Sample records for diffusivity radial diffusivity

  1. Engine Systems Ownership Cost Reduction - Aircraft Propulsion Subsystems Integration (APSI)

    DTIC Science & Technology

    1975-08-01

    compreusor fabrication costs. Hybrid Radial Compresscr Diffuser - Combining both the radial and axial sections of a standard diffuser into a single cascade...compressor diffuser by using a single mixed-flow diffuser instead of the separate radial and axial diffuser stator rows. The proposed mixed-flow diffuser...to an axial diffuser. A cost analyses of the hybrid radial diffuser was made and compared to baseline configuration ( radial and axial diffusers). The

  2. Dependence of radiation belt simulations to assumed radial diffusion rates tested for two empirical models of radial transport

    NASA Astrophysics Data System (ADS)

    Drozdov, Alexander; Shprits, Yuri; Aseev, Nikita; Kellerman, Adam; Reeves, Geoffrey

    2017-04-01

    Radial diffusion is one of the dominant physical mechanisms that drives acceleration and loss of the radiation belt electrons, which makes it very important for nowcasting and forecasting space weather models. We investigate the sensitivity of the two parameterizations of the radial diffusion of Brautigam and Albert [2000] and Ozeke et al. [2014] on long-term radiation belt modeling using the Versatile Electron Radiation Belt (VERB). Following Brautigam and Albert [2000] and Ozeke et al. [2014], we first perform 1-D radial diffusion simulations. Comparison of the simulation results with observations shows that the difference between simulations with either radial diffusion parameterization is small. To take into account effects of local acceleration and loss, we perform 3-D simulations, including pitch-angle, energy and mixed diffusion. We found that the results of 3-D simulations are even less sensitive to the choice of parameterization of radial diffusion rates than the results of 1-D simulations at various energies (from 0.59 to 1.80 MeV). This result demonstrates that the inclusion of local acceleration and pitch-angle diffusion can provide a negative feedback effect, such that the result is largely indistinguishable simulations conducted with different radial diffusion parameterizations. We also perform a number of sensitivity tests by multiplying radial diffusion rates by constant factors and show that such an approach leads to unrealistic predictions of radiation belt dynamics. References Brautigam, D. H., and J. M. Albert (2000), Radial diffusion analysis of outer radiation belt electrons during the October 9, 1990, magnetic storm, J. Geophys. Res., 105(A1), 291-309, doi:10.1029/1999ja900344. Ozeke, L. G., I. R. Mann, K. R. Murphy, I. Jonathan Rae, and D. K. Milling (2014), Analytic expressions for ULF wave radiation belt radial diffusion coefficients, J. Geophys. Res. [Space Phys.], 119(3), 1587-1605, doi:10.1002/2013JA019204.

  3. Analytic expressions for ULF wave radiation belt radial diffusion coefficients

    PubMed Central

    Ozeke, Louis G; Mann, Ian R; Murphy, Kyle R; Jonathan Rae, I; Milling, David K

    2014-01-01

    We present analytic expressions for ULF wave-derived radiation belt radial diffusion coefficients, as a function of L and Kp, which can easily be incorporated into global radiation belt transport models. The diffusion coefficients are derived from statistical representations of ULF wave power, electric field power mapped from ground magnetometer data, and compressional magnetic field power from in situ measurements. We show that the overall electric and magnetic diffusion coefficients are to a good approximation both independent of energy. We present example 1-D radial diffusion results from simulations driven by CRRES-observed time-dependent energy spectra at the outer boundary, under the action of radial diffusion driven by the new ULF wave radial diffusion coefficients and with empirical chorus wave loss terms (as a function of energy, Kp and L). There is excellent agreement between the differential flux produced by the 1-D, Kp-driven, radial diffusion model and CRRES observations of differential electron flux at 0.976 MeV—even though the model does not include the effects of local internal acceleration sources. Our results highlight not only the importance of correct specification of radial diffusion coefficients for developing accurate models but also show significant promise for belt specification based on relatively simple models driven by solar wind parameters such as solar wind speed or geomagnetic indices such as Kp. Key Points Analytic expressions for the radial diffusion coefficients are presented The coefficients do not dependent on energy or wave m value The electric field diffusion coefficient dominates over the magnetic PMID:26167440

  4. Dependence of radiation belt simulations to assumed radial diffusion rates

    NASA Astrophysics Data System (ADS)

    Drozdov, A.; Shprits, Y.; Aseev, N.; Kellerman, A. C.; Reeves, G. D.

    2017-12-01

    Radial diffusion is one of the dominant physical mechanisms that drives acceleration and loss of the radiation belt electrons due to wave-particle interaction with ultra low frequency (ULF) waves, which makes it very important for radiation belt modeling and forecasting. We investigate the sensitivity of several parameterizations of the radial diffusion including Brautigam and Albert [2000], Ozeke et al. [2014] and Ali et al. [2016] on long-term radiation belt modeling using the Versatile Electron Radiation Belt (VERB). Following previous studies, we first perform 1-D radial diffusion simulations. To take into account effects of local acceleration and loss, we perform additional 3-D simulations, including pitch-angle, energy and mixed diffusion. The obtained result demonstrates that the inclusion of local acceleration and pitch-angle diffusion can provide a negative feedback effect, such that the result is largely indistinguishable between simulations conducted with different radial diffusion parameterizations. We also perform a number of sensitivity tests by multiplying radial diffusion rates by constant factors and show that such an approach leads to unrealistic predictions of radiation belt dynamics.

  5. Stimulated echo diffusion tensor imaging (STEAM-DTI) with varying diffusion times as a probe of breast tissue.

    PubMed

    Teruel, Jose R; Cho, Gene Y; Moccaldi Rt, Melanie; Goa, Pål E; Bathen, Tone F; Feiweier, Thorsten; Kim, Sungheon G; Moy, Linda; Sigmund, Eric E

    2017-01-01

    To explore the application of diffusion tensor imaging (DTI) for breast tissue and breast pathologies using a stimulated-echo acquisition mode (STEAM) with variable diffusion times. In this Health Insurance Portability and Accountability Act-compliant study, approved by the local institutional review board, eight patients and six healthy volunteers underwent an MRI examination at 3 Tesla including STEAM-DTI with several diffusion times ranging from 68.5 to 902.5 ms. A DTI model was fitted to the data for each diffusion time, and parametric maps of mean diffusivity, fractional anisotropy, axial diffusivity, and radial diffusivity were computed for healthy fibroglandular tissue (FGT) and lesions. The median value of radial diffusivity for FGT was fitted to a linear decay to obtain an estimation of the surface-to-volume ratio, from which the radial diameter was calculated. For healthy FGT, radial diffusivity presented a linear decay with the square root of the diffusion time resulting in a range of estimated radial diameters from 202 to 496 µm, while axial diffusivity presented a nearly time-independent diffusion. Residual fat signal was reduced at longer diffusion times due to the shorter T1 of fat. Residual fat signal to the overall signal in the healthy volunteers' FGT was found to range from 2.39% to 2.55% (shortest mixing time), and from 0.40% to 0.51% (longest mixing time) for the b500 images. The use of variable diffusion times may provide an in vivo noninvasive tool to probe diffusion lengths in breast tissue and breast pathology, and might aid by improving fat suppression at longer diffusion times. 2 J. Magn. Reson. Imaging 2017;45:84-93. © 2016 International Society for Magnetic Resonance in Medicine.

  6. Neoclassical Diffusion of Radiation-Belt Electrons Across Very Low L -shells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cunningham, Gregory S.; Loridan, Vivien; Ripoll, Jean-Francois

    In the presence of drift-shell splitting intrinsic to the IGRF magnetic field model, pitch-angle scattering from Coulomb collisions experienced by radiation-belt electrons in the upper atmosphere and ionosphere produces extra radial diffusion, a form of neoclassical diffusion. The strength of the neoclassical radial diffusion at L < 1.2 exceeds that expected there from radial-diffusion mechanisms traditionally considered, and decreases with increasing L-shell. In this study we construct a numerical model for this coupled (radial and pitch-angle) collisional diffusion process and apply it to simulate raw count-rate data observed aboard the Gemini spacecraft for several years after the 1962 Starfish nuclearmore » detonation. The data show apparent lifetimes 10-100 times as long as would have been expected from collisional pitch-angle diffusion and Coulomb drag alone. Our model reproduces apparent lifetimes for >0.5-MeV electrons in the region 1.14 < L < 1.26 to within a factor of two (comparable to the uncertainty quoted for the observations). We conclude that neoclassical radial diffusion (resulting from drift-shell splitting intrinsic to IGRF's azimuthal asymmetries) mitigates the decay expected from collisional pitch-angle diffusion and inelastic energy loss alone and thus contributes importantly to the long apparent lifetimes observed at these low L-shells.« less

  7. Neoclassical Diffusion of Radiation-Belt Electrons Across Very Low L -shells

    DOE PAGES

    Cunningham, Gregory S.; Loridan, Vivien; Ripoll, Jean-Francois; ...

    2018-03-30

    In the presence of drift-shell splitting intrinsic to the IGRF magnetic field model, pitch-angle scattering from Coulomb collisions experienced by radiation-belt electrons in the upper atmosphere and ionosphere produces extra radial diffusion, a form of neoclassical diffusion. The strength of the neoclassical radial diffusion at L < 1.2 exceeds that expected there from radial-diffusion mechanisms traditionally considered, and decreases with increasing L-shell. In this study we construct a numerical model for this coupled (radial and pitch-angle) collisional diffusion process and apply it to simulate raw count-rate data observed aboard the Gemini spacecraft for several years after the 1962 Starfish nuclearmore » detonation. The data show apparent lifetimes 10-100 times as long as would have been expected from collisional pitch-angle diffusion and Coulomb drag alone. Our model reproduces apparent lifetimes for >0.5-MeV electrons in the region 1.14 < L < 1.26 to within a factor of two (comparable to the uncertainty quoted for the observations). We conclude that neoclassical radial diffusion (resulting from drift-shell splitting intrinsic to IGRF's azimuthal asymmetries) mitigates the decay expected from collisional pitch-angle diffusion and inelastic energy loss alone and thus contributes importantly to the long apparent lifetimes observed at these low L-shells.« less

  8. Neoclassical Diffusion of Radiation-Belt Electrons Across Very Low L-Shells

    NASA Astrophysics Data System (ADS)

    Cunningham, Gregory S.; Loridan, Vivien; Ripoll, Jean-François; Schulz, Michael

    2018-04-01

    In the presence of drift-shell splitting intrinsic to the International Geomagnetic Reference Field magnetic field model, pitch angle scattering from Coulomb collisions experienced by radiation-belt electrons in the upper atmosphere and ionosphere produces extra radial diffusion, a form of neoclassical diffusion. The strength of the neoclassical radial diffusion at L < 1.2 exceeds that expected there from radial-diffusion mechanisms traditionally considered and decreases with increasing L-shell. In this work we construct a numerical model for this coupled (radial and pitch angle) collisional diffusion process and apply it to simulate raw count-rate data observed aboard the Gemini spacecraft for several years after the 1962 Starfish nuclear detonation. The data show apparent lifetimes 10-100 times as long as would have been expected from collisional pitch angle diffusion and Coulomb drag alone. Our model reproduces apparent lifetimes for >0.5-MeV electrons in the region 1.14 < L < 1.26 to within a factor of 2 (comparable to the uncertainty quoted for the observations). We conclude that neoclassical radial diffusion (resulting from drift-shell splitting intrinsic to International Geomagnetic Reference Field's azimuthal asymmetries) mitigates the decay expected from collisional pitch angle diffusion and inelastic energy loss alone and thus contributes importantly to the long apparent lifetimes observed at these low L-shells.

  9. Estimation of the radial diffusion coefficient using REE-associated ground Pc 5 pulsations

    NASA Astrophysics Data System (ADS)

    Fujimoto, A.; Yumoto, K.

    2010-12-01

    Pc 5 pulsations with frequencies between 1.67 and 6.67 mHz are believed to contribute to the REE in the outer radiation belt during magnetic storms, by means of the observations [Baker et al., 1998; Rostoker et al., 1998; Mathie and Mann, 2000; O'Brien et al., 2001, 2003] and several theoretical studies. The latter studies are roughly categorized into two themes: in-situ acceleration at L lower than 6.6 by wave-particle interactions [Liu et al., 199 9; Summers et al., 1999; Summers and Ma, 2000] and acceleration by radial diffusion from the outer to the inner magnetosphere [Elkington et al., 1999, 2003; Hudson et al., 2000; Kim et al., 2001]. One possible acceleration mechanism is the resonant interaction with Pc 5 toroidal and poloidal pulsations, referred as the radial diffusion mechanism. One of unsolved problems is where and which Pc 5 pulsation mode (toroidal and/or poloidal) play effective role in the radial diffusion process. In order to verify Pc 5 pulsation as the major roles for REEs, we have to examine the time variation of electron phase space density (cf. Green et al., 2004). Electron phase space density is not directly measured, but we can estimate radial diffusion coefficients which determine the electron transportation efficiency, using ground-based magnetic field data. We estimated the radial diffusion coefficient of ground Pc 5 pulsations associated with the Relativistic Electron Enhancement (REE) in the geosynchronous orbit. In order to estimate the radial diffusion coefficient D_LL, we need the value of in-situ Pc 5 electric field power spectral density. In this paper, however, we estimated the equatorial electric field mapped from Pc 5 pulsations power spectral density on the ground. Reciprocal of radial diffusion coefficient describes the timescale T_LL for an electron to diffuse 1 Re. Applying a superposed epoch analysis about timescales T_LL of the radial diffusion for 12 REE events in 2008, we found that when the relativistic electron enhancements occur, T_LL at higher latitude (L larger than 5) is predominantly diffusional, whereas T_LL at lower latitude (L less than 4) is mainly convectional. We concluded that higher-latitude Pc 5 pulsations play more effective roles than lower latitude Pc 5 pulsations in the radial diffusion process.

  10. Surface Based Analysis of Diffusion Orientation for Identifying Architectonic Domains in the In Vivo Human Cortex

    PubMed Central

    McNab, Jennifer A.; Polimeni, Jonathan R.; Wang, Ruopeng; Augustinack, Jean C.; Fujimoto, Kyoko; Player, Allison; Janssens, Thomas; Farivar, Reza; Folkerth, Rebecca D.; Vanduffel, Wim; Wald, Lawrence L.

    2012-01-01

    Diffusion tensor MRI is sensitive to the coherent structure of brain tissue and is commonly used to study large-scale white matter structure. Diffusion in grey matter is more isotropic, however, several groups have observed coherent patterns of diffusion anisotropy within the cerebral cortical grey matter. We extend the study of cortical diffusion anisotropy by relating it to the local coordinate system of the folded cerebral cortex. We use 1mm and sub-millimeter isotropic resolution diffusion imaging to perform a laminar analysis of the principal diffusion orientation, fractional anisotropy, mean diffusivity and partial volume effects. Data from 6 in vivo human subjects, a fixed human brain specimen and an anesthetized macaque were examined. Large regions of cortex show a radial diffusion orientation. In vivo human and macaque data displayed a sharp transition from radial to tangential diffusion orientation at the border between primary motor and somatosensory cortex, and some evidence of tangential diffusion in secondary somatosensory cortex and primary auditory cortex. Ex vivo diffusion imaging in a human tissue sample showed some tangential diffusion orientation in S1 but mostly radial diffusion orientations in both M1 and S1. PMID:23247190

  11. Response of radiation belt simulations to different radial diffusion coefficients for relativistic and ultra-relativistic electrons

    NASA Astrophysics Data System (ADS)

    Drozdov, Alexander; Mann, Ian; Baker, Daniel N.; Subbotin, Dmitriy; Ozeke, Louis; Shprits, Yuri; Kellerman, Adam

    Two parameterizations of the resonant wave-particle interactions of electrons with ULF waves in the magnetosphere by Brautigam and Albert [2000] and Ozeke et al. [2012] are evaluated using the Versatile Electron Radiation Belt (VERB) diffusion code to estimate the effect of changing a diffusion coefficient on the radiation belt simulation. The period of investigation includes geomagnetically quiet and active time. The simulations take into account wave-particle interactions represented by radial diffusion transport, local acceleration, losses due to pitch-angle diffusion, and mixed diffusion. 1. Brautigam, D. H., and J. M. Albert (2000), Radial diffusion analysis of outer radiation belt electrons during the October 9, 1990, magnetic storm, J. Geophys. Res., 105(A1), 291-309, doi:10.1029/1999JA900344 2. Ozeke, L. G., I. R. Mann, K. R. Murphy, I. J. Rae, D. K. Milling, S. R. Elkington, A. A. Chan, and H. J. Singer (2012), ULF wave derived radiation belt radial diffusion coefficients, J. Geophys. Res., 117, A04222, doi:10.1029/2011JA017463.

  12. DREAM3D simulations of inner-belt dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cunningham, Gregory Scott

    2015-05-26

    A 1973 paper by Lyons and Thorne explains the two-belt structure for electrons in the inner magnetosphere as a balance between inward radial diffusion and loss to the atmosphere, where the loss to the atmosphere is enabled by pitch-angle scattering from Coulomb and wave-particle interactions. In the 1973 paper, equilibrium solutions to a decoupled set of 1D radial diffusion equations, one for each value of the first invariant of motion, μ, were computed to produce the equilibrium two-belt structure. Each 1D radial diffusion equation incorporated an L-and μ-dependent `lifetime' due to the Coulomb and wave-particle interactions. This decoupling of themore » problem is appropriate under the assumption that radial diffusion is slow in comparison to pitch-angle scattering. However, for some values of μ and L the lifetime associated with pitch-angle scattering is comparable to the timescale associated with radial diffusion, suggesting that the true equilibrium solutions might reflect `coupled modes' involving pitch-angle scattering and radial diffusion and thus requiring a 3D diffusion model. In the work we show here, we have computed the equilibrium solutions using our 3D diffusion model, DREAM3D, that allows for such coupling. We find that the 3D equilibrium solutions are quite similar to the solutions shown in the 1973 paper when we use the same physical models for radial diffusion and pitch-angle scattering from hiss. However, we show that the equilibrium solutions are quite sensitive to various aspects of the physics model employed in the 1973 paper that can be improved, suggesting that additional work needs to be done to understand the two-belt structure.« less

  13. Effects of radial diffuser hydraulic design on a double-suction centrifugal pump

    NASA Astrophysics Data System (ADS)

    Hou, H. C.; Zhang, Y. X.; Xu, C.; Zhang, J. Y.; Li, Z. L.

    2016-05-01

    In order to study effects of radial diffuser on hydraulic performance of crude oil pump, the steady CFD numerical method is applied and one large double-suction oil pump running in long-distance pipeline is considered. The research focuses on analysing the influence of its diffuser vane profile on hydraulic performance of oil pump. The four different types of cylindrical vane have been designed by in-house codes mainly including double arcs (DA), triple arcs (TA), equiangular spiral line (ES) and linear variable angle spiral line (LVS). During design process diffuser vane angles at inlet and outlet are tentatively given within a certain range and then the wrapping angle of the four types of diffuser vanes can be calculated automatically. Under the given inlet and outlet angles, the linear variable angle spiral line profile has the biggest wrapping angle and profile length which is good to delay channel diffusion but bring more friction hydraulic loss. Finally the vane camber line is thickened at the certain uniform thickness distribution and the 3D diffuser models are generated. The whole flow passage of oil pump with different types of diffusers under various flow rate conditions are numerically simulated based on RNG k-ɛ turbulent model and SIMPLEC algorithm. The numerical results show that different types of diffusers can bring about great difference on the hydraulic performance of oil pump, of which the ES profile diffuser with its proper setting angle shows the best hydraulic performance and its inner flow field is improved obviously. Compared with the head data from model sample, all designed diffusers can make a certain improvement on head characteristic. At the large flow rate conditions the hydraulic efficiency increases obviously and the best efficiency point shift to the large flow rate range. The ES profile diffuser embodies the better advantages on pump performance which can be explained theoretically that the diffuser actually acts as a diffusion device and is good to transform the dynamic energy to pressure energy. Then through the hydraulic loss analysis of each pump component for all diffusers, it shows that the impeller takes up the biggest part of the whole loss about 8.19% averagely, the radial diffuser about 3.70% and the volute about 1.65%. The hydraulic loss of impeller is dominant at the large flow rate while the radial diffuser is at the small flow rate. Among all diffusers, the ES profile diffuser generates the least loss and combined to the distribution of velocity vector and turbulent kinetic energy for two kinds of diffusers it also shows that ES profile is fit to apply in radial diffuser. This research can offer a significant reference for the radial diffuser hydraulic design of such centrifugal pumps.

  14. Modeling radiation belt electron dynamics during GEM challenge intervals with the DREAM3D diffusion model

    NASA Astrophysics Data System (ADS)

    Tu, Weichao; Cunningham, G. S.; Chen, Y.; Henderson, M. G.; Camporeale, E.; Reeves, G. D.

    2013-10-01

    a response to the Geospace Environment Modeling (GEM) "Global Radiation Belt Modeling Challenge," a 3D diffusion model is used to simulate the radiation belt electron dynamics during two intervals of the Combined Release and Radiation Effects Satellite (CRRES) mission, 15 August to 15 October 1990 and 1 February to 31 July 1991. The 3D diffusion model, developed as part of the Dynamic Radiation Environment Assimilation Model (DREAM) project, includes radial, pitch angle, and momentum diffusion and mixed pitch angle-momentum diffusion, which are driven by dynamic wave databases from the statistical CRRES wave data, including plasmaspheric hiss, lower-band, and upper-band chorus. By comparing the DREAM3D model outputs to the CRRES electron phase space density (PSD) data, we find that, with a data-driven boundary condition at Lmax = 5.5, the electron enhancements can generally be explained by radial diffusion, though additional local heating from chorus waves is required. Because the PSD reductions are included in the boundary condition at Lmax = 5.5, our model captures the fast electron dropouts over a large L range, producing better model performance compared to previous published results. Plasmaspheric hiss produces electron losses inside the plasmasphere, but the model still sometimes overestimates the PSD there. Test simulations using reduced radial diffusion coefficients or increased pitch angle diffusion coefficients inside the plasmasphere suggest that better wave models and more realistic radial diffusion coefficients, both inside and outside the plasmasphere, are needed to improve the model performance. Statistically, the results show that, with the data-driven outer boundary condition, including radial diffusion and plasmaspheric hiss is sufficient to model the electrons during geomagnetically quiet times, but to best capture the radiation belt variations during active times, pitch angle and momentum diffusion from chorus waves are required.

  15. Axial and radial diffusivity in preterm infants who have diffuse white matter changes on magnetic resonance imaging at term-equivalent age.

    PubMed

    Counsell, Serena J; Shen, Yuji; Boardman, James P; Larkman, David J; Kapellou, Olga; Ward, Philip; Allsop, Joanna M; Cowan, Frances M; Hajnal, Joseph V; Edwards, A David; Rutherford, Mary A

    2006-02-01

    Diffuse excessive high signal intensity (DEHSI) is observed in the majority of preterm infants at term-equivalent age on conventional MRI, and diffusion-weighted imaging has shown that apparent diffusion coefficient values are elevated in the white matter (WM) in DEHSI. Our aim was to obtain diffusion tensor imaging on preterm infants at term-equivalent age and term control infants to test the hypothesis that radial diffusivity was significantly different in the WM in preterm infants with DEHSI compared with both preterm infants with normal-appearing WM on conventional MRI and term control infants. Diffusion tensor imaging was obtained on 38 preterm infants at term-equivalent age and 8 term control infants. Values for axial (lambda1) and radial [(lambda2 + lambda3)/2] diffusivity were calculated in regions of interest positioned in the central WM at the level of the centrum semiovale, frontal WM, posterior periventricular WM, occipital WM, anterior and posterior portions of the posterior limb of the internal capsule, and the genu and splenium of the corpus callosum. Radial diffusivity was elevated significantly in the posterior portion of the posterior limb of the internal capsule and the splenium of the corpus callosum, and both axial and radial diffusivity were elevated significantly in the WM at the level of the centrum semiovale, the frontal WM, the periventricular WM, and the occipital WM in preterm infants with DEHSI compared with preterm infants with normal-appearing WM and term control infants. There was no significant difference between term control infants and preterm infants with normal-appearing WM in any region studied. These findings suggest that DEHSI represents an oligodendrocyte and/or axonal abnormality that is widespread throughout the cerebral WM.

  16. Reactive Radial Diffusion Model for the Aging/Sequestration Process

    NASA Astrophysics Data System (ADS)

    Ginn, T. R.; Basagaoglu, H.; McCoy, B. J.; Scow, K. M.

    2001-12-01

    A radial diffusion model has been formulated to simulate age-dependent bioavailability of chemical compounds to micro-organisms residing outside (and/or inside) the porous soil particles. Experimental findings in the literature indicate that the sequestration and reduction in bioavailability of contaminants are controlled presumably by the diffusion-limited sorption kinetics and the time-variant desorption process. Here we combine radial-diffusion mass transfer modeling with the exposure-time concept to generate mass-balance equations for the intra- and extra-particle concentrations. The model accomodates reversible sorption kinetics involving sorption time-dependence of the rate coefficients, distinct intra- and extra-particle biodegradation rates; and a dynamic mass interaction between the intra- and extra-particle concentrations arising from the radial diffusion concept. The model explicitly treats multiple particle classes distributed in size and chemical properties in a bulk aquifer or soil volume, which allows the simulation of the sequestration and bioavailability of contaminants in different particle size classes that have distinct diffusion, reaction, and aging properties.

  17. Quantitative comparison between radial and cylindrically diffusing fibers for photothermal treatment of varicose vein disease (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Truong Van, Gia; Kang, Hyun Wook

    2017-02-01

    For last two decades, endovenous laser therapy (EVLT) is one of the most widely accepted surgical options for treating incompetent great and small saphenous veins. However, due to excessive heating during EVLT, the major complications include pain and burning that often increase the risk of dermatitis disease. The aim of the current study was to quantitatively compare commercially-available radial fibers with newly-developed diffusing applicators for 1470 nm-EVLA in terms of temperature elevation and vein deformation. Rabbit veins were used as an ex vivo model for EVLA. A 5-W 1470 nm laser system in conjunction with the radial and diffusing fibers was employed to thermally coagulate the venous tissue. A goniometric measurement validated uniform and isotropic distribution of laser light in polar and longitudinal directions (i.e., normalized intensity = 0.84±0.08). The diffusing applicator induced a 20 % lower maximum temperature than the radial fiber did (maximum temperature = 79.2 °C for radial vs. 63.3 °C for diffusing). Due to higher irradiance, the radial fiber was associated with a transient temperature change of 5.9 °C/s, which was 1.5-fold faster than the diffusing applicator (i.e., 2.4 °C/s). However, the degree of cross-sectional area reduction in the veins was almost comparable for both the fibers (i.e., 53% for radial vs. 48% for diffusing). Due to longer irradiation length, the diffusing applicator demonstrated wider treatment coverage and less fiber speed-dependent. On account of easy pullback technique and uniform thermal effect, the proposed cylindrically diffusing applicator can be a feasible optical device to effectively treat varicose veins. Further in vivo studies will be performed to identify the complete removal of the vein disease and healing response of the venous tissue.

  18. Experiments with a Supersonic Multi-Channel Radial Diffuser.

    DTIC Science & Technology

    1980-09-01

    unlimited. 17 . DISTRIBUTION STATEMENT (o the *bsta~c entered nRItok 20, it dffttt Iton, Report) IS. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue o...Improvements 17 VI SIGNIFICANT TEST RESULTS 20 1. General Considerations 20 2. Typical Radial Diffuser Performance 20 3. Flow Stability Experiments 22 VIII...Adjustments Indicated 39 16 Comparison of the Single Channel Performances for Two Extreme Channel Geometries 40 17 Typical Radial Diffuser Performance

  19. Radial Diffusion Coefficients Using E and B Field Data from the Van Allen Probes: Comparison with the CRRES Study

    NASA Astrophysics Data System (ADS)

    Ali, A.; Elkington, S. R.; Malaspina, D.

    2014-12-01

    The Van Allen radiation belts contain highly energetic particles which interact with a variety of plasma and MHD waves. Waves with frequencies in the ULF range are understood to play an important role in loss and acceleration of energetic particles. We are investigating the contributions from perturbations in both the magnetic and the electric fields in driving radial diffusion of charged particles and wish to probe two unanswered questions about ULF wave driven radial transport. First, how important are the fluctuations in the magnetic field compared with the fluctuations in the electric field in driving radial diffusion? Second, how does ULF wave power distribution in azimuth affect radial diffusion? Analytic treatments of the diffusion coefficients generally assume uniform distribution of power in azimuth but in situ measurements suggest otherwise. We present results from a study using the electric and magnetic field measurements from the Van Allen Probes to estimate the radial diffusion coefficients as a function of L and Kp. During the lifetime of the RBSP mission to date, there has been a dearth of solar activity. This compels us to consider Kp as the only time and activity dependent parameter instead of solar wind velocity and pressure.

  20. Response of radiation belt simulations to different radial diffusion coefficients

    NASA Astrophysics Data System (ADS)

    Drozdov, A.; Shprits, Y.; Subbotin, D.; Kellerman, A. C.

    2013-12-01

    Resonant interactions between Ultra Low Frequency (ULF) waves and relativistic electrons may violate the third adiabatic invariant of motion, which produces radial diffusion in the electron radiation belts. This process plays an important role in the formation and structure of the outer electron radiation belt and is important for electron acceleration and losses in that region. Two parameterizations of the resonant wave-particle interaction of electrons with ULF waves in the magnetosphere by Brautigam and Albert [2000] and Ozeke et al. [2012] are evaluated using the Versatile Electron Radiation Belt (VERB) diffusion code to estimate their relative effect on the radiation belt simulation. The period of investigation includes quiet time and storm time geomagnetic activity and is compared to data based on satellite observations. Our calculations take into account wave-particle interactions represented by radial diffusion transport, local acceleration, losses due to pitch-angle diffusion, and mixed diffusion. We show that the results of the 3D diffusion simulations depend on the assumed parametrization of waves. The differences between the simulations and potential missing physical mechanisms are discussed. References Brautigam, D. H., and J. M. Albert (2000), Radial diffusion analysis of outer radiation belt electrons during the October 9, 1990, magnetic storm, J. Geophys. Res., 105(A1), 291-309, doi:10.1029/1999JA900344 Ozeke, L. G., I. R. Mann, K. R. Murphy, I. J. Rae, D. K. Milling, S. R. Elkington, A. A. Chan, and H. J. Singer (2012), ULF wave derived radiation belt radial diffusion coefficients, J. Geophys. Res., 117, A04222, doi:10.1029/2011JA017463.

  1. Diffusion tensor imaging demonstrates brainstem and cerebellar abnormalities in congenital central hypoventilation syndrome.

    PubMed

    Kumar, Rajesh; Macey, Paul M; Woo, Mary A; Alger, Jeffry R; Harper, Ronald M

    2008-09-01

    Congenital central hypoventilation syndrome (CCHS) patients show reduced breathing drive during sleep, decreased hypoxic and hypercapnic ventilatory responses, and autonomic and affective deficits, suggesting both brainstem and forebrain injuries. Forebrain damage was previously described in CCHS, but methodological limitations precluded detection of brainstem injury, a concern because genetic mutations in CCHS target brainstem autonomic nuclei. To assess brainstem and cerebellar areas, we used diffusion tensor imaging-based measures, namely axial diffusivity, reflecting water diffusion parallel to fibers, and sensitive to axonal injury, and radial diffusivity, measuring diffusion perpendicular to fibers, and indicative of myelin injury. Diffusion tensor imaging was performed in 12 CCHS and 26 controls, and axial and radial diffusivity maps were compared between groups using analysis of covariance (covariates; age and gender). Increased axial diffusivity in CCHS appeared within the lateral medulla and clusters with injury extended from the dorsal midbrain through the periaqueductal gray, raphé, and superior cerebellar decussation, ventrally to the basal-pons. Cerebellar cortex and deep nuclei, and the superior and inferior cerebellar peduncles showed increased radial diffusivity. Midbrain, pontine, and lateral medullary structures, and the cerebellum and its fiber systems are injured in CCHS, likely contributing to the characteristics found in the syndrome.

  2. Three-dimensional stochastic modeling of radiation belts in adiabatic invariant coordinates

    NASA Astrophysics Data System (ADS)

    Zheng, Liheng; Chan, Anthony A.; Albert, Jay M.; Elkington, Scot R.; Koller, Josef; Horne, Richard B.; Glauert, Sarah A.; Meredith, Nigel P.

    2014-09-01

    A 3-D model for solving the radiation belt diffusion equation in adiabatic invariant coordinates has been developed and tested. The model, named Radbelt Electron Model, obtains a probabilistic solution by solving a set of Itô stochastic differential equations that are mathematically equivalent to the diffusion equation. This method is capable of solving diffusion equations with a full 3-D diffusion tensor, including the radial-local cross diffusion components. The correct form of the boundary condition at equatorial pitch angle α0=90° is also derived. The model is applied to a simulation of the October 2002 storm event. At α0 near 90°, our results are quantitatively consistent with GPS observations of phase space density (PSD) increases, suggesting dominance of radial diffusion; at smaller α0, the observed PSD increases are overestimated by the model, possibly due to the α0-independent radial diffusion coefficients, or to insufficient electron loss in the model, or both. Statistical analysis of the stochastic processes provides further insights into the diffusion processes, showing distinctive electron source distributions with and without local acceleration.

  3. In vivo quantification of demyelination and recovery using compartment-specific diffusion MRI metrics validated by electron microscopy.

    PubMed

    Jelescu, Ileana O; Zurek, Magdalena; Winters, Kerryanne V; Veraart, Jelle; Rajaratnam, Anjali; Kim, Nathanael S; Babb, James S; Shepherd, Timothy M; Novikov, Dmitry S; Kim, Sungheon G; Fieremans, Els

    2016-05-15

    There is a need for accurate quantitative non-invasive biomarkers to monitor myelin pathology in vivo and distinguish myelin changes from other pathological features including inflammation and axonal loss. Conventional MRI metrics such as T2, magnetization transfer ratio and radial diffusivity have proven sensitivity but not specificity. In highly coherent white matter bundles, compartment-specific white matter tract integrity (WMTI) metrics can be directly derived from the diffusion and kurtosis tensors: axonal water fraction, intra-axonal diffusivity, and extra-axonal radial and axial diffusivities. We evaluate the potential of WMTI to quantify demyelination by monitoring the effects of both acute (6weeks) and chronic (12weeks) cuprizone intoxication and subsequent recovery in the mouse corpus callosum, and compare its performance with that of conventional metrics (T2, magnetization transfer, and DTI parameters). The changes observed in vivo correlated with those obtained from quantitative electron microscopy image analysis. A 6-week intoxication produced a significant decrease in axonal water fraction (p<0.001), with only mild changes in extra-axonal radial diffusivity, consistent with patchy demyelination, while a 12-week intoxication caused a more marked decrease in extra-axonal radial diffusivity (p=0.0135), consistent with more severe demyelination and clearance of the extra-axonal space. Results thus revealed increased specificity of the axonal water fraction and extra-axonal radial diffusivity parameters to different degrees and patterns of demyelination. The specificities of these parameters were corroborated by their respective correlations with microstructural features: the axonal water fraction correlated significantly with the electron microscopy derived total axonal water fraction (ρ=0.66; p=0.0014) but not with the g-ratio, while the extra-axonal radial diffusivity correlated with the g-ratio (ρ=0.48; p=0.0342) but not with the electron microscopy derived axonal water fraction. These parameters represent promising candidates as clinically feasible biomarkers of demyelination and remyelination in the white matter. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Design of an efficient space constrained diffuser for supercritical CO2 turbines

    NASA Astrophysics Data System (ADS)

    Keep, Joshua A.; Head, Adam J.; Jahn, Ingo H.

    2017-03-01

    Radial inflow turbines are an arguably relevant architecture for energy extraction from ORC and supercritical CO 2 power cycles. At small scale, design constraints can prescribe high exit velocities for such turbines, which lead to high kinetic energy in the turbine exhaust stream. The inclusion of a suitable diffuser in a radial turbine system allows some exhaust kinetic energy to be recovered as static pressure, thereby ensuring efficient operation of the overall turbine system. In supercritical CO 2 Brayton cycles, the high turbine inlet pressure can lead to a sealing challenge if the rotor is supported from the rotor rear side, due to the seal operating at rotor inlet pressure. An alternative to this is a cantilevered layout with the rotor exit facing the bearing system. While such a layout is attractive for the sealing system, it limits the axial space claim of any diffuser. Previous studies into conical diffuser geometries for supercritical CO 2 have shown that in order to achieve optimal static pressure recovery, longer geometries of a shallower cone angle are necessitated when compared to air. A diffuser with a combined annular-radial arrangement is investigated as a means to package the aforementioned geometric characteristics into a limited space claim for a 100kW radial inflow turbine. Simulation results show that a diffuser of this design can attain static pressure rise coefficients greater than 0.88. This confirms that annular-radial diffusers are a viable design solution for supercritical CO2 radial inflow turbines, thus enabling an alternative cantilevered rotor layout.

  5. Diffusive transport of several hundred keV electrons in the Earth's slot region

    NASA Astrophysics Data System (ADS)

    Ma, Q.; Li, W.; Thorne, R. M.; Bortnik, J.

    2017-12-01

    We investigate the gradual diffusion of energetic electrons from the inner edge of the outer radiation belt into the slot region. The Van Allen Probes observed slow inward diffusion and decay of 200-600 keV electrons following the intense geomagnetic storm that occurred on 17 March 2013. During the 10-day non-disturbed period following the storm, the peak of electron fluxes gradually moved from L 2.7 to L 2.4, and the flux levels decreased by a factor of 2-4 depending on the electron energy. We simulated the radial intrusion and decay of electrons using a 3-dimentional diffusion code, which reproduced the energy-dependent transport of electrons from 100 keV to 1 MeV in the slot region. At energies of 100-200 keV, the electrons experience fast transport across the slot region due to the dominance of radial diffusion; at energies of 200-600 keV, the electrons gradually diffuse and decay in the slot region due to the comparable radial diffusion rate and pitch angle scattering rate by plasmaspheric hiss; at energies of E > 700 keV, the electrons stopped diffusing near the inner edge of outer radiation belt due to the dominant pitch angle scattering loss. In addition to plasmaspheric hiss, magnetosonic waves and VLF waves can cause the loss of high pitch angle electrons, relaxing the sharp `top-hat' shaped pitch angle distributions created by plasmaspheric hiss. Our simulation indicates the importance of radial diffusion and pitch angle scattering in forming the diffusive intrusion of energetic electrons across the slot region.

  6. Diffusive Transport of Several Hundred keV Electrons in the Earth's Slot Region

    NASA Astrophysics Data System (ADS)

    Ma, Q.; Li, W.; Thorne, R. M.; Bortnik, J.; Reeves, G. D.; Spence, H. E.; Turner, D. L.; Blake, J. B.; Fennell, J. F.; Claudepierre, S. G.; Kletzing, C. A.; Kurth, W. S.; Hospodarsky, G. B.; Baker, D. N.

    2017-10-01

    We investigate the gradual diffusion of energetic electrons from the inner edge of the outer radiation belt into the slot region. The Van Allen Probes observed slow inward diffusion and decay of 200-600 keV electrons following the intense geomagnetic storm that occurred on 17 March 2013. During the 10 day nondisturbed period following the storm, the peak of electron fluxes gradually moved from L 2.7 to L 2.4, and the flux levels decreased by a factor of 2-4 depending on the electron energy. We simulated the radial intrusion and decay of electrons using a three-dimensional diffusion code, which reproduced the energy-dependent transport of electrons from 100 keV to 1 MeV in the slot region. At energies of 100-200 keV, the electrons experience fast transport across the slot region due to the dominance of radial diffusion; at energies of 200-600 keV, the electrons gradually diffuse and decay in the slot region due to the comparable rate of radial diffusion and pitch angle scattering by plasmaspheric hiss; at energies of E > 700 keV, the electrons stopped diffusing near the inner edge of outer radiation belt due to the dominant pitch angle scattering loss. In addition to plasmaspheric hiss, magnetosonic waves and VLF transmitters can cause the loss of high pitch angle electrons, relaxing the sharp "top-hat" shaped pitch angle distributions created by plasmaspheric hiss. Our simulation indicates the importance of balance between radial diffusion and loss through pitch angle scattering in forming the diffusive intrusion of energetic electrons across the slot region.

  7. Improved diffusivity of NaOH solution in autohydrolyzed poplar sapwood chips for chemi-mechanical pulp production.

    PubMed

    Zhang, Honglei; Hou, Qingxi; Liu, Wei; Yue, Zhen; Jiang, Xiaoya; Ma, Xixi

    2018-07-01

    This work investigated the changes in the physical structure of autohydrolyzed poplar sapwood chips and the effect on the subsequent alkali liquor diffusion properties for chemi-mechanical pulping (CMP). An alkali impregnation process was conducted by using the autohydrolyzed poplar sapwood with different levels of autohydrolysis intensity. The results showed that the volume porosity, water constraint capacity, and saturated water absorption of the autohydrolyzed poplar sapwood chips increased. Also, the effective capillary cross-sectional area (ECCSA) in the radial direction and the diffusion coefficients of NaOH solution in both the radial and axial directions all increased. Autohydrolysis pretreatment enhanced the alkali liquor diffusion properties in poplar sapwood chips, and the diffusion coefficient was increased more greatly in the radial direction than that in the axial direction. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Accounting for magnetic diffusion in core flow inversions from geomagnetic secular variation

    NASA Astrophysics Data System (ADS)

    Amit, Hagay; Christensen, Ulrich R.

    2008-12-01

    We use numerical dynamos to investigate the possible role of magnetic diffusion at the top of the core. We find that the contribution of radial magnetic diffusion to the secular variation is correlated with that of tangential magnetic diffusion for a wide range of control parameters. The correlation between the two diffusive terms is interpreted in terms of the variation in the strength of poloidal flow along a columnar flow tube. The amplitude ratio of the two diffusive terms is used to estimate the probable contribution of radial magnetic diffusion to the secular variation at Earth-like conditions. We then apply a model where radial magnetic diffusion is proportional to tangential diffusion to core flow inversions of geomagnetic secular variation data. We find that including magnetic diffusion does not change dramatically the global flow but some significant local variations appear. In the non frozen-flux core flow models (termed `diffusive'), the hemispherical dichotomy between the active Atlantic and quiet Pacific is weaker, a cyclonic vortex below North America emerges and the vortex below Asia is stronger. Our results have several important geophysical implications. First, our diffusive flow models contain some flow activity at low latitudes in the Pacific, suggesting a local balance between magnetic field advection and diffusion in that region. Second, the cyclone below North America in our diffusive flows reconciles the difference between mantle-driven thermal wind predictions and frozen-flux core flow models, and is consistent with the prominent intense magnetic flux patch below North America in geomagnetic field models. Finally, we hypothesize that magnetic diffusion near the core surface plays a larger role in the geomagnetic secular variation than usually assumed.

  9. Effects of inlet flow field conditions on the performance of centrifugal compressor diffusers: Part 1 -- Discrete-passage diffuser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filipenco, V.G.; Deniz, S.; Johnston, J.M.

    2000-01-01

    This is Part 1 of a two-part paper considering the performance of radial diffusers for use in a high-performance centrifugal compressor. Part 1 reports on discrete-passage diffusers, while Part 2 describes a test of a straight-channel diffuser designed for equivalent duty. Two builds of discrete-passage diffuser were tested, with 30 and 38 separate passages. Both the 30 and 38 passage diffusers investigated showed comparable range of unstalled operation and similar level of overall diffuser pressure recovery. The paper concentrates on the influence of inlet flow conditions on the pressure recovery and operating range of radial diffusers for centrifugal compressor stages.more » The flow conditions examined include diffuser inlet Mach number, flow angle, blockage, and axial flow nonuniformity. The investigation was carried out in a specially built test facility, designed to provide a controlled inlet flow field to the test diffusers. The facility can provide a wide range of diffuser inlet velocity profile distortion and skew with Mach numbers up to unity and flow angles of 63 to 75 deg from the radical direction. The consequences of different averaging methods for the inlet total pressure distributions, which are needed in the definition of diffuser pressure recovery coefficient for nonuniform diffuser inlet conditions, were also assessed. The overall diffuser pressure recovery coefficient, based on suitably averaged inlet total pressure, was found to correlate well with the momentum-averaged flow angle into the diffuser. It is shown that the generally accepted sensitivity of diffuser pressure recovery performance to inlet flow distortion and boundary layer blockage can be largely attributed to inappropriate quantification of the average dynamic pressure at diffuser inlet. Use of an inlet dynamic pressure based on availability or mass-averaging in combination with definition of inlet flow angle based on mass average of the radial and tangential velocity at diffuser inlet removes this sensitivity.« less

  10. Radial Diffusion study of the 1 June 2013 CME event using MHD simulations.

    NASA Astrophysics Data System (ADS)

    Patel, M.; Hudson, M.; Wiltberger, M. J.; Li, Z.; Boyd, A. J.

    2016-12-01

    The June 1, 2013 storm was a CME-shock driven geomagnetic storm (Dst = -119 nT) that caused a dropout affecting all radiation belt electron energies measured by the Energetic Particle, Composition and Thermal Plasma Suite (ECT) instrument on Van Allen Probes at higher L-shells following dynamic pressure enhancement in the solar wind. Lower energies (up to about 700 keV) were enhanced by the storm while MeV electrons were depleted throughout the belt. We focus on depletion through radial diffusion caused by the enhanced ULF wave activity due to the CME-shock. This study utilities the Lyon-Fedder-Mobarry (LFM) model, a 3D global magnetospheric simulation code based on the ideal MHD equations, coupled with the Magnetosphere Ionosphere Coupler (MIX) and Rice Convection Model (RCM). The MHD electric and magnetic fields with equations described by Fei et al. [JGR, 2006] are used to calculate radial diffusion coefficients (DLL). These DLL values are input into a radial diffusion code to recreate the dropouts observed by the Van Allen Probes. The importance of understanding the complex role that ULF waves play in radial transport and the effects of CME-driven storms on the relativistic energy electrons in the radiation belts can be accomplished using MHD simulations to obtain diffusion coefficients, initial phase space density and the outer boundary condition from the ECT instrument suite and a radial diffusion model to reproduce observed fluxes which compare favorably with Van Allen Probes ECT measurements.

  11. Diffusive Transport of Several Hundred keV Electrons in the Earth's Slot Region

    DOE PAGES

    Ma, Q.; Li, W.; Thorne, R. M.; ...

    2017-09-29

    Here, we investigate the gradual diffusion of energetic electrons from the inner edge of the outer radiation belt into the slot region. The Van Allen Probes observed slow inward diffusion and decay of ~200–600 keV electrons following the intense geomagnetic storm that occurred on 17 March 2013. During the 10 day nondisturbed period following the storm, the peak of electron fluxes gradually moved from L ~ 2.7 to L ~ 2.4, and the flux levels decreased by a factor of ~2–4 depending on the electron energy. We simulated the radial intrusion and decay of electrons using a three–dimensional diffusion code,more » which reproduced the energy–dependent transport of electrons from ~100 keV to 1 MeV in the slot region. At energies of 100–200 keV, the electrons experience fast transport across the slot region due to the dominance of radial diffusion; at energies of 200–600 keV, the electrons gradually diffuse and decay in the slot region due to the comparable rate of radial diffusion and pitch angle scattering by plasmaspheric hiss; at energies of E > 700 keV, the electrons stopped diffusing near the inner edge of outer radiation belt due to the dominant pitch angle scattering loss. In addition to plasmaspheric hiss, magnetosonic waves and VLF transmitters can cause the loss of high pitch angle electrons, relaxing the sharp “top–hat” shaped pitch angle distributions created by plasmaspheric hiss. Our simulation indicates the importance of balance between radial diffusion and loss through pitch angle scattering in forming the diffusive intrusion of energetic electrons across the slot region.« less

  12. Pc 5 Spectral Density at ULTIMA stataions and its Radial Diffusion Coefficients for REE

    NASA Astrophysics Data System (ADS)

    Fujimoto, A.; Tokunaga, T.; Abe, S.; Uozumi, T.; Yoshikawa, A.; Mann, I. R.; Chi, P. J.; Engebretson, M. J.; Yumoto, K.

    2009-12-01

    Pc 5 magnetic pulsations with frequencies between 1.67 and 6.67 mHz, are believed to contribute to the Relativistic Electron Enhancement (REE) in the outer radiation belt during magnetic storms. Ground-based observations suggested that high-speed solar wind and large-amplitude Pc 5 waves with a long duration during the storm recovery phase are closely associated with the production of relativistic electrons [Baker et al., 1998; Rostoker et al., 1998; Mathie and Mann, 2000; O’Brien et al., 2001, 2003]. On the other hand, many relativistic electron acceleration mechanisms have been proposed theoretically. They are separated roughly into two themes: in situ acceleration at L lower than 6.6 by wave particle interactions (as internal source acceleration mechanisms) [Liu et al., 1999; Summers et al., 1999; Summers and Ma, 2000] and acceleration by radial diffusion to transport and accelerate a source population of electrons from the outer to the inner magnetosphere (as external source acceleration mechanisms) [Elkington et al., 1999, 2003; Hudson et al., 2000; Kim et al., 2001]. One possible external source acceleration mechanism is the resonant interaction with ULF toroidal and poloidal waves. In order to verify which of the two mechanisms is more effective for the REE, we have to examine the time variation of electron phase space density. Electron phase space density is not directly measured, but we can estimate radial diffusion coefficients using observational electric and magnetic data. The goal of this paper is to get more reliable radial diffusion coefficient from ground-based observational magnetic field and to show reasonability of it for radial diffusion model. We use the global magnetometer data obtained from ULTIMA (Ultra Large Terrestrial International Magnetic Array, see http://www.serc.kyushu-u.ac.jp/ultima/ultima.html) stations, to precisely define the radial diffusion timescales. The ULTIMA includes McMAC, CARISAM, 210MM and MAGDAS/CPMN magnetometer arrays. The radial diffusion coefficient can be given from the magnetic field power spectral density as a function of L, frequency (f) and m-number (m) in the Pc 5 frequency range during the REE related magnetic storms [see Brautigam et al., 2005]. We can fit Pc 5 power spectral density (L, f, m) using the ULTIMA data. The m-number of global Pc 5 pulsation on the ground is found to be almost less than 5. This is consistent with m-number required in the radial diffusion theory by Elkington et al. [1999, 2003]. We will compare the observationally estimated diffusion coefficient with theoretical diffusion coefficient [e.g. Elkington et al., 2006], and discuss adequacy of our diffusion coefficient.

  13. Simulation of energy-dependent electron diffusion processes in the Earth's outer radiation belt

    DOE PAGES

    Ma, Q.; Li, W.; Thorne, R. M.; ...

    2016-04-28

    The radial and local diffusion processes induced by various plasma waves govern the highly energetic electron dynamics in the Earth's radiation belts, causing distinct characteristics in electron distributions at various energies. In this study, we present our simulation results of the energetic electron evolution during a geomagnetic storm using the University of California, Los Angeles 3-D diffusion code. Following the plasma sheet electron injections, the electrons at different energy bands detected by the Magnetic Electron Ion Spectrometer (MagEIS) and Relativistic Electron Proton Telescope (REPT) instruments on board the Van Allen Probes exhibit a rapid enhancement followed by a slow diffusivemore » movement in differential energy fluxes, and the radial extent to which electrons can penetrate into depends on energy with closer penetration toward the Earth at lower energies than higher energies. We incorporate radial diffusion, local acceleration, and loss processes due to whistler mode wave observations to perform a 3-D diffusion simulation. Here, our simulation results demonstrate that chorus waves cause electron flux increase by more than 1 order of magnitude during the first 18 h, and the subsequent radial extents of the energetic electrons during the storm recovery phase are determined by the coupled radial diffusion and the pitch angle scattering by EMIC waves and plasmaspheric hiss. The radial diffusion caused by ULF waves and local plasma wave scattering are energy dependent, which lead to the observed electron flux variations with energy dependences. Lastly, this study suggests that plasma wave distributions in the inner magnetosphere are crucial for the energy-dependent intrusions of several hundred keV to several MeV electrons.« less

  14. Characterizing Intraorbital Optic Nerve Changes on Diffusion Tensor Imaging in Thyroid Eye Disease Before Dysthyroid Optic Neuropathy.

    PubMed

    Lee, Hwa; Lee, Young Hen; Suh, Sang-Il; Jeong, Eun-Kee; Baek, Sehyun; Seo, Hyung Suk

    The aim of this study was to determine whether the optic nerve is affected by thyroid eye disease (TED) before the development of dysthyroid optic neuropathy with diffusion-tensor imaging (DTI). Twenty TED patients and 20 controls were included. The mean, axial, and radial diffusivities and fractional anisotropy (FA) value were measured at the optic nerves in DTI. Extraocular muscle diameters were measured on computed tomography. The diffusivities and FA of the optic nerves were compared between TED and controls and between active and inactive stages of TED. The correlations between these DTI parameters and the clinical features were determined. The mean, axial, and radial diffusivities were lower in TED compared with the controls (P < 0.05). In contrast, FA was higher in TED (P = 0.001). Radial diffusivity was lower in the active stage of TED than the inactive stage (P = 0.035). The FA was higher in the TED group than in the control group (P = 0.021) and was positively correlated with clinical activity score (r = 0.364, P = 0.021), modified NOSPECS score (r = 0.469, P = 0.002), and extraocular muscle thickness (r = 0.325, P = 0.041) in the TED group. Radial diffusivity was negatively correlated with modified NOSPECS score (r = -0.384, P = 0.014), and axial diffusivity was positively correlated with exophthalmos degree (r = 0.363, P = 0.025). The diffusivities and FA reflected changes in the optic nerve before dysthyroid optic neuropathy in TED. The FA, in particular, reflected TED activity and severity.

  15. Neoclassical diffusion at low L-shel

    NASA Astrophysics Data System (ADS)

    Cunningham, G.; Ripoll, J. F.; Loridan, V.; Schulz, M.

    2017-12-01

    At very low L-shell, the lifetime of MeV electrons is dominated by pitch-angle scattering due to Coulomb collisions with background neutrals and ions. Walt's evaluation of this lifetime explained Van Allen's observations of the decay of the radiation belts in the early 1960's, for L<1.25 but Imhof et al showed that the apparent lifetime of >500 keV electrons for L=[1.15,1.21] was much greater than predicted by Walt's model when the decay was observed over 3 years rather than just a few months. Imhof et al argued that inward radial diffusion from larger L would be a source of electrons at low L, thus increasing the apparent lifetimes that were observed, but did not speculate on the cause of such diffusion across L. Newkirk and Walt estimated the radial diffusion coefficient that would be needed to explain the apparent lifetimes observed by Imhof et al. The radial diffusion coefficients they inferred dropped sharply as L increased, contrasting with the radial diffusion coefficients that had been recently developed by Falthammar [1965], which increase as a power law in L. Newkirk and Walt noted Falthammar's speculation that pitch-angle diffusion caused by Coulomb scattering, when coupled to drift-shell splitting associated with non-dipolar terms in the near-Earth geomagnetic field, might be the physical basis for the radial diffusion, but they did not attempt to quantify this effect. Roederer et al demonstrated that Coulomb scattering plus drift-shell splitting could explain the Newkirk and Walt results but they did not perform an exhaustive study. In the field of magnetically confined fusion, the movement of charged particles to different drift-shells caused by the combination of collisions and drift-shell splitting is labeled `neoclassical' diffusion. By contrast, `anomalous' diffusion results from pitch-angle diffusion caused by wave turbulence combined with drift-shell splitting, an effect recently studied by O'Brien in the outer radiation belt. We have constructed a comprehensive model of neoclassical diffusion at low L as a function of pitch-angle, energy and L-shell, and find that we quantitatively reproduce the results in Newkirk and Walt and Imhof et al, conclusively demonstrating that neoclassical diffusion is an important effect for energetic electrons in the deep inner belt.

  16. Diffuser for augmenting a wind turbine

    DOEpatents

    Foreman, Kenneth M.; Gilbert, Barry L.

    1984-01-01

    A diffuser for augmenting a wind turbine having means for energizing the boundary layer at several locations along the diffuser walls is improved by the addition of a short collar extending radially outward from the outlet of the diffuser.

  17. Recent radial turbine research at the NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Rohlik, H. E.; Kofskey, M. G.

    1971-01-01

    The high efficiencies of small radial turbines led to their application in space power systems and numerous APU and shaft power engines. Experimental and analytical work associated with these systems included examination of blade-shroud clearance, blade loading, and exit diffuser design. Results indicate high efficiency over a wide range of specific speed and also insensitivity to clearance and blade loading in the radial part of the rotor. The exit diffuser investigation indicated that a conventional conical outer wall may not provide the velocity variation consistent with minimum overall diffuser loss.

  18. Radial q-space sampling for DSI.

    PubMed

    Baete, Steven H; Yutzy, Stephen; Boada, Fernando E

    2016-09-01

    Diffusion spectrum imaging (DSI) has been shown to be an effective tool for noninvasively depicting the anatomical details of brain microstructure. Existing implementations of DSI sample the diffusion encoding space using a rectangular grid. Here we present a different implementation of DSI whereby a radially symmetric q-space sampling scheme for DSI is used to improve the angular resolution and accuracy of the reconstructed orientation distribution functions. Q-space is sampled by acquiring several q-space samples along a number of radial lines. Each of these radial lines in q-space is analytically connected to a value of the orientation distribution functions at the same angular location by the Fourier slice theorem. Computer simulations and in vivo brain results demonstrate that radial diffusion spectrum imaging correctly estimates the orientation distribution functions when moderately high b-values (4000 s/mm2) and number of q-space samples (236) are used. The nominal angular resolution of radial diffusion spectrum imaging depends on the number of radial lines used in the sampling scheme, and only weakly on the maximum b-value. In addition, the radial analytical reconstruction reduces truncation artifacts which affect Cartesian reconstructions. Hence, a radial acquisition of q-space can be favorable for DSI. Magn Reson Med 76:769-780, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  19. Improved diffuser for augmenting a wind turbine

    DOEpatents

    Foreman, K.M.; Gilbert, B.L.

    A diffuser for augmenting a wind turbine having means for energizing the boundary layer at several locations along the diffuser walls is improved by the addition of a short collar extending radially outward from the outlet of the diffuser.

  20. Regional Microstructural and Volumetric Magnetic Resonance Imaging (MRI) Abnormalities in the Corpus Callosum of Neonates With Congenital Heart Defect Undergoing Cardiac Surgery.

    PubMed

    Hagmann, Cornelia; Singer, Jitka; Latal, Beatrice; Knirsch, Walter; Makki, Malek

    2016-03-01

    The purpose of the study is to investigate the structural development of the corpus callosum in term neonates with congenital heart defect before and after surgery using diffusion tensor imaging and 3-dimensional T1-weighted magnetic resonance imaging (MRI). We compared parallel and radial diffusions, apparent diffusion coefficient (ADC), fractional anisotropy, and volume of 5 substructures of the corpus callosum: genu, rostral body, body, isthmus, and splenium. Compared to healthy controls, we found a significantly lower volume of the splenium and total corpus callosum and a higher radial diffusion and lower fractional anisotropy in the splenium of patients presurgery; a lower volume in all substructures in the postsurgery group; higher radial diffusion in the rostral body, body, and splenium; and a higher apparent diffusion coefficient in the splenium of postsurgery patients. Similar fractional anisotropy changes in congenital heart defect patients were reported in preterm infants. Our findings in apparent diffusion coefficient in the splenium of these patients (pre and postsurgery) are comparable to findings in preterm neonates with psychomotor delay. Delayed maturation of the isthmus was also reported in preterm infants. © The Author(s) 2015.

  1. Structure-correlated diffusion anisotropy in nanoporous channel networks by Monte Carlo simulations and percolation theory

    NASA Astrophysics Data System (ADS)

    Kondrashova, Daria; Valiullin, Rustem; Kärger, Jörg; Bunde, Armin

    2017-07-01

    Nanoporous silicon consisting of tubular pores imbedded in a silicon matrix has found many technological applications and provides a useful model system for studying phase transitions under confinement. Recently, a model for mass transfer in these materials has been elaborated [Kondrashova et al., Sci. Rep. 7, 40207 (2017)], which assumes that adjacent channels can be connected by "bridges" (with probability pbridge) which allows diffusion perpendicular to the channels. Along the channels, diffusion can be slowed down by "necks" which occur with probability pneck. In this paper we use Monte-Carlo simulations to study diffusion along the channels and perpendicular to them, as a function of pbridge and pneck, and find remarkable correlations between the diffusivities in longitudinal and radial directions. For clarifying the diffusivity in radial direction, which is governed by the concentration of bridges, we applied percolation theory. We determine analytically how the critical concentration of bridges depends on the size of the system and show that it approaches zero in the thermodynamic limit. Our analysis suggests that the critical properties of the model, including the diffusivity in radial direction, are in the universality class of two-dimensional lattice percolation, which is confirmed by our numerical study.

  2. White Matter Microstructure in Transsexuals and Controls Investigated by Diffusion Tensor Imaging

    PubMed Central

    Kranz, Georg S.; Hahn, Andreas; Kaufmann, Ulrike; Küblböck, Martin; Hummer, Allan; Ganger, Sebastian; Seiger, Rene; Winkler, Dietmar; Swaab, Dick F.; Windischberger, Christian; Kasper, Siegfried; Lanzenberger, Rupert

    2015-01-01

    Biological causes underpinning the well known gender dimorphisms in human behavior, cognition, and emotion have received increased attention in recent years. The advent of diffusion-weighted magnetic resonance imaging has permitted the investigation of the white matter microstructure in unprecedented detail. Here, we aimed to study the potential influences of biological sex, gender identity, sex hormones, and sexual orientation on white matter microstructure by investigating transsexuals and healthy controls using diffusion tensor imaging (DTI). Twenty-three female-to-male (FtM) and 21 male-to-female (MtF) transsexuals, as well as 23 female (FC) and 22 male (MC) controls underwent DTI at 3 tesla. Fractional anisotropy, axial, radial, and mean diffusivity were calculated using tract-based spatial statistics (TBSS) and fiber tractography. Results showed widespread significant differences in mean diffusivity between groups in almost all white matter tracts. FCs had highest mean diffusivities, followed by FtM transsexuals with lower values, MtF transsexuals with further reduced values, and MCs with lowest values. Investigating axial and radial diffusivities showed that a transition in axial diffusivity accounted for mean diffusivity results. No significant differences in fractional anisotropy maps were found between groups. Plasma testosterone levels were strongly correlated with mean, axial, and radial diffusivities. However, controlling for individual estradiol, testosterone, or progesterone plasma levels or for subjects’ sexual orientation did not change group differences. Our data harmonize with the hypothesis that fiber tract development is influenced by the hormonal environment during late prenatal and early postnatal brain development. PMID:25392513

  3. Performance of an asymmetric short annular diffuser with a nondiverging inner wall using suction. [control of radial profiles of diffuser exit velocity

    NASA Technical Reports Server (NTRS)

    Juhasz, A.

    1974-01-01

    The performance of a short highly asymmetric annular diffuser equipped with wall bleed (suction) capability was evaluated at nominal inlet Mach numbers of 0.188, 0.264, and 0.324 with the inlet pressure and temperature at near ambient values. The diffuser had an area ratio of 2.75 and a length- to inlet-height ratio of 1.6. Results show that the radial profiles of diffuser exit velocity could be controlled from a severely hub peaked to a slightly tip biased form by selective use of bleed. At the same time, other performance parameters were also improved. These results indicate the possible application of the diffuser bleed technique to control flow profiles to gas turbine combustors.

  4. Recent radial turbine research at the NASA Lewis Research Center.

    NASA Technical Reports Server (NTRS)

    Rohlik, H. E.; Kofskey, M. G.

    1972-01-01

    The major results obtained in several recent experimental programs on small radial inflow turbines for space applications are presented and discussed. Specifically, experimental and analytical work associated with these systems that has included examination of blade-shroud clearance, blade loading, and exit diffuser design, is considered. Results indicate high efficiency over a wide range of specific speed, and also insensitivity to clearance and blade loading in the radial part of the rotor. The exit diffuser investigation indicated that a conventional conical outer wall may not provide the velocity variation consistent with minimum overall diffuser loss.

  5. Quantifying white matter tract diffusion parameters in the presence of increased extra-fiber cellularity and vasogenic edema

    PubMed Central

    Chiang, Chia-Wen; Wang, Yong; Sun, Peng; Lin, Tsen-Hsuan; Trinkaus, Kathryn; Cross, Anne H.; Song, Sheng-Kwei

    2014-01-01

    The effect of extra-fiber structural and pathological components confounding diffusion tensor imaging (DTI) computation was quantitatively investigated using data generated by both Monte-Carlo simulations and tissue phantoms. Increased extent of vasogenic edema, by addition of various amount of gel to fixed normal mouse trigeminal nerves or by increasing non-restricted isotropic diffusion tensor components in Monte-Carlo simulations, significantly decreased fractional anisotropy (FA), increased radial diffusivity, while less significantly increased axial diffusivity derived by DTI. Increased cellularity, mimicked by graded increase of the restricted isotropic diffusion tensor component in Monte-Carlo simulations, significantly decreased FA and axial diffusivity with limited impact on radial diffusivity derived by DTI. The MC simulation and tissue phantom data were also analyzed by the recently developed diffusion basis spectrum imaging (DBSI) to simultaneously distinguish and quantify the axon/myelin integrity and extra-fiber diffusion components. Results showed that increased cellularity or vasogenic edema did not affect the DBSI-derived fiber FA, axial or radial diffusivity. Importantly, the extent of extra-fiber cellularity and edema estimated by DBSI correlated with experimentally added gel and Monte-Carlo simulations. We also examined the feasibility of applying 25-direction diffusion encoding scheme for DBSI analysis on coherent white matter tracts. Results from both phantom experiments and simulations suggested that the 25-direction diffusion scheme provided comparable DBSI estimation of both fiber diffusion parameters and extra-fiber cellularity/edema extent as those by 99-direction scheme. An in vivo 25-direction DBSI analysis was performed on experimental autoimmune encephalomyelitis (EAE, an animal model of human multiple sclerosis) optic nerve as an example to examine the validity of derived DBSI parameters with post-imaging immunohistochemistry verification. Results support that in vivo DBSI using 25-direction diffusion scheme correctly reflect the underlying axonal injury, demyelination, and inflammation of optic nerves in EAE mice. PMID:25017446

  6. Computation of flow in radial- and mixed-flow cascades by an inviscid-viscous interaction method

    NASA Technical Reports Server (NTRS)

    Serovy, G. K.; Hansen, E. C.

    1980-01-01

    The use of inviscid-viscous interaction methods for the case of radial or mixed-flow cascade diffusers is discussed. A literature review of investigations considering cascade flow-field prediction by inviscid-viscous iterative computation is given. Cascade aerodynamics in the third blade row of a multiple-row radial cascade diffuser are specifically investigated.

  7. Effects of radial distribution of entropy diffusivity on critical modes of anelastic thermal convection in rotating spherical shells

    NASA Astrophysics Data System (ADS)

    Sasaki, Youhei; Takehiro, Shin-ichi; Ishiwatari, Masaki; Yamada, Michio

    2018-03-01

    Linear stability analysis of anelastic thermal convection in a rotating spherical shell with entropy diffusivities varying in the radial direction is performed. The structures of critical convection are obtained in the cases of four different radial distributions of entropy diffusivity; (1) κ is constant, (2) κT0 is constant, (3) κρ0 is constant, and (4) κρ0T0 is constant, where κ is the entropy diffusivity, T0 is the temperature of basic state, and ρ0 is the density of basic state, respectively. The ratio of inner and outer radii, the Prandtl number, the polytropic index, and the density ratio are 0.35, 1, 2, and 5, respectively. The value of the Ekman number is 10-3 or 10-5 . In the case of (1), where the setup is same as that of the anelastic dynamo benchmark (Jones et al., 2011), the structure of critical convection is concentrated near the outer boundary of the spherical shell around the equator. However, in the cases of (2), (3) and (4), the convection columns attach the inner boundary of the spherical shell. A rapidly rotating annulus model for anelastic systems is developed by assuming that convection structure is uniform in the axial direction taking into account the strong effect of Coriolis force. The annulus model well explains the characteristics of critical convection obtained numerically, such as critical azimuthal wavenumber, frequency, Rayleigh number, and the cylindrically radial location of convection columns. The radial distribution of entropy diffusivity, or more generally, diffusion properties in the entropy equation, is important for convection structure, because it determines the distribution of radial basic entropy gradient which is crucial for location of convection columns.

  8. White matter microstructure in transsexuals and controls investigated by diffusion tensor imaging.

    PubMed

    Kranz, Georg S; Hahn, Andreas; Kaufmann, Ulrike; Küblböck, Martin; Hummer, Allan; Ganger, Sebastian; Seiger, Rene; Winkler, Dietmar; Swaab, Dick F; Windischberger, Christian; Kasper, Siegfried; Lanzenberger, Rupert

    2014-11-12

    Biological causes underpinning the well known gender dimorphisms in human behavior, cognition, and emotion have received increased attention in recent years. The advent of diffusion-weighted magnetic resonance imaging has permitted the investigation of the white matter microstructure in unprecedented detail. Here, we aimed to study the potential influences of biological sex, gender identity, sex hormones, and sexual orientation on white matter microstructure by investigating transsexuals and healthy controls using diffusion tensor imaging (DTI). Twenty-three female-to-male (FtM) and 21 male-to-female (MtF) transsexuals, as well as 23 female (FC) and 22 male (MC) controls underwent DTI at 3 tesla. Fractional anisotropy, axial, radial, and mean diffusivity were calculated using tract-based spatial statistics (TBSS) and fiber tractography. Results showed widespread significant differences in mean diffusivity between groups in almost all white matter tracts. FCs had highest mean diffusivities, followed by FtM transsexuals with lower values, MtF transsexuals with further reduced values, and MCs with lowest values. Investigating axial and radial diffusivities showed that a transition in axial diffusivity accounted for mean diffusivity results. No significant differences in fractional anisotropy maps were found between groups. Plasma testosterone levels were strongly correlated with mean, axial, and radial diffusivities. However, controlling for individual estradiol, testosterone, or progesterone plasma levels or for subjects' sexual orientation did not change group differences. Our data harmonize with the hypothesis that fiber tract development is influenced by the hormonal environment during late prenatal and early postnatal brain development. Copyright © 2014 the authors 0270-6474/14/3415466-10$15.00/0.

  9. ULF Waves and Diffusive Radial Transport of Charged Particles

    NASA Astrophysics Data System (ADS)

    Ali, Ashar Fawad

    The Van Allen radiation belts contain highly energetic particles which interact with a variety of plasma and magnetohydrodynamic (MHD) waves. Waves in the ultra low-frequency (ULF) range play an important role in the loss and acceleration of energetic particles. Considering the geometry of the geomagnetic field, charged particles trapped in the inner magnetosphere undergo three distinct types of periodic motions; an adiabatic invariant is associated with each type of motion. The evolution of the phase space density of charged particles in the magnetosphere in the coordinate space of the three adiabatic invariants is modeled by the Fokker-Planck equation. If we assume that the first two adiabatic invariants are conserved while the third invariant is violated, then the general Fokker-Planck equation reduces to a radial diffusion equation with the radial diffusion coefficient quantifying the rate of the radial diffusion of charged particles, including contributions from perturbations in both the magnetic and the electric fields. This thesis investigates two unanswered questions about ULF wave-driven radial transport of charged particles. First, how important are the ULF fluctuations in the magnetic field compared with the ULF fluctuations in the electric field in driving the radial diffusion of charged particles in the Earth's inner magnetosphere? It has generally been accepted that magnetic field perturbations dominate over electric field perturbations, but several recently published studies suggest otherwise. Second, what is the distribution of ULF wave power in azimuth, and how does ULF wave power depend upon radial distance and the level of geomagnetic activity? Analytic treatments of the diffusion coefficients generally assume uniform distribution of power in azimuth, but in situ measurements suggest that this may not be the case. We used the magnetic field data from the Combined Release and Radiation Effects Satellite (CRRES) and the electric and the magnetic field data from the Radiation Belt Storm Probes (RBSP) to compute the electric and the magnetic component of the radial diffusion coefficient using the Fei et al. [2006] formulation. We conclude that contrary to prior notions, the electric component is dominant in driving radial diffusion of charged particles in the Earth's inner magnetosphere instead of the magnetic component. The electric component can be up to two orders of magnitude larger than the magnetic component. In addition, we see that ULF wave power in both the electric and the magnetic fields has a clear dependence on Kp with wave power decreasing as radial distance decreases. For both fields, the noon sectors generally contain more ULF wave power than the dawn, dusk, and the midnight magnetic local time (MLT) sectors. There is no significant difference between ULF wave power in the dawn, dusk, and the midnight sectors.

  10. A radially resolved kinetic model for nonlocal electron ripple diffusion losses in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, Scott

    A relatively simple radially resolved kinetic model is applied to the ripple diffusion problem for electrons in tokamaks. The distribution function f(r,v) is defined on a two-dimensional grid, where r is the radial coordinate and v is the velocity coordinate. Particle transport in the radial direction is from ripple and banana diffusion and transport in the velocity direction is described by the Fokker-Planck equation. Particles and energy are replaced by source functions that are adjusted to maintain a constant central density and temperature. The relaxed profiles of f(r,v) show that the electron distribution function at the wall contains suprathermal electronsmore » that have diffused from the interior that enhance ripple transport. The transport at the periphery is therefore nonlocal. The energy replacement times from the computational model are near to the experimental replacement times for tokamak discharges in the compilation by Pfeiffer and Waltz [Nucl. Fusion 19, 51 (1979)].« less

  11. DREAM3D simulations of inner-belt dynamics

    NASA Astrophysics Data System (ADS)

    Cunningham, G.

    2015-12-01

    A 1973 paper by Lyons and Thorne explains the two-belt structure for electrons in the inner magnetosphere as a balance between inward radial diffusion and loss to the atmosphere due to pitch-angle scattering from Coulomb and VLF wave-particle interactions. In this paper, equilibrium solutions to a set of 1D radial diffusion equations, one for each value of the first invariant of motion, μ, were computed to produce the equilibrium structure. Each diffusion equation incorporated an L- and μ-dependent `lifetime' due to the Coulomb and wave-particle interactions. This model is appropriate under the assumption that radial diffusion is slow in comparison to pitch-angle scattering, and that there is no acceleration caused by the VLF wave-particle interactions. We have revisited this model using our DREAM3D 3D diffusion code, which allows the user to explicitly model the diffusion in pitch-angle and momentum rather than using a lifetime. We find that a) replacing the lifetimes with an explicit model of pitch-angle diffusion, thus allowing for coupling between radial and pitch-angle diffusion, affects the equilibrium structure, and b) over the long time scales needed to reach equilibrium, significant acceleration due to VLF wave particle interactions takes place due to the 'cross-terms' in pitch-angle and momentum and the sharp gradient in the equilibrium pitch-angle distributions. We also find that the equilibrium solutions are quite sensitive to various aspects of the physics model employed in the 1973 paper that can be improved, suggesting that additional work needs to be done to fully understand the equilibirum nature of the trapped electron radiation belts.

  12. Ex vivo laser lipolysis assisted with radially diffusing optical applicator

    NASA Astrophysics Data System (ADS)

    Hwang, Jieun; Hau, Nguyen Trung; Park, Sung Yeon; Rhee, Yun-Hee; Ahn, Jin-Chul; Kang, Hyun Wook

    2016-05-01

    Laser-assisted lipolysis has been implemented to reduce body fat in light of thermal interactions with adipose tissue. However, using a flat fiber with high irradiance often needs rapid cannula movements and even undesirable thermal injury due to direct tissue contact. The aim of the current study was to explore the feasibility of a radially diffusing optical applicator to liquefy the adipose tissue for effective laser lipolysis. The proposed diffuser was evaluated with a flat fiber in terms of temperature elevation and tissue liquefaction after laser lipolysis with a 980-nm wavelength. Given the same power (20 W), the diffusing applicator generated a 30% slower temperature increase with a 25% lower maximum temperature (84±3.2°C in 1 min p<0.001) in the tissue, compared with the flat fiber. Under the equivalent temperature development, the diffuser induced up to fivefold larger area of the adipose liquefaction due to radial light emission than the flat fiber. Ex vivo tissue tests for 5-min irradiation demonstrated that the diffuser (1.24±0.15 g) liquefied 66% more adipose tissue than the flat fiber (0.75±0.05 g). The proposed diffusing applicator can be a feasible therapeutic device for laser lipolysis due to low temperature development and wide coverage of thermal treatment.

  13. Lossy radial diffusion of relativistic Jovian electrons. [calculation of synchrotron radiation and electron radiation for Jupiter

    NASA Technical Reports Server (NTRS)

    Barbosa, D. D.; Coroniti, F. V.

    1976-01-01

    The radial diffusion equation with synchrotron losses was solved by the Laplace transform method for near-equatorially mirroring relativistic electrons. The evolution of a power law distribution function was found and the characteristics of synchrotron burn-off are stated in terms of explicit parameters for an arbitrary diffusion coefficient. Emissivity from the radiation belts of Jupiter was studied. Asymptotic forms for the distribution in the strong synchrotron loss regime are provided.

  14. Determining Enzyme Activity by Radial Diffusion

    ERIC Educational Resources Information Center

    Davis, Bill D.

    1977-01-01

    Discusses advantages of radial diffusion assay in determining presence of enzyme and/or rough approximation of amount of enzyme activities. Procedures are included for the preparation of starch-agar plates, and the application and determination of enzyme. Techniques using plant materials (homogenates, tissues, ungerminated embryos, and seedlings)…

  15. Evaluation of Particle Pinch and Diffusion Coefficients in the Edge Pedestal of DIII-D H-mode Discharges

    NASA Astrophysics Data System (ADS)

    Stacey, W. M.; Groebner, R. J.

    2009-11-01

    Momentum balance requires that the radial particle flux satisfy a pinch-diffusion relationship. The pinch can be evaluated in terms of measurable quantities (rotation velocities, Er, etc.) by the use of momentum and particle balance [1,2], the radial particle flux can be determined by momentum balance, and then the diffusion coefficient can be evaluated from the pinch diffusion relation using the measured density gradient. Applications to several DIII-D H-mode plasmas are presented. 6pt [1] W.M. Stacey, Contr. Plasma Phys. 48, 94 (2008). [2] W.M. Stacey and R.J. Groebner, Phys. Plasmas 15, 012503 (2008).

  16. Ratchet effect for nanoparticle transport in hair follicles.

    PubMed

    Radtke, Matthias; Patzelt, Alexa; Knorr, Fanny; Lademann, Jürgen; Netz, Roland R

    2017-07-01

    The motion of a single rigid nanoparticle inside a hair follicle is investigated by means of Brownian dynamics simulations. The cuticular hair structure is modeled as a periodic asymmetric ratchet-shaped surface. Induced by oscillating radial hair motion we find directed nanoparticle transport into the hair follicle with maximal velocity at a specific optimal frequency and an optimal particle size. We observe flow reversal when switching from radial to axial oscillatory hair motion. We also study the diffusion behavior and find strongly enhanced diffusion for axial motion with a diffusivity significantly larger than for free diffusion. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Wave Augmented Diffusers for Centrifugal Compressors

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.; Skoch, Gary J.

    1998-01-01

    A conceptual device is introduced which would utilize unsteady wave motion to slow and turn flows in the diffuser section of a centrifugal compressor. The envisioned device would substantially reduce the size of conventional centrifugal diffusers by eliminating the relatively large ninety degree bend needed to turn the flow from the radial/tangential to the axial direction. The bend would be replaced by a wall and the flow would instead exit through a series of rotating ports located on a disk, adjacent to the diffuser hub, and fixed to the impeller shaft. The ports would generate both expansion and compression waves which would rapidly transition from the hub/shroud (axial) direction to the radial/tangential direction. The waves would in turn induce radial/tangential and axial flow. This paper presents a detailed description of the device. Simplified cycle analysis and performance results are presented which were obtained using a time accurate, quasi-one-dimensional CFD code with models for turning, port flow conditions, and losses due to wall shear stress. The results indicate that a periodic wave system can be established which yields diffuser performance comparable to a conventional diffuser. Discussion concerning feasibility, accuracy, and integration follow.

  18. Ion radial diffusion in an electrostatic impulse model for stormtime ring current formation

    NASA Technical Reports Server (NTRS)

    Chen, Margaret W.; Schulz, Michael; Lyons, Larry R.; Gorney, David J.

    1992-01-01

    Two refinements to the quasi-linear theory of ion radial diffusion are proposed and examined analytically with simulations of particle trajectories. The resonance-broadening correction by Dungey (1965) is applied to the quasi-linear diffusion theory by Faelthammar (1965) for an individual model storm. Quasi-linear theory is then applied to the mean diffusion coefficients resulting from simulations of particle trajectories in 20 model storms. The correction for drift-resonance broadening results in quasi-linear diffusion coefficients with discrepancies from the corresponding simulated values that are reduced by a factor of about 3. Further reductions in the discrepancies are noted following the averaging of the quasi-linear diffusion coefficients, the simulated coefficients, and the resonance-broadened coefficients for the 20 storms. Quasi-linear theory provides good descriptions of particle transport for a single storm but performs even better in conjunction with the present ensemble-averaging.

  19. Gray Matter Atrophy Is Primarily Related to Demyelination of Lesions in Multiple Sclerosis: A Diffusion Tensor Imaging MRI Study.

    PubMed

    Tóth, Eszter; Szabó, Nikoletta; Csete, Gergõ; Király, András; Faragó, Péter; Spisák, Tamás; Bencsik, Krisztina; Vécsei, László; Kincses, Zsigmond T

    2017-01-01

    Objective: Cortical pathology, periventricular demyelination, and lesion formation in multiple sclerosis (MS) are related (Hypothesis 1). Factors in the cerebrospinal fluid close to these compartments could possibly drive the parallel processes. Alternatively, the cortical atrophy could be caused by remote axonal transection (Hypothesis 2). Since MRI can differentiate between demyelination and axon loss, we used this imaging modality to investigate the correlation between the pattern of diffusion parameter changes in the periventricular- and deep white matter and the gray matter atrophy. Methods: High-resolution T1-weighted, FLAIR, and diffusion MRI images were acquired in 52 RRMS patients and 50 healthy, age-matched controls. We used EDSS to estimate the clinical disability. We used Tract Based Spatial Statistics to compare diffusion parameters (fractional anisotropy, mean, axial, and radial diffusivity) between groups. We evaluated global brain, white, and gray matter atrophy with SIENAX. Averaged, standard diffusion parameters were calculated in four compartment: periventricular lesioned and normal appearing white matter, non-periventricular lesioned and normal appearing white matter. PLS regression was used to identify which diffusion parameter and in which compartment best predicts the brain atrophy and clinical disability. Results: In our diffusion tensor imaging study compared to controls we found extensive alterations of fractional anisotropy, mean and radial diffusivity and smaller changes of axial diffusivity (maximal p > 0.0002) in patients that suggested demyelination in the lesioned and in the normal appearing white matter. We found significant reduction in total brain, total white, and gray matter (patients: 718.764 ± 14.968, 323.237 ± 7.246, 395.527 ± 8.050 cm 3 , controls: 791.772 ± 22.692, 355.350 ± 10.929, 436.422 ± 12.011 cm 3 ; mean ± SE), ( p < 0.015; p < 0.0001; p < 0.009; respectively) of patients compared to controls. The PLS analysis revealed a combination of demyelination-like diffusion parameters (higher mean and radial diffusivity in patients) in the lesions and in the non-lesioned periventricular white matter, which best predicted the gray matter atrophy ( p < 0.001). Similarly, EDSS was best predicted by the radial diffusivity of the lesions and the non-lesioned periventricular white matter, but axial diffusivity of the periventricular lesions also contributed significantly ( p < 0.0001). Interpretation: Our investigation showed that gray matter atrophy and white matter demyelination are related in MS but white matter axonal loss does not significantly contribute to the gray matter pathology.

  20. Lognormal-like statistics of a stochastic squeeze process

    NASA Astrophysics Data System (ADS)

    Shapira, Dekel; Cohen, Doron

    2017-10-01

    We analyze the full statistics of a stochastic squeeze process. The model's two parameters are the bare stretching rate w and the angular diffusion coefficient D . We carry out an exact analysis to determine the drift and the diffusion coefficient of log(r ) , where r is the radial coordinate. The results go beyond the heuristic lognormal description that is implied by the central limit theorem. Contrary to the common "quantum Zeno" approximation, the radial diffusion is not simply Dr=(1 /8 ) w2/D but has a nonmonotonic dependence on w /D . Furthermore, the calculation of the radial moments is dominated by the far non-Gaussian tails of the log(r ) distribution.

  1. Radial diffusion comparing a THEMIS statistical model with geosynchronous measurements as the outer boundary

    NASA Astrophysics Data System (ADS)

    Li, Z.; Hudson, M. K.; Chen, Y.

    2013-12-01

    The outer boundary energetic electron flux is used as a driver in radial diffusion calculations, and its precise determination is critical to the solution. A new model was proposed recently based on THEMIS measurements to express the boundary flux as three fit functions of solar wind parameters in a response window, that depend on energy and which solar parameter is used: speed, density, or both (Shin and Lee, 2013). The Dartmouth radial diffusion model has been run using LANL geosynchronous satellite measurements as the outer boundary for a one-month interval in July to August 2004 and the calculated phase space density (PSD) is compared with GPS measurements at the GPS orbit (L=4.16), at magnetic equatorial plane crossings, as a test of the model. We also used the outer boundary generated from the Shin and Lee model and examined this boundary condition by computing the error relative to the simulation using a LANL geosynchronous spacecraft data-driven outer boundary. The calculation shows that there is overestimation and underestimation at different times, however the new boundary condition can be used to drive the radial diffusion model generally, producing the phase space density increase and dropout during a storm with a relatively small error. Having this new method based on a solar wind parametrized data set, we can run the radial diffusion model for storms when particle measurements are not available at the outer boundary. We chose the Whole Heliosphere Interval (WHI) as an example and compared the result with MHD/test-particle simulations (Hudson et al., 2012), obtaining much better agreement with PSD based on GPS measurements at L=4.16 using the diffusion model, which incorporates atmospheric losses.

