functionally characterized plasma membrane carboxylic acids transporters Jen1, Ady2, Fps1 and Pdr12 in the yeast Saccharomyces cerevisiae, addressing also their homologues in other microorganisms, as filamentous fungi and bacteria. Carboxylic acids can either be transported into the cells, to be used as nutrients, or extruded in response to acid stress conditions. The secondary active transporters Jen1 and Ady2 can mediate the uptake of the anionic form of these substrates by a H(+)-symport mechanism. The undissociated form of carboxylic acids is lipid-soluble, crossing the plasma membrane by simple diffusion. Furthermore, acetic acid can also be transported by facilitated diffusion via Fps1 channel. At the cytoplasmic physiological pH, the anionic form of the acid prevails and it can be exported by the Pdr12 pump. This review will highlight the mechanisms involving carboxylic acids transporters, and the way they operate according to the yeast cell response to environmental changes, as carbon source availability, extracellular pH and acid stress conditions.
Self-organization principles of intracellular pattern formation.
Halatek, J; Brauns, F; Frey, E
2018-05-26
Dynamic patterning of specific proteins is essential for the spatio-temporal regulation of many important intracellular processes in prokaryotes, eukaryotes and multicellular organisms. The emergence of patterns generated by interactions of diffusing proteins is a paradigmatic example for self-organization. In this article, we review quantitative models for intracellular Min protein patterns in Escherichia coli , Cdc42 polarization in Saccharomyces cerevisiae and the bipolar PAR protein patterns found in Caenorhabditis elegans By analysing the molecular processes driving these systems we derive a theoretical perspective on general principles underlying self-organized pattern formation. We argue that intracellular pattern formation is not captured by concepts such as 'activators', 'inhibitors' or 'substrate depletion'. Instead, intracellular pattern formation is based on the redistribution of proteins by cytosolic diffusion, and the cycling of proteins between distinct conformational states. Therefore, mass-conserving reaction-diffusion equations provide the most appropriate framework to study intracellular pattern formation. We conclude that directed transport, e.g. cytosolic diffusion along an actively maintained cytosolic gradient, is the key process underlying pattern formation. Thus the basic principle of self-organization is the establishment and maintenance of directed transport by intracellular protein dynamics.This article is part of the theme issue 'Self-organization in cell biology'. © 2018 The Authors.
Simulating Donnan equilibria based on the Nernst-Planck equation
NASA Astrophysics Data System (ADS)
Gimmi, Thomas; Alt-Epping, Peter
2018-07-01
Understanding ion transport through clays and clay membranes is important for many geochemical and environmental applications. Ion transport is affected by electrostatic forces exerted by charged clay surfaces. Anions are partly excluded from pore water near these surfaces, whereas cations are enriched. Such effects can be modeled by the Donnan approach. Here we introduce a new, comparatively simple way to represent Donnan equilibria in transport simulations. We include charged surfaces as immobile ions in the balance equation and calculate coupled transport of all components, including the immobile charges, with the Nernst-Planck equation. This results in an additional diffusion potential that influences ion transport, leading to Donnan ion distributions while maintaining local charge balance. The validity of our new approach was demonstrated by comparing Nernst-Planck simulations using the reactive transport code Flotran with analytical solutions available for simple Donnan systems. Attention has to be paid to the numerical evaluation of the electrochemical migration term in the Nernst-Planck equation to obtain correct results for asymmetric electrolytes. Sensitivity simulations demonstrate the influence of various Donnan model parameters on simulated anion accessible porosities. It is furthermore shown that the salt diffusion coefficient in a Donnan pore depends on local concentrations, in contrast to the aqueous salt diffusion coefficient. Our approach can be easily implemented into other transport codes. It is versatile and facilitates, for instance, assessing the implications of different activity models for the Donnan porosity.
Al-Ahmad, Abraham J
2017-10-01
Glucose constitutes a major source of energy of mammalian brains. Glucose uptake at the blood-brain barrier (BBB) occurs through a facilitated glucose transport, through glucose transporter 1 (GLUT1), although other isoforms have been described at the BBB. Mutations in GLUT1 are associated with the GLUT1 deficiency syndrome, yet none of the current in vitro models of the human BBB maybe suited for modeling such a disorder. In this study, we investigated the expression of glucose transporters and glucose diffusion across brain microvascular endothelial cells (BMECs) derived from healthy patient-derived induced pluripotent stem cells (iPSCs). We investigated the expression of different glucose transporters at the BBB using immunocytochemistry and flow cytometry and measured glucose uptake and diffusion across BMEC monolayers obtained from two iPSC lines and from hCMEC/D3 cells. BMEC monolayers showed expression of several glucose transporters, in particular GLUT1, GLUT3, and GLUT4. Diffusion of glucose across the monolayers was mediated via a saturable transcellular mechanism and partially inhibited by pharmacological inhibitors. Taken together, our study suggests the presence of several glucose transporters isoforms at the human BBB and demonstrates the feasibility of modeling glucose across the BBB using patient-derived stem cells. Copyright © 2017 the American Physiological Society.
NASA Astrophysics Data System (ADS)
Ostroushko, A. A.; Gagarin, I. D.; Tonkushina, M. O.; Grzhegorzhevskii, K. V.; Danilova, I. G.; Gette, I. F.; Kim, G. A.
2017-09-01
The possibility of iontophoretic transport through the native membranes of biologically active substances (vitamin B1 and insulin) associated with porous clusters Mo72Fe30 polyoxometalate of the Keplerate type is demonstrated for the first time in an experimental setup. The diffusion coefficient is estimated. The possibility of transferring Keplerate ions with a protective coating of biocompatible polymer polyvinylpyrrolidone is also shown.
NASA Astrophysics Data System (ADS)
Ibragimova, P. I.; Grebennikov, S. F.; Gur'yanov, V. V.; Fedyukevich, V. A.; Vorob'ev-Desyatovskii, N. V.
2014-06-01
The effect the porous structure of activated carbons obtained from furfural and coconut shells has on the kinetics of [Au(CN)2]- ion adsorption is studied. Effective diffusion coefficients for [Au(CN)2]- anions in transport and adsorbing pores and mass transfer coefficients in a transport system of the pores and in microporous zones are calculated using the statistical moments of the kinetic curve.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwong, S.; Jivkov, A.P.
2012-07-01
Deep geologic disposal of high activity and long-lived radioactive waste is gaining increasing support in many countries, where suitable low permeability geological formation in combination with engineered barriers are used to provide long term waste contaminant and minimise the impacts to the environment and risk to the biosphere. This modelling study examines the solute transport in fractured media under low flow velocities that are relevant to a deep geological environment. In particular, reactive solute transport through fractured media is studied using a 2-D model, that considers advection and diffusion, to explore the coupled effects of kinetic and equilibrium chemical processes.more » The effects of water velocity in the fracture, matrix porosity and diffusion on solute transport are investigated and discussed. Some illustrative modelled results are presented to demonstrate the use of the model to examine the effects of media degradation on solute transport, under the influences of hydrogeological (diffusion dominant) and microbially mediated chemical processes. The challenges facing the prediction of long term degradation such as cracks evolution, interaction and coalescence are highlighted. The potential of a novel microstructure informed modelling approach to account for these effects is discussed, particularly with respect to investigating multiple phenomena impact on material performance. The GRM code is used to examine the effects of media degradation for a geological waste disposal package, under the combined hydrogeological (diffusion dominant) and chemical effects in low groundwater flow conditions that are typical of deep geological disposal systems. An illustrative reactive transport modelling application demonstrates the use of the code to examine the interplay of kinetic controlled biogeochemical reactive processes with advective and diffusive transport, under the influence of media degradation. The initial model results are encouraging which show the disposal system to evolve in a physically realistic manner. In the example presented the reactive-transport coupling develops chemically reducing zones, which limit the transport of uranium. This illustrates the potential significance of media degradation and chemical effect on the transport of radionuclides which would need to be taken into account when examining the long-term behaviour and containment properties of the geological disposal system. Microstructure-informed modelling and its potential linkage with continuum flow modelling is a subject of ongoing studies. The approach of microstructure-informed modelling is discussed to provide insight and a mechanistic understanding of macroscopic parameters and their evolution. The proposed theoretical and methodological basis for microstructure-informed modelling of porous quasi-brittle media has the potential to develop into an explanatory and predictive tool for deriving mechanism-based, as opposed to phenomenological, evolution laws for macroscopic properties. These concepts in micro-scale modelling are likely to be applicable to the diffusion process, in addition to advective transport illustrated here for porous media. (authors)« less
ERIC Educational Resources Information Center
McLaughlin, Esther; And Others
1994-01-01
Describes how red beets can be used to demonstrate a variety of membrane phenomena. Some of the activities include observation of vacuoles; vacuoles in intact cells; isolation of vacuoles in physiological studies; demonstration of membrane integrity; and demonstration of ion diffusion and active transport with purified vacuoles. (ZWH)
Computing eddy-driven effective diffusivity using Lagrangian particles
Wolfram, Phillip J.; Ringler, Todd D.
2017-08-14
A novel method to derive effective diffusivity from Lagrangian particle trajectory data sets is developed and then analyzed relative to particle-derived meridional diffusivity for eddy-driven mixing in an idealized circumpolar current. Quantitative standard dispersion- and transport-based mixing diagnostics are defined, compared and contrasted to motivate the computation and use of effective diffusivity derived from Lagrangian particles. We compute the effective diffusivity by first performing scalar transport on Lagrangian control areas using stored trajectories computed from online Lagrangian In-situ Global High-performance particle Tracking (LIGHT) using the Model for Prediction Across Scales Ocean (MPAS-O). Furthermore, the Lagrangian scalar transport scheme is comparedmore » against an Eulerian scalar transport scheme. Spatially-variable effective diffusivities are computed from resulting time-varying cumulative concentrations that vary as a function of cumulative area. The transport-based Eulerian and Lagrangian effective diffusivity diagnostics are found to be qualitatively consistent with the dispersion-based diffusivity. All diffusivity estimates show a region of increased subsurface diffusivity within the core of an idealized circumpolar current and results are within a factor of two of each other. The Eulerian and Lagrangian effective diffusivities are most similar; smaller and more spatially diffused values are obtained with the dispersion-based diffusivity computed with particle clusters.« less
Computing eddy-driven effective diffusivity using Lagrangian particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolfram, Phillip J.; Ringler, Todd D.
A novel method to derive effective diffusivity from Lagrangian particle trajectory data sets is developed and then analyzed relative to particle-derived meridional diffusivity for eddy-driven mixing in an idealized circumpolar current. Quantitative standard dispersion- and transport-based mixing diagnostics are defined, compared and contrasted to motivate the computation and use of effective diffusivity derived from Lagrangian particles. We compute the effective diffusivity by first performing scalar transport on Lagrangian control areas using stored trajectories computed from online Lagrangian In-situ Global High-performance particle Tracking (LIGHT) using the Model for Prediction Across Scales Ocean (MPAS-O). Furthermore, the Lagrangian scalar transport scheme is comparedmore » against an Eulerian scalar transport scheme. Spatially-variable effective diffusivities are computed from resulting time-varying cumulative concentrations that vary as a function of cumulative area. The transport-based Eulerian and Lagrangian effective diffusivity diagnostics are found to be qualitatively consistent with the dispersion-based diffusivity. All diffusivity estimates show a region of increased subsurface diffusivity within the core of an idealized circumpolar current and results are within a factor of two of each other. The Eulerian and Lagrangian effective diffusivities are most similar; smaller and more spatially diffused values are obtained with the dispersion-based diffusivity computed with particle clusters.« less
Self-diffusion of Si and O in diopside-anorthite melt at high pressures
NASA Astrophysics Data System (ADS)
Tinker, David; Lesher, Charles E.; Hutcheon, Ian D.
2003-01-01
Self-diffusion coefficients for Si and O in Di 58An 42 liquid were measured from 1 to 4 GPa and temperatures from 1510 to 1764°C. Glass starting powders enriched in 18O and 28Si were mated to isotopically normal glass powders to form simple diffusion couples, and self-diffusion experiments were conducted in the piston cylinder device (1 and 2 GPa) and in the multianvil apparatus (3.5 and 4 GPa). Profiles of 18O/ 16O and 29,30Si/ 28Si were measured using secondary ion mass spectrometry. Self-diffusion coefficients for O (D(O)) are slightly greater than self-diffusion coefficients for Si (D(Si)) and are often the same within error. For example, D(O) = 4.20 ± 0.42 × 10 -11 m 2/s and D(Si) = 3.65 ± 0.37 × 10 -11 m 2/s at 1 GPa and 1662°C. Activation energies for self-diffusion are 215 ± 13 kJ/mol for O and 227 ± 13 kJ/mol for Si. Activation volumes for self-diffusion are -2.1 ± 0.4 cm 3/mol and -2.3 ± 0.4 cm 3/mol for O and Si, respectively. The similar self-diffusion coefficients for Si and O, similar activation energies, and small, negative activation volumes are consistent with Si and O transport by a cooperative diffusion mechanism, most likely involving the formation and disassociation of a high-coordinated intermediate species. The small absolute magnitudes of the activation volumes imply that Di 58An 42 liquid is close to a transition from negative to positive activation volume, and Adam-Gibbs theory suggests that this transition is linked to the existence of a critical fraction (˜0.6) of bridging oxygen.
Shen, Feng; Pompano, Rebecca R.; Kastrup, Christian J.; Ismagilov, Rustem F.
2009-01-01
Abstract This study shows that environmental confinement strongly affects the activation of nonlinear reaction networks, such as blood coagulation (clotting), by small quantities of activators. Blood coagulation is sensitive to the local concentration of soluble activators, initiating only when the activators surpass a threshold concentration, and therefore is regulated by mass transport phenomena such as flow and diffusion. Here, diffusion was limited by decreasing the size of microfluidic chambers, and it was found that microparticles carrying either the classical stimulus, tissue factor, or a bacterial stimulus, Bacillus cereus, initiated coagulation of human platelet-poor plasma only when confined. A simple analytical argument and numerical model were used to describe the mechanism for this phenomenon: confinement causes diffusible activators to accumulate locally and surpass the threshold concentration. To interpret the results, a dimensionless confinement number, Cn, was used to describe whether a stimulus was confined, and a Damköhler number, Da2, was used to describe whether a subthreshold stimulus could initiate coagulation. In the context of initiation of coagulation by bacteria, this mechanism can be thought of as “diffusion acting”, which is distinct from “diffusion sensing”. The ability of confinement and diffusion acting to change the outcome of coagulation suggests that confinement should also regulate other biological “on” and “off” processes that are controlled by thresholds. PMID:19843446
Enhanced reaction kinetics in biological cells
NASA Astrophysics Data System (ADS)
Loverdo, C.; Bénichou, O.; Moreau, M.; Voituriez, R.
2008-02-01
The cell cytoskeleton is a striking example of an `active' medium driven out-of-equilibrium by ATP hydrolysis. Such activity has been shown to have a spectacular impact on the mechanical and rheological properties of the cellular medium, as well as on its transport properties: a generic tracer particle freely diffuses as in a standard equilibrium medium, but also intermittently binds with random interaction times to motor proteins, which perform active ballistic excursions along cytoskeletal filaments. Here, we propose an analytical model of transport-limited reactions in active media, and show quantitatively how active transport can enhance reactivity for large enough tracers such as vesicles. We derive analytically the average interaction time with motor proteins that optimizes the reaction rate, and reveal remarkable universal features of the optimal configuration. We discuss why active transport may be beneficial in various biological examples: cell cytoskeleton, membranes and lamellipodia, and tubular structures such as axons.
High-energy phosphate transfer in human muscle: diffusion of phosphocreatine.
Gabr, Refaat E; El-Sharkawy, Abdel-Monem M; Schär, Michael; Weiss, Robert G; Bottomley, Paul A
2011-07-01
The creatine kinase (CK) reaction is central to muscle energetics, buffering ATP levels during periods of intense activity via consumption of phosphocreatine (PCr). PCr is believed to serve as a spatial shuttle of high-energy phosphate between sites of energy production in the mitochondria and sites of energy utilization in the myofibrils via diffusion. Knowledge of the diffusion coefficient of PCr (D(PCr)) is thus critical for modeling and understanding energy transport in the myocyte, but D(PCr) has not been measured in humans. Using localized phosphorus magnetic resonance spectroscopy, we measured D(PCr) in the calf muscle of 11 adults as a function of direction and diffusion time. The results show that the diffusion of PCr is anisotropic, with significantly higher diffusion along the muscle fibers, and that the diffusion of PCr is restricted to a ∼28-μm pathlength assuming a cylindrical model, with an unbounded diffusion coefficient of ∼0.69 × 10(-3) mm(2)/s. This distance is comparable in size to the myofiber radius. On the basis of prior measures of CK reaction kinetics in human muscle, the expected diffusion distance of PCr during its half-life in the CK reaction is ∼66 μm. This distance is much greater than the average distances between mitochondria and myofibrils. Thus these first measurements of PCr diffusion in human muscle in vivo support the view that PCr diffusion is not a factor limiting high-energy phosphate transport between the mitochondria and the myofibrils in healthy resting myocytes.
High-energy phosphate transfer in human muscle: diffusion of phosphocreatine
Gabr, Refaat E.; El-Sharkawy, AbdEl-Monem M.; Schär, Michael; Weiss, Robert G.
2011-01-01
The creatine kinase (CK) reaction is central to muscle energetics, buffering ATP levels during periods of intense activity via consumption of phosphocreatine (PCr). PCr is believed to serve as a spatial shuttle of high-energy phosphate between sites of energy production in the mitochondria and sites of energy utilization in the myofibrils via diffusion. Knowledge of the diffusion coefficient of PCr (DPCr) is thus critical for modeling and understanding energy transport in the myocyte, but DPCr has not been measured in humans. Using localized phosphorus magnetic resonance spectroscopy, we measured DPCr in the calf muscle of 11 adults as a function of direction and diffusion time. The results show that the diffusion of PCr is anisotropic, with significantly higher diffusion along the muscle fibers, and that the diffusion of PCr is restricted to a ∼28-μm pathlength assuming a cylindrical model, with an unbounded diffusion coefficient of ∼0.69 × 10−3 mm2/s. This distance is comparable in size to the myofiber radius. On the basis of prior measures of CK reaction kinetics in human muscle, the expected diffusion distance of PCr during its half-life in the CK reaction is ∼66 μm. This distance is much greater than the average distances between mitochondria and myofibrils. Thus these first measurements of PCr diffusion in human muscle in vivo support the view that PCr diffusion is not a factor limiting high-energy phosphate transport between the mitochondria and the myofibrils in healthy resting myocytes. PMID:21368292
Principles for the dynamic maintenance of cortical polarity
Marco, Eugenio; Wedlich-Soldner, Roland; Li, Rong; Altschuler, Steven J.; Wu, Lani F.
2007-01-01
Summary Diverse cell types require the ability to dynamically maintain polarized membrane protein distributions through balancing transport and diffusion. However, design principles underlying dynamically maintained cortical polarity are not well understood. Here we constructed a mathematical model for characterizing the morphology of dynamically polarized protein distributions. We developed analytical approaches for measuring all model parameters from single-cell experiments. We applied our methods to a well-characterized system for studying polarized membrane proteins: budding yeast cells expressing activated Cdc42. We found that balanced diffusion and colocalized transport to and from the plasma membrane were sufficient for accurately describing polarization morphologies. Surprisingly, the model predicts that polarized regions are defined with a precision that is nearly optimal for measured transport rates, and that polarity can be dynamically stabilized through positive feedback with directed transport. Our approach provides a step towards understanding how biological systems shape spatially precise, unambiguous cortical polarity domains using dynamic processes. PMID:17448998
Satake, Shin'ichiro; Song, Si-Young; Konishi, Shiro; Imoto, Keiji
2010-12-01
Neurotransmitters diffuse out of the synaptic cleft and act on adjacent synapses to exert concerted control of the synaptic strength within neural pathways that converge on single target neurons. The excitatory transmitter released from climbing fibers (CFs), presumably glutamate, is shown to inhibit γ-aminobutyric acid (GABA) release at basket cell (BC)-Purkinje cell (PC) synapses in the rat cerebellar cortex through its extrasynaptic diffusion and activation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors on BC axon terminals. This study aimed at examining how the CF transmitter-diffusion-mediated presynaptic inhibition is controlled by glutamate transporters. Pharmacological blockade of the PC-selective neuronal transporter EAAT4 markedly enhanced CF-induced inhibition of GABAergic transmission. Tetanic CF-stimulation elicited long-term potentiation of glutamate transporters in PCs, and thereby attenuated the CF-induced inhibition. Combined use of electrophysiology and immunohistochemistry revealed a significant inverse relationship between the level of EAAT4 expression and the inhibitory action of CF-stimulation on the GABA release at different cerebellar lobules - the CF-induced inhibition was profound in lobule III, where the EAAT4 expression level was low, whereas it was minimal in lobule X, where EAAT4 was abundant. The findings clearly demonstrate that the neuronal glutamate transporter EAAT4 in PCs plays a critical role in the extrasynaptic diffusion of CF transmitter - it appears not only to retrogradely determine the degree of CF-mediated inhibition of GABAergic inputs to the PC by controlling the glutamate concentration for intersynaptic diffusion, but also regulate synaptic information processing in the cerebellar cortex depending on its differential regional distribution as well as use-dependent plasticity of uptake efficacy. © 2010 The Authors. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Multimodel analysis of anisotropic diffusive tracer-gas transport in a deep arid unsaturated zone
Green, Christopher T.; Walvoord, Michelle Ann; Andraski, Brian J.; Striegl, Robert G.; Stonestrom, David A.
2015-01-01
Gas transport in the unsaturated zone affects contaminant flux and remediation, interpretation of groundwater travel times from atmospheric tracers, and mass budgets of environmentally important gases. Although unsaturated zone transport of gases is commonly treated as dominated by diffusion, the characteristics of transport in deep layered sediments remain uncertain. In this study, we use a multimodel approach to analyze results of a gas-tracer (SF6) test to clarify characteristics of gas transport in deep unsaturated alluvium. Thirty-five separate models with distinct diffusivity structures were calibrated to the tracer-test data and were compared on the basis of Akaike Information Criteria estimates of posterior model probability. Models included analytical and numerical solutions. Analytical models provided estimates of bulk-scale apparent diffusivities at the scale of tens of meters. Numerical models provided information on local-scale diffusivities and feasible lithological features producing the observed tracer breakthrough curves. The combined approaches indicate significant anisotropy of bulk-scale diffusivity, likely associated with high-diffusivity layers. Both approaches indicated that diffusivities in some intervals were greater than expected from standard models relating porosity to diffusivity. High apparent diffusivities and anisotropic diffusivity structures were consistent with previous observations at the study site of rapid lateral transport and limited vertical spreading of gas-phase contaminants. Additional processes such as advective oscillations may be involved. These results indicate that gases in deep, layered unsaturated zone sediments can spread laterally more quickly, and produce higher peak concentrations, than predicted by homogeneous, isotropic diffusion models.
Vortical ciliary flows actively enhance mass transport in reef corals.
Shapiro, Orr H; Fernandez, Vicente I; Garren, Melissa; Guasto, Jeffrey S; Debaillon-Vesque, François P; Kramarsky-Winter, Esti; Vardi, Assaf; Stocker, Roman
2014-09-16
The exchange of nutrients and dissolved gasses between corals and their environment is a critical determinant of the growth of coral colonies and the productivity of coral reefs. To date, this exchange has been assumed to be limited by molecular diffusion through an unstirred boundary layer extending 1-2 mm from the coral surface, with corals relying solely on external flow to overcome this limitation. Here, we present direct microscopic evidence that, instead, corals can actively enhance mass transport through strong vortical flows driven by motile epidermal cilia covering their entire surface. Ciliary beating produces quasi-steady arrays of counterrotating vortices that vigorously stir a layer of water extending up to 2 mm from the coral surface. We show that, under low ambient flow velocities, these vortices, rather than molecular diffusion, control the exchange of nutrients and oxygen between the coral and its environment, enhancing mass transfer rates by up to 400%. This ability of corals to stir their boundary layer changes the way that we perceive the microenvironment of coral surfaces, revealing an active mechanism complementing the passive enhancement of transport by ambient flow. These findings extend our understanding of mass transport processes in reef corals and may shed new light on the evolutionary success of corals and coral reefs.
Membrane transport of amino acid enantiomers in protoscoleces of Echinococcus granulosus (Cestoda).
Allen, J T; Arme, C
1991-02-01
Protoscoleces of Echinococcus granulosus absorb both L- and D-alanine. Concentration ratios exceed 1 with values for D-alanine exceeding those for the L-isomer, suggesting that both are absorbed by active mechanisms. Uptake of both isomers involves both diffusion and carrier-mediated components. Values for the diffusion component (Kd) for L- and D-alanine were 0.21 and 0.38 nmol mg-1 protein/1.5 min mM-1 respectively, and values for Kt, the transport constants, 0.17 mM and 0.21 mM respectively. Uptake of both isomers was inhibited competitively by a number of other amino acids.
Mapping Ionic Currents and Reactivity on the Nanoscale: Electrochemical Strain Microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalinin, S.V.
2010-10-19
Solid-state electrochemical processes in oxides underpin a broad spectrum of energy and information storage devices, ranging from Li-ion and Li-air batteries, to solid oxide fuel cells (SOFC) to electroresistive and memristive systems. These functionalities are controlled by the bias-driven diffusive and electromigration transport of mobile ionic species, as well as intricate a set of electrochemical and defect-controlled reactions at interfaces and in bulk. Despite the wealth of device-level and atomistic studies, little is known on the mesoscopic mechanisms of ion diffusion and electronic transport on the level of grain clusters, individual grains, and extended defects. The development of the capabilitymore » for probing ion transport on the nanometer scale is a key to deciphering complex interplay between structure, functionality, and performance in these systems. Here we introduce Electrochemical Strain Microscopy, a scanning probe microscopy technique based on strong strain-bias coupling in the systems in which local ion concentrations are changed by electrical fields. The imaging capability, as well as time- and voltage spectroscopies analogous to traditional current based electrochemical characterization methods are developed. The reversible intercalation of Li and mapping electrochemical activity in LiCoO2 is demonstrated, illustrating higher Li diffusivity at non-basal planes and grain boundaries. In Si-anode device structure, the direct mapping of Li diffusion at extended defects and evolution of Li-activity with charge state is explored. The electrical field-dependence of Li mobility is studied to determine the critical bias required for the onset of electrochemical transformation, allowing reaction and diffusion processes in the battery system to be separated at each location. Finally, the applicability of ESM for probing oxygen vacancy diffusion and oxygen reduction/evolution reactions is illustrated, and the high resolution ESM maps are correlated with aberration corrected scanning transmission electron microscopy imaging. The future potential for deciphering mechanisms of electrochemical transformations on an atomically-defined single-defect level is discussed.« less
Herath, Mahesha B; Creager, Stephen E; Kitaygorodskiy, Alex; DesMarteau, Darryl D
2010-09-10
A study of proton-transport rates and mechanisms under anhydrous conditions using a series of acid model compounds, analogous to comb-branch perfluorinated ionomers functionalized with phosphonic, phosphinic, sulfonic, and carboxylic acid protogenic groups, is reported. Model compounds are characterized with respect to proton conductivity, viscosity, proton, and anion (conjugate base) self-diffusion coefficients, and Hammett acidity. The highest conductivities, and also the highest viscosities, are observed for the phosphonic and phosphinic acid model compounds. Arrhenius analysis of conductivity and viscosity for these two acids reveals much lower activation energies for ion transport than for viscous flow. Additionally, the proton self-diffusion coefficients are much higher than the conjugate-base self-diffusion coefficients for these two acids. Taken together, these data suggest that anhydrous proton transport in the phosphonic and phosphinic acid model compounds occurs primarily by a structure-diffusion, hopping-based mechanism rather than a vehicle mechanism. Further analysis of ionic conductivity and ion self-diffusion rates by using the Nernst-Einstein equation reveals that the phosphonic and phosphinic acid model compounds are relatively highly dissociated even under anhydrous conditions. In contrast, sulfonic and carboxylic acid-based systems exhibit relatively low degrees of dissociation under anhydrous conditions. These findings suggest that fluoroalkyl phosphonic and phosphinic acids are good candidates for further development as anhydrous, high-temperature proton conductors.
Effect of horizontal molecular orientation on triplet-exciton diffusion in amorphous organic films
NASA Astrophysics Data System (ADS)
Sawabe, T.; Takasu, I.; Yonehara, T.; Ono, T.; Yoshida, J.; Enomoto, S.; Amemiya, I.; Adachi, C.
2012-09-01
Triplet harvesting is a candidate technology for highly efficient and long-life white OLEDs, where green or red phosphorescent emitters are activated by the triplet-excitons diffused from blue fluorescent emitters. We examined two oxadiazole-based electron transport materials with different horizontal molecular orientation as a triplet-exciton diffusion layer (TDL) in triplet-harvesting OLEDs. The device characteristics and the transient electroluminescent analyses of the red phosphorescent emitter showed that the triplet-exciton diffusion was more effective in the highly oriented TDL. The results are ascribed to the strong orbital overlap between the oriented molecules, which provides rapid electron exchange (Dexter energy transfer) in the TDL.
Augmentation of oxygen transport by various hemoglobins as determined by pulsed field gradient NMR.
Budhiraja, Vikas; Hellums, J David; Post, Jan F M
2002-11-01
Diffusion of oxyhemoglobin has been shown to augment the oxygen transport inside the red blood cells. Measurement of hemoglobin diffusion coefficients by pulsed-field gradient (PFG) nuclear magnetic resonance (NMR) technique can be used for estimating this augmentation effect. Self-diffusion coefficients of polymerized and unpolymerized bovine hemoglobin (Hb) and several other proteins were measured using this technique. The Hb diffusion coefficient was used to determine the effective permeability of oxygen and augmentation of oxygen transport through samples of Hb solutions due to diffusion of oxyhemoglobin. The values compared well with our previous diffusion cell measurements of effective diffusivity and augmentation. Our NMR studies show that even at low concentrations the augmentation of oxygen transport due to diffusion can be significant. The PFG NMR technique can thus provide an accurate and easy method for measuring augmentation of oxygen transport, especially in dilute samples of Hb. The results on polyhemoglobin and high-molecular-weight hemoglobin are of both basic interest and practical value in assessing the promise and performance of hemoglobin-based blood substitutes.
NASA Astrophysics Data System (ADS)
Lin, Xianke; Lu, Wei
2017-07-01
This paper proposes a model that enables consideration of the realistic anisotropic environment surrounding an active material particle by incorporating both diffusion and migration of lithium ions and electrons in the particle. This model makes it possible to quantitatively evaluate effects such as fracture on capacity degradation. In contrast, the conventional model assumes isotropic environment and only considers diffusion in the active particle, which cannot capture the effect of fracture since it would predict results contradictory to experimental observations. With the developed model we have investigated the effects of active material electronic conductivity, particle size, and State of Charge (SOC) swing window when fracture exists. The study shows that the low electronic conductivity of active material has a significant impact on the lithium ion pattern. Fracture increases the resistance for electron transport and therefore reduces lithium intercalation/deintercalation. Particle size plays an important role in lithium ion transport. Smaller particle size is preferable for mitigating capacity loss when fracture happens. The study also shows that operating at high SOC reduces the impact of fracture.
Brisson, Paul
1974-01-01
Clinical effectiveness of topically applied medications depends on the ability of the active ingredient to leave its vehicle and penetrate into the epidermis. The stratum corneum is that layer of the epidermis which functionally is the most important in limiting percutaneous absorption, showing the characteristics of a composite semipermeable membrane. A mathematical expression of transepidermal diffusion may be derived from Fick's Law of mass transport; factors altering the rate of diffusion are discussed. PMID:4597976
A consistent transported PDF model for treating differential molecular diffusion
NASA Astrophysics Data System (ADS)
Wang, Haifeng; Zhang, Pei
2016-11-01
Differential molecular diffusion is a fundamentally significant phenomenon in all multi-component turbulent reacting or non-reacting flows caused by the different rates of molecular diffusion of energy and species concentrations. In the transported probability density function (PDF) method, the differential molecular diffusion can be treated by using a mean drift model developed by McDermott and Pope. This model correctly accounts for the differential molecular diffusion in the scalar mean transport and yields a correct DNS limit of the scalar variance production. The model, however, misses the molecular diffusion term in the scalar variance transport equation, which yields an inconsistent prediction of the scalar variance in the transported PDF method. In this work, a new model is introduced to remedy this problem that can yield a consistent scalar variance prediction. The model formulation along with its numerical implementation is discussed, and the model validation is conducted in a turbulent mixing layer problem.
NASA Astrophysics Data System (ADS)
Budroni, M. A.
2015-12-01
Cross diffusion, whereby a flux of a given species entrains the diffusive transport of another species, can trigger buoyancy-driven hydrodynamic instabilities at the interface of initially stable stratifications. Starting from a simple three-component case, we introduce a theoretical framework to classify cross-diffusion-induced hydrodynamic phenomena in two-layer stratifications under the action of the gravitational field. A cross-diffusion-convection (CDC) model is derived by coupling the fickian diffusion formalism to Stokes equations. In order to isolate the effect of cross-diffusion in the convective destabilization of a double-layer system, we impose a starting concentration jump of one species in the bottom layer while the other one is homogeneously distributed over the spatial domain. This initial configuration avoids the concurrence of classic Rayleigh-Taylor or differential-diffusion convective instabilities, and it also allows us to activate selectively the cross-diffusion feedback by which the heterogeneously distributed species influences the diffusive transport of the other species. We identify two types of hydrodynamic modes [the negative cross-diffusion-driven convection (NCC) and the positive cross-diffusion-driven convection (PCC)], corresponding to the sign of this operational cross-diffusion term. By studying the space-time density profiles along the gravitational axis we obtain analytical conditions for the onset of convection in terms of two important parameters only: the operational cross-diffusivity and the buoyancy ratio, giving the relative contribution of the two species to the global density. The general classification of the NCC and PCC scenarios in such parameter space is supported by numerical simulations of the fully nonlinear CDC problem. The resulting convective patterns compare favorably with recent experimental results found in microemulsion systems.
Anomalous Extracellular Diffusion in Rat Cerebellum
Xiao, Fanrong; Hrabe, Jan; Hrabetova, Sabina
2015-01-01
Extracellular space (ECS) is a major channel transporting biologically active molecules and drugs in the brain. Diffusion-mediated transport of these substances is hindered by the ECS structure but the microscopic basis of this hindrance is not fully understood. One hypothesis proposes that the hindrance originates in large part from the presence of dead-space (DS) microdomains that can transiently retain diffusing molecules. Because previous theoretical and modeling work reported an initial period of anomalous diffusion in similar environments, we expected that brain regions densely populated by DS microdomains would exhibit anomalous extracellular diffusion. Specifically, we targeted granular layers (GL) of rat and turtle cerebella that are populated with large and geometrically complex glomeruli. The integrative optical imaging (IOI) method was employed to evaluate diffusion of fluorophore-labeled dextran (MW 3000) in GL, and the IOI data analysis was adapted to quantify the anomalous diffusion exponent dw from the IOI records. Diffusion was significantly anomalous in rat GL, where dw reached 4.8. In the geometrically simpler turtle GL, dw was elevated but not robustly anomalous (dw = 2.6). The experimental work was complemented by numerical Monte Carlo simulations of anomalous ECS diffusion in several three-dimensional tissue models containing glomeruli-like structures. It demonstrated that both the duration of transiently anomalous diffusion and the anomalous exponent depend on the size of model glomeruli and the degree of their wrapping. In conclusion, we have found anomalous extracellular diffusion in the GL of rat cerebellum. This finding lends support to the DS microdomain hypothesis. Transiently anomalous diffusion also has a profound effect on the spatiotemporal distribution of molecules released into the ECS, especially at diffusion distances on the order of a few cell diameters, speeding up short-range diffusion-mediated signals in less permeable structures. PMID:25954895
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodman, N.D., E-mail: n.d.woodman@soton.ac.uk; Rees-White, T.C.; Stringfellow, A.M.
2015-04-15
Highlights: • Multiple tracers were applied to saturated MSW to test dual-porosity properties. • Lithium demonstrated to be non-conservative as a tracer. • 260 mm diameter column too small to test transport properties of MSW. • The classical advection-dispersion mode was rejected due to high dispersivity. • Characteristic diffusion times did not vary with the tracer. - Abstract: Two column tests were performed in conditions emulating vertical flow beneath the leachate table in a biologically active landfill to determine dominant transport mechanisms occurring in landfills. An improved understanding of contaminant transport process in wastes is required for developing better predictionsmore » about potential length of the long term aftercare of landfills, currently measured in timescales of centuries. Three tracers (lithium, bromide and deuterium) were used. Lithium did not behave conservatively. Given that lithium has been used extensively for tracing in landfill wastes, the tracer itself and the findings of previous tests which assume that it has behaved conservatively may need revisiting. The smaller column test could not be fitted with continuum models, probably because the volume of waste was below a representative elemental volume. Modelling compared advection-dispersion (AD), dual porosity (DP) and hybrid AD–DP models. Of these models, the DP model was found to be the most suitable. Although there is good evidence to suggest that diffusion is an important transport mechanism, the breakthrough curves of the different tracers did not differ from each other as would be predicted based on the free-water diffusion coefficients. This suggested that solute diffusion in wastes requires further study.« less
Nonlocal transport in the presence of transport barriers
NASA Astrophysics Data System (ADS)
Del-Castillo-Negrete, D.
2013-10-01
There is experimental, numerical, and theoretical evidence that transport in plasmas can, under certain circumstances, depart from the standard local, diffusive description. Examples include fast pulse propagation phenomena in perturbative experiments, non-diffusive scaling in L-mode plasmas, and non-Gaussian statistics of fluctuations. From the theoretical perspective, non-diffusive transport descriptions follow from the relaxation of the restrictive assumptions (locality, scale separation, and Gaussian/Markovian statistics) at the foundation of diffusive models. We discuss an alternative class of models able to capture some of the observed non-diffusive transport phenomenology. The models are based on a class of nonlocal, integro-differential operators that provide a unifying framework to describe non- Fickian scale-free transport, and non-Markovian (memory) effects. We study the interplay between nonlocality and internal transport barriers (ITBs) in perturbative transport including cold edge pulses and power modulation. Of particular interest in the nonlocal ``tunnelling'' of perturbations through ITBs. Also, flux-gradient diagrams are discussed as diagnostics to detect nonlocal transport processes in numerical simulations and experiments. Work supported by the US Department of Energy.
Guo, Zhen; Zhou, Lianqun; Tang, Yuguo; Li, Lin; Zhang, Zhiqi; Yang, Hongbo; Ma, Hanbin; Nathan, Arokia; Zhao, Dongxu
2017-09-13
Surface/interface charge-carrier generation, diffusion, and recombination/transport modulation are especially important in the construction of photodetectors with high efficiency in the field of nanoscience. In the paper, a kind of ultraviolet (UV) detector is designed based on ZnO nanostructures considering photon-trapping, surface plasmonic resonance (SPR), piezophototronic effects, interface carrier-trapping/transport control, and collection. Through carefully optimized surface/interface carrier-transport modulation, a designed device with detectivity as high as 1.69 × 10 16 /1.71 × 10 16 cm·Hz 1/2 /W irradiating with 380 nm photons under ultralow bias of 0.2 V is realized by alternating nanoparticle/nanowire active layers, respectively, and the designed UV photodetectors show fast and slow recovery processes of 0.27 and 4.52 ms, respectively, which well-satisfy practical needs. Further, it is observed that UV photodetection could be performed within an alternative response by varying correlated key parameters, through efficient surface/interface carrier-transport modulation, spectrally resolved photoresponse of the detector revealing controlled detection in the UV region based on the ZnO nanomaterial, photodetection allowed or limited by varying the active layers, irradiation distance from one of the electrodes, standing states, or electric field. The detailed carrier generation, diffusion, and recombination/transport processes are well illustrated to explain charge-carrier dynamics contributing to the photoresponse behavior.
NASA Astrophysics Data System (ADS)
Guan, Lin; Fang, Yuwen; Li, Kongzhai; Zeng, Chunhua; Yang, Fengzao
2018-09-01
In this paper, we investigate the role of correlated multiplicative (κ1) and additive (κ2) noises in a modified energy conversion depot model, at which it is added a linear term in the conversion of internal energy of active Brownian particles (ABPs). The linear term (a1 ≠ 0 . 0) in energy conversion model breaks the symmetry of the potential to generate motion of the ABPs with a net transport velocity. Adopt a nonlinear Langevin approach, the transport properties of the ABPs have been discussed, and our results show that: (i) the transport velocity <υ1 > of the ABPs are always positive whether the correlation intensity λ = 0 . 0 or not; (ii) for a small value of the multiplicative noise intensity κ1, the variation of <υ1 > with λ shows a minimum, there exists an optimal value of the correlation intensity λ at which the <υ1 > of the ABPs is minimized. But for a large value of κ1, the <υ1 > monotonically decreases; (iii) the transport velocity <υ1 > increases with the increase of the κ1 or κ2, i.e., the multiplicative or additive noise can facilitate the transport of the ABPs; and (iv) the effective diffusion increases with the increase of a1, namely, the linear term in modified energy conversion model of the ABPs can enhance the diffusion of the ABPs.
Phloem Loading Strategies and Water Relations in Trees and Herbaceous Plants1[W][OA
Fu, Qiushi; Cheng, Lailiang; Guo, Yangdong; Turgeon, Robert
2011-01-01
Most herbaceous plants employ thermodynamically active mechanisms of phloem loading, whereas in many trees, the mechanism is passive, by diffusion. Considering the different water transport characteristics of herbs and trees, we hypothesized that water relations play a role in the adoption of phloem loading strategies. We measured whole-plant hydraulic conductance (Kp), osmolality, concentrations of polar metabolites, and key inorganic ions in recently mature leaves of 45 dicotyledonous species at midafternoon. Trees, and the few herbs that load passively, have low Kp, high osmolality, and high concentrations of transport sugars and total polar metabolites. In contrast, herbs that actively load sucrose alone have high Kp, low osmolality, and low concentrations of sugars and total polar metabolites. Solute levels are higher in sugar alcohol-transporting species, both herbs and trees, allowing them to operate at lower leaf water potentials. Polar metabolites are largely responsible for leaf osmolality above a baseline level (approximately 300 mm) contributed by ions. The results suggest that trees must offset low Kp with high concentrations of foliar transport sugars, providing the motivating force for sugar diffusion and rendering active phloem loading unnecessary. In contrast, the high Kp of most herbaceous plants allows them to lower sugar concentrations in leaves. This reduces inventory costs and significantly increases growth potential but necessitates active phloem loading. Viewed from this perspective, the elevation of hydraulic conductance marks a major milestone in the evolution of the herbaceous habit, not only by facilitating water transport but also by maximizing carbon use efficiency and growth. PMID:21873572
Effects of spin transition on diffusion of Fe2+ in ferropericlase in Earth's lower mantle
NASA Astrophysics Data System (ADS)
Saha, Saumitra; Bengtson, Amelia; Crispin, Katherine L.; van Orman, James A.; Morgan, Dane
2011-11-01
Knowledge of Fe composition in lower-mantle minerals (primarily perovskite and ferropericlase) is essential to a complete understanding of the Earth's interior. Fe cation diffusion potentially controls many aspects of the distribution of Fe in the Earth's lower mantle, including mixing of chemical heterogeneities, element partitioning, and the extent of core-mantle communications. Fe in ferropericlase has been shown to undergo a spin transition starting at about 40 GPa and exists in a mixture of high-spin and low-spin states over a wide range of pressures. Present experimental data on Fe transport in ferropericlase is limited to pressures below 35 GPa and provides little information on the pressure dependence of the activation volume and none on the impact of the spin transition on diffusion. Therefore, known experimental data on Fe diffusion cannot be reliably extrapolated to predict diffusion throughout the lower mantle. Here, first-principles and statistical modeling are combined to predict diffusion of Fe in ferropericlase over the entire lower mantle, including the effects of the Fe spin transition. A thorough statistical thermodynamic treatment is given to fully incorporate the coexistence of high- and low-spin Fe in the model of overall Fe diffusion in the lower mantle. Pure low-spin Fe diffuses approximately 104 times slower than high-spin Fe in ferropericlase but Fe diffusion of the mixed-spin state is only about 10 times slower than that of high-spin Fe. The predicted Fe diffusivities demonstrate that ferropericlase is unlikely to be rate limiting in transporting Fe in deep earth since much slower Fe diffusion in perovskite is predicted.
Evidence-based approach to assess passive diffusion and carrier-mediated drug transport.
Di, Li; Artursson, Per; Avdeef, Alex; Ecker, Gerhard F; Faller, Bernard; Fischer, Holger; Houston, J Brian; Kansy, Manfred; Kerns, Edward H; Krämer, Stefanie D; Lennernäs, Hans; Sugano, Kiyohiko
2012-08-01
Evidence supporting the action of passive diffusion and carrier-mediated (CM) transport in drug bioavailability and disposition is discussed to refute the recently proposed theory that drug transport is CM-only and that new transporters will be discovered that possess transport characteristics ascribed to passive diffusion. Misconceptions and faulty speculations are addressed to provide reliable guidance on choosing appropriate tools for drug design and optimization. Copyright © 2012 Elsevier Ltd. All rights reserved.
Computer modeling of electron and proton transport in chloroplasts.
Tikhonov, Alexander N; Vershubskii, Alexey V
2014-07-01
Photosynthesis is one of the most important biological processes in biosphere, which provides production of organic substances from atmospheric CO2 and water at expense of solar energy. In this review, we contemplate computer models of oxygenic photosynthesis in the context of feedback regulation of photosynthetic electron transport in chloroplasts, the energy-transducing organelles of the plant cell. We start with a brief overview of electron and proton transport processes in chloroplasts coupled to ATP synthesis and consider basic regulatory mechanisms of oxygenic photosynthesis. General approaches to computer simulation of photosynthetic processes are considered, including the random walk models of plastoquinone diffusion in thylakoid membranes and deterministic approach to modeling electron transport in chloroplasts based on the mass action law. Then we focus on a kinetic model of oxygenic photosynthesis that includes key stages of the linear electron transport, alternative pathways of electron transfer around photosystem I (PSI), transmembrane proton transport and ATP synthesis in chloroplasts. This model includes different regulatory processes: pH-dependent control of the intersystem electron transport, down-regulation of photosystem II (PSII) activity (non-photochemical quenching), the light-induced activation of the Bassham-Benson-Calvin (BBC) cycle. The model correctly describes pH-dependent feedback control of electron transport in chloroplasts and adequately reproduces a variety of experimental data on induction events observed under different experimental conditions in intact chloroplasts (variations of CO2 and O2 concentrations in atmosphere), including a complex kinetics of P700 (primary electron donor in PSI) photooxidation, CO2 consumption in the BBC cycle, and photorespiration. Finally, we describe diffusion-controlled photosynthetic processes in chloroplasts within the framework of the model that takes into account complex architecture of chloroplasts and lateral heterogeneity of lamellar system of thylakoids. The lateral profiles of pH in the thylakoid lumen and in the narrow gap between grana thylakoids have been calculated under different metabolic conditions. Analyzing topological aspects of diffusion-controlled stages of electron and proton transport in chloroplasts, we conclude that along with the NPQ mechanism of attenuation of PSII activity and deceleration of PQH2 oxidation by the cytochrome b6f complex caused by the lumen acidification, the intersystem electron transport may be down-regulated due to the light-induced alkalization of the narrow partition between adjacent thylakoids of grana. The computer models of electron and proton transport described in this article may be integrated as appropriate modules into a comprehensive model of oxygenic photosynthesis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zavarin, Mavrik; Joseph, C.
This progress report (Level 4 Milestone Number M4FT-16LL080303052) summarizes research conducted at Lawrence Livermore National Laboratory (LLNL) within the Crystalline Disposal R&D Activity Number FT-16LL080303051 and Crystalline International Collaborations Activity Number FT-16LL080303061. The focus of this research is the interaction of radionuclides with Engineered Barrier System (EBS) and host rock materials at various physico-chemical conditions relevant to subsurface repository environments. They include both chemical and physical processes such as solubility, sorption, and diffusion. The colloid-facilitated transport effort focused on preparation of a draft manuscript summarizing the state of knowledge and parameterization of colloid-facilitated transport mechanisms in support of reactive transportmore » and performance assessment models for generic crystalline repositories. This draft manuscript is being submitted as a level 3 milestone with LANL as the primary author. LLNL’s contribution to that effort is summarized only briefly in the present report. A manuscript summarizing long-term U(VI) diffusion experiments through bentonite backfill material was recently accepted for publication; the contents of that manuscript are summarized in the present report. The Np(IV) diffusion experiments were started mid-year and are ongoing. The completion of these experiments is planned for early FY17. Our progress in quantifying Np(IV) diffusion in bentonite backfill is summarized in the present report. Our involvement with the NEA TDB project was summarized in a recent Argillite Disposal activity report. It is not included in this report.« less
NASA Astrophysics Data System (ADS)
Payne, Christine
2014-03-01
Eukaryotic cells are the ultimate complex environment with intracellular chemical reactions regulated by the local cellular environment. For example, reactants are sequestered into specific organelles to control local concentration and pH, motor proteins transport reactants within the cell, and intracellular vesicles undergo fusion to bring reactants together. Current research in the Payne Lab in the School of Chemistry and Biochemistry at Georgia Tech is aimed at understanding and utilizing this complex environment to control intracellular chemical reactions. This will be illustrated using two examples, intracellular transport as a function of organelle diameter and the intracellular synthesis of conducting polymers. Using single particle tracking fluorescence microscopy, we measured the intracellular transport of lysosomes, membrane-bound organelles, as a function of diameter as they underwent transport in living cells. Both ATP-dependent active transport and diffusion were examined. As expected, diffusion scales with the diameter of the lysosome. However, active transport is unaffected suggesting that motor proteins are insensitive to cytosolic drag. In a second example, we utilize intracellular complexity, specifically the distinct micro-environments of different organelles, to carry out chemical reactions. We show that catalase, found in the peroxisomes of cells, can be used to catalyze the polymerization of the conducting polymer PEDOT:PSS. More importantly, we have found that a range of iron-containing biomolecules are suitable catalysts with different iron-containing biomolecules leading to different polymer properties. These experiments illustrate the advantage of intracellular complexity for the synthesis of novel materials.
Sun, Sen; Zhang, Hai; Sun, Fengfeng; Zhao, Liang; Zhong, Yanqiang; Chai, Yifeng; Zhang, Guoqing
2014-06-01
Sophocarpine is a biologically active component obtained from the foxtail-like sophora herb and seed that is often orally administered for the treatment of cancer and chronic bronchial asthma. The aim of this study was to develop a rapid and specific LC/MS method for the determination of sophocarpine and to explore its transcellular transport mechanism across the Caco-2 (the human colon adenocarcia cell lines) monolayer cell transwell model. Caco-2 cells were seeded on permeable polycarbonate membranes and incubated for 21 days. Before the experiment, the trans-epithelial electric resistance, integrity and alkaline phosphatase activity of the Caco-2 monolayers were verified and used in subsequent experiments. In the Caco-2 model constructed, many influencing factors were investigated, including time, concentration, pH and different protein inhibitors. The results suggested that sophocarpine was transported mainly by passive diffusion. The flux of sophocarpine was time- and concentration-dependent, and the pH also had an effect on its transportation. The PappBA was higher than PappAB , indicating that a polarized transport might exist for sophocarpine. MK-571 and reserpine, inhibitors of the multidrug resistance associated protein 2 and the breast cancer resistance protein, decreased the efflux of sophocarpine, while verapamil had no effect on its transport. These results revealed that sophocarpine is absorbed mainly by passive diffusion, and that a carrier-mediated mechanism is also involved in the transport of sophocarpine. Copyright © 2014 John Wiley & Sons, Ltd.
Numerical studies of bacterial-carpet microflows
NASA Astrophysics Data System (ADS)
Huber, Greg; Tillberg, Dan; Powers, Thomas R.
2004-03-01
Bacterial carpets are arrays of motile bacteria attached to two-dimensional surfaces. Improved understanding of carpet flows is important in the design of microfluidic devices and transport systems powered by bacterial flagellar motion. In recent experiments by the group of Howard Berg, cells of swarming S. marcescens are stuck to the surface, with most of their flagella free to rotate in the fluid. These studies show modified transport and greatly enhanced diffusion near the active carpet surface. We present theoretical models of the flagella-driven flow, bridging the nano- to the macro-scale, simulate the diffusion and advection of passive tracers, and compare the numerical results with the tracking data of Berg et al.
Mutual influence of molecular diffusion in gas and surface phases
NASA Astrophysics Data System (ADS)
Hori, Takuma; Kamino, Takafumi; Yoshimoto, Yuta; Takagi, Shu; Kinefuchi, Ikuya
2018-01-01
We develop molecular transport simulation methods that simultaneously deal with gas- and surface-phase diffusions to determine the effect of surface diffusion on the overall diffusion coefficients. The phenomenon of surface diffusion is incorporated into the test particle method and the mean square displacement method, which are typically employed only for gas-phase transport. It is found that for a simple cylindrical pore, the diffusion coefficients in the presence of surface diffusion calculated by these two methods show good agreement. We also confirm that both methods reproduce the analytical solution. Then, the diffusion coefficients for ink-bottle-shaped pores are calculated using the developed method. Our results show that surface diffusion assists molecular transport in the gas phase. Moreover, the surface tortuosity factor, which is known to be uniquely determined by physical structure, is influenced by the presence of gas-phase diffusion. This mutual influence of gas-phase diffusion and surface diffusion indicates that their simultaneous calculation is necessary for an accurate evaluation of the diffusion coefficients.
Model unification and scale-adaptivity in the Eddy-Diffusivity Mass-Flux (EDMF) approach
NASA Astrophysics Data System (ADS)
Neggers, R.; Siebesma, P.
2011-12-01
It has long been understood that the turbulent-convective transport of heat, moisture and momentum plays an important role in the dynamics and climate of the earth's atmosphere. Accordingly, the representation of these processes in General Circulation Models (GCMs) has always been an active research field. Turbulence and convection act on temporal and spatial scales that are unresolved by most present-day GCMs, and have to be represented through parametric relations. Over the years a variety of schemes has been successfully developed. Although differing widely in their details, only two basic transport models stand at the basis of most of these schemes. The first is the diffusive transport model, which can only act down-gradient. An example is the turbulent mixing at small scales. The second is the advective transport model, which can act both down-gradient and counter-gradient. A good example is the transport of heat and moisture by convective updrafts that overshoot into stable layers of air. In practice, diffusive models often make use of a K-profile method or a prognostic TKE budget, while advective models make use of a rising (and entraining) plume budget. While most transport schemes classicaly apply either the diffusive model or advective model, the relatively recently introduced Eddy-Diffusivity Mass-Flux (EDMF) approach aims to combine both techniques. By applying advection and diffusion simultaneously, one can make use of the benefits of both approaches. Since its emergence about a decade ago, the EDMF approach has been successfully applied in both research and operational circulation models. This presentation is dedicated to the EDMF framework. Apart from a short introduction to the EDMF concept and a short overview of its current implementations, our main goal is to elaborate on the opportunities EDMF brings in addressing some long-standing problems in the parameterization of turbulent-convective transport. The first problem is the need for a unified approach in the parameterization of distinct transport regimes. The main objections to a separate representation of regimes are i) artificially discrete regime-transitions, and ii) superfluous and intransparent coding. For a unified approach we need to establish what complexity is sufficient to achieve general applicability. We argue that adding only little complexity already enables the standard EDMF framework to represent multiple boundary-layer transport regimes and smooth transitions between those. The second long-standing problem is that the ever increasing computational capacity and speed has lead to increasingly fine discretizations in GCMs, which requires scale-adaptivity in a sub-grid transport model. It is argued that a flexible partitioning between advection and diffusion within EDMF, as well as the potential to introduce stochastic elements in the advective part of EDMF, creates opportunities to introduce such adaptivity. In the final part of the presentation we will attempt to give an overview of currently ongoing developments of the EDMF framework, both concerning model formulation as well as evaluation efforts of key assumptions against observational datasets and large-eddy simulation results.
Guimerà, Xavier; Dorado, Antonio David; Bonsfills, Anna; Gabriel, Gemma; Gabriel, David; Gamisans, Xavier
2016-10-01
Knowledge of mass transport mechanisms in biofilm-based technologies such as biofilters is essential to improve bioreactors performance by preventing mass transport limitation. External and internal mass transport in biofilms was characterized in heterotrophic biofilms grown on a flat plate bioreactor. Mass transport resistance through the liquid-biofilm interphase and diffusion within biofilms were quantified by in situ measurements using microsensors with a high spatial resolution (<50 μm). Experimental conditions were selected using a mathematical procedure based on the Fisher Information Matrix to increase the reliability of experimental data and minimize confidence intervals of estimated mass transport coefficients. The sensitivity of external and internal mass transport resistances to flow conditions within the range of typical fluid velocities over biofilms (Reynolds numbers between 0.5 and 7) was assessed. Estimated external mass transfer coefficients at different liquid phase flow velocities showed discrepancies with studies considering laminar conditions in the diffusive boundary layer near the liquid-biofilm interphase. The correlation of effective diffusivity with flow velocities showed that the heterogeneous structure of biofilms defines the transport mechanisms inside biofilms. Internal mass transport was driven by diffusion through cell clusters and aggregates at Re below 2.8. Conversely, mass transport was driven by advection within pores, voids and water channels at Re above 5.6. Between both flow velocities, mass transport occurred by a combination of advection and diffusion. Effective diffusivities estimated at different biofilm densities showed a linear increase of mass transport resistance due to a porosity decrease up to biofilm densities of 50 g VSS·L(-1). Mass transport was strongly limited at higher biofilm densities. Internal mass transport results were used to propose an empirical correlation to assess the effective diffusivity within biofilms considering the influence of hydrodynamics and biofilm density. Copyright © 2016 Elsevier Ltd. All rights reserved.
Melting properties of Pt and its transport coefficients in liquid states under high pressures
NASA Astrophysics Data System (ADS)
Wang, Pan-Pan; Shao, Ju-Xiang; Cao, Qi-Long
2016-11-01
Molecular dynamics (MD) simulations of the melting and transport properties in liquid states of platinum for the pressure range (50-200 GPa) are reported. The melting curve of platinum is consistent with previous ab initio MD simulation results and the first-principles melting curve. Calculated results for the pressure dependence of fusion entropy and fusion volume show that the fusion entropy and the fusion volume decrease with increasing pressure, and the ratio of the fusion volume to fusion entropy roughly reproduces the melting slope, which has a moderate decrease along the melting line. The Arrhenius law well describes the temperature dependence of self-diffusion coefficients and viscosity under high pressure, and the diffusion activation energy decreases with increasing pressure, while the viscosity activation energy increases with increasing pressure. In addition, the entropy-scaling law, proposed by Rosenfeld under ambient pressure, still holds well for liquid Pt under high pressure conditions.
Enhancement of diffusive transport in oscillatory flows
NASA Technical Reports Server (NTRS)
Knobloch, E.; Merryfield, W. J.
1992-01-01
The theory of transport of passive scalars in oscillatory flows is reexamined. The differences between transport in standing and traveling waves are emphasized. Both Lagrangian and Eulerian diffusivities are calculated, and the conditions for their applicability are discussed. Numerical simulations are conducted to understand the expulsion of gradients from time-dependent eddies and the resulting transport. The results indicate that it is the Eulerian diffusivity that is of primary relevance for describing enhanced transport on spatial scales larger than that of the eddies.
Multiple Scattering in Clouds: Insights from Three-Dimensional Diffusion/P{sub 1} Theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Anthony B.; Marshak, Alexander
2001-03-15
In the atmosphere, multiple scattering matters nowhere more than in clouds, and being a product of its turbulence, clouds are highly variable environments. This challenges three-dimensional (3D) radiative transfer theory in a way that easily swamps any available computational resources. Fortunately, the far simpler diffusion (or P{sub 1}) theory becomes more accurate as the scattering intensifies, and allows for some analytical progress as well as computational efficiency. After surveying current approaches to 3D solar cloud-radiation problems from the diffusion standpoint, a general 3D result in steady-state diffusive transport is derived relating the variability-induced change in domain-average flux (i.e., diffuse transmittance)more » to the one-point covariance of internal fluctuations in particle density and in radiative flux. These flux variations follow specific spatial patterns in deliberately hydrodynamical language: radiative channeling. The P{sub 1} theory proves even more powerful when the photon diffusion process unfolds in time as well as space. For slab geometry, characteristic times and lengths that describe normal and transverse transport phenomena are derived. This phenomenology is used to (a) explain persistent features in satellite images of dense stratocumulus as radiative channeling, (b) set limits on current cloud remote-sensing techniques, and (c) propose new ones both active and passive.« less
Kerner, Ross A; Rand, Barry P
2018-01-04
Ambipolar transport describes the nonequilibrium, coupled motion of positively and negatively charged particles to ensure that internal electric fields remain small. It is commonly invoked in the semiconductor community where the motion of excess electrons and holes drift and diffuse together. However, the concept of ambipolar transport is not limited to semiconductor physics. Materials scientists working on ion conducting ceramics understand ambipolar transport dictates the coupled diffusion of ions and the rate is limited by the ion with the lowest diffusion coefficient. In this Perspective, we review a third application of ambipolar transport relevant to mixed ionic-electronic conducting materials for which the motion of ions is expected to be coupled to electronic carriers. In this unique situation, the ambipolar diffusion model has been successful at explaining the photoenhanced diffusion of metal ions in chalcogenide glasses and other properties of materials. Recent examples of photoenhanced phenomena in metal halide perovskites are discussed and indicate that mixed ionic-electronic ambipolar transport is similarly important for a deep understanding of these emerging materials.
