Peukert, S; Griffith, B A; Murray, P J; Macleod, C J A; Brazier, R E
2016-07-01
One of the major challenges for agriculture is to understand the effects of agricultural practices on soil properties and diffuse pollution, to support practical farm-scale land management. Three conventionally managed grassland fields with similar short-term management, but different ploughing histories, were studied on a long-term research platform: the North Wyke Farm Platform. The aims were to (i) quantify the between-field and within-field spatial variation in soil properties by geostatistical analysis, (ii) understand the effects of soil condition (in terms of nitrogen, phosphorus and carbon contents) on the quality of discharge water and (iii) establish robust baseline data before the implementation of various grassland management scenarios. Although the fields sampled had experienced the same land use and similar management for at least 6 years, there were differences in their mean soil properties. They showed different patterns of soil spatial variation and different rates of diffuse nutrient losses to water. The oldest permanent pasture field had the largest soil macronutrient concentrations and the greatest diffuse nutrient losses. We show that management histories affect soil properties and diffuse losses. Potential gains in herbage yield or benefits in water quality might be achieved by characterizing every field or by area-specific management within fields (a form of precision agriculture for grasslands). Permanent pasture per se cannot be considered a mitigation measure for diffuse pollution. The between- and within-field soil spatial variation emphasizes the importance of baseline characterization and will enable the reliable identification of any effects of future management change on the Farm Platform. Quantification of soil and water quality in grassland fields with contrasting management histories.Considerable spatial variation in soil properties and diffuse losses between and within fields.Contrasting management histories within and between fields strongly affected soil and water quality.Careful pasture management needed: the oldest pasture transferred the most nutrients from soil to water.
Water-in-Olivine Magma Ascent Chronometry: Every Crystal is a Clock
NASA Astrophysics Data System (ADS)
Newcombe, M. E.; Asimow, P. D.; Ferriss, E.; Barth, A.; Lloyd, A. S.; Hauri, E.; Plank, T. A.
2017-12-01
The syneruptive decompression rate of basaltic magma in volcanic conduits is thought to be a critical control on eruptive vigor. Recent efforts have constrained decompression rates using models of diffusive water loss from melt embayments (Lloyd et al. 2014; Ferguson et al. 2016), olivine-hosted melt inclusions (Chen et al. 2013; Le Voyer et al. 2014), and clinopyroxene phenocrysts (Lloyd et al. 2016). However, these techniques are difficult to apply because of the rarity of melt embayments and clinopyroxene phenocrysts suitable for analysis and the complexities associated with modeling water loss from melt inclusions. We are developing a new magma ascent chronometer based on syneruptive diffusive water loss from olivine phenocrysts. We have found water zonation in every olivine phenocryst we have measured, from explosive eruptions of Pavlof, Seguam, Fuego, Cerro Negro and Kilauea volcanoes. Phenocrysts were polished to expose a central plane normal to the crystallographic `b' axis and volatile concentration profiles were measured along `a' and `c' axes by SIMS or nanoSIMS. Profiles are compared to 1D and 3D finite-element models of diffusive water loss from olivine, with or without melt inclusions, whose boundaries are in equilibrium with a melt undergoing closed-system degassing. In every case, we observe faster water diffusion along the `a' axis, consistent with the diffusion anisotropy observed by Kohlstedt and Mackwell (1998) for the so-called `proton-polaron' mechanism of H-transport. Water concentration gradients along `a' match the 1D diffusion model with a diffusivity of 10-10 m2/s (see Plank et al., this meeting), olivine-melt partition coefficient of 0.0007-0.002 (based on melt inclusion-olivine pairs), and decompression rates equal to the best-fit values from melt embayment studies (Lloyd et al. 2014; Ferguson et al. 2016). Agreement between the melt embayment and water-in-olivine ascent chronometers at Fuego, Seguam, and Kilauea Iki demonstrates the potential of this new technique, which can be applied to any olivine-bearing mafic-intermediate eruption using common analytical tools (SIMS and FTIR). In theory, each crystal is a clock, with the potential to record variable ascent in the conduit, over the course of an eruption, and between eruptions.
Equatorial ground ice on Mars: Steady-state stability
NASA Technical Reports Server (NTRS)
Mellon, Michael T.; Jakosky, Bruce M.; Postawko, Susan E.
1993-01-01
Current Martian equatorial surface temperatures are too warm for water ice to exist at the surface for any appreciable length of time before subliming into the atmosphere. Subsurface temperatures are generally warmer still and, despite the presence of a diffusive barrier of porous regolith material, it has been shown by Smoluchowski, Clifford and Hillel, and Fanale et al. that buried ground ice will also sublime and be lost to the atmosphere in a relatively short time. We investigate the behavior of this subliming subsurface ice and show that it is possible for ice to maintain at a steady-state depth, where sublimation and diffusive loss to the atmosphere is balanced by resupply from beneath by diffusion and recondensation of either a deeper buried ice deposits or ground water. We examine the behavior of equatorial ground ice with a numercial time-marching molecular diffusion model. In our model we allow for diffusion of water vapor through a porous regolith, variations in diffusivity and porosity with ice content, and recondensation of sublimed water vapor. A regolith containing considerable amounts of ice can still be very porous, allowing water vapor to diffuse up from deeper within the ice layer where temperatures are warmer due to the geothermal gradient. This vapor can then recondense nearer to the surface where ice had previously sublimed and been lost to the atmosphere. As a result we find that ice deposits migrate to find a steady-state depth, which represents a balance between diffusive loss to the atmosphere through the overlying porous regolith and diffusive resupply through a porous icy regolith below. This depth depends primarily on the long-term mean surface temperature and the nature of the geothermal gradient, and is independent of the ice-free porosity and the regolith diffusivity. Only the rate of loss of ground ice depends on diffusive properties.
Modeling evaporation from spent nuclear fuel storage pools: A diffusion approach
NASA Astrophysics Data System (ADS)
Hugo, Bruce Robert
Accurate prediction of evaporative losses from light water reactor nuclear power plant (NPP) spent fuel storage pools (SFPs) is important for activities ranging from sizing of water makeup systems during NPP design to predicting the time available to supply emergency makeup water following severe accidents. Existing correlations for predicting evaporation from water surfaces are only optimized for conditions typical of swimming pools. This new approach modeling evaporation as a diffusion process has yielded an evaporation rate model that provided a better fit of published high temperature evaporation data and measurements from two SFPs than other published evaporation correlations. Insights from treating evaporation as a diffusion process include correcting for the effects of air flow and solutes on evaporation rate. An accurate modeling of the effects of air flow on evaporation rate is required to explain the observed temperature data from the Fukushima Daiichi Unit 4 SFP during the 2011 loss of cooling event; the diffusion model of evaporation provides a significantly better fit to this data than existing evaporation models.
Vroblesky, Don A.; Peters, Brian C.
2000-01-01
Volatile organic compound concentrations in water from diffusion samplers were compared to concentrations in water obtained by low-flow purging at 15 observation wells at the Naval Air Station North Island, San Diego, California. Multiple diffusion samplers were installed in the wells. In general, comparisons using bladder pumps and diffusion samplers showed similar volatile organic carbon concentrations. In some wells, sharp concentration gradients were observed, such as an increase in cis-1,2-dichloroethene concentration from 100 to 2,600 micrograms per liter over a vertical distance of only 3.4 feet. In areas where such sharp gradients were observed, concentrations in water obtained by low-flow sampling at times reflected an average concentration over the area of influence; however, concentrations obtained by using the diffusion sampler seemed to represent the immediate vicinity of the sampler. When peristaltic pumps were used to collect ground-water samples by low-flow purging, the volatile organic compound concentrations commonly were lower than concentrations obtained by using diffusion samplers. This difference may be due to loss of volatiles by degassing under negative pressures in the sampling lines induced while using the peristaltic pump, mixing in the well screen, or possible short-circuiting of water from an adjacent depth. Diffusion samplers placed in buckets of freephase jet fuel (JP-5) and Stoddard solvent from observation wells did not show evidence of structural integrity loss during the 2 months of equilibration, and volatile organic compounds detected in the free-phase fuel also were detected in the water from the diffusion samplers.
Ion beam analysis of diffusion in heterogeneous materials
NASA Astrophysics Data System (ADS)
Clough, A. S.; Jenneson, P. M.
1998-04-01
Ion-beam analysis has been applied to a variety of problems involving diffusion in heterogeneous materials. An energy loss technique has been used to study both the diffusion of water and the surface segregation of fluoropolymers in polymeric matrices. A scanning micro-beam technique has been developed to allow water concentrations in hydrophilic polymers and cements to be measured together with associated solute elements. It has also been applied to the diffusion of shampoo into hair.
Evaluation of volatilization as a natural attenuation pathway for MTBE
Lahvis, Matthew A.; Baehr, Arthur L.; Baker, Ronald J.
2004-01-01
Volatilization and diffusion through the unsaturated zone can be an important pathway for natural attenuation remediation of methyl tert-butyl ether (MTBE) at gasoline spill sites. The significance of this pathway depends primarily on the distribution of immiscible product within the unsaturated zone and the relative magnitude of aqueous-phase advection (ground water recharge) to gaseous-phase diffusion. At a gasoline spill site in Laurel Bay, South Carolina, rates of MTBE volatilization from ground water downgradient from the source are estimated by analyzing the distribution of MTBE in the unsaturated zone above a solute plume. Volatilization rates of MTBE from ground water determined by transport modeling ranged from 0.0020 to 0.0042 g m-2/year, depending on the assumed rate of ground water recharge. Although diffusive conditions at the Laurel Bay site are favorable for volatilization, mass loss of MTBE is insignificant over the length (230 m) of the solute plume. Based on this analysis, significant volatilization of MTBE from ground water downgradient from source areas at other sites is not likely. In contrast, model results indicate that volatilization coupled with diffusion to the atmosphere could be a significant mass loss pathway for MTBE in source areas where residual product resides above the capillary zone. Although not documented, mass loss of MTBE at the Laurel Bay site due to volatilization and diffusion to the atmosphere are predicted to be two to three times greater than mass loading of MTBE to ground water due to dissolution and recharge. This result would imply that volatilization in the source zone may be the critical natural attenuation pathway for MTBE at gasoline spill sites, especially when considering capillary zone limitations on volatilization of MTBE from ground water and the relative recalcitrance of MTBE to biodegradation.
Two dimensional finite element modelling for dynamic water diffusion through stratum corneum.
Xiao, Perry; Imhof, Robert E
2012-10-01
Solvents penetration through in vivo human stratum corneum (SC) has always been an interesting research area for trans-dermal drug delivery studies, and the importance of intercellular routes (diffuse in between corneocytes) and transcellular routes (diffuse through corneocytes) during diffusion is often debatable. In this paper, we have developed a two dimensional finite element model to simulate the dynamic water diffusion through the SC. It is based on the brick-and-mortar model, with brick represents corneocytes and mortar represents lipids, respectively. It simulates the dynamic water diffusion process through the SC from pre-defined initial conditions and boundary conditions. Although the simulation is based on water diffusions, the principles can also be applied to the diffusions of other topical applied substances. The simulation results show that both intercellular routes and transcellular routes are important for water diffusion. Although intercellular routes have higher flux rates, most of the water still diffuse through transcellular routes because of the high cross area ratio of corneocytes and lipids. The diffusion water flux, or trans-epidermal water loss (TEWL), is reversely proportional to corneocyte size, i.e. the larger the corneocyte size, the lower the TEWL, and vice versa. There is also an effect of the SC thickness, external air conditions and diffusion coefficients on the water diffusion through SC on the resulting TEWL. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Huddleston, D.; Neugebauer, M.; Goldstein, B.
1994-01-01
The shape of the velocity distribution of water-group ions observed by the Giotto ion mass spectrometer on its approach to comet Halley is modeled to derive empirical values for the rates on ionization, energy diffusion, and loss in the mid-cometosheath.
Numerical approach to describe complementary drying of banana slices osmotically dehydrated
NASA Astrophysics Data System (ADS)
da Silva Júnior, Aluízio Freire; da Silva, Wilton Pereira; de Farias Aires, Juarez Everton; Farias Aires, Kalina Lígia C. A.
2018-02-01
In this work, diffusion model was used to describe the water loss in the complementary drying process of cylindrical slices of banana pretreated by osmotic dehydration. A numerical solution has been proposed for the diffusion equation in cylindrical coordinates, which was obtained through the Finite Volume Method. The diffusion equation was discretized assuming that the effective water diffusivity and the dimensions of a finite cylinder may vary; also considering the boundary condition of the third kind. The banana slices were cut in length of about 1.00 cm and average radius 1.70 cm before osmotic pretreatment, and completed the pretreatment with length of about 0.74 cm and average radius 1.40 cm. The complementary drying was carried out in a kiln with circulation and air exchange. Drying temperatures were the same as used in the osmotic pretreatment (40 to 70 °C). The proposed model described well the water loss, with good statistical indicators for all fits.
Hannafin, J A; Arnoczky, S P
1994-05-01
This study was designed to determine the effects of various loading conditions (no load and static and cyclic tensile load) on the water content and pattern of nutrient diffusion of canine flexor tendons in vitro. Region D (designated by Okuda et al.) of the flexor digitorum profundus was subjected to a cyclic or static tensile load of 100 g for times ranging from 5 minutes to 24 hours. The results demonstrated a statistically significant loss of water in tendons subjected to both types of load as compared with the controls (no load). This loss appeared to progress with time. However, neither static nor cyclic loading appeared to alter the diffusion of 3H-glucose into the tendon over a 24-hour period compared with the controls. These results suggest that any benefit in tendon repair derived from intermittent passive motion is probably not a result of an increase in the diffusion of small nutrients in response to intermittent tensile load.
Climate change and cutaneous water loss of birds.
Williams, Joseph B; Muñoz-Garcia, Agustí; Champagne, Alex
2012-04-01
There is a crucial need to understand how physiological systems of animals will respond to increases in global air temperature. Water conservation may become more important for some species of birds, especially those living in deserts. Lipids of the stratum corneum (SC), the outer layer of the epidermis, create the barrier to water vapor diffusion, and thus control cutaneous water loss (CWL). An appreciation of the ability of birds to change CWL by altering lipids of the skin will be important to predict responses of birds to global warming. The interactions of these lipids are fundamental to the modulation of water loss through skin. Cerebrosides, with their hexose sugar moiety, are a key component of the SC in birds, but how these lipids interact with other lipids of the SC, or how they form hydrogen bonds with water molecules, to form a barrier to water vapor diffusion remains unknown. An understanding of how cerebrosides interact with other lipids of the SC, and of how the hydroxyl groups of cerebrosides interact with water molecules, may be a key to elucidating the control of CWL by the SC.
Microfabricated valveless devices for thermal bioreactions based on diffusion-limited evaporation.
Wang, Fang; Yang, Ming; Burns, Mark A
2008-01-01
Microfluidic devices that reduce evaporative loss during thermal bioreactions such as PCR without microvalves have been developed by relying on the principle of diffusion-limited evaporation. Both theoretical and experimental results demonstrate that the sample evaporative loss can be reduced by more than 20 times using long narrow diffusion channels on both sides of the reaction region. In order to further suppress the evaporation, the driving force for liquid evaporation is reduced by two additional techniques: decreasing the interfacial temperature using thermal isolation and reducing the vapor concentration gradient by replenishing water vapor in the diffusion channels. Both thermal isolation and vapor replenishment techniques can limit the sample evaporative loss to approximately 1% of the reaction content.
Tucker, J E; Mauzerall, D; Tucker, E B
1989-07-01
The kinetics of symplastic transport in staminal hairs of Setcreasea purpurea was studied. The tip cell of a staminal hair was microinjected with carboxyfluorescein (CF) and the symplastic transport of this CF was videotaped and the digital data analyzed to produce kinetic curves. Using a finite difference equation for diffusion between cells and for loss of dye into the vacuole, kinetic curves were calculated and fitted to the observed data. These curves were matched with data from actual microinjection experiments by adjusting K (the coefficient of intercellular junction diffusion) and L (the coefficient of intracellular loss) until a minimum in the least squares difference between the curves was obtained. (a) Symplastic transport of CF was governed by diffusion through intercellular pores (plasmodesmata) and intracellular loss. Diffusion within the cell cytoplasm was never limiting. (b) Each cell and its plasmodesmata must be considered as its own diffusion system. Therefore, a diffusion coefficient cannot be calculated for an entire chain of cells. (c) The movement through plasmodesmata in either direction was the same since the data are fit by a diffusion equation. (d) Diffusion through the intercellular pores was estimated to be slower than diffusion through similar pores filled with water.
Tucker, Joseph E.; Mauzerall, David; Tucker, Edward B.
1989-01-01
The kinetics of symplastic transport in staminal hairs of Setcreasea purpurea was studied. The tip cell of a staminal hair was microinjected with carboxyfluorescein (CF) and the symplastic transport of this CF was videotaped and the digital data analyzed to produce kinetic curves. Using a finite difference equation for diffusion between cells and for loss of dye into the vacuole, kinetic curves were calculated and fitted to the observed data. These curves were matched with data from actual microinjection experiments by adjusting K (the coefficient of intercellular junction diffusion) and L (the coefficient of intracellular loss) until a minimum in the least squares difference between the curves was obtained. (a) Symplastic transport of CF was governed by diffusion through intercellular pores (plasmodesmata) and intracellular loss. Diffusion within the cell cytoplasm was never limiting. (b) Each cell and its plasmodesmata must be considered as its own diffusion system. Therefore, a diffusion coefficient cannot be calculated for an entire chain of cells. (c) The movement through plasmodesmata in either direction was the same since the data are fit by a diffusion equation. (d) Diffusion through the intercellular pores was estimated to be slower than diffusion through similar pores filled with water. PMID:16666864
Diffusion of Water through Olivine and Clinopyroxene: Implications for Melt Inclusion Fidelity
NASA Astrophysics Data System (ADS)
Plank, T. A.; Lloyd, A. S.; Ferriss, E.
2016-12-01
The maximum H2O concentrations measured in olivine-hosted melt inclusions (MIs) from arc tephra fall within a narrow range of 3-5 wt%. A major question is whether this reflects parental water concentrations or diffusive exchange through the host crystal during storage and ascent. Laboratory experiments have shown that water can diffuse through 500 micron olivine in minutes to days at 1100°C. We have tested these predictions with a natural experiment using volatile (H2O, CO2, S) diffusion along melt embayments to constrain ascent rates during the 1974 eruption of Volcan Fuego to 5-8 minutes from 7 km depth [1]. Thus, olivine-hosted MIs may move from their storage region to the surface during some eruptions rapidly enough to retain almost all of their original water. Only the smallest MIs (< 30 microns) will lose any water during such fast ascent, even for the fastest diffusion mechanism through olivine. We have also assessed the potential for clinopyroxene (cpx) to retain water (as H+) during magma ascent. In the same 1974 Fuego deposits, cpx crystals show H-loss on their rims and even from their interiors. Such diffusive loss in 5-8 minutes requires rapid diffusion of H in cpx, comparable to olivine and melt, and consistent with our recent laboratory experiments dehydrating Fe-bearing cpx [2]. Although H-diffusion is dependent on the site occupancy, all sites may lose H rapidly in cpx with Mg# < 92.5. While cpx and olivine may lose H during ascent and degassing, olivine-hosted MIs stand a better chance of retaining water due to the very low partitioning of water in olivine (D 0.001). The most favorable conditions for faithful retention of parental water concentrations involve a) rapid ascent (< hr.) from H2O-undersaturated reservoirs (prior to major water degassing), b) minerals with low partition coefficients for water, c) large crystals (>500 microns) and large melt inclusions (>50 microns), and 4) rapid post-eruptive cooling (< 1min, clast sizes < 1 cm). The rapid diffusion of H through olivine and cpx presents a challenge to MI fidelity, but not necessarily if the above conditions are met. [1] Lloyd et al., 2014, JVGR. [2] Ferriss et al., 2016, AmMin.
NASA Astrophysics Data System (ADS)
Zhang, Yongyong; Gao, Yang; Yu, Qiang
2017-09-01
Agricultural nitrogen loss becomes an increasingly important source of water quality deterioration and eutrophication, even threatens water safety for humanity. Nitrogen dynamic mechanism is still too complicated to be well captured at watershed scale due to its multiple existence forms and instability, disturbance of agricultural management practices. Stereoscopic agriculture is a novel agricultural planting pattern to efficiently use local natural resources (e.g., water, land, sunshine, heat and fertilizer). It is widely promoted as a high yield system and can obtain considerable economic benefits, particularly in China. However, its environmental quality implication is not clear. In our study, Qianyanzhou station is famous for its stereoscopic agriculture pattern of Southern China, and an experimental watershed was selected as our study area. Regional characteristics of runoff and nitrogen losses were simulated by an integrated water system model (HEQM) with multi-objective calibration, and multiple agriculture practices were assessed to find the effective approach for the reduction of diffuse nitrogen losses. Results showed that daily variations of runoff and nitrogen forms were well reproduced throughout watershed, i.e., satisfactory performances for ammonium and nitrate nitrogen (NH4-N and NO3-N) loads, good performances for runoff and organic nitrogen (ON) load, and very good performance for total nitrogen (TN) load. The average loss coefficient was 62.74 kg/ha for NH4-N, 0.98 kg/ha for NO3-N, 0.0004 kg/ha for ON and 63.80 kg/ha for TN. The dominating form of nitrogen losses was NH4-N due to the applied fertilizers, and the most dramatic zones aggregated in the middle and downstream regions covered by paddy and orange orchard. In order to control diffuse nitrogen losses, the most effective practices for Qianyanzhou stereoscopic agriculture pattern were to reduce farmland planting scale in the valley by afforestation, particularly for orchard in the downstream regions, followed by fertilizer application optimization.
NASA Astrophysics Data System (ADS)
Muirhead, Daniel
In this thesis, the relative humidity (RH) of the cathode reactant gas was investigated as a factor which influences gas diffusion layer (GDL) liquid water accumulation and mass transport-related efficiency losses over a range of operating current densities in a polymer electrolyte membrane (PEM) fuel cell. Limiting current measurements were used to characterize fuel cell oxygen transport resistance while simultaneous measurements of liquid water accumulation were conducted using synchrotron X-ray radiography. GDL porosity distributions were characterized with micro-computed tomography (microCT). The work presented here can be used by researchers to develop improved numerical models to predict GDL liquid water accumulation and to inform the design of next-generation GDL materials to mitigate mass transport-related efficiency losses. This work also contributes an extensive set of concurrent performance and liquid water visualization data to the PEM fuel cell field that can be used for validating multiphase transport models.
Davies, James F; Wilson, Kevin R
2016-02-16
The formation of ultraviscous, glassy, and amorphous gel states in aqueous aerosol following the loss of water results in nonequilibrium dynamics due to the extended time scales for diffusive mixing. Existing techniques for measuring water diffusion by isotopic exchange are limited by contact of samples with the substrate, and methods applied to infer diffusion coefficients from mass transport in levitated droplets requires analysis by complex coupled differential equations to derive diffusion coefficients. We present a new technique that combines contactless levitation with aerosol optical tweezers with isotopic exchange (D2O/H2O) to measure the water diffusion coefficient over a broad range (Dw ≈ 10(-12)-10(-17) m(2)·s(-1)) in viscous organic liquids (citric acid, sucrose, and shikimic acid) and inorganic gels (magnesium sulfate, MgSO4). For the organic liquids in binary and ternary mixtures, Dw depends on relative humidity and follows a simple compositional Vignes relationship. In MgSO4 droplets, water diffusivity decreases sharply with water activity and is consistent with predictions from percolation theory. These measurements show that, by combining micrometer-sized particle levitation (a contactless measurement with rapid mixing times) with an established probe of water diffusion, Dw can be simply and directly quantified for amorphous and glassy states that are inaccessible to existing methods.
Davies, James F.; Wilson, Kevin R.
2016-01-11
The formation of ultraviscous, glassy, and amorphous gel states in aqueous aerosol following the loss of water results in nonequilibrium dynamics due to the extended time scales for diffusive mixing. Existing techniques for measuring water diffusion by isotopic exchange are limited by contact of samples with the substrate, and methods applied to infer diffusion coefficients from mass transport in levitated droplets requires analysis by complex coupled differential equations to derive diffusion coefficients. Here, we present a new technique that combines contactless levitation with aerosol optical tweezers with isotopic exchange (D 2O/H 2O) to measure the water diffusion coefficient over amore » broad range (D w ≈ 10 -12-10 -17 m 2s -1) in viscous organic liquids (citric acid, sucrose, and shikimic acid) and inorganic gels (magnesium sulfate, MgSO 4). For the organic liquids in binary and ternary mixtures, D w depends on relative humidity and follows a simple compositional Vignes relationship. In MgSO 4 droplets, water diffusivity decreases sharply with water activity and is consistent with predictions from percolation theory. These measurements show that, by combining micrometer-sized particle levitation (a contactless measurement with rapid mixing times) with an established probe of water diffusion, D w can be simply and directly quantified for amorphous and glassy states that are inaccessible to existing methods.« less
b matrix errors in echo planar diffusion tensor imaging
Boujraf, Saïd; Luypaert, Robert; Osteaux, Michel
2001-01-01
Diffusion‐weighted magnetic resonance imaging (DW‐MRI) is a recognized tool for early detection of infarction of the human brain. DW‐MRI uses the signal loss associated with the random thermal motion of water molecules in the presence of magnetic field gradients to derive parameters that reflect the translational mobility of the water molecules in tissues. If diffusion‐weighted images with different values of b matrix are acquired during one individual investigation, it is possible to calculate apparent diffusion coefficient maps that are the elements of the diffusion tensor. The diffusion tensor elements represent the apparent diffusion coefficient of protons of water molecules in each pixel in the corresponding sample. The relation between signal intensity in the diffusion‐weighted images, diffusion tensor, and b matrix is derived from the Bloch equations. Our goal is to establish the magnitude of the error made in the calculation of the elements of the diffusion tensor when the imaging gradients are ignored. PACS number(s): 87.57. –s, 87.61.–c PMID:11602015
2015-01-15
isoprene determined by 1H NMR of each copolymer. Hydration Macromolecules Article DOI: 10.1021/ma502362a Macromolecules XXXX, XXX, XXX−XXX B number (λ) is...C. This is attributed to the decomposition of the TMA groups. Slight weight loss at lower temperatures is presumably due to the loss of trapped water...that at sufficiently high hydration levels the diffusion coefficient of ions approach their dilute solution diffusivity limits.30 Since conductivity is
NASA Astrophysics Data System (ADS)
Newcombe, M. E.; Beckett, J. R.; Baker, M. B.; Newman, S.; Guan, Y.; Eiler, J. M.; Stolper, E. M.
2016-12-01
We have conducted water diffusion experiments in synthetic Apollo 15 "yellow glass" (LG) and an iron-free basaltic analog melt (AD) at 1 atm and 1350 °C over a range of fO2 conditions from IW-2.2 to IW+6.7 and over a range of pH2/pH2O from nominally zero to 10. The water concentrations measured in our quenched experimental glasses by SIMS and FTIR vary from a few ppm to 430 ppm. Many studies of water diffusion at higher water concentrations indicate that the apparent diffusivity of total water (D*water; see [1]) in silicate melts is highly concentration dependent at water contents >0.1 wt% (e.g., [1]). However, water concentration gradients in each of our AD and LG experiments are well described by models in which D*water is assumed to be constant. Best-fit values of D*water obtained for our AD and LG experiments are consistent with a modified speciation model [2] in which both molecular water and hydroxyl are allowed to diffuse, and in which hydroxyl is the dominant diffusing species at the low total water concentrations of our experiments. Water concentration gradients generated during hydration and dehydration experiments conducted simultaneously propagate approximately equal distances into the melt and have the same concentration of water dissolved in the melt at the melt-vapor interface, suggesting that hydration and dehydration are symmetric under the conditions of our experiments. Best-fit values of D*water for our LG experiments vary within a factor of 2 over a range of pH2/pH2O from 0.007 to 9.7 (a range of ƒO2 from IW-2.2 to IW+4.9) and a water concentration range from 80 ppm to 280 ppm. The relative insensitivity of D*water to variations in pH2 suggests that loss of H during the degassing of the lunar melts described by [3] was not primarily by loss of dissolved H2. The value of D*water chosen by [3] for modeling diffusive degassing of lunar volcanic glasses is within a factor of three of our measured value in LG melt at 1350 °C. [1] Zhang et al. (1991) GCA 55, 441-456; [2] Ni et al. (2013) GCA 103, 36-48; [3] Saal et al. (2008) Nature 454, 192-195.
Mass transfer kinetics during osmotic dehydration of pomegranate arils.
Mundada, Manoj; Hathan, Bahadur Singh; Maske, Swati
2011-01-01
The mass transfer kinetics during osmotic dehydration of pomegranate arils in osmotic solution of sucrose was studied to increase palatability and shelf life of arils. The freezing of the whole pomegranate at -18 °C was carried out prior to osmotic dehydration to increase the permeability of the outer cellular layer of the arils. The osmotic solution concentrations used were 40, 50, 60°Bx, osmotic solution temperatures were 35, 45, 55 °C. The fruit to solution ratio was kept 1:4 (w/w) during all the experiments and the process duration varied from 0 to 240 min. Azuara model and Peleg model were the best fitted as compared to other models for water loss and solute gain of pomegranate arils, respectively. Generalized Exponential Model had an excellent fit for water loss ratio and solute gain ratio of pomegranate arils. Effective moisture diffusivity of water as well as solute was estimated using the analytical solution of Fick's law of diffusion. For above conditions of osmotic dehydration, average effective diffusivity of water loss and solute gain varied from 2.718 × 10(-10) to 5.124 × 10(-10) m(2)/s and 1.471 × 10(-10) to 5.147 × 10(-10) m(2)/s, respectively. The final product was successfully utilized in some nutritional formulations such as ice cream and bakery products.
Hammel, E. C.; Campa, J. A.; Armbrister, C. E.; ...
2017-09-06
Gelcasting and liquid desiccant drying are novel forming and drying methods used to mitigate common issues associated with the fabrication of complex advanced ceramic objects. Here, the molecular weight and osmotic pressure of aqueous poly(ethylene glycol) (PEG) desiccant solutions were simultaneously varied to understand their influence on the net mass loss rates of gelcast alumina samples prepared using gelatin as a gelling agent. Additionally, the amount of PEG diffusion and water diffusion to and from the ceramic samples after 150 min of immersion in the liquid desiccant was correlated to the solution properties as was the final bulk density ofmore » the sintered samples. Furthermore, solutions with high molecular weight and low osmotic pressure resulted in low PEG gain and low water loss, while solutions with low molecular weight and high osmotic pressure resulted in high PEG gain and high water loss. In some cases, more than 40 wt% of the total water per sample was removed through the liquid desiccant drying process.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammel, E. C.; Campa, J. A.; Armbrister, C. E.
Gelcasting and liquid desiccant drying are novel forming and drying methods used to mitigate common issues associated with the fabrication of complex advanced ceramic objects. Here, the molecular weight and osmotic pressure of aqueous poly(ethylene glycol) (PEG) desiccant solutions were simultaneously varied to understand their influence on the net mass loss rates of gelcast alumina samples prepared using gelatin as a gelling agent. Additionally, the amount of PEG diffusion and water diffusion to and from the ceramic samples after 150 min of immersion in the liquid desiccant was correlated to the solution properties as was the final bulk density ofmore » the sintered samples. Furthermore, solutions with high molecular weight and low osmotic pressure resulted in low PEG gain and low water loss, while solutions with low molecular weight and high osmotic pressure resulted in high PEG gain and high water loss. In some cases, more than 40 wt% of the total water per sample was removed through the liquid desiccant drying process.« less
Jiao, Wei; Ouyang, Wei; Hao, Fanghua; Huang, Haobo; Shan, Yushu; Geng, Xiaojun
2014-09-15
Assessing the diffuse pollutant loadings at watershed scale has become increasingly important when formulating effective watershed water management strategies, but the process was seldom achieved for heavy metals. In this study, the overall temporal-spatial variability of particulate Pb, Cu, Cr and Ni losses within an agricultural watershed was quantitatively evaluated by combining SWAT with sediment geochemistry. Results showed that the watershed particulate heavy metal loadings displayed strong variability in the simulation period 1981-2010, with an obvious increasing trend in recent years. The simulated annual average loadings were 20.21 g/ha, 21.75 g/ha, 47.35 g/ha and 21.27 g/ha for Pb, Cu, Cr and Ni, respectively. By comparison, these annual average values generally matched the estimated particulate heavy metal loadings at field scale. With spatial interpolation of field loadings, it was found that the diffuse heavy metal pollution mainly came from the sub-basins dominated with cultivated lands, accounting for over 70% of total watershed loadings. The watershed distribution of particulate heavy metal losses was very similar to that of soil loss but contrary to that of heavy metal concentrations in soil, highlighting the important role of sediment yield in controlling the diffuse heavy metal loadings. Copyright © 2014 Elsevier B.V. All rights reserved.
Nietch, C.T.; Morris, J.T.; Vroblesky, D.A.
1999-01-01
Wetland vegetation may be useful in the remediation of shallow contaminated aquifers. Mesocosm experiments were conducted to describe the regulatory mechanisms affecting trichloroethene (TCE) removal rates from groundwater by flood-adapted wetland trees at a contaminated site. TCE flux through baldcypress [Taxodium distichum (L) Rich] seedlings grown in glass- carboys decreased from day to night and from August to December. The diel fluctuation coincided with changes in leaf-level physiology, as the daytime flux was significantly correlated with net photosynthesis but not with respiration at night. A decrease in seedling water use from summer to winter explained the large seasonal difference in TCE flux. A simple model that simulates gas-phase diffusion through aerenchyma tested the importance of diffusion of TCE vapor from roots to the stem. The modeled diffusive flux was within 64% of the observed value during the winter but could only explain 8% of the summer flux. Seedling water use was a good estimator of flux during the summer. Hence, evapotranspiration (ET) in the summer may serve as a good predictor for the potential of TCE removal by baldcypress trees, while diffusive flux may better approximate potential contaminant loss in the winter.Wetland vegetation may be useful in the remediation of shallow contaminated aquifers. Mesocosm experiments were conducted to describe the regulatory mechanisms affecting trichloroethene (TCE) removal rates from groundwater by flood-adapted wetland trees at a contaminated site. TCE flux through baldcypress [Taxodium distichum (L) Rich] seedlings grown in glass-carboys decreased from day to night and from August to December. The diel fluctuation coincided with changes in leaf-level physiology, as the daytime flux was significantly correlated with net photosynthesis but not with respiration at night. A decrease in seedling water use from summer to winter explained the large seasonal difference in TCE flux. A simple model that simulates gas-phase diffusion through aerenchyma tested the importance of diffusion of TCE vapor from roots to the stem. The modeled diffusive flux was within 64% of the observed value during the winter but could only explain 8% of the summer flux. Seedling water use was a good estimator of flux during the summer. Hence, evapotranspiration (ET) in the summer may serve as a good predictor for the potential of TCE removal by baldcypress trees, while diffusive flux may better approximate potential contaminant loss in the winter.
Predictive model to describe water migration in cellular solid foods during storage.
Voogt, Juliën A; Hirte, Anita; Meinders, Marcel B J
2011-11-01
Water migration in cellular solid foods during storage causes loss of crispness. To improve crispness retention, physical understanding of this process is needed. Mathematical models are suitable tools to gain this physical knowledge. Water migration in cellular solid foods involves migration through both the air cells and the solid matrix. For systems in which the water migration distance is large compared with the cell wall thickness of the solid matrix, the overall water flux through the system is dominated by the flux through the air. For these systems, water migration can be approximated well by a Fickian diffusion model. The effective diffusion coefficient can be expressed in terms of the material properties of the solid matrix (i.e. the density, sorption isotherm and diffusion coefficient of water in the solid matrix) and the morphological properties of the cellular structure (i.e. water vapour permeability and volume fraction of the solid matrix). The water vapour permeability is estimated from finite element method modelling using a simplified model for the cellular structure. It is shown that experimentally observed dynamical water profiles of bread rolls that differ in crust permeability are predicted well by the Fickian diffusion model. Copyright © 2011 Society of Chemical Industry.
NASA Technical Reports Server (NTRS)
Huddleston, D. E.; Neugebauer, M.; Goldstein, B. E.
1994-01-01
The shape of the velocity distribution of water group ions observed by the Giotto ion mass spectrometer on its approach to comet Halley is modeled to derive empirical values for the rates of ionization, energy diffusion, and loss in the midcometosheath. The model includes the effect of rapid pitch angle scattering into a bispherical shell distribution as well as the effect of the magnetization of the plasma on the charge exchange loss rate. It is found that the average rate of ionization of cometary neutrals in this region of the cometosheath appears to be of the order of a factor 3 faster than the `standard' rates approx. 1 x 10(exp -6)/s that are generally assumed to model the observations in most regions of the comet environment. For the region of the coma studied in the present work (approx. 1 - 2 x 10(exp 5) km from the nucleus), the inferred energy diffusion coefficient is D(sub 0) approx. equals 0.0002 to 0.0005 sq km/cu s, which is generally lower than values used in other models. The empirically obtained loss rate appears to be about an order of magnitude greater than can be explained by charge exchange with the `standard' cross section of approx. 2 x 10(exp -15)sq cm. However such cross sections are not well known and for water group ion/water group neutral interactions, rates as high as 8 x 10(exp -15) sq cm have previously been suggested in the literature. Assuming the entire loss rate is due to charge exchange yields a rate of creation of fast neutral atoms of the order of approx. 10(exp -4)/s or higher, depending on the level of velocity diffusion. The fast neutrals may, in turn, be partly responsible for the higher-than-expected ionization rate.
Experimental dehydration of natural obsidian and estimation of DH2O at low water contents
NASA Technical Reports Server (NTRS)
Jambon, A.; Zhang, Y.; Stolper, E. M.
1992-01-01
Water diffusion experiments were carried out by dehydrating rhyolitic obsidian from Valles Caldera (New Mexico, USA) at 510-980 degrees C. The starting glass wafers contained approximately 0.114 wt% total water, lower than any glasses previously investigated for water diffusion. Weight loss due to dehydration was measured as a function of experiment duration, which permits determination of mean bulk water diffusivity, mean Dw. These diffusivities are in the range of 2.6 to 18 X 10(-14) m2/s and can be fit with the following Arrhenius equation: ln mean Dw (m2/s) = -(25.10 +/- 1.29) - (46,480 +/- 11,400) (J/mol) / RT, except for two replicate runs at 510 degrees C which give mean Dw values much lower than that defined by the above equation. When interpreted according to a model of water speciation in which molecular H2O is the diffusing species with concentration-independent diffusivity while OH units do not contribute to the transport but react to provide H2O, the data (except for the 510 degrees C data) are in agreement with extrapolation from previous results and hence extend the previous data base and provide a test of the applicability of the model to very low water contents. Mean bulk water diffusivities are about two orders of magnitude less than molecular H2O diffusivities because the fraction of molecular H2O out of total water is very small at 0.114 wt% total water and less. The 510 degrees C experimental results can be interpreted as due to slow kinetics of OH to H2O interconversion at low temperatures.
Experimental dehydration of natural obsidian and estimation of DH2O at low water contents.
Jambon, A; Zhang, Y; Stolper, E M
1992-01-01
Water diffusion experiments were carried out by dehydrating rhyolitic obsidian from Valles Caldera (New Mexico, USA) at 510-980 degrees C. The starting glass wafers contained approximately 0.114 wt% total water, lower than any glasses previously investigated for water diffusion. Weight loss due to dehydration was measured as a function of experiment duration, which permits determination of mean bulk water diffusivity, mean Dw. These diffusivities are in the range of 2.6 to 18 X 10(-14) m2/s and can be fit with the following Arrhenius equation: ln mean Dw (m2/s) = -(25.10 +/- 1.29) - (46,480 +/- 11,400) (J/mol) / RT, except for two replicate runs at 510 degrees C which give mean Dw values much lower than that defined by the above equation. When interpreted according to a model of water speciation in which molecular H2O is the diffusing species with concentration-independent diffusivity while OH units do not contribute to the transport but react to provide H2O, the data (except for the 510 degrees C data) are in agreement with extrapolation from previous results and hence extend the previous data base and provide a test of the applicability of the model to very low water contents. Mean bulk water diffusivities are about two orders of magnitude less than molecular H2O diffusivities because the fraction of molecular H2O out of total water is very small at 0.114 wt% total water and less. The 510 degrees C experimental results can be interpreted as due to slow kinetics of OH to H2O interconversion at low temperatures.
Degradation of porous poly(D,L-lactic-co-glycolic acid) films based on water diffusion.
Huang, Ying-Ying; Qi, Min; Liu, Hong-Ze; Zhao, Hong; Yang, Da-Zhi
2007-03-15
Poly(D,L-lactic-co-glycolic acid) has been extensively used as a controlled release carrier for drug delivery due to its good biocompatibility, biodegradability, and mechanical strength. Effects of dense and porous film's degradation behavior have been systematically investigated up to 17 weeks in Hank's Simulated Body Fluid at 37 degrees C. The degradation of the films was studied by measuring changes in weight, molecular weight and its distribution, morphology, composition etc.. A special thing was that the differences in water diffusion in dense and porous structure films caused the different degradation behavior. According to the characteristic changes of various properties of films, the degradation process is suggested to be roughly divided into four stages, tentatively named as water absorption stage, dramatic loss of molecular weight or micro-pores formed stage, loss of weight or enlarged-pores formed stage, pores diminished or pores collapse stage.
NASA Astrophysics Data System (ADS)
Terryn, C.; Michel, J.; Kilian, L.; Bonhomme, P.; Balossier, G.
2000-09-01
Knowledge of the water content at the subcellular level is important to evaluate the intracellular concentration of either diffusible or non-diffusible elements in the physiological state measured by the electron microprobe methods. Water content variations in subcellular compartments are directly related to secretion phenomena and to transmembrane exchange processes, which could be attributed to pathophysiological states. In this paper we will describe in details and compare two local water measurement methods using analytical electron microscopy. The first one is based on darkfield imaging. It is applied on freeze-dried biological cryosections; it allows indirect measurement of the water content at the subcellular level from recorded maps of darkfield intensity. The second method uses electron energy loss spectroscopy. It is applied to hydrated biological cryosections. It is based on the differences that appear in the electron energy loss spectra of macromolecular assemblies and vitrified ice in the 0-30 eV range. By a multiple least squares (MLS) fit between an experimental energy loss spectrum and reference spectra of both frozen-hydrated ice and macromolecular assemblies we can deduce directly the local water concentration in biological cryosections at the subcellular level. These two methods are applied to two test specimens: human erythrocytes in plasma, and baker's yeast (Saccharomyses Cerevisiae) cryosections. We compare the water content measurements obtained by these two methods and discuss their advantages and drawbacks.
Shum, Andrew D.; Parkinson, Dilworth Y.; Xiao, Xianghui; ...
2017-10-07
The performance of polymer-electrolyte fuel cells is heavily dependent on proper management of liquid water. One particular reason is that liquid water can collect in the gas diffusion layers (GDLs) blocking the reactant flow to the catalyst layer. This results in increased mass-transport losses. At higher temperatures, evaporation of water becomes a dominant water-removal mechanism and specifically phase-change-induced (PCI) flow is present due to thermal gradients. This study used synchrotron based micro X-ray computed tomography (CT) to visualize and quantify the water distribution within gas diffusion layers subject to a thermal gradient. Plotting saturation as a function of through-plane distancemore » quantitatively shows water redistribution, where water evaporates at hotter locations and condenses in colder locations. The morphology of the 2 GDLs on the micro-scale, as well as evaporating water clusters, are resolved, indicating that the GDL voids are slightly prolate, whereas water clusters are oblate. From the mean radii of water distributions and visual inspection, it is observed that larger water clusters evaporate faster than smaller ones.« less
Feng, Diejing; Bai, Bo; Wang, Honglun; Suo, Yourui
2017-07-26
Synergistic utilization of water and fertilizer has vital contribution to the modern production of agriculture. This work reports on a simple and facile strategy to prepare biodegradable yeast/sodium alginate/poly(vinyl alcohol) superabsorbent microspheres with a diffusion barrier merit by thermo-chemical modification route. The integrated performances, including water absorbency, water retention, water evaporation ratio, leaching loss control, sustained-release behaviors, and degradation in soil, were systematically investigated. The results revealed that the modified microspheres were a triumphant water and fertilizer manager to effectively hold water and control the unexpected leakage of fertilizer for sustained release. Therefore, this work provides a promising approach to ameliorate the utilization efficiency of water and fertilizer in potential agriculture applications.
Volatile loss from melt inclusions in pyroclasts of differing sizes
NASA Astrophysics Data System (ADS)
Lloyd, Alexander S.; Plank, Terry; Ruprecht, Philipp; Hauri, Erik H.; Rose, William
2013-01-01
We have investigated the loss of H2O from olivine-hosted melt inclusions (MIs) by designing an experiment using tephra samples that cooled at different rates owing to their different sizes: ash, lapilli, and bomb samples that were deposited on the same day (10/17/74) of the sub-Plinian eruption of Volcán de Fuego in Guatemala. Ion microprobe, laser ablation-ICPMS, and electron probe analyses show that MIs from ash and lapilli record the highest H2O contents, up to 4.4 wt%. On the other hand, MIs from bombs indicate up to 30 % lower H2O contents (loss of ~1 wt% H2O) and 10 % post-entrapment crystallization of olivine. This evidence is consistent with the longer cooling time available for a bomb-sized clast, up to 10 min for a 3-4-cm radius bomb, assuming conductive cooling and the fastest H diffusivities measured in olivine (D~10-9 to 10-10 m2/s). On the other hand, several lines of evidence point to some water loss prior to eruption, during magma ascent and degassing in the conduit. Thus, results point to both slower post-eruptive cooling and slower magma ascent affecting MIs from bombs, leading to H2O loss over the timescale of minutes to hours. The important implication of this study is that a significant portion of the published data on H2O concentrations in olivine-hosted MIs may reflect unrecognized H2O loss via diffusion. This work highlights the importance of reporting clast and MI sizes in order to assess diffusive effects and the potential benefit of using water loss as a chronometer of magma ascent.
van Roon, André; Parsons, John R; Krap, Lenny; Govers, Harrie A J
2005-09-01
This theoretical study was performed to investigate the influence of soil temperature, soil water content and soil organic carbon fraction on the mobility of monoterpenes (C10HnOn') applied as pesticides to a top soil layer. This mobility was expressed as the amount volatilized and leached from the contaminated soil layer after a certain amount of time. For this, (slightly modified) published analytical solutions to a one dimensional, homogeneous medium, diffusion/advection/biodegradation mass balance equation were used. The required input-parameters were determined in a preceding study. Because the monoterpenes studied differ widely in the values for their physico-chemical properties, the relative importance of the various determinants also differed widely. Increasing soil water saturation reduced monoterpene vaporization and leaching losses although a modest increase was usually observed at high soil water contents. Organic matter served as the major retention domain, reducing volatilization and leaching losses. Increasing temperature resulted in higher volatilization and leaching losses. Monoterpene mobility was influenced by vertical water flow. Volatilization losses could be reduced by adding a clean soil layer on top of the contaminated soil. Detailed insight into the specific behaviour of different monoterpenes was obtained by discussing intermediate calculation results; the transport retardation factors and effective soil diffusion coefficients. One insight was that the air-water interface compartment is probably not an important partitioning domain for monoterpenes in most circumstances. The results further indicated that biodegradation is an important process for monoterpenes in soil.
Extreme water loss and abiotic O2 buildup on planets throughout the habitable zones of M dwarfs.
Luger, R; Barnes, R
2015-02-01
We show that terrestrial planets in the habitable zones of M dwarfs older than ∼1 Gyr could have been in runaway greenhouses for several hundred million years following their formation due to the star's extended pre-main sequence phase, provided they form with abundant surface water. Such prolonged runaway greenhouses can lead to planetary evolution divergent from that of Earth. During this early runaway phase, photolysis of water vapor and hydrogen/oxygen escape to space can lead to the loss of several Earth oceans of water from planets throughout the habitable zone, regardless of whether the escape is energy-limited or diffusion-limited. We find that the amount of water lost scales with the planet mass, since the diffusion-limited hydrogen escape flux is proportional to the planet surface gravity. In addition to undergoing potential desiccation, planets with inefficient oxygen sinks at the surface may build up hundreds to thousands of bar of abiotically produced O2, resulting in potential false positives for life. The amount of O2 that builds up also scales with the planet mass; we find that O2 builds up at a constant rate that is controlled by diffusion: ∼5 bar/Myr on Earth-mass planets and up to ∼25 bar/Myr on super-Earths. As a result, some recently discovered super-Earths in the habitable zone such as GJ 667Cc could have built up as many as 2000 bar of O2 due to the loss of up to 10 Earth oceans of water. The fate of a given planet strongly depends on the extreme ultraviolet flux, the duration of the runaway regime, the initial water content, and the rate at which oxygen is absorbed by the surface. In general, we find that the initial phase of high luminosity may compromise the habitability of many terrestrial planets orbiting low-mass stars.
Pavlin, T; Nagelhus, E A; Brekken, C; Eyjolfsson, E M; Thoren, A; Haraldseth, O; Sonnewald, U; Ottersen, O P; Håberg, A K
2017-01-01
The first aim of this study was to determine how complete or perivascular loss of aquaporin-4 (AQP4) water channels affects membrane permeability for water in the mouse brain grey matter in the steady state. Time-dependent diffusion magnetic resonance imaging was performed on global Aqp4 knock out (KO) and α-syntrophin (α-syn) KO mice, in the latter perivascular AQP4 are mislocalized, but still functioning. Control animals were corresponding wild type (WT) mice. By combining in vivo diffusion measurements with the effective medium theory and previously measured extra-cellular volume fractions, the effects of membrane permeability and extracellular volume fraction were uncoupled for Aqp4 and α-syn KO. The second aim was to assess the effect of α-syn KO on cortical intermediary metabolism combining in vivo [1- 13 C]glucose and [1,2- 13 C]acetate injection with ex vivo 13 C MR spectroscopy. Aqp4 KO increased the effective diffusion coefficient at long diffusion times by 5%, and a 14% decrease in membrane water permeability was estimated for Aqp4 KO compared with WT mice. α-syn KO did not affect the measured diffusion parameters. In the metabolic analyses, significantly lower amounts of [4- 13 C]glutamate and [4- 13 C]glutamine, and percent enrichment in [4- 13 C]glutamate were detected in the α-syn KO mice. [1,2- 13 C]acetate metabolism was unaffected in α-syn KO, but the contribution of astrocyte derived metabolites to GABA synthesis was significantly increased. Taken together, α-syn KO mice appeared to have decreased neuronal glucose metabolism, partly compensated for by utilization of astrocyte derived metabolites.
Integrated climate-chemical indicators of diffuse pollution from land to water.
Mellander, Per-Erik; Jordan, Phil; Bechmann, Marianne; Fovet, Ophélie; Shore, Mairead M; McDonald, Noeleen T; Gascuel-Odoux, Chantal
2018-01-17
Management of agricultural diffuse pollution to water remains a challenge and is influenced by the complex interactions of rainfall-runoff pathways, soil and nutrient management, agricultural landscape heterogeneity and biogeochemical cycling in receiving water bodies. Amplified cycles of weather can also influence nutrient loss to water although they are less considered in policy reviews. Here, we present the development of climate-chemical indicators of diffuse pollution in highly monitored catchments in Western Europe. Specifically, we investigated the influences and relationships between weather processes amplified by the North Atlantic Oscillation during a sharp upward trend (2010-2016) and the patterns of diffuse nitrate and phosphorus pollution in rivers. On an annual scale, we found correlations between local catchment-scale nutrient concentrations in rivers and the influence of larger, oceanic-scale climate patterns defined by the intensity of the North Atlantic Oscillation. These influences were catchment-specific showing positive, negative or no correlation according to a typology. Upward trends in these decadal oscillations may override positive benefits of local management in some years or indicate greater benefits in other years. Developing integrated climate-chemical indicators into catchment monitoring indicators will provide a new and important contribution to water quality management objectives.
Zhai, Xiaoyan; Zhang, Yongyong
2018-02-01
Diffuse nutrient loss is a serious threat to water security and has severely deteriorated water quality throughout the world. Xin'anjiang catchment, as a main drinking water source for Hangzhou City, has been a national concern for water environment protection with payment for watershed services construction. Detection of diffuse phosphorous (DP) pollution dynamics under climate change is significant for sustainable water quality management. In this study, the impact of projected climate change on DP load was analyzed using SWAT to simulate the future changes of diffuse components (carriers: water discharge and sediment; nutrient: DP) at both station and sub-catchment scales under three climate change scenarios (RCP2.6, RCP4.5, and RCP8.5). Results showed that wetting and warming years were expected with increasing tendencies of both precipitation and temperature in the two future periods (2020s: 2021~2030, 2030s: 2031~2040) except in the 2020s in the RCP2.6 scenario, and the annual average increasing ratios of precipitation and temperature reached - 1.79~3.79% and 0.48~1.27 °C, respectively, comparing with those in the baseline (2000s: 2001~2010). Climate change evidently altered annual and monthly average water discharge and sediment load, while it has a remarkable impact on the timing and monthly value of DP load at station scale. DP load tended to increase in the non-flood season at Yuliang due to strengthened nutrient flushing from rice land into rivers with increasing precipitation and enhanced phosphorous cycle in soil layers with increasing temperature, while it tended to decrease in the flood season at Yuliang and in most months at Tunxi due to restricted phosphorous reaction with reduced dissolved oxygen content and enhanced dilution effect. Spatial variability existed in the changes of sediment load and DP load at sub-catchment scale due to climate change. DP load tended to decrease in most sub-catchments and was the most remarkable in the RCP8.5 scenario (2020s, - 9.00~2.63%; 2030s, - 11.16~7.89%), followed by RCP2.6 (2020s, - 10.00~2.90%; 2030s, - 9.00~6.63%) and RCP4.5 (2020s, - 6.81~5.49%, 2030s, - 10.00~9.09%) scenarios. Decreasing of DP load mainly aggregated in the western and eastern mountainous regions, while it tended to increase in the northern and middle regions. This study was expected to provide insights into diffuse nutrient loss control and management in Xin'anjiang catchment, and scientific references for the implementation of water environmental protection in China.
Jelescu, Ileana O; Zurek, Magdalena; Winters, Kerryanne V; Veraart, Jelle; Rajaratnam, Anjali; Kim, Nathanael S; Babb, James S; Shepherd, Timothy M; Novikov, Dmitry S; Kim, Sungheon G; Fieremans, Els
2016-05-15
There is a need for accurate quantitative non-invasive biomarkers to monitor myelin pathology in vivo and distinguish myelin changes from other pathological features including inflammation and axonal loss. Conventional MRI metrics such as T2, magnetization transfer ratio and radial diffusivity have proven sensitivity but not specificity. In highly coherent white matter bundles, compartment-specific white matter tract integrity (WMTI) metrics can be directly derived from the diffusion and kurtosis tensors: axonal water fraction, intra-axonal diffusivity, and extra-axonal radial and axial diffusivities. We evaluate the potential of WMTI to quantify demyelination by monitoring the effects of both acute (6weeks) and chronic (12weeks) cuprizone intoxication and subsequent recovery in the mouse corpus callosum, and compare its performance with that of conventional metrics (T2, magnetization transfer, and DTI parameters). The changes observed in vivo correlated with those obtained from quantitative electron microscopy image analysis. A 6-week intoxication produced a significant decrease in axonal water fraction (p<0.001), with only mild changes in extra-axonal radial diffusivity, consistent with patchy demyelination, while a 12-week intoxication caused a more marked decrease in extra-axonal radial diffusivity (p=0.0135), consistent with more severe demyelination and clearance of the extra-axonal space. Results thus revealed increased specificity of the axonal water fraction and extra-axonal radial diffusivity parameters to different degrees and patterns of demyelination. The specificities of these parameters were corroborated by their respective correlations with microstructural features: the axonal water fraction correlated significantly with the electron microscopy derived total axonal water fraction (ρ=0.66; p=0.0014) but not with the g-ratio, while the extra-axonal radial diffusivity correlated with the g-ratio (ρ=0.48; p=0.0342) but not with the electron microscopy derived axonal water fraction. These parameters represent promising candidates as clinically feasible biomarkers of demyelination and remyelination in the white matter. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shum, Andrew D.; Parkinson, Dilworth Y.; Xiao, Xianghui
The performance of polymer-electrolyte fuel cells is heavily dependent on proper management of liquid water. One particular reason is that liquid water can collect in the gas diffusion layers (GDLs) blocking the reactant flow to the catalyst layer. This results in increased mass-transport losses. At higher temperatures, evaporation of water becomes a dominant water-removal mechanism and specifically phase-change-induced (PCI) flow is present due to thermal gradients. This study used synchrotron based micro X-ray computed tomography (CT) to visualize and quantify the water distribution within gas diffusion layers subject to a thermal gradient. Plotting saturation as a function of through-plane distancemore » quantitatively shows water redistribution, where water evaporates at hotter locations and condenses in colder locations. The morphology of the 2 GDLs on the micro-scale, as well as evaporating water clusters, are resolved, indicating that the GDL voids are slightly prolate, whereas water clusters are oblate. From the mean radii of water distributions and visual inspection, it is observed that larger water clusters evaporate faster than smaller ones.« less
Extreme Water Loss and Abiotic O2 Buildup on Planets Throughout the Habitable Zones of M Dwarfs
Barnes, R.
2015-01-01
Abstract We show that terrestrial planets in the habitable zones of M dwarfs older than ∼1 Gyr could have been in runaway greenhouses for several hundred million years following their formation due to the star's extended pre-main sequence phase, provided they form with abundant surface water. Such prolonged runaway greenhouses can lead to planetary evolution divergent from that of Earth. During this early runaway phase, photolysis of water vapor and hydrogen/oxygen escape to space can lead to the loss of several Earth oceans of water from planets throughout the habitable zone, regardless of whether the escape is energy-limited or diffusion-limited. We find that the amount of water lost scales with the planet mass, since the diffusion-limited hydrogen escape flux is proportional to the planet surface gravity. In addition to undergoing potential desiccation, planets with inefficient oxygen sinks at the surface may build up hundreds to thousands of bar of abiotically produced O2, resulting in potential false positives for life. The amount of O2 that builds up also scales with the planet mass; we find that O2 builds up at a constant rate that is controlled by diffusion: ∼5 bar/Myr on Earth-mass planets and up to ∼25 bar/Myr on super-Earths. As a result, some recently discovered super-Earths in the habitable zone such as GJ 667Cc could have built up as many as 2000 bar of O2 due to the loss of up to 10 Earth oceans of water. The fate of a given planet strongly depends on the extreme ultraviolet flux, the duration of the runaway regime, the initial water content, and the rate at which oxygen is absorbed by the surface. In general, we find that the initial phase of high luminosity may compromise the habitability of many terrestrial planets orbiting low-mass stars. Key Words: Astrobiology—Biosignatures—Extrasolar terrestrial planets—Habitability—Planetary atmospheres. Astrobiology 15, 119–143. PMID:25629240
Full scale evaluation of diffuser ageing with clean water oxygen transfer tests.
Krampe, J
2011-01-01
Aeration is a crucial part of the biological wastewater treatment in activated sludge systems and the main energy user of WWTPs. Approximately 50 to 60% of the total energy consumption of a WWTP can be attributed to the aeration system. The performance of the aeration system, and in the case of fine bubble diffused aeration the diffuser performance, has a significant impact on the overall plant efficiency. This paper seeks to isolate the changes of the diffuser performance over time by eliminating all other influencing parameters like sludge retention time, surfactants and reactor layout. To achieve this, different diffusers have been installed and tested in parallel treatment trains in two WWTPs. The diffusers have been performance tested in clean water tests under new conditions and after one year of operation. A set of material property tests describing the diffuser membrane quality was also performed. The results showed a significant drop in the performance of the EPDM diffuser in the first year which resulted in similar oxygen transfer efficiency around 16 g/m3/m for all tested systems. Even though the tested silicone diffusers did not show a drop in performance they had a low efficiency in the initial tests. The material properties indicate that the EPDM performance loss is partly due to the washout of additives.
Harakotr, Bhornchai; Suriharn, Bhalang; Tangwongchai, Ratchada; Scott, Marvin Paul; Lertrat, Kamol
2014-12-01
Antioxidant components, including anthocyanins and phenolic compounds, antioxidant activity, and their changes during traditional cooking of fresh purple waxy corn were investigated. As compared to the raw corn, thermal treatment caused significant (p⩽0.05) decreases in each antioxidant compound and antioxidant activity. Steam cooking preserved more antioxidant compounds than boiling. Boiling caused a significant loss of anthocyanin and phenolic compounds into the cooking water. This cooking water is a valuable co-product because it is a good source of purple pigment. By comparing levels of antioxidant compounds in raw and cooked corn, we determined that degradation results in greater loss than leaching or diffusion into cooking water. Additionally, separation of kernels from the cob prior to cooking caused increased loss of antioxidant compounds. Copyright © 2014 Elsevier Ltd. All rights reserved.
Diffuse polymer interfaces in lobed nanoemulsions preserved in aqueous media.
Kim, Ginam; Sousa, Alioscka; Meyers, Deborah; Shope, Marilyn; Libera, Matthew
2006-05-24
Using valence electron energy loss spectroscopy (EELS) in the cryo-scanning transmission electron microscopy (STEM), we found that the polymer-polymer interface in two-phase nanocolloids of polydimethyl siloxane (PDMS) and copolymer (methyl acrylate (MA)-methyl methacrylate (MMA)-vinyl acetate (VA)) preserved in water was diffuse despite the fact that equilibrium thermodynamics indicates it should only be on the order of a few nanometers. The diffuse interface is a result of the kinetic trapping of the copolymer within the PDMS phase, and this finding suggests new nonequilibrium pathways to control interfaces during the synthesis of multicomponent polymeric nanostructures.
Urban stormwater inundation simulation based on SWMM and diffusive overland-flow model.
Chen, Wenjie; Huang, Guoru; Zhang, Han
2017-12-01
With rapid urbanization, inundation-induced property losses have become more and more severe. Urban inundation modeling is an effective way to reduce these losses. This paper introduces a simplified urban stormwater inundation simulation model based on the United States Environmental Protection Agency Storm Water Management Model (SWMM) and a geographic information system (GIS)-based diffusive overland-flow model. SWMM is applied for computation of flows in storm sewer systems and flooding flows at junctions, while the GIS-based diffusive overland-flow model simulates surface runoff and inundation. One observed rainfall scenario on Haidian Island, Hainan Province, China was chosen to calibrate the model and the other two were used for validation. Comparisons of the model results with field-surveyed data and InfoWorks ICM (Integrated Catchment Modeling) modeled results indicated the inundation model in this paper can provide inundation extents and reasonable inundation depths even in a large study area.
NASA Astrophysics Data System (ADS)
Couto, Nicole; Martinson, Douglas G.; Kohut, Josh; Schofield, Oscar
2017-07-01
We use autonomous underwater vehicles to characterize the spatial distribution of Upper Circumpolar Deep Water (UCDW) on the continental shelf of the West Antarctic Peninsula (WAP) and present the first near-synoptic measurements of mesoscale features (eddies) containing UCDW on the WAP. Thirty-three subsurface eddies with widths on the order of 10 km were detected during four glider deployments. Each eddy contributed an average of 5.8 × 1016 J to the subpycnocline waters, where a cross-shelf heat flux of 1.37 × 1019 J yr-1 is required to balance the diffusive loss of heat to overlying winter water and to the near-coastal waters. Approximately two-thirds of the heat coming onto the shelf diffuses across the pycnocline and one-third diffuses to the coastal waters; long-term warming of the subpycnocline waters is a small residual of this balance. Sixty percent of the profiles that contained UCDW were part of a coherent eddy. Between 20% and 53% of the lateral onshore heat flux to the WAP can be attributed to eddies entering Marguerite Trough, a feature in the southern part of the shelf which is known to be an important conduit for UCDW. A northern trough is identified as additional important location for eddy intrusion.
Modeling of inhomogeneous mixing of plasma species in argon-steam arc discharge
NASA Astrophysics Data System (ADS)
Jeništa, J.; Takana, H.; Uehara, S.; Nishiyama, H.; Bartlová, M.; Aubrecht, V.; Murphy, A. B.
2018-01-01
This paper presents numerical simulation of mixing of argon- and water-plasma species in an argon-steam arc discharge generated in a thermal plasma generator with the combined stabilization of arc by axial gas flow (argon) and water vortex. The diffusion of plasma species itself is described by the combined diffusion coefficients method in which the coefficients describe the diffusion of argon ‘gas,’ with respect to water vapor ‘gas.’ Diffusion processes due to the gradients of mass density, temperature, pressure, and an electric field have been considered in the model. Calculations for currents 150-400 A with 15-22.5 standard liters per minute (slm) of argon reveal inhomogeneous mixing of argon and oxygen-hydrogen species with the argon species prevailing near the arc axis. All the combined diffusion coefficients exhibit highly nonlinear distribution of their values within the discharge, depending on the temperature, pressure, and argon mass fraction of the plasma. The argon diffusion mass flux is driven mainly by the concentration and temperature space gradients. Diffusions due to pressure gradients and due to the electric field are of about 1 order lower. Comparison with our former calculations based on the homogeneous mixing assumption shows differences in temperature, enthalpy, radiation losses, arc efficiency, and velocity at 400 A. Comparison with available experiments exhibits very good qualitative and quantitative agreement for the radial temperature and velocity profiles 2 mm downstream of the exit nozzle.
Chen, Jiajia; Pitchai, Krishnamoorthy; Birla, Sohan; Negahban, Mehrdad; Jones, David; Subbiah, Jeyamkondan
2014-10-01
A 3-dimensional finite-element model coupling electromagnetics and heat and mass transfer was developed to understand the interactions between the microwaves and fresh mashed potato in a 500 mL tray. The model was validated by performing heating of mashed potato from 25 °C on a rotating turntable in a microwave oven, rated at 1200 W, for 3 min. The simulated spatial temperature profiles on the top and bottom layer of the mashed potato showed similar hot and cold spots when compared to the thermal images acquired by an infrared camera. Transient temperature profiles at 6 locations collected by fiber-optic sensors showed good agreement with predicted results, with the root mean square error ranging from 1.6 to 11.7 °C. The predicted total moisture loss matched well with the observed result. Several input parameters, such as the evaporation rate constant, the intrinsic permeability of water and gas, and the diffusion coefficient of water and gas, are not readily available for mashed potato, and they cannot be easily measured experimentally. Reported values for raw potato were used as baseline values. A sensitivity analysis of these input parameters on the temperature profiles and the total moisture loss was evaluated by changing the baseline values to their 10% and 1000%. The sensitivity analysis showed that the gas diffusion coefficient, intrinsic water permeability, and the evaporation rate constant greatly influenced the predicted temperature and total moisture loss, while the intrinsic gas permeability and the water diffusion coefficient had little influence. This model can be used by the food product developers to understand microwave heating of food products spatially and temporally. This tool will allow food product developers to design food package systems that would heat more uniformly in various microwave ovens. The sensitivity analysis of this study will help us determine the most significant parameters that need to be measured accurately for reliable model prediction. © 2014 Institute of Food Technologists®
NASA Astrophysics Data System (ADS)
Woolfenden, L. R.; Hevesi, J. A.; Nishikawa, T.
2014-12-01
Groundwater is an important component of the water supply, especially during droughts, within the Santa Rosa Plain watershed (SRPW), California, USA. The SRPW is 680 km2 and includes a network of natural and engineered stream channels. Streamflow is strongly seasonal, with high winter flows, predominantly intermittent summer flows, and comparatively rapid response time to larger storms. Groundwater flow is influenced primarily by complex geology, spatial and temporal variation in recharge, and pumping for urban, agricultural, and rural demands. Results from an integrated hydrologic model (GSFLOW) for the SRPW were analyzed to assess the effect of droughts on groundwater resources during water years 1976-2010. Model results indicate that, in general, below-average precipitation during historical drought periods reduced groundwater recharge (focused within stream channels and diffuse outside of channels on alluvial plains), groundwater evapotranspiration (ET), and groundwater discharge to streams (baseflow). In addition, recharge during wet periods was not sufficient to replenish groundwater-storage losses caused by drought and groundwater pumping, resulting in an overall 150 gigaliter loss in groundwater storage for water years 1976-2010. During drought periods, lower groundwater levels from reduced recharge broadly increased the number and length of losing-stream reaches, and seepage losses in streams became a higher percentage of recharge relative to the diffuse recharge outside of stream channels (for example, seepage losses in streams were 36% of recharge in 2006 and 57% at the end of the 2007-09 drought). Reductions in groundwater storage during drought periods resulted in decreased groundwater ET (loss of riparian habitat) and baseflow, especially during the warmer and dryer months (May through September) when groundwater is the dominant component of streamflow.
Ludvig, Nandor; Sheffield, Lynette G; Tang, Hai M; Baptiste, Shirn L; Devinsky, Orrin; Kuzniecky, Ruben I
2008-01-10
Transmeningeal pharmacotherapy has been proposed to treat neurological disorders with localized pathology, such as intractable focal epilepsy. As a step toward understanding the diffusion and intracortical spread of transmeningeally delivered drugs, the present study used histological methods to determine the extent to which a marker compound, N-methyl-D-aspartate (NMDA), can diffuse into the neocortex through the meninges. Rats were implanted with bilateral parietal cortical epidural cups filled with 50 mM NMDA on the right side and artificial cerebrospinal fluid (ACSF) in the contralateral side. After 24 h, the histological effects of these treatments were evaluated using cresyl violet (Nissl) staining. The epidural NMDA exposure caused neuronal loss that in most animals extended from the pial surface through layer V. The area indicated by this neuronal loss was localized to the neocortical region underlying the epidural cup. These results suggest that NMDA-like, water soluble, small molecules can diffuse through the subdural/subarachnoid space into the underlying neocortex and spread in a limited fashion, close to the meningeal penetration site.
Steady-State Diffusion of Water through Soft-Contact LensMaterials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fornasiero, Francesco; Krull, Florian; Radke, Clayton J.
2005-01-31
Water transport through soft contact lenses (SCL) is important for acceptable performance on the human eye. Chemical-potential gradient-driven diffusion rates of water through soft-contact-lens materials are measured with an evaporation-cell technique. Water is evaporated from the bottom surface of a lens membrane by impinging air at controlled flow rate and humidity. The resulting weight loss of a water reservoir covering the top surface of the contact-lens material is recorded as a function of time. New results are reported for a conventional hydrogel material (SofLens{trademark} One Day, hilafilcon A, water content at saturation W{sub 10} = 70 weight %) and amore » silicone hydrogel material (PureVision{trademark}, balafilcon A, W{sub 10} = 36 %), with and without surface oxygen plasma treatment. Also, previously reported data for a conventional HEMA-SCL (W{sub 10} = 38 %) hydrogel are reexamined and compared with those for SofLens{trademark} One Day and PureVision{trademark} hydrogels. Measured steady-state water fluxes are largest for SofLens{trademark} One Day, followed by PureVision{trademark} and HEMA. In some cases, the measured steady-state water fluxes increase with rising relative air humidity. This increase, due to an apparent mass-transfer resistance at the surface (trapping skinning), is associated with formation of a glassy skin at the air/membrane interface when the relative humidity is below 55-75%. Steady-state water-fluxes are interpreted through an extended Maxwell-Stefan diffusion model for a mixture of species starkly different in size. Thermodynamic nonideality is considered through Flory-Rehner polymer-solution theory. Shrinking/swelling is self-consistently modeled by conservation of the total polymer mass. Fitted Maxwell-Stefan diffusivities increase significantly with water concentration in the contact lens.« less
Bordallo, Heloisa N; Aldridge, Laurence P; Desmedt, Arnaud
2006-09-14
Portland cement reacts with water to form an amorphous paste through a chemical reaction called hydration. In concrete the formation of pastes causes the mix to harden and gain strength to form a rock-like mass. Within this process lies the key to a remarkable peculiarity of concrete: it is plastic and soft when newly mixed, strong and durable when hardened. These qualities explain why one material, concrete, can build skyscrapers, bridges, sidewalks and superhighways, houses, and dams. The character of the concrete is determined by the quality of the paste. Creep and shrinkage of concrete specimens occur during the loss and gain of water from cement paste. To better understand the role of water in mature concrete, a series of quasielastic neutron scattering (QENS) experiments were carried out on cement pastes with water/cement ratio varying between 0.32 and 0.6. The samples were cured for about 28 days in sealed containers so that the initial water content would not change. These experiments were carried out with an actual sample of Portland cement rather than with the components of cement studied by other workers. The QENS spectra differentiated between three different water interactions: water that was chemically bound into the cement paste, the physically bound or "glassy water" that interacted with the surface of the gel pores in the paste, and unbound water molecules that are confined within the larger capillary pores of cement paste. The dynamics of the "glassy" and "unboud" water in an extended time scale, from a hundred picoseconds to a few nanoseconds, could be clearly differentiated from the data. While the observed motions on the picosecond time scale are mainly stochastic reorientations of the water molecules, the dynamics observed on the nanosecond range can be attributed to long-range diffusion. Diffusive motion was characterized by diffusion constants in the range of (0.6-2) 10(-9) m(2)/s, with significant reduction compared to the rate of diffusion for bulk water. This reduction of the water diffusion is discussed in terms of the interaction of the water with the calcium silicate gel and the ions present in the pore water.
Taylor, Sam D; He, Yi; Hiscock, Kevin M
2016-09-15
Agricultural diffuse water pollution remains a notable global pressure on water quality, posing risks to aquatic ecosystems, human health and water resources and as a result legislation has been introduced in many parts of the world to protect water bodies. Due to their efficiency and cost-effectiveness, water quality models have been increasingly applied to catchments as Decision Support Tools (DSTs) to identify mitigation options that can be introduced to reduce agricultural diffuse water pollution and improve water quality. In this study, the Soil and Water Assessment Tool (SWAT) was applied to the River Wensum catchment in eastern England with the aim of quantifying the long-term impacts of potential changes to agricultural management practices on river water quality. Calibration and validation were successfully performed at a daily time-step against observations of discharge, nitrate and total phosphorus obtained from high-frequency water quality monitoring within the Blackwater sub-catchment, covering an area of 19.6 km(2). A variety of mitigation options were identified and modelled, both singly and in combination, and their long-term effects on nitrate and total phosphorus losses were quantified together with the 95% uncertainty range of model predictions. Results showed that introducing a red clover cover crop to the crop rotation scheme applied within the catchment reduced nitrate losses by 19.6%. Buffer strips of 2 m and 6 m width represented the most effective options to reduce total phosphorus losses, achieving reductions of 12.2% and 16.9%, respectively. This is one of the first studies to quantify the impacts of agricultural mitigation options on long-term water quality for nitrate and total phosphorus at a daily resolution, in addition to providing an estimate of the uncertainties of those impacts. The results highlighted the need to consider multiple pollutants, the degree of uncertainty associated with model predictions and the risk of unintended pollutant impacts when evaluating the effectiveness of mitigation options, and showed that high-frequency water quality datasets can be applied to robustly calibrate water quality models, creating DSTs that are more effective and reliable. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
User's instructions for the 41-node thermoregulatory model (steady state version)
NASA Technical Reports Server (NTRS)
Leonard, J. I.
1974-01-01
A user's guide for the steady-state thermoregulatory model is presented. The model was modified to provide conversational interaction on a remote terminal, greater flexibility for parameter estimation, increased efficiency of convergence, greater choice of output variable and more realistic equations for respiratory and skin diffusion water losses.
Fischer, P; Pöthig, R; Gücker, B; Venohr, M
2018-07-15
In Brazil, a steady increase in phosphorus (P) fertilizer application and agricultural intensification has been reported for recent decades. The concomitant P accumulation in soils potentially threatens surface water bodies with eutrophication through diffuse P losses. Here, we demonstrated the applicability of a soil type-independent approach for estimating the degree of P saturation (DPS; a risk parameter of P loss) by a standard method of water-soluble phosphorus (WSP) for two major soil types (Oxisols, Entisols) of the São Francisco catchment in Brazil. Subsequently, soil Mehlich-1P (M1P) levels recommended by Brazilian agricultural institutions were transformed into DPS values. Recommended M1P values for optimal agronomic production corresponded to DPS values below critical thresholds of high risks of P losses (DPS=80%) for major crops of the catchment. Higher risks of reaching critical DPS values due to P accumulation were found for Entisols due to their total sorption capacities being only half those of Oxisols. For complementary information on soil mineralogy and its influence on P sorption and P binding forms, Fourier transformation infrared (FTIR) spectroscopic analyses were executed. FTIR analyses suggested the occurrence of the clay minerals palygorskite and sepiolite in some of the analyzed Entisols and the formation of crandallite as the soil specific P binding form in the investigated Oxisols. Palygorskite and sepiolite can enhance P solubility and hence the risk of P losses. In contrast, the reshaping of superphosphate grains into crandallite may explain the chemical processes leading to previously observed low dissolved P concentrations in surface runoff from Oxisols. To prevent high risk of P losses, we recommend avoiding superficial fertilizer application and establishing environmental thresholds for soil M1P based on DPS. These measures could help to prevent eutrophication of naturally oligotrophic surface waters, and subsequent adverse effects on biodiversity and ecosystem function. Copyright © 2018 Elsevier B.V. All rights reserved.
Vroblesky, Don A.; Pravecek, Tasha
2002-01-01
Field comparisons of chemical concentrations obtained from dialysis samplers, passive diffusion bag samplers, and low-flow samplers showed generally close agreement in most of the 13 wells tested during July 2001 at Hickam Air Force Base, Hawaii. The data for chloride, sulfate, iron, alkalinity, arsenic, and methane appear to show that the dialysis samplers are capable of accurately collecting a passive sample for these constituents. In general, the comparisons of volatile organic compound concentrations showed a relatively close correspondence between the two different types of diffusion samples and between the diffusion samples and the low-flow samples collected in most wells. Divergence appears to have resulted primarily from the pumping method, either producing a mixed sample or water not characteristic of aquifer water moving through the borehole under ambient conditions. The fact that alkalinity was not detected in the passive diffusion bag samplers, highly alkaline waters without volatilization loss from effervescence, which can occur when a sample is acidified for preservation. Both dialysis and passive diffusion bag samplers are relatively inexpensive and can be deployed rapidly and easily. Passive diffusion bag samplers are intended for sampling volatile organic compounds only, but dialysis samplers can be used to sample both volatile organic compounds and inorganic solutes. Regenerated cellulose dialysis samplers, however, are subject to biodegradation and probably should be deployed no sooner than 2 weeks prior to recovery. 1 U.S. Geological Survey, Columbia, South Carolina. 2 Air Florce Center for Environmental Excellence, San Antionio, Texas.
NASA Astrophysics Data System (ADS)
Powell, G. L.; Dobbins, A.; Cristy, S. S.; Cliff, T. L.; Meyer, H. M., III; Lucania, J.; Milosevic, Milan
1994-01-01
This report describes the application of reflectance FTIR spectroscopy to the measurement of the oxidation rate of uranium by environmental gases near room temperature. It also describes very efficient evacuable cells designed for 75 degree(s) external reflectance with polarized light and for diffuse reflectance using mid-infrared FTIR spectroscopy. These cells, along with functionally similar remote sensing accessories, have been applied to the study of the oxidation of uranium metal in air, oxygen, and water vapor by precisely measuring the 575 cm-1 band of UO2 and other properties of the corrosion film such as absorbed water and reflective losses caused by film degradation related to pitting or nucleation phenomena.
Universal model for water costs of gas exchange by animals and plants
Woods, H. Arthur; Smith, Jennifer N.
2010-01-01
For terrestrial animals and plants, a fundamental cost of living is water vapor lost to the atmosphere during exchange of metabolic gases. Here, by bringing together previously developed models for specific taxa, we integrate properties common to all terrestrial gas exchangers into a universal model of water loss. The model predicts that water loss scales to gas exchange with an exponent of 1 and that the amount of water lost per unit of gas exchanged depends on several factors: the surface temperature of the respiratory system near the outside of the organism, the gas consumed (oxygen or carbon dioxide), the steepness of the gradients for gas and vapor, and the transport mode (convective or diffusive). Model predictions were largely confirmed by data on 202 species in five taxa—insects, birds, bird eggs, mammals, and plants—spanning nine orders of magnitude in rate of gas exchange. Discrepancies between model predictions and data seemed to arise from biologically interesting violations of model assumptions, which emphasizes how poorly we understand gas exchange in some taxa. The universal model provides a unified conceptual framework for analyzing exchange-associated water losses across taxa with radically different metabolic and exchange systems. PMID:20404161
Universal model for water costs of gas exchange by animals and plants.
Woods, H Arthur; Smith, Jennifer N
2010-05-04
For terrestrial animals and plants, a fundamental cost of living is water vapor lost to the atmosphere during exchange of metabolic gases. Here, by bringing together previously developed models for specific taxa, we integrate properties common to all terrestrial gas exchangers into a universal model of water loss. The model predicts that water loss scales to gas exchange with an exponent of 1 and that the amount of water lost per unit of gas exchanged depends on several factors: the surface temperature of the respiratory system near the outside of the organism, the gas consumed (oxygen or carbon dioxide), the steepness of the gradients for gas and vapor, and the transport mode (convective or diffusive). Model predictions were largely confirmed by data on 202 species in five taxa--insects, birds, bird eggs, mammals, and plants--spanning nine orders of magnitude in rate of gas exchange. Discrepancies between model predictions and data seemed to arise from biologically interesting violations of model assumptions, which emphasizes how poorly we understand gas exchange in some taxa. The universal model provides a unified conceptual framework for analyzing exchange-associated water losses across taxa with radically different metabolic and exchange systems.
Puccetti, G
2015-12-01
The water resistance of sunscreen products has taken more importance for the UV protection of consumers involved in water activities and sports. The present work introduces a new in vivo approach to measure the water resistance of sunscreens on the actual skin of subjects, which can be easily applied to salt, chlorine and tap waters. The stress sources of sunscreen films on skin originate from two phenomena: high surface tension stress as the skin transits through the air/water interface and water diffusion into the film immersed in bulk water. The water resistance of sunscreen products is measured on the forearms of subjects by means of a new layered water bath approach that physically separates both stresses. Tape strips are subsequently taken and analysed for UV-A and UV-B optical densities via (1) imaging for remaining filters and (2) in vitro SPF absorption spectra. Water-resistant sunscreens generally perform well when immersed in bulk water even subjected to agitation, but they show a wide range of performances when considering their behaviour at the air/water interface. The differences are more pronounced in salt water than tap water. The results confirm 2 stress origins in sunscreen exposure to water: interfacial surface tension and bulk water diffusion. Polymers bring improvements to the resistance of sunscreens to bulk water but show wide latitude in performances when subject to the water surface tension stress. Globally, a higher loss of filters is observed in the UV-A than in the UV-B, which is attributed to more UV-A filter loss or degradation and thus resulting in a decreased protection in the UV-A. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Biological plywood film formation from para-nematic liquid crystalline organization.
Aguilar Gutierrez, Oscar F; Rey, Alejandro D
2017-11-15
In vitro non-equilibrium chiral phase ordering processes of biomacromolecular solutions offer a systematic and reproducible way of generating material architectures found in Nature, such as biological plywoods. Accelerated progress in biomimetic engineering of mesoscopic plywoods and other fibrous structures requires a fundamental understanding of processing and transport principles. In this work we focus on collagen I based materials and structures to find processing conditions that lead to defect-free collagen films displaying the helicoidal plywood architecture. Here we report experimentally-guided theory and simulations of the chiral phase ordering of collagen molecules through water solvent evaporation of pre-aligned dilute collagen solutions. We develop, implement and a posteriori validate an integrated liquid crystal chiral phase ordering-water transport model that captures the essential features of spatio-temporal chiral structure formation in shrinking film domains due to directed water loss. Three microstructural (texture) modes are identified depending on the particular value of the time-scale ratio defined by collagen rotational diffusion to water translational diffusion. The magnitude of the time scale ratio provides the conditions for the synchronization of the helical axis morphogenesis with the increase in the mesogen concentration due to water loss. Slower than critical water removal rates leads to internal multiaxial cellular patterns, reminiscent of the classical columnar-equiaxed metallurgical casting structures. Excessive water removal rates lead to destabilization of the chiral axis and multidomain defected films. The predictions of the integrated model are in qualitative agreement with experimental results and can potentially guide solution processing of other bio-related mesogenic solutions that seek to mimic the architecture of biological fibrous composites.
Diffusivity Measurements of Volatile Organics in Levitated Viscous Aerosol Particles
NASA Astrophysics Data System (ADS)
Bastelberger, Sandra; Krieger, Ulrich; Luo, Beiping; Peter, Thomas
2017-04-01
Field measurements indicating that atmospheric secondary aerosol (SOA) particles can be present in a highly viscous, glassy state have spurred numerous studies addressing low water diffusivities in glassy aerosols, focusing on kinetic limitations to hygroscopic growth and the plasticizing effect of water. Less is known about diffusion limitations of organic molecules and oxidants in viscous matrices and how these might affect atmospheric chemistry and gas-particle phase partitioning of complex mixtures with constituents of different volatility. Often viscosity data has been used to infer diffusivity via the Stokes- Einstein relationship even though strong deviations from this relationship have been observed for matrices of high viscosity. In this study, we provide a quantitative estimate for the diffusivity of a volatile organic in a viscous matrix. Evaporation of single particles generated from an aqueous solution of sucrose and a small quantity of volatile tetraethylene glycol (PEG-4) is investigated in an electrodynamic balance at controlled relative humidity (RH) and temperature conditions, thereby varying the viscosity of the sucrose matrix. The evaporative loss of tetraethylene glycol as determined by Mie resonance spectroscopy is used in conjunction with a diffusion model to retrieve translational diffusion coefficients of tetraethylene glycol. The evaporation of PEG-4 shows a pronounced RH and temperature dependence and is severely depressed for RH 30% corresponding to diffusivities < 10-14 cm2/s at temperatures as high as 15 °C, implying that atmospheric volatile organic compounds (VOC) can be subject to severe diffusion limitations in glassy SOA. Comparison of the experimentally derived diffusivities with viscosity estimates for the ternary system reveals a breakdown of the Stokes-Einstein relationship.
NASA Astrophysics Data System (ADS)
Nakajima, Miki; Stevenson, David J.
2018-04-01
The Earth's Moon is thought to have formed from a circumterrestrial disk generated by a giant impact between the proto-Earth and an impactor approximately 4.5 billion years ago. Since this impact was energetic, the disk would have been hot (4000-6000 K) and partially vaporized (20-100% by mass). This formation process is thought to be responsible for the geochemical observation that the Moon is depleted in volatiles (e.g., K and Na). To explain this volatile depletion, some studies suggest the Moon-forming disk was rich in hydrogen, which was dissociated from water, and it escaped from the disk as a hydrodynamic wind accompanying heavier volatiles (hydrodynamic escape). This model predicts that the Moon should be significantly depleted in water, but this appears to contradict some of the recently measured lunar water abundances and D/H ratios that suggest that the Moon is more water-rich than previously thought. Alternatively, the Moon could have retained its water if the upper parts (low pressure regions) of the disk were dominated by heavier species because hydrogen would have had to diffuse out from the heavy-element rich disk, and therefore the escape rate would have been limited by this slow diffusion process (diffusion-limited escape). To identify which escape the disk would have experienced and to quantify volatiles loss from the disk, we compute the thermal structure of the Moon-forming disk considering various bulk water abundances (100-1000 ppm) and mid-plane disk temperatures (2500-4000 K). Assuming that the disk consists of silicate (SiO2 or Mg2SiO4) and water and that the disk is in the chemical equilibrium, our calculations show that the upper parts of the Moon-forming disk are dominated by heavy atoms or molecules (SiO and O at Tmid > 2500- 2800 K and H2O at Tmid < 2500- 2800 K) and hydrogen is a minor species. This indicates that hydrogen escape would have been diffusion-limited, and therefore the amount of lost water and hydrogen would have been small compared to the initial abundance assumed. This result indicates that the giant impact hypothesis can be consistent with the water-rich Moon. Furthermore, since the hydrogen wind would have been weak, the other volatiles would not have escaped either. Thus, the observed volatile depletion of the Moon requires another mechanism.