  2. Air cycle machine for an aircraft environmental control system

    NASA Technical Reports Server (NTRS)

    Decrisantis, Angelo A. (Inventor); O'Coin, James R. (Inventor); Taddey, Edmund P. (Inventor)

    2010-01-01

    An ECS system includes an ACM mounted adjacent an air-liquid heat exchanger through a diffuser that contains a diffuser plate. The diffuser plate receives airflow from the ACM which strikes the diffuser plate and flows radially outward and around the diffuser plate and into the air-liquid heat exchanger to provide minimal pressure loss and proper flow distribution into the air-liquid heat exchanger with significantly less packaging space.

  3. Gestational Age at Birth and Brain White Matter Development in Term-Born Infants and Children.

    PubMed

    Ou, X; Glasier, C M; Ramakrishnaiah, R H; Kanfi, A; Rowell, A C; Pivik, R T; Andres, A; Cleves, M A; Badger, T M

    2017-12-01

    Studies on infants and children born preterm have shown that adequate gestational length is critical for brain white matter development. Less is known regarding how variations in gestational age at birth in term infants and children affect white matter development, which was evaluated in this study. Using DTI tract-based spatial statistics methods, we evaluated white matter microstructures in 2 groups of term-born (≥37 weeks of gestation) healthy subjects: 2-week-old infants ( n = 44) and 8-year-old children ( n = 63). DTI parameters including fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity were calculated by voxelwise and ROI methods and were correlated with gestational age at birth, with potential confounding factors such as postnatal age and sex controlled. Fractional anisotropy values, which are markers for white matter microstructural integrity, positively correlated ( P < .05, corrected) with gestational age at birth in most major white matter tracts/regions for the term infants. Mean diffusivity values, which are measures of water diffusivities in the brain, and axial and radial diffusivity values, which are markers for axonal growth and myelination, respectively, negatively correlated ( P < .05, corrected) with gestational age at birth in all major white matter tracts/regions excluding the body and splenium of the corpus callosum for the term infants. No significant correlations with gestational age were observed for any tracts/regions for the term-born 8-year-old children. Our results indicate that longer gestation during the normal term period is associated with significantly greater infant white matter development (as reflected by higher fractional anisotropy and lower mean diffusivity, axial diffusivity, and radial diffusivity values); however, similar associations were not observable in later childhood. © 2017 by American Journal of Neuroradiology.

  4. White matter alterations in the brains of patients with active, remitted, and cured cushing syndrome: a DTI study.

    PubMed

    Pires, P; Santos, A; Vives-Gilabert, Y; Webb, S M; Sainz-Ruiz, A; Resmini, E; Crespo, I; de Juan-Delago, M; Gómez-Anson, B

    2015-06-01

    Cushing syndrome appears after chronic exposure to elevated glucocorticoid levels. Cortisol excess may alter white matter microstructure. Our purpose was to study WM changes in patients with Cushing syndrome compared with controls by using DTI and the influence of hypercortisolism. Thirty-five patients with Cushing syndrome and 35 healthy controls, matched for age, education, and sex, were analyzed through DTI (tract-based spatial statistics) for fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity (general linear model, family-wise error, and threshold-free cluster enhancement corrections, P < .05). Furthermore, the influence of hypercortisolism on WM DTI changes was studied by comparing 4 subgroups: 8 patients with Cushing syndrome with active hypercortisolism, 7 with Cushing syndrome with medication-remitted cortisol, 20 surgically cured, and 35 controls. Cardiovascular risk factors were used as covariates. In addition, correlations were analyzed among DTI values, concomitant 24-hour urinary free cortisol levels, and disease duration. There were widespread alterations (reduced fractional anisotropy, and increased mean diffusivity, axial diffusivity, and radial diffusivity values; P < .05) in patients with Cushing syndrome compared with controls, independent of the cardiovascular risk factors present. Both active and cured Cushing syndrome subgroups showed similar changes compared with controls. Patients with medically remitted Cushing syndrome also had reduced fractional anisotropy and increased mean diffusivity and radial diffusivity values, compared with controls. No correlations were found between DTI maps and 24-hour urinary free cortisol levels or with disease duration. Diffuse WM alterations in patients with Cushing syndrome suggest underlying loss of WM integrity and demyelination. Once present, they seem to be independent of concomitant hypercortisolism, persisting after remission/cure. © 2015 by American Journal of Neuroradiology.

  5. Whole-brain diffusion tensor imaging in correlation to visual-evoked potentials in multiple sclerosis: a tract-based spatial statistics analysis.

    PubMed

    Lobsien, D; Ettrich, B; Sotiriou, K; Classen, J; Then Bergh, F; Hoffmann, K-T

    2014-01-01

    Functional correlates of microstructural damage of the brain affected by MS are incompletely understood. The purpose of this study was to evaluate correlations of visual-evoked potentials with microstructural brain changes as determined by DTI in patients with demyelinating central nervous disease. Sixty-one patients with clinically isolated syndrome or MS were prospectively recruited. The mean P100 visual-evoked potential latencies of the right and left eyes of each patient were calculated and used for the analysis. For DTI acquisition, a single-shot echo-planar imaging pulse sequence with 80 diffusion directions was performed at 3T. Fractional anisotropy, radial diffusivity, and axial diffusivity were calculated and correlated with mean P100 visual-evoked potentials by tract-based spatial statistics. Significant negative correlations between mean P100 visual-evoked potentials and fractional anisotropy and significant positive correlations between mean P100 visual-evoked potentials and radial diffusivity were found widespread over the whole brain. The highest significance was found in the optic radiation, frontoparietal white matter, and corpus callosum. Significant positive correlations between mean P100 visual-evoked potentials and axial diffusivity were less widespread, notably sparing the optic radiation. Microstructural changes of the whole brain correlated significantly with mean P100 visual-evoked potentials. The distribution of the correlations showed clear differences among axial diffusivity, fractional anisotropy, and radial diffusivity, notably in the optic radiation. This finding suggests a stronger correlation of mean P100 visual-evoked potentials to demyelination than to axonal damage. © 2014 by American Journal of Neuroradiology.

  6. Coupling of Outward Radial Diffusion and Losses at the Magnetopause in the Outer Radiation Belt

    NASA Astrophysics Data System (ADS)

    Castillo Tibocha, A. M.; Shprits, Y.; Drozdov, A.; Kellerman, A. C.; Aseev, N.

    2017-12-01

    Sudden dropouts observed in relativistic electron fluxes within the radiation belts are one the most studied and yet poorly understood features of the dynamics of radiation belts. A number of physical processes contributing to these dropout events are triggered by solar wind drivers. Magnetopause losses are one of the most effective mechanisms involved here and usually occur when drifting particles reach the boundary or when inward motion of the magnetopause crosses closed particle drift shells. In both cases, particles are rapidly transported into interplanetary space generating sharp gradients in electron PSD that will promote further outward radial diffusion of particles due to adiabatic transport and the influence of outward ULF waves. Studies suggest that the coupling of these two mechanisms explains nearly all the depletion of MeV electrons observed in the outer region of the radiation belts (L*>5). In this study, we present a simple approach to model electron losses at the magnetopause and outward radial diffusion in the outer radiation belt during geomagnetic storm time. Measured upstream solar wind parameters were used to calculate the radial distance of the subsolar point as proposed by Shue et al. (1997), which was defined as the radial extent of our assumed dipole field configuration. Radial diffusion was modelled using the empirical Kp-dependent DLL [Brautigam and Albert, JGR 2000] diffusion coefficient, which is included in the 3D Versatile Electron Radiation Belt (VERB) code. Simulations of geomagnetic storms were performed in order to evaluate the effects of the integrated mechanisms and the results were compared with Van Allen probe satellite data. Our simulation results reproduce well the observed loss at the magnetopause and electron depletion in the outer radiation belt.

  7. Evolution of Edge Pedestal Profiles Over the L-H Transition

    NASA Astrophysics Data System (ADS)

    Sayer, M. S.; Stacey, W. M.; Floyd, J. P.; Groebner, R. J.

    2012-10-01

    The detailed time evolution of thermal diffusivities, electromagnetic forces, pressure gradients, particle pinch and momentum transport frequencies (which determine the diffusion coefficient) have been analyzed during the L-H transition in a DIII-D discharge. Density, temperature, rotation velocity and electric field profiles at times just before and after the L-H transition are analyzed in terms of these quantities. The analysis is based on the fluid particle balance, energy balance, force balance and heat conduction equations, as in Ref. [1], but with much greater time resolution and with account for thermal ion orbit loss. The variation of diffusive and non-diffusive transport over the L-H transition is determined from the variation in the radial force balance (radial electric field, VxB force, and pressure gradient) and the variation in the interpreted diffusive transport coefficients. 6pt [1] W.M. Stacey and R.J. Groebner, Phys. Plasmas 17, 112512 (2010).

  8. Global Search of a Three-dimensional Low Solidity Circular Cascade Diffuser for Centrifugal Blowers by Meta-model Assisted Optimization

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Daisaku; Sakue, Daiki; Tun, Min Thaw

    2018-04-01

    A three-dimensional blade of a low solidity circular cascade diffuser in centrifugal blowers is designed by means of a multi-point optimization technique. The optimization aims at improving static pressure coefficient at a design point and at a small flow rate condition. Moreover, a clear definition of secondary flow expressed by positive radial velocity at hub side is taken into consideration in constraints. The number of design parameters for three-dimensional blade reaches to 10 in this study, such as a radial gap, a radial chord length and mean camber angle distribution of the LSD blade with five control points, control point between hub and shroud with two design freedom. Optimization results show clear Pareto front and selected optimum design shows good improvement of pressure rise in diffuser at small flow rate conditions. It is found that three-dimensional blade has advantage to stabilize the secondary flow effect with improving pressure recovery of the low solidity circular cascade diffuser.

  9. Bayesian inference of radiation belt loss timescales.

    NASA Astrophysics Data System (ADS)

    Camporeale, E.; Chandorkar, M.

    2017-12-01

    Electron fluxes in the Earth's radiation belts are routinely studied using the classical quasi-linear radial diffusion model. Although this simplified linear equation has proven to be an indispensable tool in understanding the dynamics of the radiation belt, it requires specification of quantities such as the diffusion coefficient and electron loss timescales that are never directly measured. Researchers have so far assumed a-priori parameterisations for radiation belt quantities and derived the best fit using satellite data. The state of the art in this domain lacks a coherent formulation of this problem in a probabilistic framework. We present some recent progress that we have made in performing Bayesian inference of radial diffusion parameters. We achieve this by making extensive use of the theory connecting Gaussian Processes and linear partial differential equations, and performing Markov Chain Monte Carlo sampling of radial diffusion parameters. These results are important for understanding the role and the propagation of uncertainties in radiation belt simulations and, eventually, for providing a probabilistic forecast of energetic electron fluxes in a Space Weather context.

  10. Diffuse Cosmic Rays Shining in the Galactic Center: A Novel Interpretation of H.E.S.S. and Fermi-LAT γ-Ray Data.

    PubMed

    Gaggero, D; Grasso, D; Marinelli, A; Taoso, M; Urbano, A

    2017-07-21

    We present a novel interpretation of the γ-ray diffuse emission measured by Fermi-LAT and H.E.S.S. in the Galactic center (GC) region and the Galactic ridge (GR). In the first part we perform a data-driven analysis based on PASS8 Fermi-LAT data: We extend down to a few GeV the spectra measured by H.E.S.S. and infer the primary cosmic-ray (CR) radial distribution between 0.1 and 3 TeV. In the second part we adopt a CR transport model based on a position-dependent diffusion coefficient. Such behavior reproduces the radial dependence of the CR spectral index recently inferred from the Fermi-LAT observations. We find that the bulk of the GR emission can be naturally explained by the interaction of the diffuse steady-state Galactic CR sea with the gas present in the central molecular zone. Although we confirm the presence of a residual radial-dependent emission associated with a central source, the relevance of the large-scale diffuse component prevents to claim a solid evidence of GC pevatrons.

  11. A radial basis function Galerkin method for inhomogeneous nonlocal diffusion

    DOE PAGES

    Lehoucq, Richard B.; Rowe, Stephen T.

    2016-02-01

    We introduce a discretization for a nonlocal diffusion problem using a localized basis of radial basis functions. The stiffness matrix entries are assembled by a special quadrature routine unique to the localized basis. Combining the quadrature method with the localized basis produces a well-conditioned, sparse, symmetric positive definite stiffness matrix. We demonstrate that both the continuum and discrete problems are well-posed and present numerical results for the convergence behavior of the radial basis function method. As a result, we explore approximating the solution to anisotropic differential equations by solving anisotropic nonlocal integral equations using the radial basis function method.

  12. A quiescent state of 3 to 8 MeV radiation belt electrons

    NASA Astrophysics Data System (ADS)

    Selesnick, R. S.; Blake, J. B.; Kolasinski, W. A.; Fritz, T. A.

    During a ∼3 month period in mid-1996 outer radiation belt electrons in the energy range from ∼ 3 to 8 MeV were diffusing inward and decaying in intensity with no internal or external source. Measurements from the HIST instrument on POLAR are used to constrain a model for time dependent lossy radial diffusion of these electrons, and to obtain estimates of a parameterized radial diffusion coefficient and lifetime. For lower energy electrons, of ∼ 1 to 3 MeV, a source at L > 6 is apparent throughout most of the same period.

  13. Radial diffusion with outer boundary determined by geosynchronous measurements: Storm and post-storm intervals

    NASA Astrophysics Data System (ADS)

    Chu, F.; Haines, P.; Hudson, M.; Kress, B.; Freidel, R.; Kanekal, S.

    2007-12-01

    Work is underway by several groups to quantify diffusive radial transport of radiation belt electrons, including a model for pitch angle scattering losses to the atmosphere. The radial diffusion model conserves the first and second adiabatic invariants and breaks the third invariant. We have developed a radial diffusion code which uses the Crank Nicholson method with a variable outer boundary condition. For the radial diffusion coefficient, DLL, we have several choices, including the Brautigam and Albert (JGR, 2000) diffusion coefficient parameterized by Kp, which provides an ad hoc measure of the power level at ULF wave frequencies in the range of electron drift (mHz), breaking the third invariant. Other diffusion coefficient models are Kp-independent, fixed in time but explicitly dependent on the first invariant, or energy at a fixed L, such as calculated by Elkington et al. (JGR, 2003) and Perry et al. (JGR, 2006) based on ULF wave model fields. We analyzed three periods of electron flux and phase space density (PSD) enhancements inside of geosynchronous orbit: March 31 - May 31, 1991, and July 2004 and Nov 2004 storm intervals. The radial diffusion calculation is initialized with a computed phase space density profile for the 1991 interval using differential flux values from the CRRES High Energy Electron Fluxmeter instrument, covering 0.65 - 7.5 MeV. To calculate the initial phase space density, we convert Roederer L* to McIlwain's L- parameter using the ONERA-DESP program. A time averaged model developed by Vampola1 from the entire 14 month CRRES data set is applied to the July 2004 and Nov 2004 storms. The online CRESS data for specific orbits and the Vampola-model flux are both expressed in McIlwain L-shell, while conversion to L* conserves phase space density in a distorted non-dipolar magnetic field model. A Tsyganenko (T04) magnetic field model is used for conversion between L* and L. The outer boundary PSD is updated using LANL GEO satellite fluxes. After calculating the phase space density time evolution for the two storms and post-injection interval (March 31 - May 31, 1991), we compare results with SAMPEX measurements. A better match with SAMPEX measurements is obtained with a variable outer boundary, also with a Kp-dependent diffusion coefficient, and finally with an energy and L-dependent loss term (Summers et al., JGR, 2004), than with a time-independent diffusion coefficient and a simple Kp-parametrized loss rate and location of the plasmapause. Addition of a varying outer boundary which incorporates measured fluxes at geosynchronous orbit using L* has the biggest effect of the three parametrized variations studied. 1Vampola, A.L., 1996, The ESA Outer Zone Electron Model Update, Environment Modelling for Spaced-based Applications, ESA SP-392, ESTEC, Nordwijk, NL, pp. 151-158, W. Burke and T.-D. Guyenne, eds.

  14. Design and optimization of a single stage centrifugal compressor for a solar dish-Brayton system

    NASA Astrophysics Data System (ADS)

    Wang, Yongsheng; Wang, Kai; Tong, Zhiting; Lin, Feng; Nie, Chaoqun; Engeda, Abraham

    2013-10-01

    According to the requirements of a solar dish-Brayton system, a centrifugal compressor stage with a minimum total pressure ratio of 5, an adiabatic efficiency above 75% and a surge margin more than 12% needs to be designed. A single stage, which consists of impeller, radial vaned diffuser, 90° crossover and two rows of axial stators, was chosen to satisfy this system. To achieve the stage performance, an impeller with a 6:1 total pressure ratio and an adiabatic efficiency of 90% was designed and its preliminary geometry came from an in-house one-dimensional program. Radial vaned diffuser was applied downstream of the impeller. Two rows of axial stators after 90° crossover were added to guide the flow into axial direction. Since jet-wake flow, shockwave and boundary layer separation coexisted in the impeller-diffuser region, optimization on the radius ratio of radial diffuser vane inlet to impeller exit, diffuser vane inlet blade angle and number of diffuser vanes was carried out at design point. Finally, an optimized centrifugal compressor stage fulfilled the high expectations and presented proper performance. Numerical simulation showed that at design point the stage adiabatic efficiency was 79.93% and the total pressure ratio was 5.6. The surge margin was 15%. The performance map including 80%, 90% and 100% design speed was also presented.

  15. Hybrid finite element and Brownian dynamics method for diffusion-controlled reactions.

    PubMed

    Bauler, Patricia; Huber, Gary A; McCammon, J Andrew

    2012-04-28

    Diffusion is often the rate determining step in many biological processes. Currently, the two main computational methods for studying diffusion are stochastic methods, such as Brownian dynamics, and continuum methods, such as the finite element method. This paper proposes a new hybrid diffusion method that couples the strengths of each of these two methods. The method is derived for a general multidimensional system, and is presented using a basic test case for 1D linear and radially symmetric diffusion systems.

  16. Influence of fast alpha diffusion and thermal alpha buildup on tokamak reactor performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uckan, N.A.; Tolliver, J.S.; Houlberg, W.A.

    1987-11-01

    The effect of fast alpha diffusion and thermal alpha accumulation on the confinement capability of a candidate Engineering Test Reactor (ETR) plasma (Tokamak Ignition/Burn Experimental Reactor (TIBER-II)) in achieving ignition and steady-state driven operation has been assessed using both global and 1-1/2-D transport models. Estimates are made of the threshold for radial diffusion of fast alphas and thermal alpha buildup. It is shown that a relatively low level of radial transport, when combined with large gradients in the fast alpha density, leads to a significant radial flow with a deleterious effect on plasma performance. Similarly, modest levels of thermal alphamore » concentration significantly influence the ignition and steady-state burn capability. 23 refs., 9 figs., 4 tabs.« less

  17. Turbine exhaust diffuser with region of reduced flow area and outer boundary gas flow

    DOEpatents

    Orosa, John

    2014-03-11

    An exhaust diffuser system and method for a turbine engine. The outer boundary may include a region in which the outer boundary extends radially inwardly toward the hub structure and may direct at least a portion of an exhaust flow in the diffuser toward the hub structure. At least one gas jet is provided including a jet exit located on the outer boundary. The jet exit may discharge a flow of gas downstream substantially parallel to an inner surface of the outer boundary to direct a portion of the exhaust flow in the diffuser toward the outer boundary to effect a radially outward flow of at least a portion of the exhaust gas flow toward the outer boundary to balance an aerodynamic load between the outer and inner boundaries.

  18. An experimental investigation of two large annular diffusers with swirling and distorted inflow

    NASA Technical Reports Server (NTRS)

    Eckert, W. T.; Johnston, J. P.; Simons, T. D.; Mort, K. W.; Page, V. R.

    1980-01-01

    Two annular diffusers downstream of a nacelle-mounted fan were tested for aerodynamic performance, measured in terms of two static pressure recovery parameters (one near the diffuser exit plane and one about three diameters downstream in the settling duct) in the presence of several inflow conditions. The two diffusers each had an inlet diameter of 1.84 m, an area ratio of 2.3, and an equivalent cone angle of 11.5, but were distinguished by centerbodies of different lengths. The dependence of diffuser performance on various combinations of swirling, radially distorted, and/or azimuthally distorted inflow was examined. Swirling flow and distortions in the axial velocity profile in the annulus upstream of the diffuser inlet were caused by the intrinsic flow patterns downstream of a fan in a duct and by artificial intensification of the distortions. Azimuthal distortions or defects were generated by the addition of four artificial devices (screens and fences). Pressure recovery data indicated beneficial effects of both radial distortion (for a limited range of distortion levels) and inflow swirl. Small amounts of azimuthal distortion created by the artificial devices produced only small effects on diffuser performance. A large artificial distortion device was required to produce enough azimuthal flow distortion to significantly degrade the diffuser static pressure recovery.

  19. Position-Dependent Diffusion Tensors in Anisotropic Media from Simulation: Oxygen Transport in and through Membranes.

    PubMed

    Ghysels, An; Venable, Richard M; Pastor, Richard W; Hummer, Gerhard

    2017-06-13

    A Bayesian-based methodology is developed to estimate diffusion tensors from molecular dynamics simulations of permeants in anisotropic media, and is applied to oxygen in lipid bilayers. By a separation of variables in the Smoluchowski diffusion equation, the multidimensional diffusion is reduced to coupled one-dimensional diffusion problems that are treated by discretization. The resulting diffusivity profiles characterize the membrane transport dynamics as a function of the position across the membrane, discriminating between diffusion normal and parallel to the membrane. The methodology is first validated with neat water, neat hexadecane, and a hexadecane slab surrounded by water, the latter being a simple model for a lipid membrane. Next, a bilayer consisting of pure 1-palmitoyl 2-oleoylphosphatidylcholine (POPC), and a bilayer mimicking the lipid composition of the inner mitochondrial membrane, including cardiolipin, are investigated. We analyze the detailed time evolution of oxygen molecules, in terms of both normal diffusion through and radial diffusion inside the membrane. Diffusion is fast in the more loosely packed interleaflet region, and anisotropic, with oxygen spreading more rapidly in the membrane plane than normal to it. Visualization of the propagator shows that oxygen enters the membrane rapidly, reaching its thermodynamically favored center in about 1 ns, despite the free energy barrier at the headgroup region. Oxygen transport is quantified by computing the oxygen permeability of the membranes and the average radial diffusivity, which confirm the anisotropy of the diffusion. The position-dependent diffusion constants and free energies are used to construct compartmental models and test assumptions used in estimating permeability, including Overton's rule. In particular, a hexadecane slab surrounded by water is found to be a poor model of oxygen transport in membranes because the relevant energy barriers differ substantially.

  20. Longitudinal brain white matter alterations in minimal hepatic encephalopathy before and after liver transplantation.

    PubMed

    Lin, Wei-Che; Chou, Kun-Hsien; Chen, Chao-Long; Chen, Hsiu-Ling; Lu, Cheng-Hsien; Li, Shau-Hsuan; Huang, Chu-Chung; Lin, Ching-Po; Cheng, Yu-Fan

    2014-01-01

    Cerebral edema is the common pathogenic mechanism for cognitive impairment in minimal hepatic encephalopathy. Whether complete reversibility of brain edema, cognitive deficits, and their associated imaging can be achieved after liver transplantation remains an open question. To characterize white matter integrity before and after liver transplantation in patients with minimal hepatic encephalopathy, multiple diffusivity indices acquired via diffusion tensor imaging was applied. Twenty-eight patients and thirty age- and sex-matched healthy volunteers were included. Multiple diffusivity indices were obtained from diffusion tensor images, including mean diffusivity, fractional anisotropy, axial diffusivity and radial diffusivity. The assessment was repeated 6-12 month after transplantation. Differences in white matter integrity between groups, as well as longitudinal changes, were evaluated using tract-based spatial statistical analysis. Correlation analyses were performed to identify first scan before transplantation and interval changes among the neuropsychiatric tests, clinical laboratory tests, and diffusion tensor imaging indices. After transplantation, decreased water diffusivity without fractional anisotropy change indicating reversible cerebral edema was found in the left anterior cingulate, claustrum, postcentral gyrus, and right corpus callosum. However, a progressive decrease in fractional anisotropy and an increase in radial diffusivity suggesting demyelination were noted in temporal lobe. Improved pre-transplantation albumin levels and interval changes were associated with better recoveries of diffusion tensor imaging indices. Improvements in interval diffusion tensor imaging indices in the right postcentral gyrus were correlated with visuospatial function score correction. In conclusion, longitudinal voxel-wise analysis of multiple diffusion tensor imaging indices demonstrated different white matter changes in minimal hepatic encephalopathy patients. Transplantation improved extracellular cerebral edema and the results of associated cognition tests. However, white matter demyelination may advance in temporal lobe.

  1. Separation of Electric Fields Into Potential and Inductive Parts, and Implications for Radial Diffusion

    NASA Astrophysics Data System (ADS)

    Chan, A. A.; Ilie, R.; Elkington, S. R.; Albert, J.; Huie, W.

    2017-12-01

    It has been traditional to separate radiation belt radial-diffusion coefficients into two contributions: an "electrostatic" diffusion coefficient, which is assumed to be due to a potential (non-inductive) electric field, and an "electromagnetic" diffusion coefficient , which is assumed to be due to the combined effect of an inductive electric field and the corresponding time-dependent magnetic field. One difficulty in implementing this separation when using magnetospheric fields obtained from measurements, or from MHD simulations, is that only the total electric field is given; the separation of the electric field into potential and inductive parts is not readily available. In this work we separate the electric field using a numerical method based on the Helmholtz decomposition of the total motional electric field calculated by the BATS-R-US MHD code. The inner boundary for the electric potential is based on the Ridley Ionospheric Model solution and we assume floating boundary conditions in the solar wind. Using different idealized solar wind drivers, including a solar wind density that is oscillating at a single frequency or with a broad spectrum of frequencies, we calculate potential and inductive electric fields, electric and magnetic power spectral densities, and corresponding radial diffusion coefficients. Simulations driven by idealized solar wind conditions show a clear separation of the potential and inductive contributions to the power spectral densities and diffusion coefficients. Simulations with more realistic solar wind drivers are underway to better assess the use of electrostatic and electromagnetic diffusion coefficients in understanding ULF wave-particle interactions in Earth's radiation belts.

  2. A model-based reconstruction for undersampled radial spin echo DTI with variational penalties on the diffusion tensor

    PubMed Central

    Knoll, Florian; Raya, José G; Halloran, Rafael O; Baete, Steven; Sigmund, Eric; Bammer, Roland; Block, Tobias; Otazo, Ricardo; Sodickson, Daniel K

    2015-01-01

    Radial spin echo diffusion imaging allows motion-robust imaging of tissues with very low T2 values like articular cartilage with high spatial resolution and signal-to-noise ratio (SNR). However, in vivo measurements are challenging due to the significantly slower data acquisition speed of spin-echo sequences and the less efficient k-space coverage of radial sampling, which raises the demand for accelerated protocols by means of undersampling. This work introduces a new reconstruction approach for undersampled DTI. A model-based reconstruction implicitly exploits redundancies in the diffusion weighted images by reducing the number of unknowns in the optimization problem and compressed sensing is performed directly in the target quantitative domain by imposing a Total Variation (TV) constraint on the elements of the diffusion tensor. Experiments were performed for an anisotropic phantom and the knee and brain of healthy volunteers (3 and 2 volunteers, respectively). Evaluation of the new approach was conducted by comparing the results to reconstructions performed with gridding, combined parallel imaging and compressed sensing, and a recently proposed model-based approach. The experiments demonstrated improvement in terms of reduction of noise and streaking artifacts in the quantitative parameter maps as well as a reduction of angular dispersion of the primary eigenvector when using the proposed method, without introducing systematic errors into the maps. This may enable an essential reduction of the acquisition time in radial spin echo diffusion tensor imaging without degrading parameter quantification and/or SNR. PMID:25594167

  3. ULF Wave Analysis and Radial Diffusion Calculation Using a Global MHD Model for the 17 March 2015 Storm and Comparison with the 17 March 2013 Storm

    NASA Astrophysics Data System (ADS)

    Li, Z.; Hudson, M.; Paral, J.; Wiltberger, M. J.; Boyd, A. J.; Turner, D. L.

    2016-12-01

    The 17 March 2015 `St. Patrick's Day Storm' is the largest geomagnetic storm to date of Solar Cycle 24, with a Dst of -223 nT. The magnetopause moved inside geosynchronous orbit under high solar wind dynamic pressure and strong southward IMF Bz causing loss, however a subsequent drop in pressure allowed for rapid rebuilding of the radiation belts. Local heating has been modeled by other groups for this and the 17 March 2013 storm, only slightly weaker and showing a similar effect on electrons: first a rapid dropout due to inward motion of the magnetopause followed by rapid increase in flux above the pre-storm level and an even greater slow increase likely due to radial diffusion. The latter can be seen in temporal evolution of the electron phase space density measured by the Energetic Particle, Composition, and Thermal Plasma Suite (ECT) instrument on Van Allen Probes. Using the Lyon-Fedder-Mobarry global MHD model driven by upstream solar wind measurements with the Magneotsphere-Ionosphere Coupler (MIX), we have simulated both `St. Patrick's Day'events, analyzing LFM electric and magnetic fields to calculate radial diffusion coefficients. These coefficients have been implemented in a radial diffusion code using the measured electron phase space density profile following the local heating and as the outer boundary condition for subsequent temporally evolution over the next 12 days, beginning 18 March 2015. Agreement with electron phase space density at 1000 MeV/G measured by the MagEIS component of the ECT instrument on Van Allen Probes (30 keV - 4 MeV) was much improved using radial diffusion coefficients from the MHD simulations relative to coefficients parametrized by a global geomagnetic activity index.

  4. An inverse moisture diffusion algorithm for the determination of diffusion coefficient

    Treesearch

    Jen Y. Liu; William T. Simpson; Steve P. Verrill

    2000-01-01

    The finite difference approximation is applied to estimate the moisture-dependent diffusion coefficient by utilizing test data of isothermal moisture desorption in northern red oak (Quercus rubra). The test data contain moisture distributions at discrete locations across the thickness of specimens, which coincides with the radial direction of northern red oak, and at...

  5. An inverse moisture diffusion algorithm for the determination of diffusion coefficient

    Treesearch

    Jen Y. Liu; William T. Simpson; Steve P. Verrill

    2001-01-01

    The finite difference approximation is applied to estimate the moisture-dependent diffusion coefficient by utilizing test data of isothermal moisture desorption in northern red oak (Quercus rubra). The test data contain moisture distributions at discrete locations across the thickness of specimens, which coincides with the radial direction of northern red oak, and at...

  6. Fluid self-diffusion in Scots pine sapwood tracheid cells.

    PubMed

    Johannessen, Espen H; Hansen, Eddy W; Rosenholm, Jarl B

    2006-02-09

    The self-diffusion coefficients of water and toluene in Scots pine sapwood was measured using low field pulsed field gradient nuclear magnetic resonance (PFG-NMR). Wood chips of 8 mm diameter were saturated with the respective liquids, and liquid self-diffusion was then traced in one dimension orthogonal to the tracheid cell walls in the wood's radial direction. The experimental echo attenuation curves were exponential, and characteristic self-diffusion coefficients were produced for diffusion times spanning from very short times to times on the order of magnitude of seconds. Observed self-diffusion coefficients were decaying asymptotically as a function of diffusion time, an effect which was ascribed to the cell walls' restriction on confined liquid diffusion. The observed self-diffusion behavior in Scots pine sapwood was compared to self-diffusion coefficients obtained from simulations of diffusion in a square. Principles of molecular displacements in confined geometries were used for elucidating the wood's cellular structure from the observed diffusion coefficients. The results were compared with a mathematical model for diffusion between parallel planes.

  7. Obstructed metabolite diffusion within skeletal muscle cells in silico.

    PubMed

    Aliev, Mayis K; Tikhonov, Alexander N

    2011-12-01

    Using a Monte Carlo simulation technique, we have modeled 3D diffusion of low molecular weight metabolites inside a skeletal muscle cell. The following structural elements are considered: (i) a regular lattice of actin and myosin filaments inside a myofibril, (ii) the membranes of sarcoplasmic reticulum and mitochondria surrounding the myofibrils, (iii) a set of myofibrils inside a skeletal muscle cell encircled by the outer cell membrane, and (iv) an additional set of regular intracellular structures ("macrocompartments") embedded into the cell interior. The macrocompartments are considered to simulate diffusion restrictions because of hypothetical cylindrical structures (16-22 μm in diameter) suggested earlier (de Graaf et al. Biophys J 78: 1657-1664, 2000). This model allowed us to calculate the apparent coefficients of particle diffusion in the radial and axial directions, D(app)(⊥) and D(app)(II), respectively. Particle movements in the axial direction are considered, at first approximation, as unrestricted diffusion (D(app)(II) = const). The apparent coefficient of radial diffusion, D(app)(⊥), decreases with time because of particle collisions with myofilaments and other rigid obstacles. Results of our random walk simulations are in fairly good agreement with experimental data on NMR measurements of restricted radial diffusion of phosphocreatine in white and red skeletal muscles of goldfish (Kinsey et al. NMR Biomed 12:1-7, 1999). Particle reflections from the low-permeable borders of macrocompartments (efficient diameter, D(eff)(MC) ≈ 9.2-10.4 μm) are the prerequisite for agreeing theoretical and experimental data. The low-permeable coverage of hypothetical macrocompartments (99.8% of coverage) provides the main contribution to time-dependent decrease in D(app)(⊥).

  8. Design of Multishell Sampling Schemes with Uniform Coverage in Diffusion MRI

    PubMed Central

    Caruyer, Emmanuel; Lenglet, Christophe; Sapiro, Guillermo; Deriche, Rachid

    2017-01-01

    Purpose In diffusion MRI, a technique known as diffusion spectrum imaging reconstructs the propagator with a discrete Fourier transform, from a Cartesian sampling of the diffusion signal. Alternatively, it is possible to directly reconstruct the orientation distribution function in q-ball imaging, providing so-called high angular resolution diffusion imaging. In between these two techniques, acquisitions on several spheres in q-space offer an interesting trade-off between the angular resolution and the radial information gathered in diffusion MRI. A careful design is central in the success of multishell acquisition and reconstruction techniques. Methods The design of acquisition in multishell is still an open and active field of research, however. In this work, we provide a general method to design multishell acquisition with uniform angular coverage. This method is based on a generalization of electrostatic repulsion to multishell. Results We evaluate the impact of our method using simulations, on the angular resolution in one and two bundles of fiber configurations. Compared to more commonly used radial sampling, we show that our method improves the angular resolution, as well as fiber crossing discrimination. Discussion We propose a novel method to design sampling schemes with optimal angular coverage and show the positive impact on angular resolution in diffusion MRI. PMID:23625329

  9. MRI assessment of the thigh musculature in dermatomyositis and healthy subjects using diffusion tensor imaging, intravoxel incoherent motion and dynamic DTI.

    PubMed

    Sigmund, E E; Baete, S H; Luo, T; Patel, K; Wang, D; Rossi, I; Duarte, A; Bruno, M; Mossa, D; Femia, A; Ramachandran, S; Stoffel, D; Babb, J S; Franks, A; Bencardino, J

    2018-06-04

    Dermatomyositis (DM) is an idiopathic inflammatory myopathy involving severe debilitation in need of diagnostics. We evaluated the proximal lower extremity musculature with diffusion tensor imaging (DTI), intravoxel incoherent motion (IVIM) and dynamic DTI in DM patients and controls and compared with standard clinical workup.  METHODS: In this IRB-approved, HIPAA-compliant study with written informed consent, anatomical, Dixon fat/water and diffusion imaging were collected in bilateral thigh MRI of 22 controls and 27 DM patients in a 3T scanner. Compartments were scored on T1/T2 scales. Single voxel dynamic DTI metrics in quadriceps before and after 3-min leg exercise were measured. Spearman rank correlation and mixed model analysis of variance/covariance (ANOVA/ANCOVA) were used to correlate with T1 and T2 scores and to compare patients with controls. DM patients showed significantly lower pseudo-diffusion and volume in quadriceps than controls. All subjects showed significant correlation between T1 score and signal-weighted fat fraction; tissue diffusion and pseudo-diffusion varied significantly with T1 and T2 score in patients. Radial and mean diffusion exercise response in patients was significantly higher than controls. Static and dynamic diffusion imaging metrics show correlation with conventional imaging scores, reveal spatial heterogeneity, and provide means to differentiate dermatomyositis patients from controls. • Diffusion imaging shows regional differences between thigh muscles of dermatomyositis patients and controls. • Signal-weighted fat fraction and diffusion metrics correlate with T1/T2 scores of disease severity. • Dermatomyositis patients show significantly higher radial diffusion exercise response than controls.

  10. Radial transport of radiation belt electrons in kinetic field-line resonances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaston, Christopher C.; Bonnell, J. W.; Wygant, J. R.

    A representative case study from the Van Allen Probes during a geomagnetic storm recovery phase reveals enhanced electron fluxes at intermediate pitch angles over energies from ~100 keV to 5 MeV coincident with broadband low-frequency electromagnetic waves. The statistical properties of these waves are used to build a model for radial diffusion via drift-bounce resonances in kinetic Alfvén eigenmodes/kinetic field-line resonances. Estimated diffusion coefficients indicate timescales for radial transport on the order of hours in storm time events at energies from <100 keV to MeVs over equatorial pitch angles from the edge of the loss cone to nearly perpendicular tomore » the geomagnetic field. In conclusion, the correlation of kinetic resonances with electron depletions and enhancements during storm main phase and recovery, and the rapid diffusion these waves drive, suggests that they may modulate the outer radiation belt.« less

  11. Radial transport of radiation belt electrons in kinetic field-line resonances

    DOE PAGES

    Chaston, Christopher C.; Bonnell, J. W.; Wygant, J. R.; ...

    2017-07-25

    A representative case study from the Van Allen Probes during a geomagnetic storm recovery phase reveals enhanced electron fluxes at intermediate pitch angles over energies from ~100 keV to 5 MeV coincident with broadband low-frequency electromagnetic waves. The statistical properties of these waves are used to build a model for radial diffusion via drift-bounce resonances in kinetic Alfvén eigenmodes/kinetic field-line resonances. Estimated diffusion coefficients indicate timescales for radial transport on the order of hours in storm time events at energies from <100 keV to MeVs over equatorial pitch angles from the edge of the loss cone to nearly perpendicular tomore » the geomagnetic field. In conclusion, the correlation of kinetic resonances with electron depletions and enhancements during storm main phase and recovery, and the rapid diffusion these waves drive, suggests that they may modulate the outer radiation belt.« less

  12. A velocity-dependent anomalous radial transport model for (2-D, 2-V) kinetic transport codes

    NASA Astrophysics Data System (ADS)

    Bodi, Kowsik; Krasheninnikov, Sergei; Cohen, Ron; Rognlien, Tom

    2008-11-01

    Plasma turbulence constitutes a significant part of radial plasma transport in magnetically confined plasmas. This turbulent transport is modeled in the form of anomalous convection and diffusion coefficients in fluid transport codes. There is a need to model the same in continuum kinetic edge codes [such as the (2-D, 2-V) transport version of TEMPEST, NEO, and the code being developed by the Edge Simulation Laboratory] with non-Maxwellian distributions. We present an anomalous transport model with velocity-dependent convection and diffusion coefficients leading to a diagonal transport matrix similar to that used in contemporary fluid transport models (e.g., UEDGE). Also presented are results of simulations corresponding to radial transport due to long-wavelength ExB turbulence using a velocity-independent diffusion coefficient. A BGK collision model is used to enable comparison with fluid transport codes.

  13. The electron diffusion coefficient in Jupiter's magnetosphere

    NASA Technical Reports Server (NTRS)

    Birmingham, T.; Northrop, T.; Baxter, R.; Hess, W.; Lojko, M.

    1974-01-01

    A steady-state model of Jupiter's electron radiation belt is developed. The model includes injection from the solar wind, radial diffusion, energy degradation by synchrotron radiation, and absorption at Jupiter's surface. A diffusion coefficient of the form D sub RR/R sub J squared = k times R to the m-th power is assumed, and then observed data on synchrotron radiation are used to fit the model. The free parameters determined from this fit are m = 1.95 plus or minus 0.5, k = 1.7 plus or minus 0.5 x 10 to the 9th power per sec, and the magnetic moment of injected particles equals 770 plus or minus 300 MeV/G. The value of m shows quite clearly that the diffusion is not caused by magnetic pumping by a variable solar wind or by a fluctuating convection electric field. The process might be field line exchange driven by atmospheric-ionospheric winds; our diffusion coefficient has roughly the same radial dependence but is considerably smaller in magnitude than the upper bound diffusion coefficients recently suggested for this process by Brice and McDonough (1973) and Jacques and Davis (1972).

  14. Sparse and optimal acquisition design for diffusion MRI and beyond

    PubMed Central

    Koay, Cheng Guan; Özarslan, Evren; Johnson, Kevin M.; Meyerand, M. Elizabeth

    2012-01-01

    Purpose: Diffusion magnetic resonance imaging (MRI) in combination with functional MRI promises a whole new vista for scientists to investigate noninvasively the structural and functional connectivity of the human brain—the human connectome, which had heretofore been out of reach. As with other imaging modalities, diffusion MRI data are inherently noisy and its acquisition time-consuming. Further, a faithful representation of the human connectome that can serve as a predictive model requires a robust and accurate data-analytic pipeline. The focus of this paper is on one of the key segments of this pipeline—in particular, the development of a sparse and optimal acquisition (SOA) design for diffusion MRI multiple-shell acquisition and beyond. Methods: The authors propose a novel optimality criterion for sparse multiple-shell acquisition and quasimultiple-shell designs in diffusion MRI and a novel and effective semistochastic and moderately greedy combinatorial search strategy with simulated annealing to locate the optimum design or configuration. The goal of the optimality criteria is threefold: first, to maximize uniformity of the diffusion measurements in each shell, which is equivalent to maximal incoherence in angular measurements; second, to maximize coverage of the diffusion measurements around each radial line to achieve maximal incoherence in radial measurements for multiple-shell acquisition; and finally, to ensure maximum uniformity of diffusion measurement directions in the limiting case when all the shells are coincidental as in the case of a single-shell acquisition. The approach taken in evaluating the stability of various acquisition designs is based on the condition number and the A-optimal measure of the design matrix. Results: Even though the number of distinct configurations for a given set of diffusion gradient directions is very large in general—e.g., in the order of 10232 for a set of 144 diffusion gradient directions, the proposed search strategy was found to be effective in finding the optimum configuration. It was found that the square design is the most robust (i.e., with stable condition numbers and A-optimal measures under varying experimental conditions) among many other possible designs of the same sample size. Under the same performance evaluation, the square design was found to be more robust than the widely used sampling schemes similar to that of 3D radial MRI and of diffusion spectrum imaging (DSI). Conclusions: A novel optimality criterion for sparse multiple-shell acquisition and quasimultiple-shell designs in diffusion MRI and an effective search strategy for finding the best configuration have been developed. The results are very promising, interesting, and practical for diffusion MRI acquisitions. PMID:22559620

  15. Quantitative MRI of the spinal cord and brain in adrenomyeloneuropathy: in vivo assessment of structural changes.

    PubMed

    Castellano, Antonella; Papinutto, Nico; Cadioli, Marcello; Brugnara, Gianluca; Iadanza, Antonella; Scigliuolo, Graziana; Pareyson, Davide; Uziel, Graziella; Köhler, Wolfgang; Aubourg, Patrick; Falini, Andrea; Henry, Roland G; Politi, Letterio S; Salsano, Ettore

    2016-06-01

    Adrenomyeloneuropathy is the late-onset form of X-linked adrenoleukodystrophy, and is considered the most frequent metabolic hereditary spastic paraplegia. In adrenomyeloneuropathy the spinal cord is the main site of pathology. Differently from quantitative magnetic resonance imaging of the brain, little is known about the feasibility and utility of advanced neuroimaging in quantifying the spinal cord abnormalities in hereditary diseases. Moreover, little is known about the subtle pathological changes that can characterize the brain of adrenomyeloneuropathy subjects in the early stages of the disease. We performed a cross-sectional study on 13 patients with adrenomyeloneuropathy and 12 age-matched healthy control subjects who underwent quantitative magnetic resonance imaging to assess the structural changes of the upper spinal cord and brain. Total cord areas from C2-3 to T2-3 level were measured, and diffusion tensor imaging metrics, i.e. fractional anisotropy, mean, axial and radial diffusivity values were calculated in both grey and white matter of spinal cord. In the brain, grey matter regions were parcellated with Freesurfer and average volume and thickness, and mean diffusivity and fractional anisotropy from co-registered diffusion maps were calculated in each region. Brain white matter diffusion tensor imaging metrics were assessed using whole-brain tract-based spatial statistics, and tractography-based analysis on corticospinal tracts. Correlations among clinical, structural and diffusion tensor imaging measures were calculated. In patients total cord area was reduced by 26.3% to 40.2% at all tested levels (P < 0.0001). A mean 16% reduction of spinal cord white matter fractional anisotropy (P ≤ 0.0003) with a concomitant 9.7% axial diffusivity reduction (P < 0.009) and 34.5% radial diffusivity increase (P < 0.009) was observed, suggesting co-presence of axonal degeneration and demyelination. Brain tract-based spatial statistics showed a marked reduction of fractional anisotropy, increase of radial diffusivity (P < 0.001) and no axial diffusivity changes in several white matter tracts, including corticospinal tracts and optic radiations, indicating predominant demyelination. Tractography-based analysis confirmed the results within corticospinal tracts. No significant cortical volume and thickness reduction or grey matter diffusion tensor imaging values alterations were observed in patients. A correlation between radial diffusivity and disease duration along the corticospinal tracts (r = 0.806, P < 0.01) was found. In conclusion, in adrenomyeloneuropathy patients quantitative magnetic resonance imaging-derived measures identify and quantify structural changes in the upper spinal cord and brain which agree with the expected histopathology, and suggest that the disease could be primarily caused by a demyelination rather than a primitive axonal damage. The results of this study may also encourage the employment of quantitative magnetic resonance imaging in other hereditary diseases with spinal cord involvement. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Radiation belt electron acceleration during the 17 March 2015 geomagnetic storm: Observations and simulations

    DOE PAGES

    Li, W.; Ma, Q.; Thorne, R. M.; ...

    2016-06-10

    Various physical processes are known to cause acceleration, loss, and transport of energetic electrons in the Earth's radiation belts, but their quantitative roles in different time and space need further investigation. During the largest storm over the past decade (17 March 2015), relativistic electrons experienced fairly rapid acceleration up to ~7 MeV within 2 days after an initial substantial dropout, as observed by Van Allen Probes. In the present paper, we evaluate the relative roles of various physical processes during the recovery phase of this large storm using a 3-D diffusion simulation. By quantitatively comparing the observed and simulated electronmore » evolution, we found that chorus plays a critical role in accelerating electrons up to several MeV near the developing peak location and produces characteristic flat-top pitch angle distributions. By only including radial diffusion, the simulation underestimates the observed electron acceleration, while radial diffusion plays an important role in redistributing electrons and potentially accelerates them to even higher energies. Moreover, plasmaspheric hiss is found to provide efficient pitch angle scattering losses for hundreds of keV electrons, while its scattering effect on > 1 MeV electrons is relatively slow. Although an additional loss process is required to fully explain the overestimated electron fluxes at multi-MeV, the combined physical processes of radial diffusion and pitch angle and energy diffusion by chorus and hiss reproduce the observed electron dynamics remarkably well, suggesting that quasi-linear diffusion theory is reasonable to evaluate radiation belt electron dynamics during this big storm.« less

  17. Quantitative MRI in hypomyelinating disorders: Correlation with motor handicap.

    PubMed

    Steenweg, Marjan E; Wolf, Nicole I; van Wieringen, Wessel N; Barkhof, Frederik; van der Knaap, Marjo S; Pouwels, Petra J W

    2016-08-23

    To assess the correlation of tissue parameters estimated by quantitative magnetic resonance (MR) techniques and motor handicap in patients with hypomyelination. Twenty-eight patients with different causes of hypomyelination (12 males, 16 females; mean age 10 years) and 61 controls (33 males, 28 females; mean age 8 years) were prospectively investigated. We quantified T2 relaxation time, magnetization transfer ratio, fractional anisotropy, mean, axial, and radial diffusivities, and brain metabolites. We performed measurements in the splenium, parietal deep white matter, and corticospinal tracts in the centrum semiovale. We further analyzed diffusion measures using tract-based spatial statistics. We estimated severity of motor handicap by the gross motor function classification system. We evaluated correlation of handicap with MR measures by linear regression analyses. Fractional anisotropy, magnetization transfer ratio, choline, and N-acetylaspartate/creatine ratio were lower and diffusivities, T2 values, and inositol were higher in patients than in controls. Tract-based spatial statistics showed that these changes were widespread for fractional anisotropy (96% of the white matter skeleton), radial (93%) and mean (84%) diffusivity, and less so for axial diffusivity (20%). Correlation with handicap yielded radial diffusivity and N-acetylaspartate/creatine ratio as strongest independent explanatory variables. Gross motor function classification system grades are in part explained by MR measures. They indicate that mainly lack of myelin and, to a lesser degree, loss of axonal integrity codetermine the degree of motor handicap in patients with hypomyelinating disorders. These MR measures can be used to evaluate strategies that are aimed at promotion of myelination. © 2016 American Academy of Neurology.

  18. Radiation belt electron acceleration during the 17 March 2015 geomagnetic storm: Observations and simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, W.; Ma, Q.; Thorne, R. M.

    Various physical processes are known to cause acceleration, loss, and transport of energetic electrons in the Earth's radiation belts, but their quantitative roles in different time and space need further investigation. During the largest storm over the past decade (17 March 2015), relativistic electrons experienced fairly rapid acceleration up to ~7 MeV within 2 days after an initial substantial dropout, as observed by Van Allen Probes. In the present paper, we evaluate the relative roles of various physical processes during the recovery phase of this large storm using a 3-D diffusion simulation. By quantitatively comparing the observed and simulated electronmore » evolution, we found that chorus plays a critical role in accelerating electrons up to several MeV near the developing peak location and produces characteristic flat-top pitch angle distributions. By only including radial diffusion, the simulation underestimates the observed electron acceleration, while radial diffusion plays an important role in redistributing electrons and potentially accelerates them to even higher energies. Moreover, plasmaspheric hiss is found to provide efficient pitch angle scattering losses for hundreds of keV electrons, while its scattering effect on > 1 MeV electrons is relatively slow. Although an additional loss process is required to fully explain the overestimated electron fluxes at multi-MeV, the combined physical processes of radial diffusion and pitch angle and energy diffusion by chorus and hiss reproduce the observed electron dynamics remarkably well, suggesting that quasi-linear diffusion theory is reasonable to evaluate radiation belt electron dynamics during this big storm.« less

  19. Two-dimensional single-shot diffusion-weighted stimulated EPI with reduced FOV for ultrahigh-b radial diffusion-weighted imaging of spinal cord.

    PubMed

    Sapkota, Nabraj; Shi, Xianfeng; Shah, Lubdha M; Bisson, Erica F; Rose, John W; Jeong, Eun-Kee

    2017-06-01

    High-resolution diffusion-weighted imaging (DWI) of the spinal cord (SC) is problematic because of the small cross-section of the SC and the large field inhomogeneity. Obtaining the ultrahigh-b DWI poses a further challenge. The purpose of the study was to design and validate two-dimensional (2D) single-shot diffusion-weighted stimulated echo planar imaging with reduced field of view (2D ss-DWSTEPI-rFOV) for ultrahigh-b radial DWI (UHB-rDWI) of the SC. A novel time-efficient 2D ss-DWSTEPI-rFOV sequence was developed based on the stimulated echo sequence. Reduced-phase field of view was obtained by using two slice-selective 90 ° radiofrequency pulses in the presence of the orthogonal slice selection gradients. The sequence was validated on a cylindrical phantom and demonstrated on SC imaging. Ultrahigh-b radial diffusion-weighted ( bmax = 7300 s/mm2) images of the SC with greatly reduced distortion were obtained. The exponential plus constant fitting of the diffusion-decay curve estimated the constant fraction (restricted water fraction) as 0.36 ± 0.05 in the SC white matter. A novel 2D ss-DWSTEPI-rFOV sequence has been designed and demonstrated for high-resolution UHB-rDWI of localized anatomic structures with significantly reduced distortion induced by nonlinear static field inhomogeneity. Magn Reson Med 77:2167-2173, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  20. A Radiation Chemistry Code Based on the Greens Functions of the Diffusion Equation

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Wu, Honglu

    2014-01-01

    Ionizing radiation produces several radiolytic species such as.OH, e-aq, and H. when interacting with biological matter. Following their creation, radiolytic species diffuse and chemically react with biological molecules such as DNA. Despite years of research, many questions on the DNA damage by ionizing radiation remains, notably on the indirect effect, i.e. the damage resulting from the reactions of the radiolytic species with DNA. To simulate DNA damage by ionizing radiation, we are developing a step-by-step radiation chemistry code that is based on the Green's functions of the diffusion equation (GFDE), which is able to follow the trajectories of all particles and their reactions with time. In the recent years, simulations based on the GFDE have been used extensively in biochemistry, notably to simulate biochemical networks in time and space and are often used as the "gold standard" to validate diffusion-reaction theories. The exact GFDE for partially diffusion-controlled reactions is difficult to use because of its complex form. Therefore, the radial Green's function, which is much simpler, is often used. Hence, much effort has been devoted to the sampling of the radial Green's functions, for which we have developed a sampling algorithm This algorithm only yields the inter-particle distance vector length after a time step; the sampling of the deviation angle of the inter-particle vector is not taken into consideration. In this work, we show that the radial distribution is predicted by the exact radial Green's function. We also use a technique developed by Clifford et al. to generate the inter-particle vector deviation angles, knowing the inter-particle vector length before and after a time step. The results are compared with those predicted by the exact GFDE and by the analytical angular functions for free diffusion. This first step in the creation of the radiation chemistry code should help the understanding of the contribution of the indirect effect in the formation of DNA damage and double-strand breaks.

  1. Diffusing, side-firing, and radial delivery laser balloon catheters for creating subsurface thermal lesions in tissue

    NASA Astrophysics Data System (ADS)

    Chang, Chun-Hung; Fried, Nathaniel M.

    2016-02-01

    Infrared lasers have been used in combination with applied cooling methods to preserve superficial skin layers during cosmetic surgery. Similarly, combined laser irradiation and tissue cooling may also allow development of minimally invasive laser therapies beyond dermatology. This study compares diffusing, side-firing, and radial delivery laser balloon catheter designs for creation of subsurface lesions in tissue, ex vivo, using a near-IR laser and applied contact cooling. An Ytterbium fiber laser with 1075 nm wavelength delivered energy through custom built 18 Fr (6-mm-OD) balloon catheters incorporating either 10-mm-long diffusing fiber tip, 90 degree side-firing fiber, or radial delivery cone mirror, through a central lumen. A chilled solution was flowed through a separate lumen into 9-mm-diameter balloon to keep probe cooled at 7°C. Porcine liver tissue samples were used as preliminary tissue model for immediate observation of thermal lesion creation. The diffusing fiber produced subsurface thermal lesions measuring 49.3 +/- 10.0 mm2 and preserved 0.8 +/- 0.1 mm of surface tissue. The side-firing fiber produced subsurface thermal lesions of 2.4 +/- 0.9 mm2 diameter and preserved 0.5 +/- 0.1 mm of surface tissue. The radial delivery probe assembly failed to produce subsurface thermal lesions, presumably due to the small effective spot diameter at the tissue surface, which limited optical penetration depth. Optimal laser power and irradiation time measured 15 W and 100 s for diffusing fiber and 1.4 W and 20 s, for side-firing fiber, respectively. Diffusing and side-firing laser balloon catheter designs provided subsurface thermal lesions in tissue. However, the divergent laser beam in both designs limited the ability to preserve a thicker layer of tissue surface. Further optimization of laser and cooling parameters may be necessary to preserve thicker surface tissue layers.

  2. A determination of the L dependence of the radial diffusion coefficient for protons in Jupiter's inner magnetosphere

    NASA Technical Reports Server (NTRS)

    Thomsen, M. F.; Goertz, C. K.; Van Allen, J. A.

    1977-01-01

    In a previous paper (Thomsen et al., 1977), a technique was proposed for estimating the radial diffusion coefficient (n) in the inner magnetosphere of Jupiter from the observations of the sweeping effect of the inner Jovian satellites on the fluxes of the energetic charged particles. The present paper extends this technique to permit the unique identification of the parameters D sub O and n, where the diffusion coefficient is assumed to be of the form D = D sub O L to the nth. The derived value of D sub O depends directly on assumptions regarding the nature and efficiency of the loss mechanism operating on the particles, while the value of n depends only on the assumed width of the loss region. The extended technique is applied to the University of Iowa Pioneer 11 proton data, leading to values of n of about O and D(6) of about 3 x 10 to the -8th (R sub J)-squared/sec, when satellite sweepup losses are assumed to be the only loss operating on the protons. The small value of n is strong evidence that the radial diffusion is driven by ionospheric winds.

  3. Axial diffusivity of the corona radiata correlated with ventricular size in adult hydrocephalus.

    PubMed

    Cauley, Keith A; Cataltepe, Oguz

    2014-07-01

    Hydrocephalus causes changes in the diffusion-tensor properties of periventricular white matter. Understanding the nature of these changes may aid in the diagnosis and treatment planning of this relatively common neurologic condition. Because ventricular size is a common measure of the severity of hydrocephalus, we hypothesized that a quantitative correlation could be made between the ventricular size and diffusion-tensor changes in the periventricular corona radiata. In this article, we investigated this relationship in adult patients with hydrocephalus and in healthy adult subjects. Diffusion-tensor imaging metrics of the corona radiata were correlated with ventricular size in 14 adult patients with acute hydrocephalus, 16 patients with long-standing hydrocephalus, and 48 consecutive healthy adult subjects. Regression analysis was performed to investigate the relationship between ventricular size and the diffusion-tensor metrics of the corona radiata. Subject age was analyzed as a covariable. There is a linear correlation between fractional anisotropy of the corona radiata and ventricular size in acute hydrocephalus (r = 0.784, p < 0.001), with positive correlation with axial diffusivity (r = 0.636, p = 0.014) and negative correlation with radial diffusivity (r = 0.668, p = 0.009). In healthy subjects, axial diffusion in the periventricular corona radiata is more strongly correlated with ventricular size than with patient age (r = 0.466, p < 0.001, compared with r = 0.058, p = 0.269). Axial diffusivity of the corona radiata is linearly correlated with ventricular size in healthy adults and in patients with hydrocephalus. Radial diffusivity of the corona radiata decreases linearly with ventricular size in acute hydrocephalus but is not significantly correlated with ventricular size in healthy subjects or in patients with long-standing hydrocephalus.

  4. Diffusion tensor imaging of the brainstem in children with achondroplasia

    PubMed Central

    BOSEMANI, THANGAMADHAN; ORMAN, GUNES; CARSON, KATHRYN A; MEODED, AVNER; HUISMAN, THIERRY A G M; PORETTI, ANDREA

    2014-01-01

    Aim The aims of this study were to compare, using diffusion tensor imaging (DTI) of the brainstem, microstructural integrity of the white matter in children with achondroplasia and age-matched participants and to correlate the severity of craniocervical junction (CCJ) narrowing and neurological findings with DTI scalars in children with achondroplasia. This study also aimed to assess the potential role of fibroblast growth factor receptor type 3 on white matter microstructure. Method Diffusion tensor imaging was performed using a 1.5T magnetic resonance scanner and balanced pairs of diffusion gradients along 20 non-collinear directions. Measurements were obtained from regions of interest, sampled in each pontine corticospinal tract (CST), medial lemniscus, and middle cerebellar peduncle, as well as in the lower brainstem and centrum semiovale, for fractional anisotropy and for mean, axial and radial diffusivity. In addition, a severity score for achondroplasia was assessed by measuring CCJ narrowing. Result Eight patients with achondroplasia (seven males, one female; mean age 5y 6mo, range 1y 1mo–15y 1mo) and eight age- and sex-matched comparison participants (mean age 5y 2mo, range 1y 1mo–14y 11mo) were included in this study. Fractional anisotropy was lower and mean diffusivity and radial diffusivity were higher in the lower brainstem of patients with achondroplasia than in age-matched comparison participants. The CST and middle cerebellar peduncle of the participants showed increases in mean, axial, and radial diffusivity. Fractional anisotropy in the lower brainstem was negatively correlated with the degree of CCJ narrowing. No differences in the DTI metrics of the centrum semiovale were observed between the two groups. Interpretation The reduction in fractional anisotropy and increase in diffusivities in the lower brainstem of participants with achondroplasia may reflect secondary encephalomalacic degeneration and cavitation of the affected white matter tracts as shown by histology. In children with achondroplasia, DTI may serve as a potential biomarker for brainstem white matter injury and aid in the care and management of these patients. PMID:24825324

  5. Diffusion tensor imaging of the brainstem in children with achondroplasia.

    PubMed

    Bosemani, Thangamadhan; Orman, Gunes; Carson, Kathryn A; Meoded, Avner; Huisman, Thierry A G M; Poretti, Andrea

    2014-11-01

    The aims of this study were to compare, using diffusion tensor imaging (DTI) of the brainstem, microstructural integrity of the white matter in children with achondroplasia and age-matched participants and to correlate the severity of craniocervical junction (CCJ) narrowing and neurological findings with DTI scalars in children with achondroplasia. This study also aimed to assess the potential role of fibroblast growth factor receptor type 3 on white matter microstructure. Diffusion tensor imaging was performed using a 1.5T magnetic resonance scanner and balanced pairs of diffusion gradients along 20 non-collinear directions. Measurements were obtained from regions of interest, sampled in each pontine corticospinal tract (CST), medial lemniscus, and middle cerebellar peduncle, as well as in the lower brainstem and centrum semiovale, for fractional anisotropy and for mean, axial, and radial diffusivity. In addition, a severity score for achondroplasia was assessed by measuring CCJ narrowing. Eight patients with achondroplasia (seven males, one female; mean age 5y 6mo, range 1y 1mo-15y 1mo) and eight age- and sex-matched comparison participants (mean age 5y 2mo, range 1y 1mo-14y 11mo) were included in this study. Fractional anisotropy was lower and mean diffusivity and radial diffusivity were higher in the lower brainstem of patients with achondroplasia than in age-matched comparison participants. The CST and middle cerebellar peduncle of the participants showed increases in mean, axial, and radial diffusivity. Fractional anisotropy in the lower brainstem was negatively correlated with the degree of CCJ narrowing. No differences in the DTI metrics of the centrum semiovale were observed between the two groups. The reduction in fractional anisotropy and increase in diffusivities in the lower brainstem of participants with achondroplasia may reflect secondary encephalomalacic degeneration and cavitation of the affected white matter tracts as shown by histology. In children with achondroplasia, DTI may serve as a potential biomarker for brainstem white matter injury and aid in the care and management of these patients. © 2014 Mac Keith Press.

  6. Detailed flow measurements in a centrifugal compressor vaneless diffuser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinarbasi, A.; Johnson, M.W.

    1994-07-01

    Hot-wire anemometer measurements have been made in the vaneless diffuser of a 1-m-dia low-speed backswept centrifugal compressor using a phase lock loop technique. Radial, tangential, and axial velocity measurements have been made on eight measurement planes through the diffuser. The flow field at the diffuser entry clearly shows the impeller jet-wake flow pattern and the blade wakes. The passage wake is located on the shroud side of the diffuser and mixes out slowly as the flow moves through the diffuser. The blade wakes, on the other hand, distort and mix out rapidly in the diffuser. Contours of turbulent kinetic energymore » are also presented on each of the measurement stations, from which the regions of turbulent mixing can be deduced.« less

  7. Multimodal Imaging Evidence for Axonal and Myelin Deterioration in Amnestic Mild Cognitive Impairment

    PubMed Central

    Gold, Brian T.; Jiang, Yang; Powell, David K.; Smith, Charles D.

    2012-01-01

    White matter (WM) microstructural declines have been demonstrated in Alzheimer’s disease and amnestic mild cognitive impairment (aMCI). However, the pattern of WM microstructural changes in aMCI after controlling for WM atrophy is unknown. Here, we address this issue through joint consideration of aMCI alterations in fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity, as well as macrostructural volume in WM and gray matter compartments. Participants were 18 individuals with aMCI and 24 healthy seniors. Voxelwise analyses of diffusion tensor imaging data was carried out using tract-based spatial statistics (TBSS) and voxelwise analyses of high-resolution structural data was conducted using voxel based morphometry. After controlling for WM atrophy, the main pattern of TBSS findings indicated reduced fractional anisotropy with only small alterations in mean diffusivity/radial diffusivity/axial diffusivity. These WM microstructural declines bordered and/or were connected to gray matter structures showing volumetric declines. However, none of the potential relationships between WM integrity and volume in connected gray matter structures was significant, and adding fractional anisotropy information improved the classificatory accuracy of aMCI compared to the use of hippocampal atrophy alone. These results suggest that WM microstructural declines provide unique information not captured by atrophy measures that may aid the magnetic resonance imaging contribution to aMCI detection. PMID:22460327

  8. Cosmic Ray Diffusion Tensor throughout the Heliosphere on the basis of Nearly Incompressible Magnetohydrodynamic Turbulence Model

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Zank, G. P.; Adhikari, L.

    2017-12-01

    The radial and rigidity dependence of cosmic ray (CR) diffusion tensor is investigated on the basis of the recently developed 2D and slab turbulence transport model using nearly incompressible (NI) theory (Zank et al. 2017; Adhikari et al. 2017). We use the energy in forward propagating modes from 0.29 to 1 AU and in backward propagating modes from 1 to 75 AU. We employ the quasi-linear theory (QLT) and nonlinear guiding center (NLGC) theory, respectively, to determine the parallel and perpendicular elements of CR diffusion tensor. We also present the effect of both weak and moderately strong turbulence on the drift element of CR diffusion tensor. We find that (1) from 0.29 to 1 AU the radial mean free path (mfp) is dominated by the parallel component, both increase slowly after 0.4 AU; (2) from 1 to 75 AU the radial mfp starts with a rapid increase and then decreases after a peak at about 3.5 AU, mainly caused by pick-up ion sources of turbulence model; (3) after 20 AU the perpendicular mfp is nearly constant and begin to dominate the radial mfp; (4) the rigidity dependence of the parallel mfp is proportional to at 1 AU from 0.1 to 10 GV and the perpendicular mfp is weakly influenced by the rigidity; (5) turbulence does more than suppress the traditional drift element but introduces a new component normal to the magnetic field. This study shows that a proper two-component turbulence model is necessary to produce the complexity of diffusion coefficient for CR modulation throughout the heliosphere.

  9. Transverse particle acceleration and diffusion in a planetary magnetic field

    NASA Technical Reports Server (NTRS)

    Barbosa, D. D.

    1994-01-01

    A general model of particle acceleration by plasma waves coupled with adiabatic radial diffusion in a planetary magnetic field is developed. The model assumes that a spectrum of lower hybird waves is present to resonantly accelerate ions transverse to the magnetic field. The steady state Green's function for the combined radial diffusion and wave acceleration equation is found in terms of a series expansion. The results provide a rigorous demonstration of how a quasi-Maxwellian distribution function is formed in the absence of particle collisons and elucidate the nature of turbulent heating of magnetospheric plasmas. The solution is applied to the magnetosphere of Neptune for which a number of examples are given illustrating how the spectrum of pickup N(+) ions from Triton evolves.

  10. Characterization of spinal cord white matter by suppressing signal from hindered space. A Monte Carlo simulation and an ex vivo ultrahigh-b diffusion-weighted imaging study.

    PubMed

    Sapkota, Nabraj; Yoon, Sook; Thapa, Bijaya; Lee, YouJung; Bisson, Erica F; Bowman, Beth M; Miller, Scott C; Shah, Lubdha M; Rose, John W; Jeong, Eun-Kee

    2016-11-01

    Signal measured from white matter in diffusion-weighted imaging is difficult to interpret because of the heterogeneous structure of white matter. Characterization of the white matter will be straightforward if the signal contributed from the hindered space is suppressed and purely restricted signal is analyzed. In this study, a Monte Carlo simulation (MCS) of water diffusion in white matter was performed to understand the behavior of the diffusion-weighted signal in white matter. The signal originating from the hindered space of an excised pig cervical spinal cord white matter was suppressed using the ultrahigh-b radial diffusion-weighted imaging. A light microscopy image of a section of white matter was obtained from the excised pig cervical spinal cord for the MCS. The radial diffusion-weighted signals originating from each of the intra-axonal, extra-axonal, and total spaces were studied using the MCS. The MCS predicted that the radial diffusion-weighted signal remains almost constant in the intra-axonal space and decreases gradually to about 2% of its initial value in the extra-axonal space when the b-value is increased to 30,000s/mm 2 . The MCS also revealed that the diffusion-weighted signal for a b-value greater than 20,000s/mm 2 is mostly from the intra-axonal space. The decaying behavior of the signal-b curve obtained from ultrahigh-b diffusion-weighted imaging (b max ∼30,000s/mm 2 ) of the excised pig cord was very similar to the decaying behavior of the total signal-b curve synthesized in the MCS. A mono-exponential plus constant fitting of the signal-b curve obtained from a white matter pixel estimated the values of constant fraction and apparent diffusion coefficient of decaying fraction as 0.32±0.05 and (0.16±0.01)×10 -3 mm 2 /s, respectively, which agreed well with the results of the MCS. The signal measured in the ultrahigh-b region (b>20,000s/mm 2 ) is mostly from the restricted (intra-axonal) space. Integrity and intactness of the axons can be evaluated by assessing the remaining signal in the ultrahigh-b region. Published by Elsevier Inc.

  11. Scanning thermal probe microscope method for the determination of thermal diffusivity of nanocomposite thin films

    NASA Astrophysics Data System (ADS)

    Varandani, Deepak; Agarwal, Khushboo; Brugger, Juergen; Mehta, Bodh Raj

    2016-08-01

    A commercial scanning thermal microscope has been upgraded to facilitate its use in estimating the radial thermal diffusivity of thin films close to room temperature. The modified setup includes a microcontroller driven microhotplate coupled with a Bluetooth module for wireless control. The microcontroller board (Arduino Leonardo) is used to generate a bias of suitable voltage amplitude and pulse duration which is applied across the microhotplate contact pads. A corresponding heat pulse from the Pt heating element (1 mm2) embedded within the microhotplate is delivered to the lower surface of the thin film (25 mm2) deposited over it. The large difference in the dimensions of the heating source and the thin film surface causes heat to flow radially outwards on the top surface of the latter. The decay of this radial heat wave as it flows outwards is recorded by the scanning thermal microscope in terms of temperature-time (T-t) profiles at varying positions around the central heating zone. A fitting procedure is suggested to extract the thermal diffusivity value from the array of T-t profiles. The efficacy of the above setup has been established by evaluating the thermal diffusivities of Bi2Te3 and Bi2Te3:Si thin film samples. Further, with only minor alterations in design the capabilities of the above setup can be extended to estimate the axial thermal diffusivity and specific heat of thin films, as a function of temperature.

  12. Long-term white matter tract reorganization following prolonged febrile seizures.

    PubMed

    Pujar, Suresh S; Seunarine, Kiran K; Martinos, Marina M; Neville, Brian G R; Scott, Rod C; Chin, Richard F M; Clark, Chris A

    2017-05-01

    Diffusion magnetic resonance imaging (MRI) studies have demonstrated acute white matter changes following prolonged febrile seizures (PFS), but their longer-term evolution is unknown. We investigated a population-based cohort to determine white matter diffusion properties 8 years after PFS. We used diffusion tensor imaging (DTI) and applied Tract-Based Spatial Statistics for voxel-wise comparison of white matter microstructure between 26 children with PFS and 27 age-matched healthy controls. Age, gender, handedness, and hippocampal volumes were entered as covariates for voxel-wise analysis. Mean duration between the episode of PFS and follow-up was 8.2 years (range 6.7-9.6). All children were neurologically normal, and had normal conventional neuroimaging. On voxel-wise analysis, compared to controls, the PFS group had (1) increased fractional anisotropy in early maturing central white matter tracts, (2) increased mean and axial diffusivity in several peripheral white matter tracts and late-maturing central white matter tracts, and (3) increased radial diffusivity in peripheral white matter tracts. None of the tracts had reduced fractional anisotropy or diffusivity indices in the PFS group. In this homogeneous, population-based sample, we found increased fractional anisotropy in early maturing central white matter tracts and increased mean and axial diffusivity with/without increased radial diffusivity in several late-maturing peripheral white matter tracts 8 years post-PFS. We propose disruption in white matter maturation secondary to seizure-induced axonal injury, with subsequent neuroplasticity and microstructural reorganization as a plausible explanation. © 2017 The Authors. Epilepsia published by Wiley Periodicals, Inc. on behalf of International League Against Epilepsy.

  13. Numerical investigation of a centrifugal compressor with circumferential grooves in vane diffuser

    NASA Astrophysics Data System (ADS)

    Chen, X. F.; Qin, G. L.; Ai, Z. J.

    2015-08-01

    Enhancing stall and surge margin has a great importance for the development of turbo compressors. The application of casing treatment is an effective measure to expand the stall margin and stable operation range. Numerical investigations were conducted to predict the performance of a low flow rate centrifugal compressor with circumferential groove casing treatment in vane diffuser. Numerical cases with different radial location, radial width and axial depth of a circumferential single groove and different numbers of circumferential grooves were carried out to compare the results. The CFD analyses results show that the centrifugal compressor with circumferential grooves in diffuser can extend stable range by about 9% while the efficiency over the whole operating range decreases by 0.2 to 1.7%. The evaluation based on stall margin improvement showed the optimal position for the groove to be located was indicated to exist near the leading edge of the diffuser, and a combination of position, width, depth and numbers of circumferential grooves that will maximize both surge margin range and efficiency.

  14. Radial diffusion, vertical transport, and refixation of labeled bicarbonate in scots pine stems

    NASA Astrophysics Data System (ADS)

    Marshall, J. D.; Tarvainen, L.; Wallin, G.

    2016-12-01

    The CO2 produced by a respiring stem provides an index of metabolic activity in the stem and a quantitative estimate of an important component of the forest carbon budget. Production of CO2 by a given stem volume is lost by three competing processes. First, some diffuses radially outward through the bark. Second, some is dissolved and vertically transported upward out of the control volume by the xylem stream. Third, some is refixed by photosynthesis under the bark. The relative balance among these pathways was quantified in 17-m Scots pine trees by 13C-bicarbonate labeling of the xylem stream and monitoring of the 13CO2 in the xylem water, along with continuous monitoring of the radial diffusive flux at four canopy heights and in transpiration from leaves. Most of the label diffused out radially, as 13CO2, immediately above the labeling site, over about a week. The pulse was weakly and briefly detected 4 m above that height. Further up the stem it was not detected at all. We detected significant refixation of CO2 in the stems at all heights above 4 m, where the bark becomes papery and thin, but the label was so weak at this height that refixation had little influence on the pulse chase. We conclude that the vertical flux is negligible in Scots pine, but that the refixation flux must be accounted for in estimates of whole-stem CO2 efflux.

  15. Bound Pool Fractions Complement Diffusion Measures to Describe White Matter Micro and Macrostructure

    PubMed Central

    Stikov, Nikola; Perry, Lee M.; Mezer, Aviv; Rykhlevskaia, Elena; Wandell, Brian A.; Pauly, John M.; Dougherty, Robert F.

    2010-01-01

    Diffusion imaging and bound pool fraction (BPF) mapping are two quantitative magnetic resonance imaging techniques that measure microstructural features of the white matter of the brain. Diffusion imaging provides a quantitative measure of the diffusivity of water in tissue. BPF mapping is a quantitative magnetization transfer (qMT) technique that estimates the proportion of exchanging protons bound to macromolecules, such as those found in myelin, and is thus a more direct measure of myelin content than diffusion. In this work, we combine BPF estimates of macromolecular content with measurements of diffusivity within human white matter tracts. Within the white matter, the correlation between BPFs and diffusivity measures such as fractional anisotropy and radial diffusivity was modest, suggesting that diffusion tensor imaging and bound pool fractions are complementary techniques. We found that several major tracts have high BPF, suggesting a higher density of myelin in these tracts. We interpret these results in the context of a quantitative tissue model. PMID:20828622

  16. Effects of low-level sarin and cyclosarin exposure on white matter integrity in Gulf War Veterans.

    PubMed

    Chao, Linda L; Zhang, Yu; Buckley, Shannon

    2015-05-01

    We previously found evidence of reduced gray and white matter volume in Gulf War (GW) veterans with predicted low-level exposure to sarin (GB) and cyclosarin (GF). Because loss of white matter tissue integrity has been linked to both gray and white matter atrophy, the current study sought to test the hypothesis that GW veterans with predicted GB/GF exposure have evidence of disrupted white matter microstructural integrity. Measures of fractional anisotropy and directional (i.e., axial and radial) diffusivity were assessed from the 4T diffusion tensor images (DTI) of 59 GW veterans with predicted GB/GF exposure and 59 "matched" unexposed GW veterans (mean age: 48 ± 7 years). The DTI data were analyzed using regions of interest (ROI) analyses that accounted for age, sex, total brain gray and white matter volume, trauma exposure, posttraumatic stress disorder, current major depression, and chronic multisymptom illness status. There were no significant group differences in fractional anisotropy or radial diffusivity. However, there was increased axial diffusivity in GW veterans with predicted GB/GF exposure compared to matched, unexposed veterans throughout the brain, including the temporal stem, corona radiata, superior and inferior (hippocampal) cingulum, inferior and superior fronto-occipital fasciculus, internal and external capsule, and superficial cortical white matter blades. Post hoc analysis revealed significant correlations between higher fractional anisotropy and lower radial diffusivity with better neurobehavioral performance in unexposed GW veterans. In contrast, only increased axial diffusivity in posterior limb of the internal capsule was associated with better psychomotor function in GW veterans with predicted GB/GF exposure. The finding that increased axial diffusivity in a region of the brain that contains descending corticospinal fibers was associated with better psychomotor function and the lack of significant neurobehavioral deficits in veterans with predicted GB/GF exposure hint at the possibility that the widespread increases in axial diffusivity that we observed in GW veterans with predicted GB/GF exposure relative to unexposed controls may reflect white matter reorganization after brain injury (i.e., exposure to GB/GF). Published by Elsevier B.V.

  17. Sensitive period for white-matter connectivity of superior temporal cortex in deaf people.

    PubMed

    Li, Yanyan; Ding, Guosheng; Booth, James R; Huang, Ruiwang; Lv, Yating; Zang, Yufeng; He, Yong; Peng, Danling

    2012-02-01

    Previous studies have shown that white matter in the deaf brain changes due to hearing loss. However, how white-matter development is influenced by early hearing experience of deaf people is still unknown. Using diffusion tensor imaging and tract-based spatial statistics, we compared white-matter structures among three groups of subjects including 60 congenitally deaf individuals, 36 acquired deaf (AD) individuals, and 38 sex- and age-matched hearing controls (HC). The result showed that the deaf individuals had significantly reduced fractional anisotropy (FA) values in bilateral superior temporal cortex and the splenium of corpus callosum compared to HC. The reduction of FA values in acquired deafness correlated with onset age of deafness, but not the duration of deafness. To explore the underlying mechanism of FA changes in the deaf groups, we further analyzed radial and axial diffusivities and found that (1) the reduced FA values in deaf individuals compared to HC is primarily driven by higher radial diffusivity values and (2) in the AD, higher radial diffusivity was correlated with earlier onset age of deafness, but not the duration of deafness. These findings imply that early sensory experience is critical for the growth of fiber myelination, and anatomical reorganization following auditory deprivation is sensitive to early plasticity in the brain. Copyright © 2010 Wiley Periodicals, Inc.

  18. Radial Coherence of Diffusion Tractography in the Cerebral White Matter of the Human Fetus: Neuroanatomic Insights

    PubMed Central

    Xu, Gang; Takahashi, Emi; Folkerth, Rebecca D.; Haynes, Robin L.; Volpe, Joseph J.; Grant, P. Ellen; Kinney, Hannah C.

    2014-01-01

    High angular resolution diffusion imaging (HARDI) demonstrates transient radial coherence of telencephalic white matter in the human fetus. Our objective was to define the neuroanatomic basis of this radial coherence through correlative HARDI- and postmortem tissue analyses. Applying immunomarkers to radial glial fibers (RGFs), axons, and blood vessels in 18 cases (19 gestational weeks to 3 postnatal years), we compared their developmental profiles to HARDI tractography in brains of comparable ages (n = 11). At midgestation, radial coherence corresponded with the presence of RGFs. At 30–31 weeks, the transition from HARDI-defined radial coherence to corticocortical coherence began simultaneously with the transformation of RGFs to astrocytes. By term, both radial coherence and RGFs had disappeared. White matter axons were radial, tangential, and oblique over the second half of gestation, whereas penetrating blood vessels were consistently radial. Thus, radial coherence in the fetal white matter likely reflects a composite of RGFs, penetrating blood vessels, and radial axons of which its transient expression most closely matches that of RGFs. This study provides baseline information for interpreting radial coherence in tractography studies of the preterm brain in the assessment of the encephalopathy of prematurity. PMID:23131806

  19. Correlations of diffusion tensor imaging values and symptom scores in patients with schizophrenia.

    PubMed

    Michael, Andrew M; Calhoun, Vince D; Pearlson, Godfrey D; Baum, Stefi A; Caprihan, Arvind

    2008-01-01

    Abnormalities in white matter (WM) brain regions are attributed as a possible biomarker for schizophrenia (SZ). Diffusion tensor imaging (DTI) is used to capture WM tracts. Psychometric tests that evaluate the severity of symptoms of SZ are clinically used in the diagnosis process. In this study we investigate the correlates of scalar DTI measures, such as fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity with behavioral test scores. The correlations were found by different schemes: mean correlation with WM atlas regions and multiple regression of DTI values with test scores. The corpus callosum, superior longitudinal fasciculus right and inferior longitudinal fasciculus left were found to be having high correlations with test scores.

  20. ULF wave analysis and radial diffusion calculation using a global MHD model for the 17 March 2013 and 2015 storms

    NASA Astrophysics Data System (ADS)

    Li, Zhao; Hudson, Mary; Patel, Maulik; Wiltberger, Michael; Boyd, Alex; Turner, Drew

    2017-07-01

    The 17 March 2015 St. Patrick's Day Storm is the largest geomagnetic storm to date of Solar Cycle 24, with a Dst of -223 nT. The magnetopause moved inside geosynchronous orbit under high solar wind dynamic pressure and strong southward interplanetary magnetic field Bz causing loss; however, a subsequent drop in pressure allowed for rapid rebuilding of the radiation belts. The 17 March 2013 storm also shows similar effects on outer zone electrons: first, a rapid dropout due to inward motion of the magnetopause followed by rapid increase in flux above the prestorm level early in the recovery phase and a slow increase over the next 12 days. These phases can be seen in temporal evolution of the electron phase space density measured by the Energetic Particle, Composition, and Thermal Plasma Suite (ECT) instruments on Van Allen Probes. Using the Lyon-Fedder-Mobarry global MHD model driven by upstream solar wind measurements, we simulated both St. Patrick's Day 2013 and 2015 events, analyzing Lyon-Fedder-Mobarry electric and magnetic fields to calculate radial diffusion coefficients. These coefficients have been implemented in a radial diffusion code, using the measured electron phase space density following the local heating as the initial radial profile and outer boundary condition for subsequent temporal evolution over the next 12 days, beginning 18 March. Agreement with electron phase space density at 1000 MeV/G measured by the MagEIS component of the ECT instrument suite on Van Allen Probes was much improved using radial diffusion coefficients from the MHD simulations relative to coefficients parameterized by a global geomagnetic activity index.

  1. Gas turbine engine with radial diffuser and shortened mid section

    DOEpatents

    Charron, Richard C.; Montgomery, Matthew D.

    2015-09-08

    An industrial gas turbine engine (10), including: a can annular combustion assembly (80), having a plurality of discrete flow ducts configured to receive combustion gas from respective combustors (82) and deliver the combustion gas along a straight flow path at a speed and orientation appropriate for delivery directly onto the first row (56) of turbine blades (62); and a compressor diffuser (32) having a redirecting surface (130, 140) configured to receive an axial flow of compressed air and redirect the axial flow of compressed air radially outward.

  2. Effects of whistler mode hiss waves on the radiation belts structure during quiet times

    NASA Astrophysics Data System (ADS)

    Ripoll, J. F.; Santolik, O.; Reeves, G. D.; Kurth, W. S.; Denton, M.; Loridan, V.; Thaller, S. A.; Cunningham, G.; Kletzing, C.; Turner, D. L.; Henderson, M. G.; Ukhorskiy, S.; Drozdov, A.; Cervantes Villa, J. S.; Shprits, Y.

    2017-12-01

    We present dynamic Fokker-Planck simulations of the electron radiation belts and slot formation during the quiet days that can follow a storm. Simulations are made for all energies and L-shells between 2 and 6 in the view of recovering the observations of two particular events. Pitch angle diffusion is essential to energy structure of the belts and slot region. Pitch angle diffusion is computed from data-driven spatially and temporally-resolved whistler mode hiss wave and ambient plasma observations from the Van Allen Probes satellites. The simulations are performed either with a 3D formulation that uses pitch angle diffusion coefficients or with a simpler 1D Fokker-Planck equation based on losses computed from a lifetime. Validation is carried out globally against Magnetic Electron and Ion Spectrometer observations of the belts at all energy. Results are complemented with a sensitivity study involving different radial diffusion coefficients, electron lifetimes, and pitch angle diffusion coefficients. We discuss which models allow to recover the observed "S-shaped" energy-dependent inner boundary to the outer zone that results from the competition between diffusive radial transport and losses. Periods when the plasmasphere extends beyond L 5 favor long-lasting hiss losses from the outer belt. Through these simulations, we explain the full structure in energy and L-shell of the belts and the slot formation by hiss scattering during quiet storm recovery.