NASA Astrophysics Data System (ADS)
Heyes, David M.
1988-04-01
This study evaluates the shear viscosity, self-diffusion coefficient, and thermal conductivity of the Lennard-Jones (LJ) fluid over essentially the entire fluid range by molecular-dynamics (MD) computer simulation. The Green-Kubo (GK) method is mainly used. In addition, for shear viscosity, homogeneous shear nonequilibrium MD (NEMD) is also employed and compared with experimental data on argon along isotherms. Reasonable agreement between GK, NEMD, and experiment is found. Hard-sphere MD modified Chapman-Enskog expressions for these transport coefficients are tested with use of a temperature-dependent effective hard-sphere diameter. Excellent agreement is found for shear viscosity. The thermal conductivity and, more so, self-diffusion coefficient is less successful in this respect. This behavior is attributed to the attractive part to the LJ potential and its soft repulsive core. Expressions for the constant-volume and -pressure activation energies for these transport coefficients are derived solely in terms of the thermodynamic properties of the LJ fluid. Also similar expressions for the activation volumes are given, which should have a wider range of applications than just for the LJ system.
Unifying diffusion and seepage for nonlinear gas transport in multiscale porous media
NASA Astrophysics Data System (ADS)
Song, Hongqing; Wang, Yuhe; Wang, Jiulong; Li, Zhengyi
2016-09-01
We unify the diffusion and seepage process for nonlinear gas transport in multiscale porous media via a proposed new general transport equation. A coherent theoretical derivation indicates the wall-molecule and molecule-molecule collisions drive the Knudsen and collective diffusive fluxes, and constitute the system pressure across the porous media. A new terminology, nominal diffusion coefficient can summarize Knudsen and collective diffusion coefficients. Physical and numerical experiments show the support of the new formulation and provide approaches to obtain the diffusion coefficient and permeability simultaneously. This work has important implication for natural gas extraction and greenhouse gases sequestration in geological formations.
Chemotaxis of artificial microswimmers in active density waves
NASA Astrophysics Data System (ADS)
Geiseler, Alexander; Hänggi, Peter; Marchesoni, Fabio; Mulhern, Colm; Savel'ev, Sergey
2016-07-01
Living microorganisms are capable of a tactic response to external stimuli by swimming toward or away from the stimulus source; they do so by adapting their tactic signal transduction pathways to the environment. Their self-motility thus allows them to swim against a traveling tactic wave, whereas a simple fore-rear asymmetry argument would suggest the opposite. Their biomimetic counterpart, the artificial microswimmers, also propel themselves by harvesting kinetic energy from an active medium, but, in contrast, lack the adaptive capacity. Here we investigate the transport of artificial swimmers subject to traveling active waves and show, by means of analytical and numerical methods, that self-propelled particles can actually diffuse in either direction with respect to the wave, depending on its speed and waveform. Moreover, chiral swimmers, which move along spiraling trajectories, may diffuse preferably in a direction perpendicular to the active wave. Such a variety of tactic responses is explained by the modulation of the swimmer's diffusion inside traveling active pulses.
NASA Astrophysics Data System (ADS)
Tambio, Sacris Jeru; Deschamps, Michaël; Sarou-Kanian, Vincent; Etiemble, Aurélien; Douillard, Thierry; Maire, Eric; Lestriez, Bernard
2017-09-01
Lithium-ion batteries are electrochemical storage devices using the electrochemical activity of the lithium ion in relation to intercalation compounds owing to mass transport phenomena through diffusion. Diffusion of the lithium ion in the electrode pores has been poorly understood due to the lack of experimental techniques for measuring its self-diffusion coefficient in porous media. Magic-Angle Spinning, Pulsed Field Gradient, Stimulated-Echo Nuclear Magnetic Resonance (MAS-PFG-STE NMR) was used here for the first time to measure the self-diffusion coefficients of the electrolyte species in the LP30 battery electrolyte (i.e. a 1 M solution of LiPF6 dissolved in 1:1 Ethylene Carbonate - Dimethyl Carbonate) in model composites. These composite electrodes were made of alumina, carbon black and PVdF-HFP. Alumina's magnetic susceptibility is close to the measured magnetic susceptibility of the LP30 electrolyte thereby limiting undesirable internal field gradients. Interestingly, the self-diffusion coefficient of lithium ions decreases with increasing carbon content. FIB-SEM was used to describe the 3D geometry of the samples. The comparison between the reduction of self-diffusion coefficients as measured by PFG-NMR and as geometrically derived from FIB/SEM tortuosity values highlights the contribution of specific interactions at the material/electrolyte interface on the lithium transport properties.
Mechanism of sodium and chloride transport in the thin ascending limb of Henle.
Imai, M; Kokko, J P
1976-01-01
Our previous in vitro studies have disclosed that the thin ascending limb of Henle (tALH) possesses some unique membrane characteristics. In those studies we failed to demonstrated active transport of sodium chloride by the tALH, although it was shown that the isotopic permeability to sodium and chloride was unusually high. However, we did not examine the mechanisms by which the apparent high permeation of sodium chloride occurs. Thus the purpose of the present studies was to elucidate the mechanism of sodium chloride transport across the isolated tALH of the rabbit by conducting four different types of studies: (1) comparison of the observed chloride and sodium flux ratios to those predicted by Ussing's equation under imposed salt concentration gradients; (2) kinetic evaluation of chloride and sodium fluxes; (3) examination of the effect of bromide on the kinetics of chloride transport; and (4) experiments to test for the existence of exchange diffusion of chloride. In the first set of studies the predicted and the theoretical flux ratios of sodium were identical in those experiments in which sodium chloride was added either to the perfusate or to the bath. However, the observed chloride flux ratio, lumen-to-bath/bath-to-lumen, was significantly lower than that predicted from Ussing's equation when 100 mM sodium chloride was added to the bath. In the second set of experiments the apparent isotopic permeability for sodium and for chloride was measured under varying perfusate and bath NaCl concentrations. There was no statistical change in the apparent sodium permeability coefficient when the NaCl concentration was raised by varying increments from 85.5 to 309.5 mM. However, permeation of 36Cl decrease significantly with an increase in Cl from 73.6 to 598.6 mM. These events could be explained by a two component chloride transport process consisting of simple diffusion and a saturable facilitated diffusion process with a Vmax = 3.71 neq mm-1 min-1. In the third set of studies it was shown that bromide inhibits transport of chloride and that the magnitude of inhibition is dependent on chloride concentrations. The fourth set of studies ruled out the existence of exchange diffusion. In conclusion, these studies indicate that sodium transport across tALH is by simple passive diffusion, while chloride transport across tALH involves at least two mechanisms: (1) simple passive diffusion; and (2) a specific membrane interaction process (carrier-mediated) which is competitively inhibited by bromide. PMID:993330
Vinh-Thang, Hoang; Huang, Qinglin; Ungureanu, Adrian; Eić, Mladen; Trong-On, Do; Kaliaguine, Serge
2006-05-09
A series of mesoporous UL-ZSM-5 materials (Si/Al = 50) with different micro- and mesoporosity as well as crystallinity was prepared following the procedure proposed in one of our recent studies (Trong-On, D.; Kaliaguine, S. Angew. Chem. Int. Ed. 2001, 40, 3248-3251. Trong-On, D.; Kaliaguine, S. U.S. Patent 6,669,924, B1, 2003). These materials have zeolitic structure in the form of nanoparticles intergrown in the walls of the amorphous wormhole-like aluminosilicate mesopores of Al-Meso-50, which was used as a precursor in the synthesis. The structure, crystallinity, and textural properties of the synthesized materials, as well as a reference ZSM-5 zeolite sample, were determined by X-ray diffraction (XRD), transmission electron microscopy (TEM)/scanning electron microscoy (SEM) analyses, Fourier transform infrared spectroscopy (FTIR), 27Al magic angle spinning (MAS) nuclear magnetic resonance (NMR), and nitrogen adsorption/desorption techniques. The acid properties were examined by FTIR of adsorbed pyridine. UL-ZSM-5 materials were shown to be highly hydrothermally stable. The diffusion of two C7 hydrocarbons, i.e., n-heptane and toluene, in four UL-ZSM-5 materials with different microporosities, related acidities, and crystallinities were investigated using the zero-length column (ZLC) method. Furthermore, the wormhole-like mesostructured aluminosilicate precursor (Al-Meso-50) and a reference MFI zeolite sample were also investigated using the same technique. A theoretical model considering a combination of mesopore diffusion (with surface slip in the main channels) with an activated, mainly surface diffusion mechanism in the intrawall biporous structure, was proposed and employed to interpret the experimental ZLC results. A classical Knudsen type of diffusion was replaced by an activated surface slip type of diffusion mechanism in the mesopores. The transport of n-heptane in UL-ZSM-5 materials was found to be mainly controlled by mesopore diffusion in the main-channel structure, while that of toluene was dominated by the intrawall diffusion process. Diffusion activation energies of n-heptane are about 2 times higher in comparison to toluene, which has a larger kinetic diameter. The main mesopore channel structure seems to appreciably contribute to the overall mass transport. Furthermore, the effect of hydrothermal treatment (20% steam at 800 degrees C for 24 h) on the diffusion of these two sorbates on UL-ZSM-5 materials was also evaluated.
Silverman, Michael A; Johnson, Scooter; Gurkins, Dmitri; Farmer, Meredith; Lochner, Janis E; Rosa, Patrizia; Scalettar, Bethe A
2005-03-23
Dense-core granules (DCGs) are organelles found in specialized secretory cells, including neuroendocrine cells and neurons. Neuronal DCGs facilitate many critical processes, including the transport and secretion of proteins involved in learning, and yet their transport and exocytosis are poorly understood. We have used wide-field and total internal reflection fluorescence microscopy, in conjunction with transport theory, to visualize the transport and exocytosis of DCGs containing a tissue plasminogen activator-green fluorescent protein hybrid in cell bodies, neurites, and growth cones of developing hippocampal neurons and to quantify the roles that diffusion, directed motion, and immobility play in these processes. Our results demonstrate that shorter-ranged transport of DCGs near sites of exocytosis in hippocampal neurons and neuroendocrine cells differs markedly. Specifically, the immobile fraction of DCGs within growth cones and near the plasma membrane of hippocampal neurons is small and relatively unaltered by actin disruption, unlike in neuroendocrine cells. Moreover, transport of DCGs in these domains of hippocampal neurons is unusually heterogeneous, being significantly rapid and directed as well as slow and diffusive. Our results also demonstrate that exocytosis is preceded by substantial movement and heterogeneous transport; this movement may facilitate delivery of DCG cargo in hippocampal neurons, given the relatively low abundance of neuronal DCGs. In addition, the extensive mobility of DCGs in hippocampal neurons argues strongly against the hypothesis that cortical actin is a major barrier to membrane-proximal DCGs in these cells. Instead, our results suggest that extended release of DCG cargo from hippocampal neurons arises from heterogeneity in DCG mobility.
Directional Charge Separation in Isolated Organic Semiconductor Crystalline Nanowires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnes, Michael; Labastide, Joelle; Bond-Thompson, Hilary
2017-03-01
In the conventional view of organic photovoltaics (OPV), localized electronic excitations (excitons) formed in the active layer are transported by random 3D diffusion to an interface where charge separation and extraction take place. Because radiative de-excitation is usually strongly allowed in organic semiconductors, efficient charge separation requires high exciton mobility, with much of the diffusive motion ‘wasted’ in directions that don’t result in an interface encounter. Our research efforts are focused on ways to enforce a preferred directionality in energy and/or charge transport using ordered crystalline nanowires in which the intermolecular interactions that facilitate transport along, for example, the pi-stackingmore » axis, can be made several orders of magnitude stronger than those in a transverse direction. The results presented in our recent work (Nature Communications) is a first step towards realizing the goal of directional control of both energy transport and charge separation, where excitons shared between adjacent molecules dissociate exclusively along the pi-stacking direction.« less
Distributed modeling of diffusive solute transport in peritoneal dialysis.
Waniewski, Jacek
2002-01-01
The diffusive transport between blood and an ex-tissue medium (dialysis fluid) is evaluated using a mathematical model that takes into account the (quasicontinuous) distribution of capillaries within the tissue at various distances from the tissue surface, and includes diffusive-convective transport through the capillary wall and lymphatic absorption from the tissue. General formulas for solute penetration depth, lambda, and for the diffusive mass transport coefficient for the transport between blood and dialysis fluid, K(BD), are provided in terms of local transport coefficients for capillary wall, tissue, and lymphatic absorption. For pure diffusive transport between blood and dialysis fluid and thick tissue layers (i.e., if the solute penetration depth is much lower than the tissue thickness) these formulas yield previously known expressions. It is shown that apparent tissue layers, with widths lambdaTBL and lambdaT, respectively, may be defined according to the values of local transport parameters in such a way that K(BD) is equal to the solute clearance K(TBL) from the tissue by blood and lymph for a layer with width lambdaTBL or to the solute clearance K(T) from blood to dialysate by diffusion through the tissue layer with width lambdaT. For tissue layers with width much higher than the penetration depth: lambdaT approximately = lambdaTBL approximately = lambda. These characteristic width lengths depend on the transport parameters (and thus on the size) of solutes. Effective blood flow, which may be related to the exchange of the solute between blood and dialysate, is defined using an analogy to the extraction/absorption coefficients for blood-tissue exchange. Various approximations for the distributed model formula for diffusive mass transport coefficient (K(BD)) are possible. The appropriate range for their application is obtained from the general formula.
Mahakrishnan, Sathiya; Chakraborty, Subrata; Vijay, Amrendra
2016-09-15
Diffusion, an emergent nonequilibrium transport phenomenon, is a nontrivial manifestation of the correlation between the microscopic dynamics of individual molecules and their statistical behavior observed in experiments. We present a thorough investigation of this viewpoint using the mathematical tools of quantum scattering, within the framework of Boltzmann transport theory. In particular, we ask: (a) How and when does a normal diffusive transport become anomalous? (b) What physical attribute of the system is conceptually useful to faithfully rationalize large variations in the coefficient of normal diffusion, observed particularly within the dynamical environment of biological cells? To characterize the diffusive transport, we introduce, analogous to continuous phase transitions, the curvature of the mean square displacement as an order parameter and use the notion of quantum scattering length, which measures the effective interactions between the diffusing molecules and the surrounding, to define a tuning variable, η. We show that the curvature signature conveniently differentiates the normal diffusion regime from the superdiffusion and subdiffusion regimes and the critical point, η = ηc, unambiguously determines the coefficient of normal diffusion. To solve the Boltzmann equation analytically, we use a quantum mechanical expression for the scattering amplitude in the Boltzmann collision term and obtain a general expression for the effective linear collision operator, useful for a variety of transport studies. We also demonstrate that the scattering length is a useful dynamical characteristic to rationalize experimental observations on diffusive transport in complex systems. We assess the numerical accuracy of the present work with representative experimental results on diffusion processes in biological systems. Furthermore, we advance the idea of temperature-dependent effective voltage (of the order of 1 μV or less in a biological environment, for example) as a dynamical cause of the perpetual molecular movement, which eventually manifests as an ordered motion, called the diffusion.
Electron heat transport measured in a stochastic magnetic field.
Biewer, T M; Forest, C B; Anderson, J K; Fiksel, G; Hudson, B; Prager, S C; Sarff, J S; Wright, J C; Brower, D L; Ding, W X; Terry, S D
2003-07-25
New profile measurements have allowed the electron thermal diffusivity profile to be estimated from power balance in the Madison Symmetric Torus where magnetic islands overlap and field lines are stochastic. The measurements show that (1) the electron energy transport is conductive not convective, (2) the measured thermal diffusivities are in good agreement with numerical simulations of stochastic transport, and (3) transport is greatly reduced near the reversal surface where magnetic diffusion is small.
Diffusion through Pig Gastric Mucin: Effect of Relative Humidity
Runnsjö, Anna; Dabkowska, Aleksandra P.; Sparr, Emma; Kocherbitov, Vitaly; Arnebrant, Thomas; Engblom, Johan
2016-01-01
Mucus covers the epithelium found in all intestinal tracts, where it serves as an important protecting barrier, and pharmaceutical drugs administrated by the oral, rectal, vaginal, ocular, or nasal route need to penetrate the mucus in order to reach their targets. Furthermore, the diffusion in mucus as well as the viscosity of mucus in the eyes, nose and throat can change depending on the relative humidity of the surrounding air. In this study we have investigated how diffusion through gels of mucin, the main protein in mucus, is affected by changes in ambient relative humidity (i.e. water activity). Already a small decrease in water activity was found to give rise to a significant decrease in penetration rate through the mucin gel of the antibacterial drug metronidazole. We also show that a decrease in water activity leads to decreased diffusion rate in the mucin gel for the fluorophore fluorescein. This study shows that it is possible to alter transport rates of molecules through mucus by changing the water activity in the gel. It furthermore illustrates the importance of considering effects of the water activity in the mucosa during development of potential pharmaceuticals. PMID:27336158
Thermophysical properties and oxygen transport in (Th x,Pu 1-x)O 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galvin, C. O. T.; Cooper, M. W. D.; Rushton, M. J. D.
Using Molecular Dynamics, this paper investigates the thermophysical properties and oxygen transport of (Th x,Pu 1–x)O 2 (0 ≤ x ≤ 1) between 300–3500 K. Specifically, the superionic transition is investigated and viewed via the thermal dependence of lattice parameter, linear thermal expansion coefficient, enthalpy and specific heat at constant pressure. Oxygen diffusivity and activation enthalpy are also investigated. Below the superionic temperature an increase of oxygen diffusivity for certain compositions of (Th x,Pu 1–x)O 2 compared to the pure end members is predicted. Oxygen defect formation enthalpies are also examined, as they underpin the superionic transition temperature and themore » increase in oxygen diffusivity. The increase in oxygen diffusivity for (Th x,Pu 1–x)O 2 is explained in terms of lower oxygen defect formation enthalpies for (Th x,Pu 1–x)O 2 than PuO 2 and ThO 2, while links are drawn between the superionic transition temperature and oxygen Frenkel disorder.« less
Thermophysical properties and oxygen transport in (Th x,Pu 1-x)O 2
Galvin, C. O. T.; Cooper, M. W. D.; Rushton, M. J. D.; ...
2016-10-31
Using Molecular Dynamics, this paper investigates the thermophysical properties and oxygen transport of (Th x,Pu 1–x)O 2 (0 ≤ x ≤ 1) between 300–3500 K. Specifically, the superionic transition is investigated and viewed via the thermal dependence of lattice parameter, linear thermal expansion coefficient, enthalpy and specific heat at constant pressure. Oxygen diffusivity and activation enthalpy are also investigated. Below the superionic temperature an increase of oxygen diffusivity for certain compositions of (Th x,Pu 1–x)O 2 compared to the pure end members is predicted. Oxygen defect formation enthalpies are also examined, as they underpin the superionic transition temperature and themore » increase in oxygen diffusivity. The increase in oxygen diffusivity for (Th x,Pu 1–x)O 2 is explained in terms of lower oxygen defect formation enthalpies for (Th x,Pu 1–x)O 2 than PuO 2 and ThO 2, while links are drawn between the superionic transition temperature and oxygen Frenkel disorder.« less
NASA Astrophysics Data System (ADS)
Yang, S. M.; Na, Yong-Su; Na, D. H.; Park, J.-K.; Shi, Y. J.; Ko, W. H.; Lee, S. G.; Hahm, T. S.
2018-06-01
Perturbative experiments have been carried out using tangential neutral beam injection (NBI) and non-resonant magnetic perturbation (NRMP) to analyze the momentum transport properties in KSTAR H-modes. Diffusive and non-diffusive terms of momentum transport are evaluated from the transient analysis. Although the operating conditions and methodologies applied in the two cases are similar, the momentum transport properties obtained show clear differences. The estimated momentum diffusivity and pinch obtained in the NBI modulation experiments is larger than that in the NRMP modulation experiments. We found that this discrepancy could be a result of uncertainties in the assumption for the analysis. By introducing time varying momentum transport coefficients depending on the temperature gradient, the linearized equation shows that if the temperature perturbation exists, the evolution of toroidal rotation perturbation could be faster than the transport rate of mean quantity, since the evolution of toroidal rotation perturbation is related to , a momentum diffusivity from perturbative analysis. This could explain the estimated higher momentum diffusivity using time independent transport coefficients in NBI experiments with higher ion temperature perturbation compared to that in NRMP modulation experiments. The differences in the momentum transport coefficient with NRMP and NBI are much reduced by considering time varying momentum transport coefficients in the time dependent transport simulation.
“Conjugate Channeling” Effect in Dislocation Core Diffusion: Carbon Transport in Dislocated BCC Iron
Ishii, Akio; Li, Ju; Ogata, Shigenobu
2013-01-01
Dislocation pipe diffusion seems to be a well-established phenomenon. Here we demonstrate an unexpected effect, that the migration of interstitials such as carbon in iron may be accelerated not in the dislocation line direction , but in a conjugate diffusion direction. This accelerated random walk arises from a simple crystallographic channeling effect. is a function of the Burgers vector b, but not , thus a dislocation loop possesses the same everywhere. Using molecular dynamics and accelerated dynamics simulations, we further show that such dislocation-core-coupled carbon diffusion in iron has temperature-dependent activation enthalpy like a fragile glass. The 71° mixed dislocation is the only case in which we see straightforward pipe diffusion that does not depend on dislocation mobility. PMID:23593255
Ishii, Akio; Li, Ju; Ogata, Shigenobu
2013-01-01
Dislocation pipe diffusion seems to be a well-established phenomenon. Here we demonstrate an unexpected effect, that the migration of interstitials such as carbon in iron may be accelerated not in the dislocation line direction ξ, but in a conjugate diffusion direction. This accelerated random walk arises from a simple crystallographic channeling effect. c is a function of the Burgers vector b, but not ξ, thus a dislocation loop possesses the same everywhere. Using molecular dynamics and accelerated dynamics simulations, we further show that such dislocation-core-coupled carbon diffusion in iron has temperature-dependent activation enthalpy like a fragile glass. The 71° mixed dislocation is the only case in which we see straightforward pipe diffusion that does not depend on dislocation mobility.
Temperature affects transport of polysaccharides and proteins in articular cartilage explants.
Moeini, Mohammad; Lee, Kwan-Bong; Quinn, Thomas M
2012-07-26
Solute transport phenomena mediate many aspects of the physiology and contrast agent-based clinical imaging of articular cartilage. Temperatures up to 10°C below standard body temperature (37°C) are common in articulating joints during normal activities and clinically (e.g. cold treatment of injuries). Therefore it is of interest to characterize the effects of temperature changes on solute transport parameters in cartilage. A range of fluorescent solutes including fluorescein isothiocyanate, 4 and 40kDa dextrans, myoglobin, insulin and chondroitin sulfate were prepared and used in assays of solute effective partition coefficient and effective diffusivity in bovine intermediate zone articular cartilage explants maintained at 10, 22 or 37°C. Trends for increasing partition coefficient with increasing temperature were evident for all solutes except chondroitin sulfate, with significant changes between 22 and 37°C for 4kDa dextran, insulin and myoglobin. Diffusivities of most solutes tested also tended to increase with increasing temperature, with significant changes between 10 and 22°C for FITC, 40kDa dextran and myoglobin. Oddly, insulin diffusivity decreased significantly as temperature increased from 22 to 37°C while chondroitin sulfate diffusivity exhibited no clear temperature dependence. These results highlight solute-specific temperature dependences of transport phenomena which may depend upon molecular weight, chemical structure, molecular conformation, and solute-matrix and solute-solute interactions. The articular cartilage explants themselves exhibited small but significant changes in water and glycosaminoglycan contents during experiments, underscoring the importance of solute-matrix interactions. Solute transport parameters in cartilage and their temperature dependences are therefore not easily predicted, and case-by-case experimental determination may be essential. Copyright © 2012 Elsevier Ltd. All rights reserved.
Transport of salicylic acid through monolayers of a kidney epithelial cell line (LLC-PK1).
Chatton, J Y; Roch-Ramel, F
1992-05-01
LLC-PK1 cells were used as a model of renal proximal epithelium to study the nonionic diffusion of salicylic acid (SAL). The apparent [14C]SAL transcellular permeability (PSal) and intracellular content were estimated at 20-21 degrees C from fluxes measured across cell monolayers grown on filters, in both apical-to-basolateral and basolateral-to-apical directions. The medium pH of the cis-side was varied from 6.0 to 7.4, and the medium pH of the trans-side was kept at 7.4. In the apical-to-basolateral direction, PSal increased linearly with the calculated concentration of nonionized SAL, indicating that SAL permeability was essentially the result of nonionic diffusion. In the basolateral-to-apical direction, PSal was about 2.5-fold higher than in the apical-to-basolateral direction and was not linearly related to the concentration of nonionized SAL molecules (0-4.5 nM), suggesting that besides nonionic diffusion, SAL was transported in its ionized form by a facilitated mechanism still active at 21 degrees C. This was confirmed by measuring basolateral-to-apical fluxes at 37 degrees C and observing that probenecid, an inhibitor of organic anion secretion, and cold SAL decreased PSal. Interestingly, at 37 degrees C, PSal in the apical-to-basolateral direction was also decreased by probenecid and cold SAL, suggesting the existence of a facilitated transport in this direction. These data demonstrated that the secretory transport of SAL is present in LLC-PK1 cells. The facilitated transport observed in the apical-to-basolateral direction suggests that in proximal tubule, SAL reabsorption might occur by facilitated mechanism and nonionic diffusion.
ANALYTIC FORMS OF THE PERPENDICULAR DIFFUSION COEFFICIENT IN NRMHD TURBULENCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shalchi, A., E-mail: andreasm4@yahoo.com
2015-02-01
In the past different analytic limits for the perpendicular diffusion coefficient of energetic particles interacting with magnetic turbulence were discussed. These different limits or cases correspond to different transport modes describing how the particles are diffusing across the large-scale magnetic field. In the current paper we describe a new transport regime by considering the model of noisy reduced magnetohydrodynamic turbulence. We derive different analytic forms of the perpendicular diffusion coefficient, and while we do this, we focus on the aforementioned new transport mode. We show that for this turbulence model a small perpendicular diffusion coefficient can be obtained so thatmore » the latter diffusion coefficient is more than hundred times smaller than the parallel diffusion coefficient. This result is relevant to explain observations in the solar system where such small perpendicular diffusion coefficients have been reported.« less
Chatterjee, Mithu; Liu, Qiujie; Menello, Caitlin; Galli, Mary; Gallavotti, Andrea
2017-08-01
The micronutrient boron is essential in maintaining the structure of plant cell walls and is critical for high yields in crop species. Boron can move into plants by diffusion or by active and facilitated transport mechanisms. We recently showed that mutations in the maize boron efflux transporter ROTTEN EAR (RTE) cause severe developmental defects and sterility. RTE is part of a small gene family containing five additional members ( RTE2 - RTE6 ) that show tissue-specific expression. The close paralogous gene RTE2 encodes a protein with 95% amino acid identity with RTE and is similarly expressed in shoot and root cells surrounding the vasculature. Despite sharing a similar function with RTE , mutations in the RTE2 gene do not cause growth defects in the shoot, even in boron-deficient conditions. However, rte2 mutants strongly enhance the rte phenotype in soils with low boron content, producing shorter plants that fail to form all reproductive structures. The joint action of RTE and RTE2 is also required in root development. These defects can be fully complemented by supplying boric acid, suggesting that diffusion or additional transport mechanisms overcome active boron transport deficiencies in the presence of an excess of boron. Overall, these results suggest that RTE2 and RTE function are essential for maize shoot and root growth in boron-deficient conditions. Copyright © 2017 by the Genetics Society of America.
Hervada, A R; Feit, E; Sagraves, R
1978-09-01
The amount of drug excreted into breast milk is dependent upon the lipid solubility of the medication, the mechanism of transport, the degree of ionization, and change in plasma pH. The higher the lipid solubility, the greater the concentration in human milk. The majority of drugs are transported into mammary blood capillaries by passive diffusion. The rest are transported by reverse pinocytosis. Once the drug has entered the epithelial cells of breast tissue, the drug molecules are excreted into the human milk by active transport, passive diffusion, or apocrine secretion. The amount of free (active) drug available for transport depends on the degree of protein binding the plasma pH. Another factor affecting excretion of drugs is the time when breast feeding occurs. In the 1st few days of life, when colostrum is present, water-soluble drugs pass through the breast more easily than afterwards when milk is produced. Then lipid-soluble drugs cross in higher concentrations. The effect on nursing infants is dependent on the amount excreted into the milk, the total amount absorbed by the infant, and the toxicity of the drug. The use of the following drugs in breast feeding mothers is reviewed: anticoagulants, antihypertensives and diuretics, antimicrobials, drugs affecting the central nervous system (alcohol, chloral hydrate, meprobamate, lithium, and aspirin), marijuana, other drugs (antihistamines, atropine, ergot alkaloids, laxatives, nicotine, iodides, propylthiouracil, theophylline), hormones (insulin, thyroxine, and oral contraceptives), and radiopharmaceuticals.
Simulations of eddy kinetic energy transport in barotropic turbulence
NASA Astrophysics Data System (ADS)
Grooms, Ian
2017-11-01
Eddy energy transport in rotating two-dimensional turbulence is investigated using numerical simulation. Stochastic forcing is used to generate an inhomogeneous field of turbulence and the time-mean energy profile is diagnosed. An advective-diffusive model for the transport is fit to the simulation data by requiring the model to accurately predict the observed time-mean energy distribution. Isotropic harmonic diffusion of energy is found to be an accurate model in the case of uniform, solid-body background rotation (the f plane), with a diffusivity that scales reasonably well with a mixing-length law κ ∝V ℓ , where V and ℓ are characteristic eddy velocity and length scales. Passive tracer dynamics are added and it is found that the energy diffusivity is 75 % of the tracer diffusivity. The addition of a differential background rotation with constant vorticity gradient β leads to significant changes to the energy transport. The eddies generate and interact with a mean flow that advects the eddy energy. Mean advection plus anisotropic diffusion (with reduced diffusivity in the direction of the background vorticity gradient) is moderately accurate for flows with scale separation between the eddies and mean flow, but anisotropic diffusion becomes a much less accurate model of the transport when scale separation breaks down. Finally, it is observed that the time-mean eddy energy does not look like the actual eddy energy distribution at any instant of time. In the future, stochastic models of the eddy energy transport may prove more useful than models of the mean transport for predicting realistic eddy energy distributions.
Perriot, Romain; Uberuaga, Blas P.; Zamora, Richard J.; ...
2017-09-20
Diffusion in complex oxides is critical to ionic transport, radiation damage evolution, sintering, and aging. In complex oxides such as pyrochlores, anionic diffusion is dramatically affected by cation disorder. However, little is known about how disorder influences cation transport. Here, we report results from classical and accelerated molecular dynamics simulations of vacancy-mediated cation diffusion in Gd 2Ti 2O 7 pyrochlore, on the microsecond timescale. We find that diffusion is slow at low levels of disorder, while higher disorder allows for fast diffusion, which is then accompanied by antisite annihilation and reordering, and thus a slowing of cation transport. Cation diffusivitymore » is therefore not constant, but decreases as the material reorders. We also show that fast cation diffusion is triggered by the formation of a percolation network of antisites. This is in contrast with observations from other complex oxides and disordered media models, suggesting a fundamentally different relation between disorder and mass transport.« less
Understanding ion and solvent transport in anion exchange membranes under humidified conditions
NASA Astrophysics Data System (ADS)
Sarode, Himanshu
Anion exchange membranes (AEM) have been studied for more than a decade for potential applications in low temperature fuel cells and other electrochemical devices. They offer the advantage of faster reaction kinetics under alkaline conditions and ability to perform without costly platinum catalyst. Inherently slow diffusion of hydroxide ions compared to protons is a primary reason for synthesizing and studying the ion transport properties in AEMs. The aim of this thesis is to understand ion transport in novel AEMs using Pulse Gradient stimulated Spin Echo Nuclear Magnetic Resonance technique (PGSE NMR), water uptake, ionic conductivity, Small Angle X-ray Scattering (SAXS) etc. All experiments were performed under humidified conditions (80--95% relative humidity) and fuel cell operating temperatures of 30--90°C. In this work, the NMR tube design was modified for humidifying the entire NMR tube evenly from our previous design. We have developed a new protocol for replacing caustic hydroxide with harmless fluoride or bicarbonate ions for 19F and 13 C NMR diffusion experiments. After performing these NMR experiments, we have obtained in-depth understanding of the morphology linked ion transport in AEMs. We have obtained the highest fluoride self-diffusion coefficient of > 1 x 10-5 cm2/sec ( 55°C) for ETFE-g-PVBTMA membrane which is a result of low tortuosity of 1 obtained for the membrane. This faster fluoride transport combined with low tortuosity of the membrane resulted in > 100mS/cm hydroxide conductivity for the membrane. Polycyclooctene (PCOE) based triblock copolymers are also studied for in-depth understanding of molecular weight, IEC, mechanical and transport properties. Effect of melting temperature of PCOE has favorable effect on increasing ion conductivity and lowering activation energy. Mechanical properties of these types of membranes were studied showing detrimental effect of water plasticization which results in unsuitable mechanical properties. Hydroxide conductivity was studied to measure the effectiveness of AEMs for practical applications. PPO-b-PVBTMA membrane showed more than 100mS/cm conductivity and PCOE based membranes showed ~ 70mS/cm conductivity which is a combined effect of Grotthuss hopping and vehicular mode of ion transport, which lowers the activation energy to < 14 kJ/mol. Overall this thesis sheds light on one of the most important aspect of AEMs: ion/solvent transport, we have studied effect of membrane chemistry, IEC, morphology, polymer molecular weight on self-diffusion, ionic conductivity to have a better understanding for development of a good AEM for practical applications.
NASA Astrophysics Data System (ADS)
Biswas, Pritha; Das, Atreyee; Yasmin, Tanvee; Kanjilal, Baishali; Chakrabarti, Haimanti
2018-05-01
The study of ion transport in biological system has become a topic of great current interest. This work presents the diffusive transport properties through a typical semi interpenetrating polymeric network (SIPN) which mimics many characteristic features of the walls of human food pipes. The SIPN matrix has been synthesised from Polyvinyl alcohol, Acrylamide monomer, Glutaraldehyde and Ammonium Per sulphate in our laboratory is utilised to study the diffusive transport in the absence and presence of aqueous electrolyte (KCl) at varying concentrations. The diffusivity of the SIPN polymer hydrogel was estimated by the `Theory of Elastomer' to get an insight into process of Potassium and Chlorine ion transport through the SIPN.
Particle Transport through Scattering Regions with Clear Layers and Inclusions
NASA Astrophysics Data System (ADS)
Bal, Guillaume
2002-08-01
This paper introduces generalized diffusion models for the transport of particles in scattering media with nonscattering inclusions. Classical diffusion is known as a good approximation of transport only in scattering media. Based on asymptotic expansions and the coupling of transport and diffusion models, generalized diffusion equations with nonlocal interface conditions are proposed which offer a computationally cheap, yet accurate, alternative to solving the full phase-space transport equations. The paper shows which computational model should be used depending on the size and shape of the nonscattering inclusions in the simplified setting of two space dimensions. An important application is the treatment of clear layers in near-infrared (NIR) spectroscopy, an imaging technique based on the propagation of NIR photons in human tissues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perriot, Romain; Uberuaga, Blas P.; Zamora, Richard J.
Diffusion in complex oxides is critical to ionic transport, radiation damage evolution, sintering, and aging. In complex oxides such as pyrochlores, anionic diffusion is dramatically affected by cation disorder. However, little is known about how disorder influences cation transport. Here, we report results from classical and accelerated molecular dynamics simulations of vacancy-mediated cation diffusion in Gd 2Ti 2O 7 pyrochlore, on the microsecond timescale. We find that diffusion is slow at low levels of disorder, while higher disorder allows for fast diffusion, which is then accompanied by antisite annihilation and reordering, and thus a slowing of cation transport. Cation diffusivitymore » is therefore not constant, but decreases as the material reorders. We also show that fast cation diffusion is triggered by the formation of a percolation network of antisites. This is in contrast with observations from other complex oxides and disordered media models, suggesting a fundamentally different relation between disorder and mass transport.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Rui; Gao, Liming, E-mail: liming.gao@sjtu.edu.cn; Li, Ming, E-mail: mingli90@sjtu.edu.cn
As the continuous shrinkage of the interconnect line width in microelectronics devices, there is a growing concern about the electromigration (EM) failure of bonding wire. In addition, an innovative Ag–8Au–3Pd alloy wire has shown promise as an economical substitute for gold wire interconnects due to the cost pressure of gold in the last decade. In present study of the Ag–8Au–3Pd alloy wire, the surface diffusion occupied the dominant position during EM failure, and the activation energy was found to be 0.61 eV. In order to reveal the failure mechanism, the cross-sections of the Ag–8Au–3Pd alloy wire during EM were preparedmore » by focused ion beam (FIB) micro-machining for electron backscatter diffraction (EBSD) analysis. The microstructure evolution of the Ag–8Au–3Pd alloy wire was characterized by the grain size and grain boundary. As a result, the EM failure originates in the atom transportation, which causes grain size increasing and atom diffusion on the wire surface. - Highlights: • The activation energy of Ag–8Au–3Pd alloy wire was obtained as 0.61 eV. • During EM, the silver atoms diffused from negative to the positive terminal on the wire surface. • The microstructure (grain size and grain boundary) was characterized by FIB-EBSD. • During EM, the atom transportation was found to cause grain size growth and atom diffusion on the wire surface.« less
Brahmajothi, Mulugu V; Mason, S Nicholas; Whorton, A Richard; McMahon, Timothy J; Auten, Richard L
2010-07-15
The pathway by which inhaled NO gas enters pulmonary alveolar epithelial cells has not been directly tested. Although the expected mechanism is diffusion, another route is the formation of S-nitroso-L-cysteine, which then enters the cell through the L-type amino acid transporter (LAT). To determine if NO gas also enters alveolar epithelium this way, we exposed alveolar epithelial-rat type I, type II, L2, R3/1, and human A549-cells to NO gas at the air liquid interface in the presence of L- and D-cysteine+/-LAT competitors. NO gas exposure concentration dependently increased intracellular NO and S-nitrosothiol levels in the presence of L- but not D-cysteine, which was inhibited by LAT competitors, and was inversely proportional to diffusion distance. The effect of L-cysteine on NO uptake was also concentration dependent. Without preincubation with L-cysteine, NO uptake was significantly reduced. We found similar effects using ethyl nitrite gas in place of NO. Exposure to either gas induced activation of soluble guanylyl cylase in a parallel manner, consistent with LAT dependence. We conclude that NO gas uptake by alveolar epithelium achieves NO-based signaling predominantly by forming extracellular S-nitroso-L-cysteine that is taken up through LAT, rather than by diffusion. Augmenting extracellular S-nitroso-L-cysteine formation may augment pharmacological actions of inhaled NO gas. Copyright 2010 Elsevier Inc. All rights reserved.
Perez, L; Trüeb, S; Cowie, H; Keuken, M P; Mudu, P; Ragettli, M S; Sarigiannis, D A; Tobollik, M; Tuomisto, J; Vienneau, D; Sabel, C; Künzli, N
2015-12-01
Local strategies to reduce green-house gases (GHG) imply changes of non-climatic exposure patterns. To assess the health impacts of locally relevant transport-related climate change policies in Basel, Switzerland. We modelled change in mortality and morbidity for the year 2020 based on several locally relevant transport scenarios including all decided transport policies up to 2020, additional realistic and hypothesized traffic reductions, as well as ambitious diffusion levels of electric cars. The scenarios were compared to the reference condition in 2010 assumed as status quo. The changes in non-climatic population exposure included ambient air pollution, physical activity, and noise. As secondary outcome, changes in Disability-Adjusted Life Years (DALYs) were put into perspective with predicted changes of CO2 emissions and fuel consumption. Under the scenario that assumed a strict particle emissions standard in diesel cars and all planned transport measures, 3% of premature deaths could be prevented from projected PM2.5 exposure reduction. A traffic reduction scenario assuming more active trips provided only minor added health benefits for any of the changes in exposure considered. A hypothetical strong support to electric vehicles diffusion would have the largest health effectiveness given that the energy production in Basel comes from renewable sources. The planned local transport related GHG emission reduction policies in Basel are sensible for mitigating climate change and improving public health. In this context, the most effective policy remains increasing zero-emission vehicles. Copyright © 2015 Elsevier Ltd. All rights reserved.
Novikov, S V
2018-01-14
Diffusive transport of a particle in a spatially correlated random energy landscape having exponential density of states has been considered. We exactly calculate the diffusivity in the nondispersive quasi-equilibrium transport regime for the 1D transport model and found that for slow decaying correlation functions the diffusivity becomes singular at some particular temperature higher than the temperature of the transition to the true non-equilibrium dispersive transport regime. It means that the diffusion becomes anomalous and does not follow the usual ∝ t 1/2 law. In such situation, the fully developed non-equilibrium regime emerges in two stages: first, at some temperature there is the transition from the normal to anomalous diffusion, and then at lower temperature the average velocity for the infinite medium goes to zero, thus indicating the development of the true dispersive regime. Validity of the Einstein relation is discussed for the situation where the diffusivity does exist. We provide also some arguments in favor of conservation of the major features of the new transition scenario in higher dimensions.
Cardarelli, Francesco; Tosti, Luca; Serresi, Michela; Beltram, Fabio; Bizzarri, Ranieri
2012-02-17
A quantitative description of carrier-mediated nuclear export in live cells is presented. To this end, we fused a prototypical leucine-rich nuclear export signal (NES) to GFP as a cargo model and expressed the fluorescent chimera in live CHO-K1 cells. By modeling FRAP data, we calculate the NES affinity for the export machinery and the maximum rate of nuclear export achievable at saturation of endogenous carriers. The measured active-export time through the Nuclear Pore Complex (NPC) is 18 ms, remarkably similar to the previously determined active-import rate. Also, our results reveal that active export/import and active export/passive diffusion fluxes are uncoupled, thus complementing previous reports on active import/passive diffusion uncoupling. These findings suggest differential gating at the NPC level.
Experimental Evaluation of a Carbon Slurry Droplet Combustion Model
1981-12-14
the increased mass and energy transport due to the flow percolating through the open porous structure of the carbon agglomerate. Two separate models...catalysts. Transport-rate enhancement factors were also employed in the carbon-agglomerate reaction analysis to account for the increased mass and energy ...D Effective binary diffusivity Ei Activation energy h Heat transfer coefficient H2 Diatomic hydrogen H20 Water i Enthalpy if Enthalpy of formation
Refractive-Index-Based Screening of Membrane-Protein-Mediated Transfer across Biological Membranes
Brändén, Magnus; Tabaei, Seyed R.; Fischer, Gerhard; Neutze, Richard; Höök, Fredrik
2010-01-01
Abstract Numerous membrane-transport proteins are major drug targets, and therefore a key ingredient in pharmaceutical development is the availability of reliable, efficient tools for membrane transport characterization and inhibition. Here, we present the use of evanescent-wave sensing for screening of membrane-protein-mediated transport across lipid bilayer membranes. This method is based on a direct recording of the temporal variations in the refractive index that occur upon a transfer-dependent change in the solute concentration inside liposomes associated to a surface plasmon resonance (SPR) active sensor surface. The applicability of the method is demonstrated by a functional study of the aquaglyceroporin PfAQP from the malaria parasite Plasmodium falciparum. Assays of the temperature dependence of facilitated diffusion of sugar alcohols on a single set of PfAQP-reconstituted liposomes reveal that the activation energies for facilitated diffusion of xylitol and sorbitol are the same as that previously measured for glycerol transport in the aquaglyceroporin of Escherichia coli (5 kcal/mole). These findings indicate that the aquaglyceroporin selectivity filter does not discriminate sugar alcohols based on their length, and that the extra energy cost of dehydration of larger sugar alcohols, upon entering the pore, is compensated for by additional hydrogen-bond interactions within the aquaglyceroporin pore. PMID:20655840
Refractive-index-based screening of membrane-protein-mediated transfer across biological membranes.
Brändén, Magnus; Tabaei, Seyed R; Fischer, Gerhard; Neutze, Richard; Höök, Fredrik
2010-07-07
Numerous membrane-transport proteins are major drug targets, and therefore a key ingredient in pharmaceutical development is the availability of reliable, efficient tools for membrane transport characterization and inhibition. Here, we present the use of evanescent-wave sensing for screening of membrane-protein-mediated transport across lipid bilayer membranes. This method is based on a direct recording of the temporal variations in the refractive index that occur upon a transfer-dependent change in the solute concentration inside liposomes associated to a surface plasmon resonance (SPR) active sensor surface. The applicability of the method is demonstrated by a functional study of the aquaglyceroporin PfAQP from the malaria parasite Plasmodium falciparum. Assays of the temperature dependence of facilitated diffusion of sugar alcohols on a single set of PfAQP-reconstituted liposomes reveal that the activation energies for facilitated diffusion of xylitol and sorbitol are the same as that previously measured for glycerol transport in the aquaglyceroporin of Escherichia coli (5 kcal/mole). These findings indicate that the aquaglyceroporin selectivity filter does not discriminate sugar alcohols based on their length, and that the extra energy cost of dehydration of larger sugar alcohols, upon entering the pore, is compensated for by additional hydrogen-bond interactions within the aquaglyceroporin pore. Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Kato, Kazuhiko; Shirasaka, Yoshiyuki; Kuraoka, Erika; Kikuchi, Akihiro; Iguchi, Maki; Suzuki, Hisashi; Shibasaki, Shigeki; Kurosawa, Tohru; Tamai, Ikumi
2010-10-04
Tebipenem pivoxil (TBPM-PI) is an oral carbapenem antibiotic for treating otolaryngologic and respiratory infections in pediatric patients. This agent is a prodrug to improve intestinal absorption of TBPM, an active form, and an absorption rate of TBPM-PI is higher than those of other prodrug-type β-lactam antibiotics. In the present study, we hypothesized that a certain mechanism other than simple diffusion is involved in the process of improved intestinal absorption of TBPM-PI and examined the mechanism. TBPM-PI uptake by Caco-2 cells was decreased by ATP-depletion and lowering the temperature to 4 °C, suggesting the contribution of carrier-mediated transport mechanisms. This uptake was partially decreased by ACE inhibitors, and the reduction of the absorption by captopril was observed by in vivo study and in situ single-pass intestinal perfusion study in rat, supporting the contribution of influx transporters. Since some ACE inhibitors and β-lactam antibiotics are reported to be substrates of PEPT and OATP families, we measured transporting activity of TBPM-PI by intestinally expressed transporters, PEPT1, OATP1A2, and OATP2B1. As a result, significant transport activities were observed by both OATP1A2 and OATP2B1 but not by PEPT1. Interestingly, pH dependence of TBPM-PI transports was different between OATP1A2 and OATP2B1, showing highest activity by OATP1A2 at pH 6.5, while OATP2B1-mediated uptake was higher at neutral and weak alkaline pH. OATP1A2 exhibited higher affinity for TBPM-PI (K(m) = 41.1 μM) than OATP2B1 (K(m) > 1 mM) for this agent. These results suggested that TBPM-PI has high intestinal apical membrane permeability due to plural intestinal transport routes, including the uptake transporters such as OATP1A2 and OATP2B1 as well as simple diffusion.
Crossbar nanoarchitectonics of the crosslinked self-assembled monolayer
2014-01-01
A bottom-up approach was devised to build a crossbar device using the crosslinked SAM of the 5,5′-bis (mercaptomethyl)-2,2′-bipyridine-Ni2+ (BPD- Ni2+) on a gold surface. To avoid metal diffusion through the organic film, the author used (i) nanoscale bottom electrodes to reduce the probability of defects on the bottom electrodes and (ii) molecular crosslinked technology to avoid metal diffusion through the SAMs. The properties of the crosslinked self-assembled monolayer were determined by XPS. I-V characteristics of the device show thermally activated hopping transport. The implementation of this type of architecture will open up new vistas for a new class of devices for transport, storage, and computing. PMID:24994952
Chara, Osvaldo; Borges, Augusto; Milhiet, Pierre-Emmanuel; Nöllmann, Marcelo; Cattoni, Diego I
2018-03-27
Transport of cellular cargo by molecular motors requires directionality to ensure proper biological functioning. During sporulation in Bacillus subtilis, directionality of chromosome transport is mediated by the interaction between the membrane-bound DNA translocase SpoIIIE and specific octameric sequences (SRS). Whether SRS regulate directionality by recruiting and orienting SpoIIIE or by simply catalyzing its translocation activity is still unclear. By using atomic force microscopy and single-round fast kinetics translocation assays we determined the localization and dynamics of diffusing and translocating SpoIIIE complexes on DNA with or without SRS. Our findings combined with mathematical modelling revealed that SpoIIIE directionality is not regulated by protein recruitment to SRS but rather by a fine-tuned balance among the rates governing SpoIIIE-DNA interactions and the probability of starting translocation modulated by SRS. Additionally, we found that SpoIIIE can start translocation from non-specific DNA, providing an alternative active search mechanism for SRS located beyond the exploratory length defined by 1D diffusion. These findings are relevant in vivo in the context of chromosome transport through an open channel, where SpoIIIE can rapidly explore DNA while directionality is modulated by the probability of translocation initiation upon interaction with SRS versus non-specific DNA.
Lateral diffusion of proteins in the periplasm of Escherichia coli.
Brass, J M; Higgins, C F; Foley, M; Rugman, P A; Birmingham, J; Garland, P B
1986-01-01
We have introduced biologically active, fluorescently labeled maltose-binding protein into the periplasmic space of Escherichia coli and measured its lateral diffusion coefficient by the fluorescence photobleaching recovery method. Diffusion of this protein in the periplasm was found to be surprisingly low (lateral diffusion coefficient, 0.9 X 10(-10) cm2 s-1), about 1,000-fold lower than would be expected for diffusion in aqueous medium and almost 100-fold lower than for an equivalent-size protein in the cytoplasm. Galactose-binding protein, myoglobin, and cytochrome c were also introduced into the periplasm and had diffusion coefficients identical to that determined for the maltose-binding protein. For all proteins nearly 100% recovery of fluorescence was obtained after photobleaching, indicating that the periplasm is a single contiguous compartment surrounding the cell. These data have considerable implications for periplasmic structure and for the role of periplasmic proteins in transport and chemotaxis. Images PMID:3005237
Gas transport in unsaturated porous media: the adequacy of Fick's law
Thorstenson, D.C.; Pollock, D.W.
1989-01-01
The increasing use of natural unsaturated zones as repositories for landfills and disposal sites for hazardous wastes (chemical and radioactive) requires a greater understanding of transport processes in the unsaturated zone. For volatile constituents an important potential transport mechanism is gaseous diffusion. Diffusion, however, cannot be treated as an independent isolated transport mechanism. A complete understanding of multicomponent gas transport in porous media (unsaturated zones) requires a knowledge of Knudsen transport, the molecular and nonequimolar components of diffusive flux, and viscous (pressure driven) flux. This review presents a brief discussion of the underlying principles and interrelationships among each of the above flux mechanisms. -from Authors
NASA Astrophysics Data System (ADS)
Machida, Manabu
2017-01-01
We consider the radiative transport equation in which the time derivative is replaced by the Caputo derivative. Such fractional-order derivatives are related to anomalous transport and anomalous diffusion. In this paper we describe how the time-fractional radiative transport equation is obtained from continuous-time random walk and see how the equation is related to the time-fractional diffusion equation in the asymptotic limit. Then we solve the equation with Legendre-polynomial expansion.
Anomalous Transport of Cosmic Rays in a Nonlinear Diffusion Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Litvinenko, Yuri E.; Fichtner, Horst; Walter, Dominik
2017-05-20
We investigate analytically and numerically the transport of cosmic rays following their escape from a shock or another localized acceleration site. Observed cosmic-ray distributions in the vicinity of heliospheric and astrophysical shocks imply that anomalous, superdiffusive transport plays a role in the evolution of the energetic particles. Several authors have quantitatively described the anomalous diffusion scalings, implied by the data, by solutions of a formal transport equation with fractional derivatives. Yet the physical basis of the fractional diffusion model remains uncertain. We explore an alternative model of the cosmic-ray transport: a nonlinear diffusion equation that follows from a self-consistent treatmentmore » of the resonantly interacting cosmic-ray particles and their self-generated turbulence. The nonlinear model naturally leads to superdiffusive scalings. In the presence of convection, the model yields a power-law dependence of the particle density on the distance upstream of the shock. Although the results do not refute the use of a fractional advection–diffusion equation, they indicate a viable alternative to explain the anomalous diffusion scalings of cosmic-ray particles.« less
Tucker, J E; Mauzerall, D; Tucker, E B
1989-07-01
The kinetics of symplastic transport in staminal hairs of Setcreasea purpurea was studied. The tip cell of a staminal hair was microinjected with carboxyfluorescein (CF) and the symplastic transport of this CF was videotaped and the digital data analyzed to produce kinetic curves. Using a finite difference equation for diffusion between cells and for loss of dye into the vacuole, kinetic curves were calculated and fitted to the observed data. These curves were matched with data from actual microinjection experiments by adjusting K (the coefficient of intercellular junction diffusion) and L (the coefficient of intracellular loss) until a minimum in the least squares difference between the curves was obtained. (a) Symplastic transport of CF was governed by diffusion through intercellular pores (plasmodesmata) and intracellular loss. Diffusion within the cell cytoplasm was never limiting. (b) Each cell and its plasmodesmata must be considered as its own diffusion system. Therefore, a diffusion coefficient cannot be calculated for an entire chain of cells. (c) The movement through plasmodesmata in either direction was the same since the data are fit by a diffusion equation. (d) Diffusion through the intercellular pores was estimated to be slower than diffusion through similar pores filled with water.
Tucker, Joseph E.; Mauzerall, David; Tucker, Edward B.
1989-01-01
The kinetics of symplastic transport in staminal hairs of Setcreasea purpurea was studied. The tip cell of a staminal hair was microinjected with carboxyfluorescein (CF) and the symplastic transport of this CF was videotaped and the digital data analyzed to produce kinetic curves. Using a finite difference equation for diffusion between cells and for loss of dye into the vacuole, kinetic curves were calculated and fitted to the observed data. These curves were matched with data from actual microinjection experiments by adjusting K (the coefficient of intercellular junction diffusion) and L (the coefficient of intracellular loss) until a minimum in the least squares difference between the curves was obtained. (a) Symplastic transport of CF was governed by diffusion through intercellular pores (plasmodesmata) and intracellular loss. Diffusion within the cell cytoplasm was never limiting. (b) Each cell and its plasmodesmata must be considered as its own diffusion system. Therefore, a diffusion coefficient cannot be calculated for an entire chain of cells. (c) The movement through plasmodesmata in either direction was the same since the data are fit by a diffusion equation. (d) Diffusion through the intercellular pores was estimated to be slower than diffusion through similar pores filled with water. PMID:16666864
NASA Astrophysics Data System (ADS)
Cherniak, D. J.; Watson, E. B.
2011-12-01
Diffusion of helium has been characterized in natural Fe-bearing olivine (~Fo90) and synthetic forsterite. Polished, oriented slabs of olivine were implanted with 3He, at 100 keV at a dose of 5x1015/cm2 or at 3.0 MeV at a dose of 1x1016/cm2. A set of experiments on the implanted olivine were run in 1-atm furnaces. In addition to the one-atm experiments, experiments on implanted samples were also run at higher pressures (2.6 and 2.7 GPa) to assess the potential effects of pressure on He diffusion and the applicability of the measured diffusivities in describing He transport in the mantle. The high-pressure experiments were conducted in a piston-cylinder apparatus using an "ultra-soft" pressure cell, with the diffusion sample directly surrounded by AgCl. 3He distributions following experiments were measured with Nuclear Reaction Analysis using the reaction 3He(d,p)4He. This direct profiling method permits us to evaluate anisotropy of diffusion, which cannot be easily assessed using bulk-release methods. For diffusion in forsterite parallel to c we obtain the following Arrhenius relation over the temperatures 250-950°C: D = 3.91x10-6exp(-159 ± 4 kJ mol-1/RT) m2/sec. The data define a single Arrhenius line spanning more than 7 orders of magnitude in D and 700°C in temperature. Diffusion parallel to a appears slightly slower, yielding an activation energy for diffusion of 135 kJ/mol and a pre-exponential factor of 3.73x10-8 m2/sec. Diffusion parallel to b is slower than diffusion parallel to a (by about two-thirds of a log unit); for this orientation an activation energy of 138 kJ/mol and a pre-exponential factor of 1.34x10-8 m2/sec are obtained. This anisotropy is broadly consistent with observations for diffusion of Ni and Fe-Mg in olivine. Diffusion in Fe-bearing olivine (transport parallel to b) agrees within uncertainty with findings for He diffusion in forsterite. The higher-pressure experiments yield diffusivities in agreement with those from the 1-atm experiments, indicating that the results reported here can be reasonably applied to modeling He transport in the upper mantle. The insensitivity of He diffusion to pressure over the investigated range of conditions suggests that compression of the mineral lattice is not sufficient to significantly influence migration of the relatively small helium atoms, which likely diffuse via crystal interstices. The He diffusivities in this work are generally consistent with results from the study of Futagami et al. (1993), who measured He diffusion in natural olivine by outgassing 4He implanted samples, and with the diffusivities measured by bulk-release of 4He and 3He by Shuster et al. (2003), but are about 2 orders of magnitude slower than the recent findings of Tolstikhin et al. (2010) and Blard et al. (2008) . An up-temperature extrapolation of our data also show reasonable agreement with the higher-temperature measurements of Hart (1984). Blard et al. (2008) GCA 72, 3788-3803; Futagami et al. (1993) GCA 57, 3177-3194; Hart (1984) EPSL 70, 297-302; Shuster et al.( 2003) EPSL 217, 19-32; Tolstikhin et al. (2010) GCA 74, 1436-1447
Diffusion-Driven Charge Transport in Light Emitting Devices
Oksanen, Jani; Suihkonen, Sami
2017-01-01
Almost all modern inorganic light-emitting diode (LED) designs are based on double heterojunctions (DHJs) whose structure and current injection principle have remained essentially unchanged for decades. Although highly efficient devices based on the DHJ design have been developed and commercialized for energy-efficient general lighting, the conventional DHJ design requires burying the active region (AR) inside a pn-junction. This has hindered the development of emitters utilizing nanostructured ARs located close to device surfaces such as nanowires or surface quantum wells. Modern DHJ III-N LEDs also exhibit resistive losses that arise from the DHJ device geometry. The recently introduced diffusion-driven charge transport (DDCT) emitter design offers a novel way to transport charge carriers to unconventionally placed ARs. In a DDCT device, the AR is located apart from the pn-junction and the charge carriers are injected into the AR by bipolar diffusion. This device design allows the integration of surface ARs to semiconductor LEDs and offers a promising method to reduce resistive losses in high power devices. In this work, we present a review of the recent progress in gallium nitride (GaN) based DDCT devices, and an outlook of potential DDCT has for opto- and microelectronics. PMID:29231900
Effect of hole transport on performance of infrared type-II superlattice light emitting diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Youxi; Suchalkin, Sergey; Kipshidze, Gela
2015-04-28
The effect of hole transport on the performance of infrared light emitting diodes (LED) was investigated. The active area of the LEDs comprised two type-II superlattices with different periods and widths connected in series. Electroluminescence spectra of the devices with different positions of long wave and mid wave superlattice sections were mostly contributed by the superlattice closest to the p-contact. The experimental results indicate that due to suppressed vertical hole transport, the recombination of electrically injected electrons and holes in a type II superlattice LED active region takes place within a few superlattice periods near p-barrier. Possible reason for themore » effect is reduction of hole diffusion coefficient in an active area of a superlattice LED under bias.« less
Anomalous extracellular diffusion in rat cerebellum.
Xiao, Fanrong; Hrabe, Jan; Hrabetova, Sabina
2015-05-05
Extracellular space (ECS) is a major channel transporting biologically active molecules and drugs in the brain. Diffusion-mediated transport of these substances is hindered by the ECS structure but the microscopic basis of this hindrance is not fully understood. One hypothesis proposes that the hindrance originates in large part from the presence of dead-space (DS) microdomains that can transiently retain diffusing molecules. Because previous theoretical and modeling work reported an initial period of anomalous diffusion in similar environments, we expected that brain regions densely populated by DS microdomains would exhibit anomalous extracellular diffusion. Specifically, we targeted granular layers (GL) of rat and turtle cerebella that are populated with large and geometrically complex glomeruli. The integrative optical imaging (IOI) method was employed to evaluate diffusion of fluorophore-labeled dextran (MW 3000) in GL, and the IOI data analysis was adapted to quantify the anomalous diffusion exponent dw from the IOI records. Diffusion was significantly anomalous in rat GL, where dw reached 4.8. In the geometrically simpler turtle GL, dw was elevated but not robustly anomalous (dw = 2.6). The experimental work was complemented by numerical Monte Carlo simulations of anomalous ECS diffusion in several three-dimensional tissue models containing glomeruli-like structures. It demonstrated that both the duration of transiently anomalous diffusion and the anomalous exponent depend on the size of model glomeruli and the degree of their wrapping. In conclusion, we have found anomalous extracellular diffusion in the GL of rat cerebellum. This finding lends support to the DS microdomain hypothesis. Transiently anomalous diffusion also has a profound effect on the spatiotemporal distribution of molecules released into the ECS, especially at diffusion distances on the order of a few cell diameters, speeding up short-range diffusion-mediated signals in less permeable structures. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.