NASA Astrophysics Data System (ADS)
Zhang, Yongyong; Zhou, Yujian; Shao, Quanxi; Liu, Hongbin; Lei, Qiuliang; Zhai, Xiaoyan; Wang, Xuelei
2016-12-01
Diffuse nutrient loss mechanism is complicated and shows remarkably regional differences due to spatial heterogeneities of underlying surface conditions, climate and agricultural practices. Moreover, current available observations are still hard to support the identification of impact factors due to different time or space steps. In this study, an integrated water system model (HEQM) was adopted to obtain the simulated loads of diffuse components (carriers: runoff and sediment; nutrient: total nitrogen (TN) and total phosphorous (TP)) with synchronous scales. Multivariable statistical analysis approaches (Analysis of Similarity and redundancy analysis) were used to assess the regional differences, and to identify impact factors as well as their contributions. Four catchments were selected as our study areas, i.e., Xiahui and Zhangjiafen Catchments of Miyun Basin in North China, Yuliang and Tunxi Catchments of Xin'anjiang Basin in South China. Results showed that the model performances of monthly processes were very good for runoff and good for sediment, TN and TP. The annual average coefficients of all the diffuse components in Xin'anjiang Basin were much greater than those in Miyun Basin, and showed significantly regional differences. All the selected impact factors interpreted 72.87-82.16% of the regional differences of carriers, and 62.72-71.62% of those of nutrient coefficients, respectively. For individual impact factor categories, the critical category was geography, followed by land-use/cover, carriers, climate, as well as soil and agricultural practices in Miyun Basin, or agricultural practices and soil in Xin'anjiang Basin. For individual factors, the critical factors were locations for the carrier regional differences, and carriers or chemical fertilizer for the nutrient regional differences. This study is expected to promote further applications of integrated water system model and multivariable statistical analysis in the diffuse nutrient studies, and provide a scientific support for the diffuse pollution control and management in China.
Ly, Martina; Carlsson, Cynthia M.; Okonkwo, Ozioma C.; Zetterberg, Henrik; Blennow, Kaj; Sager, Mark A.; Asthana, Sanjay; Johnson, Sterling C.; Alexander, Andrew L.; Bendlin, Barbara B.
2017-01-01
Brain changes associated with Alzheimer’s disease (AD) begin decades before disease diagnosis. While β-amyloid plaques and neurofibrillary tangles are defining features of AD, neuronal loss and synaptic pathology are closely related to the cognitive dysfunction. Brain imaging methods that are tuned to assess degeneration of myelinated nerve fibers in the brain (collectively called white matter) include diffusion tensor imaging (DTI) and related techniques, and are expected to shed light on disease-related loss of structural connectivity. Participants (N = 70, ages 47–76 years) from the Wisconsin Registry for Alzheimer’s Prevention study underwent DTI and hybrid diffusion imaging to determine a free-water elimination (FWE-DTI) model. The study assessed the extent to which preclinical AD pathology affects brain white matter. Preclinical AD pathology was determined using cerebrospinal fluid (CSF) biomarkers. The sample was enriched for AD risk (APOE ε4 and parental history of AD). AD pathology assessed by CSF analyses was significantly associated with altered microstructure on both DTI and FWE-DTI. Affected regions included frontal, parietal, and especially temporal white matter. The f-value derived from the FWE-DTI model appeared to be the most sensitive to the relationship between the CSF AD biomarkers and microstructural alterations in white matter. These findings suggest that white matter degeneration is an early pathological feature of AD that may have utility both for early disease detection and as outcome measures for clinical trials. More complex models of microstructural diffusion properties including FWE-DTI may provide increased sensitivity to early brain changes associated with AD over standard DTI. PMID:28291839
Prediction of the fate of p,p'-DDE in sediment on the Palos Verdes shelf, California, USA
Sherwood, C.R.; Drake, D.E.; Wiberg, P.L.; Wheatcroft, R.A.
2002-01-01
Long-term (60-yr) predictions of vertical profiles of p,p???-DDE concentrations in contaminated bottom sediments on the Palos Verdes shelf were calculated for three locations along the 60-m isobath using a numerical solution of the one-dimensional advection-diffusion equation. The calculations incorporated the following processes: sediment deposition (or erosion), depth-dependent solid-phase biodiffusive mixing, in situ diagenetic transformation, and loss of p,p???-DDE across the sediment-water interface by two mechanisms (resuspension of sediments by wave action and subsequent loss of p,p???-DDE to the water column by desorption, and desorption from sediments to porewater and subsequent molecular diffusion to the water column). A combination of field measurements, laboratory analyses, and calculations with supporting models was used to set parameters for the model. The model explains significant features observed in measurements made every 2 years from 1981 to 1997 by the County Sanitation Districts of Los Angeles (LACSD). Analyses of available data suggest that two sites northwest of the Whites Point sewage outfalls will remain depositional, even as particulate supply from the sewage-treatment plant and nearby Portuguese Bend Landslide decreases. At these sites, model predictions for 1991-2050 indicate that most of the existing inventory of p,p???-DDE will remain buried and that surface concentrations will gradually decrease. Analyses of data southeast of the outfalls suggest that erosion is likely to occur somewhere on the southeast edge of the existing effluent-affected deposit, and model predictions for such a site showed that erosion and biodiffusion will reintroduce the p,p???-DDE to the upper layer of sediments, with subsequent increases in surface concentrations and loss to the overlying water column.
Diurnal Variation in Gas Exchange: The Balance between Carbon Fixation and Water Loss.
Matthews, Jack S A; Vialet-Chabrand, Silvere R M; Lawson, Tracy
2017-06-01
Stomatal control of transpiration is critical for maintaining important processes, such as plant water status, leaf temperature, as well as permitting sufficient CO 2 diffusion into the leaf to maintain photosynthetic rates ( A ). Stomatal conductance often closely correlates with A and is thought to control the balance between water loss and carbon gain. It has been suggested that a mesophyll-driven signal coordinates A and stomatal conductance responses to maintain this relationship; however, the signal has yet to be fully elucidated. Despite this correlation under stable environmental conditions, the responses of both parameters vary spatially and temporally and are dependent on species, environment, and plant water status. Most current models neglect these aspects of gas exchange, although it is clear that they play a vital role in the balance of carbon fixation and water loss. Future efforts should consider the dynamic nature of whole-plant gas exchange and how it represents much more than the sum of its individual leaf-level components, and they should take into consideration the long-term effect on gas exchange over time. © 2017 American Society of Plant Biologists. All Rights Reserved.
Diffusivity measurements of volatile organics in levitated viscous aerosol particles
NASA Astrophysics Data System (ADS)
Bastelberger, Sandra; Krieger, Ulrich K.; Luo, Beiping; Peter, Thomas
2017-07-01
Field measurements indicating that atmospheric secondary organic aerosol (SOA) particles can be present in a highly viscous, glassy state have spurred numerous studies addressing low diffusivities of water in glassy aerosols. The focus of these studies is on kinetic limitations of hygroscopic growth and the plasticizing effect of water. In contrast, much less is known about diffusion limitations of organic molecules and oxidants in viscous matrices. These may affect atmospheric chemistry and gas-particle partitioning of complex mixtures with constituents of different volatility. In this study, we quantify the diffusivity of a volatile organic in a viscous matrix. Evaporation of single particles generated from an aqueous solution of sucrose and small amounts of volatile tetraethylene glycol (PEG-4) is investigated in an electrodynamic balance at controlled relative humidity (RH) and temperature. The evaporative loss of PEG-4 as determined by Mie resonance spectroscopy is used in conjunction with a radially resolved diffusion model to retrieve translational diffusion coefficients of PEG-4. Comparison of the experimentally derived diffusivities with viscosity estimates for the ternary system reveals a breakdown of the Stokes-Einstein relationship, which has often been invoked to infer diffusivity from viscosity. The evaporation of PEG-4 shows pronounced RH and temperature dependencies and is severely depressed for RH ≲ 30 %, corresponding to diffusivities < 10-14 cm2 s-1 at temperatures < 15 °C. The temperature dependence is strong, suggesting a diffusion activation energy of about 300 kJ mol-1. We conclude that atmospheric volatile organic compounds can be subject to severe diffusion limitations in viscous organic aerosol particles. This may enable an important long-range transport mechanism for organic material, including pollutant molecules such as polycyclic aromatic hydrocarbons (PAHs).
Diffusivity in the core of chronic multiple sclerosis lesions.
Klistorner, Alexander; Wang, Chenyu; Yiannikas, Con; Parratt, John; Barton, Joshua; You, Yuyi; Graham, Stuart L; Barnett, Michael H
2018-01-01
Diffusion tensor imaging (DTI) has been suggested as a potential biomarker of disease progression, neurodegeneration and de/remyelination in MS. However, the pathological substrates that underpin alterations in brain diffusivity are not yet fully delineated. We propose that in highly cohesive fiber tracts: 1) a relative increase in parallel (axial) diffusivity (AD) may serve as a measure of increased extra-cellular space (ESC) within the core of chronic MS lesions and, as a result, may provide an estimate of the degree of tissue destruction, and 2) the contribution of the increased extra-cellular water to perpendicular (radial) diffusivity (RD) can be eliminated to provide a more accurate assessment of membranal (myelin) loss. The purpose of this study was to isolate the contribution of extra-cellular water and demyelination to observed DTI indices in the core of chronic MS lesions, using the OR as an anatomically cohesive tract. Pre- and post-gadolinium (Gd) enhanced T1, T2 and DTI images were acquired from 75 consecutive RRMS patients. In addition, 25 age and gender matched normal controls were imaged using an identical MRI protocol (excluding Gd). The optic radiation (OR) was identified in individual patients using probabilistic tractography. The T2 lesions were segmented and intersected with the OR. Average eigenvalues were calculated within the core of OR lesions mask. The proportion of extra-cellular space (ECS) within the lesional core was calculated based on relative increase of AD, which was then used to normalise the perpendicular eigenvalues to eliminate the effect of the expanded ECS. In addition, modelling was implemented to simulate potential effect of various factors on lesional anisotropy. Of 75 patients, 41 (55%) demonstrated sizable T2 lesion volume within the ORs. All lesional eigenvalues were significantly higher compared to NAWM and controls. There was a strong correlation between AD and RD within the core of OR lesions, which was, however, not seen in OR NAWM of MS patients or normal controls. In addition, lesional anisotropy (FA) was predominantly driven by the perpendicular diffusivity, while in NAWM and in OR of normal controls all eigenvectors contributed to variation in FA. Estimated volume of ECS component constituted significant proportion of OR lesional volume and correlated significantly with lesional T1 hypointensity. While perpendicular diffusivity dropped significantly following normalisation, it still remained higher compared with diffusivity in OR NAWM. The "residual" perpendicular diffusivity also showed a substantial reduction of inter-subject variability. Both observed and modelled diffusion data suggested anisotropic nature of water diffusion in ESC. In addition, the simulation procedure offered a possible explanation for the discrepancy in relationship between eigenvalues and anisotropy in lesional tissue and NAWM. This paper presents a potential technique for more reliably quantifying the effects of neurodegeneration (tissue loss) versus demyelination in OR MS lesions. This may provide a simple and effective way for applying single tract diffusion analysis in MS clinical trials, with particular relevance to pro-remyelinating and neuroprotective therapeutics.
Evaluation of the Snap Sampler for Sampling Ground Water Monitoring Wells for Inorganic Analytes
2008-12-01
08-25 3 Accumulation samplers rely on both diffusion through a membrane and then sorption by some type of sorbent material that is contained in the...the materials in the sampler to equilibrate with the analytes in the well water thereby prevent- ing losses of analytes due to sorption by the sampler...The spring in the bottles is coated with perfluoroalkoxy ( PFA ) (Teflon) and is connected to PFA end caps at both ends of the bottle. Currently
2009-01-01
complementary description of CDOM photodegradation and, importantly, CDOM biomass and light absorption. As part of this work, we setup and run the new high...related loss terms from the ECOSIM 2.0 formulation (Bissett 2005 and FERI 2004) and included diffuse light attenuation in the water column based on...Huang, pers. comm.), c) we improved the photolysis rate equations and included light attenuation in the water column, and d) we expanded the limited
Cosca, M.; Stunitz, H.; Bourgeix, A.-L.; Lee, J.P.
2011-01-01
The effects of deformation on radiogenic argon (40Ar*) retentivity in mica are described from high pressure experiments performed on rock samples of peraluminous granite containing euhedral muscovite and biotite. Cylindrical cores, ???15mm in length and 6.25mm in diameter, were drilled from granite collected from the South Armorican Massif in northwestern France, loaded into gold capsules, and weld-sealed in the presence of excess water. The samples were deformed at a pressure of 10kb and a temperature of 600??C over a period 29 of hours within a solid medium assembly in a Griggs-type triaxial hydraulic deformation apparatus. Overall shortening in the experiments was approximately 10%. Transmitted light and secondary and backscattered electron imaging of the deformed granite samples reveals evidence of induced defects and for significant physical grain size reduction by kinking, cracking, and grain segmentation of the micas.Infrared (IR) laser (CO2) heating of individual 1.5-2.5mm diameter grains of muscovite and biotite separated from the undeformed granite yield well-defined 40Ar/39Ar plateau ages of 311??2Ma (2??). Identical experiments on single grains separated from the experimentally deformed granite yield results indicating 40Ar* loss of 0-35% in muscovite and 2-3% 40Ar* loss in biotite. Intragrain in situ ultraviolet (UV) laser ablation 40Ar/39Ar ages (??4-10%, 1??) of deformed muscovites range from 309??13 to 264??7Ma, consistent with 0-16% 40Ar* loss relative to the undeformed muscovite. The in situ UV laser ablation 40Ar/39Ar ages of deformed biotite vary from 301 to 217Ma, consistent with up to 32% 40Ar* loss. No spatial correlation is observed between in situ 40Ar/39Ar age and position within individual grains. Using available argon diffusion data for muscovite the observed 40Ar* loss in the experimentally treated muscovite can be utilized to predict average 40Ar* diffusion dimensions. Maximum 40Ar/39Ar ages obtained by UV laser ablation overlap those of the undeformed muscovite, indicating argon loss of <1% and an average effective grain radius for 40Ar* diffusion ???700??m. The UV laser ablation and IR laser incremental 40Ar/39Ar ages indicating 40Ar* loss of 16% and 35%, respectively, are consistent with an average diffusion radius ???100??m. These results support a hypothesis of grain-scale 40Ar* diffusion distances in undeformed mica and a heterogeneous mechanical reduction in the intragrain effective diffusion length scale for 40Ar* in deformed mica. Reduction in the effective diffusion length scale in naturally deformed samples occurs most probably through production of mesoscopic and submicroscopic defects such as, e.g., stacking faults. A network of interconnected defects, continuously forming and annealing during dynamic deformation likely plays an important role in controlling both 40Ar* retention and intragrain distribution in deformed mica. Intragrain 40Ar/39Ar ages, when combined with estimates of diffusion kinetics and distances, may provide a means of establishing thermochronological histories from individual micas. ?? 2011.
Assessment of diffuser pressure loss on WWTPs in Baden-Württemberg.
Krampe, J
2011-01-01
Aeration of activated sludge is a critical treatment step for the operation of activated sludge plants. To achieve a cost effective treatment process, assessing and benchmarking of aeration system performance are important measures. A simple means of gauging the relative condition of a fine bubble diffused aeration system is to evaluate the pressure loss of the diffusers as oxygen transfer tests are rarely applied during the lifetime of an aeration system. This paper shows an assessment of fine bubble diffuser systems in Baden-Württemberg, Germany, based on the results of a questionnaire sent to 941 WWTPs. Apart from the results with regards to the diffuser pressure loss, this paper also presents information on the current state of diffuser technology such as types and materials as well as the diffuser cleaning methods used in Baden-Württemberg. The majority of the WWTPs were equipped with tube diffusers (71%) with 50% of all plants having EPDM membranes installed. Regular mechanical cleaning is the most common cleaning method followed by regular pressure release/air-bumping programs during operations. With regard to the diffuser pressure loss it was found that 50% of the evaluated plants had a diffuser pressure loss that was twice as high as measured for new diffusers.
Miles, Rachael E H; Davies, James F; Reid, Jonathan P
2016-07-20
We explore the dependence of the evaporation coefficient of water from aqueous droplets on the composition of a surface film, considering in particular the influence of monolayer mixed component films on the evaporative mass flux. Measurements with binary component films formed from long chain alcohols, specifically tridecanol (C13H27OH) and pentadecanol (C15H31OH), and tetradecanol (C14H29OH) and hexadecanol (C16H33OH), show that the evaporation coefficient is dependent on the mole fractions of the two components forming the monolayer film. Immediately at the point of film formation and commensurate reduction in droplet evaporation rate, the evaporation coefficient is equal to a mole fraction weighted average of the evaporation coefficients through the equivalent single component films. As a droplet continues to diminish in surface area with continued loss of water, the more-soluble, shorter alkyl chain component preferentially partitions into the droplet bulk with the evaporation coefficient tending towards that through a single component film formed simply from the less-soluble, longer chain alcohol. We also show that the addition of a long chain alcohol to an aqueous-sucrose droplet can facilitate control over the degree of dehydration achieved during evaporation. After undergoing rapid gas-phase diffusion limited water evaporation, binary aqueous-sucrose droplets show a continued slow evaporative flux that is limited by slow diffusional mass transport within the particle bulk due to the rapidly increasing particle viscosity and strong concentration gradients that are established. The addition of a long chain alcohol to the droplet is shown to slow the initial rate of water loss, leading to a droplet composition that remains more homogeneous for a longer period of time. When the sucrose concentration has achieved a sufficiently high value, and the diffusion constant of water has decreased accordingly so that bulk phase diffusion arrest occurs in the monolayer coated particle, the droplet is found to have lost a greater proportion of its initial water content. A greater degree of slowing in the evaporative flux can be achieved by increasing the chain length of the surface active alcohol, leading to a greater degree of dehydration.
Phosphorus runoff from agricultural land and direct fertilizer effects: a review.
Hart, Murray R; Quin, Bert F; Nguyen, M Long
2004-01-01
Phosphorus (P) is one of the most important mineral nutrients in agricultural systems, and along with nitrogen (N), is generally the most limiting nutrient for plant production. Farming systems have intensified greatly over time, and in recent years it has become apparent that the concomitant increase in losses of N and P from agricultural land is having a serious detrimental effect on water quality and the environment. The last two decades have seen a marked increase in research into the issues surrounding diffuse losses of P to surface and ground water. This paper reviews this research, examining the issue of P forms in runoff, and highlighting the exceptions to some generally held assumptions about land use and P transport. In particular the review focuses on P losses associated with recent P fertilizer application, as opposed to organic manures, both on the amounts and the forms of P in runoff water. The effects of the physicochemical characteristics of different forms of P fertilizer are explored, particularly in relation to water solubility. Various means of mitigating the risk of loss of P are discussed. It is argued that the influence of recent fertilizer applications is an under-researched area, yet may offer the most readily applicable opportunity to mitigate P losses by land users. This review highlights and discusses some options that have recently become available that may make a significant contribution to the task of sustainable management of nutrient losses from agriculture.
Matsuo, A Y; Val, A L
2002-03-01
The present study analyzes Na+ and K+ disturbances caused by low pH in two catfish species from the Amazon River. Corydoras adolfoi inhabits ion-poor, black-stained, low pH (3.5-4.0) waters, while C. schwartzi is native to ion-rich waters at circumneutral pH. Fish were exposed to pH 3.5 Ca2+-free, and Ca2+-enriched (approximately 500 micromol/l) water to determine the protective effects of calcium. Net Na+ and K+ fluxes were measured in the water collected from the fish experimental chambers. C. adolfoi was unable to control the Na+ efflux at low pH, exhibiting Na+ loss up to -594 +/- 84 nmol g(-1) h(-1) during the first hour. After 3 and 6 h, net Na+ flux increased by 7- and 23-fold, respectively. In C. schwartzi, at pH 3.5, the initial high Na+ loss (-1,063 +/- 73 nmol g(-1) h(-1)) was gradually attenuated. A K+ loss occurred in both species, but remained relatively constant throughout exposure. High [Ca2+] affected ion losses in both species. C. adolfoi had 70% loss attenuation, indicating incapacity to control Na+ efflux. In C. schwartzi, elevated [Ca2+] completely prevented the Na+ losses caused by exposure to low pH. Rather different patterns were seen for K+ fluxes, with C. adolfoi showing no K+ disruption when exposed to low pH/high [Ca2+]. Thus, C. adolfoi loses Na+ during acid exposure, but has the ability to control K+ loss, while C. schwartzi controls diffusive Na+ loss but exhibits a slightly higher K+ loss. Ion balance was influenced by [Ca2+] at low pH in C. schwartzi but not in C. adolfoi.
Fabrication, characterization, and thermal property evaluation of silver nanofluids
2014-01-01
Silver nanoparticles were successfully prepared in two different solvents using a microwave heating technique, with various irradiation times. The silver nanoparticles were dispersed in polar liquids (distilled water and ethylene glycol) without any other reducing agent, in the presence of the stabilizer polyvinylpyrrolidone (PVP). The optical properties, thermal properties, and morphology of the synthesized silver particles were characterized using ultraviolet-visible spectroscopy, photopyroelectric technique, and transmission electron microscopy. It was found that for the both solvents, the effect of microwave irradiation was mainly on the particles distribution, rather than the size, which enabled to make stable and homogeneous silver nanofluids. The individual spherical nanostructure of self-assembled nanoparticles has been formed during microwave irradiation. Ethylene glycol solution, due to its special properties, such as high dielectric loss, high molecular weight, and high boiling point, can serve as a good solvent for microwave heating and is found to be a more suitable medium than the distilled water. A photopyroelectric technique was carried out to measure thermal diffusivity of the samples. The precision and accuracy of this technique was established by comparing the measured thermal diffusivity of the distilled water and ethylene glycol with values reported in the literature. The thermal diffusivity ratio of the silver nanofluids increased up to 1.15 and 1.25 for distilled water and ethylene glycol, respectively. PMID:25489293
Liu, Jinyu; Tyree, Melvin T.
2015-01-01
Cavitation of water in xylem vessels followed by embolism formation has been authenticated for more than 40 years. Embolism formation involves the gradual buildup of bubble pressure (air) to atmospheric pressure as demanded by Henry’s law of equilibrium between gaseous and liquid phases. However, the tempo of pressure increase has not been quantified. In this report, we show that the rate of pressurization of embolized vessels is controlled by both fast and slow kinetics, where both tempos are controlled by diffusion but over different spatial scales. The fast tempo involves a localized diffusion from endogenous sources: over a distance of about 0.05 mm from water-filled wood to the nearest embolized vessels; this process, in theory, should take <2 min. The slow tempo involves diffusion of air from exogenous sources (outside the stem). The latter diffusion process is slower because of the increased distance of diffusion of up to 4 mm. Radial diffusion models and experimental measurements both confirm that the average time constant is >17 h, with complete equilibrium requiring 1 to 2 d. The implications of these timescales for the standard methods of measuring percentage loss of hydraulic conductivity are discussed in theory and deserve more research in future. PMID:26468516
Wang, Yujie; Liu, Jinyu; Tyree, Melvin T
2015-12-01
Cavitation of water in xylem vessels followed by embolism formation has been authenticated for more than 40 years. Embolism formation involves the gradual buildup of bubble pressure (air) to atmospheric pressure as demanded by Henry's law of equilibrium between gaseous and liquid phases. However, the tempo of pressure increase has not been quantified. In this report, we show that the rate of pressurization of embolized vessels is controlled by both fast and slow kinetics, where both tempos are controlled by diffusion but over different spatial scales. The fast tempo involves a localized diffusion from endogenous sources: over a distance of about 0.05 mm from water-filled wood to the nearest embolized vessels; this process, in theory, should take <2 min. The slow tempo involves diffusion of air from exogenous sources (outside the stem). The latter diffusion process is slower because of the increased distance of diffusion of up to 4 mm. Radial diffusion models and experimental measurements both confirm that the average time constant is >17 h, with complete equilibrium requiring 1 to 2 d. The implications of these timescales for the standard methods of measuring percentage loss of hydraulic conductivity are discussed in theory and deserve more research in future. © 2015 American Society of Plant Biologists. All Rights Reserved.
Voltage instability in a simulated fuel cell stack correlated to cathode water accumulation
NASA Astrophysics Data System (ADS)
Owejan, J. P.; Trabold, T. A.; Gagliardo, J. J.; Jacobson, D. L.; Carter, R. N.; Hussey, D. S.; Arif, M.
Single fuel cells running independently are often used for fundamental studies of water transport. It is also necessary to assess the dynamic behavior of fuel cell stacks comprised of multiple cells arranged in series, thus providing many paths for flow of reactant hydrogen on the anode and air (or pure oxygen) on the cathode. In the current work, the flow behavior of a fuel cell stack is simulated by using a single-cell test fixture coupled with a bypass flow loop for the cathode flow. This bypass simulates the presence of additional cells in a stack and provides an alternate path for airflow, thus avoiding forced convective purging of cathode flow channels. Liquid water accumulation in the cathode is shown to occur in two modes; initially nearly all the product water is retained in the gas diffusion layer until a critical saturation fraction is reached and then water accumulation in the flow channels begins. Flow redistribution and fuel cell performance loss result from channel slug formation. The application of in-situ neutron radiography affords a transient correlation of performance loss to liquid water accumulation. The current results identify a mechanism whereby depleted cathode flow on a single cell leads to performance loss, which can ultimately cause an operating proton exchange membrane fuel cell stack to fail.
Enceladus' tidal dissipation revisited
NASA Astrophysics Data System (ADS)
Tobie, Gabriel; Behounkova, Marie; Choblet, Gael; Cadek, Ondrej; Soucek, Ondrej
2016-10-01
A series of chemical and physical evidence indicates that the intense activity at Enceladus' South Pole is related to a subsurface salty water reservoir underneath the tectonically active ice shell. The detection of a significant libration implies that this water reservoir is global and that the average ice shell thickness is about 20-25km (Thomas et al. 2016). The interpretation of gravity and topography data further predicts large variations in ice shell thickness, resulting in a shell potentially thinner than 5 km in the South Polar Terrain (SPT) (Cadek et al. 2016). Such an ice shell structure requires a very strong heat source in the interior, with a focusing mechanism at the SPT. Thermal diffusion through the ice shell implies that at least 25-30 GW is lost into space by passive diffusion, implying a very efficient dissipation mechanism in Enceladus' interior to maintain such an ocean/ice configuration thermally stable.In order to determine in which conditions such a large dissipation power may be generated, we model the tidal response of Enceladus including variable ice shell thickness. For the rock core, we consider a wide range of rheological parameters representative of water-saturated porous rock materials. We demonstrate that the thinning toward the South Pole leads to a strong increase in heat production in the ice shell, with a optimal thickness obtained between 1.5 and 3 km, depending on the assumed ice viscosity. Our results imply that the heat production in the ice shell within the SPT may be sufficient to counterbalance the heat loss by diffusion and to power eruption activity. However, outside the SPT, a strong dissipation in the porous core is required to counterbalance the diffusive heat loss. We show that about 20 GW can be generated in the core, for an effective viscosity of 1012 Pa.s, which is comparable to the effective viscosity estimated in water-saturated glacial tills on Earth. We will discuss the implications of this revisited tidal budget for the activity of Enceladus and the long-term evolution of its interior.
What plant hydraulics can tell us about responses to climate-change droughts.
Sperry, John S; Love, David M
2015-07-01
Climate change exposes vegetation to unusual drought, causing declines in productivity and increased mortality. Drought responses are hard to anticipate because canopy transpiration and diffusive conductance (G) respond to drying soil and vapor pressure deficit (D) in complex ways. A growing database of hydraulic traits, combined with a parsimonious theory of tree water transport and its regulation, may improve predictions of at-risk vegetation. The theory uses the physics of flow through soil and xylem to quantify how canopy water supply declines with drought and ceases by hydraulic failure. This transpiration 'supply function' is used to predict a water 'loss function' by assuming that stomatal regulation exploits transport capacity while avoiding failure. Supply-loss theory incorporates root distribution, hydraulic redistribution, cavitation vulnerability, and cavitation reversal. The theory efficiently defines stomatal responses to D, drying soil, and hydraulic vulnerability. Driving the theory with climate predicts drought-induced loss of plant hydraulic conductance (k), canopy G, carbon assimilation, and productivity. Data lead to the 'chronic stress hypothesis' wherein > 60% loss of k increases mortality by multiple mechanisms. Supply-loss theory predicts the climatic conditions that push vegetation over this risk threshold. The theory's simplicity and predictive power encourage testing and application in large-scale modeling. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Detecting and Correcting Melt Inclusion Modification
NASA Astrophysics Data System (ADS)
Cottrell, E.; Kelley, K. A.
2008-12-01
Post entrapment diffusive modification of melt inclusions may mute or erase primary signatures. Corrections for post-entrapment crystallization (PEC) and Fe-loss are routinely applied and, because recent experimental studies suggest rapid diffusion of trace components into and out of olivine-hosted inclusions, the ability to discriminate between primary and secondary signatures is now even more critical. Two tools may assist in this endeavor. XANES measurements of Fe3+/ΣFe ratios in undegassed ol-hosted basaltic melt inclusions from global arcs are 16-36% (n=16), significantly higher than the 7-10% commonly assumed, and higher than in MORB or BABB lavas (Kelley and Cottrell, this mtg). The Fe3+/ΣFe ratios indicate melt-host equilibrium, with significantly less PEC or Fe-loss than would have been otherwise assumed. We conclude that Fe2+ diffusion has been minimal; therefore the residence time of these primitive inclusions in an evolved magma must have been short. Fe3+/ΣFe correlates positively with water concentration, but not with CO2 and S concentrations or Mg#. The oxidized nature of arc lavas and melt inclusions may therefore indicate an oxidized source rather than late-stage degassing or fractionation. Trace element concentrations evolve with time if an inclusion is out of equilibrium with its host. The numerical model of Cottrell et al., 2002, makes specific predictions about how suites of melt inclusions evolve, creating a tool to detect post-entrapment modification. Recent laboratory measurements of REE diffusion in olivine greatly diverge (at 1300°C, 1015 vs 1019m2/s). If REE diffusivity is extremely fast, melt inclusion HREE diversity shouldn't survive more than a few years in a magma chamber; but if slow, HREE variance could be preserved for >104 yrs. Model analysis of published suites of ol-hosted inclusions indicates that either REE diffusion is quite slow, or the residence time of melt inclusions at high temperature is very short. Loss of variance in suites of pl-hosted inclusions is consistent with long (>103 yrs) residence times. Suites of ol- and pl-hosted inclusions from the same magmatic system can therefore bracket residence times if diffusivities are known, or put reasonable bounds on diffusion rates.
NASA Astrophysics Data System (ADS)
Raefat, Saad; Garoum, Mohammed; Laaroussi, Najma; Thiam, Macodou; Amarray, Khaoula
2017-07-01
In this work experimental investigation of apparent thermal diffusivity and adiabatic limit temperature of expanded granular perlite mixes has been made using the flash technic. Perlite granulates were sieved to produce essentially three characteristic grain sizes. The consolidated samples were manufactured by mixing controlled proportions of the plaster and water. The effect of the particle size on the diffusivity was examined. The inverse estimation of the diffusivity and the adiabatic limit temperature at the rear face as well as the heat losses coefficients were performed using several numerical global minimization procedures. The function to be minimized is the quadratic distance between the experimental temperature rise at the rear face and the analytical model derived from the one dimension heat conduction. It is shown that, for all granulometry tested, the estimated parameters lead to a good agreement between the mathematical model and experimental data.
On turbulent diffusion of magnetic fields and the loss of magnetic flux from stars
NASA Technical Reports Server (NTRS)
Vainshtein, Samuel I.; Rosner, Robert
1991-01-01
The turbulent diffusion of magnetic fields in astrophysical objects, and the processes leading to magnetic field flux loss from such objects are discussed with attention to the suppression of turbulent diffusion by back-reaction of magnetic fields on small spatial scales, and on the constraint imposed on magnetic flux loss by flux-freezing within stars. Turbulent magnetic diffusion can be suppressed even for very weak large-scale magnetic fields, so that 'standard' turbulent diffusion is incapable of significant magnetic flux destruction within a star. Finally, magnetic flux loss via winds is shown to be generally ineffective, no matter what the value of the effective magnetic Reynolds number is.
Budget analysis of Escherichia coli at a southern Lake Michigan Beach
Thupaki, P.; Phanikumar, M.S.; Beletsky, D.; Schwab, D.J.; Nevers, M.B.; Whitman, R.L.
2010-01-01
Escherichia coli (EC) concentrations at two beaches impacted by river plume dynamics in southern Lake Michigan were analyzed using three-dimensional hydrodynamic and transport models. The relative importance of various physical and biological processes influencing the fate and transport of EC were examined via budget analysis and a first-order sensitivity analysis of model parameters. The along-shore advective fluxofEC(CFU/m2·s)was found to be higher compared to its crossshore counterpart; however, the sum of diffusive and advective components was of a comparable magnitude in both directions showing the importance of cross-shore exchange in EC transport. Examination of individual terms in the EC mass balance equation showed that vertical turbulent mixing in the water column dominated the overall EC transport for the summer conditions simulated. Dilution due to advection and diffusion accounted for a large portion of the total EC budget in the nearshore, and the net EC loss rate within the water column (CFU/m3·s) was an order of magnitude smaller compared to the horizontal and vertical transport rates. This result has important implications for modeling EC at recreational beaches; however, the assessment of the magnitude of EC loss rate is complicated due to the strong coupling between vertical exchange and depth-dependent EC loss processes such as sunlight inactivation and settling. Sensitivity analysis indicated that solar inactivation has the greatest impact on EC loss rates. Although these results are site-specific, they clearly bring out the relative importance of various processes involved.
Loi, Richard Q.; Leyden, Kelly M.; Balachandra, Akshara; Uttarwar, Vedang; Hagler, Donald J.; Paul, Brianna M.; Dale, Anders M.; White, Nathan S.; McDonald, Carrie R.
2016-01-01
Objective Diffusion tensor imaging (DTI) has become a popular tool for delineating the location and extent of white matter injury in temporal lobe epilepsy (TLE). However, DTI yields nonspecific measures that are confounded by changes occurring within both the intracellular and extracellular environments. This study investigated whether an advanced diffusion method, restriction spectrum imaging (RSI) could provide a more robust measure of white matter injury in TLE relative to DTI due to RSI’s ability to separate intra-axonal diffusion (i.e., neurite density; ND) from diffusion associated with extra-axonal factors (e.g., inflammation; crossing fibers). Methods RSI and DTI scans were obtained on 21 patients with TLE and 11 age-matched controls. RSI-derived maps of ND, isotropic hindered (IH) and free (IF) water, and crossing fibers (CF) were compared to DTI-derived fractional anisotropy (FA) maps. Voxelwise and tract-based analyses were performed comparing patients with TLE to controls on each diffusion metric. Results Reductions in FA were seen primarily in frontotemporal white matter in TLE and were most pronounced proximal to the seizure focus. Reductions in ND corresponded to those seen in the FA maps; however, ND reductions were greater in magnitude, more lateralized to the epileptogenic hemisphere, and showed a broader pattern. Increases in IF/IH and effects from CFs also contributed to reduced FA in the ipsilateral parahippocampal cingulum and fornix, with decreases in IH extending into extratemporal regions. Reduced ND of the uncinate fasciculus was associated with longer disease duration, whereas FA was not associated with any clinical variables. Significance RSI may provide a more specific measure of white matter pathology in TLE, distinguishing regions primarily affected by axonal/myelin loss from those where CFs and increases in extracellular water also play a role. By providing a more specific measure of axonal/myelin loss, RSI-derived ND may better reflect overall white matter burden in epilepsy. PMID:27735051
Loi, Richard Q; Leyden, Kelly M; Balachandra, Akshara; Uttarwar, Vedang; Hagler, Donald J; Paul, Brianna M; Dale, Anders M; White, Nathan S; McDonald, Carrie R
2016-11-01
Diffusion tensor imaging (DTI) has become a popular tool for delineating the location and extent of white matter injury in temporal lobe epilepsy (TLE). However, DTI yields nonspecific measures that are confounded by changes occurring within both the intracellular and extracellular environments. This study investigated whether an advanced diffusion method, restriction spectrum imaging (RSI) could provide a more robust measure of white matter injury in TLE relative to DTI due to RSI's ability to separate intraaxonal diffusion (i.e., neurite density; ND) from diffusion associated with extraaxonal factors (e.g., inflammation; crossing fibers). RSI and DTI scans were obtained on 21 patients with TLE and 11 age-matched controls. RSI-derived maps of ND, isotropic-hindered (IH) and isotropic-free (IF) water, and crossing fibers (CFs) were compared to DTI-derived fractional anisotropy (FA) maps. Voxelwise and tract-based analyses were performed comparing patients with TLE to controls on each diffusion metric. Reductions in FA were seen primarily in frontotemporal white matter in TLE, and they were most pronounced proximal to the seizure focus. Reductions in ND corresponded to those seen in the FA maps; however, ND reductions were greater in magnitude, more lateralized to the epileptogenic hemisphere, and showed a broader pattern. Increases in IF/IH and effects from CFs also contributed to reduced FA in the ipsilateral parahippocampal cingulum and fornix, with decreases in IH extending into extratemporal regions. Reduced ND of the uncinate fasciculus was associated with longer disease duration, whereas FA was not associated with any clinical variables. RSI may provide a more specific measure of white matter pathology in TLE, distinguishing regions primarily affected by axonal/myelin loss from those where CFs and increases in extracellular water also play a role. By providing a more specific measure of axonal/myelin loss, RSI-derived ND may better reflect overall white matter burden in epilepsy. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.
Melt fracturing and healing: A mechanism for degassing and origin of silicic obsidian
Cabrera, A.; Weinberg, R.F.; Wright, H.M.N.; Zlotnik, S.; Cas, Ray A.F.
2011-01-01
We present water content transects across a healed fault in pyroclastic obsidian from Lami pumice cone, Lipari, Italy, using synchrotron Fourier transform infrared spectroscopy. Results indicate that rhyolite melt degassed through the fault surface. Transects define a trough of low water content coincident with the fault trace, surrounded on either side by high-water-content plateaus. Plateaus indicate that obsidian on either side of the fault equilibrated at different pressure-temperature (P-T) conditions before being juxtaposed. The curves into the troughs indicate disequilibrium and water loss through diffusion. If we assume constant T, melt equilibrated at pressures differing by 0.74 MPa before juxtaposition, and the fault acted as a low-P permeable path for H2O that diffused from the glass within time scales of 10 and 30 min. Assuming constant P instead, melt on either side could have equilibrated at temperatures differing by as much as 100 ??C, before being brought together. Water content on the fault trace is particularly sensitive to post-healing diffusion. Its preserved value indicates either higher temperature or lower pressure than the surroundings, indicative of shear heating and dynamic decompression. Our results reveal that water contents of obsidian on either side of the faults equilibrated under different P-T conditions and were out of equilibrium with each other when they were juxtaposed due to faulting immediately before the system was quenched. Degassing due to faulting could be linked to cyclical seismic activity and general degassing during silicic volcanic activity, and could be an efficient mechanism of producing low-water-content obsidian. ?? 2011 Geological Society of America.
H Diffusion in Olivine and Pyroxene from Peridotite Xenoliths and a Hawaiian Magma Speedometer
NASA Technical Reports Server (NTRS)
Peslier, A. H.; Bizimis, M.
2014-01-01
Hydrogen is present as a trace element in olivine and pyroxene and its content distribution in the mantle results from melting and metasomatic processes. Here we examine how these H contents can be disturbed during decompression. Hydrogen was analyzed by FTIR in olivine and pyroxene of spinel peridotite xenoliths from Salt Lake Crater (SLC) nephelinites which are part of the rejuvenated volcanism at Oahu (Hawaii) [1,2]. H mobility in pyroxene resulting from spinel exsolution during mantle upwelling Most pyroxenes in SLC peridotites exhibit exsolutions, characterized by spinel inclusions. Pyroxene edges where no exsolution are present have less H then their core near the spinel. Given that H does not enter spinel [3], subsolidus requilibration may have concentrated H in the pyroxene adjacent to the spinel exsolution during mantle upwelling. H diffusion in olivine during xenolith transport by its host magma and host magma ascent rates Olivines have lower water contents at the edge and near fractures compared to at their core, while the concentrations of all other chemical elements appear homogeneous. This suggests that some of the initial water has diffused out of the olivine. Water loss from the olivine is thought to occur during host-magma ascent and xenolith transport to the surface [4-6]. Diffusion modeling matches best the data when the initial water content used is that measured at the core of the olivines, implying that mantle water contents are preserved at the core of the olivines. The 3225 cm(sup -1) OH band at times varies independantly of other OH bands, suggesting uneven H distribution in olivine defects likely acquired during mantle metasomatism just prior to eruption and unequilibrated. Diffusion times (1-48 hrs) combined with depths of peridotite equilibration or of magma start of degassing allow to calculate ascent rates for the host nephelinite of 0.1 to 27 m/s.
NASA Astrophysics Data System (ADS)
Cosca, Michael; Stunitz, Holger; Bourgeix, Anne-Lise; Lee, John P.
2011-12-01
The effects of deformation on radiogenic argon ( 40Ar ∗) retentivity in mica are described from high pressure experiments performed on rock samples of peraluminous granite containing euhedral muscovite and biotite. Cylindrical cores, ˜15 mm in length and 6.25 mm in diameter, were drilled from granite collected from the South Armorican Massif in northwestern France, loaded into gold capsules, and weld-sealed in the presence of excess water. The samples were deformed at a pressure of 10 kb and a temperature of 600 °C over a period 29 of hours within a solid medium assembly in a Griggs-type triaxial hydraulic deformation apparatus. Overall shortening in the experiments was approximately 10%. Transmitted light and secondary and backscattered electron imaging of the deformed granite samples reveals evidence of induced defects and for significant physical grain size reduction by kinking, cracking, and grain segmentation of the micas. Infrared (IR) laser (CO 2) heating of individual 1.5-2.5 mm diameter grains of muscovite and biotite separated from the undeformed granite yield well-defined 40Ar/ 39Ar plateau ages of 311 ± 2 Ma (2σ). Identical experiments on single grains separated from the experimentally deformed granite yield results indicating 40Ar ∗ loss of 0-35% in muscovite and 2-3% 40Ar ∗ loss in biotite. Intragrain in situ ultraviolet (UV) laser ablation 40Ar/ 39Ar ages (±4-10%, 1σ) of deformed muscovites range from 309 ± 13 to 264 ± 7 Ma, consistent with 0-16% 40Ar ∗ loss relative to the undeformed muscovite. The in situ UV laser ablation 40Ar/ 39Ar ages of deformed biotite vary from 301 to 217 Ma, consistent with up to 32% 40Ar ∗ loss. No spatial correlation is observed between in situ40Ar/ 39Ar age and position within individual grains. Using available argon diffusion data for muscovite the observed 40Ar ∗ loss in the experimentally treated muscovite can be utilized to predict average 40Ar ∗ diffusion dimensions. Maximum 40Ar/ 39Ar ages obtained by UV laser ablation overlap those of the undeformed muscovite, indicating argon loss of <1% and an average effective grain radius for 40Ar ∗ diffusion ⩾700 μm. The UV laser ablation and IR laser incremental 40Ar/ 39Ar ages indicating 40Ar ∗ loss of 16% and 35%, respectively, are consistent with an average diffusion radius ≪100 μm. These results support a hypothesis of grain-scale 40Ar ∗ diffusion distances in undeformed mica and a heterogeneous mechanical reduction in the intragrain effective diffusion length scale for 40Ar ∗ in deformed mica. Reduction in the effective diffusion length scale in naturally deformed samples occurs most probably through production of mesoscopic and submicroscopic defects such as, e.g., stacking faults. A network of interconnected defects, continuously forming and annealing during dynamic deformation likely plays an important role in controlling both 40Ar ∗ retention and intragrain distribution in deformed mica. Intragrain 40Ar/ 39Ar ages, when combined with estimates of diffusion kinetics and distances, may provide a means of establishing thermochronological histories from individual micas.
Modeling of a Von Platen-Munters diffusion absorption refrigeration cycle
NASA Astrophysics Data System (ADS)
Agostini, Bruno; Agostini, Francesco; Habert, Mathieu
2016-09-01
This article presents a thermodynamical model of a Von-Platen diffusion absorption refrigeration cycle for power electronics applications. It is first validated by comparison with data available in the literature for the classical water-ammonia-helium cycle for commercial absorption fridges. Then new operating conditions corresponding to specific ABB applications, namely high ambient temperature and new organic fluids combinations compatible with aluminium are simulated and discussed. The target application is to cool power electronics converters in harsh environments with high ambient temperature by providing refrigeration without compressor, for passive components losses of about 500 W, with a compact and low cost solution.
Hatton, Sean N; Panizzon, Matthew S; Vuoksimaa, Eero; Hagler, Donald J; Fennema-Notestine, Christine; Rinker, Daniel; Eyler, Lisa T; Franz, Carol E; Lyons, Michael J; Neale, Michael C; Tsuang, Ming T; Dale, Anders M; Kremen, William S
2018-05-01
Two basic neuroimaging-based characterizations of white matter tracts are the magnitude of water diffusion along the principal tract orientation (axial diffusivity, AD) and water diffusion perpendicular to the principal orientation (radial diffusivity, RD). It is generally accepted that decreases in AD reflect disorganization, damage, or loss of axons, whereas increases in RD are indicative of disruptions to the myelin sheath. Previous reports have detailed the heritability of individual AD and RD measures, but have not examined the extent to which the same or different genetic or environmental factors influence these two phenotypes (except for corpus callosum). We implemented bivariate twin analyses to examine the shared and independent genetic influences on AD and RD. In the Vietnam Era Twin Study of Aging, 393 men (mean age = 61.8 years, SD = 2.6) underwent diffusion-weighted magnetic resonance imaging. We derived fractional anisotropy (FA), mean diffusivity (MD), AD, and RD estimates for 11 major bilateral white matter tracts and the mid-hemispheric corpus callosum, forceps major, and forceps minor. Separately, AD and RD were each highly heritable. In about three-quarters of the tracts, genetic correlations between AD and RD were >.50 (median = .67) and showed both unique and common variance. Genetic variance of FA and MD were predominately explained by RD over AD. These findings are important for informing genetic association studies of axonal coherence/damage and myelination/demyelination. Thus, genetic studies would benefit from examining the shared and unique contributions of AD and RD. © 2018 Wiley Periodicals, Inc.
Improvement of water transport mechanisms during potato drying by applying ultrasound.
Ozuna, César; Cárcel, Juan A; García-Pérez, José V; Mulet, Antonio
2011-11-01
The drying rate of vegetables is limited by internal moisture diffusion and convective transport mechanisms. The increase of drying air temperature leads to faster water mobility; however, it provokes quality loss in the product and presents a higher energy demand. Therefore, the search for new strategies to improve water mobility during convective drying constitutes a topic of relevant research. The aim of this work was to evaluate the use of power ultrasound to improve convective drying of potato and quantify the influence of the applied power in the water transport mechanisms. Drying kinetics of potato cubes were increased by the ultrasonic application. The influence of power ultrasound was dependent on the ultrasonic power (from 0 to 37 kW m(-3) ), the higher the applied power, the faster the drying kinetic. The diffusion model considering external resistance to mass transfer provided a good fit of drying kinetics. From modelling, it was observed a proportional and significant (P < 0.05) influence of the applied ultrasonic power on the identified kinetic parameters: effective moisture diffusivity and mass transfer coefficient. The ultrasonic application during drying represents an interesting alternative to traditional convective drying by shortening drying time, which may involve an energy saving concerning industrial applications. In addition, the ultrasonic effect in the water transport is based on mechanical phenomena with a low heating capacity, which is highly relevant for drying heat sensitive materials and also for obtaining high-quality dry products. Copyright © 2011 Society of Chemical Industry.
Metallic diffusion measured by a modified Knudsen technique
NASA Technical Reports Server (NTRS)
Fray, D. J.
1969-01-01
Diffusion coefficient of a metal in high temperature system is determined. From the measurement of the weight loss from a Knudsen cell, the vapor pressure of the escaping species can be calculated. If the only way this species can enter the Knudsen cell is by diffusion through a foil, the weight loss is diffusion flux.
Analysis of pressure losses in the diffuser of a control valve
NASA Astrophysics Data System (ADS)
Turecký, Petr; Mrózek, Lukáš; Tajč, Ladislav; Kolovratník, Michal
The pressure loss in the diffuser of a control valve is evaluated by using CFD computations. Pressure ratios and lifts of a cone for the recommended flow characteristics of an experimental turbine are considered. The pressure loss in a valve is compared with the pressure loss in a nozzle, i.e. the embodiment of the valve without a cone. Computations are carried out for the same mass flow. Velocity profiles are evaluated in both versions of computations. Comparison of computed pressure losses, with the loss evaluated by using relations for diffusers with the ideal velocity conditions in the input cross-section, is carried out.
Water diffusion in silicate glasses: the effect of glass structure
NASA Astrophysics Data System (ADS)
Kuroda, M.; Tachibana, S.
2016-12-01
Water diffusion in silicate melts (glasses) is one of the main controlling factors of magmatism in a volcanic system. Water diffusivity in silicate glasses depends on its own concentration. However, the mechanism causing those dependences has not been fully understood yet. In order to construct a general model for water diffusion in various silicate glasses, we performed water diffusion experiments in silica glass and proposed a new water diffusion model [Kuroda et al., 2015]. In the model, water diffusivity is controlled by the concentration of both main diffusion species (i.e. molecular water) and diffusion pathways, which are determined by the concentrations of hydroxyl groups and network modifier cations. The model well explains the water diffusivity in various silicate glasses from silica glass to basalt glass. However, pre-exponential factors of water diffusivity in various glasses show five orders of magnitude variations although the pre-exponential factor should ideally represent the jump frequency and the jump distance of molecular water and show a much smaller variation. Here, we attribute the large variation of pre-exponential factors to a glass structure dependence of activation energy for molecular water diffusion. It has been known that the activation energy depends on the water concentration [Nowak and Behrens, 1997]. The concentration of hydroxyls, which cut Si-O-Si network in the glass structure, increases with water concentration, resulting in lowering the activation energy for water diffusion probably due to more fragmented structure. Network modifier cations are likely to play the same role as water. With taking the effect of glass structure into account, we found that the variation of pre-exponential factors of water diffusivity in silicate glasses can be much smaller than the five orders of magnitude, implying that the diffusion of molecular water in silicate glasses is controlled by the same atomic process.
Effect of top soil wettability on water evaporation and plant growth.
Gupta, Bharat; Shah, D O; Mishra, Brijesh; Joshi, P A; Gandhi, Vimal G; Fougat, R S
2015-07-01
In general, agricultural soil surfaces being hydrophilic in nature get easily wetted by water. The water beneath the soil moves through capillary effect and comes to the surface of the soil and thereafter evaporates into the surrounding air due to atmospheric conditions such as sunlight, wind current, temperature and relative humidity. To lower the water loss from soil, an experiment was designed in which a layer of hydrophobic soil was laid on the surface of ordinary hydrophilic soil. This technique strikingly decreased loss of water from the soil. The results indicated that the evaporation rate significantly decreased and 90% of water was retained in the soil in 83 h by the hydrophobic layer of 2 cm thickness. A theoretical calculation based on diffusion of water vapour (gas phase) through hydrophobic capillaries provide a meaningful explanation of experimental results. A greater retention of water in the soil by this approach can promote the growth of plants, which was confirmed by growing chick pea (Cicer arietinum) plants and it was found that the length of roots, height of shoot, number of branches, number of leaves, number of secondary roots, biomass etc. were significantly increased upon covering the surface with hydrophobic soil in comparison to uncovered ordinary hydrophilic soil of identical depth. Such approach can also decrease the water consumption by the plants particularly grown indoors in residential premises, green houses and poly-houses etc. and also can be very useful to prevent water loss and enhance growth of vegetation in semi-arid regions. Copyright © 2015 Elsevier Inc. All rights reserved.
Water vapor permeability of the rigid-shelled gecko egg.
Andrews, Robin M
2012-07-01
The vast majority of squamate reptiles (lizards and snakes) produce parchment-shelled eggs that absorb water during incubation, and thus increase in mass, volume, and surface area. In contrast, females from a single monophyletic lineage of gekkotan lizards produce rigid-shelled eggs. These eggs are functionally comparable to those of birds, that is, at oviposition, eggs contain all the water needed for development, and their mass decreases during incubation via the diffusion of water vapor through the shell. I determined patterns of water loss and shell permeability to water vapor from oviposition to hatching for the rigid-shelled eggs of the gekkonid Chrondrodactylus turneri and compared permeability of C. turneri eggs to those of birds and other squamates. Chrondrodactylus turneri eggs incubated at 28.5°C and 40% relative humidity (RH) decreased in mass by 14% over the course of a 68-day incubation period. The rate of water loss varied during incubation; egg mass decreased rapidly during the first 8 days of incubation, declined at a low constant rate during the next 35 days, and then decreased rapidly during the final 25 days of incubation. Overall permeability was 0.17 mg/day/kPa/cm(2) . Percent water loss of rigid-shelled gecko eggs during incubation is similar to that exhibited by birds, but water vapor permeability is about one-third that of bird eggs and several orders of magnitude lower than that of parchment-shelled squamate eggs. In general, the water economy of their eggs may be associated with the adaptive radiation of the rigid-shelled sphaerodactylid, phyllodactylid, and gekkonid geckos. © 2012 WILEY PERIODICALS, INC.
The distribution of ground ice on Mars
NASA Technical Reports Server (NTRS)
Mellon, M. T.; Jakosky, B. M.
1993-01-01
A wealth of geologic evidence indicates that subsurface water ice has played an important role in the evolution of Martian landforms. Theoretical models of the stability of ground ice show that in the near-surface regolith ice is currently stable at latitudes poleward of about +/- 40 deg and below a depth of a few centimeters to a meter, with some variations with longitude. If ice is not previously present at a particular location where it is stable, atmospheric water will diffuse into the regolith and condense as ice, driven by the annual subsurface thermal oscillations. The lower boundary of this ice deposit is found to occur at a depth (typically a few meters) where the annual thermal oscillations give way to the geothermal gradient. In the equatorial regions near-surface ice is currently not stable, resulting in the sublimation of any existing ice and subsequent loss to the atmosphere. However, subliming ice might be maintained at a steady-state depth, where diffusion and loss to the atmosphere are balanced by resupply from a possible deeper source of water (either deeper, not yet depleted, ice deposits or ground water). This depth is typically a few tens to hundreds of meters and depends primarily on the surface temperature and the nature of the geothermal gradient, being deeper for a higher surface temperature and a lower geothermal gradient. Such an equatorial deposit is characterized by the regolith ice content being low nearer the surface and increasing with depth in the deposit. Oscillations in the orbit will affect this picture of ground ice in two ways: by causing periodic changes in the pattern of near-surface stability and by producing subsurface thermal waves that may be capable of driving water ice deeper into the regolith.
Marion, Bill
2017-03-27
Here, a numerical method is provided for solving the integral equation for the angle-of-incidence (AOI) correction factor for diffuse radiation incident photovoltaic (PV) modules. The types of diffuse radiation considered include sky, circumsolar, horizon, and ground-reflected. The method permits PV module AOI characteristics to be addressed when calculating AOI losses associated with diffuse radiation. Pseudo code is provided to aid users in the implementation, and results are shown for PV modules with tilt angles from 0° to 90°. Diffuse AOI losses are greatest for small PV module tilt angles. Including AOI losses associated with the diffuse irradiance will improve predictionsmore » of PV system performance.« less
Development and testing of a fast conceptual river water quality model.
Keupers, Ingrid; Willems, Patrick
2017-04-15
Modern, model based river quality management strongly relies on river water quality models to simulate the temporal and spatial evolution of pollutant concentrations in the water body. Such models are typically constructed by extending detailed hydrodynamic models with a component describing the advection-diffusion and water quality transformation processes in a detailed, physically based way. This approach is too computational time demanding, especially when simulating long time periods that are needed for statistical analysis of the results or when model sensitivity analysis, calibration and validation require a large number of model runs. To overcome this problem, a structure identification method to set up a conceptual river water quality model has been developed. Instead of calculating the water quality concentrations at each water level and discharge node, the river branch is divided into conceptual reservoirs based on user information such as location of interest and boundary inputs. These reservoirs are modelled as Plug Flow Reactor (PFR) and Continuously Stirred Tank Reactor (CSTR) to describe advection and diffusion processes. The same water quality transformation processes as in the detailed models are considered but with adjusted residence times based on the hydrodynamic simulation results and calibrated to the detailed water quality simulation results. The developed approach allows for a much faster calculation time (factor 10 5 ) without significant loss of accuracy, making it feasible to perform time demanding scenario runs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Precipitation of Excess Hydrogen in Olivine During Cooling Under Pressures: An Experimental Study
NASA Astrophysics Data System (ADS)
Borinski, S.; Karato, S.
2007-12-01
Water (hydrogen) content in olivine transported from the upper mantle is used to infer the water content in the upper mantle (e.g., Bell and Rossman 1992). However, since hydrogen diffusion is known to be fast, processes of hydrogen loss need to be examined. In many literature, diffusion loss (or gain) of hydrogen is usually considered, but in addition to diffusion loss, hydrogen could also precipitate inside of olivine as small inclusions. Consider an upward transport of olivine-bearing rock that originally contained a large amount of hydrogen in the deep interior. As this rock is transported to the shallow region, the solubility limit of hydrogen will decrease because of the reduction of pressure (and temperature) (Kohlstedt et al. 1996, Zhao et al 2004). Consequently, excess hydrogen will precipitate to form water bubbles and/or hydrous minerals as inclusions. Frequently observed submicron-scale inclusions of hydrous minerals (Khisina and Wirth 2002, Kitamura et al. 1987) may correspond to these precipitation products. If that is the case, hydrogen content corresponding to these minerals should not be excluded when estimating the hydrogen content of a sample in the Earth's upper mantle. However, kinetics of precipitation of hydrogen from olivine have not been investigated in the laboratory. We have conducted a series of experimental study in which we annealed hydrogen-saturated olivine single crystals in two different P- T conditions. The starting material was an olivine crystal in which ~1,135 H/106Si (70 wt ppm H2O) was dissolved at P= 3.5 GPa and T=1,573 K. A small piece of this crystal (0.5 mm3) was placed in a multianvil at P=3.5 GPa and either at T= 873K or 1,173K with oxygen fugacity, fO2, buffered by the Ni-NiO solid-state reaction and silica activity, aSiO2, buffered by the presence of orthopyroxene powder in contact with the crystal. Annealing experiments were conducted up to 72 hours. Hydroxyl concentrations were determined from infrared spectra obtained from polished thin sections from crack-free regions of 100 x 100 μm. The hydroxyl concentration at the OH-stretching region around 3678 cm-1 increases systematically with increasing time at 873 K, whereas this band is not detected in samples annealed at 1,173 K. The peak(s) at 3678 cm-1 corresponds to the OH-stretching vibration in hydrous minerals such as serpentine (Mellini et al. 2002, Hofmeister and Bowey 2006). We conclude that the water in the upper mantle not only diffuse out and disappear during the ascent (cooling and depressurization), but also is bounded in hydrous minerals (e.g. serpentine).
Vermeir, Lien; Sabatino, Paolo; Balcaen, Mathieu; Declerck, Arnout; Dewettinck, Koen; Martins, José C; Guthausen, Gisela; Van der Meeren, Paul
2016-08-01
The accuracy of the inner water droplet size determination of W/O/W emulsions upon water diffusion measurement by diffusion NMR was evaluated. The resulting droplet size data were compared to the results acquired from the diffusion measurement of a highly water soluble marker compound with low permeability in the oil layer of a W/O/W emulsion, which provide a closer representation of the actual droplet size. Differences in droplet size data obtained from water and the marker were ascribed to extra-droplet water diffusion. The diffusion data of the tetramethylammonium cation marker were measured using high-resolution pulsed field gradient NMR, whereas the water diffusion was measured using both low-resolution and high-resolution NMR. Different data analysis procedures were evaluated to correct for the effect of extra-droplet water diffusion on the accuracy of water droplet size analysis. Using the water diffusion data, the use of a low measurement temperature and diffusion delay Δ could reduce the droplet size overestimation resulting from extra-droplet water diffusion, but this undesirable effect was inevitable. Detailed analysis of the diffusion data revealed that the extra-droplet diffusion effect was due to an exchange between the inner water phase and the oil phase, rather than by exchange between the internal and external aqueous phase. A promising data analysis procedure for retrieving reliable size data consisted of the application of Einstein's diffusion law to the experimentally determined diffusion distances. This simple procedure allowed determining the inner water droplet size of W/O/W emulsions upon measurement of water diffusion by low-resolution NMR at or even above room temperature. Copyright © 2016 Elsevier Inc. All rights reserved.
Amores, Sonia; Domenech, José; Colom, Helena; Calpena, Ana C; Clares, Beatriz; Gimeno, Álvaro; Lauroba, Jacinto
2014-08-18
The use of isolated animal models to assess percutaneous absorption of molecules is frequently reported. The porcine buccal mucosa has been proposed as a substitute for the buccal mucosa barrier on ex vivo permeability studies avoiding unnecessary sacrifice of animals. But it is not always easy to obtain fresh buccal mucosa. Consequently, human and porcine buccal mucosa is sometimes frozen and stored in liquid nitrogen, but this procedure is not always feasible. One cheaper and simpler alternative is to freeze the buccal mucosa of freshly slaughtered pigs in a mechanical freezer, using DMSO and albumin as cryoprotective agents. This study compared the ex vivo permeability parameters of propranolol hydrochloride through porcine buccal mucosa using a Franz diffusion cell system and HPLC as detection method. The freezing effects on drug permeability parameters were evaluated. Equally histological studies were performed. Furthermore, the use of the parameter transmucosal water loss (TMWL) as an indicator of the buccal mucosa integrity was evaluated just as transepidermal water loss (TEWL) is utilized for skin integrity. The results showed no difference between fresh and frozen mucosal flux, permeability coefficient or lag time of propranolol. However, statistical significant difference in TMWL between fresh and frozen mucosa was observed. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Albert, H.; Costa Rodriguez, F.; Herrin, J. S.; Di Muro, A.; Metrich, N.
2017-12-01
Summit caldera collapse is a rare event at Piton de la Fournaise. One such event occurred in 2007 during one of the largest historic eruptions of more than 200 Mm3 of magma. Effusion of aphyric basalts initiated at the summit area in mid-February, followed by the migration of active vents in March and early April to progressively lower elevations. Collapse of a 1 km diameter summit caldera occurred on April 5th while effusion of crystal rich lava continued until May 1st. Here we investigate these events through timescales recorded in olivine crystals and their melt inclusions (MIs) using a diffusion modelling approach. Olivine crystals from the early tephra emitted just before caldera collapse and from the post caldera collapse lava display similar compositions and zoning patterns. Fo [%Fo=100*Mg/(Mg+Fe)] values range from ≈82 to ≈86 and the phenocrysts are complexly zoned including a reverse followed by normal zoning. Fo≈84 cores are surrounded by a Fo≈86 plateau. In contact with the surrounding matrix or MIs, crystals exhibit normal zoning toward values of Fo≈82-83. Phosphorus distribution revealed in 2D X-Ray maps shows complex patterns that can be interpreted as early skeletal growth likely responsible for entrapment of MIs. Diffusion modeling of Fo, Ca, and Ni reveals two distinct magma residence timescales recorded in olivine. The inner reversed-zoned profiles yield timescales of 1-2 years, while normally-zoned profiles at crystal rims and also adjacent to MIs yield timescales of only a few days. Modelling of the P zoning patterns is consistent with the 1-2 year timescales obtained from reversely-zoned profiles. H2O contents of olivine-hosted MIs range from 0.35-1.16 wt%. Selective loss of water in some MIs suggests diffusive re-equilibration between the MIs and host magma during ascent. We have applied H2O diffusion modeling to estimate timescales of water loss of a few days, consistent with the results of Fo/Ca/Ni modeling of olivine profiles. We infer that the timescales of one to two years obtained from reversely-zoned profiles and P in olivine could record residence in a long-lived intrusive body sitting below the volcano summit which was fluidized during the eruption leading to caldera collapse. Timescales of one to a few days obtained from normal zoning and water loss record magma ascent during the 2007 eruption.
Diffusive Gas Loss from Silica Glass Ampoules at Elevated Temperatures
NASA Technical Reports Server (NTRS)
Palosz, W.
1998-01-01
Changes in the pressure of hydrogen, helium and neon due to diffusion through the wall of silica crystal growth ampoules at elevated temperatures were determined experimentally. We show that, while both He- and Ne-losses closely follow conventional model of diffusive gas permeation through the wall, hydrogen losses, in particular at low fill pressures, can be much larger. This is interpreted in terms of the high solubility of hydrogen in silica glasses.
Interplay between translational diffusion and large-amplitude angular jumps of water molecules
NASA Astrophysics Data System (ADS)
Liu, Chao; Zhang, Yangyang; Zhang, Jian; Wang, Jun; Li, Wenfei; Wang, Wei
2018-05-01
Understanding the microscopic mechanism of water molecular translational diffusion is a challenging topic in both physics and chemistry. Here, we report an investigation on the interplay between the translational diffusion and the large-amplitude angular jumps of water molecules in bulk water using molecular dynamics simulations. We found that large-amplitude angular jumps are tightly coupled to the translational diffusions. Particularly, we revealed that concurrent rotational jumps of spatially neighboring water molecules induce inter-basin translational jumps, which contributes to the fast component of the water translational diffusion. Consequently, the translational diffusion shows positional heterogeneity; i.e., the neighbors of the water molecules with inter-basin translational jumps have larger probability to diffuse by inter-basin translational jumps. Our control simulations showed that a model water molecule with moderate hydrogen bond strength can diffuse much faster than a simple Lennard-Jones particle in bulk water due to the capability of disturbing the hydrogen bond network of the surrounding water molecules. Our results added to the understanding of the microscopic picture of the water translational diffusion and demonstrated the unique features of water diffusion arising from their hydrogen bond network structure compared with those of the simple liquids.
Wu, Hong-Zhang; Huang, Wei-Qiu; Yang, Guang; Zhao, Chen-Lu; Wang, Ying-Xia; Cai, Dao-Fei
2013-12-01
Internal floating roof tank has the advantages of external floating roof tank and fixed roof tank and has its own evaporation loss properties. The influences of volatile organic compounds (VOCs) distribution gradient, molecular diffusion, thermal diffusion and forced convection on the evaporation loss of oil were studied in the space of the homemade platform of an internal floating roof tank. The results showed that thermal diffusion with temperature change was the main cause for the static loss in the internal floating roof tank. On this basis, there were some measures for reduction of the evaporation loss and formulas to calculate the evaporation loss of the internal floating roof tank in this research.
Hydraulic properties of rice and the response of gas exchange to water stress.
Stiller, Volker; Lafitte, H Renee; Sperry, John S
2003-07-01
We investigated the role of xylem cavitation, plant hydraulic conductance, and root pressure in the response of rice (Oryza sativa) gas exchange to water stress. In the field (Philippines), the percentage loss of xylem conductivity (PLC) from cavitation exceeded 60% in leaves even in watered controls. The PLC versus leaf water potential relationship indicated diurnal refilling of cavitated xylem. The leaf water potential causing 50 PLC (P(50)) was -1.6 MPa and did not differ between upland versus lowland rice varieties. Greenhouse-grown varieties (Utah) were more resistant to cavitation with a 50 PLC of -1.9 MPa but also showed no difference between varieties. Six-day droughts caused concomitant reductions in leaf-specific photosynthetic rate, leaf diffusive conductance, and soil-leaf hydraulic conductance that were associated with cavitation-inducing water potentials and the disappearance of nightly root pressure. The return of root pressure after drought was associated with the complete recovery of leaf diffusive conductance, leaf-specific photosynthetic rate, and soil-leaf hydraulic conductance. Root pressure after the 6-d drought (61.2 +/- 8.8 kPa) was stimulated 7-fold compared with well-watered plants before drought (8.5 +/- 3.8 kPa). The results indicate: (a) that xylem cavitation plays a major role in the reduction of plant hydraulic conductance during drought, and (b) that rice can readily reverse cavitation, possibly aided by nocturnal root pressure.
Hernandez-Perez, Ruth; García-Cordero, José L; Escobar, Juan V
2017-12-01
The evaporation of droplets can give rise to a wide range of interesting phenomena in which the dynamics of the evaporation are crucial. In this work, we find simple scaling laws for the evaporation dynamics of axisymmetric droplets pinned on millimeter-sized pillars. Different laws are found depending on whether evaporation is limited by the diffusion of vapor molecules or by the transfer rate across the liquid-vapor interface. For the diffusion-limited regime, we find that a mass-loss rate equal to 3/7 of that of a free-standing evaporating droplet brings a good balance between simplicity and physical correctness. We also find a scaling law for the evaporation of multicomponent solutions. The scaling laws found are validated against experiments of the evaporation of droplets of (1) water, (2) blood plasma, and (3) a mixture of water and polyethylene glycol, pinned on acrylic pillars of different diameters. These results shed light on the macroscopic dynamics of evaporation on pillars as a first step towards the understanding of other complex phenomena that may be taking place during the evaporation process, such as particle transport and chemical reactions.
NASA Astrophysics Data System (ADS)
Hernandez-Perez, Ruth; García-Cordero, José L.; Escobar, Juan V.
2017-12-01
The evaporation of droplets can give rise to a wide range of interesting phenomena in which the dynamics of the evaporation are crucial. In this work, we find simple scaling laws for the evaporation dynamics of axisymmetric droplets pinned on millimeter-sized pillars. Different laws are found depending on whether evaporation is limited by the diffusion of vapor molecules or by the transfer rate across the liquid-vapor interface. For the diffusion-limited regime, we find that a mass-loss rate equal to 3/7 of that of a free-standing evaporating droplet brings a good balance between simplicity and physical correctness. We also find a scaling law for the evaporation of multicomponent solutions. The scaling laws found are validated against experiments of the evaporation of droplets of (1) water, (2) blood plasma, and (3) a mixture of water and polyethylene glycol, pinned on acrylic pillars of different diameters. These results shed light on the macroscopic dynamics of evaporation on pillars as a first step towards the understanding of other complex phenomena that may be taking place during the evaporation process, such as particle transport and chemical reactions.
NASA Astrophysics Data System (ADS)
Schmiedinger, Iris; Böttcher, Michael E.
2017-04-01
Storage of water samples in polyethylen bottles for later hydrogeochemical analysis is a common practice in laboratories world-wide. It is, however, known for a long time to geochemists that aqueous solutions lose water as a function of time due to the diffusion of water molecules (similar to CO2 or H2S) through the polymer membrane, a process that is suspected to increase with rising temperature. First observations on the impact of storage on O-18 and H-2 contents in water were reported by Spangenberg & Vennemann (RCIM 2008) and Spangenberg (RCIM 2012), but no study considered systematically the effect of temperature, sofar. In the present study we carried out long-term experiments to investigate the impact of storage of fresh water in LDPE bottles for up to 18 months at 4 different temperatures (4°, 10°, 23°, and 60°C). The loss of water was followed gravimetrically, and the stable isotope composition of the water sample was analyzed with a Picarro CRDS 2140-i system. Whereas, at the low temperatures of 4° and 10°C, no measurable loss of water was observed during a storage time up to 1.5 years, a substantial loss of water was observed at 23°C and 60°C. This change was associated with, for instance at 60°C: an increase in d18O (up to 10 ‰), d2H (up to 28 ‰), d17O (up to 5 ‰). The deuterium excess was shifted towards lower values by up to 55 ‰. The magnitude of the isotope effect mostly depends on the extend of evaporation from the bottles, allowing for an estimate of the fractionation factor by considering a closed Rayleigh-type system.
Pragmatic hydraulic theory predicts stomatal responses to climatic water deficits.
Sperry, John S; Wang, Yujie; Wolfe, Brett T; Mackay, D Scott; Anderegg, William R L; McDowell, Nate G; Pockman, William T
2016-11-01
Ecosystem models have difficulty predicting plant drought responses, partially from uncertainty in the stomatal response to water deficits in soil and atmosphere. We evaluate a 'supply-demand' theory for water-limited stomatal behavior that avoids the typical scaffold of empirical response functions. The premise is that canopy water demand is regulated in proportion to threat to supply posed by xylem cavitation and soil drying. The theory was implemented in a trait-based soil-plant-atmosphere model. The model predicted canopy transpiration (E), canopy diffusive conductance (G), and canopy xylem pressure (P canopy ) from soil water potential (P soil ) and vapor pressure deficit (D). Modeled responses to D and P soil were consistent with empirical response functions, but controlling parameters were hydraulic traits rather than coefficients. Maximum hydraulic and diffusive conductances and vulnerability to loss in hydraulic conductance dictated stomatal sensitivity and hence the iso- to anisohydric spectrum of regulation. The model matched wide fluctuations in G and P canopy across nine data sets from seasonally dry tropical forest and piñon-juniper woodland with < 26% mean error. Promising initial performance suggests the theory could be useful in improving ecosystem models. Better understanding of the variation in hydraulic properties along the root-stem-leaf continuum will simplify parameterization. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Mechanism Research on Melting Loss of Coppery Tuyere Small Sleeve in Blast Furnace
NASA Astrophysics Data System (ADS)
Chai, Yi-Fan; Zhang, Jian-Liang; Ning, Xiao-Jun; Wei, Guang-Yun; Chen, Yu-Ting
2016-01-01
The tuyere small sleeve in blast furnace works under poor conditions. The abnormal damage of it will severely affect the performance of the blast furnace, thus it should be replaced during the damping down period. So it is of great significance that we study and reduce the burnout of tuyere small sleeve. Melting loss is one case of its burnout. This paper studied the reasons of tuyere small sleeve's melting loss, through computational simulation and microscopic analysis of the melting section. The research shows that the temperature of coppery tuyere small sleeve is well distributed when there is no limescale in the lumen, and the temperature increases with the thickness of limescale. In addition, the interruption of circulating water does great harm to the tuyere small sleeve. The melting loss of tuyere small sleeve is caused by iron-slag erosion, with the occurrence of the melt metallurgical bonding and diffusion metallurgical combination.
NASA Astrophysics Data System (ADS)
Ali, H. N.; Atekwana, E. A.
2007-05-01
Water from an acid mine drainage spring, ground water from a mine tailings pile, stream water and tap water were acidified to simulate acid mine drainage (AMD) contamination. The objective was to determine how acidification of stream water by AMD affected DIC loss and carbon isotope fraction. Two 20 L HDP containers (reactors) containing samples from each source were left un-acidified and allowed to evolve under ambient conditions for several weeks in the laboratory and two others were acidified. Acidification was carried out progressively with sulfuric acid to pH <3. For acidified samples, one reactor was acidified open to the atmosphere and the other closed from contact with atmosphere and CO2(g) was collected under vacuum. The un-acidified samples did not show significant alkalinity and DIC loss, and the 13C of DIC was enriched with time. The acidified samples showed decrease in alkalinity and DIC and increase in the 13C of DIC and CO2(g) with progressive acidification. The enrichment of 13C of DIC for un-acidified samples was due to exchange with atmospheric CO2. On the other hand, the 13C enrichment in the acidified samples was due to fractionation during dehydration of HCO3- and diffusive loss of CO2(g) from the aqueous phase. The actual values measured depended on the amount of CO2 lost from the aqueous phase during acidification. Samples with greater CO2 loss (closed acidification) had greater 13C enrichment. Beyond the HCO3- titration end point, the δ13C of DIC and CO2(g) was similar and nearly constant. The result of this study suggests that AMD effects on DIC can be modeled as a first order kinetic reaction and the isotope enrichment modeled using Rayleigh distillation.
NASA Astrophysics Data System (ADS)
Lynn, K. J.; Warren, J. M.
2017-12-01
Nominally anhydrous minerals (NAMs) are important for characterizing deep-Earth water reservoirs, but the water contents of olivine (ol), orthopyroxene (opx), and clinopyroxene (cpx) in peridotites generally do not reflect mantle equilibrium conditions. Ol is typically "dry" and decoupled from H in cpx and opx, which is inconsistent with models of partial melting and/or diffusive loss of H during upwelling beneath mid-ocean ridges. The rehydration of mantle pyroxenes via late-stage re-fertilization has been invoked to explain their relatively high water contents. Here, we use sophisticated 3D diffusion models (after Shea et al., 2015, Am Min) of H in ol, opx, and cpx to investigate the timescales of rehydration across a range of conditions relevant for melt-rock interaction and serpentinization of peridotites. Numerical crystals with 1 mm c-axis lengths and realistic crystal morphologies are modeled using recent H diffusivities that account for compositional variation and diffusion anisotropy. Models were run over timescales of minutes to millions of years and temperatures from 300 to 1200°C. Our 3D models show that, at the high-T end of the range, H concentrations in the cores of NAMs are partially re-equilibrated in as little as a few minutes, and completely re-equilibrated within hours to weeks. At low-T (300°C), serpentinization can induce considerable diffusion in cpx and opx. H contents are 30% re-equilibrated after continuous exposure to hydrothermal fluids for 102 and 105 years, respectively, which is inconsistent with previous interpretations that there is no effect on H in opx under similar conditions. Ol is unaffected after 1 Myr due to the slower diffusivity of the proton-vacancy mechanism at 300°C (2-4 log units lower than for opx). In the middle of the T range (700-1000°C), rehydration of opx and cpx occurs over hours to days, while ol is somewhat slower to respond (days to weeks), potentially allowing the decoupling observed in natural samples to occur via melt re-fertilization. Finally, off-center and oblique sections are common in natural samples and measurements likely reflect at least partially re-equilibrated compositions. Thus, the high water contents in peridotites may reflect variable NAM rehydration over a range of temperatures and timescales relevant for mid ocean ridge processes.
Coarse-grained molecular dynamics simulation of water diffusion in the presence of carbon nanotubes.
Lado Touriño, Isabel; Naranjo, Arisbel Cerpa; Negri, Viviana; Cerdán, Sebastián; Ballesteros, Paloma
2015-11-01
Computational modeling of the translational diffusion of water molecules in anisotropic environments entails vital relevance to understand correctly the information contained in the magnetic resonance images weighted in diffusion (DWI) and of the diffusion tensor images (DTI). In the present work we investigated the validity, strengths and weaknesses of a coarse-grained (CG) model based on the MARTINI force field to simulate water diffusion in a medium containing carbon nanotubes (CNTs) as models of anisotropic water diffusion behavior. We show that water diffusion outside the nanotubes follows Ficḱs law, while water diffusion inside the nanotubes is not described by a Ficḱs behavior. We report on the influence on water diffusion of various parameters such as length and concentration of CNTs, comparing the CG results with those obtained from the more accurate classic force field calculation, like the all-atom approach. Calculated water diffusion coefficients decreased in the presence of nanotubes in a concentration dependent manner. We also observed smaller water diffusion coefficients for longer CNTs. Using the CG methodology we were able to demonstrate anisotropic diffusion of water inside the nanotube scaffold, but we could not prove anisotropy in the surrounding medium, suggesting that grouping several water molecules in a single diffusing unit may affect the diffusional anisotropy calculated. The methodologies investigated in this work represent a first step towards the study of more complex models, including anisotropic cohorts of CNTs or even neuronal axons, with reasonable savings in computation time. Copyright © 2015 Elsevier Inc. All rights reserved.
Determining the mechanism and parameters of hydrate formation and loss in glucose.
Scholl, Sarah K; Schmidt, Shelly J
2014-11-01
Water-solid interactions are known to play a major role in the chemical and physical stability of food materials. Despite its extensive use throughout the food industry, the mechanism and parameters of hydrate formation and loss in glucose are not well characterized. Hydrate formation in alpha-anhydrous glucose (α-AG) and hydrate loss in glucose monohydrate (GM) were studied under equilibrium conditions at various relative humidity (RH) values using saturated salt slurries for 1 y. The mechanism of hydrate formation and hydrate loss were determined through mathematical modeling of Dynamic Vapor Sorption data and Raman spectroscopy was used to confirm the mechanisms. The critical temperature for hydrate loss in GM was determined using thermogravimetric analysis (TGA). The moisture sorption profiles of α-AG and GM were also studied under dynamic conditions using an AquaSorp Isotherm Generator. Hydrate formation was observed at and above 68% RH at 25 °C and the conversion of α-AG to GM can best be described as following a nucleation mechanism, however, diffusion and/or geometric contraction mechanisms were also observed by Raman spectroscopy subsequent to the coalescence of initial nucleation sites. Hydrate loss was observed to occur at and below 11% RH at 25 °C during RH storage and at 70 °C during TGA. The conversion of GM to α-AG follows nucleation and diffusion mechanisms. Hydrate formation was evident under dynamic conditions in α-AG and GM prior to deliquescence. This research is the first to report hydrate formation and loss parameters for crystalline α-AG and GM during extended storage at 25 ˚C. © 2014 Institute of Food Technologists®
Influence of a Simple Heat Loss Profile on a Pure Diffusion Flame
NASA Technical Reports Server (NTRS)
Ray, Anjan; Wichman, Indrek S.
1996-01-01
The presence of soot on the fuel side of a diffusion flame results in significant radiative heat losses. The influence of a fuel side heat loss zone on a pure diffusion flame established between a fuel and an oxidizer wall is investigated by assuming a hypothetical sech(sup 2) heat loss profile. The intensity and width of the loss zone are parametrically varied. The loss zone is placed at different distances from the Burke-Schumann flame location. The migration of the temperature and reactivity peaks are examined for a variety of situations. For certain cases the reaction zone breaks through the loss zone and relocates itself on the fuel side of the loss zone. In all cases the temperature and reactivity peaks move toward the fuel side with increased heat losses. The flame structure reveals that the primary balance for the energy equation is between the reaction term and the diffusion term. Extinction plots are generated for a variety of situations. The heat transfer from the flame to the walls and the radiative fraction is also investigated, and an analytical correlation formula, derived in a previous study, is shown to produce excellent predictions of our numerical results when an O(l) numerical multiplicative constant is employed.
Ammonia Diffusion through Nalophan Double Bags: Effect of Concentration Gradient Reduction
Capelli, Laura; Boiardi, Emanuela; Del Rosso, Renato
2014-01-01
The ammonia loss through Nalophan bags has been studied. The losses observed for storage conditions and times as allowed by the reference standard for dynamic olfactometry (EN 13725:2003) indicate that odour concentration values due to the presence of small molecules may be significantly underestimated if samples are not analysed immediately after sampling. A diffusion model was used in order to study diffusion through the bag. The study discusses the effect of concentration gradient (ΔC) across the polymeric membrane of the analyte. The ΔC was controlled by using a setup bag called “double bags.” Experimental data show a reduction of ammonia percentage losses due to the effect of the external multibarrier. The expedient of the double bag loaded with the same gas mixture allows a reduced diffusion of ammonia into the inner bag. Comparing the inner bag losses with those of the single bag stored in the same conditions (T, P, u) and with equal geometrical characteristics (S/V, z), it was observed that the inner bag of the double bag displays a 16% loss while the single bag displays a 37% loss. Acting on the ΔC it is possible to achieve a gross reduction of 57% in the ammonia leakage due to diffusion. PMID:25506608
NASA Astrophysics Data System (ADS)
Freed, R.; Smith, L.; Bugai, D.
2001-12-01
In the Borschi watershed, 3 km south of the Chernobyl nuclear power plant, we have found the transfer of 90Sr in wetlands pore waters to surface waters and the subsequent flow of wetland surface waters to the stream, largely effect the concentration of 90Sr in the Borschi channel. In Borschi, we have observed that during most of the year, wetlands are the main source of 90Sr contributing to the Borschi stream and channel bottom sediments are a secondary source. Wetland pore waters have at least an order of magnitude higher concentration of 90Sr than all other surface and subsurface waters. Pore water data obtained using peepers shows the 90Sr diffusion gradient is high in near-surface wetland sediments while the 90Sr diffusion gradient is moderate to insignificant in near-surface channel sediments. Channel and wetland sediments are highly depleted in 90Sr compared with immobile nuclear fission products such as europium-154 and can account for all of the 90Sr removed by the stream since the accident. While channel sediments are largely depleted in exchangeable 90Sr, wetland sediments represent a large source of exchangeable 90Sr. Removal of 90Sr by the stream from the wetland and channel sediments is on the same order as mass loss by decay.
Volatile loss during homogenization of lunar melt inclusions
NASA Astrophysics Data System (ADS)
Ni, Peng; Zhang, Youxue; Guan, Yunbin
2017-11-01
Volatile abundances in lunar mantle are critical factors to consider for constraining the model of Moon formation. Recently, the earlier understanding of a ;dry; Moon has shifted to a fairly ;wet; Moon due to the detection of measurable amount of H2O in lunar volcanic glass beads, mineral grains, and olivine-hosted melt inclusions. The ongoing debate on a ;dry; or ;wet; Moon requires further studies on lunar melt inclusions to obtain a broader understanding of volatile abundances in the lunar mantle. One important uncertainty for lunar melt inclusion studies, however, is whether the homogenization of melt inclusions would cause volatile loss. In this study, a series of homogenization experiments were conducted on olivine-hosted melt inclusions from the sample 74220 to evaluate the possible loss of volatiles during homogenization of lunar melt inclusions. Our results suggest that significant loss of H2O could occur even during minutes of homogenization, while F, Cl and S in the inclusions remain unaffected. We model the trend of H2O loss in homogenized melt inclusions by a diffusive hydrogen loss model. The model can reconcile the observed experimental data well, with a best-fit H diffusivity in accordance with diffusion data explained by the ;slow; mechanism for hydrogen diffusion in olivine. Surprisingly, no significant effect for the low oxygen fugacity on the Moon is observed on the diffusive loss of hydrogen during homogenization of lunar melt inclusions under reducing conditions. Our experimental and modeling results show that diffusive H loss is negligible for melt inclusions of >25 μm radius. As our results mitigate the concern of H2O loss during homogenization for crystalline lunar melt inclusions, we found that H2O/Ce ratios in melt inclusions from different lunar samples vary with degree of crystallization. Such a variation is more likely due to H2O loss on the lunar surface, while heterogeneity in their lunar mantle source is also a possibility. A similar size-dependence trend of H2O concentrations was also observed in natural unheated melt inclusions in 74220. By comparing the trend of diffusive H loss in the natural MIs and in our homogenized MIs, the cooling rate for 74220 was estimated to be ∼1 °C/s or slower.