  3. Coupled low-energy - ring current plasma diffusion in the Jovian magnetosphere

    NASA Technical Reports Server (NTRS)

    Summers, D.; Siscoe, G. L.

    1985-01-01

    The outwardly diffusing Iogenic plasma and the simultaneously inwardly diffusing ring current plasma in the Jovian magnetosphere are described using a coupled diffusion model which incorporates the effects of the pressure gradient of the ring current into the cross-L diffusion coefficient. The coupled diffusion coefficient is derived by calculating the total energy available to drive the diffusion process. The condition is imposed that the diffusion coefficient takes on a local minimum value at some point in the region L = 7-8, at which point the gradient of the Io plasma density is specified as ramp value given by Siscoe et al. (1981). The hypothesis that the pressure gradient of the ring current causes the diminution of radial plasma transport is tested, and solution profiles for the Iogenic and ring current plasma densities are obtained which imply that the Io plasma ramp is caused by a high-density, low-energy component of the ring current hitherto unobserved directly.

  4. Diffusion tensor imaging with direct cytopathological validation: characterisation of decorin treatment in experimental juvenile communicating hydrocephalus.

    PubMed

    Aojula, Anuriti; Botfield, Hannah; McAllister, James Patterson; Gonzalez, Ana Maria; Abdullah, Osama; Logan, Ann; Sinclair, Alexandra

    2016-05-31

    In an effort to develop novel treatments for communicating hydrocephalus, we have shown previously that the transforming growth factor-β antagonist, decorin, inhibits subarachnoid fibrosis mediated ventriculomegaly; however decorin's ability to prevent cerebral cytopathology in communicating hydrocephalus has not been fully examined. Furthermore, the capacity for diffusion tensor imaging to act as a proxy measure of cerebral pathology in multiple sclerosis and spinal cord injury has recently been demonstrated. However, the use of diffusion tensor imaging to investigate cytopathological changes in communicating hydrocephalus is yet to occur. Hence, this study aimed to determine whether decorin treatment influences alterations in diffusion tensor imaging parameters and cytopathology in experimental communicating hydrocephalus. Moreover, the study also explored whether diffusion tensor imaging parameters correlate with cellular pathology in communicating hydrocephalus. Accordingly, communicating hydrocephalus was induced by injecting kaolin into the basal cisterns in 3-week old rats followed immediately by 14 days of continuous intraventricular delivery of either human recombinant decorin (n = 5) or vehicle (n = 6). Four rats remained as intact controls and a further four rats served as kaolin only controls. At 14-days post-kaolin, just prior to sacrifice, routine magnetic resonance imaging and magnetic resonance diffusion tensor imaging was conducted and the mean diffusivity, fractional anisotropy, radial and axial diffusivity of seven cerebral regions were assessed by voxel-based analysis in the corpus callosum, periventricular white matter, caudal internal capsule, CA1 hippocampus, and outer and inner parietal cortex. Myelin integrity, gliosis and aquaporin-4 levels were evaluated by post-mortem immunohistochemistry in the CA3 hippocampus and in the caudal brain of the same cerebral structures analysed by diffusion tensor imaging. Decorin significantly decreased myelin damage in the caudal internal capsule and prevented caudal periventricular white matter oedema and astrogliosis. Furthermore, decorin treatment prevented the increase in caudal periventricular white matter mean diffusivity (p = 0.032) as well as caudal corpus callosum axial diffusivity (p = 0.004) and radial diffusivity (p = 0.034). Furthermore, diffusion tensor imaging parameters correlated primarily with periventricular white matter astrocyte and aquaporin-4 levels. Overall, these findings suggest that decorin has the therapeutic potential to reduce white matter cytopathology in hydrocephalus. Moreover, diffusion tensor imaging is a useful tool to provide surrogate measures of periventricular white matter pathology in communicating hydrocephalus.

  5. An MRI study of white matter tract integrity in regular cannabis users: effects of cannabis use and age.

    PubMed

    Jakabek, David; Yücel, Murat; Lorenzetti, Valentina; Solowij, Nadia

    2016-10-01

    Conflicting evidence exists on the effects of cannabis use on brain white matter integrity. The extant literature has exclusively focused on younger cannabis users, with no studies sampling older cannabis users. We recruited a sample with a broad age range to examine the integrity of major white matter tracts in association with cannabis use parameters and neurodevelopmental stage. Regular cannabis users (n = 56) and non-users (n = 20) with a mean age of 32 (range 18-55 years) underwent structural and diffusion MRI scans. White matter was examined using voxel-based statistics and via probabilistic tract reconstruction. The integrity of tracts was assessed using average fractional anisotropy, axial diffusivity and radial diffusivity. Diffusion measures were compared between users and non-users and as group-by-age interactions. Correlations between diffusion measures and age of onset, duration, frequency and dose of current cannabis use were examined. Cannabis users overall had lower fractional anisotropy than healthy non-users in the forceps minor tract only (p = .015, partial eta = 0.07), with no voxel-wise differences observed. Younger users showed predominantly reduced axial diffusivity, whereas older users had higher radial diffusivity in widespread tracts. Higher axial diffusivity was associated with duration of cannabis use in the cingulum angular bundle (beta = 5.00 × 10(-5), p = .003). Isolated higher AD in older cannabis users was also observed. The findings suggest that exogenous cannabinoids alter normal brain maturation, with differing effects at various neurodevelopmental stages of life. These age-related differences are posited to account for the disparate results described in the literature.

  6. Radial distribution of the contributions to band broadening of a silica-based semi-preparative monolithic column.

    PubMed

    Abia, Jude A; Mriziq, Khaled S; Guiochon, Georges A

    2009-04-01

    Using an on-column local electrochemical microdetector operated in the amperometric mode, band elution profiles were recorded at different radial locations at the exit of a 10 mm id, 100 mm long silica-based monolithic column. HETP plots were then acquired at each of these locations, and all these results were fitted to the Knox equation. This provided a spatial distribution of the values of the eddy diffusion (A), the molecular diffusion (B), and the resistance to the kinetics of mass transfer (C) terms. Results obtained indicate that the wall region yields higher A values and smaller C values than the central core region. Significant radial fluctuations of these contributions to band broadening occur throughout the exit column cross-section. This phenomenon is due to the structural radial heterogeneity of the column.

  7. Variability in radial sap flux density patterns and sapwood area among seven co-occurring temperate broad-leaved tree species.

    PubMed

    Gebauer, Tobias; Horna, Viviana; Leuschner, Christoph

    2008-12-01

    Forest transpiration estimates are frequently based on xylem sap flux measurements in the outer sections of the hydro-active stem sapwood. We used Granier's constant-heating technique with heating probes at various xylem depths to analyze radial patterns of sap flux density in the sapwood of seven broad-leaved tree species differing in wood density and xylem structure. Study aims were to (1) compare radial sap flux density profiles between diffuse- and ring-porous trees and (2) analyze the relationship between hydro-active sapwood area and stem diameter. In all investigated species except the diffuse-porous beech (Fagus sylvatica L.) and ring-porous ash (Fraxinus excelsior L.), sap flux density peaked at a depth of 1 to 4 cm beneath the cambium, revealing a hump-shaped curve with species-specific slopes. Beech and ash reached maximum sap flux densities immediately beneath the cambium in the youngest annual growth rings. Experiments with dyes showed that the hydro-active sapwood occupied 70 to 90% of the stem cross-sectional area in mature trees of diffuse-porous species, whereas it occupied only about 21% in ring-porous ash. Dendrochronological analyses indicated that vessels in the older sapwood may remain functional for 100 years or more in diffuse-porous species and for up to 27 years in ring-porous ash. We conclude that radial sap flux density patterns are largely dependent on tree species, which may introduce serious bias in sap-flux-derived forest transpiration estimates, if non-specific sap flux profiles are assumed.

  8. Changes in the distribution of radiocesium in the wood of Japanese cedar trees from 2011 to 2013.

    PubMed

    Ogawa, Hideki; Hirano, Yurika; Igei, Shigemitsu; Yokota, Kahori; Arai, Shio; Ito, Hirohisa; Kumata, Atsushi; Yoshida, Hirohisa

    2016-09-01

    The changes in the distribution of (137)Cs in the wood of Japanese cedar (Cryptomeria japonica) trunks within three years after the Fukushima Dai-ichi Nuclear Power Plant (FDNP) accident in 2011 were investigated. Thirteen trees were felled to collect samples at 6 forests in 2 regions of the Fukushima prefecture. The radial distribution of (137)Cs in the wood was measured at different heights. Profiles of (137)Cs distribution in the wood changed considerably from 2011 to 2013, and the process of (137)Cs distribution change in the wood was clarified. From 2011 to 2012, the active transportation from sapwood to heartwood and the radial diffusion in heartwood proceeded quickly, and the radial (137)Cs distribution differed according to the vertical positon of trees. From 2012 to 2013, the vertical diffusion of (137)Cs from the treetop to the ground, probably caused by the gradient of (137)Cs concentration in the trunk, was observed. Eventually, the radial (137)Cs distributions were nearly identical at any vertical positions in 2013. Our results suggested that the active transportation from sapwood to heartwood and the vertical and radial diffusion in heartwood proceeded according to the vertical position of the tree and (137)Cs distribution in the wood approached the equilibrium state within three years after the accident. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Modeling the Magnetopause Shadowing Loss during the October 2012 Dropout Event

    NASA Astrophysics Data System (ADS)

    Tu, Weichao; Cunningham, Gregory

    2017-04-01

    The relativistic electron flux in Earth's outer radiation belt are observed to drop by orders of magnitude on timescales of a few hours, which is called radiation belt dropouts. Where do the electrons go during the dropouts? This is one of the most important outstanding questions in radiation belt studies. Radiation belt electrons can be lost either by precipitation into the atmosphere or by transport across the magnetopause into interplanetary space. The latter mechanism is called magnetopause shadowing, usually combined with outward radial diffusion of electrons due to the sharp radial gradient it creates. In order to quantify the relative contribution of these two mechanisms to radiation belt dropout, we performed an event study on the October 2012 dropout event observed by Van Allen Probes. First, the precipitating MeV electrons observed by multiple NOAA POES satellites at low altitude did not show evidence of enhanced precipitation during the dropout, which suggested that precipitation was not the dominant loss mechanism for the event. Then, in order to simulate the magnetopause shadowing loss and outward radial diffusion during the dropout, we applied a radial diffusion model with electron lifetimes on the order of electron drift periods outside the last closed drift shell. In addition, realistic and event-specific inputs of radial diffusion coefficients (DLL) and last closed drift shell (LCDS) were implemented in the model. Specifically, we used the new DLL developed by Cunningham [JGR 2016] which were estimated in realistic TS04 [Tsyganenko and Sitnov, JGR 2005] storm time magnetic field model and included physical K (2nd adiabatic invariant) or pitch angle dependence. Event-specific LCDS traced in TS04 model with realistic K dependence was also implemented. Our simulation results showed that these event-specific inputs are critical to explain the electron dropout during the event. The new DLL greatly improved the model performance at low L* regions (L*<3.6) compared to empirical Kp-dependent DLL [Brautigam and Albert, JGR 2000] used in previous radial diffusion models. Combining the event-specific DLL and LCDS, our model well captured the magnetopause shadowing loss and reproduced the electron dropout at L*=4.0-4.5. In addition, we found the K-dependent LCDS is critical to reproduce the pitch angle dependence of the observed electron dropout.

  10. Genetic relatedness of axial and radial diffusivity indices of cerebral white matter microstructure in late middle age.

    PubMed

    Hatton, Sean N; Panizzon, Matthew S; Vuoksimaa, Eero; Hagler, Donald J; Fennema-Notestine, Christine; Rinker, Daniel; Eyler, Lisa T; Franz, Carol E; Lyons, Michael J; Neale, Michael C; Tsuang, Ming T; Dale, Anders M; Kremen, William S

    2018-05-01

    Two basic neuroimaging-based characterizations of white matter tracts are the magnitude of water diffusion along the principal tract orientation (axial diffusivity, AD) and water diffusion perpendicular to the principal orientation (radial diffusivity, RD). It is generally accepted that decreases in AD reflect disorganization, damage, or loss of axons, whereas increases in RD are indicative of disruptions to the myelin sheath. Previous reports have detailed the heritability of individual AD and RD measures, but have not examined the extent to which the same or different genetic or environmental factors influence these two phenotypes (except for corpus callosum). We implemented bivariate twin analyses to examine the shared and independent genetic influences on AD and RD. In the Vietnam Era Twin Study of Aging, 393 men (mean age = 61.8 years, SD = 2.6) underwent diffusion-weighted magnetic resonance imaging. We derived fractional anisotropy (FA), mean diffusivity (MD), AD, and RD estimates for 11 major bilateral white matter tracts and the mid-hemispheric corpus callosum, forceps major, and forceps minor. Separately, AD and RD were each highly heritable. In about three-quarters of the tracts, genetic correlations between AD and RD were >.50 (median = .67) and showed both unique and common variance. Genetic variance of FA and MD were predominately explained by RD over AD. These findings are important for informing genetic association studies of axonal coherence/damage and myelination/demyelination. Thus, genetic studies would benefit from examining the shared and unique contributions of AD and RD. © 2018 Wiley Periodicals, Inc.

  11. Segmentation of the canine corpus callosum using diffusion-tensor imaging tractography.

    PubMed

    Pierce, Theodore T; Calabrese, Evan; White, Leonard E; Chen, Steven D; Platt, Simon R; Provenzale, James M

    2014-01-01

    We set out to determine functional white matter (WM) connections passing through the canine corpus callosum; these WM connections would be useful for subsequent studies of canine brains that serve as models for human WM pathway disease. Based on prior studies, we anticipated that the anterior corpus callosum would send projections to the anterior cerebral cortex whereas progressively posterior segments would send projections to more posterior cortex. A postmortem canine brain was imaged using a 7-T MRI system producing 100-μm-isotropic-resolution diffusion-tensor imaging analyzed by tractography. Using regions of interest (ROIs) within cortical locations, which were confirmed by a Nissl stain that identified distinct cortical architecture, we successfully identified six important WM pathways. We also compared fractional anisotropy (FA), apparent diffusion coefficient (ADC), radial diffusivity, and axial diffusivity in tracts passing through the genu and splenium. Callosal fibers were organized on the basis of cortical destination (e.g., fibers from the genu project to the frontal cortex). Histologic results identified the motor cortex on the basis of cytoarchitectonic criteria that allowed placement of ROIs to discriminate between frontal and parietal lobes. We also identified cytoarchitecture typical of the orbital frontal, anterior frontal, and occipital regions and placed ROIs accordingly. FA, ADC, radial diffusivity, and axial diffusivity values were all higher in posterior corpus callosum fiber tracts. Using six cortical ROIs, we identified six major WM tracts that reflect major functional divisions of the cerebral hemispheres, and we derived quantitative values that can be used for study of canine models of human WM pathologic states.

  12. Calculation of two-dimension radial electric field in boundary plasmas by using BOUT++

    NASA Astrophysics Data System (ADS)

    Li, N. M.; Xu, X. Q.; Rognlien, T. D.; Gui, B.; Sun, J. Z.; Wang, D. Z.

    2018-07-01

    The steady state radial electric field (Er) is calculated by coupling a plasma transport model with the quasi-neutrality constraint and the vorticity equation within the BOUT++ framework. Based on the experimentally measured plasma density and temperature profiles in Alcator C-Mod discharges, the effective radial particle and heat diffusivities are inferred from the set of plasma transport equations. The effective diffusivities are then extended into the scrape-off layer (SOL) to calculate the plasma density, temperature and flow profiles across the separatrix into the SOL with the electrostatic sheath boundary conditions (SBC) applied on the divertor plates. Given these diffusivities, the electric field can be calculated self-consistently across the separatrix from the vorticity equation with SBC coupled to the plasma transport equations. The sheath boundary conditions act to generate a large and positive Er in the SOL, which is consistent with experimental measurements. The effect of magnetic particle drifts is shown to play a significant role on local particle transport and Er by inducing a net particle flow in both the edge and SOL regions.

  13. Brain aging in humans, chimpanzees (Pan troglodytes), and rhesus macaques (Macaca mulatta): magnetic resonance imaging studies of macro- and microstructural changes

    PubMed Central

    Chen, Xu; Errangi, Bhargav; Li, Longchuan; Glasser, Matthew F.; Westlye, Lars T.; Fjell, Anders M.; Walhovd, Kristine B.; Hu, Xiaoping; Herndon, James G.; Preuss, Todd M.; Rilling, James K.

    2013-01-01

    Among primates, humans are uniquely vulnerable to many age-related neurodegenerative disorders. We used structural and diffusion magnetic resonance imaging (MRI) to examine the brains of chimpanzees and rhesus monkeys across each species' adult lifespan, and compared these results with published findings in humans. As in humans, gray matter volume decreased with age in chimpanzees and rhesus monkeys. Also like humans, chimpanzees showed a trend for decreased white matter volume with age, but this decrease occurred proportionally later in the chimpanzee lifespan than in humans. Diffusion MRI revealed widespread age-related decreases in fractional anisotropy and increases in radial diffusivity in chimpanzees and macaques. However, both the fractional anisotropy decline and the radial diffusivity increase started at a proportionally earlier age in humans than in chimpanzees. Thus, even though overall patterns of gray and white matter aging are similar in humans and chimpanzees, the longer lifespan of humans provides more time for white matter to deteriorate before death, with the result that some neurological effects of aging may be exacerbated in our species. PMID:23623601

  14. Calculation of the second term of the exact Green's function of the diffusion equation for diffusion-controlled chemical reactions

    NASA Astrophysics Data System (ADS)

    Plante, Ianik

    2016-01-01

    The exact Green's function of the diffusion equation (GFDE) is often considered to be the gold standard for the simulation of partially diffusion-controlled reactions. As the GFDE with angular dependency is quite complex, the radial GFDE is more often used. Indeed, the exact GFDE is expressed as a Legendre expansion, the coefficients of which are given in terms of an integral comprising Bessel functions. This integral does not seem to have been evaluated analytically in existing literature. While the integral can be evaluated numerically, the Bessel functions make the integral oscillate and convergence is difficult to obtain. Therefore it would be of great interest to evaluate the integral analytically. The first term was evaluated previously, and was found to be equal to the radial GFDE. In this work, the second term of this expansion was evaluated. As this work has shown that the first two terms of the Legendre polynomial expansion can be calculated analytically, it raises the question of the possibility that an analytical solution exists for the other terms.

  15. SNOW LINES AS PROBES OF TURBULENT DIFFUSION IN PROTOPLANETARY DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owen, James E.

    2014-07-20

    Sharp chemical discontinuities can occur in protoplanetary disks, particularly at ''snow lines'' where a gas-phase species freezes out to form ice grains. Such sharp discontinuities will diffuse out due to the turbulence suspected to drive angular momentum transport in accretion disks. We demonstrate that the concentration gradient—in the vicinity of the snow line—of a species present outside a snow line but destroyed inside is strongly sensitive to the level of turbulent diffusion (provided the chemical and transport timescales are decoupled) and provides a direct measurement of the radial ''Schmidt number'' (the ratio of the angular momentum transport to radial turbulentmore » diffusion). Taking as an example the tracer species N{sub 2}H{sup +}, which is expected to be destroyed inside the CO snow line (as recently observed in TW Hya) we show that ALMA observations possess significant angular resolution to constrain the Schmidt number. Since different turbulent driving mechanisms predict different Schmidt numbers, a direct measurement of the Schmidt number in accretion disks would allow inferences to be made about the nature of the turbulence.« less

  16. White matter involvement in sporadic Creutzfeldt-Jakob disease

    PubMed Central

    Mandelli, Maria Luisa; DeArmond, Stephen J.; Hess, Christopher P.; Vitali, Paolo; Papinutto, Nico; Oehler, Abby; Miller, Bruce L.; Lobach, Irina V.; Bastianello, Stefano; Geschwind, Michael D.; Henry, Roland G.

    2014-01-01

    Sporadic Creutzfeldt-Jakob disease is considered primarily a disease of grey matter, although the extent of white matter involvement has not been well described. We used diffusion tensor imaging to study the white matter in sporadic Creutzfeldt-Jakob disease compared to healthy control subjects and to correlated magnetic resonance imaging findings with histopathology. Twenty-six patients with sporadic Creutzfeldt-Jakob disease and nine age- and gender-matched healthy control subjects underwent volumetric T1-weighted and diffusion tensor imaging. Six patients had post-mortem brain analysis available for assessment of neuropathological findings associated with prion disease. Parcellation of the subcortical white matter was performed on 3D T1-weighted volumes using Freesurfer. Diffusion tensor imaging maps were calculated and transformed to the 3D-T1 space; the average value for each diffusion metric was calculated in the total white matter and in regional volumes of interest. Tract-based spatial statistics analysis was also performed to investigate the deeper white matter tracts. There was a significant reduction of mean (P = 0.002), axial (P = 0.0003) and radial (P = 0.0134) diffusivities in the total white matter in sporadic Creutzfeldt-Jakob disease. Mean diffusivity was significantly lower in most white matter volumes of interest (P < 0.05, corrected for multiple comparisons), with a generally symmetric pattern of involvement in sporadic Creutzfeldt-Jakob disease. Mean diffusivity reduction reflected concomitant decrease of both axial and radial diffusivity, without appreciable changes in white matter anisotropy. Tract-based spatial statistics analysis showed significant reductions of mean diffusivity within the white matter of patients with sporadic Creutzfeldt-Jakob disease, mainly in the left hemisphere, with a strong trend (P = 0.06) towards reduced mean diffusivity in most of the white matter bilaterally. In contrast, by visual assessment there was no white matter abnormality either on T2-weighted or diffusion-weighted images. Widespread reduction in white matter mean diffusivity, however, was apparent visibly on the quantitative attenuation coefficient maps compared to healthy control subjects. Neuropathological analysis showed diffuse astrocytic gliosis and activated microglia in the white matter, rare prion deposition and subtle subcortical microvacuolization, and patchy foci of demyelination with no evident white matter axonal degeneration. Decreased mean diffusivity on attenuation coefficient maps might be associated with astrocytic gliosis. We show for the first time significant global reduced mean diffusivity within the white matter in sporadic Creutzfeldt-Jakob disease, suggesting possible primary involvement of the white matter, rather than changes secondary to neuronal degeneration/loss. PMID:25367029

  17. B2.5-Eirene modeling of radial transport in the MAGPIE linear plasma device

    NASA Astrophysics Data System (ADS)

    Owen, L. W.; Caneses, J. F.; Canik, J.; Lore, J. D.; Corr, C.; Blackwell, B.; Bonnin, X.; Rapp, J.

    2017-05-01

    Radial transport in helicon heated hydrogen plasmas in the MAGnetized Plasma Interaction Experiment (MAGPIE) is studied with the B2.5-Eirene (SOLPS5.0) code. Radial distributions of plasma density, temperature and ambipolar potential are computed for several magnetic field configurations and compared to double Langmuir probe measurements. Evidence for an unmagnetized ion population is seen in the requirement for a convective pinch term in the continuity equation in order to fit the centrally peaked density profile data. The measured slightly hollow electron temperature profiles are reproduced with combinations of on-axis and edge heating which can be interpreted as helicon and Trivelpiece-Gould wave absorption, respectively. Pressure gradient driven radial charged particle diffusion is chosen to describe the diffusive particle flux since the hollowness of the temperature profiles assists the establishment of on-axis density peaking.

  18. What does anisotropy measure? Insights from increased and decreased anisotropy in selective fiber tracts in schizophrenia.

    PubMed

    Alba-Ferrara, L M; de Erausquin, Gabriel A

    2013-01-01

    Schizophrenia is a common, severe, and chronically disabling mental illness of unknown cause. Recent MRI studies have focused attention on white matter abnormalities in schizophrenia using diffusion tensor imaging (DTI). Indices commonly derived from DTI include (1) mean diffusivity, independent of direction, (2) fractional anisotropy (FA) or relative anisotropy (RA), (3) axial diffusivity, and (4) radial diffusivity. In cerebral white matter, contributions to these indices come from fiber arrangements, degree of myelination, and axonal integrity. Relatively pure deficits in myelin result in a modest increase in radial diffusivity, without affecting axial diffusivity and with preservation of anisotropy. Although schizophrenia is not characterized by gross abnormalities of white matter, it does involve a profound dysregulation of myelin-associated gene expression, reductions in oligodendrocyte numbers, and marked abnormalities in the ultrastructure of myelin sheaths. Since each oligodendrocyte myelinates as many as 40 axon segments, changes in the number of oligodendrocytes (OLG), and/or in the integrity of myelin sheaths, and/or axoglial contacts can have a profound impact on signal propagation and the integrity of neuronal circuits. Whereas a number of studies have revealed inconsistent decreases in anisotropy in schizophrenia, we and others have found increased FA in key subcortical tracts associated with the circuits underlying symptom generation in schizophrenia. We review data revealing increased anisotropy in dopaminergic tracts in the mesencephalon of schizophrenics and their unaffected relatives, and discuss the possible biological underpinnings and physiological significance of this finding.

  19. Study on method to simulate light propagation on tissue with characteristics of radial-beam LED based on Monte-Carlo method.

    PubMed

    Song, Sangha; Elgezua, Inko; Kobayashi, Yo; Fujie, Masakatsu G

    2013-01-01

    In biomedical, Monte-carlo simulation is commonly used for simulation of light diffusion in tissue. But, most of previous studies did not consider a radial beam LED as light source. Therefore, we considered characteristics of a radial beam LED and applied them on MC simulation as light source. In this paper, we consider 3 characteristics of radial beam LED. The first is an initial launch area of photons. The second is an incident angle of a photon at an initial photon launching area. The third is the refraction effect according to contact area between LED and a turbid medium. For the verification of the MC simulation, we compared simulation and experimental results. The average of the correlation coefficient between simulation and experimental results is 0.9954. Through this study, we show an effective method to simulate light diffusion on tissue with characteristics for radial beam LED based on MC simulation.

  20. White Matter Damage Relates to Oxygen Saturation in Children With Sickle Cell Anemia Without Silent Cerebral Infarcts.

    PubMed

    Kawadler, Jamie M; Kirkham, Fenella J; Clayden, Jonathan D; Hollocks, Matthew J; Seymour, Emma L; Edey, Rosanna; Telfer, Paul; Robins, Andrew; Wilkey, Olu; Barker, Simon; Cox, Tim C S; Clark, Chris A

    2015-07-01

    Sickle cell anemia is associated with compromised oxygen-carrying capability of hemoglobin and a high incidence of overt and silent stroke. However, in children with no evidence of cerebral infarction, there are changes in brain morphometry relative to healthy controls, which may be related to chronic anemia and oxygen desaturation. A whole-brain tract-based spatial statistics analysis was carried out in 25 children with sickle cell anemia with no evidence of abnormality on T2-weighted magnetic resonance imaging (13 male, age range: 8-18 years) and 14 age- and race-matched controls (7 male, age range: 10-19 years) to determine the extent of white matter injury. The hypotheses that white matter damage is related to daytime peripheral oxygen saturation and steady-state hemoglobin were tested. Fractional anisotropy was found to be significantly lower in patients in the subcortical white matter (corticospinal tract and cerebellum), whereas mean diffusivity and radial diffusivity were higher in patients in widespread areas. There was a significant negative relationship between radial diffusivity and oxygen saturation (P<0.05) in the anterior corpus callosum and a trend-level negative relationship between radial diffusivity and hemoglobin (P<0.1) in the midbody of the corpus callosum. These data show widespread white matter abnormalities in a sample of asymptomatic children with sickle cell anemia, and provides for the first time direct evidence of a relationship between brain microstructure and markers of disease severity (eg, peripheral oxygen saturation and steady-state hemoglobin). This study suggests that diffusion tensor imaging metrics may serve as a biomarker for future trials of reducing hypoxic exposure. © 2015 American Heart Association, Inc.

  1. Association between left ventricular mechanics and diffuse myocardial fibrosis in patients with repaired Tetralogy of Fallot: a cross-sectional study.

    PubMed

    Haggerty, Christopher M; Suever, Jonathan D; Pulenthiran, Arichanah; Mejia-Spiegeler, Abba; Wehner, Gregory J; Jing, Linyuan; Charnigo, Richard J; Fornwalt, Brandon K; Fogel, Mark A

    2017-12-11

    Patients with repaired tetralogy of Fallot (TOF) have progressive, adverse biventricular remodeling, leading to abnormal contractile mechanics. Defining the mechanisms underlying this dysfunction, such as diffuse myocardial fibrosis, may provide insights into poor long-term outcomes. We hypothesized that left ventricular (LV) diffuse fibrosis is related to impaired LV mechanics. Patients with TOF were evaluated with cardiac magnetic resonance in which modified Look-Locker (MOLLI) T1-mapping and spiral cine Displacement encoding (DENSE) sequences were acquired at three LV short-axis positions. Linear mixed modeling was used to define the association between regional LV mechanics from DENSE based on regional T1-derived diffuse fibrosis measures, such as extracellular volume fraction (ECV). Forty patients (26 ± 11 years) were included. LV ECV was generally within normal range (0.24 ± 0.05). For LV mechanics, peak circumferential strains (-15 ± 3%) and dyssynchrony indices (16 ± 8 ms) were moderately impaired, while peak radial strains (29 ± 8%) were generally normal. After adjusting for patient age, sex, and regional LV differences, ECV was associated with log-adjusted LV dyssynchrony index (β = 0.67) and peak LV radial strain (β = -0.36), but not LV circumferential strain. Moreover, post-contrast T1 was associated with log-adjusted LV diastolic circumferential strain rate (β = 0.37). We observed several moderate associations between measures of fibrosis and impaired mechanics, particularly the LV dyssynchrony index and peak radial strain. Diffuse fibrosis may therefore be a causal factor in some ventricular dysfunction in TOF.

  2. Experimental investigation on pressurization performance of cryogenic tank during high-temperature helium pressurization process

    NASA Astrophysics Data System (ADS)

    Lei, Wang; Yanzhong, Li; Yonghua, Jin; Yuan, Ma

    2015-03-01

    Sufficient knowledge of thermal performance and pressurization behaviors in cryogenic tanks during rocket launching period is of importance to the design and optimization of a pressurization system. In this paper, ground experiments with liquid oxygen (LO2) as the cryogenic propellant, high-temperature helium exceeding 600 K as the pressurant gas, and radial diffuser and anti-cone diffuser respectively at the tank inlet were performed. The pressurant gas requirements, axial and radial temperature distributions, and energy distributions inside the propellant tank were obtained and analyzed to evaluate the comprehensive performance of the pressurization system. It was found that the pressurization system with high-temperature helium as the pressurant gas could work well that the tank pressure was controlled within a specified range and a stable discharging liquid rate was achieved. For the radial diffuser case, the injected gas had a direct impact on the tank inner wall. The severe gas-wall heat transfer resulted in about 59% of the total input energy absorbed by the tank wall. For the pressurization case with anti-cone diffuser, the direct impact of high-temperature gas flowing toward the liquid surface resulted in a greater deal of energy transferred to the liquid propellant, and the percentage even reached up to 38%. Moreover, both of the two cases showed that the proportion of energy left in ullage to the total input energy was quite small, and the percentage was only about 22-24%. This may indicate that a more efficient diffuser should be developed to improve the pressurization effect. Generally, the present experimental results are beneficial to the design and optimization of the pressurization system with high-temperature gas supplying the pressurization effect.

  3. Controlled Formation of Radial Core-Shell Si/Metal Silicide Crystalline Heterostructures.

    PubMed

    Kosloff, Alon; Granot, Eran; Barkay, Zahava; Patolsky, Fernando

    2018-01-10

    The highly controlled formation of "radial" silicon/NiSi  core-shell nanowire heterostructures has been demonstrated for the first time. Here, we investigated the "radial" diffusion of nickel atoms into crystalline nanoscale silicon pillar 11 cores, followed by nickel silicide phase formation and the creation of a well-defined shell structure. The described approach is based on a two-step thermal process, which involves metal diffusion at low temperatures in the range of 200-400 °C, followed by a thermal curing step at a higher temperature of 400 °C. In-depth crystallographic analysis was performed by nanosectioning the resulting silicide-shelled silicon nanopillar heterostructures, giving us the ability to study in detail the newly formed silicide shells. Remarkably, it was observed that the resulting silicide shell thickness has a self-limiting behavior, and can be tightly controlled by the modulation of the initial diffusion-step temperature. In addition, electrical measurements of the core-shell structures revealed that the resulting shells can serve as an embedded conductive layer in future optoelectronic applications. This research provides a broad insight into the Ni silicide "radial" diffusion process at the nanoscale regime, and offers a simple approach to form thickness-controlled metal silicide shells in the range of 5-100 nm around semiconductor nanowire core structures, regardless the diameter of the nanowire cores. These high quality Si/NiSi core-shell nanowire structures will be applied in the near future as building blocks for the creation of utrathin highly conductive optically transparent top electrodes, over vertical nanopillars-based solar cell devices, which may subsequently lead to significant performance improvements of these devices in terms of charge collection and reduced recombination.

  4. Local texture descriptors for the assessment of differences in diffusion magnetic resonance imaging of the brain.

    PubMed

    Thomsen, Felix Sebastian Leo; Delrieux, Claudio Augusto; de Luis-García, Rodrigo

    2017-03-01

    Descriptors extracted from magnetic resonance imaging (MRI) of the brain can be employed to locate and characterize a wide range of pathologies. Scalar measures are typically derived within a single-voxel unit, but neighborhood-based texture measures can also be applied. In this work, we propose a new set of descriptors to compute local texture characteristics from scalar measures of diffusion tensor imaging (DTI), such as mean and radial diffusivity, and fractional anisotropy. We employ weighted rotational invariant local operators, namely standard deviation, inter-quartile range, coefficient of variation, quartile coefficient of variation and skewness. Sensitivity and specificity of those texture descriptors were analyzed with tract-based spatial statistics of the white matter on a diffusion MRI group study of elderly healthy controls, patients with mild cognitive impairment (MCI), and mild or moderate Alzheimer's disease (AD). In addition, robustness against noise has been assessed with a realistic diffusion-weighted imaging phantom and the contamination of the local neighborhood with gray matter has been measured. The new texture operators showed an increased ability for finding formerly undetected differences between groups compared to conventional DTI methods. In particular, the coefficient of variation, quartile coefficient of variation, standard deviation and inter-quartile range of the mean and radial diffusivity detected significant differences even between previously not significantly discernible groups, such as MCI versus moderate AD and mild versus moderate AD. The analysis provided evidence of low contamination of the local neighborhood with gray matter and high robustness against noise. The local operators applied here enhance the identification and localization of areas of the brain where cognitive impairment takes place and thus indicate them as promising extensions in diffusion MRI group studies.

  5. Quantitatively in Situ Imaging Silver Nanowire Hollowing Kinetics

    DOE PAGES

    Yu, Le; Yan, Zhongying; Cai, Zhonghou; ...

    2016-09-28

    We report the in-situ investigation of the morphological evolution of silver nanowires to hollow silver oxide nanotubes using transmission x-ray microscopy (TXM). Complex silver diffusion kinetics and hollowing process via the Kirkendall effect have been captured in real time. Further quantitative x-ray absorption analysis reveals the difference between the longitudinal and radial diffusions. In conclusion, the diffusion coefficient of silver in its oxide nanoshell is, for the first time, calculated to be 1.2 × 10 -13 cm 2/s from the geometrical parameters extracted from the TXM images.

  6. Diffusion properties of NAA in human corpus callosum as studied with diffusion tensor spectroscopy.

    PubMed

    Upadhyay, Jaymin; Hallock, Kevin; Erb, Kelley; Kim, Dae-Shik; Ronen, Itamar

    2007-11-01

    In diffusion tensor imaging (DTI) the anisotropic movement of water is exploited to characterize microstructure. One confounding issue of DTI is the presence of intra- and extracellular components contributing to the measured diffusivity. This causes an ambiguity in determining the underlying cause of diffusion properties, particularly the fractional anisotropy (FA). In this study an intracellular constituent, N-acetyl aspartate (NAA), was used to probe intracellular diffusion, while water molecules were used to probe the combined intra- and extracellular diffusion. NAA and water diffusion measurements were made in anterior and medial corpus callosum (CC) regions, which are referred to as R1 and R2, respectively. FA(NAA) was found to be greater than FA(Water) in both CC regions, thus indicating a higher degree of anisotropy within the intracellular space in comparison to the combined intra- and extracellular spaces. A decreasing trend in the FA of NAA and water was observed between R1 and R2, while the radial diffusivity (RD) for both molecules increased. The increase in RD(NAA) is particularly significant, thus explaining the more significant decrease in FA(NAA) between the two regions. It is suggested that diffusion tensor spectroscopy of NAA can potentially be used to further characterize microscopic anatomic organization in white matter. Copyright 2007 Wiley-Liss, Inc.

  7. Radial q-space sampling for DSI

    PubMed Central

    Baete, Steven H.; Yutzy, Stephen; Boada, Fernando, E.

    2015-01-01

    Purpose Diffusion Spectrum Imaging (DSI) has been shown to be an effective tool for non-invasively depicting the anatomical details of brain microstructure. Existing implementations of DSI sample the diffusion encoding space using a rectangular grid. Here we present a different implementation of DSI whereby a radially symmetric q-space sampling scheme for DSI (RDSI) is used to improve the angular resolution and accuracy of the reconstructed Orientation Distribution Functions (ODF). Methods Q-space is sampled by acquiring several q-space samples along a number of radial lines. Each of these radial lines in q-space is analytically connected to a value of the ODF at the same angular location by the Fourier slice theorem. Results Computer simulations and in vivo brain results demonstrate that RDSI correctly estimates the ODF when moderately high b-values (4000 s/mm2) and number of q-space samples (236) are used. Conclusion The nominal angular resolution of RDSI depends on the number of radial lines used in the sampling scheme, and only weakly on the maximum b-value. In addition, the radial analytical reconstruction reduces truncation artifacts which affect Cartesian reconstructions. Hence, a radial acquisition of q-space can be favorable for DSI. PMID:26363002

  8. Influence of mean radial electric field on particle transport induced by RMPs in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Chen, Dunqiang; Xu, Yingfeng; Wang, Shaojie

    2018-06-01

    The quasi-linear theory of the particle diffusion coefficient including the finite Larmor radius effect and the mean radial electric field ( E r without shear) in a stochastic magnetic field is derived. The theory has been verified by comparing with test particle simulations and previous theory. It is found that E r can shift the wave-particle resonance position. The Er-shift effect mainly modifies the ion diffusion coefficients and leads to the modification of ion particle flux. By using the ambipolar condition, we obtained the balanced flux at the edge of a tokamak plasma and found good agreement with recent experimental observations.

  9. Reduction of ion thermal diffusivity associated with the transition of the radial electric field in neutral-beam-heated plasmas in the large helical device.

    PubMed

    Ida, K; Funaba, H; Kado, S; Narihara, K; Tanaka, K; Takeiri, Y; Nakamura, Y; Ohyabu, N; Yamazaki, K; Yokoyama, M; Murakami, S; Ashikawa, N; deVries, P C; Emoto, M; Goto, M; Idei, H; Ikeda, K; Inagaki, S; Inoue, N; Isobe, M; Itoh, K; Kaneko, O; Kawahata, K; Khlopenkov, K; Komori, A; Kubo, S; Kumazawa, R; Liang, Y; Masuzaki, S; Minami, T; Miyazawa, J; Morisaki, T; Morita, S; Mutoh, T; Muto, S; Nagayama, Y; Nakanishi, H; Nishimura, K; Noda, N; Notake, T; Kobuchi, T; Ohdachi, S; Ohkubo, K; Oka, Y; Osakabe, M; Ozaki, T; Pavlichenko, R O; Peterson, B J; Sagara, A; Saito, K; Sakakibara, S; Sakamoto, R; Sanuki, H; Sasao, H; Sasao, M; Sato, K; Sato, M; Seki, T; Shimozuma, T; Shoji, M; Suzuki, H; Sudo, S; Tamura, N; Toi, K; Tokuzawa, T; Torii, Y; Tsumori, K; Yamamoto, T; Yamada, H; Yamada, I; Yamaguchi, S; Yamamoto, S; Yoshimura, Y; Watanabe, K Y; Watari, T; Hamada, Y; Motojima, O; Fujiwara, M

    2001-06-04

    Recent large helical device experiments revealed that the transition from ion root to electron root occurred for the first time in neutral-beam-heated discharges, where no nonthermal electrons exist. The measured values of the radial electric field were found to be in qualitative agreement with those estimated by neoclassical theory. A clear reduction of ion thermal diffusivity was observed after the mode transition from ion root to electron root as predicted by neoclassical theory when the neoclassical ion loss is more dominant than the anomalous ion loss.

  10. Effect of cerebral spinal fluid suppression for diffusional kurtosis imaging.

    PubMed

    Yang, Alicia W; Jensen, Jens H; Hu, Caixia C; Tabesh, Ali; Falangola, Maria F; Helpern, Joseph A

    2013-02-01

    To evaluate the cerebral spinal fluid (CSF) partial volume effect on diffusional kurtosis imaging (DKI) metrics in white matter and cortical gray matter. Four healthy volunteers participated in this study. Standard DKI and fluid-attenuated inversion recovery (FLAIR) DKI experiments were performed using a twice-refocused-spin-echo diffusion sequence. The conventional diffusion tensor imaging (DTI) metrics of fractional anisotropy (FA), mean, axial, and radial diffusivity (MD, D[symbol in text], D[symbol in text] together with DKI metrics of mean, axial, and radial kurtosis (MK, K[symbol in text], K[symbol in text], were measured and compared. Single image slices located above the lateral ventricles, with similar anatomical features for each subject, were selected to minimize the effect of CSF from the ventricles. In white matter, differences of less than 10% were observed between diffusion metrics measured with standard DKI and FLAIR-DKI sequences, suggesting minimal CSF contamination. For gray matter, conventional DTI metrics differed by 19% to 52%, reflecting significant CSF partial volume effects. Kurtosis metrics, however, changed by 11% or less, indicating greater robustness with respect to CSF contamination. Kurtosis metrics are less sensitive to CSF partial voluming in cortical gray matter than conventional diffusion metrics. The kurtosis metrics may then be more specific indicators of changes in tissue microstructure, provided the effect sizes for the changes are comparable. Copyright © 2012 Wiley Periodicals, Inc.

  11. Diffusion Tensor Imaging of Heterotopia: Changes of Fractional Anisotropy during Radial Migration of Neurons

    PubMed Central

    Kim, Jinna

    2010-01-01

    Purpose Diffusion tensor imaging provides better understanding of pathophysiology of congenital anomalies, involving central nervous system. This study was aimed to specify the pathogenetic mechanism of heterotopia, proved by diffusion tensor imaging, and establish new findings of heterotopia on fractional anisotropy maps. Materials and Methods Diffusion-weighted imaging data from 11 patients (M : F = 7 : 4, aged from 1 to 22 years, mean = 12.3 years) who visited the epilepsy clinic and received a routine seizure protocol MRI exam were retrospectively analyzed. Fractional anisotropy (FA) maps were generated from diffusion tensor imaging of 11 patients with heterotopia. Regions of interests (ROI) were placed in cerebral cortex, heterotopic gray matter and deep gray matter, including putamen. ANOVA analysis was performed for comparison of different gray matter tissues. Results Heterotopic gray matter showed signal intensities similar to normal gray matter on T1 and T2 weighted MRI. The measured FA of heterotopic gray matter was higher than that of cortical gray matter (0.236 ± 0.011 vs. 0.169 ± 0.015, p < 0.01, one way ANOVA), and slightly lower than that of deep gray matter (0.236 ± 0.011 vs. 0.259 ± 0.016, p < 0.01). Conclusion Increased FA of heterotopic gray matter suggests arrested neuron during radial migration and provides better understanding of neurodevelopment. PMID:20499428

  12. Development And Testing Of The Inertial Electrostatic Confinement Diffusion Thruster

    NASA Technical Reports Server (NTRS)

    Becnel, Mark D.; Polzin, Kurt A.

    2013-01-01

    The Inertial Electrostatic Confinement (IEC) diffusion thruster is an experiment in active development that takes advantage of physical phenomenon that occurs during operation of an IEC device. The IEC device has been proposed as a fusion reactor design that relies on traditional electrostatic ion acceleration and is typically arranged in a spherical geometry. The design incorporates two radially-symmetric spherical electrodes. Often the inner electrode utilizes a grid of wire shaped in a sphere with a radius 15 to 50 percent of the radius of the outer electrode. The inner electrode traditionally has 90 percent or more transparency to allow particles (ions) to pass to the center of the spheres and collide/recombine in the dense plasma core at r=0. When operating the IEC, an unsteady plasma leak is typically observed passing out one of the gaps in the lattice grid of the inner electrode. The IED diffusion thruster is based upon the idea that this plasma leak can be used for propulsive purposes. The IEC diffusion thruster utilizes the radial symmetry found in the IEC device. A cylindrical configuration is employed here as it will produce a dense core of plasma the length of the cylindrical grid while promoting the plasma leak to exhaust through an electromagnetic nozzle at one end of the apparatus. A proof-of-concept IEC diffusion thruster is operational and under testing using argon as propellant (Figure 1).

  13. Development and aging of the healthy human brain uncinate fasciculus across the lifespan using diffusion tensor tractography.

    PubMed

    Hasan, Khader M; Iftikhar, Amal; Kamali, Arash; Kramer, Larry A; Ashtari, Manzar; Cirino, Paul T; Papanicolaou, Andrew C; Fletcher, Jack M; Ewing-Cobbs, Linda

    2009-06-18

    The human brain uncinate fasciculus (UF) is an important cortico-cortical white matter pathway that directly connects the frontal and temporal lobes, although there is a lack of conclusive support for its exact functional role. Using diffusion tensor tractography, we extracted the UF, calculated its volume and normalized it with respect to each subject's intracranial volume (ICV) and analyzed its corresponding DTI metrics bilaterally on a cohort of 108 right-handed children and adults aged 7-68 years. Results showed inverted U-shaped curves for fractional anisotropy (FA) with advancing age and U-shaped curves for radial and axial diffusivities reflecting white matter progressive and regressive myelination and coherence dynamics that continue into young adulthood. The mean FA values of the UF were significantly larger on the left side in children (p=0.05), adults (p=0.0012) and the entire sample (p=0.0002). The FA leftward asymmetry (Left>Right) is shown to be due to increased leftward asymmetry in the axial diffusivity (p<0.0001) and a lack of asymmetry (p>0.23) for the radial diffusivity. This is the first study to provide baseline normative macro and microstructural age trajectories of the human UF across the lifespan. Results of this study may lend themselves to better understanding of UF role in future behavioral and clinical studies.

  14. Modeling the Magnetopause Shadowing and Drift Orbit Bifurcation Loss during the June 2015 Dropout Event

    NASA Astrophysics Data System (ADS)

    Tu, W.; Cunningham, G.

    2017-12-01

    The relativistic electron flux in Earth's radiation belt are observed to drop by orders of magnitude on timescale of a few hours. Where do the electrons go during the dropout? This is one of the most important outstanding questions in radiation belt studies. Here we will study the 22 June 2015 dropout event which occurred during one of the largest geomagnetic storms in the last decade. A sudden and nearly complete loss of all the outer zone relativistic and ultra-relativistic electrons were observed after a strong interplanetary shock. The Last Closed Drift Shell (LCDS) calculated using the TS04 model reached as low as L*=3.7 during the shock and stay below L*=4 for 1 hour. The unusually low LCDS values suggest that magnetopause shadowing and the associated outward radial diffusion can contribute significantly to the observed dropout. In addition, Drift Orbit Bifurcation (DOB) has been suggested as an important loss mechanism for radiation belt electrons, especially when the solar wind dynamic pressure is high, but its relative importance has not been quantified. Here, we will model the June 2015 dropout event using a radial diffusion model that includes physical and event-specific inputs. First, we will trace electron drift shells based on TS04 model to identify the LCDS and bifurcation regions as a function of the 2nd adiabatic invariant (K) and time. To model magnetopause shadowing, electron lifetimes in our model will be set to electron drift periods at L*>LCDS. Electron lifetimes inside the bifurcation region have been estimated by Ukhorskiy et al. [JGR 2011, doi:10.1029/2011JA016623] as a function of L* and K, which will also be implemented in the model. This will be the first effort to include the DOB loss in a comprehensive radiation belt model. Furthermore, to realistically simulate outward radial diffusion, the new radial diffusion coefficients that are calculated based on the realistic TS04 model and include physical K dependence [Cunningham, JGR 2016, doi:10.1002/2015JA021981] will be achieved and included here. With these event-specific and physical model inputs, we will test how well the observed fast dropout during the June 2015 event can be reproduced by our model, and quantify the relative contribution of magnetopause shadowing, outward radial diffusion, and DOB to the fast electron depletion.

  15. N-acetyl-aspartate levels correlate with intra-axonal compartment parameters from diffusion MRI.

    PubMed

    Grossman, Elan J; Kirov, Ivan I; Gonen, Oded; Novikov, Dmitry S; Davitz, Matthew S; Lui, Yvonne W; Grossman, Robert I; Inglese, Matilde; Fieremans, Els

    2015-09-01

    Diffusion MRI combined with biophysical modeling allows for the description of a white matter (WM) fiber bundle in terms of compartment specific white matter tract integrity (WMTI) metrics, which include intra-axonal diffusivity (Daxon), extra-axonal axial diffusivity (De||), extra-axonal radial diffusivity (De┴), axonal water fraction (AWF), and tortuosity (α) of extra-axonal space. Here we derive these parameters from diffusion kurtosis imaging to examine their relationship to concentrations of global WM N-acetyl-aspartate (NAA), creatine (Cr), choline (Cho) and myo-Inositol (mI), as measured with proton MR spectroscopy ((1)H-MRS), in a cohort of 25 patients with mild traumatic brain injury (MTBI). We found statistically significant (p<0.05) positive correlations between NAA and Daxon, AWF, α, and fractional anisotropy; negative correlations between NAA and De,┴ and the overall radial diffusivity (D┴). These correlations were supported by similar findings in regional analysis of the genu and splenium of the corpus callosum. Furthermore, a positive correlation in global WM was noted between Daxon and Cr, as well as a positive correlation between De|| and Cho, and a positive trend between De|| and mI. The specific correlations between NAA, an endogenous probe of the neuronal intracellular space, and WMTI metrics related to the intra-axonal space, combined with the specific correlations of De|| with mI and Cho, both predominantly present extra-axonally, corroborate the overarching assumption of many advanced modeling approaches that diffusion imaging can disentangle between the intra- and extra-axonal compartments in WM fiber bundles. Our findings are also generally consistent with what is known about the pathophysiology of MTBI, which appears to involve both intra-axonal injury (as reflected by a positive trend between NAA and Daxon) as well as axonal shrinkage, demyelination, degeneration, and/or loss (as reflected by correlations between NAA and De┴, AWF, and α). Copyright © 2015 Elsevier Inc. All rights reserved.

  16. White matter damage in primary progressive aphasias: a diffusion tensor tractography study.

    PubMed

    Galantucci, Sebastiano; Tartaglia, Maria Carmela; Wilson, Stephen M; Henry, Maya L; Filippi, Massimo; Agosta, Federica; Dronkers, Nina F; Henry, Roland G; Ogar, Jennifer M; Miller, Bruce L; Gorno-Tempini, Maria Luisa

    2011-10-01

    Primary progressive aphasia is a clinical syndrome that encompasses three major phenotypes: non-fluent/agrammatic, semantic and logopenic. These clinical entities have been associated with characteristic patterns of focal grey matter atrophy in left posterior frontoinsular, anterior temporal and left temporoparietal regions, respectively. Recently, network-level dysfunction has been hypothesized but research to date has focused largely on studying grey matter damage. The aim of this study was to assess the integrity of white matter tracts in the different primary progressive aphasia subtypes. We used diffusion tensor imaging in 48 individuals: nine non-fluent, nine semantic, nine logopenic and 21 age-matched controls. Probabilistic tractography was used to identify bilateral inferior longitudinal (anterior, middle, posterior) and uncinate fasciculi (referred to as the ventral pathway); and the superior longitudinal fasciculus segmented into its frontosupramarginal, frontoangular, frontotemporal and temporoparietal components, (referred to as the dorsal pathway). We compared the tracts' mean fractional anisotropy, axial, radial and mean diffusivities for each tract in the different diagnostic categories. The most prominent white matter changes were found in the dorsal pathways in non-fluent patients, in the two ventral pathways and the temporal components of the dorsal pathways in semantic variant, and in the temporoparietal component of the dorsal bundles in logopenic patients. Each of the primary progressive aphasia variants showed different patterns of diffusion tensor metrics alterations: non-fluent patients showed the greatest changes in fractional anisotropy and radial and mean diffusivities; semantic variant patients had severe changes in all metrics; and logopenic patients had the least white matter damage, mainly involving diffusivity, with fractional anisotropy altered only in the temporoparietal component of the dorsal pathway. This study demonstrates that both careful dissection of the main language tracts and consideration of all diffusion tensor metrics are necessary to characterize the white matter changes that occur in the variants of primary progressive aphasia. These results highlight the potential value of diffusion tensor imaging as a new tool in the multimodal diagnostic evaluation of primary progressive aphasia.

  17. Brain aging in humans, chimpanzees (Pan troglodytes), and rhesus macaques (Macaca mulatta): magnetic resonance imaging studies of macro- and microstructural changes.

    PubMed

    Chen, Xu; Errangi, Bhargav; Li, Longchuan; Glasser, Matthew F; Westlye, Lars T; Fjell, Anders M; Walhovd, Kristine B; Hu, Xiaoping; Herndon, James G; Preuss, Todd M; Rilling, James K

    2013-10-01

    Among primates, humans are uniquely vulnerable to many age-related neurodegenerative disorders. We used structural and diffusion magnetic resonance imaging (MRI) to examine the brains of chimpanzees and rhesus monkeys across each species' adult lifespan, and compared these results with published findings in humans. As in humans, gray matter volume decreased with age in chimpanzees and rhesus monkeys. Also like humans, chimpanzees showed a trend for decreased white matter volume with age, but this decrease occurred proportionally later in the chimpanzee lifespan than in humans. Diffusion MRI revealed widespread age-related decreases in fractional anisotropy and increases in radial diffusivity in chimpanzees and macaques. However, both the fractional anisotropy decline and the radial diffusivity increase started at a proportionally earlier age in humans than in chimpanzees. Thus, even though overall patterns of gray and white matter aging are similar in humans and chimpanzees, the longer lifespan of humans provides more time for white matter to deteriorate before death, with the result that some neurological effects of aging may be exacerbated in our species. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Ion radial diffusion in an electrostatic impulse model for stormtime ring current formation

    NASA Technical Reports Server (NTRS)

    Chen, Margaret W.; Schulz, Michael; Lyons, Larry R.; Gorney, David J.

    1992-01-01

    Guiding-center simulations of stormtime transport of ring-current and radiation-belt ions having first adiabatic invariants mu is approximately greater than 15 MeV/G (E is approximately greater than 165 keV at L is approximately 3) are surprisingly well described (typically within a factor of approximately less than 4) by the quasilinear theory of radial diffusion. This holds even for the case of an individual model storm characterized by substorm-associated impulses in the convection electric field, provided that the actual spectrum of the electric field is incorporated in the quasilinear theory. Correction of the quasilinear diffusion coefficient D(sub LL)(sup ql) for drift-resonance broadening (so as to define D(sub LL)(sup ql)) reduced the typical discrepancy with the diffusion coefficients D(sub LL)(sup sim) deduced from guiding-center simulations of representative-particle trajectories to a factor of approximately 3. The typical discrepancy was reduced to a factor of approximately 1.4 by averaging D(sub LL)(sup sim), D(sub LL)(sup ql), and D(sub LL)(sup rb) over an ensemble of model storms characterized by different (but statistically equivalent) sets of substorm-onset times.

  19. Ex Vivo Diffusion Tensor Imaging of Spinal Cord Injury in Rats of Varying Degrees of Severity

    PubMed Central

    Jirjis, Michael B.; Kurpad, Shekar N.

    2013-01-01

    Abstract The aim of this study was to characterize magnetic resonance diffusion tensor imaging (DTI) in proximal regions of the spinal cord following a thoracic spinal cord injury (SCI). Sprague–Dawley rats (n=40) were administered a control, mild, moderate, or severe contusion injury at the T8 vertebral level. Six direction diffusion weighted images (DWIs) were collected ex vivo along the length of the spinal cord, with an echo/repetition time of 31.6 ms/14 sec and b=500 sec/mm2. Diffusion metrics were correlated to hindlimb motor function. Significant differences were found for whole cord region of interest (ROI) drawings for fractional anisotropy (FA), mean diffusivity (MD), longitudinal diffusion coefficient (LD), and radial diffusion coefficient (RD) at each of the cervical levels (p<0.01). Motor function correlated with MD in the cervical segments of the spinal cord (r2=0.80). The diffusivity of water significantly decreased throughout “uninjured” portions of the spinal cord following a contusion injury (p<0.05). Diffusivity metrics were found to be altered following SCI in both white and gray matter regions. Injury severity was associated with diffusion changes over the entire length of the cord. This study demonstrates that DTI is sensitive to SCI in regions remote from injury, suggesting that the diffusion metrics may be used as a biomarker for severity of injury. PMID:23782233

  20. A scaled-ionic-charge simulation model that reproduces enhanced and suppressed water diffusion in aqueous salt solutions.

    PubMed

    Kann, Z R; Skinner, J L

    2014-09-14

    Non-polarizable models for ions and water quantitatively and qualitatively misrepresent the salt concentration dependence of water diffusion in electrolyte solutions. In particular, experiment shows that the water diffusion coefficient increases in the presence of salts of low charge density (e.g., CsI), whereas the results of simulations with non-polarizable models show a decrease of the water diffusion coefficient in all alkali halide solutions. We present a simple charge-scaling method based on the ratio of the solvent dielectric constants from simulation and experiment. Using an ion model that was developed independently of a solvent, i.e., in the crystalline solid, this method improves the water diffusion trends across a range of water models. When used with a good-quality water model, e.g., TIP4P/2005 or E3B, this method recovers the qualitative behaviour of the water diffusion trends. The model and method used were also shown to give good results for other structural and dynamic properties including solution density, radial distribution functions, and ion diffusion coefficients.

  1. White matter biomarkers from diffusion MRI

    NASA Astrophysics Data System (ADS)

    Nørhøj Jespersen, Sune

    2018-06-01

    As part of an issue celebrating 2 decades of Joseph Ackerman editing the Journal of Magnetic Resonance, this paper reviews recent progress in one of the many areas in which Ackerman and his lab has made significant contributions: NMR measurement of diffusion in biological media, specifically in brain tissue. NMR diffusion signals display exquisite sensitivity to tissue microstructure, and have the potential to offer quantitative and specific information on the cellular scale orders of magnitude below nominal image resolution when combined with biophysical modeling. Here, I offer a personal perspective on some recent advances in diffusion imaging, from diffusion kurtosis imaging to microstructural modeling, and the connection between the two. A new result on the estimation accuracy of axial and radial kurtosis with axially symmetric DKI is presented. I moreover touch upon recently suggested generalized diffusion sequences, promising to offer independent microstructural information. We discuss the need and some methods for validation, and end with an outlook on some promising future directions.

  2. [A correlation between diffusion kurtosis imaging and the proliferative activity of brain glioma].

    PubMed

    Tonoyan, A S; Pronin, I N; Pitshelauri, D I; Shishkina, L V; Fadeeva, L M; Pogosbekyan, E L; Zakharova, N E; Shults, E I; Khachanova, N V; Kornienko, V N; Potapov, A A

    2015-01-01

    The aim of the study was to assess the capabilities of diffusion kurtosis imaging (DKI) in diagnosis of the glioma proliferative activity and to evaluate a relationship between the glioma proliferative activity index and diffusion parameters of the contralateral normal appearing white matter (CNAWM). The study included 47 patients with newly diagnosed brain gliomas (23 low grade, 13 grade III, and 11 grade IV gliomas). We determined a relationship between absolute and normalized parameters of the diffusion tensor (mean (MD), axial (AD), and radial (RD) diffusivities; fractional (FA) and relative (RA) anisotropies) and diffusion kurtosis (mean (MK), axial (AK), and radial (RK) kurtosis; kurtosis anisotropy (KA)) and the proliferative activity index in the most malignant glioma parts (p<0.05). We also established a relationship between the tensor and kurtosis parameters of CNAWM and the glioma proliferative activity index (p<0.05). The correlation between all the absolute and normalized diffusion parameters and the glioma proliferative activity index, except absolute and normalized FA and RA values, was found to be statistically significant (p<0.05). Kurtosis (MK, AK, and RK) and anisotropy (KA, FA, RA) values increased, and diffusivity (MD, AD, RD) values decreased as the glioma proliferative activity index increased. A strong correlation between the proliferative activity index and absolute RK (r=0,71; p=0.000001) and normalized values of MK (r=0.8; p=0.000001), AK (r=0.71; p=0.000001), RK (r=0.81; p=0.000001), and RD (r=-0.71; p=0.000001) was found. A weak, but statistically significant correlation between the glioma proliferative activity index and diffusion values RK (r=-0.36; p=0.014), KA (r=-0.39; p=0.007), RD (r=0.35; p=0.017), FA (r=-0.42; p=0.003), and RA (r=-0.41; p=0.004) of CNAWM was found. DKI has good capabilities to detect immunohistochemical changes in gliomas. DKI demonstrated a high sensitivity in detection of microstructural changes in the contralateral normal appearing white matter in patients with brain gliomas.

  3. Differentiating between axonal damage and demyelination in healthy aging by combining diffusion-tensor imaging and diffusion-weighted spectroscopy in the human corpus callosum at 7 T.

    PubMed

    Branzoli, Francesca; Ercan, Ece; Valabrègue, Romain; Wood, Emily T; Buijs, Mathijs; Webb, Andrew; Ronen, Itamar

    2016-11-01

    Diffusion-tensor imaging and single voxel diffusion-weighted magnetic resonance spectroscopy were used at 7T to explore in vivo age-related microstructural changes in the corpus callosum. Sixteen healthy elderly (age range 60-71 years) and 13 healthy younger controls (age range 23-32 years) were included in the study. In healthy elderly, we found lower water fractional anisotropy and higher water mean diffusivity and radial diffusivity in the corpus callosum, indicating the onset of demyelination processes with healthy aging. These changes were not associated with a concomitant significant difference in the cytosolic diffusivity of the intra-axonal metabolite N-acetylaspartate (p = 0.12), the latter representing a pure measure of intra-axonal integrity. It was concluded that the possible intra-axonal changes associated with normal aging processes are below the detection level of diffusion-weighted magnetic resonance spectroscopy in our experiment (e.g., smaller than 10%) in the age range investigated. Lower axial diffusivity of total creatine was observed in the elderly group (p = 0.058), possibly linked to a dysfunction in the energy metabolism associated with a deficit in myelin synthesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Diffusion tensor imaging in children with tuberous sclerosis complex: tract-based spatial statistics assessment of brain microstructural changes.

    PubMed

    Zikou, Anastasia K; Xydis, Vasileios G; Astrakas, Loukas G; Nakou, Iliada; Tzarouchi, Loukia C; Tzoufi, Meropi; Argyropoulou, Maria I

    2016-07-01

    There is evidence of microstructural changes in normal-appearing white matter of patients with tuberous sclerosis complex. To evaluate major white matter tracts in children with tuberous sclerosis complex using tract-based spatial statistics diffusion tensor imaging (DTI) analysis. Eight children (mean age ± standard deviation: 8.5 ± 5.5 years) with an established diagnosis of tuberous sclerosis complex and 8 age-matched controls were studied. The imaging protocol consisted of T1-weighted high-resolution 3-D spoiled gradient-echo sequence and a spin-echo, echo-planar diffusion-weighted sequence. Differences in the diffusion indices were evaluated using tract-based spatial statistics. Tract-based spatial statistics showed increased axial diffusivity in the children with tuberous sclerosis complex in the superior and anterior corona radiata, the superior longitudinal fascicle, the inferior fronto-occipital fascicle, the uncinate fascicle and the anterior thalamic radiation. No significant differences were observed in fractional anisotropy, mean diffusivity and radial diffusivity between patients and control subjects. No difference was found in the diffusion indices between the baseline and follow-up examination in the patient group. Patients with tuberous sclerosis complex have increased axial diffusivity in major white matter tracts, probably related to reduced axonal integrity.

  5. Comparison of LFM-test particle simulations and radial diffusion models of radiation belt electron injection into the slot region

    NASA Astrophysics Data System (ADS)

    Chu, F.; Hudson, M.; Kress, B.

    2008-12-01

    The physics-based Lyon-Fedder-Mobarry (LFM) code simulates Earth's magnetospheric topology and dynamics by solving the equations of ideal MHD using input solar wind parameters at the upstream boundary. Comparison with electron phase space density evolution during storms using a radial diffusion code, as well as spacecraft measurements where available, will tell us when diffusion is insufficiently accurate for radiation belt simulation, for example, during CME-shock injection events like March 24, 1991, which occurred on MeV electron drift time scales of minutes (Li et al., 1993). The 2004 July and 2004 November storms, comparable in depth of penetration into the slot region to the Halloween 2003 storm, have been modeled with both approaches. The November 8, 2004 storm was preceded by a Storm Sudden Commencement produced by a CME-shock followed by minimum Dst = -373 nT, while the July 23 to July 28 storm interval had milder consecutive drops in Dst, corresponding to multiple CME shocks and southward IMF Bz turnings. We have run the November and July storms with LFM using ACE data as upstream input, running the July storm with lower temporal resolution over a longer time interval. The November storm was different because the SCC shock was unusually intense, therefore the possibility of drift time scale acceleration by the associated magnetosonic impulse produced by the shock exists, as in March 1991 and also Halloween 2003 events (Kress et al., 2007). It can then take a short time (minutes) for electrons to be transported to low L shell while conserving their first invariant, resulting in a peak in energy and phase space density in the slot region. Radial diffusion suffices for some storm periods like the July 2004 sequence of three storms, while the guiding center test particle simulation in MHD fields is necessary to describe prompt injections which occur faster than diffusive time scales, for which November 2004 is a likely candidate. Earlier examples have been studied, including the Kress et al., 2007 study of the Halloween 2003 storm and Li et al., 1993 study of the March 24, 1991 injection event with MHD simulation carried out by Elkington et al. (2002) for this event. Radial diffusion remains the best approach for extended relatively quiet periods like the two month interval following the March 1991 prompt injection. Strong shocks will inject particles into lower L shell within a few minutes violating the third adiabatic invariant, so the diffusion mechanism cannot be adopted for sudden commencements, when Dst increases then decreases drastically; however particle tracing in time-dependent MHD fields will give an accurate estimation, so radial diffusion and particle tracing in MHD fields complement each other in radiation belt studies. Elkington, S. R., M.K. Hudson, M.J. Wiltberger, J.G. Lyon (2002) JASTP, 64, p. 607-615; Kress B. T., M. K. Hudson, M. D. Looper, J. Albert, J. G. Lyon, C. C. Goodrich (2007), J. Geophys. Res., 112, A09215, doi:10.1029/2006JA012218; Li, X., I. Roth, M. Temerin, J. R. Wygant, M. K. Hudson, and J. B. Blake (1993), Geophys. Res. Lett., 20, p. 2423-2426.

  6. Ultra-low-frequency wave-driven diffusion of radiation belt relativistic electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang

    The Van Allen radiation belts are typically two zones of energetic particles encircling the Earth separated by the slot region. How the outer radiation belt electrons are accelerated to relativistic energies remains an unanswered question. Recent studies have presented compelling evidence for the local acceleration by very-low-frequency (VLF) chorus waves. However, there has been a competing theory to the local acceleration, radial diffusion by ultra-low-frequency (ULF) waves, whose importance has not yet been determined definitively. Here we report a unique radiation belt event with intense ULF waves but no detectable VLF chorus waves. So, our results demonstrate that the ULFmore » waves moved the inner edge of the outer radiation belt earthward 0.3 Earth radii and enhanced the relativistic electron fluxes by up to one order of magnitude near the slot region within about 10 h, providing strong evidence for the radial diffusion of radiation belt relativistic electrons.« less

  7. Ultra-low-frequency wave-driven diffusion of radiation belt relativistic electrons

    DOE PAGES

    Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; ...

    2015-12-22

    The Van Allen radiation belts are typically two zones of energetic particles encircling the Earth separated by the slot region. How the outer radiation belt electrons are accelerated to relativistic energies remains an unanswered question. Recent studies have presented compelling evidence for the local acceleration by very-low-frequency (VLF) chorus waves. However, there has been a competing theory to the local acceleration, radial diffusion by ultra-low-frequency (ULF) waves, whose importance has not yet been determined definitively. Here we report a unique radiation belt event with intense ULF waves but no detectable VLF chorus waves. So, our results demonstrate that the ULFmore » waves moved the inner edge of the outer radiation belt earthward 0.3 Earth radii and enhanced the relativistic electron fluxes by up to one order of magnitude near the slot region within about 10 h, providing strong evidence for the radial diffusion of radiation belt relativistic electrons.« less

  8. Ion transport and loss in the earth's quiet ring current. I - Data and standard model

    NASA Technical Reports Server (NTRS)

    Sheldon, R. B.; Hamilton, D. C.

    1993-01-01

    A study of the transport and loss of ions in the earth's quiet time ring current, in which the standard radial diffusion model developed for the high-energy radiation belt particles is compared with the measurements of the lower-energy ring current ions, is presented. The data set provides ionic composition information in an energy range that includes the bulk of the ring current energy density, 1-300 keV/e. Protons are found to dominate the quiet time energy density at all altitudes, peaking near L of about 4 at 60 keV/cu cm, with much smaller contributions from O(+) (1-10 percent), He(+) (1-5 percent), and He(2+) (less than 1 percent). A minimization procedure is used to fit the amplitudes of the standard electric radial diffusion coefficient, yielding 5.8 x 10 exp -11 R(E-squared)/s. Fluctuation ionospheric electric fields are suggested as the source of the additional diffusion detected.

  9. Gradual Diffusion and Punctuated Phase Space Density Enhancements of Highly Relativistic Electrons: Van Allen Probes Observations

    NASA Technical Reports Server (NTRS)

    Baker, D. N.; Jaynes, A. N.; Li, X.; Henderson, M. G.; Kanekal, S. G.; Reeves, G. D.; Spence, H. E.; Claudepierre, S. G.; Fennell, J. F.; Hudson, M. K.

    2014-01-01

    The dual-spacecraft Van Allen Probes mission has provided a new window into mega electron volt (MeV) particle dynamics in the Earth's radiation belts. Observations (up to E (is) approximately 10MeV) show clearly the behavior of the outer electron radiation belt at different timescales: months-long periods of gradual inward radial diffusive transport and weak loss being punctuated by dramatic flux changes driven by strong solar wind transient events. We present analysis of multi-MeV electron flux and phase space density (PSD) changes during March 2013 in the context of the first year of Van Allen Probes operation. This March period demonstrates the classic signatures both of inward radial diffusive energization and abrupt localized acceleration deep within the outer Van Allen zone (L (is) approximately 4.0 +/- 0.5). This reveals graphically that both 'competing' mechanisms of multi-MeV electron energization are at play in the radiation belts, often acting almost concurrently or at least in rapid succession.

  10. A comprehensive model of ion diffusion and charge exchange in the cold Io torus

    NASA Technical Reports Server (NTRS)

    Barbosa, D. D.; Moreno, M. A.

    1988-01-01

    A comprehensive analytic model of radial diffusion in the cold Io torus is developed. The model involves a generalized molecular cloud theory of SO2 and its dissociation fragments SO, O2, S, and O, which are formed at a relatively large rate by solar UV photodissociation of SO2. The key component of the new theory is SO, which can react with S(+) through a near-resonant charge exchange process that is exothermic. This provides a mechanism for the rapid depletion of singly ionized sulfur in the cold torus and can account for the large decrease in the total flux tube content inward of Io's orbit. The model is used to demonstrate quantitatively the effects of radial diffusion in a charge exchange environment that acts as a combined source and sink for ions in various charge states. A detailed quantitative explanation for the O(2+) component of the cold torus is given, and insight is derived into the workings of the so-called plasma 'ribbon'.

  11. Transport, charge exchange and loss of energetic heavy ions in the earth's radiation belts - Applicability and limitations of theory

    NASA Technical Reports Server (NTRS)

    Spjeldvik, W. N.

    1981-01-01

    Computer simulations of processes which control the relative abundances of ions in the trapping regions of geospace are compared with observations from discriminating ion detectors. Energy losses due to Coulomb collisions between ions and exospheric neutrals are considered, along with charge exchange losses and internal charge exchanges. The time evolution of energetic ion fluxes of equatorially mirroring ions under radial diffusion is modelled to include geomagnetic and geoelectric fluctutations. Limits to the validity of diffusion transport theory are discussed, and the simulation is noted to contain provisions for six ionic charge states and the source effect on the radiation belt oxygen ion distributions. Comparisons are made with ion flux data gathered on Explorer 45 and ISEE-1 spacecraft and results indicate that internal charge exchanges cause the radiation belt ion charge state to be independent of source charge rate characteristics, and relative charge state distribution is independent of the radially diffusive transport rate below the charge state redistribution zone.

  12. Nondestructive estimation of wood chemical composition of sections of radial wood strips by diffuse reflectance near infrared spectroscopy

    Treesearch

    P. David Jones; Laurence R. Schimleck; Gary F. Peter; Richard F. Daniels; Alexander Clark

    2006-01-01

    The use of calibrated near infrared (NIR) spectroscopy for predicting the chemical composition of Pirus taeda L. (loblolly pine) wood samples is investigated. Seventeen P. taeda radial strips, representing seven different sites were selected and NlR spectra were obtained from the radial longitudinal face of each strip. The spectra...

  13. Measurements and modeling of the impact of weak magnetic fields on the plasma properties of a planar slot antenna driven plasma source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshikawa, Jun, E-mail: jun.yoshikawa@tel.com; Susa, Yoshio; Ventzek, Peter L. G.

    The radial line slot antenna plasma source is a type of surface wave plasma source driven by a planar slot antenna. Microwave power is transmitted through a slot antenna structure and dielectric window to a plasma characterized by a generation zone adjacent to the window and a diffusion zone that contacts a substrate. The diffusion zone is characterized by a very low electron temperature. This renders the source useful for soft etch applications and thin film deposition processes requiring low ion energy. Another property of the diffusion zone is that the plasma density tends to decrease from the axis tomore » the walls under the action of ambipolar diffusion at distances far from where the plasma is generated. A previous simulation study [Yoshikawa and. Ventzek, J. Vac. Sci. Technol. A 31, 031306 (2013)] predicted that the anisotropy in transport parameters due to weak static magnetic fields less than 50 G could be leveraged to manipulate the plasma profile in the radial direction. These simulations motivated experimental tests in which weak magnetic fields were applied to a radial line slot antenna source. Plasma absorption probe measurements of electron density and etch rate showed that the magnetic fields remote from the wafer were able to manipulate both parameters. A summary of these results is presented in this paper. Argon plasma simulation trends are compared with experimental plasma and etch rate measurements. A test of the impact of magnetic fields on charge up damage showed no perceptible negative effect.« less

  14. An experimental description of the flow in a centrifugal compressor from alternate stall to surge

    NASA Astrophysics Data System (ADS)

    Moënne-Loccoz, V.; Trébinjac, I.; Benichou, E.; Goguey, S.; Paoletti, B.; Laucher, P.

    2017-08-01

    The present paper gives the experimental results obtained in a centrifugal compressor stage designed and built by SAFRAN Helicopter Engines. The compressor is composed of inlet guide vanes, a backswept splittered unshrouded impeller, a splittered vaned radial diffuser and axial outlet guide vanes. Previous numerical simulations revealed a particular S-shape pressure rise characteristic at partial rotation speed and predicted an alternate flow pattern in the vaned radial diffuser at low mass flow rate. This alternate flow pattern involves two adjacent vane passages. One passage exhibits very low momentum and a low pressure recovery, whereas the adjacent passage has very high momentum in the passage inlet and diffuses efficiently. Experimental measurements confirm the S-shape of the pressure rise characteristic even if the stability limit experimentally occurs at higher mass flow than numerically predicted. At low mass flow the alternate stall pattern is confirmed thanks to the data obtained by high-frequency pressure sensors. As the compressor is throttled the path to instability has been registered and a first scenario of the surge inception is given. The compressor first experiences a steady alternate stall in the diffuser. As the mass flow decreases, the alternate stall amplifies and triggers the mild surge in the vaned diffuser. An unsteady behavior results from the interaction of the alternate stall and the mild surge. Finally, when the pressure gradient becomes too strong, the alternate stall blows away and the compressor enters into deep surge.

  15. Inward diffusion and loss of radiation belt protons

    NASA Astrophysics Data System (ADS)

    Selesnick, R. S.; Baker, D. N.; Jaynes, A. N.; Li, X.; Kanekal, S. G.; Hudson, M. K.; Kress, B. T.

    2016-03-01

    Radiation belt protons in the kinetic energy range 24 to 76 MeV are being measured by the Relativistic Electron Proton Telescope on each of the two Van Allen Probes. Data have been processed for the purpose of studying variability in the trapped proton intensity during October 2013 to August 2015. For the lower energies (≲32 MeV), equatorial proton intensity near L = 2 showed a steady increase that is consistent with inward diffusion of trapped solar protons, as shown by positive radial gradients in phase space density at fixed values of the first two adiabatic invariants. It is postulated that these protons were trapped with enhanced efficiency during the 7 March 2012 solar proton event. A model that includes radial diffusion, along with known trapped proton source and loss processes, shows that the observed average rate of increase near L = 2 is predicted by the same model diffusion coefficient that is required to form the entire proton radiation belt, down to low L, over an extended (˜103 year) interval. A slower intensity decrease for lower energies near L = 1.5 may also be caused by inward diffusion, though it is faster than predicted by the model. Higher-energy (≳40 MeV) protons near the L = 1.5 intensity maximum are from cosmic ray albedo neutron decay. Their observed intensity is lower than expected by a factor ˜2, but the discrepancy is resolved by adding an unspecified loss process to the model with a mean lifetime ˜120 years.

  16. Azimuthal ULF Structure and Radial Transport of Charged Particles

    NASA Astrophysics Data System (ADS)

    Ali, A.; Elkington, S. R.

    2015-12-01

    The Van Allen radiation belts contain highly energetic particles which interact with a variety of plasma and MHD waves. Waves with frequencies in the ULF range are understood to play an important role in loss and acceleration of energetic particles. There is still much to be understood about the interaction between charged particles and ULF waves in the inner magnetosphere and how they influence particle diffusion. We investigate how ULF wave power distribution in azimuth affects radial diffusion of charged particles. Analytic treatments of the diffusion coefficients generally assume uniform distribution of power in azimuth but in situ measurements suggest otherwise. The power profiles obtained from in situ measurements will be used to conduct particle simulations to see how well do the simulated diffusion coefficients agree with diffusion coefficients estimated directly from in situ measurements. We also look at the ULF wave power distribution across different modes. In order to use in situ point measurements from spacecraft, it is typically assumed that all of the wave power exists in m=1 mode. How valid is this assumption? Do higher modes contain a major fraction of the total power? If yes, then under what conditions? One strategy is to use the obtained realistic azimuthal power profiles from in situ measurements (such as from the Van Allen Probes) to drive simulations and see how the power distributions across modes larger than one depends on parameters such as the level of geomagnetic activity.

  17. THE SPATIO-TEMPORAL EVOLUTION OF SOLAR FLARES OBSERVED WITH AIA/SDO: FRACTAL DIFFUSION, SUB-DIFFUSION, OR LOGISTIC GROWTH?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aschwanden, Markus J., E-mail: aschwanden@lmsal.com

    2012-09-20

    We explore the spatio-temporal evolution of solar flares by fitting a radial expansion model r(t) that consists of an exponentially growing acceleration phase, followed by a deceleration phase that is parameterized by the generalized diffusion function r(t){proportional_to}{kappa}(t - t{sub 1}){sup {beta}/2}, which includes the logistic growth limit ({beta} = 0), sub-diffusion ({beta} = 0-1), classical diffusion ({beta} = 1), super-diffusion ({beta} = 1-2), and the linear expansion limit ({beta} = 2). We analyze all M- and X-class flares observed with Geostationary Operational Environmental Satellite and Atmospheric Imaging Assembly/Solar Dynamics Observatory (SDO) during the first two years of the SDO mission,more » amounting to 155 events. We find that most flares operate in the sub-diffusive regime ({beta} = 0.53 {+-} 0.27), which we interpret in terms of anisotropic chain reactions of intermittent magnetic reconnection episodes in a low plasma-{beta} corona. We find a mean propagation speed of v = 15 {+-} 12 km s{sup -1}, with maximum speeds of v{sub max} = 80 {+-} 85 km s{sup -1} per flare, which is substantially slower than the sonic speeds expected for thermal diffusion of flare plasmas. The diffusive characteristics established here (for the first time for solar flares) is consistent with the fractal-diffusive self-organized criticality model, which predicted diffusive transport merely based on cellular automaton simulations.« less

  18. Decreased and Increased Anisotropy along Major Cerebral White Matter Tracts in Preterm Children and Adolescents

    PubMed Central

    Ben-Shachar, Michal; Feldman, Heidi M.

    2015-01-01

    Premature birth is highly prevalent and associated with neurodevelopmental delays and disorders. Adverse outcomes, particularly in children born before 32 weeks of gestation, have been attributed in large part to white matter injuries, often found in periventricular regions using conventional imaging. To date, tractography studies of white matter pathways in children and adolescents born preterm have evaluated only a limited number of tracts simultaneously. The current study compares diffusion properties along 18 major cerebral white matter pathways in children and adolescents born preterm (n = 27) and full term (n = 19), using diffusion magnetic resonance imaging and tractography. We found that compared to the full term group, the preterm group had significantly decreased FA in segments of the bilateral uncinate fasciculus and anterior segments of the right inferior fronto-occipital fasciculus. Additionally, the preterm group had significantly increased FA in segments of the right and left anterior thalamic radiations, posterior segments of the right inferior fronto-occipital fasciculus, and the right and left inferior longitudinal fasciculus. Increased FA in the preterm group was generally associated with decreased radial diffusivity. These findings indicate that prematurity-related white matter differences in later childhood and adolescence do not affect all tracts in the periventricular zone and can involve both decreased and increased FA. Differences in the patterns of radial diffusivity and axial diffusivity suggest that the tissue properties underlying group FA differences may vary within and across white matter tracts. Distinctive diffusion properties may relate to variations in the timing of injury in the neonatal period, extent of white matter dysmaturity and/or compensatory processes in childhood. PMID:26560745

  19. Measurement of the eddy diffusion term in chromatographic columns. I. Application to the first generation of 4.6mm I.D. monolithic columns.

    PubMed

    Gritti, Fabrice; Guiochon, Georges

    2011-08-05

    The corrected heights equivalent to a theoretical plate (HETP) of three 4.6mm I.D. monolithic Onyx-C(18) columns (Onyx, Phenomenex, Torrance, CA) of different lengths (2.5, 5, and 10 cm) are reported for retained (toluene, naphthalene) and non-retained (uracil, caffeine) small molecules. The moments of the peak profiles were measured according to the accurate numerical integration method. Correction for the extra-column contributions was systematically applied. The peak parking method was used in order to measure the bulk diffusion coefficients of the sample molecules, their longitudinal diffusion terms, and the eddy diffusion term of the three monolithic columns. The experimental results demonstrate that the maximum efficiency was 60,000 plates/m for retained compounds. The column length has a large impact on the plate height of non-retained species. These observations were unambiguously explained by a large trans-column eddy diffusion term in the van Deemter HETP equation. This large trans-rod eddy diffusion term is due to the combination of a large trans-rod velocity bias (≃3%), a small radial dispersion coefficient in silica monolithic columns, and a poorly designed distribution and collection of the sample streamlets at the inlet and outlet of the monolithic rod. Improving the performance of large I.D. monolithic columns will require (1) a detailed knowledge of the actual flow distribution across and along these monolithic rod and (2) the design of appropriate inlet and outlet distributors designed to minimize the nefarious impact of the radial flow heterogeneity on band broadening. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Nonlinear anomalous diffusion equation and fractal dimension: exact generalized Gaussian solution.

    PubMed

    Pedron, I T; Mendes, R S; Malacarne, L C; Lenzi, E K

    2002-04-01

    In this work we incorporate, in a unified way, two anomalous behaviors, the power law and stretched exponential ones, by considering the radial dependence of the N-dimensional nonlinear diffusion equation partial differential rho/ partial differential t=nabla.(Knablarho(nu))-nabla.(muFrho)-alpharho, where K=Dr(-theta), nu, theta, mu, and D are real parameters, F is the external force, and alpha is a time-dependent source. This equation unifies the O'Shaughnessy-Procaccia anomalous diffusion equation on fractals (nu=1) and the spherical anomalous diffusion for porous media (theta=0). An exact spherical symmetric solution of this nonlinear Fokker-Planck equation is obtained, leading to a large class of anomalous behaviors. Stationary solutions for this Fokker-Planck-like equation are also discussed by introducing an effective potential.

  1. Combined convective and diffusive simulations: VERB-4D comparison with 17 March 2013 Van Allen Probes observations: VERB-4D

    DOE PAGES

    Shprits, Yuri Y.; Kellerman, Adam C.; Drozdov, Alexander Y.; ...