On time-dependent diffusion coefficients arising from stochastic processes with memory
NASA Astrophysics Data System (ADS)
Carpio-Bernido, M. Victoria; Barredo, Wilson I.; Bernido, Christopher C.
2017-08-01
Time-dependent diffusion coefficients arise from anomalous diffusion encountered in many physical systems such as protein transport in cells. We compare these coefficients with those arising from analysis of stochastic processes with memory that go beyond fractional Brownian motion. Facilitated by the Hida white noise functional integral approach, diffusion propagators or probability density functions (pdf) are obtained and shown to be solutions of modified diffusion equations with time-dependent diffusion coefficients. This should be useful in the study of complex transport processes.
Thermal conductivity of III-V semiconductor superlattices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mei, S., E-mail: song.mei@wisc.edu; Knezevic, I., E-mail: irena.knezevic@wisc.edu
2015-11-07
This paper presents a semiclassical model for the anisotropic thermal transport in III-V semiconductor superlattices (SLs). An effective interface rms roughness is the only adjustable parameter. Thermal transport inside a layer is described by the Boltzmann transport equation in the relaxation time approximation and is affected by the relevant scattering mechanisms (three-phonon, mass-difference, and dopant and electron scattering of phonons), as well as by diffuse scattering from the interfaces captured via an effective interface scattering rate. The in-plane thermal conductivity is obtained from the layer conductivities connected in parallel. The cross-plane thermal conductivity is calculated from the layer thermal conductivitiesmore » in series with one another and with thermal boundary resistances (TBRs) associated with each interface; the TBRs dominate cross-plane transport. The TBR of each interface is calculated from the transmission coefficient obtained by interpolating between the acoustic mismatch model (AMM) and the diffuse mismatch model (DMM), where the weight of the AMM transmission coefficient is the same wavelength-dependent specularity parameter related to the effective interface rms roughness that is commonly used to describe diffuse interface scattering. The model is applied to multiple III-arsenide superlattices, and the results are in very good agreement with experimental findings. The method is both simple and accurate, easy to implement, and applicable to complicated SL systems, such as the active regions of quantum cascade lasers. It is also valid for other SL material systems with high-quality interfaces and predominantly incoherent phonon transport.« less
Direct monitoring of wind-induced pressure-pumping on gas transport in soil
NASA Astrophysics Data System (ADS)
Laemmel, Thomas; Mohr, Manuel; Schindler, Dirk; Schack-Kirchner, Helmer; Maier, Martin
2017-04-01
Gas exchange between soil and atmosphere is important for the biogeochemistry of soils and is commonly assumed to be governed by molecular diffusion. Yet a few previous field studies identified other gas transport processes such as wind-induced pressure-pumping to enhance soil-atmosphere fluxes significantly. However, since these wind-induced non-diffusive gas transport processes in soil often occur intermittently, the quantification of their contribution to soil gas emissions is challenging. To quantify the effects of wind-induced pressure-pumping on soil gas transport, we developed a method for in situ monitoring of soil gas transport. The method includes the use of Helium (He) as a tracer gas which was continuously injected into the soil. The resulting He steady-state concentration profile was monitored. Gas transport parameters of the soil were inversely modelled. We used our method during a field campaign in a well-aerated forest soil over three months. During periods of low wind speed, soil gas transport was modelled assuming diffusion as transport process. During periods of high wind speed, the previously steady diffusive He concentration profile showed temporary concentration decreases in the topsoil, indicating an increase of the effective gas transport rate in the topsoil up to 30%. The enhancement of effective topsoil soil gas diffusivity resulted from wind-induced air pressure fluctuations which are referred to as pressure-pumping. These air pressure fluctuations had frequencies between 0.1 and 0.01 Hz and amplitudes up to 10 Pa and occurred at above-canopy wind speeds greater than 5 m s-1. We could show the importance of the enhancement of the gas transport rate in relation with the wind intensity and corresponding air pressure fluctuations characteristics. We directly detected and quantified the pressure-pumping effect on gas transport in soil in a field study for the first time, and could thus validate and underpin the importance of this non-diffusive gas transport process. Our method can also be used to study other non-diffusive gas transport processes occurring in soil and snow, and their possible feedbacks or interactions with biogeochemical processes.
Helium diffusion in carbonates
NASA Astrophysics Data System (ADS)
Amidon, W. H.; Cherniak, D. J.; Watson, E. B.; Hobbs, D.
2013-12-01
The abundance and large grain size of carbonate minerals make them a potentially attractive target for 4He thermochronology and 3He cosmogenic dating, although the diffusive properties of helium in carbonates remain poorly understood. This work characterizes helium diffusion in calcite and dolomite to better understand the crystal-chemical factors controlling He transport and retentivity. Slabs of cleaved natural calcite and dolomite, and polished sections of calcite cut parallel or normal to c, were implanted with 3He at 3 MeV with a dose of 5x1015/cm2. Implanted carbonates were heated in 1-atm furnaces, and 3He distributions following diffusion anneals were profiled with Nuclear Reaction Analysis using the reaction 3He(d,p)4He. For 3He transport normal to cleavage surfaces in calcite, we obtain the following Arrhenius relation over the temperature range 78-300°C: Dcalcite = 9.0x10-9exp(-55 × 6 kJ mol-1/RT) m2sec-1. Diffusion in calcite exhibits marked anisotropy, with diffusion parallel to c about two orders of magnitude slower than diffusion normal to cleavage faces. He diffusivities for transport normal to the c-axis are similar in value to those normal to cleavage surfaces. Our findings are broadly consistent with helium diffusivities from step-heating measurements of calcite by Copeland et al. (2007); these bulk degassing data may reflect varying effects of diffusional anisotropy. Helium diffusion normal to cleavage surfaces in dolomite is significantly slower than diffusion in calcite, and has a much higher activation energy for diffusion. For dolomite, we obtain the following Arrhenius relation for He diffusion over the temperature range 150-400°C: Ddolomite = 9.0x10-8exp(-92 × 9 kJ mol-1/RT) m2sec-1. The role of crystallographic structure in influencing these differences among diffusivities was evaluated using the maximum aperture approach of Cherniak and Watson (2011), in which crystallographic structures are sectioned along possible diffusion directions and the maximum interstitial apertures in each 'slice' in the structure are identified. Preliminary results show that observed differences in diffusivities are consistent with the size of the smallest maximum aperture along each diffusion direction. In calcite, the smallest maximum apertures are ~0.92 and ~0.66 angstroms for cleavage-normal and c-axis parallel directions respectively. In dolomite, the smallest maximum aperture is ~0.78 angstroms for the cleavage normal direction. Work is in progress on characterizing helium diffusion for other orientations in dolomite, and in other carbonates, including aragonite and magnesite, and in implementing these diffusion findings in the interpretation and modeling of bulk volume diffusion in heterogeneous calcite crystals common in many geologic applications. Copeland et al. (2007) GCA 71, 4488-4511 Cherniak and Watson, (2011) Chem. Geo. 288, 149-161
Diffusive-convective physical vapor transport of PbTe from a Te-rich solid source
NASA Technical Reports Server (NTRS)
Zoutendyk, J.; Akutagawa, W.
1982-01-01
Crystal growth of PbTe by physical vapor transport (sublimation) in a closed ampoule is governed by the vapor species in thermal equilibrium with the solid compound. Deviations from stoichiometry in the source material cause diffusion limitation of the transport rate, which can be modified by natural (gravity-driven) convection. Mass-transport experiments have been performed using Te-rich material wherein sublimation rates have been measured in order to study the effects of natural convection in diffusion-limited vapor transport. Linear velocities for both crystal growth and evaporation (back sublimation) have been measured for transport in the direction of gravity, horizontally, and opposite to gravity. The experimental results are discussed in terms of both the one-dimensional diffusive-advective model and current, more sophisticated theory which includes natural convection. There is some evidence that convection effects from radial temperature gradients and solutal density gradients have been observed.
Retardation of mobile radionuclides in granitic rock fractures by matrix diffusion
NASA Astrophysics Data System (ADS)
Hölttä, P.; Poteri, A.; Siitari-Kauppi, M.; Huittinen, N.
Transport of iodide and sodium has been studied by means of block fracture and core column experiments to evaluate the simplified radionuclide transport concept. The objectives were to examine the processes causing retention in solute transport, especially matrix diffusion, and to estimate their importance during transport in different scales and flow conditions. Block experiments were performed using a Kuru Grey granite block having a horizontally planar natural fracture. Core columns were constructed from cores drilled orthogonal to the fracture of the granite block. Several tracer tests were performed using uranine, 131I and 22Na as tracers at water flow rates 0.7-50 μL min -1. Transport of tracers was modelled by applying the advection-dispersion model based on the generalized Taylor dispersion added with matrix diffusion. Scoping calculations were combined with experiments to test the model concepts. Two different experimental configurations could be modelled applying consistent transport processes and parameters. The processes, advection-dispersion and matrix diffusion, were conceptualized with sufficient accuracy to replicate the experimental results. The effects of matrix diffusion were demonstrated on the slightly sorbing sodium and mobile iodine breakthrough curves.
Passive phloem loading and long-distance transport in a synthetic tree-on-a-chip.
Comtet, Jean; Jensen, Kaare H; Turgeon, Robert; Stroock, Abraham D; Hosoi, A E
2017-03-20
Vascular plants rely on differences in osmotic pressure to export sugars from regions of synthesis (mature leaves) to sugar sinks (roots, fruits). In this process, known as Münch pressure flow, the loading of sugars from photosynthetic cells to the export conduit (the phloem) is crucial, as it sets the pressure head necessary to power long-distance transport. Whereas most herbaceous plants use active mechanisms to increase phloem sugar concentration above that of the photosynthetic cells, in most tree species, for which transport distances are largest, loading seems, counterintuitively, to occur by means of passive symplastic diffusion from the mesophyll to the phloem. Here, we use a synthetic microfluidic model of a passive loader to explore the non-linear dynamics that arise during export and determine the ability of passive loading to drive long-distance transport. We first demonstrate that in our device, the phloem concentration is set by the balance between the resistances to diffusive loading from the source and convective export through the phloem. Convection-limited export corresponds to classical models of Münch transport, where the phloem concentration is close to that of the source; in contrast, diffusion-limited export leads to small phloem concentrations and weak scaling of flow rates with hydraulic resistance. We then show that the effective regime of convection-limited export is predominant in plants with large transport resistances and low xylem pressures. Moreover, hydrostatic pressures developed in our synthetic passive loader can reach botanically relevant values as high as 10 bars. We conclude that passive loading is sufficient to drive long-distance transport in large plants, and that trees are well suited to take full advantage of passive phloem loading strategies.
Random walk, diffusion and mixing in simulations of scalar transport in fluid flows
NASA Astrophysics Data System (ADS)
Klimenko, A. Y.
2008-12-01
Physical similarity and mathematical equivalence of continuous diffusion and particle random walk form one of the cornerstones of modern physics and the theory of stochastic processes. In many applied models used in simulation of turbulent transport and turbulent combustion, mixing between particles is used to reflect the influence of the continuous diffusion terms in the transport equations. We show that the continuous scalar transport and diffusion can be accurately specified by means of mixing between randomly walking Lagrangian particles with scalar properties and assess errors associated with this scheme. This gives an alternative formulation for the stochastic process which is selected to represent the continuous diffusion. This paper focuses on statistical errors and deals with relatively simple cases, where one-particle distributions are sufficient for a complete description of the problem.
A velocity-dependent anomalous radial transport model for (2-D, 2-V) kinetic transport codes
NASA Astrophysics Data System (ADS)
Bodi, Kowsik; Krasheninnikov, Sergei; Cohen, Ron; Rognlien, Tom
2008-11-01
Plasma turbulence constitutes a significant part of radial plasma transport in magnetically confined plasmas. This turbulent transport is modeled in the form of anomalous convection and diffusion coefficients in fluid transport codes. There is a need to model the same in continuum kinetic edge codes [such as the (2-D, 2-V) transport version of TEMPEST, NEO, and the code being developed by the Edge Simulation Laboratory] with non-Maxwellian distributions. We present an anomalous transport model with velocity-dependent convection and diffusion coefficients leading to a diagonal transport matrix similar to that used in contemporary fluid transport models (e.g., UEDGE). Also presented are results of simulations corresponding to radial transport due to long-wavelength ExB turbulence using a velocity-independent diffusion coefficient. A BGK collision model is used to enable comparison with fluid transport codes.
Harms, H; Zehnder, A J
1994-01-01
Dibenzofuran uptake-associated kinetic parameters of suspended and attached Sphingomonas sp. strain HH19k cells were compared. The suspended cells were studied in a batch system, whereas glass beads in percolated columns were used as the solid support for attached cells. The maximum specific activities of cells in the two systems were the same. The apparent half-maximum uptake rate-associated concentrations (Kt') of attached cells, however, were considerably greater than those of suspended cells and depended on cell density and on percolation velocity. A mathematical model was developed to explain the observed differences in terms of substrate transport to the cells. This model was based on the assumptions that the intrinsic half-maximum uptake rate-associated concentration (Kt) was unchanged and that deviations of Kt' from Kt resulted from the stereometry and the hydrodynamics around the cells. Our calculations showed that (i) diffusion to suspended cells and to single attached cells is efficient and therefore only slightly affects Kt'; (ii) diffusion to cells located on crowded surfaces is considerably lower than that to single attached cells and greatly increases Kt', which depends on the cell density; (iii) the convective-diffusive transport to attached cells that occurs in a percolated column is influenced by the liquid flow and results in dependency of Kt' on the flow rate; and (iv) higher specific affinity of cells correlates with higher susceptibility to diffusion limitation. Properties of the experimental system which limited quantitative proof of exclusively transport-controlled variations of Kt' are discussed. PMID:8085817
Spin-hall-active platinum thin films grown via atomic layer deposition
NASA Astrophysics Data System (ADS)
Schlitz, Richard; Amusan, Akinwumi Abimbola; Lammel, Michaela; Schlicht, Stefanie; Tynell, Tommi; Bachmann, Julien; Woltersdorf, Georg; Nielsch, Kornelius; Goennenwein, Sebastian T. B.; Thomas, Andy
2018-06-01
We study the magnetoresistance of yttrium iron garnet/Pt heterostructures in which the Pt layer was grown via atomic layer deposition (ALD). Magnetotransport experiments in three orthogonal rotation planes reveal the hallmark features of spin Hall magnetoresistance. To estimate the spin transport parameters, we compare the magnitude of the magnetoresistance in samples with different Pt thicknesses. We check the spin Hall angle and the spin diffusion length of the ALD Pt layers against the values reported for high-quality sputter-deposited Pt films. The spin diffusion length of 1.5 nm agrees well with that of platinum thin films reported in the literature, whereas the spin Hall magnetoresistance Δ ρ / ρ = 2.2 × 10 - 5 is approximately a factor of 20 smaller compared to that of our sputter-deposited films. Our results demonstrate that ALD allows fabricating spin-Hall-active Pt films of suitable quality for use in spin transport structures. This work provides the basis to establish conformal ALD coatings for arbitrary surface geometries with spin-Hall-active metals and could lead to 3D spintronic devices in the future.
Gonzalez-Vazquez, J P; Anta, Juan A; Bisquert, Juan
2009-11-28
The random walk numerical simulation (RWNS) method is used to compute diffusion coefficients for hopping transport in a fully disordered medium at finite carrier concentrations. We use Miller-Abrahams jumping rates and an exponential distribution of energies to compute the hopping times in the random walk simulation. The computed diffusion coefficient shows an exponential dependence with respect to Fermi-level and Arrhenius behavior with respect to temperature. This result indicates that there is a well-defined transport level implicit to the system dynamics. To establish the origin of this transport level we construct histograms to monitor the energies of the most visited sites. In addition, we construct "corrected" histograms where backward moves are removed. Since these moves do not contribute to transport, these histograms provide a better estimation of the effective transport level energy. The analysis of this concept in connection with the Fermi-level dependence of the diffusion coefficient and the regime of interest for the functioning of dye-sensitised solar cells is thoroughly discussed.
Hindered diffusion of coal liquids. Quarterly report No. 12, June 18, 1995--September 17, 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsotsis, T.T.; Sahimi, M.; Webster, I.A.
1995-12-31
The design of industrial catalysts requires that the diffusivity of the reacting species within the catalyst be accurately known. Nowhere is this more important than in the area of coal liquefaction and upgrading of coal liquids. In this area one is faced with the task of processing a number of heavy oils, containing metals and other contaminants, in a variety of process dependent solvents. It is important, therefore, on the basis of predicting catalyst activity, selectivity, and optimizing reactor performance, that the diffusivities of these oil species be accurately known. It is the purpose of the project described here tomore » provide such a correct concept of coal asphaltenes by careful and detailed investigations of asphaltene transport through porous systems under realistic process temperature and pressure conditions. The experimental studies will be coupled with detailed, in-depth statistical and molecular dynamics models intended to provide a fundamental understanding of the overall transport mechanisms.« less
Monte Carlo Transport for Electron Thermal Transport
NASA Astrophysics Data System (ADS)
Chenhall, Jeffrey; Cao, Duc; Moses, Gregory
2015-11-01
The iSNB (implicit Schurtz Nicolai Busquet multigroup electron thermal transport method of Cao et al. is adapted into a Monte Carlo transport method in order to better model the effects of non-local behavior. The end goal is a hybrid transport-diffusion method that combines Monte Carlo Transport with a discrete diffusion Monte Carlo (DDMC). The hybrid method will combine the efficiency of a diffusion method in short mean free path regions with the accuracy of a transport method in long mean free path regions. The Monte Carlo nature of the approach allows the algorithm to be massively parallelized. Work to date on the method will be presented. This work was supported by Sandia National Laboratory - Albuquerque and the University of Rochester Laboratory for Laser Energetics.
Active transport of cimetidine into human milk.
Oo, C Y; Kuhn, R J; Desai, N; McNamara, P J
1995-11-01
Most xenobiotics are transferred from blood into breast milk by passive diffusion. However, an active transport mechanism has been speculated for cimetidine, and the purpose of this study was to characterize cimetidine transfer into human milk. Twelve healthy lactating volunteers received single oral doses of 100, 600, and 1200 mg cimetidine in a randomized, crossover design on 3 different days. Blood and milk specimens were collected and assayed for cimetidine. In vitro measurements, including skim to whole milk concentration ratio, milk pH, and free fractions in serum and milk were used for a diffusion model prediction of milk to serum concentration ratio of cimetidine; the mean milk/serum ratio (+/- SD) was 1.05 +/- 0.18. The observed milk/serum ratio (5.77 +/- 1.24) was 5.5 times higher than the milk/serum ratio predicted by diffusion. The observed milk/serum ratio for the three dosing regimens were not significantly different from one another. Time of peak concentration (tmax) in milk (3.3 +/- 0.7 hours) displayed a delay compared with serum tmax (1.7 +/- 0.6 hours). Oral clearance for 1200 mg cimetidine dose (0.47 +/- 0.11 L/hr/kg) was significantly lower compared with oral clearance values for 100 and 600 mg cimetidine doses (0.59 +/- 0.11 and 0.57 +/- 0.13 L/hr/kg, respectively). The maternal dose of cimetidine ingested by a suckling infant based on body weight was estimated to be 6.7%, which appears to be safe under normal conditions. This study provides the first definitive evidence of an active transport system for drug transfer into human milk, which may have broader consequences for the suckling infant.
Non-kinematic Flux-transport Dynamos Including the Effects of Diffusivity Quenching
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ichimura, Chiaki; Yokoyama, Takaaki
2017-04-10
Turbulent magnetic diffusivity is quenched when strong magnetic fields suppress turbulent motion in a phenomenon known as diffusivity quenching. Diffusivity quenching can provide a mechanism for amplifying magnetic field and influencing global velocity fields through Lorentz force feedback. To investigate this effect, we conducted mean field flux-transport dynamo simulations that included the effects of diffusivity quenching in a non-kinematic regime. We found that toroidal magnetic field strength is amplified by up to approximately 1.5 times in the convection zone as a result of diffusivity quenching. This amplification is much weaker than that in kinematic cases as a result of Lorentzmore » force feedback on the system’s differential rotation. While amplified toroidal fields lead to the suppression of equatorward meridional flow locally near the base of the convection zone, large-scale equatorward transport of magnetic flux via meridional flow, which is the essential process of the flux-transport dynamo, is sustainable in our calculations.« less
First Principles Study for Proton Transport and Diffusion Behavior in Hydrous Hexagonal WO3
NASA Astrophysics Data System (ADS)
Liu, Chi-Ping; Zhou, Fei; Ozolins, Vidvuds; QPAM Team
2013-03-01
Proton transport is of great importance in biological species and energy storage and conversion systems. Previous studies have shown fast proton conduction in liquids and polymers but seldom in inorganic materials. In this work, first principles density functional theory (DFT) reveals that the formation of hydronium and water chains inside the hexagonal channels plays the key roles for the anomalously fast proton transport, by following modified Grotthuss mechanism. Our DFT study shows the detailed microscopic proton diffusion mechanism along the channel in hydrous WO3 with 50% water composition, which is proper for water chain formation. The water chain in the channel serves as a possible diffusion media for hydronium (H3O +) . With the continuous formation and cleavage of hydrogen bonds in the channel, the hydronium diffuses by hydrogen bonds exchange between water molecules. This mechanism is very similar with Grotthuss relay mechanism for proton transport in liquid. The possible proton diffusion were studied for hydronium is either far away from the water chain bond defect or next to H2O defect at the end of water chain. The diffusion barriers for both conditions are around 150 meV to 200 meV, and water defects reorganization in the chain is the rate-limited step for proton diffusion. These small diffusion barriers could explain the fast 1-D proton transport in hydrous WO3 channel. Further studies about fast proton transport in other inorganic materials could be an important topic in not only biochemistry but also clean energy applications like fuel cell applications.
NASA Astrophysics Data System (ADS)
You, K.; Flemings, P. B.
2016-12-01
We developed two 2-D numerical models to simulate hydrate formation by long range methane gas transport and short-range methane diffusion. We interpret that methane hydrates in thick sands are most likely formed by long range gas transport where methane gas is transported upward into the hydrate stability zone (HSZ) under buoyancy and locally forms hydrate to its stability limit. In short-range methane diffusion, methane is generated locally by biodegradation of organic matter in mud and diffused into bounding sands where it forms hydrate. We could not simulate enough methane transport by diffusion to account for its observed concentration in thick sands. In our models, we include the capillary effect on dissolved methane solubility and on the hydrate phase boundary, sedimentation and different compaction in sand and mud, fracture generation as well as the fully coupled multiphase flow and multicomponent transport. We apply our models to a 12 meter-thick hydrate-bearing sand layer at Walker Ridge 313, Northern Gulf of Mexico. With the long-range gas transport, hydrate saturation is greater than 90% and salinity is increased from seawater to about 8 wt.% through the entire sand. With short-range diffusion, hydrate saturation is more than 90% at the sand base and is less than 10% in the overlying section; salinity is close to seawater when sand is deposited to 800 meter below seafloor by short-range methane diffusion. With short-range diffusion, the amount of hydrate formed is much less than that interpreted from the well log data. Two transient gas layers separated by a hydrate layer are formed from short-range diffusion caused by capillary effect. This could be interpreted as a double bottom simulating reflector. This study provides further insights into different hydrate formation mechanisms, and could serve as a base to confirm the hydrate formation mechanism in fields.
Goychuk, Igor; Kharchenko, Vasyl O; Metzler, Ralf
2014-01-01
Recent experiments reveal both passive subdiffusion of various nanoparticles and anomalous active transport of such particles by molecular motors in the molecularly crowded environment of living biological cells. Passive and active microrheology reveals that the origin of this anomalous dynamics is due to the viscoelasticity of the intracellular fluid. How do molecular motors perform in such a highly viscous, dissipative environment? Can we explain the observed co-existence of the anomalous transport of relatively large particles of 100 to 500 nm in size by kinesin motors with the normal transport of smaller particles by the same molecular motors? What is the efficiency of molecular motors in the anomalous transport regime? Here we answer these seemingly conflicting questions and consistently explain experimental findings in a generalization of the well-known continuous diffusion model for molecular motors with two conformational states in which viscoelastic effects are included.
Goychuk, Igor; Kharchenko, Vasyl O.; Metzler, Ralf
2014-01-01
Recent experiments reveal both passive subdiffusion of various nanoparticles and anomalous active transport of such particles by molecular motors in the molecularly crowded environment of living biological cells. Passive and active microrheology reveals that the origin of this anomalous dynamics is due to the viscoelasticity of the intracellular fluid. How do molecular motors perform in such a highly viscous, dissipative environment? Can we explain the observed co-existence of the anomalous transport of relatively large particles of 100 to 500 nm in size by kinesin motors with the normal transport of smaller particles by the same molecular motors? What is the efficiency of molecular motors in the anomalous transport regime? Here we answer these seemingly conflicting questions and consistently explain experimental findings in a generalization of the well-known continuous diffusion model for molecular motors with two conformational states in which viscoelastic effects are included. PMID:24626511
Charge transport through split photoelectrodes in dye-sensitized solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fakharuddin, Azhar; Ahmed, Irfan; Yusoff, Mashitah M.
2014-04-28
Charge transport and recombination are relatively ignored parameters while upscaling dye-sensitized solar cells (DSCs). Enhanced photovoltaic parameters are anticipated by merely widening the devices physical dimensions, viz., thickness and area as evident from the device design adopted in reported large area DSCs. These strip designs lead to ≤50% loss in photocurrent compared to the high efficiency lab scale devices. Herein, we report that the key to achieving higher current density (J{sub SC}) is optimized diffusion volume rather than the increased photoelectrode area because kinetics of the devices is strongly influenced by the varied choices of diffusion pathways upon increasing themore » electrode area. For a given electrode area and thickness, we altered the photoelectrode design by splitting the electrode into multiple fractions to restrict the electron diffusion pathways. We observed a correlation between the device physical dimensions and its charge collection efficiency via current-voltage and impedance spectroscopy measurements. The modified electrode designs showed >50% increased J{sub SC} due to shorter transport time, higher recombination resistance and enhanced charge collection efficiency compared to the conventional ones despite their similar active volume (∼3.36 × 10{sup −4} cm{sup 3}). A detailed charge transport characteristic of the split devices and their comparison with single electrode configuration is described in this article.« less
Analysis of diffusion and binding in cells using the RICS approach.
Digman, Michelle A; Gratton, Enrico
2009-04-01
The movement of macromolecules in cells is assumed to occur either through active transport or by diffusion. However, the determination of the diffusion coefficients in cells using fluctuation methods or FRAP frequently give diffusion coefficient that are orders of magnitude smaller than the diffusion coefficients measured for the same macromolecule in solution. It is assumed that the cell internal viscosity is partially responsible for this decrease in the apparent diffusion. When the apparent diffusion is too slow to be due to cytoplasm viscosity, it is assumed that weak binding of the macromolecules to immobile or quasi immobile structures is taking place. In this article, we derive equations for fitting of the RICS (Raster-scan Image Correlations Spectroscopy) data in cells to a model that includes transient binding to immobile structures, and we show that under some conditions, the spatio-temporal correlation provided by the RICS approach can distinguish the process of diffusion and weak binding. We apply the method to determine the diffusion in the cytoplasm and binding of Focal Adhesion Kinase-EGFP to adhesions in MEF cells.
Reconciling transport models across scales: The role of volume exclusion
NASA Astrophysics Data System (ADS)
Taylor, P. R.; Yates, C. A.; Simpson, M. J.; Baker, R. E.
2015-10-01
Diffusive transport is a universal phenomenon, throughout both biological and physical sciences, and models of diffusion are routinely used to interrogate diffusion-driven processes. However, most models neglect to take into account the role of volume exclusion, which can significantly alter diffusive transport, particularly within biological systems where the diffusing particles might occupy a significant fraction of the available space. In this work we use a random walk approach to provide a means to reconcile models that incorporate crowding effects on different spatial scales. Our work demonstrates that coarse-grained models incorporating simplified descriptions of excluded volume can be used in many circumstances, but that care must be taken in pushing the coarse-graining process too far.
Production and Extraction of [10C]-CO2 From Proton Bombardment of Molten 10B2O3
NASA Astrophysics Data System (ADS)
Schueller, M. J.; Nickles, R. J.; Roberts, A. D.; Jensen, M.
2003-08-01
This work describes the production of 10C (t1/2 = 19 s) from an enriched 10B2O3 target using a CTI RDS-112 11 MeV proton cyclotron. Proton beam heating is used to raise the target to a molten state (˜ 1300 °C), enabling the activity to diffuse to the surface of the melt. An infrared thermocouple monitors the melt temperature. Helium sweep gas then transports the activity to flow-through chemistry processing for human inhalation of 10CO2 for blood flow imaging with Positron Emission Tomography. The temperature-related diffusion of activity out of the white-hot molten glass target is discussed.
Sodium Ion Diffusion in Nasicon (Na3Zr2Si2PO12) Solid Electrolytes: Effects of Excess Sodium.
Park, Heetaek; Jung, Keeyoung; Nezafati, Marjan; Kim, Chang-Soo; Kang, Byoungwoo
2016-10-04
The Na superionic conductor (aka Nasicon, Na 1+x Zr 2 Si x P 3-x O 12 , where 0 ≤ x ≤ 3) is one of the promising solid electrolyte materials used in advanced molten Na-based secondary batteries that typically operate at high temperature (over ∼270 °C). Nasicon provides a 3D diffusion network allowing the transport of the active Na-ion species (i.e., ionic conductor) while blocking the conduction of electrons (i.e., electronic insulator) between the anode and cathode compartments of cells. In this work, the standard Nasicon (Na 3 Zr 2 Si 2 PO 12 , bare sample) and 10 at% Na-excess Nasicon (Na 3.3 Zr 2 Si 2 PO 12 , Na-excess sample) solid electrolytes were synthesized using a solid-state sintering technique to elucidate the Na diffusion mechanism (i.e., grain diffusion or grain boundary diffusion) and the impacts of adding excess Na at relatively low and high temperatures. The structural, thermal, and ionic transport characterizations were conducted using various experimental tools including X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and electrochemical impedance spectroscopy (EIS). In addition, an ab initio atomistic modeling study was carried out to computationally examine the detailed microstructures of Nasicon materials, as well as to support the experimental observations. Through this combination work comprising experimental and computational investigations, we show that the predominant mechanisms of Na-ion transport in the Nasicon structure are the grain boundary and the grain diffusion at low and high temperatures, respectively. Also, it was found that adding 10 at% excess Na could give rise to a substantial increase in the total conductivity (e.g., ∼1.2 × 10 -1 S/cm at 300 °C) of Nasicon electrolytes resulting from the enlargement of the bottleneck areas in the Na diffusion channels of polycrystalline grains.
Cardarelli, Francesco; Tosti, Luca; Serresi, Michela; Beltram, Fabio; Bizzarri, Ranieri
2012-01-01
A quantitative description of carrier-mediated nuclear export in live cells is presented. To this end, we fused a prototypical leucine-rich nuclear export signal (NES) to GFP as a cargo model and expressed the fluorescent chimera in live CHO-K1 cells. By modeling FRAP data, we calculate the NES affinity for the export machinery and the maximum rate of nuclear export achievable at saturation of endogenous carriers. The measured active-export time through the Nuclear Pore Complex (NPC) is 18 ms, remarkably similar to the previously determined active-import rate. Also, our results reveal that active export/import and active export/passive diffusion fluxes are uncoupled, thus complementing previous reports on active import/passive diffusion uncoupling. These findings suggest differential gating at the NPC level. PMID:22190681
Examining Changes in Radioxenon Isotope Activity Ratios during Subsurface Transport
NASA Astrophysics Data System (ADS)
Annewandter, R.
2013-12-01
The Non-Proliferation Experiment (NPE) has demonstrated and modelled the usefulness of barometric pumping induced soil gas sampling during On-Site inspections. Gas transport has been widely studied with different numerical codes. However, gas transport of all radioxenons in the post-detonation regime and their possible fractionation is still neglected in the open literature. Atmospheric concentrations of the radioxenons Xe-135, Xe-133m, Xe-133 and Xe-131m can be used to discriminate between civilian releases (nuclear power plants or medical isotope facilities), and nuclear explosion sources. It is based on the isotopic activity ratio method. Yet it is not clear whether subsurface migration of the radioxenons, with eventual release into the atmosphere, can affect the activity ratios due to fractionation. Fractionation can be caused by different diffusivities due to mass differences between the radioxenons. A previous study showed surface arrival time of a chemically inert gaseous tracer is affected by its diffusivity. They observed detectable amount for SF6 50 days after detonation and 375 days for He-3. They predict 50 and 80 days for Xe-133 and Ar-37 respectively. Cyclical changes in atmospheric pressure can drive subsurface gas transport. This barometric pumping phenomenon causes an oscillatoric flow in upward trending fractures which, combined with diffusion into the porous matrix, leads to a net transport of gaseous components - a ratcheting effect. We use a general purpose reservoir simulator (Complex System Modelling Platform, CSMP++) which has been applied in a range of fields such as deep geothermal systems, three-phase black oil simulations , fracture propagation in fractured, porous media, Navier-Stokes pore-scale modelling among others. It is specifically designed to account for structurally complex geologic situation of fractured, porous media. Parabolic differential equations are solved by a continuous Galerkin finite-element method, hyperbolic differential equations by a complementary finite volume method. The parabolic and hyperbolic problem can be solved separately using the operator-splitting method (Implicit Pressure Explicit Saturation, IMPES). The resulting system of linear equations is solved by the algebraic multigrid library SAMG, developed at the Fraunhofer Institute for Algorithms and Scientific Computing. CSMP++ is developed at Montan University of Leoben, ETH Zuerich, Imperial College London and Heriot-Watt University in Edinburgh. To date, there has been no research investigating how subsurface transport impacts isotope activity ratios. The isotopic activity ratio method can be used to discriminate between civil release or nuclear explosion sources. This study examines possible fractionation of Xe-135, Xe-133m, Xe-133, Xe-131m during barometric pumping-driven subsurface migration, which can affect surface arrival times and isotopic activity ratios. Surface arrival times for the Noble gases Kr-81, Kr-85 and Ar-39 are also calculated.
An accurate computational method for the diffusion regime verification
NASA Astrophysics Data System (ADS)
Zhokh, Alexey A.; Strizhak, Peter E.
2018-04-01
The diffusion regime (sub-diffusive, standard, or super-diffusive) is defined by the order of the derivative in the corresponding transport equation. We develop an accurate computational method for the direct estimation of the diffusion regime. The method is based on the derivative order estimation using the asymptotic analytic solutions of the diffusion equation with the integer order and the time-fractional derivatives. The robustness and the computational cheapness of the proposed method are verified using the experimental methane and methyl alcohol transport kinetics through the catalyst pellet.
Analysis of Particle Transport in DIII-D H-mode Plasma with a Generalized Pinch-Diffusion Model
NASA Astrophysics Data System (ADS)
Owen, L. W.; Stacey, W. M.; Groebner, R. J.; Callen, J. D.; Bonnin, X.
2009-11-01
Interpretative analyses of particle transport in the pedestal region of H-mode plasmas typically yield diffusion coefficients that are very small (<0.1 m^2/s) in the steep gradient region when a purely diffusive particle flux is fitted to the experimental density gradients. Previous evaluation of the particle and momentum balance equations using the experimental data indicated that the pedestal profiles are consistent with transport described by a pinch-diffusion particle flux relation [1]. This type of model is used to calculate the diffusion coefficient and pinch velocity in the core for an inter-ELM H-mode plasma in the DIII-D discharge 98889. Full-plasma SOPLS simulations using neutral beam particle and energy sources from ONETWO calculations and the model transport coefficients show good agreement with the measured density pedestal profile. 6pt [1] W.M. Stacey and R.J. Groebner, Phys. Plasmas 12, 042504 (2005).
Quantum Transmission Conditions for Diffusive Transport in Graphene with Steep Potentials
NASA Astrophysics Data System (ADS)
Barletti, Luigi; Negulescu, Claudia
2018-05-01
We present a formal derivation of a drift-diffusion model for stationary electron transport in graphene, in presence of sharp potential profiles, such as barriers and steps. Assuming the electric potential to have steep variations within a strip of vanishing width on a macroscopic scale, such strip is viewed as a quantum interface that couples the classical regions at its left and right sides. In the two classical regions, where the potential is assumed to be smooth, electron and hole transport is described in terms of semiclassical kinetic equations. The diffusive limit of the kinetic model is derived by means of a Hilbert expansion and a boundary layer analysis, and consists of drift-diffusion equations in the classical regions, coupled by quantum diffusive transmission conditions through the interface. The boundary layer analysis leads to the discussion of a four-fold Milne (half-space, half-range) transport problem.
NASA Astrophysics Data System (ADS)
Stam, Samantha; Gardel, Margaret
Viscoelastic networks of biopolymers coordinate the motion of intracellular objects during transport. These networks have nonlinear mechanical properties due to events such as filament buckling or breaking of cross-links. The influence of such nonlinear properties on the time and length scales of transport is not understood. Here, we use in vitro networks of actin and the motor protein myosin II to clarify how intracellular forces regulate active diffusion. We observe two transitions in the mean-squared displacement of cross-linked actin with increasing motor concentration. The first is a sharp transition from initially subdiffusive to diffusive-like motion that requires filament buckling but does not cause net contraction of the network. Further increase of the motor density produces a second transition to network rupture and ballistic actin transport. This corresponds with an increase in the correlation of motion and thus may be caused when forces propagate far enough for global motion. We conclude that filament buckling and overall network contraction require different amounts of force and produce distinct transport properties. These nonlinear transitions may act as mechanical switches that can be turned on to produce observed motion within cells.
Molecular motor traffic: From biological nanomachines to macroscopic transport
NASA Astrophysics Data System (ADS)
Lipowsky, Reinhard; Chai, Yan; Klumpp, Stefan; Liepelt, Steffen; Müller, Melanie J. I.
2006-12-01
All cells of animals and plants contain complex transport systems based on molecular motors which walk along cytoskeletal filaments. These motors are rather small and have a size of 20-100 nm but are able to pull vesicles, organelles and other types of cargo over large distances, from micrometers up to meters. There are several families of motors: kinesins, dyneins, and myosins. Most of these motors have two heads which are used as legs and perform discrete steps along the filaments. Several aspects of the motor behavior will be discussed: motor cycles of two-headed motors; walks of single motors or cargo particles which consist of directed movements interrupted by random, diffusive motion; cargo transport through tube-like compartments; active diffusion of cargo particles in slab-like compartments; cooperative transport of cargo by several motors which may be uni- or bi-directional; and systems with many interacting motors that exhibit traffic jams, self-organized density and flux patterns, and traffic phase transitions far from equilibrium. It is necessary to understand these traffic phenomena in a quantitative manner in order to construct and optimize biomimetic transport systems based on motors and filaments with many possible applications in bioengineering, pharmacology, and medicine.
Transport Imaging of Multi-Junction and CIGS Solar Cell Materials
2011-12-01
solar cells start with the material charge transport parameters, namely the charge mobility, lifetime and diffusion length . It is the goal of...every solar cell manufacturer to maintain high carrier lifetime so as to realize long diffusion lengths . Long diffusion lengths ensure that the charges...Thus, being able to accurately determine the diffusion length of any solar cell material proves advantageous by providing insights
Control of reaction-diffusion equations on time-evolving manifolds.
Rossi, Francesco; Duteil, Nastassia Pouradier; Yakoby, Nir; Piccoli, Benedetto
2016-12-01
Among the main actors of organism development there are morphogens, which are signaling molecules diffusing in the developing organism and acting on cells to produce local responses. Growth is thus determined by the distribution of such signal. Meanwhile, the diffusion of the signal is itself affected by the changes in shape and size of the organism. In other words, there is a complete coupling between the diffusion of the signal and the change of the shapes. In this paper, we introduce a mathematical model to investigate such coupling. The shape is given by a manifold, that varies in time as the result of a deformation given by a transport equation. The signal is represented by a density, diffusing on the manifold via a diffusion equation. We show the non-commutativity of the transport and diffusion evolution by introducing a new concept of Lie bracket between the diffusion and the transport operator. We also provide numerical simulations showing this phenomenon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zubkov, Tykhon; Smith, R. Scott; Engstrom, Todd R.
2007-11-14
Tykhon Zubkov, R. Scott Smith, Todd R. Engstrom, and Bruce D. Kay The adsorption, desorption, and diffusion kinetics of N2 on thick (up to ~9 mm) porous films of amorphous solid water (ASW) films were studied using molecular beam techniques and temperature programmed desorption (TPD). Porous ASW films were grown on Pt(111) at low temperature (<30 K) from a collimated H2O beam at glancing incident angles. In thin films (<1 mm), the desorption kinetics are well described by a model that assumes rapid and uniform N2 distribution throughout the film. In thicker films, (>1 mm), N2 adsorption at 27 Kmore » results in a non-uniform distribution where most of N2 is trapped in the outer region of the film. Redistribution of N2 can be induced by thermal annealing. The apparent activation energy for this process is ~7 kJ/mol, which is approximately half of the desorption activation energy at the corresponding coverage. Blocking adsorption sites near the film surface facilitates transport into the film. Despite the onset of limited diffusion, the adsorption kinetics are efficient, precursor-mediated and independent of film thickness. An adsorption mechanism is proposed, in which a high-coverage N2 front propagates into a pore by the rapid transport of physisorbed 2nd layer N2 species on top of the 1st layer chemisorbed layer.« less
Metamorphism, metasomatism, retrogression: the common control on isotope transport
NASA Astrophysics Data System (ADS)
Villa, I. M.; Williams, M. L.
2011-12-01
Compositional or isotopic modification of a mineral can be viewed as a single process with many names. Depending on the large-scale context, different names are used: aqueous alteration, retrogression, metasomatism, metamorphism, but it should be clear that the underlying atomic-scale mechanism is the same. Changes in stoichiometry and in crystallographic structure require recrystallization. Following [1], all recrystallization processes can be viewed as nano-scale dissolution/reprecipitation, mediated by an aqueous fluid. In fact, aqueous fluids are the main control on the formation of all metamorphic parageneses [2], and also isotope exchange in minerals [3]. The reason is that the rate constants for fluid-mediated isotope transport are orders of magnitude larger, and activation energies much smaller, than those for diffusion. Recrystallisation is energetically less costly at almost any temperature than diffusive reequilibration [3]. However, recrystallization is not the only cause of isotope loss/exchange. Temperature can also play a role in reducing the retentivity of a geochronometer by increasing diffusivity. In cases where diffusion was the factor limiting isotopic closure (or chemical closure), a bell-shaped isotope (or element) concentration profile is observed. The criterion to decide whether in a particular sample diffusion or recrystallization was the principal control on chemical/isotope transport lies in the spatial variation of elemental or isotopic composition. Patchy spatial patterns are certain evidence of fluid-mediated local recrystallization. Bell-shaped gradients are compatible with (but not unambiguous proof of) volume diffusion. In-situ dating over three decades has never described bell-shaped isotope gradients in patchily zoned minerals. On the contrary, age mapping usually coincides with microchemical mapping [4]. This is best explained by a common cause for the recrystallization and the isotope transport. The cause, fluid-mediated dissolution/reprecipitation, depends mainly on water activity and only very loosely on temperature, i.e. provides a geohygrometric but not a geothermometric datum. We conclude that only in rare cases diffusion is the sole promoter of isotope resetting. The observations require a major shift in perspective on the significance of mineral ages. Just as the "diffusionist" view that zircon discordance is due to thermal disturbances (e.g. [5]) was superseded by the petrological understanding that it is due to recrystallization (e.g. [6]), a blanket interpretation of intra-mineral age variations in terms of a purely thermal history neglecting the petrogenetic context is no longer tenable. [1] Putnis A (2009) Rev Mineral Geochem 70, 87-124 [2] Lasaga A (1986) Mineral Mag 50, 359-373 [3] Cole DR et al (1983) Geochim Cosmochim Acta 47, 1681-1693 [4] Williams ML et al (2007) Ann Rev Earth Planet Sci 35, 137-175 [5] Steiger RH, Wasserburg GJ (1969) Geochim Cosmochim Acta 33, 1213-1232 [6] Mezger K, Krogstadt EJ (1997) J Metam Geol 15, 127-140
Kell, Douglas B.; Oliver, Stephen G.
2014-01-01
One approach to experimental science involves creating hypotheses, then testing them by varying one or more independent variables, and assessing the effects of this variation on the processes of interest. We use this strategy to compare the intellectual status and available evidence for two models or views of mechanisms of transmembrane drug transport into intact biological cells. One (BDII) asserts that lipoidal phospholipid Bilayer Diffusion Is Important, while a second (PBIN) proposes that in normal intact cells Phospholipid Bilayer diffusion Is Negligible (i.e., may be neglected quantitatively), because evolution selected against it, and with transmembrane drug transport being effected by genetically encoded proteinaceous carriers or pores, whose “natural” biological roles, and substrates are based in intermediary metabolism. Despite a recent review elsewhere, we can find no evidence able to support BDII as we can find no experiments in intact cells in which phospholipid bilayer diffusion was either varied independently or measured directly (although there are many papers where it was inferred by seeing a covariation of other dependent variables). By contrast, we find an abundance of evidence showing cases in which changes in the activities of named and genetically identified transporters led to measurable changes in the rate or extent of drug uptake. PBIN also has considerable predictive power, and accounts readily for the large differences in drug uptake between tissues, cells and species, in accounting for the metabolite-likeness of marketed drugs, in pharmacogenomics, and in providing a straightforward explanation for the late-stage appearance of toxicity and of lack of efficacy during drug discovery programmes despite macroscopically adequate pharmacokinetics. Consequently, the view that Phospholipid Bilayer diffusion Is Negligible (PBIN) provides a starting hypothesis for assessing cellular drug uptake that is much better supported by the available evidence, and is both more productive and more predictive. PMID:25400580
Gliko, Olga; Saggau, Peter; Brownell, William E
2009-08-19
In the outer hair cell (OHC), the extracisternal space (ECiS) is a conduit and reservoir of the molecular and ionic substrates of the lateral wall, including those necessary for electromotility. To determine the mechanisms through which molecules are transported in the ECiS of the OHC, we selectively imaged the time-dependent spatial distribution of fluorescent molecules in a <100 nm layer near the cell/glass interface of the recording chamber after their photolytic activation in a diffraction-limited volume. The effective diffusion coefficient was calculated using the analytical solution of the diffusion equation. It was found that diffusion in the ECiS is isotropic and not affected by depolarizing the OHC. Compared with free solution, the diffusion of 10 kDa dextran was slowed down in both the ECiS and the axial core by a factor of 4.6 and 1.6, respectively.
Insights into the Mechanisms Underlying Boron Homeostasis in Plants
Yoshinari, Akira; Takano, Junpei
2017-01-01
Boron is an essential element for plants but is toxic in excess. Therefore, plants must adapt to both limiting and excess boron conditions for normal growth. Boron transport in plants is primarily based on three transport mechanisms across the plasma membrane: passive diffusion of boric acid, facilitated diffusion of boric acid via channels, and export of borate anion via transporters. Under boron -limiting conditions, boric acid channels and borate exporters function in the uptake and translocation of boron to support growth of various plant species. In Arabidopsis thaliana, NIP5;1 and BOR1 are located in the plasma membrane and polarized toward soil and stele, respectively, in various root cells, for efficient transport of boron from the soil to the stele. Importantly, sufficient levels of boron induce downregulation of NIP5;1 and BOR1 through mRNA degradation and proteolysis through endocytosis, respectively. In addition, borate exporters, such as Arabidopsis BOR4 and barley Bot1, function in boron exclusion from tissues and cells under conditions of excess boron. Thus, plants actively regulate intracellular localization and abundance of transport proteins to maintain boron homeostasis. In this review, the physiological roles and regulatory mechanisms of intracellular localization and abundance of boron transport proteins are discussed. PMID:29204148
Defect chemistry and lithium transport in Li3OCl anti-perovskite superionic conductors.
Lu, Ziheng; Chen, Chi; Baiyee, Zarah Medina; Chen, Xin; Niu, Chunming; Ciucci, Francesco
2015-12-28
Lithium-rich anti-perovskites (LiRAPs) are a promising family of solid electrolytes, which exhibit ionic conductivities above 10(-3) S cm(-1) at room temperature, among the highest reported values to date. In this work, we investigate the defect chemistry and the associated lithium transport in Li3OCl, a prototypical LiRAP, using ab initio density functional theory (DFT) calculations and classical molecular dynamics (MD) simulations. We studied three types of charge neutral defect pairs, namely the LiCl Schottky pair, the Li2O Schottky pair, and the Li interstitial with a substitutional defect of O on the Cl site. Among them the LiCl Schottky pair has the lowest binding energy and is the most energetically favorable for diffusion as computed by DFT. This is confirmed by classical MD simulations, where the computed Li ion diffusion coefficients for LiCl Schottky systems are significantly higher than those for the other two defects considered and the activation energy in LiCl deficient Li3OCl is comparable to experimental values. The high conductivities and low activation energies of LiCl Schottky systems are explained by the low energy pathways of Li between the Cl vacancies. We propose that Li vacancy hopping is the main diffusion mechanism in highly conductive Li3OCl.
Spin diffusion from an inhomogeneous quench in an integrable system.
Ljubotina, Marko; Žnidarič, Marko; Prosen, Tomaž
2017-07-13
Generalized hydrodynamics predicts universal ballistic transport in integrable lattice systems when prepared in generic inhomogeneous initial states. However, the ballistic contribution to transport can vanish in systems with additional discrete symmetries. Here we perform large scale numerical simulations of spin dynamics in the anisotropic Heisenberg XXZ spin 1/2 chain starting from an inhomogeneous mixed initial state which is symmetric with respect to a combination of spin reversal and spatial reflection. In the isotropic and easy-axis regimes we find non-ballistic spin transport which we analyse in detail in terms of scaling exponents of the transported magnetization and scaling profiles of the spin density. While in the easy-axis regime we find accurate evidence of normal diffusion, the spin transport in the isotropic case is clearly super-diffusive, with the scaling exponent very close to 2/3, but with universal scaling dynamics which obeys the diffusion equation in nonlinearly scaled time.
A charge carrier transport model for donor-acceptor blend layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fischer, Janine, E-mail: janine.fischer@iapp.de; Widmer, Johannes; Koerner, Christian
2015-01-28
Highly efficient organic solar cells typically comprise donor-acceptor blend layers facilitating effective splitting of excitons. However, the charge carrier mobility in the blends can be substantially smaller than in neat materials, hampering the device performance. Currently, available mobility models do not describe the transport in blend layers entirely. Here, we investigate hole transport in a model blend system consisting of the small molecule donor zinc phthalocyanine (ZnPc) and the acceptor fullerene C{sub 60} in different mixing ratios. The blend layer is sandwiched between p-doped organic injection layers, which prevent minority charge carrier injection and enable exploiting diffusion currents for themore » characterization of exponential tail states from a thickness variation of the blend layer using numerical drift-diffusion simulations. Trap-assisted recombination must be considered to correctly model the conductivity behavior of the devices, which are influenced by local electron currents in the active layer, even though the active layer is sandwiched in between p-doped contacts. We find that the density of deep tail states is largest in the devices with 1:1 mixing ratio (E{sub t} = 0.14 eV, N{sub t} = 1.2 × 10{sup 18 }cm{sup −3}) directing towards lattice disorder as the transport limiting process. A combined field and charge carrier density dependent mobility model are developed for this blend layer.« less
Ferrero, Carmen; Massuelle, Danielle; Jeannerat, Damien; Doelker, Eric
2013-09-10
The two main purposes of this work were: (i) to critically consider the use of thermodynamic parameters of activation for elucidating the drug release mechanism from hydroxypropyl methylcellulose (HPMC) matrices, and (ii) to examine the effect of neutral (pH 6) and acidic (pH 2) media on the release mechanism. For this, caffeine was chosen as model drug and various processes were investigated for the effect of temperature and pH: caffeine diffusion in solution and HPMC gels, and drug release from and water penetration into the HPMC tablets. Generally, the kinetics of the processes was not significantly affected by pH. As for the temperature dependence, the activation energy (E(a)) values calculated from caffeine diffusivities were in the range of Fickian transport (20-40 kJ mol⁻¹). Regarding caffeine release from HPMC matrices, fitting the profiles using the Korsmeyer-Peppas model would indicate anomalous transport. However, the low apparent E(a) values obtained were not compatible with a swelling-controlled mechanism and can be assigned to the dimensional change of the system during drug release. Unexpectedly, negative apparent E(a) values were calculated for the water uptake process, which can be ascribed to the exothermic dissolution of water into the initially dry HPMC, the expansion of the matrix and the polymer dissolution. Taking these contributions into account, the true E(a) would fall into the range valid for Fickian diffusion. Consequently, a relaxation-controlled release mechanism can be dismissed. The apparent anomalous drug release from HPMC matrices results from a coupled Fickian diffusion-erosion mechanism, both at pH 6 and 2. Copyright © 2013 Elsevier B.V. All rights reserved.
Diffuse Optics for Tissue Monitoring and Tomography
Durduran, T; Choe, R; Baker, W B; Yodh, A G
2015-01-01
This review describes the diffusion model for light transport in tissues and the medical applications of diffuse light. Diffuse optics is particularly useful for measurement of tissue hemodynamics, wherein quantitative assessment of oxy- and deoxy-hemoglobin concentrations and blood flow are desired. The theoretical basis for near-infrared or diffuse optical spectroscopy (NIRS or DOS, respectively) is developed, and the basic elements of diffuse optical tomography (DOT) are outlined. We also discuss diffuse correlation spectroscopy (DCS), a technique whereby temporal correlation functions of diffusing light are transported through tissue and are used to measure blood flow. Essential instrumentation is described, and representative brain and breast functional imaging and monitoring results illustrate the workings of these new tissue diagnostics. PMID:26120204
NASA Astrophysics Data System (ADS)
Drozdov, Alexander; Mann, Ian; Baker, Daniel N.; Subbotin, Dmitriy; Ozeke, Louis; Shprits, Yuri; Kellerman, Adam
Two parameterizations of the resonant wave-particle interactions of electrons with ULF waves in the magnetosphere by Brautigam and Albert [2000] and Ozeke et al. [2012] are evaluated using the Versatile Electron Radiation Belt (VERB) diffusion code to estimate the effect of changing a diffusion coefficient on the radiation belt simulation. The period of investigation includes geomagnetically quiet and active time. The simulations take into account wave-particle interactions represented by radial diffusion transport, local acceleration, losses due to pitch-angle diffusion, and mixed diffusion. 1. Brautigam, D. H., and J. M. Albert (2000), Radial diffusion analysis of outer radiation belt electrons during the October 9, 1990, magnetic storm, J. Geophys. Res., 105(A1), 291-309, doi:10.1029/1999JA900344 2. Ozeke, L. G., I. R. Mann, K. R. Murphy, I. J. Rae, D. K. Milling, S. R. Elkington, A. A. Chan, and H. J. Singer (2012), ULF wave derived radiation belt radial diffusion coefficients, J. Geophys. Res., 117, A04222, doi:10.1029/2011JA017463.
NASA Astrophysics Data System (ADS)
Algar, C. K.
2015-12-01
Hydrogenotrophic methanogenesis is an important mode of metabolism in deep-sea hydrothermal vents. Diffuse vent fluids often show a depletion in hydrogen with a corresponding increase in methane relative to pure-mixing of end member fluid and seawater, and genomic surveys show an enrichment in genetic sequences associated with known methanogens. However, because we cannot directly sample the subseafloor habitat where these organisms are living, constraining the size and activity of these populations remains a challenge and limits our ability to quantify the role they play in vent biogeochemistry. Reactive-transport modeling may provide a useful tool for approaching this problem. Here we present a reactive-transport model describing methane production along the flow-path of hydrothermal fluid from its high temperature end-member to diffuse venting at the seafloor. The model is set up to reflect conditions at several diffuse vents in the Axial Seamount. The model describes the growth of the two dominant thermophilic methanogens, Methanothermococcus and Methanocaldococcus, observed at Axial seamount. Monod and Arrhenius constants for Methanothermococcus thermolithotrophicus and Methanocaldococcus jannaschii were obtained for the model using chemostat and bottle experiments at varying temperatures. The model is used to investigate the influence of different mixing regimes on the subseafloor populations of these methanogens. By varying the model flow path length and subseafloor cell concentrations, and fitting to observed hydrogen and methane concentrations in the venting fluid, the subseafloor biomass, fluid residence time, and methane production rate can be constrained.
Kinetics and thermodynamics of gas diffusion in a NiFe hydrogenase.
Topin, Jérémie; Rousset, Marc; Antonczak, Serge; Golebiowski, Jérôme
2012-03-01
We have investigated O₂ and H₂ transport across a NiFe hydrogenase at the atomic scale by means of computational methods. The Wild Type protein has been compared with the V74Q mutant. Two distinct methodologies have been applied to study the gas access to the active site. Temperature locally enhanced sampling simulations have emphasized the importance of protein dynamics on gas diffusion. The O₂ diffusion free energy profiles, obtained by umbrella sampling, are in agreement with the known kinetic data and show that in the V74Q mutant, the inhibition process is lowered from both a kinetic and a thermodynamic point of view. Copyright © 2011 Wiley Periodicals, Inc.
Ghysels, An; Venable, Richard M; Pastor, Richard W; Hummer, Gerhard
2017-06-13
A Bayesian-based methodology is developed to estimate diffusion tensors from molecular dynamics simulations of permeants in anisotropic media, and is applied to oxygen in lipid bilayers. By a separation of variables in the Smoluchowski diffusion equation, the multidimensional diffusion is reduced to coupled one-dimensional diffusion problems that are treated by discretization. The resulting diffusivity profiles characterize the membrane transport dynamics as a function of the position across the membrane, discriminating between diffusion normal and parallel to the membrane. The methodology is first validated with neat water, neat hexadecane, and a hexadecane slab surrounded by water, the latter being a simple model for a lipid membrane. Next, a bilayer consisting of pure 1-palmitoyl 2-oleoylphosphatidylcholine (POPC), and a bilayer mimicking the lipid composition of the inner mitochondrial membrane, including cardiolipin, are investigated. We analyze the detailed time evolution of oxygen molecules, in terms of both normal diffusion through and radial diffusion inside the membrane. Diffusion is fast in the more loosely packed interleaflet region, and anisotropic, with oxygen spreading more rapidly in the membrane plane than normal to it. Visualization of the propagator shows that oxygen enters the membrane rapidly, reaching its thermodynamically favored center in about 1 ns, despite the free energy barrier at the headgroup region. Oxygen transport is quantified by computing the oxygen permeability of the membranes and the average radial diffusivity, which confirm the anisotropy of the diffusion. The position-dependent diffusion constants and free energies are used to construct compartmental models and test assumptions used in estimating permeability, including Overton's rule. In particular, a hexadecane slab surrounded by water is found to be a poor model of oxygen transport in membranes because the relevant energy barriers differ substantially.
Carbon diffusion in solid iron as function of pressure and temperature
NASA Astrophysics Data System (ADS)
Stagno, V.; Crispin, K. L.; Fei, Y.
2012-12-01
The knowledge of carbon diffusion in metallic iron is of importance for both industrial and geological applications. In industry the diffusion properties of carbon apply to the massive production of steel through carburizing and galvanization processes at high temperature with the aim to improve the hardness and rust resistance of such materials. In geoscience the diffusion of carbon in metallic phases at high pressure and temperature is important for determining the rate of reactions and crystal growth of carbide phases likely coexisting with mantle silicates. Due to a small atomic radius, carbon is expected to dissolve by interstitial diffusion in solid metals. However, to date there are no experimental data available to understand the role that pressure plays on the mobilization of carbon through solid iron. Further, for light elements such as carbon or sulfur the activation energy is assumed to be lower than in case of lattice diffusion. However, with increasing pressure the activation volume must be taken into account to better understand diffusion processes at the atomic scale. We performed experiments using multianvil and piston cylinder devices at pressures between 1.5 and 6 GPa and temperature of 700-1200°C. Experiments were carried out using cylindrical glassy carbon sandwiched between layers of pure iron rods of known thickness enclosed in MgO capsule. Analytical techniques included FE-SEM for textural observation and accurate analyses of the interface between layers, while concentration profiles were measured using the electron microprobe with an optimized standardization procedure. Concentration profiles of carbon in iron were computed to determine the diffusion coefficients based on Fick's second law formulation assuming isotropic one dimension diffusion. Preliminary results confirm the positive temperature dependence of the diffusion coefficient for carbon widely discussed in literature. However, our results also show that a significant increase in pressure is required to affect the mobility of carbon through metallic iron by almost the same order of magnitude as cooling. The variation of the diffusion coefficient as function of temperature and pressure will be used to determine the activation energy and volume. It is known that the stability of carbide phases in the Earth's interior is mainly governed by the local Fe/C ratios. In the case of enriched mantle model, for instance, carbon in form of diamond will coexist with Fe7C3 for small amounts of metallic iron. In contrast, this would imply that at low carbon contents (<50 ppm) typical of a depleted mantle source, and at oxygen fugacity conditions lower than EMOD buffer, the transport of carbon will likely occur by diffusion through the coexisting metal phase. Results from this study will improve our understanding on the transport of carbon by diffusion at conditions of the Earth's interior and will provide new thermodynamic data to explain the fractionation of carbon by diffusion in other planetary bodies.