Effects of radial diffuser hydraulic design on a double-suction centrifugal pump
NASA Astrophysics Data System (ADS)
Hou, H. C.; Zhang, Y. X.; Xu, C.; Zhang, J. Y.; Li, Z. L.
2016-05-01
In order to study effects of radial diffuser on hydraulic performance of crude oil pump, the steady CFD numerical method is applied and one large double-suction oil pump running in long-distance pipeline is considered. The research focuses on analysing the influence of its diffuser vane profile on hydraulic performance of oil pump. The four different types of cylindrical vane have been designed by in-house codes mainly including double arcs (DA), triple arcs (TA), equiangular spiral line (ES) and linear variable angle spiral line (LVS). During design process diffuser vane angles at inlet and outlet are tentatively given within a certain range and then the wrapping angle of the four types of diffuser vanes can be calculated automatically. Under the given inlet and outlet angles, the linear variable angle spiral line profile has the biggest wrapping angle and profile length which is good to delay channel diffusion but bring more friction hydraulic loss. Finally the vane camber line is thickened at the certain uniform thickness distribution and the 3D diffuser models are generated. The whole flow passage of oil pump with different types of diffusers under various flow rate conditions are numerically simulated based on RNG k-ɛ turbulent model and SIMPLEC algorithm. The numerical results show that different types of diffusers can bring about great difference on the hydraulic performance of oil pump, of which the ES profile diffuser with its proper setting angle shows the best hydraulic performance and its inner flow field is improved obviously. Compared with the head data from model sample, all designed diffusers can make a certain improvement on head characteristic. At the large flow rate conditions the hydraulic efficiency increases obviously and the best efficiency point shift to the large flow rate range. The ES profile diffuser embodies the better advantages on pump performance which can be explained theoretically that the diffuser actually acts as a diffusion device and is good to transform the dynamic energy to pressure energy. Then through the hydraulic loss analysis of each pump component for all diffusers, it shows that the impeller takes up the biggest part of the whole loss about 8.19% averagely, the radial diffuser about 3.70% and the volute about 1.65%. The hydraulic loss of impeller is dominant at the large flow rate while the radial diffuser is at the small flow rate. Among all diffusers, the ES profile diffuser generates the least loss and combined to the distribution of velocity vector and turbulent kinetic energy for two kinds of diffusers it also shows that ES profile is fit to apply in radial diffuser. This research can offer a significant reference for the radial diffuser hydraulic design of such centrifugal pumps.
Oxygen budget of a perennially ice-covered Antarctic lake
NASA Technical Reports Server (NTRS)
Wharton, R. A., Jr.; Mckay, C. P.; Simmons, G. M., Jr.; Parker, B. C.
1986-01-01
A bulk O2 budget for Lake Hoare, Antarctica, is presented. Five years of seasonal data show the lake to be persistently supersaturated with O2. Oxygen is carried into the lake in glacial meltstreams and is left behind when this water is removed as ice by ablation and sublimation. A diffusive loss of O2 from the lake through the summer moat is suggested. Measured values of the total O2 in the water column indicate that the time scale of O2 turnover is much longer than a year. Based on these results, it is suggested that the amount of O2 in the water does not change significantly throughout the year and that the lake is also supersaturated with N2.
Stomata of the CAM plant Tillandsia recurvata respond directly to humidity.
Lange, O L; Medina, E
1979-01-01
Under controlled conditions, CO 2 exchange of Tillandsia recurvata showed all characteristics of CAM. During the phase of nocturnal CO 2 fixation stomata of the plant responded sensitively to changes in ambient air humidity. Dry air resulted in an increase, moist air in a decrease of diffusion resistance. The evaporative demand of the air affected the level of stomatal resistance during the entire night period. Due to stomatal closure, the total nocturnal water loss of T. recurvata was less at low than at high humidity. It is concluded that stomata respond directly to humidity and not via bulk tissue water conditions of the leaves. Such control of transpiration may optimize water use efficiency for this almost rootless, extreme epiphyte.
Tcaciuc, A Patricia; Borrelli, Raffaella; Zaninetta, Luciano M; Gschwend, Philip M
2018-01-24
Passive sampling is becoming a widely used tool for assessing freely dissolved concentrations of hydrophobic organic contaminants in environmental media. For certain media and target analytes, the time to reach equilibrium exceeds the deployment time, and in such cases, the loss of performance reference compounds (PRCs), loaded in the sampler before deployment, is one of the common ways used to assess the fractional equilibration of target analytes. The key assumption behind the use of PRCs is that their release is solely diffusion driven. But in this work, we show that PRC transformations in the sediment can have a measurable impact on the PRC releases and even allow estimation of that compound's transformation rate in the environment of interest. We found that in both field and lab incubations, the loss of the 13 C 2,4'-DDT PRC from a polyethylene (PE) passive sampler deployed at the sediment-water interface was accelerated compared to the loss of other PRCs ( 13 C-labeled PCBs, 13 C-labeled DDE and DDD). The DDT PRC loss was also accompanied by accumulation in the PE of its degradation product, 13 C 2,4'-DDD. Using a 1D reaction-diffusion model, we deduced the in situ degradation rates of DDT from the measured PRC loss. The in situ degradation rates increased with depth into the sediment bed (0.14 d -1 at 0-10 cm and 1.4 d -1 at 30-40 cm) and although they could not be independently validated, these rates compared favorably with literature values. This work shows that passive sampling users should be cautious when choosing PRCs, as degradation processes can affect some PRC's releases from the passive sampler. More importantly, this work opens up the opportunity for novel applications of passive samplers, particularly with regard to investigating in situ degradation rates, pathways, and products for both legacy and emerging contaminants. However, further work is needed to confirm that the rates deduced from model fitting of PRC loss are a true reflection of DDT transformation rates in sediments.
Development of a sorption rate technique for single zeolite crystals using an electrodynamic balance
NASA Astrophysics Data System (ADS)
Welegala, Mark Joseph
Conventional means for evaluating intracrystalline diffusion in zeolites are complicated by extracrystalline mass transport resistances, crystallite size distribution, sorption heat effects, and finite instrument response times. A potentially direct means of overcoming these problems is to study sorption uptake on a single crystal suspended within a flowing gas stream in an electrodynamic balance (EDB). The objectives of this research were to design, build and investigate the viability of using such a device for obtaining diffusion coefficients from simple sorbate/zeolite systems, by computing the sorption uptake curve from the levitation voltage as a function of time. The initial electronic cell design was strongly influenced by flow mixing considerations. Accordingly, the conventional bihyperboloid electrode configuration was discarded in favor of novel four-ring (4R), and later two-ring/two-screen (2R/2S) designs with cylindrical interior geometries. A detailed numerical model based on the Method of Discrete Charges (MDC) was developed and used to aid in the design and operational understanding of these cells. Several 2R/2S designs were built and tested, including teflon/mica composite and ceramic cells capable of withstanding up to 750oF, for in situ activation of the zeolites. The diffusion of carbon dioxide in zeolite A was selected for testing due to the large differential weight change (10-20%) which occurs at ambient conditions and the availability of reliable experimental diffusion results (Yucel and Ruthven, 1980a). In addition to the carbon dioxide sorbate, water on zeolite 4A and a system relatively immune to atmospheric contamination, CO2 on activated carbon were also studied. Laboratory 4A crystals of up to 45 μm were grown using Charnell's method. These large solid particles were captured using a dry charging technique, and held during elevated temperature dehydration. Preliminary experimentation introduced externally dried crystals to the cell chamber in 0.5-3 minutes. Only minimal desorption results with carbon dioxide and later, adsorption for water vapor, were obtained. Further experiments revealed that crystal contamination from laboratory air can be considerable in less than one minute, thereby preadsorbing airborne water vapor. The experimental methodology was changed to include in situ heating. Subsequent attempts to circumvent laser heating of the particle had limited success. Particle loss, (due to excessive charge loss) and cell material degradation limited the process to null point temperatures of approximately 260oC, which is insufficient for complete zeolite dehydration. Early, it was demonstrated that gas compositions could be switched while flowing without losing the particle. However, the resulting concentration transient imposes an ultimate limitation on the technique for application to rapidly diffusing systems. Also, the fact that the technique is gravimetric requires that the diffusing species must be appreciably adsorbed at ambient conditions. Thus the single crystal sorption apparatus based on the electrodynamic containment device would appear to have use primarily for strongly adsorbed and slowly diffusing species. (Abstract shortened by UMI.)
Kinetic isotopic fractionation during diffusion of ionic species in water
NASA Astrophysics Data System (ADS)
Richter, Frank M.; Mendybaev, Ruslan A.; Christensen, John N.; Hutcheon, Ian D.; Williams, Ross W.; Sturchio, Neil C.; Beloso, Abelardo D.
2006-01-01
Experiments specifically designed to measure the ratio of the diffusivities of ions dissolved in water were used to determine DLi/DK,D/D,D/D,D/D,andD/D. The measured ratio of the diffusion coefficients for Li and K in water (D Li/D K = 0.6) is in good agreement with published data, providing evidence that the experimental design being used resolves the relative mobility of ions with adequate precision to also be used for determining the fractionation of isotopes by diffusion in water. In the case of Li, we found measurable isotopic fractionation associated with the diffusion of dissolved LiCl (D/D=0.99772±0.00026). This difference in the diffusion coefficient of 7Li compared to 6Li is significantly less than that reported in an earlier study, a difference we attribute to the fact that in the earlier study Li diffused through a membrane separating the water reservoirs. Our experiments involving Mg diffusing in water found no measurable isotopic fractionation (D/D=1.00003±0.00006). Cl isotopes were fractionated during diffusion in water (D/D=0.99857±0.00080) whether or not the co-diffuser (Li or Mg) was isotopically fractionated. The isotopic fractionation associated with the diffusion of ions in water is much smaller than values we found previously for the isotopic fractionation of Li and Ca isotopes by diffusion in molten silicate liquids. A major distinction between water and silicate liquids is that water surrounds dissolved ions with hydration shells, which very likely play an important but still poorly understood role in limiting the isotopic fractionation associated with diffusion.
Effects of Climate Change on Diffuse Pollution in Lake Mogan Watershed
NASA Astrophysics Data System (ADS)
Alp, E.; Özcan, Z.
2017-12-01
Climate change is putting increasing pressure on water bodies. It can affect the behavior of pollutants in the environment and their interaction with the hydrological cycle. For instance, changing precipitation patterns may result in higher volumes of runoff containing numerous contaminants to water bodies and eventually loss of life-supporting function of them. The purpose of this study is to evaluate the impacts of climate change on diffuse pollution in Lake Mogan watershed located in a climate change vulnerable region and where agricultural diffuse pollution is one of the significant concerns. Lake Mogan watershed has an area of 970 km2 and it is dominated by dry agricultural practices and characterized by intermittent creeks. The lake was declared as a special environmental protection region in 1990. In this study, the impacts of climate change on diffuse pollution in the Lake Mogan watershed was evaluated using with a water quality model, SWAT (Soil and Water Assessment Tool). SWAT is a conceptual, continuous time model that operates on a daily time step. The model has been used in many studies to estimate the impacts of climate change, to calculate pollutant loads and to evaluate the best management practices all over the world. The required inputs for SWAT model can be categorized under the following basic categories: topography, land use/land cover, soil properties, land management practices occurring in the watershed, and meteorological inputs. According to Turkish Ministry of Forestry and Water Affairs (2016), it is estimated that the annual average temperature values will increase up to 3.3°C during the 85 year projection period as compared to reference period in the RCP4.5 scenario in the study area. This increase is predicted as up to 5.7°C based on the RCP8.5 scenario. The calibrated SWAT model for the Lake Mogan Watershed is used for the climate change scenarios for a period of 2010 and 2100. It is aimed that the outcomes of this study will help decision makers to develop beneficial management strategies so that the sustainable management of the specially protected water body is provided.
Grand-Clement, E; Luscombe, D J; Anderson, K; Gatis, N; Benaud, P; Brazier, R E
2014-09-15
Losses of dissolved organic carbon (DOC) from drained peatlands are of concern, due to the effects this has on the delivery of ecosystem services, and especially on the long-term store of carbon and the provision of drinking water. Most studies have looked at the effect of drainage in deep peat; comparatively, little is known about the behaviour of shallow, climatically marginal peatlands. This study examines water quality (DOC, Abs(400), pH, E4/E6 and C/C) during rainfall events from such environments in the south west UK, in order to both quantify DOC losses, and understand their potential for restoration. Water samples were taken over a 19 month period from a range of drains within two different experimental catchments in Exmoor National Park; data were analysed on an event basis. DOC concentrations ranging between 4 and 21 mg L(-1) are substantially lower than measurements in deep peat, but remain problematic for the water treatment process. Dryness plays a critical role in controlling DOC concentrations and water quality, as observed through spatial and seasonal differences. Long-term changes in depth to water table (30 days before the event) are likely to impact on DOC production, whereas discharge becomes the main control over DOC transport at the time scale of the rainfall/runoff event. The role of temperature during events is attributed to an increase in the diffusion of DOC, and therefore its transport. Humification ratios (E4/E6) consistently below 5 indicate a predominance of complex humic acids, but increased decomposition during warmer summer months leads to a comparatively higher losses of fulvic acids. This work represents a significant contribution to the scientific understanding of the behaviour and functioning of shallow damaged peatlands in climatically marginal locations. The findings also provide a sound baseline knowledge to support research into the effects of landscape restoration in the future. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.
Gramegna, L L; Pisano, A; Testa, C; Manners, D N; D'Angelo, R; Boschetti, E; Giancola, F; Pironi, L; Caporali, L; Capristo, M; Valentino, M L; Plazzi, G; Casali, C; Dotti, M T; Cenacchi, G; Hirano, M; Giordano, C; Parchi, P; Rinaldi, R; De Giorgio, R; Lodi, R; Carelli, V; Tonon, C
2018-01-18
Mitochondrial neurogastrointestinal encephalopathy is a rare disorder due to recessive mutations in the thymidine phosphorylase gene, encoding thymidine phosphorylase protein required for mitochondrial DNA replication. Clinical manifestations include gastrointestinal dysmotility and diffuse asymptomatic leukoencephalopathy. This study aimed to elucidate the mechanisms underlying brain leukoencephalopathy in patients with mitochondrial neurogastrointestinal encephalopathy by correlating multimodal neuroradiologic features to postmortem pathology. Seven patients underwent brain MR imaging, including single-voxel proton MR spectroscopy and diffusion imaging. Absolute concentrations of metabolites calculated by acquiring unsuppressed water spectra at multiple TEs, along with diffusion metrics based on the tensor model, were compared with those of healthy controls using unpaired t tests in multiple white matters regions. Brain postmortem histologic, immunohistochemical, and molecular analyses were performed in 1 patient. All patients showed bilateral and nearly symmetric cerebral white matter hyperintensities on T2-weighted images, extending to the cerebellar white matter and brain stem in 4. White matter, N -acetylaspartate, creatine, and choline concentrations were significantly reduced compared with those in controls, with a prominent increase in the radial water diffusivity component. At postmortem examination, severe fibrosis of brain vessel smooth muscle was evident, along with mitochondrial DNA replication depletion in brain and vascular smooth-muscle and endothelial cells, without neuronal loss, myelin damage, or gliosis. Prominent periependymal cytochrome C oxidase deficiency was also observed. Vascular functional and histologic alterations account for leukoencephalopathy in mitochondrial neurogastrointestinal encephalopathy. Thymidine toxicity and mitochondrial DNA replication depletion may induce microangiopathy and blood-brain-barrier dysfunction, leading to increased water content in the white matter. Periependymal cytochrome C oxidase deficiency could explain prominent periventricular impairment. © 2018 by American Journal of Neuroradiology.
Groundwater residence time and paleohydrology in the Baltic Artesian basin:isotope geochemical data
NASA Astrophysics Data System (ADS)
Vaikmae, R.; Gerber, C.; Purtschert, R.; Aeschbach, W.; Raidla, V., Sr.; Lu, Z. T.; Zappala, J. C.; Mueller, P.; Mokrik, R., Sr.; Jiang, W.
2016-12-01
In this study of the Cambrian aquifer system(CAS) in the Baltic Artesian Basin(BAS) (, chemistry, stable isotopes, noble gas measurements, and dating tracers were combined for study the flow and recharge dynamics of the system over the last million years We find that the variability in chemical composition, stable isotopes and noble gas content in the basin is predominately controlled by mixing of three distinct water masses: Holocene and Pleistocene interglacial water, glacial meltwater, and brine. 81Kr is a nearly ideal dating tracer for such old systems. The radiogenic 4He and 40Ar provide additional information, but are more difficult to interpret in terms of groundwater age. In this study, we did not consider diffusive loss of 81Kr to stagnant water, which might result in an overestimation of groundwater ages ). However, the relatively high porosity and large thickness of the CAS, together with the presumed high salinity and low Kr content of the stagnant water all diminish the effect of diffusive 81Kr loss on age estimates. Our results confirm that under normal conditions, underground production of 81Kr is not affecting the dating results. 81Kr, 4He, and 40Ar all indicate a residence time of the brine of more than 1-3 Ma. Some uncertainty about the brine formation process remains, but the combination of chemical and stable isotope composition of the brine, noble gas concentrations and dating results favors evaporative enrichment of seawater. Tracer ages of interglacial water and glacial meltwater are on the order of several hundred thousand years, which means that several reversals of the flow direction in the CAS as a result of the paleoclimatology of the area have to be taken into account. Under such conditions, small vertical leakage, through fracture zones for example, might considerably impact the net flow pattern. Due to the cyclic flow direction reversals, the aquifer was probably in a transient state over most of the last 1 Ma period.
Petr, T.; Šmíd, V.; Šmídová, J.; Hůlková, H.; Jirkovská, M.; Elleder, M.; Muchová, L.; Vítek, L.; Šmíd, F.
2010-01-01
A comparison of histochemical detection of GM1 ganglioside in cryostat sections using cholera toxin B-subunit after fixation with 4% formaldehyde and dry acetone gave tissue-dependent results. In the liver no pre-treatment showed detectable differences related to GM1 reaction products, while studies in the brain showed the superiority of acetone pre-extraction (followed by formaldehyde), which yielded sharper images compared with the diffuse, blurred staining pattern associated with formaldehyde. Therefore, the aim of our study was to define the optimal conditions for the GM1 detection using cholera toxin B-subunit. Ganglioside extractability with acetone, the ever neglected topic, was tested comparing anhydrous acetone with acetone containing admixture of water. TLC analysis of acetone extractable GM1 ganglioside from liver sections did not exceed 2% of the total GM1 ganglioside content using anhydrous acetone at −20°C, and 4% at room temperature. The loss increased to 30.5% using 9:1 acetone/water. Similarly, photometric analysis of lipid sialic acid, extracted from dried liver homogenates with anhydrous acetone, showed the loss of gangliosides into acetone 3.0±0.3% only. The loss from dried brain homogenate was 9.5±1.1%. Thus, anhydrous conditions (dry tissue samples and anhydrous acetone) are crucial factors for optimal in situ ganglioside detection using acetone pre-treatment. This ensures effective physical fixation, especially in tissues rich in polar lipids (precipitation, prevention of in situ diffusion), and removal of cholesterol, which can act as a hydrophobic blocking barrier. PMID:20558344
Diffuse radiation increases global ecosystem-level water-use efficiency
NASA Astrophysics Data System (ADS)
Moffat, A. M.; Reichstein, M.; Cescatti, A.; Knohl, A.; Zaehle, S.
2012-12-01
Current environmental changes lead not only to rising atmospheric CO2 levels and air temperature but also to changes in air pollution and thus the light quality of the solar radiation reaching the land-surface. While rising CO2 levels are thought to enhance photosynthesis and closure of stomata, thus leading to relative water savings, the effect of diffuse radiation on transpiration by plants is less clear. It has been speculated that the stimulation of photosynthesis by increased levels of diffuse light may be counteracted by higher transpiration and consequently water depletion and drought stress. Ultimately, in water co-limited systems, the overall effect of diffuse radiation will depend on the sensitivity of canopy transpiration versus photosynthesis to diffuse light, i.e. whether water-use efficiency changes with relative levels of diffuse light. Our study shows that water-use efficiency increases significantly with higher fractions of diffuse light. It uses the ecosystem-atmosphere gas-exchange observations obtained with the eddy covariance method at 29 flux tower sites. In contrast to previous global studies, the analysis is based directly on measurements of diffuse radiation. Its effect on water-use efficiency was derived by analyzing the multivariate response of carbon and water fluxes to radiation and air humidity using a purely empirical approach based on artificial neural networks. We infer that per unit change of diffuse fraction the water-use efficiency increases up to 40% depending on diffuse fraction levels and ecosystem type. Hence, in regions with increasing diffuse radiation positive effects on primary production are expected even under conditions where water is co-limiting productivity.
Greathouse, Jeffery A.; Cygan, Randall T.; Fredrich, Joanne T.; ...
2016-01-20
In this study, the diffusion of water and ions in the interlayer region of smectite clay minerals represents a direct probe of the type and strength of clay–fluid interactions. Interlayer diffusion also represents an important link between molecular simulation and macroscopic experiments. Here we use molecular dynamics simulation to investigate trends in cation and water diffusion in montmorillonite interlayers, looking specifically at the effects of layer charge, interlayer cation and cation charge (sodium or calcium), water content, and temperature. For Na-montmorillonite, the largest increase in ion and water diffusion coefficients occurs between the one-layer and two-layer hydrates, corresponding to themore » transition from inner-sphere to outer-sphere surface complexes. Calculated activation energies for ion and water diffusion in Na-montmorillonite are similar to each other and to the water hydrogen bond energy, suggesting the breaking of water–water and water–clay hydrogen bonds as a likely mechanism for interlayer diffusion. A comparison of interlayer diffusion with that of bulk electrolyte solutions reveals a clear trend of decreasing diffusion coefficient with increasing electrolyte concentration, and in most cases the interlayer diffusion results are nearly coincident with the corresponding bulk solutions. Trends in electrical conductivities computed from the ion diffusion coefficients are also compared.« less
Nicotera, Isabella; Angjeli, Kristina; Coppola, Luigi; Aricò, Antonino S.; Baglio, Vincenzo
2012-01-01
Water and methanol transport behavior, solvents adsorption and electrochemical properties of filler-free Nafion and nanocomposites based on two smectite clays, were investigated using impedance spectroscopy, DMFC tests and NMR methods, including spin-lattice relaxation and pulsed-gradient spin-echo (PGSE) diffusion under variable temperature conditions. Synthetic (Laponite) and natural (Swy-2) smectite clays, with different structural and physical parameters, were incorporated into the Nafion for the creation of exfoliated nanocomposites. Transport mechanism of water and methanol appears to be influenced from the dimensions of the dispersed platelike silicate layers as well as from their cation exchange capacity (CEC). The details of the NMR results and the effect of the methanol solution concentration are discussed. Clays particles, and in particular Swy-2, demonstrate to be a potential physical barrier for methanol cross-over, reducing the methanol diffusion with an evident blocking effect yet nevertheless ensuring a high water mobility up to 130 °C and for several hours, proving the exceptional water retention property of these materials and their possible use in the DMFCs applications. Electrochemical behavior is investigated by cell resistance and polarization measurements. From these analyses it is derived that the addition of clay materials to recast Nafion decreases the ohmic losses at high temperatures extending in this way the operating range of a direct methanol fuel cell. PMID:24958179
Loss of Water to Space from Mars: Processes and Implications
NASA Astrophysics Data System (ADS)
Kass, D. M.
2001-12-01
One of the major sinks for water on Mars is the loss to space. This occurs via a complex series of processes that transport the individual atoms to the upper atmosphere, where several escape mechanisms remove them. Hydrogen and deuterium are lost primarily by Jeans escape. Non-thermal processes also remove H and D, but are only important in determining D loss at solar minimum under modern conditions. The present H loss rate is equivalent to the loss of 10-3~pr-\\micron~yr-1 of water. The loss of oxygen is more complicated. The three main processes are indirect (or ionospheric) sputtering, solar wind pickup of O+, and O2+ dissociative recombination. Their relative importance has varied over the history of Mars. The combined effect of the O loss processes is to remove a ~ 50~m global layer of water over the last 3.5 Gyr. Based on photochemical modeling, the loss of oxygen and hydrogen are balanced (over geological timescales) by a feedback process. During the early history of Mars, impact erosion and hydrodynamic blow-off may have removed significant water. But, it is difficult to estimate their quantitative effects. The transport of individual H, D and O atoms to the exosphere where they can escape is not completely understood. It occurs primarily via intermediate species, H2, HD, O2 and CO2. The H2 and HD are formed by photolysis of water and the odd hydrogen photochemistry. One open issue is the mechanism regulating the partitioning of D between HDO and HD (which controls the supply of D available for escape from the exosphere). The various loss processes isotopically enrich Martian water since the exospheric escape source region is depleted. Jeans escape and the transport from the lower atmosphere further fractionate hydrogen, the most useful isotopic system. Based on recent observations, the D/H fractionation factor, F ~ 0.02. Measurements of atmospheric water vapor indicate it is enriched in deuterium, with a D/H ratio ~ 5 times the terrestrial value. Since most of the water on Mars is likely to be in the form of ice, it is presumably further fractionated by ~ 0.8 due to ice/water vapor interactions. This yields an effective D/H enrichment of ~ 7 for reservoirs in equilibrium with the atmosphere. From a loss to space point of view, Martian water can be divided into three reservoirs. The first is the thin, 10 pr-\\micron, atmospheric water. The second is a global exchangeable reservoir in long term isotopic equilibrium with the atmosphere. This probably encompasses the polar caps, ice in polar layered deposits and any other near surface ice or adsorbed water. The third, more speculative, reservoir is a non-exchanging reservoir (a deep sub-surface cryosphere). In addition, due to the small size of the atmospheric reservoir, difficulty in isotopically equilibrating it with the entire exchangeable reservoir, and the relatively rapid H2 loss rate, there is also an intermediate exchangeable reservoir of ~ 4~mm. This is probably either a surface layer on the polar caps or near surface ice deposits. By assuming an initial terrestrial D/H ratio for Martian water (based on condritic meteorites) and a loss to space of ~ 50~m (based on the total O loss), the size of the exchangeable reservoir can be estimated. Two conceptual models are possible, depending on whether or not the non-exchangeable reservoir replenishes the exchangeable one. Quantitatively, the two models yield almost identical reservoir sizes, ~ 9~m (about the size of the northern polar cap). If, due to slow rate of isotopic diffusion in ice, the exchangeable reservoir actually has the same isotopic enrichment as the atmosphere, it would contain ~ 12~m of water.
CO2 diffusion in champagne wines: a molecular dynamics study.
Perret, Alexandre; Bonhommeau, David A; Liger-Belair, Gérard; Cours, Thibaud; Alijah, Alexander
2014-02-20
Although diffusion is considered as the main physical process responsible for the nucleation and growth of carbon dioxide bubbles in sparkling beverages, the role of each type of molecule in the diffusion process remains unclear. In the present study, we have used the TIP5P and SPC/E water models to perform force field molecular dynamics simulations of CO2 molecules in water and in a water/ethanol mixture respecting Champagne wine proportions. CO2 diffusion coefficients were computed by applying the generalized Fick's law for the determination of multicomponent diffusion coefficients, a law that simplifies to the standard Fick's law in the case of champagnes. The CO2 diffusion coefficients obtained in pure water and water/ethanol mixtures composed of TIP5P water molecules were always found to exceed the coefficients obtained in mixtures composed of SPC/E water molecules, a trend that was attributed to a larger propensity of SPC/E water molecules to form hydrogen bonds. Despite the fact that the SPC/E model is more accurate than the TIP5P model to compute water self-diffusion and CO2 diffusion in pure water, the diffusion coefficients of CO2 molecules in the water/ethanol mixture are in much better agreement with the experimental values of 1.4 - 1.5 × 10(-9) m(2)/s obtained for Champagne wines when the TIP5P model is employed. This difference was deemed to rely on the larger propensity of SPC/E water molecules to maintain the hydrogen-bonded network between water molecules and form new hydrogen bonds with ethanol, although statistical issues cannot be completely excluded. The remarkable agreement between the theoretical CO2 diffusion coefficients obtained within the TIP5P water/ethanol mixture and the experimental data specific to Champagne wines makes us infer that the diffusion coefficient in these emblematic hydroalcoholic sparkling beverages is expected to remain roughly constant whathever their proportions in sugars, glycerol, or peptides.
The Evolution of Remnant Ice at the Lunar South Pole from Diviner Surface Temperature Results
NASA Technical Reports Server (NTRS)
Elphic, Richard C.; Siegler, Mathew; Paige, David; Teodoro, Luis Filipe; Vasavada, Ashwin R.
2010-01-01
The Diviner lunar radiometer instrument aboard the Lunar Reconnaissance Orbiter mission has revealed large areas of lunar polar terrain with surface temperatures well below 100K. At these temperatures, the sublimation rate of water ice is well below 1 mm per billion years. In contrast, the loss rate at 120K is more than 1 meter of ice in that time consequently volatiles delivered to the coldest locations can be trapped for over 1 Ga, but will be quickly lost from warmer locales. Here we investigate the loss or retention of a layer of ice-bearing regolith at the lunar south poe, assuming contemporary surface temperature conditions and no other loss processes. We use an analytic solution for the one-dimensional diffusion equation of water ice, assuming an isothermal regolith with pore space comparable to mean grain size, 75 micrometers. Only the top meter of soil is assumed to be ice-bearing. We can then calculate the history of ice content with time based on local temperature, and predict what the epithermal neutron output would be in the presence of such a concentration of hydrogen. We compare the present, observed distribution of hydrogen with what one would expect from the temperature-dependent loss or retention of ice for various times since emplacement.
Numerical study of the influence of water evaporation on radiofrequency ablation.
Zhu, Qing; Shen, Yuanyuan; Zhang, Aili; Xu, Lisa X
2013-12-10
Radiofrequency ablation is a promising minimal invasive treatment for tumor. However, water loss due to evaporation has been a major issue blocking further RF energy transmission and correspondently eliminating the therapeutic outcome of the treatment. A 2D symmetric cylindrical mathematical model coupling the transport of the electrical current, heat, and the evaporation process in the tissue, has been developed to simulate the treatment process and investigate the influence of the excessive evaporation of the water on the treatment. Our results show that the largest specific absorption rate (QSAR) occurs at the edge of the circular surface of the electrode. When excessive evaporation takes place, the water dehydration rate in this region is the highest, and after a certain time, the dehydrated tissue blocks the electrical energy transmission in the radial direction. It is found that there is an interval as long as 65 s between the beginning of the evaporation and the increase of the tissue impedance. The model is further used to investigate whether purposely terminating the treatment for a while allowing diffusion of the liquid water into the evaporated region would help. Results show it has no obvious improvement enlarging the treatment volume. Treatment with the cooled-tip electrode is also studied. It is found that the cooling conditions of the inside agent greatly affect the water loss pattern. When the convection coefficient of the cooling agent increases, excessive evaporation will start from near the central axis of the tissue cylinder instead of the edge of the electrode, and the coagulation volume obviously enlarges before a sudden increase of the impedance. It is also found that a higher convection coefficient will extend the treatment time. Though the sudden increase of the tissue impedance could be delayed by a larger convection coefficient; the rate of the impedance increase is also more dramatic compared to the case with smaller convection coefficient. The mathematical model simulates the water evaporation and diffusion during radiofrequency ablation and may be used for better clinical design of radiofrequency equipment and treatment protocol planning.
NASA Astrophysics Data System (ADS)
Strahm, Ivo; Munz, Nicole; Braun, Christian; Gälli, René; Leu, Christian; Stamm, Christian
2014-05-01
Water quality in the Swiss river network is affected by many micropollutants from a variety of diffuse sources. This study compares, for the first time, in a comprehensive manner the diffuse sources and the substance groups that contribute the most to water contamination in Swiss streams and highlights the major regions for water pollution. For this a simple but comprehensive model was developed to estimate emission from diffuse sources for the entire Swiss river network of 65 000 km. Based on emission factors the model calculates catchment specific losses to streams for more than 15 diffuse sources (such as crop lands, grassland, vineyards, fruit orchards, roads, railways, facades, roofs, green space in urban areas, landfills, etc.) and more than 130 different substances from 5 different substance groups (pesticides, biocides, heavy metals, human drugs, animal drugs). For more than 180 000 stream sections estimates of mean annual pollutant loads and mean annual concentration levels were modeled. This data was validated with a set of monitoring data and evaluated based on annual average environmental quality standards (AA-EQS). Model validation showed that the estimated mean annual concentration levels are within the range of measured data. Therefore simulations were considered as adequately robust for identifying the major sources of diffuse pollution. The analysis depicted that in Switzerland widespread pollution of streams can be expected. Along more than 18 000 km of the river network one or more simulated substances has a concentration exceeding the AA-EQS. In single stream sections it could be more than 50 different substances. Moreover, the simulations showed that in two-thirds of small streams (Strahler order 1 and 2) at least one AA-EQS is always exceeded. The highest number of substances exceeding the AA-EQS are in areas with large fractions of arable cropping, vineyards and fruit orchards. Urban areas are also of concern even without considering wastewater treatment plants. Only a small number of problematic substances are expected from grassland. Landfills and roadways are insignificant within the entire Swiss river network, but may locally lead to considerable water pollution. Considering all substance groups, pesticides and some heavy metals are the main polluters. Many pesticides are expected to exceed AA-EQS and in a substantial percentage of the river network. Modeling a large number of substances from many sources and a huge quantity of stream sections is only possible with a simple model. Nevertheless conclusions are robust and may indicate where and for what kind of substance groups additional efforts for water quality improvements should be undertaken.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michaud, G.; Bergeron, P.; Wesemael, F.
The abundance anomalies generated by diffusion in the envelopes of hot, hydrogen-rich subdwarfs are studied. It is shown that unimpeded diffusion cannot lead to the large silicon underabundance observed in those stars at effective temperatures above 30,000 K. Calculations of diffusion of heavy elements in the presence of mass loss are also performed. For a mass-loss rate of 2.5 x 10 to the -15th solar masses/year, the observed abundance patterns of C, N, and Si are reproduced on a time scale of about 100,000 yr. Lower mass-loss rates would necessitate longer time scales. The pattern of abundance anomalies may eventuallymore » be used to constrain both the mass-loss rate and the stellar lifetime in the sdB evolutionary phase. 12 references.« less
Kann, Z R; Skinner, J L
2014-09-14
Non-polarizable models for ions and water quantitatively and qualitatively misrepresent the salt concentration dependence of water diffusion in electrolyte solutions. In particular, experiment shows that the water diffusion coefficient increases in the presence of salts of low charge density (e.g., CsI), whereas the results of simulations with non-polarizable models show a decrease of the water diffusion coefficient in all alkali halide solutions. We present a simple charge-scaling method based on the ratio of the solvent dielectric constants from simulation and experiment. Using an ion model that was developed independently of a solvent, i.e., in the crystalline solid, this method improves the water diffusion trends across a range of water models. When used with a good-quality water model, e.g., TIP4P/2005 or E3B, this method recovers the qualitative behaviour of the water diffusion trends. The model and method used were also shown to give good results for other structural and dynamic properties including solution density, radial distribution functions, and ion diffusion coefficients.
NASA Astrophysics Data System (ADS)
Head, E.; Lanzirotti, A.; Sutton, S.; Newville, M.
2017-12-01
Sulfur (S), vanadium (V), and iron (Fe) K-edge micro-X-ray absorption near edge structure (micro-XANES) spectroscopy of melt inclusions (MI) from Nyamuragira volcano (D.R. Congo, Africa) shows that diffusive loss of H from olivine-hosted melt inclusions may lead to crystallization of submicron magnetite and sulfide crystallites that are imperceptible petrographically or via electron microscopy. Micro-XANES was used to constrain the evolution of oxygen fugacity (fO2) and sulfur speciation for MI preserved in Nyamuragira tephra (1986 and 2006) and lava (1938 and 1948). The S, V, and Fe valence state oxybarometry for 1938, 1948, and 2006 MI are all consistent with equilibration at FMQ-1, and sulfur in MI from these three eruptions are sulfide-dominated (< 9% sulfate). However, Fe and V micro-XANES data for 1986 MI appear to be more reduced by 1-2 log units, while S micro-XANES data indicate more variable sulfate content. The 1986 results are best explained by diffusive loss of H from the entrapped melt. Submicron magnetite forms as Fe oxidizes in the melt in response to the loss of H, and V strongly partitions into these magnetite nanolites due to its compatibility. The nanolites are consistently analyzed within the beam volume and, thus, the measured V XANES appears more ordered. Magnetite crystallization from the melt also triggers precipitation of crystalline FeS phases within the inclusion, leading to a more ordered S XANES spectra as well. This may suggest a different magma storage history for the 1986 eruption compared to the others. Results demonstrate that coupled S, V, and Fe micro-XANES analysis of alkalic MI can provide accurate measures of the fO2 of entrapped melts, and that S and V micro-XANES spectroscopy are potentially highly sensitive tools for identifying diffusive water loss in olivine-hosted MIs.
Diffusion coefficients in organic-water solutions and comparison with Stokes-Einstein predictions
NASA Astrophysics Data System (ADS)
Evoy, E.; Kamal, S.; Bertram, A. K.
2017-12-01
Diffusion coefficients of organic species in particles containing secondary organic material (SOM) are necessary for predicting the growth and reactivity of these particles in the atmosphere. Previously, the Stokes-Einstein equation combined with viscosity measurements have been used to predict these diffusion coefficients. However, the accuracy of the Stokes-Einstein equation for predicting diffusion coefficients in SOM-water particles has not been quantified. To test the Stokes-Einstein equation, diffusion coefficients of fluorescent organic probe molecules were measured in citric acid-water and sorbitol-water solutions. These solutions were used as proxies for SOM-water particles found in the atmosphere. Measurements were performed as a function of water activity, ranging from 0.26-0.86, and as a function of viscosity ranging from 10-3 to 103 Pa s. Diffusion coefficients were measured using fluorescence recovery after photobleaching. The measured diffusion coefficients were compared with predictions made using the Stokes-Einstein equation combined with literature viscosity data. Within the uncertainties of the measurements, the measured diffusion coefficients agreed with the predicted diffusion coefficients, in all cases.
Benson, Randall R; Gattu, Ramtilak; Cacace, Anthony T
2014-03-01
Diffusion tensor imaging (DTI) is a contemporary neuroimaging modality used to study connectivity patterns and microstructure of white matter tracts in the brain. The use of DTI in the study of tinnitus is a relatively unexplored methodology with no studies focusing specifically on tinnitus induced by noise exposure. In this investigation, participants were two groups of adults matched for etiology, age, and degree of peripheral hearing loss, but differed by the presence or absence (+/-) of tinnitus. It is assumed that matching individuals on the basis of peripheral hearing loss, allows for differentiating changes in white matter microstructure due to hearing loss from changes due to the effects of chronic tinnitus. Alterations in white matter tracts, using the fractional anisotropy (FA) metric, which measures directional diffusion of water, were quantified using tract-based spatial statistics (TBSS) with additional details provided by in vivo probabilistic tractography. Our results indicate that 10 voxel clusters differentiated the two groups, including 9 with higher FA in the group with tinnitus. A decrease in FA was found for a single cluster in the group with tinnitus. However, seven of the 9 clusters with higher FA were in left hemisphere thalamic, frontal, and parietal white matter. These foci were localized to the anterior thalamic radiations and the inferior and superior longitudinal fasciculi. The two right-sided clusters with increased FA were located in the inferior fronto-occipital fasciculus and superior longitudinal fasciculus. The only decrease in FA for the tinnitus-positive group was found in the superior longitudinal fasciculus of the left parietal lobe. Copyright © 2013 Elsevier B.V. All rights reserved.
Ultrathin planar hematite film for solar photoelectrochemical water splitting
Liu, Dong; Bierman, David M.; Lenert, Andrej; ...
2015-10-08
Hematite holds promise for photoelectrochemical (PEC) water splitting due to its stability, low-cost, abundance and appropriate bandgap. However, it suffers from a mismatch between the hole diffusion length and light penetration length. We have theoretically designed and characterized an ultrathin planar hematite/silver nanohole array/silver substrate photoanode. Due to the supported destructive interference and surface plasmon resonance, photons are efficiently absorbed in an ultrathin hematite film. In conclusion, compared with ultrathin hematite photoanodes with nanophotonic structures, this photoanode has comparable photon absorption but with intrinsically lower recombination losses due to its planar structure and promises to exceed the state-of-the-art photocurrent ofmore » hematite photoanodes.« less
The diffusion of water in haploanesite
NASA Astrophysics Data System (ADS)
Ni, H.; Zhang, Y.
2008-12-01
Diffusive transport of water in silicate melts is a key process in magma dynamics and volcanic eruptions, including bubble growth. Previous studies demonstrate that in additional to temperature, water content and pressure, melt composition also plays an important role in determining water diffusivity. We carried out high temperature (1311-1512°C) diffusion-couple experiments and intermediate temperature (470- 600°C) dehydration experiments to investigate H2O diffusion in a melt of haploandesitic composition. The diffusion couple is composed of an anhydrous (with <0.1 wt.% H2O) and a hydrous (with 2 wt.% H2O) haploandesitic glass. A platinum capsule is used to contain the couple and then it is welded shut. Diffusion runs are carried out in a 12.7-mm piston-cylinder apparatus at 1 GPa and superliquidus temperatures of 1584-1785 K. Infrared microscopy is applied on quenched glass to measure the profile of total H2O concentration (H2Ot). The profile shape is best fit by an error function, indicating an H2O diffusivity virtually independent of H2O concentration, consistent with the results of Behrens et al. (2004) on an Fe-bearing andesite. Dehydration experiments are performed at 743-873 K in a rapid-quench cold-seal vessel, with a heated hydrous glass losing water to 0.1 GPa Ar atmosphere. Measured diffusion profiles, however, show that water diffusivity is dependent on water content. Experimental data can be explained by H2Om being the dominating diffusant or a total H2O diffusivity proportional to total H2O content. The distinction between the high-temperature experiments where H2Ot diffusivity is apparently independent of H2Ot content, and the intermediate-temperature experiments where H2Ot diffusivity depends on H2Ot can be rationalized if OH diffusion has a higher activation energy than molecular H2O diffusion, and their comparable diffusivities at high T gradually diverge as temperature is lowered. At below 1 wt.% H2O, water diffusivity increases from rhyolite to dacite to andesite at >1300°C, and this sequence is reversed at <600°C.
Non-steady state simulation of BOM removal in drinking water biofilters: model development.
Hozalski, R M; Bouwer, E J
2001-01-01
A numerical model was developed to simulate the non-steady-state behavior of biologically-active filters used for drinking water treatment. The biofilter simulation model called "BIOFILT" simulates the substrate (biodegradable organic matter or BOM) and biomass (both attached and suspended) profiles in a biofilter as a function of time. One of the innovative features of BIOFILT compared to previous biofilm models is the ability to simulate the effects of a sudden loss in attached biomass or biofilm due to filter backwash on substrate removal performance. A sensitivity analysis of the model input parameters indicated that the model simulations were most sensitive to the values of parameters that controlled substrate degradation and biofilm growth and accumulation including the substrate diffusion coefficient, the maximum rate of substrate degradation, the microbial yield coefficient, and a dimensionless shear loss coefficient. Variation of the hydraulic loading rate or other parameters that controlled the deposition of biomass via filtration did not significantly impact the simulation results.
Tile drainage as karst: Conduit flow and diffuse flow in a tile-drained watershed
Schilling, K.E.; Helmers, M.
2008-01-01
The similarity of tiled-drained watersheds to karst drainage basins can be used to improve understanding of watershed-scale nutrient losses from subsurface tile drainage networks. In this study, short-term variations in discharge and chemistry were examined from a tile outlet collecting subsurface tile flow from a 963 ha agricultural watershed. Study objectives were to apply analytical techniques from karst springs to tile discharge to evaluate water sources and estimate the loads of agricultural pollutants discharged from the tile with conduit, intermediate and diffuse flow regimes. A two-member mixing model using nitrate, chloride and specific conductance was used to distinguish rainwater versus groundwater inputs. Results indicated that groundwater comprised 75% of the discharge for a three-day storm period and rainwater was primarily concentrated during the hydrograph peak. A contrasting pattern of solute concentrations and export loads was observed in tile flow. During base flow periods, tile flow consisted of diffuse flow from groundwater sources and contained elevated levels of nitrate, chloride and specific conductance. During storm events, suspended solids and pollutants adhered to soil surfaces (phosphorus, ammonium and organic nitrogen) were concentrated and discharged during the rapid, conduit flow portion of the hydrograph. During a three-day period, conduit flow occurred for 5.6% of the time but accounted for 16.5% of the total flow. Nitrate and chloride were delivered primarily with diffuse flow (more than 70%), whereas 80-94% of total suspended sediment, phosphorus and ammonium were exported with conduit and intermediate flow regimes. Understanding the water sources contributing to tile drainage and the manner by which pollutant discharge occurs from these systems (conduit, intermediate or diffuse flow) may be useful for designing, implementing and evaluating non-point source reduction strategies in tile-drained landscapes. ?? 2007 Elsevier B.V. All rights reserved.
Improved Correction of IR Loss in Diffuse Shortwave Measurements: An ARM Value-Added Product
DOE Office of Scientific and Technical Information (OSTI.GOV)
Younkin, K; Long, CN
Simple single black detector pyranometers, such as the Eppley Precision Spectral Pyranometer (PSP) used by the Atmospheric Radiation Measurement (ARM) Program, are known to lose energy via infrared (IR) emission to the sky. This is especially a problem when making clear-sky diffuse shortwave (SW) measurements, which are inherently of low magnitude and suffer the greatest IR loss. Dutton et al. (2001) proposed a technique using information from collocated pyrgeometers to help compensate for this IR loss. The technique uses an empirically derived relationship between the pyrgeometer detector data (and alternatively the detector data plus the difference between the pyrgeometer casemore » and dome temperatures) and the nighttime pyranometer IR loss data. This relationship is then used to apply a correction to the diffuse SW data during daylight hours. We developed an ARM value-added product (VAP) called the SW DIFF CORR 1DUTT VAP to apply the Dutton et al. correction technique to ARM PSP diffuse SW measurements.« less
Air breathing and aquatic gas exchange during hypoxia in armoured catfish.
Scott, Graham R; Matey, Victoria; Mendoza, Julie-Anne; Gilmour, Kathleen M; Perry, Steve F; Almeida-Val, Vera M F; Val, Adalberto L
2017-01-01
Air breathing in fish is commonly believed to have arisen as an adaptation to aquatic hypoxia. The effectiveness of air breathing for tissue O 2 supply depends on the ability to avoid O 2 loss as oxygenated blood from the air-breathing organ passes through the gills. Here, we evaluated whether the armoured catfish (Hypostomus aff. pyreneusi)-a facultative air breather-can avoid branchial O 2 loss while air breathing in aquatic hypoxia, and we measured various other respiratory and metabolic traits important for O 2 supply and utilization. Fish were instrumented with opercular catheters to measure the O 2 tension (PO 2 ) of expired water, and air breathing and aquatic respiration were measured during progressive stepwise hypoxia in the water. Armoured catfish exhibited relatively low rates of O 2 consumption and gill ventilation, and gill ventilation increased in hypoxia due primarily to increases in ventilatory stroke volume. Armoured catfish began air breathing at a water PO 2 of 2.5 kPa, and both air-breathing frequency and hypoxia tolerance (as reflected by PO 2 at loss of equilibrium, LOE) was greater in individuals with a larger body mass. Branchial O 2 loss, as reflected by higher PO 2 in expired than in inspired water, was observed in a minority (4/11) of individuals as water PO 2 approached that at LOE. Armoured catfish also exhibited a gill morphology characterized by short filaments bearing short fused lamellae, large interlamellar cell masses, low surface area, and a thick epithelium that increased water-to-blood diffusion distance. Armoured catfish had a relatively low blood-O 2 binding affinity when sampled in normoxia (P 50 of 3.1 kPa at pH 7.4), but were able to rapidly increase binding affinity during progressive hypoxia exposure (to a P 50 of 1.8 kPa). Armoured catfish also had low activities of several metabolic enzymes in white muscle, liver, and brain. Therefore, low rates of metabolism and gill ventilation, and a reduction in branchial gas-exchange capacity, may help minimize branchial O 2 loss in armoured catfish while air breathing in aquatic hypoxia.
Magnetic orientation of nontronite clay in aqueous dispersions and its effect on water diffusion.
Abrahamsson, Christoffer; Nordstierna, Lars; Nordin, Matias; Dvinskikh, Sergey V; Nydén, Magnus
2015-01-01
The diffusion rate of water in dilute clay dispersions depends on particle concentration, size, shape, aggregation and water-particle interactions. As nontronite clay particles magnetically align parallel to the magnetic field, directional self-diffusion anisotropy can be created within such dispersion. Here we study water diffusion in exfoliated nontronite clay dispersions by diffusion NMR and time-dependant 1H-NMR-imaging profiles. The dispersion clay concentration was varied between 0.3 and 0.7 vol%. After magnetic alignment of the clay particles in these dispersions a maximum difference of 20% was measured between the parallel and perpendicular self-diffusion coefficients in the dispersion with 0.7 vol% clay. A method was developed to measure water diffusion within the dispersion in the absence of a magnetic field (random clay orientation) as this is not possible with standard diffusion NMR. However, no significant difference in self-diffusion coefficient between random and aligned dispersions could be observed. Copyright © 2014 Elsevier Inc. All rights reserved.
The effect of exercise on water balance in premenopausal physically active women.
Weinheimer, Eileen M; Martin, Berdine R; Weaver, Connie M; Welch, Jo M; Campbell, Wayne W
2008-10-01
This controlled feeding study examined the effects of exercise on daily water intake (particularly ad libitum water intake), water output, whole-body water balance, and hydration status in physically active, premenopausal women. The randomized crossover design consisted of three 8-day trials: placebo and no exercise, placebo and exercise (1-hour cycling bout per day at 65%-70% of heart rate reserve), and 800 mg calcium supplementation and exercise. During each trial, controlled quantities of the same foods and beverages were provided and ad libitum water intake was quantified. Water input included measured water from foods and beverages, measured ad libitum intake, and estimated metabolic production. Water output included measured losses in urine and stool, and estimated insensible losses from respiration and non-sweating perspiration (insensible diffusion through the skin). Participants were 26 women, age 25+/-5 years, body mass index 22+/-2, and VO(2peak) 43+/-6 mLxkg(-1)xmin(-1) (mean+/-standard deviation). Ad libitum water intake was 363 g/day more (P<0.05) for the placebo and exercise (1,940+/-654 g/day) and calcium supplementation and exercise (1,935+/-668 g/day) trials, compared with placebo and no exercise trial (1,575+/-667 g/day), and total water input was correspondingly higher in placebo and exercise and calcium supplementation and exercise trials compared with the placebo and no exercise trial. Urine, stool, and total water outputs were not different among trials. Apparent net water balance (representative of sweat water output) was 367 g/day more (P<0.05) in placebo and exercise (679+/-427 g/day) and calcium supplementation and exercise (641+/-519 g/day) trials compared with placebo and no exercise trial (293+/-419 g/day). Hydration status was clinically normal during all three trials. Calcium supplementation did not influence water balance. These results support that young, physically active women can completely compensate for exercise-induced sweat losses by increasing ad libitum water intake, and not decreasing non-sweat water outputs or impairing hydration status.
NASA Astrophysics Data System (ADS)
Chenyakin, Yuri; Ullmann, Dagny A.; Evoy, Erin; Renbaum-Wolff, Lindsay; Kamal, Saeid; Bertram, Allan K.
2017-02-01
The diffusion coefficients of organic species in secondary organic aerosol (SOA) particles are needed to predict the growth and reactivity of these particles in the atmosphere. Previously, viscosity measurements, along with the Stokes-Einstein relation, have been used to estimate the diffusion rates of organics within SOA particles or proxies of SOA particles. To test the Stokes-Einstein relation, we have measured the diffusion coefficients of three fluorescent organic dyes (fluorescein, rhodamine 6G and calcein) within sucrose-water solutions with varying water activity. Sucrose-water solutions were used as a proxy for SOA material found in the atmosphere. Diffusion coefficients were measured using fluorescence recovery after photobleaching. For the three dyes studied, the diffusion coefficients vary by 4-5 orders of magnitude as the water activity varied from 0.38 to 0.80, illustrating the sensitivity of the diffusion coefficients to the water content in the matrix. At the lowest water activity studied (0.38), the average diffusion coefficients were 1.9 × 10-13, 1.5 × 10-14 and 7.7 × 10-14 cm2 s-1 for fluorescein, rhodamine 6G and calcein, respectively. The measured diffusion coefficients were compared with predictions made using literature viscosities and the Stokes-Einstein relation. We found that at water activity ≥ 0.6 (which corresponds to a viscosity of ≤ 360 Pa s and Tg/T ≤ 0.81), predicted diffusion rates agreed with measured diffusion rates within the experimental uncertainty (Tg represents the glass transition temperature and T is the temperature of the measurements). When the water activity was 0.38 (which corresponds to a viscosity of 3.3 × 106 Pa s and a Tg/T of 0.94), the Stokes-Einstein relation underpredicted the diffusion coefficients of fluorescein, rhodamine 6G and calcein by a factor of 118 (minimum of 10 and maximum of 977), a factor of 17 (minimum of 3 and maximum of 104) and a factor of 70 (minimum of 8 and maximum of 494), respectively. This disagreement is significantly smaller than the disagreement observed when comparing measured and predicted diffusion coefficients of water in sucrose-water mixtures.
Guise, Catarina; Fernandes, Margarida M; Nóbrega, João M; Pathak, Sudhir; Schneider, Walter; Fangueiro, Raul
2016-11-09
Current brain imaging methods largely fail to provide detailed information about the location and severity of axonal injuries and do not anticipate recovery of the patients with traumatic brain injury. High-definition fiber tractography appears as a novel imaging modality based on water motion in the brain that allows for direct visualization and quantification of the degree of axons damage, thus predicting the functional deficits due to traumatic axonal injury and loss of cortical projections. This neuroimaging modality still faces major challenges because it lacks a "gold standard" for the technique validation and respective quality control. The present work aims to study the potential of hollow polypropylene yarns to mimic human white matter axons and construct a brain phantom for the calibration and validation of brain diffusion techniques based on magnetic resonance imaging, including high-definition fiber tractography imaging. Hollow multifilament polypropylene yarns were produced by melt-spinning process and characterized in terms of their physicochemical properties. Scanning electronic microscopy images of the filaments cross section has shown an inner diameter of approximately 12 μm, confirming their appropriateness to mimic the brain axons. The chemical purity of polypropylene yarns as well as the interaction between the water and the filament surface, important properties for predicting water behavior and diffusion inside the yarns, were also evaluated. Restricted and hindered water diffusion was confirmed by fluorescence microscopy. Finally, the yarns were magnetic resonance imaging scanned and analyzed using high-definition fiber tractography, revealing an excellent choice of these hollow polypropylene structures for simulation of the white matter brain axons and their suitability for constructing an accurate brain phantom.
Accident analysis of heavy water cooled thorium breeder reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yulianti, Yanti; Su’ud, Zaki; Takaki, Naoyuki
2015-04-16
Thorium has lately attracted considerable attention because it is accumulating as a by-product of large scale rare earth mining. The objective of research is to analyze transient behavior of a heavy water cooled thorium breeder that is designed by Tokai University and Tokyo Institute of Technology. That is oxide fueled, PWR type reactor with heavy water as primary coolant. An example of the optimized core has relatively small moderator to fuel volume ratio (MFR) of 0.6 and the characteristics of the core are burn-up of 67 GWd/t, breeding ratio of 1.08, burn-up reactivity loss during cycles of < 0.2% dk/k,more » and negative coolant reactivity coefficient. One of the nuclear reactor accidents types examined here is Unprotected Transient over Power (UTOP) due to withdrawing of the control rod that result in the positive reactivity insertion so that the reactor power will increase rapidly. Another accident type is Unprotected Loss of Flow (ULOF) that caused by failure of coolant pumps. To analyze the reactor accidents, neutron distribution calculation in the nuclear reactor is the most important factor. The best expression for the neutron distribution is the Boltzmann transport equation. However, solving this equation is very difficult so that the space-time diffusion equation is commonly used. Usually, space-time diffusion equation is solved by employing a point kinetics approach. However, this approach is less accurate for a spatially heterogeneous nuclear reactor and the nuclear reactor with quite large reactivity input. Direct method is therefore used to solve space-time diffusion equation which consider spatial factor in detail during nuclear reactor accident simulation. Set of equations that obtained from full implicit finite-difference method is solved by using iterative methods. The indication of UTOP accident is decreasing macroscopic absorption cross-section that results large external reactivity, and ULOF accident is indicated by decreasing coolant flow. The power reactor has a peak value before reactor has new balance condition. The analysis showed that temperatures of fuel and claddings during accident are still below limitations which are in secure condition.« less
Accident analysis of heavy water cooled thorium breeder reactor
NASA Astrophysics Data System (ADS)
Yulianti, Yanti; Su'ud, Zaki; Takaki, Naoyuki
2015-04-01
Thorium has lately attracted considerable attention because it is accumulating as a by-product of large scale rare earth mining. The objective of research is to analyze transient behavior of a heavy water cooled thorium breeder that is designed by Tokai University and Tokyo Institute of Technology. That is oxide fueled, PWR type reactor with heavy water as primary coolant. An example of the optimized core has relatively small moderator to fuel volume ratio (MFR) of 0.6 and the characteristics of the core are burn-up of 67 GWd/t, breeding ratio of 1.08, burn-up reactivity loss during cycles of < 0.2% dk/k, and negative coolant reactivity coefficient. One of the nuclear reactor accidents types examined here is Unprotected Transient over Power (UTOP) due to withdrawing of the control rod that result in the positive reactivity insertion so that the reactor power will increase rapidly. Another accident type is Unprotected Loss of Flow (ULOF) that caused by failure of coolant pumps. To analyze the reactor accidents, neutron distribution calculation in the nuclear reactor is the most important factor. The best expression for the neutron distribution is the Boltzmann transport equation. However, solving this equation is very difficult so that the space-time diffusion equation is commonly used. Usually, space-time diffusion equation is solved by employing a point kinetics approach. However, this approach is less accurate for a spatially heterogeneous nuclear reactor and the nuclear reactor with quite large reactivity input. Direct method is therefore used to solve space-time diffusion equation which consider spatial factor in detail during nuclear reactor accident simulation. Set of equations that obtained from full implicit finite-difference method is solved by using iterative methods. The indication of UTOP accident is decreasing macroscopic absorption cross-section that results large external reactivity, and ULOF accident is indicated by decreasing coolant flow. The power reactor has a peak value before reactor has new balance condition. The analysis showed that temperatures of fuel and claddings during accident are still below limitations which are in secure condition.
Kang, Zhenye; Mo, Jingke; Yang, Gaoqiang; ...
2016-10-11
Liquid/gas diffusion layers (LGDLs), which are located between the catalyst layer (CL) and bipolar plate (BP), play an important role in enhancing the performance of water splitting in proton exchange membrane electrolyzer cells (PEMECs). They are expected to transport electrons, heat, and reactants/products simultaneously with minimum voltage, current, thermal, interfacial, and fluidic losses. Here in this study, the thin titanium-based LGDLs with straight-through pores and well-defined pore morphologies are comprehensively investigated for the first time. The novel LGDL with a 400 μm pore size and 0.7 porosity achieved a best-ever performance of 1.66 V at 2 A cm -2 andmore » 80 °C, as compared to the published literature. The thin/well-tunable titanium based LGDLs remarkably reduce ohmic and activation losses, and it was found that porosity has a more significant impact on performance than pore size. In addition, an appropriate equivalent electrical circuit model has been established to quantify the effects of pore morphologies. The rapid electrochemical reaction phenomena at the center of the PEMEC are observed by coupling with high-speed and micro-scale visualization systems. Lastly, the observed reactions contribute reasonable and pioneering data that elucidate the effects of porosity and pore size on the PEMEC performance. This study can be a new guide for future research and development towards high-efficiency and low-cost hydrogen energy.« less
Negligible fractionation of Kr and Xe isotopes by molecular diffusion in water
NASA Astrophysics Data System (ADS)
Tyroller, Lina; Brennwald, Matthias S.; Busemann, Henner; Maden, Colin; Baur, Heinrich; Kipfer, Rolf
2018-06-01
Molecular diffusion is a key transport process for noble gases in water. Such diffusive transport is often thought to cause a mass-dependent fractionation of noble gas isotopes that is inversely proportional to the square root of the ratio of their atomic mass, referred to as the square root relation. Previous studies, challenged the commonly held assumption that the square root relation adequately describes the behaviour of noble gas isotopes diffusing through water. However, the effect of diffusion on noble gas isotopes has only been determined experimentally for He, Ne and Ar to date, whereas the extent of fractionation of Kr and Xe has not been measured. In the present study the fractionation of Kr and Xe isotopes diffusing through water immobilised by adding agar was quantified through measuring the respective isotope ratio after diffusing through the immobilised water. No fractionation of Kr and Xe isotopes was observed, even using high-precision noble gas analytics. These results complement our current understanding on isotopic fractionation of noble gases diffusing through water. Therefore this complete data set builds a robust basis to describe molecular diffusion of noble gases in water in a physical sound manner which is fundamental to assess the physical aspects of gas dynamics in aquatic systems.
Isotope effects accompanying evaporation of water from leaky containers.
Rozanski, Kazimierz; Chmura, Lukasz
2008-03-01
Laboratory experiments aimed at quantifying isotope effects associated with partial evaporation of water from leaky containers have been performed under three different settings: (i) evaporation into dry atmosphere, performed in a dynamic mode, (ii) evaporation into dry atmosphere, performed in a static mode, and (iii) evaporation into free laboratory atmosphere. The results demonstrate that evaporative enrichment of water stored in leaky containers can be properly described in the framework of the Craig-Gordon evaporation model. The key parameter controlling the degree of isotope enrichment is the remaining fraction of water in the leaking containers. Other factors such as temperature, relative humidity, or extent of kinetic fractionation play only minor roles. Satisfactory agreement between observed and predicted isotope enrichments for both (18)O and (2)H in experiments for the case of evaporation into dry atmosphere could be obtained only when molecular diffusivity ratios of isotope water molecules as suggested recently by Cappa et al. [J. Geophys. Res., 108, 4525-4535, (2003).] were adopted. However, the observed and modelled isotope enrichments for (2)H and (18)O could be reconciled also for the ratios of molecular diffusivities obtained by Merlivat [J. Chem. Phys., 69, 2864-2871 (1978).], if non-negligible transport resistance in the viscous liquid sub-layer adjacent to the evaporating surface is considered. The evaporation experiments revealed that the loss of mass of water stored in leaky containers in the order of 1%, will lead to an increase of the heavy isotope content in this water by ca. 0.35 and 1.1 per thousand, for delta (18)O and delta (2)H, respectively.
White, Paul B; Wang, Tuo; Park, Yong Bum; Cosgrove, Daniel J; Hong, Mei
2014-07-23
Polysaccharide-rich plant cell walls are hydrated under functional conditions, but the molecular interactions between water and polysaccharides in the wall have not been investigated. In this work, we employ polarization transfer solid-state NMR techniques to study the hydration of primary-wall polysaccharides of the model plant, Arabidopsis thaliana. By transferring water (1)H polarization to polysaccharides through distance- and mobility-dependent (1)H-(1)H dipolar couplings and detecting it through polysaccharide (13)C signals, we obtain information about water proximity to cellulose, hemicellulose, and pectins as well as water mobility. Both intact and partially extracted cell wall samples are studied. Our results show that water-pectin polarization transfer is much faster than water-cellulose polarization transfer in all samples, but the extent of extraction has a profound impact on the water-polysaccharide spin diffusion. Removal of calcium ions and the consequent extraction of homogalacturonan (HG) significantly slowed down spin diffusion, while further extraction of matrix polysaccharides restored the spin diffusion rate. These trends are observed in cell walls with similar water content, thus they reflect inherent differences in the mobility and spatial distribution of water. Combined with quantitative analysis of the polysaccharide contents, our results indicate that calcium ions and HG gelation increase the amount of bound water, which facilitates spin diffusion, while calcium removal disrupts the gel and gives rise to highly dynamic water, which slows down spin diffusion. The recovery of spin diffusion rates after more extensive extraction is attributed to increased water-exposed surface areas of the polysaccharides. Water-pectin spin diffusion precedes water-cellulose spin diffusion, lending support to the single-network model of plant primary walls in which a substantial fraction of the cellulose surface is surrounded by pectins.
Diffusion of aqueous solutions of ionic, zwitterionic, and polar solutes
NASA Astrophysics Data System (ADS)
Teng, Xiaojing; Huang, Qi; Dharmawardhana, Chamila Chathuranga; Ichiye, Toshiko
2018-06-01
The properties of aqueous solutions of ionic, zwitterionic, and polar solutes are of interest to many fields. For instance, one of the many anomalous properties of aqueous solutions is the behavior of water diffusion in different monovalent salt solutions. In addition, solutes can affect the stabilities of macromolecules such as proteins in aqueous solution. Here, the diffusivities of aqueous solutions of sodium chloride, potassium chloride, tri-methylamine oxide (TMAO), urea, and TMAO-urea are examined in molecular dynamics simulations. The decrease in the diffusivity of water with the concentration of simple ions and urea can be described by a simple model in which the water molecules hydrogen bonded to the solutes are considered to diffuse at the same rate as the solutes, while the remainder of the water molecules are considered to be bulk and diffuse at almost the same rate as pure water. On the other hand, the decrease in the diffusivity of water with the concentration of TMAO is apparently affected by a decrease in the diffusion rate of the bulk water molecules in addition to the decrease due to the water molecules hydrogen bonded to TMAO. In other words, TMAO enhances the viscosity of water, while urea barely affects it. Overall, this separation of water molecules into those that are hydrogen bonded to solute and those that are bulk can provide a useful means of understanding the short- and long-range effects of solutes on water.
Studholme, Colin; Frias, Antonio E.
2017-01-01
Altered macroscopic anatomical characteristics of the cerebral cortex have been identified in individuals affected by various neurodevelopmental disorders. However, the cellular developmental mechanisms that give rise to these abnormalities are not understood. Previously, advances in image reconstruction of diffusion magnetic resonance imaging (MRI) have made possible high-resolution in utero measurements of water diffusion anisotropy in the fetal brain. Here, diffusion anisotropy within the developing fetal cerebral cortex is longitudinally characterized in the rhesus macaque, focusing on gestation day (G85) through G135 of the 165 d term. Additionally, for subsets of animals characterized at G90 and G135, immunohistochemical staining was performed, and 3D structure tensor analyses were used to identify the cellular processes that most closely parallel changes in water diffusion anisotropy with cerebral cortical maturation. Strong correlations were found between maturation of dendritic arbors on the cellular level and the loss of diffusion anisotropy with cortical development. In turn, diffusion anisotropy changes were strongly associated both regionally and temporally with cortical folding. Notably, the regional and temporal dependence of diffusion anisotropy and folding were distinct from the patterns observed for cerebral cortical surface area expansion. These findings strengthen the link proposed in previous studies between cellular-level changes in dendrite morphology and noninvasive diffusion MRI measurements of the developing cerebral cortex and support the possibility that, in gyroencephalic species, structural differentiation within the cortex is coupled to the formation of gyri and sulci. SIGNIFICANCE STATEMENT Abnormal brain morphology has been found in populations with neurodevelopmental disorders. However, the mechanisms linking cellular level and macroscopic maturation are poorly understood, even in normal brains. This study contributes new understanding to this subject using serial in utero MRI measurements of rhesus macaque fetuses, from which macroscopic and cellular information can be derived. We found that morphological differentiation of dendrites was strongly associated both regionally and temporally with folding of the cerebral cortex. Interestingly, parallel associations were not observed with cortical surface area expansion. These findings support the possibility that perturbed morphological differentiation of cells within the cortex may underlie abnormal macroscopic characteristics of individuals affected by neurodevelopmental disorders. PMID:28069920
Simulations on the Influence of Myelin Water in Diffusion-Weighted Imaging
Harkins, Kevin D.; Does, Mark D.
2016-01-01
While myelinated axons present an important barrier to water diffusion, many models used to interpret DWI signal neglect other potential influences of myelin. In this work, Monte Carlo simulations were used to test the sensitivity of DWI results to the diffusive properties of water within myelin. Within these simulations, the apparent diffusion coefficient (Dapp) varied slowly over several orders of magnitude of the coefficient of myelin water diffusion (Dm), but exhibited important differences compared to Dapp values simulated that neglect Dm (=0). Compared to Dapp, the apparent diffusion kurtosis (Kapp) was generally more sensitive to Dm. Simulations also tested the sensitivity of Dapp and Kapp to the amount of myelin present. Unique variations in Dapp and Kapp caused by differences in the myelin volume fraction were diminished when myelin water diffusion was included. Also, expected trends in Dapp and Kapp with experimental echo time were reduced or inverted when accounting for myelin water diffusion, and these reduced/inverted trends were seen experimentally in ex vivo rat brain DWI experiments. In general, myelin water has the potential to subtly influence DWI results and bias models of DWI that neglect these components of white matter. PMID:27271991
Numerical study of centrifugal compressor stage vaneless diffusers
NASA Astrophysics Data System (ADS)
Galerkin, Y.; Soldatova, K.; Solovieva, O.
2015-08-01
The authors analyzed CFD calculations of flow in vaneless diffusers with relative width in range from 0.014 to 0.100 at inlet flow angles in range from 100 to 450 with different inlet velocity coefficients, Reynolds numbers and surface roughness. The aim is to simulate calculated performances by simple algebraic equations. The friction coefficient that represents head losses as friction losses is proposed for simulation. The friction coefficient and loss coefficient are directly connected by simple equation. The advantage is that friction coefficient changes comparatively little in range of studied parameters. Simple equations for this coefficient are proposed by the authors. The simulation accuracy is sufficient for practical calculations. To create the complete algebraic model of the vaneless diffuser the authors plan to widen this method of modeling to diffusers with different relative length and for wider range of Reynolds numbers.
Quantifying the Precipitation Loss of Radiation Belt Electrons during a Rapid Dropout Event
NASA Astrophysics Data System (ADS)
Pham, K. H.; Tu, W.; Xiang, Z.
2017-12-01
Relativistic electron flux in the radiation belt can drop by orders of magnitude within the timespan of hours. In this study, we used the drift-diffusion model that includes azimuthal drift and pitch angle diffusion of electrons to simulate low-altitude electron distribution observed by POES/MetOp satellites for rapid radiation belt electron dropout event occurring on May 1, 2013. The event shows fast dropout of MeV energy electrons at L>4 over a few hours, observed by the Van Allen Probes mission. By simulating the electron distributions observed by multiple POES satellites, we resolve the precipitation loss with both high spatial and temporal resolution and a range of energies. We estimate the pitch angle diffusion coefficients as a function of energy, pitch angle, and L-shell, and calculate corresponding electron lifetimes during the event. The simulation results show fast electron precipitation loss at L>4 during the electron dropout, with estimated electron lifetimes on the order of half an hour for MeV energies. The electron loss rate show strong energy dependence with faster loss at higher energies, which suggest that this dropout event is dominated by quick and localized scattering process that prefers higher energy electrons. The estimated pitch angle diffusion rates from the model are then compared with in situ wave measurements from Van Allen Probes to uncover the underlying wave-particle-interaction mechanisms that are responsible for the fast electron precipitation. Comparing the resolved precipitation loss with the observed electron dropouts at high altitudes, our results will suggest the relative role of electron precipitation loss and outward radial diffusion to the radiation belt dropouts during storm and non-storm times, in addition to its energy and L dependence.
NASA Technical Reports Server (NTRS)
Barbosa, D. D.; Coroniti, F. V.
1976-01-01
The radial diffusion equation with synchrotron losses was solved by the Laplace transform method for near-equatorially mirroring relativistic electrons. The evolution of a power law distribution function was found and the characteristics of synchrotron burn-off are stated in terms of explicit parameters for an arbitrary diffusion coefficient. Emissivity from the radiation belts of Jupiter was studied. Asymptotic forms for the distribution in the strong synchrotron loss regime are provided.
Magnetic flux and heat losses by diffusive, advective, and Nernst effects in MagLIF-like plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velikovich, A. L., E-mail: sasha.velikovich@nrl.navy.mil; Giuliani, J. L., E-mail: sasha.velikovich@nrl.navy.mil; Zalesak, S. T.
2014-12-15
The MagLIF approach to inertial confinement fusion involves subsonic/isobaric compression and heating of a DT plasma with frozen-in magnetic flux by a heavy cylindrical liner. The losses of heat and magnetic flux from the plasma to the liner are thereby determined by plasma advection and gradient-driven transport processes, such as thermal conductivity, magnetic field diffusion and thermomagnetic effects. Theoretical analysis based on obtaining exact self-similar solutions of the classical collisional Braginskii's plasma transport equations in one dimension demonstrates that the heat loss from the hot plasma to the cold liner is dominated by the transverse heat conduction and advection, andmore » the corresponding loss of magnetic flux is dominated by advection and the Nernst effect. For a large electron Hall parameter ω{sub e}τ{sub e} effective diffusion coefficients determining the losses of heat and magnetic flux are both shown to decrease with ω{sub e}τ{sub e} as does the Bohm diffusion coefficient, which is commonly associated with low collisionality and two-dimensional transport. This family of exact solutions can be used for verification of codes that model the MagLIF plasma dynamics.« less
Theoretical and experimental studies of water interaction in acetate based ionic liquids.
Shi, Wei; Damodaran, Krishnan; Nulwala, Hunaid B; Luebke, David R
2012-12-05
Water interactions in 1-ethyl-3-methylimidazolium acetate ([emim][CH(3)COO]) were studied utilizing classical and ab initio simulation methods. The self-diffusivities for water and the ionic liquid (IL) were studied experimentally using pulse field gradient NMR spectroscopy and correlated with computational results. Water forms hydrogen bonding networks with the ionic liquid, and depending on the concentration of water, there are profound effects on the self-diffusivities of the various species. Both simulation and experiments show that the self-diffusivities for species in the water-[emim][CH(3)COO] system exhibit minima at 40-50 mol% water. Water interaction with the [CH(3)COO](-) anion predominates over the water-water and water-cation interactions at most water concentrations. Simulations further indicate that decreasing water-[CH(3)COO](-) interaction will increase the IL and water self-diffusivities. Self-diffusivities in the water-IL systems are dependent upon the cation in a complex way. Water interactions with [P(4444)][CH(3)COO] are reduced compared to [emim][CH(3)COO]. The [P(4444)](+) cation is bulkier than the [emim](+) cation and has a smaller self-diffusivity, but when water was introduced to [P(4444)] [CH(3)COO], the water-[CH(3)COO](-) hydrogen bonding network in the [P(4444)][CH(3)COO] was much smaller than the one observed in [emim][CH(3)COO].
Diffusion of hydrous species in model basaltic melt
NASA Astrophysics Data System (ADS)
Zhang, Li; Guo, Xuan; Wang, Qinxia; Ding, Jiale; Ni, Huaiwei
2017-10-01
Water diffusion in Fe-free model basaltic melt with up to 2 wt% H2O was investigated at 1658-1846 K and 1 GPa in piston-cylinder apparatus using both hydration and diffusion couple techniques. Diffusion profiles measured by FTIR are consistent with a model in which both molecular H2O (H2Om) and hydroxyl (OH) contribute to water diffusion. OH diffusivity is roughly 13% of H2Om diffusivity, showing little dependence on temperature or water concentration. Water diffusion is dominated by the motion of OH until total H2O (H2Ot) concentration reaches 1 wt%. The dependence of apparent H2Ot diffusivity on H2Ot concentration appears to be overestimated by a previous study on MORB melt, but H2Ot diffusivity at 1 wt% H2Ot in basaltic melt is still greater than those in rhyolitic to andesitic melts. The appreciable contribution of OH to water diffusion in basaltic melt can be explained by enhanced mobility of OH, probably associated with the development of free hydroxyl bonded with network-modifying cations, as well as higher OH concentration. Calculation based on the Nernst-Einstein equation demonstrates that OH may serve as an effective charge carrier in hydrous basaltic melt, which could partly account for the previously observed strong influence of water on electrical conductivity of basaltic melt.
Pathogen transport in groundwater systems: contrasts with traditional solute transport
NASA Astrophysics Data System (ADS)
Hunt, Randall J.; Johnson, William P.
2017-06-01
Water quality affects many aspects of water availability, from precluding use to societal perceptions of fit-for-purpose. Pathogen source and transport processes are drivers of water quality because they have been responsible for numerous outbreaks resulting in large economic losses due to illness and, in some cases, loss of life. Outbreaks result from very small exposure (e.g., less than 20 viruses) from very strong sources (e.g., trillions of viruses shed by a single infected individual). Thus, unlike solute contaminants, an acute exposure to a very small amount of contaminated water can cause immediate adverse health effects. Similarly, pathogens are larger than solutes. Thus, interactions with surfaces and settling become important even as processes important for solutes such as diffusion become less important. These differences are articulated in "Colloid Filtration Theory", a separate branch of pore-scale transport. Consequently, understanding pathogen processes requires changes in how groundwater systems are typically characterized, where the focus is on the leading edges of plumes and preferential flow paths, even if such features move only a very small fraction of the aquifer flow. Moreover, the relatively short survival times of pathogens in the subsurface require greater attention to very fast (<10 year) flow paths. By better understanding the differences between pathogen and solute transport mechanisms discussed here, a more encompassing view of water quality and source water protection is attained. With this more holistic view and theoretical understanding, better evaluations can be made regarding drinking water vulnerability and the relation between groundwater and human health.
Leaf conductance and carbon gain under salt-stressed conditions
NASA Astrophysics Data System (ADS)
Volpe, V.; Manzoni, S.; Marani, M.; Katul, G.
2011-12-01
Exposure of plants to salt stress is often accompanied by reductions in leaf photosynthesis and in stomatal and mesophyll conductances. To separate the effects of salt stress on these quantities, a model based on the hypothesis that carbon gain is maximized subject to a water loss cost is proposed. The optimization problem of adjusting stomatal aperture for maximizing carbon gain at a given water loss is solved for both a non-linear and a linear biochemical demand function. A key novel theoretical outcome of the optimality hypothesis is an explicit relationship between the stomatal and mesophyll conductances that can be evaluated against published measurements. The approaches here successfully describe gas-exchange measurements reported for olive trees (Olea europea L.) and spinach (Spinacia oleraceaL.) in fresh water and in salt-stressed conditions. Salt stress affected both stomatal and mesophyll conductances and photosynthetic efficiency of both species. The fresh water/salt water comparisons show that the photosynthetic capacity is directly reduced by 30%-40%, indicating that reductions in photosynthetic rates under increased salt stress are not due only to a limitation of CO2diffusion. An increase in salt stress causes an increase in the cost of water parameter (or marginal water use efficiency) exceeding 100%, analogous in magnitude to findings from extreme drought stress studies. The proposed leaf-level approach can be incorporated into physically based models of the soil-plant-atmosphere system to assess how saline conditions and elevated atmospheric CO2 jointly impact transpiration and photosynthesis.
NASA Astrophysics Data System (ADS)
Nguyen, Mary; Rick, Steven W.
2018-06-01
The diffusion rates for water molecules in salt solutions depend on the identity of the ions, as well as their concentration. Among the alkali metal ions, cesium and potassium increase and sodium strongly decreases the diffusion constant of water. The origin of the difference can be understood by examining the simulation results using different potential models. In this work, aqueous solutions of salts are simulated with a variety of models. Commonly used non-polarizable models, which otherwise reproduce many experimental properties, do not capture the trend in the diffusion constant, while models which include polarization and/or charge transfer interactions do. For the non-polarizable models, the diffusion constant decreases too strongly with salt concentration. The changes in the water diffusion constant with increasing salt concentration match the diffusion constant of the ion. The ion diffusion constant is dependent on the residence time for water in the ion solvation shell. The non-polarizable models over-estimate the residence time, relative to the translational diffusion constant and so tend to under-estimate the ion and water diffusion constants.
The Analytical Solution of the Transient Radial Diffusion Equation with a Nonuniform Loss Term.
NASA Astrophysics Data System (ADS)
Loridan, V.; Ripoll, J. F.; De Vuyst, F.
2017-12-01
Many works have been done during the past 40 years to perform the analytical solution of the radial diffusion equation that models the transport and loss of electrons in the magnetosphere, considering a diffusion coefficient proportional to a power law in shell and a constant loss term. Here, we propose an original analytical method to address this challenge with a nonuniform loss term. The strategy is to match any L-dependent electron losses with a piecewise constant function on M subintervals, i.e., dealing with a constant lifetime on each subinterval. Applying an eigenfunction expansion method, the eigenvalue problem becomes presently a Sturm-Liouville problem with M interfaces. Assuming the continuity of both the distribution function and its first spatial derivatives, we are able to deal with a well-posed problem and to find the full analytical solution. We further show an excellent agreement between both the analytical solutions and the solutions obtained directly from numerical simulations for different loss terms of various shapes and with a diffusion coefficient DLL L6. We also give two expressions for the required number of eigenmodes N to get an accurate snapshot of the analytical solution, highlighting that N is proportional to 1/√t0, where t0 is a time of interest, and that N increases with the diffusion power. Finally, the equilibrium time, defined as the time to nearly reach the steady solution, is estimated by a closed-form expression and discussed. Applications to Earth and also Jupiter and Saturn are discussed.
NASA Astrophysics Data System (ADS)
Fukuda, Jun-ichi; Muto, Jun; Nagahama, Hiroyuki
2018-01-01
We performed two axial deformation experiments on synthetic polycrystalline anorthite samples with a grain size of 3 μm and 5 vol% Si-Al-rich glass at 900 °C, a confining pressure of 1.0 GPa, and a strain rate of 10-4.8 s-1. One sample was deformed as-is (dry); in the other sample, two half-cut samples (two cores) with 0.15 wt% water at the boundary were put together in the apparatus. The mechanical data for both samples were essentially identical with a yield strength of 700 MPa and strain weakening of 500 MPa by 20% strain. The dry sample appears to have been deformed by distributed fracturing. Meanwhile, the water-added sample shows plastic strain localization in addition to fracturing and reaction products composed of zoisite grains and SiO2 materials along the boundary between the two sample cores. Infrared spectra of the water-added sample showed dominant water bands of zoisite. The maximum water content was 1500 wt ppm H2O at the two-core boundary, which is the same as the added amount. The water contents gradually decreased from the boundaries to the sample interior, and the gradient fitted well with the solution of the one-dimensional diffusion equation. The determined diffusion coefficient was 7.4 × 10-13 m2/s, which agrees with previous data for the grain boundary diffusion of water. The anorthite grains in the water-added sample showed no crystallographic preferred orientation. Textural observations and water diffusion indicate that water promotes the plastic deformation of polycrystalline anorthite by grain-size-sensitive creep as well as simultaneous reactions. We calculated the strain rate evolution controlled by water diffusion in feldspar aggregates surrounded by a water source. We assumed water diffusion in a dry rock mass with variable sizes. Diffused water weakens a rock mass with time under compressive stress. The calculated strain rate decreased from 10-10 to 10-15 s-1 with an increase in the rock mass size to which water is supplied from < 1 m to 1 km and an increase in the time of water diffusion from < 1 to 10,000 years. This indicates a decrease in the strain rate in a rock mass with increasing deformation via water diffusion.
Latour, R A; Black, J
1992-05-01
Fiber reinforced polymer (FRP) composites are being developed as alternatives to metals for structural orthopedic implant applications. FRP composite fracture behavior and environmental interactions are distinctly different from those which occur in metals. These differences must be accounted for in the design and evaluation of implant performance. Fiber/matrix interfacial bond strength in a FRP composite is known to strongly influence fracture behavior. The interfacial bond strength of four candidate fiber/matrix combinations (carbon fiber/polycarbonate, carbon fiber/polysulfone, polyaramid fiber/polycarbonate, polyaramid fiber/polysulfone) were investigated at 37 degrees C in dry and in vivo simulated (saline, exudate) environments. Ultimate bond strength was measured by a single fiber-microdroplet pull-out test. Dry bond strengths were significantly decreased following exposure to either saline or exudate with bond strength loss being approximately equal in both the saline and exudate. Bond strength loss is attributed to the diffusion of water and/or salt ions into the sample and their interaction with interfacial bonding. Because bond degradation is dependent upon diffusion, diffusional equilibrium must be obtained in composite test samples before the full effect of the test environment upon composite mechanical behavior can be determined.
NASA Astrophysics Data System (ADS)
Drouin, Ariane; Michaud, Aubert; Thériault, Georges; Beaudin, Isabelle; Rodrigue, Jean-François; Denault, Jean-Thomas; Desjardins, Jacques; Côté, Noémi
2013-04-01
In Quebec / Canada, water quality improvement in rural areas greatly depends on the reduction of diffuse pollution. Indeed, point source pollution has been reduced significantly in Canada in recent years by creating circumscribed pits for manure and removing animals from stream. Diffuse pollution differs from point source pollution because it is spread over large areas. In agricultural areas, sediment loss by soil and riverbank erosion along with loss of nutrients (phosphorus, nitrogen, etc.) and pesticides from fields represent the main source of non-point source pollution. The factor mainly responsible for diffuse pollution in agricultural areas is surface runoff occurring in poorly drained areas in fields. The presence of these poorly drained areas is also one of the most limiting factors in crop productivity. Thus, a reconciliation of objectives at the farm (financial concern for farmers) and off-farm concerns (environmental concern) is possible. In short, drainage, runoff, erosion, water quality and crop production are all interconnected issues that need to be tackled together. Two complementary data sources are mainly used in the diagnosis of drainage, surface runoff and erosion : elevation data and multispectral satellite images. In this study of two watersheds located in Québec (Canada), LiDAR elevation data and satellite imagery (QuickBird, Spot and Landsat) were acquired. The studied territories have been partitioned in hydrologic response units (HRUs) according to sub-basins, soils, elevation (topographic index) and land use. These HRUs are afterwards used in a P index software (P-Edit) that calculates the quantities of sediments and phosphorus exported from each HRUs. These exports of sediments and phosphorus are validated with hydrometric and water quality data obtain in two sub-basins and are also compared to soil brightness index derived from multispectral images. This index is sensitive to soil moisture and thus highlights areas where the soil is more humid. A variety of other indices are used to explain the sediments yields. These indices, such as the average percentage of slope, the distance to the stream, the relative position in landscape, the position to the water table, etc. are mainly derived from high precision elevation data. All these data are used to locate critical source areas that generally correspond to a restraint part of the territory but account for the principal amount of sediments exports. Once the critical source areas are identified, best management practices (BMPs) (per example : contaminant source control practices, conservation cropping practices and surface runoff control structures) can be planned. This way, money and energy are used where it really counts. In this presentation, the complete methodology including LiDAR data processing will be explained. The results and the possibility to reproduce the developed method will be discussed.
NASA Astrophysics Data System (ADS)
Suarez, C. A.; Kohn, M. J.