    2015-11-19

    Our study focused on understanding the coupling between different electron populations in the inner magnetosphere and the various physical processes that determine evolution of electron fluxes at different energies. Observations during the 17 March 2013 storm and simulations with a newly developed Versatile Electron Radiation Belt-4D (VERB-4D) are presented. This analysis of the drift trajectories of the energetic and relativistic electrons shows that electron trajectories at transitional energies with a first invariant on the scale of ~100 MeV/G may resemble ring current or relativistic electron trajectories depending on the level of geomagnetic activity. Simulations with the VERB-4D code including convection,more » radial diffusion, and energy diffusion are presented. Sensitivity simulations including various physical processes show how different acceleration mechanisms contribute to the energization of energetic electrons at transitional energies. In particular, the range of energies where inward transport is strongly influenced by both convection and radial diffusion are studied. Our results of the 4-D simulations are compared to Van Allen Probes observations at a range of energies including source, seed, and core populations of the energetic and relativistic electrons in the inner magnetosphere.« less

  2. Deduction of the rates of radial diffusion of protons from the structure of the Earth's radiation belts

    NASA Astrophysics Data System (ADS)

    Kovtyukh, Alexander S.

    2016-11-01

    From the data on the fluxes and energy spectra of protons with an equatorial pitch angle of α0 ≈ 90° during quiet and slightly disturbed (Kp ≤ 2) periods, I directly calculated the value DLL, which is a measure of the rate of radial transport (diffusion) of trapped particles. This is done by successively solving the systems (chains) of integrodifferential equations which describe the balance of radial transport/acceleration and ionization losses of low-energy protons of the stationary belt. This was done for the first time. For these calculations, I used data of International Sun-Earth Explorer 1 (ISEE-1) for protons with an energy of 24 to 2081 keV at L = 2-10 and data of Explorer-45 for protons with an energy of 78.6 to 872 keV at L = 2-5. Ionization losses of protons (Coulomb losses and charge exchange) were calculated on the basis of modern models of the plasmasphere and the exosphere. It is shown that for protons with μ from ˜ 0.7 to ˜ 7 keV nT-1 at L ≈ 4.5-10, the functions of DLL can be approximated by the following equivalent expressions: DLL ≈ 4.9 × 10-14μ-4.1L8.2 or DLL ≈ 1.3 × 105(EL)-4.1 or DLL ≈ 1.2 × 10-9fd-4.1, where fd is the drift frequency of the protons (in mHz), DLL is measured in s-1, E is measured in kiloelectronvolt and μ is measured in kiloelectronvolt per nanotesla. These results are consistent with the radial diffusion of particles under the action of the electric field fluctuations (pulsations) in the range of Pc6 and contradict the mechanism of the radial diffusion of particles under the action of sudden impulses (SIs) of the magnetic field and also under the action of substorm impulses of the electric field. During magnetic storms DLL increases, and the expressions for DLL obtained here can change completely.

  3. Obtaining the porewater composition of a clay rock by modeling the in- and out-diffusion of anions and cations from an in-situ experiment.

    PubMed

    Appelo, C A J; Vinsot, A; Mettler, S; Wechner, S

    2008-10-23

    A borehole in the Callovo-Oxfordian clay rock in ANDRA's underground research facility was sampled during 1 year and chemically analyzed. Diffusion between porewater and the borehole solution resulted in concentration changes which were modeled with PHREEQC's multicomponent diffusion module. In the model, the clay rock's pore space is divided in free porewater (electrically neutral) and diffuse double layer water (devoid of anions). Diffusion is calculated separately for the two domains, and individually for all the solute species while a zero-charge flux is maintained. We explain how the finite difference formulas for radial diffusion can be translated into mixing factors for solutions. Operator splitting is used to calculate advective flow and chemical reactions such as ion exchange and calcite dissolution and precipitation. The ion exchange reaction is formulated in the form of surface complexation, which allows distributing charge over the fixed sites and the diffuse double layer. The charge distribution affects pH when calcite dissolves, and modeling of the experimental data shows that about 7% of the cation exchange capacity resides in the diffuse double layer. The model calculates the observed concentration changes very well and provides an estimate of the pristine porewater composition in the clay rock.

  4. Putting atomic diffusion theory of magnetic ApBp stars to the test: evaluation of the predictions of time-dependent diffusion models

    NASA Astrophysics Data System (ADS)

    Kochukhov, O.; Ryabchikova, T. A.

    2018-02-01

    A series of recent theoretical atomic diffusion studies has address the challenging problem of predicting inhomogeneous vertical and horizontal chemical element distributions in the atmospheres of magnetic ApBp stars. Here we critically assess the most sophisticated of such diffusion models - based on a time-dependent treatment of the atomic diffusion in a magnetized stellar atmosphere - by direct comparison with observations as well by testing the widely used surface mapping tools with the spectral line profiles predicted by this theory. We show that the mean abundances of Fe and Cr are grossly underestimated by the time-dependent theoretical diffusion model, with discrepancies reaching a factor of 1000 for Cr. We also demonstrate that Doppler imaging inversion codes, based either on modelling of individual metal lines or line-averaged profiles simulated according to theoretical three-dimensional abundance distribution, are able to reconstruct correct horizontal chemical spot maps despite ignoring the vertical abundance variation. These numerical experiments justify a direct comparison of the empirical two-dimensional Doppler maps with theoretical diffusion calculations. This comparison is generally unfavourable for the current diffusion theory, as very few chemical elements are observed to form overabundance rings in the horizontal field regions as predicted by the theory and there are numerous examples of element accumulations in the vicinity of radial field zones, which cannot be explained by diffusion calculations.

  5. White matter damage in primary progressive aphasias: a diffusion tensor tractography study

    PubMed Central

    Galantucci, Sebastiano; Tartaglia, Maria Carmela; Wilson, Stephen M.; Henry, Maya L.; Filippi, Massimo; Agosta, Federica; Dronkers, Nina F.; Henry, Roland G.; Ogar, Jennifer M.; Miller, Bruce L.

    2011-01-01

    Primary progressive aphasia is a clinical syndrome that encompasses three major phenotypes: non-fluent/agrammatic, semantic and logopenic. These clinical entities have been associated with characteristic patterns of focal grey matter atrophy in left posterior frontoinsular, anterior temporal and left temporoparietal regions, respectively. Recently, network-level dysfunction has been hypothesized but research to date has focused largely on studying grey matter damage. The aim of this study was to assess the integrity of white matter tracts in the different primary progressive aphasia subtypes. We used diffusion tensor imaging in 48 individuals: nine non-fluent, nine semantic, nine logopenic and 21 age-matched controls. Probabilistic tractography was used to identify bilateral inferior longitudinal (anterior, middle, posterior) and uncinate fasciculi (referred to as the ventral pathway); and the superior longitudinal fasciculus segmented into its frontosupramarginal, frontoangular, frontotemporal and temporoparietal components, (referred to as the dorsal pathway). We compared the tracts’ mean fractional anisotropy, axial, radial and mean diffusivities for each tract in the different diagnostic categories. The most prominent white matter changes were found in the dorsal pathways in non-fluent patients, in the two ventral pathways and the temporal components of the dorsal pathways in semantic variant, and in the temporoparietal component of the dorsal bundles in logopenic patients. Each of the primary progressive aphasia variants showed different patterns of diffusion tensor metrics alterations: non-fluent patients showed the greatest changes in fractional anisotropy and radial and mean diffusivities; semantic variant patients had severe changes in all metrics; and logopenic patients had the least white matter damage, mainly involving diffusivity, with fractional anisotropy altered only in the temporoparietal component of the dorsal pathway. This study demonstrates that both careful dissection of the main language tracts and consideration of all diffusion tensor metrics are necessary to characterize the white matter changes that occur in the variants of primary progressive aphasia. These results highlight the potential value of diffusion tensor imaging as a new tool in the multimodal diagnostic evaluation of primary progressive aphasia. PMID:21666264

  6. On the chaotic diffusion in multidimensional Hamiltonian systems

    NASA Astrophysics Data System (ADS)

    Cincotta, P. M.; Giordano, C. M.; Martí, J. G.; Beaugé, C.

    2018-01-01

    We present numerical evidence that diffusion in the herein studied multidimensional near-integrable Hamiltonian systems departs from a normal process, at least for realistic timescales. Therefore, the derivation of a diffusion coefficient from a linear fit on the variance evolution of the unperturbed integrals fails. We review some topics on diffusion in the Arnold Hamiltonian and yield numerical and theoretical arguments to show that in the examples we considered, a standard coefficient would not provide a good estimation of the speed of diffusion. However, numerical experiments concerning diffusion would provide reliable information about the stability of the motion within chaotic regions of the phase space. In this direction, we present an extension of previous results concerning the dynamical structure of the Laplace resonance in Gliese-876 planetary system considering variations of the orbital parameters accordingly to the error introduced by the radial velocity determination. We found that a slight variation of the eccentricity of planet c would destabilize the inner region of the resonance that, though chaotic, shows stable when adopting the best fit values for the parameters.

  7. White matter microstructural alterations in clinically isolated syndrome and multiple sclerosis.

    PubMed

    Huang, Jing; Liu, Yaou; Zhao, Tengda; Shu, Ni; Duan, Yunyun; Ren, Zhuoqiong; Sun, Zheng; Liu, Zheng; Chen, Hai; Dong, Huiqing; Li, Kuncheng

    2018-07-01

    This study aims to determine whether and how diffusion alteration occurs in the earliest stage of multiple sclerosis (MS) and the differences in diffusion metrics between CIS and MS by using the tract-based spatial statistics (TBSS) method based on diffusion tensor imaging (DTI). Thirty-six CIS patients (mean age ± SD: 34.0 years ± 12.6), 36 relapsing-remitting multiple sclerosis (RRMS) patients (mean age ± SD: 35.0 years ± 9.4) and 36 age- and gender-matched normal controls (NCs) were included in this study. Voxel-wise analyses were performed with TBSS using multiple diffusion metrics, including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (λ 1 ) and radial diffusivity (λ 23 ). In the CIS patients, TBSS analyses revealed diffusion alterations in a few white matter (WM) regions including the anterior thalamic radiation, corticospinal tract, inferior fronto-occipital fasciculus, superior longitudinal fasciculus, body and splenium of the corpus callosum, internal capsule, external capsule, and cerebral peduncle. MS patients showed more widespread diffusion changes (decreased FA, increased λ 1 , λ 23 and MD) than CIS. Exploratory analyses also revealed the possible associations between WM diffusion metrics and clinical variables (Expanded Disability Status Scale and disease duration) in the patients. This study provided imaging evidence for DTI abnormalities in CIS and MS and suggested that DTI can improve our knowledge of the path physiology of CIS and MS and clinical progression. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Gravity influence on the clustering of charged particles in turbulence

    NASA Astrophysics Data System (ADS)

    Lu, Jiang; Nordsiek, Hansen; Shaw, Raymond

    2010-11-01

    We report results aimed at studying the interactions of bidisperse charged inertial particles in homogeneous, isotropic turbulence, under the influence of gravitational settling. We theoretically and experimentally investigate the impact of gravititational settling on particle clustering, which is quantified by the radial distribution function (RDF). The theory is based on a drift-diffusion (Fokker-Planck) model with gravitational settling appearing as a diffusive term depending on a dimensionless settling parameter. The experiments are carried out in a laboratory chamber with nearly homogeneous, isotropic turbulence in which the flow is seeded with charged particles and digital holography used to obtain 3D particle positions and velocities. The derived radial distribution function for bidisperse settling charged particles is compared to the experimental RDFs.

  9. Extensive database of liquid phase diffusion coefficients of some frequently used test molecules in reversed-phase liquid chromatography and hydrophilic interaction liquid chromatography.

    PubMed

    Song, Huiying; Vanderheyden, Yoachim; Adams, Erwin; Desmet, Gert; Cabooter, Deirdre

    2016-07-15

    Diffusion plays an important role in all aspects of band broadening in chromatography. An accurate knowledge of molecular diffusion coefficients in different mobile phases is therefore crucial in fundamental column performance studies. Correlations available in literature, such as the Wilke-Chang equation, can provide good approximations of molecular diffusion under reversed-phase conditions. However, these correlations have been demonstrated to be less accurate for mobile phases containing a large percentage of acetonitrile, as is the case in hydrophilic interaction liquid chromatography. A database of experimentally measured molecular diffusion coefficients of some 45 polar and apolar compounds that are frequently used as test molecules under hydrophilic interaction liquid chromatography and reversed-phase conditions is therefore presented. Special attention is given to diffusion coefficients of polar compounds obtained in large percentages of acetonitrile (>90%). The effect of the buffer concentration (5-10mM ammonium acetate) on the obtained diffusion coefficients is investigated and is demonstrated to mainly influence the molecular diffusion of charged molecules. Diffusion coefficients are measured using the Taylor-Aris method and hence deduced from the peak broadening of a solute when flowing through a long open tube. The validity of the set-up employed for the measurement of the diffusion coefficients is demonstrated by ruling out the occurrence of longitudinal diffusion, secondary flow interactions and extra-column effects, while it is also shown that radial equilibration in the 15m long capillary is effective. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Numerical study of a high-speed miniature centrifugal compressor

    NASA Astrophysics Data System (ADS)

    Li, Xiaoyi

    A miniature centrifugal compressor is a key component of reverse Brayton cycle cryogenic cooling system. The system is commonly used to generate a low cryogenic temperature environment for electronics to increase their efficiency, or generate, store and transport cryogenic liquids, such as liquid hydrogen and oxygen, where space limit is also an issue. Because of space limitation, the compressor is composed of a radial IGV, a radial impeller and an axial-direction diffuser (which reduces the radial size because of smaller diameter). As a result of reduction in size, rotating speed of the impeller is as high as 313,000 rpm, and Helium is used as the working fluid, in order to obtain the required static pressure ratio/rise. Two main characteristics of the compressor---miniature and high-speed, make it distinct from conventional compressors. Higher compressor efficiency is required to obtain a higher COP (coefficient of performance) system. Even though miniature centrifugal compressors start to draw researchers' attention in recent years, understanding of the performance and loss mechanism is still lacking. Since current experimental techniques are not advanced enough to capture details of flow at miniature scale, numerical methods dominate miniature turbomachinery study. This work numerically studied a high speed miniature centrifugal compressor with commercial CFD code. The overall performance of the compressor was predicted with consideration of interaction between blade rows by using sliding mesh model. The law of similarity of turbomachinery was validated for small scale machines. It was found that the specific ratio effect needs to be considered when similarity law is applied. But Reynolds number effect can be neglected. The loss mechanism of each component was analyzed. Loss due to turning bend was significant in each component. Tip leakage loss of small scale turbomachines has more impact on the impeller performance than that of large scale ones. Because the splitter was located at downstream of the impeller leading edge, any incidence at the impeller leading edge could deteriorate the splitter performance. Therefore, the impeller with twenty blades had, higher isentropic efficiency than the impeller with ten blades and ten splitters. Based on numerical study, a four-row vaned diffuser replaced a two-row vaned diffuser. It was found that the four-row vaned diffuser had much higher pressure recovery coefficient than the two-row vaned diffuser. However, most of pressure numerically is found to be recovered at the first two rows of diffuser vanes. Consequently, the following suggestions were given to further improve the performance of the miniature centrifugal compressor. (1) Redesign inlet guide vane based on the numerical simulation and experimental results. (2) Add de-swirl vanes in front of the diffuser and before the bend. (3) Replace the current impeller with a twenty-blade impeller. (4) Remove the last two rows of diffuser.

  11. Reduced integrity of the left arcuate fasciculus is specifically associated with auditory verbal hallucinations in schizophrenia.

    PubMed

    McCarthy-Jones, Simon; Oestreich, Lena K L; Whitford, Thomas J

    2015-03-01

    Schizophrenia patients with auditory verbal hallucinations (AVH) have reduced structural integrity in the left arcuate fasciculus (AFL) compared to healthy controls. However, it is neither known whether these changes are specific to AVH, as opposed to hallucinations or schizophrenia per se, nor how radial and/or axial diffusivity are altered. This study aimed to test the hypothesis that reductions to the structural integrity of the AFL are specifically associated with AVH in schizophrenia. Diffusion tensor imaging scans and clinical data were obtained from the Australian Schizophrenia Research Bank for 39 schizophrenia patients with lifetime AVH (18 current, 21 remitted), 74 schizophrenia patients with no lifetime AVH (40 with lifetime hallucinations in other modalities, 34 no lifetime hallucinations) and 40 healthy controls. Fractional anisotropy was significantly reduced in the AFL of patients with lifetime AVH compared to both healthy controls (Cohen's d=1.24) and patients without lifetime AVH (d=.72), including compared to the specific subsets of patients without AVH who either had hallucinations in other modalities (d=.69) or no history of any hallucinations (d=.73). Radial, but not axial, diffusivity was significantly increased in patients with lifetime AVH compared to both healthy controls (d=.89) and patients without lifetime AVH (d=.39). Evidence was found for a non-linear relation between fractional anisotropy in the AFL and state AVH. Reduced integrity of the AFL is specifically associated with AVH, as opposed to schizophrenia in general or hallucinations in other modalities. Increased radial diffusivity suggests dysmyelination or demyelination of the AFL may play a role in AVH. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Evolution of Edge Pedestal Profiles Between ELMs

    NASA Astrophysics Data System (ADS)

    Floyd, J. P.; Stacey, W. M.; Groebner, R. J.

    2012-10-01

    The measured edge profile evolution in DIII-D discharges is analyzed in terms of the implied thermal diffusivities, ion diffusion coefficients and pinch velocities, using the momentum-balance methodology of Ref. [1], extended to take into account ion orbit loss and X-point loss. The evolution of the density, temperature, rotation and radial electric field profiles in the edge pedestal between edge localized modes (ELMs) provides information of these diffusive and non-diffusive transport processes in the pedestal of H-mode plasmas. This methodology is incorporated in the GTEDGE code developed for DIII-D data interpretation. Using a smaller integration time for the charge exchange recombination measurements than in Ref. [1] allows a more detailed examination of the time evolution of the ion temperature and rotation profiles. 6pt [1] W.M. Stacey and R.J. Groebner, Nucl. Fusion 51, 063024 (2011).

  13. Understanding the spectral hardenings and radial distribution of Galactic cosmic rays and Fermi diffuse γ rays with spatially-dependent propagation

    NASA Astrophysics Data System (ADS)

    Guo, Yi-Qing; Yuan, Qiang

    2018-03-01

    Recent direct measurements of Galactic cosmic ray spectra by balloon/space-borne detectors reveal spectral hardenings of all major nucleus species at rigidities of a few hundred GV. The all-sky diffuse γ -ray emissions measured by the Fermi Large Area Telescope also show spatial variations of the intensities and spectral indices of cosmic rays. These new observations challenge the traditional simple acceleration and/or propagation scenario of Galactic cosmic rays. In this work, we propose a spatially dependent diffusion scenario to explain all these phenomena. The diffusion coefficient is assumed to be anticorrelated with the source distribution, which is a natural expectation from the charged particle transportation in a turbulent magnetic field. The spatially dependent diffusion model also gives a lower level of anisotropies of cosmic rays, which are consistent with observations by underground muons and air shower experiments. The spectral variations of cosmic rays across the Galaxy can be properly reproduced by this model.

  14. Molecular and Subcellular-Scale Modeling of Nucleotide Diffusion in the Cardiac Myofilament Lattice

    PubMed Central

    Kekenes-Huskey, Peter M.; Liao, Tao; Gillette, Andrew K.; Hake, Johan E.; Zhang, Yongjie; Michailova, Anushka P.; McCulloch, Andrew D.; McCammon, J. Andrew

    2013-01-01

    Contractile function of cardiac cells is driven by the sliding displacement of myofilaments powered by the cycling myosin crossbridges. Critical to this process is the availability of ATP, which myosin hydrolyzes during the cross-bridge cycle. The diffusion of adenine nucleotides through the myofilament lattice has been shown to be anisotropic, with slower radial diffusion perpendicular to the filament axis relative to parallel, and is attributed to the periodic hexagonal arrangement of the thin (actin) and thick (myosin) filaments. We investigated whether atomistic-resolution details of myofilament proteins can refine coarse-grain estimates of diffusional anisotropy for adenine nucleotides in the cardiac myofibril, using homogenization theory and atomistic thin filament models from the Protein Data Bank. Our results demonstrate considerable anisotropy in ATP and ADP diffusion constants that is consistent with experimental measurements and dependent on lattice spacing and myofilament overlap. A reaction-diffusion model of the half-sarcomere further suggests that diffusional anisotropy may lead to modest adenine nucleotide gradients in the myoplasm under physiological conditions. PMID:24209858

  15. Elevated left and reduced right orbitomedial prefrontal fractional anisotropy in adults with bipolar disorder revealed by tract-based spatial statistics.

    PubMed

    Versace, Amelia; Almeida, Jorge R C; Hassel, Stefanie; Walsh, Nicholas D; Novelli, Massimiliano; Klein, Crystal R; Kupfer, David J; Phillips, Mary L

    2008-09-01

    Diffusion tensor imaging (DTI) studies in adults with bipolar disorder (BD) indicate altered white matter (WM) in the orbitomedial prefrontal cortex (OMPFC), potentially underlying abnormal prefrontal corticolimbic connectivity and mood dysregulation in BD. To use tract-based spatial statistics (TBSS) to examine WM skeleton (ie, the most compact whole-brain WM) in subjects with BD vs healthy control subjects. Cross-sectional, case-control, whole-brain DTI using TBSS. University research institute. Fifty-six individuals, 31 having a DSM-IV diagnosis of BD type I (mean age, 35.9 years [age range, 24-52 years]) and 25 controls (mean age, 29.5 years [age range, 19-52 years]). Fractional anisotropy (FA) longitudinal and radial diffusivities in subjects with BD vs controls (covarying for age) and their relationships with clinical and demographic variables. Subjects with BD vs controls had significantly greater FA (t > 3.0, P 3.0, P

  16. VizieR Online Data Catalog: Solar wind 3D magnetohydrodynamic simulation (Chhiber+, 2017)

    NASA Astrophysics Data System (ADS)

    Chhiber, R.; Subedi, P.; Usmanov, A. V.; Matthaeus, W. H.; Ruffolo, D.; Goldstein, M. L.; Parashar, T. N.

    2017-08-01

    We use a three-dimensional magnetohydrodynamic simulation of the solar wind to calculate cosmic-ray diffusion coefficients throughout the inner heliosphere (2Rȯ-3au). The simulation resolves large-scale solar wind flow, which is coupled to small-scale fluctuations through a turbulence model. Simulation results specify background solar wind fields and turbulence parameters, which are used to compute diffusion coefficients and study their behavior in the inner heliosphere. The parallel mean free path (mfp) is evaluated using quasi-linear theory, while the perpendicular mfp is determined from nonlinear guiding center theory with the random ballistic interpretation. Several runs examine varying turbulent energy and different solar source dipole tilts. We find that for most of the inner heliosphere, the radial mfp is dominated by diffusion parallel to the mean magnetic field; the parallel mfp remains at least an order of magnitude larger than the perpendicular mfp, except in the heliospheric current sheet, where the perpendicular mfp may be a few times larger than the parallel mfp. In the ecliptic region, the perpendicular mfp may influence the radial mfp at heliocentric distances larger than 1.5au; our estimations of the parallel mfp in the ecliptic region at 1 au agree well with the Palmer "consensus" range of 0.08-0.3au. Solar activity increases perpendicular diffusion and reduces parallel diffusion. The parallel mfp mostly varies with rigidity (P) as P.33, and the perpendicular mfp is weakly dependent on P. The mfps are weakly influenced by the choice of long-wavelength power spectra. (2 data files).

  17. The Analytical Solution of the Transient Radial Diffusion Equation with a Nonuniform Loss Term.

    NASA Astrophysics Data System (ADS)

    Loridan, V.; Ripoll, J. F.; De Vuyst, F.

    2017-12-01

    Many works have been done during the past 40 years to perform the analytical solution of the radial diffusion equation that models the transport and loss of electrons in the magnetosphere, considering a diffusion coefficient proportional to a power law in shell and a constant loss term. Here, we propose an original analytical method to address this challenge with a nonuniform loss term. The strategy is to match any L-dependent electron losses with a piecewise constant function on M subintervals, i.e., dealing with a constant lifetime on each subinterval. Applying an eigenfunction expansion method, the eigenvalue problem becomes presently a Sturm-Liouville problem with M interfaces. Assuming the continuity of both the distribution function and its first spatial derivatives, we are able to deal with a well-posed problem and to find the full analytical solution. We further show an excellent agreement between both the analytical solutions and the solutions obtained directly from numerical simulations for different loss terms of various shapes and with a diffusion coefficient DLL L6. We also give two expressions for the required number of eigenmodes N to get an accurate snapshot of the analytical solution, highlighting that N is proportional to 1/√t0, where t0 is a time of interest, and that N increases with the diffusion power. Finally, the equilibrium time, defined as the time to nearly reach the steady solution, is estimated by a closed-form expression and discussed. Applications to Earth and also Jupiter and Saturn are discussed.

  18. Microstructural abnormalities of the brain white matter in attention-deficit/hyperactivity disorder

    PubMed Central

    Chen, Lizhou; Huang, Xiaoqi; Lei, Du; He, Ning; Hu, Xinyu; Chen, Ying; Li, Yuanyuan; Zhou, Jinbo; Guo, Lanting; Kemp, Graham J.; Gong, Qiyong

    2015-01-01

    Background Attention-deficit/hyperactivity disorder (ADHD) is an early-onset neurodevelopmental disorder with multiple behavioural problems and executive dysfunctions for which neuroimaging studies have reported a variety of abnormalities, with inconsistencies partly owing to confounding by medication and concurrent psychiatric disease. We aimed to investigate the microstructural abnormalities of white matter in unmedicated children and adolescents with pure ADHD and to explore the association between these abnormalities and behavioural symptoms and executive functions. Methods We assessed children and adolescents with ADHD and healthy controls using psychiatric interviews. Behavioural problems were rated using the revised Conners’ Parent Rating Scale, and executive functions were measured using the Stroop Colour-Word Test and the Wisconsin Card Sorting test. We acquired diffusion tensor imaging data using a 3 T MRI system, and we compared diffusion parameters, including fractional anisotropy (FA) and mean, axial and radial diffusivities, between the 2 groups. Results Thirty-three children and adolescents with ADHD and 35 healthy controls were included in our study. In patients compared with controls, FA was increased in the left posterior cingulum bundle as a result of both increased axial diffusivity and decreased radial diffusivity. In addition, the averaged FA of the cluster in this region correlated with behavioural measures as well as executive function in patients with ADHD. Limitations This study was limited by its cross-sectional design and small sample size. The cluster size of the significant result was small. Conclusion Our findings suggest that white matter abnormalities within the limbic network could be part of the neural underpinning of behavioural problems and executive dysfunction in patients with ADHD. PMID:25853285

  19. Magnetic-flutter-induced pedestal plasma transport

    NASA Astrophysics Data System (ADS)

    Callen, J. D.; Hegna, C. C.; Cole, A. J.

    2013-11-01

    Plasma toroidal rotation can limit reconnection of externally applied resonant magnetic perturbation (RMP) fields δB on rational magnetic flux surfaces. Hence it causes the induced radial perturbations δBρ to be small there, thereby inhibiting magnetic island formation and stochasticity at the top of pedestals in high (H-mode) confinement tokamak plasmas. However, the δBρs induced by RMPs increase away from rational surfaces and are shown to induce significant sinusoidal radial motion (flutter) of magnetic field lines with a radial extent that varies linearly with δBρ and inversely with distance from the rational surface because of the magnetic shear. This produces a radial electron thermal diffusivity that is (1/2)(δBρ/B0)2 times a kinetically derived, electron-collision-induced, magnetic-shear-reduced, effective parallel electron thermal diffusivity in the absence of magnetic stochasticity. These low collisionality flutter-induced transport processes and thin magnetic island effects are shown to be highly peaked in the vicinity of rational surfaces at the top of low collisionality pedestals. However, the smaller but finite level of magnetic-flutter-induced electron heat transport midway between rational surfaces is the primary factor that determines the electron temperature difference between rational surfaces at the pedestal top. The magnetic-flutter-induced non-ambipolar electron density transport can be large enough to push the plasma toward an electron density transport root. Requiring ambipolar density transport is shown to determine the radial electric field, the plasma toroidal rotation (via radial force balance), a reduced electron thermal diffusivity and increased ambipolar density transport in the pedestal. At high collisionality the various flutter effects are less strongly peaked at rational surfaces and generally less significant. They are thus less likely to exhibit flutter-induced resonant behaviour and transition toward an electron transport root. Magnetic-flutter-induced plasma transport processes provide a new paradigm for developing an understanding of how RMPs modify the pedestal structure to stabilize peeling-ballooning modes and thereby suppress edge localized modes in low collisionality tokamak H-mode plasmas.

  20. Interactions Between Energetic Electrons and Realistic Whistler Mode Waves in the Jovian Magnetosphere

    NASA Astrophysics Data System (ADS)

    de Soria-Santacruz Pich, M.; Drozdov, A.; Menietti, J. D.; Garrett, H. B.; Kellerman, A. C.; Shprits, Y. Y.

    2016-12-01

    The radiation belts of Jupiter are the most intense of all the planets in the solar system. Their source is not well understood but they are believed to be the result of inward radial transport beyond the orbit of Io. In the case of Earth, the radiation belts are the result of local acceleration and radial diffusion from whistler waves, and it has been suggested that this type of acceleration may also be significant in the magnetosphere of Jupiter. Multiple diffusion codes have been developed to study the dynamics of the Earth's magnetosphere and characterize the interaction between relativistic electrons and whistler waves; in the present paper we adapt one of these codes, the two-dimensional version of the Versatile Electron Radiation Belt (VERB) computer code, to the case of the Jovian magnetosphere. We use realistic parameters to determine the importance of whistler emissions in the acceleration and loss of electrons in the Jovian magnetosphere. More specifically, we use an extensive wave survey from the Galileo spacecraft and initial conditions derived from the Galileo Interim Radiation Electron Model version 2 (GIRE2) to estimate the pitch angle and energy diffusion of the electron population due to lower and upper band whistlers as a function of latitude and radial distance from the planet, and we calculate the decay rates that result from this interaction.

  1. Transport of ion beam in an annular magnetically expanding helicon double layer thruster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yunchao, E-mail: yunchao.zhang@anu.edu.au; Charles, Christine; Boswell, Rod

    2014-06-15

    An ion beam generated by an annular double layer has been measured in a helicon thruster, which sustains a magnetised low-pressure (5.0 × 10{sup −4} Torr) argon plasma at a constant radio-frequency (13.56 MHz) power of 300 W. After the ion beam exits the annular structure, it merges into a solid centrally peaked structure in the diffusion chamber. As the annular ion beam moves towards the inner region in the diffusion chamber, a reversed-cone plasma wake (with a half opening angle of about 30°) is formed. This process is verified by measuring both the radial and axial distributions of the beam potential and beammore » current. The beam potential changes from a two-peak radial profile (maximum value ∼ 30 V, minimum value ∼ 22.5 V) to a flat (∼28 V) along the axial direction; similarly, the beam current changes from a two-peak to one-peak radial profile and the maximum value decreases by half. The inward cross-magnetic-field motion of the beam ions is caused by a divergent electric field in the source. Cross-field diffusion of electrons is also observed in the inner plume and is determined as being of non-ambipolar origin.« less

  2. BDNF Val66Met polymorphism modulates the effect of loneliness on white matter microstructure in young adults.

    PubMed

    Meng, Jie; Hao, Lei; Wei, Dongtao; Sun, Jiangzhou; Li, Yu; Qiu, Jiang

    2017-12-01

    Loneliness is a common experience. Susceptibility to loneliness is a stable trait and is heritable. Previous studies have suggested that loneliness may impact regional gray matter density and brain activation to social stimuli, but its relation to white matter structure and how it may interact with genetic factors remains unclear. In this study, we investigated whether and how a common polymorphism (Val66Met) in the brain-derived neurotrophic factor gene modulated the association between loneliness and white matter microstructure in 162 young adults. The tract-based spatial statistics analyses revealed that the relationships between loneliness and white matter microstructures were significantly different between Val/Met heterozygotes and Val/Val homozygotes. Specifically, loneliness was significantly correlated with reduced fractional anisotropy and increased radial diffusivity in widespread white matter fibers within Val/Met heterozygotes. It was also significantly correlated with increased radial diffusivity in Met/Met genotypes but showed no significant association with white matter measures in Val/Val genotypes. Furthermore, the associations between loneliness and fractional anisotropy (or radial diffusivity) in Val/Met heterozygotes turned out to be global effects. These results provide evidence that loneliness may interact with the BDNF Val66Met polymorphism to shape the microstructures of white matter, and the Val/Met heterozygotes may be more susceptible to social environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. The measurement of solute diffusion coefficients in dilute liquid alloys: the influence of unit gravity and g-jitter on buoyancy convection.

    PubMed

    Smith, R W; Yang, B J; Huang, W D

    2004-11-01

    Liquid diffusion experiments conducted on the MIR space station using the Canadian Space Agency QUELD II processing facility and the microgravity isolation mount (MIM) showed that g-jitter significantly increased the measured solute diffusion coefficients. In some experiments, milli-g forced vibration was superimposed on the sample when isolated from the ambient g-jitter; this resulted in markedly increased solute transport. To further explore the effects arising in these long capillary diffusion couples from the absence of unit-gravity and the presence of the forced g-jitter, the effects of a 1 milli-g forcing vibration on the mass transport in a 1.5 mm diameter long capillary diffusion couple have been simulated. In addition, to increase understanding of the role of unit gravity in determining the extent to which gravity can influence measured diffusion coefficient values, comparative experiments involving gold, silver, and antimony diffusing in liquid lead have been carried out using a similar QUELD II facility to that employed in the QUELD II/MIM/MIR campaign but under terrestrial conditions. It was found that buoyancy-driven convection may still persist in the liquid even when conditions are arranged for a continuously decreasing density gradient up the axis of a vertical long capillary diffusion couple due to the presence of small radial temperature gradients.

  4. Influence of impeller and diffuser geometries on the lateral fluid forces of whirling centrifugal impeller

    NASA Technical Reports Server (NTRS)

    Ohashi, Hideo; Sakurai, Akira; Nishihama, Jiro

    1989-01-01

    Lateral fluid forces on two-dimensional centrifugal impellers, which whirl on a circular orbit in a vaneless diffuser, were reported. Experiments were further conducted for the cases in which a three-dimensional centrifugal impeller, a model of the boiler feed pump, whirls in vaneless and vaned diffusers. The influence of the clearance configuration between the casing and front shroud of the impeller was also investigated. The result indicated that the fluid dynamic interaction between the impeller and the guide vanes induces quite strong fluctuating fluid forces to the impeller, but nevertheless its influence on radial and tangential force components averaged over a whirling orbit is relatively small.

  5. Age at First Exposure to Football Is Associated with Altered Corpus Callosum White Matter Microstructure in Former Professional Football Players

    PubMed Central

    Stamm, Julie M.; Koerte, Inga K.; Muehlmann, Marc; Pasternak, Ofer; Bourlas, Alexandra P.; Baugh, Christine M.; Giwerc, Michelle Y.; Zhu, Anni; Coleman, Michael J.; Bouix, Sylvain; Fritts, Nathan G.; Martin, Brett M.; Chaisson, Christine; McClean, Michael D.; Lin, Alexander P.; Cantu, Robert C.; Tripodis, Yorghos; Shenton, Martha E.

    2015-01-01

    Abstract Youth football players may incur hundreds of repetitive head impacts (RHI) in one season. Our recent research suggests that exposure to RHI during a critical neurodevelopmental period prior to age 12 may lead to greater later-life mood, behavioral, and cognitive impairments. Here, we examine the relationship between age of first exposure (AFE) to RHI through tackle football and later-life corpus callosum (CC) microstructure using magnetic resonance diffusion tensor imaging (DTI). Forty retired National Football League (NFL) players, ages 40–65, were matched by age and divided into two groups based on their AFE to tackle football: before age 12 or at age 12 or older. Participants underwent DTI on a 3 Tesla Siemens (TIM-Verio) magnet. The whole CC and five subregions were defined and seeded using deterministic tractography. Dependent measures were fractional anisotropy (FA), trace, axial diffusivity, and radial diffusivity. Results showed that former NFL players in the AFE <12 group had significantly lower FA in anterior three CC regions and higher radial diffusivity in the most anterior CC region than those in the AFE ≥12 group. This is the first study to find a relationship between AFE to RHI and later-life CC microstructure. These results suggest that incurring RHI during critical periods of CC development may disrupt neurodevelopmental processes, including myelination, resulting in altered CC microstructure. PMID:26200068

  6. White matter tract integrity and developmental outcome in newborn infants with hypoxic-ischemic encephalopathy treated with hypothermia.

    PubMed

    Massaro, An N; Evangelou, Iordanis; Fatemi, Ali; Vezina, Gilbert; Mccarter, Robert; Glass, Penny; Limperopoulos, Catherine

    2015-05-01

    To determine whether corpus callosum (CC) and corticospinal tract (CST) diffusion tensor imaging (DTI) measures relate to developmental outcome in encephalopathic newborn infants after therapeutic hypothermia. Encephalopathic newborn infants enrolled in a longitudinal study underwent DTI after hypothermia. Parametric maps were generated for fractional anisotropy, mean, radial, and axial diffusivity. CC and CST were segmented by DTI-based tractography. Multiple regression models were used to examine the association of DTI measures with Bayley-II Mental (MDI) and Psychomotor Developmental Index (PDI) at 15 months and 21 months of age. Fifty-two infants (males n=32, females n=20) underwent DTI at median age of 8 days. Two were excluded because of poor magnetic resonance imaging quality. Outcomes were assessed in 42/50 (84%) children at 15 months and 35/50 (70%) at 21 months. Lower CC and CST fractional anisotropy were associated with lower MDI and PDI respectively, even after controlling for gestational age, birth weight, sex, and socio-economic status. There was also a direct relationship between CC axial diffusivity and MDI, while CST radial diffusivity was inversely related to PDI. In encephalopathic newborn infants, impaired microstructural organization of the CC and CST predicts poorer cognitive and motor performance respectively. Tractography provides a reliable method for early assessment of perinatal brain injury. © 2014 Mac Keith Press.

  7. Supraspinal control of automatic postural responses in people with multiple sclerosis.

    PubMed

    Peterson, D S; Gera, G; Horak, F B; Fling, B W

    2016-06-01

    The neural underpinnings of delayed automatic postural responses in people with multiple sclerosis (PwMS) are unclear. We assessed whether white matter pathways of two supraspinal regions (the cortical proprioceptive Broadman's Area-3; and the balance/locomotor-related pedunculopontine nucleus) were related to delayed postural muscle response latencies in response to external perturbations. 19 PwMS (48.8±11.4years; EDSS=3.5 (range: 2-4)) and 12 healthy adults (51.7±12.2years) underwent 20 discrete, backward translations of a support surface. Onset latency of agonist (medial-gastrocnemius) and antagonist (tibialis anterior) muscles were assessed. Diffusion tensor imaging assessed white-matter integrity (i.e. radial diffusivity) of cortical proprioceptive and balance/locomotor-related tracts. Latency of the tibialis anterior, but not medial gastrocnemius was larger in PwMS than control subjects (p=0.012 and 0.071, respectively). Radial diffusivity of balance/locomotor tracts was higher (worse) in PwMS than control subjects (p=0.004), and was significantly correlated with tibialis (p=0.002), but not gastrocnemius (p=0.06) onset latency. Diffusivity of cortical proprioceptive tracts was not correlated with muscle onset. Lesions in supraspinal structures including the pedunculopontine nucleus balance/locomotor network may contribute to delayed onset of postural muscle activity in PwMS, contributing to balance deficits in PwMS. Published by Elsevier B.V.

  8. Age at First Exposure to Football Is Associated with Altered Corpus Callosum White Matter Microstructure in Former Professional Football Players.

    PubMed

    Stamm, Julie M; Koerte, Inga K; Muehlmann, Marc; Pasternak, Ofer; Bourlas, Alexandra P; Baugh, Christine M; Giwerc, Michelle Y; Zhu, Anni; Coleman, Michael J; Bouix, Sylvain; Fritts, Nathan G; Martin, Brett M; Chaisson, Christine; McClean, Michael D; Lin, Alexander P; Cantu, Robert C; Tripodis, Yorghos; Stern, Robert A; Shenton, Martha E

    2015-11-15

    Youth football players may incur hundreds of repetitive head impacts (RHI) in one season. Our recent research suggests that exposure to RHI during a critical neurodevelopmental period prior to age 12 may lead to greater later-life mood, behavioral, and cognitive impairments. Here, we examine the relationship between age of first exposure (AFE) to RHI through tackle football and later-life corpus callosum (CC) microstructure using magnetic resonance diffusion tensor imaging (DTI). Forty retired National Football League (NFL) players, ages 40-65, were matched by age and divided into two groups based on their AFE to tackle football: before age 12 or at age 12 or older. Participants underwent DTI on a 3 Tesla Siemens (TIM-Verio) magnet. The whole CC and five subregions were defined and seeded using deterministic tractography. Dependent measures were fractional anisotropy (FA), trace, axial diffusivity, and radial diffusivity. Results showed that former NFL players in the AFE <12 group had significantly lower FA in anterior three CC regions and higher radial diffusivity in the most anterior CC region than those in the AFE ≥12 group. This is the first study to find a relationship between AFE to RHI and later-life CC microstructure. These results suggest that incurring RHI during critical periods of CC development may disrupt neurodevelopmental processes, including myelination, resulting in altered CC microstructure.

  9. Role of cytosolic calcium diffusion in cardiac purkinje cells.

    PubMed

    Limbu, Bijay; Shah, Kushal; Deo, Makarand

    2016-08-01

    The Cardiac Purkinje cells (PCs) exhibit distinct calcium (Ca2+) homeostasis than that in ventricular myocytes (VMs). Due to lack of t-tubules in PCs, the Ca2+ ions entering the cell have to diffuse through the cytoplasm to reach the sarcoplasmic reticulum (SR) before triggering Ca2+-induced-Ca2+-release (CICR). In recent experimental studies PCs have been shown to be more susceptible to action potential (AP) abnormalities than the VMs, however the exact mechanisms are poorly understood. In this study, we utilize morphologically realistic detailed biophysical mathematical model of a murine PC to systematically examine the role intracellular Ca2+ diffusion in the APs of PCs. A biphasic spatiotemporal Ca2+ diffusion process, as observed experimentally, was implemented in the model which includes radial Ca2+ wavelets and cell wide longitudinal Ca2+ diffusion wave (CWW). The AP morphology, specifically plateau, is affected due to changes in intracellular Ca2+ dynamics. When Ca2+ concentration in sarcolemmal region is elevated, it activated inward sodium Ca2+ exchanger (NCX) current resulting into prolongation of the plateau at faster diffusion rates. Our results demonstrate that the cytosolic Ca2+ diffusion waves play a significant role in shaping APs of PCs and could provide mechanistic insights into the increased arrhythmogeneity of PCs.

  10. Diffusivity measurements of volatile organics in levitated viscous aerosol particles

    NASA Astrophysics Data System (ADS)

    Bastelberger, Sandra; Krieger, Ulrich K.; Luo, Beiping; Peter, Thomas

    2017-07-01

    Field measurements indicating that atmospheric secondary organic aerosol (SOA) particles can be present in a highly viscous, glassy state have spurred numerous studies addressing low diffusivities of water in glassy aerosols. The focus of these studies is on kinetic limitations of hygroscopic growth and the plasticizing effect of water. In contrast, much less is known about diffusion limitations of organic molecules and oxidants in viscous matrices. These may affect atmospheric chemistry and gas-particle partitioning of complex mixtures with constituents of different volatility. In this study, we quantify the diffusivity of a volatile organic in a viscous matrix. Evaporation of single particles generated from an aqueous solution of sucrose and small amounts of volatile tetraethylene glycol (PEG-4) is investigated in an electrodynamic balance at controlled relative humidity (RH) and temperature. The evaporative loss of PEG-4 as determined by Mie resonance spectroscopy is used in conjunction with a radially resolved diffusion model to retrieve translational diffusion coefficients of PEG-4. Comparison of the experimentally derived diffusivities with viscosity estimates for the ternary system reveals a breakdown of the Stokes-Einstein relationship, which has often been invoked to infer diffusivity from viscosity. The evaporation of PEG-4 shows pronounced RH and temperature dependencies and is severely depressed for RH ≲ 30 %, corresponding to diffusivities < 10-14 cm2 s-1 at temperatures < 15 °C. The temperature dependence is strong, suggesting a diffusion activation energy of about 300 kJ mol-1. We conclude that atmospheric volatile organic compounds can be subject to severe diffusion limitations in viscous organic aerosol particles. This may enable an important long-range transport mechanism for organic material, including pollutant molecules such as polycyclic aromatic hydrocarbons (PAHs).

  11. Measurements and modeling of transport and impurity radial profiles in the EXTRAP T2R reversed field pinch

    NASA Astrophysics Data System (ADS)

    Kuldkepp, M.; Brunsell, P. R.; Cecconello, M.; Dux, R.; Menmuir, S.; Rachlew, E.

    2006-09-01

    Radial impurity profiles of oxygen in the rebuilt reversed field pinch EXTRAP T2R [P. R. Brunsell et al., Plasma Phys. Control. Fusion 43, 1457 (2001)] have been measured with a multichannel spectrometer. Absolute ion densities for oxygen peak between 1-4×1010cm-3 for a central electron density of 1×1013cm-3. Transport simulations with the one-dimensional transport code STRAHL with a diffusion coefficient of 20m2 s-1 yield density profiles similar to those measured. Direct measurement of the ion profile evolution during pulsed poloidal current drive suggests that the diffusion coefficient is reduced by a factor ˜2 in the core but remains unaffected toward the edge. Core transport is not significantly affected by the radial magnetic field growth seen at the edge in discharges without feedback control. This indicates that the mode core amplitude remains the same while the mode eigenfunction increases at the edge.

  12. Radial diffusion in magnetodiscs. [charged particle motion in planetary or stellar magnetosphere

    NASA Technical Reports Server (NTRS)

    Birmingham, T. J.

    1985-01-01

    The orbits of charged particles in magnetodiscs are considered. The bounce motion is assumed adiabatic except for transits of a small equatorial region of weak magnetic field strength and high field curvature. Previous theory and modeling have shown that particles scatter randomly in pitch angle with each passage through the equator. A peaked distribution thus diffuses in pitch angle on the time scale of many bounces. It is argued in this paper that spatial diffusion is a further consequence when the magnetodisc has a longitudinal asymmetry. A general expression for DLL, the diffusion of equatorial crossing radii, is derived. DLL is evaluated explicitly for ions in Jupiter's 20-35 radii magnetodisc, assumed to be represented by Connerney et al.'s (1982) Voyager model plus a small image dipole asymmetry. Rates are energy, species, and space dependent but can average as much as a few tenths of a planetary radius per bounce period.

  13. Computation of thermodynamic and transport properties to predict thermophoretic effects in an argon-krypton mixture

    NASA Astrophysics Data System (ADS)

    Miller, Nicholas A. T.; Daivis, Peter J.; Snook, Ian K.; Todd, B. D.

    2013-10-01

    Thermophoresis is the movement of molecules caused by a temperature gradient. Here we report the results of a study of thermophoresis using non-equilibrium molecular dynamics simulations of a confined argon-krypton fluid subject to two different temperatures at thermostated walls. The resulting temperature profile between the walls is used along with the Soret coefficient to predict the concentration profile that develops across the channel. We obtain the Soret coefficient by calculating the mutual diffusion and thermal diffusion coefficients. We report an appropriate method for calculating the transport coefficients for binary systems, using the Green-Kubo integrals and radial distribution functions obtained from equilibrium molecular dynamics simulations of the bulk fluid. Our method has the unique advantage of separating the mutual diffusion and thermal diffusion coefficients, and calculating the sign and magnitude of their individual contributions to thermophoresis in binary mixtures.

  14. Diffusive-convective physical vapor transport of PbTe from a Te-rich solid source

    NASA Technical Reports Server (NTRS)

    Zoutendyk, J.; Akutagawa, W.

    1982-01-01

    Crystal growth of PbTe by physical vapor transport (sublimation) in a closed ampoule is governed by the vapor species in thermal equilibrium with the solid compound. Deviations from stoichiometry in the source material cause diffusion limitation of the transport rate, which can be modified by natural (gravity-driven) convection. Mass-transport experiments have been performed using Te-rich material wherein sublimation rates have been measured in order to study the effects of natural convection in diffusion-limited vapor transport. Linear velocities for both crystal growth and evaporation (back sublimation) have been measured for transport in the direction of gravity, horizontally, and opposite to gravity. The experimental results are discussed in terms of both the one-dimensional diffusive-advective model and current, more sophisticated theory which includes natural convection. There is some evidence that convection effects from radial temperature gradients and solutal density gradients have been observed.

  15. Change-point analysis data of neonatal diffusion tensor MRI in preterm and term-born infants.

    PubMed

    Wu, Dan; Chang, Linda; Akazawa, Kentaro; Oishi, Kumiko; Skranes, Jon; Ernst, Thomas; Oishi, Kenichi

    2017-06-01

    The data presented in this article are related to the research article entitled "Mapping the Critical Gestational Age at Birth that Alters Brain Development in Preterm-born Infants using Multi-Modal MRI" (Wu et al., 2017) [1]. Brain immaturity at birth poses critical neurological risks in the preterm-born infants. We used a novel change-point model to analyze the critical gestational age at birth (GAB) that could affect postnatal development, based on diffusion tensor MRI (DTI) acquired from 43 preterm and 43 term-born infants in 126 brain regions. In the corresponding research article, we presented change-point analysis of fractional anisotropy (FA) and mean diffusivities (MD) measurements in these infants. In this article, we offered the relative changes of axonal and radial diffusivities (AD and RD) in relation to the change of FA and FA-based change-points, and we also provided the AD- and RD-based change-point results.

  16. Turbine exhaust diffuser flow path with region of reduced total flow area

    DOEpatents

    Orosa, John A.

    2012-12-25

    An exhaust diffuser system and method for a turbine engine includes an inner boundary and an outer boundary with a flow path defined therebetween. The inner boundary is defined at least in part by a hub that has an upstream end and a downstream end. The outer boundary has a region in which the outer boundary extends radially inward toward the hub. The region can begin at a point that is substantially aligned with the downstream end of the hub or, alternatively, at a point that is proximately upstream of the downstream end of the hub. The region directs at least a portion of an exhaust flow in the diffuser toward the hub. As a result, the exhaust diffuser system and method can achieve the performance of a long hub system while enjoying the costs of a short hub system.

  17. Turbine exhaust diffuser with a gas jet producing a coanda effect flow control

    DOEpatents

    Orosa, John; Montgomery, Matthew

    2014-02-11

    An exhaust diffuser system and method for a turbine engine includes an inner boundary and an outer boundary with a flow path defined therebetween. The inner boundary is defined at least in part by a hub structure that has an upstream end and a downstream end. The outer boundary may include a region in which the outer boundary extends radially inward toward the hub structure and may direct at least a portion of an exhaust flow in the diffuser toward the hub structure. The hub structure includes at least one jet exit located on the hub structure adjacent to the upstream end of the tail cone. The jet exit discharges a flow of gas substantially tangential to an outer surface of the tail cone to produce a Coanda effect and direct a portion of the exhaust flow in the diffuser toward the inner boundary.

  18. 4.7-T diffusion tensor imaging of acute traumatic peripheral nerve injury

    PubMed Central

    Boyer, Richard B.; Kelm, Nathaniel D.; Riley, D. Colton; Sexton, Kevin W.; Pollins, Alonda C.; Shack, R. Bruce; Dortch, Richard D.; Nanney, Lillian B.; Does, Mark D.; Thayer, Wesley P.

    2015-01-01

    Diagnosis and management of peripheral nerve injury is complicated by the inability to assess microstructural features of injured nerve fibers via clinical examination and electrophysiology. Diffusion tensor imaging (DTI) has been shown to accurately detect nerve injury and regeneration in crush models of peripheral nerve injury, but no prior studies have been conducted on nerve transection, a surgical emergency that can lead to permanent weakness or paralysis. Acute sciatic nerve injuries were performed microsurgically to produce multiple grades of nerve transection in rats that were harvested 1 hour after surgery. High-resolution diffusion tensor images from ex vivo sciatic nerves were obtained using diffusion-weighted spin-echo acquisitions at 4.7 T. Fractional anisotropy was significantly reduced at the injury sites of transected rats compared with sham rats. Additionally, minor eigenvalues and radial diffusivity were profoundly elevated at all injury sites and were negatively correlated to the degree of injury. Diffusion tensor tractography showed discontinuities at all injury sites and significantly reduced continuous tract counts. These findings demonstrate that high-resolution DTI is a promising tool for acute diagnosis and grading of traumatic peripheral nerve injuries. PMID:26323827

  19. Wave Augmented Diffuser for Centrifugal Compressor

    NASA Technical Reports Server (NTRS)

    Skoch, Gary J. (Inventor); Paxson, Daniel E. (Inventor)

    2001-01-01

    A wave augmented diffuser for a centrifugal compressor surrounds the outlet of an impeller that rotates on a drive shaft having an axis of rotation. The impeller brings flow in in an axial direction and imparts kinetic energy to the flow discharging it in radial and tangential directions. The flow is discharged into a plurality of circumferentially disposed wave chambers. The wave chambers are periodically opened and closed by a rotary valve such that the flow through the diffuser is unsteady. The valve includes a plurality of valve openings that are periodically brought into and out of fluid communication with the wave chambers. When the wave chambers are closed, a reflected compression wave moves upstream towards the diffuser bringing the flow into the wave chamber to rest. This action recovers the kinetic energy from the flow and limits any boundary layer growth. The flow is then discharged in an axial direction through an opening in the valve plate when the valve plate is rotated to an open position. The diffuser thus efficiently raises the static pressure of the fluid and discharges an axially directed flow at a radius that is predominantly below the maximum radius of the diffuser.

  20. Restricted exchange microenvironments for cell culture.

    PubMed

    Hoh, Jan H; Werbin, Jeffrey L; Heinz, William F

    2018-03-01

    Metabolite diffusion in tissues produces gradients and heterogeneous microenvironments that are not captured in standard 2D cell culture models. Here we describe restricted exchange environment chambers (REECs) in which diffusive gradients are formed and manipulated on length scales approximating those found in vivo. In REECs, cells are grown in 2D in an asymmetric chamber (<50 μL) formed between a coverglass and a glass bottom cell culture dish separated by a thin (~100 μm) gasket. Diffusive metabolite exchange between the chamber and bulk media occurs through one or more openings micromachined into the coverglass. Cell-generated concentration gradients form radially in REECs with a single round opening (~200 μm diameter). At steady state only cells within several hundred micrometers of the opening experience metabolite concentrations that permit survival which is analogous to diffusive exchange near a capillary in tissue. The chamber dimensions, the openings' shape, size, and number, and the cellular density and metabolic activity define the gradient structure. For example, two parallel slots above confluent cells produce the 1D equivalent of a spheroid. Using REECs, we found that fibroblasts align along the axis of diffusion while MDCK cells do not. MDCK cells do, however, exhibit significant morphological variations along the diffusive gradient.

  1. Star Formation and the Hall Effect

    NASA Astrophysics Data System (ADS)

    Braiding, Catherine

    2011-10-01

    Magnetic fields play an important role in star formation by regulating the removal of angular momentum from collapsing molecular cloud cores. Hall diffusion is known to be important to the magnetic field behaviour at many of the intermediate densities and field strengths encountered during the gravitational collapse of molecular cloud cores into protostars, and yet its role in the star formation process is not well-studied. This thesis describes a semianalytic self-similar model of the collapse of rotating isothermal molecular cloud cores with both Hall and ambipolar diffusion, presenting similarity solutions that demonstrate that the Hall effect has a profound influence on the dynamics of collapse. ... Hall diffusion also determines the strength of the magnetic diffusion and centrifugal shocks that bound the pseudo and rotationally-supported discs, and can introduce subshocks that further slow accretion onto the protostar. In cores that are not initially rotating Hall diffusion can even induce rotation, which could give rise to disc formation and resolve the magnetic braking catastrophe. The Hall effect clearly influences the dynamics of gravitational collapse and its role in controlling the magnetic braking and radial diffusion of the field would be worth exploring in future numerical simulations of star formation.

  2. Diffusion Kurtosis Imaging Detects Microstructural Alterations in Brain of α-Synuclein Overexpressing Transgenic Mouse Model of Parkinson's Disease: A Pilot Study.

    PubMed

    Khairnar, Amit; Latta, Peter; Drazanova, Eva; Ruda-Kucerova, Jana; Szabó, Nikoletta; Arab, Anas; Hutter-Paier, Birgit; Havas, Daniel; Windisch, Manfred; Sulcova, Alexandra; Starcuk, Zenon; Rektorova, Irena

    2015-11-01

    Evidence suggests that accumulation and aggregation of α-synuclein contribute to the pathogenesis of Parkinson's disease (PD). The aim of this study was to evaluate whether diffusion kurtosis imaging (DKI) will provide a sensitive tool for differentiating between α-synuclein-overexpressing transgenic mouse model of PD (TNWT-61) and wild-type (WT) littermates. This experiment was designed as a proof-of-concept study and forms a part of a complex protocol and ongoing translational research. Nine-month-old TNWT-61 mice and age-matched WT littermates underwent behavioral tests to monitor motor impairment and MRI scanning using 9.4 Tesla system in vivo. Tract-based spatial statistics (TBSS) and the DKI protocol were used to compare the whole brain white matter of TNWT-61 and WT mice. In addition, region of interest (ROI) analysis was performed in gray matter regions such as substantia nigra, striatum, hippocampus, sensorimotor cortex, and thalamus known to show higher accumulation of α-synuclein. For the ROI analysis, both DKI (6 b-values) protocol and conventional (2 b-values) diffusion tensor imaging (cDTI) protocol were used. TNWT-61 mice showed significant impairment of motor coordination. With the DKI protocol, mean, axial, and radial kurtosis were found to be significantly elevated, whereas mean and radial diffusivity were decreased in the TNWT-61 group compared to that in the WT controls with both TBSS and ROI analysis. With the cDTI protocol, the ROI analysis showed decrease in all diffusivity parameters in TNWT-61 mice. The current study provides evidence that DKI by providing both kurtosis and diffusivity parameters gives unique information that is complementary to cDTI for in vivo detection of pathological changes that underlie PD-like symptomatology in TNWT-61 mouse model of PD. This result is a crucial step in search for a candidate diagnostic biomarker with translational potential and relevance for human studies.

  3. Molecular clouds in galaxies with different Z - Fragmentation of diffuse clouds driven by opacity

    NASA Technical Reports Server (NTRS)

    Franco, Jose; Cox, Donald P.

    1986-01-01

    Molecular clouds are formed from diffuse interstellar clouds when the external ultraviolet radiation field is prevented from penetrating into the cloud. The opacity is provided mainly by dust grains and the required column density to the cloud center is larger than about 5 x 10 to the 20th (solar Z/Z)/sq cm. This high-opacity criterion could have a significant impact on the radial trends observed in spiral galaxies, and on the distinctions between spiral and dwarf irregular galaxies.

  4. Numerical and experimental modelling of the centrifugal compressor stage - setting the model of impellers with 2D blades

    NASA Astrophysics Data System (ADS)

    Matas, Richard; Syka, Tomáš; Luňáček, Ondřej

    The article deals with a description of results from research and development of a radial compressor stage. The experimental compressor and used numerical models are briefly described. In the first part, the comparisons of characteristics obtained experimentally and by numerical simulations for stage with vaneless diffuser are described. In the second part, the results for stage with vanned diffuser are presented. The results are relevant for next studies in research and development process.

  5. Origin and z-distribution of Galactic diffuse [C II] emission

    NASA Astrophysics Data System (ADS)

    Velusamy, T.; Langer, W. D.

    2014-12-01

    Context. The [C ii] emission is an important probe of star formation in the Galaxy and in external galaxies. The GOT C+ survey and its follow up observations of spectrally resolved 1.9 THz [C ii] emission using Herschel HIFI provides the data needed to quantify the Galactic interstellar [C ii] gas components as tracers of star formation. Aims: We determine the source of the diffuse [C ii] emission by studying its spatial (radial and vertical) distributions by separating and evaluating the fractions of [C ii] and CO emissions in the Galactic ISM gas components. Methods: We used the HIFI [C ii] Galactic survey (GOT C+), along with ancillary H i, 12CO, 13CO, and C18O data toward 354 lines of sight, and several HIFI [C ii] and [C i] position-velocity maps. We quantified the emission in each spectral line profile by evaluating the intensities in 3 km s-1 wide velocity bins, "spaxels". Using the detection of [C ii] with CO or [C i], we separated the dense and diffuse gas components. We derived 2D Galactic disk maps using the spaxel velocities for kinematic distances. We separated the warm and cold H2 gases by comparing CO emissions with and without associated [C ii]. Results: We find evidence of widespread diffuse [C ii] emission with a z-scale distribution larger than that for the total [C ii] or CO. The diffuse [C ii] emission consists of (i) diffuse molecular (CO-faint) H2 clouds and (ii) diffuse H i clouds and/or WIM. In the inner Galaxy we find a lack of [C ii] detections in a majority (~62%) of H i spaxels and show that the diffuse component primarily comes from the WIM (~21%) and that the H i gas is not a major contributor to the diffuse component (~6%). The warm-H2 radial profile shows an excess in the range 4 to 7 kpc, consistent with enhanced star formation there. Conclusions: We derive, for the first time, the 2D [C ii] spatial distribution in the plane and the z-distributions of the individual [C ii] gas component. From the GOT C+ detections we estimate the fractional [C ii] emission tracing (i) H2 gas in dense and diffuse molecular clouds as ~48% and ~14%, respectively, (ii) in the H i gas ~18%, and (iii) in the WIM ~21%. Including non-detections from H i increases the [C ii] in H i to ~27%. The z-scale distributions FWHM from smallest to largest are [C ii] sources with CO, ~130 pc, (CO-faint) diffuse H2 gas, ~200 pc, and the diffuse H i and WIM, ~330 pc. When combined with [C ii], CO observations probe the warm-H2 gas, tracing star formation. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  6. Study the Precipitation of Radiation Belt Electrons during the Rapid Dropout Events

    NASA Astrophysics Data System (ADS)

    Tu, W.; Cunningham, G.; Li, X.; Chen, Y.

    2015-12-01

    During the main phase of storms, the relativistic electron flux in the radiation belt can drop by orders of magnitude on timescales of a few hours. Where do the electrons go? This is one of the most important outstanding questions in radiation belt studies. Radiation belt electrons can be lost either by transport across the magnetopause into interplanetary space or by precipitation into the atmosphere. In this work we first conduct a survey of the MeV electron dropouts using the Van Allen Probes data in conjunction with the low-altitude measurements of precipitating electrons by 6 NOAA/POES satellites. The dropout events are categorized into three types: precipitation-loss dominant, outward radial diffusion dominant, or with contributions from both mechanisms. The survey results suggest the relative importance of precipitation and outward radial diffusion to the fast dropouts of radiation belt electrons, and their extent in L-shell and electron energy. Then, for specific events identified as dominated by precipitation loss, we use the Drift-Diffusion model, which includes the effects of azimuthal drift and pitch angle diffusion, to simulate both the electron dropout observed by Van Allen Probes and the distributions of drift-loss-cone electrons observed by multiple low-earth-orbit satellites (6 POES and the Colorado Student Space Weather Experiment). The model quantifies the electron precipitation loss and pitch angle diffusion coefficient, Dxx, with high temporal and spatial resolution. Finally, by comparing the Dxx derived from the model with those estimated from the quasi-linear theory using wave data from Van Allen Probes and other event-specific wave models, we are able to test the validity of quasi-linear theory and seek direct evidence of the wave-particle interactions during the dropouts.

  7. Diffusion Tensor Imaging as a Biomarker to Differentiate Acute Disseminated Encephalomyelitis From Multiple Sclerosis at First Demyelination.

    PubMed

    Aung, Wint Yan; Massoumzadeh, Parinaz; Najmi, Safa; Salter, Amber; Heaps, Jodi; Benzinger, Tammie L S; Mar, Soe

    2018-01-01

    There are no clinical features or biomarkers that can reliably differentiate acute disseminated encephalomyelitis from multiple sclerosis at the first demyelination attack. Consequently, a final diagnosis is sometimes delayed by months and years of follow-up. Early treatment for multiple sclerosis is recommended to reduce long-term disability. Therefore, we intend to explore neuroimaging biomarkers that can reliably distinguish between the two diagnoses. We reviewed prospectively collected clinical, standard MRI and diffusion tensor imaging data from 12 pediatric patients who presented with acute demyelination with and without encephalopathy. Patients were followed for an average of 6.5 years to determine the accuracy of final diagnosis. Final diagnosis was determined using 2013 International Pediatric MS Study Group criteria. Control subjects consisted of four age-matched healthy individuals for each patient. The study population consisted of six patients with central nervous system demyelination with encephalopathy with a presumed diagnosis of acute disseminated encephalomyelitis and six without encephalopathy with a presumed diagnosis of multiple sclerosis or clinically isolated syndrome at high risk for multiple sclerosis. During follow-up, two patients with initial diagnosis of acute disseminated encephalomyelitis were later diagnosed with multiple sclerosis. Diffusion tensor imaging region of interest analysis of baseline scans showed differences between final diagnosis of multiple sclerosis and acute disseminated encephalomyelitis patients, whereby low fractional anisotropy and high radial diffusivity occurred in multiple sclerosis patients compared with acute disseminated encephalomyelitis patients and the age-matched controls. Fractional anisotropy and radial diffusivity measures may have the potential to serve as biomarkers for distinguishing acute disseminated encephalomyelitis from multiple sclerosis at the onset. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Visual pathway impairment by pituitary adenomas: quantitative diagnostics by diffusion tensor imaging.

    PubMed

    Lilja, Ylva; Gustafsson, Oscar; Ljungberg, Maria; Starck, Göran; Lindblom, Bertil; Skoglund, Thomas; Bergquist, Henrik; Jakobsson, Karl-Erik; Nilsson, Daniel

    2017-09-01

    OBJECTIVE Despite ample experience in surgical treatment of pituitary adenomas, little is known about objective indices that may reveal risk of visual impairment caused by tumor growth that leads to compression of the anterior visual pathways. This study aimed to explore diffusion tensor imaging (DTI) as a means for objective assessment of injury to the anterior visual pathways caused by pituitary adenomas. METHODS Twenty-three patients with pituitary adenomas, scheduled for transsphenoidal tumor resection, and 20 healthy control subjects were included in the study. A minimum suprasellar tumor extension of Grade 2-4, according to the SIPAP (suprasellar, infrasellar, parasellar, anterior, and posterior) scale, was required for inclusion. Neuroophthalmological examinations, conventional MRI, and DTI were completed in all subjects and were repeated 6 months after surgery. Quantitative assessment of chiasmal lift, visual field defect (VFD), and DTI parameters from the optic tracts was performed. Linear correlations, group comparisons, and prediction models were done in controls and patients. RESULTS Both the degree of VFD and chiasmal lift were significantly correlated with the radial diffusivity (r = 0.55, p < 0.05 and r = 0.48, p < 0.05, respectively) and the fractional anisotropy (r = -0.58, p < 0.05 and r = -0.47, p < 0.05, respectively) but not with the axial diffusivity. The axial diffusivity differed significantly between controls and patients with VFD, both before and after surgery (p < 0.05); however, no difference was found between patients with and without VFD. Based on the axial diffusivity and fractional anisotropy, a prediction model classified all patients with VFD correctly (sensitivity 1.0), 9 of 12 patients without VFD correctly (sensitivity 0.75), and 17 of 20 controls as controls (specificity 0.85). CONCLUSIONS DTI could detect pathology and degree of injury in the anterior visual pathways that were compressed by pituitary adenomas. The correlation between radial diffusivity and visual impairment may reflect a gradual demyelination in the visual pathways caused by an increased tumor effect. The low level of axial diffusivity found in the patient group may represent early atrophy in the visual pathways, detectable on DTI but not by conventional methods. DTI may provide objective data, detect early signs of injury, and be an additional diagnostic tool for determining indication for surgery in cases of pituitary adenomas.

  9. Differences in Gaussian diffusion tensor imaging and non-Gaussian diffusion kurtosis imaging model-based estimates of diffusion tensor invariants in the human brain.

    PubMed

    Lanzafame, S; Giannelli, M; Garaci, F; Floris, R; Duggento, A; Guerrisi, M; Toschi, N

    2016-05-01

    An increasing number of studies have aimed to compare diffusion tensor imaging (DTI)-related parameters [e.g., mean diffusivity (MD), fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (AD)] to complementary new indexes [e.g., mean kurtosis (MK)/radial kurtosis (RK)/axial kurtosis (AK)] derived through diffusion kurtosis imaging (DKI) in terms of their discriminative potential about tissue disease-related microstructural alterations. Given that the DTI and DKI models provide conceptually and quantitatively different estimates of the diffusion tensor, which can also depend on fitting routine, the aim of this study was to investigate model- and algorithm-dependent differences in MD/FA/RD/AD and anisotropy mode (MO) estimates in diffusion-weighted imaging of human brain white matter. The authors employed (a) data collected from 33 healthy subjects (20-59 yr, F: 15, M: 18) within the Human Connectome Project (HCP) on a customized 3 T scanner, and (b) data from 34 healthy subjects (26-61 yr, F: 5, M: 29) acquired on a clinical 3 T scanner. The DTI model was fitted to b-value =0 and b-value =1000 s/mm(2) data while the DKI model was fitted to data comprising b-value =0, 1000 and 3000/2500 s/mm(2) [for dataset (a)/(b), respectively] through nonlinear and weighted linear least squares algorithms. In addition to MK/RK/AK maps, MD/FA/MO/RD/AD maps were estimated from both models and both algorithms. Using tract-based spatial statistics, the authors tested the null hypothesis of zero difference between the two MD/FA/MO/RD/AD estimates in brain white matter for both datasets and both algorithms. DKI-derived MD/FA/RD/AD and MO estimates were significantly higher and lower, respectively, than corresponding DTI-derived estimates. All voxelwise differences extended over most of the white matter skeleton. Fractional differences between the two estimates [(DKI - DTI)/DTI] of most invariants were seen to vary with the invariant value itself as well as with MK/RK/AK values, indicating substantial anatomical variability of these discrepancies. In the HCP dataset, the median voxelwise percentage differences across the whole white matter skeleton were (nonlinear least squares algorithm) 14.5% (8.2%-23.1%) for MD, 4.3% (1.4%-17.3%) for FA, -5.2% (-48.7% to -0.8%) for MO, 12.5% (6.4%-21.2%) for RD, and 16.1% (9.9%-25.6%) for AD (all ranges computed as 0.01 and 0.99 quantiles). All differences/trends were consistent between the discovery (HCP) and replication (local) datasets and between estimation algorithms. However, the relationships between such trends, estimated diffusion tensor invariants, and kurtosis estimates were impacted by the choice of fitting routine. Model-dependent differences in the estimation of conventional indexes of MD/FA/MO/RD/AD can be well beyond commonly seen disease-related alterations. While estimating diffusion tensor-derived indexes using the DKI model may be advantageous in terms of mitigating b-value dependence of diffusivity estimates, such estimates should not be referred to as conventional DTI-derived indexes in order to avoid confusion in interpretation as well as multicenter comparisons. In order to assess the potential and advantages of DKI with respect to DTI as well as to standardize diffusion-weighted imaging methods between centers, both conventional DTI-derived indexes and diffusion tensor invariants derived by fitting the non-Gaussian DKI model should be separately estimated and analyzed using the same combination of fitting routines.

  10. Diffuse X-ray Emission from M101

    NASA Technical Reports Server (NTRS)

    Kuntz, K. D.; Snowden, S. L.; Pence, W. D.; Mukai, K.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    The total 0.45-2.0 keV luminosity of M101 is 3.1 x 10(exp 39) ergs/s, of which 2.2 x 10(exp 39) ergs/s is due to diffuse emission. Of the diffuse emission, no more than 6% can be due to unresolved point sources such as X-ray binaries, and approx. 11% is due to dwarf stars. The diffuse emission traces the spiral arms and is roughly correlated with the H alpha and FUV (far ultraviolet) emission. The radial distribution closely follows the optical profile. The bulk of the diffuse emission is characterized by a two thermal component spectrum with kT = 0.20,0.75 keV, and the ratios of the emission measures of the two components is roughly constant as a function of both radius and surface brightness. The softer component has a sufficiently large covering factor that the bulk of the emission is likely extra-planar. We find no evidence of an extended axisymmetric X-ray halo, suggesting that any such halo has a strength much smaller than current predictions.

  11. The improvement of the method of equivalent cross section in HTR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, J.; Li, F.

    The Method of Equivalence Cross-Sections (MECS) is a combined transport-diffusion method. By appropriately adjusting the diffusion coefficient of homogenized absorber region, the diffusion theory could yield satisfactory results for the full core model with strong neutron absorber material, for example the control rod in High temperature gas cooled reactor (HTR). Original implementation of MECS based on 1-D cell transport model has some limitation on accuracy and applicability, a new implementation of MECS based on 2-D transport model are proposed and tested in this paper. This improvement can extend the MECS to the calculation of twin small absorber ball system whichmore » have a non-circular boring in graphite reflector and different radial position. A least-square algorithm for the calculation of equivalent diffusion coefficient is adopted, and special treatment for diffusion coefficient for higher energy group is proposed in the case that absorber is absent. Numerical results to adopt MECS into control rod calculation in HTR are encouraging. However, there are some problems left. (authors)« less

  12. Influence of Liquid Structure on Fickian Diffusion in Binary Mixtures of n-Hexane and Carbon Dioxide Probed by Dynamic Light Scattering, Raman Spectroscopy, and Molecular Dynamics Simulations.

    PubMed

    Klein, Tobias; Wu, Wenchang; Rausch, Michael Heinrich; Giraudet, Cédric; Koller, Thomas M; Fröba, Andreas Paul

    2018-06-11

    This study contributes to a fundamental understanding how the liquid structure in a model system consisting of weakly associative n-hexane ( n-C 6 H 14 ) and carbon dioxide (CO 2 ) influences the Fickian diffusion process. For this, the benefits of light scattering experiments and molecular dynamics (MD) simulations at macroscopic thermodynamic equilibrium were combined synergistically. Our reference Fickian diffusivities measured by dynamic light scattering (DLS) revealed an unusual trend with increasing CO 2 mole fractions up to a CO 2 concentration of about 70 mol%, which agrees with our simulation results. The molecular impacts on the Fickian diffusion were analyzed by MD simulations, where kinetic contributions related to the Maxwell-Stefan (MS) diffusivity and structural contributions quantified by the thermodynamic factor were studied separately. Both the MS diffusivity and the thermodynamic factor indicate the deceleration of Fickian diffusion compared to an ideal mixture behavior. Computed radial distribution functions as well as a significant blue-shift of the CH-stretching modes of n-C 6 H 14 identified by Raman spectroscopy show that the slowing-down of the diffusion is caused by a structural organization in the binary mixtures over a broad concentration range in the form of self-associated n-C 6 H 14 and CO 2 domains. These networks start to form close to the infinite dilution limits and seem to have their largest extent at a solute-solvent transition point at about 70 mol% of CO 2 . The current results not only improve the general understanding of mass diffusion in liquids, but also serve to develop sound prediction models for Fick diffusivities.

  13. Diffusion kurtosis imaging probes cortical alterations and white matter pathology following cuprizone induced demyelination and spontaneous remyelination

    PubMed Central

    Guglielmetti, C.; Veraart, J.; Roelant, E.; Mai, Z.; Daans, J.; Van Audekerke, J.; Naeyaert, M.; Vanhoutte, G.; Delgado y Palacios, R.; Praet, J.; Fieremans, E.; Ponsaerts, P.; Sijbers, J.; Van der Linden, A.; Verhoye, M.

    2016-01-01

    Although MRI is the gold standard for the diagnosis and monitoring of multiple sclerosis (MS), current conventional MRI techniques often fail to detect cortical alterations and provide little information about gliosis, axonal damage and myelin status of lesioned areas. Diffusion tensor imaging (DTI) and diffusion kurtosis imaging (DKI) provide sensitive and complementary measures of the neural tissue microstructure. Additionally, specific white matter tract integrity (WMTI) metrics modelling the diffusion in white matter were recently derived. In the current study we used the well-characterized cuprizone mouse model of central nervous system demyelination to assess the temporal evolution of diffusion tensor (DT), diffusion kurtosis tensor (DK) and WMTI-derived metrics following acute inflammatory demyelination and spontaneous remyelination. While DT-derived metrics were unable to detect cuprizone induced cortical alterations, the mean kurtosis (MK) and radial kurtosis (RK) were found decreased under cuprizone administration, as compared to age-matched controls, in both the motor and somatosensory cortices. The MK remained decreased in the motor cortices at the end of the recovery period, reflecting long lasting impairment of myelination. In white matter, DT, DK and WMTI-derived metrics enabled the detection of cuprizone induced changes differentially according to the stage and the severity of the lesion. More specifically, MK, RK and the axonal water fraction (AWF) were the most sensitive for the detection of cuprizone induced changes in the genu of the corpus callosum, a region less affected by cuprizone administration. Additionally, microgliosis was associated with an increase of MK and RK during the acute inflammatory demyelination phase. In regions undergoing severe demyelination, namely the body and splenium of the corpus callosum, DT-derived metrics, notably the mean diffusion (MD) and radial diffusion (RD), were among the best discriminators between cuprizone and control groups, hence highlighting their ability to detect both acute and long lasting changes. Interestingly, WMTI-derived metrics showed the aptitude to distinguish between the different stage of the disease. Both the intra-axonal diffusivity (Da) and the AWF were found to be decreased in the cuprizone treated group, Da specifically decreased during the acute inflammatory demyelinating phase whereas the AWF decrease was associated to the spontaneous remyelination and the recovery period. Altogether our results demonstrate that DKI is sensitive to alterations of cortical areas and provides, along with WMTI metrics, information that is complementary to DT-derived metrics for the characterization of demyelination in both white and grey matter and subsequent inflammatory processes associated with a demyelinating event. PMID:26525654

  14. Spatial effect of conical angle on optical-thermal distribution for circumferential photocoagulation

    PubMed Central

    Truong, Van Gia; Park, Suhyun; Tran, Van Nam; Kang, Hyun Wook

    2017-01-01

    A uniformly diffusing applicator can be advantageous for laser treatment of tubular tissue. The current study investigated various conical angles for diffuser tips as a critical factor for achieving radially uniform light emission. A customized goniometer was employed to characterize the spatial uniformity of the light propagation. An ex vivo model was developed to quantitatively compare the temperature development and irreversible tissue coagulation. The 10-mm diffuser tip with angle at 25° achieved a uniform longitudinal intensity profile (i.e., 0.90 ± 0.07) as well as a consistent thermal denaturation on the tissue. The proposed conical angle can be instrumental in determining the uniformity of light distribution for the photothermal treatment of tubular tissue. PMID:29296495

  15. Predictive models for radial sap flux variation in coniferous, diffuse-porous and ring-porous temperate trees

    Treesearch

    Aaron B. Berdanier; Chelcy F. Miniat; James S. Clark

    2016-01-01

    Accurately scaling sap flux observations to tree or stand levels requires accounting for variation in sap flux between wood types and by depth into the tree. However, existing models for radial variation in axial sap flux are rarely used because they are difficult to implement, there is uncertainty about their predictive ability and calibration measurements...

  16. Modeling electrochemical deposition inside nanotubes to obtain metal-semiconductor multiscale nanocables or conical nanopores.

    PubMed

    Lebedev, Konstantin; Mafé, Salvador; Stroeve, Pieter

    2005-08-04

    Nanocables with a radial metal-semiconductor heterostructure have recently been prepared by electrochemical deposition inside metal nanotubes. First, a bare nanoporous polycarbonate track-etched membrane is coated uniformly with a metal film by electroless deposition. The film forms a working electrode for further deposition of a semiconductor layer that grows radially inside the nanopore when the deposition rate is slow. We propose a new physical model for the nanocable synthesis and study the effects of the deposited species concentration, potential-dependent reaction rate, and nanopore dimensions on the electrochemical deposition. The problem involves both axial diffusion through the nanopore and radial transport to the nanopore surface, with a surface reaction rate that depends on the axial position and the time. This is so because the radial potential drop across the deposited semiconductor layer changes with the layer thickness through the nanopore. Since axially uniform nanocables are needed for most applications, we consider the relative role of reaction and axial diffusion rates on the deposition process. However, in those cases where partial, empty-core deposition should be desirable (e.g., for producing conical nanopores to be used in single nanoparticle detection), we give conditions where asymmetric geometries can be experimentally realized.

  17. Mutual diffusion of binary liquid mixtures containing methanol, ethanol, acetone, benzene, cyclohexane, toluene, and carbon tetrachloride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guevara-Carrion, Gabriela; Janzen, Tatjana; Muñoz-Muñoz, Y. Mauricio

    Mutual diffusion coefficients of all 20 binary liquid mixtures that can be formed out of methanol, ethanol, acetone, benzene, cyclohexane, toluene, and carbon tetrachloride without a miscibility gap are studied at ambient conditions of temperature and pressure in the entire composition range. The considered mixtures show a varying mixing behavior from almost ideal to strongly non-ideal. Predictive molecular dynamics simulations employing the Green-Kubo formalism are carried out. Radial distribution functions are analyzed to gain an understanding of the liquid structure influencing the diffusion processes. It is shown that cluster formation in mixtures containing one alcoholic component has a significant impactmore » on the diffusion process. The estimation of the thermodynamic factor from experimental vapor-liquid equilibrium data is investigated, considering three excess Gibbs energy models, i.e., Wilson, NRTL, and UNIQUAC. It is found that the Wilson model yields the thermodynamic factor that best suits the simulation results for the prediction of the Fick diffusion coefficient. Four semi-empirical methods for the prediction of the self-diffusion coefficients and nine predictive equations for the Fick diffusion coefficient are assessed and it is found that methods based on local composition models are more reliable. Finally, the shear viscosity and thermal conductivity are predicted and in most cases favorably compared with experimental literature values.« less

  18. Diffusion coefficients of nitric oxide in water: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Pokharel, Sunil; Pantha, Nurapati; Adhikari, N. P.

    2016-09-01

    Self-diffusion coefficients along with the mutual diffusion coefficients of nitric oxide (NO) and SPC/E water (H2O) as solute and solvent of the mixture, have been studied within the framework of classical molecular dynamics level of calculations using GROMACS package. The radial distribution function (RDF) of the constituent compounds are calculated to study solute-solute, solute-solvent and solvent-solvent molecular interactions as a function of temperature. A dilute solution of five NO molecules (mole fraction 0.018) and 280 H2O molecules (mole fraction 0.982) has been taken as the sample. The self-diffusion coefficient of the solvent is calculated by using mean square displacement (MSD) where as that for solute (NO) is calculated by using MSD and velocity auto-correlation function (VACF). The results are then compared with the available experimental values. The results from the present work for water come in good agreement, very precise at low temperatures, with the experimental values. The diffusion coefficients of NO, on the other hands, agree well with the available theoretical studies, and also with experiment at low temperatures (up to 310 K). The results at the higher temperatures (up to 333 K), however, deviate significantly with the experimental observations. Also, the mutual diffusion coefficients of NO in water have been calculated by using Darken’s relation. The temperature dependence of the calculated diffusion coefficients follow the Arrhenius behavior.

  19. Transport and Deposition of Nanoparticles in the Pore Network of a Reservoir Rock: Effects of Pore Surface Heterogeneity and Radial Diffusion

    NASA Astrophysics Data System (ADS)

    Pham, Ngoc; Papavassiliou, Dimitrios

    2014-03-01

    In this study, transport behavior of nanoparticles under different pore surface conditions of consolidated Berea sandstone is numerically investigated. Micro-CT scanning technique is applied to obtain 3D grayscale images of the rock sample geometry. Quantitative characterization, which is based on image analysis is done to obtain physical properties of the pore network, such as the pore size distribution and the type of each pore (dead-end, isolated, and fully connected pore). Transport of water through the rock is simulated by employing a 3D lattice Boltzmann method. The trajectories of nanopaticles moving under convection in the simulated flow field and due to molecular diffusion are monitored in the Lagrangian framework. It is assumed in the model that the particle adsorption on the pore surface, which is modeled as a pseudo-first order adsorption, is the only factor hindering particle propagation. The effect of pore surface heterogeneity to the particle breakthrough is considered, and the role of particle radial diffusion is also addressed in details. The financial support of the Advanced Energy Consortium (AEC BEG08-022) and the computational support of XSEDE (CTS090017) are acknowledged.

  20. Combustion rate limits of hydrogen plus hydrocarbon fuel: Air diffusion flames from an opposed jet burner technique

    NASA Technical Reports Server (NTRS)

    Pellett, Gerald L.; Guerra, Rosemary; Wilson, Lloyd G.; Reeves, Ronald N.; Northam, G. Burton

    1987-01-01

    Combustion of H2/hydrocarbon (HC) fuel mixtures may be considered in certain volume-limited supersonic airbreathing propulsion applications. Effects of HC addition to H2 were evaluated, using a recent argon-bathed, coaxial, tubular opposed jet burner (OJB) technique to measure the extinction limits of counterflow diffusion flames. The OJB flames were formed by a laminar jet of (N2 and/or HC)-diluted H2 mixture opposed by a similar jet of air at ambient conditions. The OJB data, derived from respective binary mixtures of H2 and methane, ethylene, or propane HCs, were used to characterize BLOWOFF and RESTORE. BLOWOFF is a sudden breaking of the dish-shaped OJB flame to a stable torus or ring shape, and RESTORE marks sudden restoration of the central flame by radial inward flame propagation. BLOWOFF is a measure of kinetically-limited flame reactivity/speed under highly stretched, but relatively ideal impingement flow conditions. RESTORE measures inward radial flame propagation rate, which is sensitive to ignition processes in the cool central core. It is concluded that relatively small molar amounts of added HC greatly reduce the reactivity characteristics of counterflow hydrogen-air diffusion flames, for ambient initial conditions.

  1. Nebula Models of Non-Equilibrium Mineralogy: Wark-Lovering Rims

    NASA Technical Reports Server (NTRS)

    Cuzzi, J. N.; Petaev, M.; Krot, A. N.