NASA Astrophysics Data System (ADS)
Dvoretskaya, Olga A.; Kondratenko, Peter S.
2009-04-01
We study the transport of impurity particles on a comb structure in the presence of advection. The main body concentration and asymptotic concentration distributions are obtained. Seven different transport regimes occur on the comb structure with finite teeth: classical diffusion, advection, quasidiffusion, subdiffusion, slow classical diffusion, and two kinds of slow advection. Quasidiffusion deserves special attention. It is characterized by a linear growth of the mean-square displacement. However, quasidiffusion is an anomalous transport regime. We established that a change in transport regimes in time leads to a change in regimes in space. Concentration tails have a cascade structure, namely, consisting of several parts.
Computation Of Facilitated Transport of O2 In Hemoglobin
NASA Technical Reports Server (NTRS)
Davis, Sanford
1991-01-01
Report describes computations of unsteady facilitated transport of oxygen through liquid membrane of hemoglobin. Used here, "facilitated transport" means diffusion of permeant through membrane in which that diffusion enhanced by reversible chemical reaction between permeant and membrane. In this case, reversible reactions between hemoglobin and oxygen.
Anisotropic mesoscale eddy transport in ocean general circulation models
NASA Astrophysics Data System (ADS)
Reckinger, Scott; Fox-Kemper, Baylor; Bachman, Scott; Bryan, Frank; Dennis, John; Danabasoglu, Gokhan
2014-11-01
In modern climate models, the effects of oceanic mesoscale eddies are introduced by relating subgrid eddy fluxes to the resolved gradients of buoyancy or other tracers, where the proportionality is, in general, governed by an eddy transport tensor. The symmetric part of the tensor, which represents the diffusive effects of mesoscale eddies, is universally treated isotropically. However, the diffusive processes that the parameterization approximates, such as shear dispersion and potential vorticity barriers, typically have strongly anisotropic characteristics. Generalizing the eddy diffusivity tensor for anisotropy extends the number of parameters from one to three: major diffusivity, minor diffusivity, and alignment. The Community Earth System Model (CESM) with the anisotropic eddy parameterization is used to test various choices for the parameters, which are motivated by observations and the eddy transport tensor diagnosed from high resolution simulations. Simply setting the ratio of major to minor diffusivities to a value of five globally, while aligning the major axis along the flow direction, improves biogeochemical tracer ventilation and reduces temperature and salinity biases. These effects can be improved by parameterizing the oceanic anisotropic transport mechanisms.
Transport Corrections in Nodal Diffusion Codes for HTR Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abderrafi M. Ougouag; Frederick N. Gleicher
2010-08-01
The cores and reflectors of High Temperature Reactors (HTRs) of the Next Generation Nuclear Plant (NGNP) type are dominantly diffusive media from the point of view of behavior of the neutrons and their migration between the various structures of the reactor. This means that neutron diffusion theory is sufficient for modeling most features of such reactors and transport theory may not be needed for most applications. Of course, the above statement assumes the availability of homogenized diffusion theory data. The statement is true for most situations but not all. Two features of NGNP-type HTRs require that the diffusion theory-based solutionmore » be corrected for local transport effects. These two cases are the treatment of burnable poisons (BP) in the case of the prismatic block reactors and, for both pebble bed reactor (PBR) and prismatic block reactor (PMR) designs, that of control rods (CR) embedded in non-multiplying regions near the interface between fueled zones and said non-multiplying zones. The need for transport correction arises because diffusion theory-based solutions appear not to provide sufficient fidelity in these situations.« less
Outer-membrane translocation of bulky small molecules by passive diffusion
van den Berg, Bert; Prathyusha Bhamidimarri, Satya; Dahyabhai Prajapati, Jigneshkumar; Kleinekathöfer, Ulrich; Winterhalter, Mathias
2015-01-01
The outer membrane (OM) of gram-negative bacteria forms a protective layer around the cell that serves as a permeability barrier to prevent unrestricted access of noxious substances. The permeability barrier of the OM results partly from the limited pore diameters of OM diffusion channels. As a consequence, there is an “OM size-exclusion limit,” and the uptake of bulky molecules with molecular masses of more than ∼600 Da is thought to be mediated by TonB-dependent, active transporters. Intriguingly, the OM protein CymA from Klebsiella oxytoca does not depend on TonB but nevertheless mediates efficient OM passage of cyclodextrins with diameters of up to ∼15 Å. Here we show, by using X-ray crystallography, molecular dynamics simulations, and single-channel electrophysiology, that CymA forms a monomeric 14-stranded β-barrel with a large pore that is occluded on the periplasmic side by the N-terminal 15 residues of the protein. Representing a previously unidentified paradigm in OM transport, CymA mediates the passive diffusion of bulky molecules via an elegant transport mechanism in which a mobile element formed by the N terminus acts as a ligand-expelled gate to preserve the permeability barrier of the OM. PMID:26015567
A Comparison of Water Diffusion in Polymer Based Fuel Cell and Reverse Osmosis Membrane Materials
NASA Astrophysics Data System (ADS)
Soles, Christopher; Frieberg, Bradley; Tarver, Jacob; Tyagi, Madhusudan; Jeong, Cheol; Chan, Edwin; Stafford, Christopher
Hydrated polymer membranes are critical in both fuel cells and water filtration and desalination. In both of these applications the membrane function (selectively transporting or separating ions) is coupled with the transport of water through the membrane. There is a significant need to understand the nature by which the water and ions distribute and move through these membranes. This presentation compares the transport mechanisms in in an ion containing block copolymer alkaline fuel cell membrane with that of a polyamide membrane that is used as the active layer in a reverse osmosis water desalination membrane. Small angle neutron scattering measurements are used to locally probe how water swells the different materials and quantitatively describe the distribution of water within the membrane microstructures. Quasielastic neutron scattering measurements are then used to separate the polymer dynamics of the host membranes from the dynamics of the water inside the membranes. This reveals that water moves at least an order of magnitude slower through the ion containing fuel cell membrane materials, consistent with a solution-diffusion model, while the water in the polyamide membranes moves faster, consistent with a pore-flow diffusion mechanism. These insights will be discussed in terms of a coupling of the water and polymer dynamics and design cues for high performance membrane materials.
A stochastic multi-scale method for turbulent premixed combustion
NASA Astrophysics Data System (ADS)
Cha, Chong M.
2002-11-01
The stochastic chemistry algorithm of Bunker et al. and Gillespie is used to perform the chemical reactions in a transported probability density function (PDF) modeling approach of turbulent combustion. Recently, Kraft & Wagner have demonstrated a 100-fold gain in computational speed (for a 100 species mechanism) using the stochastic approach over the conventional, direct integration method of solving for the chemistry. Here, the stochastic chemistry algorithm is applied to develop a new transported PDF model of turbulent premixed combustion. The methodology relies on representing the relevant spatially dependent physical processes as queuing events. The canonical problem of a one-dimensional premixed flame is used for validation. For the laminar case, molecular diffusion is described by a random walk. For the turbulent case, one of two different material transport submodels can provide the necessary closure: Taylor dispersion or Kerstein's one-dimensional turbulence approach. The former exploits ``eddy diffusivity'' and hence would be much more computationally tractable for practical applications. Various validation studies are performed. Results from the Monte Carlo simulations compare well to asymptotic solutions of laminar premixed flames, both with and without high activation temperatures. The correct scaling of the turbulent burning velocity is predicted in both Damköhler's small- and large-scale turbulence limits. The effect of applying the eddy diffusivity concept in the various regimes is discussed.
2012-06-01
the diffusion length L and the mobility-lifetime product from the luminescence distribution using the 2D model for transport imaging in bulk...C. Scandrett, and N. M. Haegel, “Three-dimensional transport imaging for the spatially resolved determination of carrier diffusion length in bulk...that allows measurements of the diffusion length and extraction of the product in luminescent materials without the need for device processing
Relevance of anisotropy and spatial variability of gas diffusivity for soil-gas transport
NASA Astrophysics Data System (ADS)
Schack-Kirchner, Helmer; Kühne, Anke; Lang, Friederike
2017-04-01
Models of soil gas transport generally do not consider neither direction dependence of gas diffusivity, nor its small-scale variability. However, in a recent study, we could provide evidence for anisotropy favouring vertical gas diffusion in natural soils. We hypothesize that gas transport models based on gas diffusion data measured with soil rings are strongly influenced by both, anisotropy and spatial variability and the use of averaged diffusivities could be misleading. To test this we used a 2-dimensional model of soil gas transport to under compacted wheel tracks to model the soil-air oxygen distribution in the soil. The model was parametrized with data obtained from soil-ring measurements with its central tendency and variability. The model includes vertical parameter variability as well as variation perpendicular to the elongated wheel track. Different parametrization types have been tested: [i)]Averaged values for wheel track and undisturbed. em [ii)]Random distribution of soil cells with normally distributed variability within the strata. em [iii)]Random distributed soil cells with uniformly distributed variability within the strata. All three types of small-scale variability has been tested for [j)] isotropic gas diffusivity and em [jj)]reduced horizontal gas diffusivity (constant factor), yielding in total six models. As expected the different parametrizations had an important influence to the aeration state under wheel tracks with the strongest oxygen depletion in case of uniformly distributed variability and anisotropy towards higher vertical diffusivity. The simple simulation approach clearly showed the relevance of anisotropy and spatial variability in case of identical central tendency measures of gas diffusivity. However, until now it did not consider spatial dependency of variability, that could even aggravate effects. To consider anisotropy and spatial variability in gas transport models we recommend a) to measure soil-gas transport parameters spatially explicit including different directions and b) to use random-field stochastic models to assess the possible effects for gas-exchange models.
ERIC Educational Resources Information Center
Britton, L. N.; And Others
1988-01-01
Considers the applicability of the simple emersion/weight-gain method for predicting diffusion coefficients, solubilities, and permeation rates of chemicals in polymers that do not undergo physical and chemical deterioration. Presents the theoretical background, procedures and typical results related to this activity. (CW)
Future long-range transports - Prospects for improved fuel efficiency
NASA Technical Reports Server (NTRS)
Nagel, A. L.; Alford, W. J., Jr.; Dugan, J. F., Jr.
1975-01-01
A status report is provided on current thinking concerning potential improvements in fuel efficiency and possible alternate fuels. Topics reviewed are: historical trends in airplane efficiency; technological opportunities including supercritical aerodynamics, vortex diffusers, composite materials, propulsion systems, active controls, and terminal-area operations; unconventional design concepts, and hydrogen-fueled airplane.
DOE Office of Scientific and Technical Information (OSTI.GOV)
2010-02-01
Neutron transport, calculation of multiplication factor and neutron fluxes in 2-D configurations: cell calculations, 2-D diffusion and transport, and burnup. Preparation of a cross section library for the code BOXER from a basic library in ENDF/B format (ETOBOX).
Study of electron transport in a Hall thruster by axial–radial fully kinetic particle simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Shinatora, E-mail: choh.shinatora@jaxa.jp; Kubota, Kenichi; Funaki, Ikkoh
2015-10-15
Electron transport across a magnetic field in a magnetic-layer-type Hall thruster was numerically investigated for the future predictive modeling of Hall thrusters. The discharge of a 1-kW-class magnetic-layer-type Hall thruster designed for high-specific-impulse operation was modeled using an r-z two-dimensional fully kinetic particle code with and without artificial electron-diffusion models. The thruster performance results showed that both electron transport models captured the experimental result within discrepancies less than 20% in thrust and discharge current for all the simulated operation conditions. The electron cross-field transport mechanism of the so-called anomalous diffusion was self-consistently observed in the simulation without artificial diffusion models;more » the effective electron mobility was two orders of magnitude higher than the value obtained using the classical diffusion theory. To account for the self-consistently observed anomalous transport, the oscillation of plasma properties was speculated. It was suggested that the enhanced random-walk diffusion due to the velocity oscillation of low-frequency electron flow could explain the observed anomalous diffusion within an order of magnitude. The dominant oscillation mode of the electron flow velocity was found to be 20 kHz, which was coupled to electrostatic oscillation excited by global ionization instability.« less
Direct Imaging of Long-Range Exciton Transport in Quantum Dot Superlattices by Ultrafast Microscopy.
Yoon, Seog Joon; Guo, Zhi; Dos Santos Claro, Paula C; Shevchenko, Elena V; Huang, Libai
2016-07-26
Long-range charge and exciton transport in quantum dot (QD) solids is a crucial challenge in utilizing QDs for optoelectronic applications. Here, we present a direct visualization of exciton diffusion in highly ordered CdSe QDs superlattices by mapping exciton population using ultrafast transient absorption microscopy. A temporal resolution of ∼200 fs and a spatial precision of ∼50 nm of this technique provide a direct assessment of the upper limit for exciton transport in QD solids. An exciton diffusion length of ∼125 nm has been visualized in the 3 ns experimental time window and an exciton diffusion coefficient of (2.5 ± 0.2) × 10(-2) cm(2) s(-1) has been measured for superlattices constructed from 3.6 nm CdSe QDs with center-to-center distance of 6.7 nm. The measured exciton diffusion constant is in good agreement with Förster resonance energy transfer theory. We have found that exciton diffusion is greatly enhanced in the superlattices over the disordered films with an order of magnitude higher diffusion coefficient, pointing toward the role of disorder in limiting transport. This study provides important understandings on energy transport mechanisms in both the spatial and temporal domains in QD solids.
On the anisotropic advection-diffusion equation with time dependent coefficients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernandez-Coronado, Hector; Coronado, Manuel; Del-Castillo-Negrete, Diego B.
The advection-diffusion equation with time dependent velocity and anisotropic time dependent diffusion tensor is examined in regard to its non-classical transport features and to the use of a non-orthogonal coordinate system. Although this equation appears in diverse physical problems, particularly in particle transport in stochastic velocity fields and in underground porous media, a detailed analysis of its solutions is lacking. In order to study the effects of the time-dependent coefficients and the anisotropic diffusion on transport, we solve analytically the equation for an initial Dirac delta pulse. Here, we discuss the solutions to three cases: one based on power-law correlationmore » functions where the pulse diffuses faster than the classical rate ~t, a second case specically designed to display slower rate of diffusion than the classical one, and a third case to describe hydrodynamic dispersion in porous media« less
On the anisotropic advection-diffusion equation with time dependent coefficients
Hernandez-Coronado, Hector; Coronado, Manuel; Del-Castillo-Negrete, Diego B.
2017-02-01
The advection-diffusion equation with time dependent velocity and anisotropic time dependent diffusion tensor is examined in regard to its non-classical transport features and to the use of a non-orthogonal coordinate system. Although this equation appears in diverse physical problems, particularly in particle transport in stochastic velocity fields and in underground porous media, a detailed analysis of its solutions is lacking. In order to study the effects of the time-dependent coefficients and the anisotropic diffusion on transport, we solve analytically the equation for an initial Dirac delta pulse. Here, we discuss the solutions to three cases: one based on power-law correlationmore » functions where the pulse diffuses faster than the classical rate ~t, a second case specically designed to display slower rate of diffusion than the classical one, and a third case to describe hydrodynamic dispersion in porous media« less
Complex Analysis of Diffusion Transport and Microstructure of an Intervertebral Disk.
Byvaltsev, V A; Kolesnikov, S I; Belykh, E G; Stepanov, I A; Kalinin, A A; Bardonova, L A; Sudakov, N P; Klimenkov, I V; Nikiforov, S B; Semenov, A V; Perfil'ev, D V; Bespyatykh, I V; Antipina, S L; Giers, M; Prul, M
2017-12-01
We studied the relationship between diffusion transport and morphological and microstructural organization of extracellular matrix of human intervertebral disk. Specimens of the lumbar intervertebral disks without abnormalities were studied ex vivo by diffusion-weighed magnetic resonance imaging, histological and immunohistochemical methods, and electron microscopy. Distribution of the diffusion coefficient in various compartments of the intervertebral disk was studied. Significant correlations between diffusion coefficient and cell density in the nucleus pulposus, posterior aspects of annulus fibrosus, and endplate at the level of the posterior annulus fibrosus were detected for each disk. In disks with nucleus pulposus diffusion coefficient below 15×10 -4 mm 2 /sec, collagens X and XI were detected apart from aggrecan and collagens I and II. The results supplement the concept on the relationship between the microstructure and cell composition of various compartments of the intervertebral disk and parameters of nutrient transport.
Direct Effects on the Membrane Potential due to "Pumps" that Transfer No Net Charge
Schwartz, Tobias L.
1971-01-01
The effects of active ionic transport are included in the derivation of a general expression for the zero current membrane potential. It is demonstrated that an active transport system that transfers no net charge (nonrheogenic) may, nevertheless, directly alter the membrane potential. This effect depends upon the exchange of matter within the membrane between the active and passive diffusion regimes. Furthermore, in the presence of such exchange, the transmembrane active fluxes measured by the usual techniques and the local pumped fluxes are not identical. Several common uses of the term “electrogenic pump” are thus shown to be inconsistent with each other. These inconsistencies persist when the derivation is extended to produce a Goldman equation modified to account for active transport; however, that equation is shown to be limited by less narrow constraints on membrane heterogeneity and internal electric field than those previously required. In particular, it is applicable to idealized mosaic membranes limited by these requirements. PMID:5113004
Chapy, Hélène; Smirnova, Maria; André, Pascal; Schlatter, Joël; Chiadmi, Fouad; Couraud, Pierre-Olivier; Scherrmann, Jean-Michel; Declèves, Xavier
2015-01-01
Background: The rate of entry of cocaine into the brain is a critical factor that influences neuronal plasticity and the development of cocaine addiction. Until now, passive diffusion has been considered the unique mechanism known by which cocaine crosses the blood-brain barrier. Methods: We reassessed mechanisms of transport of cocaine at the blood-brain barrier using a human cerebral capillary endothelial cell line (hCMEC/D3) and in situ mouse carotid perfusion. Results: Both in vivo and in vitro cocaine transport studies demonstrated the coexistence of a carrier-mediated process with passive diffusion. At pharmacological exposure level, passive diffusion of cocaine accounted for only 22.5% of the total cocaine influx in mice and 5.9% in hCMEC/D3 cells, whereas the carrier-mediated influx rate was 3.4 times greater than its passive diffusion rate in vivo. The functional identification of this carrier-mediated transport demonstrated the involvement of a proton antiporter that shared the properties of the previously characterized clonidine and nicotine transporter. The functionnal characterization suggests that the solute carrier (SLC) transporters Oct (Slc22a1-3), Mate (Slc47a1) and Octn (Slc22a4-5) are not involved in the cocaine transport in vivo and in vitro. Diphenhydramine, heroin, tramadol, cocaethylene, and norcocaine all strongly inhibited cocaine transport, unlike benzoylecgonine. Trans-stimulation studies indicated that diphenhydramine, nicotine, 3,4-methylenedioxyamphetamine (ecstasy) and the cathinone compound 3,4-methylenedioxypyrovalerone (MDPV) were also substrates of the cocaine transporter. Conclusions: Cocaine transport at the BBB involves a proton-antiporter flux that is quantitatively much more important than its passive diffusion. The molecular identification and characterization of this transporter will provide new tools to understand its role in addictive mechanisms. PMID:25539501
NASA Astrophysics Data System (ADS)
Ali, A.; Elkington, S. R.; Malaspina, D.
2014-12-01
The Van Allen radiation belts contain highly energetic particles which interact with a variety of plasma and MHD waves. Waves with frequencies in the ULF range are understood to play an important role in loss and acceleration of energetic particles. We are investigating the contributions from perturbations in both the magnetic and the electric fields in driving radial diffusion of charged particles and wish to probe two unanswered questions about ULF wave driven radial transport. First, how important are the fluctuations in the magnetic field compared with the fluctuations in the electric field in driving radial diffusion? Second, how does ULF wave power distribution in azimuth affect radial diffusion? Analytic treatments of the diffusion coefficients generally assume uniform distribution of power in azimuth but in situ measurements suggest otherwise. We present results from a study using the electric and magnetic field measurements from the Van Allen Probes to estimate the radial diffusion coefficients as a function of L and Kp. During the lifetime of the RBSP mission to date, there has been a dearth of solar activity. This compels us to consider Kp as the only time and activity dependent parameter instead of solar wind velocity and pressure.
Ramanan, B.; Holmes, W. M.; Sloan, W. T.; Phoenix, V. R.
2010-01-01
Molecules become readily visible by magnetic resonance imaging (MRI) when labeled with a paramagnetic tag. Consequently, MRI can be used to image their transport through porous media. In this study, we demonstrated that this method could be applied to image mass transport processes in biofilms. The transport of a complex of gadolinium and diethylenetriamine pentaacetic acid (Gd-DTPA), a commercially available paramagnetic molecule, was imaged both in agar (as a homogeneous test system) and in a phototrophic biofilm. The images collected were T1 weighted, where T1 is an MRI property of the biofilm and is dependent on Gd-DTPA concentration. A calibration protocol was applied to convert T1 parameter maps into concentration maps, thus revealing the spatially resolved concentrations of this tracer at different time intervals. Comparing the data obtained from the agar experiment with data from a one-dimensional diffusion model revealed that transport of Gd-DTPA in agar was purely via diffusion, with a diffusion coefficient of 7.2 × 10−10 m2 s−1. In contrast, comparison of data from the phototrophic biofilm experiment with data from a two-dimensional diffusion model revealed that transport of Gd-DTPA inside the biofilm was by both diffusion and advection, equivalent to a diffusion coefficient of 1.04 × 10−9 m2 s−1. This technology can be used to further explore mass transport processes in biofilms, either by using the wide range of commercially available paramagnetically tagged molecules and nanoparticles or by using bespoke tagged molecules. PMID:20435773
Multicomponent transport in membranes for redox flow batteries
NASA Astrophysics Data System (ADS)
Monroe, Charles
2015-03-01
Redox flow batteries (RFBs) incorporate separator membranes, which ideally prevent mixing of electrochemically active species while permitting crossover of inactive supporting ions. Understanding crossover and membrane selectivity may require multicomponent transport models that account for solute/solute interactions within the membrane, as well as solute/membrane interactions. Application of the Onsager-Stefan-Maxwell formalism allows one to account for all the dissipative phenomena that may accompany component fluxes through RFB membranes. The magnitudes of dissipative interactions (diffusional drag forces) are quantified by matching experimentally established concentration transients with theory. Such transients can be measured non-invasively using DC conductometry, but the accuracy of this method requires precise characterization of the bulk RFB electrolytes. Aqueous solutions containing both vanadyl sulfate (VOSO4) and sulfuric acid (H2SO4) are relevant to RFB technology. One of the first precise characterizations of aqueous vanadyl sulfate has been implemented and will be reported. To assess the viability of a separator for vanadium RFB applications with cell-level simulations, it is critical to understand the tendencies of various classes of membranes to absorb (uptake) active species, and to know the relative rates of active-species and supporting-electrolyte diffusion. It is also of practical interest to investigate the simultaneous diffusion of active species and supports, because interactions between solutes may ultimately affect the charge efficiency and power efficiency of the RFB system as a whole. A novel implementation of Barnes's classical model of dialysis-cell diffusion [Physics 5:1 (1934) 4-8] is developed to measure the binary diffusion coefficients and sorption equilibria for single solutes (VOSO4 or H2SO4) in porous membranes and cation-exchange membranes. With the binary diffusion and uptake measurement in hand, a computer simulation that extends the approach of Heintz, Wiedemann and Ziegler [J. Membrane Science 137:1-2 (1997) 121-132] is used to establish Onsager resistances that describe the drag forces VOSO4 and H2SO4 exert on each other as they interdiffuse. The ramifications of these interactions for different classes of membranes - and for RFB applications - will be discussed. NSF CBET-1253544.
Diffusion in Deterministic Interacting Lattice Systems
NASA Astrophysics Data System (ADS)
Medenjak, Marko; Klobas, Katja; Prosen, Tomaž
2017-09-01
We study reversible deterministic dynamics of classical charged particles on a lattice with hard-core interaction. It is rigorously shown that the system exhibits three types of transport phenomena, ranging from ballistic, through diffusive to insulating. By obtaining an exact expressions for the current time-autocorrelation function we are able to calculate the linear response transport coefficients, such as the diffusion constant and the Drude weight. Additionally, we calculate the long-time charge profile after an inhomogeneous quench and obtain diffusive profilewith the Green-Kubo diffusion constant. Exact analytical results are corroborated by Monte Carlo simulations.
Wang, Teng-Duan; Zhang, Hui-Fen; Wu, Zi-Chen; Li, Jian-Guo; Huang, Xu-Ming; Wang, Hui-Cong
2015-02-01
The post-phloem unloading pathway and the mechanism of sugar accumulation remain unclear in litchi fruit. A combination of electron microscopy, transport of phloem-mobile symplasmic tracer (carboxyfluorescein, CF) and biochemical and molecular assays was used to explore the post-phloem transport pathway and the mechanism of aril sugar accumulation in litchi. In the funicle, where the aril originates, abundant plasmodesmata were observed, and CF introduced from the peduncle diffused to the parenchyma cells. In addition, abundant starch and pentasaccharide were detected and the sugar concentration was positively correlated with activities of sucrose hydrolysis enzymes. These results clearly showed that the phloem unloading and post-phloem transport in the funicle were symplastic. On the other hand, imaging of CF showed that it remained confined to the parenchyma cells in funicle tissues connecting the aril. Infiltration of both an ATPase inhibitor [eosin B (EB)] and a sucrose transporter inhibitor [p-chloromercuribenzene sulfonate (PCMBS)] inhibited sugar accumulation in the aril. These results indicated an apoplasmic post-phloem sugar transport from the funicle to the aril. Although facilitated diffusion might help sucrose uptake from the cytosol to the vacuole in cultivars with high soluble invertase, membrane ATPases in the aril, especially tonoplast ATPase, are crucial for aril sugar accumulation. The expression of a putative aril vacuolar membrane sucrose transporter gene (LcSUT4) was highly correlated with the sugar accumulation in the aril of litchi. These data suggest that apoplasmic transport is critical for sugar accumulation in litchi aril and that LcSUT4 is involved in this step. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Fractional calculus phenomenology in two-dimensional plasma models
NASA Astrophysics Data System (ADS)
Gustafson, Kyle; Del Castillo Negrete, Diego; Dorland, Bill
2006-10-01
Transport processes in confined plasmas for fusion experiments, such as ITER, are not well-understood at the basic level of fully nonlinear, three-dimensional kinetic physics. Turbulent transport is invoked to describe the observed levels in tokamaks, which are orders of magnitude greater than the theoretical predictions. Recent results show the ability of a non-diffusive transport model to describe numerical observations of turbulent transport. For example, resistive MHD modeling of tracer particle transport in pressure-gradient driven turbulence for a three-dimensional plasma reveals that the superdiffusive (2̂˜t^α where α> 1) radial transport in this system is described quantitatively by a fractional diffusion equation Fractional calculus is a generalization involving integro-differential operators, which naturally describe non-local behaviors. Our previous work showed the quantitative agreement of special fractional diffusion equation solutions with numerical tracer particle flows in time-dependent linearized dynamics of the Hasegawa-Mima equation (for poloidal transport in a two-dimensional cold-ion plasma). In pursuit of a fractional diffusion model for transport in a gyrokinetic plasma, we now present numerical results from tracer particle transport in the nonlinear Hasegawa-Mima equation and a planar gyrokinetic model. Finite Larmor radius effects will be discussed. D. del Castillo Negrete, et al, Phys. Rev. Lett. 94, 065003 (2005).
NASA Astrophysics Data System (ADS)
Behera, Rakesh K.; Watanabe, Taku; Andersson, David A.; Uberuaga, Blas P.; Deo, Chaitanya S.
2016-04-01
Oxygen interstitials in UO2+x significantly affect the thermophysical properties and microstructural evolution of the oxide nuclear fuel. In hyperstoichiometric Urania (UO2+x), these oxygen interstitials form different types of defect clusters, which have different migration behavior. In this study we have used kinetic Monte Carlo (kMC) to evaluate diffusivities of oxygen interstitials accounting for mono- and di-interstitial clusters. Our results indicate that the predicted diffusivities increase significantly at higher non-stoichiometry (x > 0.01) for di-interstitial clusters compared to a mono-interstitial only model. The diffusivities calculated at higher temperatures compare better with experimental values than at lower temperatures (< 973 K). We have discussed the resulting activation energies achieved for diffusion with all the mono- and di-interstitial models. We have carefully performed sensitivity analysis to estimate the effect of input di-interstitial binding energies on the predicted diffusivities and activation energies. While this article only discusses mono- and di-interstitials in evaluating oxygen diffusion response in UO2+x, future improvements to the model will primarily focus on including energetic definitions of larger stable interstitial clusters reported in the literature. The addition of larger clusters to the kMC model is expected to improve the comparison of oxygen transport in UO2+x with experiment.
Measuring nanoparticle diffusion in an ABELtrap
NASA Astrophysics Data System (ADS)
Dienerowitz, M.; Dienerowitz, F.; Börsch, M.
2018-03-01
Monitoring the Brownian motion of individual nanoscopic objects is key to investigate their transport properties and interactions with their close environment. Most techniques rely on transient diffusion through a detection volume or immobilisation, which restrict observation times or motility. We measure the diffusion coefficient and surface charge of individual nanoparticles and DNA molecules in an anti-Brownian electrokinetic trap (ABELtrap). This instrument is an active feedback trap confining the Brownian motion of a nanoparticle to the detection site by applying an electric field based on the particle’s current position. We simulate the Brownian motion of nanospheres in our sample geometry, including wall effects, due to partial confinement in the third dimension. The theoretically predicted values are in excellent agreement with our diffusion measurements in the ABELtrap. We also demonstrate the ABELtrap’s ability to measure varying sizes of DNA origami structures during denaturation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Z. Y., E-mail: zychen@hust.edu.cn; Huang, D. W.; Tong, R. H.
The measurement of internal magnetic fluctuation is important for the study of transport in tokamak plasmas. The runaway electron transport induced by the sawtooth crash can be used to obtain the internal magnetic fluctuation. Inversed sawtooth-like activities on hard x-ray (HXR) fluxes following sawtooth activities were observed after the application of electrode biasing on J-TEXT tokamak. The runaway diffusion coefficient D{sub r} is deduced to be about 30 m{sup 2}/s according to the time delay of HXR flux peaks to the sawtooth crashes. The averaged value of normalized magnetic fluctuation in the discharges with electrode biasing was increased to themore » order of 1 × 10{sup −4}.« less
Oxygen transport in off-stoichiometric uranium dioxide mediated by defect clustering dynamics
Yu, Jianguo; Bai, Xian -Ming; El-Azab, Anter; ...
2015-03-05
In this study, oxygen transport is central to many properties of oxides such as stoichiometric changes, phase transformation and ionic conductivity. In this paper, we report a mechanism for oxygen transport in uranium dioxide (UO 2) in which the kinetics is mediated by defect clustering dynamics. In particular, the kinetic Monte Carlo (KMC) method has been used to investigate the kinetics of oxygen transport in UO 2 under the condition of creation and annihilation of oxygen vacancies and interstitials as well as oxygen interstitial clustering, with variable offstoichiometry and temperature conditions. It is found that in hypo-stoichiometric UO 2-x, oxygenmore » transport is well described by the vacancy diffusion mechanism while in hyper-stoichiometric UO 2+x, oxygen interstitial cluster diffusion contributes significantly to oxygen transport kinetics, particularly at high temperatures and high off-stoichiometry levels. It is also found that diinterstitial clusters and single interstitials play dominant roles in oxygen diffusion while other larger clusters have negligible contributions. However, the formation, coalescence and dissociation of these larger clusters indirectly affects the overall oxygen diffusion due to their interactions with mono and di-interstitials, thus providing a explanation of the experimental observation of saturation or even drop of oxygen diffusivity at high off-stoichiometry.« less
Coexistence of passive and carrier-mediated processes in drug transport.
Sugano, Kiyohiko; Kansy, Manfred; Artursson, Per; Avdeef, Alex; Bendels, Stefanie; Di, Li; Ecker, Gerhard F; Faller, Bernard; Fischer, Holger; Gerebtzoff, Grégori; Lennernaes, Hans; Senner, Frank
2010-08-01
The permeability of biological membranes is one of the most important determinants of the pharmacokinetic processes of a drug. Although it is often accepted that many drug substances are transported across biological membranes by passive transcellular diffusion, a recent hypothesis speculated that carrier-mediated mechanisms might account for the majority of membrane drug transport processes in biological systems. Based on evidence of the physicochemical characteristics and of in vitro and in vivo findings for marketed drugs, as well as results from real-life discovery and development projects, we present the view that both passive transcellular processes and carrier-mediated processes coexist and contribute to drug transport activities across biological membranes.
Room-temperature ballistic energy transport in molecules with repeating units
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubtsova, Natalia I.; Nyby, Clara M.; Zhang, Hong
2015-06-07
In materials, energy can propagate by means of two limiting regimes: diffusive and ballistic. Ballistic energy transport can be fast and efficient and often occurs with a constant speed. Using two-dimensional infrared spectroscopy methods, we discovered ballistic energy transport via individual polyethylene chains with a remarkably high speed of 1440 m/s and the mean free path length of 14.6 Å in solution at room temperature. Whereas the transport via the chains occurs ballistically, the mechanism switches to diffusive with the effective transport speed of 130 m/s at the end-groups attached to the chains. A unifying model of the transport inmore » molecules is presented with clear time separation and additivity among the transport along oligomeric fragments, which occurs ballistically, and the transport within the disordered fragments, occurring diffusively. The results open new avenues for making novel elements for molecular electronics, including ultrafast energy transporters, controlled chemical reactors, and sub-wavelength quantum nanoseparators.« less
Choi, Chang Kyoung; Fowlkes, Jason D; Retterer, Scott T; Siuti, Piro; Iyer, Sukanya; Doktycz, Mitchel J
2010-06-22
The reaction and diffusion of molecules across barriers and through crowded environments is integral to biological system function and to separation technologies. Ordered, microfabricated post arrays are a promising route to creating synthetic barriers with controlled chemical and physical characteristics. They can be used to create crowded environments, to mimic aspects of cellular membranes, and to serve as engineered replacements of polymer-based separation media. Here, the translational diffusion of fluorescein isothiocyante and various forms of green fluorescent protein (GFP), including "supercharged" variants, are examined in a silicon-based post array environment. The technique of fluorescence recovery after photobleaching (FRAP) is combined with analytical approximations and numerical simulations to assess the relative effects of reaction and diffusion on molecular transport, respectively. FRAP experiments were conducted for 64 different cases where the molecular species, the density of the posts, and the chemical surface charge of the posts were varied. In all cases, the dense packing of the posts hindered the diffusive transport of the fluorescent species. The supercharged GFPs strongly interacted with oppositely charged surfaces. With similar molecular and surface charges, transport is primarily limited by hindered diffusion. For conventional, enhanced GFP in a positively charged surface environment, transport was limited by the coupled action of hindered diffusion and surface interaction with the posts. Quantification of the size-, space-, time-, and charge-dependent translational diffusion in the post array environments can provide insight into natural processes and guide the design and development of selective membrane systems.
Evaluation of multidimensional transport through a field-scale compacted soil liner
Willingham, T.W.; Werth, C.J.; Valocchi, A.J.; Krapac, I.G.; Toupiol, C.; Stark, T.D.; Daniel, D.E.
2004-01-01
A field-scale compacted soil liner was constructed at the University of Illinois at Urbana-Champaign by the U.S. Environmental Protection Agency (USEPA) and Illinois State Geological Survey in 1988 to investigate chemical transport rates through low permeability compacted clay liners (CCLs). Four tracers (bromide and three benzoic acid tracers) were each added to one of four large ring infiltrometers (LRIs) while tritium was added to the pond water (excluding the infiltrometers). Results from the long-term transport of Br- from the localized source zone of LRI are presented in this paper. Core samples were taken radially outward from the center of the Br- LRI and concentration depth profiles were obtained. Transport properties were evaluated using an axially symmetric transport model. Results indicate that (1) transport was diffusion controlled; (2) transport due to advection was negligible and well within the regulatory limits of ksat???1 ?? 10-7 cm/s; (3) diffusion rates in the horizontal and vertical directions were the same; and (4) small positioning errors due to compression during soil sampling did not affect the best fit advection and diffusion values. The best-fit diffusion coefficient for bromide was equal to the molecular diffusion coefficient multiplied by a tortuosity factor of 0.27, which is within 8% of the tortuosity factor (0.25) found in a related study where tritium transport through the same liner was evaluated. This suggests that the governing mechanisms for the transport of tritium and bromide through the CCL were similar. These results are significant because they address transport through a composite liner from a localized source zone which occurs when defects or punctures in the geomembrane of a composite system are present. ?? ASCE.
Advances in Studies of Electrode Kinetics and Mass Transport in AMTEC Cells (abstract)
NASA Technical Reports Server (NTRS)
Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.; Underwood, M. L.; Kisor, A.; O'Connor, D.; Kikkert, S.
1993-01-01
Previous work reported from JPL has included characterization of electrode kinetics and alkali atom transport from electrodes including Mo, W, WRh(sub x), WPt(sub x)(Mn), in sodium AMTEC cells and vapor exposure cells, and Mo in potassium vapor exposure cells. These studies were generally performed in cells with small area electrodes (about 1 to 5 cm(sup 2)), and device geometry had little effect on transport. Alkali diffusion coefficients through these electrodes have been characterized, and approximate surface diffusion coefficients derived in cases of activated transport. A basic model of electrode kinetic at the alkali metal vapor/porous metal electrode/alkali beta'-alumina solid electrolyte three phase boundary has been proposed which accounts for electrochemical reaction rates with a collision frequency near the three phase boundary and tunneling from the porous electrode partially covered with adsorbed alkali metal atoms. The small electrode effect in AMTEC cells has been discussed in several papers, but quantitative investigations have described only the overall effect and the important contribution of electrolyte resistance. The quantitative characterization of transport losses in cells with large area electrodes has been limited to simulations of large area electrode effects, or characterization of transport losses from large area electrodes with significant longitudinal temperature gradients. This paper describes new investigations of electrochemical kinetics and transport, particularily with WPt(sub 3.5) electrodes, including the influence of electrode size on the mass transport loss in the AMTEC cell. These electrodes possess excellent sodium transport properties making verification of device limitations on transport much more readily attained.
Photon diffusion coefficient in scattering and absorbing media.
Pierrat, Romain; Greffet, Jean-Jacques; Carminati, Rémi
2006-05-01
We present a unified derivation of the photon diffusion coefficient for both steady-state and time-dependent transport in disordered absorbing media. The derivation is based on a modal analysis of the time-dependent radiative transfer equation. This approach confirms that the dynamic diffusion coefficient is given by the random-walk result D = cl(*)/3, where l(*) is the transport mean free path and c is the energy velocity, independent of the level of absorption. It also shows that the diffusion coefficient for steady-state transport, often used in biomedical optics, depends on absorption, in agreement with recent theoretical and experimental works. These two results resolve a recurrent controversy in light propagation and imaging in scattering media.
NASA Astrophysics Data System (ADS)
Yossifon, Gilad; Park, Sinwook
2016-11-01
Previously, it has been shown that for a prescribed system, the diffusion length may be affected by any number of mechanisms including natural and forced convection, electroosmotic flow of the second kind and electro-convective instability. In all of the above mentioned cases the length of the diffusion layer is indirectly prescribed by the complicated competition between several mechanisms which are primarily dictated by the various system parameters and applied voltage. In contrast, we suggest that by embedding electrodes/heaters within a microchannel interfacing a permselective medium, the diffusion layer length may be controlled regardless of the dominating overlimiting current mechanism and system parameters. As well as demonstrating that the simple presence of electrodes can enhance mixing via induced-charge electrokinetic effects, we also offer a means of externally activating embedded electrodes and heaters to maintain external, dynamic control of the diffusion length. Such control is particularly important in applications requiring intense ion transport, such as electrodialysis. At the same time, we will also investigate means of suppressing these mechanisms which is of fundamental importance for sensing applications.
Study of Li atom diffusion in amorphous Li3PO4 with neural network potential
NASA Astrophysics Data System (ADS)
Li, Wenwen; Ando, Yasunobu; Minamitani, Emi; Watanabe, Satoshi
2017-12-01
To clarify atomic diffusion in amorphous materials, which is important in novel information and energy devices, theoretical methods having both reliability and computational speed are eagerly anticipated. In the present study, we applied neural network (NN) potentials, a recently developed machine learning technique, to the study of atom diffusion in amorphous materials, using Li3PO4 as a benchmark material. The NN potential was used together with the nudged elastic band, kinetic Monte Carlo, and molecular dynamics methods to characterize Li vacancy diffusion behavior in the amorphous Li3PO4 model. By comparing these results with corresponding DFT calculations, we found that the average error of the NN potential is 0.048 eV in calculating energy barriers of diffusion paths, and 0.041 eV in diffusion activation energy. Moreover, the diffusion coefficients obtained from molecular dynamics are always consistent with those from ab initio molecular dynamics simulation, while the computation speed of the NN potential is 3-4 orders of magnitude faster than DFT. Lastly, the structure of amorphous Li3PO4 and the ion transport properties in it were studied with the NN potential using a large supercell model containing more than 1000 atoms. The formation of P2O7 units was observed, which is consistent with the experimental characterization. The Li diffusion activation energy was estimated to be 0.55 eV, which agrees well with the experimental measurements.
NASA Astrophysics Data System (ADS)
Chang, Ailian; Sun, HongGuang; Zheng, Chunmiao; Lu, Bingqing; Lu, Chengpeng; Ma, Rui; Zhang, Yong
2018-07-01
Fractional-derivative models have been developed recently to interpret various hydrologic dynamics, such as dissolved contaminant transport in groundwater. However, they have not been applied to quantify other fluid dynamics, such as gas transport through complex geological media. This study reviewed previous gas transport experiments conducted in laboratory columns and real-world oil-gas reservoirs and found that gas dynamics exhibit typical sub-diffusive behavior characterized by heavy late-time tailing in the gas breakthrough curves (BTCs), which cannot be effectively captured by classical transport models. Numerical tests and field applications of the time fractional convection-diffusion equation (fCDE) have shown that the fCDE model can capture the observed gas BTCs including their apparent positive skewness. Sensitivity analysis further revealed that the three parameters used in the fCDE model, including the time index, the convection velocity, and the diffusion coefficient, play different roles in interpreting the delayed gas transport dynamics. In addition, the model comparison and analysis showed that the time fCDE model is efficient in application. Therefore, the time fractional-derivative models can be conveniently extended to quantify gas transport through natural geological media such as complex oil-gas reservoirs.
Density-driven transport of gas phase chemicals in unsaturated soils
NASA Astrophysics Data System (ADS)
Fen, Chiu-Shia; Sun, Yong-tai; Cheng, Yuen; Chen, Yuanchin; Yang, Whaiwan; Pan, Changtai
2018-01-01
Variations of gas phase density are responsible for advective and diffusive transports of organic vapors in unsaturated soils. Laboratory experiments were conducted to explore dense gas transport (sulfur hexafluoride, SF6) from different source densities through a nitrogen gas-dry soil column. Gas pressures and SF6 densities at transient state were measured along the soil column for three transport configurations (horizontal, vertically upward and vertically downward transport). These measurements and others reported in the literature were compared with simulation results obtained from two models based on different diffusion approaches: the dusty gas model (DGM) equations and a Fickian-type molar fraction-based diffusion expression. The results show that the DGM and Fickian-based models predicted similar dense gas density profiles which matched the measured data well for horizontal transport of dense gas at low to high source densities, despite the pressure variations predicted in the soil column were opposite to the measurements. The pressure evolutions predicted by both models were in trend similar to the measured ones for vertical transport of dense gas. However, differences between the dense gas densities predicted by the DGM and Fickian-based models were discernible for vertically upward transport of dense gas even at low source densities, as the DGM-based predictions matched the measured data better than the Fickian results did. For vertically downward transport, the dense gas densities predicted by both models were not greatly different from our experimental measurements, but substantially greater than the observations obtained from the literature, especially at high source densities. Further research will be necessary for exploring factors affecting downward transport of dense gas in soil columns. Use of the measured data to compute flux components of SF6 showed that the magnitudes of diffusive flux component based on the Fickian-type diffusion expressions in terms of molar concentration, molar fraction and mass density fraction gradient were almost the same. However, they were greater than the result computed with the mass fraction gradient for > 24% and the DGM-based result for more than one time. As a consequence, the DGM-based total flux of SF6 was in magnitude greatly less than the Fickian result not only for horizontal transport (diffusion-dominating) but also for vertical transport (advection and diffusion) of dense gas. Particularly, the Fickian-based total flux was more than two times in magnitude as much as the DGM result for vertically upward transport of dense gas.
The boundary condition for vertical velocity and its interdependence with surface gas exchange
NASA Astrophysics Data System (ADS)
Kowalski, Andrew S.
2017-07-01
The law of conservation of linear momentum is applied to surface gas exchanges, employing scale analysis to diagnose the vertical velocity (w) in the boundary layer. Net upward momentum in the surface layer is forced by evaporation (E) and defines non-zero vertical motion, with a magnitude defined by the ratio of E to the air density, as w =
Hybrid transport and diffusion modeling using electron thermal transport Monte Carlo SNB in DRACO
NASA Astrophysics Data System (ADS)
Chenhall, Jeffrey; Moses, Gregory
2017-10-01
The iSNB (implicit Schurtz Nicolai Busquet) multigroup diffusion electron thermal transport method is adapted into an Electron Thermal Transport Monte Carlo (ETTMC) transport method to better model angular and long mean free path non-local effects. Previously, the ETTMC model had been implemented in the 2D DRACO multiphysics code and found to produce consistent results with the iSNB method. Current work is focused on a hybridization of the computationally slower but higher fidelity ETTMC transport method with the computationally faster iSNB diffusion method in order to maximize computational efficiency. Furthermore, effects on the energy distribution of the heat flux divergence are studied. Work to date on the hybrid method will be presented. This work was supported by Sandia National Laboratories and the Univ. of Rochester Laboratory for Laser Energetics.
Transport properties of interacting magnetic islands in tokamak plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gianakon, T.A.; Callen, J.D.; Hegna, C.C.
1993-10-01
This paper explores the equilibrium and transient transport properties of a mixed magnetic topology model for tokamak equilibria. The magnetic topology is composed of a discrete set of mostly non-overlapping magnetic islands centered on the low-order rational surfaces. Transport across the island regions is fast due to parallel transport along the stochastic magnetic field lines about the separatrix of each island. Transport between island regions is assumed to be slow due to a low residual cross-field transport. In equilibrium, such a model leads to: a nonlinear dependence of the heat flux on the pressure gradient; a power balance diffusion coefficientmore » which increases from core to edge; and profile resiliency. Transiently, such a model also exhibits a heat pulse diffusion coefficient larger than the power balance diffusion coefficient.« less
NASA Astrophysics Data System (ADS)
Shtrahman, E.; Maruyama, D.; Olariu, E.; Fink, C. G.; Zochowski, M.
2017-02-01
Astrocytes form interconnected networks in the brain and communicate via calcium signaling. We investigate how modes of coupling between astrocytes influence the spatio-temporal patterns of calcium signaling within astrocyte networks and specifically how these network interactions promote coordination within this group of cells. To investigate these complex phenomena, we study reduced cultured networks of astrocytes and neurons. We image the spatial temporal patterns of astrocyte calcium activity and quantify how perturbing the coupling between astrocytes influences astrocyte activity patterns. To gain insight into the pattern formation observed in these cultured networks, we compare the experimentally observed calcium activity patterns to the patterns produced by a reduced computational model, where we represent astrocytes as simple units that integrate input through two mechanisms: gap junction coupling (network transport) and chemical release (extracellular diffusion). We examine the activity patterns in the simulated astrocyte network and their dependence upon these two coupling mechanisms. We find that gap junctions and extracellular chemical release interact in astrocyte networks to modulate the spatiotemporal patterns of their calcium dynamics. We show agreement between the computational and experimental findings, which suggests that the complex global patterns can be understood as a result of simple local coupling mechanisms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schunert, Sebastian; Wang, Yaqi; Gleicher, Frederick
This paper presents a flexible nonlinear diffusion acceleration (NDA) method that discretizes both the S N transport equation and the diffusion equation using the discontinuous finite element method (DFEM). The method is flexible in that the diffusion equation can be discretized on a coarser mesh with the only restriction that it is nested within the transport mesh and the FEM shape function orders of the two equations can be different. The consistency of the transport and diffusion solutions at convergence is defined by using a projection operator mapping the transport into the diffusion FEM space. The diffusion weak form ismore » based on the modified incomplete interior penalty (MIP) diffusion DFEM discretization that is extended by volumetric drift, interior face, and boundary closure terms. In contrast to commonly used coarse mesh finite difference (CMFD) methods, the presented NDA method uses a full FEM discretized diffusion equation for acceleration. Suitable projection and prolongation operators arise naturally from the FEM framework. Via Fourier analysis and numerical experiments for a one-group, fixed source problem the following properties of the NDA method are established for structured quadrilateral meshes: (1) the presented method is unconditionally stable and effective in the presence of mild material heterogeneities if the same mesh and identical shape functions either of the bilinear or biquadratic type are used, (2) the NDA method remains unconditionally stable in the presence of strong heterogeneities, (3) the NDA method with bilinear elements extends the range of effectiveness and stability by a factor of two when compared to CMFD if a coarser diffusion mesh is selected. In addition, the method is tested for solving the C5G7 multigroup, eigenvalue problem using coarse and fine mesh acceleration. Finally, while NDA does not offer an advantage over CMFD for fine mesh acceleration, it reduces the iteration count required for convergence by almost a factor of two in the case of coarse mesh acceleration.« less
Schunert, Sebastian; Wang, Yaqi; Gleicher, Frederick; ...
2017-02-21
This paper presents a flexible nonlinear diffusion acceleration (NDA) method that discretizes both the S N transport equation and the diffusion equation using the discontinuous finite element method (DFEM). The method is flexible in that the diffusion equation can be discretized on a coarser mesh with the only restriction that it is nested within the transport mesh and the FEM shape function orders of the two equations can be different. The consistency of the transport and diffusion solutions at convergence is defined by using a projection operator mapping the transport into the diffusion FEM space. The diffusion weak form ismore » based on the modified incomplete interior penalty (MIP) diffusion DFEM discretization that is extended by volumetric drift, interior face, and boundary closure terms. In contrast to commonly used coarse mesh finite difference (CMFD) methods, the presented NDA method uses a full FEM discretized diffusion equation for acceleration. Suitable projection and prolongation operators arise naturally from the FEM framework. Via Fourier analysis and numerical experiments for a one-group, fixed source problem the following properties of the NDA method are established for structured quadrilateral meshes: (1) the presented method is unconditionally stable and effective in the presence of mild material heterogeneities if the same mesh and identical shape functions either of the bilinear or biquadratic type are used, (2) the NDA method remains unconditionally stable in the presence of strong heterogeneities, (3) the NDA method with bilinear elements extends the range of effectiveness and stability by a factor of two when compared to CMFD if a coarser diffusion mesh is selected. In addition, the method is tested for solving the C5G7 multigroup, eigenvalue problem using coarse and fine mesh acceleration. Finally, while NDA does not offer an advantage over CMFD for fine mesh acceleration, it reduces the iteration count required for convergence by almost a factor of two in the case of coarse mesh acceleration.« less
NASA Astrophysics Data System (ADS)
Jasinski, J. J.; Fraczek, T.; Kurpaska, L.; Lubas, M.; Sitarz, M.
2018-07-01
The paper presents a structure of a nitrided layer formed with active screen plasma nitriding (ASPN) technique, which is a modification of plasma nitriding. The model investigated material was Fe Armco. The nitriding processes were carried out at 773 K for 6 h and 150 Pa. The main objective of this study was to confirm nitrogen migration effect and its influence on the nitride layer formation in different area of the layer interfaces (ε/ε+γ‧/γ‧). The results of the tests were evaluated using scanning electron microscopy (SEM, SEM/EBSD), transmission electron microscopy - electron energy loss spectroscopy (TEM-EFTEM), secondary ion mass spectroscopy (SIMS) and Wavelength Dispersive X-Ray Spectrometry (WDS). The analysis of the results suggests that the structures of the nitrided layers and nitrides morphology differ for various parameters and are dependent on the surface layer saturation mechanism for each of the temperatures and process parameters. New approaches in diffusion of nitrogen and carbon atoms and optimizing process were also analyzed. Nitrogen and also carbon transport in the sublayer was observed by several effects i.e. uphill diffusion effect which confirmed migration of the atoms in diffusive layer towards top surface (ε/ε+γ‧ interface) and stress change effect in the nitrogen saturation area of the (Fe(C,N)+γ‧) layer. Results showed in the paper might be used both for optimization of ASPN processes, modeling of nitrided layers formation mechanism and for controlling the nitrided layers morphology when nitriding different Fe based materials.
Ngamchuea, Kamonwad; Eloul, Shaltiel; Tschulik, Kristina; Compton, Richard G
2015-07-21
Understanding mass transport is prerequisite to all quantitative analysis of electrochemical experiments. While the contribution of diffusion is well understood, the influence of density gradient-driven natural convection on the mass transport in electrochemical systems is not. To date, it has been assumed to be relevant only for high concentrations of redox-active species and at long experimental time scales. If unjustified, this assumption risks misinterpretation of analytical data obtained from scanning electrochemical microscopy (SECM) and generator-collector experiments, as well as analytical sensors utilizing macroelectrodes/microelectrode arrays. It also affects the results expected from electrodeposition. On the basis of numerical simulation, herein it is demonstrated that even at less than 10 mM concentrations and short experimental times of tens of seconds, density gradient-driven natural convection significantly affects mass transport. This is evident from in-depth numerical simulation for the oxidation of hexacyanoferrate (II) at various electrode sizes and electrode orientations. In each case, the induced convection and its influence on the diffusion layer established near the electrode are illustrated by maps of the velocity fields and concentration distributions evolving with time. The effects of natural convection on mass transport and chronoamperometric currents are thus quantified and discussed for the different cases studied.
Cosmic Ray Measurements Inside Mir With Sileye-2
NASA Astrophysics Data System (ADS)
Casolino, M.; Sileye-2 Team
smallIntensity of the coronal green line (small = 5303cm) is considered as an impor- tant parameter to characterize the changes of diffusion coefficient of galactic cosmic rays versus the solar activity. A contribution of the coronal green line intensity in GCR diffusion coefficient is taken into account using its real distribution on the whole disk of the Sun averaging for three days. An assumption is made that the observed changes of the intensity of the coronal green line on the Sun's surface is taken away to the in- terplanetary space with the average solar wind velocity, U = 400 km/s. Thus, to cover the modulation region of the size of the 100 AU there is necessary data of the coronal green line intensity of the one-year duration. Alternating the coefficient of proportion- ality between the intensity of coronal green line and the diffusion coefficient of GCR the appropriate correspondence between the observation of GCR intensity sensitive to neutron monitors and solution of the Parker's transport equation have been found. The best correspondence between the observation of GCR intensity and solution of the Parker's transport equation has been found when the role of the coronal green line intensity in diffusion coefficient of GCR is gradually diminished versus the distance from the Sun.
Transient in-plane thermal transport in nanofilms with internal heating
Cao, Bing-Yang
2016-01-01
Wide applications of nanofilms in electronics necessitate an in-depth understanding of nanoscale thermal transport, which significantly deviates from Fourier's law. Great efforts have focused on the effective thermal conductivity under temperature difference, while it is still ambiguous whether the diffusion equation with an effective thermal conductivity can accurately characterize the nanoscale thermal transport with internal heating. In this work, transient in-plane thermal transport in nanofilms with internal heating is studied via Monte Carlo (MC) simulations in comparison to the heat diffusion model and mechanism analyses using Fourier transform. Phonon-boundary scattering leads to larger temperature rise and slower thermal response rate when compared with the heat diffusion model based on Fourier's law. The MC simulations are also compared with the diffusion model with effective thermal conductivity. In the first case of continuous internal heating, the diffusion model with effective thermal conductivity under-predicts the temperature rise by the MC simulations at the initial heating stage, while the deviation between them gradually decreases and vanishes with time. By contrast, for the one-pulse internal heating case, the diffusion model with effective thermal conductivity under-predicts both the peak temperature rise and the cooling rate, so the deviation can always exist. PMID:27118903
Transient in-plane thermal transport in nanofilms with internal heating.
Hua, Yu-Chao; Cao, Bing-Yang
2016-02-01
Wide applications of nanofilms in electronics necessitate an in-depth understanding of nanoscale thermal transport, which significantly deviates from Fourier's law. Great efforts have focused on the effective thermal conductivity under temperature difference, while it is still ambiguous whether the diffusion equation with an effective thermal conductivity can accurately characterize the nanoscale thermal transport with internal heating. In this work, transient in-plane thermal transport in nanofilms with internal heating is studied via Monte Carlo (MC) simulations in comparison to the heat diffusion model and mechanism analyses using Fourier transform. Phonon-boundary scattering leads to larger temperature rise and slower thermal response rate when compared with the heat diffusion model based on Fourier's law. The MC simulations are also compared with the diffusion model with effective thermal conductivity. In the first case of continuous internal heating, the diffusion model with effective thermal conductivity under-predicts the temperature rise by the MC simulations at the initial heating stage, while the deviation between them gradually decreases and vanishes with time. By contrast, for the one-pulse internal heating case, the diffusion model with effective thermal conductivity under-predicts both the peak temperature rise and the cooling rate, so the deviation can always exist.
Keskin, Seda; Liu, Jinchen; Johnson, J Karl; Sholl, David S
2008-08-05
Mass transport of chemical mixtures in nanoporous materials is important in applications such as membrane separations, but measuring diffusion of mixtures experimentally is challenging. Methods that can predict multicomponent diffusion coefficients from single-component data can be extremely useful if these methods are known to be accurate. We present the first test of a method of this kind for molecules adsorbed in a metal-organic framework (MOF). Specifically, we examine the method proposed by Skoulidas, Sholl, and Krishna (SSK) ( Langmuir, 2003, 19, 7977) by comparing predictions made with this method to molecular simulations of mixture transport of H 2/CH 4 mixtures in CuBTC. These calculations provide the first direct information on mixture transport of any species in a MOF. The predictions of the SSK approach are in good agreement with our direct simulations of binary diffusion, suggesting that this approach may be a powerful one for examining multicomponent diffusion in MOFs. We also use our molecular simulation data to test the ideal adsorbed solution theory method for predicting binary adsorption isotherms and a method for predicting mixture self-diffusion coefficients.
NASA Astrophysics Data System (ADS)
Galin, M. Z.; Ivanov-Schitz, A. K.; Mazo, G. N.
2018-01-01
Molecular dynamics simulation has been used to develop a realistic atomistic model of two-layer Ce1 - x Gd x O2 - δ|YSZ heterosystem. It is shown that Ce1 - x Gd x O2 - δ and YSZ layers (about 15 and 16 Å thick, respectively) retain their crystal structure on the whole. The main structural distortions are found to occur near the Ce1 - x Gd x O2 - δ|YSZ geometric interface, within a narrow interfacial region of few angstroms thick. Both the generalized diffusion characteristics of the system as a whole and the oxygen diffusion coefficients in the layers are calculated, and the diffusion activation energies are determined.
2012-01-24
of Ni alone enhances transport by approximately a factor of 2 relative to undoped alumina. The diffusive transport of chromium in both pure and Y...doped fine-grained alumina has been investigated over the temperature range 1250 -1650 C. From a quantitative assessment of the chromium diffusion...diffusion of chromium in both undoped and Y-doped fine-grained alumina has been investigated. In this work, Cr + was employed as a plausible substitute
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yuanyuan; Liu, Chongxuan; Zhang, Changyong
2015-08-01
A micromodel system with a pore structure for heterogeneous flow and transport was used to investigate the effect of subgrid transport heterogeneity on redox reaction rates. Hematite reductive dissolution by injecting a reduced form of flavin mononucleotide (FMNH2) at variable flow rates was used as an example to probe the variations of redox reaction rates in different subgrid transport domains. Experiments, pore-scale simulations, and macroscopic modeling were performed to measure and simulate in-situ hematite reduction and to evaluate the scaling behavior of the redox reaction rates from the pore to macroscopic scales. The results indicated that the measured pore-scale ratesmore » of hematite reduction were consistent with the predictions from a pore scale reactive transport model. A general trend is that hematite reduction followed reductant transport pathways, starting from the advection-dominated pores toward the interior of diffusion-dominated domains. Two types of diffusion domains were considered in the micromodel: a micropore diffusion domain, which locates inside solid grains or aggregates where reactant transport is limited by diffusion; and a macropore diffusion domain, which locates at wedged, dead-end pore spaces created by the grain-grain contacts. The rate of hematite reduction in the advection-dominated domain was faster than those in the diffusion-controlled domains, and the rate in the macropore diffusion domain was faster than that in the micropore domain. The reduction rates in the advection and macropore diffusion domains increased with increasing flow rate, but were affected by different mechanisms. The rate increase in the advection domain was controlled by the mass action effect as a faster flow supplied more reactants, and the rate increase in the macropore domain was more affected by the rate of mass exchange with the advection domain, which increased with increasing flow rate. The hematite reduction rate in the micropore domain was, however, not affected by the flow rate because molecular diffusion limits reductant supply to the micropore domain interior. Domain-based macroscopic models were evaluated to scale redox reaction rates from the pore to macroscopic scales. A single domain model, which ignores subgrid transport heterogeneity deviated significantly from the pore-scale results. Further analysis revealed that the rate expression for hematite reduction was not scalable from the pore to porous media using the single domain model. A three-domain model, which effectively considers subgrid reactive diffusion in the micropore and macropore domains, significantly improved model description. Overall this study revealed the importance of subgrid transport heterogeneity in the manifestation of redox reaction rates in porous media and in scaling reactions from the pore to porous media. The research also supported that the domain-based scaling approach can be used to directly scale redox reactions in porous media with subgrid transport heterogeneity.« less
Effect of hemoglobin polymerization on oxygen transport in hemoglobin solutions.