2013-12-01
Bioapatite in the form of vertebrate bone can be used for a wide variety of paleo-proxies, from determination of ancient diet to the isotopic composition of meteoric water. Bioapatite alteration during diagenesis is a constant barrier to the use of fossil bone as a paleo-proxy. To elucidate the physical and chemical alteration of bone apatite during fossilization, we analyzed an assortment of fossil bones of different ages for trace elements, using LA-ICP-MS, stable isotopes, and reflected IR spectroscopy. One set of fossil bones from the Pleistocene of Idaho show a diffusion recrystallization profile, however, rare earth element (REE) profiles indicate diffusion adsorption. This suggests that REE diffusion is controlled by changing (namely decreasing) boundary conditions (i.e. decreasing concentration of REE in surrounding pore fluids). Reflected IR analysis along this concentration profile reveal that areas high in U have lost type A carbonate from the crystal structure in addition to water and organics. Stable isotopic analysis of carbon and oxygen will determine what, if any, change in the isotopic composition of the carbonate component of apatite has occurred do to the diffusion and recrystallization process. Analysis of much older bone from the Cretaceous of China reveal shallow REE and U concentration profiles and very uniform reflected IR spectra with a significant loss of type A carbonate throughout the entire bone cortex. Analysis of stable isotopes through the bone cortex will be compared to the stable isotopes collected from the Pleistocene of Idaho.
Wang, Yanen; Wei, Qinghua; Wang, Shuzhi; Chai, Weihong; Zhang, Yingfeng
2017-01-01
To study the effects of composition ratios and temperature on the diffusion of water molecules in PVA/PAM blend films, five simulation models of PVA/PAM with ten water molecules at different composition ratios (4/0, 3/1, 2/2, 1/3, 0/4) were constructed and simulated by using a molecular dynamics (MD) simulation. The diffusion behavior of water molecules in blends were investigated from the aspects of the diffusion coefficient, free volume, pair correlation function (PCF) and trajectories of water molecules, respectively. And the hydrophilicity of blend composite was studied based on the contact angle and equilibrium water content (EWC) of the blend films. The simulation results show that the diffusion coefficient of water molecules and fractional free volume (FFV) of blend membranes increase with the addition of PAM, and a higher temperature can also improve the diffusion of water molecules. Additionally, the analysis of PCFs reveals the main reason why the diffusion coefficient of water in blend system increases with the addition of PAM. The measurement results of contact angle and EWC of blend films indicate that the hydrophilicity of blend films decreases with the addition of PAM, but the EWC of blends increases with the addition of PAM. Copyright © 2016 Elsevier Inc. All rights reserved.
Paybins, Katherine S.; Nishikawa, Tracy; Izbicki, John A.; Reichard, Eric G.
1998-01-01
To better understand flow processes, solute-transport processes, and ground-water/surface-water interactions on the Santa Clara River in Ventura County, California, a 24-hour fluorescent-dye tracer study was performed under steady-state flow conditions on a 28-mile reach of the river. The study reach includes perennial (uppermost and lowermost) subreaches and ephemeral subreaches of the lower Piru Creek and the middle Santa Clara River. Dye was injected at a site on Piru Creek, and fluorescence of river water was measured continuously at four sites and intermittently at two sites. Discharge measurements were also made at the six sites. The time of travel of the dye, peak dye concentration, and time-variance of time-concentration curves were obtained at each site. The long tails of the time-concentration curves are indicative of sources/sinks within the river, such as riffles and pools, or transient bank storage. A statistical analysis of the data indicates that, in general, the transport characteristics follow Fickian theory. These data and previously collected discharge data were used to calibrate a one-dimensional flow model (DAFLOW) and a solute-transport model (BLTM). DAFLOW solves a simplified form of the diffusion-wave equation and uses empirical relations between flow rate and cross-sectional area, and flow rate and channel width. BLTM uses the velocity data from DAFLOW and solves the advection-dispersion transport equation, including first-order decay. The simulations of dye transport indicated that (1) ground-water recharge explains the loss of dye mass in the middle, ephemeral, subreaches, and (2) ground-water recharge does not explain the loss of dye mass in the uppermost and lowermost, perennial, subreaches. This loss of mass was simulated using a linear decay term. The loss of mass in the perennial subreaches may be caused by a combination of photodecay or adsorption/desorption.
Song, Jinsuk; Han, Oc Hee; Han, Songi
2015-03-16
Nafion, the most widely used polymer for electrolyte membranes (PEMs) in fuel cells, consists of a fluorocarbon backbone and acidic groups that, upon hydration, swell to form percolated channels through which water and ions diffuse. Although the effects of the channel structures and the acidic groups on water/ion transport have been studied before, the surface chemistry or the spatially heterogeneous diffusivity across water channels has never been shown to directly influence water/ion transport. By the use of molecular spin probes that are selectively partitioned into heterogeneous regions of the PEM and Overhauser dynamic nuclear polarization relaxometry, this study reveals that both water and proton diffusivity are significantly faster near the fluorocarbon and the acidic groups lining the water channels than within the water channels. The concept that surface chemistry at the (sub)nanometer scale dictates water and proton diffusivity invokes a new design principle for PEMs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dynamics of water in strawberry and red onion as studied by dielectric spectroscopy
NASA Astrophysics Data System (ADS)
Jansson, H.; Huldt, C.; Bergman, R.; Swenson, J.
2005-01-01
We have investigated the microscopic dynamics of strawberry and red onion by means of broadband dielectric spectroscopy. In contrast to most of the previous experiments on carbohydrate-rich biological materials, which have mainly considered the more global dynamics of the “biological matrix,” we are here focusing on the microscopic dynamics of mainly the associated water. The results for both strawberry and red onion show that the imaginary part of the permittivity contains one conductivity term and a clear dielectric loss peak, which was found to be similar to the strongest relaxation process of water in carbohydrate solutions. The temperature dependence of the relaxation process was analyzed for different water content. The relaxation process slows down, and its temperature dependence becomes more non-Arrhenius, with decreasing water content. The reason for this is most likely that, on average, the water molecules interact more strongly with carbohydrates and other biological materials at low water content, and the dynamical properties of this biological matrix changes substantially with increasing temperature (from an almost rigid matrix where the water is basically unable to perform long-range diffusion due to confinement effects, to a dynamic matrix with no static confinement effects), which also changes (i.e., reduces) the activation energy of the relaxation process with increasing temperature (i.e., causes a non-Arrhenius temperature dependence). This further changes the conductivity from mainly polarization effects at low temperatures, due to hindered ionic motions, to long-range diffusivity at T>250K . Thus, around this temperature ions in the carbohydrate solution no longer get stuck in confined cavities, since the motion of the biological matrix “opens up” the cavities and the ions are then able to perform long-range migration.
Simulations on the influence of myelin water in diffusion-weighted imaging
NASA Astrophysics Data System (ADS)
Harkins, K. D.; Does, M. D.
2016-07-01
While myelinated axons present an important barrier to water diffusion, many models used to interpret DWI signal neglect other potential influences of myelin. In this work, Monte Carlo simulations were used to test the sensitivity of DWI results to the diffusive properties of water within myelin. Within these simulations, the apparent diffusion coefficient (D app) varied slowly over several orders of magnitude of the coefficient of myelin water diffusion (D m), but exhibited important differences compared to D app values simulated that neglect D m (=0). Compared to D app, the apparent diffusion kurtosis (K app) was generally more sensitive to D m. Simulations also tested the sensitivity of D app and K app to the amount of myelin present. Unique variations in D app and K app caused by differences in the myelin volume fraction were diminished when myelin water diffusion was included. Also, expected trends in D app and K app with experimental echo time were reduced or inverted when accounting for myelin water diffusion, and these reduced/inverted trends were seen experimentally in ex vivo rat brain DWI experiments. In general, myelin water has the potential to subtly influence DWI results and bias models of DWI that neglect these components of white matter.
Simulations on the influence of myelin water in diffusion-weighted imaging.
Harkins, K D; Does, M D
2016-07-07
While myelinated axons present an important barrier to water diffusion, many models used to interpret DWI signal neglect other potential influences of myelin. In this work, Monte Carlo simulations were used to test the sensitivity of DWI results to the diffusive properties of water within myelin. Within these simulations, the apparent diffusion coefficient (D app) varied slowly over several orders of magnitude of the coefficient of myelin water diffusion (D m), but exhibited important differences compared to D app values simulated that neglect D m (=0). Compared to D app, the apparent diffusion kurtosis (K app) was generally more sensitive to D m. Simulations also tested the sensitivity of D app and K app to the amount of myelin present. Unique variations in D app and K app caused by differences in the myelin volume fraction were diminished when myelin water diffusion was included. Also, expected trends in D app and K app with experimental echo time were reduced or inverted when accounting for myelin water diffusion, and these reduced/inverted trends were seen experimentally in ex vivo rat brain DWI experiments. In general, myelin water has the potential to subtly influence DWI results and bias models of DWI that neglect these components of white matter.
Atomistic modeling of water diffusion in hydrolytic biomaterials.
Gautieri, Alfonso; Mezzanzanica, Andrea; Motta, Alberto; Redealli, Alberto; Vesentini, Simone
2012-04-01
One of the most promising applications of hydrolytically degrading biomaterials is their use as drug release carriers. These uses, however, require that the degradation and diffusion of drug are reliably predicted, which is complex to achieve through present experimental methods. Atomistic modeling can help in the knowledge-based design of degrading biomaterials with tuned drug delivery properties, giving insights on the small molecules diffusivity at intermediate states of the degradation process. We present here an atomistic-based approach to investigate the diffusion of water (through which hydrolytic degradation occurs) in degrading bulk models of poly(lactic acid) or PLA. We determine the water diffusion coefficient for different swelling states of the polymeric matrix (from almost dry to pure water) and for different degrees of degradation. We show that water diffusivity is highly influenced by the swelling degree, while little or not influenced by the degradation state. This approach, giving water diffusivity for different states of the matrix, can be combined with diffusion-reaction analytical methods in order to predict the degradation path on longer time scales. Furthermore, atomistic approach can be used to investigate diffusion of other relevant small molecules, eventually leading to the a priori knowledge of degradable biomaterials transport properties, helping the design of the drug delivery systems.
Roebeling, P C; Cunha, M C; Arroja, L; van Grieken, M E
2015-01-01
Marine ecosystems are affected by water pollution originating from coastal catchments. The delivery of water pollutants can be reduced through water pollution abatement as well as water pollution treatment. Hence, sustainable economic development of coastal regions requires balancing of the marginal costs from water pollution abatement and/or treatment and the associated marginal benefits from marine resource appreciation. Water pollution delivery reduction costs are, however, not equal across abatement and treatment options. In this paper, an optimal control approach is developed and applied to explore welfare maximizing rates of water pollution abatement and/or treatment for efficient diffuse source water pollution management in terrestrial-marine systems. For the case of diffuse source dissolved inorganic nitrogen water pollution in the Tully-Murray region, Queensland, Australia, (agricultural) water pollution abatement cost, (wetland) water pollution treatment cost and marine benefit functions are determined to explore welfare maximizing rates of water pollution abatement and/or treatment. Considering partial (wetland) treatment costs and positive water quality improvement benefits, results show that welfare gains can be obtained, primarily, through diffuse source water pollution abatement (improved agricultural management practices) and, to a minor extent, through diffuse source water pollution treatment (wetland restoration).
Diffusive Transport of Several Hundred keV Electrons in the Earth's Slot Region
NASA Astrophysics Data System (ADS)
Ma, Q.; Li, W.; Thorne, R. M.; Bortnik, J.; Reeves, G. D.; Spence, H. E.; Turner, D. L.; Blake, J. B.; Fennell, J. F.; Claudepierre, S. G.; Kletzing, C. A.; Kurth, W. S.; Hospodarsky, G. B.; Baker, D. N.
2017-10-01
We investigate the gradual diffusion of energetic electrons from the inner edge of the outer radiation belt into the slot region. The Van Allen Probes observed slow inward diffusion and decay of 200-600 keV electrons following the intense geomagnetic storm that occurred on 17 March 2013. During the 10 day nondisturbed period following the storm, the peak of electron fluxes gradually moved from L 2.7 to L 2.4, and the flux levels decreased by a factor of 2-4 depending on the electron energy. We simulated the radial intrusion and decay of electrons using a three-dimensional diffusion code, which reproduced the energy-dependent transport of electrons from 100 keV to 1 MeV in the slot region. At energies of 100-200 keV, the electrons experience fast transport across the slot region due to the dominance of radial diffusion; at energies of 200-600 keV, the electrons gradually diffuse and decay in the slot region due to the comparable rate of radial diffusion and pitch angle scattering by plasmaspheric hiss; at energies of E > 700 keV, the electrons stopped diffusing near the inner edge of outer radiation belt due to the dominant pitch angle scattering loss. In addition to plasmaspheric hiss, magnetosonic waves and VLF transmitters can cause the loss of high pitch angle electrons, relaxing the sharp "top-hat" shaped pitch angle distributions created by plasmaspheric hiss. Our simulation indicates the importance of balance between radial diffusion and loss through pitch angle scattering in forming the diffusive intrusion of energetic electrons across the slot region.
A new diffusion matrix for whistler mode chorus waves
NASA Astrophysics Data System (ADS)
Horne, Richard B.; Kersten, Tobias; Glauert, Sarah A.; Meredith, Nigel P.; Boscher, Daniel; Sicard-Piet, Angelica; Thorne, Richard M.; Li, Wen
2013-10-01
Global models of the Van Allen radiation belts usually include resonant wave-particle interactions as a diffusion process, but there is a large uncertainty over the diffusion rates. Here we present a new diffusion matrix for whistler mode chorus waves that can be used in such models. Data from seven satellites are used to construct 3536 power spectra for upper and lower band chorus for 1.5≤L∗≤10 MLT, magnetic latitude 0°≤|λm|≤60° and five levels of Kp. Five density models are also constructed from the data. Gaussian functions are fitted to the spectra and capture typically 90% of the wave power. The frequency maxima of the power spectra vary with L∗ and are typically lower than that used previously. Lower band chorus diffusion increases with geomagnetic activity and is largest between 21:00 and 12:00 MLT. Energy diffusion extends to a few megaelectron volts at large pitch angles >60° and at high energies exceeds pitch angle diffusion at the loss cone. Most electron diffusion occurs close to the geomagnetic equator (<12°). Pitch angle diffusion rates for lower band chorus increase with L∗ and are significant at L∗=8 even for low levels of geomagnetic activity, while upper band chorus is restricted to mainly L∗<6. The combined drift and bounce averaged diffusion rates for upper and lower band chorus extend from a few kiloelectron volts near the loss cone up to several megaelectron volts at large pitch angles indicating loss at low energies and net acceleration at high energies.
Dehydration Rate of Olivines with Application to Magma Ascent Rate
NASA Astrophysics Data System (ADS)
Plank, T. A.; Ferriss, E.; Walker, D.; Newcombe, M. E.
2017-12-01
The physics of magma transport and eruption are highly sensitive to the decompression rate, for which few measurements exist. There is great promise, however, in being able to use olivine dehydration to clock the ascent of magmas and xenoliths prior to eruption. Every olivine phenocryst we have measured is zoned in water (H) as a consequence of decompression-driven-degassing and diffusion through the olivine. A major impediment to exploiting this crystal clock, however, is the appropriate diffusivity to use. Published laboratory measurements vary by > 5 orders of magnitude. In order to better define the dehydration rates operating in natural olivines, we conducted laboratory experiments using the whole-block method [1], which allows a finely-resolved time series of H profiles in 3 crystallographic directions using the same sample for all dehydration steps. Starting materials consisted of an untreated olivine from the 1959 Kilauea Iki eruption, and a San Carlos olivine first hydrated in a piston cylinder at NNO, 800°C and 1 GPa for 17.5 hours, just enough to saturate the proton-polaron (p-p) mechanism [2]. Samples were dehydrated at 1 atm, NNO-2.6 and 1000 and 800°C in 6-7 time steps over 8-68 total hours. Both samples show rapid movement of different FTIR absorption bands during the first few hours at 800°C, at the p-p rate. Water loss then converges to a rate intermediate between p-p and proton-Mg-vacancy (p-v) rates for both crystals. In San Carlos, water loss from the 3600 cm-1 band (Si-vacancy defect) speeds up after 20 hours, while the 3525 cm-1 band (Ti-clinohumite defect) slows down, until both are dehydroxylating at a rate of 20% p-p:80% p-v. The apparent diffusivity of these bands is > 4 orders of magnitude faster than the same bands in synthetic forsterite [3]. The Iki olivine dehydrates at a constant rate from 3-8 hrs at 1000°C, at 12% p-p: 88% p-v. Both crystals show very similar diffusivity along [100] at 1000°C (logD -10.5 m2/s). This study thus demonstrates that Fe-bearing olivines dehydrate between the p-p and p-v rates, regardless of the initial defect associates, and that H-in-olivine clocks can operate at the minutes to hours inferred from studies of phenocrysts erupted explosively [4]. [1] Ferriss et al. 2015 [2] Kohlstedt & Mackwell 1998 [3] Padrón-Navarta et al. 2014 [4] Newcombe et al, this meeting
Development of Turbulent Diffusion Transfer Algorithms to Estimate Lake Tahoe Water Budget
NASA Astrophysics Data System (ADS)
Sahoo, G. B.; Schladow, S. G.; Reuter, J. E.
2012-12-01
The evaporative loss is a dominant component in the Lake Tahoe hydrologic budget because watershed area (813km2) is very small compared to the lake surface area (501 km2). The 5.5 m high dam built at the lake's only outlet, the Truckee River at Tahoe City can increase the lake's capacity by approximately 0.9185 km3. The lake serves as a flood protection for downstream areas and source of water supply for downstream cities, irrigation, hydropower, and instream environmental requirements. When the lake water level falls below the natural rim, cessation of flows from the lake cause problems for water supply, irrigation, and fishing. Therefore, it is important to develop algorithms to correctly estimate the lake hydrologic budget. We developed a turbulent diffusion transfer model and coupled to the dynamic lake model (DLM-WQ). We generated the stream flows and pollutants loadings of the streams using the US Environmental Protection Agency (USEPA) supported watershed model, Loading Simulation Program in C++ (LSPC). The bulk transfer coefficients were calibrated using correlation coefficient (R2) as the objective function. Sensitivity analysis was conducted for the meteorological inputs and model parameters. The DLM-WQ estimated lake water level and water temperatures were in agreement to those of measured records with R2 equal to 0.96 and 0.99, respectively for the period 1994 to 2008. The estimated average evaporation from the lake, stream inflow, precipitation over the lake, groundwater fluxes, and outflow from the lake during 1994 to 2008 were found to be 32.0%, 25.0%, 19.0%, 0.3%, and 11.7%, respectively.
Diffusion and mobility of atomic particles in a liquid
NASA Astrophysics Data System (ADS)
Smirnov, B. M.; Son, E. E.; Tereshonok, D. V.
2017-11-01
The diffusion coefficient of a test atom or molecule in a liquid is determined for the mechanism where the displacement of the test molecule results from the vibrations and motion of liquid molecules surrounding the test molecule and of the test particle itself. This leads to a random change in the coordinate of the test molecule, which eventually results in the diffusion motion of the test particle in space. Two models parameters of interaction of a particle and a liquid are used to find the activation energy of the diffusion process under consideration: the gas-kinetic cross section for scattering of test molecules in the parent gas and the Wigner-Seitz radius for test molecules. In the context of this approach, we have calculated the diffusion coefficient of atoms and molecules in water, where based on experimental data, we have constructed the dependence of the activation energy for the diffusion of test molecules in water on the interaction parameter and the temperature dependence for diffusion coefficient of atoms or molecules in water within the models considered. The statistically averaged difference of the activation energies for the diffusion coefficients of different test molecules in water that we have calculated based on each of the presented models does not exceed 10% of the diffusion coefficient itself. We have considered the diffusion of clusters in water and present the dependence of the diffusion coefficient on the cluster size. The accuracy of the presented formulas for the diffusion coefficient of atomic particles in water is estimated to be 50%.
Importance of Air Absorption During Mechanical Integrity Testing
NASA Astrophysics Data System (ADS)
Arnold, Fredric C.
1990-11-01
Wells used for injection of liquid industrial waste into deep saline aquifers are required to be periodically tested for mechanical integrity. A generally accepted method to demonstrate mechanical integrity is to pressurize the casing-tubing annulus and monitor any decline in pressure. If air is used to pressurize the annulus, uncertainty may exist in differentiating between absorption of air into water in the annulus and loss of pressure due to the absence of mechanical integrity. An analytical model of air absorbance has been derived and used to quantify the pressure decline due to dissolving and diffusion of the air in annular water. A parameteric study was made to determine when annular pressure decline due to absorption of air is significant.
Bibby, Chris; Hodgson, Murray
2017-01-01
The work reported here, part of a study on the performance and optimal design of interior natural-ventilation openings and silencers ("ventilators"), discusses the prediction of the acoustical performance of such ventilators, and the factors that affect it. A wave-based numerical approach-the finite-element method (FEM)-is applied. The development of a FEM technique for the prediction of ventilator diffuse-field transmission loss is presented. Model convergence is studied with respect to mesh, frequency-sampling and diffuse-field convergence. The modeling technique is validated by way of predictions and the comparison of them to analytical and experimental results. The transmission-loss performance of crosstalk silencers of four shapes, and the factors that affect it, are predicted and discussed. Performance increases with flow-path length for all silencer types. Adding elbows significantly increases high-frequency transmission loss, but does not increase overall silencer performance which is controlled by low-to-mid-frequency transmission loss.
2013-01-01
Literature from the past 168 years has been filtered to provide a unified summary of the regional distribution of cutaneous water and electrolyte losses. The former occurs via transepidermal water vapour diffusion and secretion from the eccrine sweat glands. Daily insensible water losses for a standardised individual (surface area 1.8 m2) will be 0.6–2.3 L, with the hands (80–160 g.h−1) and feet (50–150 g.h−1) losing the most, the head and neck losing intermediate amounts (40–75 g.h−1) and all remaining sites losing 15–60 g.h−1. Whilst sweat gland densities vary widely across the skin surface, this same individual would possess some 2.03 million functional glands, with the highest density on the volar surfaces of the fingers (530 glands.cm−2) and the lowest on the upper lip (16 glands.cm−2). During passive heating that results in a resting whole-body sweat rate of approximately 0.4 L.min−1, the forehead (0.99 mg.cm−2.min−1), dorsal fingers (0.62 mg.cm−2.min−1) and upper back (0.59 mg.cm−2.min−1) would display the highest sweat flows, whilst the medial thighs and anterior legs will secrete the least (both 0.12 mg.cm−2.min−1). Since sweat glands selectively reabsorb electrolytes, the sodium and chloride composition of discharged sweat varies with secretion rate. Across whole-body sweat rates from 0.72 to 3.65 mg.cm−2.min−1, sodium losses of 26.5–49.7 mmol.L−1 could be expected, with the corresponding chloride loss being 26.8–36.7 mmol.L−1. Nevertheless, there can be threefold differences in electrolyte losses across skin regions. When exercising in the heat, local sweat rates increase dramatically, with regional glandular flows becoming more homogeneous. However, intra-regional evaporative potential remains proportional to each local surface area. Thus, there is little evidence that regional sudomotor variations reflect an hierarchical distribution of sweating either at rest or during exercise. PMID:23849497
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Yi; Berkowitz, Max L., E-mail: maxb@unc.edu, E-mail: ykanai@unc.edu; Kanai, Yosuke, E-mail: maxb@unc.edu, E-mail: ykanai@unc.edu
2015-12-28
The translational diffusivity of water in solutions of alkali halide salts depends on the identity of ions, exhibiting dramatically different behavior even in solutions of similar salts of NaCl and KCl. The water diffusion coefficient decreases as the salt concentration increases in NaCl. Yet, in KCl solution, it slightly increases and remains above bulk value as salt concentration increases. Previous classical molecular dynamics simulations have failed to describe this important behavior even when polarizable models were used. Here, we show that inclusion of dynamical charge transfer among water molecules produces results in a quantitative agreement with experiments. Our results indicatemore » that the concentration-dependent diffusivity reflects the importance of many-body effects among the water molecules in aqueous ionic solutions. Comparison with quantum mechanical calculations shows that a heterogeneous and extended distribution of charges on water molecules around the ions due to ion-water and also water-water charge transfer plays a very important role in controlling water diffusivity. Explicit inclusion of the charge transfer allows us to model accurately the difference in the concentration-dependent water diffusivity between Na{sup +} and K{sup +} ions in simulations, and it is likely to impact modeling of a wide range of systems for medical and technological applications.« less
Prediction of water loss and viscoelastic deformation of apple tissue using a multiscale model.
Aregawi, Wondwosen A; Abera, Metadel K; Fanta, Solomon W; Verboven, Pieter; Nicolai, Bart
2014-11-19
A two-dimensional multiscale water transport and mechanical model was developed to predict the water loss and deformation of apple tissue (Malus × domestica Borkh. cv. 'Jonagold') during dehydration. At the macroscopic level, a continuum approach was used to construct a coupled water transport and mechanical model. Water transport in the tissue was simulated using a phenomenological approach using Fick's second law of diffusion. Mechanical deformation due to shrinkage was based on a structural mechanics model consisting of two parts: Yeoh strain energy functions to account for non-linearity and Maxwell's rheological model of visco-elasticity. Apparent parameters of the macroscale model were computed from a microscale model. The latter accounted for water exchange between different microscopic structures of the tissue (intercellular space, the cell wall network and cytoplasm) using transport laws with the water potential as the driving force for water exchange between different compartments of tissue. The microscale deformation mechanics were computed using a model where the cells were represented as a closed thin walled structure. The predicted apparent water transport properties of apple cortex tissue from the microscale model showed good agreement with the experimentally measured values. Deviations between calculated and measured mechanical properties of apple tissue were observed at strains larger than 3%, and were attributed to differences in water transport behavior between the experimental compression tests and the simulated dehydration-deformation behavior. Tissue dehydration and deformation in the high relative humidity range ( > 97% RH) could, however, be accurately predicted by the multiscale model. The multiscale model helped to understand the dynamics of the dehydration process and the importance of the different microstructural compartments (intercellular space, cell wall, membrane and cytoplasm) for water transport and mechanical deformation.
Modelling mitigation options to reduce diffuse nitrogen water pollution from agriculture.
Bouraoui, Fayçal; Grizzetti, Bruna
2014-01-15
Agriculture is responsible for large scale water quality degradation and is estimated to contribute around 55% of the nitrogen entering the European Seas. The key policy instrument for protecting inland, transitional and coastal water resources is the Water Framework Directive (WFD). Reducing nutrient losses from agriculture is crucial to the successful implementation of the WFD. There are several mitigation measures that can be implemented to reduce nitrogen losses from agricultural areas to surface and ground waters. For the selection of appropriate measures, models are useful for quantifying the expected impacts and the associated costs. In this article we review some of the models used in Europe to assess the effectiveness of nitrogen mitigation measures, ranging from fertilizer management to the construction of riparian areas and wetlands. We highlight how the complexity of models is correlated with the type of scenarios that can be tested, with conceptual models mostly used to evaluate the impact of reduced fertilizer application, and the physically-based models used to evaluate the timing and location of mitigation options and the response times. We underline the importance of considering the lag time between the implementation of measures and effects on water quality. Models can be effective tools for targeting mitigation measures (identifying critical areas and timing), for evaluating their cost effectiveness, for taking into consideration pollution swapping and considering potential trade-offs in contrasting environmental objectives. Models are also useful for involving stakeholders during the development of catchments mitigation plans, increasing their acceptability. © 2013.
Diffusion properties of NAA in human corpus callosum as studied with diffusion tensor spectroscopy.
Upadhyay, Jaymin; Hallock, Kevin; Erb, Kelley; Kim, Dae-Shik; Ronen, Itamar
2007-11-01
In diffusion tensor imaging (DTI) the anisotropic movement of water is exploited to characterize microstructure. One confounding issue of DTI is the presence of intra- and extracellular components contributing to the measured diffusivity. This causes an ambiguity in determining the underlying cause of diffusion properties, particularly the fractional anisotropy (FA). In this study an intracellular constituent, N-acetyl aspartate (NAA), was used to probe intracellular diffusion, while water molecules were used to probe the combined intra- and extracellular diffusion. NAA and water diffusion measurements were made in anterior and medial corpus callosum (CC) regions, which are referred to as R1 and R2, respectively. FA(NAA) was found to be greater than FA(Water) in both CC regions, thus indicating a higher degree of anisotropy within the intracellular space in comparison to the combined intra- and extracellular spaces. A decreasing trend in the FA of NAA and water was observed between R1 and R2, while the radial diffusivity (RD) for both molecules increased. The increase in RD(NAA) is particularly significant, thus explaining the more significant decrease in FA(NAA) between the two regions. It is suggested that diffusion tensor spectroscopy of NAA can potentially be used to further characterize microscopic anatomic organization in white matter. Copyright 2007 Wiley-Liss, Inc.
Imaging of high-amylose starch tablets. 3. Initial diffusion and temperature effects.
Thérien-Aubin, Héloïse; Baille, Wilms E; Zhu, Xiao Xia; Marchessault, Robert H
2005-01-01
The penetration of water into cross-linked high amylose starch tablets was studied at different temperatures by nuclear magnetic resonance (NMR) imaging, which follows the changes occurring at the surface and inside the starch tablets during swelling. It was found that the swelling was anisotropic, whereas water diffusion was almost isotropic. The water proton image profiles at the initial stage of water penetration were used to calculate the initial diffusion coefficient. The swelling and water concentration gradients in this controlled release system show significant temperature dependence. Diffusion behavior changed from Fickian to Case II diffusion with increasing temperature. The observed phenomena are attributed to the gelatinization of starch and the pseudo-cross-linking effect of double helix formation.
NASA Technical Reports Server (NTRS)
Galvas, M. R.
1972-01-01
Centrifugal compressor performance was examined analytically to determine optimum geometry for various applications as characterized by specific speed. Seven specific losses were calculated for various combinations of inlet tip-exit diameter ratio, inlet hub-tip diameter ratio, blade exit backsweep, and inlet-tip absolute tangential velocity for solid body prewhirl. The losses considered were inlet guide vane loss, blade loading loss, skin friction loss, recirculation loss, disk friction loss, vaneless diffuser loss, and vaned diffuser loss. Maximum total efficiencies ranged from 0.497 to 0.868 for a specific speed range of 0.257 to 1.346. Curves of rotor exit absolute flow angle, inlet tip-exit diameter ratio, inlet hub-tip diameter ratio, head coefficient and blade exit backsweep are presented over a range of specific speeds for various inducer tip speeds to permit rapid selection of optimum compressor size and shape for a variety of applications.
Loss Aversion Reflects Information Accumulation, Not Bias: A Drift-Diffusion Model Study.
Clay, Summer N; Clithero, John A; Harris, Alison M; Reed, Catherine L
2017-01-01
Defined as increased sensitivity to losses, loss aversion is often conceptualized as a cognitive bias. However, findings that loss aversion has an attentional or emotional regulation component suggest that it may instead reflect differences in information processing. To distinguish these alternatives, we applied the drift-diffusion model (DDM) to choice and response time (RT) data in a card gambling task with unknown risk distributions. Loss aversion was measured separately for each participant. Dividing the participants into terciles based on loss aversion estimates, we found that the most loss-averse group showed a significantly lower drift rate than the other two groups, indicating overall slower uptake of information. In contrast, neither the starting bias nor the threshold separation (barrier) varied by group, suggesting that decision thresholds are not affected by loss aversion. These results shed new light on the cognitive mechanisms underlying loss aversion, consistent with an account based on information accumulation.
Loss Aversion Reflects Information Accumulation, Not Bias: A Drift-Diffusion Model Study
Clay, Summer N.; Clithero, John A.; Harris, Alison M.; Reed, Catherine L.
2017-01-01
Defined as increased sensitivity to losses, loss aversion is often conceptualized as a cognitive bias. However, findings that loss aversion has an attentional or emotional regulation component suggest that it may instead reflect differences in information processing. To distinguish these alternatives, we applied the drift-diffusion model (DDM) to choice and response time (RT) data in a card gambling task with unknown risk distributions. Loss aversion was measured separately for each participant. Dividing the participants into terciles based on loss aversion estimates, we found that the most loss-averse group showed a significantly lower drift rate than the other two groups, indicating overall slower uptake of information. In contrast, neither the starting bias nor the threshold separation (barrier) varied by group, suggesting that decision thresholds are not affected by loss aversion. These results shed new light on the cognitive mechanisms underlying loss aversion, consistent with an account based on information accumulation. PMID:29066987
Sucrose diffusion in aqueous solution
Murray, Benjamin J.
2016-01-01
The diffusion of sugar in aqueous solution is important both in nature and in technological applications, yet measurements of diffusion coefficients at low water content are scarce. We report directly measured sucrose diffusion coefficients in aqueous solution. Our technique utilises a Raman isotope tracer method to monitor the diffusion of non-deuterated and deuterated sucrose across a boundary between the two aqueous solutions. At a water activity of 0.4 (equivalent to 90 wt% sucrose) at room temperature, the diffusion coefficient of sucrose was determined to be approximately four orders of magnitude smaller than that of water in the same material. Using literature viscosity data, we show that, although inappropriate for the prediction of water diffusion, the Stokes–Einstein equation works well for predicting sucrose diffusion under the conditions studied. As well as providing information of importance to the fundamental understanding of diffusion in binary solutions, these data have technological, pharmaceutical and medical implications, for example in cryopreservation. Moreover, in the atmosphere, slow organic diffusion may have important implications for aerosol growth, chemistry and evaporation, where processes may be limited by the inability of a molecule to diffuse between the bulk and the surface of a particle. PMID:27364512
Temperature dependence of water diffusion pools in brain white matter.
Dhital, Bibek; Labadie, Christian; Stallmach, Frank; Möller, Harald E; Turner, Robert
2016-02-15
Water diffusion in brain tissue can now be easily investigated using magnetic resonance (MR) techniques, providing unique insights into cellular level microstructure such as axonal orientation. The diffusive motion in white matter is known to be non-Gaussian, with increasing evidence for more than one water-containing tissue compartment. In this study, freshly excised porcine brain white matter was measured using a 125-MHz MR spectrometer (3T) equipped with gradient coils providing magnetic field gradients of up to 35,000 mT/m. The sample temperature was varied between -14 and +19 °C. The hypothesis tested was that white matter contains two slowly exchanging pools of water molecules with different diffusion properties. A Stejskal-Tanner diffusion sequence with very short gradient pulses and b-factors up to 18.8 ms/μm(2) was used. The dependence on b-factor of the attenuation due to diffusion was robustly fitted by a biexponential function, with comparable volume fractions for each component. The diffusion coefficient of each component follows Arrhenius behavior, with significantly different activation energies. The measured volume fractions are consistent with the existence of three water-containing compartments, the first comprising relatively free cytoplasmic and extracellular water molecules, the second of water molecules in glial processes, and the third comprising water molecules closely associated with membranes, as for example, in the myelin sheaths and elsewhere. The activation energy of the slow diffusion pool suggests proton hopping at the surface of membranes by a Grotthuss mechanism, mediated by hydrating water molecules. Copyright © 2015 Elsevier Inc. All rights reserved.
Finite Difference Formulation for Prediction of Water Pollution
NASA Astrophysics Data System (ADS)
Johari, Hanani; Rusli, Nursalasawati; Yahya, Zainab
2018-03-01
Water is an important component of the earth. Human being and living organisms are demand for the quality of water. Human activity is one of the causes of the water pollution. The pollution happened give bad effect to the physical and characteristic of water contents. It is not practical to monitor all aspects of water flow and transport distribution. So, in order to help people to access to the polluted area, a prediction of water pollution concentration must be modelled. This study proposed a one-dimensional advection diffusion equation for predicting the water pollution concentration transport. The numerical modelling will be produced in order to predict the transportation of water pollution concentration. In order to approximate the advection diffusion equation, the implicit Crank Nicolson is used. For the purpose of the simulation, the boundary condition and initial condition, the spatial steps and time steps as well as the approximations of the advection diffusion equation have been encoded. The results of one dimensional advection diffusion equation have successfully been used to predict the transportation of water pollution concentration by manipulating the velocity and diffusion parameters.
NASA Astrophysics Data System (ADS)
Tiemeyer, Bärbel; Kahle, Petra; Lennartz, Bernd
2010-05-01
Artificial drainage is a common practice to improve moisture and aeration conditions of agricultural land. It shortens the residence time of water in the soil and may therefore contribute to the degradation of peatlands as well as to the still elevated level of diffuse pollution of surface water bodies, particularly if flow anomalies like preferential flow cause a further acceleration of water and solute fluxes. Especially in the case of nitrate, artificially drained sub-catchments are found to control the catchment-scale nitrate losses. However, it is frequently found that nitrate losses and nitrogen field balances do not match. At the same time, organic fertilizers are commonly applied and, especially in lowland catchments, organic soils have been drained for agricultural use. Thus, the question arises whether dissolved organic nitrogen (DON) forms an important component of the nitrogen losses from artificially drained catchments. However, in contrast to nitrate and even to dissolved organic carbon (DOC), this component is frequently overlooked, especially in nested catchment studies with different soil types and variable land use. Here, we will present data from a hierarchical water quantity and quality measurement programme in the federal state Mecklenburg-Vorpommern (North-Eastern Germany). The monitoring programme in the pleistocene lowland catchment comprises automatic sampling stations at a collector drain outlet (4.2 ha catchment), at a ditch draining arable land on mineral soils (179 ha), at a ditch mainly draining grassland on organic soils (85 ha) and at a brook with a small rural catchment (15.5 km²) of mixed land use and soil types. At all sampling stations, daily to weekly composite samples were taken, while the discharge and the meteorological data were recorded continuously. Water samples were analyzed for nitrate-nitrogen, ammonium-nitrogen and total nitrogen. We will compare two years: 2006/07 was a very wet year (P = 934 mm) with a high summer precipitation, while 2007/08 was considerably drier than average (P = 554 mm). We will present concentrations and losses of all nitrogen fractions and their relationship to the dominating soil type, precipitation characteristics, discharge, and fertilization practice. Furthermore, we will assess whether the determination of DON helps to improve the correlation between nitrogen input and nitrogen losses.
Mars D/H: Implications for Volatile Evolution and Climate History
NASA Astrophysics Data System (ADS)
Jakosky, B. M.; Leshin, L.
2001-05-01
The lighter isotope of H in the martian atmosphere escapes more readily to space than does the heavier D, so that loss to space leaves the atmosphere enriched in D. The observed enrichment in D/H thus is an indicator of the degree of loss. As the H comes primarily from water, it informs the discussion of volatile and climate history. In order to understand the meaning of the enrichment, we need to understand (i) the initial D/H incorporated into the planet at its origin, (ii) the history of outgassing of water to the surface, (iii) atmospheric chemistry and dynamics that results in supply of the upper atmosphere with D and H from H2O in the bulk atmosphere, (iv) current loss rates to space, and (v) the present-day atmospheric D/H ratio. In addition, the D/H ratio can be affected by the exchange of water between the atmosphere and non-atmospheric reservoirs, including the polar caps, the regolith, and the crust, both by diffusion and driven by groundwater circulation (perhaps in hydrothermal systems). There is convincing evidence for the existence of each of these non-atmospheric reservoirs, but only limited information on the history of exchange. The system appears to be sufficiently complex that any attempt to describe it as a two- or three-component system is doomed to failure. Despite this, there are some conclusions for which a compelling case can be made: (i) Enrichment of D/H requires loss of substantial quantities of H to space, with water providing the source. (ii) Improvements in our understanding of the initial and present-day D/H, and the photodissociation of water and supply to the upper atmosphere have changed the quantitative interpretation from a decade ago; as a result, the time-integrated enrichment factor is substantially less than had been previously thought, and the resulting fraction of water lost is less. Roughly 2/3 of the exchangeable water must have been lost. (iii) The unknown time-dependent exchange of water with the polar caps and the crust makes further interpretation difficult. Further, more detailed interpretation is probably not warranted without direct measurements of the isotopic compositions of exchanging reservoirs such as groundwater and polar cap ice, such that an accurate picture of the time-dependent interaction of water reservoirs can be adequately constrained.
Impact of pesticide use by smallholder farmers on water quality in the Wakiso District, Uganda
NASA Astrophysics Data System (ADS)
Oltramare, Christelle; Weiss, Frederik T.; Atuhaire, Aggrey; Staudacher, Philipp; Niwagaba, Charles; Stamm, Christian
2017-04-01
As in many tropical countries, farmers of the Wakiso District rely on heavy use of pesticides to protect crops and animals. This may impair human and environmental health due to poor application techniques, misuse of pesticide bins or diffuse pesticide losses from the treated fields during intense tropical rainstorms. The extent of pollution in different environmental compartments however, are generally only poorly documented. The same holds true for quantitative data on the relevance of different transport pathways of pesticides into the environment. Part of the limited knowledge is caused by the demanding sampling and analytical techniques that are necessary to obtain robust data on the actual pollution status. Especially in surface waters, pesticide concentration may vary rapidly in time such that grab samples may yield a very incomplete picture. This incompleteness was often enhanced because of limited analytical windows that covered only a small fraction of the pesticides actually used. In this presentation, we describe an approach to overcome these limitations to a large extent by using three different passive sampling devices and two broad analytical techniques (GC-MS/MS, LC HR-MS) that allow the quantification of about 260 different pesticides. We will present how these approaches are implemented in the catchment area of the Wakiso District in Uganda. This area is intensively used by smallholder farmers who grow a large set of different crops. Diffuse losses are expected to occur mainly during the two rainy seasons (March to May and September to November). Accordingly, the study will focus on this situation.
NASA Astrophysics Data System (ADS)
You, Yuzhu
2002-11-01
The 1994 Levitus climatological atlas is used to calculate the Turner angle (named after J. Stewart Turner) to examine which oceanic water masses are favorable for double-diffusion in the form of diffusive convection or salt-fingering and which are doubly stable. This atlas complements the Levitus climatology. It reveals the major double-diffusive signals associated with large-scale water-mass structure. In total, about 44% of the oceans display double-diffusion, of which 30% is salt-fingering and 14% is diffusive double-diffusion. Results show that various central and deep waters are favorable for salt-fingering. The former is due to positive evaporation minus precipitation, and the latter is due to thermohaline circulation, i.e. the southward spreading of relatively warm, salty North Atlantic Deep Water (NADW) overlying cold, fresh Antarctic Bottom Water. In the northern Indian Ocean and eastern North Atlantic, favorable conditions for salt-fingering are found throughout the water column. The Red Sea (including the Persian Gulf) and Mediterranean Sea are the sources of warm, salty water for the ocean. As consequence, temperature and salinity in these outflow regions both decrease from the sea surface to the bottom. On the other hand, ocean currents are in general sluggish in these regions. In the polar and subpolar regions of Arctic and Antarctic, Okhotsk Sea, Gulf of Alaska, the subpolar gyre of the North Pacific, the Labrador Sea, and the Norwegian Sea, the upper layer water is favorable for diffusive convection because of high latitude surface cooling and ice melting. Weak and shallow diffusive convection is also found throughout tropical regions and the Bay of Bengal. The former is due to excessive precipitation over evaporation and rain cooling, and the latter is due to both precipitation and river runoff. Diffusive convection in the ocean's interior is unique to the South Atlantic between Antarctic Intermediate Water and upper NADW (uNADW). It is the consequence of the intrusive equatorward flow of upper Circumpolar Deep Water, which carries with it the minimum temperature and very low salinity overlying warm, salty uNADW.
Wake orientation and its influence on the performance of diffusers with inlet distortion
NASA Astrophysics Data System (ADS)
Coffman, Jesse M.
Distortion at the inlet to diffusers is very common in internal flow applications. Inlet velocity distortion influences the pressure recovery and flow regimes of diffusers. This work introduced a centerline wake at the square inlet of a plane wall diffuser in two orthogonal orientations to investigate its influence on the diffuser performance. Two different wakes were generated. One was from a mesh strip which produced a velocity deficit with low turbulence intensity and two shear layers. The other wake generator was a D-shaped cylinder which produced a wake with high turbulence intensity and large length scales. These inlet conditions were generated for a diffuser with a diffusion angle of 3° and 6°. A pair of RANS simulations were used to investigate the influence of the orthogonal inlet orientations on the solution. The inlet conditions were taken from the inlet velocity field measured for the mesh strip. The flow development and exit conditions showed some similarities and some differences with the experimental results. The performance of a diffuser is typically measured through the static pressure recovery coefficient and the total pressure losses. The definition of these metrics commonly found in the literature were insufficient to discern differences between the wake orientations. New metrics were derived using the momentum flux profile parameter which related the static pressure recovery, the total pressure losses, and the velocity uniformity at the inlet and exit of the diffuser. These metrics revealed a trade-off between the total pressure losses and the uniformity of the velocity field.
Mathematical model for the Bridgman-Stockbarger crystal growing system
NASA Technical Reports Server (NTRS)
Roberts, G. O.
1986-01-01
In a major technical breakthrough, a computer model for Bridgman-Stockbarger crystal growth was developed. The model includes melt convection, solute effects, thermal conduction in the ampule, melt, and crystal, and the determination of the curved moving crystal-melt interface. The key to the numerical method is the use of a nonuniform computational mesh which moves with the interface, so that the interface is a mesh surface. In addition, implicit methods are used for advection and diffusion of heat, concentration, and vorticity, for interface movement, and for internal gracity waves. This allows large time-steps without loss of stability or accuracy. Numerical results are presented for the interface shape, temperature distribution, and concentration distribution, in steady-state crystl growth. Solutions are presented for two test cases using water, with two different salts in solution. The two diffusivities differ by a factor of ten, and the concentrations differ by a factor of twenty.
Diffusive Transport of Several Hundred keV Electrons in the Earth's Slot Region
Ma, Q.; Li, W.; Thorne, R. M.; ...
2017-09-29
Here, we investigate the gradual diffusion of energetic electrons from the inner edge of the outer radiation belt into the slot region. The Van Allen Probes observed slow inward diffusion and decay of ~200–600 keV electrons following the intense geomagnetic storm that occurred on 17 March 2013. During the 10 day nondisturbed period following the storm, the peak of electron fluxes gradually moved from L ~ 2.7 to L ~ 2.4, and the flux levels decreased by a factor of ~2–4 depending on the electron energy. We simulated the radial intrusion and decay of electrons using a three–dimensional diffusion code,more » which reproduced the energy–dependent transport of electrons from ~100 keV to 1 MeV in the slot region. At energies of 100–200 keV, the electrons experience fast transport across the slot region due to the dominance of radial diffusion; at energies of 200–600 keV, the electrons gradually diffuse and decay in the slot region due to the comparable rate of radial diffusion and pitch angle scattering by plasmaspheric hiss; at energies of E > 700 keV, the electrons stopped diffusing near the inner edge of outer radiation belt due to the dominant pitch angle scattering loss. In addition to plasmaspheric hiss, magnetosonic waves and VLF transmitters can cause the loss of high pitch angle electrons, relaxing the sharp “top–hat” shaped pitch angle distributions created by plasmaspheric hiss. Our simulation indicates the importance of balance between radial diffusion and loss through pitch angle scattering in forming the diffusive intrusion of energetic electrons across the slot region.« less
Low cost fuel cell diffusion layer configured for optimized anode water management
Owejan, Jon P; Nicotera, Paul D; Mench, Matthew M; Evans, Robert E
2013-08-27
A fuel cell comprises a cathode gas diffusion layer, a cathode catalyst layer, an anode gas diffusion layer, an anode catalyst layer and an electrolyte. The diffusion resistance of the anode gas diffusion layer when operated with anode fuel is higher than the diffusion resistance of the cathode gas diffusion layer. The anode gas diffusion layer may comprise filler particles having in-plane platelet geometries and be made of lower cost materials and manufacturing processes than currently available commercial carbon fiber substrates. The diffusion resistance difference between the anode gas diffusion layer and the cathode gas diffusion layer may allow for passive water balance control.
NASA Astrophysics Data System (ADS)
Li, Jiayun; Tong, Juxiu; Xia, Chuanan; Hu, Bill X.; Zhu, Hao; Yang, Rui; Wei, Wenshuo
2017-06-01
It has been widely recognized that surface runoff from agricultural field is an important non-point pollution source, which however, the chemical transfer amount in the process is very difficult to be quantified in field since some variables and natural factors are hard to control, such as rainfall intensity, temperature, wind speeds and soil spatial heterogeneity, which may significantly affect the field experimental results. Therefore, a physically based nitrogen transport model was developed and tested with the so called semi-field experiments (i.e., artificial rainfall was used instead of natural rainfall, but other conditions were natural) in this paper. Our model integrated the raindrop driven process and diffusion effect with the simplified nitrogen chain reactions. In this model, chemicals in the soil surface layer, or the 'exchange layer', were transformed into the surface runoff layer due to raindrop impact. The raindrops also have a significant role on the diffusion process between the exchange layer and the underlying soil. The established mathematical model was solved numerically through the modified Hydrus-1d source code, and the model simulations agreed well with the experimental data. The modeling results indicate that the depth of the exchange layer and raindrop induced water transfer rate are two important parameters for the simulation results. Variation of the water transfer rate, er, can strongly influence the peak values of the NO-3-N and NH+4-N concentration breakthrough curves. The concentration of NO-3-N is more sensitive to the exchange layer depth, de, than NH+4-N. In general, the developed model well describes the nitrogen loss into surface runoff in a raindrop driven process. Since the raindrop splash erosion process may aggravate the loss of chemical fertilizer, choosing an appropriate fertilization time and application method is very important to prevent the pollution.
Pathogen transport in groundwater systems: Contrasts with traditional solute transport
Hunt, Randall J.; Johnson, William P.
2017-01-01
Water quality affects many aspects of water availability, from precluding use to societal perceptions of fit-for-purpose. Pathogen source and transport processes are drivers of water quality because they have been responsible for numerous outbreaks resulting in large economic losses due to illness and, in some cases, loss of life. Outbreaks result from very small exposure (e.g., less than 20 viruses) from very strong sources (e.g., trillions of viruses shed by a single infected individual). Thus, unlike solute contaminants, an acute exposure to a very small amount of contaminated water can cause immediate adverse health effects. Similarly, pathogens are larger than solutes. Thus, interactions with surfaces and settling become important even as processes important for solutes such as diffusion become less important. These differences are articulated in “Colloid Filtration Theory”, a separate branch of pore-scale transport. Consequently, understanding pathogen processes requires changes in how groundwater systems are typically characterized, where the focus is on the leading edges of plumes and preferential flow paths, even if such features move only a very small fraction of the aquifer flow. Moreover, the relatively short survival times of pathogens in the subsurface require greater attention to very fast (<10 year) flow paths. By better understanding the differences between pathogen and solute transport mechanisms discussed here, a more encompassing view of water quality and source water protection is attained. With this more holistic view and theoretical understanding, better evaluations can be made regarding drinking water vulnerability and the relation between groundwater and human health.
Dependence of radiation belt simulations to assumed radial diffusion rates
NASA Astrophysics Data System (ADS)
Drozdov, A.; Shprits, Y.; Aseev, N.; Kellerman, A. C.; Reeves, G. D.
2017-12-01
Radial diffusion is one of the dominant physical mechanisms that drives acceleration and loss of the radiation belt electrons due to wave-particle interaction with ultra low frequency (ULF) waves, which makes it very important for radiation belt modeling and forecasting. We investigate the sensitivity of several parameterizations of the radial diffusion including Brautigam and Albert [2000], Ozeke et al. [2014] and Ali et al. [2016] on long-term radiation belt modeling using the Versatile Electron Radiation Belt (VERB). Following previous studies, we first perform 1-D radial diffusion simulations. To take into account effects of local acceleration and loss, we perform additional 3-D simulations, including pitch-angle, energy and mixed diffusion. The obtained result demonstrates that the inclusion of local acceleration and pitch-angle diffusion can provide a negative feedback effect, such that the result is largely indistinguishable between simulations conducted with different radial diffusion parameterizations. We also perform a number of sensitivity tests by multiplying radial diffusion rates by constant factors and show that such an approach leads to unrealistic predictions of radiation belt dynamics.
Yanagisawa, Osamu; Takahashi, Hideyuki; Fukubayashi, Toru
2010-09-01
In this study, we determined the effects of different cooling treatments on exercised muscles. Seven adults underwent four post-exercise treatments (20-min ice-bag application, 60-min gel-pack application at 10 degrees C and 17 degrees C, and non-cooling treatment) with at least 1 week between treatments. Magnetic resonance diffusion- and T2-weighted images were obtained to calculate the apparent diffusion coefficients (apparent diffusion coefficient 1, which reflects intramuscular water diffusion and microcirculation, and apparent diffusion coefficient 2, which is approximately equal to the true diffusion coefficient that excludes as much of the effect of intramuscular microcirculation as possible) and the T2 values (intramuscular water content level) of the ankle dorsiflexors, respectively, before and after ankle dorsiflexion exercise and after post-exercise treatment. The T2 values increased significantly after exercise and returned to pre-exercise values after each treatment; no significant differences were observed among the four post-exercise treatments. Both apparent diffusion coefficients also increased significantly after exercise and decreased significantly after the three cooling treatments; no significant difference was detected among the three cooling treatments. Local cooling suppresses both water diffusion and microcirculation within exercised muscles. Moreover, although the treatment time was longer, adequate cooling effects could be achieved using the gel-pack applications at relatively mild cooling temperatures.
Muirhead, R W; Monaghan, R M
2012-04-01
Animal agriculture has been identified as an important source of diffuse faecal microbial pollution of water. Our current understanding of the losses of faecal microbes from grazed pasture systems is however poor. To help synthesise our current knowledge, a simple two reservoir model was constructed to represent the faecal and environmental sources of Escherichia coli found in a grazed pastoral system. The size of the faecal reservoir was modelled on a daily basis with inputs from grazing animals, and losses due to die-off of E. coli and decomposition of the faecal material. Estimates were made of transport coefficients of E. coli losses from the two reservoirs. The concentration of E. coli measured in overland flow and artificial drainage from grazed plots, used for calibration of the model, showed a significant (P<0.0001) decrease with days since last grazing - up to 120 days. Modelled E. coli runoff concentrations calibrated well with the regression line from the measured data up to 120 days. Variability of E. coli concentrations in the source faecal material could account for the variability in the measured runoff concentrations. Measured E. coli concentrations in artificial drainage water from 120 to 1300 days since last grazing appeared to be greater than the model predicted. The longer term data clearly illustrated the need for an environmental reservoir of E. coli in models of grazed pasture systems. Research is needed to understand the behaviour and impact of this environmental reservoir. Scenario analysis using the model indicated that rather than manipulating the faecal material itself post defecation, mitigation options should focus on manipulating grazing management. Copyright © 2011 Elsevier Ltd. All rights reserved.
Ion pair and solvation dynamics of [Bmim][BF4 ] + water system.
Cascão, João; Silva, Wagner; Ferreira, Ana S D; Cabrita, Eurico J
2018-02-01
In this work, 1-butyl-3-methylimidazolium tetrafluoroborate/water mixtures were analysed over the whole water composition (x w ) in order to study the rotational and translational behaviour of the ions. We employed a multinuclear NMR approach to determine anion/cation/water diffusion coefficients and longitudinal relaxation rates at different water content. In neat ionic liquids (IL), the cation diffuses faster than the anion, and at low x w , anions and cations share almost the same diffusion coefficient, but above a critical water concentration, the anion begins to diffuse faster than the cation. We identified this composition as approximately 10% x w where the ions share the same diffusion coefficient. We found that the water at this composition seems to have a much more dramatic effect in the rotational diffusion of the anion that decreases substantially and approaches that of the anion in the diluted IL. Translational and rotational dynamics of the ions suggest that water is first incorporated in pockets in the nanostructure of the IL allowing the ions to maintain most of the cation/anion interactions present in neat IL but already disrupting some anion/cation interactions due to preferential interaction with the anion. HOESY and NOESY data show that water displays contacts both with the cation and the anion in a positive NOE regime in contrary to the negative regime found for the cation/anion and cation/cation cross-relaxation. This is in accordance with the high relative diffusion coefficient of water and suggests that water molecules can exchange between preferential location sites that allow water to maintain contacts both with the anion and cation. Copyright © 2017 John Wiley & Sons, Ltd.
Predictability of drug release from water-insoluble polymeric matrix tablets.
Grund, Julia; Körber, Martin; Bodmeier, Roland
2013-11-01
The purpose of this study was to extend the predictability of an established solution of Fick's second law of diffusion with formulation-relevant parameters and including percolation theory. Kollidon SR (polyvinyl acetate/polyvinylpyrrolidone, 80/20 w/w) matrix tablets with various porosities (10-30% v/v) containing model drugs with different solubilities (Cs=10-170 mg/ml) and in different amounts (A=10-90% w/w) were prepared by direct compression and characterized by drug release and mass loss studies. Drug release was fitted to Fick's second law to obtain the apparent diffusion coefficient. Its changes were correlated with the total porosity of the matrix and the solubility of the drug. The apparent diffusion coefficient was best described by a cumulative normal distribution over the range of total porosities. The mean of the distribution coincided with the polymer percolation threshold, and the minimum and maximum of the distribution were represented by the diffusion coefficient in pore-free polymer and in aqueous medium, respectively. The derived model was verified, and the applicability further extended to a drug solubility range of 10-1000 mg/ml. The developed mathematical model accurately describes and predicts drug release from Kollidon SR matrix tablets. It can efficiently reduce experimental trials during formulation development. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Thomsen, M. F.; Goertz, C. K.; Van Allen, J. A.
1977-01-01
In a previous paper (Thomsen et al., 1977), a technique was proposed for estimating the radial diffusion coefficient (n) in the inner magnetosphere of Jupiter from the observations of the sweeping effect of the inner Jovian satellites on the fluxes of the energetic charged particles. The present paper extends this technique to permit the unique identification of the parameters D sub O and n, where the diffusion coefficient is assumed to be of the form D = D sub O L to the nth. The derived value of D sub O depends directly on assumptions regarding the nature and efficiency of the loss mechanism operating on the particles, while the value of n depends only on the assumed width of the loss region. The extended technique is applied to the University of Iowa Pioneer 11 proton data, leading to values of n of about O and D(6) of about 3 x 10 to the -8th (R sub J)-squared/sec, when satellite sweepup losses are assumed to be the only loss operating on the protons. The small value of n is strong evidence that the radial diffusion is driven by ionospheric winds.
Brain-water diffusion coefficients reflect the severity of inherited prion disease
Hyare, H.; Wroe, S.; Siddique, D.; Webb, T.; Fox, N. C.; Stevens, J.; Collinge, J.; Yousry, T.; Thornton, J. S.
2010-01-01
Objective: Inherited prion diseases are progressive neurodegenerative conditions, characterized by cerebral spongiosis, gliosis, and neuronal loss, caused by mutations within the prion protein (PRNP) gene. We wished to assess the potential of diffusion-weighted MRI as a biomarker of disease severity in inherited prion diseases. Methods: Twenty-five subjects (mean age 45.2 years) with a known PRNP mutation including 19 symptomatic patients, 6 gene-positive asymptomatic subjects, and 7 controls (mean age 54.1 years) underwent conventional and diffusion-weighted MRI. An index of normalized brain volume (NBV) and region of interest (ROI) mean apparent diffusion coefficient (ADC) for the head of caudate, putamen, and pulvinar nuclei were recorded. ADC histograms were computed for whole brain (WB) and gray matter (GM) tissue fractions. Clinical assessment utilized standardized clinical scores. Mann-Whitney U test and regression analyses were performed. Results: Symptomatic patients exhibited an increased WB mean ADC (p = 0.006) and GM mean ADC (p = 0.024) compared to controls. Decreased NBV and increased mean ADC measures significantly correlated with clinical measures of disease severity. Using a stepwise multivariate regression procedure, GM mean ADC was an independent predictor of Clinician's Dementia Rating score (p = 0.001), Barthel Index of activities of daily living (p = 0.001), and Rankin disability score (p = 0.019). Conclusions: Brain volume loss in inherited prion diseases is accompanied by increased cerebral apparent diffusion coefficient (ADC), correlating with increased disease severity. The association between gray matter ADC and clinical neurologic status suggests this measure may prove a useful biomarker of disease activity in inherited prion diseases. GLOSSARY ADAS-Cog = Alzheimer's Disease Assessment Scale–Cognitive subscale; ADC = apparent diffusion coefficient; ADL = Barthel Activities of Daily Living scale; BET = brain extraction tool; BPRS = Brief Psychiatric Rating Scale; BSE = bovine spongiform encephalopathy; CDR = Clinician's Dementia Rating Scale; CGIS = Clinician's Global Impression of Disease; CI = confidence interval; DWI = diffusion-weighted imaging; FLAIR = fluid-attenuated inversion recovery; FOV = field of view; GM = gray matter; LC = left head of caudate; LP = left putamen; LPu = left pulvinar; MMSE = Mini-Mental State Examination; NBV = normalized brain volume; PH = peak height; PL = peak location; RC = right head of caudate; RP = right putamen; RPu = right pulvinar; ROI = region of interest; sCJD = sporadic Creutzfeldt-Jakob disease; TE = echo time; TI = inversion time; TR = repetition time; vCJD = variant Creutzfeldt-Jakob disease; WB = whole brain; WM = white matter. PMID:20177119
Use of Passive Diffusion Samplers for Monitoring Volatile Organic Compounds in Ground Water
Harte, Philip T.; Brayton, Michael J.; Ives, Wayne
2000-01-01
Passive diffusion samplers have been tested at a number of sites where volatile organic compounds (VOC's) are the principal contaminants in ground water. Test results generally show good agreement between concentrations of VOC's in samples collected with diffusion samplers and concentrations in samples collected by purging the water from a well. Diffusion samplers offer several advantages over conventional and low-flow ground-water sampling procedures: * Elimination of the need to purge a well before collecting a sample and to dispose of contaminated water. * Elimination of cross-contamination of samples associated with sampling with non-dedicated pumps or sample delivery tubes. * Reduction in sampling time by as much as 80 percent of that required for 'purge type' sampling methods. * An increase in the frequency and spatial coverage of monitoring at a site because of the associated savings in time and money. The successful use of diffusion samplers depends on the following three primary factors: (1) understanding site conditions and contaminants of interest (defining sample objectives), (2) validating of results of diffusion samplers against more widely acknowledged sampling methods, and (3) applying diffusion samplers in the field.
Study of drug diffusion rate by laser beam deflection technique
NASA Astrophysics Data System (ADS)
Swapna, Mohanachandran Nair. S.; Anitha, Madhu J.; Sankararaman, Sankaranarayana Iyer
2017-06-01
Drug administration is an unavoidable part of treatment. When a drug is administered orally or intravenously, it gets absorbed into the blood stream. The rate and efficiency of absorption depend on the route of administration. When a drug is administered through the oral route, it penetrates the epithelial cells of the intestinal mucosa. The diffusion of the drug into the blood stream depends on various parameters, such as concentration, temperature, and the nature of the mucous membrane. The passive diffusion of drugs is found to obey Fick's law. Water soluble drugs penetrate the cell membrane through aqueous channel or pores. Hence, the study of diffusion of drugs into the water and finally into the blood stream is important. An attempt has been made to study the diffusion of the drug in water as 60% to 80% of human body is water. For the study of drug diffusion in water, a commonly used cough syrup of specific gravity 1.263 is used. It is found that the diffusion rate increases with the concentration of the drug.
NASA Astrophysics Data System (ADS)
Maggi, F.; Gu, C.; Venterea, R.; Riley, W.; Oldenburg, C.
2007-12-01
The biogeochemical cycle of nitrogen and production of NO, N2O, and CO2 gas and NO2- and NO3- ions in nutrient-enriched agricultural fields is mediated by soil microbial activity, the hydrological cycle, plant dynamics, and climatic forcing. Understanding how NO, N2O, CO2 gases and NO2- and NO3- ions are released from agricultural fields to the environment is a key factor in controlling the green-house effect and water contamination, and assumes ever greater importance in view of the foreseen increase in biofuel, food, and fiber production. To address these issues we have developed a mechanistic model (TOUGHREACT-N) for various nitrification and denitrification pathways, multiple microbial biomass dynamics, heat and water flows, and various chemical reactions at local and kinetic equilibrium. The soil column is represented in a 1D framework, with hydraulic properties described by a water tension-saturation model. Biotic and abiotic reactions are assumed to follow Michaelis-Menten kinetics, while a consortium of several micro-organismal strains is assumed to follow multiple Monod growth kinetics accounting for electron donor, electron acceptor, and inhibitor concentrations. Water flow is modeled with the Darcy-Richards equation, while nutrient transport is modeled by Fickian advective and diffusive processes in both gaseous and liquid phases. Heat flow is modeled with the Fourier equation. Plant dynamics is taken into account by coupling TOUGHREACT-N with CERES to determine water and nutrient uptake, and soil carbon accumulation. TOUGHREACT-N was calibrated against field measurements to assess pathways of N losses following fertilization. A good agreement between field observations and model predictions was found. We identified two dominant time scales in the system response that depended on plants dynamics. Before plants have substantial impact on soil nutrients and moisture content, N losses are characterized by rapid increases as a function of water application rate and fertilizer amount and application depth. Under reference fertilization and irrigation practices, approximately 1.64% and 1.61% of the total applied N is lost as N-NO(g) and N-N2O(g), respectively, while losses of N-N2(g), N-NO2-, and N-NO3- where several orders of magnitude smaller. When plants grow, pulses in N losses became smoother due to nutrient and water uptake. Contrarily to predictions of non- mechanistic, coarse-scale models (e.g., CASA, CENTURY) N losses are predominantly non-linearly increasing with fertilizer and water application amount, and with fertilizer application depth, thus invoking a revision of long- term estimates of nitrogen and carbon balances at global scales
Diffuse fluid flux through orogenic belts: Implications for the world ocean
Ingebritsen, S.E.; Manning, C.E.
2002-01-01
Fifty years ago a classic paper by W. W. Rubey [(1951) Geol. Soc. Am. Bull. 62, 1111-1148] examined various hypotheses regarding the origin of sea water and concluded that the most likely hypothesis was volcanic outgassing, a view that was generally accepted by earth scientists for the next several decades. More recent work suggests that the rate of subduction of water is much larger than the volcanic outgassing rate, lending support to hypotheses that either ocean volume has decreased with time, or that the imbalance is offset by continuous replenishment of water by cometary impacts. These alternatives are required in the absence of additional mechanisms for the return of water from subducting lithosphere to the Earth's surface. Our recent work on crustal permebility suggests a large capacity for water upflow through tectonically active continental crust, resulting in a heretofore unrecognized degassing pathway that can accommodate the waer subduction rate. Escape of recycled water via delivery from the mantle through zones of active metamorphism eliminates the mass-balance argument for the loss of ocean volume or extraterestrial sources.
Thermophysical effects of ointments in cold: an experimental study with a skin model.
Lehmuskallio, E; Anttonen, H
1999-01-01
The use of emollients on the face is a traditional way to protect the skin against cold injuries in cold climate countries like Finland, but their preventive effect against frostbite has been questioned. The purpose of this investigation was to define the thermal insulation and occlusivity of ointments in cold by using a skin model with a sweating hot plate. The properties of four different emollients were studied in both dry and humid conditions simulating transepidermal water loss, sweating, and a combination of sweating and drying. The thermal insulation of ointments applied on a dry surface was minimal. Evaporation of water from an oil-in-water cream caused significant cooling for 40 min after its application. The diffusion of water through the applied emollients changed their thermal effects depending on their composition and on the amount of water. Low input of water increased and high input diminished slightly the thermal resistance of ointments. The minimal or even negative thermal insulation of emollients in varying conditions gives them at best only a negligible and at worst a disadvantageous physical effect against cold.
First Principles Study for Proton Transport and Diffusion Behavior in Hydrous Hexagonal WO3
NASA Astrophysics Data System (ADS)
Liu, Chi-Ping; Zhou, Fei; Ozolins, Vidvuds; QPAM Team
2013-03-01
Proton transport is of great importance in biological species and energy storage and conversion systems. Previous studies have shown fast proton conduction in liquids and polymers but seldom in inorganic materials. In this work, first principles density functional theory (DFT) reveals that the formation of hydronium and water chains inside the hexagonal channels plays the key roles for the anomalously fast proton transport, by following modified Grotthuss mechanism. Our DFT study shows the detailed microscopic proton diffusion mechanism along the channel in hydrous WO3 with 50% water composition, which is proper for water chain formation. The water chain in the channel serves as a possible diffusion media for hydronium (H3O +) . With the continuous formation and cleavage of hydrogen bonds in the channel, the hydronium diffuses by hydrogen bonds exchange between water molecules. This mechanism is very similar with Grotthuss relay mechanism for proton transport in liquid. The possible proton diffusion were studied for hydronium is either far away from the water chain bond defect or next to H2O defect at the end of water chain. The diffusion barriers for both conditions are around 150 meV to 200 meV, and water defects reorganization in the chain is the rate-limited step for proton diffusion. These small diffusion barriers could explain the fast 1-D proton transport in hydrous WO3 channel. Further studies about fast proton transport in other inorganic materials could be an important topic in not only biochemistry but also clean energy applications like fuel cell applications.
Novel white matter tract integrity metrics sensitive to Alzheimer disease progression.
Fieremans, E; Benitez, A; Jensen, J H; Falangola, M F; Tabesh, A; Deardorff, R L; Spampinato, M V S; Babb, J S; Novikov, D S; Ferris, S H; Helpern, J A
2013-01-01
Along with cortical abnormalities, white matter microstructural changes such as axonal loss and myelin breakdown are implicated in the pathogenesis of Alzheimer disease. Recently, a white matter model was introduced that relates non-Gaussian diffusional kurtosis imaging metrics to characteristics of white matter tract integrity, including the axonal water fraction, the intra-axonal diffusivity, and the extra-axonal axial and radial diffusivities. This study reports these white matter tract integrity metrics in subjects with amnestic mild cognitive impairment (n = 12), Alzheimer disease (n = 14), and age-matched healthy controls (n = 15) in an effort to investigate their sensitivity, diagnostic accuracy, and associations with white matter changes through the course of Alzheimer disease. With tract-based spatial statistics and region-of-interest analyses, increased diffusivity in the extra-axonal space (extra-axonal axial and radial diffusivities) in several white matter tracts sensitively and accurately discriminated healthy controls from those with amnestic mild cognitive impairment (area under the receiver operating characteristic curve = 0.82-0.95), while widespread decreased axonal water fraction discriminated amnestic mild cognitive impairment from Alzheimer disease (area under the receiver operating characteristic curve = 0.84). Additionally, these white matter tract integrity metrics in the body of the corpus callosum were strongly correlated with processing speed in amnestic mild cognitive impairment (r = |0.80-0.82|, P < .001). These findings have implications for the course and spatial progression of white matter degeneration in Alzheimer disease, suggest the mechanisms by which these changes occur, and demonstrate the viability of these white matter tract integrity metrics as potential neuroimaging biomarkers of the earliest stages of Alzheimer disease and disease progression.
Patterson, David Albert; Strehmel, Alexander; Erzgräber, Beate; Hammel, Klaus
2017-12-01
In a recent scientific opinion of the European Food Safety Authority it is argued that the accumulation of plant protection products in sediments over long time periods may be an environmentally significant process. Therefore, the European Food Safety Authority proposed a calculation to account for plant protection product accumulation. This calculation, however, considers plant protection product degradation within sediment as the only dissipation route, and does not account for sediment dynamics or back-diffusion into the water column. The hydraulic model Hydrologic Engineering Center-River Analysis System (HEC-RAS; US Army Corps of Engineers) was parameterized to assess sediment transport and deposition dynamics within the FOrum for Co-ordination of pesticide fate models and their USe (FOCUS) scenarios in simulations spanning 20 yr. The results show that only 10 to 50% of incoming sediment would be deposited. The remaining portion of sediment particles is transported across the downstream boundary. For a generic plant protection product substance this resulted in deposition of only 20 to 50% of incoming plant protection product substance. In a separate analysis, the FOCUS TOXSWA model was utilized to examine the relative importance of degradation versus back-diffusion as loss processes from the sediment compartment for a diverse range of generic plant protection products. In simulations spanning 20 yr, it was shown that back-diffusion was generally the dominant dissipation process. The results of the present study show that sediment dynamics and back-diffusion should be considered when calculating long-term plant protection product accumulation in sediment. Neglecting these may lead to a systematic overestimation of accumulation. Environ Toxicol Chem 2017;36:3223-3231. © 2017 SETAC. © 2017 SETAC.
NASA Astrophysics Data System (ADS)
Zhang, Huiming; Xie, Yang; Ji, Tongyu
2007-06-01
The off-resonance rotating frame technique based on the spin relaxation properties of off-resonance T1 ρ can significantly increase the sensitivity of detecting paramagnetic labeling at high magnetic fields by MRI. However, the in vivo detectable dimension for labeled cell clusters/tissues in T1 ρ-weighted images is limited by the water diffusion-exchange between mesoscopic scale compartments. An experimental investigation of the effect of water diffusion-exchange between compartments on the paramagnetic relaxation enhancement of paramagnetic agent compartment is presented for in vitro/ in vivo models. In these models, the size of paramagnetic agent compartment is comparable to the mean diffusion displacement of water molecules during the long RF pulses that are used to generate the off-resonance rotating frame. The three main objectives of this study were: (1) to qualitatively correlate the effect of water diffusion-exchange with the RF parameters of the long pulse and the rates of water diffusion, (2) to explore the effect of water diffusion-exchange on the paramagnetic relaxation enhancement in vitro, and (3) to demonstrate the paramagnetic relaxation enhancement in vivo. The in vitro models include the water permeable dialysis tubes or water permeable hollow fibers embedded in cross-linked proteins gels. The MWCO of the dialysis tubes was chosen from 0.1 to 15 kDa to control the water diffusion rate. Thin hollow fibers were chosen to provide sub-millimeter scale compartments for the paramagnetic agents. The in vivo model utilized the rat cerebral vasculatures as a paramagnetic agent compartment, and intravascular agents (Gd-DTPA) 30-BSA were administrated into the compartment via bolus injections. Both in vitro and in vivo results demonstrate that the paramagnetic relaxation enhancement is predominant in the T1 ρ-weighted image in the presence of water diffusion-exchange. The T1 ρ contrast has substantially higher sensitivity than the conventional T1 contrast in detecting paramagnetic agents, especially at low paramagnetic agent volumetric fractions, low paramagnetic agent concentrations, and low RF amplitudes. Short pulse duration, short pulse recycle delay and efficient paramagnetic relaxation can reduce the influence of water diffusion-exchange on the paramagnetic enhancement. This study paves the way for the design of off-resonance rotating experiments to detect labeled cell clusters/tissue compartments in vivo at a sub-millimeter scale.
Arabidopsis thalianafrom Polarization Transfer Solid-State NMR
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Paul B; Wang, Tuo; Park, Yong Bum
2014-07-23
Polysaccharide-rich plant cell walls are hydrated under functional conditions, but the molecular interactions between water and polysaccharides in the wall have not been investigated. In this work, we employ polarization transfer solid-state NMR techniques to study the hydration of primary-wall polysaccharides of the model plant, Arabidopsis thaliana. By transferring water 1H polarization to polysaccharides through distance- and mobility-dependent 1H–1H dipolar couplings and detecting it through polysaccharide 13C signals, we obtain information about water proximity to cellulose, hemicellulose, and pectins as well as water mobility. Both intact and partially extracted cell wall samples are studied. Our results show that water–pectin polarizationmore » transfer is much faster than water–cellulose polarization transfer in all samples, but the extent of extraction has a profound impact on the water–polysaccharide spin diffusion. Removal of calcium ions and the consequent extraction of homogalacturonan (HG) significantly slowed down spin diffusion, while further extraction of matrix polysaccharides restored the spin diffusion rate. These trends are observed in cell walls with similar water content, thus they reflect inherent differences in the mobility and spatial distribution of water. Combined with quantitative analysis of the polysaccharide contents, our results indicate that calcium ions and HG gelation increase the amount of bound water, which facilitates spin diffusion, while calcium removal disrupts the gel and gives rise to highly dynamic water, which slows down spin diffusion. The recovery of spin diffusion rates after more extensive extraction is attributed to increased water-exposed surface areas of the polysaccharides. Water–pectin spin diffusion precedes water–cellulose spin diffusion, lending support to the single-network model of plant primary walls in which a substantial fraction of the cellulose surface is surrounded by pectins.« less
Lienhard, D. M.; Huisman, A. J.; Krieger, U. K.; ...
2015-01-01
New measurements of water diffusion in secondary organic aerosol (SOA) material produced by oxidation of α-pinene and in a number of organic/inorganic model mixtures (3-methylbutane-1,2,3-tricarboxylic acid (3-MBTCA), levoglucosan, levoglucosan/NH 4HSO 4, raffinose) are presented. These indicate that water diffusion coefficients are determined by several properties of the aerosol substance and cannot be inferred from the glass transition temperature or bouncing properties. Our results suggest that water diffusion in SOA particles is faster than often assumed and imposes no significant kinetic limitation on water uptake and release at temperatures above 220 K. The fast diffusion of water suggests that heterogeneous icemore » nucleation on a glassy core is very unlikely in these systems. At temperatures below 220 K, model simulations of SOA particles suggest that heterogeneous ice nucleation may occur in the immersion mode on glassy cores which remain embedded in a liquid shell when experiencing fast updraft velocities. The particles absorb significant quantities of water during these updrafts which plasticize their outer layers such that these layers equilibrate readily with the gas phase humidity before the homogeneous ice nucleation threshold is reached. Glass formation is thus unlikely to restrict homogeneous ice nucleation. Only under most extreme conditions near the very high tropical tropopause may the homogeneous ice nucleation rate coefficient be reduced as a consequence of slow condensed-phase water diffusion. Since the differences between the behavior limited or non limited by diffusion are small even at the very high tropical tropopause, condensed-phase water diffusivity is unlikely to have significant consequences on the direct climatic effects of SOA particles under tropospheric conditions.« less
Ocean stratification reduces melt rates at the grounding zone of the Ross Ice Shelf
NASA Astrophysics Data System (ADS)
Begeman, C. B.; Tulaczyk, S. M.; Marsh, O.; Mikucki, J.; Stanton, T. P.; Hodson, T. O.; Siegfried, M. R.; Powell, R. D.; Christianson, K. A.; King, M. A.
2017-12-01
Ocean-driven melting of ice shelves is often invoked as the primary mechanism for triggering ice loss from Antarctica. However, due to the difficulty in accessing the sub-ice-shelf ocean cavity, the relationship between ice-shelf melt rates and ocean conditions is poorly understood, particularly near the transition from grounded to floating ice, known as the grounding zone. Here we present the first borehole oceanographic observations from the grounding zone of Antarctica's largest ice shelf. Contrary to predictions that tidal currents near grounding zones should mix the water column, driving high ice-shelf melt rates, we find a stratified sub-ice-shelf water column. The vertical salinity gradient dominates stratification over a weakly unstable vertical temperature gradient; thus, stratification takes the form of a double-diffusive staircase. These conditions limit vertical heat fluxes and lead to low melt rates in the ice-shelf grounding zone. While modern grounding zone melt rates may presently be overestimated in models that assume efficient tidal mixing, the high sensitivity of double-diffusive staircases to ocean freshening and warming suggests future melt rates may be underestimated, biasing projections of global sea-level rise.
Ion Diffusion Within Water Films in Unsaturated Porous Media.
Tokunaga, Tetsu K; Finsterle, Stefan; Kim, Yongman; Wan, Jiamin; Lanzirotti, Antonio; Newville, Matthew
2017-04-18
Diffusion is important in controlling local solute transport and reactions in unsaturated soils and geologic formations. Although it is commonly assumed that thinning of water films controls solute diffusion at low water contents, transport under these conditions is not well understood. We conducted experiments in quartz sands at low volumetric water contents (θ) to quantify ion diffusion within adsorbed films. At the lowest water contents, we employed fixed relative humidities to control water films at nm thicknesses. Diffusion profiles for Rb + and Br - in unsaturated sand packs were measured with a synchrotron X-ray microprobe, and inverse modeling was used to determine effective diffusion coefficients, D e, as low as ∼9 × 10 -15 m 2 s -1 at θ = 1.0 × 10 -4 m 3 m -3 , where the film thickness = 0.9 nm. Given that the diffusion coefficients (D o ) of Rb + and Br - in bulk water (30 °C) are both ∼2.4 × 10 -9 m 2 s -1 , we found the impedance factor f = D e /(θD o ) is equal to 0.03 ± 0.02 at this very low saturation, in agreement with the predicted influence of interface tortuosity (τ a ) for diffusion along grain surfaces. Thus, reduced cross-sectional area (θ) and tortuosity largely accounted for the more than 5 orders of magnitude decrease in D e relative to D o as desaturation progressed down to nanoscale films.
A Device to Emulate Diffusion and Thermal Conductivity Using Water Flow
ERIC Educational Resources Information Center
Blanck, Harvey F.
2005-01-01
A device designed to emulate diffusion and thermal conductivity using flowing water is reviewed. Water flowing through a series of cells connected by a small tube in each partition in this plastic model is capable of emulating diffusion and thermal conductivity that occurs in variety of systems described by several mathematical equations.
Investigating fuel-cell transport limitations using hydrogen limiting current
Spingler, Franz B.; Phillips, Adam; Schuler, Tobias; ...
2017-03-09
Reducing mass-transport losses in polymer-electrolyte fuel cells (PEFCs) is essential to increase their power density and reduce overall stack cost. At the same time, cost also motivates the reduction in expensive precious-metal catalysts, which results in higher local transport losses in the catalyst layers. Here, we use a hydrogen-pump limiting-current setup to explore the gas-phase transport losses through PEFC catalyst layers and various gas-diffusion and microporous layers. It is shown that the effective diffusivity in the gas-diffusion layers is a strong function of liquid saturation. Additionally, it is shown how the catalyst layer unexpectedly contributes significantly to the overall measuredmore » transport resistance. This is especially true for low catalyst loadings. It is also shown how the various losses can be separated into different mechanisms including diffusional processes and mass-dependent and independent ones, where the data suggests that a large part of the transport resistance in catalyst layers cannot be attributed to a gas-phase diffusional process. The technique is promising for deconvoluting transport losses in PEFCs.« less
Savoie, Jennifer G.; Lyford, Forest P.; Clifford, Scott
1999-01-01
In March and April 1998, a network of water-to-vapor diffusion samplers was installed along the Cochato River at the Baird & McGuire Superfund Site in Holbrook, Massachusetts, where a plume of volatile organic compounds (VOCs) is present in ground water. The purpose of installing the sampler network was to determine if VOCs were present in river-bottom sediments while a ground-water extraction system was operating and after the system had been shut down for two weeks. Water-to-water diffusion samplers placed at selected locations provided supplemental information about concentrations of VOCs in pore water in the river-bottom sediments. Water levels in piezometers and river stage were measured concurrently to determine if ground water was discharging to the river. Benzene, toluene, ethylbenzene and xylenes (BTEX compounds) were detected in water-tovapor and water-to-water diffusion samplers located in the area where the plume is known to pass beneath the river for both pumping and nonpumping conditions. Concentrations of total BTEX compounds in water-to-vapor diffusion samplers ranged from non-detect upriver and downriver from the plume area to greater than 200 parts per million by volume in the plume area. Concentrations of total BTEX compounds were not significantly different for pumping than for non-pumping conditions. Concentrations of total BTEX compounds in water-to-water diffusion samplers ranged from non-detect to 680 micrograms per liter. The limited number of water-to-water diffusion samplers did not indicate that concentrations were higher for pumping or non-pumping conditions. Trichloroethylene and tetrachloroethylene also were detected in water-to-vapor diffusion samplers downriver from the area where the BTEX compounds were detected. Water levels in four piezometers were consistently higher than the river stage, indicating an upward hydraulic gradient and ground-water discharge to the river. The concentrations of VOCs in riverbottom sediments and the upward hydraulic gradients observed indicate that contaminants from the Baird & McGuire ground-water plume were discharging to the Cochato River during the study period for both pumping and non-pumping conditions.
Double, Double Toil and Trouble: The Melt Inclusion Bubble
NASA Astrophysics Data System (ADS)
Rasmussen, D. J.; Plank, T. A.
2017-12-01
Melt inclusions provide a powerful means for probing the depth of magmatic processes and volatile budgets of magmas. Both objectives require that the inclusions accurately record the volatile content of the entrapped melt. However, post-entrapment cooling and diffusive loss of water lead to a decrease in internal pressure, resulting in volatile exsolution (importantly CO2) and vapor bubble growth in inclusions. Several methods have been developed recently that attempt to reconstruct the entrapped CO2 contents, but the methods yield inconsistent results. Here we report on new homogenization experiments and attempt to reconcile inconsistencies in CO2 reconstruction methods. Experiments were conducted on olivine-hosted melt inclusions from Seguam volcano using a piston cylinder apparatus at 500 MPa, 1150-1170 °C, hydrous conditions, and a run duration of 1-2 hours. FTIR analyses of the homogenized inclusions show some diffusive water gain (≤1 wt% excess) relative to unheated inclusions (most 4 wt%). Inclusions from this same sample were previously reconstructed using Raman addition (RA; Moore et al., 2015), and we have constituted the CO2 with two different computational approaches: the ideal gas law (IGL; Shaw et al., 2010) and a bubble growth model (BG; Riker, 2005). CO2 and S contents of heated inclusions are correlated, defining a S-CO2 degassing path. Relative to this empirical degassing path, IGL results are offset to higher CO2 (100s-1000s of ppm) or lower S (100s of ppm), while RA and BG results overlap and are offset to lower CO2 (≤100s of ppm) or higher S (≤100s of ppm). Because S contents of heated and unheated inclusions have similar ranges, we attribute the discrepancy to CO2. High values of CO2 from the IGL correction may be because CO2 diffusion cannot keep pace with bubble growth during rapid cooling upon eruption. Mass balance calculations indicate that a minute amount of carbonate, which could escape detection by Raman, would affect CO2 content, providing an explanation for low values of CO2 determined by RA. The discrepancy in the BG results might relate to diffusive loss of H+ and uncertainties (e.g., temperature) involved with the calculation. Thus, homogenization via heating has advantages over other techniques in constituting the CO2 of inclusions, and may lead to a more accurate computational method.
Bioheat model evaluations of laser effects on tissues: role of water evaporation and diffusion
NASA Astrophysics Data System (ADS)
Nagulapally, Deepthi; Joshi, Ravi P.; Thomas, Robert J.
2011-03-01
A two-dimensional, time-dependent bioheat model is applied to evaluate changes in temperature and water content in tissues subjected to laser irradiation. Our approach takes account of liquid-to-vapor phase changes and a simple diffusive flow of water within the biotissue. An energy balance equation considers blood perfusion, metabolic heat generation, laser absorption, and water evaporation. The model also accounts for the water dependence of tissue properties (both thermal and optical), and variations in blood perfusion rates based on local tissue injury. Our calculations show that water diffusion would reduce the local temperature increases and hot spots in comparison to simple models that ignore the role of water in the overall thermal and mass transport. Also, the reduced suppression of perfusion rates due to tissue heating and damage with water diffusion affect the necrotic depth. Two-dimensional results for the dynamic temperature, water content, and damage distributions will be presented for skin simulations. It is argued that reduction in temperature gradients due to water diffusion would mitigate local refractive index variations, and hence influence the phenomenon of thermal lensing. Finally, simple quantitative evaluations of pressure increases within the tissue due to laser absorption are presented.