    2005-01-01

    Introduction: The meteorite record contains several examples of minerals that would not persist if allowed to come to equilibrium with a cooling gas of solar composition. This includes all minerals in CAIs and AOAs. Their survival is generally ascribed to physical removal of the object from the gas (isolation into a large parent object, or ejection by a stellar wind), but could also result from outward radial diffusion into cooler regions, which we discuss here. Accretion of CAIs into planetesimals has also been relied on to preserve them against loss into the sun. However, this suggestion faces several objections. Simple outward diffusion in turbulence has recently been modeled in some detail, and can preserve CAIs against loss into the sun [2]. Naturally, outward radial diffusion in turbulence is slower than immediate ejection by a stellar wind, which occurs on an orbital timescale. Here we ask whether these different transport mechanisms can be distinguished by nonequilibrium mineralogy, which provides a sort of clock. Our application here is to one aspect of CAI mineralogy - the Wark-Lovering rims (WLR); even more specifically, to alteration of one layer in the WLR sequence from melilite (Mel) to anorthite (An).

  2. Investigations of Turbulent Transport Channels in Gyrokinetic Simulations

    NASA Astrophysics Data System (ADS)

    Dimits, A. M.; Candy, J.; Guttenfelder, W.; Holland, C.; Howard, N.; Nevins, W. M.; Wang, E.

    2014-10-01

    Magnetic-field stochasticity arises due to microtearing perturbations, which can be driven linearly or nonlinearly (in cases where they are linearly stable), even at very modest values of the plasma beta. The resulting magnetic-flutter contribution may or may not be a significant component of the overall electron (particle and thermal) transport. Investigations of the effect of ExB flow shear on electron-drift magnetic-flutter diffusion coefficient Dedr (r ,v||) using perturbed magnetic fields from simulations, using the GYRO code, of ITG turbulence show a significant effect for electrons with parallel velocities v|| surprisingly far from the resonant velocity. We further examine changes in the radial dependence of this diffusion coefficient vs. v|| and which resonant magnetic-field perturbations are important to the values and radial structure of Dedr. The resulting electron transport fluxes are compared with the simulation results. Improvements over in treating the ambipolar field in the relationship between the magnetic (or drift) diffusion coefficients and the transport have been made in these comparisons. Prepared for US DOE by LLNL under Contract DE-AC52-07NA27344, by GA under Contract DE-FG03-95ER54309, and by PPPL under Contract DE-AC02-09CH11466.

  3. High Efficiency Centrifugal Compressor for Rotorcraft Applications

    NASA Technical Reports Server (NTRS)

    Medic, Gorazd; Sharma, Om P.; Jongwook, Joo; Hardin, Larry W.; McCormick, Duane C.; Cousins, William T.; Lurie, Elizabeth A.; Shabbir, Aamir; Holley, Brian M.; Van Slooten, Paul R.

    2017-01-01

    The report "High Efficiency Centrifugal Compressor for Rotorcraft Applications" documents the work conducted at UTRC under the NRA Contract NNC08CB03C, with cost share 2/3 NASA, and 1/3 UTRC, that has been extended to 4.5 years. The purpose of this effort was to identify key technical barriers to advancing the state-of-the-art of small centrifugal compressor stages; to delineate the measurements required to provide insight into the flow physics of the technical barriers; to design, fabricate, install, and test a state-of-the-art research compressor that is representative of the rear stage of an axial-centrifugal aero-engine; and to acquire detailed aerodynamic performance and research quality data to clarify flow physics and to establish detailed data sets for future application. The design activity centered on meeting the goal set outlined in the NASA solicitation-the design target was to increase efficiency at higher work factor, while also reducing the maximum diameter of the stage. To fit within the existing Small Engine Components Test Facility at NASA Glenn Research Center (GRC) and to facilitate component re-use, certain key design parameters were fixed by UTRC, including impeller tip diameter, impeller rotational speed, and impeller inlet hub and shroud radii. This report describes the design effort of the High Efficiency Centrifugal Compressor stage (HECC) and delineation of measurements, fabrication of the compressor, and the initial tests that were performed. A new High-Efficiency Centrifugal Compressor stage with a very challenging reduction in radius ratio was successfully designed, fabricated and installed at GRC. The testing was successful, with no mechanical problems and the running clearances were achieved without impeller rubs. Overall, measured pressure ratio of 4.68, work factor of 0.81, and at design exit corrected flow rate of 3 lbm/s met the target requirements. Polytropic efficiency of 85.5 percent and stall margin of 7.5 percent were measured at design flow rate and speed. The measured efficiency and stall margin were lower than pre-test CFD predictions by 2.4 percentage points (pt) and 4.5 pt, respectively. Initial impressions from the experimental data indicated that the loss in the efficiency and stall margin can be attributed to a design shortfall in the impeller. However, detailed investigation of experimental data and post-test CFD simulations of higher fidelity than pre-test CFD, and in particular the unsteady CFD simulations and the assessment with a wider range of turbulence models, have indicated that the loss in efficiency is most likely due to the impact of unfavorable unsteady impeller/diffuser interactions induced by diffuser vanes, an impeller/diffuser corrected flow-rate mismatch (and associated incidence levels), and, potentially, flow separation in the radial-to-axial bend. An experimental program with a vaneless diffuser is recommended to evaluate this observation. A subsequent redesign of the diffuser (and the radial-to-axial bend) is also recommended. The diffuser needs to be redesigned to eliminate the mismatching of the impeller and the diffuser, targeting a slightly higher flow capacity. Furthermore, diffuser vanes need to be adjusted to align the incidence angles, to optimize the splitter vane location (both radially and circumferentially), and to minimize the unsteady interactions with the impeller. The radial-to-axial bend needs to be redesigned to eliminate, or at least minimize, the flow separation at the inner wall, and its impact on the flow in the diffuser upstream. Lessons were also learned in terms of CFD methodology and the importance of unsteady CFD simulations for centrifugal compressors was highlighted. Inconsistencies in the implementation of a widely used two-equation turbulence model were identified and corrections are recommended. It was also observed that unsteady simulations for centrifugal compressors require significantly longer integration times than what is current practice in industry.

  4. High Efficiency Centrifugal Compressor for Rotorcraft Applications

    NASA Technical Reports Server (NTRS)

    Medic, Gorazd; Sharma, Om P.; Jongwook, Joo; Hardin, Larry W.; McCormick, Duane C.; Cousins, William T.; Lurie, Elizabeth A.; Shabbir, Aamir; Holley, Brian M.; Van Slooten, Paul R.

    2014-01-01

    The report "High Efficiency Centrifugal Compressor for Rotorcraft Applications" documents the work conducted at UTRC under the NRA Contract NNC08CB03C, with cost share 2/3 NASA, and 1/3 UTRC, that has been extended to 4.5 years. The purpose of this effort was to identify key technical barriers to advancing the state-of-the-art of small centrifugal compressor stages; to delineate the measurements required to provide insight into the flow physics of the technical barriers; to design, fabricate, install, and test a state-of-the-art research compressor that is representative of the rear stage of an axial-centrifugal aero-engine; and to acquire detailed aerodynamic performance and research quality data to clarify flow physics and to establish detailed data sets for future application. The design activity centered on meeting the goal set outlined in the NASA solicitation-the design target was to increase efficiency at higher work factor, while also reducing the maximum diameter of the stage. To fit within the existing Small Engine Components Test Facility at NASA Glenn Research Center (GRC) and to facilitate component re-use, certain key design parameters were fixed by UTRC, including impeller tip diameter, impeller rotational speed, and impeller inlet hub and shroud radii. This report describes the design effort of the High Efficiency Centrifugal Compressor stage (HECC) and delineation of measurements, fabrication of the compressor, and the initial tests that were performed. A new High-Efficiency Centrifugal Compressor stage with a very challenging reduction in radius ratio was successfully designed, fabricated and installed at GRC. The testing was successful, with no mechanical problems and the running clearances were achieved without impeller rubs. Overall, measured pressure ratio of 4.68, work factor of 0.81, and at design exit corrected flow rate of 3 lbm/s met the target requirements. Polytropic efficiency of 85.5 percent and stall margin of 7.5 percent were measured at design flow rate and speed. The measured efficiency and stall margin were lower than pre-test CFD predictions by 2.4 percentage points (pt) and 4.5 pt, respectively. Initial impressions from the experimental data indicated that the loss in the efficiency and stall margin can be attributed to a design shortfall in the impeller. However, detailed investigation of experimental data and post-test CFD simulations of higher fidelity than pre-test CFD, and in particular the unsteady CFD simulations and the assessment with a wider range of turbulence models, have indicated that the loss in efficiency is most likely due to the impact of unfavorable unsteady impeller/diffuser interactions induced by diffuser vanes, an impeller/diffuser corrected flow-rate mismatch (and associated incidence levels), and, potentially, flow separation in the radial-to-axial bend. An experimental program with a vaneless diffuser is recommended to evaluate this observation. A subsequent redesign of the diffuser (and the radial-to-axial bend) is also recommended. The diffuser needs to be redesigned to eliminate the mismatching of the impeller and the diffuser, targeting a slightly higher flow capacity. Furthermore, diffuser vanes need to be adjusted to align the incidence angles, to optimize the splitter vane location (both radially and circumferentially), and to minimize the unsteady interactions with the impeller. The radial-to-axial bend needs to be redesigned to eliminate, or at least minimize, the flow separation at the inner wall, and its impact on the flow in the diffuser upstream. Lessons were also learned in terms of CFD methodology and the importance of unsteady CFD simulations for centrifugal compressors was highlighted. Inconsistencies in the implementation of a widely used two-equation turbulence model were identified and corrections are recommended. It was also observed that unsteady simulations for centrifugal compressors require significantly longer integration times than what is current practice in industry.

  5. A Search for Plasma "Fingers" in the Io Torus

    NASA Astrophysics Data System (ADS)

    Jaggar, S.; Schneider, N. M.; Bagenal, F.; Trauger, J. T.

    1996-09-01

    We have compared model and data images of the Io plasma torus to test the radial diffusion model of Yang et al. (J. Geophys. Res., Vol 99, p. 8755, 1994). They predict that radial diffusion takes the form of `fingers' of dense plasma flowing outward due to the centrifugal force. Furthermore, they show that the spatial scale of these significant longitudinal variations is approximately 15(o) . The observations used in this study were obtained using a 2.4m telescope at Las Campanas Observatory using a narrowband filter to isolate emissions from S(++) at 9531 Angstroms. S(++) images are dominated by emission from the warm torus where outward radial transport is expected. Although S(+) images are brighter, they are contaminated by emission from the cold torus where fingers are not expected. We used the Colorado Io Torus Emission Package (CITEP)(Taylor et al., J. Geophys. Res., Vol. 100, p. 19541, 1995) to simulate images of the torus with fingers. CITEP is a comprehensive program which incorporates accurate atomic physics, plasma physics and magnetic field models to simulate the brightness and morphology or torus emissions. We used a Voyager empirical model (Bagenal, J. Geophys. Res., Vol. 99, p. 11043, 1994) modulated by a sinusoidal longitudinal density variation with a 15(o) period and an amplitude proportional to the density at that L-shell. We compared simulated images with data to determine the minimum density contrast necessary to make fingers detectable. We place an upper limit on the density contrast of +/- 20% on a 15(o) spatial scale. We conclude that either the density contrast of this mode of transport is small, or other processes are more important for radial transport. This constraint can also be used in other radial diffusion models which predict density variations on this spatial scale. This work has been supported by NASA's Planetary Astronomy and Planetary Atmospheres programs.

  6. Reverse-Tangent Injection in a Centrifugal Compressor

    NASA Technical Reports Server (NTRS)

    Skoch, Gary J.

    2007-01-01

    Injection of working fluid into a centrifugal compressor in the reverse tangent direction has been invented as a way of preventing flow instabilities (stall and surge) or restoring stability when stall or surge has already commenced. The invention applies, in particular, to a centrifugal compressor, the diffuser of which contains vanes that divide the flow into channels oriented partly radially and partly tangentially. In reverse-tangent injection, a stream or jet of the working fluid (the fluid that is compressed) is injected into the vaneless annular region between the blades of the impeller and the vanes of the diffuser. As used here, "reverse" signifies that the injected flow opposes (and thereby reduces) the tangential component of the velocity of the impeller discharge. At the same time, the injected jet acts to increase the radial component of the velocity of the impeller discharge.

  7. Magneto-Hydrodynamic Damping of Convection During Vertical Bridgman-Stockbarger Growth of HgCdTe

    NASA Technical Reports Server (NTRS)

    Watring, D. A.; Lehoczky, S. L.

    1996-01-01

    In order to quantify the effects of convection on segregation, Hg(0.8)Cd(0.2)Te crystals were grown by the vertical Bridgman-Stockbarger method in the presence of an applied axial magnetic field of 50 kG. The influence of convection, by magneto-hydrodynamic damping, on mass transfer in the melt and segregation at the solid-liquid interface was investigated by measuring the axial and radial compositional variations in the grown samples. The reduction of convective mixing in the melt through the application of the magnetic field is found to decrease radial segregation to the diffusion-limited regime. It was also found that the suppression of the convective cell near the solid-liquid interface results in an increase in the slope of the diffusion-controlled solute boundary layer, which can lead to constitutional supercooling.

  8. Molecular dynamics simulation of polyacrylamides in potassium montmorillonite clay hydrates

    NASA Astrophysics Data System (ADS)

    Zhang, Junfang; Rivero, Mayela; Choi, S. K.

    2007-02-01

    We present molecular dynamics simulation results for polyacrylamide in potassium montmorillonite clay-aqueous systems. Interlayer molecular structure and dynamics properties are investigated. The number density profile, radial distribution function, root-mean-square deviation (RMSD), mean-square displacement (MSD) and diffusion coefficient are reported. The calculations are conducted in constant NVT ensembles, at T = 300 K and with layer spacing of 40 Å. Our simulation results showed that polyacrylamides had little impact on the structure of interlayer water. Density profiles and radial distribution function indicated that hydration shells were formed. In the presence of polyacrylamides more potassium counterions move close to the clay surface while water molecules move away, indicating that potassium counterions are hydrated to a lesser extent than the system in which no polyacrylamides were added. The diffusion coefficients for potassium and water decreased when polyacrylamides were added.

  9. Spatial distribution of protons at high and low altitudes in the radiation belts. Comparison of theory and experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panasyuk, M.I.; Reizman, S.Y.; Sosnovets, E.N.

    1986-05-01

    A comparative analysis of experimental data on the spatial distributions of protons with energies (E) greater than 0.1 MeV at high and low latitudes, which were obtained on the Molniya-1, Kosmos-900, Elektron, and 1964-45A satellites, is carried out. As a result of the comparison of the experimental data relating to the measurements of protons with E - 0.2 MeV with the calculation including radial drift of particles under the action of electric and magnetic field fluctuations, it is shown that radial diffusion with a diffusion coefficient independent of geomagnetic latitude is the primary mechanism shaping the spatial distributions of protonsmore » at geomagnetic latitudes up to ..lambda.. approx. = 40/sup 0/. The results of the experiments and the calculations agree under the assumption of both magnetic and electric diffusion, but the latter case requires the inclusion of the model of a spatially inhomogeneous convection electric field. At ..lambda.. greater than or equal to 50/sup 0/ pitchangle scattering makes the primary contribution to the shaping of the spatial structure of the protons at low altitudes. A value of 2 less than or equal to n less than or equal to 4 is obtained for the exponent of the slope of the radial distribution of cold electrons N /sub e/ (r)..cap alpha.. /sup -n/ at 2 less than or equal to L less than or equal to 4.« less

  10. Structural connectivity of neural reward networks in youth at risk for substance use disorders.

    PubMed

    Squeglia, Lindsay M; Sorg, Scott F; Jacobus, Joanna; Brumback, Ty; Taylor, Charles T; Tapert, Susan F

    2015-07-01

    Having a positive family history of alcohol use disorders (FHP), as well as aberrant reward circuitry, has been implicated in the initiation of substance use during adolescence. This study explored the relationship between FHP status and reward circuitry in substance naïve youth to better understand future risky behaviors. Participants were 49 FHP and 45 demographically matched family history negative (FHN) substance-naïve 12-14 year-olds (54 % female). Subjects underwent structural magnetic resonance imaging, including diffusion tensor imaging. Nucleus accumbens and orbitofrontal cortex volumes were derived using FreeSurfer, and FSL probabilistic tractography probed structural connectivity and differences in white matter diffusivity estimates (e.g. fractional anisotropy, and mean, radial, and axial diffusivity) between fiber tracts connecting these regions. FHP and FHN youth did not differ on nucleus accumbens or orbitofrontal cortex volumes, white matter tract volumes, or percentages of streamlines (a proxy for fiber tract count) connecting these regions. However, within white matter tracts connecting the nucleus accumbens to the orbitofrontal cortex, FHP youth had significantly lower mean and radial diffusivity (ps < 0.03) than FHN youth. While white matter macrostructure between salience and reward regions did not differ between FHP and FHN youth, FHP youth showed greater white matter coherence within these tracts than FHN youth. Aberrant connectivity between reward regions in FHP youth could be linked to an increased risk for substance use initiation.

  11. Resonant thickening of self-gravitating discs: imposed or self-induced orbital diffusion in the tightly wound limit

    NASA Astrophysics Data System (ADS)

    Fouvry, Jean-Baptiste; Pichon, Christophe; Chavanis, Pierre-Henri; Monk, Laura

    2017-11-01

    The secular thickening of a self-gravitating stellar galactic disc is investigated using the dressed collisionless Fokker-Planck equation and the inhomogeneous multicomponent Balescu-Lenard equation. The thick WKB limits for the diffusion fluxes are found using the epicyclic approximation, while assuming that only radially tightly wound transient spirals are sustained by the disc. This yields simple quadratures for the drift and diffusion coefficients, providing a clear understanding of the positions of maximum vertical orbital diffusion within the disc, induced by fluctuations either external or due to the finite number of particles. These thick limits also offer a consistent derivation of a thick disc Toomre parameter, which is shown to be exponentially boosted by the ratio of the vertical to radial scaleheights. Dressed potential fluctuations within the disc statistically induce a vertical bending of a subset of resonant orbits, triggering the corresponding increase in vertical velocity dispersion. When applied to a tepid stable tapered disc perturbed by shot noise, these two frameworks reproduce qualitatively the formation of ridges of resonant orbits towards larger vertical actions, as found in direct numerical simulations, but overestimates the time-scale involved in their appearance. Swing amplification is likely needed to resolve this discrepancy, as demonstrated in the case of razor-thin discs. Other sources of thickening are also investigated, such as fading sequences of slowing bars, or the joint evolution of a population of giant molecular clouds within the disc.

  12. Analytical solutions for a soil vapor extraction model that incorporates gas phase dispersion and molecular diffusion

    NASA Astrophysics Data System (ADS)

    Huang, Junqi; Goltz, Mark N.

    2017-06-01

    To greatly simplify their solution, the equations describing radial advective/dispersive transport to an extraction well in a porous medium typically neglect molecular diffusion. While this simplification is appropriate to simulate transport in the saturated zone, it can result in significant errors when modeling gas phase transport in the vadose zone, as might be applied when simulating a soil vapor extraction (SVE) system to remediate vadose zone contamination. A new analytical solution for the equations describing radial gas phase transport of a sorbing contaminant to an extraction well is presented. The equations model advection, dispersion (including both mechanical dispersion and molecular diffusion), and rate-limited mass transfer of dissolved, separate phase, and sorbed contaminants into the gas phase. The model equations are analytically solved by using the Laplace transform with respect to time. The solutions are represented by confluent hypergeometric functions in the Laplace domain. The Laplace domain solutions are then evaluated using a numerical Laplace inversion algorithm. The solutions can be used to simulate the spatial distribution and the temporal evolution of contaminant concentrations during operation of a soil vapor extraction well. Results of model simulations show that the effect of gas phase molecular diffusion upon concentrations at the extraction well is relatively small, although the effect upon the distribution of concentrations in space is significant. This study provides a tool that can be useful in designing SVE remediation strategies, as well as verifying numerical models used to simulate SVE system performance.

  13. Modeling radiation belt dynamics using a 3-D layer method code

    NASA Astrophysics Data System (ADS)

    Wang, C.; Ma, Q.; Tao, X.; Zhang, Y.; Teng, S.; Albert, J. M.; Chan, A. A.; Li, W.; Ni, B.; Lu, Q.; Wang, S.

    2017-08-01

    A new 3-D diffusion code using a recently published layer method has been developed to analyze radiation belt electron dynamics. The code guarantees the positivity of the solution even when mixed diffusion terms are included. Unlike most of the previous codes, our 3-D code is developed directly in equatorial pitch angle (α0), momentum (p), and L shell coordinates; this eliminates the need to transform back and forth between (α0,p) coordinates and adiabatic invariant coordinates. Using (α0,p,L) is also convenient for direct comparison with satellite data. The new code has been validated by various numerical tests, and we apply the 3-D code to model the rapid electron flux enhancement following the geomagnetic storm on 17 March 2013, which is one of the Geospace Environment Modeling Focus Group challenge events. An event-specific global chorus wave model, an AL-dependent statistical plasmaspheric hiss wave model, and a recently published radial diffusion coefficient formula from Time History of Events and Macroscale Interactions during Substorms (THEMIS) statistics are used. The simulation results show good agreement with satellite observations, in general, supporting the scenario that the rapid enhancement of radiation belt electron flux for this event results from an increased level of the seed population by radial diffusion, with subsequent acceleration by chorus waves. Our results prove that the layer method can be readily used to model global radiation belt dynamics in three dimensions.

  14. Simulation of Changes in Diffusion Related to Different Pathologies at Cellular Level After Traumatic Brain Injury

    PubMed Central

    Lin, Mu; He, Hongjian; Schifitto, Giovanni; Zhong, Jianhui

    2016-01-01

    Purpose The goal of the current study was to investigate tissue pathology at the cellular level in traumatic brain injury (TBI) as revealed by Monte Carlo simulation of diffusion tensor imaging (DTI)-derived parameters and elucidate the possible sources of conflicting findings of DTI abnormalities as reported in the TBI literature. Methods A model with three compartments separated by permeable membranes was employed to represent the diffusion environment of water molecules in brain white matter. The dynamic diffusion process was simulated with a Monte Carlo method using adjustable parameters of intra-axonal diffusivity, axon separation, glial cell volume fraction, and myelin sheath permeability. The effects of tissue pathology on DTI parameters were investigated by adjusting the parameters of the model corresponding to different stages of brain injury. Results The results suggest that the model is appropriate and the DTI-derived parameters simulate the predominant cellular pathology after TBI. Our results further indicate that when edema is not prevalent, axial and radial diffusivity have better sensitivity to axonal injury and demyelination than other DTI parameters. Conclusion DTI is a promising biomarker to detect and stage tissue injury after TBI. The observed inconsistencies among previous studies are likely due to scanning at different stages of tissue injury after TBI. PMID:26256558

  15. Effect of annealing on structural changes and oxygen diffusion in amorphous HfO2 using classical molecular dynamics

    NASA Astrophysics Data System (ADS)

    Shen, Wenqing; Kumari, Niru; Gibson, Gary; Jeon, Yoocharn; Henze, Dick; Silverthorn, Sarah; Bash, Cullen; Kumar, Satish

    2018-02-01

    Non-volatile memory is a promising alternative to present memory technologies. Oxygen vacancy diffusion has been widely accepted as one of the reasons for the resistive switching mechanism of transition-metal-oxide based resistive random access memory. In this study, molecular dynamics simulation is applied to investigate the diffusion coefficient and activation energy of oxygen in amorphous hafnia. Two sets of empirical potential, Charge-Optimized Many-Body (COMB) and Morse-BKS (MBKS), were considered to investigate the structural and diffusion properties at different temperatures. COMB predicts the activation energy of 0.53 eV for the temperature range of 1000-2000 K, while MBKS predicts 2.2 eV at high temperature (1600-2000 K) and 0.36 eV at low temperature (1000-1600 K). Structural changes and appearance of nano-crystalline phases with increasing temperature might affect the activation energy of oxygen diffusion predicted by MBKS, which is evident from the change in coordination number distribution and radial distribution function. None of the potentials make predictions that are fully consistent with density functional theory simulations of both the structure and diffusion properties of HfO2. This suggests the necessity of developing a better multi-body potential that considers charge exchange.

  16. Raman and CT scan mapping of chalcogenide glass diffusion generated gradient index profiles

    NASA Astrophysics Data System (ADS)

    Lindberg, G. P.; Berg, R. H.; Deegan, J.; Benson, R.; Salvaggio, P. S.; Gross, N.; Weinstein, B. A.; Gibson, D.; Bayya, S.; Sanghera, J.; Nguyen, V.; Kotov, M.

    2016-05-01

    Metrology of a gradient index (GRIN) material is non-trivial, especially in the realm of infrared and large refractive index. Traditional methods rely on index matching fluids which are not available for indexes as high as those found in the chalcogenide glasses (2.4-3.2). By diffusing chalcogenide glasses of similar composition one can blend the properties in a continuous way. In an effort to measure this we will present data from both x-ray computed tomography scans (CT scans) and Raman mapping scans of the diffusion profiles. Proof of concept measurements on undiffused bonded sheets of chalcogenide glasses were presented previously. The profiles measured will be of axially stacked sheets of chalcogenide glasses diffused to create a linear GRIN profile and nested tubes of chalcogenide glasses diffused to create a radial parabolic GRIN profile. We will show that the x-ray absorption in the CT scan and the intensity of select Raman peaks spatially measured through the material are indicators of the concentration of the diffusion ions and correlate to the spatial change in refractive index. We will also present finite element modeling (FEM) results and compare them to post precision glass molded (PGM) elements that have undergone CT and Raman mapping.

  17. Study of electron transport in a Hall thruster by axial–radial fully kinetic particle simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Shinatora, E-mail: choh.shinatora@jaxa.jp; Kubota, Kenichi; Funaki, Ikkoh

    2015-10-15

    Electron transport across a magnetic field in a magnetic-layer-type Hall thruster was numerically investigated for the future predictive modeling of Hall thrusters. The discharge of a 1-kW-class magnetic-layer-type Hall thruster designed for high-specific-impulse operation was modeled using an r-z two-dimensional fully kinetic particle code with and without artificial electron-diffusion models. The thruster performance results showed that both electron transport models captured the experimental result within discrepancies less than 20% in thrust and discharge current for all the simulated operation conditions. The electron cross-field transport mechanism of the so-called anomalous diffusion was self-consistently observed in the simulation without artificial diffusion models;more » the effective electron mobility was two orders of magnitude higher than the value obtained using the classical diffusion theory. To account for the self-consistently observed anomalous transport, the oscillation of plasma properties was speculated. It was suggested that the enhanced random-walk diffusion due to the velocity oscillation of low-frequency electron flow could explain the observed anomalous diffusion within an order of magnitude. The dominant oscillation mode of the electron flow velocity was found to be 20 kHz, which was coupled to electrostatic oscillation excited by global ionization instability.« less

  18. Predictive classification of pediatric bipolar disorder using atlas-based diffusion weighted imaging and support vector machines.

    PubMed

    Mwangi, Benson; Wu, Mon-Ju; Bauer, Isabelle E; Modi, Haina; Zeni, Cristian P; Zunta-Soares, Giovana B; Hasan, Khader M; Soares, Jair C

    2015-11-30

    Previous studies have reported abnormalities of white-matter diffusivity in pediatric bipolar disorder. However, it has not been established whether these abnormalities are able to distinguish individual subjects with pediatric bipolar disorder from healthy controls with a high specificity and sensitivity. Diffusion-weighted imaging scans were acquired from 16 youths diagnosed with DSM-IV bipolar disorder and 16 demographically matched healthy controls. Regional white matter tissue microstructural measurements such as fractional anisotropy, axial diffusivity and radial diffusivity were computed using an atlas-based approach. These measurements were used to 'train' a support vector machine (SVM) algorithm to predict new or 'unseen' subjects' diagnostic labels. The SVM algorithm predicted individual subjects with specificity=87.5%, sensitivity=68.75%, accuracy=78.12%, positive predictive value=84.62%, negative predictive value=73.68%, area under receiver operating characteristic curve (AUROC)=0.7812 and chi-square p-value=0.0012. A pattern of reduced regional white matter fractional anisotropy was observed in pediatric bipolar disorder patients. These results suggest that atlas-based diffusion weighted imaging measurements can distinguish individual pediatric bipolar disorder patients from healthy controls. Notably, from a clinical perspective these findings will contribute to the pathophysiological understanding of pediatric bipolar disorder. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Effects of Anomalous Cosmic Rays on the Structure of the Outer Heliosphere

    NASA Astrophysics Data System (ADS)

    Guo, Xiaocheng; Florinski, Vladimir; Wang, Chi

    2018-06-01

    Based on Voyager 1 observations, some anomalous cosmic rays (ACRs) may have crossed the heliopause and escaped into the interstellar medium, providing a mechanism of energy transfer between the inner and outer heliosheaths that is not included in conventional magnetohydrodynamics (MHD) models. In this paper, we study the effect of energetic particles’ escape through the heliopause on the size and shape of the heliosphere using a simple model that includes diffusive transport of cosmic rays. We show that the presence of ACRs significantly changes the heliosphere structure, including the location of the heliopause and termination shock. It was found that the heliopause would contract for certain values of the ACR diffusion coefficients when the diffusive particles’ pressure is comparable to the pressure of the plasma background. The difference in Voyager 1 and 2 observations of energetic particles during their respective termination shock crossings is interpreted here as due to the differences in diffusion environments during the different phases of the solar cycle. The shorter period of enhanced ACR intensities upstream of the shock measured by Voyager 2 may have been caused by weaker radial diffusive transport compared with the time of Voyager 1 crossing. We conclude that ACR diffusive effects could be prominent and should be included in MHD models of the heliosphere.

  20. Radial diffusion of relativistic electrons into the radiation belt slot region during the 2003 Halloween geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Loto'Aniu, T. M.; Mann, I. R.; Ozeke, L. G.; Chan, A. A.; Dent, Z. C.; Milling, D. K.

    2006-04-01

    A study was undertaken to estimate the radial diffusion timescale, τLL, for relativistic electrons (2-6 MeV) to diffuse into the slot region due to drift-resonance with Pc5 ULF waves (2-10 mHz) on 29 October 2003. Large amplitude ULF waves were observed by ground-based magnetometer arrays to penetrate deep into the slot region (L ≃ 2-3) starting at 0600 UT and maximising (˜200 nT p-p) between 0930-1630 UT. Around the same time, the SAMPEX PET instrument measured an over two orders of magnitude increase in relativistic (2-6 MeV) electron flux levels in ˜24 hours within the slot region. The ground-based D-component magnetic power spectral densities (PSDδB) for 29 October were estimated for six latitudinally spaced ground stations covering L ˜ 2.3-4.3 for an observed ULF wave with central frequency ˜4 mHz. The PSDδB values were used to calculate the in situ equatorial poloidal wave electric field power spectral densities (PSDδEm) using a standing Alfvén wave model. The radial diffusion coefficients, DLL, were estimated using the PSDδEm values. The fastest τLL were 3-5 hours at L > 4, while τLL initially increased with decreasing L-value below L ≃ 4; peaking at L ≃ 3 with τLL ˜ 12-24 hours with PSDδEm estimated using a wave frequency bandwidth between Δf = 1 mHz and Δf = 2.5 mHz. The τLL over the L-range L ˜ 2.3-3.3 were consistent with the timescales observed by SAMPEX for the increase in relativistic fluxes in the slot region on 29 October. The authors believe that this is the first example of the ULF wave drift-resonance with relativistic electrons explaining a radiation belt slot region filling event.

  1. Scaling results for the magnetic field line trajectories in the stochastic layer near the separatrix in divertor tokamaks with high magnetic shear using the higher shear map

    NASA Astrophysics Data System (ADS)

    Punjabi, Alkesh; Ali, Halima; Farhat, Hamidullah

    2009-07-01

    Extra terms are added to the generating function of the simple map (Punjabi et al 1992 Phys. Rev. Lett. 69 3322) to adjust shear of magnetic field lines in divertor tokamaks. From this new generating function, a higher shear map is derived from a canonical transformation. A continuous analog of the higher shear map is also derived. The method of maps (Punjabi et al 1994 J. Plasma Phys. 52 91) is used to calculate the average shear, stochastic broadening of the ideal separatrix near the X-point in the principal plane of the tokamak, loss of poloidal magnetic flux from inside the ideal separatrix, magnetic footprint on the collector plate, and its area, and the radial diffusion coefficient of magnetic field lines near the X-point. It is found that the width of the stochastic layer near the X-point and the loss of poloidal flux from inside the ideal separatrix scale linearly with average shear. The area of magnetic footprints scales roughly linearly with average shear. Linear scaling of the area is quite good when the average shear is greater than or equal to 1.25. When the average shear is in the range 1.1-1.25, the area of the footprint fluctuates (as a function of average shear) and scales faster than linear scaling. Radial diffusion of field lines near the X-point increases very rapidly by about four orders of magnitude as average shear increases from about 1.15 to 1.5. For higher values of average shear, diffusion increases linearly, and comparatively very slowly. The very slow scaling of the radial diffusion of the field can flatten the plasma pressure gradient near the separatrix, and lead to the elimination of type-I edge localized modes.

  2. An Investigation of Unsteady Impeller-Diffuser Interactions in a Centrifugal Compressor

    DTIC Science & Technology

    1992-08-01

    120 6.20 IDV Measument Positios ............................................................. 121 6.21 LDV...The motivation for radially oriented blades includes ease of manufacture and reduced stress in high speed machines. Backswept blades are used to

  3. An update of Leighton's solar dynamo model

    NASA Astrophysics Data System (ADS)

    Cameron, R. H.; Schüssler, M.

    2017-03-01

    In 1969, Leighton developed a quasi-1D mathematical model of the solar dynamo, building upon the phenomenological scenario of Babcock published in 1961. Here we present a modification and extension of Leighton's model. Using the axisymmetric component (longitudinal average) of the magnetic field, we consider the radial field component at the solar surface and the radially integrated toroidal magnetic flux in the convection zone, both as functions of latitude. No assumptions are made with regard to the radial location of the toroidal flux. The model includes the effects of (I) turbulent diffusion at the surface and in the convection zone; (II) poleward meridional flow at the surface and an equatorward return flow affecting the toroidal flux; (III) latitudinal differential rotation and the near-surface layer of radial rotational shear; (iv) downward convective pumping of magnetic flux in the shear layer; and (v) flux emergence in the form of tilted bipolar magnetic regions treated as a source term for the radial surface field. While the parameters relevant for the transport of the surface field are taken from observations, the model condenses the unknown properties of magnetic field and flow in the convection zone into a few free parameters (turbulent diffusivity, effective return flow, amplitude of the source term, and a parameter describing the effective radial shear). Comparison with the results of 2D flux transport dynamo codes shows that the model captures the essential features of these simulations. We make use of the computational efficiency of the model to carry out an extended parameter study. We cover an extended domain of the 4D parameter space and identify the parameter ranges that provide solar-like solutions. Dipole parity is always preferred and solutions with periods around 22 yr and a correct phase difference between flux emergence in low latitudes and the strength of the polar fields are found for a return flow speed around 2 m s-1, turbulent diffusivity below about 80 km2s-1, and dynamo excitation not too far above the threshold (linear growth rate less than 0.1 yr-1).

  4. Choice of reference measurements affects quantification of long diffusion time behaviour using stimulated echoes.

    PubMed

    Kleinnijenhuis, Michiel; Mollink, Jeroen; Lam, Wilfred W; Kinchesh, Paul; Khrapitchev, Alexandre A; Smart, Sean C; Jbabdi, Saad; Miller, Karla L

    2018-02-01

    To demonstrate how reference data affect the quantification of the apparent diffusion coefficient (ADC) in long diffusion time measurements with diffusion-weighted stimulated echo acquisition mode (DW-STEAM) measurements, and to present a modification to avoid contribution from crusher gradients in DW-STEAM. For DW-STEAM, reference measurements at long diffusion times have significant b 0 value, because b = 0 cannot be achieved in practice as a result of the need for signal spoiling. Two strategies for acquiring reference data over a range of diffusion times were considered: constant diffusion weighting (fixed-b 0 ) and constant gradient area (fixed-q 0 ). Fixed-b 0 and fixed-q 0 were compared using signal calculations for systems with one and two diffusion coefficients, and experimentally using data from postmortem human corpus callosum samples. Calculations of biexponential diffusion decay show that the ADC is underestimated for reference images with b > 0, which can induce an apparent time-dependence for fixed-q 0 . Restricted systems were also found to be affected. Experimentally, the exaggeration of the diffusion time-dependent effect under fixed-q 0 versus fixed-b 0 was in a range predicted theoretically, accounting for 62% (longitudinal) and 35% (radial) of the time dependence observed in white matter. Variation in the b-value of reference measurements in DW-STEAM can induce artificial diffusion time dependence in ADC, even in the absence of restriction. Magn Reson Med 79:952-959, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  5. Kinetic DTI of the cervical spine: diffusivity changes in healthy subjects.

    PubMed

    Kuhn, Félix P; Feydy, Antoine; Launay, Nathalie; Lefevre-Colau, Marie-Martine; Poiraudeau, Serge; Laporte, Sébastien; Maier, Marc A; Lindberg, Pavel

    2016-09-01

    The study aims to assess the influence of neck extension on water diffusivity within the cervical spinal cord. IRB approved the study in 22 healthy volunteers. All subjects underwent anatomical MR and diffusion tensor imaging (DTI) at 1.5 T. The cervical cord was imaged in neutral (standard) position and extension. Segmental vertebral rotations were analyzed on sagittal T2-weighted images using the SpineView® software. Spinal cord diffusivity was measured in cross-sectional regions of interests at multiple levels (C1-C5). As a result of non-adapted coil geometry for spinal extension, 10 subjects had to be excluded. Image quality of the remaining 12 subjects was good without any deteriorating artifacts. Quantitative measurements of vertebral rotation angles and diffusion parameters showed good intra-rater reliability (ICC = 0.84-0.99). DTI during neck extension revealed significantly decreased fractional anisotropy (FA) and increased radial diffusivity (RD) at the C3 level and increased apparent diffusion coefficients (ADC) at the C3 and C4 levels (p < 0.01 Bonferroni corrected). The C3/C4 level corresponded to the maximal absolute change in segmental vertebral rotation between the two positions. The increase in RD correlated positively with the degree of global extension, i.e., the summed vertebral rotation angle between C1 and C5 (R = 0.77, p = 0.006). Our preliminary results suggest that DTI can quantify changes in water diffusivity during cervical spine extension. The maximal differences in segmental vertebral rotation corresponded to the levels with significant changes in diffusivity (C3/C4). Consequently, kinetic DTI measurements may open new perspectives in the assessment of neural tissue under biomechanical constraints.

  6. Acute white matter changes following sport-related concussion: A serial diffusion tensor and diffusion kurtosis tensor imaging study.

    PubMed

    Lancaster, Melissa A; Olson, Daniel V; McCrea, Michael A; Nelson, Lindsay D; LaRoche, Ashley A; Muftuler, L Tugan

    2016-11-01

    Recent neuroimaging studies have suggested that following sport-related concussion (SRC) physiological brain alterations may persist after an athlete has shown full symptom recovery. Diffusion MRI is a versatile technique to study white matter injury following SRC, yet serial follow-up studies in the very acute stages following SRC utilizing a comprehensive set of diffusion metrics are lacking. The aim of the current study was to characterize white matter changes within 24 hours of concussion in a group of high school and collegiate athletes, using Diffusion Tensor and Diffusion Kurtosis Tensor metrics. Participants were reassessed a week later. At 24 hours post-injury, the concussed group reported significantly more concussion symptoms than a well-matched control group and demonstrated poorer performance on a cognitive screening measure, yet these differences were nonsignificant at the 8-day follow-up. Similarly, within 24-hours after injury, the concussed group exhibited a widespread decrease in mean diffusivity, increased axial kurtosis and, to a lesser extent, decreased axial and radial diffusivities compared with control subjects. At 8 days post injury, the differences in these diffusion metrics were even more widespread in the injured athletes, despite improvement of symptoms and cognitive performance. These MRI findings suggest that the athletes might not have reached full physiological recovery a week after the injury. These findings have significant implications for the management of SRC because allowing an athlete to return to play before the brain has fully recovered from injury may have negative consequences. Hum Brain Mapp 37:3821-3834, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Predicting pain relief: Use of pre-surgical trigeminal nerve diffusion metrics in trigeminal neuralgia.

    PubMed

    Hung, Peter S-P; Chen, David Q; Davis, Karen D; Zhong, Jidan; Hodaie, Mojgan

    2017-01-01

    Trigeminal neuralgia (TN) is a chronic neuropathic facial pain disorder that commonly responds to surgery. A proportion of patients, however, do not benefit and suffer ongoing pain. There are currently no imaging tools that permit the prediction of treatment response. To address this paucity, we used diffusion tensor imaging (DTI) to determine whether pre-surgical trigeminal nerve microstructural diffusivities can prognosticate response to TN treatment. In 31 TN patients and 16 healthy controls, multi-tensor tractography was used to extract DTI-derived metrics-axial (AD), radial (RD), mean diffusivity (MD), and fractional anisotropy (FA)-from the cisternal segment, root entry zone and pontine segment of trigeminal nerves for false discovery rate-corrected Student's t -tests. Ipsilateral diffusivities were bootstrap resampled to visualize group-level diffusivity thresholds of long-term response. To obtain an individual-level statistical classifier of surgical response, we conducted discriminant function analysis (DFA) with the type of surgery chosen alongside ipsilateral measurements and ipsilateral/contralateral ratios of AD and RD from all regions of interest as prediction variables. Abnormal diffusivity in the trigeminal pontine fibers, demonstrated by increased AD, highlighted non-responders (n = 14) compared to controls. Bootstrap resampling revealed three ipsilateral diffusivity thresholds of response-pontine AD, MD, cisternal FA-separating 85% of non-responders from responders. DFA produced an 83.9% (71.0% using leave-one-out-cross-validation) accurate prognosticator of response that successfully identified 12/14 non-responders. Our study demonstrates that pre-surgical DTI metrics can serve as a highly predictive, individualized tool to prognosticate surgical response. We further highlight abnormal pontine segment diffusivities as key features of treatment non-response and confirm the axiom that central pain does not commonly benefit from peripheral treatments.

  8. In vivo burn diagnosis by camera-phone diffuse reflectance laser speckle detection.

    PubMed

    Ragol, S; Remer, I; Shoham, Y; Hazan, S; Willenz, U; Sinelnikov, I; Dronov, V; Rosenberg, L; Bilenca, A

    2016-01-01

    Burn diagnosis using laser speckle light typically employs widefield illumination of the burn region to produce two-dimensional speckle patterns from light backscattered from the entire irradiated tissue volume. Analysis of speckle contrast in these time-integrated patterns can then provide information on burn severity. Here, by contrast, we use point illumination to generate diffuse reflectance laser speckle patterns of the burn. By examining spatiotemporal fluctuations in these time-integrated patterns along the radial direction from the incident point beam, we show the ability to distinguish partial-thickness burns in a porcine model in vivo within the first 24 hours post-burn. Furthermore, our findings suggest that time-integrated diffuse reflectance laser speckle can be useful for monitoring burn healing over time post-burn. Unlike conventional diffuse reflectance laser speckle detection systems that utilize scientific or industrial-grade cameras, our system is designed with a camera-phone, demonstrating the potential for burn diagnosis with a simple imager.

  9. In vivo burn diagnosis by camera-phone diffuse reflectance laser speckle detection

    PubMed Central

    Ragol, S.; Remer, I.; Shoham, Y.; Hazan, S.; Willenz, U.; Sinelnikov, I.; Dronov, V.; Rosenberg, L.; Bilenca, A.

    2015-01-01

    Burn diagnosis using laser speckle light typically employs widefield illumination of the burn region to produce two-dimensional speckle patterns from light backscattered from the entire irradiated tissue volume. Analysis of speckle contrast in these time-integrated patterns can then provide information on burn severity. Here, by contrast, we use point illumination to generate diffuse reflectance laser speckle patterns of the burn. By examining spatiotemporal fluctuations in these time-integrated patterns along the radial direction from the incident point beam, we show the ability to distinguish partial-thickness burns in a porcine model in vivo within the first 24 hours post-burn. Furthermore, our findings suggest that time-integrated diffuse reflectance laser speckle can be useful for monitoring burn healing over time post-burn. Unlike conventional diffuse reflectance laser speckle detection systems that utilize scientific or industrial-grade cameras, our system is designed with a camera-phone, demonstrating the potential for burn diagnosis with a simple imager. PMID:26819831

  10. Effect of lost charged particles on the breakdown characteristics of the gaseous electrical discharge in non-uniform axial electric field

    NASA Astrophysics Data System (ADS)

    Noori, H.; Ranjbar, A. H.

    2017-10-01

    The secondary emission coefficient is a valuable parameter for numerical modeling of the discharge process in gaseous insulation. A theoretical model has been developed to consider the effects of the radial electric field, non-uniformity of the axial electric field, and radial diffusion of charged particles on the secondary emission coefficient. In the model, a modified breakdown criterion is employed to determine the effective secondary electron emission, γeff. Using the geometry factor gi which is introduced based on the effect of radial diffusion of charged particles on the fraction of ions which arrive at the cathode, the geometry-independent term of γeff (Δi) was obtained as a function of the energy of the incident ions on the cathode. The results show that Δi is approximately a unique function of the ion energy for the ratios of d/R = 39, 50, 77, 115, and 200. It means that the considered mechanisms in the model are responsible for the deviation from Paschen's law.

  11. Macrosegregation of GeSi Alloys Grown in a Static Magnetic Field

    NASA Technical Reports Server (NTRS)

    Ritter, T. M.; Volz, M. P.; Cobb, S. D.; Szofran, F. R.

    1999-01-01

    Axial and radial macrosegregation profiles have been determined for GeSi alloy crystals grown by the vertical Bridgman technique. An axial 5 Tesla magnetic field was applied to several samples during growth to decrease the melt velocities by means of the Lorentz force. Compositions were measured with either energy dispersive X-ray spectroscopy (EDS) on a scanning electron microscope (SEM) or by wavelength dispersive X-ray spectroscopy (WDS) on a microprobe. The crystals were processed in graphite, hot-pressed boron nitride (BN), and pyrolytic boron nitride (PBN) ampoules, which produced various solid-liquid interface shapes during solidification. Those samples grown in a graphite ampoule exhibited radial profiles consistent with a highly concave interface and axial profiles indicative of complete mixing in the melt. The samples grown in BN and PBN ampoules had less radial variation. Axial macrosegregation profiles of these samples fell between the predictions for a completely mixed melt and one where solute transport is dominated by diffusion. Possible explanations for the apparent insufficiency of the magnetic field to achieve diffusion controlled growth conditions are discussed.

  12. Hybrid finite element and Brownian dynamics method for charged particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huber, Gary A., E-mail: ghuber@ucsd.edu; Miao, Yinglong; Zhou, Shenggao

    2016-04-28

    Diffusion is often the rate-determining step in many biological processes. Currently, the two main computational methods for studying diffusion are stochastic methods, such as Brownian dynamics, and continuum methods, such as the finite element method. A previous study introduced a new hybrid diffusion method that couples the strengths of each of these two methods, but was limited by the lack of interactions among the particles; the force on each particle had to be from an external field. This study further develops the method to allow charged particles. The method is derived for a general multidimensional system and is presented usingmore » a basic test case for a one-dimensional linear system with one charged species and a radially symmetric system with three charged species.« less

  13. Temporal behaviour of a corner separation in a radial vaned diffuser of a centrifugal compressor operating near surge

    NASA Astrophysics Data System (ADS)

    Marsan, A.; Trébinjac, I.; Coste, S.; Leroy, G.

    2013-12-01

    The temporal behaviour of a flow separation in the hub-suction side corner of a transonic diffuser is studied thanks to unsteady numerical simulations based on the phase-lagged approach. The validity of the numerical results is confirmed by comparison with experimental unsteady pressure measurements. An analysis of the instantaneous skin-friction pattern and particles trajectories is presented. It highlights the topology of the separation and its temporal behaviour. The major result is that, despite of a highly time-dependent core flow, the separation is found to be a "fixed unsteady separation" characterized by a fixed location of the main saddle of the separation but an extent of the stall region modulated by the pressure waves induced by the impeller-diffuser interaction.

  14. Off-design flow measurements in a centrifugal compressor vaneless diffuser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinarbasi, A.; Johnson, M.W.

    1995-10-01

    Detailed measurements have been taken of the three-dimensional velocity field within the vaneless diffuser of a backswept low speed centrifugal compressor using hot-wire anemometry. A 16% below and an 11% above design flow rate were used in the present study. Results at both flow rates show how the blade wake mixes out more rapidly than the passage wake. Strong secondary flows inherited from the impeller at the higher flow rate delay the mixing out of the circumferential velocity variations, but at both flow rates these circumferential variations are negligible at the last measurement station. The measured tangential/radial flow angle ismore » used to recommend optimum values for the vaneless space and vane angle for design of a vaned diffuser.« less

  15. Evaluation of diffusion kurtosis imaging in ex vivo hypomyelinated mouse brains.

    PubMed

    Kelm, Nathaniel D; West, Kathryn L; Carson, Robert P; Gochberg, Daniel F; Ess, Kevin C; Does, Mark D

    2016-01-01

    Diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI), and DKI-derived white matter tract integrity metrics (WMTI) were experimentally evaluated ex vivo through comparisons to histological measurements and established magnetic resonance imaging (MRI) measures of myelin in two knockout mouse models with varying degrees of hypomyelination. DKI metrics of mean and radial kurtosis were found to be better indicators of myelin content than conventional DTI metrics. The biophysical WMTI model based on the DKI framework reported on axon water fraction with good accuracy in cases with near normal axon density, but did not provide additional specificity to myelination. Overall, DKI provided additional information regarding white matter microstructure compared with DTI, making it an attractive method for future assessments of white matter development and pathology. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Divergent series and memory of the initial condition in the long-time solution of some anomalous diffusion problems.

    PubMed

    Yuste, S Bravo; Borrego, R; Abad, E

    2010-02-01

    We consider various anomalous d -dimensional diffusion problems in the presence of an absorbing boundary with radial symmetry. The motion of particles is described by a fractional diffusion equation. Their mean-square displacement is given by r(2) proportional, variant t(gamma)(00 , the emergence of such series in the long-time domain is a specific feature of subdiffusion problems. We present a method to regularize such series, and, in some cases, validate the procedure by using alternative techniques (Laplace transform method and numerical simulations). In the normal diffusion case, we find that the signature of the initial condition on the approach to the steady state rapidly fades away and the solution approaches a single (the main) decay mode in the long-time regime. In remarkable contrast, long-time memory of the initial condition is present in the subdiffusive case as the spatial part Psi1(r) describing the long-time decay of the solution to the steady state is determined by a weighted superposition of all spatial modes characteristic of the normal diffusion problem, the weight being dependent on the initial condition. Interestingly, Psi1(r) turns out to be independent of the anomalous diffusion exponent gamma .

  17. Stormtime transport of ring current and radiation belt ions

    NASA Technical Reports Server (NTRS)

    Chen, Margaret W.; Schulz, Michael; Lyons, L. R.; Gorney, David J.

    1993-01-01

    This is an investigation of stormtime particle transport that leads to formation of the ring current. Our method is to trace the guiding-center motion of representative ions (having selected first adiabatic invariants mu) in response to model substorm-associated impulses in the convection electric field. We compare our simulation results qualitatively with existing analytically tractable idealizations of particle transport (direct convective access and radial diffusion) in order to assess the limits of validity of these approximations. For mu approximately less than 10 MeV/G (E approximately less than 10 keV at L equivalent to 3) the ion drift period on the final (ring-current) drift shell of interest (L equivalent to 3) exceeds the duration of the main phase of our model storm, and we find that the transport of ions to this drift shell is appropriately idealized as direct convective access, typically from open drift paths. Ion transport to a final closed drift path from an open (plasma-sheet) drift trajectory is possible for those portions of that drift path that lie outside the mean stormtime separatrix between closed and open drift trajectories, For mu approximately 10-25 MeV/G (110 keV approximately less than E approximately less than 280 keV at L equivalent to 3) the drift period at L equivalent to 3 is comparable to the postulated 3-hr duration of the storm, and the mode of transport is transitional between direct convective access and transport that resembles radial diffusion. (This particle population is transitional between the ring current and radiation belt). For mu approximately greater than 25 MeV/G (radiation-belt ions having E approximately greater than 280 keV at L equivalent to 3) the ion drift period is considerably shorter than the main phase of a typical storm, and ions gain access to the ring-current region essentially via radial diffusion. By computing the mean and mean-square cumulative changes in 1/L among (in this case) 12 representative ions equally spaced in drift time around the steady-state drift shell of interest (L equivalent to 3), we have estimated (from both our forward and our time-reversed simulations) the time-integrated radial-diffusion coefficients D(sup sim)(sub LL) for particles having selected values of mu approximately greater than 15 MeV/G. The results agree surprisingly well with the predictions (D(sup ql)(sub LL)) of quasilinear radial diffusion theory, despite the rather brief duration (approximately 3 hrs) of our model storm and despite the extreme variability (with frequency) of the spectral-density function that characterizes the applied electric field during our model storm. As expected, the values of D(sup sim)(sub LL) deduced (respectively) from our forward and time-reversed simulations agree even better with each other and with D(sup sim)(sub LL) when the impulse amplitudes which characterize the individual substorms of our model storm are systematically reduced.

  18. From migration to settlement: the pathways, migration modes and dynamics of neurons in the developing brain

    PubMed Central

    HATANAKA, Yumiko; ZHU, Yan; TORIGOE, Makio; KITA, Yoshiaki; MURAKAMI, Fujio

    2016-01-01

    Neuronal migration is crucial for the construction of the nervous system. To reach their correct destination, migrating neurons choose pathways using physical substrates and chemical cues of either diffusible or non-diffusible nature. Migrating neurons extend a leading and a trailing process. The leading process, which extends in the direction of migration, determines navigation, in particular when a neuron changes its direction of migration. While most neurons simply migrate radially, certain neurons switch their mode of migration between radial and tangential, with the latter allowing migration to destinations far from the neurons’ site of generation. Consequently, neurons with distinct origins are intermingled, which results in intricate neuronal architectures and connectivities and provides an important basis for higher brain function. The trailing process, in contrast, contributes to the late stage of development by turning into the axon, thus contributing to the formation of neuronal circuits. PMID:26755396

  19. Reactive nanolaminate pulsed-laser ignition mechanism: Modeling and experimental evidence of diffusion limited reactions

    DOE PAGES

    Yarrington, C. D.; Abere, M. J.; Adams, D. P.; ...

    2017-04-03

    We irradiated Al/Pt nanolaminates with a bilayer thickness (tb, width of an Al/Pt pair-layer) of 164 nm with single laser pulses with durations of 10 ms and 0.5 ms at 189 W/cm 2 and 1189 W/cm 2, respectively. The time to ignition was measured for each pulse, and shorter ignition times were observed for the higher power/shorter pulse width. While the shorter pulse shows uniform brightness, videographic images of the irradiated area shortly after ignition show a non-uniform radial brightness for the longer pulse. A diffusion-limited single step reaction mechanism was implemented in a finite element package to model themore » progress from reactants to products at both pulse widths. Finally, the model captures well both the observed ignition delay and qualitative observations regarding the non-uniform radial temperature.« less

  20. Introduction of Shear-Based Transport Mechanisms in Radial-Axial Hybrid Hall Thruster Simulations

    NASA Astrophysics Data System (ADS)

    Scharfe, Michelle; Gascon, Nicolas; Scharfe, David; Cappelli, Mark; Fernandez, Eduardo

    2007-11-01

    Electron diffusion across magnetic field lines in Hall effect thrusters is experimentally observed to be higher than predicted by classical diffusion theory. Motivated by theoretical work for fusion applications and experimental measurements of Hall thrusters, numerical models for the electron transport are implemented in radial-axial hybrid simulations in order to compute the electron mobility using simulated plasma properties and fitting parameters. These models relate the cross-field transport to the imposed magnetic field distribution through shear suppression of turbulence-enhanced transport. While azimuthal waves likely enhance cross field mobility, axial shear in the electron fluid may reduce transport due to a reduction in turbulence amplitudes and modification of phase shifts between fluctuating properties. The sensitivity of the simulation results to the fitting parameters is evaluated and an examination is made of the transportability of these parameters to several Hall thruster devices.

  1. Computations of the three-dimensional flow and heat transfer within a coolant passage of a radial turbine blade

    NASA Technical Reports Server (NTRS)

    Shih, T. I.-P.; Roelke, R. J.; Steinthorsson, E.

    1991-01-01

    A numerical code is developed for computing three-dimensional, turbulent, compressible flow within coolant passages of turbine blades. The code is based on a formulation of the compressible Navier-Stokes equations in a rotating frame of reference in which the velocity dependent variable is specified with respect to the rotating frame instead of the inertial frame. The algorithm employed to obtain solutions to the governing equation is a finite-volume LU algorithm that allows convection, source, as well as diffusion terms to be treated implicitly. In this study, all convection terms are upwind differenced by using flux-vector splitting, and all diffusion terms are centrally differenced. This paper describes the formulation and algorithm employed in the code. Some computed solutions for the flow within a coolant passage of a radial turbine are also presented.

  2. Modeling anomalous radial transport in kinetic transport codes

    NASA Astrophysics Data System (ADS)

    Bodi, K.; Krasheninnikov, S. I.; Cohen, R. H.; Rognlien, T. D.

    2009-11-01

    Anomalous transport is typically the dominant component of the radial transport in magnetically confined plasmas, where the physical origin of this transport is believed to be plasma turbulence. A model is presented for anomalous transport that can be used in continuum kinetic edge codes like TEMPEST, NEO and the next-generation code being developed by the Edge Simulation Laboratory. The model can also be adapted to particle-based codes. It is demonstrated that the model with a velocity-dependent diffusion and convection terms can match a diagonal gradient-driven transport matrix as found in contemporary fluid codes, but can also include off-diagonal effects. The anomalous transport model is also combined with particle drifts and a particle/energy-conserving Krook collision operator to study possible synergistic effects with neoclassical transport. For the latter study, a velocity-independent anomalous diffusion coefficient is used to mimic the effect of long-wavelength ExB turbulence.

  3. Using the Ab Initio Molecular Dynamics Method for Simulating the Peculiarities in the Temperature Dependence of Liquid Bismuth Properties

    NASA Astrophysics Data System (ADS)

    Yuryev, A. A.; Gelchinski, B. R.; Vatolin, N. A.

    2018-03-01

    The specific features pertinent to the temperature dependence of the electronic and atomic properties of liquid bismuth that have been observed in experiments are investigated according to the ab initio molecular dynamics method using the SIESTA open software package. The density of electronic states, the radial distribution function of atoms, and the self-diffusion coefficient are calculated for the temperature range from the melting point equal to 545 K to 1500 K. The calculated data are in good agreement with the experimental data. It is found that the position of the first peak in the radial distribution function of atoms and the self-diffusion coefficient are characterized by a nonmonotonic dependence under the conditions of superheating by approximately 150 K above the melting temperature. In the authors' opinion, this dependence feature is attributed to a change in the liquid short-range order structure.

  4. DTI and VBM reveal white matter changes without associated gray matter changes in patients with idiopathic restless legs syndrome

    PubMed Central

    Belke, Marcus; Heverhagen, Johannes T; Keil, Boris; Rosenow, Felix; Oertel, Wolfgang H; Stiasny-Kolster, Karin; Knake, Susanne; Menzler, Katja

    2015-01-01

    Background and Purpose We evaluated cerebral white and gray matter changes in patients with iRLS in order to shed light on the pathophysiology of this disease. Methods Twelve patients with iRLS were compared to 12 age- and sex-matched controls using whole-head diffusion tensor imaging (DTI) and voxel-based morphometry (VBM) techniques. Evaluation of the DTI scans included the voxelwise analysis of the fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (AD). Results Diffusion tensor imaging revealed areas of altered FA in subcortical white matter bilaterally, mainly in temporal regions as well as in the right internal capsule, the pons, and the right cerebellum. These changes overlapped with changes in RD. Voxel-based morphometry did not reveal any gray matter alterations. Conclusions We showed altered diffusion properties in several white matter regions in patients with iRLS. White matter changes could mainly be attributed to changes in RD, a parameter thought to reflect altered myelination. Areas with altered white matter microstructure included areas in the internal capsule which include the corticospinal tract to the lower limbs, thereby supporting studies that suggest changes in sensorimotor pathways associated with RLS. PMID:26442748

  5. Analysis of alterations in white matter integrity of adult patients with comitant exotropia.

    PubMed

    Li, Dan; Li, Shenghong; Zeng, Xianjun

    2018-05-01

    Objective This study was performed to investigate structural abnormalities of the white matter in patients with comitant exotropia using the tract-based spatial statistics (TBSS) method. Methods Diffusion tensor imaging data from magnetic resonance images of the brain were collected from 20 patients with comitant exotropia and 20 age- and sex-matched healthy controls. The FMRIB Software Library was used to compute the diffusion measures, including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD). These measures were obtained using voxel-wise statistics with threshold-free cluster enhancement. Results The FA values in the right inferior fronto-occipital fasciculus (IFO) and right inferior longitudinal fasciculus were significantly higher and the RD values in the bilateral IFO, forceps minor, left anterior corona radiata, and left anterior thalamic radiation were significantly lower in the comitant exotropia group than in the healthy controls. No significant differences in the MD or AD values were found between the two groups. Conclusions Alterations in FA and RD values may indicate the underlying neuropathologic mechanism of comitant exotropia. The TBSS method can be a useful tool to investigate neuronal tract participation in patients with this disease.

  6. Investigations inside a vaned diffuser of a centrifugal pump at low flowrates.

    NASA Astrophysics Data System (ADS)

    Bayeul-Lainé, A. C.; Dupont, P.; Dazin, A.; Bois, G.

    2016-11-01

    This paper focuses on the unsteady flow behaviour inside the vaned diffuser of a radial flow pump model, operating at partial flowrates (0.387Qi, 0.584Qi and 0.766Qi where Qi is the impeller design flowrate).The effects of the leakage flows are taken into account in the analysis. PIV measurements have been performed at different hub to shroud planes inside one diffuser channel passage for a given speed of rotation, for several flowrates and different angular impeller positions. The performances and the static pressure rise of the diffuser were also measured using a three-holes probe in the same experimental conditions. The unsteady numerical simulations were carried out with Star CCM+ 10.02 code with and without leakage flow. The PIV measurements showed a high unsteadiness at very low flowrate which was confirmed by the numerical calculations. In previous studies it has been shown that the global performances, as the efficiencies are in good agreement between calculations and measurements. In this paper, a joint analysis of measurements and numerical calculations is proposed to improve the understanding of the flow behaviour in a vaned diffuser.

  7. Modeling of inhomogeneous mixing of plasma species in argon-steam arc discharge

    NASA Astrophysics Data System (ADS)

    Jeništa, J.; Takana, H.; Uehara, S.; Nishiyama, H.; Bartlová, M.; Aubrecht, V.; Murphy, A. B.

    2018-01-01

    This paper presents numerical simulation of mixing of argon- and water-plasma species in an argon-steam arc discharge generated in a thermal plasma generator with the combined stabilization of arc by axial gas flow (argon) and water vortex. The diffusion of plasma species itself is described by the combined diffusion coefficients method in which the coefficients describe the diffusion of argon ‘gas,’ with respect to water vapor ‘gas.’ Diffusion processes due to the gradients of mass density, temperature, pressure, and an electric field have been considered in the model. Calculations for currents 150-400 A with 15-22.5 standard liters per minute (slm) of argon reveal inhomogeneous mixing of argon and oxygen-hydrogen species with the argon species prevailing near the arc axis. All the combined diffusion coefficients exhibit highly nonlinear distribution of their values within the discharge, depending on the temperature, pressure, and argon mass fraction of the plasma. The argon diffusion mass flux is driven mainly by the concentration and temperature space gradients. Diffusions due to pressure gradients and due to the electric field are of about 1 order lower. Comparison with our former calculations based on the homogeneous mixing assumption shows differences in temperature, enthalpy, radiation losses, arc efficiency, and velocity at 400 A. Comparison with available experiments exhibits very good qualitative and quantitative agreement for the radial temperature and velocity profiles 2 mm downstream of the exit nozzle.

  8. Diffusion Tensor Imaging in Chronic Inflammatory Demyelinating Polyneuropathy: Diagnostic Accuracy and Correlation With Electrophysiology.

    PubMed

    Kronlage, Moritz; Pitarokoili, Kalliopi; Schwarz, Daniel; Godel, Tim; Heiland, Sabine; Yoon, Min-Suk; Bendszus, Martin; Bäumer, Philipp

    2017-11-01

    The aims of this study were to assess diagnostic accuracy of diffusion tensor imaging (DTI) in chronic inflammatory demyelinating polyneuropathy (CIDP), to correlate DTI with electrophysiological parameters, and to evaluate whether radial diffusivity (RD) and axial diffusivity (AD) might serve as specific biomarkers of demyelinating and axonal pathology. This prospective study was approved by the institutional ethics committee, and written informed consent was obtained from all participants. Magnetic resonance neurography of upper and lower extremity nerves (median, ulnar, radial, sciatic, tibial) was performed by single-shot DTI sequences at 3.0 T in 18 patients with a diagnosis of CIDP and 18 healthy controls, matched to age and sex. The scalar readout parameters nerve fractional anisotropy (FA), mean diffusivity (MD), RD, and AD were obtained after manual segmentation and postprocessing and compared between patients and controls. Diagnostic accuracy was assessed by receiver operating characteristic analysis, and cutoff values were calculated by maximizing the Youden index. All patients underwent a complementary electroneurography and correlation of electrophysiological markers and DTI parameters was analyzed and described by Pearson and Spearman coefficients. Nerve FA was decreased to a mean of 0.42 ± 0.08 in patients compared with 0.52 ± 0.04 in healthy controls (P < 0.001). This decrease in FA was a result of an increase of RD (P = 0.02), whereas AD did not differ between the two groups. Of all DTI parameters, FA showed best diagnostic accuracy with a receiver operating characteristic area under the curve of 0.90. Optimal cutoff for an average FA of all analyzed nerves was 0.47, yielding a sensitivity of 0.83 and a specificity of 0.94. Fractional anisotropy and RD correlated strongly with electrophysiological markers of demyelination, whereas AD did not correlate with markers of axonal neuropathy. Diffusion tensor imaging yields valid quantitative biomarkers in CIDP and might aid in diagnosis with high diagnostic accuracy. Fractional anisotropy and RD may serve as parameters of myelin sheath integrity, but AD is unable to reflect axonal damage in CIDP.

  9. Brain white matter changes in CPAP-treated obstructive sleep apnea patients with residual sleepiness.

    PubMed

    Xiong, Ying; Zhou, Xiaohong Joe; Nisi, Robyn A; Martin, Kelly R; Karaman, M Muge; Cai, Kejia; Weaver, Terri E

    2017-05-01

    To investigate white matter (WM) structural alterations using diffusion tensor imaging (DTI) in obstructive sleep apnea (OSA) patients, with or without residual sleepiness, following adherent continuous positive airway pressure (CPAP) treatment. Possible quantitative relationships were explored between the DTI metrics and two clinical assessments of somnolence. Twenty-nine male patients (30-55 years old) with a confirmed diagnosis of OSA were recruited. The patients were treated with CPAP therapy only. The Psychomotor Vigilance Task (PVT) and Epworth Sleepiness Scale (ESS) were performed after CPAP treatment and additionally administered at the time of the magnetic resonance imaging (MRI) scan. Based on the PVT results, the patients were divided into a nonsleepy group (lapses ≤5) and a sleepy group (lapses >5). DTI was performed at 3T, followed by an analysis using tract-based spatial statistics (TBSS) to investigate the differences in fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (λ 1 ), and radial diffusivity (λ 23 ) between the two groups. A higher MD (P < 0.05) was observed in the sleepy group than the nonsleepy group in the whole-brain TBSS analysis in the WM. The increased MD (17.8% of the fiber tracts; P < 0.05) was caused primarily by an elevated λ 23 . Axial diffusivity (λ 1 ) exhibited no significant difference (P > 0.17). The alterations in FA or MD of individual fiber tracts occurred mainly in the internal/external capsule, corona radiata, corpus callosum, and sagittal stratum regions. The FA and MD values correlated with the PVT and ESS assessments from all patients (R ≥ 0.517, P < 0.05). Global and regional WM alterations, as revealed by DTI, can be a possible mechanism to explain why OSA patients with high levels of CPAP use can have differing responses to treatment. Compromised myelin sheath, indicated by increased radial diffusivity, can be involved in the underlying WM changes. Evidence level: 1 J. MAGN. RESON. IMAGING 2017;45:1371-1378. © 2016 International Society for Magnetic Resonance in Medicine.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uh, Jinsoo, E-mail: jinsoo.uh@stjude.org; Merchant, Thomas E.; Li, Yimei

    Purpose: To determine whether radiation-induced changes in white matter tracts are uniform across the brainstem. Methods and Materials: We analyzed serial diffusion tensor imaging data, acquired before radiation therapy and over 48 to 72 months of follow-up, from 42 pediatric patients (age 6-20 years) with medulloblastoma. FSL software (FMRIB, Oxford, UK) was used to calculate fractional anisotropy (FA) and axial, radial, and mean diffusivities. For a consistent identification of volumes of interest (VOIs), the parametric maps of each patient were transformed to a standard brain space (MNI152), on which we identified VOIs including corticospinal tract (CST), medial lemniscus (ML), transversemore » pontine fiber (TPF), and middle cerebellar peduncle (MCP) at the level of pons. Temporal changes of DTI parameters in VOIs were compared using a linear mixed effect model. Results: Radiation-induced white matter injury was marked by a decline in FA after treatment. The decline was often accompanied by decreased axial diffusivity, increased radial diffusivity, or both. This implied axonal damage and demyelination. We observed that the magnitude of the changes was not always uniform across substructures of the brainstem. Specifically, the changes in DTI parameters for TPF were more pronounced than in other regions (P<.001 for FA) despite similarities in the distribution of dose. We did not find a significant difference among CST, ML, and MCP in these patients (P>.093 for all parameters). Conclusions: Changes in the structural integrity of white matter tracts, assessed by DTI, were not uniform across the brainstem after radiation therapy. These results support a role for tract-based assessment in radiation treatment planning and determination of brainstem tolerance.« less

  11. Brain white matter structure and COMT gene are linked to second-language learning in adults

    PubMed Central

    Mamiya, Ping C.; Richards, Todd L.; Coe, Bradley P.; Eichler, Evan E.; Kuhl, Patricia K.

    2016-01-01

    Adult human brains retain the capacity to undergo tissue reorganization during second-language learning. Brain-imaging studies show a relationship between neuroanatomical properties and learning for adults exposed to a second language. However, the role of genetic factors in this relationship has not been investigated. The goal of the current study was twofold: (i) to characterize the relationship between brain white matter fiber-tract properties and second-language immersion using diffusion tensor imaging, and (ii) to determine whether polymorphisms in the catechol-O-methyltransferase (COMT) gene affect the relationship. We recruited incoming Chinese students enrolled in the University of Washington and scanned their brains one time. We measured the diffusion properties of the white matter fiber tracts and correlated them with the number of days each student had been in the immersion program at the time of the brain scan. We found that higher numbers of days in the English immersion program correlated with higher fractional anisotropy and lower radial diffusivity in the right superior longitudinal fasciculus. We show that fractional anisotropy declined once the subjects finished the immersion program. The relationship between brain white matter fiber-tract properties and immersion varied in subjects with different COMT genotypes. Subjects with the Methionine (Met)/Valine (Val) and Val/Val genotypes showed higher fractional anisotropy and lower radial diffusivity during immersion, which reversed immediately after immersion ended, whereas those with the Met/Met genotype did not show these relationships. Statistical modeling revealed that subjects’ grades in the language immersion program were best predicted by fractional anisotropy and COMT genotype. PMID:27298360

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazra, Gopal; Karak, Bidya Binay; Choudhuri, Arnab Rai, E-mail: ghazra@physics.iisc.ernet.in

    The solar activity cycle is successfully modeled by the flux transport dynamo, in which the meridional circulation of the Sun plays an important role. Most of the kinematic dynamo simulations assume a one-cell structure of the meridional circulation within the convection zone, with the equatorward return flow at its bottom. In view of the recent claims that the return flow occurs at a much shallower depth, we explore whether a meridional circulation with such a shallow return flow can still retain the attractive features of the flux transport dynamo (such as a proper butterfly diagram, the proper phase relation betweenmore » the toroidal and poloidal fields). We consider additional cells of the meridional circulation below the shallow return flow—both the case of multiple cells radially stacked above one another and the case of more complicated cell patterns. As long as there is an equatorward flow in low latitudes at the bottom of the convection zone, we find that the solar behavior is approximately reproduced. However, if there is either no flow or a poleward flow at the bottom of the convection zone, then we cannot reproduce solar behavior. On making the turbulent diffusivity low, we still find periodic behavior, although the period of the cycle becomes unrealistically large. In addition, with a low diffusivity, we do not get the observed correlation between the polar field at the sunspot minimum and the strength of the next cycle, which is reproduced when diffusivity is high. On introducing radially downward pumping, we get a more reasonable period and more solar-like behavior even with low diffusivity.« less

  13. Brain white matter structure and COMT gene are linked to second-language learning in adults.

    PubMed

    Mamiya, Ping C; Richards, Todd L; Coe, Bradley P; Eichler, Evan E; Kuhl, Patricia K

    2016-06-28

    Adult human brains retain the capacity to undergo tissue reorganization during second-language learning. Brain-imaging studies show a relationship between neuroanatomical properties and learning for adults exposed to a second language. However, the role of genetic factors in this relationship has not been investigated. The goal of the current study was twofold: (i) to characterize the relationship between brain white matter fiber-tract properties and second-language immersion using diffusion tensor imaging, and (ii) to determine whether polymorphisms in the catechol-O-methyltransferase (COMT) gene affect the relationship. We recruited incoming Chinese students enrolled in the University of Washington and scanned their brains one time. We measured the diffusion properties of the white matter fiber tracts and correlated them with the number of days each student had been in the immersion program at the time of the brain scan. We found that higher numbers of days in the English immersion program correlated with higher fractional anisotropy and lower radial diffusivity in the right superior longitudinal fasciculus. We show that fractional anisotropy declined once the subjects finished the immersion program. The relationship between brain white matter fiber-tract properties and immersion varied in subjects with different COMT genotypes. Subjects with the Methionine (Met)/Valine (Val) and Val/Val genotypes showed higher fractional anisotropy and lower radial diffusivity during immersion, which reversed immediately after immersion ended, whereas those with the Met/Met genotype did not show these relationships. Statistical modeling revealed that subjects' grades in the language immersion program were best predicted by fractional anisotropy and COMT genotype.

  14. The formation of rings and gaps in magnetically coupled disc-wind systems: ambipolar diffusion and reconnection

    NASA Astrophysics Data System (ADS)

    Suriano, Scott S.; Li, Zhi-Yun; Krasnopolsky, Ruben; Shang, Hsien

    2018-06-01

    Radial substructures in circumstellar discs are now routinely observed by Atacama Large Millimeter/submillimeter Array. There is also growing evidence that disc winds drive accretion in such discs. We show through 2D (axisymmetric) simulations that rings and gaps develop naturally in magnetically coupled disc-wind systems on the scale of tens of au, where ambipolar diffusion (AD) is the dominant non-ideal magnetohydrodynamic effect. In simulations where the magnetic field and matter are moderately coupled, the disc remains relatively laminar with the radial electric current steepened by AD into a thin layer near the mid-plane. The toroidal magnetic field sharply reverses polarity in this layer, generating a large magnetic torque that drives fast accretion, which drags the poloidal field into a highly pinched radial configuration. The reconnection of this pinched field creates magnetic loops where the net poloidal magnetic flux (and thus the accretion rate) is reduced, yielding dense rings. Neighbouring regions with stronger poloidal magnetic fields accrete faster, forming gaps. In better magnetically coupled simulations, the so-called avalanche accretion streams develop continuously near the disc surface, rendering the disc-wind system more chaotic. Nevertheless, prominent rings and gaps are still produced, at least in part, by reconnection, which again enables the segregation of the poloidal field and the disc material similar to the more diffusive discs. However, the reconnection is now driven by the non-linear growth of magnetorotational instability channel flows. The formation of rings and gaps in rapidly accreting yet laminar discs has interesting implications for dust settling and trapping, grain growth, and planet formation.

  15. A Numerical Study of Forbush Decreases with a 3D Cosmic-Ray Modulation Model Based on an SDE Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Xi; Feng, Xueshang; Potgieter, Marius S.

    Based on the reduced diffusion mechanism for producing Forbush decreases (Fds) in the heliosphere, we constructed a three-dimensional (3D) diffusion barrier, and by incorporating it into a stochastic differential equation (SDE) based time-dependent, cosmic-ray transport model, a 3D numerical model for simulating Fds is built and applied to a period of relatively quiet solar activity. This SDE model generally corroborates previous Fd simulations concerning the effects of the solar magnetic polarity, the tilt angle of the heliospheric current sheet (HCS), and cosmic-ray particle energy. Because the modulation processes in this 3D model are multi-directional, the barrier’s geometrical features affect themore » intensity profiles of Fds differently. We find that both the latitudinal and longitudinal extent of the barrier have relatively fewer effects on these profiles than its radial extent and the level of decreased diffusion inside the disturbance. We find, with the 3D approach, that the HCS rotational motion causes the relative location from the observation point to the HCS to vary, so that a periodic pattern appears in the cosmic-ray intensity at the observing location. Correspondingly, the magnitude and recovery time of an Fd change, and the recovering intensity profile contains oscillation as well. Investigating the Fd magnitude variation with heliocentric radial distance, we find that the magnitude decreases overall and, additionally, that the Fd magnitude exhibits an oscillating pattern as the radial distance increases, which coincides well with the wavy profile of the HCS under quiet solar modulation conditions.« less

  16. Uncertainty in assessment of radiation-induced diffusion index changes in individual patients

    NASA Astrophysics Data System (ADS)

    Nazem-Zadeh, Mohammad-Reza; Chapman, Christopher H.; Lawrence, Theodore S.; Tsien, Christina I.; Cao, Yue

    2013-06-01

    The purpose of this study is to evaluate repeatability coefficients of diffusion tensor indices to assess whether longitudinal changes in diffusion indices were true changes beyond the uncertainty for individual patients undergoing radiation therapy (RT). Twenty-two patients who had low-grade or benign tumors and were treated by partial brain radiation therapy (PBRT) participated in an IRB-approved MRI protocol. The diffusion tensor images in the patients were acquired pre-RT, week 3 during RT, at the end of RT, and 1, 6, and 18 months after RT. As a measure of uncertainty, repeatability coefficients (RC) of diffusion indices in the segmented cingulum, corpus callosum, and fornix were estimated by using test-retest diffusion tensor datasets from the National Biomedical Imaging Archive (NBIA) database. The upper and lower limits of the 95% confidence interval of the estimated RC from the test and retest data were used to evaluate whether the longitudinal percentage changes in diffusion indices in the segmented structures in the individual patients were beyond the uncertainty and thus could be considered as true radiation-induced changes. Diffusion indices in different white matter structures showed different uncertainty ranges. The estimated RC for fractional anisotropy (FA) ranged from 5.3% to 9.6%, for mean diffusivity (MD) from 2.2% to 6.8%, for axial diffusivity (AD) from 2.4% to 5.5%, and for radial diffusivity (RD) from 2.9% to 9.7%. Overall, 23% of the patients treated by RT had FA changes, 44% had MD changes, 50% had AD changes, and 50% had RD changes beyond the uncertainty ranges. In the fornix, 85.7% and 100% of the patients showed changes beyond the uncertainty range at 6 and 18 months after RT, demonstrating that radiation has a pronounced late effect on the fornix compared to other segmented structures. It is critical to determine reliability of a change observed in an individual patient for clinical decision making. Assessments of the repeatability and confidence interval of diffusion tensor measurements in white matter structures allow us to determine the true longitudinal change in individual patients.

  17. Comparison of Diffusion MRI Acquisition Protocols for the In Vivo Characterization of the Mouse Spinal Cord: Variability Analysis and Application to an Amyotrophic Lateral Sclerosis Model

    PubMed Central

    Marcuzzo, Stefania; Bonanno, Silvia; Padelli, Francesco; Moreno-Manzano, Victoria; García-Verdugo, José Manuel; Bernasconi, Pia; Mantegazza, Renato; Bruzzone, Maria Grazia; Zucca, Ileana

    2016-01-01

    Diffusion-weighted Magnetic Resonance Imaging (dMRI) has relevant applications in the microstructural characterization of the spinal cord, especially in neurodegenerative diseases. Animal models have a pivotal role in the study of such diseases; however, in vivo spinal dMRI of small animals entails additional challenges that require a systematical investigation of acquisition parameters. The purpose of this study is to compare three acquisition protocols and identify the scanning parameters allowing a robust estimation of the main diffusion quantities and a good sensitivity to neurodegeneration in the mouse spinal cord. For all the protocols, the signal-to-noise and contrast-to noise ratios and the mean value and variability of Diffusion Tensor metrics were evaluated in healthy controls. For the estimation of fractional anisotropy less variability was provided by protocols with more diffusion directions, for the estimation of mean, axial and radial diffusivity by protocols with fewer diffusion directions and higher diffusion weighting. Intermediate features (12 directions, b = 1200 s/mm2) provided the overall minimum inter- and intra-subject variability in most cases. In order to test the diagnostic sensitivity of the protocols, 7 G93A-SOD1 mice (model of amyotrophic lateral sclerosis) at 10 and 17 weeks of age were scanned and the derived diffusion parameters compared with those estimated in age-matched healthy animals. The protocols with an intermediate or high number of diffusion directions provided the best differentiation between the two groups at week 17, whereas only few local significant differences were highlighted at week 10. According to our results, a dMRI protocol with an intermediate number of diffusion gradient directions and a relatively high diffusion weighting is optimal for spinal cord imaging. Further work is needed to confirm these results and for a finer tuning of acquisition parameters. Nevertheless, our findings could be important for the optimization of acquisition protocols for preclinical and clinical dMRI studies on the spinal cord. PMID:27560686

  18. Field-scale effective matrix diffusion coefficient for fractured rock: results from literature survey.

    PubMed

    Zhou, Quanlin; Liu, Hui-Hai; Molz, Fred J; Zhang, Yingqi; Bodvarsson, Gudmundur S

    2007-08-15

    Matrix diffusion is an important mechanism for solute transport in fractured rock. We recently conducted a literature survey on the effective matrix diffusion coefficient, D(m)(e), a key parameter for describing matrix diffusion processes at the field scale. Forty field tracer tests at 15 fractured geologic sites were surveyed and selected for the study, based on data availability and quality. Field-scale D(m)(e) values were calculated, either directly using data reported in the literature, or by reanalyzing the corresponding field tracer tests. The reanalysis was conducted for the selected tracer tests using analytic or semi-analytic solutions for tracer transport in linear, radial, or interwell flow fields. Surveyed data show that the scale factor of the effective matrix diffusion coefficient (defined as the ratio of D(m)(e) to the lab-scale matrix diffusion coefficient, D(m), of the same tracer) is generally larger than one, indicating that the effective matrix diffusion coefficient in the field is comparatively larger than the matrix diffusion coefficient at the rock-core scale. This larger value can be attributed to the many mass-transfer processes at different scales in naturally heterogeneous, fractured rock systems. Furthermore, we observed a moderate, on average trend toward systematic increase in the scale factor with observation scale. This trend suggests that the effective matrix diffusion coefficient is likely to be statistically scale-dependent. The scale-factor value ranges from 0.5 to 884 for observation scales from 5 to 2000 m. At a given scale, the scale factor varies by two orders of magnitude, reflecting the influence of differing degrees of fractured rock heterogeneity at different geologic sites. In addition, the surveyed data indicate that field-scale longitudinal dispersivity generally increases with observation scale, which is consistent with previous studies. The scale-dependent field-scale matrix diffusion coefficient (and dispersivity) may have significant implications for assessing long-term, large-scale radionuclide and contaminant transport events in fractured rock, both for nuclear waste disposal and contaminant remediation.

  19. AFWAL FY80 Technical Accomplishments Report.

    DTIC Science & Technology

    1981-12-01

    through cooperative effort of the Materials and Certain compositions in the titanium aluminide Propulsion Laboratories. In addition to an extensive system...Bonded Structures Technology Transitioned .................................................. 43 Superplastically Formed and Diffusion Bonded Titanium ...Technology ................................................................................................. 75 First RSR Radial Wafer Blade Engine Test

  20. Superresolution Imaging of Ribosomes and RNA Polymerase in Live Escherichia coli Cells

    PubMed Central

    Bakshi, Somenath; Siryaporn, Albert; Goulian, Mark; Weisshaar, James C.