Budhiraja, Vikas; Hellums, J David
2002-09-01
The effect of hemoglobin (Hb) polymerization on facilitated transport of oxygen in a bovine hemoglobin-based oxygen carrier was studied using a diffusion cell. In high oxygen tension gradient experiments (HOTG) at 37 degrees C the diffusion of dissolved oxygen in polymerized Hb samples was similar to that in unpolymerized Hb solutions during oxygen uptake. However, in the oxygen release experiments, the transport by diffusion of dissolved oxygen was augmented by diffusion of oxyhemoglobin over a range of oxygen saturations. The augmentation was up to 30% in the case of polymerized Hb and up to 100% in the case of unpolymerized Hb solution. In experiments performed at constant, low oxygen tension gradients in the range of physiological significance, the augmentation effect was less than that in the HOTG experiments. Oxygen transport in polymerized Hb samples was approximately the same as that in unpolymerized samples over a wide range of oxygen tensions. However, at oxygen tensions lower than 30 mm Hg, there were more significant augmentation effects in unpolymerized bovine Hb samples than in polymerized Hb. The results presented here are the first accurate, quantitative measurements of effective diffusion coefficients for oxygen transport in hemoglobin-based oxygen carriers of the type being evaluated to replace red cells in transfusions. In all cases the oxygen carrier was found to have higher effective oxygen diffusion coefficients than blood.
Smith, Alex J; Yao, Xiaoming; Dix, James A; Jin, Byung-Ju; Verkman, Alan S
2017-08-21
Transport of solutes through brain involves diffusion and convection. The importance of convective flow in the subarachnoid and paravascular spaces has long been recognized; a recently proposed 'glymphatic' clearance mechanism additionally suggests that aquaporin-4 (AQP4) water channels facilitate convective transport through brain parenchyma. Here, the major experimental underpinnings of the glymphatic mechanism were re-examined by measurements of solute movement in mouse brain following intracisternal or intraparenchymal solute injection. We found that: (i) transport of fluorescent dextrans in brain parenchyma depended on dextran size in a manner consistent with diffusive rather than convective transport; (ii) transport of dextrans in the parenchymal extracellular space, measured by 2-photon fluorescence recovery after photobleaching, was not affected just after cardiorespiratory arrest; and (iii) Aqp4 gene deletion did not impair transport of fluorescent solutes from sub-arachnoid space to brain in mice or rats. Our results do not support the proposed glymphatic mechanism of convective solute transport in brain parenchyma.
Yao, Xiaoming; Dix, James A; Jin, Byung-Ju
2017-01-01
Transport of solutes through brain involves diffusion and convection. The importance of convective flow in the subarachnoid and paravascular spaces has long been recognized; a recently proposed ‘glymphatic’ clearance mechanism additionally suggests that aquaporin-4 (AQP4) water channels facilitate convective transport through brain parenchyma. Here, the major experimental underpinnings of the glymphatic mechanism were re-examined by measurements of solute movement in mouse brain following intracisternal or intraparenchymal solute injection. We found that: (i) transport of fluorescent dextrans in brain parenchyma depended on dextran size in a manner consistent with diffusive rather than convective transport; (ii) transport of dextrans in the parenchymal extracellular space, measured by 2-photon fluorescence recovery after photobleaching, was not affected just after cardiorespiratory arrest; and (iii) Aqp4 gene deletion did not impair transport of fluorescent solutes from sub-arachnoid space to brain in mice or rats. Our results do not support the proposed glymphatic mechanism of convective solute transport in brain parenchyma. PMID:28826498
Delivery of therapeutic peptides and proteins to the CNS.
Salameh, Therese S; Banks, William A
2014-01-01
Peptides and proteins have potent effects on the brain after their peripheral administration, suggesting that they may be good substrates for the development of CNS therapeutics. Major hurdles to such development include their relation to the blood-brain barrier (BBB) and poor pharmacokinetics. Some peptides cross the BBB by transendothelial diffusion and others cross in the blood-to-brain direction by saturable transporters. Some regulatory proteins are also transported across the BBB and antibodies can enter the CNS via the extracellular pathways. Glycoproteins and some antibody fragments can be taken up and cross the BBB by mechanisms related to adsorptive endocytosis/transcytosis. Many peptides and proteins are transported out of the CNS by saturable efflux systems and enzymatic activity in the blood, CNS, or BBB are substantial barriers to others. Both influx and efflux transporters are altered by various substances and in disease states. Strategies that manipulate these interactions between the BBB and peptides and proteins provide many opportunities for the development of therapeutics. Such strategies include increasing transendothelial diffusion of small peptides, upregulation of saturable influx transporters with allosteric regulators and other posttranslational means, use of vectors and other Trojan horse strategies, inhibition of efflux transporters including with antisense molecules, and improvement in pharmacokinetic parameters to overcome short half-lives, tissue sequestration, and enzymatic degradation. © 2014 Elsevier Inc. All rights reserved.
High mobility, dual layer, c-axis aligned crystalline/amorphous IGZO thin film transistor
NASA Astrophysics Data System (ADS)
Chung, Chen-Yang; Zhu, Bin; Greene, Raymond G.; Thompson, Michael O.; Ast, Dieter G.
2015-11-01
We demonstrate a dual layer IGZO thin film transistor (TFT) consisting of a 310 °C deposited c-axis aligned crystal (CAAC) 20 nm thick channel layer capped by a second, 30 nm thick, 260 °C deposited amorphous IGZO layer. The TFT exhibits a saturation field-effect mobility of ˜20 cm2/V s, exceeding the mobility of 50 nm thick single layer reference TFTs fabricated with either material. The deposition temperature of the second layer influences the mobility of the underlying transport layer. When the cap layer is deposited at room temperature (RT), the mobility in the 310 °C deposited CAAC layer is initially low (6.7 cm2/V s), but rises continuously with time over 58 days to 20.5 cm2/V s, i.e., to the same value as when the second layer is deposited at 260 °C. This observation indicates that the two layers equilibrate at RT with a time constant on the order of 5 × 106 s. An analysis based on diffusive transport indicates that the room temperature diffusivity must be of the order of 1 × 10-18 cm2 s-1 with an activation enthalpy EA < 0.2 eV for the mobility limiting species. The findings are consistent with a hypothesis that the amorphous layer deposited on top of the CAAC has a higher solubility for impurities and/or structural defects than the underlying nanocrystalline transport layer, and that the equilibration of the mobility limiting species is rate limited by hydrogen diffusion, whose known diffusivity fits these estimates.
Li, Longjun; Pascal, Tod A.; Connell, Justin G.; ...
2017-12-22
Polymer binders in battery electrodes may be either active or passive. This distinction depends on whether the polymer influences charge or mass transport in the electrode. Though it is desirable to understand how to tailor the macromolecular design of a polymer to play a passive or active role, design rules are still lacking, as is a framework to assess the divergence in such behaviors. We reveal the molecular-level underpinnings that distinguish an active polyelectrolyte binder designed for lithium-sulfur batteries from a passive alternative. The binder, a cationic polyelectrolyte, is shown to both facilitate lithium-ion transport through its reconfigurable network ofmore » mobile anions and restrict polysulfide diffusion from mesoporous carbon hosts by anion metathesis, which we show is selective for higher oligomers. These attributes then allow cells to be operated for > 100 cycles with excellent rate capability using cathodes with areal sulfur loadings up to 8.1 mg cm -2 .« less
Cooperative Activated Transport of Dilute Penetrants in Viscous Molecular and Polymer Liquids
NASA Astrophysics Data System (ADS)
Schweizer, Kenneth; Zhang, Rui
We generalize the force-level Elastically Collective Nonlinear Langevin Equation theory of activated relaxation in one-component supercooled liquids to treat the hopping transport of a dilute penetrant in a dense hard sphere fluid. The new idea is to explicitly account for the coupling between penetrant displacement and a local matrix cage re-arrangement which facilitates its hopping. A temporal casuality condition is employed to self-consistently determine a dimensionless degree of matrix distortion relative to the penetrant jump distance using the dynamic free energy concept. Penetrant diffusion becomes increasingly coupled to the correlated matrix displacements for larger penetrant to matrix particle size ratio (R) and/or attraction strength (physical bonds), but depends weakly on matrix packing fraction. In the absence of attractions, a nearly exponential dependence of penetrant diffusivity on R is predicted in the intermediate range of 0.2
Simulation of electrochemical behavior in Lithium ion battery during discharge process.
Chen, Yong; Huo, Weiwei; Lin, Muyi; Zhao, Li
2018-01-01
An electrochemical Lithium ion battery model was built taking into account the electrochemical reactions. The polarization was divided into parts which were related to the solid phase and the electrolyte mass transport of species, and the electrochemical reactions. The influence factors on battery polarization were studied, including the active material particle radius and the electrolyte salt concentration. The results showed that diffusion polarization exist in the positive and negative electrodes, and diffusion polarization increase with the conducting of the discharge process. The physicochemical parameters of the Lithium ion battery had the huge effect on cell voltage via polarization. The simulation data show that the polarization voltage has close relationship with active material particle size, discharging rate and ambient temperature.
Simulation of electrochemical behavior in Lithium ion battery during discharge process
Chen, Yong; Lin, Muyi; Zhao, Li
2018-01-01
An electrochemical Lithium ion battery model was built taking into account the electrochemical reactions. The polarization was divided into parts which were related to the solid phase and the electrolyte mass transport of species, and the electrochemical reactions. The influence factors on battery polarization were studied, including the active material particle radius and the electrolyte salt concentration. The results showed that diffusion polarization exist in the positive and negative electrodes, and diffusion polarization increase with the conducting of the discharge process. The physicochemical parameters of the Lithium ion battery had the huge effect on cell voltage via polarization. The simulation data show that the polarization voltage has close relationship with active material particle size, discharging rate and ambient temperature. PMID:29293535
NASA Astrophysics Data System (ADS)
Zhokh, Alexey A.; Strizhak, Peter E.
2018-07-01
H-ZSM-5/alumina catalyst pellet was prepared using extrusion method. The as-prepared mesoporous material was characterized using nitrogen adsorption, IR, XRD, and TEM methods. Transport of methane and methanol in the obtained H-ZSM-5/alumina extruded grain was studied. We demonstrate that the methanol transport may be described by the time-fractional diffusion equation in a fairly good manner. The measured value of the fractional order of the time-fractional derivative reveals the fast super-diffusive regime of the methanol transport in the mesoporous solid. Contrary, the methane transport has been found to follow a standard diffusion and described by the second Fick's law. These findings show that mass transfer kinetics is characterized by the order of the temporal derivative. The latter is a unique property of the individual porous media and the diffusing agent.
NASA Astrophysics Data System (ADS)
Zhokh, Alexey A.; Strizhak, Peter E.
2018-01-01
H-ZSM-5/alumina catalyst pellet was prepared using extrusion method. The as-prepared mesoporous material was characterized using nitrogen adsorption, IR, XRD, and TEM methods. Transport of methane and methanol in the obtained H-ZSM-5/alumina extruded grain was studied. We demonstrate that the methanol transport may be described by the time-fractional diffusion equation in a fairly good manner. The measured value of the fractional order of the time-fractional derivative reveals the fast super-diffusive regime of the methanol transport in the mesoporous solid. Contrary, the methane transport has been found to follow a standard diffusion and described by the second Fick's law. These findings show that mass transfer kinetics is characterized by the order of the temporal derivative. The latter is a unique property of the individual porous media and the diffusing agent.
Anomalous Diffusion of Single Particles in Cytoplasm
Regner, Benjamin M.; Vučinić, Dejan; Domnisoru, Cristina; Bartol, Thomas M.; Hetzer, Martin W.; Tartakovsky, Daniel M.; Sejnowski, Terrence J.
2013-01-01
The crowded intracellular environment poses a formidable challenge to experimental and theoretical analyses of intracellular transport mechanisms. Our measurements of single-particle trajectories in cytoplasm and their random-walk interpretations elucidate two of these mechanisms: molecular diffusion in crowded environments and cytoskeletal transport along microtubules. We employed acousto-optic deflector microscopy to map out the three-dimensional trajectories of microspheres migrating in the cytosolic fraction of a cellular extract. Classical Brownian motion (BM), continuous time random walk, and fractional BM were alternatively used to represent these trajectories. The comparison of the experimental and numerical data demonstrates that cytoskeletal transport along microtubules and diffusion in the cytosolic fraction exhibit anomalous (nonFickian) behavior and posses statistically distinct signatures. Among the three random-walk models used, continuous time random walk provides the best representation of diffusion, whereas microtubular transport is accurately modeled with fractional BM. PMID:23601312
Modeling transport kinetics in clinoptilolite-phosphate rock systems
NASA Technical Reports Server (NTRS)
Allen, E. R.; Ming, D. W.; Hossner, L. R.; Henninger, D. L.
1995-01-01
Nutrient release in clinoptilolite-phosphate rock (Cp-PR) systems occurs through dissolution and cation-exchange reactions. Investigating the kinetics of these reactions expands our understanding of nutrient release processes. Research was conducted to model transport kinetics of nutrient release in Cp-PR systems. The objectives were to identify empirical models that best describe NH4, K, and P release and define diffusion-controlling processes. Materials included a Texas clinoptilolite (Cp) and North Carolina phosphate rock (PR). A continuous-flow thin-disk technique was used. Models evaluated included zero order, first order, second order, parabolic diffusion, simplified Elovich, Elovich, and power function. The power-function, Elovich, and parabolic-diffusion models adequately described NH4, K, and P release. The power-function model was preferred because of its simplicity. Models indicated nutrient release was diffusion controlled. Primary transport processes controlling nutrient release for the time span observed were probably the result of a combination of several interacting transport mechanisms.
High-pressure nuclear magnetic resonance studies of fuel cell membranes
NASA Astrophysics Data System (ADS)
Mananga, Eugene Stephane
This thesis focuses on the use of high pressure NMR to study transport properties in electrolyte membranes used for fuel cells. The main concern is in studying the self-diffusion coefficients of ions and molecules in membranes and solutions, which can be used to characterize electrolytes in fuel cells. For this purpose, a high-pressure fringe field NMR method to study transport properties in material systems useful for fuel cell and battery electrolytes, was designed, developed, and implemented. In this investigation, pressure is the thermodynamic variable to obtain additional information about the ionic transport process, which could yield the crucial parameter, activation volume. Most of the work involves proton NMR, with additional investigations of others nuclei, such as fluorine, phosphorus and lithium. Using the FFG method, two fuel cell membrane types (NAFION-117, SPTES), and different dilutions of phosphoric acid were investigated, as was LiTf salt in Diglyme solution, which is used as a lithium battery electrolyte. In addition to high-pressure NMR diffusion measurements carried out in the fringe field gradient for the investigation of SPTES, pulse field gradient spin echo NMR was also used to characterize the water diffusion, in addition to measuring diffusion rates as a function of temperature. This second method allows us to measure distinct diffusion coefficients in cases where the different nuclear (proton) environments can be resolved in the NMR spectrum. Polymer electrolyte systems, in which the mobility of both cations and anions is probed by NMR self-diffusion measurements using standard pulsed field gradient methods and static gradient measurements as a function of applied hydrostatic pressure, were also investigated. The material investigated is the low molecular weight liquid diglyme/LiCF3SO3 (LiTf) complexes which can be used as electrolytes in lithium batteries. Finally, high-pressure diffusion coefficient measurements of phosphoric acid in water at different concentrations: proton (1H) and phosphorus (31P) nuclei have been performed using the static field gradient spin-echo nuclear magnetic resonance. This study is expected to be helpful in improving the understanding of phosphoric acid fuel cell technology.
Sims, Lee B; Frieboes, Hermann B; Steinbach-Rankins, Jill M
2018-01-01
A variety of drug-delivery platforms have been employed to deliver therapeutic agents across cervicovaginal mucus (CVM) and the vaginal mucosa, offering the capability to increase the longevity and retention of active agents to treat infections of the female reproductive tract (FRT). Nanoparticles (NPs) have been shown to improve retention, diffusion, and cell-specific targeting via specific surface modifications, relative to other delivery platforms. In particular, polymeric NPs represent a promising option that has shown improved distribution through the CVM. These NPs are typically fabricated from nontoxic, non-inflammatory, US Food and Drug Administration-approved polymers that improve biocompatibility. This review summarizes recent experimental studies that have evaluated NP transport in the FRT, and highlights research areas that more thoroughly and efficiently inform polymeric NP design, including mathematical modeling. An overview of the in vitro, ex vivo, and in vivo NP studies conducted to date - whereby transport parameters are determined, extrapolated, and validated - is presented first. The impact of different NP design features on transport through the FRT is summarized, and gaps that exist due to the limitations of iterative experimentation alone are identified. The potential of mathematical modeling to complement the characterization and evaluation of diffusion and transport of delivery vehicles and active agents through the CVM and mucosa is discussed. Lastly, potential advancements combining experimental and mathematical knowledge are suggested to inform next-generation NP designs, such that infections in the FRT may be more effectively treated.
Zhang, Yong; Green, Christopher T.; Tick, Geoffrey R.
2015-01-01
This study evaluates the role of the Peclet number as affected by molecular diffusion in transient anomalous transport, which is one of the major knowledge gaps in anomalous transport, by combining Monte Carlo simulations and stochastic model analysis. Two alluvial settings containing either short- or long-connected hydrofacies are generated and used as media for flow and transport modeling. Numerical experiments show that 1) the Peclet number affects both the duration of the power-law segment of tracer breakthrough curves (BTCs) and the transition rate from anomalous to Fickian transport by determining the solute residence time for a given low-permeability layer, 2) mechanical dispersion has a limited contribution to the anomalous characteristics of late-time transport as compared to molecular diffusion due to an almost negligible velocity in floodplain deposits, and 3) the initial source dimensions only enhance the power-law tail of the BTCs at short travel distances. A tempered stable stochastic (TSS) model is then applied to analyze the modeled transport. Applications show that the time-nonlocal parameters in the TSS model relate to the Peclet number, Pe. In particular, the truncation parameter in the TSS model increases nonlinearly with a decrease in Pe due to the decrease of the mean residence time, and the capacity coefficient increases with an increase in molecular diffusion which is probably due to the increase in the number of immobile particles. The above numerical experiments and stochastic analysis therefore reveal that the Peclet number as affected by molecular diffusion controls transient anomalous transport in alluvial aquifer–aquitard complexes.
Changes in the distribution of radiocesium in the wood of Japanese cedar trees from 2011 to 2013.
Ogawa, Hideki; Hirano, Yurika; Igei, Shigemitsu; Yokota, Kahori; Arai, Shio; Ito, Hirohisa; Kumata, Atsushi; Yoshida, Hirohisa
2016-09-01
The changes in the distribution of (137)Cs in the wood of Japanese cedar (Cryptomeria japonica) trunks within three years after the Fukushima Dai-ichi Nuclear Power Plant (FDNP) accident in 2011 were investigated. Thirteen trees were felled to collect samples at 6 forests in 2 regions of the Fukushima prefecture. The radial distribution of (137)Cs in the wood was measured at different heights. Profiles of (137)Cs distribution in the wood changed considerably from 2011 to 2013, and the process of (137)Cs distribution change in the wood was clarified. From 2011 to 2012, the active transportation from sapwood to heartwood and the radial diffusion in heartwood proceeded quickly, and the radial (137)Cs distribution differed according to the vertical positon of trees. From 2012 to 2013, the vertical diffusion of (137)Cs from the treetop to the ground, probably caused by the gradient of (137)Cs concentration in the trunk, was observed. Eventually, the radial (137)Cs distributions were nearly identical at any vertical positions in 2013. Our results suggested that the active transportation from sapwood to heartwood and the vertical and radial diffusion in heartwood proceeded according to the vertical position of the tree and (137)Cs distribution in the wood approached the equilibrium state within three years after the accident. Copyright © 2016 Elsevier Ltd. All rights reserved.
Intra-particle migration of mercury in granular polysulfide-rubber-coated activated carbon (PSR-AC)
Kim, Eun-Ah; Masue-Slowey, Yoko; Fendorf, Scott; Luthy, Richard G.
2011-01-01
The depth profile of mercuric ion after the reaction with polysulfide-rubber-coated activated carbon (PSR-AC) was investigated using micro-x-ray fluorescence (μ-XRF) imaging techniques and mathematical modeling. The μ-XRF results revealed that mercury was concentrated at 0~100 μm from the exterior of the particle after three months of treatment with PSR-AC in 10 ppm HgCl2 aqueous solution. The μ-X-ray absorption near edge spectroscopic (μ-XANES) analyses indicated HgS as a major mercury species, and suggested that the intra-particle mercury transport involved a chemical reaction with PSR polymer. An intra-particle mass transfer model was developed based on either a Langmuir sorption isotherm with liquid phase diffusion (Langmuir model) or a kinetic sorption with surface diffusion (kinetic sorption model). The Langmuir model predicted the general trend of mercury diffusion, although at a slower rate than observed from the μ-XRF map. A kinetic sorption model suggested faster mercury transport, which overestimated the movement of mercuric ions through an exchange reaction between the fast and slow reaction sites. Both μ-XRF and mathematical modeling results suggest mercury removal occurs not only at the outer surface of the PSR-AC particle but also at some interior regions due to a large PSR surface area within an AC particle. PMID:22133913
Fogelson, Aaron L; Tania, Nessy
2005-01-01
A mathematical model of intravascular coagulation is presented; it encompasses the biochemistry of the tissue factor pathway, platelet activation and deposition on the subendothelium, and flow- and diffusion-mediated transport of coagulation proteins and platelets. Simulation experiments carried out with the model indicate the predominant role played by the physical processes of platelet deposition and flow-mediated removal of enzymes in inhibiting coagulation in the vicinity of vascular injury. Sufficiently rapid production of factors IXa and Xa by the TF:VIIa complex can overcome this inhibition and lead to formation of significant amounts of the tenase complex on the surface of activated platelets and, as a consequence, to substantial thrombin production. Chemical inhibitors are seen to play almost no (TFPI) or little (AT-III and APC) role in determining whether substantial thrombin production will occur. The role of APC is limited by the necessity for diffusion of thrombin from the site of injury to nearby endothelial cells to form the thrombomodulin-thrombin complex and for diffusion in the reverse direction of the APC made by this complex. TFPI plays an insignificant part in inhibiting the TF:VIIa complex under the conditions studied whether its action involves sequential binding of TFPI to Xa and then TFPI:Xa to TF:VIIa, or direct binding of TFPI to Xa already bound to the TF:VIIa complex. Copyright 2005 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Zimbardo, G.; Pommois, P.; Veltri, P.
2003-09-01
The influence of magnetic turbulence on magnetic field line diffusion has been known since the early days of space and plasma physics. However, the importance of ``stochastic diffusion'' for energetic particles has been challenged on the basis of the fact that sharp gradients of either energetic particles or ion composition are often observed in the solar wind. Here we show that fast transverse field line and particle diffusion can coexist with small magnetic structures, sharp gradients, and with long lived magnetic flux tubes. We show, by means of a numerical realization of three dimensional magnetic turbulence and by use of the concepts of deterministic chaos and turbulent transport, that turbulent diffusion is different from Gaussian diffusion, and that transport can be inhomogeneous even if turbulence homogeneously fills the heliosphere. Several diagnostics of field line transport and flux tube evolution are shown, and the size of small magnetic structures in the solar wind, like gradient scales and flux tube thickness, are estimated and compared to the observations.
NASA Astrophysics Data System (ADS)
Antognini, Luca M.; Assenza, Salvatore; Speziale, Chiara; Mezzenga, Raffaele
2016-08-01
Lyotropic Liquid Crystals (LLCs) are a class of lipid-based membranes with a strong potential for drug-delivery employment. The characterization and control of their transport properties is a central issue in this regard, and has recently prompted a notable volume of research on the topic. A promising experimental approach is provided by the so-called diffusion setup, where the drug molecules diffuse from a feeding chamber filled with water to a receiving one passing through a LLC. In the present work we provide a theoretical framework for the proper description of this setup, and validate it by means of targeted experiments. Due to the inhomogeneity of the system, a rich palette of different diffusion dynamics emerges from the interplay of the different time- and lengthscales thereby present. Our work paves the way to the employment of diffusion experiments to quantitatively characterize the transport properties of LLCs, and provides the basic tools for device diffusion setups with controlled kinetic properties.
NASA Astrophysics Data System (ADS)
Gjetvaj, Filip; Russian, Anna; Gouze, Philippe; Dentz, Marco
2015-10-01
Both flow field heterogeneity and mass transfer between mobile and immobile domains have been studied separately for explaining observed anomalous transport. Here we investigate non-Fickian transport using high-resolution 3-D X-ray microtomographic images of Berea sandstone containing microporous cement with pore size below the setup resolution. Transport is computed for a set of representative elementary volumes and results from advection and diffusion in the resolved macroporosity (mobile domain) and diffusion in the microporous phase (immobile domain) where the effective diffusion coefficient is calculated from the measured local porosity using a phenomenological model that includes a porosity threshold (ϕθ) below which diffusion is null and the exponent n that characterizes tortuosity-porosity power-law relationship. We show that both flow field heterogeneity and microporosity trigger anomalous transport. Breakthrough curve (BTC) tailing is positively correlated to microporosity volume and mobile-immobile interface area. The sensitivity analysis showed that the BTC tailing increases with the value of ϕθ, due to the increase of the diffusion path tortuosity until the volume of the microporosity becomes negligible. Furthermore, increasing the value of n leads to an increase in the standard deviation of the distribution of effective diffusion coefficients, which in turn results in an increase of the BTC tailing. Finally, we propose a continuous time random walk upscaled model where the transition time is the sum of independently distributed random variables characterized by specific distributions. It allows modeling a 1-D equivalent macroscopic transport honoring both the control of the flow field heterogeneity and the multirate mass transfer between mobile and immobile domains.
Two-time quantum transport and quantum diffusion.
Kleinert, P
2009-05-01
Based on the nonequilibrium Green's function technique, a unified theory is developed that covers quantum transport and quantum diffusion in bulk semiconductors on the same footing. This approach, which is applicable to transport via extended and localized states, extends previous semiphenomenological studies and puts them on a firm microscopic basis. The approach is sufficiently general and applies not only to well-studied quantum-transport problems, but also to models, in which the Hamiltonian does not commute with the dipole operator. It is shown that even for the unified treatment of quantum transport and quantum diffusion in homogeneous systems, all quasimomenta of the carrier distribution function are present and fulfill their specific function. Particular emphasis is put on the double-time nature of quantum kinetics. To demonstrate the existence of robust macroscopic transport effects that have a true double-time character, a phononless steady-state current is identified that appears only beyond the generalized Kadanoff-Baym ansatz.
Anomalous Transport of High Energy Cosmic Rays in Galactic Superbubbles
NASA Technical Reports Server (NTRS)
Barghouty, Nasser F.
2014-01-01
High-energy cosmic rays may exhibit anomalous transport as they traverse and are accelerated by a collection of supernovae explosions in a galactic superbubble. Signatures of this anomalous transport can show up in the particles' evolution and their spectra. In a continuous-time-random- walk (CTRW) model assuming standard diffusive shock acceleration theory (DSA) for each shock encounter, and where the superbubble (an OB stars association) is idealized as a heterogeneous region of particle sources and sinks, acceleration and transport in the superbubble can be shown to be sub-diffusive. While the sub-diffusive transport can be attributed to the stochastic nature of the acceleration time according to DSA theory, the spectral break appears to be an artifact of transport in a finite medium. These CTRW simulations point to a new and intriguing phenomenon associated with the statistical nature of collective acceleration of high energy cosmic rays in galactic superbubbles.
Modeling Hydrothermal Activity on Enceladus
NASA Astrophysics Data System (ADS)
Stamper, T., Jr.; Farough, A.
2017-12-01
Cassini's mass spectrometer data and gravitational field measurements imply water-rock interactions around the porous core of Enceladus. Using such data we characterize global heat and fluid transport properties of the core and model the ongoing hydrothermal activity on Enceladus. We assume that within the global ocean beneath the surface ice, seawater percolates downward into the core where it is heated and rises to the oceanfloor where it emanates in the form of diffuse discharge. We utilize the data from Hsu et al., [2015] with models of diffuse flow in seafloor hydrothermal systems by Lowell et al., [2015] to characterize the global heat transport properties of the Enceladus's core. Based on direct observations the gravitational acceleration (g) is calculated 0.123 m s-2. We assume fluid's density (ρ) is 103 kg m-3 and the specific heat of the fluid (cf) is 4000 Jkg-1 °C-1. From these values effective thermal diffusivity (a*) is calculated as 10-6 m2 s-1. We also assume the coefficient of thermal expansion of fluid (αf) and the kinematic viscosity of fluid (ν) to be 10-4 °C-1 and 10-6 m2 s-1 respectively. The estimated Rayleigh number (Ra) ranges between 0.11-2468.0, for core porosity (φ) of 5-15%, permeability (k) between 10-12-10-8 m2 and temperature between 90-200 °C and the depth of fluid circulation of 100 m. High values of Rayleigh number, cause vigorous convection within the core of Enceladus. Numerical modeling of reactive transport in multicomponent, multiphase systems is required to obtain a full understanding of the characteristics and evolution of the hydrothermal system on Enceladus, but simple scaling laws can provide insight into the physics of water-rock interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morales, George J.; Maggs, James E.
The project expanded and developed mathematical descriptions, and corresponding numerical modeling, of non-diffusive transport to incorporate new perspectives derived from basic transport experiments performed in the LAPD device at UCLA, and at fusion devices throughout the world. By non-diffusive it is meant that the transport of fundamental macroscopic parameters of a system, such as temperature and density, does not follow the standard diffusive behavior predicted by a classical Fokker-Planck equation. The appearance of non-diffusive behavior is often related to underlying microscopic processes that cause the value of a system parameter, at one spatial position, to be linked to distant events,more » i.e., non-locality. In the LAPD experiments the underlying process was traced to large amplitude, coherent drift-waves that give rise to chaotic trajectories. Significant advances were made in this project. The results have lead to a new perspective about the fundamentals of edge transport in magnetically confined plasmas; the insight has important consequences for worldwide studies in fusion devices. Progress was also made in advancing the mathematical techniques used to describe fractional diffusion.« less
Oxygen diffusion in alpha-Al2O3. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Cawley, J. D.; Halloran, J. W.; Cooper, A. R.
1984-01-01
Oxygen self diffusion coefficients were determined in single crystal alpha-Al2O3 using the gas exchange technique. The samples were semi-infinite slabs cut from five different boules with varying background impurities. The diffusion direction was parallel to the c-axis. The tracer profiles were determined by two techniques, single spectrum proton activation and secondary ion mass spectrometry. The SIMS proved to be a more useful tool. The determined diffusion coefficients, which were insensitive to impurity levels and oxygen partial pressure, could be described by D = .00151 exp (-572kJ/RT) sq m/s. The insensitivities are discussed in terms of point defect clustering. Two independent models are consistent with the findings, the first considers the clusters as immobile point defect traps which buffer changes in the defect chemistry. The second considers clusters to be mobile and oxygen diffusion to be intrinsic behavior, the mechanism for oxygen transport involving neutral clusters of Schottky quintuplets.
Bioturbation, advection, and diffusion of a conserved tracer in a laboratory flume
NASA Astrophysics Data System (ADS)
Work, P. A.; Moore, P. R.; Reible, D. D.
2002-06-01
Laboratory experiments indicating the relative influences of advection, diffusion, and bioturbation on transport of NaCl tracer between a stream and streambed are described. Data were collected in a recirculating flume housing a box filled with test sediments. Peclet numbers ranged from 0 to 1.5. Sediment components included a medium sand (d50 = 0.31 mm), kaolinite, and topsoil. Lumbriculus variegatus were introduced as bioturbators. Conductivity probes were employed to document the flux of the tracer solution out of the bed. Measurements are compared to one-dimensional effective diffusion models assuming one or two horizontal sediment layers. These simple models provide a good indication of tracer half-life in the bed if a suitable effective diffusion coefficient is chosen but underpredict initial flux and overpredict flux at long times. Organism activity was limited to the upper reaches of the sediment test box but eventually exerts a secondary influence on flux from deeper regions.
Turbulent vertical diffusivity in the sub-tropical stratosphere
NASA Astrophysics Data System (ADS)
Pisso, I.; Legras, B.
2008-02-01
Vertical (cross-isentropic) mixing is produced by small-scale turbulent processes which are still poorly understood and paramaterized in numerical models. In this work we provide estimates of local equivalent diffusion in the lower stratosphere by comparing balloon borne high-resolution measurements of chemical tracers with reconstructed mixing ratio from large ensembles of random Lagrangian backward trajectories using European Centre for Medium-range Weather Forecasts analysed winds and a chemistry-transport model (REPROBUS). We focus on a case study in subtropical latitudes using data from HIBISCUS campaign. An upper bound on the vertical diffusivity is found in this case study to be of the order of 0.5 m2 s-1 in the subtropical region, which is larger than the estimates at higher latitudes. The relation between diffusion and dispersion is studied by estimating Lyapunov exponents and studying their variation according to the presence of active dynamical structures.
The Mechanism of Isotonic Water Transport
Diamond, Jared M.
1964-01-01
The mechanism by which active solute transport causes water transport in isotonic proportions across epithelial membranes has been investigated. The principle of the experiments was to measure the osmolarity of the transported fluid when the osmolarity of the bathing solution was varied over an eightfold range by varying the NaCl concentration or by adding impermeant non-electrolytes. An in vitro preparation of rabbit gall bladder was suspended in moist oxygen without an outer bathing solution, and the pure transported fluid was collected as it dripped off the serosal surface. Under all conditions the transported fluid was found to approximate an NaCl solution isotonic to whatever bathing solution used. This finding means that the mechanism of isotonic water transport in the gall bladder is neither the double membrane effect nor co-diffusion but rather local osmosis. In other words, active NaCl transport maintains a locally high concentration of solute in some restricted space in the vicinity of the cell membrane, and water follows NaCl in response to this local osmotic gradient. An equation has been derived enabling one to calculate whether the passive water permeability of an organ is high enough to account for complete osmotic equilibration of actively transported solute. By application of this equation, water transport associated with active NaCl transport in the gall bladder cannot go through the channels for water flow under passive conditions, since these channels are grossly too impermeable. Furthermore, solute-linked water transport fails to produce the streaming potentials expected for water flow through these passive channels. Hence solute-linked water transport does not occur in the passive channels but instead involves special structures in the cell membrane, which remain to be identified. PMID:14212146
Polar Field Reversals and Active Region Decay
NASA Astrophysics Data System (ADS)
Petrie, Gordon; Ettinger, Sophie
2017-09-01
We study the relationship between polar field reversals and decayed active region magnetic flux. Photospheric active region flux is dispersed by differential rotation and turbulent diffusion, and is transported poleward by meridional flows and diffusion. We summarize the published evidence from observation and modeling of the influence of meridional flow variations and decaying active region flux's spatial distribution, such as the Joy's law tilt angle. Using NSO Kitt Peak synoptic magnetograms covering cycles 21-24, we investigate in detail the relationship between the transport of decayed active region flux to high latitudes and changes in the polar field strength, including reversals in the magnetic polarity at the poles. By means of stack plots of low- and high-latitude slices of the synoptic magnetograms, the dispersal of flux from low to high latitudes is tracked, and the timing of this dispersal is compared to the polar field changes. In the most abrupt cases of polar field reversal, a few activity complexes (systems of active regions) are identified as the main cause. The poleward transport of large quantities of decayed trailing-polarity flux from these complexes is found to correlate well in time with the abrupt polar field changes. In each case, significant latitudinal displacements were found between the positive and negative flux centroids of the complexes, consistent with Joy's law bipole tilt with trailing-polarity flux located poleward of leading-polarity flux. The activity complexes of the cycle 21 and 22 maxima were larger and longer-lived than those of the cycle 23 and 24 maxima, and the poleward surges were stronger and more unipolar and the polar field changes larger and faster. The cycle 21 and 22 polar reversals were dominated by only a few long-lived complexes whereas the cycle 23 and 24 reversals were the cumulative effects of more numerous, shorter-lived regions. We conclude that sizes and lifetimes of activity complexes are key to understanding the diversity of polar reversals.
Evolution of Edge Pedestal Profiles Over the L-H Transition
NASA Astrophysics Data System (ADS)
Sayer, M. S.; Stacey, W. M.; Floyd, J. P.; Groebner, R. J.
2012-10-01
The detailed time evolution of thermal diffusivities, electromagnetic forces, pressure gradients, particle pinch and momentum transport frequencies (which determine the diffusion coefficient) have been analyzed during the L-H transition in a DIII-D discharge. Density, temperature, rotation velocity and electric field profiles at times just before and after the L-H transition are analyzed in terms of these quantities. The analysis is based on the fluid particle balance, energy balance, force balance and heat conduction equations, as in Ref. [1], but with much greater time resolution and with account for thermal ion orbit loss. The variation of diffusive and non-diffusive transport over the L-H transition is determined from the variation in the radial force balance (radial electric field, VxB force, and pressure gradient) and the variation in the interpreted diffusive transport coefficients. 6pt [1] W.M. Stacey and R.J. Groebner, Phys. Plasmas 17, 112512 (2010).
Dynamical patterns and regime shifts in the nonlinear model of soil microorganisms growth
NASA Astrophysics Data System (ADS)
Zaitseva, Maria; Vladimirov, Artem; Winter, Anna-Marie; Vasilyeva, Nadezda
2017-04-01
Dynamical model of soil microorganisms growth and turnover is formulated as a system of nonlinear partial differential equations of reaction-diffusion type. We consider spatial distributions of concentrations of several substrates and microorganisms. Biochemical reactions are modelled by chemical kinetic equations. Transport is modelled by simple linear diffusion for all chemical substances, while for microorganisms we use different transport functions, e.g. some of them can actively move along gradient of substrate concentration, while others cannot move. We solve our model in two dimensions, starting from uniform state with small initial perturbations for various parameters and find parameter range, where small initial perturbations grow and evolve. We search for bifurcation points and critical regime shifts in our model and analyze time-space profile and phase portraits of these solutions approaching critical regime shifts in the system, exploring possibility to detect such shifts in advance. This work is supported by NordForsk, project #81513.
Kleinhans, Kelsey L; Jaworski, Lukas M; Schneiderbauer, Michaela M; Jackson, Alicia R
2015-10-01
Osteoarthritis (OA) is a significant socio-economic concern, affecting millions of individuals each year. Degeneration of the meniscus of the knee is often associated with OA, yet the relationship between the two is not well understood. As a nearly avascular tissue, the meniscus must rely on diffusive transport for nutritional supply to cells. Therefore, quantifying structure-function relations for transport properties in meniscus fibrocartilage is an important task. The purpose of the present study was to determine how mechanical loading, tissue anisotropy, and tissue region affect glucose diffusion in meniscus fibrocartilage. A one-dimensional (1D) diffusion experiment was used to measure the diffusion coefficient of glucose in porcine meniscus tissues. Results show that glucose diffusion is strain-dependent, decreasing significantly with increased levels of compression. It was also determined that glucose diffusion in meniscus tissues is anisotropic, with the diffusion coefficient in the circumferential direction being significantly higher than that in the axial direction. Finally, the effect of tissue region was not statistically significant, comparing axial diffusion in the central and horn regions of the tissue. This study is important for better understanding the transport and nutrition-related mechanisms of meniscal degeneration and related OA in the knee.
Chapy, Hélène; Smirnova, Maria; André, Pascal; Schlatter, Joël; Chiadmi, Fouad; Couraud, Pierre-Olivier; Scherrmann, Jean-Michel; Declèves, Xavier; Cisternino, Salvatore
2014-10-31
The rate of entry of cocaine into the brain is a critical factor that influences neuronal plasticity and the development of cocaine addiction. Until now, passive diffusion has been considered the unique mechanism known by which cocaine crosses the blood-brain barrier. We reassessed mechanisms of transport of cocaine at the blood-brain barrier using a human cerebral capillary endothelial cell line (hCMEC/D3) and in situ mouse carotid perfusion. Both in vivo and in vitro cocaine transport studies demonstrated the coexistence of a carrier-mediated process with passive diffusion. At pharmacological exposure level, passive diffusion of cocaine accounted for only 22.5% of the total cocaine influx in mice and 5.9% in hCMEC/D3 cells, whereas the carrier-mediated influx rate was 3.4 times greater than its passive diffusion rate in vivo. The functional identification of this carrier-mediated transport demonstrated the involvement of a proton antiporter that shared the properties of the previously characterized clonidine and nicotine transporter. The functionnal characterization suggests that the solute carrier (SLC) transporters Oct (Slc22a1-3), Mate (Slc47a1) and Octn (Slc22a4-5) are not involved in the cocaine transport in vivo and in vitro. Diphenhydramine, heroin, tramadol, cocaethylene, and norcocaine all strongly inhibited cocaine transport, unlike benzoylecgonine. Trans-stimulation studies indicated that diphenhydramine, nicotine, 3,4-methylenedioxyamphetamine (ecstasy) and the cathinone compound 3,4-methylenedioxypyrovalerone (MDPV) were also substrates of the cocaine transporter. Cocaine transport at the BBB involves a proton-antiporter flux that is quantitatively much more important than its passive diffusion. The molecular identification and characterization of this transporter will provide new tools to understand its role in addictive mechanisms. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Chen, Ming-liang; Yi, Long; Jin, Xin; Xie, Qi; Zhang, Ting; Zhou, Xi; Chang, Hui; Fu, Yu-jie; Zhu, Jun-dong; Zhang, Qian-yong; Mi, Man-tian
2013-11-01
Resveratrol is a natural polyphenol that exerts potent effects to suppress atherosclerosis. However, its low concentration in plasma has placed this role in doubt. Thus, resveratrol effects might be dependent on its transport into vascular endothelium, a question not previously addressed in spite of its obvious and fundamental importance. Via high-performance liquid chromatography and liquid chromatography/mass spectrometry, we found that resveratrol was absorbed by human umbilical vein endothelial cells in a temperature-, concentration- and time-dependent manner, suggesting the involvement of passive diffusion and active transport. As determined by confocal laser scanning microscopy, resveratrol primarily distributed throughout the cytoplasm. Furthermore, resveratrol absorption was modulated by serum proteins and sodium-dependent glucose transporter 1 (SGLT1) yet inhibited by glucose (an SGLT1 substrate) and phlorizin (an SGLT1 selective inhibitor), as well as SGLT1 siRNA transfection. Additionally, Sprague-Dawley rats were intragastrically administrated with 100mg/kg of resveratrol and the concentration of resveratrol in blood vessels declined more slowly up to 24h compared to that in the blood. Our results suggested that resveratrol uptake by vascular endothelial cells involved both passive diffusion and an SGLT1-mediated process, at least partially. Moreover, the intracellular resveratrol pool may be more important than the serum level in vivo. These provide new insights into the cardiovascular benefits of resveratrol. Copyright © 2013 Elsevier Inc. All rights reserved.
A dynamic model of the radiation-belt electron phase-space density based on POLAR/HIST measurements
NASA Astrophysics Data System (ADS)
Vassiliadis, D.; Green, J. C.
2007-12-01
The response of the energetic-electron phase-space density (PSD) in the radiation belts is subject to a delicate combination of acceleration and loss processes which are strongly determined by the magnetospheric configuration and field disturbance level. We quantify the response of the density to stormtime fields as observed by the HIST detector on board POLAR. Several distinct modes are identified, characterized by peak second- and third- adiabatic invariants and peak delay time. The modes represent quasiadiabatic transport due to ring current activity; high L* (~6), day-long acceleration linked to ULF wave-particle interaction; and low-L* (~3), minute- to hour-long acceleration interpreted to be due to transient inductive fields or VLF wave-particle interaction. The net transport due to these responses is not always or everywhere diffusive, therefore we quantify the degree of departure from diffusive transport for specific storm intervals and radial ranges. Taken together the response modes comprise a dynamic, nonlinear model which allows us to better understand the historic variability of the high-energy tail of the electron distribution in the inner magnetosphere.
Persistent wind-induced enhancement of diffusive CO2 transport in a mountain forest snowpack
D. R. Bowling; W. J. Massman
2011-01-01
Diffusion dominates the transport of trace gases between soil and the atmosphere. Pressure gradients induced by atmospheric flow and wind interacting with topographical features cause a small but persistent bulk flow of air within soil or snow. This forcing, called pressure pumping or wind pumping, leads to a poorly quantified enhancement of gas transport beyond the...
Relationship between the anomalous diffusion and the fractal dimension of the environment
NASA Astrophysics Data System (ADS)
Zhokh, Alexey; Trypolskyi, Andrey; Strizhak, Peter
2018-03-01
In this letter, we provide an experimental study highlighting a relation between the anomalous diffusion and the fractal dimension of the environment using the methanol anomalous transport through the porous solid pellets with various pores geometries and different chemical compositions. The anomalous diffusion exponent was derived from the non-integer order of the time-fractional diffusion equation that describes the methanol anomalous transport through the solid media. The surface fractal dimension was estimated from the nitrogen adsorption isotherms using the Frenkel-Halsey-Hill method. Our study shows that decreasing the fractal dimension leads to increasing the anomalous diffusion exponent, whereas the anomalous diffusion constant is independent on the fractal dimension. We show that the obtained results are in a good agreement with the anomalous diffusion model on a fractal mesh.
Enhanced diffusion on oscillating surfaces through synchronization
NASA Astrophysics Data System (ADS)
Wang, Jin; Cao, Wei; Ma, Ming; Zheng, Quanshui
2018-02-01
The diffusion of molecules and clusters under nanoscale confinement or absorbed on surfaces is the key controlling factor in dynamical processes such as transport, chemical reaction, or filtration. Enhancing diffusion could benefit these processes by increasing their transport efficiency. Using a nonlinear Langevin equation with an extensive number of simulations, we find a large enhancement in diffusion through surface oscillation. For helium confined in a narrow carbon nanotube, the diffusion enhancement is estimated to be over three orders of magnitude. A synchronization mechanism between the kinetics of the particles and the oscillating surface is revealed. Interestingly, a highly nonlinear negative correlation between diffusion coefficient and temperature is predicted based on this mechanism, and further validated by simulations. Our results provide a general and efficient method for enhancing diffusion, especially at low temperatures.
Ding, Yang; Batista, Bruno; Steinbock, Oliver; Cartwright, Julyan H E; Cardoso, Silvana S S
2016-08-16
To model ion transport across protocell membranes in Hadean hydrothermal vents, we consider both theoretically and experimentally the planar growth of a precipitate membrane formed at the interface between two parallel fluid streams in a 2D microfluidic reactor. The growth rate of the precipitate is found to be proportional to the square root of time, which is characteristic of diffusive transport. However, the dependence of the growth rate on the concentrations of hydroxide and metal ions is approximately linear and quadratic, respectively. We show that such a difference in ionic transport dynamics arises from the enhanced transport of metal ions across a thin gel layer present at the surface of the precipitate. The fluctuations in transverse velocity in this wavy porous gel layer allow an enhanced transport of the cation, so that the effective diffusivity is about one order of magnitude higher than that expected from molecular diffusion alone. Our theoretical predictions are in excellent agreement with our laboratory measurements of the growth of a manganese hydroxide membrane in a microfluidic channel, and this enhanced transport is thought to have been needed to account for the bioenergetics of the first single-celled organisms.
A novel in-situ method for real-time monitoring of gas transport in soil
NASA Astrophysics Data System (ADS)
Laemmel, Thomas; Maier, Martin; Schack-Kirchner, Helmer; Lang, Friederike
2017-04-01
Gas exchange between soil and atmosphere is important for the biogeochemistry of soils. Gas transport in soil is commonly assumed to be governed by molecular diffusion and is usually described by the soil gas diffusion coefficient DS characterizing the ability of the soil to "transport passively" gas through the soil. One way to determine DS is sampling soil cores in the field and measuring DS in the lab. Unfortunately this method is destructive and laborious. Moreover, a few previous field studies identified other gas transport processes in soil to significantly enhance the diffusive gas transport. However, until now, no method is available to measure gas transport in situ in the soil. We developed a novel method to monitor gas transport in soil in situ. The method includes a custom made gas sampling device, the continuous injection of an inert tracer gas and inverse gas transport modelling in the soil. The gas sampling device has several sampling depths and can be easily installed into a vertical hole drilled by an auger, which allows for fast installation of the system. Helium (He) as inert tracer gas was injected continuously at the lower end of the device. The resulting steady state distribution of He was used to deduce the depth profile of DS. Gas transport in the soil surrounding the gas-sampling-device/soil system was modeled using the Finite Element Modeling program COMSOL . We tested our new method both in the lab and during two short field studies and compared the results with a reference method using soil cores. DS profiles obtained by our in-situ method were consistent with DS profiles determined based on soil core analyses. During a longer monitoring field campaign, typical soil-moisture effects upon gas diffusivity such as an increase during a drying period or a decrease after rain could be observed consistently. Under windy conditions we additionally measured for the first time the direct enhancement of gas transport in soil due to wind-induced pressure-pumping which could increase the effective DS up to 30% in the topsoil. Our novel monitoring method can be quickly and easily installed and allows for monitoring continuously soil gas transport over a long time. It allows monitoring physical modifications of soil gas diffusivity due to rain events or evaporation but it also allows studying non-diffusive gas transport processes in the soil.
Particle acceleration at shocks in the inner heliosphere
NASA Astrophysics Data System (ADS)
Parker, Linda Neergaard
This dissertation describes a study of particle acceleration at shocks via the diffusive shock acceleration mechanism. Results for particle acceleration at both quasi-parallel and quasi-perpendicular shocks are presented to address the question of whether there are sufficient particles in the solar wind thermal core, modeled as either a Maxwellian or kappa- distribution, to account for the observed accelerated spectrum. Results of accelerating the theoretical upstream distribution are compared to energetic observations at 1 AU. It is shown that the particle distribution in the solar wind thermal core is sufficient to explain the accelerated particle spectrum downstream of the shock, although the shape of the downstream distribution in some cases does not follow completely the theory of diffusive shock acceleration, indicating possible additional processes at work in the shock for these cases. Results show good to excellent agreement between the theoretical and observed spectral index for one third to one half of both quasi-parallel and quasi-perpendicular shocks studied herein. Coronal mass ejections occurring during periods of high solar activity surrounding solar maximum can produce shocks in excess of 3-8 shocks per day. During solar minimum, diffusive shock acceleration at shocks can generally be understood on the basis of single independent shocks and no other shock necessarily influences the diffusive shock acceleration mechanism. In this sense, diffusive shock acceleration during solar minimum may be regarded as Markovian. By contrast, diffusive shock acceleration of particles at periods of high solar activity (e.g. solar maximum) see frequent, closely spaced shocks that include the effects of particle acceleration at preceding and following shocks. Therefore, diffusive shock acceleration of particles at solar maximum cannot be modeled on the basis of diffusive shock acceleration as a single, independent shock and the process is essentially non-Markovian. A multiple shock model is developed based in part on the box model of (Protheroe and Stanev, 1998; Moraal and Axford, 1983; Ball and Kirk, 1992; Drury et al. 1999) that accelerates particles at multiple shocks and decompresses the particles between shocks via two methods. The first method of decompression is based on the that used by Melrose and Pope (1993), which adiabatically decompresses particles between shocks. The second method solves the cosmic ray transport equation and adiabatically decompresses between shocks and includes the loss of particles through convection and diffusion. The transport method allows for the inclusion of a temporal variability and thus allows for a more representative frequency distribution of shocks. The transport method of decompression and loss is used to accelerate particles at seventy-three shocks in a thirty day time period. Comparisons with observations taken at 1 AU during the same time period are encouraging as the model is able to reproduce the observed amplitude of the accelerated particles and in part the variability. This work provides the basis for developing more sophisticated models that can be applied to a suite of observations
Discrete Diffusion Monte Carlo for Electron Thermal Transport
NASA Astrophysics Data System (ADS)
Chenhall, Jeffrey; Cao, Duc; Wollaeger, Ryan; Moses, Gregory
2014-10-01
The iSNB (implicit Schurtz Nicolai Busquet electron thermal transport method of Cao et al. is adapted to a Discrete Diffusion Monte Carlo (DDMC) solution method for eventual inclusion in a hybrid IMC-DDMC (Implicit Monte Carlo) method. The hybrid method will combine the efficiency of a diffusion method in short mean free path regions with the accuracy of a transport method in long mean free path regions. The Monte Carlo nature of the approach allows the algorithm to be massively parallelized. Work to date on the iSNB-DDMC method will be presented. This work was supported by Sandia National Laboratory - Albuquerque.
Helium, Iron and Electron Particle Transport and Energy Transport Studies on the TFTR Tokamak
DOE R&D Accomplishments Database
Synakowski, E. J.; Efthimion, P. C.; Rewoldt, G.; Stratton, B. C.; Tang, W. M.; Grek, B.; Hill, K. W.; Hulse, R. A.; Johnson, D .W.; Mansfield, D. K.; McCune, D.; Mikkelsen, D. R.; Park, H. K.; Ramsey, A. T.; Redi, M. H.; Scott, S. D.; Taylor, G.; Timberlake, J.; Zarnstorff, M. C. (Princeton Univ., NJ (United States). Plasma Physics Lab.); Kissick, M. W. (Wisconsin Univ., Madison, WI (United States))
1993-03-01
Results from helium, iron, and electron transport on TFTR in L-mode and Supershot deuterium plasmas with the same toroidal field, plasma current, and neutral beam heating power are presented. They are compared to results from thermal transport analysis based on power balance. Particle diffusivities and thermal conductivities are radially hollow and larger than neoclassical values, except possibly near the magnetic axis. The ion channel dominates over the electron channel in both particle and thermal diffusion. A peaked helium profile, supported by inward convection that is stronger than predicted by neoclassical theory, is measured in the Supershot The helium profile shape is consistent with predictions from quasilinear electrostatic drift-wave theory. While the perturbative particle diffusion coefficients of all three species are similar in the Supershot, differences are found in the L-Mode. Quasilinear theory calculations of the ratios of impurity diffusivities are in good accord with measurements. Theory estimates indicate that the ion heat flux should be larger than the electron heat flux, consistent with power balance analysis. However, theoretical values of the ratio of the ion to electron heat flux can be more than a factor of three larger than experimental values. A correlation between helium diffusion and ion thermal transport is observed and has favorable implications for sustained ignition of a tokamak fusion reactor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lasuik, J.; Shalchi, A., E-mail: andreasm4@yahoo.com
Recently, a new theory for the transport of energetic particles across a mean magnetic field was presented. Compared to other nonlinear theories the new approach has the advantage that it provides a full time-dependent description of the transport. Furthermore, a diffusion approximation is no longer part of that theory. The purpose of this paper is to combine this new approach with a time-dependent model for parallel transport and different turbulence configurations in order to explore the parameter regimes for which we get ballistic transport, compound subdiffusion, and normal Markovian diffusion.
Transport of polar and non-polar volatile compounds in polystyrene foam and oriented strand board
NASA Astrophysics Data System (ADS)
Yuan, Huali; Little, John C.; Hodgson, Alfred T.
Transport of hexanal and styrene in polystyrene foam (PSF) and oriented strand board (OSB) was characterized. A microbalance was used to measure sorption/desorption kinetics and equilibrium data. While styrene transport in PSF can be described by Fickian diffusion with a symmetrical and reversible sorption/desorption process, hexanal transport in both PSF and OSB exhibited significant hysteresis, with desorption being much slower than sorption. A porous media diffusion model that assumes instantaneous local equilibrium governed by a nonlinear Freundlich isotherm was found to explain the hysteresis in hexanal transport. A new nonlinear sorption and porous diffusion emissions model was, therefore, developed and partially validated using independent chamber data. The results were also compared to the more conventional linear Fickian-diffusion emissions model. While the linear emissions model predicts styrene emissions from PSF with reasonable accuracy, it substantially underestimates the rate of hexanal emissions from OSB. Although further research and more rigorous validation is needed, the new nonlinear emissions model holds promise for predicting emissions of polar VOCs such as hexanal from porous building materials.
Multicomponent Diffusion of Penetrant Mixtures in Rubbery Polymers: A Molecular Dynamics Study
NASA Astrophysics Data System (ADS)
Bringuier, Stefan; Varady, Mark; Knox, Craig; Cabalo, Jerry; Pearl, Thomas; Mantooth, Brent
The importance of understanding transport of chemical species across liquid-solid boundaries is of particular interest in the decontamination of harmful chemicals absorbed within polymeric materials. To characterize processes associated with liquid-phase extraction of absorbed species from polymers, it is necessary to determine an appropriate physical description of species transport in multicomponent systems. The Maxwell-Stefan (M-S) formulation is a rigorous description of mass transport in multicomponent solutions, in which, mutual diffusivities determine the degree of relative motion between interacting molecules in response to a chemical potential gradient. The work presented focuses on the determination of M-S diffusivities from molecular dynamics (MD) simulations of nerve agent O-ethyl S-[2(diisopropylamino)ethyl] methylphosphonothioate (VX), water, and methanol mixtures within a poly(dimethylsiloxane) matrix. We investigate the composition dependence of M-S diffusivities and compare the results to values predicted using empirical relations for binary and ternary mixtures. Finally, we highlight the pertinent differences in molecular mechanisms associated with species transport and employ non-equilibrium MD to probe transport across the mixture-polymer interface.
NASA Astrophysics Data System (ADS)
Kekenes-Huskey, P. M.; Gillette, A. K.; McCammon, J. A.
2014-05-01
The macroscopic diffusion constant for a charged diffuser is in part dependent on (1) the volume excluded by solute "obstacles" and (2) long-range interactions between those obstacles and the diffuser. Increasing excluded volume reduces transport of the diffuser, while long-range interactions can either increase or decrease diffusivity, depending on the nature of the potential. We previously demonstrated [P. M. Kekenes-Huskey et al., Biophys. J. 105, 2130 (2013)] using homogenization theory that the configuration of molecular-scale obstacles can both hinder diffusion and induce diffusional anisotropy for small ions. As the density of molecular obstacles increases, van der Waals (vdW) and electrostatic interactions between obstacle and a diffuser become significant and can strongly influence the latter's diffusivity, which was neglected in our original model. Here, we extend this methodology to include a fixed (time-independent) potential of mean force, through homogenization of the Smoluchowski equation. We consider the diffusion of ions in crowded, hydrophilic environments at physiological ionic strengths and find that electrostatic and vdW interactions can enhance or depress effective diffusion rates for attractive or repulsive forces, respectively. Additionally, we show that the observed diffusion rate may be reduced independent of non-specific electrostatic and vdW interactions by treating obstacles that exhibit specific binding interactions as "buffers" that absorb free diffusers. Finally, we demonstrate that effective diffusion rates are sensitive to distribution of surface charge on a globular protein, Troponin C, suggesting that the use of molecular structures with atomistic-scale resolution can account for electrostatic influences on substrate transport. This approach offers new insight into the influence of molecular-scale, long-range interactions on transport of charged species, particularly for diffusion-influenced signaling events occurring in crowded cellular environments.
New Solution of Diffusion-Advection Equation for Cosmic-Ray Transport Using Ultradistributions
NASA Astrophysics Data System (ADS)
Rocca, M. C.; Plastino, A. R.; Plastino, A.; Ferri, G. L.; de Paoli, A.
2015-11-01
In this paper we exactly solve the diffusion-advection equation (DAE) for cosmic-ray transport. For such a purpose we use the Theory of Ultradistributions of J. Sebastiao e Silva, to give a general solution for the DAE. From the ensuing solution, we obtain several approximations as limiting cases of various situations of physical and astrophysical interest. One of them involves Solar cosmic-rays' diffusion.
2011-04-01
filament. The filament may be composed of the metal electrode which is transported into the insulator or due to the formation of sub-oxides. During the...possibility that ionic transport and red-ox processes are at the basis of the resistive switching. The idea is that the oxidation of the active metal...oxide layer and subsequent discard at the inert metal counter-electrode. This mechanism should lead to the formation of metal dendrimers inside the
Numerical simulation of double‐diffusive finger convection
Hughes, Joseph D.; Sanford, Ward E.; Vacher, H. Leonard
2005-01-01
A hybrid finite element, integrated finite difference numerical model is developed for the simulation of double‐diffusive and multicomponent flow in two and three dimensions. The model is based on a multidimensional, density‐dependent, saturated‐unsaturated transport model (SUTRA), which uses one governing equation for fluid flow and another for solute transport. The solute‐transport equation is applied sequentially to each simulated species. Density coupling of the flow and solute‐transport equations is accounted for and handled using a sequential implicit Picard iterative scheme. High‐resolution data from a double‐diffusive Hele‐Shaw experiment, initially in a density‐stable configuration, is used to verify the numerical model. The temporal and spatial evolution of simulated double‐diffusive convection is in good agreement with experimental results. Numerical results are very sensitive to discretization and correspond closest to experimental results when element sizes adequately define the spatial resolution of observed fingering. Numerical results also indicate that differences in the molecular diffusivity of sodium chloride and the dye used to visualize experimental sodium chloride concentrations are significant and cause inaccurate mapping of sodium chloride concentrations by the dye, especially at late times. As a result of reduced diffusion, simulated dye fingers are better defined than simulated sodium chloride fingers and exhibit more vertical mass transfer.