Transport of secondary electrons and reactive species in ion tracks
NASA Astrophysics Data System (ADS)
Surdutovich, Eugene; Solov'yov, Andrey V.
2015-08-01
The transport of reactive species brought about by ions traversing tissue-like medium is analysed analytically. Secondary electrons ejected by ions are capable of ionizing other molecules; the transport of these generations of electrons is studied using the random walk approximation until these electrons remain ballistic. Then, the distribution of solvated electrons produced as a result of interaction of low-energy electrons with water molecules is obtained. The radial distribution of energy loss by ions and secondary electrons to the medium yields the initial radial dose distribution, which can be used as initial conditions for the predicted shock waves. The formation, diffusion, and chemical evolution of hydroxyl radicals in liquid water are studied as well. COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy.
An occurrence of metastable cristobalite in high-pressure garnet Granulite
Darling, R.S.; Chou, I.-Ming; Bodnar, R.J.
1997-01-01
High-pressure (0.8 gigapascals) granulite facies garnet from Gore Mountain, New York, hosts multiple solid inclusions containing the low- pressure silica polymorph cristobalite along with albite and minor ilmenite. Identification of cristobalite is based on Raman spectra, electron microprobe analysis, and microthermometric measurements on the ??/?? phase transformation. The cristobalite plus albite inclusions may have originated as small, trapped samples of hydrous sodium-aluminum-siliceous melt. Diffusive loss of water from these inclusions under isothermal, isochoric conditions may have resulted in a large enough internal pressure decrease to promote the metastable crystallization of cristobalite.
NASA Astrophysics Data System (ADS)
Nikonov, Eduard G.; Pavluš, Miron; Popovičová, Mária
2018-02-01
One of the varieties of pores, often found in natural or artificial building materials, are the so-called blind pores of dead-end or saccate type. Three-dimensional model of such kind of pore has been developed in this work. This model has been used for simulation of water vapor interaction with individual pore by molecular dynamics in combination with the diffusion equation method. Special investigations have been done to find dependencies between thermostats implementations and conservation of thermodynamic and statistical values of water vapor - pore system. The two types of evolution of water - pore system have been investigated: drying and wetting of the pore. Full research of diffusion coefficient, diffusion velocity and other diffusion parameters has been made.
Geng, Runzhe; Wang, Xiaoyan; Sharpley, Andrew N.; Meng, Fande
2015-01-01
Best management practices (BMPs) for agricultural diffuse pollution control are implemented at the field or small-watershed scale. However, the benefits of BMP implementation on receiving water quality at multiple spatial is an ongoing challenge. In this paper, we introduce an integrated approach that combines risk assessment (i.e., Phosphorus (P) index), model simulation techniques (Hydrological Simulation Program–FORTRAN), and a BMP placement tool at various scales to identify the optimal location for implementing multiple BMPs and estimate BMP effectiveness after implementation. A statistically significant decrease in nutrient discharge from watersheds is proposed to evaluate the effectiveness of BMPs, strategically targeted within watersheds. Specifically, we estimate two types of cost-effectiveness curves (total pollution reduction and proportion of watersheds improved) for four allocation approaches. Selection of a ‘‘best approach” depends on the relative importance of the two types of effectiveness, which involves a value judgment based on the random/aggregated degree of BMP distribution among and within sub-watersheds. A statistical optimization framework is developed and evaluated in Chaohe River Watershed located in the northern mountain area of Beijing. Results show that BMP implementation significantly (p >0.001) decrease P loss from the watershed. Remedial strategies where BMPs were targeted to areas of high risk of P loss, deceased P loads compared with strategies where BMPs were randomly located across watersheds. Sensitivity analysis indicated that aggregated BMP placement in particular watershed is the most cost-effective scenario to decrease P loss. The optimization approach outlined in this paper is a spatially hierarchical method for targeting nonpoint source controls across a range of scales from field to farm, to watersheds, to regions. Further, model estimates showed targeting at multiple scales is necessary to optimize program efficiency. The integrated model approach described that selects and places BMPs at varying levels of implementation, provides a new theoretical basis and technical guidance for diffuse pollution management in agricultural watersheds. PMID:26313561
Geng, Runzhe; Wang, Xiaoyan; Sharpley, Andrew N; Meng, Fande
2015-01-01
Best management practices (BMPs) for agricultural diffuse pollution control are implemented at the field or small-watershed scale. However, the benefits of BMP implementation on receiving water quality at multiple spatial is an ongoing challenge. In this paper, we introduce an integrated approach that combines risk assessment (i.e., Phosphorus (P) index), model simulation techniques (Hydrological Simulation Program-FORTRAN), and a BMP placement tool at various scales to identify the optimal location for implementing multiple BMPs and estimate BMP effectiveness after implementation. A statistically significant decrease in nutrient discharge from watersheds is proposed to evaluate the effectiveness of BMPs, strategically targeted within watersheds. Specifically, we estimate two types of cost-effectiveness curves (total pollution reduction and proportion of watersheds improved) for four allocation approaches. Selection of a ''best approach" depends on the relative importance of the two types of effectiveness, which involves a value judgment based on the random/aggregated degree of BMP distribution among and within sub-watersheds. A statistical optimization framework is developed and evaluated in Chaohe River Watershed located in the northern mountain area of Beijing. Results show that BMP implementation significantly (p >0.001) decrease P loss from the watershed. Remedial strategies where BMPs were targeted to areas of high risk of P loss, deceased P loads compared with strategies where BMPs were randomly located across watersheds. Sensitivity analysis indicated that aggregated BMP placement in particular watershed is the most cost-effective scenario to decrease P loss. The optimization approach outlined in this paper is a spatially hierarchical method for targeting nonpoint source controls across a range of scales from field to farm, to watersheds, to regions. Further, model estimates showed targeting at multiple scales is necessary to optimize program efficiency. The integrated model approach described that selects and places BMPs at varying levels of implementation, provides a new theoretical basis and technical guidance for diffuse pollution management in agricultural watersheds.
Role of shell diffusion area in incubating eggs at simulated high altitude.
Weiss, H S
1978-10-01
Embryonic development is inhibited when eggs are incubated at 9,100 m (0.3 atm) despite a normoxic environment. The problem apparently relates to respiratory gas exchange occurring by diffusion through gas-filled pores in the shell. Gaseous flux is therefore inversely proportional to ambient pressure and is affected by the physical characteristics of the ambient gas (Chapman-Enskog equation). Excess loss of H2O and CO2 occurs in eggs incubating at altitude and could be detrimental. Such increased loss should be correctable by decreasing diffusion area. This was tested by progressively increasing coverage of the shell with paraffin and incubating at simulated 0.3 ATA (225 Torr) in 100% O2. Uncoated eggs failed to hatch, but numbers of chicks increased with increased coverage. Maximum hatch was an extrapolated 90% of controls at 69% shell coverage. With further coverage, hatch size decreased. Egg weight loss, and estimate of H2O diffusion, was around three times controls in uncoated eggs but decreased linearly with paraffin coverage, reaching near normal at maximum hatch. Reduction of diffusion area to 0.3 normal at maximum hatch generally balanced the increased flux predicted for 0.3 ATA.
An automated and semi-continuous method for the analysis of water-soluble constituents in PM(2.5).
Lee, B K; Kim, Y H; Lee, D S
2008-04-01
An automated and semi-continuous method for measuring water-soluble constituents in PM(2.5) was developed. The system consists of a multi-tube diffusion scrubber (MTDS), a low temperature particle impactor (LTPI), an inertial air/liquid separator, and two ion chromatography systems. The MTDS acts as an interfering gas removal system and also as a humidifier for growing particles. Since the MTDS operates at 40 degrees C, the loss of volatile compounds and hydrological conversion of nitrogen oxides to nitrite were not of significant concern. The condensation of water vapor, dissolution of soluble constituents, and capture of insoluble particles occurred in the LTPI. The condensed liquid containing the dissolved species and the insoluble particles was separated from the airflow using an inertial air/liquid separator. The analysis of cations and anions in the effluent liquid was performed using two ion chromatography systems. The collection efficiency, including the inlet loss, of the system was 96.6+/-7.1% at an air flow rate of 1.0 SLPM. The limits of detection ranged from 12 to 57 ng/m(3) for major ionic constituents without any pre-concentration procedure. This method was tested in the field and the average data capture was over 90%, demonstrating the reliability of the system.
Anomalous Diffusion of Water in Lamellar Membranes Formed by Pluronic Polymers
NASA Astrophysics Data System (ADS)
Zhang, Zhe; Ohl, Michael; Han, Youngkyu; Smith, Gregory; Do, Changwoo; Biology; Soft-Matter Division, Oak Ridge National Laboratory Team; Julich CenterNeutron Science Team
Water diffusion is playing an important role in polymer systems. We calculated the water diffusion coefficient at different layers along z-direction which is perpendicular to the lamellar membrane formed by Pluronic block copolymers (L62: (EO6-PO34-EO6)) with the molecular dynamics simulation trajectories. Water molecules at bulk layers are following the normal diffusion, while that at hydration layers formed by polyethylene oxide (PEO) and hydrophobic layers formed by polypropylene oxide (PPO) are following anomalous diffusion. We find that although the subdiffusive regimes at PEO layers and PPO layers are the same, which is the fractional Brownian motion, however, the dynamics are different, i.e. diffusion at the PEO layers is much faster than that at the PPO layers, and meanwhile it exhibits a normal diffusive approximation within a short time period which is governed by the localized free self-diffusion, but becomes subdiffusive after t >8 ps, which is governed by the viscoelastic medium. The Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; and Zhe Zhang gratefully acknowledges financial support from Julich Center for Neutron Science.
Lu, Yan; Li, Mingzhong
2016-01-01
The solubility and diffusion coefficient are two of the most important physicochemical properties of a drug compound. In practice, both have been measured separately, which is time consuming. This work utilizes a novel technique of UV imaging to determine the solubility and diffusion coefficients of poorly water-soluble drugs simultaneously. A 2-step optimal method is proposed to determine the solubility and diffusion coefficients of a poorly water-soluble pharmaceutical substance based on the Fick's second law of diffusion and UV imaging measurements. Experimental results demonstrate that the proposed method can be used to determine the solubility and diffusion coefficients of a drug with reasonable accuracy, indicating that UV imaging may provide a new opportunity to accurately measure the solubility and diffusion coefficients of a poorly water-soluble drug simultaneously and rapidly. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Muñoz-Garcia, Agustí; Ro, Jennifer; Brown, Johnie C; Williams, Joseph B
2008-02-01
Because cutaneous water loss (CWL) represents half of total water loss in birds, selection to reduce CWL may be strong in desert birds. We previously found that CWL of house sparrows from a desert population was about 25% lower than that of individuals from a mesic environment. The stratum corneum (SC), the outer layer of the epidermis, serves as the primary barrier to water vapor diffusion through the skin. The avian SC is formed by layers of corneocytes embedded in a lipid matrix consisting of cholesterol, free fatty acids and two classes of sphingolipids, ceramides and cerebrosides. The SC of birds also serves a thermoregulatory function; high rates of CWL keep body temperatures under lethal limits in episodes of heat stress. In this study, we used high-performance liquid chromatography coupled with atmospheric pressure photoionization-mass spectrometry (HPLC/APPI-MS) to identify and quantify over 200 sphingolipids in the SC of house sparrows from desert and mesic populations. Principal components analysis (PCA) led to the hypotheses that sphingolipids in the SC of desert sparrows have longer carbon chains in the fatty acid moiety and are more polar than those found in mesic sparrows. We also tested the association between principal components and CWL in both populations. Our study suggested that a reduction in CWL found in desert sparrows was, in part, the result of modifications in chain length and polarity of the sphingolipids, changes that apparently determine the interactions of the lipid molecules within the SC.
Malo de Molina, Paula; Alvarez, Fernando; Frick, Bernhard; Wildes, Andrew; Arbe, Arantxa; Colmenero, Juan
2017-10-18
We applied quasielastic neutron scattering (QENS) techniques to samples with two different contrasts (deuterated solute/hydrogenated solvent and the opposite label) to selectively study the component dynamics of proline/water solutions. Results on diluted and concentrated solutions (31 and 6 water molecules/proline molecule, respectively) were analyzed in terms of the susceptibility and considering a recently proposed model for water dynamics [Arbe et al., Phys. Rev. Lett., 2016, 117, 185501] which includes vibrations and the convolution of localized motions and diffusion. We found that proline molecules not only reduce the average diffusion coefficient of water but also extend the time/frequency range of the crossover region ('cage') between the vibrations and purely diffusive behavior. For the high proline concentration we also found experimental evidence of water heterogeneous dynamics and a distribution of diffusion coefficients. Complementary molecular dynamics simulations show that water molecules start to perform rotational diffusion when they escape the cage regime but before the purely diffusive behavior is established. The rotational diffusion regime is also retarded by the presence of proline molecules. On the other hand, a strong coupling between proline and water diffusive dynamics which persists with decreasing temperature is directly observed using QENS. Not only are the temperature dependences of the diffusion coefficients of both components the same, but their absolute values also approach each other with increasing proline concentration. We compared our results with those reported using other techniques, in particular using dielectric spectroscopy (DS). A simple approach based on molecular hydrodynamics and a molecular treatment of DS allows rationalizing the a priori puzzling inconsistency between QENS and dielectric results regarding the dynamic coupling of the two components. The interpretation proposed is based on general grounds and therefore should be applicable to other biomolecular solutions.
A review of water recovery by vapour permeation through membranes.
Bolto, Brian; Hoang, Manh; Xie, Zongli
2012-02-01
In vapour permeation the feed is a vapour, not a liquid as in pervaporation. The process employs a polymeric membrane as a semi-permeable barrier between the feed side under high pressure and the permeate side under low pressure. Separation is achieved by the different degrees to which components are dissolved in and diffuse through the membrane, the system working according to a solution-diffusion mechanism. The materials used in the membrane depend upon the types of compounds being separated, so water transport is favoured by hydrophilic material, whether organic or inorganic. The process is used for the dehydration of natural gas and various organic solvents, notably alcohol as biofuel, as well as the removal of water from air and its recovery from waste steam. Waste steam can be found in almost every plant/factory where steam is used. It is frequently contaminated and cannot be reused. Discharging the spent steam to the atmosphere is a serious energy loss and environmental issue. Recycling the steam can significantly improve the overall energy efficiency of an industry, which is responsible for massive CO(2) emissions. Steam separation at high fluxes and temperatures has been accomplished with a composite poly(vinyl alcohol) membrane containing silica nanoparticles, and also, less efficiently, with an inorganic zeolite membrane. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.
Diffuse-flow conceptualization and simulation of the Edwards aquifer, San Antonio region, Texas
Lindgren, R.J.
2006-01-01
A numerical ground-water-flow model (hereinafter, the conduit-flow Edwards aquifer model) of the karstic Edwards aquifer in south-central Texas was developed for a previous study on the basis of a conceptualization emphasizing conduit development and conduit flow, and included simulating conduits as one-cell-wide, continuously connected features. Uncertainties regarding the degree to which conduits pervade the Edwards aquifer and influence ground-water flow, as well as other uncertainties inherent in simulating conduits, raised the question of whether a model based on the conduit-flow conceptualization was the optimum model for the Edwards aquifer. Accordingly, a model with an alternative hydraulic conductivity distribution without conduits was developed in a study conducted during 2004-05 by the U.S. Geological Survey, in cooperation with the San Antonio Water System. The hydraulic conductivity distribution for the modified Edwards aquifer model (hereinafter, the diffuse-flow Edwards aquifer model), based primarily on a conceptualization in which flow in the aquifer predominantly is through a network of numerous small fractures and openings, includes 38 zones, with hydraulic conductivities ranging from 3 to 50,000 feet per day. Revision of model input data for the diffuse-flow Edwards aquifer model was limited to changes in the simulated hydraulic conductivity distribution. The root-mean-square error for 144 target wells for the calibrated steady-state simulation for the diffuse-flow Edwards aquifer model is 20.9 feet. This error represents about 3 percent of the total head difference across the model area. The simulated springflows for Comal and San Marcos Springs for the calibrated steady-state simulation were within 2.4 and 15 percent of the median springflows for the two springs, respectively. The transient calibration period for the diffuse-flow Edwards aquifer model was 1947-2000, with 648 monthly stress periods, the same as for the conduit-flow Edwards aquifer model. The root-mean-square error for a period of drought (May-November 1956) for the calibrated transient simulation for 171 target wells is 33.4 feet, which represents about 5 percent of the total head difference across the model area. The root-mean-square error for a period of above-normal rainfall (November 1974-July 1975) for the calibrated transient simulation for 169 target wells is 25.8 feet, which represents about 4 percent of the total head difference across the model area. The root-mean-square error ranged from 6.3 to 30.4 feet in 12 target wells with long-term water-level measurements for varying periods during 1947-2000 for the calibrated transient simulation for the diffuse-flow Edwards aquifer model, and these errors represent 5.0 to 31.3 percent of the range in water-level fluctuations of each of those wells. The root-mean-square errors for the five major springs in the San Antonio segment of the aquifer for the calibrated transient simulation, as a percentage of the range of discharge fluctuations measured at the springs, varied from 7.2 percent for San Marcos Springs and 8.1 percent for Comal Springs to 28.8 percent for Leona Springs. The root-mean-square errors for hydraulic heads for the conduit-flow Edwards aquifer model are 27, 76, and 30 percent greater than those for the diffuse-flow Edwards aquifer model for the steady-state, drought, and above-normal rainfall synoptic time periods, respectively. The goodness-of-fit between measured and simulated springflows is similar for Comal, San Marcos, and Leona Springs for the diffuse-flow Edwards aquifer model and the conduit-flow Edwards aquifer model. The root-mean-square errors for Comal and Leona Springs were 15.6 and 21.3 percent less, respectively, whereas the root-mean-square error for San Marcos Springs was 3.3 percent greater for the diffuse-flow Edwards aquifer model compared to the conduit-flow Edwards aquifer model. The root-mean-square errors for San Antonio and San Pedro Springs were appreciably greater, 80.2 and 51.0 percent, respectively, for the diffuse-flow Edwards aquifer model. The simulated water budgets for the diffuse-flow Edwards aquifer model are similar to those for the conduit-flow Edwards aquifer model. Differences in percentage of total sources or discharges for a budget component are 2.0 percent or less for all budget components for the steady-state and transient simulations. The largest difference in terms of the magnitude of water budget components for the transient simulation for 1956 was a decrease of about 10,730 acre-feet per year (about 2 per-cent) in springflow for the diffuse-flow Edwards aquifer model compared to the conduit-flow Edwards aquifer model. This decrease in springflow (a water budget discharge) was largely offset by the decreased net loss of water from storage (a water budget source) of about 10,500 acre-feet per year.
Air cycle machine for an aircraft environmental control system
NASA Technical Reports Server (NTRS)
Decrisantis, Angelo A. (Inventor); O'Coin, James R. (Inventor); Taddey, Edmund P. (Inventor)
2010-01-01
An ECS system includes an ACM mounted adjacent an air-liquid heat exchanger through a diffuser that contains a diffuser plate. The diffuser plate receives airflow from the ACM which strikes the diffuser plate and flows radially outward and around the diffuser plate and into the air-liquid heat exchanger to provide minimal pressure loss and proper flow distribution into the air-liquid heat exchanger with significantly less packaging space.
Oxygen Fugacity in Large Metal Capsules
NASA Astrophysics Data System (ADS)
Faul, U.; Cline, C. J., II; Jackson, I.; Berry, A.
2016-12-01
During experiments with iron bearing silicates, equilibration between metal capsules and sample interior depends on diffusion of Fe if the capsule composition is not initially in equilibrium with the sample composition. For example, placing Pt or Ni capsules in contact with Fe-bearing olivine leads to Fe-loss from the olivine. In a fully equilibrated system the Fe contents of coexisting metal capsule and olivine reflect the oxygen fugacity (fO2) of the system. Experiments were conducted with olivine encapsulated or wrapped in four different metals (Fe, Ni70Fe30, Ni and Pt) to determine the fO2 in the cm-sized samples used for deformation and seismic property experiments. Small Pt particles mixed with olivine powder were used as fO2 sensors in the interior of the capsules. The results show an ordering of the fO2 in the interior that is consistent with the enclosing metals, i.e. the fO2 is lowest in a Fe capsule and highest in a Pt capsule. However, fO2 values in the more oxidizing metal capsules are substantially below their respective metal-oxide buffers. For example, solgel olivine encapsulated in Ni has an oxygen fugacity that is more than three orders of magnitude below Ni-NiO at 1200C and 0.3 GPa. The fO2 in a capsule interior is therefore to some extent self-buffering and only moderately influenced by the composition of the capsule. While the Pt particles in the interior are equilibrated, Fe gradients from the interior up to the Pt and Ni sample-capsule interfaces show that Fe loss into the capsules is diffusion limited. The fO2 at the interface also has implications for the water retention in unbuffered capsules. We infer that relatively high fO2 and hence fH2O observed adjacent to Pt capsules enables retention of water in these capsules, but the fO2 adjacent to Ni capsules is too low and water is lost.
FOULING OF FINE PORE DIFFUSED AERATORS: AN INTER- PLANT COMPARISON
There has been increasing interest in fine pore aeration systems, along with concerned about diffuser fouling and the subsequent loss of aeration efficiency. The objective of this study was to assess the relative fouling tendency of fine bubble diffusers t nine activated sludge ...
Histopathologic response of the immature rat to diffuse traumatic brain injury.
Adelson, P D; Jenkins, L W; Hamilton, R L; Robichaud, P; Tran, M P; Kochanek, P M
2001-10-01
The purpose of this study was to characterize the histopathologic response of rats at postnatal day (PND) 17 following an impact-acceleration diffuse traumatic brain injury (TBI) using a 150-g/2-meter injury as previously described. This injury produces acute neurologic and physiologic derangements as well as enduring motor and Morris water maze (MWM) functional deficits. Histopathologic studies of perfusion-fixed brains were performed by gross examination and light microscopy using hematoxylin and eosin, Bielschowsky silver stain, and glial fibrillary acidic protein (GFAP) immunohistochemistry at 1, 3, 7, 28, and 90 day after injury. Gross pathologic examination revealed diffuse subarachnoid hemorrhage (SAH) at 1-3 days but minimal supratentorial intraparenchymal hemorrhage. Petechial hemorrhages were noted in ventral brainstem segments and in the cerebellum. After 1-3-day survivals, light microscopy revealed diffuse SAH and intraventricular hemorrhage (IVH), mild edema, significant axonal injury, reactive astrogliosis, and localized midline cerebellar hemorrhage. Axonal injury most commonly occurred in the long ascending and descending fiber tracts of the brainstem and occasionally in the forebrain, and was maximal at 3 days, but present until 7 days after injury. Reactive astrocytes were similarly found both in location and timing, but were also significantly identified in the hippocampus, white matter tracts, and corpus callosum. Typically, TBI produced significant diffuse SAH accompanied by cerebral and brainstem astrogliosis and axonal injury without obvious neuronal loss. Since this injury produces some pathologic changes with sustained functional deficits similar to TBI in infants and children, it should be useful for the further study of the pathophysiology and therapy of diffuse TBI and brainstem injury in the immature brain.
Dynamics of two-dimensional monolayer water confined in hydrophobic and charged environments.
Kumar, Pradeep; Han, Sungho
2012-09-21
We perform molecular dynamics simulations to study the effect of charged surfaces on the intermediate and long time dynamics of water in nanoconfinements. Here, we use the transferable interaction potential with five points (TIP5P) model of a water molecule confined in both hydrophobic and charged surfaces. For a single molecular layer of water between the surfaces, we find that the temperature dependence of the lateral diffusion constant of water up to very high temperatures remains Arrhenius with a high activation energy. In case of charged surfaces, however, the dynamics of water in the intermediate time regime is drastically modified presumably due to the transient coupling of dipoles of water molecules with electric field fluctuations induced by charges on the confining surfaces. Specifically, the lateral mean square displacements display a distinct super-diffusive behavior at intermediate time scale, defined as the time scale between ballistic and diffusive regimes. This change in the intermediate time-scale dynamics in the charged confinement leads to the enhancement of long-time dynamics as reflected in increasing diffusion constant. We introduce a simple model for a possible explanation of the super-diffusive behavior and find it to be in good agreement with our simulation results. Furthermore, we find that confinement and the surface polarity enhance the low frequency vibration in confinement compared to bulk water. By introducing a new effective length scale of coupling between translational and orientational motions, we find that the length scale increases with the increasing strength of the surface polarity. Further, we calculate the correlation between the diffusion constant and the excess entropy and find a disordering effect of polar surfaces on the structure of water. Finally, we find that the empirical relation between the diffusion constant and the excess entropy holds for a monolayer of water in nanoconfinement.
Molecular dynamics study of rhodamine 6G diffusion at n-decane-water interfaces.
Popov, Piotr; Steinkerchner, Leo; Mann, Elizabeth K
2015-05-01
Two-dimensional diffusion of a rhodamine 6G fluorescent tracer molecule at the n-decane-water interface was studied with all-atom molecular dynamics simulations. In agreement with experimental data, we find increased mobility of the tracer at the n-decane-water interfaces in comparison to its mobility in bulk water. Orientational ordering of water and n-decane molecules near the interface is observed, and may change the interfacial viscosity as suggested to explain the experimental data. However, the restricted rotational motion of the rhodamine molecule at the interface suggests that the Saffman-Delbrück model may be a more appropriate approximation of rhodamine diffusion at n-decane-water interfaces, and, without any decrease in interfacial viscosity, suggests faster diffusion consistent with both experimental and simulation values.
Thermodynamic properties and diffusion of water + methane binary mixtures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shvab, I.; Sadus, Richard J., E-mail: rsadus@swin.edu.au
2014-03-14
Thermodynamic and diffusion properties of water + methane mixtures in a single liquid phase are studied using NVT molecular dynamics. An extensive comparison is reported for the thermal pressure coefficient, compressibilities, expansion coefficients, heat capacities, Joule-Thomson coefficient, zero frequency speed of sound, and diffusion coefficient at methane concentrations up to 15% in the temperature range of 298–650 K. The simulations reveal a complex concentration dependence of the thermodynamic properties of water + methane mixtures. The compressibilities, heat capacities, and diffusion coefficients decrease with increasing methane concentration, whereas values of the thermal expansion coefficients and speed of sound increase. Increasing methanemore » concentration considerably retards the self-diffusion of both water and methane in the mixture. These effects are caused by changes in hydrogen bond network, solvation shell structure, and dynamics of water molecules induced by the solvation of methane at constant volume conditions.« less
Proton transfer and the diffusion of H+ and OH- ions along water wires.
Lee, Song Hi; Rasaiah, Jayendran C
2013-09-28
Hydrogen and hydroxide ion transport in narrow carbon nanotubes (CNTs) of diameter 8.1 Å and lengths up to 582 Å are investigated by molecular dynamics simulations using a dissociating water model. The diffusion coefficients of the free ions in an open chain are significantly larger than in periodically replicated wires that necessarily contain D or L end defects, and both are higher than they are in bulk water. The free hydroxide ion diffuses faster than the free hydronium ion in short CNTs, unlike diffusion in liquid water, and both coefficients increase and converge to nearly the same value with increasing tube length. The diffusion coefficients of the two ions increase further when the tubes are immersed in a water reservoir and they move easily out of the tube, suggesting an additional pathway for proton transport via OH(-) ions in biological channels.
NASA Astrophysics Data System (ADS)
Horne, Richard B.; Thorne, Richard M.
2000-03-01
It has been suggested that highly anisotropic electron pancake distributions are the result of pitch angle diffusion by electrostatic electron cyclotron harmonic (ECH) and whistler mode waves in the equatorial region. Here we present pitch angle diffusion rates for ECH wave spectra centered at different frequencies with respect to the electron gyrofrequency Ωe corresponding to spacecraft observations. The wave spectra are carefully mapped to the correct resonant electron velocities. We show that previous diffusion calculations of ECH waves at 1.5Ωe, driven by the loss cone instability, result in large diffusion rates confined to a small range of pitch angles near the loss cone and therefore cannot account for pancake distributions. However, when the wave spectrum is centered at higher frequencies in the band (>1.6Ωe), the diffusion rates become very small inside the loss cone, peak just outside, and remain large over a wide range of pitch angles up to 60° or more. When the upper hybrid resonance frequency ωUHR is several times Ωe, ECH waves excited in higher bands also contribute significantly to pitch angle diffusion outside the loss cone up to very large pitch angles. We suggest that ECH waves driven by a loss cone could form pancake distributions as they grow if the wave spectrum extends from the middle to the upper part of the first (and higher) gyroharmonic bands. Alternatively, we suggest that pancake distributions can be formed by outward propagation in a nonhomogeneous medium, so that resonant absorption occurs at higher frequencies between(n+
Avian Egg Latebra as Brain Tissue Water Diffusion Model
Maier, Stephan E.; Mitsouras, Dimitris; Mulkern, Robert V.
2013-01-01
Purpose Simplified models of non-monoexponential diffusion signal decay are of great interest to study the basic constituents of complex diffusion behaviour in tissues. The latebra, a unique structure uniformly present in the yolk of avian eggs, exhibits a non-monoexponential diffusion signal decay. This model is more complex than simple phantoms based on differences between water and lipid diffusion, but is also devoid of microscopic structures with preferential orientation or perfusion effects. Methods Diffusion scans with multiple b-values were performed on a clinical 3 Tesla system in raw and boiled chicken eggs equilibrated to room temperature. Diffusion encoding was applied over the ranges 5–5,000 and 5–50,000 s/mm2. A low read-out bandwidth and chemical shift was used for reliable lipid/water separation. Signal decays were fitted with exponential functions. Results The latebra, when measured over the 5–5,000 s/mm2 range, exhibited independent of preparation clearly biexponential diffusion, with diffusion parameters similar to those typically observed in in-vivo human brain. For the range 5–50,000 s/mm2 there was evidence of a small third, very slow diffusing water component. Conclusion The latebra of the avian egg contains membrane structures, which may explain a deviation from a simple monoexponential diffusion signal decay, which is remarkably similar to the deviation observed in brain tissue. PMID:24105853
NASA Astrophysics Data System (ADS)
Dong, Feifei; Liu, Yong; Wu, Zhen; Chen, Yihui; Guo, Huaicheng
2018-07-01
Targeting nonpoint source (NPS) pollution hot spots is of vital importance for placement of best management practices (BMPs). Although physically-based watershed models have been widely used to estimate nutrient emissions, connections between nutrient abatement and compliance of water quality standards have been rarely considered in NPS hotspot ranking, which may lead to ineffective decision-making. It's critical to develop a strategy to identify priority management areas (PMAs) based on water quality response to nutrient load mitigation. A water quality constrained PMA identification framework was thereby proposed in this study, based on the simulation-optimization approach with ideal load reduction (ILR-SO). It integrates the physically-based Soil and Water Assessment Tool (SWAT) model and an optimization model under constraints of site-specific water quality standards. To our knowledge, it was the first effort to identify PMAs with simulation-based optimization. The SWAT model was established to simulate temporal and spatial nutrient loading and evaluate effectiveness of pollution mitigation. A metamodel was trained to establish a quantitative relationship between sources and water quality. Ranking of priority areas is based on required nutrient load reduction in each sub-watershed targeting to satisfy water quality standards in waterbodies, which was calculated with genetic algorithm (GA). The proposed approach was used for identification of PMAs on the basis of diffuse total phosphorus (TP) in Lake Dianchi Watershed, one of the three most eutrophic large lakes in China. The modeling results demonstrated that 85% of diffuse TP came from 30% of the watershed area. Compared with the two conventional targeting strategies based on overland nutrient loss and instream nutrient loading, the ILR-SO model identified distinct PMAs and narrowed down the coverage of management areas. This study addressed the urgent need to incorporate water quality response into PMA identification and showed that the ILR-SO approach is effective to guide watershed management for aquatic ecosystem restoration.
Experimental data from coastal diffusion tests. [Smoke diffusion over coastal waters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raynor, G S; Brown, R M; SethuRaman, S
1976-10-01
Data are reported from a series of seven experiments on the diffusion of smoke plumes over northeast Atlantic Ocean coastal waters in response to wind fluctuations and other meteorological variables. A qualitative description of smoke behavior during each experiment is included and photographs of the smoke are included to illustrate the type of diffusion observed. (CH)
USDA-ARS?s Scientific Manuscript database
The diffusion coefficient of water in biobased hydrogels were measured utilizing a simple NMR method. This method tracks the migration of deuterium oxide through imaging data that is fit to a diffusion equation. The results show that a 5 wt% soybean oil based hydrogel gives aqueous diffusion of 1.37...
Evidence for Enhanced Matrix Diffusion in Geological Environment
NASA Astrophysics Data System (ADS)
Sato, Kiminori; Fujimoto, Koichiro; Nakata, Masataka; Shikazono, Naotatsu
2013-01-01
Molecular diffusion in rock matrix, called as matrix diffusion, has been appreciated as a static process for elemental migration in geological environment that has been acknowledged in the context of geological disposal of radioactive waste. However, incomprehensible enhancement of matrix diffusion has been reported at a number of field test sites. Here, the matrix diffusion of saline water at Horonobe, Hokkaido, Japan is highlighted directly probing angstrom-scale pores on a field scale up to 1 km by positron--positronium annihilation spectroscopy. The first application of positron--positronium annihilation spectroscopy to field-scale geophysical research reveals the slight variation of angstrom-scale pores influenced by saline water diffusion with complete accuracy. We found widely interconnected 3 Å pores, which offer the pathway of saline water diffusion with the highly enhanced effective matrix diffusion coefficient of 4× 10-6 cm2 s-1. The present findings provide unambiguous evidence that the angstrom-scale pores enhance effective matrix diffusion on a field scale in geological environment.
Effects of whistler mode hiss waves on the radiation belts structure during quiet times
NASA Astrophysics Data System (ADS)
Ripoll, J. F.; Santolik, O.; Reeves, G. D.; Kurth, W. S.; Denton, M.; Loridan, V.; Thaller, S. A.; Cunningham, G.; Kletzing, C.; Turner, D. L.; Henderson, M. G.; Ukhorskiy, S.; Drozdov, A.; Cervantes Villa, J. S.; Shprits, Y.
2017-12-01
We present dynamic Fokker-Planck simulations of the electron radiation belts and slot formation during the quiet days that can follow a storm. Simulations are made for all energies and L-shells between 2 and 6 in the view of recovering the observations of two particular events. Pitch angle diffusion is essential to energy structure of the belts and slot region. Pitch angle diffusion is computed from data-driven spatially and temporally-resolved whistler mode hiss wave and ambient plasma observations from the Van Allen Probes satellites. The simulations are performed either with a 3D formulation that uses pitch angle diffusion coefficients or with a simpler 1D Fokker-Planck equation based on losses computed from a lifetime. Validation is carried out globally against Magnetic Electron and Ion Spectrometer observations of the belts at all energy. Results are complemented with a sensitivity study involving different radial diffusion coefficients, electron lifetimes, and pitch angle diffusion coefficients. We discuss which models allow to recover the observed "S-shaped" energy-dependent inner boundary to the outer zone that results from the competition between diffusive radial transport and losses. Periods when the plasmasphere extends beyond L 5 favor long-lasting hiss losses from the outer belt. Through these simulations, we explain the full structure in energy and L-shell of the belts and the slot formation by hiss scattering during quiet storm recovery.
NASA Astrophysics Data System (ADS)
Araki, Takumi; Cruz-Silva, Rodolfo; Tejima, Syogo; Ortiz-Medina, Josue; Morelos-Gomez, Aaron; Takeuchi, Kenji; Hayashi, Takuya; Terrones, Mauricio; Endo, Morinobu
2018-02-01
This paper is a contribution to the Physical Review Applied collection in memory of Mildred S. Dresselhaus. The mechanism of water diffusion across reverse osmosis nanocomposite membranes made of carbon nanotubes (CNTs) and aromatic polyamide is not completely understood despite its high potential for desalination applications. While most of the groups have proposed that superflow inside the CNT might positively impact the water flow across membranes, here we show theoretical evidence that this is not likely the case in composite membranes because CNTs are usually oriented parallel to the membrane surface, not to mention that sometimes the nanotube cores are occluded. Instead, we propose an oriented diffusion mechanism that explains the high water permeation by decreasing the diffusion path of water molecules across the membranes, even in the presence of CNTs that behave as impermeable objects. Finally, we provide a comprehensive description of the molecular dynamics occurring in water desalination membranes by considering the bond polarizability caused by dynamic charge transfer and explore the use of molecular-dynamics-derived stochastic diffusion simulations. The proposed water diffusion mechanism offers an alternative and most likely explanation for the high permeation phenomena observed in CNTs and PA nanocomposite membranes, and its understanding can be helpful to design the next generation of reverse osmosis desalination membranes.
Directional diffusivity as a magnetic resonance (MR) biomarker in demyelinating disease
NASA Astrophysics Data System (ADS)
Benzinger, Tammie L. S.; Cross, Anne H.; Xu, Junqian; Naismith, Robert; Sun, Shu-Wei; Song, Sheng-Kwei
2007-09-01
Directional diffusivities derived from diffusion tensor magnetic resonance imaging (DTI) measurements describe water movement parallel to (λ ||, axial diffusivity) and perpendicular to (λ⊥radial diffusivity) axonal tracts. λ || and λ⊥ have been shown to differentially detect axon and myelin abnormalities in several mouse models of central nervous system white matter pathology in our laboratory. These models include experimental autoimmune encephalomyelitis (EAE), (1) myelin basic protein mutant mice with dysmyelination and intact axons, (2) cuprizone-induced demyelination, and remyelination, with reversible axon injury (2, 3) and a model of retinal ischemia in which retinal ganglion cell death is followed by Wallerian degeneration of optic nerve, with axonal injury preceding demyelination. (4) Decreased λ|| correlates with acute axonal injury and increased λ⊥ indicates myelin damage. (4) More recently, we have translated this approach to human MR, investigating acute and chronic optic neuritis in adults with multiple sclerosis, brain lesions in adults with multiple sclerosis, and acute disseminated encephalomyelitis (ADEM) in children. We are also investigating the use of this technique to probe the underlying structural change of the cervical spinal cord in acute and chronic T2- hyperintense lesions in spinal stenosis, trauma, and transverse myelitis. In each of these demyelinating diseases, the discrimination between axonal and myelin injury which we can achieve has important prognostic and therapeutic implications. For those patients with myelin injury but intact axons, early, directed drug therapy has the potential to prevent progression to axonal loss and permanent disability.
A potential risk of overestimating apparent diffusion coefficient in parotid glands.
Liu, Yi-Jui; Lee, Yi-Hsiung; Chang, Hing-Chiu; Huang, Teng-Yi; Chiu, Hui-Chu; Wang, Chih-Wei; Chiou, Ta-Wei; Hsu, Kang; Juan, Chun-Jung; Huang, Guo-Shu; Hsu, Hsian-He
2015-01-01
To investigate transient signal loss on diffusion weighted images (DWI) and overestimation of apparent diffusion coefficient (ADC) in parotid glands using single shot echoplanar DWI (EPDWI). This study enrolled 6 healthy subjects and 7 patients receiving radiotherapy. All participants received dynamic EPDWI with a total of 8 repetitions. Imaging quality of DWI was evaluated. Probability of severe overestimation of ADC (soADC), defined by an ADC ratio more than 1.2, was calculated. Error on T2WI, DWI, and ADC was computed. Statistical analysis included paired Student t testing and Mann-Whitney U test. A P value less than 0.05 was considered statistically significant. Transient signal loss was visually detected on some excitations of DWI but not on T2WI or mean DWI. soADC occurred randomly among 8 excitations and 3 directions of diffusion encoding gradients. Probability of soADC was significantly higher in radiotherapy group (42.86%) than in healthy group (24.39%). The mean error percentage decreased as the number of excitations increased on all images, and, it was smallest on T2WI, followed by DWI and ADC in an increasing order. Transient signal loss on DWI was successfully detected by dynamic EPDWI. The signal loss on DWI and overestimation of ADC could be partially remedied by increasing the number of excitations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lienhard, D. M.; Huisman, A. J.; Krieger, U. K.
New measurements of water diffusion in secondary organic aerosol (SOA) material produced by oxidation of α-pinene and in a number of organic/inorganic model mixtures (3-methylbutane-1,2,3-tricarboxylic acid (3-MBTCA), levoglucosan, levoglucosan/NH 4HSO 4, raffinose) are presented. These indicate that water diffusion coefficients are determined by several properties of the aerosol substance and cannot be inferred from the glass transition temperature or bouncing properties. Our results suggest that water diffusion in SOA particles is faster than often assumed and imposes no significant kinetic limitation on water uptake and release at temperatures above 220 K. The fast diffusion of water suggests that heterogeneous icemore » nucleation on a glassy core is very unlikely in these systems. At temperatures below 220 K, model simulations of SOA particles suggest that heterogeneous ice nucleation may occur in the immersion mode on glassy cores which remain embedded in a liquid shell when experiencing fast updraft velocities. The particles absorb significant quantities of water during these updrafts which plasticize their outer layers such that these layers equilibrate readily with the gas phase humidity before the homogeneous ice nucleation threshold is reached. Glass formation is thus unlikely to restrict homogeneous ice nucleation. Only under most extreme conditions near the very high tropical tropopause may the homogeneous ice nucleation rate coefficient be reduced as a consequence of slow condensed-phase water diffusion. Since the differences between the behavior limited or non limited by diffusion are small even at the very high tropical tropopause, condensed-phase water diffusivity is unlikely to have significant consequences on the direct climatic effects of SOA particles under tropospheric conditions.« less
Study of Water Absorption in Raffia vinifera Fibres from Bandjoun, Cameroon
Sikame Tagne, N. R.; Njeugna, E.; Fogue, M.; Drean, J.-Y.; Nzeukou, A.; Fokwa, D.
2014-01-01
The study is focused on the water diffusion phenomenon through the Raffia vinifera fibre from the stem. The knowledge on the behavior of those fibres in presence of liquid during the realization of biocomposite, is necessary. The parameters like percentage of water gain at the point of saturation, modelling of the kinetic of water absorption, and the effective diffusion coefficient were the main objectives. Along a stem of raffia, twelve zones of sampling were defined. From Fick's 2nd law of diffusion, a new model was proposed and evaluated compared to four other models at a constant temperature of 23°C. From the proposed model, the effective diffusion coefficient was deduced. The percentage of water gain was in the range of 303–662%. The proposed model fitted better to the experimental data. The estimated diffusion coefficient was evaluated during the initial phase and at the final phase. In any cross section located along the stem of Raffia vinifera, it was found that the effective diffusion coefficient increases from the periphery to the centre during the initial and final phases. PMID:24592199
Kikuchi, Shingo; Onuki, Yoshinori; Kuribayashi, Hideto; Takayama, Kozo
2012-01-01
We reported previously that sustained release matrix tablets showed zero-order drug release without being affected by pH change. To understand drug release mechanisms more fully, we monitored the swelling and erosion of hydrating tablets using magnetic resonance imaging (MRI). Three different types of tablets comprised of polyion complex-forming materials and a hydroxypropyl methylcellulose (HPMC) were used. Proton density- and diffusion-weighted images of the hydrating tablets were acquired at intervals. Furthermore, apparent self-diffusion coefficient maps were generated from diffusion-weighted imaging to evaluate the state of hydrating tablets. Our findings indicated that water penetration into polyion complex tablets was faster than that into HPMC matrix tablets. In polyion complex tablets, water molecules were dispersed homogeneously and their diffusivity was relatively high, whereas in HPMC matrix tablets, water molecule movement was tightly restricted within the gel. An optimal tablet formulation determined in a previous study had water molecule penetration and diffusivity properties that appeared intermediate to those of polyion complex and HPMC matrix tablets; water molecules were capable of penetrating throughout the tablets and relatively high diffusivity was similar to that in the polyion complex tablet, whereas like the HPMC matrix tablet, it was well swollen. This study succeeded in characterizing the tablet hydration process. MRI provides profound insight into the state of water molecules in hydrating tablets; thus, it is a useful tool for understanding drug release mechanisms at a molecular level.
Interactions of diffuse and focused allogenic recharge in an eogenetic karst aquifer (Florida, USA)
NASA Astrophysics Data System (ADS)
Langston, Abigail L.; Screaton, Elizabeth J.; Martin, Jonathan B.; Bailly-Comte, Vincent
2012-06-01
The karstic upper Floridan aquifer in north-central Florida (USA) is recharged by both diffuse and allogenic recharge. To understand how recharged water moves within the aquifer, water levels and specific conductivities were monitored and slug tests were conducted in wells installed in the aquifer surrounding the Santa Fe River Sink and Rise. Results indicate that diffuse recharge does not mix rapidly within the aquifer but instead flows horizontally. Stratification may be aided by the high matrix porosity of the eogenetic karst aquifer. Purging wells for sample collection perturbed conductivity for several days, reflecting mixing of the stratified water and rendering collection of representative samples difficult. Interpretive numerical simulations suggest that diffuse recharge impacts the intrusion of allogenic water from the conduit by increasing hydraulic head in the surrounding aquifer and thereby reducing influx to the aquifer from the conduit. In turn, the increase of head within the conduits affects flow paths of diffuse recharge by moving newly recharged water vertically as the water table rises and falls. This movement may result in a broad vertical zone of dissolution at the water table above the conduit system, with thinner and more focused water-table dissolution at greater distance from the conduit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Broda, Jill Terese
The neutron flux across the nuclear reactor core is of interest to reactor designers and others. The diffusion equation, an integro-differential equation in space and energy, is commonly used to determine the flux level. However, the solution of a simplified version of this equation when automated is very time consuming. Since the flux level changes with time, in general, this calculation must be made repeatedly. Therefore solution techniques that speed the calculation while maintaining accuracy are desirable. One factor that contributes to the solution time is the spatial flux shape approximation used. It is common practice to use the samemore » order flux shape approximation in each energy group even though this method may not be the most efficient. The one-dimensional, two-energy group diffusion equation was solved, for the node average flux and core k-effective, using two sets of spatial shape approximations for each of three reactor types. A fourth-order approximation in both energy groups forms the first set of approximations used. The second set used combines a second-order approximation with a fourth-order approximation in energy group two. Comparison of the results from the two approximation sets show that the use of a different order spatial flux shape approximation results in considerable loss in accuracy for the pressurized water reactor modeled. However, the loss in accuracy is small for the heavy water and graphite reactors modeled. The use of different order approximations in each energy group produces mixed results. Further investigation into the accuracy and computing time is required before any quantitative advantage of the use of the second-order approximation in energy group one and the fourth-order approximation in energy group two can be determined.« less
NASA Astrophysics Data System (ADS)
Malek, Kourosh; Odijk, Theo; Coppens, Marc-Olivier
2005-07-01
The dynamics of water and sodium counter-ions (Na+) in a C2221 orthorhombic β-lactoglobulin crystal is investigated by means of 5 ns molecular dynamics simulations. The effect of the fluctuation of the protein atoms on the motion of water and sodium ions is studied by comparing simulations in a rigid and in a flexible lattice. The electrostatic interactions of sodium ions with the positively charged LYS residues inside the crystal channels significantly influence the ionic motion. According to our results, water molecules close to the protein surface undergo an anomalous diffusive motion. On the other hand, the motion of water molecules further away from the protein surface is normal diffusive. Protein fluctuations affect the diffusion constant of water, which increases from 0.646 ± 0.108 to 0.887 ± 0.41 nm2 ns-1, when protein fluctuations are taken into account. The pore size (0.63-1.05 nm) and the water diffusivities are in good agreement with previous experimental results. The dynamics of sodium ions is disordered. LYS residues inside the pore are the main obstacles to the motion of sodium ions. However, the simulation time is still too short for providing a precise description of anomalous diffusion of sodium ions. The results are not only of interest for studying ion and water transport through biological nanopores, but may also elucidate water-protein and ion-protein interactions in protein crystals.
Lu, Wanjun; Guo, Huirong; Chou, I.-Ming; Burruss, R.C.; Li, Lanlan
2013-01-01
Accurate values of diffusion coefficients for carbon dioxide in water and brine at reservoir conditions are essential to our understanding of transport behavior of carbon dioxide in subsurface pore space. However, the experimental data are limited to conditions at low temperatures and pressures. In this study, diffusive transfer of carbon dioxide in water at pressures up to 45 MPa and temperatures from 268 to 473 K was observed within an optical capillary cell via time-dependent Raman spectroscopy. Diffusion coefficients were estimated by the least-squares method for the measured variations in carbon dioxide concentration in the cell at various sample positions and time. At the constant pressure of 20 MPa, the measured diffusion coefficients of carbon dioxide in water increase with increasing temperature from 268 to 473 K. The relationship between diffusion coefficient of carbon dioxide in water [D(CO2) in m2/s] and temperature (T in K) was derived with Speedy–Angell power-law approach as: D(CO2)=D0[T/Ts-1]m where D0 = 13.942 × 10−9 m2/s, Ts = 227.0 K, and m = 1.7094. At constant temperature, diffusion coefficients of carbon dioxide in water decrease with pressure increase. However, this pressure effect is rather small (within a few percent).
Water in the critical zone: soil, water and life from profile to planet
NASA Astrophysics Data System (ADS)
Kirkby, Mike
2015-04-01
Water is essential to the critical zone between bedrock and the atmosphere, and without water the soil is dead. Water provides the basis for the abundant life within the soil and, interacting with micro-organisms, drives the key processes in the critical zone. This review looks at the balances that control the flow of water through the soil, and how water movement is one of the major controls on the fluxes and transformations that control the formation, evolution and loss of material that controls the 'life' and 'health' of the soil. At regional scales, climate, acting largely through the soil hydrology, plays a major part in determining the type of soils developed - from hyper arid soils dominated by aeolian inputs, through arid and semi-arid soils with largely vertical water exchanges with the atmosphere, to temperate soils with substantial lateral drainage, and humid soils dominated by organic peats. Soil water balance controls the partition of precipitation between evaporative loss, lateral subsurface flow and groundwater recharge, and, in turn, has a major influence on the potential for plant growth and on the lateral connectivity between soils on a hillslope. Sediment and solute balances distinguish soils of accumulation from soils that tend towards a stable chemical depletion ratio. Reflecting the availability of water and the soil material, carbon balance plays a major role in soil horizonation and distinguishes soils dominated by mineral or organic components. At finer catena and catchment scales, lateral connectivity, or its absence, determines how soils evolve through the transfer of water and sediment downslope, creating more or less integrated landscapes in a balance between geomorphological and pedological processes. Within single soil profiles, the movement of water controls the processes of weathering and soil horizonation by ion diffusion, advective leaching and bioturbation, creating horizonation that, in turn, modifies the hydrological responses of both soil and landscape. For example, the soil hydrological regime helps to contrast soils that accumulate more and less soluble constituents of the parent material.
Huffman, Raegan L.
2002-01-01
Ground-water samples were collected in April 1999 at Naval Air Station Whidbey Island, Washington, with passive diffusion samplers and a submersible pump to compare concentrations of volatile organic compounds (VOCs) in water samples collected using the two sampling methods. Single diffusion samplers were installed in wells with 10-foot screened intervals, and multiple diffusion samplers were installed in wells with 20- to 40-foot screened intervals. The diffusion samplers were recovered after 20 days and the wells were then sampled using a submersible pump. VOC concentrations in the 10-foot screened wells in water samples collected with diffusion samplers closely matched concentrations in samples collected with the submersible pump. Analysis of VOC concentrations in samples collected from the 20- to 40-foot screened wells with multiple diffusion samplers indicated vertical concentration variation within the screened interval, whereas the analysis of VOC concentrations in samples collected with the submersible pump indicated mixing during pumping. The results obtained using the two sampling methods indicate that the samples collected with the diffusion samplers were comparable with and can be considerably less expensive than samples collected using a submersible pump.
Metal based gas diffusion layers for enhanced fuel cell performance at high current densities
NASA Astrophysics Data System (ADS)
Hussain, Nabeel; Van Steen, Eric; Tanaka, Shiro; Levecque, Pieter
2017-01-01
The gas diffusion layer strongly influences the performance and durability of polymer electrolyte fuel cells. A major drawback of current carbon fiber based GDLs is the non-controlled variation in porosity resulting in a random micro-structure. Moreover, when subjected to compression these materials show significant reduction in porosity and permeability leading to water management problems and mass transfer losses within the fuel cell. This study investigated the use of uniform perforated metal sheets as GDLs in conjunction with microchannel flowfields. A metal sheet design with a pitch of 110 μm and a hole diameter of 60 μm in combination with an MPL showed superior performance in the high current density region compared to a commercially available carbon paper based GDL in a single cell environment. Fuel cell testing with different oxidants (air, heliox and oxygen) indicate that the metal sheet offers both superior diffusion and reduced flooding in comparison to the carbon based GDL. The presence of the MPL has been found to be critical to the functionality of the metal sheet suggesting that the MPL design may represent an important optimisation parameter for further improvements in performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velikovich, A. L.; Giuliani, J. L.; Zalesak, S. T.
The magnetized liner inertial fusion (MagLIF) approach to inertial confinement fusion [Slutz et al., Phys. Plasmas 17, 056303 (2010); Cuneo et al., IEEE Trans. Plasma Sci. 40, 3222 (2012)] involves subsonic/isobaric compression and heating of a deuterium-tritium plasma with frozen-in magnetic flux by a heavy cylindrical liner. The losses of heat and magnetic flux from the plasma to the liner are thereby determined by plasma advection and gradient-driven transport processes, such as thermal conductivity, magnetic field diffusion, and thermomagnetic effects. Theoretical analysis based on obtaining exact self-similar solutions of the classical collisional Braginskii's plasma transport equations in one dimension demonstratesmore » that the heat loss from the hot compressed magnetized plasma to the cold liner is dominated by transverse heat conduction and advection, and the corresponding loss of magnetic flux is dominated by advection and the Nernst effect. For a large electron Hall parameter (ω{sub e}τ{sub e}≫1), the effective diffusion coefficients determining the losses of heat and magnetic flux to the liner wall are both shown to decrease with ω{sub e}τ{sub e} as does the Bohm diffusion coefficient cT/(16eB), which is commonly associated with low collisionality and two-dimensional transport. We demonstrate how this family of exact solutions can be used for verification of codes that model the MagLIF plasma dynamics.« less
Gupta, Rini; Chandra, Amalendu
2007-07-14
We have performed a series of molecular dynamics simulations of water-acetone mixtures containing either an ionic solute or a neutral hydrophobic solute to study the extent of nonideality in the dynamics of these solutes with variation of composition of the mixtures. The diffusion coefficients of the charged solutes, both cationic and anionic, are found to change nonmonotonically with the composition of the mixtures showing strong nonideality of their dynamics. Also, the extent of nonideality in the diffusion of these charged solutes is found to be similar to the nonideality that is observed for the diffusion and orientational relaxation of water and acetone molecules in these mixtures which show a somewhat similar changes in the solvation characteristics of charged and dipolar solutes with changes of composition of water-acetone mixtures. The diffusion of the hydrophobic solute, however, shows a monotonic increase with increase of acetone concentration showing its different solvation characteristics as compared to the charged and dipolar solutes. The links between the nonideality in diffusion and solvation structures are further confirmed through calculations of the relevant solute-solvent and solvent-solvent radial distribution functions for both ionic and hydrophobic solutes. We have also calculated various pair dynamical properties such as the relaxation of water-water and acetone-water hydrogen bonds and residence dynamics of water molecules in water and acetone hydration shells. The lifetimes of both water-water and acetone-water hydrogen bonds and also the residence times of water molecules are found to increase steadily with increase in acetone concentration. No maximum or minimum was found in the composition dependence of these pair dynamical quantities. The lifetimes of water-water hydrogen bonds are always found to be longer than that of acetone-water hydrogen bonds in these mixtures. The residence times of water molecules are also found to follow a similar trend.
Merunka, Dalibor; Peric, Miroslav
2017-05-25
Electron paramagnetic resonance (EPR) spectra of radicals in solution depend on their relative motion, which modulates the Heisenberg spin exchange and dipole-dipole interactions between them. To gain information on radical diffusion from EPR spectra demands both reliable spectral fitting to find the concentration coefficients of EPR parameters and valid expressions between the concentration and diffusion coefficients. Here, we measured EPR spectra of the 14 N- and 15 N-labeled perdeuterated TEMPONE radicals in normal and supercooled water at various concentrations. By fitting the EPR spectra to the functions based on the modified Bloch equations, we obtained the concentration coefficients for the spin dephasing, coherence transfer, and hyperfine splitting parameters. Assuming the continuous diffusion model for radical motion, the diffusion coefficients of radicals were calculated from the concentration coefficients using the standard relations and the relations derived from the kinetic equations for the spin evolution of a radical pair. The latter relations give better agreement between the diffusion coefficients calculated from different concentration coefficients. The diffusion coefficients are similar for both radicals, which supports the presented method. They decrease with lowering temperature slower than is predicted by the Stokes-Einstein relation and slower than the rotational diffusion coefficients, which is similar to the diffusion of water molecules in supercooled water.
Double-diffusive layers in the Adriatic Sea
NASA Astrophysics Data System (ADS)
Carniel, Sandro; Sclavo, Mauro; Kantha, Lakshmi; Prandke, Hartmut
2008-01-01
A microstructure profiler was deployed to make turbulence measurements in the upper layers of the southern Adriatic Sea in the Mediterranean during the Naval Research Laboratory (NRL) DART06A (Dynamics of the Adriatic in Real Time) winter cruise in March 2006. Measurements in the Po river plume along the Italian coast near the Gargano promontory displayed classic double-diffusive layers and staircase structures resulting from the relatively colder and fresher wintertime Po river outflow water masses overlying warmer and more saline water masses from the Adriatic Sea. We report here on the water mass and turbulence structure measurements made both in the double-diffusive interfaces and the adjoining mixed layers in the water columns undergoing double-diffusive convection (DDC). This dataset augments the relatively sparse observations available hitherto on the diffusive layer type of DDC. Measured turbulence diffusivities are consistent with those from earlier theoretical and experimental formulations, suggesting that the wintertime Po river plume is a convenient and easily accessible place to study double diffusive convective processes of importance to mixing in the interior of many regions of the global oceans.
Morris, S
2001-03-01
Gills are the primary organ for salt transport, but in land crabs they are removed from water and thus ion exchanges, as well as CO(2) and ammonia excretion, are compromised. Urinary salt loss is minimised in land crabs by redirecting the urine across the gills where salt reabsorption occurs. Euryhaline marine crabs utilise apical membrane branchial Na(+)/H(+) and Cl(-)/HCO(3)(-) exchange powered by a basal membrane Na(+)/K(+)-ATPase, but in freshwater crustaceans an apical V-ATPase provides for electrogenic uptake of Cl(-) in exchange for HCO(3)(-). The HCO(3)(-) is provided by carbonic anhydrase facilitating CO(2) excretion while NH(4)(+) can substitute for K(+) in the basal ATPase and for H(+) in the apical exchange. Gecarcinid land crabs and the terrestrial anomuran Birgus latro can lower the NaCl concentration of the urine to 5 % of that of the haemolymph as it passes across the gills. This provides a filtration-reabsorption system analogous to the vertebrate kidney. Crabs exercise hormonal control over branchial transport processes. Aquatic hyper-regulators release neuroamines from the pericardial organs, including dopamine and 5-hydroxytryptamine (5-HT), which via a cAMP-mediated phosphorylation stimulate Na(+)/K(+)-ATPase activity and NaCl uptake. Freshwater species utilise a V-ATPase, and additional mechanisms of control have been suggested. Crustacean hyperglycaemic hormone (CHH) has now also been confirmed to have effects on hydromineral regulation, and a putative role for neuropeptides in salt and water balance suggests that current models for salt regulation are probably incomplete. In a terrestrial crabs there may be controls on both active uptake and diffusive loss. The land crab Gecarcoidea natalis drinking saline water for 3 weeks reduced net branchial Na(+) uptake but not Na(+)/K(+)-ATPase activity, thus implying a reduction in diffusive Na(+) loss. Further, in G. natalis Na(+) uptake and Na(+)/K(+)-ATPase were stimulated by 5-HT independently of cAMP. Conversely, in the anomuran B. latro, branchial Na(+) and Cl(-) uptake and Na(+)/K(+)-ATPase are inhibited by dopamine, mediated by cAMP. There has been a multiple evolution of a kidney-type system in terrestrial crabs capable of managing salt, CO(2) and NH(3) movements.
A simplified model for assessing the impact to groundwater of swine farms at regional level
NASA Astrophysics Data System (ADS)
Massabo, Marco; Viterbo, Angelo
2013-04-01
Swine manure can be an excellent source of nutrients for crop production. Several swine farms are present in the territory of Regione Umbria and more than 200.000 of swine heads are present yearly in the whole territory while some municipalities host more than 30.000 heads over a relatively limited land. Municipality with elevated number of swine heads has registered particularly higher Nitrate concentration in groundwater that requires a management plan and intervention in order to determine the maximum allowed N loads in the specific region. Use of manure and fertilizers in agricultural field produce diffuse nitrogen (N) losses that are a major cause of excessive nitrate concentrations in ground and surface waters and have been of concern since decades. Excessive nitrate concentrations in groundwater can have toxic effects when used as drinking water and cause eutrophication in surface waters. For management and environmental planning purposes, it is necessary to assess the magnitude of diffuse N losses from agricultural fields and how they are influenced by factors such as management practices, type of fertilizers -organic or inorganic - climate and soil etc. There are several methods for assessing N leaching, they span from methods based on field test to complex models that require many input data. We use a simple index method that accounts for the type of fertilizer used - inorganic, swine or cattle manure- and hydrological and hydrogeological conditions. Hydrological conditions such as infiltration rates are estimated by a fully distributed hydrological model. Data on inorganic and organic fertilization are estimated at municipal level by using the nutrient crops needs and the statistics of swine and cattle heads within the municipality. The index method has been calibrated by using groundwater concentration as a proxy of N losses from agriculture. A time series of three years of data has been analyzed. The application of the simple index method allowed to distinguish the contribute of inorganic fertilization, swine and cattle manuring and can be used as a criteria for the management of the quantity of N load for swine fams in a specific territory. The approach as been applied to Regione Umbria and offers a quantitative approach for the planning of the number of swine farms, swine heads and amount of N loads in the entire region.
Temporal-spatial loss of diffuse pesticide and potential risks for water quality in China.
Ouyang, Wei; Cai, Guanqing; Huang, Weijia; Hao, Fanghua
2016-01-15
Increasing amount of pesticide has been used in Chinese agricultural system with effects on environmental quality and human health. The comprehensive inventory of pesticide use in six main crop categories over the period from 1990 to 2011 in China was conducted. The national average pesticide use intensity was estimated 1.74k g · ha(-1) for grain crops in paddy land, 1.31 kg · ha(-1) for grain crops in dry land, 1.38 kg · ha(-1) for economic crops, 3.82 kg · ha(-1) for vegetables, 1.54 kg · ha(-1) for tea plantations, and 3.49 kg · ha(-1) for orchards. The pesticide use was estimated to be approximately 5.24 × 10(4)t for grain crops in paddy land, 1.05 × 10(5)t for grain crops in dry land, 3.08 × 10(4)t for economic crops, 7.51 × 10(4)t for vegetables, 3.26 × 10(3)t for tea plantations, and 4.13 × 10(4)t for orchards. Based on the pesticide use and loss coefficients for each category, the distribution of pesticide loss in China was calculated. Total pesticide loss in China was estimated about 4.39 × 10(3)t in 2011. The pesticide loss from six main crop categories was about 14.84% for grain crops in paddy land of total pesticide loss, 33.31% for grain crops in dry land, 10.47% for economic crops, 26.37% for vegetables, 1.08% for tea plantations and 13.93% for orchards. The results indicated that the highest pesticide use intensity and highest pesticide loss rate occurred in China's eastern and central provinces. The Monte Carlo simulation was used to quantify the uncertainties associated with estimation of pesticide use and loss rate for the six types of crops. The potential risk to national water quality was assessed and the water in the provinces of Henan, Shandong, Hebei, Beijing and Shanghai was at high risk for pesticide pollution. The implication for the future agricultural and environmental policies on reducing the risk to environmental quality was also summarized. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bender, T.M.; Pecora, R.
1988-03-24
The mutual diffusion coefficients of the water-rich region of the 2-butoxyethanol (BE)water system were measured by dynamic light scattering at 10, 25, and 40/sup 0/C. At mole fraction of BE greater than 0.02 (X/sub BE/ greater than or equal to 0.02), the results were in good agreement with the work of T. Kato. Below X/sub BE/ = 0.02 an anomalous diffusion region appeared with particles of apparent hydrodynamic radius of up to 1000 A being observed in agreement with the work of S. Kato et al. Further investigations using BE from different sources did not show the anomalous diffusion regionmore » and indicate that the possible presence of small amounts of contaminants in the BE is the source of this anomalous diffusion data« less
A Poor Relationship Between Sea Level and Deep-Water Sand Delivery
NASA Astrophysics Data System (ADS)
Harris, Ashley D.; Baumgardner, Sarah E.; Sun, Tao; Granjeon, Didier
2018-08-01
The most commonly cited control on delivery of sand to deep water is the rate of relative sea-level fall. The rapid rate of accommodation loss on the shelf causes sedimentation to shift basinward. Field and experimental numerical modeling studies have shown that deep-water sand delivery can occur during any stage of relative sea level position and across a large range of values of rate of relative sea-level change. However, these studies did not investigate the impact of sediment transport efficiency on the relationship between rate of relative sea-level change and deep-water sand delivery rate. We explore this relationship using a deterministic nonlinear diffusion-based numerical stratigraphic forward model. We vary across three orders of magnitude the diffusion coefficient value for marine settings, which controls sediment transport efficiency. We find that the rate of relative sea-level change can explain no more than 1% of the variability in deep-water sand delivery rates, regardless of sediment transport efficiency. Model results show a better correlation with relative sea level, with up to 55% of the variability in deep water sand delivery rates explained. The results presented here are consistent with studies of natural settings which suggest stochastic processes such as avulsion and slope failure, and interactions among such processes, may explain the remaining variance. Relative sea level is a better predictor of deep-water sand delivery than rate of relative sea-level change because it is the sea-level fall itself which promotes sand delivery, not the rate of the fall. We conclude that the poor relationship between sea level and sand delivery is not an artifact of the modeling parameters but is instead due to the inadequacy of relative sea level and the rate of relative sea-level change to fully describe the dimensional space in which depositional systems reside. Subsequently, sea level itself is unable to account for the interaction of multiple processes that contribute to sand delivery to deep water.
[Phylogeny of gas exchange systems].
Jürgens, K D; Gros, G
2002-04-01
Several systems of gas transport have developed during evolution, all of which are able to sufficiently supply oxygen to the tissues and eliminate the CO2 produced by the metabolism, in spite of great distances between the environment and the individual cells of the tissues. Almost all these systems utilize a combination of convection and diffusion steps. Convection achieves an efficient transport of gas over large distances, but requires energy and cannot occur across tissue barriers. Diffusion, on the other hand, achieves gas transport across barriers, but requires optimization of diffusion paths and diffusion areas. When two convectional gas flows are linked via a diffusional barrier (gas/fluid in the case of the avian lung, fluid/fluid in the case of gills), the directions in which the respective convectional movements pass each other are important determinants of gas exchange efficiency (concurrent, countercurrent and cross-current systems). The tracheal respiration found in insects has the advantage of circumventing the convective gas transport step in the blood, thereby avoiding the high energy expenditure of circulatory systems. This is made possible by a system of tracheae, ending in tracheoles, that reaches from the body surface to every cell within the body. The last step of gas transfer in these animals occurs by diffusion from the tracheoles ("air capillaries") to the mitochondria of cells. The disadvantage is that the tracheal system occupies a substantial fraction of body volume and that, due to limited mechanical stability of tracheal walls, this system would not be able to operate under conditions of high hydrostatic pressures, i. e. in large animals. Respiration in an "open" system, i. e. direct exposure of the diffusional barrier to the environmental air, eliminates the problem of bringing the oxygen to the barrier by convection, as is necessary in the avian and mammalian lung, in the insects' tracheal system and in the gills. An open system is found in the respiration via the skin, which is of significance in some amphibians, but is limited by the thickness of the skin that constitutes a substantial diffusion path for O2 and CO2. The thick skin, on the other hand, provides mechanical protection as well as flexibility for the animals' body and helps avoid massive water loss via the body surface. The gills of fishes, in contrast, exhibit rather short diffusion distances, are located in a mechanically protected space, and the problem of water loss does not exist. The flows of blood and water occur in opposite direction (countercurrent flow) and this situation makes an arterial PO2 approaching the environmental PO2 possible. A major disadvantage is constituted by the environmental medium since water contains little O2 compared to air and, to compensate this, much energy is expended to maintain a high flow rate of water through the gills. In the mammalian lung ("pool system"), the presence of a dead space and the rhythmic ventilation that replaces only a small fraction of the gas volume of the lung per breath, are responsible for an arterial PO2 (2/3 of the atmospheric PO2) that cannot reach the expiratory PO2. However, an advantage of this feature is the constantly high alveolar and arterial PCO2, which provides a highly effective H(+) buffer system in the entire body. The apparent disadvantage of the mammalian lung is avoided by the avian lung, which uses an extended system of airways to establish continuous equilibration of a part of the capillary blood with fresh air (cross current system), during inspiration as well as during expiration. In this system, arterial PO2 can significantly exceed expiratory PO2. A disadvantage here is the enormous amount of space taken up by the avian lung, in animals of 1 kg body weight three times as much as taken up by the mammalian lung. All respiratory exchange systems considered here exhibit high degrees of optimization - yet follow highly diverse construction principles. There is no such thing as an ideal gas exchange system. The system that has evolved in each species depends to an impressive extent on environmental conditions, on body build and size, on the animal's patterns of movement and on its energy consumption.
Reduction of Altitude Diffuser Jet Noise Using Water Injection
NASA Technical Reports Server (NTRS)
Allgood, Daniel C.; Saunders, Grady P.; Langford, Lester A.
2014-01-01
A feasibility study on the effects of injecting water into the exhaust plume of an altitude rocket diffuser for the purpose of reducing the far-field acoustic noise has been performed. Water injection design parameters such as axial placement, angle of injection, diameter of injectors, and mass flow rate of water have been systematically varied during the operation of a subscale altitude test facility. The changes in acoustic far-field noise were measured with an array of free-field microphones in order to quantify the effects of the water injection on overall sound pressure level spectra and directivity. The results showed significant reductions in noise levels were possible with optimum conditions corresponding to water injection at or just upstream of the exit plane of the diffuser. Increasing the angle and mass flow rate of water injection also showed improvements in noise reduction. However, a limit on the maximum water flow rate existed as too large of flow rate could result in un-starting the supersonic diffuser.
Reduction of Altitude Diffuser Jet Noise Using Water Injection
NASA Technical Reports Server (NTRS)
Allgood, Daniel C.; Saunders, Grady P.; Langford, Lester A.
2011-01-01
A feasibility study on the effects of injecting water into the exhaust plume of an altitude rocket diffuser for the purpose of reducing the far-field acoustic noise has been performed. Water injection design parameters such as axial placement, angle of injection, diameter of injectors, and mass flow rate of water have been systematically varied during the operation of a subscale altitude test facility. The changes in acoustic far-field noise were measured with an array of free-field microphones in order to quantify the effects of the water injection on overall sound pressure level spectra and directivity. The results showed significant reductions in noise levels were possible with optimum conditions corresponding to water injection at or just upstream of the exit plane of the diffuser. Increasing the angle and mass flow rate of water injection also showed improvements in noise reduction. However, a limit on the maximum water flow rate existed as too large of flow rate could result in un-starting the supersonic diffuser.
Porous Flow and Diffusion of Water in the Mantle Wedge: Melting and Hydration Patterns
NASA Astrophysics Data System (ADS)
Conder, J. A.
2005-12-01
It is widely accepted that melting at volcanic arcs is primarily triggered by fluxing the mantle wedge from the dehydrating subducting slab. However, there is less concensus regarding how water moves into and within the mantle wedge. There are at least four possible mechanisms for water migration in the wedge: buoyant porous flow, diffusion through mineral crystals, advection of hydrated minerals, and compositionally buoyant diapers. The latter two mechanisms require at least one of the first two to occur to get water from the slab into the wedge before they can function. Using geodynamic models of mantle flow in a simplified subduction setting, we explore the implications of diffusion and porous flow of water in the wedge, particularly as they would affect the time for recycling water through the subduction factory and the predicted pattern of basalt hydration across the arc. The slab is assumed to dehydrate in a continuous fashion as the solubility of water in subducted oceanic crust decreases with temperature and pressure and the water then enters the wedge via one of the two transport mechanisms. Diffusion is controlled by temperature and by which minerals are present. Although olivine dominates the mantle mineral fraction, pyroxenes may control the diffusion of water in the wedge as the diffusivity of pyroxene is one or more orders of magnitude greater than olivine. Even assuming the faster diffusion rate of orthopyroxene in the models, diffusion can only be an important transport mechanism when subduction rates are slower than ~3 cm/yr. Flux melting occurs in the wedge above where the slab is ~100-160 km deep with the maximum above where the slab is ~120 km deep. Models including porous flow can result in melting at higher subduction rates provided the permeability of the mantle is greater than 10-17 m2. The true magnitude of the permeability likely varies with the corresponding porosity created by the free phase. With porous flow, melting occurs 20-30 km closer to the trench and the degree of melting is larger than when only diffusion is allowed. The rate of dehydration depends on the thermal structure which can affect the permeability. The dependence of permeability and diffusion with temperature may explain the variations in volcanic front location as observed at different arcs.
NASA Astrophysics Data System (ADS)
Splith, Tobias; Fröhlich, Dominik; Henninger, Stefan K.; Stallmach, Frank
2018-06-01
Diffusion of water in aluminum fumarate was studied by means of pulsed field gradient (PFG) nuclear magnetic resonance (NMR). Due to water molecules exchanging between the intracrystalline anisotropic pore space and the isotropic intercrystalline void space the model of intracrystalline anisotropic diffusion fails to describe the experimental PFG NMR data at high observation times. Therefore, the two-site exchange model developed by Kärger is extended to the case of exchange between an anisotropic and an isotropic site. This extended exchange model is solved by numerical integration. It describes the experimental data very well and yields values for the intracrystalline diffusion coefficient and the mean residence times of the respective sites. Further PFG NMR studies were performed with coatings consisting of small aluminum fumarate crystals, which are used in adsorptive heat transformation applications. The diffusion coefficients of water in the small crystal coating are compared to the values expected from the extended two-site exchange model and from the model of long-range diffusion.
[See the thinking brain: a story about water].
Le Bihan, D
2008-01-01
Among the astonishing Einstein's papers from 1905, there is one which unexpectedly gave birth to a powerful method to explore the brain. Molecular diffusion was explained by Einstein on the basis of the random translational motion of molecules which results from their thermal energy. In the mid 1980s it was shown that water diffusion in the brain could be imaged using MRI. During their random displacements water molecules probe tissue structure at a microscopic scale, interacting with cell membranes and, thus, providing unique information on the functional architecture of tissues. A dramatic application of diffusion MRI has been brain ischemia, following the discovery that water diffusion drops immediately after the onset of an ischemic event, when brain cells undergo swelling through cytotoxic edema. On the other hand, water diffusion is anisotropic in white matter, because axon membranes limit molecular movement perpendicularly to the fibers. This feature can be exploited to map out the orientation in space of the white matter tracks and image brain connections. More recently, it has been shown that diffusion MRI could accurately detect cortical activation. As the diffusion response precedes by several seconds the hemodynamic response captured by BOLD fMRI, it has been suggested that water diffusion could reflect early neuronal events, such as the transient swelling of activated cortical cells. If confirmed, this discovery will represent a significant breakthrough, allowing non invasive access to a direct physiological marker of brain activation. This approach will bridge the gap between invasive optical imaging techniques in neuronal cell cultures, and current functional neuroimaging approaches in humans, which are based on indirect and remote blood flow changes.
Bai, Yan; Lin, Yusong; Tian, Jie; Shi, Dapeng; Cheng, Jingliang; Haacke, E. Mark; Hong, Xiaohua; Ma, Bo; Zhou, Jinyuan
2016-01-01
Purpose To quantitatively compare the potential of various diffusion parameters obtained from monoexponential, biexponential, and stretched exponential diffusion-weighted imaging models and diffusion kurtosis imaging in the grading of gliomas. Materials and Methods This study was approved by the local ethics committee, and written informed consent was obtained from all subjects. Both diffusion-weighted imaging and diffusion kurtosis imaging were performed in 69 patients with pathologically proven gliomas by using a 3-T magnetic resonance (MR) imaging unit. An isotropic apparent diffusion coefficient (ADC), true ADC, pseudo-ADC, and perfusion fraction were calculated from diffusion-weighted images by using a biexponential model. A water molecular diffusion heterogeneity index and distributed diffusion coefficient were calculated from diffusion-weighted images by using a stretched exponential model. Mean diffusivity, fractional anisotropy, and mean kurtosis were calculated from diffusion kurtosis images. All values were compared between high-grade and low-grade gliomas by using a Mann-Whitney U test. Receiver operating characteristic and Spearman rank correlation analysis were used for statistical evaluations. Results ADC, true ADC, perfusion fraction, water molecular diffusion heterogeneity index, distributed diffusion coefficient, and mean diffusivity values were significantly lower in high-grade gliomas than in low-grade gliomas (U = 109, 56, 129, 6, 206, and 229, respectively; P < .05). Pseudo-ADC and mean kurtosis values were significantly higher in high-grade gliomas than in low-grade gliomas (U = 98 and 8, respectively; P < .05). Both water molecular diffusion heterogeneity index (area under the receiver operating characteristic curve [AUC] = 0.993) and mean kurtosis (AUC = 0.991) had significantly greater AUC values than ADC (AUC = 0.866), mean diffusivity (AUC = 0.722), and fractional anisotropy (AUC = 0.500) in the differentiation of low-grade and high-grade gliomas (P < .05). Conclusion Water molecular diffusion heterogeneity index and mean kurtosis values may provide additional information and improve the grading of gliomas compared with conventional diffusion parameters. © RSNA, 2015 Online supplemental material is available for this article. PMID:26230975
Baslow, Morris H; Hu, Caixia; Guilfoyle, David N
2012-07-01
In a human magnetic resonance diffusion-weighted imaging (DWI) investigation at 3 T and high diffusion sensitivity weighting (b = 1,800 s/mm(2)), which emphasizes the contribution of water in the extra-vascular compartment and minimizes that of the vascular compartment, we observed that visual stimulation with a flashing checkerboard at 8 Hz for a period of 600 s in eight subjects resulted in significant increases in DWI signals (mean +2.70%, range +0.51 to 8.54%). The increases in DWI signals in activated areas of the visual cortex indicated that during stimulation, the apparent diffusion coefficient (ADC) of extra-vascular compartment water decreased. In response to continuous stimulation, DWI signals gradually increased from pre-stimulation controls, leveling off after 400-500 s. During recovery from stimulation, DWI signals gradually decreased, approaching control levels in 300-400 s. In this study, we show for the first time that the effects of visual stimulation on DWI signals in the human visual cortex are cumulative over an extended period of time. We propose that these relatively slow stimulation-induced changes in the ADC of water in the extra-vascular compartment are due to transient changes in the ratio of faster diffusing free water to slower diffusing bound water and reflect brain water transport processes between the vascular and extra-vascular compartments at the cellular level. The nature of these processes including possible roles of the putative glucose water import and N-acetylaspartate water export molecular water pumps in brain function are discussed.
Microscopic diffusion processes measured in living planarians
Mamontov, Eugene
2018-03-08
Living planarian flatworms were probed using quasielastic neutron scattering to measure, on the pico-to-nanosecond time scale and nanometer length scale, microscopic diffusion of water and cell constituents in the planarians. Measurable microscopic diffusivities were surprisingly well defined in such a complex system as living animals. The overall variation in the microscopic diffusivity of cell constituents was found to be far lower than the variation in the microscopic diffusivity of water in planarians in a temperature range of 284.5 to 304.1K.
Microscopic diffusion processes measured in living planarians
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mamontov, Eugene
Living planarian flatworms were probed using quasielastic neutron scattering to measure, on the pico-to-nanosecond time scale and nanometer length scale, microscopic diffusion of water and cell constituents in the planarians. Measurable microscopic diffusivities were surprisingly well defined in such a complex system as living animals. The overall variation in the microscopic diffusivity of cell constituents was found to be far lower than the variation in the microscopic diffusivity of water in planarians in a temperature range of 284.5 to 304.1K.
Mechanical reinforcement and environmental effects on a nylon-6/clay nanocomposite
NASA Astrophysics Data System (ADS)
Shelley, J. Stebbins
2000-10-01
Hybridization, or modifying the organic polymers with inorganic constituents, is one method of achieving mechanical property improvements in polymeric materials while preserving processing characteristics. Toyota Central Research developed, and Ube Industries commercialized, one such hybrid nanocomposite: nylon-6/montmorillonite clay. This dissertation explores mechanisms of reinforcement in these nylon-6/clay nanocomposites and studies their degradation by atmospheric pollutants. A 100% improvement in modulus, 77% improvement in yield stress, and 54°C improvement in heat distortion temperature over nylon-6 were observed in extruded 5 wt% clay nanocomposite sheets. Infrared absorption spectrography and dynamic mechanical analysis were used to investigate the mechanisms of reinforcement in these nanocomposites. The improved mechanical properties, increased heat distortion temperature, reduced diffusion rate, and lower susceptibility to degradation in NO x observed where attributed to constraint of polymer chain motion by interaction with clay lamellae. Changes in the loss tangent peak in the glass transition region of the dynamic mechanical data provide an estimate of the volume of chains constrained by complexation of their mid-chain amide oxygen groups with the charged clay lamellae. X-ray analysis, optical microscopy, and light scattering were used to study changes in crystallization due to this complexation. Photomicrographs indicate that the morphology of the crystallites change from spherulitic to planar with the addition of clay. Decreases in diffusion rates of water and total water absorption were demonstrated in immersion experiments. Complexation of nylon-6 with 5 wt% clay reduces the total absorption of water by over 16%. The plane stress fracture toughness of extruded 5 wt% clay nanocomposite was 46% greater than that of nylon-6. The degradation of the nanocomposites in calcium chloride solution and NOx was examined through post exposure residual tensile and stress cracking experiments. CaCl 2 solution degraded the mechanical responses of the nanocomposite materials in proportion to the amount of water absorbed. NOx exposure degraded the mechanical performance regardless of the constraining effect of clay lamellae and the reduced diffusion rate in the nanocomposites. The stress cracking response of the nanocomposite in NOx (apparently not diffusion driven) resulted in a 650% increase in the time to failure of 5 wt% clay nanocomposites over unmodified nylon-6 for the same normalized stress intensity factor.
Molecular Classification of Low-Grade Diffuse Gliomas
Kim, Young-Ho; Nobusawa, Sumihito; Mittelbronn, Michel; Paulus, Werner; Brokinkel, Benjamin; Keyvani, Kathy; Sure, Ulrich; Wrede, Karsten; Nakazato, Yoichi; Tanaka, Yuko; Vital, Anne; Mariani, Luigi; Stawski, Robert; Watanabe, Takuya; De Girolami, Umberto; Kleihues, Paul; Ohgaki, Hiroko
2010-01-01
The current World Health Organization classification recognizes three histological types of grade II low-grade diffuse glioma (diffuse astrocytoma, oligoastrocytoma, and oligodendroglioma). However, the diagnostic criteria, in particular for oligoastrocytoma, are highly subjective. The aim of our study was to establish genetic profiles for diffuse gliomas and to estimate their predictive impact. In this study, we screened 360 World Health Organization grade II gliomas for mutations in the IDH1, IDH2, and TP53 genes and for 1p/19q loss and correlated these with clinical outcome. Most tumors (86%) were characterized genetically by TP53 mutation plus IDH1/2 mutation (32%), 1p/19q loss plus IDH1/2 mutation (37%), or IDH1/2 mutation only (17%). TP53 mutations only or 1p/19q loss only was rare (2 and 3%, respectively). The median survival of patients with TP53 mutation ± IDH1/2 mutation was significantly shorter than that of patients with 1p/19q loss ± IDH1/2 mutation (51.8 months vs. 58.7 months, respectively; P = 0.0037). Multivariate analysis with adjustment for age and treatment confirmed these results (P = 0.0087) and also revealed that TP53 mutation is a significant prognostic marker for shorter survival (P = 0.0005) and 1p/19q loss for longer survival (P = 0.0002), while IDH1/2 mutations are not prognostic (P = 0.8737). The molecular classification on the basis of IDH1/2 mutation, TP53 mutation, and 1p/19q loss has power similar to histological classification and avoids the ambiguity inherent to the diagnosis of oligoastrocytoma. PMID:21075857
Water diffusion to assess meat microstructure.
Laghi, Luca; Venturi, Luca; Dellarosa, Nicolò; Petracci, Massimiliano
2017-12-01
In the quest for setting up rapid methods to evaluate water retention ability of meat microstructures, time domain nuclear magnetic resonance (TD-NMR) has gained a prominent role, due to the possibility to observe water located outside the myofibrils, easily lost upon storage or cooking. Diffusion weighted signals could be used to monitor the shape and dimension of the pores in which water is confined, thus boosting the information offered by TD-NMR. The work outlines a parsimonious model to describe relative abundance and diffusion coefficient of intra and extra myofibrillar water populations, exchange rate between them, diameter of the myofibrillar cells. To test our model, we registered diffusion and T 2 weighted NMR signals at 20MHz on fresh meat from pectoralis major muscle of 100days old female turkey. We then purposely altered water distribution and myofibrils shape by means of freezing. The model predicted nicely the consequences of the imposed modifications. Copyright © 2016. Published by Elsevier Ltd.
Callaghan, P T; Jolley, K W; Lelievre, J
1979-10-01
Pulsed field gradient nuclear magnetic resonance has been used to measure water self-diffusion coefficients in the endosperm tissue of wheat grains as a function of the tissue water content. A model that confines the water molecules to a randomly oriented array of capillaries with both transverse dimension less than 100 nm has been used to fit the data and give a unique diffusion coefficient at each water content. The diffusion rates vary from 1.8 x 10(-10) m2s-1 at the lowest to 1.2 x 10(-9) m2s-1 at the highest moisture content. This variation can be explained in terms of an increase in water film thickness from approximately 0.5 to approximately 2.5 nm over the moisture range investigated (200-360 mg g-1).
NASA Astrophysics Data System (ADS)
He, Yuchen; Uehara, Satoshi; Takana, Hidemasa; Nishiyama, Hideya
2018-01-01
Advanced oxidation processes using hydroxyl radicals (ṡOH) generated inside bubbles in water has drawn widely interest for the high oxidation potential of OH radical to decompose persistent organic pollutants such as dioxins and humic acid for water purification. In this study, a two-dimensional diffusion model for a nano-pulse discharged bubble in water is established. Based on the experimental results of streamer propagation inside a bubble, the diffusion processes around the bubble interface and reactions of chemical species in liquids are simulated. The simulation results show that OH radicals can diffuse only several micrometers away from the bubble interface in water. Furthermore, the optimal operating voltage and frequency conditions for OH generation is obtained by comparing the OH concentration in water obtained from numerical simulation with that measured by spectroscopy in experiment.