    2012-01-01

    Summary Quantitative spatial distributions of ribosomes (S2-YFP) and RNA polymerase (β′-yGFP) in live E. coli are measured by superresolution fluorescence microscopy. In moderate growth conditions, Nucleoid-ribosome segregation is strong, and RNAP localizes to the nucleoid lobes. The mean copy numbers per cell are 4600 RNAPs and 55,000 ribosomes. Only 10–15% of the ribosomes lie within the densest part of the nucleoid lobes, and at most 4% of the RNAPs lie in the two ribosome-rich endcaps. The predominant observed diffusion coefficient of ribosomes is Dribo = 0.04 μm2/s, attributed to free mRNA being translated by one or more 70S ribosomes. We find no clear evidence of sub-diffusion, as would arise from tethering of ribosomes. The degree of DNA-ribosome segregation strongly suggests that in E. coli most translation occurs on free mRNA transcripts that have diffused into the ribosome-rich regions. Both RNAP and ribosome radial distributions extend to the cytoplasmic membrane, consistent with the transertion hypothesis. However, few if any RNAP copies lie near the membrane of the endcaps. This suggests that if transertion occurs, it exerts a direct radially expanding force on the nucleoid, but not a direct axially expanding force. PMID:22624875

  1. 5-ALA based photodynamic management of glioblastoma

    NASA Astrophysics Data System (ADS)

    Rühm, Adrian; Stepp, Herbert; Beyer, Wolfgang; Hennig, Georg; Pongratz, Thomas; Sroka, Ronald; Schnell, Oliver; Tonn, Jörg-Christian; Kreth, Friedrich-Wilhelm

    2014-03-01

    Objective: Improvement of the clinical outcome of glioblastoma (GBM) patients by employment of fluorescence and photosensitization on the basis of 5-aminolevulinic acid (5-ALA) induced protoporphyrin IX (PpIX). Methods: In this report the focus is laid on the use of tumor selective PpIX fluorescence for stereotactic biopsy sampling and intra-operative treatment monitoring. In addition, our current concept for treatment planning is presented. For stereotactic interstitial photodynamic therapy (iPDT), radial diffusers were implanted into the contrast enhancing tumor volume. Spectroscopic measurements of laser light transmission and fluorescence between adjacent fibers were performed prior, during and post PDT. Results: PpIX concentrations in primary glioblastoma tissue show high intra- and inter-patient variability, but are usually sufficient for an effective PDT. During individual treatment attempts with 5-ALA based GBM-iPDT, transmission and fluorescence measurements between radial diffusers gave the following results: 1. In some cases, transmission after PDT is considerably reduced compared to the value before PDT, which may be attributable to a depletion of oxygenated hemoglobin and/or diffuse bleeding. 2. PpIX fluorescence is efficiently photobleached during PDT in all cases. Conclusion: iPDT with assessment of PpIX fluorescence and photobleaching is a promising treatment option. Individualization of treatment parameters appears to bear a potential to further improve clinical outcomes.

  2. Radial mixing in turbomachines

    NASA Astrophysics Data System (ADS)

    Segaert, P.; Hirsch, Ch.; Deruyck, J.

    1991-03-01

    A method for computing the effects of radial mixing in a turbomachinery blade row has been developed. The method fits in the framework of a quasi-3D flow computation and hence is applied in a corrective fashion to through flow distributions. The method takes into account both secondary flows and turbulent diffusion as possible sources of mixing. Secondary flow velocities determine the magnitude of the convection terms in the energy redistribution equation while a turbulent diffusion coefficient determines the magnitude of the diffusion terms. Secondary flows are computed by solving a Poisson equation for a secondary streamfunction on a transversal S3-plane, whereby the right-hand side axial vorticity is composed of different contributions, each associated to a particular flow region: inviscid core flow, end-wall boundary layers, profile boundary layers and wakes. The turbulent mixing coefficient is estimated by a semi-empirical correlation. Secondary flow theory is applied to the VUB cascade testcase and comparisons are made between the computational results and the extensive experimental data available for this testcase. This comparison shows that the secondary flow computations yield reliable predictions of the secondary flow pattern, both qualitatively and quantitatively, taking into account the limitations of the model. However, the computations show that use of a uniform mixing coefficient has to be replaced by a more sophisticated approach.

  3. Charged particle fluxes in the inner magnetosphere in the region of the South Atlantic Magnetic Anomaly and the effect of intense pitch-angle and radial diffusion of plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shutle, N.M.; Izhovkina, N.I.

    1986-05-01

    Greatly fluctuating energy spectra for the electron and ion components of the plasma for the range of particle energies E = 100 eV-20 keV were measured on the Kosmos-900 satellite in the region of the South Atlantic Magnetic Anomaly (SAMA) for h about 500 km, L less than or equal to 2. A mechanism is proposed in the work to explain this phenomenon: 1) the subsidence of the magnetic mirror points (for L less than or equal to 2) of particles temporarily trapped by the geomagnetic field into the ionosphere in the region of the SAMA leads to an enhancementmore » of the flux of precipitating particles; 2) the enhancement of the plasma flux into the loss cone may be the source of the growth of wave disturbances and enhancement of pitch-angle diffusion of particles by the waves (radial diffusion is then also enhanced because of the asymmetry of the L-shells). The work presents some estimates for the amplitude of the waves for the interaction of electrons and whistlers with consideration of the characteristic fluctuations of the energy spectrum.« less

  4. Confined active Brownian particles: theoretical description of propulsion-induced accumulation

    NASA Astrophysics Data System (ADS)

    Das, Shibananda; Gompper, Gerhard; Winkler, Roland G.

    2018-01-01

    The stationary-state distribution function of confined active Brownian particles (ABPs) is analyzed by computer simulations and analytical calculations. We consider a radial harmonic as well as an anharmonic confinement potential. In the simulations, the ABP is propelled with a prescribed velocity along a body-fixed direction, which is changing in a diffusive manner. For the analytical approach, the Cartesian components of the propulsion velocity are assumed to change independently; active Ornstein-Uhlenbeck particle (AOUP). This results in very different velocity distribution functions. The analytical solution of the Fokker-Planck equation for an AOUP in a harmonic potential is presented and a conditional distribution function is provided for the radial particle distribution at a given magnitude of the propulsion velocity. This conditional probability distribution facilitates the description of the coupling of the spatial coordinate and propulsion, which yields activity-induced accumulation of particles. For the anharmonic potential, a probability distribution function is derived within the unified colored noise approximation. The comparison of the simulation results with theoretical predictions yields good agreement for large rotational diffusion coefficients, e.g. due to tumbling, even for large propulsion velocities (Péclet numbers). However, we find significant deviations already for moderate Péclet number, when the rotational diffusion coefficient is on the order of the thermal one.

  5. Confined trapped alpha behaviour in TFTR deuterium-tritium plasmas

    NASA Astrophysics Data System (ADS)

    Medley, S. S.; Budny, R. V.; Duong, H. H.; Fisher, R. K.; Petrov, M. P.; Gorelenkov, N. N.; Redi, M. H.; Roquemore, A. L.; White, R. B.

    1998-09-01

    Confined trapped alpha energy spectra and differential radial density profiles in TFTR D-T plasmas were obtained with the pellet charge exchange (PCX) diagnostic, which measures high energy (Eα = 0.5-3.5 MeV) trapped alphas (v||/v = -0.048) at a single time slice (Δt approx 1 ms) with a spatial resolution of Δr approx 5 cm. Tritons produced in D-D plasmas and RF driven ion tails (H, 3He or T) were also observed and energetic tritium ion tail measurements are discussed. PCX alpha and triton energy spectra extending up to their birth energies were measured in the core of MHD quiescent discharges where the expected classical slowing down and pitch angle scattering effects are not complicated by stochastic ripple diffusion and sawtooth activity. Both the shape of the measured alpha and triton energy distributions and their density ratios are in good agreement with TRANSP predictions, indicating that the PCX measurements are consistent with classical thermalization of the fusion generated alphas and tritons. From calculations, these results set an upper limit on possible anomalous radial diffusion for trapped alphas of Dα <= 0.01 m2·s-1. Outside the core, where the trapped alphas are influenced by stochastic ripple diffusion effects, the PCX measurements are consistent with the functional dependence of the Goldston-White-Boozer stochastic ripple threshold on the alpha energy and the q profile. In the presence of strong sawtooth activity, the PCX diagnostic observes significant redistribution of the alpha signal radial profile wherein alphas are depleted in the core and redistributed to well outside the q = 1 radius, but apparently not beyond the energy dependent stochastic ripple loss boundary. The helical electric field produced during the sawtooth crash plays an essential role in modelling the sawtooth redistribution data. In sawtooth free discharge scenarios with reversed shear operation, the PCX diagnostic also observes radial profiles of the alpha signal that are significantly broader than those for supershots. ORBIT modelling of reversed shear and monotonic shear discharges is in agreement with the q dependent alpha profiles observed. Redistribution of trapped alpha particles in the presence of core localized toroidal Alfvén eigenmode (TAE) activity was observed and modelling of the PCX measurements based on a synergism involving the α-TAE resonance and the effect of stochastic ripple diffusion is in progress.

  6. 1H-MR spectroscopy and diffusion tensor imaging of normal-appearing temporal white matter in patients with nasopharyngeal carcinoma after irradiation: initial experience.

    PubMed

    Xiong, Wei Feng; Qiu, Shi Jun; Wang, Hong Zhuo; Lv, Xiao Fei

    2013-01-01

    To detect radiation-induced changes of temporal lobe normal-appearing white mater (NAWM) following radiation therapy (RT) for nasopharyngeal carcinoma (NPC). Seventy-five H(1)-MR spectroscopy and diffusion-tensor imaging (DTI) examinations were performed in 55 patients before and after receiving fractionated radiation therapy (total dose; 66-75GY). We divided the dataset into six groups, a pre-RT control group and five other groups based on time after completion of RT. N-acetylaspartic acid (NAA)/choline (Cho), NAA/creatine (Cr), Cho/Cr, mean diffusibility (MD), functional anisotropy (FA), radial diffusibility (λ(⊥)), and axial diffusibility (λ(||)) were calculated. NAA/Cho and NAA/Cr decreased and λ(⊥) increased significantly within 1 year after RT compared with pre-RT. After 1 year, NAA/Cho, NAA/Cr, and λ(⊥) were not significantly different from pre-RT. In all post-RT groups, FA decreased significantly. λ(||) decreased within 9 months after RT compared with pre-RT, but was not significantly different from pre-RT more than 9 months after RT. DTI and H(1)-MR spectroscopy can be used to detect early radiation-induced changes of temporal lobe NAWM following radiation therapy for NPC. Metabolic alterations and water diffusion characteristics of temporal lobe NAWM in patients with NPC after RT were dynamic and transient. Copyright © 2012 Wiley Periodicals, Inc.

  7. An extended source for CN jets in Comet P/Halley

    NASA Technical Reports Server (NTRS)

    Klavetter, James Jay; A'Hearn, Michael F.

    1994-01-01

    We examined radial intensity profiles of CN jets in comparison with the diffuse, isotropic component of the CN coma of Comet P/Halley. All images were bias-subtracted, flat-fielded, and continuum-subtracted. We calculated the diffuse profiles by finding the azimuthal mean of the coma least contaminated by jets yielding profiles similar to those of vectorial and Haser models of simple photodissociation. We found the jet profiles by calculating a mean around a Gaussian-fitted center in r-theta space. There is an unmistakable difference between the profiles of the CN jets and the profiles of the diffuse CN. Spatial derivatives of these profiles, corrected for geometrical expansion, show that the diffuse component is consistent with a simple photodissociation process, but the jet component is not. The peak production of the jet profile occurs 6000 km from the nucleus at a heliocentric distance of 1.4 AU. Modeling of both components of the coma indicate results that are consistent with the diffuse CN photochemically produced, but the CN jets need an additional extended source. We found that about one-half of the CN in the coma of Comet P/Halley originated from the jets, the rest from the diffuse component. These features, along with the width of the jet being approximately constant, are consistent with a CHON grain origin for the jets.

  8. Cortical fibers orientation mapping using in-vivo whole brain 7 T diffusion MRI.

    PubMed

    Gulban, Omer F; De Martino, Federico; Vu, An T; Yacoub, Essa; Uğurbil, Kamil; Lenglet, Christophe

    2018-05-10

    Diffusion MRI of the cortical gray matter is challenging because the micro-environment probed by water molecules is much more complex than within the white matter. High spatial and angular resolutions are therefore necessary to uncover anisotropic diffusion patterns and laminar structures, which provide complementary (e.g. to anatomical and functional MRI) microstructural information about the cortex architectonic. Several ex-vivo and in-vivo MRI studies have recently addressed this question, however predominantly with an emphasis on specific cortical areas. There is currently no whole brain in-vivo data leveraging multi-shell diffusion MRI acquisition at high spatial resolution, and depth dependent analysis, to characterize the complex organization of cortical fibers. Here, we present unique in-vivo human 7T diffusion MRI data, and a dedicated cortical depth dependent analysis pipeline. We leverage the high spatial (1.05 mm isotropic) and angular (198 diffusion gradient directions) resolution of this whole brain dataset to improve cortical fiber orientations mapping, and study neurites (axons and/or dendrites) trajectories across cortical depths. Tangential fibers in superficial cortical depths and crossing fiber configurations in deep cortical depths are identified. Fibers gradually inserting into the gyral walls are visualized, which contributes to mitigating the gyral bias effect. Quantitative radiality maps and histograms in individual subjects and cortex-based aligned datasets further support our results. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Stem Hydraulic Conductivity depends on the Pressure at Which It Is Measured and How This Dependence Can Be Used to Assess the Tempo of Bubble Pressurization in Recently Cavitated Vessels1[OPEN

    PubMed Central

    Liu, Jinyu; Tyree, Melvin T.

    2015-01-01

    Cavitation of water in xylem vessels followed by embolism formation has been authenticated for more than 40 years. Embolism formation involves the gradual buildup of bubble pressure (air) to atmospheric pressure as demanded by Henry’s law of equilibrium between gaseous and liquid phases. However, the tempo of pressure increase has not been quantified. In this report, we show that the rate of pressurization of embolized vessels is controlled by both fast and slow kinetics, where both tempos are controlled by diffusion but over different spatial scales. The fast tempo involves a localized diffusion from endogenous sources: over a distance of about 0.05 mm from water-filled wood to the nearest embolized vessels; this process, in theory, should take <2 min. The slow tempo involves diffusion of air from exogenous sources (outside the stem). The latter diffusion process is slower because of the increased distance of diffusion of up to 4 mm. Radial diffusion models and experimental measurements both confirm that the average time constant is >17 h, with complete equilibrium requiring 1 to 2 d. The implications of these timescales for the standard methods of measuring percentage loss of hydraulic conductivity are discussed in theory and deserve more research in future. PMID:26468516

  10. Stem Hydraulic Conductivity depends on the Pressure at Which It Is Measured and How This Dependence Can Be Used to Assess the Tempo of Bubble Pressurization in Recently Cavitated Vessels.

    PubMed

    Wang, Yujie; Liu, Jinyu; Tyree, Melvin T

    2015-12-01

    Cavitation of water in xylem vessels followed by embolism formation has been authenticated for more than 40 years. Embolism formation involves the gradual buildup of bubble pressure (air) to atmospheric pressure as demanded by Henry's law of equilibrium between gaseous and liquid phases. However, the tempo of pressure increase has not been quantified. In this report, we show that the rate of pressurization of embolized vessels is controlled by both fast and slow kinetics, where both tempos are controlled by diffusion but over different spatial scales. The fast tempo involves a localized diffusion from endogenous sources: over a distance of about 0.05 mm from water-filled wood to the nearest embolized vessels; this process, in theory, should take <2 min. The slow tempo involves diffusion of air from exogenous sources (outside the stem). The latter diffusion process is slower because of the increased distance of diffusion of up to 4 mm. Radial diffusion models and experimental measurements both confirm that the average time constant is >17 h, with complete equilibrium requiring 1 to 2 d. The implications of these timescales for the standard methods of measuring percentage loss of hydraulic conductivity are discussed in theory and deserve more research in future. © 2015 American Society of Plant Biologists. All Rights Reserved.

  11. Longitudinal Study of White Matter Development and Outcomes in Children Born Very Preterm.

    PubMed

    Young, Julia M; Morgan, Benjamin R; Whyte, Hilary E A; Lee, Wayne; Smith, Mary Lou; Raybaud, Charles; Shroff, Manohar M; Sled, John G; Taylor, Margot J

    2017-08-01

    Identifying trajectories of early white matter development is important for understanding atypical brain development and impaired functional outcomes in children born very preterm (<32 weeks gestational age [GA]). In this study, 161 diffusion images were acquired in children born very preterm (median GA: 29 weeks) shortly following birth (75), term-equivalent (39), 2 years (18), and 4 years of age (29). Diffusion tensors were computed to obtain measures of fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD), which were aligned and averaged. A paediatric atlas was applied to obtain diffusion metrics within 12 white matter tracts. Developmental trajectories across time points demonstrated age-related changes which plateaued between term-equivalent and 2 years of age in the majority of posterior tracts and between 2 and 4 years of age in anterior tracts. Between preterm and term-equivalent scans, FA rates of change were slower in anterior than posterior tracts. Partial least squares analyses revealed associations between slower MD and RD rates of change within the external and internal capsule with lower intelligence quotients and language scores at 4 years of age. These results uniquely demonstrate early white matter development and its linkage to cognitive functions. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. White matter changes in preclinical Alzheimer's disease: a magnetic resonance imaging-diffusion tensor imaging study on cognitively normal older people with positive amyloid β protein 42 levels.

    PubMed

    Molinuevo, José Luis; Ripolles, Pablo; Simó, Marta; Lladó, Albert; Olives, Jaume; Balasa, Mircea; Antonell, Anna; Rodriguez-Fornells, Antoni; Rami, Lorena

    2014-12-01

    The aim of this study was to use diffusion tensor imaging measures to determine the existence of white matter microstructural differences in the preclinical phases of Alzheimer's disease, assessing cognitively normal older individuals with positive amyloid β protein (Aβ42) levels (CN_Aβ42+) on the basis of normal cognition and cerebrospinal fluid Aβ42 levels below 500 pg/mL. Nineteen CN_Aβ42+ and 19 subjects with Aβ42 levels above 500 pg/mL (CN_Aβ42-) were included. We encountered increases in axial diffusivity (AxD) in CN_Aβ42+ relative to CN_Aβ42- in the corpus callosum, corona radiata, internal capsule, and superior longitudinal fasciculus bilaterally, and also in the left fornix, left uncinate fasciculus, and left inferior fronto-occipital fasciculus. However, no differences were found in other diffusion tensor imaging indexes. Cognitive reserve scores were positively associated with AxD exclusively in the CN_Aβ42+ group. The finding of AxD alteration together with preserved fractional anisotropy, mean diffusivity, and radial diffusivity indexes in the CN_Aβ42+ group may indicate that, subtle axonal changes may be happening in the preclinical phases of Alzheimer's disease, whereas white matter integrity is still widely preserved. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Modeling the Impenetrable Barrier to Inward Transport of Ultra-relativistic Radiation Belt Electrons

    NASA Astrophysics Data System (ADS)

    Tu, W.; Cunningham, G.; Chen, Y.; Baker, D. N.; Henderson, M. G.; Reeves, G. D.

    2014-12-01

    It has long been considered that the inner edge of the Earth's outer radiation belt is closely correlated with the minimum plasmapause location. However, recent discoveries by Baker et al. [1] show that it is not the case for ultra-relativistic electrons (2-10 MeV) in the radiation belt. Based on almost two years of Van Allen Probes/REPT data, they find that the inner edge of highly relativistic electrons is rarely collocated with the plasmapause; and more interestingly, there is a clear, persistent, and nearly impenetrable barrier to inward transport of high energy electrons, observed to locate at L~2.8. The presence of such an impenetrable barrier at this very specific location poses a significant puzzle. Using our DREAM3D diffusion model, which includes radial, pitch angle, and momentum diffusion, we are able to simulate the observed impenetrable barrier of ultra-relativistic electrons. The simulation demonstrates that during strong geomagnetic storms the plasmapause can be compressed to very low L region (sometimes as low as L~3), then strong chorus waves just outside the plasmapause can locally accelerate electrons up to multiple-MeV; when storm recovers, plasmapause moves back to large L, while the highly-relativistic electrons generated at low L continue to diffuse inward and slow decay by pitch angle diffusion from plasmaspheric hiss. The delicate balance between slow inward radial diffusion and weak pitch angle scattering creates a fixed inner boundary or barrier for ultra-relativistic electrons. The barrier is found to locate at a fixed L location, independent of the initial penetration depth of electrons that is correlated with the plasmapause location. Our simulation results quantitatively reproduce the evolution of the flux versus L profile, the L location of the barrier, and the decay rate of highly energetic electrons right outside the barrier. 1Baker, D. N., et al. (2014), Nearly Impenetrable Barrier to Inward Ultra-relativistic Magnetospheric Electron Transport, submitted to Nature.

  14. Fast Ion and Thermal Plasma Transport in Turbulent Waves in the Large Plasma Device (LAPD)

    NASA Astrophysics Data System (ADS)

    Zhou, Shu

    2011-10-01

    The transport of fast ions and thermal plasmas in electrostatic microturbulence is studied. Strong density and potential fluctuations (δn / n ~ δϕ / kTe ~ 0 . 5 , f ~5-50 kHz) are observed in the LAPD in density gradient regions produced by obstacles with slab or cylindrical geometry. Wave characteristics and the associated plasma transport are modified by driving sheared E ×B drift through biasing the obstacle, and by modification of the axial magnetic fields (Bz) and the plasma species. Cross-field plasma transport is suppressed with small bias and large Bz, and is enhanced with large bias and small Bz. Suppressed cross-field thermal transport coincides with a 180° phase shift between the density and potential fluctuations in the radial direction, while the enhanced thermal transport is associated with modes having low mode number (m = 1) and long radial correlation length. Large gyroradius lithium ions (ρfast /ρs ~ 10) orbit through the turbulent region. Scans with a collimated analyzer and with Langmuir probes give detailed profiles of the fast ion spatial-temporal distribution and of the fluctuating fields. Fast-ion transport decreases rapidly with increasing fast-ion gyroradius. Background waves with different scale lengths also alter the fast ion transport: Beam diffusion is smaller in waves with smaller structures (higher mode number); also, coherent waves with long correlation length cause less beam diffusion than turbulent waves. Experimental results agree well with gyro-averaging theory. When the fast ion interacts with the wave for most of a wave period, a transition from super-diffusive to sub-diffusive transport is observed, as predicted by diffusion theory. A Monte Carlo trajectory-following code simulates the interaction of the fast ions with the measured turbulent fields. Good agreement between observation and modeling is observed. Work funded by DOE and NSF and performed at the Basic Plasma Science Facility.

  15. Plasma transport in the Io torus - The importance of microscopic diffusion

    NASA Technical Reports Server (NTRS)

    Mei, YI; Thorne, Richard M.

    1991-01-01

    This paper considers the question of whether the distribution of mass in the Io plasma torus is consistent with the concept of interchange eddy transport. Specifically, the flux tube content exhibits a gradual decrease with increasing radial distance from the source near Io without any evidence for substantial density irregularity associated with the plasma source or loss. Using a simple one-dimensional numerical model to simulate macroscopic interchange eddy transport, it is demonstrated that this smooth equilibrium distribution of mass can occur but only with the inclusion of a minimal level of small scale microscopic mixing at a rate approaching Bohm diffusion. Otherwise, the system exhibits a chaotic appearance which never approaches an equilibrium distribution. Various physical mechanisms for the microscopic diffusion process which is required to provide a sufficiently rapid mixing of material between the macroscopic eddies are discussed.

  16. A framework for incorporating DTI Atlas Builder registration into Tract-Based Spatial Statistics and a simulated comparison to standard TBSS.

    PubMed

    Leming, Matthew; Steiner, Rachel; Styner, Martin

    2016-02-27

    Tract-based spatial statistics (TBSS) 6 is a software pipeline widely employed in comparative analysis of the white matter integrity from diffusion tensor imaging (DTI) datasets. In this study, we seek to evaluate the relationship between different methods of atlas registration for use with TBSS and different measurements of DTI (fractional anisotropy, FA, axial diffusivity, AD, radial diffusivity, RD, and medial diffusivity, MD). To do so, we have developed a novel tool that builds on existing diffusion atlas building software, integrating it into an adapted version of TBSS called DAB-TBSS (DTI Atlas Builder-Tract-Based Spatial Statistics) by using the advanced registration offered in DTI Atlas Builder 7 . To compare the effectiveness of these two versions of TBSS, we also propose a framework for simulating population differences for diffusion tensor imaging data, providing a more substantive means of empirically comparing DTI group analysis programs such as TBSS. In this study, we used 33 diffusion tensor imaging datasets and simulated group-wise changes in this data by increasing, in three different simulations, the principal eigenvalue (directly altering AD), the second and third eigenvalues (RD), and all three eigenvalues (MD) in the genu, the right uncinate fasciculus, and the left IFO. Additionally, we assessed the benefits of comparing the tensors directly using a functional analysis of diffusion tensor tract statistics (FADTTS 10 ). Our results indicate comparable levels of FA-based detection between DAB-TBSS and TBSS, with standard TBSS registration reporting a higher rate of false positives in other measurements of DTI. Within the simulated changes investigated here, this study suggests that the use of DTI Atlas Builder's registration enhances TBSS group-based studies.

  17. High Aspect Ratio Semiconductor Heterojunction Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Redwing, Joan; Mallouk, Tom; Mayer, Theresa

    2013-05-17

    The project focused on the development of high aspect ratio silicon heterojunction (HARSH) solar cells. The solar cells developed in this study consisted of high density vertical arrays of radial junction silicon microwires/pillars formed on Si substrates. Prior studies have demonstrated that vertical Si wire/pillar arrays enable reduced reflectivity and improved light trapping characteristics compared to planar solar cells. In addition, the radial junction structure offers the possibility of increased carrier collection in solar cells fabricated using material with short carrier diffusion lengths. However, the high junction and surface area of radial junction Si wire/pillar array devices can be problematicmore » and lead to increased diode leakage and enhanced surface recombination. This study investigated the use of amorphous hydrogenated Si in the form of a heterojunction-intrinsic-thin layer (HIT) structure as a junction formation method for these devices. The HIT layer structure has widely been employed to reduce surface recombination in planar crystalline Si solar cells. Consequently, it was anticipated that it would also provide significant benefits to the performance of radial junction Si wire/pillar array devices. The overall goals of the project were to demonstrate a HARSH cell with a HIT-type structure in the radial junction Si wire/pillar array configuration and to develop potentially low cost pathways to fabricate these devices. Our studies demonstrated that the HIT structure lead to significant improvements in the open circuit voltage (V oc>0.5) of radial junction Si pillar array devices compared to devices fabricated using junctions formed by thermal diffusion or low pressure chemical vapor deposition (LPCVD). In addition, our work experimentally demonstrated that the radial junction structure lead to improvements in efficiency compared to comparable planar devices for devices fabricated using heavily doped Si that had reduced carrier diffusion lengths. Furthermore, we made significant advances in employing the bottom-up vapor-liquid-solid (VLS) growth technique for the fabrication of the Si wire arrays. Our work elucidated the effects of growth conditions and substrate pattern geometry on the growth of large area Si microwire arrays grown with SiCl4. In addition, we also developed a process to grow p-type Si nanowire arrays using aluminum as the catalyst metal instead of gold. Finally, our work demonstrated the feasibility of growing vertical arrays of Si wires on non-crystalline glass substrates using polycrystalline Si template layers. The accomplishments demonstrated in this project will pave the way for future advances in radial junction wire array solar cells.« less

  18. Compressible flow in a diffusing S-duct with flow separation

    NASA Technical Reports Server (NTRS)

    Vakili, A. D.; Wu, J. M.; Bhat, M. K.; Liver, P.

    1987-01-01

    Local flow velocity vectors, as well as static and total pressures along ten radial traverses, were obtained at six stations for secondary flows in a diffusing 30-30-deg S-duct with circular cross section. The strong secondary flow measured in the first bend continued into the second with new vorticity produced in the opposite direction. Contour plots representing the transverse velocity field, as well as total and static pressure contours, have been obtained. As a result of the secondary flow and subsequent separation, substantial total pressure distortion is noted to occur at the duct exit.

  19. Interstellar matter in Shapley-Ames elliptical galaxies. IV. A diffusely distributed component of dust and its effect on colour gradients.

    NASA Astrophysics Data System (ADS)

    Goudfrooij, P.; de Jong, T.

    1995-06-01

    We have investigated IRAS far-infrared observations of a complete, blue magnitude limited sample of 56 elliptical galaxies selected from the Revised Shapley-Ames Catalog. Data from a homogeneous optical CCD imaging survey as well as published X-ray data from the EINSTEIN satellite are used to constrain the infrared data. Dust masses as determined from the IRAS flux densities are found to be roughly an order of magnitude higher than those determined from optical extinction values of dust lanes and patches, in strong contrast with the situation in spiral galaxies. This "mass discrepancy" is found to be independent of the (apparent) inclination of the dust lanes. To resolve this dilemma we postulate that the majority of the dust in elliptical galaxies exists as a diffusely distributed component of dust which is undetectable at optical wavelengths. Using observed radial optical surface brightness profiles, we have systematically investigated possible heating mechanisms for the dust within elliptical galaxies. We find that heating of the dust in elliptical galaxies by the interstellar radiation field is generally sufficient to account for the dust temperatures as indicated by the IRAS flux densities. Collisions of dust grains with hot electrons in elliptical galaxies which are embedded in a hot, X-ray-emitting gas is found to be another effective heating mechanism for the dust. Employing model calculations which involve the transfer of stellar radiation in a spherical distribution of stars mixed with a diffuse distribution of dust, we show that the observed infrared luminosities imply total dust optical depths of the postulated diffusely distributed dust component in the range 0.1<~τ_V_<~0.7 and radial colour gradients 0.03<~{DELTA}(B-I)/{DELTA}log r<~0.25. The observed IRAS flux densities can be reproduced within the 1σ uncertainties in virtually all ellipticals in this sample by this newly postulated dust component, diffusely distributed over the inner few kpc of the galaxies, and heated by optical photons and/or hot electrons. The radial colour gradients implied by the diffuse dust component are found to be smaller than or equal to the observed colour gradients. Thus, we argue that the effect of dust extinction should be taken seriously in the interpretation of colour gradients in elliptical galaxies. We show that the amount of dust observed in luminous elliptical galaxies is generally higher than that expected from production by mass loss of stars within elliptical galaxies and destruction by sputtering in hot gas. This suggests that most of the dust in elliptical galaxies generally has an external origin.

  20. Upper limb motor rehabilitation impacts white matter microstructure in multiple sclerosis.

    PubMed

    Bonzano, Laura; Tacchino, Andrea; Brichetto, Giampaolo; Roccatagliata, Luca; Dessypris, Adriano; Feraco, Paola; Lopes De Carvalho, Maria L; Battaglia, Mario A; Mancardi, Giovanni L; Bove, Marco

    2014-04-15

    Upper limb impairments can occur in patients with multiple sclerosis, affecting daily living activities; however there is at present no definite agreement on the best rehabilitation treatment strategy to pursue. Moreover, motor training has been shown to induce changes in white matter architecture in healthy subjects. This study aimed at evaluating the motor behavioral and white matter microstructural changes following a 2-month upper limb motor rehabilitation treatment based on task-oriented exercises in patients with multiple sclerosis. Thirty patients (18 females and 12 males; age=43.3 ± 8.7 years) in a stable phase of the disease presenting with mild or moderate upper limb sensorimotor deficits were randomized into two groups of 15 patients each. Both groups underwent twenty 1-hour treatment sessions, three times a week. The "treatment group" received an active motor rehabilitation treatment, based on voluntary exercises including task-oriented exercises, while the "control group" underwent passive mobilization of the shoulder, elbow, wrist and fingers. Before and after the rehabilitation protocols, motor performance was evaluated in all patients with standard tests. Additionally, finger motor performance accuracy was assessed by an engineered glove. In the same sessions, every patient underwent diffusion tensor imaging to obtain parametric maps of fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity. The mean value of each parameter was separately calculated within regions of interest including the fiber bundles connecting brain areas involved in voluntary movement control: the corpus callosum, the corticospinal tracts and the superior longitudinal fasciculi. The two rehabilitation protocols induced similar effects on unimanual motor performance, but the bimanual coordination task revealed that the residual coordination abilities were maintained in the treated patients while they significantly worsened in the control group (p=0.002). Further, in the treatment group white matter integrity in the corpus callosum and corticospinal tracts was preserved while a microstructural integrity worsening was found in the control group (fractional anisotropy of the corpus callosum and corticospinal tracts: p=0.033 and p=0.022; radial diffusivity of the corpus callosum and corticospinal tracts: p=0.004 and p=0.008). Conversely, a significant increase of radial diffusivity was observed in the superior longitudinal fasciculi in both groups (p=0.02), indicating lack of treatment effects on this structure, showing damage progression likely due to a demyelination process. All these findings indicate the importance of administering, when possible, a rehabilitation treatment consisting of voluntary movements. We also demonstrated that the beneficial effects of a rehabilitation treatment are task-dependent and selective in their target; this becomes crucial towards the implementation of tailored rehabilitative approaches. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Disturbance severity and canopy position control the radial growth response of maple trees (Acer spp.) in forests of northwest Ohio impacted by emerald ash borer (Agrilus planipennis)

    Treesearch

    K.C. Costilow; Kathleen Knight; Charles Flower

    2017-01-01

    Key message. Radial growth of silver and red maples was investigated across three forests in northwest Ohio following the outbreak of the invasive emerald ash borer. The growth response of maples was driven by an advancement in canopy class and disturbance severity. Context. Forest disturbances resulting in species-specific diffuse mortality cause shifts in aboveground...

  2. Entire radial solutions of elliptic systems and inequalities of the mean curvature type

    NASA Astrophysics Data System (ADS)

    Filippucci, Roberta

    2007-10-01

    In this paper we study first nonexistence of radial entire solutions of elliptic systems of the mean curvature type with a singular or degenerate diffusion depending on the solution u. In particular we extend a previous result given in [R. Filippucci, Nonexistence of radial entire solutions of elliptic systems, J. Differential Equations 188 (2003) 353-389]. Moreover, in the scalar case we obtain nonexistence of all entire solutions, radial or not, of differential inequalities involving again operators of the mean curvature type and a diffusion term. We prove that in the scalar case, nonexistence of entire solutions is due to the explosion of the derivative of every nonglobal radial solution in the right extremum of the maximal interval of existence, while in that point the solution is bounded. This behavior is qualitatively different with respect to what happens for the m-Laplacian operator, studied in [R. Filippucci, Nonexistence of radial entire solutions of elliptic systems, J. Differential Equations 188 (2003) 353-389], where nonexistence of entire solutions is due, even in the vectorial case, to the explosion in norm of the solution at a finite point. Our nonexistence theorems for inequalities extend previous results given by Naito and Usami in [YE Naito, H. Usami, Entire solutions of the inequality div(A(=u)=u)[greater-or-equal, slanted]f(u), Math. Z. 225 (1997) 167-175] and Ghergu and Radulescu in [M. Ghergu, V. Radulescu, Existence and nonexistence of entire solutions to the logistic differential equation, Abstr. Appl. Anal. 17 (2003) 995-1003].

  3. Anatomical explanations for acute depressions in radial pattern of axial sap flow in two diffuse-porous mangrove species: implications for water use.

    PubMed

    Zhao, Hewei; Yang, Shengchang; Guo, Xudong; Peng, Congjiao; Gu, Xiaoxuan; Deng, Chuanyuan; Chen, Luzhen

    2018-02-01

    Mangrove species have developed uniquely efficient water-use strategies in order to survive in highly saline and anaerobic environments. Herein, we estimated the stand water use of two diffuse-porous mangrove species of the same age, Sonneratia apetala Buch. Ham and Sonneratia caseolaris (L.) Engl., growing in a similar intertidal environment. Specifically, to investigate the radial patterns of axial sap flow density (Js) and understand the anatomical traits associated with them, we measured axial sap flow density in situ together with micromorphological observations. A significant decrease of Js was observed for both species. This result was accompanied by the corresponding observations of wood structure and blockages in xylem sapwood, which appeared to influence and, hence, explained the acute radial reductions of axial sap flow in the stems of both species. However, higher radial resistance in sapwood of S. caseolaris caused a steeper decline of Js radially when compared with S. apetala, thus explaining the latter's more efficient use of water. Without first considering acute reductions in Js into the sapwood from the outer bark, a total of ~55% and 51% of water use would have been overestimated, corresponding to average discrepancies in stand water use of 5.6 mm day-1 for S. apetala trees and 2.5 mm day-1 for S. caseolaris trees. This suggests that measuring radial pattern of Js is a critical factor in determining whole-tree or stand water use. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Novel region of interest interrogation technique for diffusion tensor imaging analysis in the canine brain.

    PubMed

    Li, Jonathan Y; Middleton, Dana M; Chen, Steven; White, Leonard; Ellinwood, N Matthew; Dickson, Patricia; Vite, Charles; Bradbury, Allison; Provenzale, James M

    2017-08-01

    Purpose We describe a novel technique for measuring diffusion tensor imaging metrics in the canine brain. We hypothesized that a standard method for region of interest placement could be developed that is highly reproducible, with less than 10% difference in measurements between raters. Methods Two sets of canine brains (three seven-week-old full-brains and two 17-week-old single hemispheres) were scanned ex-vivo on a 7T small-animal magnetic resonance imaging system. Strict region of interest placement criteria were developed and then used by two raters to independently measure diffusion tensor imaging metrics within four different white-matter regions within each specimen. Average values of fractional anisotropy, radial diffusivity, and the three eigenvalues (λ1, λ2, and λ3) within each region in each specimen overall and within each individual image slice were compared between raters by calculating the percentage difference between raters for each metric. Results The mean percentage difference between raters for all diffusion tensor imaging metrics when pooled by each region and specimen was 1.44% (range: 0.01-5.17%). The mean percentage difference between raters for all diffusion tensor imaging metrics when compared by individual image slice was 2.23% (range: 0.75-4.58%) per hemisphere. Conclusion Our results indicate that the technique described is highly reproducible, even when applied to canine specimens of differing age, morphology, and image resolution. We propose this technique for future studies of diffusion tensor imaging analysis in canine brains and for cross-sectional and longitudinal studies of canine brain models of human central nervous system disease.

  5. Retrospective correction of bias in diffusion tensor imaging arising from coil combination mode.

    PubMed

    Sakaie, Ken; Lowe, Mark

    2017-04-01

    To quantify and retrospectively correct for systematic differences in diffusion tensor imaging (DTI) measurements due to differences in coil combination mode. Multi-channel coils are now standard among MRI systems. There are several options for combining signal from multiple coils during image reconstruction, including sum-of-squares (SOS) and adaptive combine (AC). This contribution examines the bias between SOS- and AC-derived measures of tissue microstructure and a strategy for limiting that bias. Five healthy subjects were scanned under an institutional review board-approved protocol. Each set of raw image data was reconstructed twice-once with SOS and once with AC. The diffusion tensor was calculated from SOS- and AC-derived data by two algorithms-standard log-linear least squares and an approach that accounts for the impact of coil combination on signal statistics. Systematic differences between SOS and AC in terms of tissue microstructure (axial diffusivity, radial diffusivity, mean diffusivity and fractional anisotropy) were evaluated on a voxel-by-voxel basis. SOS-based tissue microstructure values are systematically lower than AC-based measures throughout the brain in each subject when using the standard tensor calculation method. The difference between SOS and AC can be virtually eliminated by taking into account the signal statistics associated with coil combination. The impact of coil combination mode on diffusion tensor-based measures of tissue microstructure is statistically significant but can be corrected retrospectively. The ability to do so is expected to facilitate pooling of data among imaging protocols. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Assessment of passive muscle elongation using Diffusion Tensor MRI: Correlation between fiber length and diffusion coefficients.

    PubMed

    Mazzoli, Valentina; Oudeman, Jos; Nicolay, Klaas; Maas, Mario; Verdonschot, Nico; Sprengers, Andre M; Nederveen, Aart J; Froeling, Martijn; Strijkers, Gustav J

    2016-12-01

    In this study we investigated the changes in fiber length and diffusion parameters as a consequence of passive lengthening and stretching of the calf muscles. We hypothesized that changes in radial diffusivity (RD) are caused by changes in the muscle fiber cross sectional area (CSA) as a consequence of lengthening and shortening of the muscle. Diffusion Tensor MRI (DT-MRI) measurements were made twice in five healthy volunteers, with the foot in three different positions (30° plantarflexion, neutral position and 15° dorsiflexion). The muscles of the calf were manually segmented on co-registered high resolution anatomical scans, and maps of RD and axial diffusivity (AD) were reconstructed from the DT-MRI data. Fiber tractography was performed and mean fiber length was calculated for each muscle group. Significant negative correlations were found between the changes in RD and changes in fiber length in the dorsiflexed and plantarflexed positions, compared with the neutral foot position. Changes in AD did not correlate with changes in fiber length. Assuming a simple cylindrical model with constant volume for the muscle fiber, the changes in the muscle fiber CSA were calculated from the changes in fiber length. In line with our hypothesis, we observed a significant positive correlation of the CSA with the measured changes in RD. In conclusion, we showed that changes in diffusion coefficients induced by passive muscle stretching and lengthening can be explained by changes in muscle CSA, advancing the physiological interpretation of parameters derived from skeletal muscle DT-MRI. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Aerodynamically induced radial forces in a centrifugal gas compressor: Part 2 -- Computational investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flathers, M.B.; Bache, G.E.

    1999-10-01

    Radial loads and direction of a centrifugal gas compressor containing a high specific speed mixed flow impeller and a single tongue volute were determined both experimentally and computationally at both design and off-design conditions. The experimental methodology was developed in conjunction with a traditional ASME PTC-10 closed-loop test to determine radial load and direction. The experimental study is detailed in Part 1 of this paper (Moore and Flathers, 1998). The computational method employs a commercially available, fully three-dimensional viscous code to analyze the impeller and the volute interaction. An uncoupled scheme was initially used where the impeller and volute weremore » analyzed as separate models using a common vaneless diffuser geometry. The two calculations were then repeated until the boundary conditions at a chosen location in the common vaneless diffuser were nearly the same. Subsequently, a coupled scheme was used where the entire stage geometry was analyzed in one calculation, thus eliminating the need for manual iteration of the two independent calculations. In addition to radial load and direction information, this computational procedure also provided aerodynamic stage performance. The effect of impeller front face and rear face cavities was also quantified. The paper will discuss computational procedures, including grid generation and boundary conditions, as well as comparisons of the various computational schemes to experiment. The results of this study will show the limitations and benefits of Computational Fluid Dynamics (CFD) for determination of radial load, direction, and aerodynamic stage performance.« less

  8. MODELING AND ANALYSIS OF FISSION PRODUCT TRANSPORT IN THE AGR-3/4 EXPERIMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humrickhouse, Paul W.; Collin, Blaise P.; Hawkes, Grant L.

    In this work we describe the ongoing modeling and analysis efforts in support of the AGR-3/4 experiment. AGR-3/4 is intended to provide data to assess fission product retention and transport (e.g., diffusion coefficients) in fuel matrix and graphite materials. We describe a set of pre-test predictions that incorporate the results of detailed thermal and fission product release models into a coupled 1D radial diffusion model of the experiment, using diffusion coefficients reported in the literature for Ag, Cs, and Sr. We make some comparisons of the predicted Cs profiles to preliminary measured data for Cs and find these to bemore » reasonable, in most cases within an order of magnitude. Our ultimate objective is to refine the diffusion coefficients using AGR-3/4 data, so we identify an analytical method for doing so and demonstrate its efficacy via a series of numerical experiments using the model predictions. Finally, we discuss development of a post-irradiation examination plan informed by the modeling effort and simulate some of the heating tests that are tentatively planned.« less

  9. White matter integrity in Asperger syndrome: a preliminary diffusion tensor magnetic resonance imaging study in adults.

    PubMed

    Bloemen, Oswald J N; Deeley, Quinton; Sundram, Fred; Daly, Eileen M; Barker, Gareth J; Jones, Derek K; van Amelsvoort, Therese A M J; Schmitz, Nicole; Robertson, Dene; Murphy, Kieran C; Murphy, Declan G M

    2010-10-01

    Autistic Spectrum Disorder (ASD), including Asperger syndrome and autism, is a highly genetic neurodevelopmental disorder. There is a consensus that ASD has a biological basis, and it has been proposed that it is a "connectivity" disorder. Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) allows measurement of the microstructural integrity of white matter (a proxy measure of "connectivity"). However, nobody has investigated the microstructural integrity of whole brain white matter in people with Asperger syndrome. We measured the fractional anisotropy (FA), mean diffusivity (MD) and radial diffusivity (RD) of white matter, using DT-MRI, in 13 adults with Asperger syndrome and 13 controls. The groups did not differ significantly in overall intelligence and age. FA, MD and RD were assessed using whole brain voxel-based techniques. Adults with Asperger syndrome had a significantly lower FA than controls in 13 clusters. These were largely bilateral and included white matter in the internal capsule, frontal, temporal, parietal and occipital lobes, cingulum and corpus callosum. Adults with Asperger syndrome have widespread significant differences from controls in white matter microstructural integrity.

  10. Resolving power for the diffusion orientation distribution function.

    PubMed

    Jensen, Jens H; Helpern, Joseph A

    2016-08-01

    The diffusion orientation distribution function (dODF) is primarily used for white matter fiber tractography. Here the resolving power of the dODF is investigated for a simple diffusion model of two intersecting axonal fiber bundles. The resolving power for the dODF is evaluated using the Sparrow criterion. This is determined for the exact dODF and also for q-space imaging (QSI), q-ball, and kurtosis approximations. Based on theoretical and numerical calculations, the resolving power is found to depend on the eigenvalues of the diffusion model and on the degree of radial weighting for the dODF. The resolving powers of the QSI and q-ball dODFs improve with increased b-value. The kurtosis dODF has a resolving power similar to that of the exact dODF. The dODFs, whether exact or approximate, have finite resolving powers that limit their sensitivity to fiber crossings. The resolving powers for the different dODFs considered here provide convenient benchmarks for assessing and comparing their performance. Magn Reson Med 76:679-688, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  11. What sets the minimum tokamak scrape-off layer width?

    NASA Astrophysics Data System (ADS)

    Joseph, Ilon

    2016-10-01

    The heat flux width of the tokamak scrape-off layer is on the order of the poloidal ion gyroradius, but the ``heuristic drift'' physics model is still not completely understood. In the absence of anomalous transport, neoclassical transport sets the minimum width. For plateau collisionality, the ion temperature width is set by qρi , while the electron temperature width scales as the geometric mean q(ρeρi) 1 / 2 and is close to qρi in magnitude. The width is enhanced because electrons are confined by the sheath potential and have a much longer time to radially diffuse before escaping to the wall. In the Pfirsch-Schluter regime, collisional diffusion increases the width by the factor (qR / λ) 1 / 2 where qR is the connection length and λ is the mean free path. This qualitatively agrees with the observed transition in the scaling law for detached plasmas. The radial width of the SOL electric field is determined by Spitzer parallel and ``neoclassical'' radial electric conductivity and has a similar scaling to that for thermal transport. Prepared under US DOE contract DE-AC52-07NA27344.

  12. Excitable dynamics in high-Lewis number premixed gas combustion at normal and microgravity

    NASA Technical Reports Server (NTRS)

    Pearlman, Howard

    1995-01-01

    Freely-propagating, premixed gas flames in high-Lewis (Le) number, quiescent mixtures are studied experimentally in tubes of various diameter at normal (lg) and microgravity (mu g). A premixture of lean butane and oxygen diluted with helium, argon, neon, nitrogen or a mixture of multiple diluents is examined such that the thermal diffusivity of the mixture (and to a lesser extent, the mass diffusivity of the rate-limiting component) is systematically varied. In effect, different diluents allow variation of the Le without changing the chemistry. The flames are recorded with high speed cinematography and their stability is visually assessed. Different modes of propagation were observed depending on the diameter of the tubes (different conductive heat loss), the composition of the mixture and the g-level. At 1g, four modes of propagation were observed in small and intermediate diameter tubes (large conductive heat loss): (1) steadily propagating flames, (2) radial and longitudinal pulsating flames, (3) 'wavering' flames, and (4) rotating spiral flames. As the diameter of the tube increases, the radial modes become more pronounced while the longitudinal modes systematically disappear. Also, multiple, simultaneous, spatially-separated 'pacemaker' sites are observed in intermediate and large diameter tubes. Each site starts as a small region of high luminosity and develops into a flamelet which assumes the form of one of the fore mentioned modes. These flamelets eventually interact, annihilate each other in their regions of intersection and merge at their newly created free-ends. For very large tubes, radially-propagating wave-trains (believed to be 'trigger waves') are observed. These are analogous to the radial pulsations observed in the smaller diameter tubes. At mu g, three modes of propagation have been observed: (1) steadily propagating flames, (2) radial and longitudinal pulsating flames, and (3) multi-armed, rotating flames. Since the pulsating mode exists at mu g and 1g, buoyant flicker is not the mechanism which drives the pulsations. Moreover, all of the instabilities at 1g and mu g have characteristic frequencies on the O(100Hz). This value is lower than the fundamental, longitudinal acoustic frequencies of the tubes which suggests that the instabilities are not acoustically driven. The patterns formed by this reaction bear remarkable similarities with the patterns formed in most excitable media when the behavior of the system is driven by couplings between chemical reaction and diffusion (e.g., Belousov-Zhabotinsky reaction, Patterns in slime molds, spiral waves in the retina of a bird's eye). While it is recognized that the chemical mechanism associated with this premixed gas reaction is exponentially sensitive to temperature and undoubtedly different from those which govern previously observed excitable media (most are isothermal, or weakly exothermic, liquid phase reactions), similar spatial and temporal patterns should not come as a complete surprise considering heat and mass diffusion are self similar. It is concluded that this premixed gas system is a definitive example of a diffusive-thermal, gas-phase oscillator based on these experimental results and their favorable comparison with theory.

  13. Diffusion tensor imaging of cingulum bundle and corpus callosum in schizophrenia vs. bipolar disorder.

    PubMed

    Nenadić, Igor; Hoof, Anna; Dietzek, Maren; Langbein, Kerstin; Reichenbach, Jürgen R; Sauer, Heinrich; Güllmar, Daniel

    2017-08-30

    Both schizophrenia and bipolar disorder show abnormalities of white matter, as seen in diffusion tensor imaging (DTI) analyses of major brain fibre bundles. While studies in each of the two conditions have indicated possible overlap in anatomical location, there are few direct comparisons between the disorders. Also, it is unclear whether phenotypically similar subgroups (e.g. patients with bipolar disorder and psychotic features) might share white matter pathologies or be rather similar. Using region-of-interest (ROI) analysis of white matter with diffusion tensor imaging (DTI) at 3 T, we analysed fractional anisotropy (FA), radial diffusivity (RD), and apparent diffusion coefficient (ADC) of the corpus callosum and cingulum bundle in 33 schizophrenia patients, 17 euthymic (previously psychotic) bipolar disorder patients, and 36 healthy controls. ANOVA analysis showed significant main effects of group for RD and ADC (both elevated in schizophrenia). Across the corpus callosum ROIs, there was not group effect on FA, but for RD (elevated in schizophrenia, lower in bipolar disorder) and ADC (higher in schizophrenia, intermediate in bipolar disorder). Our findings show similarities and difference (some gradual) across regions of the two major fibre tracts implicated in these disorders, which would be consistent with a neurobiological overlap of similar clinical phenotypes. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  14. Bessel Fourier Orientation Reconstruction (BFOR): An Analytical Diffusion Propagator Reconstruction for Hybrid Diffusion Imaging and Computation of q-Space Indices

    PubMed Central

    Hosseinbor, A. Pasha; Chung, Moo K.; Wu, Yu-Chien; Alexander, Andrew L.

    2012-01-01

    The ensemble average propagator (EAP) describes the 3D average diffusion process of water molecules, capturing both its radial and angular contents. The EAP can thus provide richer information about complex tissue microstructure properties than the orientation distribution function (ODF), an angular feature of the EAP. Recently, several analytical EAP reconstruction schemes for multiple q-shell acquisitions have been proposed, such as diffusion propagator imaging (DPI) and spherical polar Fourier imaging (SPFI). In this study, a new analytical EAP reconstruction method is proposed, called Bessel Fourier orientation reconstruction (BFOR), whose solution is based on heat equation estimation of the diffusion signal for each shell acquisition, and is validated on both synthetic and real datasets. A significant portion of the paper is dedicated to comparing BFOR, SPFI, and DPI using hybrid, non-Cartesian sampling for multiple b-value acquisitions. Ways to mitigate the effects of Gibbs ringing on EAP reconstruction are also explored. In addition to analytical EAP reconstruction, the aforementioned modeling bases can be used to obtain rotationally invariant q-space indices of potential clinical value, an avenue which has not yet been thoroughly explored. Three such measures are computed: zero-displacement probability (Po), mean squared displacement (MSD), and generalized fractional anisotropy (GFA). PMID:22963853

  15. Sex differences in white matter development during adolescence: a DTI study.

    PubMed

    Wang, Yingying; Adamson, Chris; Yuan, Weihong; Altaye, Mekibib; Rajagopal, Akila; Byars, Anna W; Holland, Scott K

    2012-10-10

    Adolescence is a complex transitional period in human development, composing physical maturation, cognitive and social behavioral changes. The objective of this study is to investigate sex differences in white matter development and the associations between intelligence and white matter microstructure in the adolescent brain using diffusion tensor imaging (DTI) and tract-based spatial statistics (TBSS). In a cohort of 16 typically-developing adolescents aged 13 to 17 years, longitudinal DTI data were recorded from each subject at two time points that were one year apart. We used TBSS to analyze the diffusion indices including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD). Our results suggest that boys (13-18 years) continued to demonstrate white matter maturation, whereas girls appeared to reach mature levels earlier. In addition, we identified significant positive correlations between FA and full-scale intelligence quotient (IQ) in the right inferior fronto-occipital fasciculus when both sexes were looked at together. Only girls showed significant positive correlations between FA and verbal IQ in the left cortico-spinal tract and superior longitudinal fasciculus. The preliminary evidence presented in this study supports that boys and girls have different developmental trajectories in white matter microstructure. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Helium, Iron and Electron Particle Transport and Energy Transport Studies on the TFTR Tokamak

    DOE R&D Accomplishments Database

    Synakowski, E. J.; Efthimion, P. C.; Rewoldt, G.; Stratton, B. C.; Tang, W. M.; Grek, B.; Hill, K. W.; Hulse, R. A.; Johnson, D .W.; Mansfield, D. K.; McCune, D.; Mikkelsen, D. R.; Park, H. K.; Ramsey, A. T.; Redi, M. H.; Scott, S. D.; Taylor, G.; Timberlake, J.; Zarnstorff, M. C. (Princeton Univ., NJ (United States). Plasma Physics Lab.); Kissick, M. W. (Wisconsin Univ., Madison, WI (United States))

    1993-03-01

    Results from helium, iron, and electron transport on TFTR in L-mode and Supershot deuterium plasmas with the same toroidal field, plasma current, and neutral beam heating power are presented. They are compared to results from thermal transport analysis based on power balance. Particle diffusivities and thermal conductivities are radially hollow and larger than neoclassical values, except possibly near the magnetic axis. The ion channel dominates over the electron channel in both particle and thermal diffusion. A peaked helium profile, supported by inward convection that is stronger than predicted by neoclassical theory, is measured in the Supershot The helium profile shape is consistent with predictions from quasilinear electrostatic drift-wave theory. While the perturbative particle diffusion coefficients of all three species are similar in the Supershot, differences are found in the L-Mode. Quasilinear theory calculations of the ratios of impurity diffusivities are in good accord with measurements. Theory estimates indicate that the ion heat flux should be larger than the electron heat flux, consistent with power balance analysis. However, theoretical values of the ratio of the ion to electron heat flux can be more than a factor of three larger than experimental values. A correlation between helium diffusion and ion thermal transport is observed and has favorable implications for sustained ignition of a tokamak fusion reactor.

  17. Antimatter/HiPAT Support Services

    NASA Technical Reports Server (NTRS)

    Lewis, Raymond A.

    2001-01-01

    Techniques were developed for trapping normal matter in the High Performance Antiproton Trap (HiPAT). Situations encountered included discharge phenomena, charge exchange and radial diffusion processes. It is important to identify these problems, since they will also limit the performance in trapping antimatter next year.

  18. Tracking Water Diffusion Fronts in a Highly Viscous Aerosol Particle

    NASA Astrophysics Data System (ADS)

    Bastelberger, Sandra; Krieger, Ulrich; Peter, Thomas

    2016-04-01

    Field measurements indicate that atmospheric secondary aerosol particles can be present in a highly viscous, glassy state [1]. In contrast to liquid state particles, the gas phase equilibration is kinetically limited and governed by condensed phase diffusion. In recent water diffusion experiments on highly viscous single aerosol particles levitated in an electrodynamic balance (EDB) we observed a characteristic shift behavior of the Mie whispering gallery modes (WGM) indicative of the changing radial structure of the particle, thus providing us with an experimental method to track the diffusion process inside the particle. When a highly viscous, homogeneous particle is exposed to an abrupt increase in relative humidity, the rapid gas phase diffusion and strong concentration dependence of the diffusion coefficient in the condensed phase lead to extremely steep water concentration gradients inside the particle, reminiscent of diffusion fronts. The resulting quasi step-like concentration profile motivates the introduction of a simple core-shell model describing the morphology of the non-equilibrium particle during humidification. The subsequent particle growth and reduction of the shell refractive index can be observed as red and blueshift behavior of the WGM, respectively. The shift pattern can be attributed to a core-shell radius ratio and particle radius derived from model calculations [2]. If supplemented with growth information obtained from the WGM redshift and thermodynamic equilibrium data, we can infer a comprehensive picture of the time evolution of the diffusion fronts in the framework of our core-shell model. The measured time dependent concentration profile is then compared with simulations solving the non-linear diffusion equation [3] [1] Virtanen, A., et al., Nature, 467, 824-827, 2010 [2] Kaiser, T., Schweiger, G., Computers in Physics, Vol. 7, No. 6, 682-686, Nov/Dec 1993 [3] Zobrist, B., Soonsin, V., Luo, B.P., Peter, T. et al., Phys. Chem. Chem. Phys., 13,3514-3526, 2011

  19. Impurity profiles and radial transport in the EXTRAP-T2 reversed field pinch

    NASA Astrophysics Data System (ADS)

    Sallander, J.

    1999-05-01

    Radially resolved spectroscopy has been used to measure the radial distribution of impurity ions (O III-O V and C III-CVI) in the EXTRAP-T2 reversed field pinch (RFP). The radial profile of the emission is reconstructed from line emission measured along five lines of sight. The ion density profile is the fitted quantity in the reconstruction of the brightness profile and is thus obtained directly in this process. These measurements are then used to adjust the parameters in transport calculations in order to obtain consistency with the observed ion density profiles. Comparison between model and measurements show that a radial dependence in the diffusion is needed to explain the measured ion densities.

  20. The development of brain network architecture.

    PubMed

    Wierenga, Lara M; van den Heuvel, Martijn P; van Dijk, Sarai; Rijks, Yvonne; de Reus, Marcel A; Durston, Sarah

    2016-02-01

    Brain connectivity shows protracted development throughout childhood and adolescence, and, as such, the topology of brain networks changes during this period. The complexity of these changes with development is reflected by regional differences in maturation. This study explored age-related changes in network topology and regional developmental patterns during childhood and adolescence. We acquired two sets of Diffusion Weighted Imaging-scans and anatomical T1-weighted scans. The first dataset included 85 typically developing individuals (53 males; 32 females), aged between 7 and 23 years and was acquired on a Philips Achieva 1.5 Tesla scanner. A second dataset (N = 38) was acquired on a different (but identical) 1.5 T scanner and was used for independent replication of our results. We reconstructed whole brain networks using tractography. We operationalized fiber tract development as changes in mean diffusivity and radial diffusivity with age. Most fibers showed maturational changes in mean and radial diffusivity values throughout childhood and adolescence, likely reflecting increasing white matter integrity. The largest age-related changes were observed in association fibers within and between the frontal and parietal lobes. Furthermore, there was a simultaneous age-related decrease in average path length (P < 0.0001), increase in node strength (P < 0.0001) as well as network clustering (P = 0.001), which may reflect fine-tuning of topological organization. These results suggest a sequential maturational model where connections between unimodal regions strengthen in childhood, followed by connections from these unimodal regions to association regions, while adolescence is characterized by the strengthening of connections between association regions within the frontal and parietal cortex. Hum Brain Mapp 37:717-729, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  1. Impact of straight, unconnected, radially-oriented, and tapered mesopores on column efficiency: A theoretical investigation.

    PubMed

    Gritti, Fabrice

    2017-02-17

    Superficially porous particles (SPPs) can be prepared from a pseudomorphic transformation (PMT) which produces straight, unconnected, and radially-oriented mesopores (ROMs). ROMs can be either both ends open in fully porous particles (FPPs) or one-end-closed in SPPs. The impact of ROMs on the longitudinal diffusion (B/u), solid-liquid mass transfer resistance (C s u), and on the eddy dispersion (A(u)) height equivalent to a theoretical plate (HETP) of 3D randomly packed columns was investigated based on theoretical viewpoints. Torquato's theory of effective diffusion in packed beds (B term), Giddings' coupling theory of eddy dispersion (A term), and Giddings' generalized nonequilibrium theory (C s term) are applied to make predictions. First, it is found that the A term is nearly independent on the internal structure of the particle. Secondly, in the absence of flow, infinitely narrow and both ends open (no constriction effect) ROMs induce an internal hindrance factor of 23 regarding diffusion along the axial direction. Experimental data reveal that one-end-closed and 80Å wide ROMs in SPPs lead to a measurable internal hindrance factor of 27 regarding diffusion in the porous shell. Thirdly, above the optimum speed, the C s coefficient is dependent on the geometry (cylinders, cones, etc.) of the ROMs: when ROMs are conical in SPPs, C s is expected to decrease by 80% with respect to cylindrical ROMs. From an application perspective, PMT-SPPs prepared with narrow ROMs are well suited for the analysis of small molecules at or below optimum speed (lowest B term) while PMT-SPPs made of wide and conical ROMs are ideal for the analysis of large molecules above optimum speed (smallest C s term). Copyright © 2017. Published by Elsevier B.V.

  2. Novel white matter tract integrity metrics sensitive to Alzheimer disease progression.

    PubMed

    Fieremans, E; Benitez, A; Jensen, J H; Falangola, M F; Tabesh, A; Deardorff, R L; Spampinato, M V S; Babb, J S; Novikov, D S; Ferris, S H; Helpern, J A

    2013-01-01

    Along with cortical abnormalities, white matter microstructural changes such as axonal loss and myelin breakdown are implicated in the pathogenesis of Alzheimer disease. Recently, a white matter model was introduced that relates non-Gaussian diffusional kurtosis imaging metrics to characteristics of white matter tract integrity, including the axonal water fraction, the intra-axonal diffusivity, and the extra-axonal axial and radial diffusivities. This study reports these white matter tract integrity metrics in subjects with amnestic mild cognitive impairment (n = 12), Alzheimer disease (n = 14), and age-matched healthy controls (n = 15) in an effort to investigate their sensitivity, diagnostic accuracy, and associations with white matter changes through the course of Alzheimer disease. With tract-based spatial statistics and region-of-interest analyses, increased diffusivity in the extra-axonal space (extra-axonal axial and radial diffusivities) in several white matter tracts sensitively and accurately discriminated healthy controls from those with amnestic mild cognitive impairment (area under the receiver operating characteristic curve = 0.82-0.95), while widespread decreased axonal water fraction discriminated amnestic mild cognitive impairment from Alzheimer disease (area under the receiver operating characteristic curve = 0.84). Additionally, these white matter tract integrity metrics in the body of the corpus callosum were strongly correlated with processing speed in amnestic mild cognitive impairment (r = |0.80-0.82|, P < .001). These findings have implications for the course and spatial progression of white matter degeneration in Alzheimer disease, suggest the mechanisms by which these changes occur, and demonstrate the viability of these white matter tract integrity metrics as potential neuroimaging biomarkers of the earliest stages of Alzheimer disease and disease progression.

  3. A New Solution for Confined-Unconfined Flow Toward a Fully Penetrating Well in a Confined Aquifer.

    PubMed

    Xiao, Liang; Ye, Ming; Xu, Yongxin

    2018-02-08

    Transient confined-unconfined flow conversion caused by pumping in a confined aquifer (i.e., piezometric head drops below the top confined layer) is complicated, partly due to different hydraulic properties between confined and unconfined regions. For understanding mechanism of the transient confined-unconfined conversion, this paper develops a new analytical solution for the transient confined-unconfined flow toward a fully penetrating well in a confined aquifer. The analytical solution is used to investigate the impacts on drawdown simulation by differences of hydraulic properties, including transmissivity, storativity, and diffusivity defined as a ratio of transmissivity and storativity, between the confined and unconfined regions. It is found that neglecting the transmissivity difference may give an overestimation of drawdown. Instead, neglecting the diffusivity difference may lead to an underestimation of drawdown. The shape of drawdown-time curve is sensitive to the change of storativity ratio, S/S y , between the confined and unconfined regions. With a series of drawdown data from pumping tests, the analytical solution can also be used to inversely estimate following parameters related to the transient confined-unconfined conversion: radial distance of conversion interface, diffusivity, and specific yield of the unconfined region. It is concluded that using constant transmissivity and diffusivity in theory can result in biased estimates of radial distance of the conversion interface and specific yield of the unconfined region in practice. The analytical solution is useful to gain insight about various factors related to the transient confined-unconfined conversion and can be used for the design of mine drainage and groundwater management in the mining area. © 2018, National Ground Water Association.

  4. Space radiation test model study. Report for 20 May 1985-20 February 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nightingale, R.W.; Chiu, Y.T.; Davidson, G.T.

    1986-03-14

    Dynamic models of the energetic populations in the outer radiation belts are being developed to better understand the extreme variations of particle flux in response to magnetospheric and solar activity. The study utilizes the SCATHA SC3 high-energy electron data, covering energies from 47 keV to 5 MeV with fine pitch-angle measurements (3 deg field of view) over the L-shell range of 5.3 to 8.7. Butter-fly distributions in the dusk sector signify particle losses due to L shell splitting of the particle-drift orbits and the subsequent scattering of the particles from the orbits by the magnetopause. To model the temporal variationsmore » and diffusion procsses of the particle populations, the data were organized into phase-space distributions, binned according to altitude (L shell), energy, pitch angle, and time. These distributions can then be mapped to the equator and plotted for fixed first and second adiabatic invariants of the inherent particle motion. A new and efficient method for calculating the third adiabatic invariant using a line integral of the relevant magnetic potential at the particle mirror points has been developed and is undergoing testing. This method will provide a useful means of displaying the radial diffusion signatures of the outer radiation belts during the more-active periods when the L shell parameter is not a good concept due to severe drift-shell splitting. The first phase of fitting the energetic-electron phase-space distributions with a combined radial and pitch-angle diffusion formulation is well underway. Bessel functions are being fit to the data in an eigenmode expansion method to determine the diffusion coefficients.« less

  5. VLF Wave Local Acceleration & ULF Wave Radial Diffusion: The Importance of K-Dependent PSD Analysis for Diagnosing the cause of Radiation Belt Acceleration.

    NASA Astrophysics Data System (ADS)

    Ozeke, L.; Mann, I. R.; Claudepierre, S. G.; Morley, S.; Henderson, M. G.; Baker, D. N.; Kletzing, C.; Spence, H. E.

    2017-12-01

    We present results showing the temporal evolution of electron Phase Space Density (PSD) in the outer radiation belt during the most intense geomagnetic storm of the last decade which occurred on March 17th 2015. Based on observations of growing local PSD peaks at fixed first and second adiabatic invariants of M=1000 MeV/G and K=0.18 G1/2Re respectively, previous studies argued that the outer radiation belt flux enhancement that occurred during this storm resulted from local acceleration driven by VLF waves. Here we show that the vast majority of the outer radiation belt consisted of electrons with much lower K-values than 0.18 G1/2Re, and that at these lower K-values there is no clear evidence of growing local PSD peaks consistent with that expected from local acceleration. Contrary to prior studies we show that the outer radiation belt flux enhancement is consistent with inward radial diffusion driven by ULF waves and present evidence that the growing local PSD peaks at K=0.18 G1/2Re and M=1000 MeV/G result from pitch-angle scattering of lower-K electrons to K=0.18 G1/2Re. In addition, we also show that the observed outer radiation belt flux enhancement during this geomagnetic storm can be reproduced using a radial diffusion model driven by measured ULF waves without including any local acceleration. These results highlight the importance of careful analysis of the electron PSD profiles as a function of L* over a range of fixed first, M and second K, adiabatic invariants to correctly determine the mechanism responsible for the electron flux enhancements observed in the outer radiation belt.

  6. Interpreting tracer breakthrough tailing from different forced-gradient tracer experiment configurations in fractured bedrock

    USGS Publications Warehouse

    Becker, M.W.; Shapiro, A.M.

    2003-01-01

    Conceptual and mathematical models are presented that explain tracer breakthrough tailing in the absence of significant matrix diffusion. Model predictions are compared to field results from radially convergent, weak-dipole, and push-pull tracer experiments conducted in a saturated crystalline bedrock. The models are based upon the assumption that flow is highly channelized, that the mass of tracer in a channel is proportional to the cube of the mean channel aperture, and the mean transport time in the channel is related to the square of the mean channel aperture. These models predict the consistent -2 straight line power law slope observed in breakthrough from radially convergent and weak-dipole tracer experiments and the variable straight line power law slope observed in push-pull tracer experiments with varying injection volumes. The power law breakthrough slope is predicted in the absence of matrix diffusion. A comparison of tracer experiments in which the flow field was reversed to those in which it was not indicates that the apparent dispersion in the breakthrough curve is partially reversible. We hypothesize that the observed breakthrough tailing is due to a combination of local hydrodynamic dispersion, which always increases in the direction of fluid velocity, and heterogeneous advection, which is partially reversed when the flow field is reversed. In spite of our attempt to account for heterogeneous advection using a multipath approach, a much smaller estimate of hydrodynamic dispersivity was obtained from push-pull experiments than from radially convergent or weak dipole experiments. These results suggest that although we can explain breakthrough tailing as an advective phenomenon, we cannot ignore the relationship between hydrodynamic dispersion and flow field geometry at this site. The design of the tracer experiment can severely impact the estimation of hydrodynamic dispersion and matrix diffusion in highly heterogeneous geologic media.

  7. Efficient Conservative Reformulation Schemes for Lithium Intercalation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urisanga, PC; Rife, D; De, S

    Porous electrode theory coupled with transport and reaction mechanisms is a widely used technique to model Li-ion batteries employing an appropriate discretization or approximation for solid phase diffusion with electrode particles. One of the major difficulties in simulating Li-ion battery models is the need to account for solid phase diffusion in a second radial dimension r, which increases the computation time/cost to a great extent. Various methods that reduce the computational cost have been introduced to treat this phenomenon, but most of them do not guarantee mass conservation. The aim of this paper is to introduce an inherently mass conservingmore » yet computationally efficient method for solid phase diffusion based on Lobatto III A quadrature. This paper also presents coupling of the new solid phase reformulation scheme with a macro-homogeneous porous electrode theory based pseudo 20 model for Li-ion battery. (C) The Author(s) 2015. Published by ECS. All rights reserved.« less

  8. The effect of prewhirl on the internal aerodynamics and performance of a mixed flow research centrifugal compressor

    NASA Technical Reports Server (NTRS)

    Bryan, William B.; Fleeter, Sanford

    1987-01-01

    The internal three-dimensional steady and time-varying flow through the diffusing elements of a centrifugal impeller were investigated using a moderate scale, subsonic, mixed flow research compressor facility. The characteristics of the test facility which permit the measurement of internal flow conditions throughout the entire research compressor and radial diffuser for various operating conditions are described. Results are presented in the form of graphs and charts to cover a range of mass flow rates with inlet guide vane settings varying from minus 15 degrees to plus 45 degrees. The static pressure distributions in the compressor inlet section and on the impeller and exit diffuser vanes, as well as the overall pressure and temperature rise and mass flow rate, were measured and analyzed at each operating point to determine the overall performance as well as the detailed aerodynamics throughout the compressor.

  9. In-situ observation of impurity diffusion boundary layer in silicon Czochralski growth

    NASA Astrophysics Data System (ADS)

    Kakimoto, Koichi; Eguchi, Minoru; Watanabe, Hisao; Hibiya, Taketoshi

    1990-01-01

    In-situ observation of the impurity diffusion boundary layer during single crystal growth of indium-doped silicon was carried out by X-ray radiography. The difference in the transmitted X-ray image compared with molten silicon just beneath the crystal-melt interface was attributed to the concentration of indium impurities having a larger absorption coefficient. The intensity profile of the transmitted X-ray can be reproduced by a transmittance calculation that considers the meniscus shape and impurity distribution. The impurity distribution profile near the crystal-melt interface was estimated using the Burton-Prim-Slichter (BPS) equation. The observed impurity diffusion boundary layer thickness was about 0.5 mm. It was found that the boundary layer thickness was not constant in the radial direction, which cannot be explained by the BPS theory, since it is based on a one-dimensional calculation.

  10. q-Space Upsampling Using x-q Space Regularization.

    PubMed

    Chen, Geng; Dong, Bin; Zhang, Yong; Shen, Dinggang; Yap, Pew-Thian

    2017-09-01

    Acquisition time in diffusion MRI increases with the number of diffusion-weighted images that need to be acquired. Particularly in clinical settings, scan time is limited and only a sparse coverage of the vast q -space is possible. In this paper, we show how non-local self-similar information in the x - q space of diffusion MRI data can be harnessed for q -space upsampling. More specifically, we establish the relationships between signal measurements in x - q space using a patch matching mechanism that caters to unstructured data. We then encode these relationships in a graph and use it to regularize an inverse problem associated with recovering a high q -space resolution dataset from its low-resolution counterpart. Experimental results indicate that the high-resolution datasets reconstructed using the proposed method exhibit greater quality, both quantitatively and qualitatively, than those obtained using conventional methods, such as interpolation using spherical radial basis functions (SRBFs).

  11. Cross Helicity and Turbulent Magnetic Diffusivity in the Solar Convection Zone

    NASA Astrophysics Data System (ADS)

    Rüdiger, G.; Kitchatinov, L. L.; Brandenburg, A.

    2011-03-01

    In a density-stratified turbulent medium, the cross helicity < u'ṡ B'> is considered as a result of the interaction of the velocity fluctuations and a large-scale magnetic field. By means of a quasilinear theory and by numerical simulations, we find the cross helicity and the mean vertical magnetic field to be anti-correlated. In the high-conductivity limit the ratio of the helicity and the mean magnetic field equals the ratio of the magnetic eddy diffusivity and the (known) density scale height. The result can be used to predict that the cross helicity at the solar surface will exceed the value of 1 gauss km s-1. Its sign is anti-correlated to that of the radial mean magnetic field. Alternatively, we can use our result to determine the value of the turbulent magnetic diffusivity from observations of the cross helicity.

  12. Mapping carrier diffusion in single silicon core-shell nanowires with ultrafast optical microscopy.

    PubMed

    Seo, M A; Yoo, J; Dayeh, S A; Picraux, S T; Taylor, A J; Prasankumar, R P

    2012-12-12

    Recent success in the fabrication of axial and radial core-shell heterostructures, composed of one or more layers with different properties, on semiconductor nanowires (NWs) has enabled greater control of NW-based device operation for various applications. (1-3) However, further progress toward significant performance enhancements in a given application is hindered by the limited knowledge of carrier dynamics in these structures. In particular, the strong influence of interfaces between different layers in NWs on transport makes it especially important to understand carrier dynamics in these quasi-one-dimensional systems. Here, we use ultrafast optical microscopy (4) to directly examine carrier relaxation and diffusion in single silicon core-only and Si/SiO(2) core-shell NWs with high temporal and spatial resolution in a noncontact manner. This enables us to reveal strong coherent phonon oscillations and experimentally map electron and hole diffusion currents in individual semiconductor NWs for the first time.

  13. Development and fabrication of a diffusion welded Columbium alloy heat exchanger. [for space power generation

    NASA Technical Reports Server (NTRS)

    Zimmerman, W. F.; Duderstadt, E. C.; Wein, D.; Titran, R. H.

    1978-01-01

    A Mini Brayton space power generation system required the development of a Columbium alloy heat exchanger to transfer heat from a radioisotope heat source to a He/Xe working fluid. A light-weight design featured the simultaneous diffusion welding of 148 longitudinal fins in an annular heat exchanger about 9-1/2 in. in diameter, 13-1/2 in. in length and 1/4 in. in radial thickness. To complete the heat exchanger, additional gas ducting elements and attachment supports were added by GTA welding in a vacuum-purged inert atmosphere welding chamber. The development required the modification of an existing large size hot isostatic press to achieve HIP capabilities of 2800 F and 10,000 psi for at least 3 hr. Excellent diffusion welds were achieved in a high-quality component which met all system requirements.

  14. Drift-wave turbulence and zonal flow generation.

    PubMed

    Balescu, R

    2003-10-01

    Drift-wave turbulence in a plasma is analyzed on the basis of the wave Liouville equation, describing the evolution of the distribution function of wave packets (quasiparticles) characterized by position x and wave vector k. A closed kinetic equation is derived for the ensemble-averaged part of this function by the methods of nonequilibrium statistical mechanics. It has the form of a non-Markovian advection-diffusion equation describing coupled diffusion processes in x and k spaces. General forms of the diffusion coefficients are obtained in terms of Lagrangian velocity correlations. The latter are calculated in the decorrelation trajectory approximation, a method recently developed for an accurate measure of the important trapping phenomena of particles in the rugged electrostatic potential. The analysis of individual decorrelation trajectories provides an illustration of the fragmentation of drift-wave structures in the radial direction and the generation of long-wavelength structures in the poloidal direction that are identified as zonal flows.

  15. Expectations for high energy diffuse galactic neutrinos for different cosmic ray distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pagliaroli, Giulia; Evoli, Carmelo; Villante, Francesco Lorenzo, E-mail: giulia.pagliaroli@gssi.infn.it, E-mail: carmelo.evoli@gssi.infn.it, E-mail: francesco.villante@lngs.infn.it

    2016-11-01

    The interaction of cosmic rays with the gas contained in our Galaxy is a guaranteed source of diffuse high energy neutrinos. We provide expectations for this component by considering different assumptions for the cosmic ray distribution in the Galaxy which are intended to cover the large uncertainty in cosmic ray propagation models. We calculate the angular dependence of the diffuse galactic neutrino flux and the corresponding rate of High Energy Starting Events in IceCube by including the effect of detector angular resolution. Moreover we discuss the possibility to discriminate the galactic component from an isotropic astrophysical flux. We show thatmore » a statistically significant excess of events from the galactic plane in present IceCube data would disfavour models in which the cosmic ray density is uniform , thus bringing relevant information on the cosmic ray radial distribution.« less

  16. Transient and diffusion analysis of HgCdTe

    NASA Technical Reports Server (NTRS)

    Clayton, J. C.

    1982-01-01

    Solute redistribution during directional solidification of HgCdTe is addressed. Both one-dimensional and two-dimensional models for solute redistribution are treated and model results compared to experiment. The central problem studied is the cause of radial inhomogeneities found in directionally solidified HgCdTe. A large scale gravity-driven interface instability, termed shape instability, is postulated to be the cause of radial inhomogeneities. Recommendations for future work, along with appropriate computer programs, are included.

  17. Evaluation of a diffusive sampler for measurement of carbonyl compounds in air

    NASA Astrophysics Data System (ADS)

    Uchiyama, Shigehisa; Aoyagi, Shohei; Ando, Masanori

    A diffusive sampling device (DSD-DNPH) has been developed for collection of ppb levels of 21 carbonyl compounds in indoor air. It is comprised of silica gel coated with 2,4-dinitrophenylhydrazine (DNPH) as the absorbent, a porous sintered polyethylene tube (PSP-diffusion filter) which acts as a diffusive membrane, and a small polypropylene syringe (PP-reservoir) which is used for the elution of the analytes from the absorbent. As the diffusive membrane comprises the entire cylindrical surface of the tube, it allows 'radial' exposure from all sides. A side-by-side comparison was made with active samplers, demonstrating good correlation (formaldehyde r2=0.992). The sampling rate (71.9 ml min -1) of formaldehyde was determined from comparison with an active sampling method and the sampling rates of other carbonyl compounds were calculated from their diffusion coefficients. These calculated sampling rates agreed with the experimental values. Little influence of wind velocity on the sampler was observed. The relative standard deviations for formaldehyde and acetaldehyde concentrations were 5.5% and 8.6%, respectively, with face velocity from 0 to 5.0 m/s. The DSD-DNPH enables the estimation of time-weighted average concentration of carbonyl compounds. Concentrations of formaldehyde estimated by the 7-day sampling method were nearly equal to the mean value calculated from the 24-hour sampling method measured over 7 days. This confirmed that the concentration of formaldehyde could be precisely monitored by 7-day continuous sampling.

  18. Compromised Integrity of Central Visual Pathways in Patients With Macular Degeneration.

    PubMed

    Malania, Maka; Konrad, Julia; Jägle, Herbert; Werner, John S; Greenlee, Mark W

    2017-06-01

    Macular degeneration (MD) affects the central retina and leads to gradual loss of foveal vision. Although, photoreceptors are primarily affected in MD, the retinal nerve fiber layer (RNFL) and central visual pathways may also be altered subsequent to photoreceptor degeneration. Here we investigate whether retinal damage caused by MD alters microstructural properties of visual pathways using diffusion-weighted magnetic resonance imaging. Six MD patients and six healthy control subjects participated in the study. Retinal images were obtained by spectral-domain optical coherence tomography (SD-OCT). Diffusion tensor images (DTI) and high-resolution T1-weighted structural images were collected for each subject. We used diffusion-based tensor modeling and probabilistic fiber tractography to identify the optic tract (OT) and optic radiations (OR), as well as nonvisual pathways (corticospinal tract and anterior fibers of corpus callosum). Fractional anisotropy (FA) and axial and radial diffusivity values (AD, RD) were calculated along the nonvisual and visual pathways. Measurement of RNFL thickness reveals that the temporal circumpapillary retinal nerve fiber layer was significantly thinner in eyes with macular degeneration than normal. While we did not find significant differences in diffusion properties in nonvisual pathways, patients showed significant changes in diffusion scalars (FA, RD, and AD) both in OT and OR. The results indicate that the RNFL and the white matter of the visual pathways are significantly altered in MD patients. Damage to the photoreceptors in MD leads to atrophy of the ganglion cell axons and to corresponding changes in microstructural properties of central visual pathways.

  19. Optimization of Scan Parameters to Reduce Acquisition Time for Diffusion Kurtosis Imaging at 1.5T.

    PubMed

    Yokosawa, Suguru; Sasaki, Makoto; Bito, Yoshitaka; Ito, Kenji; Yamashita, Fumio; Goodwin, Jonathan; Higuchi, Satomi; Kudo, Kohsuke

    2016-01-01

    To shorten acquisition of diffusion kurtosis imaging (DKI) in 1.5-tesla magnetic resonance (MR) imaging, we investigated the effects of the number of b-values, diffusion direction, and number of signal averages (NSA) on the accuracy of DKI metrics. We obtained 2 image datasets with 30 gradient directions, 6 b-values up to 2500 s/mm(2), and 2 signal averages from 5 healthy volunteers and generated DKI metrics, i.e., mean, axial, and radial kurtosis (MK, K∥, and K⊥) maps, from various combinations of the datasets. These maps were estimated by using the intraclass correlation coefficient (ICC) with those from the full datasets. The MK and K⊥ maps generated from the datasets including only the b-value of 2500 s/mm(2) showed excellent agreement (ICC, 0.96 to 0.99). Under the same acquisition time and diffusion directions, agreement was better of MK, K∥, and K⊥ maps obtained with 3 b-values (0, 1000, and 2500 s/mm(2)) and 4 signal averages than maps obtained with any other combination of numbers of b-value and varied NSA. Good agreement (ICC > 0.6) required at least 20 diffusion directions in all the metrics. MK and K⊥ maps with ICC greater than 0.95 can be obtained at 1.5T within 10 min (b-value = 0, 1000, and 2500 s/mm(2); 20 diffusion directions; 4 signal averages; slice thickness, 6 mm with no interslice gap; number of slices, 12).

  20. A numerical solution for the diffusion equation in hydrogeologic systems

    USGS Publications Warehouse

    Ishii, A.L.; Healy, R.W.; Striegl, Robert G.

    1989-01-01

    The documentation of a computer code for the numerical solution of the linear diffusion equation in one or two dimensions in Cartesian or cylindrical coordinates is presented. Applications of the program include molecular diffusion, heat conduction, and fluid flow in confined systems. The flow media may be anisotropic and heterogeneous. The model is formulated by replacing the continuous linear diffusion equation by discrete finite-difference approximations at each node in a block-centered grid. The resulting matrix equation is solved by the method of preconditioned conjugate gradients. The conjugate gradient method does not require the estimation of iteration parameters and is guaranteed convergent in the absence of rounding error. The matrixes are preconditioned to decrease the steps to convergence. The model allows the specification of any number of boundary conditions for any number of stress periods, and the output of a summary table for selected nodes showing flux and the concentration of the flux quantity for each time step. The model is written in a modular format for ease of modification. The model was verified by comparison of numerical and analytical solutions for cases of molecular diffusion, two-dimensional heat transfer, and axisymmetric radial saturated fluid flow. Application of the model to a hypothetical two-dimensional field situation of gas diffusion in the unsaturated zone is demonstrated. The input and output files are included as a check on program installation. The definition of variables, input requirements, flow chart, and program listing are included in the attachments. (USGS)

  1. A MODEL FOR CHLORINE CONCENTRATION DECAY IN PIPES

    EPA Science Inventory

    A model that accounts for transport in the axial direction by convection and in the radial direction by diffusion and that incorporates first order decay kinetics has been developed to predict the chlorine concentration in a pipe in a distribution system. A generalized expressio...

  2. Ring current impoundment of the Io plasma torus

    NASA Technical Reports Server (NTRS)

    Siscoe, G. L.; Thorne, R. M.; Richardson, J. D.; Bagenal, F.; Sullivan, J. D.; Eviatar, A.

    1981-01-01

    A newly discovered feature in the Io plasma formation that may be described as a ramp separating a high-density plasma ledge on its Jupiterward side from the lower-density radially distended Io plasma disc on its anti-Jupiterward side is observed to coincide with a marked inward decrease in the ring current population. The spatial congruency of the counter-directed maximal gradients in both plasma bodies reveals a profound coupling between them. The existence of the ramp requires a local order-of-magnitude reduction in the diffusion coefficient that governs radial mass transport. It is demonstrated that the diminished diffusive efficiency there is caused by strong pressure gradient inhibition of the interchange instability that underlies mass transport. The Io plasma torus, which is defined as the region of strong ultraviolet emissions, is identified as the plasma ledge. The plasma density in the ledge is high and, incidentally therefore, able to emit strongly because it is impounded against rapid, centrifugal expulsion by the inwardly directed pressure of the ring current at its inner edge.