Crowding-facilitated macromolecular transport in attractive micropost arrays.
Chien, Fan-Tso; Lin, Po-Keng; Chien, Wei; Hung, Cheng-Hsiang; Yu, Ming-Hung; Chou, Chia-Fu; Chen, Yeng-Long
2017-05-02
Our study of DNA dynamics in weakly attractive nanofabricated post arrays revealed crowding enhances polymer transport, contrary to hindered transport in repulsive medium. The coupling of DNA diffusion and adsorption to the microposts results in more frequent cross-post hopping and increased long-term diffusivity with increased crowding density. We performed Langevin dynamics simulations and found maximum long-term diffusivity in post arrays with gap sizes comparable to the polymer radius of gyration. We found that macromolecular transport in weakly attractive post arrays is faster than in non-attractive dense medium. Furthermore, we employed hidden Markov analysis to determine the transition of macromolecular adsorption-desorption on posts and hopping between posts. The apparent free energy barriers are comparable to theoretical estimates determined from polymer conformational fluctuations.
Mycelia promote active transport and spatial dispersion of polycyclic aromatic hydrocarbons.
Furuno, Shoko; Foss, Susan; Wild, Ed; Jones, Kevin C; Semple, Kirk T; Harms, Hauke; Wick, Lukas Y
2012-05-15
To cope with heterogeneous subsurface environments mycelial microorganisms have developed a unique ramified growth form. By extending hyphae, they can obtain nutrients from remote places and transport them even through air gaps and in small pore spaces, repectively. To date, studies have been focusing on the role that networks play in the distribution of nutrients. Here, we investigated the role of mycelia for the translocation of nonessential substances, using polycyclic aromatic hydrocarbons (PAHs) as model compounds. We show that the hyphae of the mycelial soil oomycete Pythium ultimum function as active translocation vectors for a wide range of PAHs. Visualization by two-photon excitation microscopy (TPEM) demonstrated the uptake and accumulation of phenanthrene (PHE) in lipid vesicles and its active transport by cytoplasmic streaming of the hyphae ('hyphal pipelines'). In mycelial networks, contaminants were translocated over larger distances than by diffusion. Given their transport capacity and ubiquity, hyphae may substantially distribute remote hydrophobic contaminants in soil, thereby improving their bioavailability to bacterial degradation. Hyphal contaminant dispersal may provide an untapped potential for future bioremediation approaches.
Zhang, Yong; Green, Christopher T; Tick, Geoffrey R
2015-01-01
This study evaluates the role of the Peclet number as affected by molecular diffusion in transient anomalous transport, which is one of the major knowledge gaps in anomalous transport, by combining Monte Carlo simulations and stochastic model analysis. Two alluvial settings containing either short- or long-connected hydrofacies are generated and used as media for flow and transport modeling. Numerical experiments show that 1) the Peclet number affects both the duration of the power-law segment of tracer breakthrough curves (BTCs) and the transition rate from anomalous to Fickian transport by determining the solute residence time for a given low-permeability layer, 2) mechanical dispersion has a limited contribution to the anomalous characteristics of late-time transport as compared to molecular diffusion due to an almost negligible velocity in floodplain deposits, and 3) the initial source dimensions only enhance the power-law tail of the BTCs at short travel distances. A tempered stable stochastic (TSS) model is then applied to analyze the modeled transport. Applications show that the time-nonlocal parameters in the TSS model relate to the Peclet number, Pe. In particular, the truncation parameter in the TSS model increases nonlinearly with a decrease in Pe due to the decrease of the mean residence time, and the capacity coefficient increases with an increase in molecular diffusion which is probably due to the increase in the number of immobile particles. The above numerical experiments and stochastic analysis therefore reveal that the Peclet number as affected by molecular diffusion controls transient anomalous transport in alluvial aquifer-aquitard complexes. Copyright © 2015 Elsevier B.V. All rights reserved.
Effective Stochastic Model for Reactive Transport
NASA Astrophysics Data System (ADS)
Tartakovsky, A. M.; Zheng, B.; Barajas-Solano, D. A.
2017-12-01
We propose an effective stochastic advection-diffusion-reaction (SADR) model. Unlike traditional advection-dispersion-reaction models, the SADR model describes mechanical and diffusive mixing as two separate processes. In the SADR model, the mechanical mixing is driven by random advective velocity with the variance given by the coefficient of mechanical dispersion. The diffusive mixing is modeled as a fickian diffusion with the effective diffusion coefficient. Both coefficients are given in terms of Peclet number (Pe) and the coefficient of molecular diffusion. We use the experimental results of to demonstrate that for transport and bimolecular reactions in porous media the SADR model is significantly more accurate than the traditional dispersion model, which overestimates the mass of the reaction product by as much as 25%.
Examining Changes in Radioxenon Isotope Activity Ratios during Subsurface Transport
NASA Astrophysics Data System (ADS)
Annewandter, Robert
2014-05-01
The Non-Proliferation Experiment (NPE) has demonstrated and modelled the usefulness of barometric pumping induced gas transport and subsequent soil gas sampling during On-Site inspections. Generally, gas transport has been widely studied with different numerical codes. However, gas transport of radioxenons and radioiodines in the post-detonation regime and their possible fractionation is still neglected in the open peer-reviewed literature. Atmospheric concentrations of the radioxenons Xe-135, Xe-133m, Xe-133 and Xe-131m can be used to discriminate between civilian releases (nuclear power plants or medical isotope facilities), and nuclear explosion sources. It is based on the multiple isotopic activity ratio method. Yet it is not clear whether subsurface migration of the radionuclides, with eventual release into the atmosphere, can affect the activity ratios due to fractionation. Fractionation can be caused by different mass diffusivities due to mass differences between the radionuclides. Cyclical changes in atmospheric pressure can drive subsurface gas transport. This barometric pumping phenomenon causes an oscillatoric flow in upward trending fractures or highly conductive faults which, combined with diffusion into the porous matrix, leads to a net transport of gaseous components - a so-called ratcheting effect. We use a general purpose reservoir simulator (Complex System Modelling Platform, CSMP++) which is recognized by the oil industry as leading in Discrete Fracture-Matrix (DFM) simulations. It has been applied in a range of fields such as deep geothermal systems, three-phase black oil simulations, fracture propagation in fractured, porous media, and Navier-Stokes pore-scale modelling among others. It is specifically designed to account for structurally complex geologic situation of fractured, porous media. Parabolic differential equations are solved by a continuous Galerkin finite-element method, hyperbolic differential equations by a complementary finite volume method. The parabolic and hyperbolic problem can be solved separately by operator-splitting. The resulting system of linear equations is solved by the algebraic multigrid library SAMG, developed at the Fraunhofer Institute for Algorithms and Scientific Computing, Germany. CSMP++ is developed at Montan University of Leoben, ETH Zuerich, Imperial College London and Heriot-Watt University in Edinburgh. This study examines barometric pumping-driven subsurface transport of Xe-135, Xe-133m, Xe-133, Xe-131m including I-131, I-133 and I-135 on arrival times and isotopic activity ratios. This work was funded by the CTBTO Research Award for Young Scientist and Engineers (2013).
Molins, S.; Mayer, K.U.
2007-01-01
The two‐way coupling that exists between biogeochemical reactions and vadose zone transport processes, in particular gas phase transport, determines the composition of soil gas. To explore these feedback processes quantitatively, multicomponent gas diffusion and advection are implemented into an existing reactive transport model that includes a full suite of geochemical reactions. Multicomponent gas diffusion is described on the basis of the dusty gas model, which accounts for all relevant gas diffusion mechanisms. The simulation of gas attenuation in partially saturated landfill soil covers, methane production, and oxidation in aquifers contaminated by organic compounds (e.g., an oil spill site) and pyrite oxidation in mine tailings demonstrate that both diffusive and advective gas transport can be affected by geochemical reactions. Methane oxidation in landfill covers reduces the existing upward pressure gradient, thereby decreasing the contribution of advective methane emissions to the atmosphere and enhancing the net flux of atmospheric oxygen into the soil column. At an oil spill site, methane oxidation causes a reversal in the direction of gas advection, which results in advective transport toward the zone of oxidation both from the ground surface and the deeper zone of methane production. Both diffusion and advection contribute to supply atmospheric oxygen into the subsurface, and methane emissions to the atmosphere are averted. During pyrite oxidation in mine tailings, pressure reduction in the reaction zone drives advective gas flow into the sediment column, enhancing the oxidation process. In carbonate‐rich mine tailings, calcite dissolution releases carbon dioxide, which partly offsets the pressure reduction caused by O2 consumption.
From conservative to reactive transport under diffusion-controlled conditions
NASA Astrophysics Data System (ADS)
Babey, Tristan; de Dreuzy, Jean-Raynald; Ginn, Timothy R.
2016-05-01
We assess the possibility to use conservative transport information, such as that contained in transit time distributions, breakthrough curves and tracer tests, to predict nonlinear fluid-rock interactions in fracture/matrix or mobile/immobile conditions. Reference simulated data are given by conservative and reactive transport simulations in several diffusive porosity structures differing by their topological organization. Reactions includes nonlinear kinetically controlled dissolution and desorption. Effective Multi-Rate Mass Transfer models (MRMT) are calibrated solely on conservative transport information without pore topology information and provide concentration distributions on which effective reaction rates are estimated. Reference simulated reaction rates and effective reaction rates evaluated by MRMT are compared, as well as characteristic desorption and dissolution times. Although not exactly equal, these indicators remain very close whatever the porous structure, differing at most by 0.6% and 10% for desorption and dissolution. At early times, this close agreement arises from the fine characterization of the diffusive porosity close to the mobile zone that controls fast mobile-diffusive exchanges. At intermediate to late times, concentration gradients are strongly reduced by diffusion, and reactivity can be captured by a very limited number of rates. We conclude that effective models calibrated solely on conservative transport information like MRMT can accurately estimate monocomponent kinetically controlled nonlinear fluid-rock interactions. Their relevance might extend to more advanced biogeochemical reactions because of the good characterization of conservative concentration distributions, even by parsimonious models (e.g., MRMT with 3-5 rates). We propose a methodology to estimate reactive transport from conservative transport in mobile-immobile conditions.
DEVELOPMENT OF SPLIT-OPERATOR, PETROV-GALERKIN METHODS TO SIMULATE TRANSPORT AND DIFFUSION PROBLEMS
The rate at which contaminants in groundwater undergo sorption and desorption is routinely described using diffusion models. Such approaches, when incorporated into transport models, lead to large systems of coupled equations, often nonlinear. This has restricted applications of ...
Future long-range transports: Prospects for improved fuel efficiency
NASA Technical Reports Server (NTRS)
Nagel, A. L.; Alford, W. J., Jr.; Dugan, J. F., Jr.
1975-01-01
A status report is provided on current thinking concerning potential improvements in fuel efficiency and possible alternate fuels. Topics reviewed are: (1) historical trends in airplane efficiency; (2) technological opportunities including supercritical aerodynamics, (3) vortex diffusers, (4) composite materials, (5) propulsion systems, (6) active controls, and terminal-area operations; (7) unconventional design concepts, and (8) hydrogen-fueled airplane.
Jeon, Byoungseon; Van Overmeere, Quentin; van Duin, Adri C T; Ramanathan, Shriram
2013-02-14
Oxidation of iron surfaces and oxide growth mechanisms have been studied using reactive molecular dynamics. Oxide growth kinetics on Fe(100), (110), and (111) surface orientations has been investigated at various temperatures and/or an external electric field. The oxide growth kinetics decreases in the order of (110), (111), and (100) surfaces at 300 K over 1 ns timescale while higher temperature increases the oxidation rate. The oxidation rate shows a transition after an initial high rate, implying that the oxide formation mechanism evolves, with iron cation re-ordering. In early stages of surface oxide growth, oxygen transport through iron interstitial sites is dominant, yielding non-stoichiometric wüstite characteristics. The dominant oxygen inward transport decreases as the oxide thickens, evolving into more stoichiometric oxide phases such as wüstite or hematite. This also suggests that cation outward transport increases correspondingly. In addition to oxidation kinetics simulations, formed oxide layers have been relaxed in the range of 600-1500 K to investigate diffusion characteristics, fitting these results into an Arrhenius relation. The activation energy of oxygen diffusion in oxide layers formed on Fe(100), (110), and (111) surfaces was estimated to be 0.32, 0.26, and 0.28 eV, respectively. Comparison between our modeling results and literature data is then discussed. An external electric field (10 MV cm(-1)) facilitates initial oxidation kinetics by promoting oxygen transport through iron lattice interstitial sites, but reaches self-limiting thickness, showing that similar oxide formation stages are maintained when cation transport increases. The effect of the external electric field on iron oxide structure, composition, and oxide activation energy is found to be minimal, whereas cation outward migration is slightly promoted.
Electrocatalytic performance of fuel cell reactions at low catalyst loading and high mass transport.
Zalitis, Christopher M; Kramer, Denis; Kucernak, Anthony R
2013-03-28
An alternative approach to the rotating disk electrode (RDE) for characterising fuel cell electrocatalysts is presented. The approach combines high mass transport with a flat, uniform, and homogeneous catalyst deposition process, well suited for studying intrinsic catalyst properties at realistic operating conditions of a polymer electrolyte fuel cell (PEFC). Uniform catalyst layers were produced with loadings as low as 0.16 μgPt cm(-2) and thicknesses as low as 200 nm. Such ultra thin catalyst layers are considered advantageous to minimize internal resistances and mass transport limitations. Geometric current densities as high as 5.7 A cm(-2)Geo were experimentally achieved at a loading of 10.15 μgPt cm(-2) for the hydrogen oxidation reaction (HOR) at room temperature, which is three orders of magnitude higher than current densities achievable with the RDE. Modelling of the associated diffusion field suggests that such high performance is enabled by fast lateral diffusion within the electrode. The electrodes operate over a wide potential range with insignificant mass transport losses, allowing the study of the ORR at high overpotentials. Electrodes produced a specific current density of 31 ± 9 mA cm(-2)Spec at a potential of 0.65 V vs. RHE for the oxygen reduction reaction (ORR) and 600 ± 60 mA cm(-2)Spec for the peak potential of the HOR. The mass activity of a commercial 60 wt% Pt/C catalyst towards the ORR was found to exceed a range of literature PEFC mass activities across the entire potential range. The HOR also revealed fine structure in the limiting current range and an asymptotic current decay for potentials above 0.36 V. These characteristics are not visible with techniques limited by mass transport in aqueous media such as the RDE.
Hua, Wen Jin; Fang, Hu Jin; Hua, Wei Xiao
2012-09-01
The aim of this study was to determine transepithelial transport characteristics of rosuvastatin and effect of ursolic acid (P-gp potential inhibitor) and ko143 (ABC transporters selective inhibitor) on its transport in Caco-2 monolayers. A reliable Caco-2 cell monolayers model was established. The TEER value was used to inspect integrity of cell model. Apparent permeability coefficients (Papp(BL-AP) and Papp(AP-BL)) were used to analyze transepithelial transport of rosuvastatin. Uptake of rosuvastatin was time- and concentration-dependent in Caco-2 cell. The ko143 but not ursolic acid had effect on the uptake of rosuvastatin in Caco-2 cell monolayer model and affected apparent permeability coefficient and apparent permeability of rosuvastatin. Active transport and passive diffusion absorption existed in transepithelial transport of rosuvastatin in Caco-2 cell model. Ursolic acid had no effect on transport of rosuvastatin in Caco-2 cell monolayer. The result indicated that ursolic acid may not cause effect on intestinal absorption of rosuvastatin.
Kim, K J; Kim, H J; Khalekuzzaman, M; Yoo, E H; Jung, H H; Jang, H S
2016-04-01
This work was designed to investigate the removal efficiency as well as the ratios of toluene and xylene transported from air to root zone via the stem and by direct diffusion from the air into the medium. Indoor plants (Schefflera actinophylla and Ficus benghalensis) were placed in a sealed test chamber. Shoot or root zone were sealed with a Teflon bag, and gaseous toluene and xylene were exposed. Removal efficiency of toluene and total xylene (m, p, o) was 13.3 and 7.0 μg·m(-3)·m(-2) leaf area over a 24-h period in S. actinophylla, and was 13.0 and 7.3 μg·m(-3)·m(-2) leaf area in F. benghalensis. Gaseous toluene and xylene in a chamber were absorbed through leaf and transported via the stem, and finally reached to root zone, and also transported by direct diffusion from the air into the medium. Toluene and xylene transported via the stem was decreased with time after exposure. Xylene transported via the stem was higher than that by direct diffusion from the air into the medium over a 24-h period. The ratios of toluene transported via the stem versus direct diffusion from the air into the medium were 46.3 and 53.7% in S. actinophylla, and 46.9 and 53.1% in F. benghalensis, for an average of 47 and 53% for both species. The ratios of m,p-xylene transported over 3 to 9 h via the stem versus direct diffusion from the air into the medium was 58.5 and 41.5% in S. actinophylla, and 60.7 and 39.3% in F. benghalensis, for an average of 60 and 40% for both species, whereas the ratios of o-xylene transported via the stem versus direct diffusion from the air into the medium were 61 and 39%. Both S. actinophylla and F. benghalensis removed toluene and xylene from the air. The ratios of toluene and xylene transported from air to root zone via the stem were 47 and 60 %, respectively. This result suggests that root zone is a significant contributor to gaseous toluene and xylene removal, and transported via the stem plays an important role in this process.
Anomalous diffusion for bed load transport with a physically-based model
NASA Astrophysics Data System (ADS)
Fan, N.; Singh, A.; Foufoula-Georgiou, E.; Wu, B.
2013-12-01
Diffusion of bed load particles shows both normal and anomalous behavior for different spatial-temporal scales. Understanding and quantifying these different types of diffusion is important not only for the development of theoretical models of particle transport but also for practical purposes, e.g., river management. Here we extend a recently proposed physically-based model of particle transport by Fan et al. [2013] to further develop an Episodic Langevin equation (ELE) for individual particle motion which reproduces the episodic movement (start and stop) of sediment particles. Using the proposed ELE we simulate particle movements for a large number of uniform size particles, incorporating different probability distribution functions (PDFs) of particle waiting time. For exponential PDFs of waiting times, particles reveal ballistic motion in short time scales and turn to normal diffusion at long time scales. The PDF of simulated particle travel distances also shows a change in its shape from exponential to Gamma to Gaussian with a change in timescale implying different diffusion scaling regimes. For power-law PDF (with power - μ) of waiting times, the asymptotic behavior of particles at long time scales reveals both super-diffusion and sub-diffusion, however, only very heavy tailed waiting times (i.e. 1.0 < μ < 1.5) could result in sub-diffusion. We suggest that the contrast between our results and previous studies (for e.g., studies based on fractional advection-diffusion models of thin/heavy tailed particle hops and waiting times) results could be due the assumption in those studies that the hops are achieved instantaneously, but in reality, particles achieve their hops within finite times (as we simulate here) instead of instantaneously, even if the hop times are much shorter than waiting times. In summary, this study stresses on the need to rethink the alternative models to the previous models, such as, fractional advection-diffusion equations, for studying the anomalous diffusion of bed load particles. The implications of these results for modeling sediment transport are discussed.
An improved model of fission gas atom transport in irradiated uranium dioxide
NASA Astrophysics Data System (ADS)
Shea, J. H.
2018-04-01
The hitherto standard approach to predicting fission gas release has been a pure diffusion gas atom transport model based upon Fick's law. An additional mechanism has subsequently been identified from experimental data at high burnup and has been summarised in an empirical model that is considered to embody a so-called fuel matrix 'saturation' phenomenon whereby the fuel matrix has become saturated with fission gas so that the continued addition of extra fission gas atoms results in their expulsion from the fuel matrix into the fuel rod plenum. The present paper proposes a different approach by constructing an enhanced fission gas transport law consisting of two components: 1) Fick's law and 2) a so-called drift term. The new transport law can be shown to be effectively identical in its predictions to the 'saturation' approach and is more readily physically justifiable. The method introduces a generalisation of the standard diffusion equation which is dubbed the Drift Diffusion Equation. According to the magnitude of a dimensionless Péclet number, P, the new equation can vary from pure diffusion to pure drift, which latter represents a collective motion of the fission gas atoms through the fuel matrix at a translational velocity. Comparison is made between the saturation and enhanced transport approaches. Because of its dependence on P, the Drift Diffusion Equation is shown to be more effective at managing the transition from one type of limiting transport phenomenon to the other. Thus it can adapt appropriately according to the reactor operation.
Influence of the Solar Cycle on Turbulence Properties and Cosmic-Ray Diffusion
NASA Astrophysics Data System (ADS)
Zhao, L.-L.; Adhikari, L.; Zank, G. P.; Hu, Q.; Feng, X. S.
2018-04-01
The solar cycle dependence of various turbulence quantities and cosmic-ray (CR) diffusion coefficients is investigated by using OMNI 1 minute resolution data over 22 years. We employ Elsässer variables z ± to calculate the magnetic field turbulence energy and correlation lengths for both the inwardly and outwardly directed interplanetary magnetic field (IMF). We present the temporal evolution of both large-scale solar wind (SW) plasma variables and small-scale magnetic fluctuations. Based on these observed quantities, we study the influence of solar activity on CR parallel and perpendicular diffusion using quasi-linear theory and nonlinear guiding center theory, respectively. We also evaluate the radial evolution of the CR diffusion coefficients by using the boundary conditions for different solar activity levels. We find that in the ecliptic plane at 1 au (1), the large-scale SW temperature T, velocity V sw, Alfvén speed V A , and IMF magnitude B 0 are positively related to solar activity; (2) the fluctuating magnetic energy density < {{z}+/- }2> , residual energy E D , and corresponding correlation functions all have an obvious solar cycle dependence. The residual energy E D is always negative, which indicates that the energy in magnetic fluctuations is larger than the energy in kinetic fluctuations, especially at solar maximum; (3) the correlation length λ for magnetic fluctuations does not show significant solar cycle variation; (4) the temporally varying shear source of turbulence, which is most important in the inner heliosphere, depends on the solar cycle; (5) small-scale fluctuations may not depend on the direction of the background magnetic field; and (6) high levels of SW fluctuations will increase CR perpendicular diffusion and decrease CR parallel diffusion, but this trend can be masked if the background IMF changes in concert with turbulence in response to solar activity. These results provide quantitative inputs for both turbulence transport models and CR diffusion models, and also provide valuable insight into the long-term modulation of CRs in the heliosphere.
Evolution of porosity and diffusivity associated with chemical weathering of a basalt clast
DOE Office of Scientific and Technical Information (OSTI.GOV)
Navarre-Sitchler, A.; Steefel, C.I.; Yang, L.
Weathering of rocks as a result of exposure to water and the atmosphere can cause significant changes in their chemistry and porosity. In low-porosity rocks, such as basalts, changes in porosity, resulting from chemical weathering, are likely to modify the rock's effective diffusivity and permeability, affecting the rate of solute transport and thus potentially the rate of overall weathering to the extent that transport is the rate limiting step. Changes in total porosity as a result of mineral dissolution and precipitation have typically been used to calculate effective diffusion coefficients through Archie's law for reactive transport simulations of chemical weathering,more » but this approach fails to account for unconnected porosity that does not contribute to transport. In this study, we combine synchrotron X-ray microcomputed tomography ({mu}CT) and laboratory and numerical diffusion experiments to examine changes in both total and effective porosity and effective diffusion coefficients across a weathering interface in a weathered basalt clast from Costa Rica. The {mu}CT data indicate that below a critical value of {approx}9%, the porosity is largely unconnected in the basalt clast. The {mu}CT data were further used to construct a numerical pore network model to determine upscaled, effective diffusivities as a function of total porosity (ranging from 3 to 30%) for comparison with diffusivities determined in laboratory tracer experiments. By using effective porosity as the scaling parameter and accounting for critical porosity, a model is developed that accurately predicts continuum-scale effective diffusivities across the weathering interface of the basalt clast.« less
NASA Astrophysics Data System (ADS)
Kolesnichenko, A. V.; Marov, M. Ya.
2018-01-01
The defining relations for the thermodynamic diffusion and heat fluxes in a multicomponent, partially ionized gas mixture in an external electromagnetic field have been obtained by the methods of the kinetic theory. Generalized Stefan-Maxwell relations and algebraic equations for anisotropic transport coefficients (the multicomponent diffusion, thermal diffusion, electric and thermoelectric conductivity coefficients as well as the thermal diffusion ratios) associated with diffusion-thermal processes have been derived. The defining second-order equations are derived by the Chapman-Enskog procedure using Sonine polynomial expansions. The modified Stefan-Maxwell relations are used for the description of ambipolar diffusion in the Earth's ionospheric plasma (in the F region) composed of electrons, ions of many species, and neutral particles in a strong electromagnetic field.
Bermúdez Moretti, M; Correa García, S; Perotti, C; Batlle, A; Casas, A
2002-01-01
δ-aminolevulinic acid, the precursor of porphyrin biosynthesis has been used to induce the endogenous synthesis of the photosensitiser protoporphyrin IX for photodynamic therapy in the treatment of various tumours. The aim of this work was to characterise the δ-aminolevulinic acid transport system in the murine mammary adenocarcinoma cell line LM3 using 14C-δ-aminolevulinic acid, to finally improve δ-aminolevulinic acid incorporation in mammalian cells. Our results showed that δ-aminolevulinic acid is incorporated into these cells by two different mechanisms, passive diffusion which is important at the beginning of the incubation, and active transport. Specificity assays suggested that the transporter involved in δ-aminolevulinic acid incorporation is a BETA transporter, probably GAT-2. British Journal of Cancer (2002) 87, 471–474. doi:10.1038/sj.bjc.6600481 www.bjcancer.com © 2002 Cancer Research UK PMID:12177786
Perspectives on Porous Media MR in Clinical MRI
NASA Astrophysics Data System (ADS)
Sigmund, E. E.
2011-03-01
Many goals and challenges of research in natural or synthetic porous media are mirrored in quantitative medical MRI. This review will describe examples where MR techniques used in porous media (particularly diffusion-weighted imaging (DWI)) are applied to physiological pathologies. Tissue microstructure is one area with great overlap with porous media science. Diffusion-weighting (esp. in neurological tissue) has motivated models with explicit physical dimensions, statistical parameters, empirical descriptors, or hybrids thereof. Another clinically relevant microscopic process is active flow. Renal (kidney) tissue possesses significant active vascular / tubular transport that manifests as "pseudodiffusion." Cancerous lesions involve anomalies in both structure and flow. The tools of magnetic resonance and their interpretation in porous media has had great impact on clinical MRI, and continued cross-fertilization of ideas can only enhance the progress of both fields.
Modeling Nitrogen Fate and Transport at the Sediment-Water Interface
Diffusive mass transfer at media interfaces exerts control on the fate and transport of pollutants originating from agricultural and urban landscapes and affects the con-ditions of water bodies. Diffusion is essentially a physical process affecting the distribution and fate of va...
NASA Astrophysics Data System (ADS)
Fazeli, Mohammadreza; Hinebaugh, James; Fishman, Zachary; Tötzke, Christian; Lehnert, Werner; Manke, Ingo; Bazylak, Aimy
2016-12-01
Understanding how compression affects the distribution of liquid water and gaseous oxygen in the polymer electrolyte membrane fuel cell gas diffusion layer (GDL) is vital for informing the design of improved porous materials for effective water management strategies. Pore networks extracted from synchrotron-based micro-computed tomography images of compressed GDLs were employed to simulate liquid water transport in GDL materials over a range of compression pressures. The oxygen transport resistance was predicted for each sample under dry and partially saturated conditions. A favorable GDL compression value for a preferred liquid water distribution and oxygen diffusion was found for Toray TGP-H-090 (10%), yet an optimum compression value was not recognized for SGL Sigracet 25BC. SGL Sigracet 25BC exhibited lower transport resistance values compared to Toray TGP-H-090, and this is attributed to the additional diffusion pathways provided by the microporous layer (MPL), an effect that is particularly significant under partially saturated conditions.
NASA Astrophysics Data System (ADS)
Arendt, V.; Shalchi, A.
2018-06-01
We explore numerically the transport of energetic particles in a turbulent magnetic field configuration. A test-particle code is employed to compute running diffusion coefficients as well as particle distribution functions in the different directions of space. Our numerical findings are compared with models commonly used in diffusion theory such as Gaussian distribution functions and solutions of the cosmic ray Fokker-Planck equation. Furthermore, we compare the running diffusion coefficients across the mean magnetic field with solutions obtained from the time-dependent version of the unified non-linear transport theory. In most cases we find that particle distribution functions are indeed of Gaussian form as long as a two-component turbulence model is employed. For turbulence setups with reduced dimensionality, however, the Gaussian distribution can no longer be obtained. It is also shown that the unified non-linear transport theory agrees with simulated perpendicular diffusion coefficients as long as the pure two-dimensional model is excluded.
A radially resolved kinetic model for nonlocal electron ripple diffusion losses in tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, Scott
A relatively simple radially resolved kinetic model is applied to the ripple diffusion problem for electrons in tokamaks. The distribution function f(r,v) is defined on a two-dimensional grid, where r is the radial coordinate and v is the velocity coordinate. Particle transport in the radial direction is from ripple and banana diffusion and transport in the velocity direction is described by the Fokker-Planck equation. Particles and energy are replaced by source functions that are adjusted to maintain a constant central density and temperature. The relaxed profiles of f(r,v) show that the electron distribution function at the wall contains suprathermal electronsmore » that have diffused from the interior that enhance ripple transport. The transport at the periphery is therefore nonlocal. The energy replacement times from the computational model are near to the experimental replacement times for tokamak discharges in the compilation by Pfeiffer and Waltz [Nucl. Fusion 19, 51 (1979)].« less
Berginc, Katja; Zakelj, Simon; Levstik, Lea; Ursic, Darko; Kristl, Albin
2007-05-01
Membrane transport characteristics of a paracellular permeability marker fluorescein were evaluated using artificial membrane, Caco-2 cell monolayers and rat jejunum, all mounted in side-by-side diffusion cells. Modified Ringer buffers with varied pH values were applied as incubation salines on both sides of artificial membrane, cell culture monolayers or rat jejunum. Passive transport according to pH partition theory was determined using all three permeability models. In addition to that, active transport of fluorescein in the M-S (mucosal-to-serosal) direction through rat jejunum was observed. The highest M-S P(app) values regarding the active transport through the rat jejunum were observed in incubation saline with pH 6.5. Fluorescein transport through the rat jejunum was inhibited by DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid) and alpha-CHC (alpha-cyano-4-hydroxycinnamic acid). Thus, we assume that two pH-dependent influx transporters could be involved in the fluorescein membrane transport through the intestinal (jejunal) epithelium. One is very likely an MCT (monocarboxylic acid cotransporter) isoform, inhibited by specific MCT inhibitor alpha-CHC, while the involvement of the second one with overlapping substrate/inhibitor specificities (most probably a member of the organic anion-transporting polypeptide family, inhibited at least partially by DIDS) could not be excluded.
Tan, Guoqiang; Chong, Lina; Amine, Rachid; ...
2017-04-12
To promote lithium-oxygen batteries available for practical applications, the development of advanced cathode catalysts with low-cost, high activity and stable structural properties is demanded. Such development is rooted on certain intelligent catalyst-electrode design that fundamentally facilitates electronic and ionic transport, and improves oxygen diffusivity in a porous environment. Here we design a biphasic nitrogen-doped cobalt@graphene multiple-capsule heterostructure, combined with a flexible, stable porous electrode architecture, and apply it as promising cathodes for lithium-oxygen cells. The biphasic nitrogen-doping feature improves the electric conductivity and catalytic activity; the multiple-nanocapsule configuration makes high/uniform electro-active zones possible; furthermore, the colander-like porous electrode facilitates themore » oxygen diffusion, catalytic reaction, and stable deposition of discharge products. Finally, the electrode exhibits much improved electrocatalytic properties associated with unique morphologies of electrochemically grown lithium peroxides.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Guoqiang; Chong, Lina; Amine, Rachid
To promote lithium-oxygen batteries available for practical applications, the development of advanced cathode catalysts with low-cost, high activity and stable structural properties is demanded. Such development is rooted on certain intelligent catalyst-electrode design that fundamentally facilitates electronic and ionic transport, and improves oxygen diffusivity in a porous environment. Here we design a biphasic nitrogen-doped cobalt@graphene multiple-capsule heterostructure, combined with a flexible, stable porous electrode architecture, and apply it as promising cathodes for lithium-oxygen cells. The biphasic nitrogen-doping feature improves the electric conductivity and catalytic activity; the multiple-nanocapsule configuration makes high/uniform electro-active zones possible; furthermore, the colander-like porous electrode facilitates themore » oxygen diffusion, catalytic reaction, and stable deposition of discharge products. Finally, the electrode exhibits much improved electrocatalytic properties associated with unique morphologies of electrochemically grown lithium peroxides.« less
Radiation Diffusion:. AN Overview of Physical and Numerical Concepts
NASA Astrophysics Data System (ADS)
Graziani, Frank
2005-12-01
An overview of the physical and mathematical foundations of radiation transport is given. Emphasis is placed on how the diffusion approximation and its transport corrections arise. An overview of the numerical handling of radiation diffusion coupled to matter is also given. Discussions center on partial temperature and grey methods with comments concerning fully implicit methods. In addition finite difference, finite element and Pert representations of the div-grad operator is also discussed
Large disparity between gallium and antimony self-diffusion in gallium antimonide.
Bracht, H; Nicols, S P; Walukiewicz, W; Silveira, J P; Briones, F; Haller, E E
2000-11-02
The most fundamental mass transport process in solids is self-diffusion. The motion of host-lattice ('self-') atoms in solids is mediated by point defects such as vacancies or interstitial atoms, whose formation and migration enthalpies determine the kinetics of this thermally activated process. Self-diffusion studies also contribute to the understanding of the diffusion of impurities, and a quantitative understanding of self- and foreign-atom diffusion in semiconductors is central to the development of advanced electronic devices. In the past few years, self-diffusion studies have been performed successfully with isotopically controlled semiconductor heterostructures of germanium, silicon, gallium arsenide and gallium phosphide. Self-diffusion studies with isotopically controlled GaAs and GaP have been restricted to Ga self-diffusion, as only Ga has two stable isotopes, 69Ga and 71Ga. Here we report self-diffusion studies with an isotopically controlled multilayer structure of crystalline GaSb. Two stable isotopes exist for both Ga and Sb, allowing the simultaneous study of diffusion on both sublattices. Our experiments show that near the melting temperature, Ga diffuses more rapidly than Sb by over three orders of magnitude. This surprisingly large difference in atomic mobility requires a physical explanation going beyond standard diffusion models. Combining our data for Ga and Sb diffusion with related results for foreign-atom diffusion in GaSb (refs 8, 9), we conclude that the unusually slow Sb diffusion in GaSb is a consequence of reactions between defects on the Ga and Sb sublattices, which suppress the defects that are required for Sb diffusion.
Kuwahara, Atsukazu; Kuwahara, Yuko; Inui, Toshio; Marunaka, Yoshinori
2018-01-01
The diffuse chemosensory system (DCS) is well developed in the apparatuses of endodermal origin like gastrointestinal (GI) tract. The primary function of the GI tract is the extraction of nutrients from the diet. Therefore, the GI tract must possess an efficient surveillance system that continuously monitors the luminal contents for beneficial or harmful compounds. Recent studies have shown that specialized cells in the intestinal lining can sense changes in the luminal content. The chemosensory cells in the GI tract belong to the DCS which consists of enteroendocrine and related cells. These cells initiate various important local and remote reflexes. Although neural and hormonal involvements in ion transport in the GI tract are well documented, involvement of the DCS in the regulation of intestinal ion transport is much less understood. Since activation of luminal chemosensory receptors is a primary signal that elicits changes in intestinal ion transport and motility and failure of the system causes dysfunctions in host homeostasis, as well as functional GI disorders, study of the regulation of GI function by the DCS has become increasingly important. This review discusses the role of the DCS in epithelial ion transport, with particular emphasis on the involvement of free fatty acid receptor 2 (FFA2) and free fatty acid receptor 3 (FFA3). PMID:29510573
Reexamining ultrafiltration and solute transport in groundwater
NASA Astrophysics Data System (ADS)
Neuzil, C. E.; Person, Mark
2017-06-01
Geologic ultrafiltration—slowing of solutes with respect to flowing groundwater—poses a conundrum: it is consistently observed experimentally in clay-rich lithologies, but has been difficult to identify in subsurface data. Resolving this could be important for clarifying clay and shale transport properties at large scales as well as interpreting solute and isotope patterns for applications ranging from nuclear waste repository siting to understanding fluid transport in tectonically active environments. Simulations of one-dimensional NaCl transport across ultrafiltering clay membrane strata constrained by emerging data on geologic membrane properties showed different ultrafiltration effects than have often been envisioned. In relatively high-permeability advection-dominated regimes, salinity increases occurred mostly within membrane units while their effluent salinity initially fell and then rose to match solute delivery. In relatively low-permeability diffusion-dominated regimes, salinity peaked at the membrane upstream boundary and effluent salinity remained low. In both scenarios, however, only modest salinity changes (up to ˜3 g L-1) occurred because of self-limiting tendencies; membrane efficiency declines as salinity rises, and although sediment compaction increases efficiency, it is also decreases permeability and allows diffusive transport to dominate. It appears difficult for ultrafiltration to generate brines as speculated, but widespread and less extreme ultrafiltration effects in the subsurface could be unrecognized. Conditions needed for ultrafiltration are present in settings that include topographically-driven flow systems, confined aquifer systems subjected to injection or withdrawal, compacting basins, and accretionary complexes.
Reexamining ultrafiltration and solute transport in groundwater
Neuzil, Christopher E.; Person, Mark
2017-01-01
Geologic ultrafiltration—slowing of solutes with respect to flowing groundwater—poses a conundrum: it is consistently observed experimentally in clay-rich lithologies, but has been difficult to identify in subsurface data. Resolving this could be important for clarifying clay and shale transport properties at large scales as well as interpreting solute and isotope patterns for applications ranging from nuclear waste repository siting to understanding fluid transport in tectonically active environments. Simulations of one-dimensional NaCl transport across ultrafiltering clay membrane strata constrained by emerging data on geologic membrane properties showed different ultrafiltration effects than have often been envisioned. In relatively high-permeability advection-dominated regimes, salinity increases occurred mostly within membrane units while their effluent salinity initially fell and then rose to match solute delivery. In relatively low-permeability diffusion-dominated regimes, salinity peaked at the membrane upstream boundary and effluent salinity remained low. In both scenarios, however, only modest salinity changes (up to ∼3 g L−1) occurred because of self-limiting tendencies; membrane efficiency declines as salinity rises, and although sediment compaction increases efficiency, it is also decreases permeability and allows diffusive transport to dominate. It appears difficult for ultrafiltration to generate brines as speculated, but widespread and less extreme ultrafiltration effects in the subsurface could be unrecognized. Conditions needed for ultrafiltration are present in settings that include topographically-driven flow systems, confined aquifer systems subjected to injection or withdrawal, compacting basins, and accretionary complexes.
Performance of a Cross-Flow Humidifier with a High Flux Water Vapor Transport Membrane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahluwalia, R. K.; Wang, X.; Johnson, W. B.
Water vapor transport (WVT) flux across a composite membrane that consists of a very thin perfluorosulfonic acid (PFSA) ionomer layer sandwiched between two expanded polytetrafluoroethylene (PTFE) microporous layers is investigated. Static and dynamic tests are conducted to measure WVT flux for different composite structures; a transport model shows that the underlying individual resistances for water diffusion in the gas phase and microporous and ionomer layers and for interfacial kinetics of water uptake at the ionomer surface are equally important under different conditions. A finite-difference model is formulated to determine water transport in a full-scale (2-m2 active membrane area) planar cross-flowmore » humidifier module assembled using pleats of the optimized composite membrane. In agreement with the experimental data, the modeled WVT flux in the module increases at higher inlet relative humidity (RH) of the wet stream and at lower pressures, but the mass transfer effectiveness is higher at higher pressures. The model indicates that the WVT flux is highest under conditions that maintain the wet stream at close to 100% RH while preventing the dry stream from becoming saturated. The overall water transport is determined by the gradient in RH of the wet and dry streams but is also affected by vapor diffusion in the gas layer and the microporous layer.« less
NASA Astrophysics Data System (ADS)
Ebrahimi, Ali; Or, Dani
2017-05-01
The sensitivity of polar regions to raising global temperatures is reflected in rapidly changing hydrological processes associated with pronounced seasonal thawing of permafrost soil and increased biological activity. Of particular concern is the potential release of large amounts of soil carbon and stimulation of other soil-borne greenhouse gas emissions such as methane. Soil methanotrophic and methanogenic microbial communities rapidly adjust their activity and spatial organization in response to permafrost thawing and other environmental factors. Soil structural elements such as aggregates and layering affect oxygen and nutrient diffusion processes thereby contributing to methanogenic activity within temporal anoxic niches (hot spots). We developed a mechanistic individual-based model to quantify microbial activity dynamics in soil pore networks considering transport processes and enzymatic activity associated with methane production in soil. The model was upscaled from single aggregates to the soil profile where freezing/thawing provides macroscopic boundary conditions for microbial activity at different soil depths. The model distinguishes microbial activity in aerate bulk soil from aggregates (or submerged profile) for resolving methane production and oxidation rates. Methane transport pathways by diffusion and ebullition of bubbles vary with hydration dynamics. The model links seasonal thermal and hydrologic dynamics with evolution of microbial community composition and function affecting net methane emissions in good agreement with experimental data. The mechanistic model enables systematic evaluation of key controlling factors in thawing permafrost and microbial response (e.g., nutrient availability and enzyme activity) on long-term methane emissions and carbon decomposition rates in the rapidly changing polar regions.
Chang, Jerry C.; Tomlinson, Ian D.; Warnement, Michael R.; Ustione, Alessandro; Carneiro, Ana M. D.; Piston, David W.; Blakely, Randy D.; Rosenthal, Sandra J.
2012-01-01
The presynaptic serotonin (5-HT) transporter (SERT) is targeted by widely prescribed antidepressant medications. Altered SERT expression or regulation has been implicated in multiple neuropsychiatric disorders, including anxiety, depression and autism. Here, we implement a generalizable strategy that exploits antagonist-conjugated quantum dots (Qdots) to monitor, for the first time, single SERT proteins on the surface of serotonergic cells. We document two pools of SERT proteins defined by lateral mobility, one that exhibits relatively free diffusion, and a second, localized to cholesterol and GM1 ganglioside-enriched microdomains, that displays restricted mobility. Receptor-linked signalling pathways that enhance SERT activity mobilize transporters that, nonetheless, remain confined to membrane microdomains. Mobilization of transporters arise from a p38 MAPK-dependent untethering of the SERT C-terminus from the juxtamembrane actin cytoskeleton. Our studies establish the utility of ligand-conjugated Qdots for analysis of the behaviour of single membrane proteins and reveal a physical basis for signaling-mediated SERT regulation. PMID:22745492
Fleshman, Allison M; Forsythe, Grant E; Petrowsky, Matt; Frech, Roger
2016-09-22
The location of the hydroxyl group in monohydroxy alcohols greatly affects the temperature dependence of the liquid structure due to hydrogen bonding. Temperature-dependent self-diffusion coefficients, fluidity (the inverse of viscosity), dielectric constant, and density have been measured for several 1-alcohols and 3-alcohols with varying alkyl chain lengths. The data are modeled using the compensated Arrhenius formalism (CAF). The CAF follows a modified transition state theory using an Arrhenius-like expression to describe the transport property, which consists of a Boltzmann factor containing an energy of activation, Ea, and an exponential prefactor containing the temperature-dependent solution dielectric constant, εs(T). Both 1- and 3-alcohols show the Ea of diffusion coefficients (approximately 43 kJ mol(-1)) is higher than the Ea of fluidity (approximately 35 kJ mol(-1)). The temperature dependence of the exponential prefactor in these associated liquids is explained using the dielectric constant and the Kirkwood-Frölich correlation factor, gk. It is argued that the dielectric constant must be used to account for the additional temperature dependence due to variations in the liquid structure (e.g., hydrogen bonding) for the CAF to accurately model the transport property.
Diffusion of Chlorinated Organic Contaminants into Aquitards: Enhanced by the Flocculation of Clay?
NASA Astrophysics Data System (ADS)
Ayral, D.; Otero, M.; Demond, A. H.; Goltz, M. N.; Huang, J.
2011-12-01
Waste organic contaminants stored in low permeability subsurface layers serve as long-term sources for dissolved phase contaminant plumes. Current models consider the movement into and out of aquitards or other low permeability layers to occur through transverse diffusion. Yet, field evidence suggests higher transport rates of contaminants than can be accounted for by diffusion alone. Waste organic liquids contain both organic liquid solvents as well as surface-active solutes. Measurements using montmorillonite in contact with pure chlorinated organic liquids such as trichloroethylene (TCE) showed that the basal spacing is similar to the case of montmorillonite in contact with air, thus suggesting that these fluids have similar flocculation effects. On the other hand, the basal spacing increased in contact with aqueous surfactant solutions. Measurements of the basal spacing in contact with a TCE waste gave the same results as with pure TCE, suggesting that effect on basal spacing is dominated by the organic solvent matrix rather than by the surfactant content. Since flocculation can lead to cracking, this behavior suggests that aquitards underlying aquifers contaminated with chlorinated organic wastes may develop cracks, thus enhancing the transport into low permeability layers.
Anisotropic Mesoscale Eddy Transport in Ocean General Circulation Models
NASA Astrophysics Data System (ADS)
Reckinger, S. J.; Fox-Kemper, B.; Bachman, S.; Bryan, F.; Dennis, J.; Danabasoglu, G.
2014-12-01
Modern climate models are limited to coarse-resolution representations of large-scale ocean circulation that rely on parameterizations for mesoscale eddies. The effects of eddies are typically introduced by relating subgrid eddy fluxes to the resolved gradients of buoyancy or other tracers, where the proportionality is, in general, governed by an eddy transport tensor. The symmetric part of the tensor, which represents the diffusive effects of mesoscale eddies, is universally treated isotropically in general circulation models. Thus, only a single parameter, namely the eddy diffusivity, is used at each spatial and temporal location to impart the influence of mesoscale eddies on the resolved flow. However, the diffusive processes that the parameterization approximates, such as shear dispersion, potential vorticity barriers, oceanic turbulence, and instabilities, typically have strongly anisotropic characteristics. Generalizing the eddy diffusivity tensor for anisotropy extends the number of parameters to three: a major diffusivity, a minor diffusivity, and the principal axis of alignment. The Community Earth System Model (CESM) with the anisotropic eddy parameterization is used to test various choices for the newly introduced parameters, which are motivated by observations and the eddy transport tensor diagnosed from high resolution simulations. Simply setting the ratio of major to minor diffusivities to a value of five globally, while aligning the major axis along the flow direction, improves biogeochemical tracer ventilation and reduces global temperature and salinity biases. These effects can be improved even further by parameterizing the anisotropic transport mechanisms in the ocean.
Glymphatic solute transport does not require bulk flow
Asgari, Mahdi; de Zélicourt, Diane; Kurtcuoglu, Vartan
2016-01-01
Observations of fast transport of fluorescent tracers in mouse brains have led to the hypothesis of bulk water flow directed from arterial to venous paravascular spaces (PVS) through the cortical interstitium. At the same time, there is evidence for interstitial solute transport by diffusion rather than by directed bulk fluid motion. It has been shown that the two views may be consolidated by intracellular water flow through astrocyte networks combined with mainly diffusive extracellular transport of solutes. This requires the presence of a driving force that has not been determined to date, but for which arterial pulsation has been suggested as the origin. Here we show that arterial pulsation caused by pulse wave propagation is an unlikely origin of this hypothetical driving force. However, we further show that such pulsation may still lead to fast para-arterial solute transport through dispersion, that is, through the combined effect of local mixing and diffusion in the para-arterial space. PMID:27929105
Heubl, Martin; Zhang, Jinwei; Pressey, Jessica C; Al Awabdh, Sana; Renner, Marianne; Gomez-Castro, Ferran; Moutkine, Imane; Eugène, Emmanuel; Russeau, Marion; Kahle, Kristopher T; Poncer, Jean Christophe; Lévi, Sabine
2017-11-24
The K + -Cl - co-transporter KCC2 (SLC12A5) tunes the efficacy of GABA A receptor-mediated transmission by regulating the intraneuronal chloride concentration [Cl - ] i . KCC2 undergoes activity-dependent regulation in both physiological and pathological conditions. The regulation of KCC2 by synaptic excitation is well documented; however, whether the transporter is regulated by synaptic inhibition is unknown. Here we report a mechanism of KCC2 regulation by GABA A receptor (GABA A R)-mediated transmission in mature hippocampal neurons. Enhancing GABA A R-mediated inhibition confines KCC2 to the plasma membrane, while antagonizing inhibition reduces KCC2 surface expression by increasing the lateral diffusion and endocytosis of the transporter. This mechanism utilizes Cl - as an intracellular secondary messenger and is dependent on phosphorylation of KCC2 at threonines 906 and 1007 by the Cl - -sensing kinase WNK1. We propose this mechanism contributes to the homeostasis of synaptic inhibition by rapidly adjusting neuronal [Cl - ] i to GABA A R activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petty, C. C., E-mail: petty@fusion.gat.com; Van Zeeland, M. A.; Pace, D. C.
“Steady-state” hybrid plasmas in DIII-D with zero surface loop voltage have been maintained for up to two current relaxation times using 3.4 MW of central electron cyclotron current drive (ECCD). In addition to driving ≈0.2 MA of plasma current, central ECCD leads to significant changes in Alfvén eigenmode (AE) activity and thermal transport. For neutral-beam-only heating, strong AE activity is observed that causes a ∼35% degradation in the neutron rate. With central ECCD this AE activity is suppressed, replaced by a bursty energetic particle mode that appears more benign as the neutron rate is closer to the classical value. Themore » electron thermal diffusivity increases by ≈50% for 2.4 MW of ECCD compared to neutral-beam-only cases. Fortunately, the global thermal confinement factor remains the same (H{sub 98y2}=1.4) as the higher thermal transport for P{sub EC}=2.4 MW hybrids is offset by the decreased fast ion transport resulting from AE suppression.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pendergrass, J.H.
1977-10-01
Based on the theory developed in an earlier report, a FORTRAN computer program, DIFFUSE, was written. It computes, for design purposes, rates of transport of hydrogen isotopes by temperature-dependent quasi-unidirectional, and quasi-static combined ordinary and thermal diffusion through thin, hot thermonuclear reactor components that can be represented by composites of plane, cylindrical-shell, and spherical-shell elements when the dominant resistance to transfer is that of the bulk metal. The program is described, directions for its use are given, and a listing of the program, together with sample problem results, is presented.
Baslow, Morris H; Hu, Caixia; Guilfoyle, David N
2012-07-01
In a human magnetic resonance diffusion-weighted imaging (DWI) investigation at 3 T and high diffusion sensitivity weighting (b = 1,800 s/mm(2)), which emphasizes the contribution of water in the extra-vascular compartment and minimizes that of the vascular compartment, we observed that visual stimulation with a flashing checkerboard at 8 Hz for a period of 600 s in eight subjects resulted in significant increases in DWI signals (mean +2.70%, range +0.51 to 8.54%). The increases in DWI signals in activated areas of the visual cortex indicated that during stimulation, the apparent diffusion coefficient (ADC) of extra-vascular compartment water decreased. In response to continuous stimulation, DWI signals gradually increased from pre-stimulation controls, leveling off after 400-500 s. During recovery from stimulation, DWI signals gradually decreased, approaching control levels in 300-400 s. In this study, we show for the first time that the effects of visual stimulation on DWI signals in the human visual cortex are cumulative over an extended period of time. We propose that these relatively slow stimulation-induced changes in the ADC of water in the extra-vascular compartment are due to transient changes in the ratio of faster diffusing free water to slower diffusing bound water and reflect brain water transport processes between the vascular and extra-vascular compartments at the cellular level. The nature of these processes including possible roles of the putative glucose water import and N-acetylaspartate water export molecular water pumps in brain function are discussed.
Korte, C; Keppner, J; Peters, A; Schichtel, N; Aydin, H; Janek, J
2014-11-28
A phenomenological and analytical model for the influence of strain effects on atomic transport in columnar thin films is presented. A model system consisting of two types of crystalline thin films with coherent interfaces is assumed. Biaxial mechanical strain ε0 is caused by lattice misfit of the two phases. The conjoined films consist of columnar crystallites with a small diameter l. Strain relaxation by local elastic deformation, parallel to the hetero-interface, is possible along the columnar grain boundaries. The spatial extent δ0 of the strained hetero-interface regions can be calculated, assuming an exponential decay of the deformation-forces. The effect of the strain field on the local ionic transport in a thin film is then calculated by using the thermodynamic relation between (isostatic) pressure and free activation enthalpy ΔG(#). An expression describing the total ionic transport relative to bulk transport of a thin film or a multilayer as a function of the layer thickness is obtained as an integral average over strained and unstrained regions. The expression depends only on known material constants such as Young modulus Y, Poisson ratio ν and activation volume ΔV(#), which can be combined as dimensionless parameters. The model is successfully used to describe own experimental data from conductivity and diffusion studies. In the second part of the paper a comprehensive literature overview of experimental studies on (fast) ion transport in thin films and multilayers along solid-solid hetero-interfaces is presented. By comparing and reviewing the data the observed interface effects can be classified into three groups: (i) transport along interfaces between extrinsic ionic conductors (and insulator), (ii) transport along an open surface of an extrinsic ionic conductor and (iii) transport along interfaces between intrinsic ionic conductors. The observed effects in these groups differ by about five orders of magnitude in a very consistent way. The modified interface transport in group (i) is most probably caused by strain effects, misfit dislocations or disordered transition regions.
Directing energy transport in organic photovoltaic cells using interfacial exciton gates.
Menke, S Matthew; Mullenbach, Tyler K; Holmes, Russell J
2015-04-28
Exciton transport in organic semiconductors is a critical, mediating process in many optoelectronic devices. Often, the diffusive and subdiffusive nature of excitons in these systems can limit device performance, motivating the development of strategies to direct exciton transport. In this work, directed exciton transport is achieved with the incorporation of exciton permeable interfaces. These interfaces introduce a symmetry-breaking imbalance in exciton energy transfer, leading to directed motion. Despite their obvious utility for enhanced exciton harvesting in organic photovoltaic cells (OPVs), the emergent properties of these interfaces are as yet uncharacterized. Here, directed exciton transport is conclusively demonstrated in both dilute donor and energy-cascade OPVs where judicious optimization of the interface allows exciton transport to the donor-acceptor heterojunction to occur considerably faster than when relying on simple diffusion. Generalized systems incorporating multiple exciton permeable interfaces are also explored, demonstrating the ability to further harness this phenomenon and expeditiously direct exciton motion, overcoming the diffusive limit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soltani, M; Sefidgar, M; Bazmara, H
2015-06-15
Purpose: In this study, a mathematical model is utilized to simulate FDG distribution in tumor tissue. In contrast to conventional compartmental modeling, tracer distributions across space and time are directly linked together (i.e. moving beyond ordinary differential equations (ODEs) to utilizing partial differential equations (PDEs) coupling space and time). The diffusion and convection transport mechanisms are both incorporated to model tracer distribution. We aimed to investigate the contributions of these two mechanisms on FDG distribution for various tumor geometries obtained from PET/CT images. Methods: FDG transport was simulated via a spatiotemporal distribution model (SDM). The model is based on amore » 5K compartmental model. We model the fact that tracer concentration in the second compartment (extracellular space) is modulated via convection and diffusion. Data from n=45 patients with pancreatic tumors as imaged using clinical FDG PET/CT imaging were analyzed, and geometrical information from the tumors including size, shape, and aspect ratios were classified. Tumors with varying shapes and sizes were assessed in order to investigate the effects of convection and diffusion mechanisms on FDG transport. Numerical methods simulating interstitial flow and solute transport in tissue were utilized. Results: We have shown the convection mechanism to depend on the shape and size of tumors whereas diffusion mechanism is seen to exhibit low dependency on shape and size. Results show that concentration distribution of FDG is relatively similar for the considered tumors; and that the diffusion mechanism of FDG transport significantly dominates the convection mechanism. The Peclet number which shows the ratio of convection to diffusion rates was shown to be of the order of 10−{sup 3} for all considered tumors. Conclusion: We have demonstrated that even though convection leads to varying tracer distribution profiles depending on tumor shape and size, the domination of the diffusion phenomenon prevents these factors from modulating FDG distribution.« less
Electro-diffusion in a plasma with two ion species
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kagan, Grigory; Tang Xianzhu
2012-08-15
Electric field is a thermodynamic force that can drive collisional inter-ion-species transport in a multicomponent plasma. In an inertial confinement fusion capsule, such transport causes fuel ion separation even with a target initially prepared to have equal number densities for the two fuel ion species. Unlike the baro-diffusion driven by ion pressure gradient and the thermo-diffusion driven by ion and electron temperature gradients, electro-diffusion has a critical dependence on the charge-to-mass ratio of the ion species. Specifically, it is shown here that electro-diffusion vanishes if the ion species have the same charge-to-mass ratio. An explicit expression for the electro-diffusion ratiomore » is obtained and used to investigate the relative importance of electro- and baro-diffusion mechanisms. In particular, it is found that electro-diffusion reinforces baro-diffusion in the deuterium and tritium mix, but tends to cancel it in the deuterium and helium-3 mix.« less
NASA Astrophysics Data System (ADS)
Virkar, Yogesh S.; Shew, Woodrow L.; Restrepo, Juan G.; Ott, Edward
2016-10-01
Learning and memory are acquired through long-lasting changes in synapses. In the simplest models, such synaptic potentiation typically leads to runaway excitation, but in reality there must exist processes that robustly preserve overall stability of the neural system dynamics. How is this accomplished? Various approaches to this basic question have been considered. Here we propose a particularly compelling and natural mechanism for preserving stability of learning neural systems. This mechanism is based on the global processes by which metabolic resources are distributed to the neurons by glial cells. Specifically, we introduce and study a model composed of two interacting networks: a model neural network interconnected by synapses that undergo spike-timing-dependent plasticity; and a model glial network interconnected by gap junctions that diffusively transport metabolic resources among the glia and, ultimately, to neural synapses where they are consumed. Our main result is that the biophysical constraints imposed by diffusive transport of metabolic resources through the glial network can prevent runaway growth of synaptic strength, both during ongoing activity and during learning. Our findings suggest a previously unappreciated role for glial transport of metabolites in the feedback control stabilization of neural network dynamics during learning.
Thermal transport in suspended silicon membranes measured by laser-induced transient gratings
Vega-Flick, A.; Duncan, R. A.; Eliason, J. K.; ...
2016-12-05
Studying thermal transport at the nanoscale poses formidable experimental challenges due both to the physics of the measurement process and to the issues of accuracy and reproducibility. The laser-induced transient thermal grating (TTG) technique permits non-contact measurements on nanostructured samples without a need for metal heaters or any other extraneous structures, offering the advantage of inherently high absolute accuracy. We present a review of recent studies of thermal transport in nanoscale silicon membranes using the TTG technique. An overview of the methodology, including an analysis of measurements errors, is followed by a discussion of new findings obtained from measurements onmore » both “solid” and nanopatterned membranes. The most important results have been a direct observation of non-diffusive phonon-mediated transport at room temperature and measurements of thickness-dependent thermal conductivity of suspended membranes across a wide thickness range, showing good agreement with first-principles-based theory assuming diffuse scattering at the boundaries. Measurements on a membrane with a periodic pattern of nanosized holes (135nm) indicated fully diffusive transport and yielded thermal diffusivity values in agreement with Monte Carlo simulations. Based on the results obtained to-date, we conclude that room-temperature thermal transport in membrane-based silicon nanostructures is now reasonably well understood.« less
Conceptual model for transport processes in the Culebra Dolomite Member, Rustler Formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holt, R.M.
1997-08-01
The Culebra Dolomite Member of the Rustler Formation represents a possible pathway for contaminants from the Waste Isolation Pilot Plant underground repository to the accessible environment. The geologic character of the Culebra is consistent with a double-porosity, multiple-rate model for transport in which the medium is conceptualized as consisting of advective porosity, where solutes are carried by the groundwater flow, and fracture-bounded zones of diffusive porosity, where solutes move through slow advection or diffusion. As the advective travel length or travel time increases, the nature of transport within a double-porosity medium changes. This behavior is important for chemical sorption, becausemore » the specific surface area per unit mass of the diffusive porosity is much greater than in the advective porosity. Culebra transport experiments conducted at two different length scales show behavior consistent with a multiple-rate, double-porosity conceptual model for Culebra transport. Tracer tests conducted on intact core samples from the Culebra show no evidence of significant diffusion, suggesting that at the core scale the Culebra can be modeled as a single-porosity medium where only the advective porosity participates in transport. Field tracer tests conducted in the Culebra show strong double-porosity behavior that is best explained using a multiple-rate model.« less
Walton-Day, Katherine; Runkel, Robert L.; Kimball, Briant A.