Modelling of the mercury loss in fluorescent lamps under the influence of metal oxide coatings
NASA Astrophysics Data System (ADS)
Santos Abreu, A.; Mayer, J.; Lenk, D.; Horn, S.; Konrad, A.; Tidecks, R.
2016-11-01
The mercury transport and loss mechanisms in the metal oxide coatings of mercury low pressure discharge fluorescent lamps have been investigated. An existing model based on a ballistic process is discussed in the context of experimental mercury loss data. Two different approaches to the modeling of the mercury loss have been developed. The first one is based on mercury transition rates between the plasma, the coating, and the glass without specifying the underlying physical processes. The second one is based on a transport process driven by diffusion and a binding process of mercury reacting to mercury oxide inside the layers. Moreover, we extended the diffusion based model to handle multi-component coatings. All approaches are applied to describe mercury loss experiments under the influence of an Al 2 O 3 coating.
Swelling mechanism of urea cross-linked starch-lignin films in water.
Sarwono, Ariyanti; Man, Zakaria; Bustam, M Azmi; Subbarao, Duvvuri; Idris, Alamin; Muhammad, Nawshad; Khan, Amir Sada; Ullah, Zahoor
2018-06-01
Coating fertilizer particles with thin films is a possibility to control fertilizer release rates. It is observed that novel urea cross-linked starch-lignin composite thin films, prepared by solution casting, swell on coming into contact with water due to the increase in volume by water uptake by diffusion. The effect of lignin content, varied from 0% to 20% in steps of 5% at three different temperatures (25°C, 35°C and 45°C), on swelling of the film was investigated. By gravimetric analysis, the equilibrium water uptake and diffusion coefficient decrease with lignin content, indicating that the addition of lignin increases the hydrophobicity of the films. When temperature increases, the diffusion coefficient and the amount of water absorbed tend to increase. Assuming that swelling of the thin film is by water uptake by diffusion, the diffusion coefficient is estimated. The estimated diffusion coefficient decreases from 4.3 to 2.1 × 10 -7 cm 2 /s at 25°C, from 5.3 to 2.9 × 10 -7 cm 2 /s at 35°C and from 6.2 to 3.8 × 10 -7 cm 2 /s at 45°C depending on the lignin content. Activation energy for the increase in diffusion coefficient with temperature is observed to be 16.55 kJ/mol. An empirical model of water uptake as a function of percentage of lignin and temperature was also developed based on Fick's law.
Evaluating the impact of municipal water fluoridation on the aquatic environment.
Osterman, J W
1990-01-01
Although highly beneficial for dental health, low concentrations of fluoride in environmental waters may be toxic to several organisms. In an era of heightened public awareness about the environment, this may lead city officials to withhold implementing water fluoridation for environmental reasons. This paper presents a mass balance approach to evaluate this perceived risk. Generally speaking, fluoridated water loss during use, dilution of sewage by rain and ground water infiltrate, fluoride removal during secondary sewage treatment, and diffusion dynamics at effluent outfall combine to eliminate fluoridation-related environmental effects. In Montreal, water fluoridation would raise average aquatic fluoride levels in the waste water plume immediately below effluent outfall by only 0.05-0.09 mg/l. Downstream, these changes would be only 0.02-0.05 mg/l at 1 km, and 0.01-0.03 mg/l at 2 km below outfall. Overall river fluoride concentrations theoretically would be raised by 0.001-0.002 mg/l, a value not measurable by current analytical techniques. All resulting concentrations would be well below those recommended for environmental safety and would not exceed natural levels found elsewhere in Quebec. A literature review did not reveal any examples of municipal water fluoridation causing recommended environmental concentrations to be exceeded, although excesses occurred in several cases of severe industrial water pollution. PMID:2400035
Reaction Kinetics of Water Molecules with Oxygen Vacancies on Rutile TiO 2(110)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrik, Nikolay G.; Kimmel, Gregory A.
2015-09-16
The formation of bridging hydroxyls (OHb) via reactions of water molecules with oxygen vacancies (VO) on reduced TiO 2(110) surfaces is studied using infrared reflection-absorption spectroscopy (IRAS), electron-stimulated desorption (ESD), and photon-stimulated desorption (PSD). Narrow IRAS peaks at 2737 cm-1 and 3711 cm -1 are observed for stretching vibrations of OD b and OH b on TiO 2(110), respectively. IRAS measurements with s- and p-polarized light demonstrate that the bridging hydroxyls are oriented normal to the (110) surface. The IR peaks disappear after the sample is exposed to O 2 or annealed in the temperature range of 400 – 600more » K (correlating with the temperature at which pairs of OHb’s reform water and then desorb), which is consistent with their identification as bridging hydroxyls. We have studied the kinetics of water reacting with the vacancies by monitoring the formation of bridging hydroxyls (using IRAS) as a function of the annealing temperature for a small amount of water initially dosed on the TiO 2(110) at low temperature. Separate experiments have also monitored the loss of water molecules (using water ESD) and vacancies (using the CO photooxidation reaction) due to the reactions of water molecules with the vacancies. All three techniques show that the reaction rate becomes appreciable for T > 150 K and that the reactions largely complete for T > 250 K. The temperature-dependent water-VO reaction kinetics are consistent with a Gaussian distribution of activation energies with E a = 0.545 eV, ΔE a(FWHM) = 0.125 eV, and a “normal” prefactor, v = 10 12 s -1. In contrast, a single activation energy with a physically reasonable prefactor does not fit the data well. Our experimental activation energy is close to theoretical estimates for the diffusion of water molecules along the Ti 5c rows on the reduced TiO 2(110) surface, which suggests that the diffusion of water controls the water – V O reaction rate.« less
Evolution of Edge Pedestal Profiles Between ELMs
NASA Astrophysics Data System (ADS)
Floyd, J. P.; Stacey, W. M.; Groebner, R. J.
2012-10-01
The measured edge profile evolution in DIII-D discharges is analyzed in terms of the implied thermal diffusivities, ion diffusion coefficients and pinch velocities, using the momentum-balance methodology of Ref. [1], extended to take into account ion orbit loss and X-point loss. The evolution of the density, temperature, rotation and radial electric field profiles in the edge pedestal between edge localized modes (ELMs) provides information of these diffusive and non-diffusive transport processes in the pedestal of H-mode plasmas. This methodology is incorporated in the GTEDGE code developed for DIII-D data interpretation. Using a smaller integration time for the charge exchange recombination measurements than in Ref. [1] allows a more detailed examination of the time evolution of the ion temperature and rotation profiles. 6pt [1] W.M. Stacey and R.J. Groebner, Nucl. Fusion 51, 063024 (2011).
Abbate, Mario; D’Orazio, Loredana
2017-01-01
Water diffusion through a TiO2/poly (carbonate urethane) nanocomposite designed for the eco-sustainable protection of outdoor cultural heritage stonework was investigated. Water is recognized as a threat to heritage, hence the aim was to gather information on the amount of water uptake, as well as of species of water molecules absorbed within the polymer matrix. Gravimetric and vibrational spectroscopy measurements demonstrated that diffusion behavior of the nanocomposite/water system is Fickian, i.e., diffusivity is independent of concentration. The addition of only 1% of TiO2 nanoparticles strongly betters PU barrier properties and water-repellency requirement is imparted. Defensive action against penetration of water free from, and bonded through, H-bonding association arises from balance among TiO2 hydrophilicity, tortuosity effects and quality of nanoparticle dispersion and interfacial interactions. Further beneficial to antisoiling/antigraffiti action is that water-free fraction was found to be desorbed at a constant rate. In environmental conditions, under which weathering processes are most likely to occur, nanocomposite Tg values remain suitable for heritage treatments. PMID:28902179
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaufman, H.R.
Bohm diffusion has been found to be approximately valid for many plasmas in strong magnetic fields. Assuming Bohm diffusion describes electron diffusion directly (H. R. Kaufman, AIAA J. {bold 23}, 78 (1985)), with an equal ion loss possible from the ambipolar field that is generated (F. F. Chen, {ital Introduction} {ital to} {ital Plasma} {ital Physics} (Plenum, New York, 1974), p. 169), an order-of-magnitude analysis can show why such electron diffusion should be expected.
Scaling oxygen microprofiles at the sediment interface of deep stratified waters
NASA Astrophysics Data System (ADS)
Schwefel, Robert; Hondzo, Miki; Wüest, Alfred; Bouffard, Damien
2017-02-01
Dissolved oxygen microprofiles at the sediment-water interface of Lake Geneva were measured concurrently with velocities 0.25 to 2 m above the sediment. The measurements and scaling analyses indicate dissolved oxygen fluctuations and turbulent fluxes in exceedance of molecular diffusion in the proximity of the sediment-water interface. The measurements allowed the parameterization of the turbulent diffusion as a function of the dimensionless height above the sediment and the turbulence above the sediment-water interface. Turbulent diffusion depended strongly on the friction velocity and differed from formulations reported in the literature that are based on concepts of turbulent and developed wall-bounded flows. The dissolved oxygen microprofiles and proposed parameterization of turbulent diffusion enable a foundation for the similarity scaling of oxygen microprofiles in proximity to the sediment. The proposed scaling allows the estimation of diffusive boundary layer thickness, oxygen flux, and oxygen microprofile distribution in the near-sediment boundary layer.
Constitutive hippocampal cholesterol loss underlies poor cognition in old rodents
Martin, Mauricio G; Ahmed, Tariq; Korovaichuk, Alejandra; Venero, Cesar; Menchón, Silvia A; Salas, Isabel; Munck, Sebastian; Herreras, Oscar; Balschun, Detlef; Dotti, Carlos G
2014-01-01
Cognitive decline is one of the many characteristics of aging. Reduced long-term potentiation (LTP) and long-term depression (LTD) are thought to be responsible for this decline, although the precise mechanisms underlying LTP and LTD dampening in the old remain unclear. We previously showed that aging is accompanied by the loss of cholesterol from the hippocampus, which leads to PI3K/Akt phosphorylation. Given that Akt de-phosphorylation is required for glutamate receptor internalization and LTD, we hypothesized that the decrease in cholesterol in neuronal membranes may contribute to the deficits in LTD typical of aging. Here, we show that cholesterol loss triggers p-Akt accumulation, which in turn perturbs the normal cellular and molecular responses induced by LTD, such as impaired AMPA receptor internalization and its reduced lateral diffusion. Electrophysiology recordings in brain slices of old mice and in anesthetized elderly rats demonstrate that the reduced hippocampal LTD associated with age can be rescued by cholesterol perfusion. Accordingly, cholesterol replenishment in aging animals improves hippocampal-dependent learning and memory in the water maze test. PMID:24878762
Thomas, John E; Allen, L Hartwell; McCormack, Leslie A; Vu, Joseph C; Dickson, Donald W; Ou, Li-Tse
2004-04-01
The main objective of this study was to determine the influence of soil moisture, organic matter amendment and plastic cover (a virtually impermeable film, VIF) on diffusion and emissions of (Z)- and (E)-1,3-dichloropropene (1,3-D) in microplots of Florida sandy soil (Arredondo fine sand). Upward diffusion of the two isomers in the Arredondo soil without a plastic cover was greatly influenced by soil-water content and (Z)-1,3-D diffused faster than (E)-1,3-D. In less than 5 h after 1,3-D injection to 30 cm depth, (Z)- and (E)-1,3-D in air dry soil had diffused to a 10 cm depth, whereas diffusion for the two isomers was negligible in near-water-saturated soil, even 101 h after injection. The diffusion rate of (Z)- and (E)-1,3-D in near-field-capacity soil was between the rates in the two water regimes. Yard waste compost (YWC) amendment greatly reduced diffusion of (Z)- and (E)-1,3-D, even in air-dry soil. Although upward diffusion of (Z)- and (E)-1,3-D in soil with VIF cover was slightly less than in the corresponding bare soil; the cover promoted retention of vapors of the two isomers in soil pore air in the shallow subsurface. More (Z)-1,3-D vapor was found initially in soil pore air than (E)-1,3-D although the difference declined thereafter. As a result of rapid upward movement in air-dry bare soil, (Z)- and (E)-1,3-D were rapidly volatilized into the atmosphere, but emissions from the near-water-saturated soil were minimal. Virtually impermeable film and YWC amendment retarded emissions. This study indicated that adequate soil water in this sandy soil is needed to prevent rapid emissions, but excess soil water slows diffusion of (Z)- and (E)-1,3-D. Thus, management for optimum water in soil is critical for pesticidal efficacy and the environment.
Ohno, Naoki; Kan, Hirohito; Miyati, Tosiaki; Aoki, Toshitaka; Ishida, Shota; Gabata, Toshifumi
2017-06-01
To obtain water and lipid diffusion-weighted images (DWIs) simultaneously, we devised a novel method utilizing chemical shift displacement-based separation of lipid tissue (SPLIT) imaging. Single-shot diffusion echo-planar imaging without fat suppression was used and the imaging parameters were optimized to separate water and lipid DWIs by chemical shift displacement of the lipid signals along the phase-encoding direction. Using the optimized conditions, transverse DWIs at the maximum diameter of the right calf were scanned with multiple b-values in five healthy subjects. Then, apparent diffusion coefficients (ADCs) were calculated in the tibialis anterior muscle (TA), tibialis bone marrow (TB), and subcutaneous fat (SF), as well as restricted and perfusion-related diffusion coefficients (D and D*, respectively) and the fraction of the perfusion-related diffusion component (F) for TA. Water and lipid DWIs were separated adequately. The mean ADCs of the TA, TB, and SF were 1.56±0.03mm 2 /s, 0.01±0.01mm 2 /s, and 0.06±0.02mm 2 /s, respectively. The mean D*, D, and F of the TA were 13.7±4.3mm 2 /s, 1.48±0.05mm 2 /s, and 4.3±1.6%, respectively. SPLIT imaging makes it possible to simply and simultaneously obtain water and lipid DWIs without special pulse sequence and increases the amount of diffusion information of water and lipid tissue. Copyright © 2017. Published by Elsevier Inc.
Mermigkis, Panagiotis G; Tsalikis, Dimitrios G; Mavrantzas, Vlasis G
2015-10-28
A kinetic Monte Carlo (kMC) simulation algorithm is developed for computing the effective diffusivity of water molecules in a poly(methyl methacrylate) (PMMA) matrix containing carbon nanotubes (CNTs) at several loadings. The simulations are conducted on a cubic lattice to the bonds of which rate constants are assigned governing the elementary jump events of water molecules from one lattice site to another. Lattice sites belonging to PMMA domains of the membrane are assigned different rates than lattice sites belonging to CNT domains. Values of these two rate constants are extracted from available numerical data for water diffusivity within a PMMA matrix and a CNT pre-computed on the basis of independent atomistic molecular dynamics simulations, which show that water diffusivity in CNTs is 3 orders of magnitude faster than in PMMA. Our discrete-space, continuum-time kMC simulation results for several PMMA-CNT nanocomposite membranes (characterized by different values of CNT length L and diameter D and by different loadings of the matrix in CNTs) demonstrate that the overall or effective diffusivity, D(eff), of water in the entire polymeric membrane is of the same order of magnitude as its diffusivity in PMMA domains and increases only linearly with the concentration C (vol. %) in nanotubes. For a constant value of the concentration C, D(eff) is found to vary practically linearly also with the CNT aspect ratio L/D. The kMC data allow us to propose a simple bilinear expression for D(eff) as a function of C and L/D that can describe the numerical data for water mobility in the membrane extremely accurately. Additional simulations with two different CNT configurations (completely random versus aligned) show that CNT orientation in the polymeric matrix has only a minor effect on D(eff) (as long as CNTs do not fully penetrate the membrane). We have also extensively analyzed and quantified sublinear (anomalous) diffusive phenomena over small to moderate times and correlated them with the time needed for penetrant water molecules to explore the available large, fast-diffusing CNT pores before Fickian diffusion is reached.
NASA Astrophysics Data System (ADS)
Mermigkis, Panagiotis G.; Tsalikis, Dimitrios G.; Mavrantzas, Vlasis G.
2015-10-01
A kinetic Monte Carlo (kMC) simulation algorithm is developed for computing the effective diffusivity of water molecules in a poly(methyl methacrylate) (PMMA) matrix containing carbon nanotubes (CNTs) at several loadings. The simulations are conducted on a cubic lattice to the bonds of which rate constants are assigned governing the elementary jump events of water molecules from one lattice site to another. Lattice sites belonging to PMMA domains of the membrane are assigned different rates than lattice sites belonging to CNT domains. Values of these two rate constants are extracted from available numerical data for water diffusivity within a PMMA matrix and a CNT pre-computed on the basis of independent atomistic molecular dynamics simulations, which show that water diffusivity in CNTs is 3 orders of magnitude faster than in PMMA. Our discrete-space, continuum-time kMC simulation results for several PMMA-CNT nanocomposite membranes (characterized by different values of CNT length L and diameter D and by different loadings of the matrix in CNTs) demonstrate that the overall or effective diffusivity, Deff, of water in the entire polymeric membrane is of the same order of magnitude as its diffusivity in PMMA domains and increases only linearly with the concentration C (vol. %) in nanotubes. For a constant value of the concentration C, Deff is found to vary practically linearly also with the CNT aspect ratio L/D. The kMC data allow us to propose a simple bilinear expression for Deff as a function of C and L/D that can describe the numerical data for water mobility in the membrane extremely accurately. Additional simulations with two different CNT configurations (completely random versus aligned) show that CNT orientation in the polymeric matrix has only a minor effect on Deff (as long as CNTs do not fully penetrate the membrane). We have also extensively analyzed and quantified sublinear (anomalous) diffusive phenomena over small to moderate times and correlated them with the time needed for penetrant water molecules to explore the available large, fast-diffusing CNT pores before Fickian diffusion is reached.
Quantification of chemical transport processes from the soil to surface runoff.
Tian, Kun; Huang, Chi-Hua; Wang, Guang-Qian; Fu, Xu-Dong; Parker, Gary
2013-01-01
There is a good conceptual understanding of the processes that govern chemical transport from the soil to surface runoff, but few studies have actually quantified these processes separately. Thus, we designed a laboratory flow cell and experimental procedures to quantify the chemical transport from soil to runoff water in the following individual processes: (i) convection with a vertical hydraulic gradient, (ii) convection via surface flow or the Bernoulli effect, (iii) diffusion, and (iv) soil loss. We applied different vertical hydraulic gradients by setting the flow cell to generate different seepage or drainage conditions. Our data confirmed the general form of the convection-diffusion equation. However, we now have additional quantitative data that describe the contribution of each individual chemical loading process in different surface runoff and soil hydrological conditions. The results of this study will be useful for enhancing our understanding of different geochemical processes in the surface soil mixing zone. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
N-acetyl-aspartate levels correlate with intra-axonal compartment parameters from diffusion MRI.
Grossman, Elan J; Kirov, Ivan I; Gonen, Oded; Novikov, Dmitry S; Davitz, Matthew S; Lui, Yvonne W; Grossman, Robert I; Inglese, Matilde; Fieremans, Els
2015-09-01
Diffusion MRI combined with biophysical modeling allows for the description of a white matter (WM) fiber bundle in terms of compartment specific white matter tract integrity (WMTI) metrics, which include intra-axonal diffusivity (Daxon), extra-axonal axial diffusivity (De||), extra-axonal radial diffusivity (De┴), axonal water fraction (AWF), and tortuosity (α) of extra-axonal space. Here we derive these parameters from diffusion kurtosis imaging to examine their relationship to concentrations of global WM N-acetyl-aspartate (NAA), creatine (Cr), choline (Cho) and myo-Inositol (mI), as measured with proton MR spectroscopy ((1)H-MRS), in a cohort of 25 patients with mild traumatic brain injury (MTBI). We found statistically significant (p<0.05) positive correlations between NAA and Daxon, AWF, α, and fractional anisotropy; negative correlations between NAA and De,┴ and the overall radial diffusivity (D┴). These correlations were supported by similar findings in regional analysis of the genu and splenium of the corpus callosum. Furthermore, a positive correlation in global WM was noted between Daxon and Cr, as well as a positive correlation between De|| and Cho, and a positive trend between De|| and mI. The specific correlations between NAA, an endogenous probe of the neuronal intracellular space, and WMTI metrics related to the intra-axonal space, combined with the specific correlations of De|| with mI and Cho, both predominantly present extra-axonally, corroborate the overarching assumption of many advanced modeling approaches that diffusion imaging can disentangle between the intra- and extra-axonal compartments in WM fiber bundles. Our findings are also generally consistent with what is known about the pathophysiology of MTBI, which appears to involve both intra-axonal injury (as reflected by a positive trend between NAA and Daxon) as well as axonal shrinkage, demyelination, degeneration, and/or loss (as reflected by correlations between NAA and De┴, AWF, and α). Copyright © 2015 Elsevier Inc. All rights reserved.
Water and carbon fluxes in rain fed agricultural sites under a changing climate: The role of stomata
NASA Astrophysics Data System (ADS)
Hosseini, A.; Gayler, S.; Streck, T.; Katul, G. G.
2014-12-01
Vegetation models are needed to assess how crop productivity may be altered due to variations in climatic conditions. Stomatal conductance controls both diffusion of CO2 from the atmosphere into the leaf and water losses from the soil-plant system to the atmosphere through transpiration (E). Despite its significance, stomatal conductance and its links to climatic variables remains empirically specified in current crop models thereby challenging their application to future climatic conditions. It has long been conjectured that stomata has evolved so as to allow terrestrial plants to assimilate CO2 in a desiccating atmosphere while minimizing water losses. Hence, the hypothesis that stomata adapt optimally to their environment so as to maximize assimilation (A) for a given amount of water loss has received significant attention over the past 4 decades. Here, a new approach to implement optimization theory of stomatal conductance into a dynamic canopy gas exchange model is introduced. A key variable in this theory is the so-called marginal water use efficiency (MWUE), which is assumed to be constant on time scales commensurate with fluctuations in stomatal aperture. However, on time scales relevant to crop productivity (daily to seasonal), the boundary conditions on the optimization problem evolve in time prompting the question of how to assign MWUE on such time scales. To address this question, MWUE was formulated as a function of time-integrated leaf-water potential and atmospheric CO2. Next, leaf water potential was linked to root and soil pressure using a soil water balance model based on a modified Richards' equation that considers vertical distribution of root water uptake. The adequacy of the new approach was tested by comparing predicted diurnal cycles of A and E as well as variability of soil moisture with long-term observations at a winter wheat (Triticum aestivum cv.Cubus) field in southwest Germany (see Figure), where transpiration and assimilation rates were derived from eddy-covariance measurements of latent heat flux and net ecosystem exchange. To place those results in the broader context of climate change and food security issues, a sensitivity analyses on water and carbon fluxes with respect to climatic variables, soil texture, and root-density distribution is also presented.
Theoretical and Numerical Investigation of Radiative Extinction of Diffusion Flames
NASA Technical Reports Server (NTRS)
Ray, Anjan
1996-01-01
The influence of soot radiation on diffusion flames was investigated using both analytical and numerical techniques. Soot generated in diffusion flames dominate the flame radiation over gaseous combustion products and can significantly lower the temperature of the flame. In low gravity situations there can be significant accumulation of soot and combustion products in the vicinity of the primary reaction zone owing to the absence of any convective buoyant flow. Such situations may result in substantial suppression of chemical activities in a flame, and the possibility of a radiative extinction may also be anticipated. The purpose of this work was to not only investigate the possibility of radiative extinction of a diffusion flame but also to qualitatively and quantitatively analyze the influence of soot radiation on a diffusion flame. In this study, first a hypothetical radiative loss profile of the form of a sech(sup 2) was assumed to influence a pure diffusion flame. It was observed that the reaction zone can, under certain circumstances, move through the radiative loss zone and locate itself on the fuel side of the loss zone contrary to our initial postulate. On increasing the intensity and/or width of the loss zone it was possible to extinguish the flame, and extinction plots were generated. In the presence of a convective flow, however, the movement of the temperature and reaction rate peaks indicated that the flame behavior is more complicated compared to a pure diffusional flame. A comprehensive model of soot formation, oxidation and radiation was used in a more involved analysis. The soot model of Syed, Stewart and Moss was used for soot nucleation and growth and the model of Nagle and Strickland-Constable was used for soot oxidation. The soot radiation was considered in the optically thin limit. An analysis of the flame structure revealed that the radiative loss term is countered both by the reaction term and the diffusion term. The essential balance for the soot volume fraction was found to be between the processes of soot convection and soot growth. Such a balance yielded to analytical treatment and the soot volume fraction could be expressed in the form of an integral. The integral was evaluated using two approximate methods and the results agreed very well with the numerical solutions for all cases examined.
Characteristics of Subfreezing Operation of Polymer Electrolyte Membrane Fuel Cells
NASA Astrophysics Data System (ADS)
Mishler, Jeffrey Harris
Polymer Electrolyte Membrane (PEM) Fuel Cells are capable of high efficiency operation, and are free of NOx, SOx, and CO2 emissions when using hydrogen fuel, and ideally suited for use in transportation applications due to their high power density and low operating temperatures. However, under subfreezing conditions which may be encountered during winter seasons in some areas, product water will freeze within the membrane, cathode side catalyst layer and gas diffusion media, leading to voltage loss and operation failure. Experiments were undertaken in order to characterize the amount and location of water during fuel cell operation. First, in-situ neutron radiography was undertaken on the fuel cells at a normal operating temperature for various operating current densities, inlet relative humidities, and diffusion media hydrophobicities. It was found that more hydrophobic cathode microporous layer (MPL) or hydrophilic anode MPL may result in a larger amount of water transporting back to the anode. The water profiles along the channels were measured and the point of liquid water emergence, where two phase flow begins, was compared to previous models. Secondly, under subfreezing temperatures, neutron imaging showed that water ice product accumulates because of lack of a water removal mechanism. Water was observed under both the lands and channels, and increased almost linearly with time. It is found that most ice exists in the cathode side. With evidence from experimental observation, a cold start model was developed and explained, following existing approaches in the literature. Three stages of cold start are explained: membrane saturation, ice storage in catalyst layer pores, and then ice melting. The voltage losses due to temperature change, increased transport resistance, and reduced electrochemical surface area. The ionic conductivity of the membrane at subfreezing temperatures was modeled. Voltage evolution over time for isothermal cold starts was predicted and validated against experimental data. The ice coverage coefficient was shown to be a key variable in matching with experimental data. From model analysis, it appears that the coulombs of charge passed before operation failure is an important parameter characterizing PEM fuel cell cold start. To investigate the coulombs of charge and its determining factors, PEM fuel cells were constructed to measure the effects of membrane configuration (thickness and initial state), catalyst layer configuration (thickness and ionomer-carbon ratio), current density, and temperature on the quantity. It was found that subfreezing temperature, ionomer-catalyst ratio, and catalyst-layer thickness significantly affect the amount of charge transferred before operational failure, whereas the membrane thickness and initial hydration level have limited effect for the considered cases. In addition, degradation of the catalyst layer was observed and quantified. These results improve the fundamental understanding of characteristics of subfreezing operation and thus are valuable for automobile applications of PEM fuel cells. The model directly relates the material properties to voltage loss, and predicts voltage evolution, thus providing a way for material optimization and diagnostics. Additionally, insights into component design and operating conditions can be used to better optimize the fuel cell for cold start-up of the vehicle.
Effect of EMIC Wave Normal Angle Distribution on Relativistic Electron Scattering in Outer RB
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Gamayunov, K. V.
2007-01-01
We present the equatorial and bounce average pitch angle diffusion coefficients for scattering of relativistic electrons by the H+ mode of EMIC waves. Both the model (prescribed) and self consistent distributions over the wave normal angle are considered. The main results of our calculation can be summarized as follows: First, in comparison with field aligned waves, the intermediate and highly oblique waves reduce the pitch angle range subject to diffusion, and strongly suppress the scattering rate for low energy electrons (E less than 2 MeV). Second, for electron energies greater than 5 MeV, the |n| = 1 resonances operate only in a narrow region at large pitch-angles, and despite their greatest contribution in case of field aligned waves, cannot cause electron diffusion into the loss cone. For those energies, oblique waves at |n| greater than 1 resonances are more effective, extending the range of pitch angle diffusion down to the loss cone boundary, and increasing diffusion at small pitch angles by orders of magnitude.
Rauma, Matias; Isaksson, Tina S; Johanson, Gunnar
2006-10-01
Potential health hazards of dermal exposure, variability in reported dermal absorption rates and potential losses from the skin by evaporation indicate a need for a simple, inexpensive and standardized procedure to measure dermal absorption and desorption of chemical substances. The aim of this study was to explore the possibility to measure dermal absorption and desorption of volatile chemicals using a new gravimetric technique, namely thermal gravimetric analysis (TGA), and trypsinated stratum corneum from pig. Changes in skin weight were readily detected before, during and after exposure to vapours of water, 2-propanol, methanol and toluene. The shape and height of the weight curves differed between the four chemicals, reflecting differences in diffusivity and partial pressure and skin:air partitioning, respectively. As the skin weight is highly sensitive to the partial pressure of volatile chemicals, including water, this technique requires carefully controlled conditions with respect to air flow, temperature, chemical vapour generation and humidity. This new technique may help in the assessment of dermal uptake of volatile chemicals. Only a small piece of skin is needed and skin integrity is not necessary, facilitating the use of human samples. The high resolution weight-time curves obtained may also help to elucidate the characteristics of absorption, desorption and diffusion of chemicals in skin.
Koffman, Jennifer S.; Arnspang, Eva C.; Marlar, Saw; Nejsum, Lene N.
2015-01-01
Aquaporin-5 (AQP5) facilitates passive water transport in glandular epithelia in response to secretory stimuli via intracellular pathways involving calcium release, cAMP and protein kinase A (PKA). In epithelial plasma membranes, AQP5 may be acutely regulated to facilitate water transport in response to physiological stimuli by changes in protein modifications, interactions with proteins and lipids, nanoscale membrane domain organization, and turnover rates. Such regulatory mechanisms could potentially be associated with alteration of diffusion behavior, possibly resulting in a change in the plasma membrane diffusion coefficient of AQP5. We aimed to test the short-term regulatory effects of the above pathways, by measuring lateral diffusion of AQP5 and an AQP5 phospho-mutant, T259A, using k-space Image Correlation Spectroscopy of quantum dot- and EGFP-labeled AQP5. Elevated cAMP and PKA inhibition significantly decreased lateral diffusion of AQP5, whereas T259A mutation showed opposing effects; slowing diffusion without stimulation and increasing diffusion to basal levels after cAMP elevation. Thus, lateral diffusion of AQP5 is significantly regulated by cAMP, PKA, and T259 phosphorylation, which could be important for regulating water flow in glandular secretions. PMID:26218429
Saturn Neutron Exosphere as Source for Inner and Innermost Radiation Belts
NASA Technical Reports Server (NTRS)
Cooper, John; Lipatov, Alexander; Sittler, Edward; Sturner, Steven
2011-01-01
Energetic proton and electron measurements by the ongoing Cassini orbiter mission are expanding our knowledge of the highest energy components of the Saturn magnetosphere in the inner radiation belt region after the initial discoveries of these belts by the Pioneer 11 and Voyager 2 missions. Saturn has a neutron exosphere that extends throughout the magnetosphere from the cosmic ray albedo neutron source at the planetary main rings and atmosphere. The neutrons emitted from these sources at energies respectively above 4 and 8 eV escape the Saturn system, while those at lower energies are gravitationally bound. The neutrons undergo beta decay in average times of about 1000 seconds to provide distributed sources of protons and electrons throughout Saturn's magnetosphere with highest injection rates close to the Saturn and ring sources. The competing radiation belt source for energetic electrons is rapid inward diffusion and acceleration of electrons from the middle magnetosphere and beyond. Minimal losses during diffusive transport across the moon orbits, e.g. of Mimas and Enceladus, and local time asymmetries in electron intensity, suggest that drift resonance effects preferentially boost the diffusion rates of electrons from both sources. Energy dependences of longitudinal gradient-curvature drift speeds relative to the icy moons are likely responsible for hemispheric differences (e.g., Mimas, Tethys) in composition and thermal properties as at least partly produced by radiolytic processes. A continuing mystery is the similar radial profiles of lower energy (<10 MeV) protons in the inner belt region. Either the source of these lower energy protons is also neutron decay, but perhaps alternatively from atmospheric albedo, or else all protons from diverse distributed sources are similarly affected by losses at the moon' orbits, e.g. because the proton diffusion rates are extremely low. Enceladus cryovolcanism, and radiolytic processing elsewhere on the icy moon and ring surfaces, are additional sources of protons via ionization and charge exchange from breakup of water molecules. But one must then account somehow for local acceleration to the observed keV-MeV energies, since moon sweeping and E-ring absorption would remove protons diffusing inward from the middle magnetosphere. Although the main rings block further inward diffusion from the inner radiation belts, the exospheric neutron-decay source, combined with much slower diffusion of protons relative to electrons, may produce an innermost radiation belt in the gap between the upper atmosphere and the D-ring. This innermost belt will first be explored in-situ during the final proximal orbits of the Cassini mission.
Ali, I; Wojnarowska, F
2011-03-01
Significant changes in scalp, facial and body hair occur after the menopause. These can have a significant negative impact on self-esteem and are also potential markers of endocrine or metabolic diseases. Knowledge of postmenopausal hair changes is important for clinicians to distinguish between normal physiological change and those that require further medical investigation. To assess the subjective experience of scalp, facial and body hair change in a large cohort of normal postmenopausal females. Postmenopausal females aged 45 years or over of northern European origin completed a questionnaire detailing scalp, facial and body hair changes following the menopause. Women with a history of thyroid disease, oophorectomy or premature menopause were excluded from the study. The Mann-Whitney U-test and the χ(2) test were used to assess the correlation between scalp, facial and body hair changes with age. Diffuse generalized hair loss was the most common form of scalp hair loss, reported by 26% of women. Frontal hair loss was reported by 9% of women. Facial hair gain was cited by 39% of females with the chin being the most frequent site for new growth (32% of women). Body hair loss was significantly correlated with older age (P < 0·001) and was most frequent at androgen-sensitive sites. We noted two patterns: (i) diffuse hair loss in which diffuse generalized scalp hair loss was significantly correlated with body hair loss and increasing age (P < 0·05); and (ii) frontal hair loss which was associated with higher facial hair scores and relatively younger age (P < 0·05) compared with women with diffuse hair loss. This is the first comprehensive study of the subjective hair changes in postmenopausal women. This study demonstrates two distinct patterns of hair change relating to age, which may reflect different underlying pathophysiological mechanisms and are of relevance to the medical management of these women as well as being possible predictors of health outcomes. © 2011 The Authors. BJD © 2011 British Association of Dermatologists.
Coarse-grained model of water diffusion and proton conductivity in hydrated polyelectrolyte membrane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ming-Tsung; Vishnyakov, Aleksey; Neimark, Alexander V., E-mail: aneimark@rutgers.edu
2016-01-07
Using dissipative particle dynamics (DPD), we simulate nanoscale segregation, water diffusion, and proton conductivity in hydrated sulfonated polystyrene (sPS). We employ a novel model [Lee et al. J. Chem. Theory Comput. 11(9), 4395-4403 (2015)] that incorporates protonation/deprotonation equilibria into DPD simulations. The polymer and water are modeled by coarse-grained beads interacting via short-range soft repulsion and smeared charge electrostatic potentials. The proton is introduced as a separate charged bead that forms dissociable Morse bonds with the base beads representing water and sulfonate anions. Morse bond formation and breakup artificially mimics the Grotthuss mechanism of proton hopping between the bases. Themore » DPD model is parameterized by matching the proton mobility in bulk water, dissociation constant of benzenesulfonic acid, and liquid-liquid equilibrium of water-ethylbenzene solutions. The DPD simulations semi-quantitatively predict nanoscale segregation in the hydrated sPS into hydrophobic and hydrophilic subphases, water self-diffusion, and proton mobility. As the hydration level increases, the hydrophilic subphase exhibits a percolation transition from isolated water clusters to a 3D network. The analysis of hydrophilic subphase connectivity and water diffusion demonstrates the importance of the dynamic percolation effect of formation and breakup of temporary junctions between water clusters. The proposed DPD model qualitatively predicts the ratio of proton to water self-diffusion and its dependence on the hydration level that is in reasonable agreement with experiments.« less
Water-Mediated Proton Hopping on an Iron Oxide Surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merte, L. R.; Peng, Guowen; Bechstein, Ralf
2012-05-18
The diffusion of hydrogen atoms across solid oxide surfaces is often assumed to be accelerated by the presence of water molecules. Here we present a high-resolution, high-speed scanning tunneling microscopy (STM) study of the diffusion of H atoms on an FeO thin film. STM movies directly reveal a water-mediated hydrogen diffusion mechanism on the oxide surface at temperatures between 100 and 300 kelvin. Density functional theory calculations and isotope-exchange experiments confirm the STM observations, and a proton-transfer mechanism that proceeds via an H3O+-like transition state is revealed. This mechanism differs from that observed previously for rutile TiO2(110), where water dissociationmore » is a key step in proton diffusion.« less
NASA Astrophysics Data System (ADS)
Vandusschoten, D.; Dejager, P. A.; Vanas, H.
Heterogeneous (bio)systems are often characterized by several water-containing compartments that differ in relaxation time values and diffusion constants. Because of the relatively small differences among these diffusion constants, nonoptimal measuring conditions easily lead to the conclusion that a single diffusion constant suffices to describe the water mobility in a heterogeneous (bio)system. This paper demonstrates that the combination of a T2 measurement and diffusion measurements at various echo times (TE), based on the PFG MSE sequence, enables the accurate determination of diffusion constants which are less than a factor of 2 apart. This new method gives errors of the diffusion constant below 10% when two fractions are present, while the standard approach of a biexponential fit to the diffusion data in identical circumstances gives larger (>25%) errors. On application of this approach to water in apple parenchyma tissue, the diffusion constant of water in the vacuole of the cells ( D = 1.7 × 10 -9 m 2/s) can be distinguished from that of the cytoplasm ( D = 1.0 × 10 -9 m 2/s). Also, for mung bean seedlings, the cell size determined by PFG MSE measurements increased from 65 to 100 μm when the echo time increased from 150 to 900 ms, demonstrating that the interpretation of PFG SE data used to investigate cell sizes is strongly dependent on the T2 values of the fractions within the sample. Because relaxation times are used to discriminate the diffusion constants, we propose to name this approach diffusion analysis by relaxation- time- separated (DARTS) PFG NMR.
Molina-Romero, Miguel; Gómez, Pedro A; Sperl, Jonathan I; Czisch, Michael; Sämann, Philipp G; Jones, Derek K; Menzel, Marion I; Menze, Bjoern H
2018-03-23
The compartmental nature of brain tissue microstructure is typically studied by diffusion MRI, MR relaxometry or their correlation. Diffusion MRI relies on signal representations or biophysical models, while MR relaxometry and correlation studies are based on regularized inverse Laplace transforms (ILTs). Here we introduce a general framework for characterizing microstructure that does not depend on diffusion modeling and replaces ill-posed ILTs with blind source separation (BSS). This framework yields proton density, relaxation times, volume fractions, and signal disentanglement, allowing for separation of the free-water component. Diffusion experiments repeated for several different echo times, contain entangled diffusion and relaxation compartmental information. These can be disentangled by BSS using a physically constrained nonnegative matrix factorization. Computer simulations, phantom studies, together with repeatability and reproducibility experiments demonstrated that BSS is capable of estimating proton density, compartmental volume fractions and transversal relaxations. In vivo results proved its potential to correct for free-water contamination and to estimate tissue parameters. Formulation of the diffusion-relaxation dependence as a BSS problem introduces a new framework for studying microstructure compartmentalization, and a novel tool for free-water elimination. © 2018 International Society for Magnetic Resonance in Medicine.
Absorption of water and lubricating oils into porous nylon
NASA Technical Reports Server (NTRS)
Bertrand, P. A.
1995-01-01
Oil and water absorption from air into sintered porous nylon can be described by infiltration into the pores of the material. This process can be modeled by a diffusion-like mechanism. For water absorption, we find a formal diffusion coefficient of 1.5 x 10(exp -4)sq cm/min when the nylon is initially dry. The diffusion coefficient is 4 x 10(exp -6)sq cm/min when the nylon is oil-impregnated prior to air exposure. In a 52% RH atmosphere, dry nylon absorbs 3% w/w water, and oil-impregnated nylon absorbs 0.6% w/w water. For oil absorption there are three steps: (1) surface absorption and infiltration into (2) larger and (3) smaller pores. Surface absorption is too fast to be measured in these experiments. The diffusion coefficient for the second step is 6 x 10(exp -4)sq cm/min for SRG-60 oil into dry nylon and 4 x 10(exp -4)sq cm/min for air-equilibrated nylon. The diffusion coefficient for the third step is about 1 x 10(exp -6)sq cm/min for both cases. The total amount of oil absorbed is 31% w/w. The interaction between water and nylon is not as strong as that between water and cotton-phenolic: oil can replace water, and only a small amount of water can enter previously oil-impregnated nylon.
Enhanced water use efficiency in global terrestrial ecosystems under increasing aerosol loadings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Xiaoliang; Chen, Min; Liu, Yaling
Aerosols play a crucial role in the climate system, affecting incoming radiation and cloud formation. Based on a modelling framework that couples ecosystem processes with the atmospheric transfer of radiation, we analyze the effect of aerosols on surface incoming radiation, gross primary productivity (GPP), water losses from ecosystems through evapotranspiration (ET) and ecosystem water use efficiency (WUE, defined as GPP/ET) for 2003–2010 and validate them at global FLUXNET sites. The total diffuse radiation increases under relatively low or intermediate aerosol loadings, but decreases under more polluted conditions. We find that aerosol-induced changes in GPP depend on leaf area index, aerosolmore » loading and cloudiness. Specifically, low and moderate aerosol loadings cause increases in GPP for all plant types, while heavy aerosol loadings result in enhancement (decrease) in GPP for dense (sparse) vegetation. On the other hand, ET is mainly negatively affected by aerosol loadings due to the reduction in total incoming radiation. Finally, WUE shows a consistent rise in all plant types under increasing aerosol loadings. Overall, the simulated daily WUE compares well with observations at 43 eddy-covariance tower sites (R 2=0.84 and RMSE=0.01gC (kg H 2O) -1) with better performance at forest sites. In addition to the increasing portions of diffuse light, the rise in WUE is also favored by the reduction in radiation- and heat-stress caused by the aerosols, especially for wet and hot climates.« less
NASA Technical Reports Server (NTRS)
Boldman, Donald R.; Moore, Royce D.; Shyne, Rickey J.
1987-01-01
Two turning vane designs were experimentally evaluated for corner 2 of a 0.1 scale model of the NASA Lewis Research Center's proposed Altitude Wind Tunnel (AWT). Corner 2 contained a simulated shaft fairing for a fan drive system to be located downstream of the corner. The corner was tested with a bellmouth inlet followed by a 0.1 scale model of the crossleg diffuser designed to connect corners 1 and 2 of the AWT. Vane A was a controlled-diffusion airfoil shape; vane B was a circular-arc airfoil shape. The A vanes were tested in several arrangements which included the resetting of the vane angle by -5 degrees or the removal of the outer vane. The lowest total pressure loss for vane A configuration was obtained at the negative reset angle. The loss coefficient increased slightly with the Mach number, ranging from 0.165 to 0.175 with a loss coefficient of 0.170 at the inlet design Mach number of 0.24. Removal of the outer vane did not alter the loss. Vane B loss coefficients were essentially the same as those for the reset vane A configurations. The crossleg diffuser loss coefficient was 0.018 at the inlet design Mach number of 0.33.
Conical diffuser for fuel cells
NASA Technical Reports Server (NTRS)
Craft, D. W.
1976-01-01
Diffuser is inserted into inlet manifold, producing smooth transition of flow from pipe diameter to manifold diameter. Expected pressure gradient and resulting cell-to-cell temperature gradient are reduced. Outlet manifold has nozzle insert that reduces exit losses.
Krishnamurthy, Ajay; Hunston, Donald L; Forster, Amanda L; Natarajan, Bharath; Liotta, Andrew H; Wicks, Sunny S; Stutzman, Paul E; Wardle, Brian L; Liddle, J Alexander; Forster, Aaron M
2017-12-01
As carbon nanotube (CNT) infused hybrid composites are increasingly identified as next-generation aerospace materials, it is vital to evaluate their long-term structural performance under aging environments. In this work, the durability of hierarchical, aligned CNT grafted aluminoborosilicate microfiber-epoxy composites (CNT composites) are compared against baseline aluminoborosilicate composites (baseline composites), before and after immersion in water at 25 °C (hydro) and 60 °C (hydrothermal), for extended durations (90 d and 180 d). The addition of CNTs is found to reduce water diffusivities by approximately 1.5 times. The mechanical properties (bending strength and modulus) and the damage sensing capabilities (DC conductivity) of CNT composites remain intact regardless of exposure conditions. The baseline composites show significant loss of strength (44 %) after only 15 d of hydrothermal aging. This loss of mechanical strength is attributed to fiber-polymer interfacial debonding caused by accumulation of water at high temperatures. In situ acoustic and DC electrical measurements of hydrothermally aged CNT composites identify extensive stress-relieving micro-cracking and crack deflections that are absent in the aged baseline composites. These observations are supported by SEM images of the failed composite cross-sections that highlight secondary matrix toughening mechanisms in the form of CNT pullouts and fractures which enhance the service life of composites and maintain their properties under accelerated aging environments.
NMR investigation of water diffusion in different biofilm structures.
Herrling, Maria P; Weisbrodt, Jessica; Kirkland, Catherine M; Williamson, Nathan H; Lackner, Susanne; Codd, Sarah L; Seymour, Joseph D; Guthausen, Gisela; Horn, Harald
2017-12-01
Mass transfer in biofilms is determined by diffusion. Different mostly invasive approaches have been used to measure diffusion coefficients in biofilms, however, data on heterogeneous biomass under realistic conditions is still missing. To non-invasively elucidate fluid-structure interactions in complex multispecies biofilms pulsed field gradient-nuclear magnetic resonance (PFG-NMR) was applied to measure the water diffusion in five different types of biomass aggregates: one type of sludge flocs, two types of biofilm, and two types of granules. Data analysis is an important issue when measuring heterogeneous systems and is shown to significantly influence the interpretation and understanding of water diffusion. With respect to numerical reproducibility and physico-chemical interpretation, different data processing methods were explored: (bi)-exponential data analysis and the Γ distribution model. Furthermore, the diffusion coefficient distribution in relation to relaxation was studied by D-T 2 maps obtained by 2D inverse Laplace transform (2D ILT). The results show that the effective diffusion coefficients for all biofilm samples ranged from 0.36 to 0.96 relative to that of water. NMR diffusion was linked to biofilm structure (e.g., biomass density, organic and inorganic matter) as observed by magnetic resonance imaging and to traditional biofilm parameters: diffusion was most restricted in granules with compact structures, and fast diffusion was found in heterotrophic biofilms with fluffy structures. The effective diffusion coefficients in the biomass were found to be broadly distributed because of internal biomass heterogeneities, such as gas bubbles, precipitates, and locally changing biofilm densities. Thus, estimations based on biofilm bulk properties in multispecies systems can be overestimated and mean diffusion coefficients might not be sufficiently informative to describe mass transport in biofilms and the near bulk. © 2017 Wiley Periodicals, Inc.
LeBlanc, Denis R.
2003-01-01
Diffusion samplers and temporary drive points were used to test for ordnance-related compounds in ground water discharging to Snake Pond near Camp Edwards at the Massachusetts Military Reservation, Cape Cod, MA. The contamination resulted from artillery use and weapons testing at various ranges upgradient of the pond.The diffusion samplers were constructed with a high-grade cellulose membrane that allowed diffusion of explosive compounds, such as RDX (Hexahydro-1,3,5-trinitro-1,3,5-triazine) and HMX (Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine), into deionized water inside the samplers. Laboratory tests confirmed that the cellulose membrane was permeable to RDX and HMX. One transect of 22 diffusion samplers was installed and retrieved in August-September 2001, and 12 transects with a total of 108 samplers were installed and retrieved in September-October 2001. The diffusion samplers were buried about 0.5 feet into the pond-bottom sediments by scuba divers and allowed to equilibrate with the ground water beneath the pond bottom for 13 to 27 days before retrieval. Water samples were collected from temporary well points driven about 2-4 feet into the pond bottom at 21 sites in December 2001 and March 2002 for analysis of explosives and perchlorate to confirm the diffusion-sampling results. The water samples from the diffusion samplers exhibited numerous chromatographic peaks, but evaluation of the photo-diode-array spectra indicated that most of the peaks did not represent the target compounds. The peaks probably are associated with natural organic compounds present in the soft, organically enriched pond-bottom sediments. The presence of four explosive compounds at five widely spaced sites was confirmed by the photo-diode-array analysis, but the compounds are not generally found in contaminated ground water near the ranges. No explosives were detected in water samples obtained from the drive points. Perchlorate was detected at less than 1 microgram per liter in two drive-point samples collected at the same site on two dates about 3 months apart. The source of the perchlorate in the samples could not be related directly to other contamination from Camp Edwards with the available information. The results from the diffusion and drive-point sampling do not indicate an area of ground-water discharge with concentrations of the ordnance-related compounds that are sufficiently elevated to be detected by these sampling methods. The diffusion and drive-point sampling data cannot be interpreted further without additional information concerning the pattern of ground-water flow at Snake Pond and the distributions of RDX, HMX, and perchlorate in ground water in the aquifer near the pond.
Nuclear magnetic resonance relaxation and diffusion measurements as a proxy for soil properties
NASA Astrophysics Data System (ADS)
Duschl, Markus; Pohlmeier, Andreas; Galvosas, Petrik; Vereecken, Harry
2013-04-01
Nuclear Magnetic Resonance (NMR) relaxation and NMR diffusion measurements are two of a series of fast and non-invasive NMR applications widely used e.g. as well logging tools in petroleum exploration [1]. For experiments with water, NMR relaxation measures the relaxation behaviour of former excited water molecules, and NMR diffusion evaluates the self-diffusion of water. Applied in porous media, both relaxation and diffusion measurements depend on intrinsic properties of the media like pore size distribution, connectivity and tortuosity of the pores, and water saturation [2, 3]. Thus, NMR can be used to characterise the pore space of porous media not only in consolidated sediments but also in soil. The physical principle behind is the relaxation of water molecules in an external magnetic field after excitation. In porous media water molecules in a surface layer of the pores relax faster than the molecules in bulk water because of interactions with the pore wall. Thus, the relaxation in smaller pores is generally faster than in bigger pores resulting in a relaxation time distribution for porous media with a range of pore sizes like soil [4]. In NMR diffusion experiments, there is an additional encoding of water molecules by application of a magnetic field gradient. Subsequent storage of the magnetization and decoding enables the determination of the mean square displacement and therefore of the self-diffusion of the water molecules [5]. Employing various relaxation and diffusion experiments, we get a measure of the surface to volume ratio of the pores and the tortuosity of the media. In this work, we show the characterisation of a set of sand and soil samples covering a wide range of textural classes by NMR methods. Relaxation times were monitored by the Carr-Purcell-Meiboom-Gill sequence and analysed using inverse Laplace transformation. Apparent self-diffusion constants were detected by a 13-intervall pulse sequence and variation of the storage time. We correlated the results with various soil properties like texture, water retention parameters, and hydraulic conductivity. This way we show that we can predict soil properties by NMR measurements and that we are able use results of NMR measurements as a proxy without the need of direct measurements. [1] Song, Y.-Q., Vadose Zone Journal, 9 (2010) [2] Stingaciu, L. R., et al., Water Resources Research, 46 (2010) [3] Vogt, C., et al., Journal of Applied Geophysics, 50 (2002) [4] Barrie, P. J., Annual Reports on NMR Spectroscopy, 41 (2000) [5] Stallmach, F., Galvosas, P., Annual Reports on NMR Spectroscopy, 61 (2007)
Patchiness of phytoplankton and primary production in Liaodong Bay, China.
Pei, Shaofeng; Laws, Edward A; Zhang, Haibo; Ye, Siyuan; Yuan, Hongming; Liu, Haiyue
2017-01-01
A comprehensive study of water quality, phytoplankton biomass, and photosynthetic rates in Liaodong Bay, China, during June and July of 2013 revealed two large patches of high biomass and production with dimensions on the order of 10 km. Nutrient concentrations were above growth-rate-saturating concentrations throughout the bay, with the possible exception of phosphate at some stations. The presence of the patches therefore appeared to reflect the distribution of water temperature and variation of light penetration restricted by water turbidity. There was no patch of high phytoplankton biomass or production in a third, linear patch of water with characteristics suitable for rapid phytoplankton growth; the absence of a bloom in that patch likely reflected the fact that the width of the patch was less than the critical size required to overcome losses of phytoplankton to turbulent diffusion. The bottom waters of virtually all of the eastern half of the bay were below the depth of the mixed layer, and the lowest bottom water oxygen concentrations, 3-5 mg L-1, were found in that part of the bay. The water column in much of the remainder of the bay was within the mixed layer, and oxygen concentrations in both surface and bottom waters exceeded 5 mg L-1.
Patchiness of phytoplankton and primary production in Liaodong Bay, China
Laws, Edward A.; Zhang, Haibo; Ye, Siyuan; Yuan, Hongming; Liu, Haiyue
2017-01-01
A comprehensive study of water quality, phytoplankton biomass, and photosynthetic rates in Liaodong Bay, China, during June and July of 2013 revealed two large patches of high biomass and production with dimensions on the order of 10 km. Nutrient concentrations were above growth-rate-saturating concentrations throughout the bay, with the possible exception of phosphate at some stations. The presence of the patches therefore appeared to reflect the distribution of water temperature and variation of light penetration restricted by water turbidity. There was no patch of high phytoplankton biomass or production in a third, linear patch of water with characteristics suitable for rapid phytoplankton growth; the absence of a bloom in that patch likely reflected the fact that the width of the patch was less than the critical size required to overcome losses of phytoplankton to turbulent diffusion. The bottom waters of virtually all of the eastern half of the bay were below the depth of the mixed layer, and the lowest bottom water oxygen concentrations, 3–5 mg L–1, were found in that part of the bay. The water column in much of the remainder of the bay was within the mixed layer, and oxygen concentrations in both surface and bottom waters exceeded 5 mg L–1. PMID:28235070
Radiolytic stability of gibbsite and boehmite with adsorbed water
NASA Astrophysics Data System (ADS)
Huestis, Patricia; Pearce, Carolyn I.; Zhang, X.; N'Diaye, Alpha T.; Rosso, Kevin M.; LaVerne, Jay A.
2018-04-01
Aluminum oxyhydroxide (boehmite, AlOOH) and aluminum hydroxide (gibbsite, Al(OH)3) powders with adsorbed water were irradiated with γ-rays and 5 MeV He ions (α-particles) in order to determine overall radiation stability and chemical modification to the surface. No variation in overall phase or crystallinity due to radiolysis was observed with X-ray diffraction (XRD) and Raman spectroscopy for doses up to 2 MGy with γ-rays and 175 MGy with α-particles. Temperature programed desorption (TPD) of the water from the surface to the gas phase indicated that the water was chemisorbed and strongly bound. Water adsorption sites are of similar energy for both gibbsite and boehmite. Observation of the water adsorbed on the surface of gibbsite and boehmite with diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) showed broad peaks at 3100-3600 cm-1 due to OH stretching that slowly decreased on heating to 500 °C, which corresponds well with the water vapor evolution observed with TPD. Both materials were found to be amorphous following heating to 500 °C. X-ray photoelectron spectroscopy (XPS) indicated surface reduction of Al(III) to Al metal on radiolysis with α-particles. Complete loss of chemisorbed water and the formation of bulk O atoms was observed following radiolysis with α-particles.
Radiolytic stability of gibbsite and boehmite with adsorbed water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huestis, Patricia; Pearce, Carolyn I.; Zhang, X.
Aluminum oxyhydroxide (boehmite, AlOOH) and aluminum hydroxide (gibbsite, Al(OH)3) powders with adsorbed water were irradiated with -rays and 5 MeV He ions (α-particles) in order to determine overall radiation stability and chemical modification to the surface. No variation in overall phase or crystallinity due to radiolysis was observed with X-ray diffraction (XRD) and Raman spectroscopy for doses up to 2 MGy with -rays and 175 MGy with α-particles. Temperature programed desorption (TPD) of the water from the surface to the gas phase indicated that the water was chemisorbed and strongly bound. Water adsorption sites are of similar energy for bothmore » gibbsite and boehmite. Observation of the water adsorbed on the surface of gibbsite and boehmite with diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) showed broad peaks at 3100-3600 cm-1 due to OH stretching that slowly decreased on heating to 500oC, which corresponds well with the water vapor evolution observed with TPD. Both materials were found to be amorphous following heating to 500oC. X-ray photoelectron spectroscopy (XPS) indicated surface reduction of Al(III) to Al metal on radiolysis with α-particles. Complete loss of chemisorbed water and the formation of bulk O atoms was observed following radiolysis with α-particles.« less
Thin liquid/gas diffusion layers for high-efficiency hydrogen production from water splitting
Mo, Jingke; Retterer, Scott T.; Cullen, David A.; ...
2016-06-13
Liquid/gas diffusion layers (LGDLs) play a crucial role in electrochemical energy technology and hydrogen production, and are expected to simultaneously transport electrons, heat, and reactants/products with minimum voltage, current, thermal, interfacial, and fluidic losses. In addition, carbon materials, which are typically used in proton exchange membrane fuel cells (PEMFCs), are unsuitable for PEM electrolyzer cells (PEMECs). In this study, a novel titanium thin LGDL with well-tunable pore morphologies was developed by employing nano-manufacturing and was applied in a standard PEMEC. The LGDL tests show significant performance improvements. The operating voltages required at a current density of 2.0 A/cm 2 weremore » as low as 1.69 V, and its efficiency reached a report high of up to 88%. The new thin and flat LGDL with well-tunable straight pores has been demonstrated to remarkably reduce the ohmic, interfacial and transport losses. In addition, well-tunable features, including pore size, pore shape, pore distribution, and thus porosity and permeability, will be very valuable for developing PEMEC models and for validation of its simulations with optimal and repeatable performance. The LGDL thickness reduction from greater than 350 μm of conventional LGDLs to 25 μm will greatly decrease the weight and volume of PEMEC stacks, and represents a new direction for future developments of low-cost PEMECs with high performance.« less
Kuss, Joachim; Holzmann, Jörg; Ludwig, Ralf
2009-05-01
Mercury is a priority pollutant as its mobility between the hydrosphere and the atmosphere threatens the biosphere globally. The air-water gas transfer of elemental mercury (Hg0) is controlled by its diffusion through the water-side boundary layer and thus by its diffusion coefficient, D(Hg), the value of which, however, has not been established. Here, the diffusion of Hg0 in water was modeled by molecular dynamics (MD) simulation and the diffusion coefficient subsequently determined. Therefore the movement of either Hg(0) or xenon and 1000 model water molecules (TIP4P-Ew) were traced for time spans of 50 ns. The modeled D(Xe) of the monatomic noble gas agreed well with measured data; thus, MD simulation was assumed to be a reliable approach to determine D(Hg) for monatomic Hg(0) as well. Accordingly, Hg(0) diffusion was then simulated for freshwater and seawater, and the data were well-described by the equation of Eyring. The activation energies for the diffusion of Hg0 in freshwater was 17.0 kJ mol(-1) and in seawater 17.8 kJ mol(-1). The newly determined D(Hg) is clearly lower than the one previously used for an oceanic mercury budget. Thus, its incorporation into the model should lead to lower estimates of global ocean mercury emissions.
Water has no effect on oxygen self-diffusion rate in forsterite
NASA Astrophysics Data System (ADS)
Fei, H.; Yamazaki, D.; Wiedenbeck, M.; Katsura, T.
2014-12-01
Water is thought to play an essential role in dynamical processes in the Earth's interior. Even several tens wt. ppm of water may enhance the creep rates in olivine by orders of magnitude based on deformation experiments [1, 2]. High temperature creep in olivine is believed to be controlled by self-diffusion of the slowest species, which is silicon in olivine. However, silicon self-diffusion experiments suggest that the role of water on olivine rheology is overestimated in previous deformation studies because of the experimental difficulties [3].On the other hand, oxygen is the second slowest species with similar diffusion rate as silicon. It may also play an essential role in olivine creep. By comparing the oxygen self-diffusion coefficient (DO) in olivine at ambient pressure and dry conditions [4] with those at 2 GPa and hydrous conditions, it is found that even 30-50 wt. ppm of water could enhance DO by one order of magnitude [5]. However, comparison of experimental results obtained at different pressures could lead to misinterpretations because different experimental setups have different error sources [6]. In this study, we systematically measured DO in an iron-free olivine, namely, forsterite, at 8 GPa and 1600-1800 K over a wide range of water content (CH2O) from <1 up to 800 wt. ppm. Our results show that DO∝(CH2O)0.05±0.06≈(CH2O)0. Thus, water has no significant effect on oxygen self-diffusion rate in forsterite. Since the water content dependence of silicon self-diffusion rate is also very small [3], the role of water on olivine rheology is not as significant as previously thought by assuming the diffusion controlled creep mechanism. [1] Karato &Jung (2003), Philosophical Mag. 83, 401-414.[2] Hirth & Kohlstedt (2003) Geophys. Monogr. 138, 83-105.[3] Fei et al. (2013), Nature 498, 213-215.[4] Dohmen et al. (2002), GRL 29, 2030.[5] Costa & Chakraborty (2008), PEPI 166, 11-29.[6] Fei et al. (2012), EPSL 345, 95-103.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaspar, RB; Letterio, MP; Wittkopf, JA
Hydroxide exchange membrane fuel cells (HEMFCs) are an emerging low-cost alternative to conventional proton exchange membrane fuel cells. In addition to producing water at the anode, HEMFCs consume water at the cathode, leading to distinctive water transport behavior. We report that gas diffusion layer (GDL) wetproofing strictly lowers cell performance, but that the penalty is much higher when the anode side is wetproofed compared to the cathode side. We attribute this penalty primarily to mass transport losses from anode flooding, suggesting that cathode humidification may be more beneficial than anode humidification for this device. GDLs with little or no wetproofingmore » perform best, yielding a competitive peak power density of 737 mW cm(-2). (C) The Author(s) 2015. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, hup://creativecommons.orgilicenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. All rights reserved.« less
Acclimation of Photosynthesis to Low Leaf Water Potentials 1
Matthews, Mark A.; Boyer, John S.
1984-01-01
Photosynthesis is reduced at low leaf water potentials (Ψl) but repeated water deficits can decrease this reduction, resulting in photosynthetic acclimation. The contribution of the stomata and the chloroplasts to this acclimation is unknown. We evaluated stomatal and chloroplast contributions when soil-grown sunflower (Helianthus annuus L.) plants were subjected to water deficit pretreatments for 2 weeks. The relationship between photosynthesis and Ψl, determined from gas-exchange and isopiestic thermocouple psychometry, was shifted 3 to 4 bars towards lower Ψl, in pretreated plants. Leaf diffusive resistance was similarly affected. Chloroplast activity, demonstrated in situ with measurements of quantum yield and the capacity to fix CO2 at all partial pressures of CO2, and in vitro by photosystem II activity of isolated organelles, was inhibited at low Ψl but less in pretreated plants than in control plants. The magnitude of this inhibition indicated that decreases in chloroplast activity contributed more than closure of stomata both to losses in photosynthesis and to the acclimation of photosynthesis to low Ψl. PMID:16663372
Acclimation of photosynthesis to low leaf water potentials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthews, M.A.; Boyer, J.S.
1984-01-01
Photosynthesis is reduced at low leaf water potentials (PSI/sub l/) but repeated water deficits can decrease this reduction, resulting in photosynthetic acclimation. The contribution of the stomata and the chloroplasts to this acclimation is unknown. The authors evaluated stomatal and chloroplast contributions when soil-grown sunflower (Helianthus annuus L.) plants were subjected to water deficit pretreatments for 2 weeks. The relationship between photosynthesis and PSI/sub l/, determined from gas-exchange and isopiestic thermocouple psychometry, was shifted 3 to 4 bars towards lower PSI/sub l/ in pretreated plants. Leaf diffusive resistance was similarly affected. Chloroplast activity, demonstrated in situ with measurements of quantummore » yield and the capacity to fix CO/sub 2/ at all partial pressures of CO/sub 2/, and in vitro by photosystem II activity of isolated organelles, was inhibited at low PSI/sub l/ but less in pretreated plants than in control plants. The magnitude of this inhibition indicated that decreases in chloroplast activity contributed more than closure of stomata both to losses in photosynthesis and to the acclimation of photosynthesis to low PSI/sub l/. 32 references, 8 figures.« less
Late diagenetic indicators of buried oil and gas
Donovan, Terrence J.; Dalziel, Mary C.
1977-01-01
At least three hydrocarbon seepage mechanisms are interpreted to operate over oil and gas fields. These are: (1) effusion ofh ydrocarbons through inadequate caprocks and along faults and fractures, (2) low-molecular-weight hydrocarbons dissolved in water moving vertically through capping shales as a result of a hydrodynamic or chemical potential drive, and (3) diffusion of gases dissolved in water. Combinations of these mechanisms may also occur. Seeping hydrocarbons are oxidized near the earth's surface, and the resulting carbon dioxide reacts with water producing bicarbonate ions, which combine with calcium and magnesium dissolved in ground waters to yield isotopically distinctive pore-filling carbonate cements and surface rocks. The passage of hydrocarbons and associated compounds such as hydrogen sulfide through surface rocks causes a reducing environment and consequent reduction, mobilization, and loss of iron from iron-bearing minerals commonly resulting in a discoloration. Other metals such as manganese are also mobilized and redistributed. These changes in the physical and chemical properties of surface rocks correlate with the subsurface distribution of petroleum, and potentially can be detected from both airborne and spaceborne platforms.
NASA Astrophysics Data System (ADS)
kronvang, B.; Blicher-Mathiesen, G.; Windolf, J.; Grant, R.
2013-12-01
Four major Action Plans on the Aquatic Environment have been implemented in Denmark since 1987 with the aim to reduce by 50% the nitrogen (N) loading and by 80% the phosphorus (P) loading to the aquatic environment. At the same time the Danish National Aquatic Monitoring and Assessment Programme (NOVA) was launched with the aim to follow the effects of the obligatory implemented management strategies in Danish agriculture. Monitoring of the effects took place in 5 small agricultural catchments in soil water, groundwater and surface waters with annual interviews of farmers practices at field level as well as a general monitoring of nutrient concentrations in groundwater, streams, rivers, lakes and estuaries all over Denmark. Considerable changes in agricultural practice (storage of slurry, ban on slurry spreading in autumn and winter, strict requirements to N-use in animal manure, N-norms to all crops to be fixed to 10% below economic optimum, etc.) have resulted in a reduction of the net N-surplus from 136 to 75 kg N ha-1 yr-1 (45%) and the net P-surplus from 19 to around 0 kg P ha-1 yr-1 (100%) during the period 1985-2011..Twenty-five years of experience gathered from NOVA have shown that the losses of total N (TN) and total P (TP) to the marine environment from both point sources and diffuse sources has decreased with 50% and 50%, respectively. The reduction in TN losses alone amounts to 40%, whereas no general reduction in TP from diffuse losses can be detected. Despite the great efforts in improving the management of N and P in Danish agriculture the sector is today still the major source of both N (80%) and P (50%) in Danish streams, lakes and coastal waters. The ecological conditions in Danish streams, lakes and estuaries are still below the at least good ecological quality required by the EU Water Framework Directive adopted in year 2000. As global demand for food is increasing the Danish Government last year initiated a commission to publish a white book on ';Nature and Agriculture'. The commission has just published their recommendations for the future regulation and management of the Danish agricultural production as the aquatic environment still needs to be improved, and concurrently, the airborne nutrient load on nature must be reduced, and agriculture must help reduce the overall climate change impact. The Commission suggests that the current environmental regulation of agriculture with general fertilizer norms and limits on production cannot alone deal with the challenges, because the costs will be too high for the farmers. They, conclude that it is necessary to explore new territory and make regulation more targeted. Trends in the use of chemical fertilizers in Danish agriculture 1950-2012 and the responses following adopted Action Plans (APAE= Action Plan Aquatic Environment).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, M.H.; Lee, W.C.
1996-05-01
Acid gases such as CO{sub 2} and H{sub 2}S are frequently removed from natural gas, synthetic natural gas, and other process gas streams by means of absorption into aqueous alkanol-amine solutions. The solubility and diffusivity of N{sub 2}O in (diethanolamine + N-methyldiethanolamine + water) and in (diethanolamine + 2-amino-2-methyl-1-propanol + water) were measured at (30, 35, and 40)C and at atmospheric pressure. Five (diethanolamine + N-methyldiethanolamine + water) and four (diethanolamine + 2-amino-2-methyl-1-propanol + water) systems were studied. The total amine mass percent in all cases was 30. A solubility apparatus was used to measure the solubility of N{sub 2}Omore » in amine solutions. The diffusivity was measured by a wetted wall column absorber. The N{sub 2}O analogy was used to estimate the solubility and diffusivity of CO{sub 2} in (diethanolamine + N-methyldiethanolamine + water) and in (diethanolamine + 2-amino-2-methyl-1-propanol + water).« less
A study of atmospheric diffusion from the LANDSAT imagery. [pollution transport over the ocean
NASA Technical Reports Server (NTRS)
Dejesusparada, N. (Principal Investigator); Viswanadham, Y.; Torsani, J. A.
1981-01-01
LANDSAT multispectral scanner data of the smoke plumes which originated in eastern Cabo Frio, Brazil and crossed over into the Atlantic Ocean, are analyzed to illustrate how high resolution LANDSAT imagery can aid meteorologists in evaluating specific air pollution events. The eleven LANDSAT images selected are for different months and years. The results show that diffusion is governed primarily by water and air temperature differences. With colder water, low level air is very stable and the vertical diffusion is minimal; but water warmer than the air induces vigorous diffusion. The applicability of three empirical methods for determining the horizontal eddy diffusivity coefficient in the Gaussian plume formula was evaluated with the estimated standard deviation of the crosswind distribution of material in the plume from the LANDSAT imagery. The vertical diffusion coefficient in stable conditions is estimated using Weinstock's formulation. These results form a data base for use in the development and validation of meso scale atmospheric diffusion models.
Oscillatory Extinction Of Spherical Diffusion Flames
NASA Technical Reports Server (NTRS)
Law, C. K.; Yoo, S. W.; Christianson, E. W.
2003-01-01
Since extinction has been observed in an oscillatory manner in Le greater than 1 premixed flames, it is not unreasonable to expect that extinction could occur in an unsteady manner for diffusion flames. Indeed, near-limit oscillations have been observed experimentally under microgravity conditions for both candle flames and droplet flames. Furthermore, the analysis of Cheatham and Matalon on the unsteady behavior of diffusion flames with heat loss, identified an oscillatory regime which could be triggered by either a sufficiently large Lewis number (even without heat loss) or an appreciable heat loss (even for Le=1). In light of these recent understanding, the present investigation aims to provide a well-controlled experiment that can unambiguously demonstrate the oscillation of diffusion flames near both the transport- and radiation-induced limits. That is, since candle and jet flames are stabilized through flame segments that are fundamentally premixed in nature, and since premixed flames are prone to oscillate, there is the possibility that the observed oscillation of these bulk diffusion flames could be triggered and sustained by the oscillation of the premixed flame segments. Concerning the observed oscillatory droplet extinction, it is well-known that gas-phase oscillation in heterogeneous burning can be induced by and is thereby coupled with condensed-phase unsteadiness. Consequently, a convincing experiment on diffusion flame oscillation must exclude any ingredients of premixed flames and other sources that may either oscillate themselves or promote the oscillation of the diffusion flame. The present experiment on burner-generated spherical flames with a constant reactant supply endeavored to accomplish this goal. The results are further compared with those from computational simulation for further understanding and quantification of the flame dynamics and extinction.
Experimental investigation on flow in diffuser of 1090 MW steam turbine
NASA Astrophysics Data System (ADS)
Hoznedl, Michal; Sedlák, Kamil; Mrózek, Lukáš; Bednář, Lukáš; Kalista, Robert
2016-06-01
The paper deals with flow of wet water steam in diffuser of turbine engine 1090 MW on saturated water steam. Experimental measurements were done while the turbine was in operation for a wide range of outputs. Defining the outlet velocity from the last stage and with knowledge of static pressures on the diffuser outlet, it is possible to define the contribution of the diffuser to the whole low pressure part efficiency.
Giannakidis, Archontis; Gullberg, Grant T; Pennell, Dudley J; Firmin, David N
2016-07-01
Previous ex vivo diffusion tensor imaging (DTI) studies on formalin-fixed myocardial tissue assumed that, after some initial changes in the first 48 hr since the start of fixation, DTI parameters remain stable over time. Prolonged preservation of cardiac tissue in formalin prior to imaging has been seen many times in the DTI literature as it is considered orderly. Our objective is to define the effects of the prolonged cardiac tissue exposure to formalin on tissue microanatomical organization, as this is assessed by DTI parameters. DTI experiments were conducted on eight excised rodent hearts that were fixed by immersion in formalin. The samples were randomly divided into two equinumerous groups corresponding to shorter (∼2 weeks) and more prolonged (∼6-8 weeks) durations of tissue exposure to formalin prior to imaging. We found that when the duration of cardiac tissue exposure to formalin before imaging increased, water diffusion became less restricted, helix angle (HA) histograms flattened out and exhibited heavier tails (even though the classic HA transmural variation was preserved), and a significant loss of inter-voxel primary diffusion orientation integrity was introduced. The prolonged preservation of cardiac tissue in formalin profoundly affected its microstructural organization, as this was assessed by DTI parameters. The accurate interpretation of diffusivity profiles necessitates awareness of the pitfalls of prolonged cardiac tissue exposure duration to formalin. The acquired knowledge works to the advantage of a proper experimental design of DTI studies of fixed hearts. Anat Rec, 299:878-887, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Plasma diffusion at the magnetopause - The case of lower hybrid drift waves
NASA Technical Reports Server (NTRS)
Treumann, R. A.; Labelle, J.; Pottelette, R.
1991-01-01
The diffusion expected from the quasi-linear theory of the lower hybrid drift instability at the earth's magnetopause is recalculated. The resulting diffusion coefficient is marginally large enough to explain the thickness of the boundary layer under quiet conditions, based on observational upper limits for the wave intensities. Thus, one possible model for the boundary layer could involve equilibrium between the diffusion arising from lower hybrid waves and various loss processes.
USGS GeoData Digital Raster Graphics
,
2001-01-01
Passive diffusion samplers have been tested at a number of sites where volatile organic compounds (VOC?s) are the principal contaminants in ground water. Test results generally show good agreement between concentrations of VOC?s in samples collected with diffusion samplers and concentrations in samples collected by purging the water from a well. Diffusion samplers offer several advantages over conventional and low-flow ground-water sampling procedures: ? Elimination of the need to purge a well before collecting a sample and to dispose of contaminated water. ? Elimination of cross-contamination of samples associated with sampling with non-dedicated pumps or sample delivery tubes. ? Reduction in sampling time by as much as 80 percent of that required for ?purge type? sampling methods. ? An increase in the frequency and spatial coverage of monitoring at a site because of the associated savings in time and money. The successful use of diffusion samplers depends on the following three primary factors: (1) understanding site conditions and contaminants of interest (defining sample objectives), (2) validating of results of diffusion samplers against more widely acknowledged sampling methods, and (3) applying diffusion samplers in the field.
The entrance of water into beef and dog red cells.
VILLEGAS, R; BARTON, T C; SOLOMON, A K
1958-11-20
The rate constants for diffusion of THO across the red cell membrane of beef and dog, and the rate of entrance of water into the erythrocytes of these species under an osmotic pressure gradient have been measured. For water entrance into the erythrocyte by diffusion the rate constants are 0.10 +/- 0.02 msec.(-1) (beef) and 0.14 +/- 0.03 msec.(-1) (dog); the permeability coefficients for water entrance under a pressure gradient of 1 osmol./cm(3) are 0.28 See PDF for Equation These values permit the calculation of an equivalent pore radius for the erythrocyte membrane of 4.1 A for beef and 7.4 A for dog. In the beef red cell the change in THO diffusion due to osmotically produced cell volume shifts has been studied. The resistance to THO diffusion increases as the cell volume increases. At the maximum volume, (1.06 times normal), THO diffusion is decreased to 0.84 times the normal rate. This change in diffusion is attributed to swelling of the cellular membrane.
Translational and Rotational Diffusion in Water in the Gigapascal Range
NASA Astrophysics Data System (ADS)
Bove, L. E.; Klotz, S.; Strässle, Th.; Koza, M.; Teixeira, J.; Saitta, A. M.
2013-11-01
First measurements of the self-dynamics of liquid water in the GPa range are reported. The GPa range has here become accessible through a new setup for the Paris-Edinburgh press specially conceived for quasielastic neutron scattering studies. A direct measurement of both the translational and rotational diffusion coefficients of water along the 400 K isotherm up to 3 GPa, corresponding to the melting point of ice VII, is provided and compared with molecular dynamics simulations. The translational diffusion is observed to strongly decrease with pressure, though its variation slows down for pressures higher than 1 GPa and decouples from that of the shear viscosity. The rotational diffusion turns out to be insensitive to pressure. Through comparison with structural data and molecular dynamics simulations, we show that this is a consequence of the rigidity of the first neighbors shell and of the invariance of the number of hydrogen bonds of a water molecule under high pressure. These results show the inadequacy of the Stokes-Einstein-Debye equations to predict the self-diffusive behavior of water at high temperature and high pressure, and challenge the usual description of hot dense water behaving as a simple liquid.
Feng, Yan; Wu, Chen-Chou; Bao, Lian-Jun; Shi, Lei; Song, Lin; Zeng, Eddy Y
2016-12-01
The fate of hydrophobic organic compounds in aquatic environment are largely determined by their exchange at sediment-water interface, which is highly dynamic and subject to rapidly evolving environmental conditions. In turn, environmental conditions may be governed by both physicochemical parameters and anthropogenic events. To examine the importance of various impact factors, passive sampling devices were deployed at the seafloor of Hailing Bay, an urbanized estuarine bay in Guangdong Province of South China to measure the sediment-water diffusion fluxes of several metabolites of dichlorodiphenyltrichloroethane (DDT), p,p'-DDE, p,p'-DDD and o,p'-DDD. The physicochemical properties of water (temperature, pH, salinity and dissolved oxygen) and surface sediment (sediment organic matter, physical composition, pH, water content, colony forming unit and catalase activity) were also measured. The results showed that the diffusion fluxes of o,p'-DDD, p,p'-DDD and p,p'-DDE at sites A1 and A2 near a fishing boat maintenance facility ranged from 0.42 to 4.73 ng m -2 d -1 (from sediment to overlying water), whereas those at offshore sites varied between -0.03 and -3.02 ng m -2 d -1 (from overlying water to sediment), implicating A1 and A2 as the sources of the target compounds. The distribution patterns of the diffusion fluxes of the target compounds were different from those of water and sediment parameters (water temperature, salinity, sediment texture, pH, colony forming unit and catalase activity) at six sampling sites. This finding suggested that none of these parameters were critical in dictating the sediment-water diffusion fluxes. Besides, decreases in the contents of kerogen and black carbon by 6.7% and 11% would enhance the diffusion fluxes of the target compounds by 11-14% and 12-23%, respectively, at site A1, indicating that kerogen and black carbon were the key factors in mediating the sediment-water diffusion fluxes of DDT-related compounds in field environments. Copyright © 2016 Elsevier Ltd. All rights reserved.
Molecular Dynamics Simulation of Salt Diffusion in Polyelectrolyte Assemblies.
Zhang, Ran; Duan, Xiaozheng; Ding, Mingming; Shi, Tongfei
2018-06-05
The diffusion of salt ions and charged probe molecules in polyelectrolyte assemblies is often assumed to follow a theoretical hopping model, in which the diffusing ion is hopping between charged sites of chains based on electroneutrality. However, experimental verification of diffusing pathway at such microscales is difficult, and the corresponding molecular mechanisms remain elusive. In this study, we perform all-atom molecular dynamics (MD) simulations of salt diffusion in polyelectrolyte (PE) assembly of poly (sodium 4-styrenesulfonate) (PSS) and poly (diallyldimethylammonium chloride) (PDAC). Besides the ion hopping mode, the diffusing trajectories are found presenting common features of a jump process, i.e., subjecting to PE relaxation, water pockets in the structure open and close, thus the ion can move from one pocket to another. Anomalous subdiffusion of ions and water is observed due to the trapping scenarios in these water pockets. The jump events are much rarer compared with ion hopping but significantly increases salt diffusion with increasing temperature. Our result strongly indicates that salt diffusion in hydrated PDAC/PSS is a combined process of ion hopping and jump motion. This provides new molecular explanation for the coupling of salt motion with chain motion and the nonlinear increase of salt diffusion at glass transition temperature.
Cumulant expansions for measuring water exchange using diffusion MRI
NASA Astrophysics Data System (ADS)
Ning, Lipeng; Nilsson, Markus; Lasič, Samo; Westin, Carl-Fredrik; Rathi, Yogesh
2018-02-01
The rate of water exchange across cell membranes is a parameter of biological interest and can be measured by diffusion magnetic resonance imaging (dMRI). In this work, we investigate a stochastic model for the diffusion-and-exchange of water molecules. This model provides a general solution for the temporal evolution of dMRI signal using any type of gradient waveform, thereby generalizing the signal expressions for the Kärger model. Moreover, we also derive a general nth order cumulant expansion of the dMRI signal accounting for water exchange, which has not been explored in earlier studies. Based on this analytical expression, we compute the cumulant expansion for dMRI signals for the special case of single diffusion encoding (SDE) and double diffusion encoding (DDE) sequences. Our results provide a theoretical guideline on optimizing experimental parameters for SDE and DDE sequences, respectively. Moreover, we show that DDE signals are more sensitive to water exchange at short-time scale but provide less attenuation at long-time scale than SDE signals. Our theoretical analysis is also validated using Monte Carlo simulations on synthetic structures.
Role of Water Activity on Intergranular Transport at High Pressure
NASA Astrophysics Data System (ADS)
Gasc, J.; Brunet, F.; Brantut, N.; Corvisier, J.; Findling, N.; Verlaguet, A.; Lathe, C.
2016-12-01
The kinetics of the reaction Ca(OH)2 + MgCO3 = CaCO3 + Mg(OH)2 were investigated at a pressure of 1.8 GPa and temperatures of 120-550°C, using synchrotron X-ray diffraction and analysis of reaction rims on recovered samples. Comparable reaction kinetics were obtained under water saturated ( 10 wt.%), intermediate (0.1-1 wt.%) and dry conditions at 150, 400 and 550°C, respectively, where, in the latter case, water activity was buffered below one (no free water). At a given temperature, these gaps imply differences of several orders of magnitude in terms of reaction kinetics. Microscopy analysis shows that intergranular transport of Ca controls the reaction progress. Grain boundary diffusivities were retrieved from measurements of reaction rim widths on recovered samples. In addition, an innovative reaction rim growth model was developed to simulate and fit kinetic data. The diffusion values thus obtained show that both dry and intermediate datasets are in fact consistent with a water saturated intergranular medium with different levels of connectivity. Diffusivity of Ca in the CaCO3 + Mg(OH)2 rims is found to be much larger than that of Mg in enstatite rims, which emphasizes the prominent role of interactions between diffusing species and mineral surfaces on diffusion. We suggest that diffusivity of major species (Mg, Ca) in low-porosity metamorphic rocks is not only water-content dependent but also strongly depends on the interaction between diffusing species and mineral surfaces. This parameter, which will vary from one rock-type to the other, needs to be considered when extrapolating (P,T,t, xH2O) laboratory diffusion data to metamorphic processes. The present study, along with previous data from the literature, will help quantify the tremendous effect of small water content variations, i.e., within the 0-1 wt. % range, on intergranular transport and reaction kinetics (Gasc et al., J. Pet., In press).
NASA Astrophysics Data System (ADS)
Chen, Mohan; Zheng, Lixin; Santra, Biswajit; Ko, Hsin-Yu; DiStasio, Robert A., Jr.; Klein, Michael L.; Car, Roberto; Wu, Xifan
2018-03-01
Proton transfer via hydronium and hydroxide ions in water is ubiquitous. It underlies acid-base chemistry, certain enzyme reactions, and even infection by the flu. Despite two centuries of investigation, the mechanism underlying why hydroxide diffuses slower than hydronium in water is still not well understood. Herein, we employ state-of-the-art density-functional-theory-based molecular dynamics—with corrections for non-local van der Waals interactions, and self-interaction in the electronic ground state—to model water and hydrated water ions. At this level of theory, we show that structural diffusion of hydronium preserves the previously recognized concerted behaviour. However, by contrast, proton transfer via hydroxide is less temporally correlated, due to a stabilized hypercoordination solvation structure that discourages proton transfer. Specifically, the latter exhibits non-planar geometry, which agrees with neutron-scattering results. Asymmetry in the temporal correlation of proton transfer leads to hydroxide diffusing slower than hydronium.
Diffusion coefficient and shear viscosity of rigid water models.
Tazi, Sami; Boţan, Alexandru; Salanne, Mathieu; Marry, Virginie; Turq, Pierre; Rotenberg, Benjamin
2012-07-18
We report the diffusion coefficient and viscosity of popular rigid water models: two non-polarizable ones (SPC/E with three sites, and TIP4P/2005 with four sites) and a polarizable one (Dang-Chang, four sites). We exploit the dependence of the diffusion coefficient on the system size (Yeh and Hummer 2004 J. Phys. Chem. B 108 15873) to obtain the size-independent value. This also provides an estimate of the viscosity of all water models, which we compare to the Green-Kubo result. In all cases, a good agreement is found. The TIP4P/2005 model is in better agreement with the experimental data for both diffusion and viscosity. The SPC/E and Dang-Chang models overestimate the diffusion coefficient and underestimate the viscosity.
Pathology of tissue loss (white syndrome) in Acropora sp. corals from the Central Pacific.
Work, Thierry M; Aeby, Greta S
2011-06-01
We performed histological examination of 69 samples of Acropora sp. manifesting different types of tissue loss (Acropora White Syndrome-AWS) from Hawaii, Johnston Atoll and American Samoa between 2002 and 2006. Gross lesions of tissue loss were observed and classified as diffuse acute, diffuse subacute, and focal to multifocal acute to subacute. Corals with acute tissue loss manifested microscopic evidence of necrosis sometimes associated with ciliates, helminths, fungi, algae, sponges, or cyanobacteria whereas those with subacute tissue loss manifested mainly wound repair. Gross lesions of AWS have multiple different changes at the microscopic level some of which involve various microorganisms and metazoa. Elucidating this disease will require, among other things, monitoring lesions over time to determine the pathogenesis of AWS and the potential role of tissue-associated microorganisms in the genesis of tissue loss. Attempts to experimentally induce AWS should include microscopic examination of tissues to ensure that potentially causative microorganisms associated with gross lesion are not overlooked. Published by Elsevier Inc.
Pathology of tissue loss (white syndrome) in Acropora sp. corals from the Central Pacific
Work, Thierry M.; Aeby, Greta S.