  3. Gamma radiation effects on phenolics, antioxidants activity and in vitro digestion of pistachio ( Pistachia vera) hull

    NASA Astrophysics Data System (ADS)

    Behgar, M.; Ghasemi, S.; Naserian, A.; Borzoie, A.; Fatollahi, H.

    2011-09-01

    The effect of gamma radiation (10, 20, 30, 40, 50 and 60 kGy) on tannin, total phenolics, antioxidants activity and in vitro digestion of pistachio hulls has been investigated in this study. The possibility of using the radial diffusion method based on software measurement of the rings area has also been investigated in this study. The software based method in radial diffusion method showed a higher r2 (0.995) value when compared to the traditional method. Irradiation reduced the tannin content ( P<0.01) and activity of antioxidants ( P<0.05) of pistachio hull extracts but increased the total phenolic content ( P<0.05). There was no effect of gamma irradiation on the in vitro digestion of the pistachio hull. Irradiation decreased the digestion rate of the pistachio hull at the dose of 40 kGy when compared to the control. This study showed that gamma irradiation decreased tannin and antioxidants activity of pistachio hull.

  4. METHODS OF CALCULATION FOR THE TREATMENT OF SHIELD HETEROGENEITIES IN THE PROTOTYPE FAST REACTOR.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broughton, J.; Butler, J.; Brimstone, M.

    1969-10-31

    The radial shield of the sodium-cooled Prototype Fast Reactor is composed of graphite rods enclosed in steel tubes which are arranged in a lattice of seven rows round the periphery of the breeder. The outside diameter of these rods increases by about a factor of 2 between the inner temperature of about 600 deg C. The dimensions of the steel, graphite and sodium regions are large compared with the mean free paths of the predomination neutrons at intermediate energies; and homogenisation of the shield seriously underestimates the penetration, which is also enhanced by the presence of numerous irregularities associated withmore » nucleonic instrument thimbels, refuelling mechanisms and the primary coolant circuit. Methods of calculation have been developed for the solution of these problems, using both diffusion-theory and Monte Carlo techniques. The diffusion calculations have been accomplished with the COMPRASH and ATTOW codes; and a prototype Monet Carlo code named MOB has been developed, which takes a proper account of the radial shield geometry. The theoretical predictions are compared with measurements made in typical shield arrays on LIDO at Harwell and on the zero-energy fast reactor, ZEBRA, at Winfrith. The diffusion-theory and Monte Carlo approaches are also assessed as design tools taking into consideration accuracy, data preparation and computing time requirements. (auth)« less

  5. The impacts of the axial-to-radial airflow quantity ratio and suction distance on air curtain dust control in a fully mechanized coal face.

    PubMed

    Wang, Hao; Cheng, Weimin; Sun, Biao; Yu, Haiming; Jin, Hu

    2018-03-01

    To understand the impacts of the axial-to-radial airflow quantity ratio (denoted as R) and the suction distance (denoted as D s ) on air curtain dust control in a fully mechanized coal face, the 3 down 610 coal face in Jiangzhuang coal mine was numerically simulated in this study. A mathematic model was established to describe the airflow migration and dust diffusion in a coal face, and a scaled physical model was constructed. The comparison between simulation results and field measurements validated the model and the parameter settings. Furthermore, the airflow migration and dust diffusion at various R and D s are analyzed using Ansys CFD. The results show that a reduction of R and D s is conducive to the formation of an effective axial dust control air curtain; the dust diffusion distance decreases with the decrease of both R and D s . By analyzing the simulation results, the optimal parameter for air curtain dust control in the 3 down 610 coal face and those faces with similar production conditions is determined as R = 1/9 and D s  = 2 m. Under the optimal parameter condition, the high-concentration dust can be confined in front of the mining driver within a space 5.8 m away from the coal face.

  6. On the progressive enrichment of the oxygen isotopic composition of water along a leaf.

    PubMed

    Farquhar, G. D.; Gan, K. S.

    2003-06-01

    A model has been derived for the enrichment of heavy isotopes of water in leaves, including progressive enrichment along the leaf. In the model, lighter water is preferentially transpired leaving heavier water to diffuse back into the xylem and be carried further along the leaf. For this pattern to be pronounced, the ratio of advection to diffusion (Péclet number) has to be large in the longitudinal direction, and small in the radial direction. The progressive enrichment along the xylem is less than that occurring at the sites of evaporation in the mesophyll, depending on the isolation afforded by the radial Péclet number. There is an upper bound on enrichment, and effects of ground tissue associated with major veins are included. When transpiration rate is spatially nonuniform, averaging of enrichment occurs more naturally with transpiration weighting than with area-based weighting. This gives zero average enrichment of transpired water, the modified Craig-Gordon equation for average enrichment at the sites of evaporation and the Farquhar and Lloyd (In Stable Isotopes and Plant Carbon-Water Relations, pp. 47-70. Academic Press, New York, USA, 1993) prediction for mesophyll water. Earlier results on the isotopic composition of evolved oxygen and of retro-diffused carbon dioxide are preserved if these processes vary in parallel with transpiration rate. Parallel variation should be indicated approximately by uniform carbon isotope discrimination across the leaf.

  7. The General Formulation and Practical Calculation of the Diffusion Coefficient in a Lattice Containing Cavities; FORMULATION GENERALE ET CALCUL PRATIQUE DU COEFFICIENT DE DIFFUSION DANS UN RESEAU COMPORTANT DES CAVITES (in French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benoist, P.

    The calculation of diffusion coefficients in a lattice necessitates the knowledge of a correct method of weighting the free paths of the different constituents. An unambiguous definition of this weighting method is given here, based on the calculation of leakages from a zone of a reactor. The formulation obtained, which is both simple and general, reduces the calculation of diffusion coefficients to that of collision probabilities in the different media; it reveals in the expression for the radial coefficient the series of the terms of angular correlation (cross terms) recently shown by several authors. This formulation is then used tomore » calculate the practical case of a classical type of lattice composed of a moderator and a fuel element surrounded by an empty space. Analytical and numerical comparison of the expressions obtained with those inferred from the theory of BEHRENS shows up the importance of several new terms some of which are linked with the transparency of the fuel element. Cross terms up to the second order are evaluated. A practical formulary is given at the end of the paper. (author) [French] Le calcul des coefficients de diffusion dans un reseau suppose la connaissance d'un mode de ponderation correct des libres parcours des differents constituants. On definit ici sans ambiguite ce mode de ponderation a partir du calcul des fuites hors d'une zone de reacteur. La formulation obtenue, simple et generale, ramene le calcul des coefficients de diffusion a celui des probabilites de collision dans les differents milieux; elle fait apparaitre dans l'expression du coefficient radial la serie des termes de correlation angulaire (termes rectangles), mis en evidence recemment par plusieurs auteurs. Cette formulation est ensuite appliquee au calcul pratique d'un reseau classique, compose d'un moderateur et d'un element combustible entoure d'une cavite; la comparaison analytique et numerique des expressions obtenues avec celles deduites de la theorie de BEHRENS fait apparaitre l'importance de plusieurs termes nouveaux, dont certains sont lies a la transparence de l'element combustible; les termes rectangles sont calcules jusqu'a l'ordre 2. Un formulaire pratique est donne a la fin de cette etude. (auteur)« less

  8. Computing Shapes Of Cascade Diffuser Blades

    NASA Technical Reports Server (NTRS)

    Tran, Ken; Prueger, George H.

    1993-01-01

    Computer program generates sizes and shapes of cascade-type blades for use in axial or radial turbomachine diffusers. Generates shapes of blades rapidly, incorporating extensive cascade data to determine optimum incidence and deviation angle for blade design based on 65-series data base of National Advisory Commission for Aeronautics and Astronautics (NACA). Allows great variability in blade profile through input variables. Also provides for design of three-dimensional blades by allowing variable blade stacking. Enables designer to obtain computed blade-geometry data in various forms: as input for blade-loading analysis; as input for quasi-three-dimensional analysis of flow; or as points for transfer to computer-aided design.

  9. Binding energies and spatial structures of small carrier complexes in monolayer transition-metal dichalcogenides via diffusion Monte Carlo

    DOE PAGES

    Mayers, Matthew Z.; Berkelbach, Timothy C.; Hybertsen, Mark S.; ...

    2015-10-09

    Ground-state diffusion Monte Carlo is used to investigate the binding energies and intercarrier radial probability distributions of excitons, trions, and biexcitons in a variety of two-dimensional transition-metal dichalcogenide materials. We compare these results to approximate variational calculations, as well as to analogous Monte Carlo calculations performed with simplified carrier interaction potentials. Our results highlight the successes and failures of approximate approaches as well as the physical features that determine the stability of small carrier complexes in monolayer transition-metal dichalcogenide materials. In conclusion, we discuss points of agreement and disagreement with recent experiments.

  10. Small, high pressure ratio compressor: Aerodynamic and mechanical design

    NASA Technical Reports Server (NTRS)

    Bryce, C. A.; Erwin, J. R.; Perrone, G. L.; Nelson, E. L.; Tu, R. K.; Bosco, A.

    1973-01-01

    The Small, High-Pressure-Ratio Compressor Program was directed toward the analysis, design, and fabrication of a centrifugal compressor providing a 6:1 pressure ratio and an airflow rate of 2.0 pounds per second. The program consists of preliminary design, detailed areodynamic design, mechanical design, and mechanical acceptance tests. The preliminary design evaluate radial- and backward-curved blades, tandem bladed impellers, impeller-and diffuser-passage boundary-layer control, and vane, pipe, and multiple-stage diffusers. Based on this evaluation, a configuration was selected for detailed aerodynamic and mechanical design. Mechanical acceptance test was performed to demonstrate that mechanical design objectives of the research package were met.

  11. In Vivo Evaluation of White Matter Integrity and Anterograde Transport in Visual System After Excitotoxic Retinal Injury With Multimodal MRI and OCT

    PubMed Central

    Ho, Leon C.; Wang, Bo; Conner, Ian P.; van der Merwe, Yolandi; Bilonick, Richard A.; Kim, Seong-Gi; Wu, Ed X.; Sigal, Ian A.; Wollstein, Gadi; Schuman, Joel S.; Chan, Kevin C.

    2015-01-01

    Purpose. Excitotoxicity has been linked to the pathogenesis of ocular diseases and injuries and may involve early degeneration of both anterior and posterior visual pathways. However, their spatiotemporal relationships remain unclear. We hypothesized that the effects of excitotoxic retinal injury (ERI) on the visual system can be revealed in vivo by diffusion tensor magnetic resonance imagining (DTI), manganese-enhanced magnetic resonance imagining (MRI), and optical coherence tomography (OCT). Methods. Diffusion tensor MRI was performed at 9.4 Tesla to monitor white matter integrity changes after unilateral N-methyl-D-aspartate (NMDA)-induced ERI in six Sprague-Dawley rats and six C57BL/6J mice. Additionally, four rats and four mice were intravitreally injected with saline to compare with NMDA-injected animals. Optical coherence tomography of the retina and manganese-enhanced MRI of anterograde transport were evaluated and correlated with DTI parameters. Results. In the rat optic nerve, the largest axial diffusivity decrease and radial diffusivity increase occurred within the first 3 and 7 days post ERI, respectively, suggestive of early axonal degeneration and delayed demyelination. The optic tract showed smaller directional diffusivity changes and weaker DTI correlations with retinal thickness compared with optic nerve, indicative of anterograde degeneration. The splenium of corpus callosum was also reorganized at 4 weeks post ERI. The DTI profiles appeared comparable between rat and mouse models. Furthermore, the NMDA-injured visual pathway showed reduced anterograde manganese transport, which correlated with diffusivity changes along but not perpendicular to optic nerve. Conclusions. Diffusion tensor MRI, manganese-enhanced MRI, and OCT provided an in vivo model system for characterizing the spatiotemporal changes in white matter integrity, the eye–brain relationships and structural–physiological relationships in the visual system after ERI. PMID:26066747

  12. Frontiers in Fluctuation Spectroscopy: Measuring protein dynamics and protein spatio-temporal connectivity

    NASA Astrophysics Data System (ADS)

    Digman, Michelle

    Fluorescence fluctuation spectroscopy has evolved from single point detection of molecular diffusion to a family of microscopy imaging correlation tools (i.e. ICS, RICS, STICS, and kICS) useful in deriving spatial-temporal dynamics of proteins in living cells The advantage of the imaging techniques is the simultaneous measurement of all points in an image with a frame rate that is increasingly becoming faster with better sensitivity cameras and new microscopy modalities such as the sheet illumination technique. A new frontier in this area is now emerging towards a high level of mapping diffusion rates and protein dynamics in the 2 and 3 dimensions. In this talk, I will discuss the evolution of fluctuation analysis from the single point source to mapping diffusion in whole cells and the technology behind this technique. In particular, new methods of analysis exploit correlation of molecular fluctuations originating from measurement of fluctuation correlations at distant points (pair correlation analysis) and methods that exploit spatial averaging of fluctuations in small regions (iMSD). For example the pair correlation fluctuation (pCF) analyses done between adjacent pixels in all possible radial directions provide a window into anisotropic molecular diffusion. Similar to the connectivity atlas of neuronal connections from the MRI diffusion tensor imaging these new tools will be used to map the connectome of protein diffusion in living cells. For biological reaction-diffusion systems, live single cell spatial-temporal analysis of protein dynamics provides a mean to observe stochastic biochemical signaling in the context of the intracellular environment which may lead to better understanding of cancer cell invasion, stem cell differentiation and other fundamental biological processes. National Institutes of Health Grant P41-RRO3155.

  13. HARDI DATA DENOISING USING VECTORIAL TOTAL VARIATION AND LOGARITHMIC BARRIER

    PubMed Central

    Kim, Yunho; Thompson, Paul M.; Vese, Luminita A.

    2010-01-01

    In this work, we wish to denoise HARDI (High Angular Resolution Diffusion Imaging) data arising in medical brain imaging. Diffusion imaging is a relatively new and powerful method to measure the three-dimensional profile of water diffusion at each point in the brain. These images can be used to reconstruct fiber directions and pathways in the living brain, providing detailed maps of fiber integrity and connectivity. HARDI data is a powerful new extension of diffusion imaging, which goes beyond the diffusion tensor imaging (DTI) model: mathematically, intensity data is given at every voxel and at any direction on the sphere. Unfortunately, HARDI data is usually highly contaminated with noise, depending on the b-value which is a tuning parameter pre-selected to collect the data. Larger b-values help to collect more accurate information in terms of measuring diffusivity, but more noise is generated by many factors as well. So large b-values are preferred, if we can satisfactorily reduce the noise without losing the data structure. Here we propose two variational methods to denoise HARDI data. The first one directly denoises the collected data S, while the second one denoises the so-called sADC (spherical Apparent Diffusion Coefficient), a field of radial functions derived from the data. These two quantities are related by an equation of the form S = SSexp (−b · sADC) (in the noise-free case). By applying these two different models, we will be able to determine which quantity will most accurately preserve data structure after denoising. The theoretical analysis of the proposed models is presented, together with experimental results and comparisons for denoising synthetic and real HARDI data. PMID:20802839

  14. Demyelinating evidences in CMS rat model of depression: a DTI study at 7 T.

    PubMed

    Hemanth Kumar, B S; Mishra, S K; Trivedi, R; Singh, S; Rana, P; Khushu, S

    2014-09-05

    Depression is among the most debilitating diseases worldwide. Long-term exposure to stressors plays a major role in development of human depression. Chronic mild stress (CMS) seems to be a valid animal model for depression. Diffusion tensor imaging (DTI) is capable of inferring microstructural abnormalities of the white matter and has shown to serve as non-invasive marker of specific pathology. We developed a CMS rat model of depression and validated with behavioral experiments. We measured the diffusion indices (mean diffusivity (MD), fractional anisotropy (FA), axial (λ∥) and radial (λ⊥) diffusivity) to investigate the changes in CMS rat brain during depression onset. Diffusion indices have shown to be useful to discriminate myelin damage from axon loss. DTI was performed in both control and CMS rats (n=10, in each group) and maps of FA, MD, λ∥ and λ⊥ diffusivity values were generated using in-house built software. The diffusion indices were calculated by region of interest (ROI) analysis in different brain regions like the frontal cortex, hippocampus, hypothalamus, cingulum, thalamus, caudate putamen, corpus callosum, cerebral peduncle and sensory motor cortex. The results showed signs of demyelination, reflected by increased MD, decreased FA and increased λ⊥. The results also suggest a possible role of edema or inflammation concerning the brain morphology in CMS rats. The overall finding using DTI suggests there might be a major role of loss of myelin sheath, which leads to disrupted connectivity between the limbic area and the prefrontal cortex during the onset of depression. Our findings indicate that interpretation of these indices may provide crucial information about the type and severity of mood disorders. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Control of radial propagation and polarity in a plasma jet in surrounding Ar

    NASA Astrophysics Data System (ADS)

    Gong, W.; Yue, Y.; Ma, F.; Yu, F.; Wan, J.; Nie, L.; Bazaka, K.; Xian, Y.; Lu, X.; Ostrikov, K.

    2018-01-01

    In recent years, the use of shielding gas to prevent the diffusion of the ambient air, particularly oxygen and nitrogen species, into the effluent of the atmospheric pressure plasma jet, and thus control the nature of chemical species used in the plasma treatment has increased. In this paper, the radial propagation of a plasma jet in ambient Ar is examined to find the key determinants of the polarity of plasma jets. The dynamics of the discharge reveal that the radial diffusion discharge is a special phenomenon observed only at the falling edge of the pulses. The radial transport of electrons, which is driven by the radial component of the applied electric field at the falling edge of the pulse, is shown to play an important role in increasing the seed electron density in the surrounding Ar. This result suggests a method to provide seed electrons at atmospheric pressure with a negative discharge. The polarity of the plasma jet is found to be determined by the pulse width rather than the polarity of the applied voltage, as it dictates the relative difference in the intensity of the two discharges in a single pulse, where the stronger discharge in a pulse dominates the behavior of the plasma jet. Accordingly, a method to control the polarity of a plasma jet through varying the pulse width is developed. Since plasma jets of different polarities differ remarkably in terms of their characteristics, the method to control the polarity reported in this paper will be of use for such applications as plasma-enhanced processing of materials and plasma biomedicine.

  16. Mesure de haute resolution de la fonction de distribution radiale du silicium amorphe pur

    NASA Astrophysics Data System (ADS)

    Laaziri, Khalid

    1999-11-01

    Cette these porte sur l'etude de la structure du silicium amorphe prepare par irradiation ionique. Elle presente des mesures de diffraction de rayons X sur de la poudre de silicium cristallin, du silicium amorphe relaxe et non relaxe, ainsi que tous les developpements mathematiques et physiques necessaires pour extraire la fonction de distribution radiale correspondant a chaque echantillon. Au Chapitre I, nous presentons une methode de fabrication de membranes minces de silicium amorphe pur. Il y a deux etapes majeures lors du processus de fabrication: l'implantation ionique, afin de creer une couche amorphe de plusieurs microns et l'attaque chimique, pour enlever le reste du materiau cristallin. Nous avons caracterise premierement les membranes de silicium amorphe par spectroscopie Raman pour verifier qu'il ne reste plus de trace de materiau cristallin dans les films amorphes. Une deuxieme caracterisation par detection de recul elastique (ERD-TOF) sur ces memes membranes a montre qu'il y a moins de 0.1% atomique de contaminants tels que l'oxygene, le carbone, et l'hydrogene. Au Chapitre II, nous proposons une nouvelle methode de correction de la contribution inelastique "Compton" des spectres de diffusion totale afin d'extraire les pics de diffusion elastique, responsable de la diffraction de Bragg. L'article presente tout d'abord une description simplifiee d'une theorie sur la diffusion inelastique dite "Impulse Approximation" (IA) qui permet de calculer des profils de Compton en fonction de l'energie et de l'angle de diffusion 2theta. Ces profils sont utilises comme fonction de lissage de la diffusion Compton experimentale. Pour lisser les pics de diffusion elastique, nous avons utilise une fonction pic de nature asymetrique. Aux Chapitre III, nous exposons de maniere detaillee les resultats des experiences de diffraction de rayons X sur les membranes de silicium amorphe et la poudre de silicium cristallin que nous avons preparees. Nous abordons aussi les differentes etapes experimentales, d'analyse ainsi que les methodes de determination et de filtrage des transformees de Fourier des donnees de diffraction. Une comparaison des fonctions de distribution radiale du silicium amorphe relaxe et non relaxe indique que la relaxation structurelle dans le silicium amorphe est probablement due en grande partie a une annihilation des defauts plutot qu'a une reorganisation atomique globale du reseau de silicium amorphe. La deduction de la coordination des pics correspondants au premiers voisins atomiques par lissage de fonctions gaussienne indique que la coordination du silicium amorphe relaxe est de 3.88, celle du non-relaxe est de 3.79, alors que la mesure de reference sur la poudre de silicium cristallin donne une valeur de 4 tel que prevu. La sous-coordination du silicium amorphe expliquerait pourquoi sa densite est inferieure a celle du silicium cristallin. (Abstract shortened by UMI.)

  17. Longitudinal evidence for anterograde trans-synaptic degeneration after optic neuritis

    PubMed Central

    Goodkin, Olivia; Altmann, Daniel R.; Jenkins, Thomas M.; Miszkiel, Katherine; Mirigliani, Alessia; Fini, Camilla; Gandini Wheeler-Kingshott, Claudia A. M.; Thompson, Alan J.; Ciccarelli, Olga; Toosy, Ahmed T.

    2016-01-01

    Abstract In multiple sclerosis, microstructural damage of normal-appearing brain tissue is an important feature of its pathology. Understanding these mechanisms is vital to help develop neuroprotective strategies. The visual pathway is a key model to study mechanisms of damage and recovery in demyelination. Anterograde trans-synaptic degeneration across the lateral geniculate nuclei has been suggested as a mechanism of tissue damage to explain optic radiation abnormalities seen in association with demyelinating disease and optic neuritis, although evidence for this has relied solely on cross-sectional studies. We therefore aimed to assess: (i) longitudinal changes in the diffusion properties of optic radiations after optic neuritis suggesting trans-synaptic degeneration; (ii) the predictive value of early optic nerve magnetic resonance imaging measures for late optic radiations changes; and (iii) the impact on visual outcome of both optic nerve and brain post-optic neuritis changes. Twenty-eight consecutive patients with acute optic neuritis and eight healthy controls were assessed visually (logMAR, colour vision, and Sloan 1.25%, 5%, 25%) and by magnetic resonance imaging, at baseline, 3, 6, and 12 months. Magnetic resonance imaging sequences performed (and metrics obtained) were: (i) optic nerve fluid-attenuated inversion-recovery (optic nerve cross-sectional area); (ii) optic nerve proton density fast spin-echo (optic nerve proton density-lesion length); (iii) optic nerve post-gadolinium T 1 -weighted (Gd-enhanced lesion length); and (iv) brain diffusion-weighted imaging (to derive optic radiation fractional anisotropy, radial diffusivity, and axial diffusivity). Mixed-effects and multivariate regression models were performed, adjusting for age, gender, and optic radiation lesion load. These identified changes over time and associations between early optic nerve measures and 1-year global optic radiation/clinical measures. The fractional anisotropy in patients’ optic radiations decreased ( P = 0.018) and radial diffusivity increased ( P = 0.002) over 1 year following optic neuritis, whereas optic radiation measures were unchanged in controls. Also, smaller cross-sectional areas of affected optic nerves at 3 months post-optic neuritis predicted lower fractional anisotropy and higher radial diffusivity at 1 year ( P = 0.007) in the optic radiations, whereas none of the inflammatory measures of the optic nerve predicted changes in optic radiations. Finally, greater Gd-enhanced lesion length at baseline and greater optic nerve proton density-lesion length at 1 year were associated with worse visual function at 1 year ( P = 0.034 for both). Neither the cross-sectional area of the affected optic nerve after optic neuritis nor the damage in optic radiations was associated with 1-year visual outcome. Our longitudinal study shows that, after optic neuritis, there is progressive damage to the optic radiations, greater in patients with early residual optic nerve atrophy, even after adjusting for optic radiation lesions. These findings provide evidence for trans-synaptic degeneration. PMID:26912640

  18. Magnetic resonance imaging evidence for presymptomatic change in thalamus and caudate in familial Alzheimer's disease.

    PubMed

    Ryan, Natalie S; Keihaninejad, Shiva; Shakespeare, Timothy J; Lehmann, Manja; Crutch, Sebastian J; Malone, Ian B; Thornton, John S; Mancini, Laura; Hyare, Harpreet; Yousry, Tarek; Ridgway, Gerard R; Zhang, Hui; Modat, Marc; Alexander, Daniel C; Rossor, Martin N; Ourselin, Sebastien; Fox, Nick C

    2013-05-01

    Amyloid imaging studies of presymptomatic familial Alzheimer's disease have revealed the striatum and thalamus to be the earliest sites of amyloid deposition. This study aimed to investigate whether there are associated volume and diffusivity changes in these subcortical structures during the presymptomatic and symptomatic stages of familial Alzheimer's disease. As the thalamus and striatum are involved in neural networks subserving complex cognitive and behavioural functions, we also examined the diffusion characteristics in connecting white matter tracts. A cohort of 20 presenilin 1 mutation carriers underwent volumetric and diffusion tensor magnetic resonance imaging, neuropsychological and clinical assessments; 10 were symptomatic, 10 were presymptomatic and on average 5.6 years younger than their expected age at onset; 20 healthy control subjects were also studied. We conducted region of interest analyses of volume and diffusivity changes in the thalamus, caudate, putamen and hippocampus and examined diffusion behaviour in the white matter tracts of interest (fornix, cingulum and corpus callosum). Voxel-based morphometry and tract-based spatial statistics were also used to provide unbiased whole-brain analyses of group differences in volume and diffusion indices, respectively. We found that reduced volumes of the left thalamus and bilateral caudate were evident at a presymptomatic stage, together with increased fractional anisotropy of bilateral thalamus and left caudate. Although no significant hippocampal volume loss was evident presymptomatically, reduced mean diffusivity was observed in the right hippocampus and reduced mean and axial diffusivity in the right cingulum. In contrast, symptomatic mutation carriers showed increased mean, axial and in particular radial diffusivity, with reduced fractional anisotropy, in all of the white matter tracts of interest. The symptomatic group also showed atrophy and increased mean diffusivity in all of the subcortical grey matter regions of interest, with increased fractional anisotropy in bilateral putamen. We propose that axonal injury may be an early event in presymptomatic Alzheimer's disease, causing an initial fall in axial and mean diffusivity, which then increases with loss of axonal density. The selective degeneration of long-coursing white matter tracts, with relative preservation of short interneurons, may account for the increase in fractional anisotropy that is seen in the thalamus and caudate presymptomatically. It may be owing to their dense connectivity that imaging changes are seen first in the thalamus and striatum, which then progress to involve other regions in a vulnerable neuronal network.

  19. Impact of time-of-day on diffusivity measures of brain tissue derived from diffusion tensor imaging.

    PubMed

    Thomas, Cibu; Sadeghi, Neda; Nayak, Amrita; Trefler, Aaron; Sarlls, Joelle; Baker, Chris I; Pierpaoli, Carlo

    2018-06-01

    Diurnal fluctuations in MRI measures of structural and functional properties of the brain have been reported recently. These fluctuations may have a physiological origin, since they have been detected using different MRI modalities, and cannot be explained by factors that are typically known to confound MRI measures. While preliminary evidence suggests that measures of structural properties of the brain based on diffusion tensor imaging (DTI) fluctuate as a function of time-of-day (TOD), the underlying mechanism has not been investigated. Here, we used a longitudinal within-subjects design to investigate the impact of time-of-day on DTI measures. In addition to using the conventional monoexponential tensor model to assess TOD-related fluctuations, we used a dual compartment tensor model that allowed us to directly assess if any change in DTI measures is due to an increase in CSF/free-water volume fraction or due to an increase in water diffusivity within the parenchyma. Our results show that Trace or mean diffusivity, as measured using the conventional monoexponential tensor model tends to increase systematically from morning to afternoon scans at the interface of grey matter/CSF, most prominently in the major fissures and the sulci of the brain. Interestingly, in a recent study of the glymphatic system, these same regions were found to show late enhancement after intrathecal injection of a CSF contrast agent. The increase in Trace also impacts DTI measures of diffusivity such as radial and axial diffusivity, but does not affect fractional anisotropy. The dual compartment analysis revealed that the increase in diffusivity measures from PM to AM was driven by an increase in the volume fraction of CSF-like free-water. Taken together, our findings provide important insight into the likely physiological origins of diurnal fluctuations in MRI measurements of structural properties of the brain. Published by Elsevier Inc.

  20. Design-for-manufacture of gradient-index optical systems using time-varying boundary condition diffusion

    NASA Astrophysics Data System (ADS)

    Harkrider, Curtis Jason

    2000-08-01

    The incorporation of gradient-index (GRIN) material into optical systems offers novel and practical solutions to lens design problems. However, widespread use of gradient-index optics has been limited by poor correlation between gradient-index designs and the refractive index profiles produced by ion exchange between glass and molten salt. Previously, a design-for- manufacture model was introduced that connected the design and fabrication processes through use of diffusion modeling linked with lens design software. This project extends the design-for-manufacture model into a time- varying boundary condition (TVBC) diffusion model. TVBC incorporates the time-dependent phenomenon of melt poisoning and introduces a new index profile control method, multiple-step diffusion. The ions displaced from the glass during the ion exchange fabrication process can reduce the total change in refractive index (Δn). Chemical equilibrium is used to model this melt poisoning process. Equilibrium experiments are performed in a titania silicate glass and chemically analyzed. The equilibrium model is fit to ion concentration data that is used to calculate ion exchange boundary conditions. The boundary conditions are changed purposely to control the refractive index profile in multiple-step TVBC diffusion. The glass sample is alternated between ion exchange with a molten salt bath and annealing. The time of each diffusion step can be used to exert control on the index profile. The TVBC computer model is experimentally verified and incorporated into the design- for-manufacture subroutine that runs in lens design software. The TVBC design-for-manufacture model is useful for fabrication-based tolerance analysis of gradient-index lenses and for the design of manufactureable GRIN lenses. Several optical elements are designed and fabricated using multiple-step diffusion, verifying the accuracy of the model. The strength of multiple-step diffusion process lies in its versatility. An axicon, imaging lens, and curved radial lens, all with different index profile requirements, are designed out of a single glass composition.

  1. Planar laser imaging of differential molecular diffusion in gas-phase turbulent jets

    NASA Astrophysics Data System (ADS)

    Brownell, C. J.; Su, L. K.

    2008-03-01

    Planar laser Rayleigh scattering yields quantitative, two-dimensional measurements of differential diffusion in a turbulent propane-helium jet issuing into air. The jet exit Reynolds number ranges from 1000 to 3000, corresponding to estimated outer-scale Reynolds numbers from 4300 to 13 000. Using a technique originally proposed by Bilger and Dibble [Combust. Sci. Technol. 28, 161 (1982)], the imaging measurements allow direct determination of a normalized scalar difference quantity ξ. For the lower Re, significant differential diffusion develops in the pretransitional portion of the flow. Downstream of the turbulent transition, radial profiles of mean ξ take on a characteristic form, with an excess of the less-diffusive propane on the jet boundary. This characteristic form is independent of Reynolds number, and is thus apparently independent of the degree of differential diffusion in the pretransition range. Evolution of the ξ fields in the turbulent part of the flow is surprisingly consistent with the mixing of conventional scalar quantities. Fluctuation profiles of ξ have a self-similar, bimodal shape for each Re, and power spectra of ξ are monotonically decreasing, with a distinct k-5/3 inertial range. This spectral form is at odds with prior analytical and computational results in isotropic turbulence, which predicted that the spectrum would show a peak intermediate between the diffusive cutoffs of the individual scalars. The discrepancy appears to be due to the forcing applied in the simulations; the differential diffusion in the experiments preferentially develops in the jet near field, so the resulting evolution is more akin to a decay process. This is further emphasized by the observation that the thickness of ξ structures in the jet decreases with downstream distance. The present results indicate that consideration of differential diffusion must account for the details of the flow configuration, particularly the uniformity of turbulence levels. This has important implications for reacting flows, where local laminarization by heat release can be significant.

  2. Electroluminescence pulse shape and electron diffusion in liquid argon measured in a dual-phase TPC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agnes, P.; et al.

    We report the measurement of the longitudinal diffusion constant in liquid argon with the DarkSide-50 dual-phase time projection chamber. The measurement is performed at drift electric fields of 100 V/cm, 150 V/cm, and 200 V/cm using high statisticsmore » $$^{39}$$Ar decays from atmospheric argon. We derive an expression to describe the pulse shape of the electroluminescence signal (S2) in dual-phase TPCs. The derived S2 pulse shape is fit to events from the uppermost portion of the TPC in order to characterize the radial dependence of the signal. The results are provided as inputs to the measurement of the longitudinal diffusion constant DL, which we find to be (4.12 $$\\pm$$ 0.04) cm$^2$/s for a selection of 140keV electron recoil events in 200V/cm drift field and 2.8kV/cm extraction field. To study the systematics of our measurement we examine datasets of varying event energy, field strength, and detector volume yielding a weighted average value for the diffusion constant of (4.09 $$\\pm$$ 0.09) cm$^2$ /s. The measured longitudinal diffusion constant is observed to have an energy dependence, and within the studied energy range the result is systematically lower than other results in the literature.« less

  3. Uniform spatial distribution of collagen fibril radii within tendon implies local activation of pC-collagen at individual fibrils

    NASA Astrophysics Data System (ADS)

    Rutenberg, Andrew D.; Brown, Aidan I.; Kreplak, Laurent

    2016-08-01

    Collagen fibril cross-sectional radii show no systematic variation between the interior and the periphery of fibril bundles, indicating an effectively constant rate of collagen incorporation into fibrils throughout the bundle. Such spatially homogeneous incorporation constrains the extracellular diffusion of collagen precursors from sources at the bundle boundary to sinks at the growing fibrils. With a coarse-grained diffusion equation we determine stringent bounds, using parameters extracted from published experimental measurements of tendon development. From the lack of new fibril formation after birth, we further require that the concentration of diffusing precursors stays below the critical concentration for fibril nucleation. We find that the combination of the diffusive bound, which requires larger concentrations to ensure homogeneous fibril radii, and lack of nucleation, which requires lower concentrations, is only marginally consistent with fully processed collagen using conservative bounds. More realistic bounds may leave no consistent concentrations. Therefore, we propose that unprocessed pC-collagen diffuses from the bundle periphery followed by local C-proteinase activity and subsequent collagen incorporation at each fibril. We suggest that C-proteinase is localized within bundles, at fibril surfaces, during radial fibrillar growth. The much greater critical concentration of pC-collagen, as compared to fully processed collagen, then provides broad consistency between homogeneous fibril radii and the lack of fibril nucleation during fibril growth.

  4. The Impact of Cognitive Training on Cerebral White Matter in Community-Dwelling Elderly: One-Year Prospective Longitudinal Diffusion Tensor Imaging Study.

    PubMed

    Cao, Xinyi; Yao, Ye; Li, Ting; Cheng, Yan; Feng, Wei; Shen, Yuan; Li, Qingwei; Jiang, Lijuan; Wu, Wenyuan; Wang, Jijun; Sheng, Jianhua; Feng, Jianfeng; Li, Chunbo

    2016-09-15

    It has been shown that cognitive training (CogTr) is effective and recuperative for older adults, and can be used to fight against cognitive decline. In this study, we investigated whether behavioural gains from CogTr would extend to white matter (WM) microstructure, and whether training-induced changes in WM integrity would be associated with improvements in cognitive function, using diffusion tensor imaging (DTI). 48 healthy community elderly were either assigned to multi-domain or single-domain CogTr groups to receive 24 sessions over 12 weeks, or to a control group. DTI was performed at both baseline and 12-month follow-up. Positive effects of multi-domain CogTr on long-term changes in DTI indices were found in posterior parietal WM. Participants in the multi-domain group showed a trend of long-term decrease in axial diffusivity (AD) without significant change in fractional anisotropy (FA), mean diffusivity (MD) or radial diffusivity (RD), while those in the control group displayed a significant FA decrease, and an increase in MD and RD. In addition, significant relationships between an improvement in processing speed and changes in RD, MD and AD were found in the multi-domain group. These findings support the hypothesis that plasticity of WM can be modified by CogTr, even in late adulthood.

  5. Calibrated imaging reveals altered grey matter metabolism related to white matter microstructure and symptom severity in multiple sclerosis.

    PubMed

    Hubbard, Nicholas A; Turner, Monroe P; Ouyang, Minhui; Himes, Lyndahl; Thomas, Binu P; Hutchison, Joanna L; Faghihahmadabadi, Shawheen; Davis, Scott L; Strain, Jeremy F; Spence, Jeffrey; Krawczyk, Daniel C; Huang, Hao; Lu, Hanzhang; Hart, John; Frohman, Teresa C; Frohman, Elliot M; Okuda, Darin T; Rypma, Bart

    2017-11-01

    Multiple sclerosis (MS) involves damage to white matter microstructures. This damage has been related to grey matter function as measured by standard, physiologically-nonspecific neuroimaging indices (i.e., blood-oxygen-level dependent signal [BOLD]). Here, we used calibrated functional magnetic resonance imaging and diffusion tensor imaging to examine the extent to which specific, evoked grey matter physiological processes were associated with white matter diffusion in MS. Evoked changes in BOLD, cerebral blood flow (CBF), and oxygen metabolism (CMRO 2 ) were measured in visual cortex. Individual differences in the diffusion tensor measure, radial diffusivity, within occipital tracts were strongly associated with MS patients' BOLD and CMRO 2 . However, these relationships were in opposite directions, complicating the interpretation of the relationship between BOLD and white matter microstructural damage in MS. CMRO 2 was strongly associated with individual differences in patients' fatigue and neurological disability, suggesting that alterations to evoked oxygen metabolic processes may be taken as a marker for primary symptoms of MS. This work demonstrates the first application of calibrated and diffusion imaging together and details the first application of calibrated functional MRI in a neurological population. Results lend support for neuroenergetic hypotheses of MS pathophysiology and provide an initial demonstration of the utility of evoked oxygen metabolism signals for neurology research. Hum Brain Mapp 38:5375-5390, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. Serial Diffusion Tensor Imaging of the Optic Radiations after Acute Optic Neuritis.

    PubMed

    Kolbe, Scott C; van der Walt, Anneke; Butzkueven, Helmut; Klistorner, Alexander; Egan, Gary F; Kilpatrick, Trevor J

    2016-01-01

    Previous studies have reported diffusion tensor imaging (DTI) changes within the optic radiations of patients after optic neuritis (ON). We aimed to study optic radiation DTI changes over 12 months following acute ON and to study correlations between DTI parameters and damage to the optic nerve and primary visual cortex (V1). We measured DTI parameters [fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD)] from the optic radiations of 38 acute ON patients at presentation and 6 and 12 months after acute ON. In addition, we measured retinal nerve fibre layer thickness, visual evoked potential amplitude, optic radiation lesion load, and V1 thickness. At baseline, FA was reduced and RD and MD were increased compared to control. Over 12 months, FA reduced in patients at an average rate of -2.6% per annum (control = -0.51%; p = 0.006). Change in FA, RD, and MD correlated with V1 thinning over 12 months (FA: R = 0.450, p = 0.006; RD: R = -0.428, p = 0.009; MD: R = -0.365, p = 0.029). In patients with no optic radiation lesions, AD significantly correlated with RNFL thinning at 12 months (R = 0.489, p = 0.039). In conclusion, DTI can detect optic radiation changes over 12 months following acute ON that correlate with optic nerve and V1 damage.

  7. Serial Diffusion Tensor Imaging of the Optic Radiations after Acute Optic Neuritis

    PubMed Central

    van der Walt, Anneke; Butzkueven, Helmut; Klistorner, Alexander; Egan, Gary F.; Kilpatrick, Trevor J.

    2016-01-01

    Previous studies have reported diffusion tensor imaging (DTI) changes within the optic radiations of patients after optic neuritis (ON). We aimed to study optic radiation DTI changes over 12 months following acute ON and to study correlations between DTI parameters and damage to the optic nerve and primary visual cortex (V1). We measured DTI parameters [fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD)] from the optic radiations of 38 acute ON patients at presentation and 6 and 12 months after acute ON. In addition, we measured retinal nerve fibre layer thickness, visual evoked potential amplitude, optic radiation lesion load, and V1 thickness. At baseline, FA was reduced and RD and MD were increased compared to control. Over 12 months, FA reduced in patients at an average rate of −2.6% per annum (control = −0.51%; p = 0.006). Change in FA, RD, and MD correlated with V1 thinning over 12 months (FA: R = 0.450, p = 0.006; RD: R = −0.428, p = 0.009; MD: R = −0.365, p = 0.029). In patients with no optic radiation lesions, AD significantly correlated with RNFL thinning at 12 months (R = 0.489, p = 0.039). In conclusion, DTI can detect optic radiation changes over 12 months following acute ON that correlate with optic nerve and V1 damage. PMID:27555964

  8. In vivo assessment of peripheral nerve regeneration by diffusion tensor imaging.

    PubMed

    Morisaki, Shinsuke; Kawai, Yuko; Umeda, Masahiro; Nishi, Mayumi; Oda, Ryo; Fujiwara, Hiroyoshi; Yamada, Kei; Higuchi, Toshihiro; Tanaka, Chuzo; Kawata, Mitsuhiro; Kubo, Toshikazu

    2011-03-01

    To evaluate the sensitivity of diffusion tensor imaging (DTI) in assessing peripheral nerve regeneration in vivo. We assessed the changes in the DTI parameters and histological analyses after nerve injury to examine degeneration and regeneration in the rat sciatic nerves. For magnetic resonance imaging (MRI), 16 rats were randomly divided into two groups: group P (permanently crushed; n = 7) and group T (temporally crushed; n = 9). Serial MRI of the right leg was performed before the operation, and then performed at the timepoints of 1, 2, 3, and 4 weeks after the crush injury. The changes in fractional anisotropy (FA), axial diffusivity (λ(∥)), and radial diffusivity (λ(⟂)) were quantified. For histological analyses, the number of axons and the myelinated axon areas were quantified. Decreased FA and increased λ(⟂) were observed in the degenerative phase, and increased FA and decreased λ(⟂) were observed in the regenerative phase. The changes in FA and λ(⟂) were strongly correlated with histological changes, including axonal and myelin regeneration. DTI parameters, especially λ(⟂) , can be good indicators for peripheral nerve regeneration and can be applied as noninvasive diagnostic tools for a variety of neurological diseases. Copyright © 2011 Wiley-Liss, Inc.

  9. A new solar cycle model including meridional circulation

    NASA Technical Reports Server (NTRS)

    Wang, Y.-M.; Sheeley, N. R., Jr.; Nash, A. G.

    1991-01-01

    A kinematic model is presented for the solar cycle which includes not only the transport of magnetic flux by supergranular diffusion and a poleward bulk flow at the sun's surface, but also the effects of turbulent diffusion and an equatorward 'return flow' beneath the surface. As in the earlier models of Babcock and Leighton, the rotational shearing of a subsurface poloidal field generates toroidal flux that erupts at the surface in the form of bipolar magnetic regions. However, such eruptions do not result in any net loss of toroidal flux from the sun (as assumed by Babcock and Leighton); instead, the large-scale toroidal field is destroyed both by 'unwinding' as the local poloidal field reverses its polarity, and by diffusion as the toroidal flux is transported equatorward by the subsurface flow and merged with its opposite hemisphere counterpart. The inclusion of meridional circulation allows stable oscillations of the magnetic field, accompanied by the equatorward progression of flux eruptions, to be achieved even in the absence of a radial gradient in the angular velocity. An illustrative case in which a subsurface flow speed of order 1 m/s and subsurface diffusion rate of order 10 sq km/s yield 22-yr oscillations in qualitative agreement with observations.

  10. An axisymmetric non-hydrostatic model for double-diffusive water systems

    NASA Astrophysics Data System (ADS)

    Hilgersom, Koen; Zijlema, Marcel; van de Giesen, Nick

    2018-02-01

    The three-dimensional (3-D) modelling of water systems involving double-diffusive processes is challenging due to the large computation times required to solve the flow and transport of constituents. In 3-D systems that approach axisymmetry around a central location, computation times can be reduced by applying a 2-D axisymmetric model set-up. This article applies the Reynolds-averaged Navier-Stokes equations described in cylindrical coordinates and integrates them to guarantee mass and momentum conservation. The discretized equations are presented in a way that a Cartesian finite-volume model can be easily extended to the developed framework, which is demonstrated by the implementation into a non-hydrostatic free-surface flow model. This model employs temperature- and salinity-dependent densities, molecular diffusivities, and kinematic viscosity. One quantitative case study, based on an analytical solution derived for the radial expansion of a dense water layer, and two qualitative case studies demonstrate a good behaviour of the model for seepage inflows with contrasting salinities and temperatures. Four case studies with respect to double-diffusive processes in a stratified water body demonstrate that turbulent flows are not yet correctly modelled near the interfaces and that an advanced turbulence model is required.

  11. Ultrafast Spectral Diffusion of the First Subband Exciton in Single-Wall Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Schilling, Daniel; Hertel, Tobias

    2013-03-01

    The width of optical transitions in semiconductors is determined by homogeneous and inhomogeneous contributions. Here, we report on the determination of homogeneous linewidths for the first exciton subband transition and the dynamics of spectral diffusion in single-wall carbon nanotubes (SWNTs) using one- and two-dimensional time resolved spectral hole burning spectroscopy. Our investigation of highly purified semiconducting (6,5)-SWNTs suggests that room temperature homogeneous linewidths are on the order of 4 meV and are rapidly broadened by an ultrafast sub-ps spectral diffusion process. These findings are supported by our off-resonant excitation experiments where we observe sub-ps population transfer reflecting the thermal distribution of energy levels around the first subband exciton transition. The results of temperature-dependent spectral hole burning experiments between 17 K and 293 K suggest that homogeneous linewidths are due to exciton interaction with low energy optical phonons, most likely of the radial breathing mode type. In contrast, we find that inhomogeneous broadening is determined by an electronic degree of freedom such as ultrafast intra-tube exciton diffusion which is characteristic and unique for excitons in these one-dimensional semiconductors.

  12. The structural changes of water ice I during warmup

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Blake, David F.

    1994-01-01

    The polymorph transitions of vapor deposited water ice I during warmup from 15 K to 210 K was mapped by means of selected area electron diffraction. The polymorph transitions account for many phenomena observed in laboratory analog studies of cometary outgassing and radial diffusion in UV photolyzed interstellar ices.

  13. Silicon-fiber blanket solar-cell array concept

    NASA Technical Reports Server (NTRS)

    Eliason, J. T.

    1973-01-01

    Proposed economical manufacture of solar-cell arrays involves parallel, planar weaving of filaments made of doped silicon fibers with diffused radial junction. Each filament is a solar cell connected either in series or parallel with others to form a blanket of deposited grids or attached electrode wire mesh screens.

  14. The role of fluctuation-induced transport in a toroidal plasma with strong radial electric fields

    NASA Technical Reports Server (NTRS)

    Roth, J. R.; Krawczonek, W. M.; Powers, E. J.; Hong, J. Y.; Kim, Y. C.

    1981-01-01

    Previous work employing digitally implemented spectral analysis techniques is extended to demonstrate that radial fluctuation-induced transport is the dominant ion transport mechanism in an electric field dominated toroidal plasma. Such transport can be made to occur against a density gradient, and hence may have a very beneficial effect on confinement in toroidal plasmas of fusion interest. It is shown that Bohm or classical diffusion down a density gradient, the collisional Pedersen-current mechanism, and the collisionless electric field gradient mechanism described by Cole (1976) all played a minor role, if any, in the radial transport of this plasma.

  15. Diffusion tensor imaging of normal-appearing white matter in mild cognitive impairment and early Alzheimer disease: preliminary evidence of axonal degeneration in the temporal lobe.

    PubMed

    Huang, J; Friedland, R P; Auchus, A P

    2007-01-01

    Diffusion tensor imaging (DTI) is a sensitive technique for studying cerebral white matter. We used DTI to characterize microstructural white matter changes and their associations with cognitive dysfunction in Alzheimer disease (AD) and mild cognitive impairment (MCI). We studied elderly subjects with mild AD (n = 6), MCI (n = 11), or normal cognition (n = 8). A standardized clinical and neuropsychological evaluation was conducted on each subject. DTI images were acquired, and fractional anisotropy (FA), axial diffusivity (DA), and radial diffusivity (DR) of normal-appearing white matter (NAWM) in frontal, temporal, parietal, and occipital lobes were determined. These diffusion measurements were compared across the 3 groups, and significant differences were further examined for correlations with tests of cognitive function. Compared with normal controls, AD subjects demonstrated decreased FA and increased DR in the temporal, parietal, and frontal NAWM and decreased DA in temporal NAWM. MCI subjects also showed decreased FA and decreased DA in temporal NAWM, with decreased FA and increased DR in parietal NAWM. Diffusion measurements showed no differences in occipital NAWM. Across all subjects, temporal lobe FA and DR correlated with episodic memory, frontal FA and DR correlated with executive function, and parietal DR significantly correlated with visuospatial ability. We found evidence for functionally relevant microstructural changes in the NAWM of patients with AD and MCI. These changes were present in brain regions serving higher cortical functions, but not in regions serving primary functions, and are consistent with a hypothesized loss of axonal processes in the temporal lobe.

  16. Confinement of the solar tachocline by a cyclic dynamo magnetic field

    NASA Astrophysics Data System (ADS)

    Barnabé, Roxane; Strugarek, Antoine; Charbonneau, Paul; Brun, Allan Sacha; Zahn, Jean-Paul

    2017-05-01

    Context. The surprising thinness of the solar tachocline is still not understood with certainty today. Among the numerous possible scenarios suggested to explain its radial confinement, one hypothesis is based on Maxwell stresses that are exerted by the cyclic dynamo magnetic field of the Sun penetrating over a skin depth below the turbulent convection zone. Aims: Our goal is to assess under which conditions (turbulence level in the tachocline, strength of the dynamo-generated field, spreading mechanism) this scenario can be realized in the solar tachocline. Methods: We develop a simplified 1D model of the upper tachocline under the influence of an oscillating magnetic field imposed from above. The turbulent transport is parametrized with enhanced turbulent diffusion (or anti-diffusion) coefficients. Two main processes that thicken the tachocline are considered; either turbulent viscous spreading or radiative spreading. An extensive parameter study is carried out to establish the physical parameter regimes under which magnetic confinement of the tachocline that is due to a surface dynamo field can be realized. Results: We have explored a large range of magnetic field amplitudes, viscosities, ohmic diffusivities and thermal diffusivities. We find that, for large but still realistic magnetic field strengths, the differential rotation can be suppressed in the upper radiative zone (and hence the tachocline confined) if weak turbulence is present (with an enhanced ohmic diffusivity of η> 107-8 cm2/ s), even in the presence of radiative spreading. Conclusions: Our results show that a dynamo magnetic field can, in the presence of weak turbulence, prevent the inward burrowing of a tachocline subject to viscous diffusion or radiative spreading.

  17. Anomalous, non-Gaussian tracer diffusion in crowded two-dimensional environments

    NASA Astrophysics Data System (ADS)

    Ghosh, Surya K.; Cherstvy, Andrey G.; Grebenkov, Denis S.; Metzler, Ralf

    2016-01-01

    A topic of intense current investigation pursues the question of how the highly crowded environment of biological cells affects the dynamic properties of passively diffusing particles. Motivated by recent experiments we report results of extensive simulations of the motion of a finite sized tracer particle in a heterogeneously crowded environment made up of quenched distributions of monodisperse crowders of varying sizes in finite circular two-dimensional domains. For given spatial distributions of monodisperse crowders we demonstrate how anomalous diffusion with strongly non-Gaussian features arises in this model system. We investigate both biologically relevant situations of particles released either at the surface of an inner domain or at the outer boundary, exhibiting distinctly different features of the observed anomalous diffusion for heterogeneous distributions of crowders. Specifically we reveal an asymmetric spreading of tracers even at moderate crowding. In addition to the mean squared displacement (MSD) and local diffusion exponent we investigate the magnitude and the amplitude scatter of the time averaged MSD of individual tracer trajectories, the non-Gaussianity parameter, and the van Hove correlation function. We also quantify how the average tracer diffusivity varies with the position in the domain with a heterogeneous radial distribution of crowders and examine the behaviour of the survival probability and the dynamics of the tracer survival probability. Inter alia, the systems we investigate are related to the passive transport of lipid molecules and proteins in two-dimensional crowded membranes or the motion in colloidal solutions or emulsions in effectively two-dimensional geometries, as well as inside supercrowded, surface adhered cells.

  18. Development of a Radial Deconsolidation Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helmreich, Grant W.; Montgomery, Fred C.; Hunn, John D.

    2015-12-01

    A series of experiments have been initiated to determine the retention or mobility of fission products* in AGR fuel compacts [Petti, et al. 2010]. This information is needed to refine fission product transport models. The AGR-3/4 irradiation test involved half-inch-long compacts that each contained twenty designed-to-fail (DTF) particles, with 20-μm thick carbon-coated kernels whose coatings were deliberately fabricated such that they would crack under irradiation, providing a known source of post-irradiation isotopes. The DTF particles in these compacts were axially distributed along the compact centerline so that the diffusion of fission products released from the DTF kernels would be radiallymore » symmetric [Hunn, et al. 2012; Hunn et al. 2011; Kercher, et al. 2011; Hunn, et al. 2007]. Compacts containing DTF particles were irradiated at Idaho National Laboratory (INL) at the Advanced Test Reactor (ATR) [Collin, 2015]. Analysis of the diffusion of these various post-irradiation isotopes through the compact requires a method to radially deconsolidate the compacts so that nested-annular volumes may be analyzed for post-irradiation isotope inventory in the compact matrix, TRISO outer pyrolytic carbon (OPyC), and DTF kernels. An effective radial deconsolidation method and apparatus appropriate to this application has been developed and parametrically characterized.« less

  19. Design and performance of an 0.8 hub-tip ratio axial flow pump rotor with a blade tip diffusion factor of 0.55

    NASA Technical Reports Server (NTRS)

    Urasek, D. C.

    1972-01-01

    A 22.9-centimeter diameter axial flow rotor with a 0.8 hub-tip radius ratio, a design flow coefficient of 0.466, and a blade tip design diffusion factor of 0.55 was tested in cold water under both cavitating and noncavitating conditions. Radial surveys of the flow conditions at the rotor inlet and outlet were made. At design flow, the rotor produced an overall headrise coefficient of 0.360 with an overall efficiency of 95.0 percent. The efficiency remained greater than 88 percent over the entire flow coefficient range which varied from 0.350 to 0.615.

  20. Age-related reduced prefrontal-amygdala structural connectivity is associated with lower trait anxiety

    PubMed Central

    Clewett, David; Bachman, Shelby; Mather, Mara

    2014-01-01

    Objective A current neuroanatomical model of anxiety posits that greater structural connectivity between the amygdala and ventral prefrontal cortex (vPFC) facilitates regulatory control over the amygdala and helps reduce anxiety. However, some neuroimaging studies have reported contradictory findings, demonstrating a positive rather than negative association between trait anxiety and amygdala-vPFC white matter integrity. To help reconcile these findings, we tested the regulatory hypothesis of anxiety circuitry using aging as a model of white matter decline in the amygdala-vPFC pathway. Methods We used probabilistic tractography to trace connections between the amygdala and vPFC in 21 younger, 18 middle-aged, and 15 healthy older adults. The resulting tract estimates were used to extract three indices of white-matter integrity: fractional anisotropy (FA), radial diffusivity (RD) and axial diffusivity (AD). The relationship between these amygdala-vPFC structural connectivity measures and age and State-Trait Anxiety Inventory (STAI) scores were assessed. Results The tractography results revealed age-related decline in the FA (p = .005) and radial diffusivity (p = .002) of the amygdala-vPFC pathway. Contrary to the regulatory hypothesis, we found a positive rather than negative association between trait anxiety and right amygdala-vPFC FA (p = .01). Conclusion These findings argue against the notion that greater amygdala-vPFC structural integrity facilitates better anxiety outcomes in healthy adults. Instead, our results suggest that white matter degeneration in this network relates to lower anxiety in older adults. PMID:24635708

  1. Mathematical Development and Computational Analysis of Harmonic Phase-Magnetic Resonance Imaging (HARP-MRI) Based on Bloch Nuclear Magnetic Resonance (NMR) Diffusion Model for Myocardial Motion.

    PubMed

    Dada, Michael O; Jayeoba, Babatunde; Awojoyogbe, Bamidele O; Uno, Uno E; Awe, Oluseyi E

    2017-09-13

    Harmonic Phase-Magnetic Resonance Imaging (HARP-MRI) is a tagged image analysis method that can measure myocardial motion and strain in near real-time and is considered a potential candidate to make magnetic resonance tagging clinically viable. However, analytical expressions of radially tagged transverse magnetization in polar coordinates (which is required to appropriately describe the shape of the heart) have not been explored because the physics required to directly connect myocardial deformation of tagged Nuclear Magnetic Resonance (NMR) transverse magnetization in polar geometry and the appropriate harmonic phase parameters are not yet available. The analytical solution of Bloch NMR diffusion equation in spherical geometry with appropriate spherical wave tagging function is important for proper analysis and monitoring of heart systolic and diastolic deformation with relevant boundary conditions. In this study, we applied Harmonic Phase MRI method to compute the difference between tagged and untagged NMR transverse magnetization based on the Bloch NMR diffusion equation and obtained radial wave tagging function for analysis of myocardial motion. The analytical solution of the Bloch NMR equations and the computational simulation of myocardial motion as developed in this study are intended to significantly improve healthcare for accurate diagnosis, prognosis and treatment of cardiovascular related deceases at the lowest cost because MRI scan is still one of the most expensive anywhere. The analysis is fundamental and significant because all Magnetic Resonance Imaging techniques are based on the Bloch NMR flow equations.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karpetis, Adionos N.; Chen, J. Y.; Barlow, Robert S.

    Previously unpublished results from multiscalar point measurements in the series of piloted CH{sub 4}/air jet flames [R.S. Barlow, J.H. Frank, Proc. Combust. Inst. 27 (1998) 1087-1095] are presented and analyzed. The emphasis is on features of the data that reveal the relative importance of molecular diffusion and turbulent transport in these flames. The complete series A-F is considered. This includes laminar, transitional, and turbulent flames spanning a range in Reynolds number from 1100 to 44,800. Results on conditional means of species mass fractions, the differential diffusion parameter, and the state of the water-gas shift reaction all show that there ismore » an evolution in these flames from a scalar structure dominated by molecular diffusion to one dominated by turbulent transport. Long records of 6000 single-point samples at each of several selected locations in flame D are used to quantify the cross-stream (radial) dependence of conditional statistics of measured scalars. The cross-stream dependence of the conditional scalar dissipation is determined from 6000-shot, line-imaging measurements at selected locations. The cross-stream dependence of reactive scalars, which is most significant in the near field of the jet flame, is attributed to radial differences in both convective and local time scales of the flow. Results illustrate some potential limitations of common modeling assumptions when applied to laboratory-scale flames and, thus, provide a more complete context for interpretation of comparisons between experiments and model calculations.« less

  3. MRI quantification of non-Gaussian water diffusion in normal human kidney: a diffusional kurtosis imaging study.

    PubMed

    Huang, Yanqi; Chen, Xin; Zhang, Zhongping; Yan, Lifen; Pan, Dan; Liang, Changhong; Liu, Zaiyi

    2015-02-01

    Our aim was to prospectively evaluate the feasibility of diffusional kurtosis imaging (DKI) in normal human kidney and to report preliminary DKI measurements. Institutional review board approval and informed consent were obtained. Forty-two healthy volunteers underwent diffusion-weighted imaging (DWI) scans with a 3-T MR scanner. b values of 0, 500 and 1000 s/mm(2) were adopted. Maps of fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (D⊥), axial diffusivity (D||), mean kurtosis (MK), radial kurtosis (K⊥) and axial kurtosis (K||) were produced. Three representative axial slices in the upper pole, mid-zone and lower pole were selected in the left and right kidney. On each selected slice, three regions of interest were drawn on the renal cortex and another three on the medulla. Statistical comparison was performed with t-test and analysis of variance. Thirty-seven volunteers successfully completed the scans. No statistically significant differences were observed between the left and right kidney for all metrics (p values in the cortex: FA, 0.114; MD, 0.531; D⊥, 0.576; D||, 0.691; MK, 0.934; K⊥, 0.722; K||, 0.891; p values in the medulla: FA, 0.348; MD, 0.732; D⊥, 0.470; D||, 0.289; MK, 0.959; K⊥, 0.780; K||, 0.287). Kurtosis metrics (MK, K||, K⊥) obtained in the renal medulla were significantly (p <0.001) higher than those in the cortex (0.552 ± 0.04, 0.637 ± 0.07 and 0.530 ± 0.08 in the medulla and 0.373 ± 0.04, 0.492 ± 0.06 and 0.295 ± 0.06 in the cortex, respectively). For the diffusivity measures, FA of the medulla (0.356 ± 0.03) was higher than that of the cortex (0.179 ± 0.03), whereas MD, D⊥ and D|| (mm(2) /ms) were lower in the medulla than in the cortex (3.88 ± 0.09, 3.50 ± 0.23 and 4.65 ± 0.29 in the cortex and 2.88 ± 0.11, 2.32 ± 0.20 and 3.47 ± 0.31 in the medulla, respectively). Our results indicate that DKI is feasible in the human kidney. We have reported the preliminary DKI measurements of normal human kidney that demonstrate well the non-Gaussian behavior of water diffusion, especially in the renal medulla. Copyright © 2014 John Wiley & Sons, Ltd.

  4. Stochastic field-line wandering in magnetic turbulence with shear. II. Decorrelation trajectory method

    NASA Astrophysics Data System (ADS)

    Negrea, M.; Petrisor, I.; Shalchi, A.

    2017-11-01

    We study the diffusion of magnetic field lines in turbulence with magnetic shear. In the first part of the series, we developed a quasi-linear theory for this type of scenario. In this article, we employ the so-called DeCorrelation Trajectory method in order to compute the diffusion coefficients of stochastic magnetic field lines. The magnetic field configuration used here contains fluctuating terms which are described by the dimensionless functions bi(X, Y, Z), i = (x, y) and they are assumed to be Gaussian processes and are perpendicular with respect to the main magnetic field B0. Furthermore, there is also a z-component of the magnetic field depending on radial coordinate x (representing the gradient of the magnetic field) and a poloidal average component. We calculate the diffusion coefficients for magnetic field lines for different values of the magnetic Kubo number K, the dimensionless inhomogeneous magnetic parallel and perpendicular Kubo numbers KB∥, KB⊥ , as well as Ka v=bya vKB∥/KB⊥ .

  5. Convection Effects During Bulk Transparent Alloy Solidification in DECLIC-DSI and Phase-Field Simulations in Diffusive Conditions

    NASA Astrophysics Data System (ADS)

    Mota, F. L.; Song, Y.; Pereda, J.; Billia, B.; Tourret, D.; Debierre, J.-M.; Trivedi, R.; Karma, A.; Bergeon, N.

    2017-08-01

    To study the dynamical formation and evolution of cellular and dendritic arrays under diffusive growth conditions, three-dimensional (3D) directional solidification experiments were conducted in microgravity on a model transparent alloy onboard the International Space Station using the Directional Solidification Insert in the DEvice for the study of Critical LIquids and Crystallization. Selected experiments were repeated on Earth under gravity-driven fluid flow to evidence convection effects. Both radial and axial macrosegregation resulting from convection are observed in ground experiments, and primary spacings measured on Earth and microgravity experiments are noticeably different. The microgravity experiments provide unique benchmark data for numerical simulations of spatially extended pattern formation under diffusive growth conditions. The results of 3D phase-field simulations highlight the importance of accurately modeling thermal conditions that strongly influence the front recoil of the interface and the selection of the primary spacing. The modeling predictions are in good quantitative agreements with the microgravity experiments.

  6. Altering cortical connectivity: Remediation-induced changes in the white matter of poor readers

    PubMed Central

    Keller, Timothy A.; Just, Marcel Adam

    2009-01-01

    SUMMARY Neuroimaging studies using diffusion tensor imaging (DTI) have revealed regions of cerebral white matter with decreased microstructural organization (lower fractional anisotropy or FA) among poor readers. We examined whether 100 hours of intensive remedial instruction affected the white matter of 8–10-year-old poor readers. Prior to instruction, poor readers had significantly lower FA than good readers in a region of the left anterior centrum semiovale. The instruction resulted in a change in white matter (significantly increased FA), and in the very same region. The FA increase was correlated with a decrease in radial diffusivity (but not with a change in axial diffusivity), suggesting that myelination had increased. Furthermore, the FA increase was correlated with improvement in phonological decoding ability, clarifying the cognitive locus of the effect. The results demonstrate for the first time the capability of a behavioral intervention to bring about a positive change in cortico-cortical white matter tracts. PMID:20005820

  7. Modeling the Role of Incisures in Vertebrate Phototransduction

    PubMed Central

    Caruso, Giovanni; Bisegna, Paolo; Shen, Lixin; Andreucci, Daniele; Hamm, Heidi E.; DiBenedetto, Emmanuele

    2006-01-01

    Phototransduction is mediated by a G-protein-coupled receptor-mediated cascade, activated by light and localized to rod outer segment (ROS) disk membranes, which, in turn, drives a diffusion process of the second messengers cGMP and Ca2+ in the ROS cytosol. This process is hindered by disks—which, however, bear physical cracks, known as incisures, believed to favor the longitudinal diffusion of cGMP and Ca2+. This article is aimed at highlighting the biophysical functional role and significance of incisures, and their effect on the local and global response of the photocurrent. Previous work on this topic regarded the ROS as well stirred in the radial variables, lumped the diffusion mechanism on the longitudinal axis of the ROS, and replaced the cytosolic diffusion coefficients by effective ones, accounting for incisures through their total patent area only. The fully spatially resolved model recently published by our group is a natural tool to take into account other significant details of incisures, including their geometry and distribution. Using mathematical theories of homogenization and concentrated capacity, it is shown here that the complex diffusion process undergone by the second messengers cGMP and Ca2+ in the ROS bearing incisures can be modeled by a family of two-dimensional diffusion processes on the ROS cross sections, glued together by other two-dimensional diffusion processes, accounting for diffusion in the ROS outer shell and in the bladelike regions comprised by the stack of incisures. Based on this mathematical model, a code has been written, capable of incorporating an arbitrary number of incisures and activation sites, with any given arbitrary distribution within the ROS. The code is aimed at being an operational tool to perform numerical experiments of phototransduction, in rods with incisures of different geometry and structure, under a wide spectrum of operating conditions. The simulation results show that incisures have a dual biophysical function. On the one hand, since incisures line up from disk to disk, they create vertical cytoplasmic channels crossing the disks, thus facilitating diffusion of second messengers; on the other hand, at least in those species bearing multiple incisures, they divide the disks into lobes like the petals of a flower, thus confining the diffusion of activated phosphodiesterase and localizing the photon response. Accordingly, not only the total area of incisures, but their geometrical shape and distribution as well, significantly influence the global photoresponse. PMID:16714347

  8. Processes of Origin and Duration of Growth of Blueberries at Meridiani Planum

    NASA Astrophysics Data System (ADS)

    Coleman, M.

    2007-07-01

    The process behind blueberries needs to be understood. The questions why did they form, and why are they round, can be answered by: chemical energy and radial diffusion. Blueberry growth energy is olivine serpentinization for two possible precursors, FeS or FeO.OH with modeled 830 yrs to grow.

  9. A fully-neoclassical finite-orbit-width version of the CQL3D Fokker–Planck code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrov, Yu V.; Harvey, R. W.

    The time-dependent bounce-averaged CQL3D flux-conservative finite-difference Fokker–Planck equation (FPE) solver has been upgraded to include finite-orbit-width (FOW) capabilities which are necessary for an accurate description of neoclassical transport, losses to the walls, and transfer of particles, momentum, and heat to the scrape-off layer. The FOW modifications are implemented in the formulation of the neutral beam source, collision operator, RF quasilinear diffusion operator, and in synthetic particle diagnostics. The collisional neoclassical radial transport appears naturally in the FOW version due to the orbit-averaging of local collision coefficients coupled with transformation coefficients from local (R, Z) coordinates along each guiding-center orbit tomore » the corresponding midplane computational coordinates, where the FPE is solved. In a similar way, the local quasilinear RF diffusion terms give rise to additional radial transport of orbits. We note that the neoclassical results are obtained for ‘full’ orbits, not dependent on a common small orbit-width approximation. Results of validation tests for the FOW version are also presented.« less

  10. A fully-neoclassical finite-orbit-width version of the CQL3D Fokker–Planck code

    DOE PAGES

    Petrov, Yu V.; Harvey, R. W.

    2016-09-08

    The time-dependent bounce-averaged CQL3D flux-conservative finite-difference Fokker–Planck equation (FPE) solver has been upgraded to include finite-orbit-width (FOW) capabilities which are necessary for an accurate description of neoclassical transport, losses to the walls, and transfer of particles, momentum, and heat to the scrape-off layer. The FOW modifications are implemented in the formulation of the neutral beam source, collision operator, RF quasilinear diffusion operator, and in synthetic particle diagnostics. The collisional neoclassical radial transport appears naturally in the FOW version due to the orbit-averaging of local collision coefficients coupled with transformation coefficients from local (R, Z) coordinates along each guiding-center orbit tomore » the corresponding midplane computational coordinates, where the FPE is solved. In a similar way, the local quasilinear RF diffusion terms give rise to additional radial transport of orbits. We note that the neoclassical results are obtained for ‘full’ orbits, not dependent on a common small orbit-width approximation. Results of validation tests for the FOW version are also presented.« less

  11. Creation and Distribution of CAIs in the Protoplanetary Nebula

    NASA Technical Reports Server (NTRS)

    Cuzzi, J. N.; Davis, S. S.; Dobrovolskis, A. R.

    2003-01-01

    CaAl rich refractory mineral inclusions (CAIs) found at 1 - 10% mass fraction in primitive chondrites appear to be several million years older than the dominant (chondrule) components in the same parent bodies. A prevalent concern is that it is difficult to retain CAIs for this long against gas-drag-induced radial drift into the sun. We assess a hot inner (turbulent) nebula context for CAI formation, using analytical models of nebula evolution and particle diffusion. We show that outward radial diffusion in a weakly turbulent nebula can prevent significant numbers of CAI-size particles from being lost into the sun for times of 1 - 3 x 10(exp 6) years. To match the CAI abundances quantitatively, we advocate an enhancement of the inner hot nebula in silicate-forming material, due to rapid inward migration of very primitive, silicate and carbon rich, meter-sized objects. 'Combustion' of the carbon into CO would make the CAI formation environment more reduced than solar, as certain observations imply. Abundant CO might also play a role in mass-independent chemical fractionation of oxygen isotopes as seen in CAIs and associated primitive, high-temperature condensates.

  12. The numerical study and comparison of radial basis functions in applications of the dual reciprocity boundary element method to convection-diffusion problems

    NASA Astrophysics Data System (ADS)

    Chanthawara, Krittidej; Kaennakham, Sayan; Toutip, Wattana

    2016-02-01

    The methodology of Dual Reciprocity Boundary Element Method (DRBEM) is applied to the convection-diffusion problems and investigating its performance is our first objective of the work. Seven types of Radial Basis Functions (RBF); Linear, Thin-plate Spline, Cubic, Compactly Supported, Inverse Multiquadric, Quadratic, and that proposed by [12], were closely investigated in order to numerically compare their effectiveness drawbacks etc. and this is taken as our second objective. A sufficient number of simulations were performed covering as many aspects as possible. Varidated against both exacts and other numerical works, the final results imply strongly that the Thin-Plate Spline and Linear type of RBF are superior to others in terms of both solutions' quality and CPU-time spent while the Inverse Multiquadric seems to poorly yield the results. It is also found that DRBEM can perform relatively well at moderate level of convective force and as anticipated becomes unstable when the problem becomes more convective-dominated, as normally found in all classical mesh-dependence methods.

  13. Approximation of a radial diffusion model with a multiple-rate model for hetero-disperse particle mixtures

    PubMed Central

    Ju, Daeyoung; Young, Thomas M.; Ginn, Timothy R.

    2012-01-01

    An innovative method is proposed for approximation of the set of radial diffusion equations governing mass exchange between aqueous bulk phase and intra-particle phase for a hetero-disperse mixture of particles such as occur in suspension in surface water, in riverine/estuarine sediment beds, in soils and in aquifer materials. For this purpose the temporal variation of concentration at several uniformly distributed points within a normalized representative particle with spherical, cylindrical or planar shape is fitted with a 2-domain linear reversible mass exchange model. The approximation method is then superposed in order to generalize the model to a hetero-disperse mixture of particles. The method can reduce the computational effort needed in solving the intra-particle mass exchange of a hetero-disperse mixture of particles significantly and also the error due to the approximation is shown to be relatively small. The method is applied to describe desorption batch experiment of 1,2-Dichlorobenzene from four different soils with known particle size distributions and it could produce good agreement with experimental data. PMID:18304692

  14. Conduction Channel Formation and Dissolution Due to Oxygen Thermophoresis/Diffusion in Hafnium Oxide Memristors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Suhas; Wang, Ziwen; Huang, Xiaopeng

    Due to the favorable operating power, endurance, speed, and density., transition-metal-oxide memristors, or resistive random-access memory (RRAM) switches, are under intense development for storage-class memory. Their commercial deployment critically depends on predictive compact models based on understanding nanoscale physiocochemical forces, which remains elusive and controversial owing to the difficulties in directly observing atomic motions during resistive switching, Here, using scanning transmission synchrotron X-ray spectromicroscopy to study in situ switching of hafnium oxide memristors, we directly observed the formation of a localized oxygen-deficiency-derived conductive channel surrounded by a low-conductivity ring of excess oxygen. Subsequent thermal annealing homogenized the segregated oxygen, resettingmore » the cells toward their as-grown resistance state. We show that the formation and dissolution of the conduction channel are successfully modeled by radial thermophoresis and Fick diffusion of oxygen atoms driven by Joule heating. This confirmation and quantification of two opposing nanoscale radial forces that affect bipolar memristor switching are important components for any future physics-based compact model for the electronic switching of these devices.« less

  15. Azimuthally averaged radial S(sub 100 microns)/S(sub 60 microns) dust color temperatures in spiral galaxies

    NASA Technical Reports Server (NTRS)

    Devereux, Nick A.

    1994-01-01

    The IRAS S(sub 100 micron)/S(sub 60 micron) dust color temperature profiles are presented for two nearby spiral galaxies M 101 and M 81. The radial dust temperature profiles provided an important constraint on the origin of the far-infrared luminosity. The observed dust temperature is compared with that expected for diffuse interstellar dust heated by the general interstellar radiation field within each galaxy. The implications for the contribution of cirrus to the far-infrared luminosity of M 101 and M 81 are discussed.

  16. A prospective microstructure imaging study in mixed-martial artists using geometric measures and diffusion tensor imaging: methods and findings

    PubMed Central

    Mayer, Andrew R.; Ling, Josef M.; Dodd, Andrew B.; Meier, Timothy B.; Hanlon, Faith M.; Klimaj, Stefan D.

    2018-01-01

    Although diffusion magnetic resonance imaging (dMRI) has been widely used to characterize the effects of repetitive mild traumatic brain injury (rmTBI), to date no studies have investigated how novel geometric models of microstructure relate to more typical diffusion tensor imaging (DTI) sequences. Moreover, few studies have evaluated the sensitivity of different registration pipelines (non-linear, linear and tract-based spatial statistics) for detecting dMRI abnormalities in clinical populations. Results from single-subject analyses in healthy controls (HC) indicated a strong negative relationship between fractional anisotropy (FA) and orientation dispersion index (ODI) in both white and gray matter. Equally important, only moderate relationships existed between all other estimates of free/intracellular water volume fractions and more traditional DTI metrics (FA, mean, axial and radial diffusivity). These findings suggest that geometric measures provide differential information about the cellular microstructure relative to traditional DTI measures. Results also suggest greater sensitivity for non-linear registration pipelines that maximize the anatomical information available in T1-weighted images. Clinically, rmTBI resulted in a pattern of decreased FA and increased ODI, largely overlapping in space, in conjunction with increased intracellular and free water fractions, highlighting the potential role of edema following repeated head trauma. In summary, current results suggest that geometric models of diffusion can provide relatively unique information regarding potential mechanisms of pathology that contribute to long-term neurological damage. PMID:27071950

  17. Directional diffusivity as a magnetic resonance (MR) biomarker in demyelinating disease

    NASA Astrophysics Data System (ADS)

    Benzinger, Tammie L. S.; Cross, Anne H.; Xu, Junqian; Naismith, Robert; Sun, Shu-Wei; Song, Sheng-Kwei

    2007-09-01

    Directional diffusivities derived from diffusion tensor magnetic resonance imaging (DTI) measurements describe water movement parallel to (λ ||, axial diffusivity) and perpendicular to (λ⊥radial diffusivity) axonal tracts. λ || and λ⊥ have been shown to differentially detect axon and myelin abnormalities in several mouse models of central nervous system white matter pathology in our laboratory. These models include experimental autoimmune encephalomyelitis (EAE), (1) myelin basic protein mutant mice with dysmyelination and intact axons, (2) cuprizone-induced demyelination, and remyelination, with reversible axon injury (2, 3) and a model of retinal ischemia in which retinal ganglion cell death is followed by Wallerian degeneration of optic nerve, with axonal injury preceding demyelination. (4) Decreased λ|| correlates with acute axonal injury and increased λ⊥ indicates myelin damage. (4) More recently, we have translated this approach to human MR, investigating acute and chronic optic neuritis in adults with multiple sclerosis, brain lesions in adults with multiple sclerosis, and acute disseminated encephalomyelitis (ADEM) in children. We are also investigating the use of this technique to probe the underlying structural change of the cervical spinal cord in acute and chronic T2- hyperintense lesions in spinal stenosis, trauma, and transverse myelitis. In each of these demyelinating diseases, the discrimination between axonal and myelin injury which we can achieve has important prognostic and therapeutic implications. For those patients with myelin injury but intact axons, early, directed drug therapy has the potential to prevent progression to axonal loss and permanent disability.

  18. Corticobulbar tract changes as predictors of dysarthria in childhood brain injury.

    PubMed

    Liégeois, Frédérique; Tournier, Jacques-Donald; Pigdon, Lauren; Connelly, Alan; Morgan, Angela T

    2013-03-05

    To identify corticobulbar tract changes that may predict chronic dysarthria in young people who have sustained a traumatic brain injury (TBI) in childhood using diffusion MRI tractography. We collected diffusion-weighted MRI data from 49 participants. We compared 17 young people (mean age 17 years, 10 months; on average 8 years postinjury) with chronic dysarthria who sustained a TBI in childhood (range 3-16 years) with 2 control groups matched for age and sex: 1 group of young people who sustained a traumatic injury but had no subsequent dysarthria (n = 15), and 1 group of typically developing individuals (n = 17). We performed tractography from spherical seed regions within the precentral gyrus white matter to track: 1) the hand-related corticospinal tract; 2) the dorsal corticobulbar tract, thought to correspond to the lips/larynx motor representation; and 3) the ventral corticobulbar tract, corresponding to the tongue representation. Despite widespread white matter damage, radial (perpendicular) diffusivity within the left dorsal corticobulbar tract was the best predictor of the presence of dysarthria after TBI. Diffusion metrics in this tract also predicted speech and oromotor performance across the whole group of TBI participants, with additional significant contributions from ventral speech tract volume in the right hemisphere. An intact left dorsal corticobulbar tract seems crucial to the normal execution of speech long term after acquired injury. Examining the speech-related motor pathways using diffusion-weighted MRI tractography offers a promising prognostic tool for people with acquired, developmental, or degenerative neurologic conditions likely to affect speech.

  19. Persistent Microstructural Deficits of Internal Capsule in One-Year Abstinent Male Methamphetamine Users: a Longitudinal Diffusion Tensor Imaging Study.

    PubMed

    Zhuang, Wenxu; Tang, Yingying; Zhong, Na; Jiang, Haifeng; Du, Jiang; Wang, Jijun; Zhao, Min

    2016-09-01

    White matter (WM) alterations have been reported in methamphetamine (MA) users. However, knowledge about longitudinal changes in WM during abstinence from MA remains unknown. The present study aimed to examine how WM changes in long-term MA abstinent, in particular, whether the WM deficits would recover as the duration of abstinence extended. Twenty male MA dependent individuals and 19 healthy controls (HCs) were recruited and participated in both clinical assessments and diffusion tensor imaging (DTI) scans. The MA group underwent two DTI scans, a baseline scan with a duration of abstinence of 6.4 months and and a follow-up scan with a duration of abstinence of 13.0 months. Tract-Based Spatial Statistics was utilized to conduct baseline DTI analysis of MA group compared with HCs. The clusters with significant group differences of factional anisotropy (FA) were extracted as region of interests (ROIs). Mean values of DTI measurements (FA, mean diffusivity, axial diffusivity and radial diffusivity) were calculated within the ROIs in each subject's native space at baseline and follow-up. The MA group showed significant lower FA in the right internal capsule and superior corona radiate than HCs. The deficits did not recover when the duration of abstinence from MA reached 13 months. No significant correlations were found between FA and clinical measurements. Our results suggested persistent microstructure deficits of WM tracts surrounding the basal ganglia in MA dependent individuals.

  20. A prospective microstructure imaging study in mixed-martial artists using geometric measures and diffusion tensor imaging: methods and findings.

    PubMed

    Mayer, Andrew R; Ling, Josef M; Dodd, Andrew B; Meier, Timothy B; Hanlon, Faith M; Klimaj, Stefan D

    2017-06-01

    Although diffusion magnetic resonance imaging (dMRI) has been widely used to characterize the effects of repetitive mild traumatic brain injury (rmTBI), to date no studies have investigated how novel geometric models of microstructure relate to more typical diffusion tensor imaging (DTI) sequences. Moreover, few studies have evaluated the sensitivity of different registration pipelines (non-linear, linear and tract-based spatial statistics) for detecting dMRI abnormalities in clinical populations. Results from single-subject analyses in healthy controls (HC) indicated a strong negative relationship between fractional anisotropy (FA) and orientation dispersion index (ODI) in both white and gray matter. Equally important, only moderate relationships existed between all other estimates of free/intracellular water volume fractions and more traditional DTI metrics (FA, mean, axial and radial diffusivity). These findings suggest that geometric measures provide differential information about the cellular microstructure relative to traditional DTI measures. Results also suggest greater sensitivity for non-linear registration pipelines that maximize the anatomical information available in T 1 -weighted images. Clinically, rmTBI resulted in a pattern of decreased FA and increased ODI, largely overlapping in space, in conjunction with increased intracellular and free water fractions, highlighting the potential role of edema following repeated head trauma. In summary, current results suggest that geometric models of diffusion can provide relatively unique information regarding potential mechanisms of pathology that contribute to long-term neurological damage.

  1. Combining tract- and atlas-based analysis reveals microstructural abnormalities in early Tourette syndrome children.

    PubMed

    Wen, Hongwei; Liu, Yue; Wang, Jieqiong; Rekik, Islem; Zhang, Jishui; Zhang, Yue; Tian, Hongwei; Peng, Yun; He, Huiguang

    2016-05-01

    Tourette syndrome (TS) is a neurological disorder that causes uncontrolled repetitive motor and vocal tics in children. Examining the neural basis of TS churned out different research studies that advanced our understanding of the brain pathways involved in its development. Particularly, growing evidence points to abnormalities within the fronto-striato-thalamic pathways. In this study, we combined Tract-Based Spatial Statistics (TBSS) and Atlas-based regions of interest (ROI) analysis approach, to investigate the microstructural diffusion changes in both deep and superficial white matter (SWM) in TS children. We then characterized the altered microstructure of white matter in 27 TS children in comparison with 27 age- and gender-matched healthy controls. We found that fractional anisotropy (FA) decreases and radial diffusivity (RD) increases in deep white matter (DWM) tracts in cortico-striato-thalamo-cortical (CSTC) circuit as well as SWM. Furthermore, we found that lower FA values and higher RD values in white matter regions are correlated with more severe tics, but not tics duration. Besides, we also found both axial diffusivity and mean diffusivity increase using Atlas-based ROI analysis. Our work may suggest that microstructural diffusion changes in white matter is not only restricted to the gray matter of CSTC circuit but also affects SWM within the primary motor and somatosensory cortex, commissural and association fibers. Hum Brain Mapp 37:1903-1919, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. White matter alterations in college football players: a longitudinal diffusion tensor imaging study.

    PubMed

    Mayinger, Michael Christian; Merchant-Borna, Kian; Hufschmidt, Jakob; Muehlmann, Marc; Weir, Isabelle Ruth; Rauchmann, Boris-Stephan; Shenton, Martha Elizabeth; Koerte, Inga Katharina; Bazarian, Jeffrey John

    2018-02-01

    The aim of this study was to evaluate longitudinal changes in the diffusion characteristics of brain white matter (WM) in collegiate athletes at three time points: prior to the start of the football season (T1), after one season of football (T2), followed by six months of no-contact rest (T3). Fifteen male collegiate football players and 5 male non-athlete student controls underwent diffusion MR imaging and computerized cognitive testing at all three timepoints. Whole-brain tract-based spatial statistics (TBSS) were used to compare fractional anisotropy (FA), radial diffusivity (RD), axial diffusivity (AD), and trace between all timepoints. Average diffusion values were obtained from statistically significant clusters for each individual. No athlete suffered a concussion during the study period. After one season of play (T1 to T2), we observed a significant increase in trace in a cluster located in the brainstem and left temporal lobe, and a significant increase in FA in the left parietal lobe. After six months of no-contact rest (T2 to T3), there was a significant decrease in trace and FA in clusters that were partially overlapping or in close proximity with the initial clusters (T1 to T2), with no significant changes from T1 to T3. Repetitive head impacts (RHI) sustained during a single football season may result in alterations of the brain's WM in collegiate football players. These changes appear to return to baseline after 6 months of no-contact rest, suggesting remission of WM alterations. Our preliminary results suggest that collegiate football players might benefit from periods without exposure to RHI.