2012-01-01
Spatially detailed mass-loading studies and solute-transport modeling using OTIS (One-dimensional Transport with Inflow and Storage) demonstrate how natural attenuation and loading from distinct and diffuse sources control stream water quality and affect load reductions predicted in total maximum daily loads (TMDLs). Mass-loading data collected during low-flow from Cement Creek (a low-pH, metal-rich stream because of natural and mining sources, and subject to TMDL requirements) were used to calibrate OTIS and showed spatially variable effects of natural attenuation (instream reactions) and loading from diffuse (groundwater) and distinct sources. OTIS simulations of the possible effects of TMDL-recommended remediation of mine sites showed less improvement to dissolved zinc load and concentration (14% decrease) than did the TMDL (53-63% decrease). The TMDL (1) assumed conservative transport, (2) accounted for loads removed by remediation by subtracting them from total load at the stream mouth, and (3) did not include diffuse-source loads. In OTIS, loads were reduced near their source; the resulting concentration was decreased by natural attenuation and increased by diffuse-source loads during downstream transport. Thus, by not including natural attenuation and loading from diffuse sources, the TMDL overestimated remediation effects at low flow. Use of the techniques presented herein could improve TMDLs by incorporating these processes during TMDL development.
NASA Astrophysics Data System (ADS)
Feng, Shulu
2011-12-01
Two kinds of renewable energy materials, room temperature ionic liquids (RTILs) and proton exchange membranes (PEMs), especially Nafion, are studied by computational and theoretical approaches. The ultimate purpose of the present research is to design novel materials to meet the future energy demands. To elucidate the effect of alkyl side chain length and anion on the structure and dynamics of the mixtures, molecular dynamics (MD) simulations of three RTILs/water mixtures at various water mole fractions: 1-butyl-3-methylimidazolium (BMIM+)/BF4-, 1-octyl-3-methylimidazolium (OMIM+)/BF4-, and OMIM +/Cl- are performed. Replacing the BMIM + cation with OMIM+ results in stronger aggregation of the cations as well as a slower diffusion of the anions, and replacing the BF4- anion with Cl- alters the water distribution at low water mole fractions and slows diffusion of the mixtures. Potential experimental manifestations of these behaviors in both cases are provided. Proton solvation properties and transport mechanisms are studied in hydrated Nafion, by using the self-consistent multistate empirical valence bond (SCI-MS-EVB) method. It is found that by stabilizing a more Zundel-like (H5O 2+) structure in the first solvation shells, the solvation of excess protons, as well as the proton hydration structure are both influenced by the sulfonate groups. Hydrate proton-related hydrogen bond networks are observed to be more stable than those with water alone. In order to characterize the nature of the proton transport (PT), diffusive motion, Arrhenius activation energies, and transport pathways are calculated and analyzed. Analysis of diffusive motion suggests that (1) a proton-hopping mechanism dominates the proton transport for the studied water loading levels and (2) there is an obvious degree of anti-correlation between the proton hopping and the vehicular transport. The activation energy drops rapidly with an increasing water content when the water loading level is smaller than ˜ 10 H2O/SO 3-, which is consistent with experimental observations. The sulfonate groups are also found to have influence on the proton hopping directions. The temperature and water content effects on the PT pathways are also investigated. The morphological effects on proton solvation and transport in hydrated Nafion are investigated, by using the SCI-MS-EVB method. Two of the most significant morphological models of Nafion, the lamellar model and the cylinder model, are selected. The two models exhibit distinct PT patterns, which result in different proton diffusion rates. In both models, the interaction between protons and the sulfonate groups are proven to be the key to determining PT behavior. The proton solvation structure change as a function of the distance between protons and sulfonate groups has been analyzed. It is found that the increase of water cylinder radius or water layer height leads to the presence of more protons around the sulfonate groups. Furthermore, at a lower hydration level, the increased amount of protons around the sulfonate groups consists of more Zundel-like structures, which is influenced by the distinct morphological structures of Nafion.
Devés, R; Krupka, R M
1987-01-01
The properties of the choline transport system are fundamentally altered in saline solution containing 5 mM imidazole buffer instead of 5 mM phosphate: (i) The system no longer exhibits accelerated exchange. (ii) Choline in the external compartment fails to increase the rate of inactivation of the carrier by N-ethylmaleimide. (iii) Depending on the relative concentrations of choline and imidazole, transport may be activated or inhibited. The maximum rates are increased more than fivefold by imidazole, but at moderate substrate concentrations activation is observed with low concentrations of imidazole and inhibition with high concentrations. (iv) The imidazole effect is asymmetric, there being a greater tendency to activate exit than entry. All this behavior is predicted by the carrier model if imidazole is a substrate of the choline carrier having a high maximum transport rate but a relatively low affinity, and if imidazole rapidly enters the cell by simple diffusion, so that it can add to carrier sites on both sides of the membrane. Addition at the cis side inhibits, and at the trans side activates. According to the carrier model, asymmetry is a necessary consequence of the potassium ion gradient in red cells, potassium ion being another substrate of the choline system.
Jin, Byung-Ju; Smith, Alex J.
2016-01-01
A “glymphatic system,” which involves convective fluid transport from para-arterial to paravenous cerebrospinal fluid through brain extracellular space (ECS), has been proposed to account for solute clearance in brain, and aquaporin-4 water channels in astrocyte endfeet may have a role in this process. Here, we investigate the major predictions of the glymphatic mechanism by modeling diffusive and convective transport in brain ECS and by solving the Navier–Stokes and convection–diffusion equations, using realistic ECS geometry for short-range transport between para-arterial and paravenous spaces. Major model parameters include para-arterial and paravenous pressures, ECS volume fraction, solute diffusion coefficient, and astrocyte foot-process water permeability. The model predicts solute accumulation and clearance from the ECS after a step change in solute concentration in para-arterial fluid. The principal and robust conclusions of the model are as follows: (a) significant convective transport requires a sustained pressure difference of several mmHg between the para-arterial and paravenous fluid and is not affected by pulsatile pressure fluctuations; (b) astrocyte endfoot water permeability does not substantially alter the rate of convective transport in ECS as the resistance to flow across endfeet is far greater than in the gaps surrounding them; and (c) diffusion (without convection) in the ECS is adequate to account for experimental transport studies in brain parenchyma. Therefore, our modeling results do not support a physiologically important role for local parenchymal convective flow in solute transport through brain ECS. PMID:27836940
Jin, Byung-Ju; Smith, Alex J; Verkman, Alan S
2016-12-01
A "glymphatic system," which involves convective fluid transport from para-arterial to paravenous cerebrospinal fluid through brain extracellular space (ECS), has been proposed to account for solute clearance in brain, and aquaporin-4 water channels in astrocyte endfeet may have a role in this process. Here, we investigate the major predictions of the glymphatic mechanism by modeling diffusive and convective transport in brain ECS and by solving the Navier-Stokes and convection-diffusion equations, using realistic ECS geometry for short-range transport between para-arterial and paravenous spaces. Major model parameters include para-arterial and paravenous pressures, ECS volume fraction, solute diffusion coefficient, and astrocyte foot-process water permeability. The model predicts solute accumulation and clearance from the ECS after a step change in solute concentration in para-arterial fluid. The principal and robust conclusions of the model are as follows: (a) significant convective transport requires a sustained pressure difference of several mmHg between the para-arterial and paravenous fluid and is not affected by pulsatile pressure fluctuations; (b) astrocyte endfoot water permeability does not substantially alter the rate of convective transport in ECS as the resistance to flow across endfeet is far greater than in the gaps surrounding them; and (c) diffusion (without convection) in the ECS is adequate to account for experimental transport studies in brain parenchyma. Therefore, our modeling results do not support a physiologically important role for local parenchymal convective flow in solute transport through brain ECS. © 2016 Jin et al.
Xu, Bruce S; Lollar, Barbara Sherwood; Passeport, Elodie; Sleep, Brent E
2016-04-15
Aqueous phase diffusion-related isotope fractionation (DRIF) for carbon isotopes was investigated for common groundwater contaminants in systems in which transport could be considered to be one-dimensional. This paper focuses not only on theoretically observable DRIF effects in these systems but introduces the important concept of constraining "observable" DRIF based on constraints imposed by the scale of measurements in the field, and on standard limits of detection and analytical uncertainty. Specifically, constraints for the detection of DRIF were determined in terms of the diffusive fractionation factor, the initial concentration of contaminants (C0), the method detection limit (MDL) for isotopic analysis, the transport time, and the ratio of the longitudinal mechanical dispersion coefficient to effective molecular diffusion coefficient (Dmech/Deff). The results allow a determination of field conditions under which DRIF may be an important factor in the use of stable carbon isotope measurements for evaluation of contaminant transport and transformation for one-dimensional advective-dispersive transport. This study demonstrates that for diffusion-dominated transport of BTEX, MTBE, and chlorinated ethenes, DRIF effects are only detectable for the smaller molar mass compounds such as vinyl chloride for C0/MDL ratios of 50 or higher. Much larger C0/MDL ratios, corresponding to higher source concentrations or lower detection limits, are necessary for DRIF to be detectable for the higher molar mass compounds. The distance over which DRIF is observable for VC is small (less than 1m) for a relatively young diffusive plume (<100years), and DRIF will not easily be detected by using the conventional sampling approach with "typical" well spacing (at least several meters). With contaminant transport by advection, mechanical dispersion, and molecular diffusion this study suggests that in field sites where Dmech/Deff is larger than 10, DRIF effects will likely not be observable for common groundwater contaminants. Importantly, under most field conditions, Dmech/Deff≥10 is usually satisfied in the longitudinal direction, suggesting that DRIF is not likely to be observable in most groundwater systems in which contaminant transport is predominantly one-dimensional. Given the importance in the MDL it is recommended that MDL should always be explicitly reported in both modeling and field studies. Copyright © 2016. Published by Elsevier B.V.
Variations in Gas and Water Pulses at an Arctic Seep: Fluid Sources and Methane Transport
NASA Astrophysics Data System (ADS)
Hong, W.-L.; Torres, M. E.; Portnov, A.; Waage, M.; Haley, B.; Lepland, A.
2018-05-01
Methane fluxes into the oceans are largely dependent on the methane phase as it migrates upward through the sediments. Here we document decoupled methane transport by gaseous and aqueous phases in Storfjordrenna (offshore Svalbard) and propose a three-stage evolution model for active seepage in the region where gas hydrates are present in the shallow subsurface. In a preactive seepage stage, solute diffusion is the primary transport mechanism for methane in the dissolved phase. Fluids containing dissolved methane have high 87Sr/86Sr ratios due to silicate weathering in the microbial methanogenesis zone. During the active seepage stage, migration of gaseous methane results in near-seafloor gas hydrate formation and vigorous seafloor gas discharge with a thermogenic fingerprint. In the postactive seepage stage, the high concentration of dissolved lithium points to the contribution of a deeper-sourced aqueous fluid, which we postulate advects upward following cessation of gas discharge.
Metabolism and transfer of choline in hamster small intestine
Flower, R. J.; Pollitt, R. J.; Sanford, P. A.; Smyth, D. H.
1972-01-01
1. The transfer and metabolism of choline was studied with sacs of everted intestine of hamster. 2. Approximately half the choline transferred from the mucosal fluid may be metabolized. High voltage electrophoresis, paper chromatography and ion exchange chromatography have been used to identify this meta bolite as betaine. 3. The concentration of choline and betaine together accumulating in the gut wall and serosal fluid are greater than that of choline present initially in the mucosal fluid indicating some kind of specific mechanism for choline transport. 4. A detailed analysis of choline transfer suggests that the movement of choline cannot be accounted for by simple diffusion. The concentration of choline accumulating in the gut wall and serosal fluid, the inhibitory effects of hemicholinium-3 and α-methylglucoside on choline transfer, and the insensitivity of betaine transfer to hemicholinium-3 suggest a specific active transport process for choline independent of active betaine transport. PMID:5085340
Fast Ion and Thermal Plasma Transport in Turbulent Waves in the Large Plasma Device (LAPD)
NASA Astrophysics Data System (ADS)
Zhou, Shu
2011-10-01
The transport of fast ions and thermal plasmas in electrostatic microturbulence is studied. Strong density and potential fluctuations (δn / n ~ δϕ / kTe ~ 0 . 5 , f ~5-50 kHz) are observed in the LAPD in density gradient regions produced by obstacles with slab or cylindrical geometry. Wave characteristics and the associated plasma transport are modified by driving sheared E ×B drift through biasing the obstacle, and by modification of the axial magnetic fields (Bz) and the plasma species. Cross-field plasma transport is suppressed with small bias and large Bz, and is enhanced with large bias and small Bz. Suppressed cross-field thermal transport coincides with a 180° phase shift between the density and potential fluctuations in the radial direction, while the enhanced thermal transport is associated with modes having low mode number (m = 1) and long radial correlation length. Large gyroradius lithium ions (ρfast /ρs ~ 10) orbit through the turbulent region. Scans with a collimated analyzer and with Langmuir probes give detailed profiles of the fast ion spatial-temporal distribution and of the fluctuating fields. Fast-ion transport decreases rapidly with increasing fast-ion gyroradius. Background waves with different scale lengths also alter the fast ion transport: Beam diffusion is smaller in waves with smaller structures (higher mode number); also, coherent waves with long correlation length cause less beam diffusion than turbulent waves. Experimental results agree well with gyro-averaging theory. When the fast ion interacts with the wave for most of a wave period, a transition from super-diffusive to sub-diffusive transport is observed, as predicted by diffusion theory. A Monte Carlo trajectory-following code simulates the interaction of the fast ions with the measured turbulent fields. Good agreement between observation and modeling is observed. Work funded by DOE and NSF and performed at the Basic Plasma Science Facility.
NASA Astrophysics Data System (ADS)
Wagner, Thorsten; Kroll, Alexandra; Wiemann, Martin; Lipinski, Hans-Gerd
2016-04-01
Darkfield and confocal laser scanning microscopy both allow for a simultaneous observation of live cells and single nanoparticles. Accordingly, a characterization of nanoparticle uptake and intracellular mobility appears possible within living cells. Single particle tracking makes it possible to characterize the particle and the surrounding cell. In case of free diffusion, the mean squared displacement for each trajectory of a nanoparticle can be measured which allows computing the corresponding diffusion coefficient and, if desired, converting it into the hydrodynamic diameter using the Stokes-Einstein equation and the viscosity of the fluid. However, within the more complex system of a cell's cytoplasm unrestrained diffusion is scarce and several other types of movements may occur. Thus, confined or anomalous diffusion (e.g. diffusion in porous media), active transport, and combinations thereof were described by several authors. To distinguish between these types of particle movement we developed an appropriate classification method, and simulated three types of particle motion in a 2D plane using a Monte Carlo approach: (1) normal diffusion, using random direction and step-length, (2) subdiffusion, using confinements like a reflective boundary with defined radius or reflective objects in the closer vicinity, and (3) superdiffusion, using a directed flow added to the normal diffusion. To simulate subdiffusion we devised a new method based on tracks of different length combined with equally probable obstacle interaction. Next we estimated the fractal dimension, elongation and the ratio of long-time / short-time diffusion coefficients. These features were used to train a random forests classification algorithm. The accuracy for simulated trajectories with 180 steps was 97% (95%-CI: 0.9481-0.9884). The balanced accuracy was 94%, 99% and 98% for normal-, sub- and superdiffusion, respectively. Nanoparticle tracking analysis was used with 100 nm polystyrene particles to get trajectories for normal diffusion. As a next step we identified diffusion types of nanoparticles in vital cells and incubated V79 fibroblasts with 50 nm gold nanoparticles, which appeared as intensely bright objects due to their surface plasmon resonance. The movement of particles in both the extracellular and intracellular space was observed by dark field and confocal laser scanning microscopy. After reducing background noise from the video it became possible to identify individual particle spots by a maximum detection algorithm and trace them using the robust single-particle tracking algorithm proposed by Jaqaman, which is able to handle motion heterogeneity and particle disappearance. The particle trajectories inside cells indicated active transport (superdiffusion) as well as subdiffusion. Eventually, the random forest classification algorithm, after being trained by the above simulations, successfully classified the trajectories observed in live cells.
Investigating fuel-cell transport limitations using hydrogen limiting current
Spingler, Franz B.; Phillips, Adam; Schuler, Tobias; ...
2017-03-09
Reducing mass-transport losses in polymer-electrolyte fuel cells (PEFCs) is essential to increase their power density and reduce overall stack cost. At the same time, cost also motivates the reduction in expensive precious-metal catalysts, which results in higher local transport losses in the catalyst layers. Here, we use a hydrogen-pump limiting-current setup to explore the gas-phase transport losses through PEFC catalyst layers and various gas-diffusion and microporous layers. It is shown that the effective diffusivity in the gas-diffusion layers is a strong function of liquid saturation. Additionally, it is shown how the catalyst layer unexpectedly contributes significantly to the overall measuredmore » transport resistance. This is especially true for low catalyst loadings. It is also shown how the various losses can be separated into different mechanisms including diffusional processes and mass-dependent and independent ones, where the data suggests that a large part of the transport resistance in catalyst layers cannot be attributed to a gas-phase diffusional process. The technique is promising for deconvoluting transport losses in PEFCs.« less
Majumdar, Soumyajit; Hingorani, Tushar; Srirangam, Ramesh
2010-04-01
In vitro transcorneal permeability studies are an important screening tool in drug development. The objective of this research is to examine the feasibility of using corneas isolated from preserved rabbit eyes as a model for permeability evaluation. Eyes from male New Zealand White rabbits were used immediately or were stored overnight in phosphate-buffered saline (PBS) or Hanks balanced salt solution (HBSS) over wet ice. Integrity of isolated corneas was evaluated by measuring the TEER and by determining the permeability of paracellular and transcellular markers. Active transport was assessed by measuring transcorneal permeability of selected amino acids. Esterase activity was estimated using p-nitrophenyl assay. In all cases, corneas from freshly enucleated eyes were compared to those isolated from the day-old preserved eyes. Transcellular and paracellular passive diffusion was not affected by the storage medium and observed to be similar in the fresh and preserved eye models. However, amino acid transporters demonstrated lower functional activity in corneas excised from eyes preserved in PBS. Moreover, preserved eyes displayed almost 1.5-fold lower esterase activity in the corneal tissue. Thus, corneas isolated from day-old eyes, preserved in HBSS, closely mimics freshly excised rabbit corneas in terms of both active and passive transport characteristics but possesses slightly reduced enzymatic activity. 2009 Wiley-Liss, Inc. and the American Pharmacists Association
Colloidal transport through trap arrays controlled by active microswimmers
NASA Astrophysics Data System (ADS)
Yang, Wen; Misko, Vyacheslav R.; Marchesoni, Fabio; Nori, Franco
2018-07-01
We investigate the dynamics of a binary mixture consisting of active and passive colloidal particles diffusing in a 2D array of truncated harmonic wells, or traps. We explore the possibility of using a small fraction of active particles to manipulate a much larger fraction of passive particles, for instance, to confine them in or extract them from the traps. The results of our study have potential application in biology and medical sciences, for example, to remove dead cells or undesired contaminants from biological systems by means of self-propelled nano-robots.
Diffusive mass transport in agglomerated glassy fallout from a near-surface nuclear test
NASA Astrophysics Data System (ADS)
Weisz, David G.; Jacobsen, Benjamin; Marks, Naomi E.; Knight, Kim B.; Isselhardt, Brett H.; Matzel, Jennifer E.
2018-02-01
Aerodynamically-shaped glassy fallout is formed when vapor phase constituents from the nuclear device are incorporated into molten carriers (i.e. fallout precursor materials derived from soil or other near-field environmental debris). The effects of speciation and diffusive transport of condensing constituents are not well defined in models of fallout formation. Previously we reported observations of diffuse micrometer scale layers enriched in Na, Fe, Ca, and 235U, and depleted in Al and Ti, at the interfaces of agglomerated fallout objects. Here, we derive the timescales of uranium mass transport in such fallout as it cools from 2500 K to 1500 K by applying a 1-dimensional planar diffusion model to the observed 235U/30Si variation at the interfaces. By modeling the thermal transport between the fireball and the carrier materials, the time of mass transport is calculated to be <0.6 s, <1 s, <2 s, and <3.5 s for fireball yields of 0.1 kt, 1 kt, 10 kt, and 100 kt respectively. Based on the calculated times of mass transport, a maximum temperature of deposition of uranium onto the carrier material of ∼2200 K is inferred (1σ uncertainty of ∼200 K). We also determine that the occurrence of micrometer scale layers of material enriched in relatively volatile Na-species as well as more refractory Ca-species provides evidence for an oxygen-rich fireball based on the vapor pressure of the two species under oxidizing conditions. These results represent the first application of diffusion-based modeling to derive material transport, thermal environments, and oxidation-speciation in near-surface nuclear detonation environments.
Diffusive mass transport in agglomerated glassy fallout from a near-surface nuclear test
Weisz, David G.; Jacobsen, Benjamin; Marks, Naomi E.; ...
2017-12-15
Aerodynamically-shaped glassy fallout is formed when vapor phase constituents from the nuclear device are incorporated into molten carriers (i.e. fallout precursor materials derived from soil or other near-field environmental debris). The effects of speciation and diffusive transport of condensing constituents are not well defined in models of fallout formation. Previously we reported observations of diffuse micrometer scale layers enriched in Na, Fe, Ca, and 235U, and depleted in Al and Ti, at the interfaces of agglomerated fallout objects. Here in this paper, we derive the timescales of uranium mass transport in such fallout as it cools from 2500 K tomore » 1500 K by applying a 1-dimensional planar diffusion model to the observed 235U/ 30Si variation at the interfaces. By modeling the thermal transport between the fireball and the carrier materials, the time of mass transport is calculated to be <0.6 s, <1 s, <2 s, and <3.5 s for fireball yields of 0.1 kt, 1 kt, 10 kt, and 100 kt respectively. Based on the calculated times of mass transport, a maximum temperature of deposition of uranium onto the carrier material of ~2200 K is inferred (1σ uncertainty of ~200 K). We also determine that the occurrence of micrometer scale layers of material enriched in relatively volatile Na-species as well as more refractory Ca-species provides evidence for an oxygen-rich fireball based on the vapor pressure of the two species under oxidizing conditions. These results represent the first application of diffusion-based modeling to derive material transport, thermal environments, and oxidation-speciation in near-surface nuclear detonation environments.« less
Diffusive mass transport in agglomerated glassy fallout from a near-surface nuclear test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weisz, David G.; Jacobsen, Benjamin; Marks, Naomi E.
Aerodynamically-shaped glassy fallout is formed when vapor phase constituents from the nuclear device are incorporated into molten carriers (i.e. fallout precursor materials derived from soil or other near-field environmental debris). The effects of speciation and diffusive transport of condensing constituents are not well defined in models of fallout formation. Previously we reported observations of diffuse micrometer scale layers enriched in Na, Fe, Ca, and 235U, and depleted in Al and Ti, at the interfaces of agglomerated fallout objects. Here in this paper, we derive the timescales of uranium mass transport in such fallout as it cools from 2500 K tomore » 1500 K by applying a 1-dimensional planar diffusion model to the observed 235U/ 30Si variation at the interfaces. By modeling the thermal transport between the fireball and the carrier materials, the time of mass transport is calculated to be <0.6 s, <1 s, <2 s, and <3.5 s for fireball yields of 0.1 kt, 1 kt, 10 kt, and 100 kt respectively. Based on the calculated times of mass transport, a maximum temperature of deposition of uranium onto the carrier material of ~2200 K is inferred (1σ uncertainty of ~200 K). We also determine that the occurrence of micrometer scale layers of material enriched in relatively volatile Na-species as well as more refractory Ca-species provides evidence for an oxygen-rich fireball based on the vapor pressure of the two species under oxidizing conditions. These results represent the first application of diffusion-based modeling to derive material transport, thermal environments, and oxidation-speciation in near-surface nuclear detonation environments.« less
Diffusive smoothing of surfzone bathymetry by gravity-driven sediment transport
NASA Astrophysics Data System (ADS)
Moulton, M. R.; Elgar, S.; Raubenheimer, B.
2012-12-01
Gravity-driven sediment transport often is assumed to have a small effect on the evolution of nearshore morphology. Here, it is shown that down-slope gravity-driven sediment transport is an important process acting to smooth steep bathymetric features in the surfzone. Gravity-driven transport can be modeled as a diffusive term in the sediment continuity equation governing temporal (t) changes in bed level (h): ∂h/∂t ≈ κ ▽2h, where κ is a sediment diffusion coefficient that is a function of the bed shear stress (τb) and sediment properties, such as the grain size and the angle of repose. Field observations of waves, currents, and the evolution of large excavated holes (initially 10-m wide and 2-m deep, with sides as steep as 35°) in an energetic surfzone are consistent with diffusive smoothing by gravity. Specifically, comparisons of κ estimated from the measured bed evolution with those estimated with numerical model results for several transport theories suggest that gravity-driven sediment transport dominates the bed evolution, with κ proportional to a power of τb. The models are initiated with observed bathymetry and forced with observed waves and currents. The diffusion coefficients from the measurements and from the model simulations were on average of order 10-5 m2/s, implying evolution time scales of days for features with length scales of 10 m. The dependence of κ on τb varies for different transport theories and for high and low shear stress regimes. The US Army Corps of Engineers Field Research Facility, Duck, NC provided excellent logistical support. Funded by a National Security Science and Engineering Faculty Fellowship, a National Defense Science and Engineering Graduate Fellowship, and the Office of Naval Research.
Neeper, D A
2001-04-01
A simple algebraic model is proposed to estimate the transport of a volatile or soluble chemical caused by oscillatory flow of fluid in a porous medium. The model is applied to the barometric pumping of vapors in the vadose zone, and to the transport of dissolved species by earth tides in an aquifer. In the model, the fluid moves sinusoidally with time in the porosity of the soil. The chemical concentration in the mobile fluid is considered to equilibrate with the concentration in the surrounding matrix according to a characteristic time governed by diffusion, sorption, or other rate processes. The model provides a closed form solution, to which barometric pressure data are applied in an example of pore gas motion in the vadose zone. The model predicts that the additional diffusivity due barometric pumping in an unfractured vadose zone would be comparable to the diffusivity in stagnant pore gas if the equilibration time is 1 day or longer. Water motion due to the M2 lunar tide is examined as an example of oscillatory transport in an aquifer. It is shown that the tidal motion of the water in an aquifer might significantly increase the vertical diffusivity of dissolved species when compared to diffusion in an absolutely stagnant aquifer, but the hydrodynamic dispersivity due to tidal motion or gravitational flow would probably exceed the diffusivity due to oscillatory advection.
A Note on Diffusive Mass Transport.
ERIC Educational Resources Information Center
Haynes, Henry W., Jr.
1986-01-01
Current chemical engineering textbooks teach that the driving force for diffusive mass transport in ideal solutions is the gradient in mole fraction. This is only true for ideal solution liquids. Therefore, it is shown that the appropriate driving force for use with ideal gases is the gradient in partial pressure. (JN)
NASA Astrophysics Data System (ADS)
Ginn, T. R.
2018-01-01
The challenge of determining mixing extent of solutions undergoing advective-dispersive-diffusive transport is well known. In particular, reaction extent between displacing and displaced solutes depends on mixing at the pore scale, that is, generally smaller than continuum scale quantification that relies on dispersive fluxes. Here a novel mobile-mobile mass transfer approach is developed to distinguish diffusive mixing from dispersive spreading in one-dimensional transport involving small-scale velocity variations with some correlation, such as occurs in hydrodynamic dispersion, in which short-range ballistic transports give rise to dispersed but not mixed segregation zones, termed here ballisticules. When considering transport of a single solution, this approach distinguishes self-diffusive mixing from spreading, and in the case of displacement of one solution by another, each containing a participant reactant of an irreversible bimolecular reaction, this results in time-delayed diffusive mixing of reactants. The approach generates models for both kinetically controlled and equilibrium irreversible reaction cases, while honoring independently measured reaction rates and dispersivities. The mathematical solution for the equilibrium case is a simple analytical expression. The approach is applied to published experimental data on bimolecular reactions for homogeneous porous media under postasymptotic dispersive conditions with good results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stagg, Alan K; Yoon, Su-Jong
This report describes the Consortium for Advanced Simulation of Light Water Reactors (CASL) work conducted for completion of the Thermal Hydraulics Methods (THM) Level 3 Milestone THM.CFD.P11.02: Hydra-TH Extensions for Multispecies and Thermosolutal Convection. A critical requirement for modeling reactor thermal hydraulics is to account for species transport within the fluid. In particular, this capability is needed for modeling transport and diffusion of boric acid within water for emergency, reactivity-control scenarios. To support this need, a species transport capability has been implemented in Hydra-TH for binary systems (for example, solute within a solvent). A species transport equation is solved formore » the species (solute) mass fraction, and both thermal and solutal buoyancy effects are handled with specification of a Boussinesq body force. Species boundary conditions can be specified with a Dirichlet condition on mass fraction or a Neumann condition on diffusion flux. To enable enhanced species/fluid mixing in turbulent flow, the molecular diffusivity for the binary system is augmented with a turbulent diffusivity in the species transport calculation. The new capabilities are demonstrated by comparison of Hydra-TH calculations to the analytic solution for a thermosolutal convection problem, and excellent agreement is obtained.« less
Degryse, Fien; Shahbazi, Afsaneh; Verheyen, Liesbeth; Smolders, Erik
2012-01-01
It has long been recognized that diffusive boundary layers affect the determination of active transport parameters, but this has been largely overlooked in plant physiological research. We studied the short-term uptake of cadmium (Cd), zinc (Zn), and nickel (Ni) by spinach (Spinacia oleracea) and tomato (Lycopersicon esculentum) in solutions with or without metal complexes. At same free ion concentration, the presence of complexes, which enhance the diffusion flux, increased the uptake of Cd and Zn, whereas Ni uptake was unaffected. Competition effects of protons on Cd and Zn uptake were observed only at a very large degree of buffering, while competition of magnesium ions on Ni uptake was observed even in unbuffered solutions. These results strongly suggest that uptake of Cd and Zn is limited by diffusion of the free ion to the roots, except at very high degree of solution buffering, whereas Ni uptake is generally internalization limited. All results could be well described by a model that combined a diffusion equation with a competitive Michaelis-Menten equation. Direct uptake of the complex was estimated to be a major contribution only at millimolar concentrations of the complex or at very large ratios of complex to free ion concentration. The true Km for uptake of Cd2+ and Zn2+ was estimated at <5 nm, three orders of magnitude smaller than the Km measured in unbuffered solutions. Published Michaelis constants for plant uptake of Cd and Zn likely strongly overestimate physiological ones and should not be interpreted as an indicator of transporter affinity. PMID:22864584
Evaporation, diffusion and self-assembly at drying interfaces.
Roger, K; Sparr, E; Wennerström, H
2018-04-18
Water evaporation from complex aqueous solutions leads to the build-up of structure and composition gradients at their interface with air. We recently introduced an experimental setup for quantitatively studying such gradients and discussed how structure formation can lead to a self-regulation mechanism for controlling water evaporation through self-assembly. Here, we provide a detailed theoretical analysis using an advection/diffusion transport equation that takes into account thermodynamically non-ideal conditions and we directly relate the theoretical description to quantitative experimental data. We derive that the concentration profile develops according to a general square root of time scaling law, which fully agrees with experimental observations. The evaporation rate notably decreases with time as t-1/2, which shows that diffusion in the liquid phase is the rate limiting step for this system, in contrast to pure water evaporation. For the particular binary system that was investigated experimentally, which is composed of water and a sugar-based surfactant (α-dodecylmaltoside), the interfacial layer consists in a sequence of liquid crystalline phases of different mesostructures. We extract values for mutual diffusion coefficients of lamellar, hexagonal and micellar cubic phases, which are consistent with previously reported values and simple models. We thus provide a method to estimate the transport properties of oriented mesophases. The macroscopic humidity-independence of the evaporation rate up to 85% relative humidities is shown to result from both an extremely low mutual diffusion coefficient and the large range of water activities corresponding to relative humidities below 85%, at which the lamellar phase exists. Such a humidity self-regulation mechanism is expected for a large variety of complex system.
Diffusion of hydrogen in olivine: Implications for water in the mantle
NASA Astrophysics Data System (ADS)
Mackwell, Stephen J.; Kohlstedt, David L.
1990-04-01
To investigate the kinetics of diffusion of hydrogen in olivine, single crystals from San Carlos in Arizona have been annealed at temperatures between 800° and 1000°C under hydrothermal conditions at a confining pressure of 300 MPa. The hydrogen diffusivities were determined for the [100], [010], and [001] directions from concentration profiles for hydroxyl in the samples. These profiles were obtained from infrared spectra taken at 100-μm intervals across a thin slice which was cut from the central portion of each annealed crystal. The rate of diffusion is anisotropic, with fastest transport along the [100] axis and slowest along the [010] axis. The fit of the data to an Arrhenius law for diffusion parallel to [100] yields an activation enthalpy of 130±30 kJ/mol with a preexponential term of (6±3)×10-5 m2 s-1. For diffusion parallel to [001], as there are insufficient data to calculate the activation enthalpy for diffusion, we used the same value as that for diffusion parallel to [100] and determined a preexponential term of (5±4)×10-6 m2 s-1. The diffusion rate parallel to [010] is about 1 order of magnitude slower than along [001]. The measured diffusivities are large enough that the hydrogen content of olivine grains which are millimeters in diameter will adjust to changing environmental conditions in time scales of hours at temperatures as low as 800°C. As xenoliths ascending from the mantle remain at high temperatures (i.e., >1000°C) but experience a rapid decrease in pressure, and hence hydrogen fugacity, olivine grains may dehydrate during ascent. By comparison, slow rates of carbon diffusion (Tingle et al., 1988) suggest that carbon will not be lost from olivine during ascent. Thus, low hydrogen contents within olivine and within fluid inclusions in olivine cannot be taken as support for low water contents in the mantle.
Lin, Huilan; Burton, Damali; Li, Liangtao; Warner, David E.; Phillips, John D.; Ward, Diane McVEY; Kaplan, Jerry
2015-01-01
Cation diffusion facilitator transporters are found in all three Kingdoms of life and are involved in transporting transition metals out of the cytosol. The metals they transport include Zn2+, Co2+, Fe2+, Cd2+, Ni2+ and Mn2+; however, no single transporter transports all metals. Previously we showed that a single amino acid mutation in the yeast vacuolar zinc transporter Zrc1 changed its substrate specificity from Zn2+ to Fe2+ and Mn2+ [Lin, Kumanovics, Nelson, Warner, Ward and Kaplan (2008) J. Biol. Chem. 283, 33865–33873]. Mutant Zrc1 that gained iron transport activity could protect cells with a deletion in the vacuolar iron transporter (CCC1) from high iron toxicity. Utilizing suppression of high iron toxicity and PCR mutagenesis of ZRC1, we identified other amino acid substitutions within ZRC1 that changed its metal specificity. All Zrc1 mutants that transported Fe2+ could also transport Mn2+. Some Zrc1 mutants lost the ability to transport Zn2+, but others retained the ability to transport Zn2+. All of the amino acid substitutions that resulted in a gain in Fe2+ transport activity were found in transmembrane domains. In addition to alteration of residues adjacent to the putative metal-binding site in two transmembrane domains, alteration of residues distant from the binding site affected substrate specificity. These results suggest that substrate selection involves co-operativity between transmembrane domains. PMID:19538181
Vlad, Marcel Ovidiu; Ross, John
2002-12-01
We introduce a general method for the systematic derivation of nonlinear reaction-diffusion equations with distributed delays. We study the interactions among different types of moving individuals (atoms, molecules, quasiparticles, biological organisms, etc). The motion of each species is described by the continuous time random walk theory, analyzed in the literature for transport problems, whereas the interactions among the species are described by a set of transformation rates, which are nonlinear functions of the local concentrations of the different types of individuals. We use the time interval between two jumps (the transition time) as an additional state variable and obtain a set of evolution equations, which are local in time. In order to make a connection with the transport models used in the literature, we make transformations which eliminate the transition time and derive a set of nonlocal equations which are nonlinear generalizations of the so-called generalized master equations. The method leads under different specified conditions to various types of nonlocal transport equations including a nonlinear generalization of fractional diffusion equations, hyperbolic reaction-diffusion equations, and delay-differential reaction-diffusion equations. Thus in the analysis of a given problem we can fit to the data the type of reaction-diffusion equation and the corresponding physical and kinetic parameters. The method is illustrated, as a test case, by the study of the neolithic transition. We introduce a set of assumptions which makes it possible to describe the transition from hunting and gathering to agriculture economics by a differential delay reaction-diffusion equation for the population density. We derive a delay evolution equation for the rate of advance of agriculture, which illustrates an application of our analysis.
Predicting Salt Permeability Coefficients in Highly Swollen, Highly Charged Ion Exchange Membranes.
Kamcev, Jovan; Paul, Donald R; Manning, Gerald S; Freeman, Benny D
2017-02-01
This study presents a framework for predicting salt permeability coefficients in ion exchange membranes in contact with an aqueous salt solution. The model, based on the solution-diffusion mechanism, was tested using experimental salt permeability data for a series of commercial ion exchange membranes. Equilibrium salt partition coefficients were calculated using a thermodynamic framework (i.e., Donnan theory), incorporating Manning's counterion condensation theory to calculate ion activity coefficients in the membrane phase and the Pitzer model to calculate ion activity coefficients in the solution phase. The model predicted NaCl partition coefficients in a cation exchange membrane and two anion exchange membranes, as well as MgCl 2 partition coefficients in a cation exchange membrane, remarkably well at higher external salt concentrations (>0.1 M) and reasonably well at lower external salt concentrations (<0.1 M) with no adjustable parameters. Membrane ion diffusion coefficients were calculated using a combination of the Mackie and Meares model, which assumes ion diffusion in water-swollen polymers is affected by a tortuosity factor, and a model developed by Manning to account for electrostatic effects. Agreement between experimental and predicted salt diffusion coefficients was good with no adjustable parameters. Calculated salt partition and diffusion coefficients were combined within the framework of the solution-diffusion model to predict salt permeability coefficients. Agreement between model and experimental data was remarkably good. Additionally, a simplified version of the model was used to elucidate connections between membrane structure (e.g., fixed charge group concentration) and salt transport properties.
Cui, Qiu Hong; Peng, Qian; Luo, Yi; Jiang, Yuqian; Yan, Yongli; Wei, Cong; Shuai, Zhigang; Sun, Cheng; Yao, Jiannian; Zhao, Yong Sheng
2018-01-01
The ability to steer the flow of light toward desired propagation directions is critically important for the realization of key functionalities in optical communication and information processing. Although various schemes have been proposed for this purpose, the lack of capability to incorporate an external electric field to effectively tune the light propagation has severely limited the on-chip integration of photonics and electronics. Because of the noninteractive nature of photons, it is only possible to electrically control the flow of light by modifying the refractive index of materials through the electro-optic effect. However, the weak optical effects need to be strongly amplified for practical applications in high-density photonic integrations. We show a new strategy that takes advantage of the strong exciton-photon coupling in active waveguides to effectively manipulate photon transport by controlling the interaction between excitons and the external electric field. Single-crystal organic semiconductor nanowires were used to generate highly stable Frenkel exciton polaritons with strong binding and diffusion abilities. By making use of directional exciton diffusion in an external electric field, we have realized an electrically driven asymmetric photon transport and thus directional light propagation in a single nanowire. With this new concept, we constructed a dual-output single wire–based device to build an electrically controlled single-pole double-throw optical switch with fast temporal response and high switching frequency. Our findings may lead to the innovation of concepts and device architectures for optical information processing. PMID:29556529
Bienert, Gerd P; Heinen, Robert B; Berny, Marie C; Chaumont, François
2014-01-01
Plant aquaporins play important roles in transmembrane water transport processes, but some also facilitate the diffusion of other small uncharged solutes ranging from gases to metalloids. Recent evidence suggests that the transmembrane movement of hydrogen peroxide, an intra- and intercellular multifunctional signaling and defense compound, can be regulated by aquaporins. We addressed the question whether maize aquaporins belonging to the plasma membrane intrinsic protein (PIP) subfamily facilitate hydrogen peroxide diffusion using heterologous expression in the yeast Saccharomyces cerevisiae. We showed that ZmPIP proteins belonging to the PIP1 and PIP2 groups were significantly expressed in yeast cells only after codon optimization of their cDNA. In accordance with previous localization studies in oocytes and plants, ZmPIP1;2 was mainly retained in intracellular membranes, while ZmPIP2;5 was localized to the plasma membrane. However, upon co-expression with ZmPIP2;5, ZmPIP1;2 was re-localized to the plasma membrane. Using a non-functional plasma membrane-localized ZmPIP2;5 mutant to deliver ZmPIP1;2 to the plasma membrane, we demonstrated that, in contrast to wild type ZmPIP2;5, ZmPIP1;2 was not permeable to hydrogen peroxide. Our study further highlighted the fact that, when using the yeast system, which is widely employed to study substrates for plant aquaporins and other transporters, although positive transport assay results allow direct conclusions to be drawn regarding solute permeability, negative results require additional control experiments to show that the protein is expressed and localized correctly before concluding on the lack of transport activity. © 2013.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dröge, W.; Kartavykh, Y. Y.; Dresing, N.
During 2010 August a series of solar particle events was observed by the two STEREO spacecraft as well as near-Earth spacecraft. The events, occurring on August 7, 14, and 18, originated from active regions 11093 and 11099. We combine in situ and remote-sensing observations with predictions from our model of three-dimensional anisotropic particle propagation in order to investigate the physical processes that caused the large angular spreads of energetic electrons during these events. In particular, we address the effects of the lateral transport of the electrons in the solar corona that is due to diffusion perpendicular to the average magneticmore » field in the interplanetary medium. We also study the influence of two coronal mass ejections and associated shock waves on the electron propagation, and a possible time variation of the transport conditions during the above period. For the August 18 event we also utilize electron observations from the MESSENGER spacecraft at a distance of 0.31 au from the Sun for an attempt to separate between radial and longitudinal dependencies in the transport process. Our modelings show that the parallel and perpendicular diffusion mean free paths of electrons can vary significantly not only as a function of the radial distance, but also of the heliospheric longitude. Normalized to a distance of 1 au, we derive values of λ {sub ∥} in the range of 0.15–0.6 au, and values of λ {sub ⊥} in the range of 0.005–0.01 au. We discuss how our results relate to various theoretical models for perpendicular diffusion, and whether there might be a functional relationship between the perpendicular and the parallel mean free path.« less
NASA Astrophysics Data System (ADS)
Dröge, W.; Kartavykh, Y. Y.; Dresing, N.; Klassen, A.
2016-08-01
During 2010 August a series of solar particle events was observed by the two STEREO spacecraft as well as near-Earth spacecraft. The events, occurring on August 7, 14, and 18, originated from active regions 11093 and 11099. We combine in situ and remote-sensing observations with predictions from our model of three-dimensional anisotropic particle propagation in order to investigate the physical processes that caused the large angular spreads of energetic electrons during these events. In particular, we address the effects of the lateral transport of the electrons in the solar corona that is due to diffusion perpendicular to the average magnetic field in the interplanetary medium. We also study the influence of two coronal mass ejections and associated shock waves on the electron propagation, and a possible time variation of the transport conditions during the above period. For the August 18 event we also utilize electron observations from the MESSENGER spacecraft at a distance of 0.31 au from the Sun for an attempt to separate between radial and longitudinal dependencies in the transport process. Our modelings show that the parallel and perpendicular diffusion mean free paths of electrons can vary significantly not only as a function of the radial distance, but also of the heliospheric longitude. Normalized to a distance of 1 au, we derive values of λ ∥ in the range of 0.15-0.6 au, and values of λ ⊥ in the range of 0.005-0.01 au. We discuss how our results relate to various theoretical models for perpendicular diffusion, and whether there might be a functional relationship between the perpendicular and the parallel mean free path.
Collective diffusion in carbon nanotubes: Crossover between one dimension and three dimensions
NASA Astrophysics Data System (ADS)
Chen, Pei-Rong; Xu, Zhi-Cheng; Gu, Yu; Zhong, Wei-Rong
2016-08-01
Using non-equilibrium molecular dynamics and Monte Carlo methods, we study the collective diffusion of helium in carbon nanotubes. The results show that the collective diffusion coefficient (CDC) increases with the dimension of the channel. The collective diffusion coefficient has a linear relationship with the temperature and the concentration. There exist a ballistic transport in short carbon nanotubes and a diffusive transport in long carbon nanotubes. Fick’s law has an invalid region in the nanoscale channel. Project supported by the National Natural Science Foundation of China (Grant Nos. 11004082 and 11291240477), the Natural Science Foundation of Guangdong Province, China (Grant No. 2014A030313367), and the Fundamental Research Funds for the Central Universities, Jinan University (Grant No. 11614341).
Diffusion of biostimulators into plant tissues
NASA Astrophysics Data System (ADS)
Kolomazník, Karel; Pecha, Jiří; Friebrová, Veronika; Janáčová, Dagmar; Vašek, Vladimír
2012-09-01
Biostimulators are substances able to enhance the immune system of cultivated crops and support plant metabolism. Their utilization helps to reduce the amount of chemicals used in agriculture. To perform the desired effect, a biostimulator must be able to penetrate into the plant tissue. The time of penetration however, is limited, since the biostimulator must remain in a liquid state. This is of great importance—especially in field conditions, where the treated plants are exposed to different weather condition and other extrinsic factors. A mathematical model based on diffusion mechanisms has been elaborated to describe the biostimulator transport process from penetration of the leaves into the plant's inner tissues. By means of the effective diffusion coefficient of the prepared specific protein hydrolyzate, this model can be used to estimate the time necessary for the uptake of the minimal active amount of the biostimulator.
NASA Astrophysics Data System (ADS)
Yang, Jing; Youssef, Mostafa; Yildiz, Bilge
2018-01-01
In this work, we quantify oxygen self-diffusion in monoclinic-phase zirconium oxide as a function of temperature and oxygen partial pressure. A migration barrier of each type of oxygen defect was obtained by first-principles calculations. Random walk theory was used to quantify the diffusivities of oxygen interstitials by using the calculated migration barriers. Kinetic Monte Carlo simulations were used to calculate diffusivities of oxygen vacancies by distinguishing the threefold- and fourfold-coordinated lattice oxygen. By combining the equilibrium defect concentrations obtained in our previous work together with the herein calculated diffusivity of each defect species, we present the resulting oxygen self-diffusion coefficients and the corresponding atomistically resolved transport mechanisms. The predicted effective migration barriers and diffusion prefactors are in reasonable agreement with the experimentally reported values. This work provides insights into oxygen diffusion engineering in Zr O2 -related devices and parametrization for continuum transport modeling.
Orientational anisotropy and interfacial transport in polycrystals
NASA Astrophysics Data System (ADS)
Moghadam, M. M.; Rickman, J. M.; Harmer, M. P.; Chan, H. M.
2016-04-01
Interfacial diffusion is governed to a large degree by geometric parameters that are determined by crystallographic orientation. In this study, we assess the impact of orientational anisotropy on mass transport at internal interfaces, focusing on the role of preferred crystallographic orientation (i.e., texture) on mass diffusion in a polycrystal. More specifically, we perform both numerical and analytical studies of steady-state diffusion for polycrystals having various grain-orientation distributions. By relating grain misorientation to grain-boundary energies and, via the Borisov relation, to the diffusivity, we link microstructure variability to kinetics. Our aim is to correlate shape features of the orientation distribution, such as the location and shapes of peaks, with the calculated effective diffusivity. Finally, we discuss the role of crystallographic constraints, such as those associated with grain junctions, in determining the effective diffusivity of a polycrystal.
Transport of neutral solute across articular cartilage: the role of zonal diffusivities.
Arbabi, V; Pouran, B; Weinans, H; Zadpoor, A A
2015-07-01
Transport of solutes through diffusion is an important metabolic mechanism for the avascular cartilage tissue. Three types of interconnected physical phenomena, namely mechanical, electrical, and chemical, are all involved in the physics of transport in cartilage. In this study, we use a carefully designed experimental-computational setup to separate the effects of mechanical and chemical factors from those of electrical charges. Axial diffusion of a neutral solute Iodixanol into cartilage was monitored using calibrated microcomputed tomography micro-CT images for up to 48 hr. A biphasic-solute computational model was fitted to the experimental data to determine the diffusion coefficients of cartilage. Cartilage was modeled either using one single diffusion coefficient (single-zone model) or using three diffusion coefficients corresponding to superficial, middle, and deep cartilage zones (multizone model). It was observed that the single-zone model cannot capture the entire concentration-time curve and under-predicts the near-equilibrium concentration values, whereas the multizone model could very well match the experimental data. The diffusion coefficient of the superficial zone was found to be at least one order of magnitude larger than that of the middle zone. Since neutral solutes were used, glycosaminoglycan (GAG) content cannot be the primary reason behind such large differences between the diffusion coefficients of the different cartilage zones. It is therefore concluded that other features of the different cartilage zones such as water content and the organization (orientation) of collagen fibers may be enough to cause large differences in diffusion coefficients through the cartilage thickness.
Reactions and Transport: Diffusion, Inertia, and Subdiffusion
NASA Astrophysics Data System (ADS)
Méndez, Vicenç; Fedotov, Sergei; Horsthemke, Werner
Particles, such as molecules, atoms, or ions, and individuals, such as cells or animals, move in space driven by various forces or cues. In particular, particles or individuals can move randomly, undergo velocity jump processes or spatial jump processes [333]. The steps of the random walk can be independent or correlated, unbiased or biased. The probability density function (PDF) for the jump length can decay rapidly or exhibit a heavy tail. Similarly, the PDF for the waiting time between successive jumps can decay rapidly or exhibit a heavy tail. We will discuss these various possibilities in detail in Chap. 3. Below we provide an introduction to three transport processes: standard diffusion, transport with inertia, and anomalous diffusion.
Emergent structures in reaction-advection-diffusion systems on a sphere.
Krause, Andrew L; Burton, Abigail M; Fadai, Nabil T; Van Gorder, Robert A
2018-04-01
We demonstrate unusual effects due to the addition of advection into a two-species reaction-diffusion system on the sphere. We find that advection introduces emergent behavior due to an interplay of the traditional Turing patterning mechanisms with the compact geometry of the sphere. Unidirectional advection within the Turing space of the reaction-diffusion system causes patterns to be generated at one point of the sphere, and transported to the antipodal point where they are destroyed. We illustrate these effects numerically and deduce conditions for Turing instabilities on local projections to understand the mechanisms behind these behaviors. We compare this behavior to planar advection which is shown to only transport patterns across the domain. Analogous transport results seem to hold for the sphere under azimuthal transport or away from the antipodal points in unidirectional flow regimes.
Emergent structures in reaction-advection-diffusion systems on a sphere
NASA Astrophysics Data System (ADS)
Krause, Andrew L.; Burton, Abigail M.; Fadai, Nabil T.; Van Gorder, Robert A.
2018-04-01
We demonstrate unusual effects due to the addition of advection into a two-species reaction-diffusion system on the sphere. We find that advection introduces emergent behavior due to an interplay of the traditional Turing patterning mechanisms with the compact geometry of the sphere. Unidirectional advection within the Turing space of the reaction-diffusion system causes patterns to be generated at one point of the sphere, and transported to the antipodal point where they are destroyed. We illustrate these effects numerically and deduce conditions for Turing instabilities on local projections to understand the mechanisms behind these behaviors. We compare this behavior to planar advection which is shown to only transport patterns across the domain. Analogous transport results seem to hold for the sphere under azimuthal transport or away from the antipodal points in unidirectional flow regimes.
Memory effects in funnel ratchet of self-propelled particles
NASA Astrophysics Data System (ADS)
Hu, Cai-Tian; Wu, Jian-Chun; Ai, Bao-Quan
2017-05-01
The transport of self-propelled particles with memory effects is investigated in a two-dimensional periodic channel. Funnel-shaped barriers are regularly arrayed in the channel. Due to the asymmetry of the barriers, the self-propelled particles can be rectified. It is found that the memory effects of the rotational diffusion can strongly affect the rectified transport. The memory effects do not always break the rectified transport, and there exists an optimal finite value of correlation time at which the rectified efficiency takes its maximal value. We also find that the optimal values of parameters (the self-propulsion speed, the translocation diffusion coefficient, the rotational noise intensity, and the self-rotational diffusion coefficient) can facilitate the rectified transport. When introducing a finite load, particles with different self-propulsion speeds move to different directions and can be separated.
Wang, Lei
2013-04-01
Understanding the transport mechanism of 1,3-propanediol (1,3-PD) is of critical importance to do further research on gene regulation. Due to the lack of intracellular information, on the basis of enzyme-catalytic system, using biological robustness as performance index, we present a system identification model to infer the most possible transport mechanism of 1,3-PD, in which the performance index consists of the relative error of the extracellular substance concentrations and biological robustness of the intracellular substance concentrations. We will not use a Boolean framework but prefer a model description based on ordinary differential equations. Among other advantages, this also facilitates the robustness analysis, which is the main goal of this paper. An algorithm is constructed to seek the solution of the identification model. Numerical results show that the most possible transport way is active transport coupled with passive diffusion.
Kazimierska-Drobny, Katarzyna; Kaczmarek, Mariusz
2013-12-01
In this paper the identification of diffusion coefficient, retardation factor and surface distribution coefficient for selected salts in poly(vinyl alcohol) hydrogels is performed. The identification of the transport parameters is based on the previously developed inverse problem technique using experimental data from the reservoir test and the solution of the diffusive transport equation with linear equilibrium sorption. The estimated values of diffusion coefficient are: for physiological fluid (6.30±0.10)×10(-10) m(2)/s, for 1 M NaCl (6.42±0.39)×10(-10) m(2)/s, and for 1 M KCl (7.94±0.38)×10(-10) m(2)/s. The retardation factor for all tested materials and salts is equal or close to one. The average value of the effective surface distribution coefficient is equal to 0.5. © 2013 Elsevier B.V. All rights reserved.
Song, Hongjun; Wang, Yi; Pant, Kapil
2011-01-01
This article presents a three-dimensional analytical model to investigate cross-stream diffusion transport in rectangular microchannels with arbitrary aspect ratios under pressure-driven flow. The Fourier series solution to the three-dimensional convection–diffusion equation is obtained using a double integral transformation method and associated eigensystem calculation. A phase diagram derived from the dimensional analysis is presented to thoroughly interrogate the characteristics in various transport regimes and examine the validity of the model. The analytical model is verified against both experimental and numerical models in terms of the concentration profile, diffusion scaling law, and mixing efficiency with excellent agreement (with <0.5% relative error). Quantitative comparison against other prior analytical models in extensive parameter space is also performed, which demonstrates that the present model accommodates much broader transport regimes with significantly enhanced applicability. PMID:22247719
Song, Hongjun; Wang, Yi; Pant, Kapil
2012-01-01
This article presents a three-dimensional analytical model to investigate cross-stream diffusion transport in rectangular microchannels with arbitrary aspect ratios under pressure-driven flow. The Fourier series solution to the three-dimensional convection-diffusion equation is obtained using a double integral transformation method and associated eigensystem calculation. A phase diagram derived from the dimensional analysis is presented to thoroughly interrogate the characteristics in various transport regimes and examine the validity of the model. The analytical model is verified against both experimental and numerical models in terms of the concentration profile, diffusion scaling law, and mixing efficiency with excellent agreement (with <0.5% relative error). Quantitative comparison against other prior analytical models in extensive parameter space is also performed, which demonstrates that the present model accommodates much broader transport regimes with significantly enhanced applicability.
Preferential diffusion in concentrated solid solution alloys: NiFe, NiCo and NiCoCr
Zhao, Shijun; Osetsky, Yuri; Zhang, Yanwen
2017-02-13
In single-phase concentrated solid-solution alloys (CSAs), including high entropy alloys (HEAs), remarkable mechanical properties are exhibited, as well as extraordinary corrosion and radiation resistance compared to pure metals and dilute alloys. But, the mechanisms responsible for these properties are unknown in many cases. In this work, we employ ab initio molecular dynamics based on density functional theory to study the diffusion of interstitial atoms in Ni and Ni-based face-centered cubic CSAs including NiFe, NiCo and NiCoCr. We model the defect trajectories over >100 ps and estimate tracer diffusion coefficients, correlation factors and activation energies. Furthermore, we found that the diffusionmore » mass transport in CSAs is not only slower than that in pure components, i.e. sluggish diffusion, but also chemically non-homogeneous. The results obtained here can be used in understanding and predicting the atomic segregation and phase separation in CSAs under irradiation conditions.« less
Diffusive transport of several hundred keV electrons in the Earth's slot region
NASA Astrophysics Data System (ADS)
Ma, Q.; Li, W.; Thorne, R. M.; Bortnik, J.
2017-12-01
We investigate the gradual diffusion of energetic electrons from the inner edge of the outer radiation belt into the slot region. The Van Allen Probes observed slow inward diffusion and decay of 200-600 keV electrons following the intense geomagnetic storm that occurred on 17 March 2013. During the 10-day non-disturbed period following the storm, the peak of electron fluxes gradually moved from L 2.7 to L 2.4, and the flux levels decreased by a factor of 2-4 depending on the electron energy. We simulated the radial intrusion and decay of electrons using a 3-dimentional diffusion code, which reproduced the energy-dependent transport of electrons from 100 keV to 1 MeV in the slot region. At energies of 100-200 keV, the electrons experience fast transport across the slot region due to the dominance of radial diffusion; at energies of 200-600 keV, the electrons gradually diffuse and decay in the slot region due to the comparable radial diffusion rate and pitch angle scattering rate by plasmaspheric hiss; at energies of E > 700 keV, the electrons stopped diffusing near the inner edge of outer radiation belt due to the dominant pitch angle scattering loss. In addition to plasmaspheric hiss, magnetosonic waves and VLF waves can cause the loss of high pitch angle electrons, relaxing the sharp `top-hat' shaped pitch angle distributions created by plasmaspheric hiss. Our simulation indicates the importance of radial diffusion and pitch angle scattering in forming the diffusive intrusion of energetic electrons across the slot region.
Diffusive Transport of Several Hundred keV Electrons in the Earth's Slot Region
NASA Astrophysics Data System (ADS)
Ma, Q.; Li, W.; Thorne, R. M.; Bortnik, J.; Reeves, G. D.; Spence, H. E.; Turner, D. L.; Blake, J. B.; Fennell, J. F.; Claudepierre, S. G.; Kletzing, C. A.; Kurth, W. S.; Hospodarsky, G. B.; Baker, D. N.
2017-10-01
We investigate the gradual diffusion of energetic electrons from the inner edge of the outer radiation belt into the slot region. The Van Allen Probes observed slow inward diffusion and decay of 200-600 keV electrons following the intense geomagnetic storm that occurred on 17 March 2013. During the 10 day nondisturbed period following the storm, the peak of electron fluxes gradually moved from L 2.7 to L 2.4, and the flux levels decreased by a factor of 2-4 depending on the electron energy. We simulated the radial intrusion and decay of electrons using a three-dimensional diffusion code, which reproduced the energy-dependent transport of electrons from 100 keV to 1 MeV in the slot region. At energies of 100-200 keV, the electrons experience fast transport across the slot region due to the dominance of radial diffusion; at energies of 200-600 keV, the electrons gradually diffuse and decay in the slot region due to the comparable rate of radial diffusion and pitch angle scattering by plasmaspheric hiss; at energies of E > 700 keV, the electrons stopped diffusing near the inner edge of outer radiation belt due to the dominant pitch angle scattering loss. In addition to plasmaspheric hiss, magnetosonic waves and VLF transmitters can cause the loss of high pitch angle electrons, relaxing the sharp "top-hat" shaped pitch angle distributions created by plasmaspheric hiss. Our simulation indicates the importance of balance between radial diffusion and loss through pitch angle scattering in forming the diffusive intrusion of energetic electrons across the slot region.
Ratchet effect for nanoparticle transport in hair follicles.
Radtke, Matthias; Patzelt, Alexa; Knorr, Fanny; Lademann, Jürgen; Netz, Roland R
2017-07-01
The motion of a single rigid nanoparticle inside a hair follicle is investigated by means of Brownian dynamics simulations. The cuticular hair structure is modeled as a periodic asymmetric ratchet-shaped surface. Induced by oscillating radial hair motion we find directed nanoparticle transport into the hair follicle with maximal velocity at a specific optimal frequency and an optimal particle size. We observe flow reversal when switching from radial to axial oscillatory hair motion. We also study the diffusion behavior and find strongly enhanced diffusion for axial motion with a diffusivity significantly larger than for free diffusion. Copyright © 2016 Elsevier B.V. All rights reserved.
A fully coupled 3D transport model in SPH for multi-species reaction-diffusion systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adami, Stefan; Hu, X. Y.; Adams, N. A.
2011-08-23
Abstract—In this paper we present a fully generalized transport model for multiple species in complex two and threedimensional geometries. Based on previous work [1] we have extended our interfacial reaction-diffusion model to handle arbitrary numbers of species allowing for coupled reaction models. Each species is tracked independently and we consider different physics of a species with respect to the bulk phases in contact. We use our SPH model to simulate the reaction-diffusion problem on a pore-scale level of a solid oxide fuel cell (SOFC) with special emphasize on the effect of surface diffusion.
Vermorel, Romain; Oulebsir, Fouad; Galliero, Guillaume
2017-09-14
The computation of diffusion coefficients in molecular systems ranks among the most useful applications of equilibrium molecular dynamics simulations. However, when dealing with the problem of fluid diffusion through vanishingly thin interfaces, classical techniques are not applicable. This is because the volume of space in which molecules diffuse is ill-defined. In such conditions, non-equilibrium techniques allow for the computation of transport coefficients per unit interface width, but their weak point lies in their inability to isolate the contribution of the different physical mechanisms prone to impact the flux of permeating molecules. In this work, we propose a simple and accurate method to compute the diffusional transport coefficient of a pure fluid through a planar interface from equilibrium molecular dynamics simulations, in the form of a diffusion coefficient per unit interface width. In order to demonstrate its validity and accuracy, we apply our method to the case study of a dilute gas diffusing through a smoothly repulsive single-layer porous solid. We believe this complementary technique can benefit to the interpretation of the results obtained on single-layer membranes by means of complex non-equilibrium methods.