2011-01-01
We performed histological examination of 69 samples of Acropora sp. manifesting different types of tissue loss (Acropora White Syndrome-AWS) from Hawaii, Johnston Atoll and American Samoa between 2002 and 2006. Gross lesions of tissue loss were observed and classified as diffuse acute, diffuse subacute, and focal to multifocal acute to subacute. Corals with acute tissue loss manifested microscopic evidence of necrosis sometimes associated with ciliates, helminths, fungi, algae, sponges, or cyanobacteria whereas those with subacute tissue loss manifested mainly wound repair. Gross lesions of AWS have multiple different changes at the microscopic level some of which involve various microorganisms and metazoa. Elucidating this disease will require, among other things, monitoring lesions over time to determine the pathogenesis of AWS and the potential role of tissue-associated microorganisms in the genesis of tissue loss. Attempts to experimentally induce AWS should include microscopic examination of tissues to ensure that potentially causative microorganisms associated with gross lesion are not overlooked.
Considerations for sampling inorganic constituents in ground water using diffusion samplers
Vroblesky, D.A.; Petkewich, M.D.; Campbell, T.R.; ,
2002-01-01
Data indicate that nylon-screen and dialysis diffusion samplers are capable of obtaining concentrations of inorganic solutes in ground water from wells that closely correspond to concentrations obtained by low-flow sampling. Conservative solutes, such as chloride, can be sampled by filling the diffusion samplers with oxygenated water. The samplers should be filled with anaerobic water for sampling redoxsensitive solutes. Oxidation of iron within the samplers, either by using aerobic fill water or by in-well oxygenation events, can lead to erroneous iron concentrations. Lithologic and chemical heterogeneity and sampler placement depth can lead to differences between concentrations from diffusion samples and low-flow samples because of mixing during pumping. A disadvantage of regenerated cellulose dialysis samplers is that they can begin to biodegrade within the two weeks of deployment. Nylon-screen samplers buried beneath streambed sediment along the unnamed tributary in a discharge zone of arseniccontaminated ground water were useful in locating the specific discharge zone.
Coupling of Outward Radial Diffusion and Losses at the Magnetopause in the Outer Radiation Belt
NASA Astrophysics Data System (ADS)
Castillo Tibocha, A. M.; Shprits, Y.; Drozdov, A.; Kellerman, A. C.; Aseev, N.
2017-12-01
Sudden dropouts observed in relativistic electron fluxes within the radiation belts are one the most studied and yet poorly understood features of the dynamics of radiation belts. A number of physical processes contributing to these dropout events are triggered by solar wind drivers. Magnetopause losses are one of the most effective mechanisms involved here and usually occur when drifting particles reach the boundary or when inward motion of the magnetopause crosses closed particle drift shells. In both cases, particles are rapidly transported into interplanetary space generating sharp gradients in electron PSD that will promote further outward radial diffusion of particles due to adiabatic transport and the influence of outward ULF waves. Studies suggest that the coupling of these two mechanisms explains nearly all the depletion of MeV electrons observed in the outer region of the radiation belts (L*>5). In this study, we present a simple approach to model electron losses at the magnetopause and outward radial diffusion in the outer radiation belt during geomagnetic storm time. Measured upstream solar wind parameters were used to calculate the radial distance of the subsolar point as proposed by Shue et al. (1997), which was defined as the radial extent of our assumed dipole field configuration. Radial diffusion was modelled using the empirical Kp-dependent DLL [Brautigam and Albert, JGR 2000] diffusion coefficient, which is included in the 3D Versatile Electron Radiation Belt (VERB) code. Simulations of geomagnetic storms were performed in order to evaluate the effects of the integrated mechanisms and the results were compared with Van Allen probe satellite data. Our simulation results reproduce well the observed loss at the magnetopause and electron depletion in the outer radiation belt.
Study the Precipitation of Radiation Belt Electrons during the Rapid Dropout Events
NASA Astrophysics Data System (ADS)
Tu, W.; Cunningham, G.; Li, X.; Chen, Y.
2015-12-01
During the main phase of storms, the relativistic electron flux in the radiation belt can drop by orders of magnitude on timescales of a few hours. Where do the electrons go? This is one of the most important outstanding questions in radiation belt studies. Radiation belt electrons can be lost either by transport across the magnetopause into interplanetary space or by precipitation into the atmosphere. In this work we first conduct a survey of the MeV electron dropouts using the Van Allen Probes data in conjunction with the low-altitude measurements of precipitating electrons by 6 NOAA/POES satellites. The dropout events are categorized into three types: precipitation-loss dominant, outward radial diffusion dominant, or with contributions from both mechanisms. The survey results suggest the relative importance of precipitation and outward radial diffusion to the fast dropouts of radiation belt electrons, and their extent in L-shell and electron energy. Then, for specific events identified as dominated by precipitation loss, we use the Drift-Diffusion model, which includes the effects of azimuthal drift and pitch angle diffusion, to simulate both the electron dropout observed by Van Allen Probes and the distributions of drift-loss-cone electrons observed by multiple low-earth-orbit satellites (6 POES and the Colorado Student Space Weather Experiment). The model quantifies the electron precipitation loss and pitch angle diffusion coefficient, Dxx, with high temporal and spatial resolution. Finally, by comparing the Dxx derived from the model with those estimated from the quasi-linear theory using wave data from Van Allen Probes and other event-specific wave models, we are able to test the validity of quasi-linear theory and seek direct evidence of the wave-particle interactions during the dropouts.
Nakano, Ryohei; Ogura, Emi; Kubo, Yasutaka; Inaba, Akitsugu
2003-01-01
Persimmon (Diospyros kaki Thunb.) fruit are usually classified as climacteric fruit; however, unlike typical climacteric fruits, persimmon fruit exhibit a unique characteristic in that the younger the stage of fruit detached, the greater the level of ethylene produced. To investigate ethylene induction mechanisms in detached young persimmon fruit, we cloned three cDNAs encoding 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (DK-ACS1, 2, and -3) and two encoding ACC oxidase (DK-ACO1 and -2) genes involved in ethylene biosynthesis, and we analyzed their expression in various fruit tissues. Ethylene production was induced within a few days of detachment in all fruit tissues tested, accompanied by temporally and spatially coordinated expression of all the DK-ACS and DK-ACO genes. In all tissues except the calyx, treatment with 1-methylcyclopropene, an inhibitor of ethylene action, suppressed ethylene production and ethylene biosynthesis-related gene expression. In the calyx, one ACC synthase gene (DK-ACS2) exhibited increased mRNA accumulation accompanied by a large quantity of ethylene production, and treatment of the fruit with 1-methylcyclopropene did not prevent either the accumulation of DK-ACS2 transcripts or ethylene induction. Furthermore, the alleviation of water loss from the fruit significantly delayed the onset of ethylene production and the expression of DK-ACS2 in the calyx. These results indicate that ethylene biosynthesis in detached young persimmon fruit is initially induced in calyx and is modulated by water loss through transcriptional activation of DK-ACS2. The ethylene produced in the calyx subsequently diffuses to other fruit tissues and acts as a secondary signal that stimulates autocatalytic ethylene biosynthesis in these tissues, leading to a burst of ethylene production.
Nakano, Ryohei; Ogura, Emi; Kubo, Yasutaka; Inaba, Akitsugu
2003-01-01
Persimmon (Diospyros kaki Thunb.) fruit are usually classified as climacteric fruit; however, unlike typical climacteric fruits, persimmon fruit exhibit a unique characteristic in that the younger the stage of fruit detached, the greater the level of ethylene produced. To investigate ethylene induction mechanisms in detached young persimmon fruit, we cloned three cDNAs encoding 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (DK-ACS1, 2, and -3) and two encoding ACC oxidase (DK-ACO1 and -2) genes involved in ethylene biosynthesis, and we analyzed their expression in various fruit tissues. Ethylene production was induced within a few days of detachment in all fruit tissues tested, accompanied by temporally and spatially coordinated expression of all the DK-ACS and DK-ACO genes. In all tissues except the calyx, treatment with 1-methylcyclopropene, an inhibitor of ethylene action, suppressed ethylene production and ethylene biosynthesis-related gene expression. In the calyx, one ACC synthase gene (DK-ACS2) exhibited increased mRNA accumulation accompanied by a large quantity of ethylene production, and treatment of the fruit with 1-methylcyclopropene did not prevent either the accumulation of DK-ACS2 transcripts or ethylene induction. Furthermore, the alleviation of water loss from the fruit significantly delayed the onset of ethylene production and the expression of DK-ACS2 in the calyx. These results indicate that ethylene biosynthesis in detached young persimmon fruit is initially induced in calyx and is modulated by water loss through transcriptional activation of DK-ACS2. The ethylene produced in the calyx subsequently diffuses to other fruit tissues and acts as a secondary signal that stimulates autocatalytic ethylene biosynthesis in these tissues, leading to a burst of ethylene production. PMID:12529535
Duarte, Rafael M; Wood, Chris M; Val, Adalberto L; Smith, D Scott
2018-06-11
Dissolved organic carbon (DOC) represents a heterogeneous group of naturally-occurring molecules in aquatic environments, and recent studies have evidenced that optically dark DOCs can exert some positive effects on ionoregulatory homeostasis of aquatic organisms in acidic waters. We investigated the effects of Luther Marsh DOC, a dark allochthonous DOC, on ion regulation and N-waste excretion of zebrafish acutely exposed to either neutral or low pH in ion-poor water. In the first experiment, simultaneous exposure to pH 4.0 and DOC greatly attenuated the stimulation of Na + diffusive losses (J out Na ), and prevented the blockade of Na + uptake (J in Na ) seen in zebrafish exposed to pH 4.0 alone, resulting in much smaller disturbances in Na + net losses (J net Na ). DOC also attenuated the stimulation of net Cl - losses (J net Cl ) and ammonia excretion (J net Amm ) during acidic challenge. In the second experiment, zebrafish acclimated to DOC displayed similar regulation of J in Na and J out Na , and, therefore, reduced J net Na at pH 4.0, effects which persisted even when DOC was no longer present. Protective effects of prior acclimation to DOC on J net Cl and J net Amm at pH 4.0 also occurred, but were less marked than those on Na + balance. Urea fluxes were unaffected by the experimental treatments. Overall, these effects were clearly beneficial to the ionoregulatory homeostasis of zebrafish at low pH, and were quite similar to those seen in a recent parallel study using darker DOC from the upper Rio Negro. This suggests that dark allochthonous DOCs share some chemical properties that render fish tolerant to ionoregulatory disturbances during acidic challenge.
NASA Astrophysics Data System (ADS)
Bai, M.; Miskowiec, A.; Hansen, F. Y.; Taub, H.; Jenkins, T.; Tyagi, M.; Diallo, S. O.; Mamontov, E.; Herwig, K. W.; Wang, S.-K.
2012-05-01
High-energy-resolution quasielastic neutron scattering has been used to elucidate the diffusion of water molecules in proximity to single bilayer lipid membranes supported on a silicon substrate. By varying sample temperature, level of hydration, and deuteration, we identify three different types of diffusive water motion: bulk-like, confined, and bound. The motion of bulk-like and confined water molecules is fast compared to those bound to the lipid head groups (7-10 H2O molecules per lipid), which move on the same nanosecond time scale as H atoms within the lipid molecules.
Protein diffusiophoresis and salt osmotic diffusion in aqueous solutions.
Annunziata, Onofrio; Buzatu, Daniela; Albright, John G
2012-10-25
Diffusion of a solute can be induced by the concentration gradient of another solute in solution. This transport mechanism is known as cross-diffusion. We have investigated cross-diffusion in a ternary protein-salt-water system. Specifically, we measured the two cross-diffusion coefficients for the lysozyme-NaCl-water system at 25 °C and pH 4.5 as a function of protein and salt concentrations by Rayleigh interferometry. One cross-diffusion coefficient characterizes salt osmotic diffusion induced by a protein concentration gradient, and is related to protein-salt thermodynamic interactions as described by the theories of Donnan membrane equilibrium and protein preferential hydration. The other cross-diffusion coefficient characterizes protein diffusiophoresis induced by a salt concentration gradient, and is described as the difference between a preferential-interaction coefficient and a transport parameter. We first relate our experimental results to the protein net charge and the thermodynamic excess of water near the protein surface. We then extract the Stefan-Maxwell diffusion coefficient describing protein-salt interactions in water. We find that the value of this coefficient is negative, contrary to the friction interpretation of Stefan-Maxwell equations. This result is explained by considering protein hydration. Finally, protein diffusiophoresis is quantitatively examined by considering electrophoretic and hydration effects on protein migration and utilized to accurately estimate lysozyme electrophoretic mobility. To our knowledge, this is the first time that protein diffusiophoresis has been experimentally characterized and a protein-salt Stefan-Maxwell diffusion coefficient reported. This work represents a significant contribution for understanding and modeling the effect of concentration gradients in protein-salt aqueous systems relevant to diffusion-based mass-transfer technologies and transport in living systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paduano, L.; Sartorio, R.; Vitagliano, V.
Diffusion coefficients in the ternary system {alpha}-cyclodextrin (at one concentration)-L-phenylalanine (at four concentrations)-water have been measured by using the Gouy interferometric technique. The effect of the inclusion equilibrium on the cross-term diffusion coefficients was observed. The measured diffusion coefficients in the ternary systems were used to calculate values of the binding constants. These values are in good agreement with the value obtained from calorimetric studies.
Study of diffusion coefficient of anhydrous trehalose glasses by using PFG-NMR spectroscopy
NASA Astrophysics Data System (ADS)
Kwon, Hyun-Joung; Takekawa, Reiji; Kawamura, Junichi; Tokuyama, Michio
2013-02-01
We investigated the temperature dependent long time self-diffusion coefficient of the anhydrous trehalose supercooled liquids by using pulsed field gradient nuclear magnetic resonance (PFG-NMR) spectroscopy. At the same temperature ranges, the diffusion coefficient convoluted from the α-relaxation time as Einstein-Smoluchowski relaxation, measured by using the dielectric loss spectroscopy are well overlapped with diffusion coefficients within experimental error. The temperature dependent diffusion coefficients obtained from different methods are normalized by fictive temperature and well satisfied the single master curve, proposed by Tokuyama.
Withers, Philip C; Cooper, Christine E; Nespolo, Roberto F
2012-08-15
We examine here evaporative water loss, economy and partitioning at ambient temperatures from 14 to 33°C for the monito del monte (Dromiciops gliroides), a microbiotheriid marsupial found only in temperate rainforests of Chile. The monito's standard evaporative water loss (2.58 mg g(-1) h(-1) at 30°C) was typical for a marsupial of its body mass and phylogenetic position. Evaporative water loss was independent of air temperature below thermoneutrality, but enhanced evaporative water loss and hyperthermia were the primary thermal responses above the thermoneutral zone. Non-invasive partitioning of total evaporative water loss indicated that respiratory loss accounted for 59-77% of the total, with no change in respiratory loss with ambient temperature, but a small change in cutaneous loss below thermoneutrality and an increase in cutaneous loss in and above thermoneutrality. Relative water economy (metabolic water production/evaporative water loss) increased at low ambient temperatures, with a point of relative water economy of 15.4°C. Thermolability had little effect on relative water economy, but conferred substantial energy savings at low ambient temperatures. Torpor reduced total evaporative water loss to as little as 21% of normothermic values, but relative water economy during torpor was poor even at low ambient temperatures because of the relatively greater reduction in metabolic water production than in evaporative water loss. The poor water economy of the monito during torpor suggests that negative water balance may explain why hibernators periodically arouse to normothermia, to obtain water by drinking or via an improved water economy.
Li, W.; Ma, Q.; Thorne, R. M.; ...
2016-06-10
Various physical processes are known to cause acceleration, loss, and transport of energetic electrons in the Earth's radiation belts, but their quantitative roles in different time and space need further investigation. During the largest storm over the past decade (17 March 2015), relativistic electrons experienced fairly rapid acceleration up to ~7 MeV within 2 days after an initial substantial dropout, as observed by Van Allen Probes. In the present paper, we evaluate the relative roles of various physical processes during the recovery phase of this large storm using a 3-D diffusion simulation. By quantitatively comparing the observed and simulated electronmore » evolution, we found that chorus plays a critical role in accelerating electrons up to several MeV near the developing peak location and produces characteristic flat-top pitch angle distributions. By only including radial diffusion, the simulation underestimates the observed electron acceleration, while radial diffusion plays an important role in redistributing electrons and potentially accelerates them to even higher energies. Moreover, plasmaspheric hiss is found to provide efficient pitch angle scattering losses for hundreds of keV electrons, while its scattering effect on > 1 MeV electrons is relatively slow. Although an additional loss process is required to fully explain the overestimated electron fluxes at multi-MeV, the combined physical processes of radial diffusion and pitch angle and energy diffusion by chorus and hiss reproduce the observed electron dynamics remarkably well, suggesting that quasi-linear diffusion theory is reasonable to evaluate radiation belt electron dynamics during this big storm.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, W.; Ma, Q.; Thorne, R. M.
Various physical processes are known to cause acceleration, loss, and transport of energetic electrons in the Earth's radiation belts, but their quantitative roles in different time and space need further investigation. During the largest storm over the past decade (17 March 2015), relativistic electrons experienced fairly rapid acceleration up to ~7 MeV within 2 days after an initial substantial dropout, as observed by Van Allen Probes. In the present paper, we evaluate the relative roles of various physical processes during the recovery phase of this large storm using a 3-D diffusion simulation. By quantitatively comparing the observed and simulated electronmore » evolution, we found that chorus plays a critical role in accelerating electrons up to several MeV near the developing peak location and produces characteristic flat-top pitch angle distributions. By only including radial diffusion, the simulation underestimates the observed electron acceleration, while radial diffusion plays an important role in redistributing electrons and potentially accelerates them to even higher energies. Moreover, plasmaspheric hiss is found to provide efficient pitch angle scattering losses for hundreds of keV electrons, while its scattering effect on > 1 MeV electrons is relatively slow. Although an additional loss process is required to fully explain the overestimated electron fluxes at multi-MeV, the combined physical processes of radial diffusion and pitch angle and energy diffusion by chorus and hiss reproduce the observed electron dynamics remarkably well, suggesting that quasi-linear diffusion theory is reasonable to evaluate radiation belt electron dynamics during this big storm.« less
On the Resistance to Transpiration of the Sites of Evaporation within the Leaf 1
Farquhar, Graham D.; Raschke, Klaus
1978-01-01
The rates of transpiration from the upper and lower surfaces of leaves of Gossypium hirsutum, Xanthium strumarium, and Zea mays were compared with the rates at which helium diffused across those leaves. There was no evidence for effects of CO2 concentration or rate of evaporation on the resistance to water loss from the evaporating surface (“resistance of the mesophyll wall to transpiration”) and no evidence for any significant wall resistance in turgid tissues. The possible existence of a wall resistance was also tested in leaves of Commelina communis and Tulipa gesneriana whose epidermis could be easily peeled. Only when an epidermis was removed from a leaf, evaporation from the mesophyll tissue declined. We conclude that under conditions relevant to studies of stomatal behavior, the water vapor pressure at the sites of evaporation is equal to the saturation vapor pressure. PMID:16660404
Nilsson, Markus; van Westen, Danielle; Ståhlberg, Freddy; Sundgren, Pia C; Lätt, Jimmy
2013-08-01
Biophysical models that describe the outcome of white matter diffusion MRI experiments have various degrees of complexity. While the simplest models assume equal-sized and parallel axons, more elaborate ones may include distributions of axon diameters and axonal orientation dispersions. These microstructural features can be inferred from diffusion-weighted signal attenuation curves by solving an inverse problem, validated in several Monte Carlo simulation studies. Model development has been paralleled by microscopy studies of the microstructure of excised and fixed nerves, confirming that axon diameter estimates from diffusion measurements agree with those from microscopy. However, results obtained in vivo are less conclusive. For example, the amount of slowly diffusing water is lower than expected, and the diffusion-encoded signal is apparently insensitive to diffusion time variations, contrary to what may be expected. Recent understandings of the resolution limit in diffusion MRI, the rate of water exchange, and the presence of microscopic axonal undulation and axonal orientation dispersions may, however, explain such apparent contradictions. Knowledge of the effects of biophysical mechanisms on water diffusion in tissue can be used to predict the outcome of diffusion tensor imaging (DTI) and of diffusion kurtosis imaging (DKI) studies. Alterations of DTI or DKI parameters found in studies of pathologies such as ischemic stroke can thus be compared with those predicted by modelling. Observations in agreement with the predictions strengthen the credibility of biophysical models; those in disagreement could provide clues of how to improve them. DKI is particularly suited for this purpose; it is performed using higher b-values than DTI, and thus carries more information about the tissue microstructure. The purpose of this review is to provide an update on the current understanding of how various properties of the tissue microstructure and the rate of water exchange between microenvironments are reflected in diffusion MRI measurements. We focus on the use of biophysical models for extracting tissue-specific parameters from data obtained with single PGSE sequences on clinical MRI scanners, but results obtained with animal MRI scanners are also considered. While modelling of white matter is the central theme, experiments on model systems that highlight important aspects of the biophysical models are also reviewed.
Bai, Ruiliang; Basser, Peter J.; Briber, Robert M.; Horkay, Ferenc
2013-01-01
Water self-diffusion coefficients and longitudinal relaxation rates in sodium polyacrylate solutions and gels were measured by NMR, as a function of polymer content and structure in a physiological concentration range of monovalent and divalent cations, Ca2+ and Na+. Several physical models describing the self-diffusion of the solvent were applied and compared. A free-volume model was found to be in good agreement with the experimental results over a wide range of polymer concentrations. The longitudinal relaxation rate exhibited linear dependence on polymer concentration below a critical concentration and showed non-linear behavior at higher concentrations. Both the water self-diffusion and relaxation were less influenced by the polymer in the gel state than in the uncrosslinked polymer solutions. The effect of Na+ on the mobility of water molecules was practically undetectable. By contrast, addition of Ca2+ strongly increased the longitudinal relaxation rate while its effect on the self-diffusion coefficient was much less pronounced. PMID:24409001
Bai, Ruiliang; Basser, Peter J; Briber, Robert M; Horkay, Ferenc
2014-03-15
Water self-diffusion coefficients and longitudinal relaxation rates in sodium polyacrylate solutions and gels were measured by NMR, as a function of polymer content and structure in a physiological concentration range of monovalent and divalent cations, Ca 2+ and Na + . Several physical models describing the self-diffusion of the solvent were applied and compared. A free-volume model was found to be in good agreement with the experimental results over a wide range of polymer concentrations. The longitudinal relaxation rate exhibited linear dependence on polymer concentration below a critical concentration and showed non-linear behavior at higher concentrations. Both the water self-diffusion and relaxation were less influenced by the polymer in the gel state than in the uncrosslinked polymer solutions. The effect of Na + on the mobility of water molecules was practically undetectable. By contrast, addition of Ca 2+ strongly increased the longitudinal relaxation rate while its effect on the self-diffusion coefficient was much less pronounced.
Boat Hull Blisters: Repair Techniques and Long Term Effects on Hull Degradation
1988-08-01
Swelling Stresses Produced by Diffusion; Long Term Damage by Water Absorption ; Effects of Gel Coat on Leaching of Water Soluble Material from...leinforcesents 5. Swelling Stresses Produced by Diffusion 6. Long Term Damage by Water Absorption 7. Effects of Gel Coat on Leaching of Water Soluble...the importance of bilge side water pick-up is emphasized. A second method for preventing blister formation is to eliminate or minimize the water soluble
Diffusive parameters of tritiated water and uranium in chalk
DOE Office of Scientific and Technical Information (OSTI.GOV)
Descostes, M.; UMR 8587 CEA, Universite d'Evry, CNRS,; Pili, E.
2012-07-15
The Cretaceous Chalk of North-western Europe exhibits a double porosity (matrix and fracture) providing pathways for both slow and rapid flow of water. The present study aims at understanding and predicting the contaminant transfer properties through a significant section of this formation, with a particular emphasis on diffusion. This requires to study the nature of porosity and to perform diffusion experiments in representative samples using uranium and tritiated water (HTO), respectively taken as a reactive tracer and an inert one. The diffusive parameters, i.e. the accessible porosity and the effective diffusion coefficient were determined. Additional information was obtained with mercurymore » porosimetry, gravimetric water content, textural and mineralogical characterization. The diffusion tests performed with HTO appear to be the best method to measure the total accessible porosity in any type of porous media, especially those having large pore size distributions. Our study demonstrates that classical gravimetric water content measurements are not sensitive to the reduction in pore size as opposed to HTO diffusion tests because capillary water is not extracted by conventional gravimetric method but can still be probed by diffusion experiments. We found effective diffusion coefficients D{sub e}(U(VI)) near 4 x 10{sup -10} m{sup 2}s{sup -1}). The slower migration of U(VI) compared to HTO indicates sorption, with R{sub d}(U(VI)) from 100 to 360 mL g{sup -1}. These values are one order of magnitude larger than other determinations of the U(VI) sorption coefficient because only the matrix porosity is concerned here. The migration of U(VI) in chalk is only limited by sorption on ancillary Fe-Pb-bearing minerals. Transport of HTO and U(VI) is independent of the porosity distribution. Uranium diffusion in the chalk matrix porosity is fast enough to allow the total invasion of the pore space within characteristic time scales of the order of 1000 years. This results in a partitioning of uranium velocities in fracture flow and matrix flow proportionally to the respective fracture and matrix porosities. (authors)« less
Ouyang, Wei; Huang, Weijia; Hao, Xin; Tysklind, Mats; Haglund, Peter; Hao, Fanghua
2017-10-01
Some heavy metals in farmland soil can be transported into the waterbody, affecting the water quality and sediment at the watershed outlet, which can be used to determine the historical loss pattern. Cd is a typical heavy metal leached from farmland that is related to phosphate fertilizers and carries serious environmental risk. The spatial-vertical pattern of Cd in soil and the vertical trend of Cd in the river sediment core were analyzed, which showed the migration and accumulation of Cd in the watershed. To prevent watershed Cd loss, biochar was employed, and leaching experiments were conducted to investigate the Cd loss from soil depending on the initial concentration. Four rainfall intensities, 1.25 mm/h, 2.50 mm/h, 5.00 mm/h, and 10.00 mm/h, were used to simulate typical rainfall scenarios for the study area. Biochar was prepared from corn straw after pretreatment with ammonium dihydrogen phosphate (ADP) and pyrolysis at 400 °C under anoxic conditions. To identify the effects of biochar amendment on Cd migration, the biochar was mixed with soil for 90 days at concentrations of 0%, 0.5%, 1.0%, 3.0%, and 5.0% soil by weight. The results showed that the Cd leaching load increased as the initial load and rainfall intensity increased and that eluviation caused surface Cd to diffuse to the deep soils. The biochar application caused more of the heavy metals to be immobilized in the amended soil rather than transported into the waterbody. The sorption efficiency of the biochar for Cd increased as the addition level increased to 3%, which showed better performance than the 5% addition level under some initial concentration and rainfall conditions. The research indicated that biochar is a potential material to prevent diffuse heavy metal pollution and that a lower addition makes the application more feasible. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Dmitriev, S. S.; Vasil'ev, K. E.; Mokhamed, S. M. S. O.; Gusev, A. A.; Barbashin, A. V.
2017-11-01
In modern combined cycle gas turbines (CCGT), when designing the reducers from the output diffuser of a gas turbine to a boiler-utilizer, wide-angle diffusers are used, in which practically from the input a flow separation and transition to jet stream regime occurs. In such channels, the energy loss in the field of velocities sharply rise and the field of velocities in the output from them is characterized by considerable unevenness that worsens the heat transfer process in the first by motion tube bundles of the boiler-utilizer. The results of experimental research of the method for reducing the energy loss and alignment of the field of velocities at the output from a flat asymmetrical diffuser channel with one deflecting wall with the opening angle of 40° by means of placing inside the channel the flat plate parallel to the deflecting wall are presented in the paper. It is revealed that, at this placement of the plate in the channel, it has a chance to reduce the energy loss by 20%, considerably align the output field of velocities, and decrease the dynamic loads on the walls in the output cross-section. The studied method of resistance reduction and alignment of the fields of velocities in the flat diffuser channels was used for optimization of the reducer from the output diffuser of the gas turbine to the boiler-utilizer of CCGT of PGU-450T type of Kaliningrad Thermal Power Plant-2. The obtained results are evidence that the configuration of the reducer installed in the PGU-450T of Kaliningrad Thermal Power Plant-2 is not optimal. It follows also from the obtained data that working-off the reducer should be necessarily conducted by the test results of the channel consisting of the model of reducer with the model of boiler-utilizer installed behind it. Application of the method of alignment of output field of velocities and reducing the resistance in the wide-angle diffusers investigated in the work made it possible—when using the known model of diffusion reducer for PGU-450T, which is bad from the standpoint of aerodynamics— to reduce the value of the coefficient of the total loss by almost 20% as compared with the model of real reducer of PGU-450T.
NASA Technical Reports Server (NTRS)
Parker, L. Neergaard; Zank, G. P.
2013-01-01
Successful forecasting of energetic particle events in space weather models require algorithms for correctly predicting the spectrum of ions accelerated from a background population of charged particles. We present preliminary results from a model that diffusively accelerates particles at multiple shocks. Our basic approach is related to box models in which a distribution of particles is diffusively accelerated inside the box while simultaneously experiencing decompression through adiabatic expansion and losses from the convection and diffusion of particles outside the box. We adiabatically decompress the accelerated particle distribution between each shock by either the method explored in Melrose and Pope (1993) and Pope and Melrose (1994) or by the approach set forth in Zank et al. (2000) where we solve the transport equation by a method analogous to operator splitting. The second method incorporates the additional loss terms of convection and diffusion and allows for the use of a variable time between shocks. We use a maximum injection energy (E(sub max)) appropriate for quasi-parallel and quasi-perpendicular shocks and provide a preliminary application of the diffusive acceleration of particles by multiple shocks with frequencies appropriate for solar maximum (i.e., a non-Markovian process).
NASA Technical Reports Server (NTRS)
Parker, Linda Neergaard; Zank, Gary P.
2013-01-01
We present preliminary results from a model that diffusively accelerates particles at multiple shocks. Our basic approach is related to box models (Protheroe and Stanev, 1998; Moraal and Axford, 1983; Ball and Kirk, 1992; Drury et al., 1999) in which a distribution of particles is diffusively accelerated inside the box while simultaneously experiencing decompression through adiabatic expansion and losses from the convection and diffusion of particles outside the box (Melrose and Pope, 1993; Zank et al., 2000). We adiabatically decompress the accelerated particle distribution between each shock by either the method explored in Melrose and Pope (1993) and Pope and Melrose (1994) or by the approach set forth in Zank et al. (2000) where we solve the transport equation by a method analogous to operator splitting. The second method incorporates the additional loss terms of convection and diffusion and allows for the use of a variable time between shocks. We use a maximum injection energy (Emax) appropriate for quasi-parallel and quasi-perpendicular shocks (Zank et al., 2000, 2006; Dosch and Shalchi, 2010) and provide a preliminary application of the diffusive acceleration of particles by multiple shocks with frequencies appropriate for solar maximum (i.e., a non-Markovian process).
Razavilar, Negin; Choi, Phillip
2014-07-08
Isobaric-isothermal molecular dynamics simulation was used to study the diffusion of a hydrophobic drug Cucurbitacin B (CuB) in pseudomicelle environments consisting of poly(ethylene oxide-b-caprolactone) (PEO-b-PCL) swollen by various amounts of water. Two PEO-b-PCL configurations, linear and branched, with the same total molecular weight were used. For the branched configuration, the block copolymer contained one linear block of PEO with the same molecular weight as that of the PEO block used in the linear configuration but with one end connecting to three PCL blocks with the same chain length, hereafter denoted PEO-b-3PCL. Regardless of the configuration, the simulation results showed that the diffusivity of CuB was insensitive to the water concentration up to ∼8 wt % while that of water decreased with an increasing water concentration. The diffusivity of CuB (10(-8) cm(2)/s) was 3 orders of magnitude lower than that of water (10(-5) cm(2)/s). This is attributed to the fact that CuB relied on the wiggling motion of the block copolymers to diffuse while water molecules diffused via a hopping mechanism. The rates at which CuB and water diffused into PEO-b-PCL were twice those in PEO-b-3PCL because the chain mobility and the degree of swelling are higher and there are fewer intermolecular hydrogen bonds in the case of PEO-b-PCL. The velocity autocorrelation functions of CuB show that the free volume holes formed by PEO-b-3PCL are more rigid than those formed by PEO-b-PCL, making CuB exhibit higher-frequency collision motion in PEO-b-3PCL than in PEO-b-PCL, and the difference in frequency is insensitive to water concentration.
NASA Technical Reports Server (NTRS)
Spjeldvik, W. N.
1981-01-01
Computer simulations of processes which control the relative abundances of ions in the trapping regions of geospace are compared with observations from discriminating ion detectors. Energy losses due to Coulomb collisions between ions and exospheric neutrals are considered, along with charge exchange losses and internal charge exchanges. The time evolution of energetic ion fluxes of equatorially mirroring ions under radial diffusion is modelled to include geomagnetic and geoelectric fluctutations. Limits to the validity of diffusion transport theory are discussed, and the simulation is noted to contain provisions for six ionic charge states and the source effect on the radiation belt oxygen ion distributions. Comparisons are made with ion flux data gathered on Explorer 45 and ISEE-1 spacecraft and results indicate that internal charge exchanges cause the radiation belt ion charge state to be independent of source charge rate characteristics, and relative charge state distribution is independent of the radially diffusive transport rate below the charge state redistribution zone.
Church, Peter E.; Lyford, Forest P.; Clifford, Scott
2000-01-01
Volatile organic compounds are present in soils and ground water at the Centredale Manor Superfund Site in North Providence, Rhode Island. In September 1999, water-to-vapor diffusion samplers were placed in the bottom sediments of waterways adjacent to the site to identify possible contaminated ground-water discharge areas. The approximate12-acre site is a narrow stretch of land between the eastern bank of the Woonasquatucket River, downstream from the U.S. Route 44 bridge and a former mill raceway. The samplers were placed along a 2,250-foot reach of the Woonasquatucket River, in the former mill raceway several hundred feet to the east and parallel to the river, and in a cross channel between the river and former mill raceway. Volatile organic compounds were detected in 84 of the 104 water-to-vapor diffusion samplers retrieved. Trichloroethylene and tetrachloro-ethylene were the principal volatile organic compounds detected. The highest vapor concentrations measured for these two chemicals were from diffusion samplers located along an approximate 100-foot reach of the Woonasquatucket River about 500 feet downstream of the bridge; here trichloroethylene and tetrachloroethylene vapor concentrations ranged from about 2,000 to 180,000 and 1,600 to 1,400,000 parts per billion by volume, respectively. Upstream and downstream from this reach and along the former mill raceway, trichloroethylene and tetrachloroethylene vapor concentrations from the diffusion samples were generally less than 100 parts per billion by volume. Along the lower reaches of the river and mill raceway, however, and in the cross channel, vapor concentrations of trichloroethylene exceeded 100 parts per billion by volume and tetrachloroethylene exceeded 1,000 parts per billion by volume in several diffusion samples. Although diffusion sample vapor concentrations are higher than water concentrations in surface waters and in ground water, and they should only be interpreted qualitatively as relative values, these values provide important information as to potential discharge areas of contaminants.
Copper Diffusion in Silicate Melts and Melt Inclusion Study on Volatiles in The Lunar Interior
NASA Astrophysics Data System (ADS)
Ni, Peng
This thesis focuses on the application of diffusion kinetics to both terrestrial and lunar geochemistry. In Chapters II and III, diffusivities of Cu in silicate melts were experimentally determined and used to discuss the role of Cu diffusion in formation of Cu ore deposits and also Cu isotope fractionation in tektites. In Chapters IV and V, lunar olivine-hosted melt inclusions are studied to understand their volatile loss during homogenization in lab, to estimate cooling rate for lunar Apollo sample 74220, and to estimate volatile abundance in the lunar mantle. Magmatic sulfide deposits and porphyry-type Cu deposits are two major types of Cu deposits that supply the world's Cu. In particular, porphyry-type Cu deposits provide ˜57% of the world's total discovered Cu. Recent studies suggest a potential role of diffusive transport of metals (e.g. Cu, Au, PGE, Mo) in the formation of magmatic sulfide deposits and porphyry-type deposits. Diffusivities of Cu in silicate melts, however, are poorly determined. In Chapters II and III of this thesis, Cu diffusion in basaltic melt and rhyolitic melts are studied by diffusion couple and chalcocite "dissolution" methods. Our results indicate high diffusivities of Cu and a general equation for Cu diffusion in silicate melts is obtained. The high diffusivity of Cu indicate that partition of Cu between the silicate phase and the sulfide or fluid phase can be assumed to be in equilibrium during the formation of magmatic sulfide deposits or porphyry-type deposits. In addition, our Cu diffusion data helps explain why Cu isotopes are more fractionated than Zn isotopes in tektites. Volatile abundances in the lunar mantle have profound implications for the origin of the Moon, which was thought to be bone-dry till about a decade ago, when trace amounts of H2O were detected in various types of lunar samples. In particular, high H2O concentrations comparable to mid-ocean ridge basalts were reported in lunar melt inclusions. There are still uncertainties, however, for lunar melt inclusion studies in at least two aspects. One is whether the low H2O/Ce ratios measured in homogenized crystalline inclusions are affected by the homogenization process. The other is that current estimation of volatile abundances in lunar mantle relies heavily on 74220, which is argued to be a local anomaly by some authors. In order to reach a conclusive answer on volatile abundances in lunar mantle, the above two questions have to be answered. To improve our understanding about these questions, in Chapter IV of this thesis, a series of experiments are carried out to understand possible volatile loss from lunar melt inclusions during homogenization. Our results indicate significant H2O loss from inclusions during homogenization in minutes, whereas loss of F, Cl or S is unlikely a concern under our experimental conditions. The most applicable way to preserve H2O during homogenization is to use large inclusions. In Chapter V of this thesis, volatile, trace and major element data for melt inclusions from 10020, 12040, 15016, 15647 and 74235 are reported. Our new data indicate large variation in H2O/Ce ratios from ˜77 to ˜1 across different lunar samples, which is at least partially due to H2O loss on lunar surface during cooling. In addition, evidences were found in F/Nd and S/Dy ratios that might suggest lunar mantle heterogeneity in terms of its volatile abundances.
NASA Astrophysics Data System (ADS)
Li, Chaoyue; Feng, Shiyu; Shao, Lei; Pan, Jun; Liu, Weihua
2018-04-01
The diffusion coefficient of water in jet fuel was measured employing double-exposure digital holographic interferometry to clarify the diffusion process and make the aircraft fuel system safe. The experimental method and apparatus are introduced in detail, and the digital image processing program is coded in MATLAB according to the theory of the Fourier transform. At temperatures ranging from 278.15 K to 333.15 K in intervals of 5 K, the diffusion coefficient of water in RP-3 and RP-5 jet fuels ranges from 2.6967 × 10 -10 m2·s-1 to 8.7332 × 10 -10 m2·s-1 and from 2.3517 × 10 -10 m2·s-1 to 8.0099 × 10-10 m2·s-1, respectively. The relationship between the measured diffusion coefficient and temperature can be well fitted by the Arrhenius law. The diffusion coefficient of water in RP-3 jet fuel is higher than that of water in RP-5 jet fuel at the same temperature. Furthermore, the viscosities of the two jet fuels were measured and found to be expressible in the form of the Arrhenius equation. The relationship among the diffusion coefficient, viscosity and temperature is analyzed according to the classic prediction model, namely the Stokes-Einstein correlation, and this correlation is further revised via experimental data to obtain a more accurate predication result.
Long-Term Cyclic Oxidation Behavior of Uncoated and Coated Re-108 and In-939 at 980 and 870 C
NASA Technical Reports Server (NTRS)
Lee, K. N.; Barrett, C. A.; Smith, J.
1999-01-01
Very long-term cyclic oxidation behavior of Re-108 and ln-939 with and without a protective coating was evaluated at 980 and 870 C, respectively. Re-108 and ln-939 without a protective coating began to show rapid weight loss at 3000 h due to scale spallation, indicating the need for an oxidation protective coating for longer than thousands of hours of oxidative life. NiAl-base coatings of a vapor phase aluminide (VPA), a pack aluminide (CODEP), and a slurry paint aluminide (SERMALOY J) were applied on Re-108 and ln-939. VPA and CODEP on Re-108 and all three coatings on ln-939 showed excellent cyclic oxidation resistance out to 10000 hr. Coated alloys were annealed in an inert atmosphere to determine the loss of Al from the coating into the alloy substrate through diffusion. The Al loss from the coating through diffusion was twice as great as the Al loss through oxidation after 10000 h of cyclic exposure. Oxidation life of VPA-coated Re-108 was estimated by calculating the amount of Al initially available for protective oxidation and the amount of Al lost through oxidation and diffusion.
Statewide Groundwater Recharge Modeling in New Mexico
NASA Astrophysics Data System (ADS)
Xu, F.; Cadol, D.; Newton, B. T.; Phillips, F. M.
2017-12-01
It is crucial to understand the rate and distribution of groundwater recharge in New Mexico because it not only largely defines a limit for water availability in this semi-arid state, but also is the least understood aspect of the state's water budget. With the goal of estimating groundwater recharge statewide, we are developing the Evapotranspiration and Recharge Model (ETRM), which uses existing spatial datasets to model the daily soil water balance over the state at a resolution of 250 m cell. The input datasets includes PRISM precipitation data, MODIS Normalized Difference Vegetation Index (NDVI), NRCS soils data, state geology data and reference ET estimates produced by Gridded Atmospheric Data downscalinG and Evapotranspiration Tools (GADGET). The current estimated recharge presents diffuse recharge only, not focused recharge as in channels or playas. Direct recharge measurements are challenging and rare, therefore we estimate diffuse recharge using a water balance approach. The ETRM simulated runoff amount was compared with USGS gauged discharge in four selected ephemeral channels: Mogollon Creek, Zuni River, the Rio Puerco above Bernardo, and the Rio Puerco above Arroyo Chico. Result showed that focused recharge is important, and basin characteristics can be linked with watershed hydrological response. As the sparse instruments in NM provide limited help in improving estimation of focused recharge by linking basin characteristics, the Walnut Gulch Experimental Watershed, which is one of the most densely gauged and monitored semiarid rangeland watershed for hydrology research purpose, is now being modeled with ETRM. Higher spatial resolution of field data is expected to enable detailed comparison of model recharge results with measured transmission losses in ephemeral channels. The final ETRM product will establish an algorithm to estimate the groundwater recharge as a water budget component of the entire state of New Mexico. Reference ET estimated by GADGET suggests 10% - 22% increase by the end of this century under IPCC AR4 A2 emission scenario. ETRM will help water planning for the state to face drought brought by the climate change.
Hair loss and hyperprolactinemia in women
2012-01-01
In the literature of the past 30 years there are only some publications concerned with hair loss and hyperprolactinemia in women. Therefore, the relevance of hyperprolactinemia was evaluated in 40 women with diffuse alopecia. Hair loss was assessed by clinical appearance and the pluck trichogram. 82.5% of the female patients had diffuse hair loss and 17.5% had androgenetic alopecia. The highest prolactin values measured were 1390 ng/ml and 255 ng/ml. Six patients had values between 150–80.4 ng/ml and 10 between 79.1–51.7 ng/ml. All others had prolactin values below 50 ng/ml. Fifteen untreated patients with elevated prolactin levels could be followed up. Without any prolactin-inhibiting drugs, reductions and normalizations beside moderate fluctuations could be detected. Thyroid-specific diagnostics showed in 95% of the patients a normal thyroid function. 2.5% had a slight hyperthyreoidism and 2.5% had a slight hypothyreoidism. No female patient had clinical signs of androgenization and the determined androgens testosterone, androstendione and dihydroepiandrostendione were in the normal range. According to these results, moderate elevated prolactin levels in association with diffuse or androgenetic hair loss can be neglected as causative for the hair loss, because there is no evidence that they have an influence to the pattern, the extent or the duration of the hair loss. These results are supported by investigations of other authors who described only in high doses of prolactin an inhibiting effect on human hair follicles in vitro. Nevertheless, moderate constantly elevated prolactin levels should induce further diagnostics to exclude a prolactin-producing tumor of the pituitary gland. PMID:22870355
Tarabichi, Osama; Kozin, Elliott D; Kanumuri, Vivek V; Barber, Samuel; Ghosh, Satra; Sitek, Kevin R; Reinshagen, Katherine; Herrmann, Barbara; Remenschneider, Aaron K; Lee, Daniel J
2018-03-01
Objective The radiologic evaluation of patients with hearing loss includes computed tomography and magnetic resonance imaging (MRI) to highlight temporal bone and cochlear nerve anatomy. The central auditory pathways are often not studied for routine clinical evaluation. Diffusion tensor imaging (DTI) is an emerging MRI-based modality that can reveal microstructural changes in white matter. In this systematic review, we summarize the value of DTI in the detection of structural changes of the central auditory pathways in patients with sensorineural hearing loss. Data Sources PubMed, Embase, and Cochrane. Review Methods We used the Preferred Reporting Items for Systematic Reviews and Meta-Analysis statement checklist for study design. All studies that included at least 1 sensorineural hearing loss patient with DTI outcome data were included. Results After inclusion and exclusion criteria were met, 20 articles were analyzed. Patients with bilateral hearing loss comprised 60.8% of all subjects. Patients with unilateral or progressive hearing loss and tinnitus made up the remaining studies. The auditory cortex and inferior colliculus (IC) were the most commonly studied regions using DTI, and most cases were found to have changes in diffusion metrics, such as fractional anisotropy, compared to normal hearing controls. Detectable changes in other auditory regions were reported, but there was a higher degree of variability. Conclusion White matter changes based on DTI metrics can be seen in patients with sensorineural hearing loss, but studies are few in number with modest sample sizes. Further standardization of DTI using a prospective study design with larger sample sizes is needed.
Effect of Contrast Media on Single Shot EPI: Implications for Abdominal Diffusion Imaging
Gulani, Vikas; Willatt, Jonathan M.; Blaimer, Martin; Hussain, Hero K.; Duerk, Jeffrey L.; Griswold, Mark A.
2010-01-01
Purpose The goal of this study was to determine the effect of contrast media on the signal behavior of single shot echo planar imaging (ssEPI) used for abdominal diffusion imaging. Materials and Methods The signal of a ssEPI spin echo sequence in a water phantom with varying concentrations of gadolinium was modeled with Bloch equations and the predicted behavior validated on a phantom at 1.5 T. Six volunteers were given gadolinium contrast, and signal intensity (SI) time courses for regions of interest (ROIs) in the liver, pancreas, spleen, renal cortex and medulla were analyzed. The Student's t-test was used to compare pre-contrast SI to 0, 1, 4, 5, 10, and 13 minutes following contrast. Results The results show that following contrast, ssEPI SI goes through a nadir, recovering differently for each organ. Maximal contrast related signal losses relative to pre-contrast signal are 20%, 20%, 53%, and 67%, for the liver, pancreas, renal cortex and medulla respectively. The SIs remain statistically below the pre-contrast values for 5, 4, and 1 minutes for the pancreas, liver, and spleen, and for all times measured for the renal cortex and medulla. Conclusion Abdominal diffusion imaging should be performed prior to contrast due to adverse effects on the signal in ssEPI. PMID:19856456
Diffusing wave spectroscopy in Maxwellian fluids.
Galvan-Miyoshi, J; Delgado, J; Castillo, R
2008-08-01
We present a critical assessment of the diffusing wave spectroscopy (DWS) technique for obtaining the characteristic lengths and for measuring the loss and storage moduli of a reasonable well-known wormlike micelle (WM) system. For this purpose, we tracked the Brownian motion of particles using DWS embedded in a Maxwellian fluid constituted by a wormlike micellar solution made of cetyltrimethylammonium bromide (CTAB), sodium salicylate (NaSal), and water. We found that the motion of particles was governed by the viscosity of the solvent at short times and by the stress relaxation mechanisms of the giant micelles at longer times. From the time evolution of the mean square displacement of particles, we could obtain for the WM solution the cage size where each particle is harmonically bound at short times, the long-time diffusion coefficient, and experimental values for the exponent that accounts for the broad spectrum of relaxation times at the plateau onset time found in the (deltar2(t)) vs. time curves. In addition, from the (deltar2(t)) vs. time curves, we obtained G'(omega) and G"(omega) for the WM solutions. All the DWS microreological information allowed us to estimate the characteristic lengths of the WM network. We compare our DWS microrheological results and characteristic lengths with those obtained with mechanical rheometers at different NaSal/CTAB concentration ratios and temperatures.
Okeda, Riki; Arima, Kunimasa; Kawai, Mitsuru
2002-11-01
There is little information regarding the pathogenesis underlying diffuse myelin loss in the cerebral white matter and sparing of the U fibers in cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), in which the medial smooth muscle cells of systemic arteries are characteristically involved. We sought to examine the precise extent and severity of changes in the cerebral arteries in an autopsy case of CADASIL in relation to pathogenesis of the diffuse myelin loss. We reconstructed 1000 serial sections of the frontal cerebral medullary arteries of an autopsy subject, which was the first identified Japanese case of CADASIL, as confirmed by the presence of ultrastructural deposits of granular osmiophilic material in the media of some visceral arteries and by genetic analysis. We reconstructed 11 medullary arteries of the frontal lobe showing diffuse myelin loss and atrophy of the white matter with sparing of the U fibers. All of these showed complete loss of medial smooth muscle cells over their entire length and severe adventitial fibrosis. Although intimal fibrosis or hyalinosis was present, luminal occlusion was scarce. These changes were also observed in the small and large arachnoidal arteries but were relatively mild in the latter and in the cortical and subcortical medullary arteries. These arterial changes resulted in transformation of the cerebral arteries, in particular almost all the medullary arteries, to a so-called earthen pipe state. This supports the reported findings of a reduction in vascular reactivity to fluctuations in CO2 levels and systemic blood pressure in CADASIL.
Passive Rocket Diffuser Testing: Reacting Flow Performance of Four Second-Throat Geometries
NASA Technical Reports Server (NTRS)
Jones, Daniel R.; Allgood, Daniel C.; Saunders, Grady P.
2016-01-01
Second-throat diffusers serve to isolate rocket engines from the effects of ambient back pressure. As one of the nation's largest rocket testing facilities, the performance and design limitations of diffusers are of great interest to NASA's Stennis Space Center. This paper describes a series of tests conducted on four diffuser configurations to better understand the effects of inlet geometry and throat area on starting behavior and boundary layer separation. The diffusers were tested for a duration of five seconds with a 1455-pound thrust, LO2/GH2 thruster to ensure they each reached aerodynamic steady state. The effects of a water spray ring at the diffuser exits and a water-cooled deflector plate were also evaluated. Static pressure and temperature measurements were taken at multiple axial locations along the diffusers, and Computational Fluid Dynamics (CFD) simulations were used as a tool to aid in the interpretation of data. The hot combustion products were confirmed to enable the diffuser start condition with tighter second throats than predicted by historical cold-flow data or the theoretical normal shock method. Both aerodynamic performance and heat transfer were found to increase with smaller diffuser throats. Spray ring and deflector cooling water had negligible impacts on diffuser boundary layer separation. CFD was found to accurately capture diffuser shock structures and full-flowing diffuser wall pressures, and the qualitative behavior of heat transfer. However, the ability to predict boundary layer separated flows was not consistent.
Molecular dynamics simulation of the diffusion of uranium species in clay pores.
Liu, Xiao-yu; Wang, Lu-hua; Zheng, Zhong; Kang, Ming-liang; Li, Chun; Liu, Chun-li
2013-01-15
Molecular dynamics simulations were carried out to investigate the diffusive behavior of aqueous uranium species in montmorillonite pores. Three uranium species (UO(2)(2+), UO(2)CO(3), UO(2)(CO(3))(2)(2-)) were confirmed in both the adsorbed and diffuse layers. UO(2)(CO(3))(3)(4-) was neglected in the subsequent analysis due to its scare occurrence. The species-based diffusion coefficients in montmorillonite pores were then calculated, and compared with the water mobility and their diffusivity in aqueous solution/feldspar nanosized fractures. Three factors were considered that affected the diffusive behavior of the uranium species: the mobility of water, the self-diffusion coefficient of the aqueous species, and the electrostatic forces between the negatively charged surface and charged molecules. The mobility of U species in the adsorbed layer decreased in the following sequence: UO(2)(2+)>UO(2)CO(3)>UO(2)(CO(3))(2)(2-). In the diffuse layer, we obtained the highest diffusion coefficient for UO(2)(CO(3))(2)(2-) with the value of 5.48×10(-10) m(2) s(-1), which was faster than UO(2)(2+). For these two charged species, the influence of electrostatic forces on the diffusion of solutes in the diffuse layer is overwhelming, whereas the influence of self-diffusion and water mobility is minor. Our study demonstrated that the negatively charged uranyl carbonate complex must be addressed in the safety assessment of potential radioactive waste disposal systems. Copyright © 2012 Elsevier B.V. All rights reserved.
Pore-size dependence and characteristics of water diffusion in slitlike micropores
Diallo, S. O.
2015-07-16
The temperature dependence of the dynamics of water inside microporous activated carbon fibers (ACF) is investigated by means of incoherent elastic and quasielastic neutron-scattering techniques. The aim is to evaluate the effect of increasing pore size on the water dynamics in these primarily hydrophobic slit-shaped channels. Using two different micropore sizes (similar to 12 and 18 angstrom, denoted, respectively, ACF-10 and ACF-20), a clear suppression of the mobility of the water molecules is observed as the pore gap or temperature decreases. Suppression, we found, is accompanied by a systematic dependence of the average translational diffusion coefficient D-r and relaxation timemore » [tau(0)] of the restricted water on pore size and temperature. We observed D-r values and tested against a proposed scaling law, in which the translational diffusion coefficient D-r of water within a porous matrix was found to depend solely on two single parameters, a temperature-independent translational diffusion coefficient D-c associated with the water bound to the pore walls and the ratio theta of this strictly confined water to the total water inside the pore, yielding unique characteristic parameters for water transport in these carbon channels across the investigated temperature range.« less
Critical role for mesoscale eddy diffusion in supplying oxygen to hypoxic ocean waters
NASA Astrophysics Data System (ADS)
Gnanadesikan, Anand; Bianchi, Daniele; Pradal, Marie-Aude
2013-10-01
of the oceanic lateral eddy diffusion coefficient Aredi vary by more than an order of magnitude, ranging from less than a few hundred m2/s to thousands of m2/s. This uncertainty has first-order implications for the intensity of oceanic hypoxia, which is poorly simulated by the current generation of Earth System Models. Using satellite-based estimate of oxygen consumption in hypoxic waters to estimate the required diffusion coefficient for these waters gives a value of order 1000 m2/s. Varying Aredi across a suite of Earth System Models yields a broadly consistent result given a thermocline diapycnal diffusion coefficient of 1 × 10-5 m2/s.
On the Influence of a Fuel Side Heat-Loss (Soot) Layer on a Planar Diffusion Flame
NASA Technical Reports Server (NTRS)
Wichman, Indrek S.
1994-01-01
A model of the response of a diffusion flame (DF) to an adjacent heat loss or 'soot' layer on the fuel side is investigated. The thermal influence of the 'soot' or heat-loss layer on the DF occurs through the enthalpy sink it creates. A sink distribution in mixture-fraction space is employed to examine possible DF extinction. It is found that (1) the enthalpy sink (or soot layer) must touch the DF for radiation-induced quenching to occur; and (2) for fuel-rich conditions extinction is possible only for a progressively narrower range of values ot the characteristic heat-loss parameter, N(sub R)(Delta Z(sub R)) Various interpretations ot the model are discussed. An attempt is made to place this work into the context created by previous experimental and computational studies.
Effect of nitrogen segregation on TED and loss of phosphorus in CZ-Si
NASA Astrophysics Data System (ADS)
Fujiwara, N.; Saito, K.; Nakabayashi, Y.; Osuman, H. I.; Toyonaga, K.; Matsumoto, S.; Sato, Y.
2002-01-01
Transient enhanced diffusion (TED) and dose loss (pile-up) are investigated for phosphorus-implanted samples covered with both oxide and nitride films. P ions were implanted into p-type (1 0 0) CZ-Si (dose 5×10 13 cm-3, 100 keV) through a chemical vapor deposition (CVD) Si 3N 4 film. For a half of samples, Si 3N 4 was etched off and SiO 2 films were grown by CVD. Both samples were annealed for 20-360 min at 700 °C. Diffusivity of P and the dose loss were estimated based on the secondary-ion mass spectrometry (SIMS) P profiles. Both Si/Si 3N 4 and Si/SiO 2 interfaces were investigated with transmission electron microscopy (TEM) and electron energy-loss spectroscopy (EELS). There is no significant difference in P diffusivity between the SiO 2 and Si 3N 4 films for the present annealing condition of 700 °C for 20-360 min. Regarding dose loss, a distinct different behavior was observed. In case of the SiO 2 cover film, amount of dose decreases with the annealing time. On the other hand, amount of dose decrease with annealing time up to 180 min, but is recovered for more than 180 min in case of the Si 3N 4 cover film. From TEM and EELS analyses, it is found that nitrogen segregates at the Si/Si 3N 4 interface, resulting in recovery of dose loss.
NASA Astrophysics Data System (ADS)
Zhang, Tongwei; Krooss, Bernhard M.
2001-08-01
Molecular transport (diffusion) of methane in water-saturated sedimentary rocks results in carbon isotope fractionation. In order to quantify the diffusive isotope fractionation effect and its dependence on total organic carbon (TOC) content, experimental measurements have been performed on three natural shale samples with TOC values ranging from 0.3 to 5.74%. The experiments were conducted at 90°C and fluid pressures of 9 MPa (90 bar). Based on the instantaneous and cumulative composition of the diffused methane, effective diffusion coefficients of the 12CH4 and 13CH4 species, respectively, have been calculated. Compared with the carbon isotopic composition of the source methane (δ13C1 = -39.1‰), a significant depletion of the heavier carbon isotope (13C) in the diffused methane was observed for all three shales. The degree of depletion is highest during the initial non-steady state of the diffusion process. It then gradually decreases and reaches a constant difference (Δ δ = δ13Cdiff -δ13Csource) when approaching the steady-state. The degree of the isotopic fractionation of methane due to molecular diffusion increases with the TOC content of the shales. The carbon isotope fractionation of methane during molecular migration results practically exclusively from differences in molecular mobility (effective diffusion coefficients) of the 12CH4 and 13CH4 entities. No measurable solubility fractionation was observed. The experimental isotope-specific diffusion data were used in two hypothetical scenarios to illustrate the extent of isotopic fractionation to be expected as a result of molecular transport in geological systems with shales of different TOC contents. The first scenario considers the progression of a diffusion front from a constant source (gas reservoir) into a homogeneous ;semi-infinite; shale caprock over a period of 10 Ma. In the second example, gas diffusion across a 100 m caprock sequence is analyzed in terms of absolute quantities and isotope fractionation effects. The examples demonstrate that methane losses by molecular diffusion are small in comparison with the contents of commercial size gas accumulations. The degree of isotopic fractionation is related inversely to the quantity of diffused gas so that strong fractionation effects are only observed for relatively small portions of gas. The experimental data can be readily used in numerical basin analysis to examine the effects of diffusion-related isotopic fractionation on the composition of natural gas reservoirs.
Diffusive transport of several hundred keV electrons in the Earth's slot region
NASA Astrophysics Data System (ADS)
Ma, Q.; Li, W.; Thorne, R. M.; Bortnik, J.
2017-12-01
We investigate the gradual diffusion of energetic electrons from the inner edge of the outer radiation belt into the slot region. The Van Allen Probes observed slow inward diffusion and decay of 200-600 keV electrons following the intense geomagnetic storm that occurred on 17 March 2013. During the 10-day non-disturbed period following the storm, the peak of electron fluxes gradually moved from L 2.7 to L 2.4, and the flux levels decreased by a factor of 2-4 depending on the electron energy. We simulated the radial intrusion and decay of electrons using a 3-dimentional diffusion code, which reproduced the energy-dependent transport of electrons from 100 keV to 1 MeV in the slot region. At energies of 100-200 keV, the electrons experience fast transport across the slot region due to the dominance of radial diffusion; at energies of 200-600 keV, the electrons gradually diffuse and decay in the slot region due to the comparable radial diffusion rate and pitch angle scattering rate by plasmaspheric hiss; at energies of E > 700 keV, the electrons stopped diffusing near the inner edge of outer radiation belt due to the dominant pitch angle scattering loss. In addition to plasmaspheric hiss, magnetosonic waves and VLF waves can cause the loss of high pitch angle electrons, relaxing the sharp `top-hat' shaped pitch angle distributions created by plasmaspheric hiss. Our simulation indicates the importance of radial diffusion and pitch angle scattering in forming the diffusive intrusion of energetic electrons across the slot region.
NASA Astrophysics Data System (ADS)
Ellegood, Jacob; McKay, Ryan T.; Hanstock, Chris C.; Beaulieu, Christian
2007-01-01
Although the diffusivity and anisotropy of water has been investigated thoroughly in ordered axonal systems (i.e., nervous tissue), there have been very few studies on the directional dependence of diffusion of metabolites. In this study, the mean apparent diffusion coefficient (Trace/3 ADC) and fractional anisotropy (FA) values of the intracellular metabolites N-acetyl aspartate (NAA), creatine and phosphocreatine (tCr), choline (Cho), taurine (Tau), and glutamate and glutamine (Glx) were measured parallel and perpendicular to the length of excised frog sciatic nerve using a water suppressed, diffusion-weighted, spin-echo pulse sequence at 18.8 T. The degree of anisotropy (FA) of NAA (0.41 ± 0.09) was determined to be less than tCr (0.59 ± 0.07) and Cho (0.61 ± 0.11), which is consistent with previously reported human studies of white matter. In contrast, Glx diffusion was found to be almost isotropic with an FA value of 0.20 ± 0.06. The differences of FA between the metabolites is most likely due to their differing micro-environments and could be beneficial as an indicator of compartment specific changes with disease, information not readily available with water diffusion.
Bourg, Ian C; Sposito, Garrison
2010-03-15
In this paper, we address the manner in which the continuum-scale diffusive properties of smectite-rich porous media arise from their molecular- and pore-scale features. Our starting point is a successful model of the continuum-scale apparent diffusion coefficient for water tracers and cations, which decomposes it as a sum of pore-scale terms describing diffusion in macropore and interlayer "compartments." We then apply molecular dynamics (MD) simulations to determine molecular-scale diffusion coefficients D(interlayer) of water tracers and representative cations (Na(+), Cs(+), Sr(2+)) in Na-smectite interlayers. We find that a remarkably simple expression relates D(interlayer) to the pore-scale parameter δ(nanopore) ≤ 1, a constrictivity factor that accounts for the lower mobility in interlayers as compared to macropores: δ(nanopore) = D(interlayer)/D(0), where D(0) is the diffusion coefficient in bulk liquid water. Using this scaling expression, we can accurately predict the apparent diffusion coefficients of tracers H(2)0, Na(+), Sr(2+), and Cs(+) in compacted Na-smectite-rich materials.
Adaptive hierarchical grid model of water-borne pollutant dispersion
NASA Astrophysics Data System (ADS)
Borthwick, A. G. L.; Marchant, R. D.; Copeland, G. J. M.
Water pollution by industrial and agricultural waste is an increasingly major public health issue. It is therefore important for water engineers and managers to be able to predict accurately the local behaviour of water-borne pollutants. This paper describes the novel and efficient coupling of dynamically adaptive hierarchical grids with standard solvers of the advection-diffusion equation. Adaptive quadtree grids are able to focus on regions of interest such as pollutant fronts, while retaining economy in the total number of grid elements through selective grid refinement. Advection is treated using Lagrangian particle tracking. Diffusion is solved separately using two grid-based methods; one is by explicit finite differences, the other a diffusion-velocity approach. Results are given in two dimensions for pure diffusion of an initially Gaussian plume, advection-diffusion of the Gaussian plume in the rotating flow field of a forced vortex, and the transport of species in a rectangular channel with side wall boundary layers. Close agreement is achieved with analytical solutions of the advection-diffusion equation and simulations from a Lagrangian random walk model. An application to Sepetiba Bay, Brazil is included to demonstrate the method with complex flows and topography.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Yiqun; Jordanova, Vania K.; Ridley, Aaron J.
Electron precipitation down to the atmosphere due to wave-particle scattering in the magnetosphere contributes significantly to the auroral ionospheric conductivity. In order to obtain the auroral conductivity in global MHD models that are incapable of capturing kinetic physics in the magnetosphere, MHD parameters are often used to estimate electron precipitation flux for the conductivity calculation. Such an MHD approach, however, lacks self-consistency in representing the magnetosphere-ionosphere coupling processes. In this study we improve the coupling processes in global models with a more physical method. We calculate the physics-based electron precipitation from the ring current and map it to the ionosphericmore » altitude for solving the ionospheric electrodynamics. In particular, we use the BATS-R-US (Block Adaptive Tree Scheme-Roe type-Upstream) MHD model coupled with the kinetic ring current model RAM-SCB (Ring current-Atmosphere interaction Model with Self-Consistent Magnetic field (B)) that solves pitch angle-dependent electron distribution functions, to study the global circulation dynamics during the 25–26 January 2013 storm event. Since the electron precipitation loss is mostly governed by wave-particle resonant scattering in the magnetosphere, we further investigate two loss methods of specifying electron precipitation loss associated with wave-particle interactions: (1) using pitch angle diffusion coefficients D αα(E,α) determined from the quasi-linear theory, with wave spectral and plasma density obtained from statistical observations (named as “diffusion coefficient method”) and (2) using electron lifetimes τ(E) independent on pitch angles inferred from the above diffusion coefficients (named as “lifetime method”). We found that both loss methods demonstrate similar temporal evolution of the trapped ring current electrons, indicating that the impact of using different kinds of loss rates is small on the trapped electron population. Furthermore, for the precipitated electrons, the lifetime method hardly captures any precipitation in the large L shell (i.e., 4 < L < 6.5) region, while the diffusion coefficient method produces much better agreement with NOAA/POES measurements, including the spatial distribution and temporal evolution of electron precipitation in the region from the premidnight through the dawn to the dayside. Further comparisons of the precipitation energy flux to DMSP observations indicates that the new physics-based precipitation approach using diffusion coefficients for the ring current electron loss can explain the diffuse electron precipitation in the dawn sector, such as the enhanced precipitation flux at auroral latitudes and flux drop near the subauroral latitudes, but the traditional MHD approach largely overestimates the precipitation flux at lower latitudes.« less
Yu, Yiqun; Jordanova, Vania K.; Ridley, Aaron J.; ...
2016-09-01
Electron precipitation down to the atmosphere due to wave-particle scattering in the magnetosphere contributes significantly to the auroral ionospheric conductivity. In order to obtain the auroral conductivity in global MHD models that are incapable of capturing kinetic physics in the magnetosphere, MHD parameters are often used to estimate electron precipitation flux for the conductivity calculation. Such an MHD approach, however, lacks self-consistency in representing the magnetosphere-ionosphere coupling processes. In this study we improve the coupling processes in global models with a more physical method. We calculate the physics-based electron precipitation from the ring current and map it to the ionosphericmore » altitude for solving the ionospheric electrodynamics. In particular, we use the BATS-R-US (Block Adaptive Tree Scheme-Roe type-Upstream) MHD model coupled with the kinetic ring current model RAM-SCB (Ring current-Atmosphere interaction Model with Self-Consistent Magnetic field (B)) that solves pitch angle-dependent electron distribution functions, to study the global circulation dynamics during the 25–26 January 2013 storm event. Since the electron precipitation loss is mostly governed by wave-particle resonant scattering in the magnetosphere, we further investigate two loss methods of specifying electron precipitation loss associated with wave-particle interactions: (1) using pitch angle diffusion coefficients D αα(E,α) determined from the quasi-linear theory, with wave spectral and plasma density obtained from statistical observations (named as “diffusion coefficient method”) and (2) using electron lifetimes τ(E) independent on pitch angles inferred from the above diffusion coefficients (named as “lifetime method”). We found that both loss methods demonstrate similar temporal evolution of the trapped ring current electrons, indicating that the impact of using different kinds of loss rates is small on the trapped electron population. Furthermore, for the precipitated electrons, the lifetime method hardly captures any precipitation in the large L shell (i.e., 4 < L < 6.5) region, while the diffusion coefficient method produces much better agreement with NOAA/POES measurements, including the spatial distribution and temporal evolution of electron precipitation in the region from the premidnight through the dawn to the dayside. Further comparisons of the precipitation energy flux to DMSP observations indicates that the new physics-based precipitation approach using diffusion coefficients for the ring current electron loss can explain the diffuse electron precipitation in the dawn sector, such as the enhanced precipitation flux at auroral latitudes and flux drop near the subauroral latitudes, but the traditional MHD approach largely overestimates the precipitation flux at lower latitudes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Vernon Cole; Abhra Roy; Ashok Damle
2012-10-02
Water management in Proton Exchange Membrane, PEM, Fuel Cells is challenging because of the inherent conflicts between the requirements for efficient low and high power operation. Particularly at low powers, adequate water must be supplied to sufficiently humidify the membrane or protons will not move through it adequately and resistance losses will decrease the cell efficiency. At high power density operation, more water is produced at the cathode than is necessary for membrane hydration. This excess water must be removed effectively or it will accumulate in the Gas Diffusion Layers, GDLs, between the gas channels and catalysts, blocking diffusion pathsmore » for reactants to reach the catalysts and potentially flooding the electrode. As power density of the cells is increased, the challenges arising from water management are expected to become more difficult to overcome simply due to the increased rate of liquid water generation relative to fuel cell volume. Thus, effectively addressing water management based issues is a key challenge in successful application of PEMFC systems. In this project, CFDRC and our partners used a combination of experimental characterization, controlled experimental studies of important processes governing how water moves through the fuel cell materials, and detailed models and simulations to improve understanding of water management in operating hydrogen PEM fuel cells. The characterization studies provided key data that is used as inputs to all state-of-the-art models for commercially important GDL materials. Experimental studies and microscopic scale models of how water moves through the GDLs showed that the water follows preferential paths, not branching like a river, as it moves toward the surface of the material. Experimental studies and detailed models of water and airflow in fuel cells channels demonstrated that such models can be used as an effective design tool to reduce operating pressure drop in the channels and the associated costs and weight of blowers and pumps to force air and hydrogen gas through the fuel cell. Promising improvements to materials structure and surface treatments that can potentially aid in managing the distribution and removal of liquid water were developed; and improved steady-state and freeze-thaw performance was demonstrated for a fuel cell stack under the self-humidified operating conditions that are promising for stationary power generation with reduced operating costs.« less
Between Scylla and Charybdis: Hydrophobic Graphene-Guided Water Diffusion on Hydrophilic Substrates
Kim, Jin-Soo; Choi, Jin Sik; Lee, Mi Jung; Park, Bae Ho; Bukhvalov, Danil; Son, Young-Woo; Yoon, Duhee; Cheong, Hyeonsik; Yun, Jun-Nyeong; Jung, Yousung; Park, Jeong Young; Salmeron, Miquel
2013-01-01
The structure of water confined in nanometer-sized cavities is important because, at this scale, a large fraction of hydrogen bonds can be perturbed by interaction with the confining walls. Unusual fluidity properties can thus be expected in the narrow pores, leading to new phenomena like the enhanced fluidity reported in carbon nanotubes. Crystalline mica and amorphous silicon dioxide are hydrophilic substrates that strongly adsorb water. Graphene, on the other hand, interacts weakly with water. This presents the question as to what determines the structure and diffusivity of water when intercalated between hydrophilic substrates and hydrophobic graphene. Using atomic force microscopy, we have found that while the hydrophilic substrates determine the structure of water near its surface, graphene guides its diffusion, favouring growth of intercalated water domains along the C-C bond zigzag direction. Molecular dynamics and density functional calculations are provided to help understand the highly anisotropic water stripe patterns observed. PMID:23896759
Uncertainty in sap flow-based transpiration due to xylem properties
NASA Astrophysics Data System (ADS)
Looker, N. T.; Hu, J.; Martin, J. T.; Jencso, K. G.
2014-12-01
Transpiration, the evaporative loss of water from plants through their stomata, is a key component of the terrestrial water balance, influencing streamflow as well as regional convective systems. From a plant physiological perspective, transpiration is both a means of avoiding destructive leaf temperatures through evaporative cooling and a consequence of water loss through stomatal uptake of carbon dioxide. Despite its hydrologic and ecological significance, transpiration remains a notoriously challenging process to measure in heterogeneous landscapes. Sap flow methods, which estimate transpiration by tracking the velocity of a heat pulse emitted into the tree sap stream, have proven effective for relating transpiration dynamics to climatic variables. To scale sap flow-based transpiration from the measured domain (often <5 cm of tree cross-sectional area) to the whole-tree level, researchers generally assume constancy of scale factors (e.g., wood thermal diffusivity (k), radial and azimuthal distributions of sap velocity, and conducting sapwood area (As)) through time, across space, and within species. For the widely used heat-ratio sap flow method (HRM), we assessed the sensitivity of transpiration estimates to uncertainty in k (a function of wood moisture content and density) and As. A sensitivity analysis informed by distributions of wood moisture content, wood density and As sampled across a gradient of water availability indicates that uncertainty in these variables can impart substantial error when scaling sap flow measurements to the whole tree. For species with variable wood properties, the application of the HRM assuming a spatially constant k or As may systematically over- or underestimate whole-tree transpiration rates, resulting in compounded error in ecosystem-scale estimates of transpiration.
Muñoz-Garcia, Agustí; Williams, Joseph B.
2008-01-01
Intercellular lipids of the stratum corneum (SC), the outer layer of the epidermis, form a barrier to water vapor diffusion through the skin. Previously, we measured cutaneous water loss (CWL) and lipid composition of the SC of adult house sparrows from two populations, one living in the deserts of Saudi Arabia and another living in mesic Ohio. Adult desert house sparrows had a lower CWL, a lower proportion of free fatty acids, and a higher proportion of ceramides and cerebrosides in the SC compared with mesic sparrows. In this study, we investigated developmental plasticity of CWL and lipid composition of the SC in desert and mesic nestling house sparrows reared in low and high humidity and compared our results with previous work on adults. We measured CWL of nestlings and analyzed the lipid composition of the SC using thin-layer chromatography. We showed that nestling house sparrows from both localities had higher CWL than adults in their natural environment, a result of major modifications of the lipid composition of the SC. The expression of plasticity in CWL seems to be a response to opposed selection pressures, thermoregulation and water conservation, at different life stages, on which regulation of CWL plays a crucial role. Desert nestlings showed a greater degree of plasticity in CWL and lipid composition of the SC than did mesic nestlings, a finding consistent with the idea that organisms exposed to more environmental stress ought to be more plastic than individuals living in more benign environments. PMID:18838693
Muñoz-Garcia, Agustí; Williams, Joseph B
2008-10-07
Intercellular lipids of the stratum corneum (SC), the outer layer of the epidermis, form a barrier to water vapor diffusion through the skin. Previously, we measured cutaneous water loss (CWL) and lipid composition of the SC of adult house sparrows from two populations, one living in the deserts of Saudi Arabia and another living in mesic Ohio. Adult desert house sparrows had a lower CWL, a lower proportion of free fatty acids, and a higher proportion of ceramides and cerebrosides in the SC compared with mesic sparrows. In this study, we investigated developmental plasticity of CWL and lipid composition of the SC in desert and mesic nestling house sparrows reared in low and high humidity and compared our results with previous work on adults. We measured CWL of nestlings and analyzed the lipid composition of the SC using thin-layer chromatography. We showed that nestling house sparrows from both localities had higher CWL than adults in their natural environment, a result of major modifications of the lipid composition of the SC. The expression of plasticity in CWL seems to be a response to opposed selection pressures, thermoregulation and water conservation, at different life stages, on which regulation of CWL plays a crucial role. Desert nestlings showed a greater degree of plasticity in CWL and lipid composition of the SC than did mesic nestlings, a finding consistent with the idea that organisms exposed to more environmental stress ought to be more plastic than individuals living in more benign environments.
Clustering and optimal arrangement of enzymes in reaction-diffusion systems.
Buchner, Alexander; Tostevin, Filipe; Gerland, Ulrich
2013-05-17
Enzymes within biochemical pathways are often colocalized, yet the consequences of specific spatial enzyme arrangements remain poorly understood. We study the impact of enzyme arrangement on reaction efficiency within a reaction-diffusion model. The optimal arrangement transitions from a cluster to a distributed profile as a single parameter, which controls the probability of reaction versus diffusive loss of pathway intermediates, is varied. We introduce the concept of enzyme exposure to explain how this transition arises from the stochastic nature of molecular reactions and diffusion.
Length of intact plasma membrane determines the diffusion properties of cellular water.
Eida, Sato; Van Cauteren, Marc; Hotokezaka, Yuka; Katayama, Ikuo; Sasaki, Miho; Obara, Makoto; Okuaki, Tomoyuki; Sumi, Misa; Nakamura, Takashi
2016-01-11
Molecular diffusion in a boundary-free medium depends only on the molecular size, the temperature, and medium viscosity. However, the critical determinant of the molecular diffusion property in inhomogeneous biological tissues has not been identified. Here, using an in vitro system and a high-resolution MR imaging technique, we show that the length of the intact plasma membrane is a major determinant of water diffusion in a controlled cellular environment and that the cell perimeter length (CPL) is sufficient to estimate the apparent diffusion coefficient (ADC) of water in any cellular environment in our experimental system (ADC = -0.21 × CPL + 1.10). We used this finding to further explain the different diffusion kinetics of cells that are dying via apoptotic or non-apoptotic cell death pathways exhibiting characteristic changes in size, nuclear and cytoplasmic architectures, and membrane integrity. These results suggest that the ADC value can be used as a potential biomarker for cell death.
Length of intact plasma membrane determines the diffusion properties of cellular water
Eida, Sato; Van Cauteren, Marc; Hotokezaka, Yuka; Katayama, Ikuo; Sasaki, Miho; Obara, Makoto; Okuaki, Tomoyuki; Sumi, Misa; Nakamura, Takashi
2016-01-01
Molecular diffusion in a boundary-free medium depends only on the molecular size, the temperature, and medium viscosity. However, the critical determinant of the molecular diffusion property in inhomogeneous biological tissues has not been identified. Here, using an in vitro system and a high-resolution MR imaging technique, we show that the length of the intact plasma membrane is a major determinant of water diffusion in a controlled cellular environment and that the cell perimeter length (CPL) is sufficient to estimate the apparent diffusion coefficient (ADC) of water in any cellular environment in our experimental system (ADC = −0.21 × CPL + 1.10). We used this finding to further explain the different diffusion kinetics of cells that are dying via apoptotic or non-apoptotic cell death pathways exhibiting characteristic changes in size, nuclear and cytoplasmic architectures, and membrane integrity. These results suggest that the ADC value can be used as a potential biomarker for cell death. PMID:26750342
Calculation of prompt loss and toroidal field ripple loss under neutral beam injection on EAST
NASA Astrophysics Data System (ADS)
Wu, Bin; Hao, Baolong; White, Roscoe; Wang, Jinfang; Zang, Qing; Han, Xiaofeng; Hu, Chundong
2017-02-01
Neutral beam injection is a major auxiliary heating method in the EAST experimental campaign. This paper gives detailed calculations of beam loss with different plasma equilibria using the guiding center code ORBIT and NUBEAM/TRANSP. Increasing plasma current can dramatically lower the beam ion prompt loss and ripple loss. Countercurrent beam injection gives a much larger prompt loss fraction than co-injection, and ripple-induced collisionless stochastic diffusion is the dominant loss channel.
Calculation of prompt loss and toroidal field ripple loss under neutral beam injection on EAST
Wu, Bin; Hao, Baolong; White, Roscoe; ...
2016-12-09
Here, neutral beam injection is a major auxiliary heating method in the EAST experimental campaign. This paper gives detailed calculations of beam loss with different plasma equilibria using the guiding center code ORBIT and NUBEAM/TRANSP. Increasing plasma current can dramatically lower the beam ion prompt loss and ripple loss. Countercurrent beam injection gives a much larger prompt loss fraction than co-injection, and ripple-induced collisionless stochastic diffusion is the dominant loss channel.
Calculation of prompt loss and toroidal field ripple loss under neutral beam injection on EAST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Bin; Hao, Baolong; White, Roscoe
Here, neutral beam injection is a major auxiliary heating method in the EAST experimental campaign. This paper gives detailed calculations of beam loss with different plasma equilibria using the guiding center code ORBIT and NUBEAM/TRANSP. Increasing plasma current can dramatically lower the beam ion prompt loss and ripple loss. Countercurrent beam injection gives a much larger prompt loss fraction than co-injection, and ripple-induced collisionless stochastic diffusion is the dominant loss channel.
Nakatani, Kiyoharu; Matsuta, Emi
2015-01-01
The release mechanism of coumarin 102 from a single ODS-silica gel microparticle into the water phase in the presence of Triton X-100 was investigated by confocal fluorescence microspectroscopy combined with the single microparticle injection technique. The release rate significantly depended on the Triton X-100 concentration in the water phase and was not limited by diffusion in the pores of the microparticle. The release rate constant was inversely proportional to the microparticle radius squared, indicating that the rate-determining step is the external diffusion between the microparticle and the water phase.
Chávez-Capilla, Teresa; Maher, William; Kelly, Tamsin; Foster, Simon
2016-11-01
Arsenic metabolism in living organisms is dependent on the ability of different arsenic species to traverse biological membranes. Simple diffusion provides an alternative influx and efflux route to mediated transport mechanisms that can increase the amount of arsenic available for metabolism in cells. Using octanol-water and liposome-water partition coefficients, the ability of arsenous acid, arsenate, methylarsonate, dimethylarsinate, thio-methylarsonate, thio-dimethylarsinic acid, arsenotriglutathione and monomethylarsonic diglutathione to diffuse through the lipid bilayer of cell membranes was investigated. Molecular modelling of arsenic species was used to explain the results. All arsenic species with the exception of arsenate, methylarsonate and thio-methylarsonate were able to diffuse through the lipid bilayer of liposomes, with liposome-water partition coefficients between 0.04 and 0.13. Trivalent arsenic species and thio-pentavalent arsenic species showed higher partition coefficients, suggesting that they can easily traverse cell membranes by passive simple diffusion. Given the higher toxicity of these species compared to oxo-pentavalent arsenic species, this study provides evidence supporting the risk associated with human exposure to trivalent and thio-arsenic species. Copyright © 2016. Published by Elsevier B.V.
Generalized thermoelastic diffusive waves in heat conducting materials
NASA Astrophysics Data System (ADS)
Sharma, J. N.
2007-04-01
Keeping in view the applications of diffusion processes in geophysics and electronics industry, the aim of the present paper is to give a detail account of the plane harmonic generalized thermoelastic diffusive waves in heat conducting solids. According to the characteristic equation, three longitudinal waves namely, elastodiffusive (ED), mass diffusion (MD-mode) and thermodiffusive (TD-mode), can propagate in such solids in addition to transverse waves. The transverse waves get decoupled from rest of the fields and hence remain unaffected due to temperature change and mass diffusion effects. These waves travel without attenuation and dispersion. The other generalized thermoelastic diffusive waves are significantly influenced by the interacting fields and hence suffer both attenuation and dispersion. At low frequency mass diffusion and thermal waves do not exist but at high-frequency limits these waves propagate with infinite velocity being diffusive in character. Moreover, in the low-frequency regions, the disturbance is mainly dominant by mechanical process of transportation of energy and at high-frequency regions it is significantly dominated by a close to diffusive process (heat conduction or mass diffusion). Therefore, at low-frequency limits the waves like modes are identifiable with small amplitude waves in elastic materials that do not conduct heat. The general complex characteristic equation is solved by using irreducible case of Cardano's method with the help of DeMoivre's theorem in order to obtain phase speeds, attenuation coefficients and specific loss factor of energy dissipation of various modes. The propagation of waves in case of non-heat conducting solids is also discussed. Finally, the numerical solution is carried out for copper (solvent) and zinc (solute) materials and the obtained phase velocities, attenuation coefficients and specific loss factor of various thermoelastic diffusive waves are presented graphically.
Mardor, Yael; Roth, Yiftach; Ocherashvilli, Aharon; Spiegelmann, Roberto; Tichler, Thomas; Daniels, Dianne; Maier, Stephan E; Nissim, Ouzi; Ram, Zvi; Baram, Jacob; Orenstein, Arie; Pfeffer, Raphael
2004-01-01
Abstract Diffusion-weighted magnetic resonance imaging (DWMRI) is sensitive to tissues' biophysical characteristics, including apparent diffusion coefficients (ADCs) and volume fractions of water in different populations. In this work, we evaluate the clinical efficacy of DWMRI and high diffusion-weighted magnetic resonance imaging (HDWMRI), acquired up to b = 4000 sec/mm2 to amplify sensitivity to water diffusion properties, in pretreatment prediction of brain tumors' response to radiotherapy. Twelve patients with 20 brain lesions were studied. Six ring-enhancing lesions were excluded due to their distinct diffusion characteristics. Conventional and DWMRI were acquired on a 0.5-T MRI. Response to therapy was determined from relative changes in tumor volumes calculated from contrast-enhanced T1-weighted MRI, acquired before and a mean of 46 days after beginning therapy. ADCs and a diffusion index, RD, reflecting tissue viability based on water diffusion were calculated from DWMRIs. Pretreatment values of ADC and RD were found to correlate significantly with later tumor response/nonresponse (r = 0.76, P < .002 and r = 0.77, P < .001). This correlation implies that tumors with low pretreatment diffusion values, indicating high viability, will respond better to radiotherapy than tumors with high diffusion values, indicating necrosis. These results demonstrate the feasibility of using DWMRI for pretreatment prediction of response to therapy in patients with brain tumors undergoing radiotherapy. PMID:15140402
Mardor, Yael; Roth, Yiftach; Ochershvilli, Aharon; Spiegelmann, Roberto; Tichler, Thomas; Daniels, Dianne; Maier, Stephan E; Nissim, Ouzi; Ram, Zvi; Baram, Jacob; Orenstein, Arie; Pfeffer, Raphael
2004-01-01
Diffusion-weighted magnetic resonance imaging (DWMRI) is sensitive to tissues' biophysical characteristics, including apparent diffusion coefficients (ADCs) and volume fractions of water in different populations. In this work, we evaluate the clinical efficacy of DWMRI and high diffusion-weighted magnetic resonance imaging (HDWMRI), acquired up to b = 4000 sec/mm(2) to amplify sensitivity to water diffusion properties, in pretreatment prediction of brain tumors' response to radiotherapy. Twelve patients with 20 brain lesions were studied. Six ring-enhancing lesions were excluded due to their distinct diffusion characteristics. Conventional and DWMRI were acquired on a 0.5-T MRI. Response to therapy was determined from relative changes in tumor volumes calculated from contrast-enhanced T1-weighted MRI, acquired before and a mean of 46 days after beginning therapy. ADCs and a diffusion index, R(D), reflecting tissue viability based on water diffusion were calculated from DWMRIs. Pretreatment values of ADC and R(D) were found to correlate significantly with later tumor response/nonresponse (r = 0.76, P <.002 and r = 0.77, P <.001). This correlation implies that tumors with low pretreatment diffusion values, indicating high viability, will respond better to radiotherapy than tumors with high diffusion values, indicating necrosis. These results demonstrate the feasibility of using DWMRI for pretreatment prediction of response to therapy in patients with brain tumors undergoing radiotherapy.