Pore-scale lattice Boltzmann simulation of micro-gaseous flow considering surface diffusion effect
Wang, Junjian; Kang, Qinjun; Chen, Li; ...
2016-11-21
Some recent studies have shown that adsorbed gas and its surface diffusion have profound influence on micro-gaseous flow through organic pores in shale gas reservoirs. Here, a multiple-relaxation-time (MRT) LB model is adopted to estimate the apparent permeability of organic shale and a new boundary condition, which combines Langmuir adsorption theory with Maxwellian diffusive reflection boundary condition, is proposed to capture gas slip and surface diffusion of adsorbed gas. The simulation results match well with previous studies carried out using Molecular Dynamics (MD) and show that Maxwell slip boundary condition fails to characterize gas transport in the near wall regionmore » under the influence of the adsorbed gas. The total molar flux can be either enhanced or reduced depending on variations in adsorbed gas coverage and surface diffusion velocity. The effects of pore width, pressure as well as Langmuir properties on apparent permeability of methane transport in organic pores are further studied. It is found that the surface transport plays a significant role in determining the apparent permeability, and the variation of apparent permeability with pore size and pressure is affected by the adsorption and surface diffusion.« less
Bulk Diffusion via a ``kick-out'' method for Lithium in the decomposition reaction LiAlH4/Li3AlH6
NASA Astrophysics Data System (ADS)
Rolih, Biljana; Ozolins, Vidvuds; Ozolins Team
2013-03-01
In the pursuit to find a practical system for hydrogen storage, complex metal hydrides have long been considered as viable candidates due to their high hydrogen content. However, some of the challenges faced with these types of systems are poor thermodynamics or kinetics. The underlying mechanisms, and their limiting processes, for the decomposition of these materials need to be understood. From experimental work on the decomposition of hydrogen storage materials, it has been suggested that bulk diffusion of metal species is the bottleneck for hydrogen release. In this work is the dehydrogenation we investigated the system LiAlH4 LiAlH6 with favorable hydrogen release (5.3 wt %), at moderate temperatures. Using first-principles density functional theory we found the defects facilitating mass transport by calculating individual formation energies, highest concentrations, and activation barriers for defect mobility. The mass transport of Lithium is found to be mediated by a ``kick-out'' mechanism. The results are used to further our understanding of the fundamental mechanism of mass transport and evaluate the possibility of kinetics as the limiting process in this reaction.
Designing solid-liquid interphases for sodium batteries.
Choudhury, Snehashis; Wei, Shuya; Ozhabes, Yalcin; Gunceler, Deniz; Zachman, Michael J; Tu, Zhengyuan; Shin, Jung Hwan; Nath, Pooja; Agrawal, Akanksha; Kourkoutis, Lena F; Arias, Tomas A; Archer, Lynden A
2017-10-12
Secondary batteries based on earth-abundant sodium metal anodes are desirable for both stationary and portable electrical energy storage. Room-temperature sodium metal batteries are impractical today because morphological instability during recharge drives rough, dendritic electrodeposition. Chemical instability of liquid electrolytes also leads to premature cell failure as a result of parasitic reactions with the anode. Here we use joint density-functional theoretical analysis to show that the surface diffusion barrier for sodium ion transport is a sensitive function of the chemistry of solid-electrolyte interphase. In particular, we find that a sodium bromide interphase presents an exceptionally low energy barrier to ion transport, comparable to that of metallic magnesium. We evaluate this prediction by means of electrochemical measurements and direct visualization studies. These experiments reveal an approximately three-fold reduction in activation energy for ion transport at a sodium bromide interphase. Direct visualization of sodium electrodeposition confirms large improvements in stability of sodium deposition at sodium bromide-rich interphases.The chemistry at the interface between electrolyte and electrode plays a critical role in determining battery performance. Here, the authors show that a NaBr enriched solid-electrolyte interphase can lower the surface diffusion barrier for sodium ions, enabling stable electrodeposition.
Code of Federal Regulations, 2014 CFR
2014-01-01
... physics on the transport and diffusion of each toxicant. (5) Meteorological conditions at the time of..., or for use in any real-time physics models used to ensure compliance with the toxic flight commit... atmospheric physics on the transport and diffusion of toxic propellants released; (5) Meteorological...
Code of Federal Regulations, 2012 CFR
2012-01-01
... physics on the transport and diffusion of each toxicant. (5) Meteorological conditions at the time of..., or for use in any real-time physics models used to ensure compliance with the toxic flight commit... atmospheric physics on the transport and diffusion of toxic propellants released; (5) Meteorological...
Code of Federal Regulations, 2011 CFR
2011-01-01
... physics on the transport and diffusion of each toxicant. (5) Meteorological conditions at the time of..., or for use in any real-time physics models used to ensure compliance with the toxic flight commit... atmospheric physics on the transport and diffusion of toxic propellants released; (5) Meteorological...
Code of Federal Regulations, 2013 CFR
2013-01-01
... physics on the transport and diffusion of each toxicant. (5) Meteorological conditions at the time of..., or for use in any real-time physics models used to ensure compliance with the toxic flight commit... atmospheric physics on the transport and diffusion of toxic propellants released; (5) Meteorological...
Hopping Conduction and Bacteria: Transport Properties of Disordered Reaction-Diffusion Systems
NASA Astrophysics Data System (ADS)
Missel, Andrew; Dahmen, Karin
2008-03-01
Reaction-diffusion (RD) systems are used to model everything from the formation of animal coat patterns to the spread of genes in a population to the seasonal variation of plankton density in the ocean. In all of these problems, disorder plays a large role, but determining its effects on transport properties in RD systems has been a challenge. We present here both analytical and numerical studies of a particular disordered RD system consisting of particles which are allowed to diffuse and compete for resources (2A->A) with spatially homogeneous rates, reproduce (A->2A) in certain areas (``oases''), and die (A->0) everywhere else (the ``desert''). In the low oasis density regime, transport is mediated through rare ``hopping events'' in which a small number of particles diffuse through the desert from one oasis to another; the situation is mathematically analogous to hopping conduction in doped semiconductors, and this analogy, along with some ideas from first passage percolation theory, allows us to make some quantitative predictions about the transport properties of the system on a large scale.
P1 Nonconforming Finite Element Method for the Solution of Radiation Transport Problems
NASA Technical Reports Server (NTRS)
Kang, Kab S.
2002-01-01
The simulation of radiation transport in the optically thick flux-limited diffusion regime has been identified as one of the most time-consuming tasks within large simulation codes. Due to multimaterial complex geometry, the radiation transport system must often be solved on unstructured grids. In this paper, we investigate the behavior and the benefits of the unstructured P(sub 1) nonconforming finite element method, which has proven to be flexible and effective on related transport problems, in solving unsteady implicit nonlinear radiation diffusion problems using Newton and Picard linearization methods. Key words. nonconforrning finite elements, radiation transport, inexact Newton linearization, multigrid preconditioning
Does transbilayer diffusion have a role in membrane transport of drugs?
Balaz, Stefan
2012-01-01
The existing consensus on coexistence of transbilayer diffusion and carrier-mediated transport as two main mechanisms for drugs crossing biological membranes was recently challenged by a systems biology group. Their transporters-only hypothesis is examined in this article using published experimental evidence. The main focus is on the key claim of their hypothesis, stating that ‘the drug molecules cross pure phospholipid bilayers through transient pores that cannot form in the bilayers of cell membranes, and thus transbilayer drug transport does not exist in cells’. The analysis shows that the prior consensus remains a valid scientific view of the membrane transport of drugs. PMID:22705388
Transport of gases between the environment and alveoli – theoretical foundations
Butler, James P.; Tsuda, Akira
2015-01-01
The transport of oxygen and carbon dioxide in the gas phase from the ambient environment to and from the alveolar gas/blood interface is accomplished through the tracheobronchial tree, and involves mechanisms of bulk or convective transport and diffusive net transport. The geometry of the airway tree and the fluid dynamics of these two transport processes combine in such a way that promotes a classical fractionation of ventilation into dead space and alveolar ventilation respectively. This simple picture continues to capture much of the essence of gas phase transport. On the other hand, a more detailed look at the interaction of convection and diffusion leads to significant new issues, many of which remain open questions. These are associated with parallel and serial inhomogeneities especially within the distal acinar units, velocity profiles in distal airways and terminal spaces subject to moving boundary conditions, and the serial transport of respiratory gases within the complex acinar architecture. This chapter focuses specifically on the theoretical foundations of gas transport, addressing two broad areas. The first deals with the reasons why the classical picture of alveolar and dead space ventilation is so successful; the second examines the underlying assumptions within current approximations to convective and diffusive transport, and how they interact to effect net gas exchange. PMID:23733643
Diapycnal Transport and Pattern Formation in Double-Diffusive Convection
2015-12-01
of knowledge. The effects of turbulent-dominated and purely double-diffusive regimes are compared to dual turbulent/double-diffusive systems and...is presented to remedy this dearth of knowledge. The effects of turbulent-dominated and purely double-diffusive regimes are compared to dual...8 2. Double-Diffusion: The Constant Flux Ratio Model ..........................9 3. The Combined Effects of
Modeling Particle Acceleration and Transport at a 2-D CME-Driven Shock
NASA Astrophysics Data System (ADS)
Hu, Junxiang; Li, Gang; Ao, Xianzhi; Zank, Gary P.; Verkhoglyadova, Olga
2017-11-01
We extend our earlier Particle Acceleration and Transport in the Heliosphere (PATH) model to study particle acceleration and transport at a coronal mass ejection (CME)-driven shock. We model the propagation of a CME-driven shock in the ecliptic plane using the ZEUS-3D code from 20 solar radii to 2 AU. As in the previous PATH model, the initiation of the CME-driven shock is simplified and modeled as a disturbance at the inner boundary. Different from the earlier PATH model, the disturbance is now longitudinally dependent. Particles are accelerated at the 2-D shock via the diffusive shock acceleration mechanism. The acceleration depends on both the parallel and perpendicular diffusion coefficients κ|| and κ⊥ and is therefore shock-obliquity dependent. Following the procedure used in Li, Shalchi, et al. (k href="#jgra53857-bib-0045"/>), we obtain the particle injection energy, the maximum energy, and the accelerated particle spectra at the shock front. Once accelerated, particles diffuse and convect in the shock complex. The diffusion and convection of these particles are treated using a refined 2-D shell model in an approach similar to Zank et al. (k href="#jgra53857-bib-0089"/>). When particles escape from the shock, they propagate along and across the interplanetary magnetic field. The propagation is modeled using a focused transport equation with the addition of perpendicular diffusion. We solve the transport equation using a backward stochastic differential equation method where adiabatic cooling, focusing, pitch angle scattering, and cross-field diffusion effects are all included. Time intensity profiles and instantaneous particle spectra as well as particle pitch angle distributions are shown for two example CME shocks.
Reaction Kernel Structure of a Slot Jet Diffusion Flame in Microgravity
NASA Technical Reports Server (NTRS)
Takahashi, F.; Katta, V. R.
2001-01-01
Diffusion flame stabilization in normal earth gravity (1 g) has long been a fundamental research subject in combustion. Local flame-flow phenomena, including heat and species transport and chemical reactions, around the flame base in the vicinity of condensed surfaces control flame stabilization and fire spreading processes. Therefore, gravity plays an important role in the subject topic because buoyancy induces flow in the flame zone, thus increasing the convective (and diffusive) oxygen transport into the flame zone and, in turn, reaction rates. Recent computations show that a peak reactivity (heat-release or oxygen-consumption rate) spot, or reaction kernel, is formed in the flame base by back-diffusion and reactions of radical species in the incoming oxygen-abundant flow at relatively low temperatures (about 1550 K). Quasi-linear correlations were found between the peak heat-release or oxygen-consumption rate and the velocity at the reaction kernel for cases including both jet and flat-plate diffusion flames in airflow. The reaction kernel provides a stationary ignition source to incoming reactants, sustains combustion, and thus stabilizes the trailing diffusion flame. In a quiescent microgravity environment, no buoyancy-induced flow exits and thus purely diffusive transport controls the reaction rates. Flame stabilization mechanisms in such purely diffusion-controlled regime remain largely unstudied. Therefore, it will be a rigorous test for the reaction kernel correlation if it can be extended toward zero velocity conditions in the purely diffusion-controlled regime. The objectives of this study are to reveal the structure of the flame-stabilizing region of a two-dimensional (2D) laminar jet diffusion flame in microgravity and develop a unified diffusion flame stabilization mechanism. This paper reports the recent progress in the computation and experiment performed in microgravity.
Protein diffusiophoresis and salt osmotic diffusion in aqueous solutions.
Annunziata, Onofrio; Buzatu, Daniela; Albright, John G
2012-10-25
Diffusion of a solute can be induced by the concentration gradient of another solute in solution. This transport mechanism is known as cross-diffusion. We have investigated cross-diffusion in a ternary protein-salt-water system. Specifically, we measured the two cross-diffusion coefficients for the lysozyme-NaCl-water system at 25 °C and pH 4.5 as a function of protein and salt concentrations by Rayleigh interferometry. One cross-diffusion coefficient characterizes salt osmotic diffusion induced by a protein concentration gradient, and is related to protein-salt thermodynamic interactions as described by the theories of Donnan membrane equilibrium and protein preferential hydration. The other cross-diffusion coefficient characterizes protein diffusiophoresis induced by a salt concentration gradient, and is described as the difference between a preferential-interaction coefficient and a transport parameter. We first relate our experimental results to the protein net charge and the thermodynamic excess of water near the protein surface. We then extract the Stefan-Maxwell diffusion coefficient describing protein-salt interactions in water. We find that the value of this coefficient is negative, contrary to the friction interpretation of Stefan-Maxwell equations. This result is explained by considering protein hydration. Finally, protein diffusiophoresis is quantitatively examined by considering electrophoretic and hydration effects on protein migration and utilized to accurately estimate lysozyme electrophoretic mobility. To our knowledge, this is the first time that protein diffusiophoresis has been experimentally characterized and a protein-salt Stefan-Maxwell diffusion coefficient reported. This work represents a significant contribution for understanding and modeling the effect of concentration gradients in protein-salt aqueous systems relevant to diffusion-based mass-transfer technologies and transport in living systems.
NASA Astrophysics Data System (ADS)
Lu, Haoyuan; Li, Qingwei; Guo, Jianhui; Song, Aixin; Gong, Chunhong; Zhang, Jiwei; Zhang, Jingwei
2018-01-01
Hierarchically porous carbons (HPC) are considered as promising electrode materials for supercapacitors, due to their outstanding charge/discharge cycling stabilities and high power densities. However, HPC possess a relatively low ion diffusion rate inside the materials, which challenges their application for high performance supercapacitor. Thus tunnel-shaped carbon pores with a size of tens of nanometers were constructed by inducing the self-assembly of lithocholic acid with ammonium chloride, thereby providing high-speed channels for internal ion diffusion. The as-formed one-dimensional pores are beneficial to the activation process by KOH, providing a large specific surface area, and then facilitate rapid transport of electrolyte ions from macropores to the microporous surfaces. Therefore, the HPC achieve an outstanding gravimetric capacitance of 284 F g-1 at a current density of 0.1 A g-1 and a remarkable capacity retention of 64.8% when the current density increases by 1000 times to 100 A g-1.
NASA Astrophysics Data System (ADS)
Oleschko, K.; Khrennikov, A.
2017-10-01
This paper is about a novel mathematical framework to model transport (of, e.g., fluid or gas) through networks of capillaries. This framework takes into account the tree structure of the networks of capillaries. (Roughly speaking, we use the tree-like system of coordinates.) As is well known, tree-geometry can be topologically described as the geometry of an ultrametric space, i.e., a metric space in which the metric satisfies the strong triangle inequality: in each triangle, the third side is less than or equal to the maximum of two other sides. Thus transport (e.g., of oil or emulsion of oil and water in porous media, or blood and air in biological organisms) through networks of capillaries can be mathematically modelled as ultrametric diffusion. Such modelling was performed in a series of recently published papers of the authors. However, the process of transport through capillaries can be only approximately described by the linear diffusion, because the concentration of, e.g., oil droplets, in a capillary can essentially modify the dynamics. Therefore nonlinear dynamical equations provide a more adequate model of transport in a network of capillaries. We consider a nonlinear ultrametric diffusion equation with quadratic nonlinearity - to model transport in such a network. Here, as in the linear case, we apply the theory of ultrametric wavelets. The paper also contains a simple introduction to theory of ultrametric spaces and analysis on them.
Improving nanoparticle diffusion through tumor collagen matrix by photo-thermal gold nanorods
NASA Astrophysics Data System (ADS)
Raeesi, Vahid; Chan, Warren C. W.
2016-06-01
Collagen (I) impairs the targeting of nanoparticles to tumor cells by obstructing their diffusion inside dense tumor interstitial matrix. This potentially makes large nanoparticles (>50 nm) reside near the tumor vessels and thereby compromises their functionality. Here we propose a strategy to locally improve nanoparticle transport inside collagen (I) component of the tumor tissue. We first used heat generating gold nanorods to alter collagen (I) matrix by local temperature elevation. We then explored this impact on the transport of 50 nm and 120 nm inorganic nanoparticles inside collagen (I). We demonstrated an increase in average diffusivity of 50 nm and 120 nm in the denatured collagen (I) by ~14 and ~21 fold, respectively, compared to intact untreated collagen (I) matrix. This study shows how nanoparticle-mediated hyperthermia inside tumor tissue can improve the transport of large nanoparticles through collagen (I) matrix. The ability to increase nanoparticles diffusion inside tumor stroma allows their targeting or other functionalities to take effect, thereby significantly improving cancer therapeutic or diagnostic outcome.Collagen (I) impairs the targeting of nanoparticles to tumor cells by obstructing their diffusion inside dense tumor interstitial matrix. This potentially makes large nanoparticles (>50 nm) reside near the tumor vessels and thereby compromises their functionality. Here we propose a strategy to locally improve nanoparticle transport inside collagen (I) component of the tumor tissue. We first used heat generating gold nanorods to alter collagen (I) matrix by local temperature elevation. We then explored this impact on the transport of 50 nm and 120 nm inorganic nanoparticles inside collagen (I). We demonstrated an increase in average diffusivity of 50 nm and 120 nm in the denatured collagen (I) by ~14 and ~21 fold, respectively, compared to intact untreated collagen (I) matrix. This study shows how nanoparticle-mediated hyperthermia inside tumor tissue can improve the transport of large nanoparticles through collagen (I) matrix. The ability to increase nanoparticles diffusion inside tumor stroma allows their targeting or other functionalities to take effect, thereby significantly improving cancer therapeutic or diagnostic outcome. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08463f
Transscleral diffusion of ethacrynic acid and sodium fluorescein
Lin, Cheng-Wen; Wang, Yong; Challa, Pratap; Epstein, David L.
2007-01-01
Purpose One of the current limitations in developing novel glaucoma drugs that target the trabecular meshwork (TM) is the induced corneal toxicity from eyedrop formulations. To avoid the corneal toxicity, an alternative approach would be to deliver TM drugs through the sclera. To this end, we quantified ex vivo diffusion coefficient of a potential TM drug, ethacrynic acid (ECA), and investigated mechanisms of ECA transport in the sclera. Methods An Ussing-type diffusion apparatus was built to measure the apparent diffusion coefficient of ECA in fresh porcine sclera at 4 °C. To understand mechanisms of ECA transport, we quantified the transscleral transport of a fluorescent tracer, sodium fluorescein (NaF), that has a similar molecular weight but is more hydrophilic compared to ECA. Furthermore, we developed a mathematical model to simulate the transport processes and used it to analyze the experimental data. The model was also used to investigate the dependence of diffusion coefficients on volume fraction of viable cells and the binding of NaF and ECA to scleral tissues. Results The diffusion coefficients of ECA and NaF in the sclera were 48.5±15.1x10-7 cm2/s (n=9) and 5.23±1.93x10-7 cm2/s (n=8), respectively. Both diffusion coefficients were insensitive to cell shrinkage caused by ECA during the diffusion experiments and cell damage caused by the storage of tissues ex vivo before the experiments. Binding of ECA to scleral tissues could not be detected. The apparent maximum binding capacity and the apparent equilibrium dissociation constant for NaF were 80±5 mM and 2.5±0.5 mM (n=3), respectively. Conclusions These data demonstrated that ECA diffusion was minimally hindered by structures in the sclera, presumably due to the lack of cells and binding sites for ECA in the sclera. PMID:17356511
Kirchhoff, H; Horstmann, S; Weis, E
2000-07-20
We investigate the role of plastoquinone (PQ) diffusion in the control of the photosynthetic electron transport. A control analysis reveals an unexpected flux control of the whole chain electron transport by photosystem (PS) II. The contribution of PSII to the flux control of whole chain electron transport was high in stacked thylakoids (control coefficient, CJ(PSII) =0.85), but decreased after destacking (CJ(PSII)=0.25). From an 'electron storage' experiment, we conclude that in stacked thylakoids only about 50 to 60% of photoreducable PQ is involved in the light-saturated linear electron transport. No redox equilibration throughout the membrane between fixed redox groups at PSII and cytochrome (cyt) bf complexes, and the diffusable carrier PQ is achieved. The data support the PQ diffusion microdomain concept by Lavergne et al. [J. Lavergne, J.-P. Bouchaud, P. Joliot, Biochim. Biophys. Acta 1101 (1992) 13-22], but we come to different conclusions about size, structure and size distribution of domains. From an analysis of cyt b6 reduction, as a function of PSII inhibition, we conclude that in stacked thylakoids about 70% of PSII is located in small domains, where only 1 to 2 PSII share a local pool of a few PQ molecules. Thirty percent of PSII is located in larger domains. No small domains were found in destacked thylakoids. We present a structural model assuming a hierarchy of specific, strong and weak interactions between PSII core, light harvesting complexes (LHC) II and cyt bf. Peripheral LHCII's may serve to connect PSII-LHCII supercomplexes to a flexible protein network, by which small closed lipid diffusion compartments are formed. Within each domain, PQ moves rapidly and shuttles electrons between PSII and cyt bf complexes in the close vicinity. At the same time, long range diffusion is slow. We conclude, that in high light, cyt bfcomplexes located in distant stromal lamellae (20 to 30%) are not involved in the linear electron transport.
NASA Astrophysics Data System (ADS)
Mohr, Manuel; Laemmel, Thomas; Maier, Martin; Schindler, Dirk
2017-04-01
Commonly it is assumed that soil gas transport is dominated by molecular diffusion. Few recent studies indicate that the atmosphere above the soil triggers non-diffusive gas transport processes in the soil, which can enhance soil gas transport and therefore soil gas efflux significantly. During high wind speed conditions, the so called pressure pumping effect has been observed: the enhancement of soil gas transport through dynamic changes in the air pressure field above the soil. However, the amplitudes and frequencies of the air pressure fluctuations responsible for pressure pumping are still uncertain. Moreover, an in situ observation of the pressure pumping effect is still missing. To investigate the pressure pumping effect, airflow measurements above and below the canopy of a Scots pine forest and high-precision relative air pressure measurements were conducted in the below-canopy space and in the soil over a measurement period of 16 weeks. To monitor the soil gas transport, a newly developed gas measurement system was used. The gas measurement system continuously injects helium as a tracer gas into the soil until a diffusive steady state is reached. With the steady state concentration profile of the tracer gas, it is possible to inversely model the gas diffusion coefficient profile of the soil. If the gas diffusion coefficient profile differed from steady state, we deduced that the soil gas transport is not only diffusive, but also influenced by non-diffusive processes. Results show that the occurrence of small air pressure fluctuations is strongly dependent on the mean above-canopy wind speed. The wind-induced air pressure fluctuations have mean amplitudes up to 10 Pa and lie in the frequency range 0.01-0.1 Hz. To describe the pumping motion of the air pressure field, the pressure pumping coefficient (PPC) was defined as the mean change in pressure per second. The PPC shows a clear quadratic dependence on mean above-canopy wind speed. Empirical modelling of the measured topsoil helium concentration demonstrated that the PPC is the most important predictor for changes in the topsoil helium concentration. Comparison of time periods with high PPC and periods of low PPC showed that the soil gas diffusion coefficient in depths between 5-10 cm increased up to 30% during periods of high PPC compared to steady state. Thus, the air pressure fluctuations observed in the atmosphere and described by the PPC penetrate into the soil and influence the topsoil gas transport.
Jiang, Fangming; Peng, Peng
2016-01-01
Underutilization due to performance limitations imposed by species and charge transports is one of the key issues that persist with various lithium-ion batteries. To elucidate the relevant mechanisms, two groups of characteristic parameters were proposed. The first group contains three characteristic time parameters, namely: (1) te, which characterizes the Li-ion transport rate in the electrolyte phase, (2) ts, characterizing the lithium diffusion rate in the solid active materials, and (3) tc, describing the local Li-ion depletion rate in electrolyte phase at the electrolyte/electrode interface due to electrochemical reactions. The second group contains two electric resistance parameters: Re and Rs, which represent respectively, the equivalent ionic transport resistance and the effective electronic transport resistance in the electrode. Electrochemical modeling and simulations to the discharge process of LiCoO2 cells reveal that: (1) if te, ts and tc are on the same order of magnitude, the species transports may not cause any performance limitations to the battery; (2) the underlying mechanisms of performance limitations due to thick electrode, high-rate operation, and large-sized active material particles as well as effects of charge transports are revealed. The findings may be used as quantitative guidelines in the development and design of more advanced Li-ion batteries. PMID:27599870
NASA Astrophysics Data System (ADS)
Vink, Rona; Behrendt, Horst
2002-11-01
Pollutant transport and management in the Rhine and Elbe basins is still of international concern, since certain target levels set by the international committees for protection of both rivers have not been reached. The analysis of the chain of emissions of point and diffuse sources to river loads will provide policy makers with a tool for effective management of river basins. The analysis of large river basins such as the Elbe and Rhine requires information on the spatial and temporal characteristics of both emissions and physical information of the entire river basin. In this paper, an analysis has been made of heavy metal emissions from various point and diffuse sources in the Rhine and Elbe drainage areas. Different point and diffuse pathways are considered in the model, such as inputs from industry, wastewater treatment plants, urban areas, erosion, groundwater, atmospheric deposition, tile drainage, and runoff. In most cases the measured heavy metal loads at monitoring stations are lower than the sum of the heavy metal emissions. This behaviour in large river systems can largely be explained by retention processes (e.g. sedimentation) and is dependent on the specific runoff of a catchment. Independent of the method used to estimate emissions, the source apportionment analysis of observed loads was used to determine the share of point and diffuse sources in the heavy metal load at a monitoring station by establishing a discharge dependency. The results from both the emission analysis and the source apportionment analysis of observed loads were compared and gave similar results. Between 51% (for Hg) and 74% (for Pb) of the total transport in the Elbe basin is supplied by inputs from diffuse sources. In the Rhine basin diffuse source inputs dominate the total transport and deliver more than 70% of the total transport. The diffuse hydrological pathways with the highest share are erosion and urban areas.
Visualizing the kinetic power stroke that drives proton-coupled Zn(II) transport
Gupta, Sayan; Chai, Jin; Cheng, Jie; D'Mello, Rhijuta; Chance, Mark R.; Fu, Dax
2014-01-01
The proton gradient is a principal energy source for respiration-dependent active transport, but the structural mechanisms of proton-coupled transport processes are poorly understood. YiiP is a proton-coupled zinc transporter found in the cytoplasmic membrane of E. coli, and the transport-site of YiiP receives protons from water molecules that gain access to its hydrophobic environment and transduces the energy of an inward proton gradient to drive Zn(II) efflux1,2. This membrane protein is a well characterized member3-7 of the protein family of cation diffusion facilitators (CDFs) that occurs at all phylogenetic levels8-10. X-ray mediated hydroxyl radical labeling of YiiP and mass spectrometric analysis showed that Zn(II) binding triggered a highly localized, all-or-none change of water accessibility to the transport-site and an adjacent hydrophobic gate. Millisecond time-resolved dynamics revealed a concerted and reciprocal pattern of accessibility changes along a transmembrane helix, suggesting a rigid-body helical reorientation linked to Zn(II) binding that triggers the closing of the hydrophobic gate. The gated water access to the transport-site enables a stationary proton gradient to facilitate the conversion of zinc binding energy to the kinetic power stroke of a vectorial zinc transport. The kinetic details provide energetic insights into a proton-coupled active transport reaction. PMID:25043033
A New Numerical Scheme for Cosmic-Ray Transport
NASA Astrophysics Data System (ADS)
Jiang, Yan-Fei; Oh, S. Peng
2018-02-01
Numerical solutions of the cosmic-ray (CR) magnetohydrodynamic equations are dogged by a powerful numerical instability, which arises from the constraint that CRs can only stream down their gradient. The standard cure is to regularize by adding artificial diffusion. Besides introducing ad hoc smoothing, this has a significant negative impact on either computational cost or complexity and parallel scalings. We describe a new numerical algorithm for CR transport, with close parallels to two-moment methods for radiative transfer under the reduced speed of light approximation. It stably and robustly handles CR streaming without any artificial diffusion. It allows for both isotropic and field-aligned CR streaming and diffusion, with arbitrary streaming and diffusion coefficients. CR transport is handled explicitly, while source terms are handled implicitly. The overall time step scales linearly with resolution (even when computing CR diffusion) and has a perfect parallel scaling. It is given by the standard Courant condition with respect to a constant maximum velocity over the entire simulation domain. The computational cost is comparable to that of solving the ideal MHD equation. We demonstrate the accuracy and stability of this new scheme with a wide variety of tests, including anisotropic streaming and diffusion tests, CR-modified shocks, CR-driven blast waves, and CR transport in multiphase media. The new algorithm opens doors to much more ambitious and hitherto intractable calculations of CR physics in galaxies and galaxy clusters. It can also be applied to other physical processes with similar mathematical structure, such as saturated, anisotropic heat conduction.
NASA Astrophysics Data System (ADS)
Ebrahimi, Ali; Or, Dani
2017-04-01
The sensitivity of the Earth's polar regions to raising global temperatures is reflected in rapidly changing hydrological processes with pronounced seasonal thawing of permafrost soil and increased biological activity. Of particular concern is the potential release of large amounts of soil carbon and the stimulation of other soil-borne GHG emissions such as methane. Soil methanotrophic and methanogenic microbial communities rapidly adjust their activity and spatial organization in response to permafrost thawing and a host of other environmental factors. Soil structural elements such as aggregates and layering and hydration status affect oxygen and nutrient diffusion processes thereby contributing to methanogenic activity within temporal anoxic niches (hotspots or hot-layers). We developed a mechanistic individual based model to quantify microbial activity dynamics within soil pore networks considering, hydration, temperature, transport processes and enzymatic activity associated with methane production in soil. The model was the upscaled from single aggregates (or hotspots) to quantifying emissions from soil profiles in which freezing/thawing processes provide macroscopic boundary conditions for microbial activity at different soil depths. The model distinguishes microbial activity in aerate bulk soil from aggregates (or submerged parts of the profile) for resolving methane production and oxidation rates. Methane transport pathways through soil by diffusion and ebullition of bubbles vary with hydration dynamics and affect emission patterns. The model links seasonal thermal and hydrologic dynamics with evolution of microbial community composition and function affecting net methane emissions in good agreement with experimental data. The mechanistic model enables systematic evaluation of key controlling factors in thawing permafrost and microbial response (e.g., nutrient availability, enzyme activity, PH) on long term methane emissions and carbon decomposition rates in the rapidly changing polar regions.
NASA Astrophysics Data System (ADS)
Lee, Yueh-Lin; Duan, Yuhua; Morgan, Dane; Sorescu, Dan; Abernathy, Harry
Cation diffusion in La1-xSrxMnO3+/-δ (LSM) and in related perovskite materials play an important role in controlling long term performance and stability of solid oxide fuel cell (SOFCs) cathodes. Due to sluggish rates of cation diffusion and complex coupling between defect chemistry and cation diffusion pathways, currently there is still lack of quantitative theoretical model predictions on cation diffusivity vs. T and P(O2) to describe experimental cation tracer diffusivities. In this work, based on ab initio modeling of LSM defect chemistry and migration barriers of the possible cation diffusion pathways, we assess the rates of A-site and B-site cation diffusion in a wide range of T and P(O2) at x =0.0 and 0.2 for SOFC applications. We demonstrate the active cation diffusion pathways in LSM involve cation defect clusters as cation transport carriers, where reduction in the cation migration barriers, which are governed by the steric effect associated with the metal-oxygen cage in the perovskite lattice, is much greater than the penalty of repulsive interaction in the A-site and B-site cation vacancy clusters, leading to higher cation diffusion rates as compared to those of single cation vacancy hopping mechanisms. The predicted Mn and La/Sr cation self-diffusion coefficients of LSM at at x =0.0 and 0.2 along with their 1/T and P(O2) dependences, are in good agreement with the experimental tracer diffusion coefficients.
A diffusive ink transport model for lipid dip-pen nanolithography.
Urtizberea, A; Hirtz, M
2015-10-14
Despite diverse applications, phospholipid membrane stacks generated by dip-pen nanolithography (DPN) still lack a thorough and systematic characterization that elucidates the whole ink transport process from writing to surface spreading, with the aim of better controlling the resulting feature size and resolution. We report a quantitative analysis and modeling of the dependence of lipid DPN features (area, height and volume) on dwell time and relative humidity. The ink flow rate increases with humidity in agreement with meniscus size growth, determining the overall feature size. The observed time dependence indicates the existence of a balance between surface spreading and the ink flow rate that promotes differences in concentration at the meniscus/substrate interface. Feature shape is controlled by the substrate surface energy. The results are analyzed within a modified model for the ink transport of diffusive inks. At any humidity the dependence of the area spread on the dwell time shows two diffusion regimes: at short dwell times growth is controlled by meniscus diffusion while at long dwell times surface diffusion governs the process. The critical point for the switch of regime depends on the humidity.
McCarthy, M R; Vandegriff, K D; Winslow, R M
2001-08-30
We compared rates of oxygen transport in an in vitro capillary system using red blood cells (RBCs) and cell-free hemoglobins. The axial PO(2) drop down the capillary was calculated using finite-element analysis. RBCs, unmodified hemoglobin (HbA(0)), cross-linked hemoglobin (alpha alpha-Hb) and hemoglobin conjugated to polyethylene-glycol (PEG-Hb) were evaluated. According to their fractional saturation curves, PEG-Hb showed the least desaturation down the capillary, which most closely matched the RBCs; HbA(0) and alpha alpha-Hb showed much greater desaturation. A lumped diffusion parameter, K*, was calculated based on the Fick diffusion equation with a term for facilitated diffusion. The overall rates of oxygen transfer are consistent with hemoglobin diffusion rates according to the Stokes-Einstein Law and with previously measured blood pressure responses in rats. This study provides a conceptual framework for the design of a 'blood substitute' based on mimicking O(2) transport by RBCs to prevent autoregulatory changes in blood flow and pressure.
Physics-based agent to simulant correlations for vapor phase mass transport.
Willis, Matthew P; Varady, Mark J; Pearl, Thomas P; Fouse, Janet C; Riley, Patrick C; Mantooth, Brent A; Lalain, Teri A
2013-12-15
Chemical warfare agent simulants are often used as an agent surrogate to perform environmental testing, mitigating exposure hazards. This work specifically addresses the assessment of downwind agent vapor concentration resulting from an evaporating simulant droplet. A previously developed methodology was used to estimate the mass diffusivities of the chemical warfare agent simulants methyl salicylate, 2-chloroethyl ethyl sulfide, di-ethyl malonate, and chloroethyl phenyl sulfide. Along with the diffusivity of the chemical warfare agent bis(2-chloroethyl) sulfide, the simulant diffusivities were used in an advection-diffusion model to predict the vapor concentrations downwind from an evaporating droplet of each chemical at various wind velocities and temperatures. The results demonstrate that the simulant-to-agent concentration ratio and the corresponding vapor pressure ratio are equivalent under certain conditions. Specifically, the relationship is valid within ranges of measurement locations relative to the evaporating droplet and observation times. The valid ranges depend on the relative transport properties of the agent and simulant, and whether vapor transport is diffusion or advection dominant. Published by Elsevier B.V.
The improvement of the method of equivalent cross section in HTR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, J.; Li, F.
The Method of Equivalence Cross-Sections (MECS) is a combined transport-diffusion method. By appropriately adjusting the diffusion coefficient of homogenized absorber region, the diffusion theory could yield satisfactory results for the full core model with strong neutron absorber material, for example the control rod in High temperature gas cooled reactor (HTR). Original implementation of MECS based on 1-D cell transport model has some limitation on accuracy and applicability, a new implementation of MECS based on 2-D transport model are proposed and tested in this paper. This improvement can extend the MECS to the calculation of twin small absorber ball system whichmore » have a non-circular boring in graphite reflector and different radial position. A least-square algorithm for the calculation of equivalent diffusion coefficient is adopted, and special treatment for diffusion coefficient for higher energy group is proposed in the case that absorber is absent. Numerical results to adopt MECS into control rod calculation in HTR are encouraging. However, there are some problems left. (authors)« less
Studies of Cu adatom island ripening on Cu(100) by LEEM
NASA Astrophysics Data System (ADS)
Bussmann, Ezra; Kellogg, Gary L.
2007-03-01
Simple metal surfaces are model systems for characterizing kinetic processes governing the growth and stability of nanoscale structures. It is generally presumed that diffusive transport of adatoms across terraces determines the rate of these processes. However, STM studies in the temperature range T˜330-420 K reveal that transport between step edges on the Cu(100) surface is limited by detachment barriers at the step edges, rather than by the adatom diffusion barrier.^1 This is because on the Cu(100) surface, mass transport is mediated primarily by vacancies, instead of adatoms. We have used low energy electron microscopy (LEEM) movies to characterize coarsening of Cu islands on the Cu(100) surface in the range T˜460-560 K. By measuring the temperature dependence of the island decay rate we find an activation barrier of 0.9±0.1 eV. This value is comparable to the 0.80±0.03 eV barrier found in STM studies.^1 However, we are not able to conclude that transport is entirely detachment limited at these elevated temperatures. This work serves as background to establish whether or not Pd alloying in the Cu(100) surface will slow Cu surface transport. ^2 1. C. Kl"unker, et al., PRB 58, R7556 (1998). 2. M. L. Grant, et al., PRL 86, 4588 (2001). Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. DOE NNSA, Contract No. DE-AC04-94AL85000.
Essary, Brandin D; Marshall, Pamela A
2009-08-01
FUN-1 [2-chloro-4-(2,3-dihydro-3-methyl-(benzo-1,3-thiazol-2-yl)-methylidene)-1-phenylquinolinium iodide] is a fluorescent dye used in studies of yeast and other fungi to monitor cell viability in the research lab and to assay for active fungal infection in the clinical setting. When the plasma membrane is intact, fungal cells internalize FUN-1 and the dye is seen as diffuse green cytosolic fluorescence. FUN-1 is then transported to the vacuole in metabolically active wild type cells and subsequently is compacted into fluorescent red cylindrical intravacuolar structures (CIVS) by an unknown transport pathway. This dye is used to determine yeast viability, as only live cells form CIVS. However, in live Saccharomyces cerevisiae with impaired protein sorting to the yeast vacuole, we report decreased to no CIVS formation, depending on the cellular location of the block in the sorting pathway. Cells with a block in vesicle-mediated transport from the Golgi to prevacuolar compartment (PVC) or with a block in recycling from the PVC to the Golgi demonstrate a substantial impairment in CIVS formation. Instead, the FUN-1 dye is seen either in small punctate structures under fluorescence or as diffuse red cytosol under white light. Thus, researchers using FUN-1 should be cognizant of the limitations of this procedure in determining cell viability as there are viable yeast mutants with impaired CIVS formation.
NASA Astrophysics Data System (ADS)
Kotaka, Toshikazu; Tabuchi, Yuichiro; Mukherjee, Partha P.
2015-04-01
Cost reduction is a key issue for commercialization of fuel cell electric vehicles (FCEV). High current density operation is a solution pathway. In order to realize high current density operation, it is necessary to reduce mass transport resistance in the gas diffusion media commonly consisted of gas diffusion layer (GDL) and micro porous layer (MPL). However, fundamental understanding of the underlying mass transport phenomena in the porous components is not only critical but also not fully understood yet due to the inherent microstructural complexity. In this study, a comprehensive analysis of electron and oxygen transport in the GDL and MPL is conducted experimentally and numerically with three-dimensional (3D) microstructural data to reveal the structure-transport relationship. The results reveal that the mass transport in the GDL is strongly dependent on the local microstructural variations, such as local pore/solid volume fractions and connectivity. However, especially in the case of the electrical conductivity of MPL, the contact resistance between carbon particles is the dominant factor. This suggests that reducing the contact resistance between carbon particles and/or the number of contact points along the transport pathway can improve the electrical conductivity of MPL.
Diffusive vs. impulsive energetic electron transport during radiation belt storms
NASA Astrophysics Data System (ADS)
Vassiliadis, D.; Koepke, M.; Tornquist, M.
2008-12-01
Earth's electron radiation belts are continually replenished by inward particle transport (as well as other, local acceleration processes) taking place during radiation belt storms. For some storms the radial transport is primarily diffusive while for others it is impulsive, or characterized by injections. To distinguish between these types of inward transport, we first use a dynamic model of the phase-space density as measured by POLAR/HIST and expressed in terms of adiabatic invariants [Green and Kivelson, 2004]. In a review of storms from 1997 to 2004 the coefficients of the model are peaked at characteristic temporal and phase- space (mu, k, L*) scales during specific storms. The transport is quantified in terms of those invariants which are violated and identified with peaks of the electron distribution in invariant space. Second, we run guiding- center simulations in wave fields fitted to in situ measurements complemented at low and high L by ground ULF pulsations. The modes of response identified in earlier studies from SAMPEX and POLAR electron flux measurements are now associated with primarily diffusive transport in the central range of the outer belt, L=4-8, and primarily impulsive transport near the plasmapause boundary, L=3-4.
Diffusion in translucent media.
Shi, Zhou; Genack, Azriel Z
2018-05-10
Diffusion is the result of repeated random scattering. It governs a wide range of phenomena from Brownian motion, to heat flow through window panes, neutron flux in fuel rods, dispersion of light in human tissue, and electronic conduction. It is universally acknowledged that the diffusion approach to describing wave transport fails in translucent samples thinner than the distance between scattering events such as are encountered in meteorology, astronomy, biomedicine, and communications. Here we show in optical measurements and numerical simulations that the scaling of transmission and the intensity profiles of transmission eigenchannels have the same form in translucent as in opaque media. Paradoxically, the similarities in transport across translucent and opaque samples explain the puzzling observations of suppressed optical and ultrasonic delay times relative to predictions of diffusion theory well into the diffusive regime.
Diffusive flux in a model of stochastically gated oxygen transport in insect respiration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berezhkovskii, Alexander M.; Shvartsman, Stanislav Y.
Oxygen delivery to insect tissues is controlled by transport through a branched tubular network that is connected to the atmosphere by valve-like gates, known as spiracles. In certain physiological regimes, the spiracles appear to be randomly switching between open and closed states. Quantitative analysis of this regime leads a reaction-diffusion problem with stochastically switching boundary condition. We derive an expression for the diffusive flux at long times in this problem. Our approach starts with the derivation of the passage probability for a single particle that diffuses between a stochastically gated boundary, which models the opening and closing spiracle, and themore » perfectly absorbing boundary, which models oxygen absorption by the tissue. This passage probability is then used to derive an expression giving the diffusive flux as a function of the geometric parameters of the tube and characteristic time scales of diffusion and gate dynamics.« less
Diffusion of a Concentrated Lattice Gas in a Regular Comb Structure
NASA Astrophysics Data System (ADS)
Garcia, Paul; Wentworth, Christopher
2008-10-01
Understanding diffusion in constrained geometries is of interest in a variety of contexts as varied as mass transport in disordered solids, such as a percolation cluster, or intercellular transport of water molecules in biological tissue. In this investigation we explore diffusion in a very simple constrained geometry: a comb-like structure involving a one-dimensional backbone of lattice sites with regularly spaced teeth of fixed length. The model considered assumes a fixed concentration of diffusing particles can hop to nearest-neighbor sites only, and they do not interact with each other except that double occupancy is not allowed. The system is simulated using a Monte Carlo simulation procedure. The mean-square displacement of a tagged particle is calculated from the simulation as a function of time. The simulation shows normal diffusive behavior after a period of anomalous diffusion that increases as the tooth size increases.
Diffusive flux in a model of stochastically gated oxygen transport in insect respiration.
Berezhkovskii, Alexander M; Shvartsman, Stanislav Y
2016-05-28
Oxygen delivery to insect tissues is controlled by transport through a branched tubular network that is connected to the atmosphere by valve-like gates, known as spiracles. In certain physiological regimes, the spiracles appear to be randomly switching between open and closed states. Quantitative analysis of this regime leads a reaction-diffusion problem with stochastically switching boundary condition. We derive an expression for the diffusive flux at long times in this problem. Our approach starts with the derivation of the passage probability for a single particle that diffuses between a stochastically gated boundary, which models the opening and closing spiracle, and the perfectly absorbing boundary, which models oxygen absorption by the tissue. This passage probability is then used to derive an expression giving the diffusive flux as a function of the geometric parameters of the tube and characteristic time scales of diffusion and gate dynamics.
Kokkonen, H T; Chin, H C; Töyräs, J; Jurvelin, J S; Quinn, T M
2017-04-01
Solute transport through the extracellular matrix (ECM) is crucial to chondrocyte metabolism. Cartilage injury affects solute transport in cartilage due to alterations in ECM structure and solute-matrix interactions. Therefore, cartilage injury may be detected by using contrast agent-based clinical imaging. In the present study, effects of mechanical injury on transport of negatively charged contrast agents in cartilage were characterized. Using cartilage plugs injured by mechanical compression protocol, effective partition coefficients and diffusion fluxes of iodine- and gadolinium-based contrast agents were measured using high resolution microCT imaging. For all contrast agents studied, effective diffusion fluxes increased significantly, particularly at early times during the diffusion process (38 and 33% increase after 4 min, P < 0.05 for iodine and Gd-DTPA; and 76% increase after 10 min for diatrizoate, P < 0.05). Effective partition coefficients were unaffected in mechanically injured cartilage. Mechanical injury reduced PG content and collagen integrity in cartilage superficial zone. This study suggests that alterations in contrast agent diffusion flux, a non-equilibrium transport parameter, provides a more sensitive indicator for assessment of cartilage matrix integrity than partition coefficient and the equilibrium distribution of solute. These findings may help in developing clinical methods of contrast agent-based imaging to detect cartilage injury.
Proton Diffusion through Bilayer Pores
McDaniel, Jesse G.; Yethiraj, Arun
2017-09-26
The transport of protons through channels in complex environments is important in biology and materials science. In this work, we use multistate empirical valence bond simulations to study proton transport within a well-defined bilayer pore in a lamellar L β phase lyotropic liquid crystal (LLC). The LLC is formed from the self-assembly of dicarboxylate gemini surfactants in water, and a bilayer-spanning pore of radius of approximately 3–5 Å results from the uneven partitioning of surfactants between the two leaflets of the lamella. Local proton diffusion within the pore is significantly faster than diffusion at the bilayer surface, which is duemore » to the greater hydrophobicity of the surfactant/water interface within the pore. Proton diffusion proceeds by surface transport along exposed hydrophobic pockets at the surfactant/water interface and depends on the continuity of hydronium–water hydrogen bond networks. At the bilayer surface, there is a reduced fraction of the “Zundel” intermediates that are central to the Grotthuss transport mechanism, whereas the fraction of these species within the bilayer pore is similar to that in bulk water. Our results demonstrate that the chemical nature of the confining interface, in addition to confinement length scale, is an important determiner of local proton transport in nanoconfined aqueous environments.« less
NASA Astrophysics Data System (ADS)
Martin-Belda, D.; Cameron, R. H.
2016-02-01
Aims: We aim to determine the effect of converging flows on the evolution of a bipolar magnetic region (BMR), and to investigate the role of these inflows in the generation of poloidal flux. We also discuss whether the flux dispersal due to turbulent flows can be described as a diffusion process. Methods: We developed a simple surface flux transport model based on point-like magnetic concentrations. We tracked the tilt angle, the magnetic flux and the axial dipole moment of a BMR in simulations with and without inflows and compared the results. To test the diffusion approximation, simulations of random walk dispersal of magnetic features were compared against the predictions of the diffusion treatment. Results: We confirm the validity of the diffusion approximation to describe flux dispersal on large scales. We find that the inflows enhance flux cancellation, but at the same time affect the latitudinal separation of the polarities of the bipolar region. In most cases the latitudinal separation is limited by the inflows, resulting in a reduction of the axial dipole moment of the BMR. However, when the initial tilt angle of the BMR is small, the inflows produce an increase in latitudinal separation that leads to an increase in the axial dipole moment in spite of the enhanced flux destruction. This can give rise to a tilt of the BMR even when the BMR was originally aligned parallel to the equator.
Radial diffusion, vertical transport, and refixation of labeled bicarbonate in scots pine stems
NASA Astrophysics Data System (ADS)
Marshall, J. D.; Tarvainen, L.; Wallin, G.
2016-12-01
The CO2 produced by a respiring stem provides an index of metabolic activity in the stem and a quantitative estimate of an important component of the forest carbon budget. Production of CO2 by a given stem volume is lost by three competing processes. First, some diffuses radially outward through the bark. Second, some is dissolved and vertically transported upward out of the control volume by the xylem stream. Third, some is refixed by photosynthesis under the bark. The relative balance among these pathways was quantified in 17-m Scots pine trees by 13C-bicarbonate labeling of the xylem stream and monitoring of the 13CO2 in the xylem water, along with continuous monitoring of the radial diffusive flux at four canopy heights and in transpiration from leaves. Most of the label diffused out radially, as 13CO2, immediately above the labeling site, over about a week. The pulse was weakly and briefly detected 4 m above that height. Further up the stem it was not detected at all. We detected significant refixation of CO2 in the stems at all heights above 4 m, where the bark becomes papery and thin, but the label was so weak at this height that refixation had little influence on the pulse chase. We conclude that the vertical flux is negligible in Scots pine, but that the refixation flux must be accounted for in estimates of whole-stem CO2 efflux.
Development of Tokamak Transport Solvers for Stiff Confinement Systems
NASA Astrophysics Data System (ADS)
St. John, H. E.; Lao, L. L.; Murakami, M.; Park, J. M.
2006-10-01
Leading transport models such as GLF23 [1] and MM95 [2] describe turbulent plasma energy, momentum and particle flows. In order to accommodate existing transport codes and associated solution methods effective diffusivities have to be derived from these turbulent flow models. This can cause significant problems in predicting unique solutions. We have developed a parallel transport code solver, GCNMP, that can accommodate both flow based and diffusivity based confinement models by solving the discretized nonlinear equations using modern Newton, trust region, steepest descent and homotopy methods. We present our latest development efforts, including multiple dynamic grids, application of two-level parallel schemes, and operator splitting techniques that allow us to combine flow based and diffusivity based models in tokamk simulations. 6pt [1] R.E. Waltz, et al., Phys. Plasmas 4, 7 (1997). [2] G. Bateman, et al., Phys. Plasmas 5, 1793 (1998).
Transport properties of an asymmetric mixture in the dense plasma regime
Ticknor, Christopher; Kress, Joel David; Collins, Lee A.; ...
2016-06-23
Here, we study how concentration changes ionic transport properties along isobars-isotherms for a mixture of hydrogen and silver, representative of turbulent layers relevant to inertial confinement fusion and astrophysics. Hydrogen will typically be fully ionized while silver will be only partially ionized but can have a large effective charge. This will lead to very different physical conditions for the H and Ag. Large first principles orbital free molecular dynamics simulations are performed and the resulting transport properties are analyzed. Comparisons are made with transport theory in the kinetic regime and in the coupled regime. The addition of a small amountmore » of heavy element in a light material has a dramatic effect on viscosity and diffusion of the mixture. This effect is explained through kinetic theory as a manifestation of a crossover between classical diffusion and Lorentz diffusion.« less
Tomographic imaging of non-local media based on space-fractional diffusion models
NASA Astrophysics Data System (ADS)
Buonocore, Salvatore; Semperlotti, Fabio
2018-06-01
We investigate a generalized tomographic imaging framework applicable to a class of inhomogeneous media characterized by non-local diffusive energy transport. Under these conditions, the transport mechanism is well described by fractional-order continuum models capable of capturing anomalous diffusion that would otherwise remain undetected when using traditional integer-order models. Although the underlying idea of the proposed framework is applicable to any transport mechanism, the case of fractional heat conduction is presented as a specific example to illustrate the methodology. By using numerical simulations, we show how complex inhomogeneous media involving non-local transport can be successfully imaged if fractional order models are used. In particular, results will show that by properly recognizing and accounting for the fractional character of the host medium not only allows achieving increased resolution but, in case of strong and spatially distributed non-locality, it represents the only viable approach to achieve a successful reconstruction.
Transport parameter estimation from lymph measurements and the Patlak equation.
Watson, P D; Wolf, M B
1992-01-01
Two methods of estimating protein transport parameters for plasma-to-lymph transport data are presented. Both use IBM-compatible computers to obtain least-squares parameters for the solvent drag reflection coefficient and the permeability-surface area product using the Patlak equation. A matrix search approach is described, and the speed and convenience of this are compared with a commercially available gradient method. The results from both of these methods were different from those of a method reported by Reed, Townsley, and Taylor [Am. J. Physiol. 257 (Heart Circ. Physiol. 26): H1037-H1041, 1989]. It is shown that the Reed et al. method contains a systematic error. It is also shown that diffusion always plays an important role for transmembrane transport at the exit end of a membrane channel under all conditions of lymph flow rate and that the statement that diffusion becomes zero at high lymph flow rate depends on a mathematical definition of diffusion.
Cosmic-ray propagation with DRAGON2: I. numerical solver and astrophysical ingredients
NASA Astrophysics Data System (ADS)
Evoli, Carmelo; Gaggero, Daniele; Vittino, Andrea; Di Bernardo, Giuseppe; Di Mauro, Mattia; Ligorini, Arianna; Ullio, Piero; Grasso, Dario
2017-02-01
We present version 2 of the DRAGON code designed for computing realistic predictions of the CR densities in the Galaxy. The code numerically solves the interstellar CR transport equation (including inhomogeneous and anisotropic diffusion, either in space and momentum, advective transport and energy losses), under realistic conditions. The new version includes an updated numerical solver and several models for the astrophysical ingredients involved in the transport equation. Improvements in the accuracy of the numerical solution are proved against analytical solutions and in reference diffusion scenarios. The novel features implemented in the code allow to simulate the diverse scenarios proposed to reproduce the most recent measurements of local and diffuse CR fluxes, going beyond the limitations of the homogeneous galactic transport paradigm. To this end, several applications using DRAGON2 are presented as well. This new version facilitates the users to include their own physical models by means of a modular C++ structure.
Dispersive—diffusive transport of non-sorbed solute in multicomponent solutions
NASA Astrophysics Data System (ADS)
Hu, Qinhong; Brusseau, Mark L.
1995-10-01
The composition of fuels, mixed-solvent wastes and other contaminants that find their way into the subsurface are frequently chemically complex. The dispersion and diffusion characteristics of multicomponent solutions in soil have rarely been compared to equivalent single-solute systems. The purpose of this work was to examine the diffusive and dispersive transport of single- and multi-component solutions in homogeneous porous media. The miscible displacement technique was used to investigate the transport behavior of 14C-labelled 2,4-dichlorophenoxyacetic acid ( 2,4-D) in two materials for which sorption of 2,4-D was minimal. Comparison of breakthrough curves collected for 2,4-D in single- and multi-component solutions shows that there is little, if any, difference in transport behavior over a wide range of pore-water velocities (70, 7, 0.66 and 0.06 cm h -1). Thus, dispersivities measured with a non-sorbing single-solute solution should be applicable to multicomponent systems.
Davies, James F; Wilson, Kevin R
2016-02-16
The formation of ultraviscous, glassy, and amorphous gel states in aqueous aerosol following the loss of water results in nonequilibrium dynamics due to the extended time scales for diffusive mixing. Existing techniques for measuring water diffusion by isotopic exchange are limited by contact of samples with the substrate, and methods applied to infer diffusion coefficients from mass transport in levitated droplets requires analysis by complex coupled differential equations to derive diffusion coefficients. We present a new technique that combines contactless levitation with aerosol optical tweezers with isotopic exchange (D2O/H2O) to measure the water diffusion coefficient over a broad range (Dw ≈ 10(-12)-10(-17) m(2)·s(-1)) in viscous organic liquids (citric acid, sucrose, and shikimic acid) and inorganic gels (magnesium sulfate, MgSO4). For the organic liquids in binary and ternary mixtures, Dw depends on relative humidity and follows a simple compositional Vignes relationship. In MgSO4 droplets, water diffusivity decreases sharply with water activity and is consistent with predictions from percolation theory. These measurements show that, by combining micrometer-sized particle levitation (a contactless measurement with rapid mixing times) with an established probe of water diffusion, Dw can be simply and directly quantified for amorphous and glassy states that are inaccessible to existing methods.
Davies, James F.; Wilson, Kevin R.
2016-01-11
The formation of ultraviscous, glassy, and amorphous gel states in aqueous aerosol following the loss of water results in nonequilibrium dynamics due to the extended time scales for diffusive mixing. Existing techniques for measuring water diffusion by isotopic exchange are limited by contact of samples with the substrate, and methods applied to infer diffusion coefficients from mass transport in levitated droplets requires analysis by complex coupled differential equations to derive diffusion coefficients. Here, we present a new technique that combines contactless levitation with aerosol optical tweezers with isotopic exchange (D 2O/H 2O) to measure the water diffusion coefficient over amore » broad range (D w ≈ 10 -12-10 -17 m 2s -1) in viscous organic liquids (citric acid, sucrose, and shikimic acid) and inorganic gels (magnesium sulfate, MgSO 4). For the organic liquids in binary and ternary mixtures, D w depends on relative humidity and follows a simple compositional Vignes relationship. In MgSO 4 droplets, water diffusivity decreases sharply with water activity and is consistent with predictions from percolation theory. These measurements show that, by combining micrometer-sized particle levitation (a contactless measurement with rapid mixing times) with an established probe of water diffusion, D w can be simply and directly quantified for amorphous and glassy states that are inaccessible to existing methods.« less
Physical phenomena and the microgravity response
NASA Technical Reports Server (NTRS)
Todd, Paul
1989-01-01
The living biological cell is not a sack of Newtonian fluid containing systems of chemical reactions at equilibrium. It is a kinetically driven system, not a thermodynamically driven system. While the cell as a whole might be considered isothermal, at the scale of individual macromolecular events there is heat generated, and presumably sharp thermal gradients exist at the submicron level. Basic physical phenomena to be considered when exploring the cell's response to inertial acceleration include particle sedimentation, solutal convection, motility electrokinetics, cytoskeletal work, and hydrostatic pressure. Protein crystal growth experiments, for example, illustrate the profound effects of convection currents on macromolecular assembly. Reaction kinetics in the cell vary all the way from diffusion-limited to life-time limited. Transport processes vary from free diffusion, to facilitated and active transmembrane transport, to contractile-protein-driven motility, to crystalline immobilization. At least four physical states of matter exist in the cell: aqueous, non-aqueous, immiscible-aqueous, and solid. Levels of order vary from crystalline to free solution. The relative volumes of these states profoundly influence the cell's response to inertial acceleration. Such subcellular phenomena as stretch-receptor activation, microtubule re-assembly, synaptic junction formation, chemotactic receptor activation, and statolith sedimentation were studied recently with respect to both their basic mechanisms and their responsiveness to inertial acceleration. From such studies a widespread role of cytoskeletal organization is becoming apparent.
NASA Astrophysics Data System (ADS)
Bringuier, E.
2009-11-01
The paper analyses particle diffusion from a thermodynamic standpoint. The main goal of the paper is to highlight the conceptual connection between particle diffusion, which belongs to non-equilibrium statistical physics, and mechanics, which deals with particle motion, at the level of third-year university courses. We start out from the fact that, near equilibrium, particle transport should occur down the gradient of the chemical potential. This yields Fick's law with two additional advantages. First, splitting the chemical potential into 'mechanical' and 'chemical' contributions shows how transport and mechanics are linked through the diffusivity-mobility relationship. Second, splitting the chemical potential into entropic and energetic contributions discloses the respective roles of entropy maximization and energy minimization in driving diffusion. The paper addresses first unary diffusion, where there is only one mobile species in an immobile medium, and next turns to binary diffusion, where two species are mobile with respect to each other in a fluid medium. The interrelationship between unary and binary diffusivities is brought out and it is shown how binary diffusion reduces to unary diffusion in the limit of high dilution of one species amidst the other one. Self- and mutual diffusion are considered and contrasted within the thermodynamic framework; self-diffusion is a time-dependent manifestation of the Gibbs paradox of mixing.
Heat of transport of air in clay.
Minkin, Leonid; Shapovalov, Alexander S
2007-01-01
By measuring the thermomolecular pressure difference and using principles of irreversible thermodynamics, heat of transport of air in clay and its coefficient of diffusion are found. A comparison of thermotranspiration and pressure driven gas fluxes through concrete slab in homes is examined. It is shown that thermotranspiration air/radon flow may greatly exceed diffusion (pressure driven) flow in homes.