Quantification of the precipitation loss of radiation belt electrons observed by SAMPEX
NASA Astrophysics Data System (ADS)
Tu, Weichao; Selesnick, Richard; Li, Xinlin; Looper, Mark
2010-07-01
Based on SAMPEX/PET observations, the rates and the spatial and temporal variations of electron loss to the atmosphere in the Earth's radiation belt were quantified using a drift diffusion model that includes the effects of azimuthal drift and pitch angle diffusion. The measured electrons by SAMPEX can be distinguished as trapped, quasi-trapped (in the drift loss cone), and precipitating (in the bounce loss cone). The drift diffusion model simulates the low-altitude electron distribution from SAMPEX. After fitting the model results to the data, the magnitudes and variations of the electron lifetime can be quantitatively determined based on the optimum model parameter values. Three magnetic storms of different magnitudes were selected to estimate the various loss rates of ˜0.5-3 MeV electrons during different phases of the storms and at L shells ranging from L = 3.5 to L = 6.5 (L represents the radial distance in the equatorial plane under a dipole field approximation). The storms represent a small storm, a moderate storm from the current solar minimum, and an intense storm right after the previous solar maximum. Model results for the three individual events showed that fast precipitation losses of relativistic electrons, as short as hours, persistently occurred in the storm main phases and with more efficient loss at higher energies over wide range of L regions and over all the SAMPEX-covered local times. In addition to this newly discovered common feature of the main phase electron loss for all the storm events and at all L locations, some other properties of the electron loss rates, such as the local time and energy dependence that vary with time or locations, were also estimated and discussed. This method combining model with the low-altitude observations provides direct quantification of the electron loss rate, a prerequisite for any comprehensive modeling of the radiation belt electron dynamics.
Convective mass transfer around a dissolving bubble
NASA Astrophysics Data System (ADS)
Duplat, Jerome; Grandemange, Mathieu; Poulain, Cedric
2017-11-01
Heat or mass transfer around an evaporating drop or condensing vapor bubble is a complex issue due to the interplay between the substrate properties, diffusion- and convection-driven mass transfer, and Marangoni effects, to mention but a few. In order to disentangle these mechanisms, we focus here mainly on the convective mass transfer contribution in an isothermal mass transfer problem. For this, we study the case of a millimetric carbon dioxide bubble which is suspended under a substrate and dissolved into pure liquid water. The high solubility of CO2 in water makes the liquid denser and promotes a buoyant-driven flow at a high (solutal) Rayleigh number (Ra˜104 ). The alteration of p H allows the concentration field in the liquid to be imaged by laser fluorescence enabling us to measure both the global mass flux (bubble volume, contact angle) and local mass flux around the bubble along time. After a short period of mass diffusion, where the boundary layer thickens like the square root of time, convection starts and the CO2 is carried by a plume falling at constant velocity. The boundary layer thickness then reaches a plateau which depends on the bubble cross section. Meanwhile the plume velocity scales like (dV /d t )1 /2 with V being the volume of the bubble. As for the rate of volume loss, we recover a constant mass flux in the diffusion-driven regime followed by a decrease in the volume V like V2 /3 after convection has started. We present a model which agrees well with the bubble dynamics and discuss our results in the context of droplet evaporation, as well as high Rayleigh convection.
Peed, Lindsay A; Nietch, Christopher T; Kelty, Catherine A; Meckes, Mark; Mooney, Thomas; Sivaganesan, Mano; Shanks, Orin C
2011-07-01
Diffuse sources of human fecal pollution allow for the direct discharge of waste into receiving waters with minimal or no treatment. Traditional culture-based methods are commonly used to characterize fecal pollution in ambient waters, however these methods do not discern between human and other animal sources of fecal pollution making it difficult to identify diffuse pollution sources. Human-associated quantitative real-time PCR (qPCR) methods in combination with low-order headwatershed sampling, precipitation information, and high-resolution geographic information system land use data can be useful for identifying diffuse source of human fecal pollution in receiving waters. To test this assertion, this study monitored nine headwatersheds over a two-year period potentially impacted by faulty septic systems and leaky sanitary sewer lines. Human fecal pollution was measured using three different human-associated qPCR methods and a positive significant correlation was seen between abundance of human-associated genetic markers and septic systems following wet weather events. In contrast, a negative correlation was observed with sanitary sewer line densities suggesting septic systems are the predominant diffuse source of human fecal pollution in the study area. These results demonstrate the advantages of combining water sampling, climate information, land-use computer-based modeling, and molecular biology disciplines to better characterize diffuse sources of human fecal pollution in environmental waters.
Inward diffusion and loss of radiation belt protons
NASA Astrophysics Data System (ADS)
Selesnick, R. S.; Baker, D. N.; Jaynes, A. N.; Li, X.; Kanekal, S. G.; Hudson, M. K.; Kress, B. T.
2016-03-01
Radiation belt protons in the kinetic energy range 24 to 76 MeV are being measured by the Relativistic Electron Proton Telescope on each of the two Van Allen Probes. Data have been processed for the purpose of studying variability in the trapped proton intensity during October 2013 to August 2015. For the lower energies (≲32 MeV), equatorial proton intensity near L = 2 showed a steady increase that is consistent with inward diffusion of trapped solar protons, as shown by positive radial gradients in phase space density at fixed values of the first two adiabatic invariants. It is postulated that these protons were trapped with enhanced efficiency during the 7 March 2012 solar proton event. A model that includes radial diffusion, along with known trapped proton source and loss processes, shows that the observed average rate of increase near L = 2 is predicted by the same model diffusion coefficient that is required to form the entire proton radiation belt, down to low L, over an extended (˜103 year) interval. A slower intensity decrease for lower energies near L = 1.5 may also be caused by inward diffusion, though it is faster than predicted by the model. Higher-energy (≳40 MeV) protons near the L = 1.5 intensity maximum are from cosmic ray albedo neutron decay. Their observed intensity is lower than expected by a factor ˜2, but the discrepancy is resolved by adding an unspecified loss process to the model with a mean lifetime ˜120 years.
NASA Astrophysics Data System (ADS)
Kou, Jim Hwai-Cher
In this study, ionizable copolymers of HEMA and methacrylic acid (MA) are investigated for their potential use in developing pH dependent oral delivery systems. Because of the MA units, these gels swell extensively at high pH. Since solute diffusion in the hydrophilic polymers depends highly on the water content of the matrix, it is anticipated that the release rate will be modulated by this pH induced swelling. From a practical point of view, the advantage of the present system is that one can minimize drug loss in the stomach and achieve a programmed release in intestine. This approach is expected to improve delivery of acid labile drugs or drugs that cause severe gastrointestinal side effects. This work mainly focuses on the basic understanding of the mechanism involved in drug release from the poly(HEMA -co- MA) gels, especially under dynamic swelling conditions. Equilibrium swelling is first characterized since water content is the major determinant of transport properties in these gels. Phenylpropanolamine (PPA) is chosen as the model drug for the release study and its diffusion characteristics in the gel matrix determined. The data obtained show that the PPA diffusivity follows the free volume theory of Yasuda, which explains the accelerating effect of swelling on drug release. A mathematical model based on a diffusion mechanism has been developed to describe PPA release from the swelling gels. Based on this model, several significant conclusions can be drawn. First, the release rate can be modulated by the aspect ratio of the cylindrical geometry, and this has a practical implication in dosage form design. Second, the release rate can be lowered quite considerably if the dimensional increase due to swelling is significant. Consequently, it is the balance between the drug diffusivity increase and the gel dimensional growth that determines the release rate from the swelling matrix. Third, quasi-steady release kinetics, which are characteristic of swelling release systems, can also be predicted by this model. PPA release from initially dry poly(HEMA -co- MA) gels has also been studied. The data show that the release rate is mainly controlled by the PPA loading level and quite insensitive to the methacrylic acid composition of the gels. These phenomena can be adequately explained by analyzing the transport resistances in the gels. The overall time scale of release from these gels were shown to be in the range which was suitable for oral controlled release applications. (Abstract shortened with permission of author.).
Hughes, Eric; Maan, Abid Aslam; Acquistapace, Simone; Burbidge, Adam; Johns, Michael L; Gunes, Deniz Z; Clausen, Pascal; Syrbe, Axel; Hugo, Julien; Schroen, Karin; Miralles, Vincent; Atkins, Tim; Gray, Richard; Homewood, Philip; Zick, Klaus
2013-01-01
Monodisperse water-in-oil-in-water (WOW) double emulsions have been prepared using microfluidic glass devices designed and built primarily from off the shelf components. The systems were easy to assemble and use. They were capable of producing double emulsions with an outer droplet size from 100 to 40 μm. Depending on how the devices were operated, double emulsions containing either single or multiple water droplets could be produced. Pulsed-field gradient self-diffusion NMR experiments have been performed on the monodisperse water-in-oil-in-water double emulsions to obtain information on the inner water droplet diameter and the distribution of the water in the different phases of the double emulsion. This has been achieved by applying regularization methods to the self-diffusion data. Using these methods the stability of the double emulsions to osmotic pressure imbalance has been followed by observing the change in the size of the inner water droplets over time. Copyright © 2012 Elsevier Inc. All rights reserved.
Double diffusion in the frontal zones of the Yellow and East China Seas in winter
NASA Astrophysics Data System (ADS)
Oh, K.; Lee, S.
2017-12-01
Where the cold, fresh water of the Yellow Sea (YS) and the warm, salty water of the East China Sea (ECS) meet, northern and southern fronts are formed in the southeastern YS and the northwestern ECS, respectively. Strong thermohaline fronts are formed on the northern front, and a strong thermocline and a temperature reversal phenomenon are represented in this front. To understand the water structure of this thermohaline zone, we examined double diffusion in the frontal zones in February 2003 using hydrographic data. In the northern front, the warm, salty Cheju Warm Current Water (CWCW) moved northwards along the bottom layer and the cold, fresh Yellow Sea Cold Water (YSCW) flowed southward in the upper layer. As a result, strong thermohaline fronts forms in the area where the two water masses met, and the slope was developed downward across the front. In this area, a strong thermocline and temperature reversal structures were present. The cold, fresh Korean Coastal Water (KCW) was also found in the upper layer near the thermocline, and has a low-temperature, low-salinity more than surrounding water. When cold, fresh water is located over warm, salty water, heat diffuses through the interface between the two water masses, and then the diffusive-convection can be expected to occur. On the other hand, when warm, salty water overlays cold, fresh water, heat in the upper layer is preferentially transferred downward, and the salt-fingering occurs. The diffusive-convection occurs predominantly in the northern thermohaline front, where the cold, fresh YSCW is situated above the warm, salty CWCW and has the effect of strengthening stratification, so that the water column maintains a physically stable structure. In addition, this phenomenon seems to play a role in maintaining the reversal structure. The salt-fingering occurs in upper layers of the northern front where the cold, fresh YSCW is located over the most cold, fresh KCW. Near the northern thermo-halocline zone, the salt-fingering occurs simultaneously with the diffusive-convection, because three water masses, YSCW, KCW and CWCW, interact in that area. Therefore, it can be seen that the water structure of the northern frontal zone in winter is influenced mainly by the cold, fresh YSCW, the most cold, fresh KCW, and the warm, salty CWCW.
Grudinin, Sergei; Büldt, Georg; Gordeliy, Valentin; Baumgaertner, Artur
2005-01-01
Protein crystallography provides the structure of a protein, averaged over all elementary cells during data collection time. Thus, it has only a limited access to diffusive processes. This article demonstrates how molecular dynamics simulations can elucidate structure-function relationships in bacteriorhodopsin (bR) involving water molecules. The spatial distribution of water molecules and their corresponding hydrogen-bonded networks inside bR in its ground state (G) and late M intermediate conformations were investigated by molecular dynamics simulations. The simulations reveal a much higher average number of internal water molecules per monomer (28 in the G and 36 in the M) than observed in crystal structures (18 and 22, respectively). We found nine water molecules trapped and 19 diffusive inside the G-monomer, and 13 trapped and 23 diffusive inside the M-monomer. The exchange of a set of diffusive internal water molecules follows an exponential decay with a 1/e time in the order of 340 ps for the G state and 460 ps for the M state. The average residence time of a diffusive water molecule inside the protein is ∼95 ps for the G state and 110 ps for the M state. We have used the Grotthuss model to describe the possible proton transport through the hydrogen-bonded networks inside the protein, which is built up in the picosecond-to-nanosecond time domains. Comparing the water distribution and hydrogen-bonded networks of the two different states, we suggest possible pathways for proton hopping and water movement inside bR. PMID:15731388
Vertical profile of tritium concentration in air during a chronic atmospheric HT release.
Noguchi, Hiroshi; Yokoyama, Sumi
2003-03-01
The vertical profiles of tritium gas and tritiated water concentrations in air, which would have an influence on the assessment of tritium doses as well as on the environmental monitoring of tritium, were measured in a chronic tritium gas release experiment performed in Canada in 1994. While both of the profiles were rather uniform during the day because of atmospheric mixing, large gradients of the profiles were observed at night. The gradient coefficients of the profiles were derived from the measurements. Correlations were analyzed between the gradient coefficients and meteorological conditions: solar radiation, wind speed, and turbulent diffusivity. It was found that the solar radiation was highly correlated with the gradient coefficients of tritium gas and tritiated water profiles and that the wind speed and turbulent diffusivity showed weaker correlations with those of tritiated water profiles. A one-dimensional tritium transport model was developed to analyze the vertical diffusion of tritiated water re-emitted from the ground into the atmosphere. The model consists of processes of tritium gas deposition to soil including oxidation into tritiated water, reemission of tritiated water, dilution of tritiated water in soil by rain, and vertical diffusion of tritiated water in the atmosphere. The model accurately represents the accumulation of tritiated water in soil water and the time variations and vertical profiles of tritiated water concentrations in air.
Goode, Daniel J.
1998-01-01
The use of environmental tracers in characterization of ground-water systems is investigated through mathematical modeling of ground-water age and atmospheric tracer transport, and by a field study at the Mirror Lake site, New Hampshire. Theory is presented for modeling ground-water age using the advective-dispersive transport equation. The transport equation includes a zero-order source of unit strength, corresponding to the rate of aging, and can accommodate matrix diffusion and other exchange processes. The effect of temperature fluctuations and layered soils on transport of atmospheric gases to the water table is investigated using a one-dimensional numerical model of chlorofluorocarbon (CFC-11) transport. The nonlinear relation between temperature and Henry's Law coefficient (reflecting air/water phase partitioning) can cause the apparent recharge temperature to be elevated above the annual mean temperature where the water table is shallow. In addition, fine-grained soils can isolate the air phase in the unsaturated zone from the atmosphere. At the USGS' Mirror Lake, New Hampshire fractured-rock research site CFC concentrations near the water table are depleted where dissolved oxygen is low. CFC-11 and CFC-113 are completely absent under anaerobic conditions, while CFC-12 is as low as one-third of modern concentrations. Anaerobic biodegradation apparently consumes CFC's near the water table at this site. One area of active degradation appears to be associated with streamflow loss to ground water. Soil gas concentrations are generally close to atmospheric levels, although some spatial correlation is observed between depleted concentrations of CFC-11 and CFC-113 in soil gas and water-table samples. Results of unsaturated-zone monitoring indicate that recharge occurs throughout the year in the watershed, even during summer evapotranspiration periods, and that seasonal temperature fluctuations occur as much as 5 meters below land surface. Application of ground-water age and CFC-11 transport models to the large-scale ground-water system at Mirror Lake illustrates the similarities between age and chemical transport. Generally, bedrock porosities required to match observed apparent ages from CFC concentrations are high relative to porosities measured on cores. Although matrix diffusion has no effect on steady-state age, it can significantly reduce CFC concentrations in fractured rock in which the effective porosity is low.
Dynamics of glycerine and water transport across human skin from binary mixtures.
Ventura, S A; Kasting, G B
2017-04-01
Skin transport properties of glycerine and water from binary mixtures contacting human skin were determined to better understand the mechanism of skin moisturization by aqueous glycerine formulations. Steady-state permeation for 3 H 2 O and 14 C-glycerine across split-thickness human skin in vitro and desorption dynamics of the same permeants in isolated human stratum corneum (HSC) were experimentally determined under near equilibrium conditions. These data were compared to a priori values developed in the context of a thermodynamic model for binary mixtures of glycerine and water and a previously determined water sorption isotherm for HSC. This allowed the estimation of diffusion and partition coefficients for each permeant in the HSC, as well as HSC thickness, as a function of composition of the contacting solution. These data may be used to estimate water retention and associated HSC swelling related to the absorption and slow release of glycerine from the skin. It took 6+ days for glycerine to completely desorb from HSC immersed in glycerine/water binary solutions. Desorption of both 3 H 2 O and 14 C-glycerine from HSC was slower in pure water than from binary mixtures, a result that is largely explained by the greater swelling of HSC in water. Parametric relationships were developed for water and glycerine intradiffusivities in HSC as functions of HSC water content, and a mutual diffusion coefficient was estimated by analogy with glycerine/water binary solutions. The intradiffusivity of 14 C-glycerine in HSC as inferred from sorption/desorption experiments was shown to be approximately 10-fold less than that inferred from permeation experiments, whereas the corresponding values for 3 H 2 O were comparable. These studies confirm that glycerine enters HSC in substantial quantities and has a long residence time therein. The coupling between bulk water and glycerine transport projected from binary solution data suggests the net effect of glycerine is to slow water loss from the skin. The data support the concept of glycerine as a humectant with an excellent balance of skin penetration and retention characteristics; however, they do not rule out the possibility of an additional biological effect on skin barrier homoeostasis. © 2016 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Diffuse attenuation of solar light (Kd, m−1) determines the percentage of light penetrating the water column and available for benthic organisms. Therefore, Kd can be used as an index of water quality for coastal ecosystems that are dependent on photosynthesis, such as the coral ...
Romanet, Pauline; Guerin, Carole; Pedini, Pascal; Essamet, Wassim; Castinetti, Frédéric; Sebag, Fréderic; Roche, Philippe; Cascon, Alberto; Tischler, Arthur S; Pacak, Karel; Barlier, Anne; Taïeb, David
2017-12-01
In recent years, familial pheochromocytoma (PHEO) with germline mutations in the MAX (MYC associated factor X) gene has been reported in a few cases. Here, we investigated a 25-year-old patient with multiple PHEOs associated with a non-sense germline MAX mutation. Preoperative 18 F-FDOPA PET/CT revealed bilateral adrenal involvement with multiple tumors. In addition, both adrenal glands were found to have diffuse or nodular adrenal medullary hyperplasia (AMH), a histopathological feature previously described as a precursor of MEN2- and SDHB-related PHEOs but not MAX. After bilateral adrenalectomy, different paraffin-embedded and frozen samples were analyzed for allelic imbalances of the MAX gene using allelic quantification by pyrosequencing. The expression of the protein MAX was studied by immunohistochemistry. All PHEOs but also nodular AMH exhibited a loss of the normal allele. By contrast, the diffuse AMH did not show loss-of-heterozygosity. Nevertheless, immunohistochemistry demonstrated loss of protein MAX expression in all samples including diffuse hyperplasia, suggesting a causative role of MAX mutation for both PHEOs and AMH. The present case shows that both nodular and diffuse AMH belongs to the spectrum of MAX-related disease. These data support the possible continuum between nodular AMH and PHEO, expanding the qualification of micro-PHEO to nodular AMH.
NASA Technical Reports Server (NTRS)
Horai, K.-I.
1981-01-01
A theory of the measurement of the thermal diffusivity of a sample by the modified Angstrom method is developed for the case in which radiative heat loss from the end surface of the sample is not negligible, and applied to measurements performed on lunar samples. Formulas allowing sample thermal diffusivity to be determined from the amplitude decay and phase lag of a temperature wave traveling through the sample are derived for a flat disk sample for which only heat loss from the end surface is important, and a sample of finite diameter and length for which heat loss through the end and side surfaces must be considered. It is noted that in the case of a flat disk, measurements at a single angular frequency of the temperature wave are sufficient, while the sample of finite diameter and length requires measurements at two discrete angular frequencies. Comparison of the values of the thermal diffusivities of two lunar samples of dimensions approximately 1 x 1 x 2 cm derived by the present methods and by the Angstrom theory for a finite bar reveals them to differ by not more than 5%, and indicates that more refined data are required as the measurement theory becomes more complicated.
Effects of insolation on habitability and the isotopic history of Martian water
NASA Astrophysics Data System (ADS)
Moores, John
Three aspects of the Habitability of the Northern Plains of Mars to organics and terrestrial-like microbial life were assessed. (1) Protection offered by small surface features and; (2) the breakdown of rocks to form soils were examined using a radiative transfer computer model. Two separate sublimation experiments provided a basis to improve; (3) estimates of the amount of available water today and in the past by determining the fractionation of HDO between present-day reservoirs. (1) UV radiation sterilizes the hardiest of terrestrial organisms within minutes on the Martian surface. Small surface features including pits, trenches, flat faces and overhangs may create "safe havens" for organisms by blocking much of the UV flux. In the most favorable cases, this flux is sufficiently reduced such that organic in-fall could accumulate beneath overhanging surfaces and in pits and cracks while terrestrial microorganisms could persist for several tens of martian years. (2) The production of soils on the surface is considered by analogy with the arid US Southwest. Here differential insolation of incipient cracks of random orientations predicts crack orientation distributions consistent with field observations by assuming that only crack orientations which shield their interiors, minimizing their water loss, can grow, eventually disrupting the clast. (3) Disaggregated water ice to simulate the polar caps was produced by flash freezing in liquid nitrogen and crushing. When dust was added to the mixtures, the D/H ratio of the sublimate gas was seen to decrease with time from the bulk ratio. The more dust was added to the mixture, the more pronounced was this effect. The largest fractionation factor observed during these experiments was 2.5. Clean ice was also prepared and overlain by dust to simulate ground ice. Here, the movement of water vapor was modeled using an effective diffusivity that incorporated both adsorption on grains and diffusion. For low temperatures (<-55°C) a significant difference between the diffusivities of H 2 O and HDO was observed. This suggests adsorptive-control within the regolith as energies of interaction are 60-70kJmol -1 . This ability of the martian regolith to preferentially adsorb HDO decouples the ice table and polar caps from the atmosphere and allows for geographic variations in the D/H ratio on Mars.
Wet model of Saturn's ionosphere: Water from the rings
NASA Technical Reports Server (NTRS)
Connerney, J. E. P.; Waite, J. H.
1984-01-01
Current theoretical models of Saturn's ionosphere are difficult to reconcile with the ionospheric electron density profiles obtained from the Pioneer and Voyager radio occultation observations and the large diurnal variation of maximum ionospheric electron density deduced from studies of Saturn lightning discharges. A model of Saturn's ionosphere is proposed in which water plays a major role as a minor constituent present by virtue of downward diffusion from an external source. This model of the Saturn ionosphere is a classical 'F2' type layer resulting from the photodissociative production of H(+) from H2 and rapid chemical loss due to a series of charge exchange reactions with water. A planet-wide influx of about 4x10 to the 7th power molecules/sec/sq cm of water from the rings is consistent with the observed ionospheric electron densities and estimates of influx due to micrometeoride bombardment of the rings. An enhanced influx of water occurs at latitudes (-38 deg, +44 deg) magnetically connected to the inner edge of Saturn's B ring which results from an electromagnetic erosion process contributing substantially to the (local) upper atmosphere water content. Present day influx at these latitudes is possibly as large as 2x10 to the 9th power molecules/sec/sq cm.
Rodrigues-Filho, J L; Degani, R M; Soares, F S; Periotto, N A; Blanco, F P; Abe, D S; Matsumura-Tundisi, T; Tundisi, J E; Tundisi, J G
2015-01-01
The amendments to the Forest Law proposed by the Brazilian government that allow partial substitution of forested areas by agricultural activities raised deep concern about the integrity of aquatic ecosystems. To assess the impacts of this alteration in land uses on the watershed, diffuse loads of total nitrogen (Nt) and total phosphorus (Pt) were estimated in Lobo Stream watershed, southeastern Brazil, based on export coefficients of the Model of Correlation between Land Use and Water Quality (MQUAL). Three scenarios were generated: scenario 1 (present scenario), with 30-meter-wide permanent preservation areas along the shore of water bodies and 50-meter-radius in springs; scenario 2, conservative, with 100-meter-wide permanent preservation areas along water bodies; and scenario 3, with the substitution of 20% of natural forest by agricultural activities. Results indicate that a suppression of 20% of forest cover would cause an increase in nutrient loads as well as in the trophic state of aquatic ecosystems of the watershed. This could result in losses of ecosystem services and compromise the quality of water and its supply for the basin. This study underlines the importance of forest cover for the maintenance of water quality in Lobo Stream watershed.
Kim, Boeun; Yi, Kangjae; Jung, Sunyoung; Ji, Seoyeon; Choi, Mincheol; Yoon, Junghee
2014-01-01
Diffusion-weighted imaging (DWI) and apparent diffusion coefficient (ADC) mapping are functional magnetic resonance imaging techniques for detecting water diffusion. DWI and the ADC map were performed for intracranial lesions in two dogs. In necrotizing leukoencephalitis, cavitated lesions contained a hypointense center with a hyperintense periphery on DWI, and hyperintense signals on the ADC maps. In metastatic sarcoma, masses including a necrotic region were hypointense with DWI, and hyperintense on the ADC map with hyperintense perilesional edema on DWI and ADC map. Since DWI and ADC data reflect the altered water diffusion, they can provide additional information at the molecular level.
NASA Astrophysics Data System (ADS)
Park, Dong Jun; Kim, Hyun Gil; Jung, Yang Il; Park, Jung Hwan; Yang, Jae Ho; Koo, Yang Hyun
2016-12-01
This study investigates protective coatings for improving the high temperature oxidation resistance of Zr fuel claddings for light water nuclear reactors. FeCrAl alloy and Cr layers were deposited onto Zr plates and tubes using cold spraying. For the FeCrAl/Zr system, a Mo layer was introduced between the FeCrAl coating and the Zr matrix to prevent inter-diffusion at high temperatures. Both the FeCrAl and Cr coatings improved the oxidation resistance compared to that of the uncoated Zr alloy when exposed to a steam environment at 1200 °C. The ballooning behavior and mechanical properties of the coated cladding samples were studied under simulated loss-of-coolant accident conditions. The coated samples showed higher burst temperatures, lower circumferential strain, and smaller rupture openings compared to the uncoated Zr. Although 4-point bend tests of the coated samples showed a small increase in the maximum load, ring compression tests of a sectioned sample showed increased ductility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mermigkis, Panagiotis G.; Tsalikis, Dimitrios G.; Institute of Chemical Engineering and High Temperature Chemical Processes, GR 26500 Patras
A kinetic Monte Carlo (kMC) simulation algorithm is developed for computing the effective diffusivity of water molecules in a poly(methyl methacrylate) (PMMA) matrix containing carbon nanotubes (CNTs) at several loadings. The simulations are conducted on a cubic lattice to the bonds of which rate constants are assigned governing the elementary jump events of water molecules from one lattice site to another. Lattice sites belonging to PMMA domains of the membrane are assigned different rates than lattice sites belonging to CNT domains. Values of these two rate constants are extracted from available numerical data for water diffusivity within a PMMA matrixmore » and a CNT pre-computed on the basis of independent atomistic molecular dynamics simulations, which show that water diffusivity in CNTs is 3 orders of magnitude faster than in PMMA. Our discrete-space, continuum-time kMC simulation results for several PMMA-CNT nanocomposite membranes (characterized by different values of CNT length L and diameter D and by different loadings of the matrix in CNTs) demonstrate that the overall or effective diffusivity, D{sub eff}, of water in the entire polymeric membrane is of the same order of magnitude as its diffusivity in PMMA domains and increases only linearly with the concentration C (vol. %) in nanotubes. For a constant value of the concentration C, D{sub eff} is found to vary practically linearly also with the CNT aspect ratio L/D. The kMC data allow us to propose a simple bilinear expression for D{sub eff} as a function of C and L/D that can describe the numerical data for water mobility in the membrane extremely accurately. Additional simulations with two different CNT configurations (completely random versus aligned) show that CNT orientation in the polymeric matrix has only a minor effect on D{sub eff} (as long as CNTs do not fully penetrate the membrane). We have also extensively analyzed and quantified sublinear (anomalous) diffusive phenomena over small to moderate times and correlated them with the time needed for penetrant water molecules to explore the available large, fast-diffusing CNT pores before Fickian diffusion is reached.« less
NASA Astrophysics Data System (ADS)
Soriano, Allan N.; Adamos, Kristoni G.; Bonifacio, Pauline B.; Adornado, Adonis P.; Bungay, Vergel C.; Vairavan, Rajendaran
2017-11-01
The fate of antibiotics entering the environment raised concerns on the possible effect of antimicrobial resistance bacteria. Prediction of the fate and transport of these particles are needed to be determined, significantly the diffusion coefficient of antibiotic in water at infinite dilution. A systematic determination of diffusion coefficient of antibiotic in water at infinite dilution of five different kinds of livestock antibiotics namely: Amtyl, Ciprotyl, Doxylak Forte, Trisullak, and Vetracin Gold in the 293.15 to 313.15 K temperature range are reported through the use of the method involving the electrolytic conductivity measurements. A continuous stirred tank reactor is utilized to measure the electrolytic conductivities of the considered systems. These conductivities are correlated by using the Nernst-Haskell equation to determine the infinite dilution diffusion coefficient. Determined diffusion coefficients are based on the assumption that in dilute solution, these antibiotics behave as strong electrolyte from which H+ cation dissociate from the antibiotic's anion.
Anomalous cation diffusion in salt-doped confined bilayer ice.
Qiu, Hu; Xue, Minmin; Shen, Chun; Guo, Wanlin
2018-05-17
The diffusive dynamics of aqueous electrolyte solutions in nanoconfined spaces has attracted considerable attention due to their potential applications in desalination, biosensors and supercapacitors. Here we show by molecular dynamics simulations that lithium and sodium ions diffuse at a rate at least an order of magnitude higher than that of water molecules when the ions are trapped in an ice bilayer confined between two parallel plates. This novel picture is in sharp contrast to the prevailing view that the diffusion rate of ions is comparable to or even lower than that of water in both bulk and confined solutions. The predicted high ion mobility stems from frequent lateral hopping of ions along the coordination sites inside the hydrogen-bonding network connecting the two water layers of the ice bilayer. This anomalous diffusion should provide new insights into the physics of confined aqueous electrolytes.
Diffusion coefficients of nitric oxide in water: A molecular dynamics study
NASA Astrophysics Data System (ADS)
Pokharel, Sunil; Pantha, Nurapati; Adhikari, N. P.
2016-09-01
Self-diffusion coefficients along with the mutual diffusion coefficients of nitric oxide (NO) and SPC/E water (H2O) as solute and solvent of the mixture, have been studied within the framework of classical molecular dynamics level of calculations using GROMACS package. The radial distribution function (RDF) of the constituent compounds are calculated to study solute-solute, solute-solvent and solvent-solvent molecular interactions as a function of temperature. A dilute solution of five NO molecules (mole fraction 0.018) and 280 H2O molecules (mole fraction 0.982) has been taken as the sample. The self-diffusion coefficient of the solvent is calculated by using mean square displacement (MSD) where as that for solute (NO) is calculated by using MSD and velocity auto-correlation function (VACF). The results are then compared with the available experimental values. The results from the present work for water come in good agreement, very precise at low temperatures, with the experimental values. The diffusion coefficients of NO, on the other hands, agree well with the available theoretical studies, and also with experiment at low temperatures (up to 310 K). The results at the higher temperatures (up to 333 K), however, deviate significantly with the experimental observations. Also, the mutual diffusion coefficients of NO in water have been calculated by using Darken’s relation. The temperature dependence of the calculated diffusion coefficients follow the Arrhenius behavior.
Nguyen, Hiep X; Banga, Ajay K
2018-02-21
This study investigated in vitro transdermal delivery of methotrexate through dermatomed porcine ear and cadaver human skin treated with poly (D,L-lactide-co-glycolide) acid microneedles or fractional ablative laser. PLGA microneedles were fabricated and characterized using scanning electron microscopy and mechanical assessment techniques. The integrity of treated skin was evaluated by rheometer, transepidermal water loss, and skin electrical resistance measurements. Successful skin microporation was demonstrated by dye binding, histology, pore uniformity, confocal laser microscopy, and DermaScan studies. In vitro permeation experiment was performed on Franz diffusion cells to determine drug delivery into and across the skin. Both physical treatments resulted in a considerable decrease in skin resistance and an increase in transepidermal water loss value. The laser-created microchannels were significantly larger than those formed by microneedles (p < 0.05). An effective force of 41.04 ± 18.33 N was required to achieve 100% penetration efficiency of the microneedles. For both porcine ear and human skin, laser ablation provided a significantly higher methotrexate permeability into the receptor chamber and skin layers compared to microneedle poration and untreated skin (p < 0.05). Both fractional ablative laser and polymeric microneedles markedly enhanced in vitro transdermal delivery of methotrexate into and across skin. Graphical Abstract ᅟ.
Bennett, Raffeal; Olesik, Susan V
2017-04-01
Enhanced fluidity liquid chromatography using the hydrophilic interaction retention mechanism (EFLC-HILIC) is studied as an alternative separation mode for analyzing oligosaccharides and other sugars. These carbohydrates, which are important for the study of foods and biological systems, are difficult to comprehensively profile and either require a non-green, expensive solvent (i.e. acetonitrile) or derivatization of the analytes at the expense of time, sample loss, and loss of quantitative information. These difficulties arise from the diverse isomerism, mutarotation, and lack of a useable chromophore/fluorophore for spectroscopic detection. Enhanced fluidity liquid chromatography is an alternative separation method that involves the use of conventional polar solvents, such as methanol/water mixtures, as the primary mobile phase component and liquid carbon dioxide (CO 2 ) as the modifier in subcritical conditions. The addition of liquid CO 2 enhances diffusivity and decreases viscosity while maintaining mixture polarity, which typically results in reduced time of analysis and higher efficiency. This work illustrates an optimized EFLC-HILIC separation of a test mixture of oligosaccharides and simple sugars with a resolution greater than 1.3 and an analysis time decrease of over 35% compared to a conventional HPLC HILIC-mode analysis using acetonitrile/water mobile phases. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mueller, James L.; Trees, Charles C.; Arnone, Robert A.
1990-09-01
The Coastal Zone Color Scannez (ZCS) and associated atmospheric and in-water algorithms have allowed synoptic analyses of regional and large scale variability of bio-optical properties [phytoplankton pigments and diffuse auenuation coefficient K(490)}. Austin and Petzold (1981) developed a robust in-water K(490) algorithm which related the diffuse attenuation coefficient at one optical depth [1/K(490)] to the ratio of the water-leaving radiances at 443 and 550 nm. Their regression analysis included diffuse attenuation coefficients K(490) up to 0.40 nm, but excluded data from estuarine areas, and other Case II waters, where the optical properties are not predominantly determined by phytoplankton. In these areas, errors are induced in the retrieval of remote sensing K(490) by extremely low water-leaving radiance at 443 nm [Lw(443) as viewed at the sensor may only be 1 or 2 digital counts], and improved cury can be realized using algorithms based on wavelengths where Lw(λ) is larger. Using ocean optical profiles quired by the Visibility Laboratory, algorithms are developed to predict K(490) from ratios of water leaving radiances at 520 and 670, as well as 443 and 550 nm.
Vacuum FTIR study on the hygroscopicity of magnesium acetate aerosols
NASA Astrophysics Data System (ADS)
Wang, Na; Cai, Chen; He, Xiang; Pang, Shu-Feng; Zhang, Yun-Hong
2018-03-01
Hygroscopicity and volatility of secondary organic aerosol (SOA) are two important properties, which determine the composition, concentration, size, phase state of SOA and thus chemical and optical properties for SOA. In this work, magnesium acetate (Mg(Ac)2) aerosol was used as a simple SOA model in order to reveal relationship between hygroscopicity and volatility. A novel approach was set up based on a combination of a vacuum FTIR spectrometer and a home-made relative humidity (RH) controlling system. The striking advantage of this approach was that the RH and the compositions of aerosols could be obtained from a same IR spectrum, which guaranteed the synchronism between RH and spectral features on a sub-second scale. At the constant RH of 90% and 80% for 3000 s, the water content within Mg(Ac)2 aerosol particles decreased about 19.0% and 9.4% while there were 13.4% and 6.0% of acetate loss. This was attributed to a cooperation between volatile of acetic acid and Mg2 + hydrolysis in Mg(Ac)2 aerosols, which greatly suppressed the hygroscopicity of Mg(Ac)2 aerosols. When the RH changed with pulsed mode between 70% and 90%, hygroscopicity relaxation was observed for Mg(Ac)2 aerosols. Diffuse coefficient of water in the relaxation process was estimated to be 5 × 10- 12 m2·s- 1 for the Mg(Ac)2 aerosols. Combining the IR spectra analysis, the decrease in the diffuse coefficient of water was due to the formation of magnesium hydroxide accompanying acetic acid evaporation in the aerosols.
Human local and total heat losses in different temperature.
Wang, Lijuan; Yin, Hui; Di, Yuhui; Liu, Yanfeng; Liu, Jiaping
2016-04-01
This study investigates the effects of operative temperature on the local and total heat losses, and the relationship between the heat loss and thermal sensation. 10 local parts of head, neck, chest, abdomen, upper arm, forearm, hand, thigh, leg and foot are selected. In all these parts, convection, radiation, evaporation, respiration, conduction and diffusion heat losses are analyzed when operative temperature is 23, 28, 33 and 37 °C. The local heat losses show that the radiation and convection heat losses are mainly affected by the area of local body, and the heat loss of the thigh is the most in the ten parts. The evaporation heat loss is mainly affected by the distribution of sweat gland, and the heat loss of the chest is the most. The total heat loss of the local body shows that in low temperature, the thigh, leg and chest have much heat loss, while in high temperature, the chest, abdomen, thigh and head have great heat loss, which are useful for clothing design. The heat losses of the whole body show that as the operative temperature increases, the radiation and convection heat losses decrease, the heat losses of conduction, respiration, and diffusion are almost constant, and the evaporation heat loss increases. By comparison, the heat loss ratios of the radiation, convection and sweat evaporation, are in agreement with the previous researches. At last, the formula about the heat loss ratio of convection and radiation is derived. It's useful for thermal comfort evaluation and HVAC (heating, ventilation and air conditioning) design. Copyright © 2016 Elsevier Inc. All rights reserved.
Diffuse degassing through magmatic arc crust (Invited)
NASA Astrophysics Data System (ADS)
Manning, C. E.; Ingebritsen, S.
2013-12-01
The crust of magmatic arcs plays an important role in the volatile cycle at convergent margins. The fluxes of subduction- and arc-related volatiles such as H2O, C, Cl, S are poorly known. It is commonly believed that gases emitted from volcanoes account nearly quantitatively for the volatiles that cross the Moho beneath the volcanic front. This volcanic degassing may occur during eruption, emission from summit fumaroles and hot springs, or more 'diffuse' delivery to volcano flanks. However, several observations suggest that volatiles also transit arc crust by even more diffuse pathways, which could account for significant volatile loss on long time and length scales. Active metamorphism of arc crust produces crustal-scale permeability that is sufficient to transport a large volume of subducted volatiles (Ingebritsen and Manning, 2002, PNAS, 99, 9113). Arc magmas may reach volatile saturation deeper than the maximum depths recorded by melt inclusions (e.g., Blundy et al., 2010, EPSL, 290, 289), and exhumed sections of magmatic arc crust typically record voluminous plutons reflecting magma crystallization and volatile loss at depths well below the volcanic edifice. At shallower depths, topographically driven meteoric groundwater systems can absorb magmatic volatiles and transport them laterally by tens of km (e.g., James et al., 1999, Geology, 27, 823; Evans et al., 2002, JVGR, 114, 291). Hydrothermal ore deposits formed at subvolcanic depths sequester vast amounts of volatiles, especially sulfur, that are only returned to the surface on the time scale of exhumation and/or erosion. Water-rich metamorphic fluids throughout the crust can readily carry exsolved volcanic gases because the solubilities of volatile bearing minerals such as calcite, anhydrite, and fluorite are quite high at elevated pressure and temperature (e.g., Newton and Manning, 2002, Am Min, 87, 1401; 2005, J Pet, 46, 701; Tropper and Manning, 2007, Chem Geol, 242, 299). Taken together, these considerations dictate that volatile entrainment in the metamorphic/meteoric fluid-flow system represents a highly diffuse pathway for degassing through arc crust which must be taken into account in models of volatile cycling at convergent margins.
Cox, S.E.
2002-01-01
Two low-cost innovative sampling procedures for characterizing trichloroethene (TCE) contamination in ground water were evaluated for use at McChord Air Force Base (AFB) by the U.S. Geological Survey, in cooperation with the U.S. Air Force McChord Air Force Base Installation Restoration Program, in 2001. Previous attempts to characterize the source of ground-water contamination in the heterogeneous glacial outwash aquifer at McChord site SS-34N using soil-gas surveys, direct-push exploration, and more than a dozen ground-water monitoring wells have had limited success. The procedures assessed in this study involved analysis of tree-tissue samples to map underlying ground-water contamination and deploying passive-diffusion samplers to measure TCE concentrations in existing monitoring wells. These procedures have been used successfully at other U.S. Department of Defense sites and have resulted in cost avoidance and accelerated site characterization. Despite the presence of TCE in ground water at site SS-34N, TCE was not detected in any of the 20 trees sampled at the site during either early spring or late summer sampling. The reason the tree tissue procedure was not successful at the McChord AFB site SS-34N may have been due to an inability of tree roots to extract moisture from a water table 30 feet below the land surface, or that concentrations of TCE in ground water were not large enough to be detectable in the tree tissue at the sampling point. Passive-diffusion samplers were placed near the top, middle, and bottom of screened intervals in three monitoring wells and TCE was observed in all samplers. Concentrations of TCE from the passive-diffusion samplers were generally similar to concentrations found in samples collected in the same wells using conventional pumping methods. In contrast to conventional pumping methods, the collection of ground-water samples using the passive-diffusion samples did not generate waste purge water that would require hazardous-waste disposal. In addition, the results from the passive-diffusion samples may show that TCE concentrations are stratified across some screened intervals. The overall results of the limited test of passive-diffusion samplers at site SS-34N were similar to more detailed tests conducted at other contaminated sites across the country and indicate that further evaluation of the use of passive-diffusion samplers at McChord site SS-34N is warranted.
Response of radiation belt simulations to different radial diffusion coefficients
NASA Astrophysics Data System (ADS)
Drozdov, A.; Shprits, Y.; Subbotin, D.; Kellerman, A. C.
2013-12-01
Resonant interactions between Ultra Low Frequency (ULF) waves and relativistic electrons may violate the third adiabatic invariant of motion, which produces radial diffusion in the electron radiation belts. This process plays an important role in the formation and structure of the outer electron radiation belt and is important for electron acceleration and losses in that region. Two parameterizations of the resonant wave-particle interaction of electrons with ULF waves in the magnetosphere by Brautigam and Albert [2000] and Ozeke et al. [2012] are evaluated using the Versatile Electron Radiation Belt (VERB) diffusion code to estimate their relative effect on the radiation belt simulation. The period of investigation includes quiet time and storm time geomagnetic activity and is compared to data based on satellite observations. Our calculations take into account wave-particle interactions represented by radial diffusion transport, local acceleration, losses due to pitch-angle diffusion, and mixed diffusion. We show that the results of the 3D diffusion simulations depend on the assumed parametrization of waves. The differences between the simulations and potential missing physical mechanisms are discussed. References Brautigam, D. H., and J. M. Albert (2000), Radial diffusion analysis of outer radiation belt electrons during the October 9, 1990, magnetic storm, J. Geophys. Res., 105(A1), 291-309, doi:10.1029/1999JA900344 Ozeke, L. G., I. R. Mann, K. R. Murphy, I. J. Rae, D. K. Milling, S. R. Elkington, A. A. Chan, and H. J. Singer (2012), ULF wave derived radiation belt radial diffusion coefficients, J. Geophys. Res., 117, A04222, doi:10.1029/2011JA017463.
Rivadeneira, Josefina; Audisio, M C; Gorustovich, Alejandro
2018-04-01
No single material can provide all requirements for wound dressings. Here, we evaluated the influence of different soy protein isolate and agar proportions (3:1, 1:1, and 1:3) in blend films on some of their physical-chemical and antibacterial properties to elucidate their potential as wound dressings. The films were synthesized by the gel casting method and ciprofloxacin hydrochloride was incorporated into the films. Films were characterized based on their surface morphology, water uptake ability, and weight loss profile. Also, the ciprofloxacin hydrochloride release kinetics was quantified spectrophotometrically. The antibacterial effect was evaluated against Staphylococcus aureus and Pseudomonas aeruginosa strains. The soy protein isolate-agar ratio affected the water uptake of the films and the release profile of ciprofloxacin hydrochloride but not the weight loss profile. The amount of drug released decreased near 80% because of the decrease in agar content in the films. The release kinetics of ciprofloxacin hydrochloride data best fitted to the Korsmeyer-Peppas model, suggesting that the mechanism of drug release was mainly of the diffusion type. All ciprofloxacin hydrochloride-releasing soy protein isolate-agar films strongly inhibited the cell viability of the bacterial strains studied. We concluded that water uptake and ciprofloxacin hydrochloride release can be controlled by changing the soy protein isolate-agar proportion. The proportions did not lead to changes in the antibacterial strength of the films.
Clement, Michelle E; Muñoz-Garcia, Agustí; Williams, Joseph B
2012-04-01
Lipids of the stratum corneum (SC), the outer layer of the epidermis of birds and mammals, provide a barrier to water vapor diffusion through the skin. The SC of birds consists of flat dead cells, called corneocytes, and two lipid compartments: an intercellular matrix and a monolayer of covalently bound lipids (CBLs) attached to the outer surface of the corneocytes. We previously found two classes of sphingolipids, ceramides and cerebrosides, covalently bound to corneocytes in the SC of house sparrows (Passer domesticus L.); these lipids were associated with cutaneous water loss (CWL). In this study, we collected adult and nestling house sparrows from Ohio and nestlings from Saudi Arabia, acclimated them to either high or low humidity, and measured their rates of CWL. We also measured CWL for natural populations of nestlings from Ohio and Saudi Arabia, beginning when chicks were 2 days old until they fledged. We then evaluated the composition of the CBLs of the SC of sparrows using thin layer chromatography. We found that adult house sparrows had a greater diversity of CBLs in their SC than previously described. During ontogeny, nestling sparrows increased the amount of CBLs and developed their CBLs differently, depending on their habitat. Acclimating nestlings to different humidity regimes did not alter the ontogeny of the CBLs, suggesting that these lipids represent a fundamental component of SC organization that does not respond to short-term environmental change.
Sound field diffusivity in NASA Langley Research Center hardwalled acoustic facilities
NASA Technical Reports Server (NTRS)
Mcgary, M. C.
1982-01-01
Cross correlation measurements were performed to determine the quality of the sound fields in the ANRL reverberation room and the ANRL transmission loss facility. The results indicate the level of sound field diffuseness which may be attained in these hardwalled acoustic facilities.
Thermal diffusivity of peat, sand and their mixtures at different water contents
NASA Astrophysics Data System (ADS)
Gvozdkova, Anna; Arkhangelskaya, Tatiana
2014-05-01
Thermal diffusivity of peat, sand and their mixtures at different water contents was studied using the unsteady-state method described in (Parikh et al., 1979). Volume sand content in studied samples was 0 % (pure peat), 5, 10, 15, 20, 30, 40, 50, 55 and 62 % (pure sand). Thermal diffusivity of air-dry samples varied from 0.6×10-7m2s-1 for pure peat to 7.0×10-7m2s-1 for pure sand. Adding 5 and 10 vol. % of sand didn't change the thermal diffusivity of studied mixture as compared with that of the pure air-dry peat. Adding 15 % of sand resulted in significant increase of thermal diffusivity by approximately 1.5 times: from 0.6×10-7m2s-1 to 0.9×10-7m2s-1. It means that small amounts of sand with separate sand particles distributed within the peat don't contribute much to the heat transfer through the studied media. And there is a kind of threshold between the 10 and 15 vol. % of sand, after which the continuous sandy chains are formed within the peat, which can serve as preferential paths of heat transport. Adding 20 and 30 % of sand resulted in further increase of thermal diffusivity to 1.3×10-7m2s-1 and 1.7×10-7m2s-1, which is more than two and three times greater than the initial value for pure peat. Thermal diffusivity vs. moisture content dependencies had different shapes. For sand contents of 0 to 40 vol. % the thermal diffusivity increased with water content in the whole studied range from air-dry samples to the capillary moistened ones. For pure peat the experimental curves were almost linear; the more sand was added the more pronounced became the S-shape of the curves. For sand contents of 50 % and more the curves had a pronounced maximum within the range of water contents between 0.10 and 0.25 m3m-3 and then decreased. The experimental k(θ) curves, where k is soil thermal diffusivity, θ is water content, were parameterized with a 4-parameter approximating function (Arkhangelskaya, 2009, 2014). The suggested approximation has an advantage of clear physical interpretation: the parameters are (1) the thermal diffusivity of the dry sample; (2) the difference between the highest thermal diffusivity at some optional water content and that of the dry sample; (3) the optional water content at which the thermal diffusivity reaches its maximum; (4) half-width of the peak of the k(θ) curve. The increase of sand contents in studied mixtures was accompanied by the increase of the parameters (1), (2) and (4) and the decrease of the parameter (3). References Parikh R.J., Havens J.A., Scott H.D., 1979. Thermal diffusivity and conductivity of moist porous media. Soil Science Society of America Journal 43, 1050-1052. Arkhangel'skaya T.A., 2009. Parameterization and mathematical modeling of the dependence of soil thermal diffusivity on the water content. Eurasian Soil Science 42 (2), 162-172. doi: 10.1134/S1064229309020070 Arkhangelskaya T.A., 2014. Diversity of thermal conditions within the paleocryogenic soil complexes of the East European Plain: The discussion of key factors and mathematical modeling // Geoderma. Vol. 213. P. 608-616. doi 10.1016/j.geoderma.2013.04.001
Evolution and Transport of Water in the Upper Regolith of Mars
NASA Technical Reports Server (NTRS)
Hudson, T. L.; Aharonson, O.; Schorghofer, N.; Hecht, M. H.; Bridges, N. T.; Green, J. R.
2003-01-01
Long standing theoretical predictions [1-3], as well as recent spacecraft observations [4] indicate that large quantities of ice is present in the high latitudes upper decimeters to meters of the Martian regolith. At shallower depths and warmer locations small amounts of H2O, either adsorbed or free, may be present transiently. An understanding of the evolution of water based on theoretical and experimental considerations of the processes operating at the Martian environment is required. In particular, the porosity, diffusivity, and permeability of soils and their effect on water vapor transport under Mars-like conditions have been estimated, but experimental validation of such models is lacking. Goal: Three related mechanisms may affect water transport in the upper Martian regolith. 1) diffusion along a concentration gradient under isobaric conditions, 2) diffusion along a thermal gradient, which may give rise to a concentration gradient as ice sublimes or molecules desorb from the regolith, and 3) hydraulic flow, or mass motion in response to a pressure gradient. Our combined theoretical and experimental investigation seeks to disentangle these mechanisms and determine which process(es) are dominant in the upper regolith over various timescales. A detailed one-dimensional model of the upper regolith is being created which incorporates water adsorption/ desorption, condensation, porosity, diffusivity, and permeability effects. Certain factors such as diffusivity are difficult to determine theoretically due to the wide range of intrinsic grain properties such as particle sizes, shapes, packing densities, and emergent properties such as tortuosity. An experiment is being designed which will allow us to more accurately determine diffusivity, permeability, and water desorption isotherms for regolith simulants.
Bayesian inference of radiation belt loss timescales.
NASA Astrophysics Data System (ADS)
Camporeale, E.; Chandorkar, M.
2017-12-01
Electron fluxes in the Earth's radiation belts are routinely studied using the classical quasi-linear radial diffusion model. Although this simplified linear equation has proven to be an indispensable tool in understanding the dynamics of the radiation belt, it requires specification of quantities such as the diffusion coefficient and electron loss timescales that are never directly measured. Researchers have so far assumed a-priori parameterisations for radiation belt quantities and derived the best fit using satellite data. The state of the art in this domain lacks a coherent formulation of this problem in a probabilistic framework. We present some recent progress that we have made in performing Bayesian inference of radial diffusion parameters. We achieve this by making extensive use of the theory connecting Gaussian Processes and linear partial differential equations, and performing Markov Chain Monte Carlo sampling of radial diffusion parameters. These results are important for understanding the role and the propagation of uncertainties in radiation belt simulations and, eventually, for providing a probabilistic forecast of energetic electron fluxes in a Space Weather context.
SHETTY, ANIL N.; CHIANG, SHARON; MALETIC-SAVATIC, MIRJANA; KASPRIAN, GREGOR; VANNUCCI, MARINA; LEE, WESLEY
2016-01-01
In this article, we discuss the theoretical background for diffusion weighted imaging and diffusion tensor imaging. Molecular diffusion is a random process involving thermal Brownian motion. In biological tissues, the underlying microstructures restrict the diffusion of water molecules, making diffusion directionally dependent. Water diffusion in tissue is mathematically characterized by the diffusion tensor, the elements of which contain information about the magnitude and direction of diffusion and is a function of the coordinate system. Thus, it is possible to generate contrast in tissue based primarily on diffusion effects. Expressing diffusion in terms of the measured diffusion coefficient (eigenvalue) in any one direction can lead to errors. Nowhere is this more evident than in white matter, due to the preferential orientation of myelin fibers. The directional dependency is removed by diagonalization of the diffusion tensor, which then yields a set of three eigenvalues and eigenvectors, representing the magnitude and direction of the three orthogonal axes of the diffusion ellipsoid, respectively. For example, the eigenvalue corresponding to the eigenvector along the long axis of the fiber corresponds qualitatively to diffusion with least restriction. Determination of the principal values of the diffusion tensor and various anisotropic indices provides structural information. We review the use of diffusion measurements using the modified Stejskal–Tanner diffusion equation. The anisotropy is analyzed by decomposing the diffusion tensor based on symmetrical properties describing the geometry of diffusion tensor. We further describe diffusion tensor properties in visualizing fiber tract organization of the human brain. PMID:27441031
Ghysels, An; Venable, Richard M; Pastor, Richard W; Hummer, Gerhard
2017-06-13
A Bayesian-based methodology is developed to estimate diffusion tensors from molecular dynamics simulations of permeants in anisotropic media, and is applied to oxygen in lipid bilayers. By a separation of variables in the Smoluchowski diffusion equation, the multidimensional diffusion is reduced to coupled one-dimensional diffusion problems that are treated by discretization. The resulting diffusivity profiles characterize the membrane transport dynamics as a function of the position across the membrane, discriminating between diffusion normal and parallel to the membrane. The methodology is first validated with neat water, neat hexadecane, and a hexadecane slab surrounded by water, the latter being a simple model for a lipid membrane. Next, a bilayer consisting of pure 1-palmitoyl 2-oleoylphosphatidylcholine (POPC), and a bilayer mimicking the lipid composition of the inner mitochondrial membrane, including cardiolipin, are investigated. We analyze the detailed time evolution of oxygen molecules, in terms of both normal diffusion through and radial diffusion inside the membrane. Diffusion is fast in the more loosely packed interleaflet region, and anisotropic, with oxygen spreading more rapidly in the membrane plane than normal to it. Visualization of the propagator shows that oxygen enters the membrane rapidly, reaching its thermodynamically favored center in about 1 ns, despite the free energy barrier at the headgroup region. Oxygen transport is quantified by computing the oxygen permeability of the membranes and the average radial diffusivity, which confirm the anisotropy of the diffusion. The position-dependent diffusion constants and free energies are used to construct compartmental models and test assumptions used in estimating permeability, including Overton's rule. In particular, a hexadecane slab surrounded by water is found to be a poor model of oxygen transport in membranes because the relevant energy barriers differ substantially.
A rare case of short stature: Say Meyer syndrome.
Karthik, T S; Prasad, N Rajendra; Rani, P Radha; Maheshwari, Rushikesh; Reddy, P Amaresh; Chakradhar, B V S; Menon, Bindu
2013-10-01
Say Meyer syndrome is rare X linked condition characterized by developmental delay, short stature and metopic suture synostosis. We are reporting a case of Say Meyer syndrome presented to our hospital for short stature and developmental delay at age 3½ years. A 3½-year-old boy presented to our hospital for decreased growth velocity from the age of 1 year. History revealed the boy had a birth weight of 2.3 kg, had an episode of seizures in the neonatal period. He was born to non-consanguineous marriage. He had global developmental delay and there was a lack of bowel and bladder control. History did not reveal any hearing or visual impairment. No history of any chronic systemic illnesses. Magnetic resonance imaging (MRI) brain revealed mild diffuse frontotemporal atrophy with multiple irregular gliotic areas in bilateral frontal lobes. Diffuse white matter volume loss in bilateral cerebral hemispheres. Diffuse thinning of corpus callosum. Diffuse periventricular hyper intensity on T2W and fluid attenuated inversion recovery sequences. Say Meyer syndrome is rare X linked condition characterized by developmental delay, short stature and metopic suture synostosis. Characteristic MRI brain findings include diffuse frontotemporal atrophy with multiple gliotic areas in frontal lobes. Diffuse white matter volume loss in bilateral cerebral hemispheres.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, M.H.; Lai, M.D.
1995-03-01
Solutions of amines are frequently used in gas-treating processes to remove acid gases, such as CO{sub 2} and H{sub 2}S, from gas streams in the natural gas and synthetic ammonia industries and petroleum chemical plants. The solubility and diffusivity of N{sub 2}O in (monoethanolamine + N-methyldiethanolamine + water) and in (monoethanolamine + 2-amino-2-methyl-l-propanol + water) were measured at 30, 35, and 40 C and at atmospheric pressure. Six (monoethanolamine + N-methyldiethanolamine + water) and five (monoethanolamine + 2-amino-2-methyl-l-propanol + water) systems were studied. The total amine mass percent in all cases was 30. The solubilities were measured by a solubilitymore » apparatus similar to that of Haimour and Sandall (1984). A wetted wall column absorber was used to obtain the diffusivity of N{sub 2}O in amines. The N{sub 2}O solubilities in amine solutions have been correlated on the basis of the excess Henry constant correlation of Wang et al. (1992). The N{sub 2}O analogy was used to estimate the solubility and diffusivity of CO{sub 2} in (monoethanolamine + N-methyldiethanolamine + water) and in (monoethanolamine + 2-amino-2-methyl-l-propanol + water).« less
Sachdeva, Shivangi; Kolimi, Narendar; Nair, Sanjana Anilkumar; Rathinavelan, Thenmalarchelvi
2016-01-01
Capsular polysaccharides (CPSs) are major bacterial virulent determinants that facilitate host immune evasion. E. coli group1 K30CPS is noncovalently attached to bacterial surface by Wzi, a lectin. Intriguingly, structure based phylogenetic analysis indicates that Wzi falls into porin superfamily. Molecular dynamics (MD) simulations further shed light on dual role of Wzi as it also functions as a bidirectional passive water specific porin. Such a functional role of Wzi was not realized earlier, due to the occluded pore. While five water specific entry points distributed across extracellular & periplasmic faces regulate the water diffusion involving different mechanisms, a luminal hydrophobic plug governs water permeation across the channel. Coincidently, MD observed open state structure of “YQF” triad is seen in sugar-binding site of sodium-galactose cotransporters, implicating its involvement in K30CPS surface anchorage. Importance of Loop 5 (L5) in membrane insertion is yet another highlight. Change in water diffusion pattern of periplasmic substitution mutants suggests Wzi’s role in osmoregulation by aiding in K30CPS hydration, corroborating earlier functional studies. Water molecules located inside β-barrel of Wzi crystal structure further strengthens the role of Wzi in osmoregulation. Thus, interrupting water diffusion or L5 insertion may reduce bacterial virulence. PMID:27320406
Tomographic Imaging of Water Injection and Withdrawal in PEMFC Gas Diffusion Layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGill U; Gostick, J. T.; Gunterman, H. P.
2010-06-25
X-ray computed tomography was used to visualize the water configurations inside gas diffusion layers for various applied capillary pressures, corresponding to both water invasion and withdrawal. A specialized sample holder was developed to allow capillary pressure control on the small-scale samples required. Tests were performed on GDL specimens with and without hydrophobic treatments.
NASA Astrophysics Data System (ADS)
Maiti, Prabal K.; Bagchi, Biman
2009-12-01
In order to understand self-diffusion (D) of a charged, flexible, and porous nanoscopic molecule in water, we carry out very long, fully atomistic molecular dynamics simulation of PAMAM dendrimer up to eight generations in explicit salt water under varying pH. We find that while the radius of gyration (Rg) varies as N1/3, the self-diffusion constant (D ) scales, surprisingly, as N-α, with α =0.39 at high pH and 0.5 at neutral pH, indicating a dramatic breakdown of Stokes-Einstein relation for diffusion of charged nanoscopic molecules. The variation in D as a function of radius of gyration demonstrates the importance of treating water and ions explicitly in the diffusion process of a flexible nanoscopic molecule. In agreement with recent experiments, the self-diffusion constant increases with pH, revealing the importance of dielectric friction in the diffusion process. The shape of a dendrimer is found to fluctuate on a nanosecond time scale. We argue that this flexibility (and also the porosity) of the dendrimer may play an important role in determining the mean square displacement of the dendrimer and the breakdown of the Stokes-Einstein relation between diffusion constant and the radius.
Quantification of the Precipitation Loss of Radiation Belt Electrons Observed by SAMPEX
NASA Astrophysics Data System (ADS)
Tu, W.; Selesnick, R. S.; Li, X.; Looper, M. D.
2009-12-01
Based on SAMPEX/PET observations, the rates and the spatial and temporal variations of electron loss to the atmosphere in the Earth’s radiation belt were quantified using a Drift-Diffusion model that includes the effects of azimuthal drifts and pitch angle diffusion. The measured electrons detected by SAMPEX can be distinguished as trapped, quasi-trapped (in the drift loss cone), and precipitating (in the bounce loss cone). The Drift-Diffusion model simulates the low-altitude electron distribution from SAMPEX. After fitting the model results to the data, the magnitudes and variations of the electron lifetime can be quantitatively determined based on the optimum model parameter values. Three magnetic storms of different types of magnitude were selected to estimate the various loss rates of ~0.5 to 3 MeV electrons during different phases of the storm and at L shells ranging from L=3.5 to L=6.5 (L represents the radial distance in the equatorial plane under a dipole field approximation). They are a small storm and a moderate storm in the current solar minimum and an intense storm right after the previous solar maximum. Model results for the three individual events showed that fast precipitation losses of energetic radiation belt electrons, as short as hours, persistently occurred in the storm main phases and with more efficient loss at higher energies, over wide range of L regions and over all the SAMPEX covered local times. In addition to this newly discovered common feature of the main phase electron lifetimes for all the storm events and at all L locations, some other properties of the electron loss rates that vary with time or locations, were also estimated and discussed. This method combining model with the low-altitude observations provides direct quantification of the electron loss rate, a prerequisite for any comprehensive modeling of the radiation belt electron dynamics.
Water in Volcanic Glass: From Volcanic Degassing to Secondary Hydration
NASA Astrophysics Data System (ADS)
Seligman, A. N.; Bindeman, I. N.; Palandri, J. L.; Watkins, J. M.; Ross, A. M.
2015-12-01
Volcanic glass contains both primary magmatic and secondary meteoric dissolved water, which can have distinguishable hydrogen isotopic ratios. We analyzed compositionally and globally diverse volcanic glass from recent to 640 ka for their δD (‰, VSMOW) and H2Ot (wt.%) on the TC/EA MAT 253 continuous flow system. We find that rhyolite glass is hydrated faster than basaltic glass, and in the majority of glasses an increase in age and total water content leads to a decrease in δD (‰), which is opposite the trend for magmatic degassing, while a few equatorial glasses have little change in δD (‰). To better understand these results, we imaged 6 tephra clasts ranging in age and chemical composition using BSE (by FEI SEM) down to a resolution of ~1 mm. Mafic tephra have lower vesicle number densities (N/mm2 = 25-77) than silicic tephra (736) and thicker average bubble walls (0.07 mm) than silicic tephra (0.02 mm). Lengths of water diffusion were modeled by finite difference using H2Ot concentration-dependent diffusion coefficients for diffusion of water into basalt and rhyolite glass using Zhang et al. (2007) and Ni and Zhang (2008) diffusion parameterizations extrapolated to surface temperatures. Due to the 106 times slower diffusion, water only diffused ~10-5 mm into basaltic glass and ~10 mm into rhyolitic glass after 1000 years. These hydration rates match our H2Ot wt.% values for basaltic tephra, and would cause a rhyolite glass, with an average bubble wall thickness of 0.02 mm as described above, to already be fully hydrated with ~3.0-3.5 wt.% H2Ot after ~1000 years, which is similar to what we observe. Results here are our initial steps in understanding water diffusion rates at ambient temperature in basalt and rhyolite tephra, and the isotopic changes that occur during hydration, which have implications for research in physical volcanology (quantities of residual magmatic water) and paleoenvironments (low temperature hydration rates and isotopic changes of glass).
NASA Astrophysics Data System (ADS)
Katsura, T.; Fei, H.; Koizumi, S.; Sakamoto, N.; Yurimoto, H.
2016-12-01
Although the water corporation has been considered to enhance the electrical conductivity of olivine by the proton conduction, the magnitude of the proton conduction is relatively small at asthenospheric temperatures because of its smaller activation energy than those of the small polaron and ionic conductions. However, the water incorporation could enhance the ionic conduction, because it should increase the defect density in the Mg sites. Since the ionic conductivity is proportional to the diffusivity, we have measured the self-diffusion coefficients of Mg in forsterite as a function of pressure, temperature and water content. We annealed fine-grained polycrystalline aggregates of forsterite with water contents up to 300 ppm, on whose polished plane a 25Mg-enriched Mg2SiO4 thin film was made, at pressures of 1 to 13 GPa and temperatures of 1100 to 1300 K. The lattice and grain-boundary diffusion coefficients were calculated simultaneously using profiles obtained by the depth analysis of SIMS. Experimental results gave the activation energy of 280 ± 30 and 360 ± 30 kJ/mol, activation volumes of 4.3 ± 0.3 and 3.9 ± 0.7 cm3/mol, and water content exponents of 1.2 ± 0.2 and 1.0 ± 0.1 for the lattice and grain-boundary diffusions, respectively. Using the ionic conduction data by Constable [2006] and Yoshino et al. [2009], and the water and pressure effects on Mg diffusivity in this study, the ionic conduction is found by 2 orders of magnitude higher than the small polaron and proton conductions under oceanic-asthenosphere conditions. Thus, the high conductivity of the oceanic asthenosphere will be governed by the water-enhanced ionic conduction. The negative pressure dependence of the Mg diffusivity and the gradual temperature increase in the asthenosphere will produce a conductivity maximum at the top of the asthenosphere. The high-conductivity layer at the top of the asthenosphere observed under very young oceanic plates can be attributed to this ionic conduction maximum.
Trehalose: a biophysics approach to modulate the inflammatory response during endotoxic shock.
Minutoli, Letteria; Altavilla, Domenica; Bitto, Alessandra; Polito, Francesca; Bellocco, Ersilia; Laganà, Giuseppina; Fiumara, Tiziana; Magazù, Salvatore; Migliardo, Federica; Venuti, Francesco Saverio; Squadrito, Francesco
2008-07-28
We evaluated the effects of trehalose against endotoxic shock, a condition in which the loss of bio-membrane integrity plays a pivotal role. In addition we performed a biophysics experiment by quasi elastic neutron scattering (QENS) study, to investigate whether the membrane stability effect of trehalose might be correlated with its high capability to switch-off the water diffusive dynamics and, hence, the kinetic mechanisms of interaction. Endotoxic shock was induced in male rats by a single injection of Salmonella enteritidis lipopolysaccharide (LPS; 20 mg/kg/i.p.). Thirty minutes before and 2 h after LPS injection, the animals were randomized to receive vehicle (1 ml/kg/i.p. 0.9%NaCl), sucrose (1 g/kg/i.p.) or trehalose (1 g/kg/i.p.). Mean arterial blood pressure, nuclear factor-kappaB (NF-kappaB) binding activity, Ikappa-Balpha and toll-like receptor-4 (TLR-4) activation were evaluated in both liver and lung. Plasmatic tumor necrosis factor-alpha (TNF-alpha), interleukin-1 (IL-1), interleukin-6 (IL-6) and malondialdehyde (MDA) were also investigated. We studied liver injury by means of blood alanine aminotransferase activity (ALT); inducible nitric oxide synthase (iNOS) expression, myeloperoxidase (MPO) activity and tissue edema evaluation. Lung injury was investigated by means of tissue monocyte chemoattractant protein-1 (MCP-1) levels, MPO activity, iNOS expression and edema formation. Trehalose reduced hypotension, NF-kappaB binding activity, IkappaBalpha protein loss and TLR-4 activation. In addition trehalose reduced TNF-alpha, IL-1, IL-6 and MDA levels. Trehalose also blunted liver and lung injury. QENS measurements showed also that trehalose possesses a high "switching off" capability. Sucrose did not modify endotoxic shock-induced sequelae. Trehalose blocked the inflammatory cascade triggered by endotoxin shock, stabilizing the bio-membranes and switching off the water diffusive dynamics.
Preservative loss from silicone tubing during filling processes.
Saller, Verena; Matilainen, Julia; Rothkopf, Christian; Serafin, Daniel; Bechtold-Peters, Karoline; Mahler, Hanns-Christian; Friess, Wolfgang
2017-03-01
Significant loss of preservative was observed during filling of drug products during filling line stops. This study evaluated the losses of three commonly used preservatives in protein drugs, i.e. benzyl alcohol, phenol, and m-cresol. Concentration losses during static incubation were quantified and interpreted with regard to the potential driving forces for the underlying sorption, diffusion, and desorption steps. Partitioning from the solution into the silicone polymer was identified as the most decisive parameter for the extent of preservative loss. Additionally, the influence of tubing inner diameter, starting concentration as well as silicone tubing type was evaluated. Theoretical calculations assuming equilibrium between solution and tubing inner surface and one-directional diffusion following Fick's first law were used to approximate experimental data. Since significant losses were found already after few minutes, adequate measures must be taken to avoid deviations during filling of preservative-containing protein solutions that may impact product quality or antimicrobial efficacy. As a possible alternative to the highly permeable silicone tubing, a specific make of fluoropolymer tubing was identified being suitable for peristaltic pumps and not showing any preservative losses. Copyright © 2016 Elsevier B.V. All rights reserved.
Bini, Fabiano; Pica, Andrada; Marinozzi, Andrea; Marinozzi, Franco
2017-01-01
Bone tissue at nanoscale is a composite mainly made of apatite crystals, collagen molecules and water. This work is aimed to study the diffusion within bone nanostructure through Monte-Carlo simulations. To this purpose, an idealized geometric model of the apatite-collagen structure was developed. Gaussian probability distribution functions were employed to design the orientation of the apatite crystals with respect to the axes (length L, width W and thickness T) of a plate-like trabecula. We performed numerical simulations considering the influence of the mineral arrangement on the effective diffusion coefficient of water. To represent the hindrance of the impermeable apatite crystals on the water diffusion process, the effective diffusion coefficient was scaled with the tortuosity, the constrictivity and the porosity factors of the structure. The diffusion phenomenon was investigated in the three main directions of the single trabecula and the introduction of apatite preferential orientation allowed the creation of an anisotropic medium. Thus, different diffusivities values were observed along the axes of the single trabecula. We found good agreement with previous experimental results computed by means of a genetic algorithm. PMID:29220377
Feigin, I
1981-03-01
The acid mucopolysaccharides of brain tissues are disclosed by their metachromatic staining with toluidine blue following saponification with potassium hydroxide, presumably as a result of the liberation of acid groups previously esterified. Earlier histochemical studies had disclosed the presence of neutral mucopolysaccharides by staining with the periodic acid-Schiff technique, and such staining is intensified by prior saponification. Many biochemical studies have reported the presence of both acid and neutral mucopolysaccharides in brain tissues. Within the white matter following brain edema, the quantity of stained mucopolysaccharides is decreased in the plaques of multiple sclerosis and pontine myelinolysis, and in the lesions of diffuse sclerosis. All of these are characterized by myelin loss with relative preservation of axons. The known physiological effects of the mucopolysaccharides on the water content of normal tissues, and on the properties and diffusability of the increments of fluid that constitute edema, lead to the suggestion that edema may play a major role in the pathogenesis of the demyelinating diseases, including multiple sclerosis.
Hydrodynamics of steady state phloem transport with radial leakage of solute
Cabrita, Paulo; Thorpe, Michael; Huber, Gregor
2013-01-01
Long-distance phloem transport occurs under a pressure gradient generated by the osmotic exchange of water associated with solute exchange in source and sink regions. But these exchanges also occur along the pathway, and yet their physiological role has almost been ignored in mathematical models of phloem transport. Here we present a steady state model for transport phloem which allows solute leakage, based on the Navier-Stokes and convection-diffusion equations which describe fluid motion rigorously. Sieve tube membrane permeability Ps for passive solute exchange (and correspondingly, membrane reflection coefficient) influenced model results strongly, and had to lie in the bottom range of the values reported for plant cells for the results to be realistic. This smaller permeability reflects the efficient specialization of sieve tube elements, minimizing any diffusive solute loss favored by the large concentration difference across the sieve tube membrane. We also found there can be a specific reflection coefficient for which pressure profiles and sap velocities can both be similar to those predicted by the Hagen-Poiseuille equation for a completely impermeable tube. PMID:24409189
Quantifying the Precipitation Loss of Radiation Belt Electrons During a Rapid Dropout Event
NASA Astrophysics Data System (ADS)
Pham, K. H.; Tu, W.; Xiang, Z.
2017-10-01
Relativistic electron flux in the radiation belt can drop by orders of magnitude within the timespan of hours. In this study, we used the drift-diffusion model that includes azimuthal drift and pitch angle diffusion of electrons to simulate low-altitude electron distribution observed by POES/MetOp satellites for rapid radiation belt electron dropout event occurring on 1 May 2013. The event shows fast dropout of MeV energy electrons at L > 4 over a few hours, observed by the Van Allen Probes mission. By simulating the electron distributions observed by multiple POES satellites, we resolve the precipitation loss with both high spatial and temporal resolutions and a range of energies. We estimate the pitch angle diffusion coefficients as a function of energy, pitch angle, and L-shell and calculate corresponding electron lifetimes during the event. The simulation results show fast electron precipitation loss at L > 4 during the electron dropout, with estimated electron lifetimes on the order of half an hour for MeV energies. The electron loss rate shows strong energy dependence with faster loss at higher energies, which suggest that this dropout event is dominated by quick and localized scattering process that prefers higher energy electrons. The improved temporal and spatial resolutions of electron precipitation rates provided by multiple low-altitude observations can resolve fast-varying electron loss during rapid electron dropouts (over a few hours), which occur too fast for a single low-altitude satellite. The capability of estimating the fast-varying electron lifetimes during rapid dropout events is an important step in improving radiation belt model accuracy.
Innovative model-based flow rate optimization for vanadium redox flow batteries
NASA Astrophysics Data System (ADS)
König, S.; Suriyah, M. R.; Leibfried, T.
2016-11-01
In this paper, an innovative approach is presented to optimize the flow rate of a 6-kW vanadium redox flow battery with realistic stack dimensions. Efficiency is derived using a multi-physics battery model and a newly proposed instantaneous efficiency determination technique. An optimization algorithm is applied to identify optimal flow rates for operation points defined by state-of-charge (SoC) and current. The proposed method is evaluated against the conventional approach of applying Faraday's first law of electrolysis, scaled to the so-called flow factor. To make a fair comparison, the flow factor is also optimized by simulating cycles with different charging/discharging currents. It is shown through the obtained results that the efficiency is increased by up to 1.2% points; in addition, discharge capacity is also increased by up to 1.0 kWh or 5.4%. Detailed loss analysis is carried out for the cycles with maximum and minimum charging/discharging currents. It is shown that the proposed method minimizes the sum of losses caused by concentration over-potential, pumping and diffusion. Furthermore, for the deployed Nafion 115 membrane, it is observed that diffusion losses increase with stack SoC. Therefore, to decrease stack SoC and lower diffusion losses, a higher flow rate during charging than during discharging is reasonable.
Long-Term Cyclic Oxidation Behavior of Uncoated and Coated Re-108 and In-939 at 980 and 870 C
NASA Technical Reports Server (NTRS)
Lee, K. N.; Barrett, C. A.; Smith, J.
2000-01-01
Very long-term cyclic oxidation behavior of Re108 and In939 with and without a protective coating was evaluated at 980 and 870 C, respectively. Re-108 and In-939 without a protective coating began to show a rapid weight loss at 3000 h due to scale spallation, indicating the need for an oxidation protective coating for longer than thousands of hours of oxidative life. NiAl-base coatings of a vapor phase aluminide (VPA), a pack aluminide (CODEP), and a slurry paint aluminide (SERMALOY J) were applied on Re-108 and In-939. The VPA and CODEP on Re-108 and all three coatings on In-939 showed excellent cyclic oxidation resistance out to 10,000 h. Coated alloys were annealed in an inert atmosphere to determine the loss of Al from the coating into the alloy substrate through diffusion. The Al loss from the coating through diffusion was twice as great as the Al loss through oxidation after 10,000 h of cyclic exposure. The oxidation life of VPA-coated Re-108 was estimated by calculating the amount of Al initially available for protective oxidation and the amount of Al lost through oxidation and diffusion.
Molecular Simulations of the Diffusion of Uranyl Carbonate Species in Nanosized Mineral Fractures
NASA Astrophysics Data System (ADS)
Kerisit, S.; Liu, C.
2010-12-01
Uranium is a major groundwater contaminant at uranium processing and mining sites as a result of intentional and accidental discharges of uranium-containing waste products into subsurface environments. Recent characterization has shown that uranium preferentially associates with intragrain and intra-aggregate domains in some of the uranium-contaminated sediments collected from the US Department of Energy Hanford Site [1, 2]. In these sediments, uranium existed as precipitated and/or adsorbed phases in grain micropores with nano- to microscale sizes. Desorption and diffusion characterization studies and continuum-scale modeling indicated that ion diffusion in the microfractures is a major mechanism that led to preferential uranium concentration in the microfracture regions and will control the future mobility of uranium in the subsurface sediments [1, 3-4]. However, the diffusion properties of uranyl species in the intragrain regions, especially at the solid-liquid interface, are still poorly understood. Therefore, a general aim of this work is to provide atomic-level insights into the contribution of microscopic surface effects to the slow diffusion process of uranyl species in porous media with nano- to microsized fractures. In this presentation, we will first present molecular dynamics (MD) simulations of feldspar-water interfaces to investigate their interfacial structure and dynamics and establish a theoretical framework for subsequent simulations of water and ion diffusion at these interfaces [5]. We will then report on MD simulations carried out to probe the effects of confinement and of the presence of the mineral surface on the diffusion of water and electrolyte ions in nanosized feldspar fractures [6]. Several properties of the mineral-water interface were varied, such as the fracture width, the ionic strength of the contacting solution, and the surface charge. Our calculations reveal a 2.0-2.5 nm interfacial region within which the diffusion properties of water and that of the electrolyte ions differ significantly from those in bulk aqueous solutions. We will then present MD simulations of the diffusion of a series of alkaline-earth uranyl carbonate species in aqueous solutions [7]. The MD simulations show that the alkaline-earth uranyl carbonate complexes have distinct water exchange dynamics, which could lead to different reactivities. Finally, we will present recent results on the diffusion and adsorption of uranyl carbonate species in intragrain micropores, modeled with the feldspar-water interfaces mentioned in the above, to help interpret the diffusion behavior of uranium in contaminated sediments. [1] Liu C. et al. Geochim. Cosmochim. Acta 68 4519 (2004) [2] McKinley J. P. et al. Geochim. Cosmochim. Acta 70 1873 (2006) [3] Liu C. et al. Water Resour. Res. 42 W12420 (2006) [4] Ilton E. S. et al. Environ. Sci. Technol. 42 1565 (2009) [5] Kerisit S. et al. Geochim. Cosmochim. Acta 72 1481 (2008) [6] Kerisit S. and Liu C. Environ. Sci. Technol. 43 777 (2009) [7] Kerisit S. and Liu C. Geochim. Cosmochim. Acta 74 4937 (2010)
Molecular dynamics simulations of the dielectric properties of fructose aqueous solutions
NASA Astrophysics Data System (ADS)
Sonoda, Milton T.; Elola, M. Dolores; Skaf, Munir S.
2016-10-01
The static dielectric permittivity and dielectric relaxation properties of fructose aqueous solutions of different concentrations ranging from 1.0 to 4.0 mol l-1 are investigated by means of molecular dynamics simulations. The contributions from intra- and interspecies molecular correlations were computed individually for both the static and frequency-dependent dielectric properties, and the results were compared with the available experimental data. Simulation results in the time- and frequency-domains were analyzed and indicate that the presence of fructose has little effect on the position of the fast, high-frequency (>500 cm-1) components of the dielectric response spectrum. The low-frequency (<0.1 cm-1) components, however, are markedly influenced by sugar concentration. Our analysis indicates that fructose-fructose and fructose-water interactions strongly affect the rotational-diffusion regime of molecular motions in the solutions. Increasing fructose concentration not only enhances sugar-sugar and sugar-water low frequency contributions to the dielectric loss spectrum but also slows down the reorientational dynamics of water molecules. These results are consistent with previous computer simulations carried out for other disaccharide aqueous solutions.
Neira D'Angelo, M F; Ordomsky, V; Schouten, J C; van der Schaaf, J; Nijhuis, T A
2014-07-01
Hydrogen was produced by aqueous-phase reforming (APR) of sorbitol in a carbon-on-alumina tubular membrane reactor (4 nm pore size, 7 cm long, 3 mm internal diameter) that allows the hydrogen gas to permeate to the shell side, whereas the liquid remains in the tube side. The hydrophobic nature of the membrane serves to avoid water loss and to minimize the interaction between the ceramic support and water, thus reducing the risks of membrane degradation upon operation. The permeation of hydrogen is dominated by the diffusivity of the hydrogen in water. Thus, higher operation temperatures result in an increase of the flux of hydrogen. The differential pressure has a negative effect on the flux of hydrogen due to the presence of liquid in the larger pores. The membrane was suitable for use in APR, and yielded 2.5 times more hydrogen than a reference reactor (with no membrane). Removal of hydrogen through the membrane assists in the reaction by preventing its consumption in undesired reactions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Water of Hydration Dynamics in Minerals Gypsum and Bassanite: Ultrafast 2D IR Spectroscopy of Rocks.
Yan, Chang; Nishida, Jun; Yuan, Rongfeng; Fayer, Michael D
2016-08-03
Water of hydration plays an important role in minerals, determining their crystal structures and physical properties. Here ultrafast nonlinear infrared (IR) techniques, two-dimensional infrared (2D IR) and polarization selective pump-probe (PSPP) spectroscopies, were used to measure the dynamics and disorder of water of hydration in two minerals, gypsum (CaSO4·2H2O) and bassanite (CaSO4·0.5H2O). 2D IR spectra revealed that water arrangement in freshly precipitated gypsum contained a small amount of inhomogeneity. Following annealing at 348 K, water molecules became highly ordered; the 2D IR spectrum became homogeneously broadened (motional narrowed). PSPP measurements observed only inertial orientational relaxation. In contrast, water in bassanite's tubular channels is dynamically disordered. 2D IR spectra showed a significant amount of inhomogeneous broadening caused by a range of water configurations. At 298 K, water dynamics cause spectral diffusion that sampled a portion of the inhomogeneous line width on the time scale of ∼30 ps, while the rest of inhomogeneity is static on the time scale of the measurements. At higher temperature, the dynamics become faster. Spectral diffusion accelerates, and a portion of the lower temperature spectral diffusion became motionally narrowed. At sufficiently high temperature, all of the dynamics that produced spectral diffusion at lower temperatures became motionally narrowed, and only homogeneous broadening and static inhomogeneity were observed. Water angular motions in bassanite exhibit temperature-dependent diffusive orientational relaxation in a restricted cone of angles. The experiments were made possible by eliminating the vast amount of scattered light produced by the granulated powder samples using phase cycling methods.
NASA Astrophysics Data System (ADS)
Park, A. J.; Chan, M. A.
2006-12-01
Abundant iron oxide concretions occurring in Navajo Sandstone of southern Utah and those discovered at Meridiani Planum, Mars share many common observable physical traits such as their spheriodal shapes, occurrence, and distribution patterns in sediments. Terrestrial concretions are products of interaction between oxygen-rich aquifer water and basin-derived reducing (iron-rich) water. Water-rock interaction simulations show that diffusion of oxygen and iron supplied by slow-moving water is a reasonable mechanism for producing observed concretion patterns. In short, southern Utah iron oxide concretions are results of Liesegang-type diffusive infiltration reactions in sediments. We propose that the formation of blueberry hematite concretions in Mars sediments followed a similar diagenetic mechanism where iron was derived from the alteration of volcanic substrate and oxygen was provided by the early Martian atmosphere. Although the terrestrial analog differs in the original host rock composition, both the terrestrial and Mars iron-oxide precipitation mechanisms utilize iron and oxygen interactions in sedimentary host rock with diffusive infiltration of solutes from two opposite sources. For the terrestrial model, slow advection of iron-rich water is an important factor that allowed pervasive and in places massive precipitation of iron-oxide concretions. In Mars, evaporative flux of water at the top of the sediment column may have produced a slow advective mass-transfer mechanism that provided a steady source and the right quantity of iron. The similarities of the terrestrial and Martian systems are demonstrated using a water-rock interaction simulator Sym.8, initially in one-dimensional systems. Boundary conditions such as oxygen content of water, partial pressure of oxygen, and supply rate of iron were varied. The results demonstrate the importance of slow advection of water and diffusive processes for producing diagenetic iron oxide concretions.
Mechanism of anisotropic surface self-diffusivity at the prismatic ice-vapor interface.
Gladich, Ivan; Oswald, Amrei; Bowens, Natalie; Naatz, Sam; Rowe, Penny; Roeselova, Martina; Neshyba, Steven
2015-09-21
Predictive theoretical models for mesoscopic roughening of ice require improved understanding of attachment kinetics occurring at the ice-vapor interface. Here, we use classical molecular dynamics to explore the generality and mechanics of a transition from anisotropic to isotropic self-diffusivity on exposed prismatic surfaces. We find that self-diffusion parallel to the crystallographic a-axis is favored over the c-axis at sub-melt temperatures below about -35 °C, for three different representations of the water-water intermolecular potential. In the low-temperature anisotropic regime, diffusion results from interstitial admolecules encountering entropically distinct barriers to diffusion in the two in-plane directions. At higher temperatures, isotropic self-diffusion occurring deeper within the quasi-liquid layer becomes the dominant mechanism, owing to its larger energy of activation.