  3. Brain white matter microstructure is associated with susceptibility to motion-induced nausea.

    PubMed

    Napadow, V; Sheehan, J; Kim, J; Dassatti, A; Thurler, A H; Surjanhata, B; Vangel, M; Makris, N; Schaechter, J D; Kuo, B

    2013-05-01

    Nausea is associated with significant morbidity, and there is a wide range in the propensity of individuals to experience nausea. The neural basis of the heterogeneity in nausea susceptibility is poorly understood. Our previous functional magnetic resonance imaging (fMRI) study in healthy adults showed that a visual motion stimulus caused activation in the right MT+/V5 area, and that increased sensation of nausea due to this stimulus was associated with increased activation in the right anterior insula. For the current study, we hypothesized that individual differences in visual motion-induced nausea are due to microstructural differences in the inferior fronto-occipital fasciculus (IFOF), the white matter tract connecting the right visual motion processing area (MT+/V5) and right anterior insula. To test this hypothesis, we acquired diffusion tensor imaging data from 30 healthy adults who were subsequently dichotomized into high and low nausea susceptibility groups based on the Motion Sickness Susceptibility Scale. We quantified diffusion along the IFOF for each subject based on axial diffusivity (AD); radial diffusivity (RD), mean diffusivity (MD) and fractional anisotropy (FA), and evaluated between-group differences in these diffusion metrics. Subjects with high susceptibility to nausea rated significantly (P < 0.001) higher nausea intensity to visual motion stimuli and had significantly (P < 0.05) lower AD and MD along the right IFOF compared to subjects with low susceptibility to nausea. This result suggests that differences in white matter microstructure within tracts connecting visual motion and nausea-processing brain areas may contribute to nausea susceptibility or may have resulted from an increased history of nausea episodes. © 2013 Blackwell Publishing Ltd.

  4. The Hall effect in star formation

    NASA Astrophysics Data System (ADS)

    Braiding, C. R.; Wardle, M.

    2012-05-01

    Magnetic fields play an important role in star formation by regulating the removal of angular momentum from collapsing molecular cloud cores. Hall diffusion is known to be important to the magnetic field behaviour at many of the intermediate densities and field strengths encountered during the gravitational collapse of molecular cloud cores into protostars, and yet its role in the star formation process is not well studied. We present a semianalytic self-similar model of the collapse of rotating isothermal molecular cloud cores with both Hall and ambipolar diffusion, and similarity solutions that demonstrate the profound influence of the Hall effect on the dynamics of collapse. The solutions show that the size and sign of the Hall parameter can change the size of the protostellar disc by up to an order of magnitude and the protostellar accretion rate by 50 per cent when the ratio of the Hall to ambipolar diffusivities is varied between -0.5 ≤ηH/ηA≤ 0.2. These changes depend upon the orientation of the magnetic field with respect to the axis of rotation and create a preferred handedness to the solutions that could be observed in protostellar cores using next-generation instruments such as ALMA. Hall diffusion also determines the strength and position of the shocks that bound the pseudo and rotationally supported discs, and can introduce subshocks that further slow accretion on to the protostar. In cores that are not initially rotating (not examined here), Hall diffusion can even induce rotation, which could give rise to disc formation and resolve the magnetic braking catastrophe. The Hall effect clearly influences the dynamics of gravitational collapse and its role in controlling the magnetic braking and radial diffusion of the field merits further exploration in numerical simulations of star formation.

  5. Unique white matter microstructural patterns in ADHD presentations-a diffusion tensor imaging study.

    PubMed

    Svatkova, Alena; Nestrasil, Igor; Rudser, Kyle; Goldenring Fine, Jodene; Bledsoe, Jesse; Semrud-Clikeman, Margaret

    2016-09-01

    Attention-deficit/hyperactivity disorder predominantly inattentive (ADHD-PI) and combined (ADHD-C) presentations are likely distinct disorders that differ neuroanatomically, neurochemically, and neuropsychologically. However, to date, little is known about specific white matter (WM) regions differentiating ADHD presentations. This study examined differences in WM microstructure using diffusion tensor imaging (DTI) data from 20 ADHD-PI, 18 ADHD-C, and 27 typically developed children. Voxel-wise analysis of DTI measurements in major fiber bundles was carried out using tract-based spatial statistics (TBSS). Clusters showing diffusivity abnormalities were used as regions of interest for regression analysis between fractional anisotropy (FA) and neuropsychological outcomes. Compared to neurotypicals, ADHD-PI children showed higher FA in the anterior thalamic radiations (ATR), bilateral inferior longitudinal fasciculus (ILF), and in the left corticospinal tract (CST). In contrast, the ADHD-C group exhibited higher FA in the bilateral cingulum bundle (CB). In the ADHD-PI group, differences in FA in the left ILF and ATR were accompanied by axial diffusivity (AD) abnormalities. In addition, the ADHD-PI group exhibited atypical mean diffusivity in the forceps minor (FMi) and left ATR and AD differences in right CB compared to healthy subjects. Direct comparison between ADHD presentations demonstrated radial diffusivity differences in FMi. WM clusters with FA irregularities in ADHD were associated with neurobehavioral performance across groups. In conclusion, differences in WM microstructure in ADHD presentations strengthen the theory that ADHD-PI and ADHD-C are two distinct disorders. Regions with WM irregularity seen in both ADHD presentations might serve as predictors of executive and behavioral functioning across groups. Hum Brain Mapp 37:3323-3336, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Brain structural changes in spasmodic dysphonia: A multimodal magnetic resonance imaging study.

    PubMed

    Kostic, Vladimir S; Agosta, Federica; Sarro, Lidia; Tomić, Aleksandra; Kresojević, Nikola; Galantucci, Sebastiano; Svetel, Marina; Valsasina, Paola; Filippi, Massimo

    2016-04-01

    The pathophysiology of spasmodic dysphonia is poorly understood. This study evaluated patterns of cortical morphology, basal ganglia, and white matter microstructural alterations in patients with spasmodic dysphonia relative to healthy controls. T1-weighted and diffusion tensor magnetic resonance imaging (MRI) scans were obtained from 13 spasmodic dysphonia patients and 30 controls. Tract-based spatial statistics was applied to compare diffusion tensor MRI indices (i.e., mean, radial and axial diffusivities, and fractional anisotropy) between groups on a voxel-by-voxel basis. Cortical measures were analyzed using surface-based morphometry. Basal ganglia were segmented on T1-weighted images, and volumes and diffusion tensor MRI metrics of nuclei were measured. Relative to controls, patients with spasmodic dysphonia showed increased cortical surface area of the primary somatosensory cortex bilaterally in a region consistent with the buccal sensory representation, as well as right primary motor cortex, left superior temporal, supramarginal and superior frontal gyri. A decreased cortical area was found in the rolandic operculum bilaterally, left superior/inferior parietal and lingual gyri, as well as in the right angular gyrus. Compared to controls, spasmodic dysphonia patients showed increased diffusivities and decreased fractional anisotropy of the corpus callosum and major white matter tracts, in the right hemisphere. Altered diffusion tensor MRI measures were found in the right caudate and putamen nuclei with no volumetric changes. Multi-level alterations in voice-controlling networks, that included regions devoted not only to sensorimotor integration, motor preparation and motor execution, but also processing of auditory and visual information during speech, might have a role in the pathophysiology of spasmodic dysphonia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Magnetic resonance imaging evidence for presymptomatic change in thalamus and caudate in familial Alzheimer’s disease

    PubMed Central

    Keihaninejad, Shiva; Shakespeare, Timothy J.; Lehmann, Manja; Crutch, Sebastian J.; Malone, Ian B.; Thornton, John S.; Mancini, Laura; Hyare, Harpreet; Yousry, Tarek; Ridgway, Gerard R.; Zhang, Hui; Modat, Marc; Alexander, Daniel C.; Rossor, Martin N.; Ourselin, Sebastien; Fox, Nick C.

    2013-01-01

    Amyloid imaging studies of presymptomatic familial Alzheimer’s disease have revealed the striatum and thalamus to be the earliest sites of amyloid deposition. This study aimed to investigate whether there are associated volume and diffusivity changes in these subcortical structures during the presymptomatic and symptomatic stages of familial Alzheimer’s disease. As the thalamus and striatum are involved in neural networks subserving complex cognitive and behavioural functions, we also examined the diffusion characteristics in connecting white matter tracts. A cohort of 20 presenilin 1 mutation carriers underwent volumetric and diffusion tensor magnetic resonance imaging, neuropsychological and clinical assessments; 10 were symptomatic, 10 were presymptomatic and on average 5.6 years younger than their expected age at onset; 20 healthy control subjects were also studied. We conducted region of interest analyses of volume and diffusivity changes in the thalamus, caudate, putamen and hippocampus and examined diffusion behaviour in the white matter tracts of interest (fornix, cingulum and corpus callosum). Voxel-based morphometry and tract-based spatial statistics were also used to provide unbiased whole-brain analyses of group differences in volume and diffusion indices, respectively. We found that reduced volumes of the left thalamus and bilateral caudate were evident at a presymptomatic stage, together with increased fractional anisotropy of bilateral thalamus and left caudate. Although no significant hippocampal volume loss was evident presymptomatically, reduced mean diffusivity was observed in the right hippocampus and reduced mean and axial diffusivity in the right cingulum. In contrast, symptomatic mutation carriers showed increased mean, axial and in particular radial diffusivity, with reduced fractional anisotropy, in all of the white matter tracts of interest. The symptomatic group also showed atrophy and increased mean diffusivity in all of the subcortical grey matter regions of interest, with increased fractional anisotropy in bilateral putamen. We propose that axonal injury may be an early event in presymptomatic Alzheimer’s disease, causing an initial fall in axial and mean diffusivity, which then increases with loss of axonal density. The selective degeneration of long-coursing white matter tracts, with relative preservation of short interneurons, may account for the increase in fractional anisotropy that is seen in the thalamus and caudate presymptomatically. It may be owing to their dense connectivity that imaging changes are seen first in the thalamus and striatum, which then progress to involve other regions in a vulnerable neuronal network. PMID:23539189

  8. Influence of the Solar Cycle on Turbulence Properties and Cosmic-Ray Diffusion

    NASA Astrophysics Data System (ADS)

    Zhao, L.-L.; Adhikari, L.; Zank, G. P.; Hu, Q.; Feng, X. S.

    2018-04-01

    The solar cycle dependence of various turbulence quantities and cosmic-ray (CR) diffusion coefficients is investigated by using OMNI 1 minute resolution data over 22 years. We employ Elsässer variables z ± to calculate the magnetic field turbulence energy and correlation lengths for both the inwardly and outwardly directed interplanetary magnetic field (IMF). We present the temporal evolution of both large-scale solar wind (SW) plasma variables and small-scale magnetic fluctuations. Based on these observed quantities, we study the influence of solar activity on CR parallel and perpendicular diffusion using quasi-linear theory and nonlinear guiding center theory, respectively. We also evaluate the radial evolution of the CR diffusion coefficients by using the boundary conditions for different solar activity levels. We find that in the ecliptic plane at 1 au (1), the large-scale SW temperature T, velocity V sw, Alfvén speed V A , and IMF magnitude B 0 are positively related to solar activity; (2) the fluctuating magnetic energy density < {{z}+/- }2> , residual energy E D , and corresponding correlation functions all have an obvious solar cycle dependence. The residual energy E D is always negative, which indicates that the energy in magnetic fluctuations is larger than the energy in kinetic fluctuations, especially at solar maximum; (3) the correlation length λ for magnetic fluctuations does not show significant solar cycle variation; (4) the temporally varying shear source of turbulence, which is most important in the inner heliosphere, depends on the solar cycle; (5) small-scale fluctuations may not depend on the direction of the background magnetic field; and (6) high levels of SW fluctuations will increase CR perpendicular diffusion and decrease CR parallel diffusion, but this trend can be masked if the background IMF changes in concert with turbulence in response to solar activity. These results provide quantitative inputs for both turbulence transport models and CR diffusion models, and also provide valuable insight into the long-term modulation of CRs in the heliosphere.

  9. Measurement of thermal diffusivity of depleted uranium metal microspheres

    NASA Astrophysics Data System (ADS)

    Humrickhouse-Helmreich, Carissa J.; Corbin, Rob; McDeavitt, Sean M.

    2014-03-01

    The high void space of nuclear fuels composed of homogeneous uranium metal microspheres may allow them to achieve ultra-high burnup by accommodating fuel swelling and reducing fuel/cladding interactions; however, the relatively low thermal conductivity of microsphere nuclear fuels may limit their application. To support the development of microsphere nuclear fuels, an apparatus was designed in a glovebox and used to measure the apparent thermal diffusivity of a packed bed of depleted uranium (DU) microspheres with argon fill in the void spaces. The developed Crucible Heater Test Assembly (CHTA) recorded radial temperature changes due to an initial heat pulse from a central thin-diameter cartridge heater. Using thermocouple positions and time-temperature data, the apparent thermal diffusivity was calculated. The thermal conductivity of the DU microspheres was calculated based on the thermal diffusivity from the CHTA, known material densities and specific heat capacities, and an assumed 70% packing density based on prior measurements. Results indicate that DU metal microspheres have very low thermal conductivity, relative to solid uranium metal, and rapidly form an oxidation layer even in a low oxygen environment. At 500 °C, the thermal conductivity of the DU metal microsphere bed was 0.431 ± 0.0560 W/m-K compared to the literature value of approximately 32 W/m-K for solid uranium metal.

  10. White Matter Structural Differences in Young Children With Type 1 Diabetes: A Diffusion Tensor Imaging Study

    PubMed Central

    Aye, Tandy; Barnea-Goraly, Naama; Ambler, Christian; Hoang, Sherry; Schleifer, Kristin; Park, Yaena; Drobny, Jessica; Wilson, Darrell M.; Reiss, Allan L.; Buckingham, Bruce A.

    2012-01-01

    OBJECTIVE To detect clinical correlates of cognitive abilities and white matter (WM) microstructural changes using diffusion tensor imaging (DTI) in young children with type 1 diabetes. RESEARCH DESIGN AND METHODS Children, ages 3 to <10 years, with type 1 diabetes (n = 22) and age- and sex-matched healthy control subjects (n = 14) completed neurocognitive testing and DTI scans. RESULTS Compared with healthy controls, children with type 1 diabetes had lower axial diffusivity (AD) values (P = 0.046) in the temporal and parietal lobe regions. There were no significant differences between groups in fractional anisotropy and radial diffusivity (RD). Within the diabetes group, there was a significant, positive correlation between time-weighted HbA1c and RD (P = 0.028). A higher, time-weighted HbA1c value was significantly correlated with lower overall intellectual functioning measured by the full-scale intelligence quotient (P = 0.03). CONCLUSIONS Children with type 1 diabetes had significantly different WM structure (as measured by AD) when compared with controls. In addition, WM structural differences (as measured by RD) were significantly correlated with their HbA1c values. Additional studies are needed to determine if WM microstructural differences in young children with type 1 diabetes predict future neurocognitive outcome. PMID:22966090

  11. Parallel changes in serum proteins and diffusion tensor imaging in methamphetamine-associated psychosis.

    PubMed

    Breen, Michael S; Uhlmann, Anne; Ozcan, Sureyya; Chan, Man; Pinto, Dalila; Bahn, Sabine; Stein, Dan J

    2017-03-02

    Methamphetamine-associated psychosis (MAP) involves widespread neurocognitive and molecular deficits, however accurate diagnosis remains challenging. Integrating relationships between biological markers, brain imaging and clinical parameters may provide an improved mechanistic understanding of MAP, that could in turn drive the development of better diagnostics and treatment approaches. We applied selected reaction monitoring (SRM)-based proteomics, profiling 43 proteins in serum previously implicated in the etiology of major psychiatric disorders, and integrated these data with diffusion tensor imaging (DTI) and psychometric measurements from patients diagnosed with MAP (N = 12), methamphetamine dependence without psychosis (MA; N = 14) and healthy controls (N = 16). Protein analysis identified changes in APOC2 and APOH, which differed significantly in MAP compared to MA and controls. DTI analysis indicated widespread increases in mean diffusivity and radial diffusivity delineating extensive loss of white matter integrity and axon demyelination in MAP. Upon integration, several co-linear relationships between serum proteins and DTI measures reported in healthy controls were disrupted in MA and MAP groups; these involved areas of the brain critical for memory and social emotional processing. These findings suggest that serum proteomics and DTI are sensitive measures for detecting pathophysiological changes in MAP and describe a potential diagnostic fingerprint of the disorder.

  12. Self-gravity, Resonances, and Orbital Diffusion in Stellar Disks

    NASA Astrophysics Data System (ADS)

    Fouvry, Jean-Baptiste; Binney, James; Pichon, Christophe

    2015-06-01

    Fluctuations in a stellar system's gravitational field cause the orbits of stars to evolve. The resulting evolution of the system can be computed with the orbit-averaged Fokker-Planck equation once the diffusion tensor is known. We present the formalism that enables one to compute the diffusion tensor from a given source of noise in the gravitational field when the system's dynamical response to that noise is included. In the case of a cool stellar disk we are able to reduce the computation of the diffusion tensor to a one-dimensional integral. We implement this formula for a tapered Mestel disk that is exposed to shot noise and find that we are able to explain analytically the principal features of a numerical simulation of such a disk. In particular the formation of narrow ridges of enhanced density in action space is recovered. As the disk's value of Toomre's Q is reduced and the disk becomes more responsive, there is a transition from a regime of heating in the inner regions of the disk through the inner Lindblad resonance to one of radial migration of near-circular orbits via the corotation resonance in the intermediate regions of the disk. The formalism developed here provides the ideal framework in which to study the long-term evolution of all kinds of stellar disks.

  13. Differences in integrity of white matter and changes with training in spelling impaired children: a diffusion tensor imaging study

    PubMed Central

    Gebauer, D.; Fink, A.; Filippini, N.; Johansen-Berg, H.; Reishofer, G.; Koschutnig, K.; Kargl, R.; Purgstaller, C.; Fazekas, F.; Enzinger, C.

    2013-01-01

    While the functional correlates of spelling impairment have been rarely investigated, to our knowledge no study exists regarding the structural characteristics of spelling impairment and potential changes with interventions. Using diffusion tensor imaging at 3.0 T, we here therefore sought to investigate (a) differences between children with poor spelling abilities (training group and waiting group) and controls, and (b) the effects of a morpheme- based spelling intervention in children with poor spelling abilities on DTI parameters. A baseline comparison of white matter indices revealed significant differences between controls and spelling-impaired children, mainly located in the right hemisphere (superior corona radiata (SCR), posterior limb of internal capsule, superior longitudinal fasciculus). After 5 weeks of training, spelling ability improved in the training group, along with increases in fractional anisotropy and decreases of radial diffusivity in the right hemisphere compared to controls. In addition, significantly higher decreases of mean diffusivity in the right SCR for the spelling-impaired training group compared to the waiting group were observed. Our results suggest that spelling impairment is associated with differences in white-matter integrity in the right hemisphere. We also provide first indications that white matter changes occur during successful training, but this needs to be more specifically addressed in future research. PMID:22198594

  14. Differences in integrity of white matter and changes with training in spelling impaired children: a diffusion tensor imaging study.

    PubMed

    Gebauer, D; Fink, A; Filippini, N; Johansen-Berg, H; Reishofer, G; Koschutnig, K; Kargl, R; Purgstaller, C; Fazekas, F; Enzinger, C

    2012-07-01

    While the functional correlates of spelling impairment have been rarely investigated, to our knowledge no study exists regarding the structural characteristics of spelling impairment and potential changes with interventions. Using diffusion tensor imaging at 3.0 T, we here therefore sought to investigate (a) differences between children with poor spelling abilities (training group and waiting group) and controls, and (b) the effects of a morpheme-based spelling intervention in children with poor spelling abilities on DTI parameters. A baseline comparison of white matter indices revealed significant differences between controls and spelling-impaired children, mainly located in the right hemisphere (superior corona radiata (SCR), posterior limb of internal capsule, superior longitudinal fasciculus). After 5 weeks of training, spelling ability improved in the training group, along with increases in fractional anisotropy and decreases of radial diffusivity in the right hemisphere compared to controls. In addition, significantly higher decreases of mean diffusivity in the right SCR for the spelling-impaired training group compared to the waiting group were observed. Our results suggest that spelling impairment is associated with differences in white-matter integrity in the right hemisphere. We also provide first indications that white matter changes occur during successful training, but this needs to be more specifically addressed in future research.

  15. High-Resolution Multi-Shot Spiral Diffusion Tensor Imaging with Inherent Correction of Motion-Induced Phase Errors

    PubMed Central

    Truong, Trong-Kha; Guidon, Arnaud

    2014-01-01

    Purpose To develop and compare three novel reconstruction methods designed to inherently correct for motion-induced phase errors in multi-shot spiral diffusion tensor imaging (DTI) without requiring a variable-density spiral trajectory or a navigator echo. Theory and Methods The first method simply averages magnitude images reconstructed with sensitivity encoding (SENSE) from each shot, whereas the second and third methods rely on SENSE to estimate the motion-induced phase error for each shot, and subsequently use either a direct phase subtraction or an iterative conjugate gradient (CG) algorithm, respectively, to correct for the resulting artifacts. Numerical simulations and in vivo experiments on healthy volunteers were performed to assess the performance of these methods. Results The first two methods suffer from a low signal-to-noise ratio (SNR) or from residual artifacts in the reconstructed diffusion-weighted images and fractional anisotropy maps. In contrast, the third method provides high-quality, high-resolution DTI results, revealing fine anatomical details such as a radial diffusion anisotropy in cortical gray matter. Conclusion The proposed SENSE+CG method can inherently and effectively correct for phase errors, signal loss, and aliasing artifacts caused by both rigid and nonrigid motion in multi-shot spiral DTI, without increasing the scan time or reducing the SNR. PMID:23450457

  16. Fractional calculus phenomenology in two-dimensional plasma models

    NASA Astrophysics Data System (ADS)

    Gustafson, Kyle; Del Castillo Negrete, Diego; Dorland, Bill

    2006-10-01

    Transport processes in confined plasmas for fusion experiments, such as ITER, are not well-understood at the basic level of fully nonlinear, three-dimensional kinetic physics. Turbulent transport is invoked to describe the observed levels in tokamaks, which are orders of magnitude greater than the theoretical predictions. Recent results show the ability of a non-diffusive transport model to describe numerical observations of turbulent transport. For example, resistive MHD modeling of tracer particle transport in pressure-gradient driven turbulence for a three-dimensional plasma reveals that the superdiffusive (2̂˜t^α where α> 1) radial transport in this system is described quantitatively by a fractional diffusion equation Fractional calculus is a generalization involving integro-differential operators, which naturally describe non-local behaviors. Our previous work showed the quantitative agreement of special fractional diffusion equation solutions with numerical tracer particle flows in time-dependent linearized dynamics of the Hasegawa-Mima equation (for poloidal transport in a two-dimensional cold-ion plasma). In pursuit of a fractional diffusion model for transport in a gyrokinetic plasma, we now present numerical results from tracer particle transport in the nonlinear Hasegawa-Mima equation and a planar gyrokinetic model. Finite Larmor radius effects will be discussed. D. del Castillo Negrete, et al, Phys. Rev. Lett. 94, 065003 (2005).

  17. Self-sustained radial oscillating flows between parallel disks

    NASA Astrophysics Data System (ADS)

    Mochizuki, S.; Yang, W.-J.

    1985-05-01

    It is pointed out that radial flow between parallel circular disks is of interest in a number of physical systems such as hydrostatic air bearings, radial diffusers, and VTOL aircraft with centrally located downward-positioned jets. The present investigation is concerned with the problem of instability in radial flow between parallel disks. A time-dependent numerical study and experiments are conducted. Both approaches reveal the nucleation, growth, migration, and decay of annular separation bubbles (i.e. vortex or recirculation zones) in the laminar-flow region. A finite-difference technique is utilized to solve the full unsteady vorticity transport equation in the theoretical procedure, while the flow patterns in the experiments are visualized with the aid of dye-injection, hydrogen-bubble, and paraffin-mist methods. It is found that the separation and reattachment of shear layers in the radial flow through parallel disks are unsteady phenomena. The sequence of nucleation, growth, migration, and decay of the vortices is self-sustained.

  18. Hα line measurements from ten diffuse galactic sources using the DEFPOS facility

    NASA Astrophysics Data System (ADS)

    Sahan, M.; Oflaz, F. M.; Yegingil, I.; Tel, E.

    2015-08-01

    The hydrogen Balmer-α emission line spectrum of ten diffuse ionization sources in the Milk Way - NGC 40 (WC8), NGC 2022, NGC 6210, NGC 6618 (M17, Sh2-45), NGC 6720 (M57), NGC 6781, NGC 6888 (Sh2-105), NGC 6992 (Sh2-103), NGC 7635 (Sh2-162,) and IC 1848 (Sh2-199) - has been investigated using a dual etalon Fabry-Pérot optical spectrometer (DEFPOS) aatached to the 150 cm RTT150 telescope at TUBITAK National Observatory (TUG, Antalya, Turkey: 36° 51' N; 30° 20' E; elevation: 2547 m). All of our galactic Hα observations discussed in this paper were carried out during the nights of 2013 June 21-24 with exposure time of 3600 s. As main results the intensity, the full width at half maximum, and the radial velocity with respect to the LSR have been determined for each data set. The intensities, the radial velocities, and the line widths of the Hα emission line vary from 59.15 to 8923.44 R, -46.72 to +54.07 km s-1, and 31.4 to 48.01 km s-1, respectively. The radial velocities and the half-widths of the H II regions and planetary nebulae determined from our measurements are found to be consistent with values given in literature, especially with those in Schneider et al. (1983) and Fich et al. (1990).

  19. Analytical Solutions for Radiative Transfer: Implications for Giant Planet Formation by Disk Instability

    NASA Astrophysics Data System (ADS)

    Boss, Alan P.

    2009-03-01

    The disk instability mechanism for giant planet formation is based on the formation of clumps in a marginally gravitationally unstable protoplanetary disk, which must lose thermal energy through a combination of convection and radiative cooling if they are to survive and contract to become giant protoplanets. While there is good observational support for forming at least some giant planets by disk instability, the mechanism has become theoretically contentious, with different three-dimensional radiative hydrodynamics codes often yielding different results. Rigorous code testing is required to make further progress. Here we present two new analytical solutions for radiative transfer in spherical coordinates, suitable for testing the code employed in all of the Boss disk instability calculations. The testing shows that the Boss code radiative transfer routines do an excellent job of relaxing to and maintaining the analytical results for the radial temperature and radiative flux profiles for a spherical cloud with high or moderate optical depths, including the transition from optically thick to optically thin regions. These radial test results are independent of whether the Eddington approximation, diffusion approximation, or flux-limited diffusion approximation routines are employed. The Boss code does an equally excellent job of relaxing to and maintaining the analytical results for the vertical (θ) temperature and radiative flux profiles for a disk with a height proportional to the radial distance. These tests strongly support the disk instability mechanism for forming giant planets.

  20. A numerical study of circulation driven by mixing over a submarine bank

    NASA Astrophysics Data System (ADS)

    Cummins, Patrick F.; Foreman, Michael G. G.

    1998-04-01

    A primitive equation model is applied to study the spin-up of a linearly stratified, rotating fluid over an isolated topographic bank. The model has vertical eddy mixing coefficients that decay away from the bottom over a specified e-folding scale. No external flows are imposed, and a circulation develops due solely to diffusion over the sea bed. Vertical mixing, coupled with the condition of zero diffusive flux of heat through the sea floor, leads to a distortion of isothermal surfaces near the bottom. The associated radial pressure gradients drive a radial-overturning circulation with upslope flow just above the bottom and downslope flows at greater height. Coriolis forces on the radial flows accelerate a verticallysheared azimuthal (alongslope) circulation. Near the bottom the azimuthal motion is cyclonic (upwelling favourable), while outside the boundary layer, the motion is anticyclonic. Sensitivity experiments show that this pattern is robust and maintained even with constant mixing coefficients. Attention is given to the driving mechanism for the depth-averaged azimuthal motion. An analysis of the relative angular momentum balance determines that the torque associated with bottom stresses drives the anticyclonic depth-averaged flow. In terms of vorticity, the anticyclonic vortex over the bank arises due to the curl of bottom stress divided by the depth. A parameter sensitivity study indicates that the depth-averaged flow is relatively insensitive to variations in the bottom drag coefficient.

  1. Directional Solidification and Characterization of Hg(0.89) Mn(0.11)Te

    NASA Technical Reports Server (NTRS)

    Price, M. W.; Scripa, R. N.; Lehoczky. S. L.; Szofran, F. R.; Su, C.-H.

    1998-01-01

    Two boules of Hg(0.89)Mn(0.11)Te(MMT) were solidified using the vertical Bridgman-Stockbarger method. Translation rates of 0.09 and 0. 18 microns/s were used. The influence of growth rate on axial compositional homogeneity in the MMT boules was evaluated experimentally by conducting precision density measurements on radial slices taken from each boule. In addition, Plane Front Solidification theory and segregation coefficient (k) data for the Hg(1-x)Mn(x)Te system were used to fit theoretical composition profiles to the measured MMT axial composition profiles. The strong correlation between the measured and calculated MMT axial composition profiles indicates diffusion dominated axial solute redistribution in the boules under the applied growth conditions. The analysis of the MMT axial composition profiles by Plane Front Solidification theory allowed the calculation of the effective diffusion coefficient (D(eff) = 3.5 x l0(exp -5) sq cm/s). The k-values for the Hg(1-x)Mn(x)Te system and the D(sub eff) - value were then used to verify that both boules were solidified under conditions which did not exceed the Constitutional Supercooling Criteria under ideal conditions. Finally, a preliminary examination of the radial compositional variation in each MMT was made using Fourier Transform Infra-Red Spectroscopy (FTIR). The radial homogeneity in the MMT boules was found to be comparable for both translation rates.

  2. SEAWAT-based simulation of axisymmetric heat transport.

    PubMed

    Vandenbohede, Alexander; Louwyck, Andy; Vlamynck, Nele

    2014-01-01

    Simulation of heat transport has its applications in geothermal exploitation of aquifers and the analysis of temperature dependent chemical reactions. Under homogeneous conditions and in the absence of a regional hydraulic gradient, groundwater flow and heat transport from or to a well exhibit radial symmetry, and governing equations are reduced by one dimension (1D) which increases computational efficiency importantly. Solute transport codes can simulate heat transport and input parameters may be modified such that the Cartesian geometry can handle radial flow. In this article, SEAWAT is evaluated as simulator for heat transport under radial flow conditions. The 1971, 1D analytical solution of Gelhar and Collins is used to compare axisymmetric transport with retardation (i.e., as a result of thermal equilibrium between fluid and solid) and a large diffusion (conduction). It is shown that an axisymmetric simulation compares well with a fully three dimensional (3D) simulation of an aquifer thermal energy storage systems. The influence of grid discretization, solver parameters, and advection solution is illustrated. Because of the high diffusion to simulate conduction, convergence criterion for heat transport must be set much smaller (10(-10) ) than for solute transport (10(-6) ). Grid discretization should be considered carefully, in particular the subdivision of the screen interval. On the other hand, different methods to calculate the pumping or injection rate distribution over different nodes of a multilayer well lead to small differences only. © 2013, National Ground Water Association.

  3. Multisite longitudinal reliability of tract-based spatial statistics in diffusion tensor imaging of healthy elderly subjects.

    PubMed

    Jovicich, Jorge; Marizzoni, Moira; Bosch, Beatriz; Bartrés-Faz, David; Arnold, Jennifer; Benninghoff, Jens; Wiltfang, Jens; Roccatagliata, Luca; Picco, Agnese; Nobili, Flavio; Blin, Oliver; Bombois, Stephanie; Lopes, Renaud; Bordet, Régis; Chanoine, Valérie; Ranjeva, Jean-Philippe; Didic, Mira; Gros-Dagnac, Hélène; Payoux, Pierre; Zoccatelli, Giada; Alessandrini, Franco; Beltramello, Alberto; Bargalló, Núria; Ferretti, Antonio; Caulo, Massimo; Aiello, Marco; Ragucci, Monica; Soricelli, Andrea; Salvadori, Nicola; Tarducci, Roberto; Floridi, Piero; Tsolaki, Magda; Constantinidis, Manos; Drevelegas, Antonios; Rossini, Paolo Maria; Marra, Camillo; Otto, Josephin; Reiss-Zimmermann, Martin; Hoffmann, Karl-Titus; Galluzzi, Samantha; Frisoni, Giovanni B

    2014-11-01

    Large-scale longitudinal neuroimaging studies with diffusion imaging techniques are necessary to test and validate models of white matter neurophysiological processes that change in time, both in healthy and diseased brains. The predictive power of such longitudinal models will always be limited by the reproducibility of repeated measures acquired during different sessions. At present, there is limited quantitative knowledge about the across-session reproducibility of standard diffusion metrics in 3T multi-centric studies on subjects in stable conditions, in particular when using tract based spatial statistics and with elderly people. In this study we implemented a multi-site brain diffusion protocol in 10 clinical 3T MRI sites distributed across 4 countries in Europe (Italy, Germany, France and Greece) using vendor provided sequences from Siemens (Allegra, Trio Tim, Verio, Skyra, Biograph mMR), Philips (Achieva) and GE (HDxt) scanners. We acquired DTI data (2 × 2 × 2 mm(3), b = 700 s/mm(2), 5 b0 and 30 diffusion weighted volumes) of a group of healthy stable elderly subjects (5 subjects per site) in two separate sessions at least a week apart. For each subject and session four scalar diffusion metrics were considered: fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD) and axial (AD) diffusivity. The diffusion metrics from multiple subjects and sessions at each site were aligned to their common white matter skeleton using tract-based spatial statistics. The reproducibility at each MRI site was examined by looking at group averages of absolute changes relative to the mean (%) on various parameters: i) reproducibility of the signal-to-noise ratio (SNR) of the b0 images in centrum semiovale, ii) full brain test-retest differences of the diffusion metric maps on the white matter skeleton, iii) reproducibility of the diffusion metrics on atlas-based white matter ROIs on the white matter skeleton. Despite the differences of MRI scanner configurations across sites (vendors, models, RF coils and acquisition sequences) we found good and consistent test-retest reproducibility. White matter b0 SNR reproducibility was on average 7 ± 1% with no significant MRI site effects. Whole brain analysis resulted in no significant test-retest differences at any of the sites with any of the DTI metrics. The atlas-based ROI analysis showed that the mean reproducibility errors largely remained in the 2-4% range for FA and AD and 2-6% for MD and RD, averaged across ROIs. Our results show reproducibility values comparable to those reported in studies using a smaller number of MRI scanners, slightly different DTI protocols and mostly younger populations. We therefore show that the acquisition and analysis protocols used are appropriate for multi-site experimental scenarios. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. NMR imaging of high-amylose starch tablets. 1. Swelling and water uptake.

    PubMed

    Baille, Wilms E; Malveau, Cédric; Zhu, Xiao Xia; Marchessault, Robert H

    2002-01-01

    Pharmaceutical tablets made of modified high-amylose starch have a hydrophilic polymer matrix into which water can penetrate with time to form a hydrogel. Nuclear magnetic resonance imaging was used to study the water penetration and the swelling of the matrix of these tablets. The tablets immersed in water were imaged at different time intervals on a 300 MHz NMR spectrometer. Radial images show clearly the swelling of the tablets and the water concentration profile. The rate constants for water diffusion and the tablet swelling were extracted from the experimental data. The water diffusion process was found to follow case II kinetics at 25 degrees C. NMR imaging also provided spin density profiles of the water penetrating inside the tablets.

  5. Modeling a Single SEP Event from Multiple Vantage Points Using the iPATH Model

    NASA Astrophysics Data System (ADS)

    Hu, Junxiang; Li, Gang; Fu, Shuai; Zank, Gary; Ao, Xianzhi

    2018-02-01

    Using the recently extended 2D improved Particle Acceleration and Transport in the Heliosphere (iPATH) model, we model an example gradual solar energetic particle event as observed at multiple locations. Protons and ions that are energized via the diffusive shock acceleration mechanism are followed at a 2D coronal mass ejection-driven shock where the shock geometry varies across the shock front. The subsequent transport of energetic particles, including cross-field diffusion, is modeled by a Monte Carlo code that is based on a stochastic differential equation method. Time intensity profiles and particle spectra at multiple locations and different radial distances, separated in longitudes, are presented. The results shown here are relevant to the upcoming Parker Solar Probe mission.

  6. Using stepped anvils to make even insulation layers in laser-heated diamond-anvil cell samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Zhixue; Gu, Tingting; Dobrosavljevic, Vasilije

    Here, we describe a method to make even insulation layers for high-pressure laser-heated diamond-anvil cell samples using stepped anvils. Moreover, the method works for both single-sided and double-sided laser heating using solid or fluid insulation. The stepped anvils are used as matched pairs or paired with a flat culet anvil to make gasket insulation layers and not actually used at high pressures; thus, their longevity is ensured. We also compare the radial temperature gradients and Soret diffusion of iron between self-insulating samples and samples produced with stepped anvils and find that less pronounced Soret diffusion occurs in samples with evenmore » insulation layers produced by stepped anvils.« less

  7. Using stepped anvils to make even insulation layers in laser-heated diamond-anvil cell samples

    DOE PAGES

    Du, Zhixue; Gu, Tingting; Dobrosavljevic, Vasilije; ...

    2015-09-01

    Here, we describe a method to make even insulation layers for high-pressure laser-heated diamond-anvil cell samples using stepped anvils. Moreover, the method works for both single-sided and double-sided laser heating using solid or fluid insulation. The stepped anvils are used as matched pairs or paired with a flat culet anvil to make gasket insulation layers and not actually used at high pressures; thus, their longevity is ensured. We also compare the radial temperature gradients and Soret diffusion of iron between self-insulating samples and samples produced with stepped anvils and find that less pronounced Soret diffusion occurs in samples with evenmore » insulation layers produced by stepped anvils.« less

  8. Magnetically advected winds

    NASA Astrophysics Data System (ADS)

    Contopoulos, I.; Kazanas, D.; Fukumura, K.

    2017-11-01

    Observations of X-ray absorption lines in magnetically driven disc winds around black hole binaries and active galactic nuclei yield a universal radial density profile ρ ∝ r-1.2 in the wind. This is in disagreement with the standard Blandford and Payne profile ρBP ∝ r-1.5 expected when the magnetic field is neither advected nor diffusing through the accretion disc. In order to account for this discrepancy, we establish a new paradigm for magnetically driven astrophysical winds according to which the large-scale ordered magnetic field that threads the disc is continuously generated by the Cosmic Battery around the inner edge of the disc and continuously diffuses outward. We obtain self-similar solutions of such magnetically advected winds (MAW) and discuss their observational ramifications.

  9. Computed Tomography Measuring Inside Machines

    NASA Technical Reports Server (NTRS)

    Wozniak, James F.; Scudder, Henry J.; Anders, Jeffrey E.

    1995-01-01

    Computed tomography applied to obtain approximate measurements of radial distances from centerline of turbopump to leading edges of diffuser vanes in turbopump. Use of computed tomography has significance beyond turbopump application: example of general concept of measuring internal dimensions of assembly of parts without having to perform time-consuming task of taking assembly apart and measuring internal parts on coordinate-measuring machine.

  10. Assessment of Mechanisms for Jovian Synchrotron Variability Associated with Comet SL-9

    NASA Technical Reports Server (NTRS)

    Bolton, S. J.; Thorne, R. M.

    1995-01-01

    The impact comet SL-9 with Jupiter induced a number of variations in Jupiter's synchrotron radiation, including an increase in emission intensity, spectral changes, and a possible broadening in the latitudinal distribution of the emission. Considered are three potential mechanisms for inducing such effects (electron acceleration, radial diffusion, and pitch-angle scattering), and their consequences.

  11. Diffusion tensor imaging (DTI) findings in adult civilian, military, and sport-related mild traumatic brain injury (mTBI): a systematic critical review.

    PubMed

    Asken, Breton Michael; DeKosky, Steven T; Clugston, James R; Jaffee, Michael S; Bauer, Russell M

    2018-04-01

    This review seeks to summarize diffusion tensor imaging (DTI) studies that have evaluated structural changes attributed to the mechanisms of mild traumatic brain injury (mTBI) in adult civilian, military, and athlete populations. Articles from 2002 to 2016 were retrieved from PubMed/MEDLINE, EBSCOhost, and Google Scholar, using a Boolean search string containing the following terms: "diffusion tensor imaging", "diffusion imaging", "DTI", "white matter", "concussion", "mild traumatic brain injury", "mTBI", "traumatic brain injury", and "TBI". We added studies not identified by this method that were found via manually-searched reference lists. We identified 86 eligible studies from English-language journals using, adult, human samples. Studies were evaluated based on duration between injury and DTI assessment, categorized as acute, subacute/chronic, remote mTBI, and repetitive brain trauma considerations. Since changes in brain structure after mTBI can also be affected by other co-occurring medical and demographic factors, we also briefly review DTI studies that have addressed socioeconomic status factors (SES), major depressive disorder (MDD), and attention-deficit hyperactivity disorder (ADHD). The review describes population-specific risks and the complications of clinical versus pathophysiological outcomes of mTBI. We had anticipated that the distinct population groups (civilian, military, and athlete) would require separate consideration, and various aspects of the study characteristics supported this. In general, study results suggested widespread but inconsistent differences in white matter diffusion metrics (primarily fractional anisotropy [FA], mean diffusivity [MD], radial diffusivity [RD], and axial diffusivity [AD]) following mTBI/concussion. Inspection of study designs and results revealed potential explanations for discrepant DTI findings, such as control group variability, analytic techniques, the manner in which regional differences were reported, and the presence or absence of persistent functional disturbances. DTI research in adult mTBI would benefit from more standardized imaging and analytic approaches. We also found significant overlap in white matter abnormalities reported in mTBI with those commonly affected by SES or the presence of MDD and ADHD. We conclude that DTI is sensitive to a wide range of group differences in diffusion metrics, but that it currently lacks the specificity necessary for meaningful clinical application. Properly controlled longitudinal studies with consistent and standardized functional outcomes are needed before establishing the utility of DTI in the clinical management of mTBI and concussion.

  12. Wind-driving protostellar accretion discs - I. Formulation and parameter constraints

    NASA Astrophysics Data System (ADS)

    Königl, Arieh; Salmeron, Raquel; Wardle, Mark

    2010-01-01

    We study a model of weakly ionized, protostellar accretion discs that are threaded by a large-scale, ordered magnetic field and power a centrifugally driven wind. We consider the limiting case where the wind is the main repository of the excess disc angular momentum and generalize the radially localized disc model of Wardle & Königl, which focused on the ambipolar diffusion regime, to other field diffusivity regimes, notably Hall and Ohm. We present a general formulation of the problem for nearly Keplerian, vertically isothermal discs using both the conductivity-tensor and the multifluid approaches and simplify it to a normalized system of ordinary differential equations in the vertical space coordinate. We determine the relevant parameters of the problem and investigate, using the vertical-hydrostatic-equilibrium approximation and other simplifications, the parameter constraints on physically viable solutions for discs in which the neutral particles are dynamically well coupled to the field already at the mid-plane. When the charged particles constitute a two-component ion-electron plasma, one can identify four distinct sub-regimes in the parameter domain where the Hall diffusivity dominates and three sub-regimes in the Ohm-dominated domain. Two of the Hall sub-regimes can be characterized as being ambipolar diffusion-like and two as being Ohm-like: the properties of one member of the first pair of sub-regimes are identical to those of the ambipolar diffusion regime, whereas one member of the second pair has the same characteristics as one of the Ohm sub-regimes. All the Hall sub-regimes have Brb/|Bφb| (ratio of radial-to-azimuthal magnetic field amplitudes at the disc surface) >1, whereas in two Ohm sub-regimes this ratio is <1. When the two-component plasma consists, instead, of positively and negatively charged grains of equal mass, the entire Hall domain and one of the Ohm sub-regimes with Brb/|Bφb| < 1 disappear. All viable solutions require the mid-plane neutral-ion momentum exchange time to be shorter than the local orbital time. We also infer that vertical magnetic squeezing always dominates over gravitational tidal compression in this model. In a follow-up paper we will present exact solutions that test the results of this analysis in the Hall regime.

  13. Expert cognitive control and individual differences associated with frontal and parietal white matter microstructure

    PubMed Central

    Roberts, R.E.; Anderson, E. J.; Husain, M.

    2011-01-01

    Although many functional imaging studies have reported frontal activity associated with ‘cognitive control’ tasks, little is understood about factors underlying individual differences in performance. Here we compared the behaviour and brain structure of healthy controls with fighter pilots, an expert group trained to make precision choices at speed in the presence of conflicting cues. Two different behavioural paradigms – Eriksen Flanker and Change of plan tasks – were used to assess the influence of distractors and the ability to update ongoing action plans. Fighter pilots demonstrated superior cognitive control as indexed by accuracy and post-conflict adaptation on the flanker task, but also showed increased sensitivity to irrelevant, distracting choices. By contrast, when pilots were examined on their ability to inhibit a current action plan in favour of an alternative response, their performance was no better than the control group. Diffusion weighted imaging revealed differences in white matter radial diffusivity between pilots and controls not only in the right dorsomedial frontal region but also in the right parietal lobe. Moreover, analysis of individual differences in reaction time costs for conflict trials on the flanker task demonstrated significant correlations with radial diffusivity at these locations, but in different directions. Post-conflict adaptation effects, however, were confined to the dorsomedial frontal locus. The findings demonstrate that in humans expert cognitive control may surprisingly be mediated by enhanced response gain to both relevant and irrelevant stimuli, and is accompanied by structural alterations in the white matter of the frontal and parietal lobe. PMID:21159976

  14. Thin film growth by 3D multi-particle diffusion limited aggregation model: Anomalous roughening and fractal analysis

    NASA Astrophysics Data System (ADS)

    Nasehnejad, Maryam; Nabiyouni, G.; Gholipour Shahraki, Mehran

    2018-03-01

    In this study a 3D multi-particle diffusion limited aggregation method is employed to simulate growth of rough surfaces with fractal behavior in electrodeposition process. A deposition model is used in which the radial motion of the particles with probability P, competes with random motions with probability 1 - P. Thin films growth is simulated for different values of probability P (related to the electric field) and thickness of the layer(related to the number of deposited particles). The influence of these parameters on morphology, kinetic of roughening and the fractal dimension of the simulated surfaces has been investigated. The results show that the surface roughness increases with increasing the deposition time and scaling exponents exhibit a complex behavior which is called as anomalous scaling. It seems that in electrodeposition process, radial motion of the particles toward the growing seeds may be an important mechanism leading to anomalous scaling. The results also indicate that the larger values of probability P, results in smoother topography with more densely packed structure. We have suggested a dynamic scaling ansatz for interface width has a function of deposition time, scan length and probability. Two different methods are employed to evaluate the fractal dimension of the simulated surfaces which are "cube counting" and "roughness" methods. The results of both methods show that by increasing the probability P or decreasing the deposition time, the fractal dimension of the simulated surfaces is increased. All gained values for fractal dimensions are close to 2.5 in the diffusion limited aggregation model.

  15. The outer envelopes of globular clusters. II. NGC 1851, NGC 5824 and NGC 1261*

    NASA Astrophysics Data System (ADS)

    Kuzma, P. B.; Da Costa, G. S.; Mackey, A. D.

    2018-01-01

    We present a second set of results from a wide-field photometric survey of the environs of Milky Way globular clusters. The clusters studied are NGC 1261, NGC 1851 and NGC 5824: all have data from the Dark Energy Camera on the Blanco 4 m telescope. NGC 5824 also has data from the Magellan Clay telescope with MegaCam. We confirm the existence of a large diffuse stellar envelope surrounding NGC 1851 of size at least 240 pc in radius. The radial density profile of the envelope follows a power-law decline with index γ = -1.5 ± 0.2 and the projected shape is slightly elliptical. For NGC 5824, there is no strong detection of a diffuse stellar envelope, but we find the cluster is remarkably extended and is similar in size (at least 230 pc in radius) to the envelope of NGC 1851. A stellar envelope is also revealed around NGC 1261. However, it is notably smaller in size with radius ∼105 pc. The radial density profile of the envelope is also much steeper with γ = -3.8 ± 0.2. We discuss the possible nature of the diffuse stellar envelopes, but are unable to draw definitive conclusions based on the current data. NGC 1851, and potentially NGC 5824, could be stripped dwarf galaxy nuclei, akin to the cases of ω Cen, M54 and M2. On the other hand, the different characteristics of the NGC 1261 envelope suggest that it may be the product of dynamical evolution of the cluster.

  16. Effectiveness of regional DTI measures in distinguishing Alzheimer's disease, MCI, and normal aging☆

    PubMed Central

    Nir, Talia M.; Jahanshad, Neda; Villalon-Reina, Julio E.; Toga, Arthur W.; Jack, Clifford R.; Weiner, Michael W.; Thompson, Paul M.

    2013-01-01

    The Alzheimer's Disease Neuroimaging Initiative (ADNI) recently added diffusion tensor imaging (DTI), among several other new imaging modalities, in an effort to identify sensitive biomarkers of Alzheimer's disease (AD). While anatomical MRI is the main structural neuroimaging method used in most AD studies and clinical trials, DTI is sensitive to microscopic white matter (WM) changes not detectable with standard MRI, offering additional markers of neurodegeneration. Prior DTI studies of AD report lower fractional anisotropy (FA), and increased mean, axial, and radial diffusivity (MD, AxD, RD) throughout WM. Here we assessed which DTI measures may best identify differences among AD, mild cognitive impairment (MCI), and cognitively healthy elderly control (NC) groups, in region of interest (ROI) and voxel-based analyses of 155 ADNI participants (mean age: 73.5 ± 7.4; 90 M/65 F; 44 NC, 88 MCI, 23 AD). Both VBA and ROI analyses revealed widespread group differences in FA and all diffusivity measures. DTI maps were strongly correlated with widely-used clinical ratings (MMSE, CDR-sob, and ADAS-cog). When effect sizes were ranked, FA analyses were least sensitive for picking up group differences. Diffusivity measures could detect more subtle MCI differences, where FA could not. ROIs showing strongest group differentiation (lowest p-values) included tracts that pass through the temporal lobe, and posterior brain regions. The left hippocampal component of the cingulum showed consistently high effect sizes for distinguishing groups, across all diffusivity and anisotropy measures, and in correlations with cognitive scores. PMID:24179862

  17. Longitudinal diffusion tensor magnetic resonance imaging study of radiation-induced white matter damage in a rat model.

    PubMed

    Wang, Silun; Wu, Ed X; Qiu, Deqiang; Leung, Lucullus H T; Lau, Ho-Fai; Khong, Pek-Lan

    2009-02-01

    Radiation-induced white matter (WM) damage is a major side effect of whole brain irradiation among childhood cancer survivors. We evaluate longitudinally the diffusion characteristics of the late radiation-induced WM damage in a rat model after 25 and 30 Gy irradiation to the hemibrain at 8 time points from 2 to 48 weeks postradiation. We hypothesize that diffusion tensor magnetic resonance imaging (DTI) indices including fractional anisotropy (FA), trace, axial diffusivity (lambda(//)), and radial diffusivity (lambda( perpendicular)) can accurately detect and monitor the histopathologic changes of radiation-induced WM damage, measured at the EC, and that these changes are dose and time dependent. Results showed a progressive reduction of FA, which was driven by reduction in lambda(//) from 4 to 40 weeks postradiation, and an increase in lambda( perpendicular) with return to baseline in lambda(//) at 48 weeks postradiation. Histologic evaluation of irradiated WM showed reactive astrogliosis from 4 weeks postradiation with reversal at 36 weeks, and demyelination, axonal degeneration, and necrosis at 48 weeks postradiation. Moreover, changes in lambda(//) correlated with reactive astrogliosis (P < 0.01) and lambda( perpendicular) correlated with demyelination (P < 0.01). Higher radiation dose (30 Gy) induced earlier and more severe histologic changes than lower radiation dose (25 Gy), and these differences were reflected by the magnitude of changes in lambda(//) and lambda( perpendicular). DTI indices reflected the histopathologic changes of WM damage and our results support the use of DTI as a biomarker to noninvasively monitor radiation-induced WM damage.

  18. Molecular dynamics simulation of diffusion of gases in a carbon-nanotube-polymer composite

    NASA Astrophysics Data System (ADS)

    Lim, Seong Y.; Sahimi, Muhammad; Tsotsis, Theodore T.; Kim, Nayong

    2007-07-01

    Extensive molecular dynamics (MD) simulations were carried out to compute the solubilities and self-diffusivities of CO2 and CH4 in amorphous polyetherimide (PEI) and mixed-matrix PEI generated by inserting single-walled carbon nanotubes into the polymer. Atomistic models of PEI and its composites were generated using energy minimizations, MD simulations, and the polymer-consistent force field. Two types of polymer composite were generated by inserting (7,0) and (12,0) zigzag carbon nanotubes into the PEI structure. The morphologies of PEI and its composites were characterized by their densities, radial distribution functions, and the accessible free volumes, which were computed with probe molecules of different sizes. The distributions of the cavity volumes were computed using the Voronoi tessellation method. The computed self-diffusivities of the gases in the polymer composites are much larger than those in pure PEI. We find, however, that the increase is not due to diffusion of the gases through the nanotubes which have smooth energy surfaces and, therefore, provide fast transport paths. Instead, the MD simulations indicate a squeezing effect of the nanotubes on the polymer matrix that changes the composite polymers’ free-volume distributions and makes them more sharply peaked. The presence of nanotubes also creates several cavities with large volumes that give rise to larger diffusivities in the polymer composites. This effect is due to the repulsive interactions between the polymer and the nanotubes. The solubilities of the gases in the polymer composites are also larger than those in pure PEI, hence indicating larger gas permeabilities for mixed-matrix PEI than PEI itself.

  19. Structural Integrity of Normal Appearing White Matter and Sex-Specific Outcomes After Acute Ischemic Stroke.

    PubMed

    Etherton, Mark R; Wu, Ona; Cougo, Pedro; Giese, Anne-Katrin; Cloonan, Lisa; Fitzpatrick, Kaitlin M; Kanakis, Allison S; Boulouis, Gregoire; Karadeli, Hasan H; Lauer, Arne; Rosand, Jonathan; Furie, Karen L; Rost, Natalia S

    2017-12-01

    Women have worse poststroke outcomes than men. We evaluated sex-specific clinical and neuroimaging characteristics of white matter in association with functional recovery after acute ischemic stroke. We performed a retrospective analysis of acute ischemic stroke patients with admission brain MRI and 3- to 6-month modified Rankin Scale score. White matter hyperintensity and acute infarct volume were quantified on fluid-attenuated inversion recovery and diffusion tensor imaging MRI, respectively. Diffusivity anisotropy metrics were calculated in normal appearing white matter contralateral to the acute ischemia. Among 319 patients with acute ischemic stroke, women were older (68.0 versus 62.7 years; P =0.004), had increased incidence of atrial fibrillation (21.4% versus 12.2%; P =0.04), and lower rate of tobacco use (21.1% versus 35.9%; P =0.03). There was no sex-specific difference in white matter hyperintensity volume, acute infarct volume, National Institutes of Health Stroke Scale, prestroke modified Rankin Scale score, or normal appearing white matter diffusivity anisotropy metrics. However, women were less likely to have an excellent outcome (modified Rankin Scale score <2: 49.6% versus 67.0%; P =0.005). In logistic regression analysis, female sex and the interaction of sex with fractional anisotropy, radial diffusivity, and axial diffusivity were independent predictors of functional outcome. Female sex is associated with decreased likelihood of excellent outcome after acute ischemic stroke. The correlation between markers of white matter integrity and functional outcomes in women, but not men, suggests a potential sex-specific mechanism. © 2017 American Heart Association, Inc.

  20. Large-scale magnetic field in the accretion discs of young stars: the influence of magnetic diffusion, buoyancy and Hall effect

    NASA Astrophysics Data System (ADS)

    Khaibrakhmanov, S. A.; Dudorov, A. E.; Parfenov, S. Yu.; Sobolev, A. M.

    2017-01-01

    We investigate the fossil magnetic field in the accretion and protoplanetary discs using the Shakura and Sunyaev approach. The distinguishing feature of this study is the accurate solution of the ionization balance equations and the induction equation with Ohmic diffusion, magnetic ambipolar diffusion, buoyancy and the Hall effect. We consider the ionization by cosmic rays, X-rays and radionuclides, radiative recombinations, recombinations on dust grains and also thermal ionization. The buoyancy appears as the additional mechanism of magnetic flux escape in the steady-state solution of the induction equation. Calculations show that Ohmic diffusion and magnetic ambipolar diffusion constraint the generation of the magnetic field inside the `dead' zones. The magnetic field in these regions is quasi-vertical. The buoyancy constraints the toroidal magnetic field strength close to the disc inner edge. As a result, the toroidal and vertical magnetic fields become comparable. The Hall effect is important in the regions close to the borders of the `dead' zones because electrons are magnetized there. The magnetic field in these regions is quasi-radial. We calculate the magnetic field strength and geometry for the discs with accretion rates (10^{-8}-10^{-6}) {M}_{⊙} {yr}^{-1}. The fossil magnetic field geometry does not change significantly during the disc evolution while the accretion rate decreases. We construct the synthetic maps of dust emission polarized due to the dust grain alignment by the magnetic field. In the polarization maps, the `dead' zones appear as the regions with the reduced values of polarization degree in comparison to those in the adjacent regions.

  1. Microstructures in striato-thalamo-orbitofrontal circuit in methamphetamine users.

    PubMed

    Li, Yadi; Dong, Haibo; Li, Feng; Wang, Gaoyan; Zhou, Wenhua; Yu, Rongbin; Zhang, Lingjun

    2017-11-01

    Background Striato-thalamo-orbitofrontal (STO) circuit plays a key role in the development of drug addiction. Few studies have investigated its microstructural abnormalities in methamphetamine (MA) users. Purpose To evaluate the microstructural changes and relevant clinical relevance of the STO circuit in MA users using diffusion tensor imaging (DTI). Material and Methods Twenty-eight MA users and 28 age-matched normal volunteers were enrolled. 3T magnetic resonance imaging (MRI) was employed to obtain structural T1-weighted (T1W) imaging and diffusion-tensor imaging (DTI) data. Freesurfer software was used for automated segmentation of the bilateral nucleus accumbens (NAc), thalami, and orbitofrontal cortex (OFC). Four DTI measures maps, fractional anisotropy (FA), mean diffusivity (MD), axial diffusion (AD), and radial diffusion (RD) were generated and non-linearly co-registered to structural space. Comparisons of DTI measures of the STO circuit were carried out between MA and controls using repeated measures analysis of variance. Correlation analyses were performed between STO circuit DTI measures and clinical characteristics. Results The MA group had significant FA reduction in the bilateral NAc, OFC, and right thalamus ( P < 0.05). Lower left OFC FA and right NAc FA/AD were associated with longer duration of MA use. Lower right OFC FA was associated with younger age at first MA use. Higher FA and lower MD/RD in the thalamus, as well as higher left OFC RD, were associated with increased psychiatric symptoms. Conclusion The STO circuit has reduced microstructural integrity in MA users. Microstructural changes in the thalamus may compensate for dysfunction in functionally connected cortices, which needs further investigation.

  2. Brain Microstructure and Impulsivity Differ between Current and Past Methamphetamine Users.

    PubMed

    Andres, Tamara; Ernst, Thomas; Oishi, Kenichi; Greenstein, David; Nakama, Helenna; Chang, Linda

    2016-09-01

    Methamphetamine (Meth) use disorder continues to be highly prevalent worldwide. Meth users have higher impulsivity and brain abnormalities that may be different between current and past Meth users. The current study assessed impulsivity and depressive symptoms in 94 participants (27 current Meth users, 32 past Meth users and 35 non-drug user controls). Additionally, brain microstructure was assessed using diffusion tensor imaging (DTI); fractional anisotropy (FA) and mean diffusivity (MD) were assessed in the striatum, and FA, MD, radial and axial diffusivity were quantified in five white matter structures using DtiStudio.Across the three subject groups, current users had the highest self-reported impulsivity scores, while both Meth user groups had larger striatal structures than the controls. Past Meth users had the highest FA and lowest MD in the striatum, which is likely due to greater magnetic susceptibility from higher iron content and greater dendritic spine density. In white matter tracts, current Meth users had higher AD than past users, indicating greater water diffusion along the axons, and suggesting inflammation with axonal swelling. In contrast, past users had the lowest AD, indicating more restricted diffusion, which might have resulted from reactive gliosis. Although current Meth users had greater impulsivity than past users, the brain microstructural abnormalities showed differences that may reflect different stages of neuroinflammation or iron-induced neurodegeneration. Combining current and past Meth users may lead to greater variability in studies of Meth users. Longitudinal studies are needed to further evaluate the relationship between recency of Meth use and brain microstructure.

  3. Prefrontal cortex white matter tracts in prodromal Huntington disease.

    PubMed

    Matsui, Joy T; Vaidya, Jatin G; Wassermann, Demian; Kim, Regina Eunyoung; Magnotta, Vincent A; Johnson, Hans J; Paulsen, Jane S

    2015-10-01

    Huntington disease (HD) is most widely known for its selective degeneration of striatal neurons but there is also growing evidence for white matter (WM) deterioration. The primary objective of this research was to conduct a large-scale analysis using multisite diffusion-weighted imaging (DWI) tractography data to quantify diffusivity properties along major prefrontal cortex WM tracts in prodromal HD. Fifteen international sites participating in the PREDICT-HD study collected imaging and neuropsychological data on gene-positive HD participants without a clinical diagnosis (i.e., prodromal) and gene-negative control participants. The anatomical prefrontal WM tracts of the corpus callosum (PFCC), anterior thalamic radiations (ATRs), inferior fronto-occipital fasciculi (IFO), and uncinate fasciculi (UNC) were identified using streamline tractography of DWI. Within each of these tracts, tensor scalars for fractional anisotropy, mean diffusivity, radial diffusivity, and axial diffusivity coefficients were calculated. We divided prodromal HD subjects into three CAG-age product (CAP) groups having Low, Medium, or High probabilities of onset indexed by genetic exposure. We observed significant differences in WM properties for each of the four anatomical tracts for the High CAP group in comparison to controls. Additionally, the Medium CAP group presented differences in the ATR and IFO in comparison to controls. Furthermore, WM alterations in the PFCC, ATR, and IFO showed robust associations with neuropsychological measures of executive functioning. These results suggest long-range tracts essential for cross-region information transfer show early vulnerability in HD and may explain cognitive problems often present in the prodromal stage. Hum Brain Mapp 36:3717-3732, 2015. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  4. Twin-singleton developmental study of brain white matter anatomy.

    PubMed

    Sadeghi, Neda; Gilmore, John H; Gerig, Guido

    2017-02-01

    Twin studies provide valuable insights into the analysis of genetic and environmental factors influencing human brain development. However, these findings may not generalize to singletons due to differences in pre- and postnatal environments. One would expect the effect of these differences to be greater during the early years of life. To address this concern, we compare longitudinal diffusion data of white matter regions for 26 singletons and 76 twins (monozygotic and dizygotic) from birth to 2 years of age. We use nonlinear mixed effect modeling where the temporal changes in the diffusion parameters are described by the Gompertz function. The Gompertz function describes growth trajectory in terms of intuitive parameters: asymptote, delay, and speed. We analyzed fractional anisotropy (FA), axial diffusivity (AD), and radial diffusivity (RD) for 21 regions of interest (ROIs). These ROIs included areas in the association, projection, and commissural fiber tracts. We did not find any differences in the diffusion parameters between monozygotic and dizygotic twins. In addition, FA and RD showed no developmental differences between singletons and twins for the regions analyzed. However, the delay parameter of the Gompertz function of AD for the anterior limb of the internal capsule and anterior corona radiata was significantly different between singletons and twins. Further analysis indicated that the differences are small, and twins "catch up" by the first few months of life. These results suggest that the effects of differences of pre- and postnatal environments between twins and singletons are minimal on white matter development and disappear early in life. Hum Brain Mapp 38:1009-1024, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Molecular Dynamics Study of the Solution Structure, Clustering, and Diffusion of Four Aqueous Alkanolamines.

    PubMed

    Melnikov, Sergey M; Stein, Matthias

    2018-03-15

    CO 2 sequestration from anthropogenic resources is a challenge to the design of environmental processes at a large scale. Reversible chemical absorption by amine-based solvents is one of the most efficient methods of CO 2 removal. Molecular simulation techniques are very useful tools to investigate CO 2 binding by aqueous alkanolamine molecules for further technological application. In the present work, we have performed detailed atomistic molecular dynamics simulations of aqueous solutions of three prototype amines: monoethanolamine (MEA) as a standard, 3-aminopropanol (MPA), 2-methylaminoethanol (MMEA), and 4-diethylamino-2-butanol (DEAB) as potential novel CO 2 absorptive solvents. Solvent densities, radial distribution functions, cluster size distributions, hydrogen-bonding statistics, and diffusion coefficients for a full range of mixture compositions have been obtained. The solvent densities and diffusion coefficients from simulations are in good agreement with those in the experiment. In aqueous solution, MEA, MPA, and MMEA molecules prefer to be fully solvated by water molecules, whereas DEAB molecules tend to self-aggregate. In a range from 30/70-50/50 (w/w) alkanolamine/water mixtures, they form a bicontinuous phase (both alkanolamine and water are organized in two mutually percolating clusters). Among the studied aqueous alkanolamine solutions, the diffusion coefficients decrease in the following order MEA > MPA = MMEA > DEAB. With an increase of water content, the diffusion coefficients increase for all studied alkanolamines. The presented results are a first step for process-scale simulation and provide important qualitative and quantitative information for the design and engineering of efficient new CO 2 removal processes.

  6. Effects of bilingualism on white matter integrity in older adults.

    PubMed

    Anderson, John A E; Grundy, John G; De Frutos, Jaisalmer; Barker, Ryan M; Grady, Cheryl; Bialystok, Ellen

    2018-02-15

    Bilingualism can delay the onset of dementia symptoms and has thus been characterized as a mechanism for cognitive or brain reserve, although the origin of this reserve is unknown. Studies with young adults generally show that bilingualism is associated with a strengthening of white matter, but there is conflicting evidence for how bilingualism affects white matter in older age. Given that bilingualism has been shown to help stave off the symptoms of dementia by up to four years, it is crucial that we clarify the mechanism underlying this reserve. The current study uses diffusion tensor imaging (DTI) to compare monolinguals and bilinguals while carefully controlling for potential confounds (e.g., I.Q., MMSE, and demographic variables). We show that group differences in Fractional Anisotropy (FA) and Radial Diffusivity (RD) arise from multivariable interactions not adequately controlled for by sequential bivariate testing. After matching and statistically controlling for confounds, bilinguals still had greater axial diffusivity (AD) in the left superior longitudinal fasciculus than monolingual peers, supporting a neural reserve account for healthy older bilinguals. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. The general relativistic thin disc evolution equation

    NASA Astrophysics Data System (ADS)

    Balbus, Steven A.

    2017-11-01

    In the classical theory of thin disc accretion discs, the constraints of mass and angular momentum conservation lead to a diffusion-like equation for the turbulent evolution of the surface density. Here, we revisit this problem, extending the Newtonian analysis to the regime of Kerr geometry relevant to black holes. A diffusion-like equation once again emerges, but now with a singularity at the radius at which the effective angular momentum gradient passes through zero. The equation may be analysed using a combination of Wentzel-Kramers-Brillouin techniques, local techniques and matched asymptotic expansions. It is shown that imposing the boundary condition of a vanishing stress tensor (more precisely the radial-azimuthal component thereof) allows smooth stable modes to exist external to the angular momentum singularity, the innermost stable circular orbit, while smoothly vanishing inside this location. The extension of the disc diffusion equation to the domain of general relativity introduces a new tool for numerical and phenomenological studies of accretion discs, and may prove to be a useful technique for understanding black hole X-ray transients.

  8. Theory of finite disturbances in a centrifugal compression system with a vaneless radial diffuser

    NASA Technical Reports Server (NTRS)

    Moore, F. K.

    1990-01-01

    A previous small perturbation analysis of circumferential waves in circumferential compression systems, assuming inviscid flow, is shown to be consistent with observations that narrow diffusers are more stable than wide ones, when boundary layer displacement effect is included. The Moore-Greitzer analysis for finite strength transients containing both surge and rotating stall in axial machines is adapted for a centrifugal compression system. Under certain assumptions, and except for a new second order swirl, the diffuser velocity field, including resonant singularities, can be carried over from the previous inviscid linear analysis. Nonlinear transient equations are derived and applied in a simple example to show that throttling through a resonant value of flow coefficient must occur in a sudden surge-like drop, accompanied by a transient rotating wave. This inner solution is superseded by an outer surge response on a longer time scale. Surge may occur purely as result of circumferential wave resonance. Numerical results are shown for various parametric choices relating to throttle schedule and the characteristic slope. A number of circumferential modes considered simultaneously is briefly discussed.

  9. Cortical gray and subcortical white matter associations in Parkinson's disease.

    PubMed

    Sterling, Nicholas W; Du, Guangwei; Lewis, Mechelle M; Swavely, Steven; Kong, Lan; Styner, Martin; Huang, Xuemei

    2017-01-01

    Cortical atrophy has been documented in both Parkinson's disease (PD) and healthy aging, but its relationship to changes in subcortical white matter is unknown. This was investigated by obtaining T1- and diffusion-weighted images from 76 PD and 70 controls at baseline and 18 and 36 months, from which cortical volumes and underlying subcortical white matter axial diffusivity (AD), radial diffusivity (RD), and fractional anisotropy (FA) were determined. Twelve of 69 cortical subregions had significant group differences, and for these, underlying subcortical white matter was explored. At baseline, higher cortical volumes were significantly correlated with lower underlying subcortical white matter AD, RD, and higher FA (ps ≤ 0.017) in PD. Longitudinally, higher rates of cortical atrophy in PD were associated with increased rates of change in AD RD, and FA values (ps ≤ 0.0013) in 2 subregions explored. The significant gray-white matter associations were not found in controls. Thus, unlike healthy aging, cortical atrophy and subcortical white matter changes may not be independent events in PD. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. The Mimas ghost revisited: An analysis of the electron flux and electron microsignatures observed in the vicinity of Mimas at Saturn

    NASA Technical Reports Server (NTRS)

    Chenette, D. L.; Stone, E. C.

    1983-01-01

    An analysis of the electron absorption signature observed by the Cosmic Ray System (CRS) on Voyage 2 near the orbit of Mimas is presented. We find that these observations cannot be explained as the absorption signature of Mimas. Combing Pioneer 11 and Voyager 2 measurements of the electron flux at Mimas's orbit (L=3.1), we find an electron spectrum where most of the flux above approx 100 keV is concentrated near 1 to 3 MeV. The expected Mimas absorption signature is calculated from this spectrum neglecting radial diffusion. A lower limit on the diffusion coefficient for MeV electrons is obtained. With a diffusion coefficient this large, both the Voyager 2 and the Pioneer 11 small-scale electron absorption signature observations in Mimas's orbit are enigmatic. Thus we refer to the mechanism for producing these signatures as the Mimas ghost. A cloud of material in orbit with Mimas may account for the observed electron signature if the cloud is at least 1% opaque to electrons across a region extending over a few hundred kilometers.

  11. Regional calibration models for predicting loblolly pine tracheid properties using near-infrared spectroscopy

    Treesearch

    Mohamad Nabavi; Joseph Dahlen; Laurence Schimleck; Thomas L. Eberhardt; Cristian Montes

    2018-01-01

    This study developed regional calibration models for the prediction of loblolly pine (Pinus taeda) tracheid properties using near-infrared (NIR) spectroscopy. A total of 1842 pith-to-bark radial strips, aged 19–31 years, were acquired from 268 trees from 109 stands across the southeastern USA. Diffuse reflectance NIR spectra were collected at 10-mm...

  12. FORTRAN program for calculating velocities in the meridional plane of a turbomachine 1: Centrifugal compressor

    NASA Technical Reports Server (NTRS)

    Vanco, M. R.

    1972-01-01

    The program will determine the velocities in the meridional plane of a backward-swept impeller, a radial impeller, and a vaned diffuser. The velocity gradient equation with the assumption of a hub-to-shroud mean stream surface is solved along arbitrary quasi-orthogonals in the meridional plane. These quasi-orthogonals are fixed straight lines.

  13. Effect of Sodium Dodecyl Sulfate Adsorption on the Behavior of Water inside Single Walled Carbon Nanotubes with Dissipative Particle Dynamics Simulation.

    PubMed

    Vo, Minh D; Papavassiliou, Dimitrios V

    2016-04-15

    Dissipative particle dynamics (DPD) simulations were utilized to investigate the ability of sodium dodecyl sulfate (SDS) to adsorb inside a single-walled, arm-chair carbon nanotube (SWCNT), as well as the effect of surfactant on the properties of water inside the SWCNT. The diameter of the SWCNT varied from 1 to 5 nm. The radial and axial density profiles of water inside the SWCNTs were computed and compared with published molecular dynamics results. The average residence time and diffusivity were also calculated to show the size effect on mobility of water inside the SWCNT. It was found that nanotubes with diameter smaller than 3 nm do not allow SDS molecules to enter the SWCNT space. For larger SWCNT diameter, SDS adsorbed inside and outside the nanotube. When SDS was adsorbed in the hollow part of the SWCNT, the behavior of water inside the nanotube was found to be significantly changed. Both radial and axial density profiles of water inside the SWCNT fluctuated strongly and were different from those in bulk phase. In addition, SDS molecules increased the retention of water beads inside SWCNT (d ≥ 3nm) while water diffusivity was decreased.

  14. Effect of the oxidation front penetration on in-clad hydrogen migration

    NASA Astrophysics Data System (ADS)

    Feria, F.; Herranz, L. E.

    2018-03-01

    In LWR fuel claddings the embrittlement due to hydrogen precipitates (i.e., hydrides) is a degrading mechanism that concerns in nuclear safety, particularly in dry storage. A relevant factor is the radial distribution of the hydrogen absorbed, especially the hydride rim formed. Thus, a reliable assessment of fuel performance should account for hydrogen migration. Based on the current state of modelling of hydrogen dynamics in the cladding, a 1D radial model has been derived and coupled with the FRAPCON code. The model includes the effect of the oxidation front progression on in-clad hydrogen migration, based on experimental observations found (i.e., dissolution/diffusion/re-precipitation of the hydrogen in the matrix ahead of the oxidation front). A remarkable quantitative impact of this new contribution has been shown by analyzing the hydrogen profile across the cladding of several high burnup fuel scenarios (>60 GW d/tU); other potential contributions like thermodiffusion and diffusion in the hydride phase hardly make any difference. Comparisons against PIE measurements allow concluding that the model accuracy notably increases when the effect of the oxidation front is accounted for in the hydride rim formation. In spite of the promising results, further validation would be needed.

  15. Energetic Nitrogen Ions within the Inner Magnetosphere of Saturn

    NASA Astrophysics Data System (ADS)

    Sittler, E. C.; Johnson, R. E.; Richardson, J. D.; Jurac, S.; Moore, M.; Cooper, J. F.; Mauk, B. H.; Smith, H. T.; Michael, M.; Paranicus, C.; Armstrong, T. P.; Tsurutani, B.; Connerney, J. E. P.

    2003-05-01

    Titan's interaction with Saturn's magnetosphere will result in the energetic ejection of atomic nitrogen atoms into Saturn's magnetosphere due to dissociation of N2 by electrons, ions, and UV photons. The ejection of N atoms into Saturn's magnetosphere will form a nitrogen torus around Saturn with mean density of about 4 atoms/cm3 with source strength of 4.5x1025 atoms/sec. These nitrogen atoms are ionized by photoionization, electron impact ionization and charge exchange reactions producing an N+ torus of 1-4 keV suprathermal ions centered on Titan's orbital position. We will show Voyager plasma observations that demonstrate presence of a suprathermal ion component within Saturn's outer magnetosphere. The Voyager LECP data also reported the presence of inward diffusing energetic ions from the outer magnetosphere of Saturn, which could have an N+ contribution. If so, when one conserves the first and second adiabatic invariant the N+ ions will have energies in excess of 100 keV at Dione's L shell and greater than 400 keV at Enceladus' L shell. Energetic charged particle radial diffusion coefficients are also used to constrain the model results. But, one must also consider the solar wind as another important source of keV ions, in the form of protons and alpha particles, for Saturn's outer magnetosphere. Initial estimates indicate that a solar wind source could dominate in the outer magnetosphere, but various required parameters for this estimate are highly uncertain and will have to await Cassini results for confirmation. We show that satellite sweeping and charged particle precipitation within the middle and outer magnetosphere will tend to enrich N+ ions relative to protons within Saturn's inner magnetosphere as they diffuse radially inward for radial diffusion coefficients that do not violate observations. Charge exchange reactions within the inner magnetosphere can be an important loss mechanism for O+ ions, but to a lesser degree for N+ ions. Initial LECP results using composition data at energies greater than 200 keV/nucl., showed that heavy ions within Saturn's inner magnetosphere dominated over protons, but that contrary to original suggestions that these ions were O+ , we now argue that they are instead N+ ions. With energetic N+ ions bombarding the icy satellite surfaces chemical reactions can occur at the end of the ion tracks and produce nitrogen oxides or other nitrogen containing molecules such that the radiology within the icy surfaces is driven by the impacting energetic nitrogen ions. These can accumulate over the lifetime of the Saturn system.

  16. Second-Order Fermi Acceleration and Emission in Blazar Jets

    NASA Astrophysics Data System (ADS)

    Asano, Katsuaki; Takahara, Fumio; Toma, Kenji; Kusunose, Masaaki; Kakuwa, Jun

    The second-order Fermi acceleration (Fermi-II) driven by turbulence may be responsible for the electron acceleration in blazar jets. We test this model with time-dependent simulations, adopt it for 1ES 1101-232, and Mrk 421. The Fermi-II model with radial evolution of the electron injection rate and/or diffusion coefficient can reproduce the spectra from the radio to the gamma-ray regime. For Mrk 421, an external radio photon field with a luminosity of 4.9 begin{math} {times} 10 (38) erg s (-1) is required to agree with the observed GeV flux. The temporal variability of the diffusion coefficient or injection rate causes flare emission. The observed synchronicity of X-ray and TeV flares implies a decrease of the magnetic field in the flaring source region.

  17. Axial Pump

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor); Akkerman, James W. (Inventor); Aber, Gregory S. (Inventor); VanDamm, George Arthur (Inventor); Bacak, James W. (Inventor); Svejkovsky, Paul A. (Inventor); Benkowski, Robert J. (Inventor)

    1997-01-01

    A rotary blood pump includes a pump housing for receiving a flow straightener, a rotor mounted on rotor bearings and having an inducer portion and an impeller portion, and a diffuser. The entrance angle, outlet angle, axial and radial clearances of blades associated with the flow straightener, inducer portion, impeller portion and diffuser are optimized to minimize hemolysis while maintaining pump efficiency. The rotor bearing includes a bearing chamber that is filled with cross-linked blood or other bio-compatible material. A back emf integrated circuit regulates rotor operation and a microcomputer may be used to control one or more back emf integrated circuits. A plurality of magnets are disposed in each of a plurality of impeller blades with a small air gap. A stator may be axially adjusted on the pump housing to absorb bearing load and maximize pump efficiency.

  18. Is isotropic turbulent diffusion symmetry restoring?

    NASA Astrophysics Data System (ADS)

    Effinger, H.; Grossmann, S.

    1984-07-01

    The broadening of a cloud of marked particle pairs in longitudinal and transverse directions relative to the initial separation in fully developed isotropic turbulent flow is evaluated on the basis of the unified theory of turbulent relative diffusion of Grossmann and Procaccia (1984). The closure assumption of the theory is refined; its validity is confirmed by comparing experimental data; approximate analytical expressions for the traces of variance and asymmetry in the inertial subrange are obtained; and intermittency is treated using a log-normal model. The difference between the longitudinal and transverse components of the variance tensor is shown to tend to a finite nonzero limit dependent on the radial distribution of the cloud. The need for further measurements and the implications for studies of particle waste in air or water are indicated.

  19. White matter and memory in healthy adults: Coupled changes over two years.

    PubMed

    Bender, Andrew R; Prindle, John J; Brandmaier, Andreas M; Raz, Naftali

    2016-05-01

    Numerous cross-sectional studies have used diffusion tensor imaging (DTI) to link age-related differences in white matter (WM) anisotropy and concomitant decrements in cognitive ability. Due to a dearth of longitudinal evidence, the relationship between changes in diffusion properties of WM and cognitive performance remains unclear. Here we examine the relationship between two-year changes in WM organization and cognitive performance in healthy adults (N=96, age range at baseline=18-79 years). We used latent change score models (LCSM) to evaluate changes in age-sensitive cognitive abilities - fluid intelligence and associative memory. WM changes were assessed by fractional anisotropy (FA), axial diffusivity (AD), and radial diffusivity (RD) in WM regions that are considered part of established memory networks and exhibited individual differences in change. In modeling change, we postulated reciprocal paths between baseline measures and change factors, within and between WM and cognition domains, and accounted for individual differences in baseline age. Although baseline cross-sectional memory performance was positively associated with FA and negatively with RD, longitudinal effects told an altogether different story. Independent of age, longitudinal improvements in associative memory were significantly associated with linear reductions in FA and increases in RD. The present findings demonstrate the sensitivity of DTI-derived indices to changes in the brain and cognition and affirm the importance of longitudinal models for evaluating brain-cognition relations. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Callosal degeneration topographically correlated with cognitive function in amnestic mild cognitive impairment and Alzheimer's disease dementia.

    PubMed

    Wang, Pei-Ning; Chou, Kun-Hsien; Chang, Ni-Jung; Lin, Ker-Neng; Chen, Wei-Ta; Lan, Gong-Yau; Lin, Ching-Po; Lirng, Jiing-Feng

    2014-04-01

    Degeneration of the corpus callosum (CC) is evident in the pathogenesis of Alzheimer's disease (AD). However, the correlation of microstructural damage in the CC on the cognitive performance of patients with amnestic mild cognitive impairment (aMCI) and AD dementia is undetermined. We enrolled 26 normal controls, 24 patients with AD dementia, and 40 single-domain aMCI patients with at least grade 1 hippocampal atrophy and isolated memory impairment. Diffusion tensor imaging (DTI) with fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (DA), and radial diffusivity (DR) were measured. The entire CC was parcellated based on fiber trajectories to specific cortical Brodmann areas using a probabilistic tractography method. The relationship between the DTI measures in the subregions of the CC and cognitive performance was examined. Although the callosal degeneration in the patients with aMCI was less extended than in the patients with AD dementia, degeneration was already exhibited in several subregions of the CC at the aMCI stage. Scores of various neuropsychological tests were correlated to the severity of microstructural changes in the subregional CC connecting to functionally corresponding cortical regions. Our results confirm that CC degeneration is noticeable as early as the aMCI stage of AD and the disconnection of the CC subregional fibers to the corresponding Brodmann areas has an apparent impact on the related cognitive performance. Copyright © 2013 Wiley Periodicals, Inc.

  1. 1D Resonance line Broadened Quasilinear (RBQ1D) code for fast ion Alfvenic relaxations and its validations

    NASA Astrophysics Data System (ADS)

    Gorelenkov, Nikolai; Duarte, Vinicius; Podesta, Mario

    2017-10-01

    The performance of the burning plasma can be limited by the requirements to confine the superalfvenic fusion products which are capable of resonating with the Alfvénic eigenmodes (AEs). The effect of AEs on fast ions is evaluated using the quasi-linear approach [Berk et al., Ph.Plasmas'96] generalized for this problem recently [Duarte et al., Ph.D.'17]. The generalization involves the resonance line broadened interaction regions with the diffusion coefficient prescribed to find the evolution of the velocity distribution function. The baseline eigenmode structures are found using the NOVA-K code perturbatively [Gorelenkov et al., Ph.Plasmas'99]. A RBQ1D code allowing the diffusion in radial direction is presented here. The wave particle interaction can be reduced to one-dimensional dynamics where for the Alfvénic modes typically the particle kinetic energy is nearly constant. Hence to a good approximation the Quasi-Linear (QL) diffusion equation only contains derivatives in the angular momentum. The diffusion equation is then one dimensional that is efficiently solved simultaneously for all particles with the equation for the evolution of the wave angular momentum. The RBQ1D is validated against recent DIIID results [Collins et al., PRL'16]. Supported by the US Department of Energy under DE-AC02-09CH11466.

  2. CoFlame: A refined and validated numerical algorithm for modeling sooting laminar coflow diffusion flames

    NASA Astrophysics Data System (ADS)

    Eaves, Nick A.; Zhang, Qingan; Liu, Fengshan; Guo, Hongsheng; Dworkin, Seth B.; Thomson, Murray J.

    2016-10-01

    Mitigation of soot emissions from combustion devices is a global concern. For example, recent EURO 6 regulations for vehicles have placed stringent limits on soot emissions. In order to allow design engineers to achieve the goal of reduced soot emissions, they must have the tools to so. Due to the complex nature of soot formation, which includes growth and oxidation, detailed numerical models are required to gain fundamental insights into the mechanisms of soot formation. A detailed description of the CoFlame FORTRAN code which models sooting laminar coflow diffusion flames is given. The code solves axial and radial velocity, temperature, species conservation, and soot aggregate and primary particle number density equations. The sectional particle dynamics model includes nucleation, PAH condensation and HACA surface growth, surface oxidation, coagulation, fragmentation, particle diffusion, and thermophoresis. The code utilizes a distributed memory parallelization scheme with strip-domain decomposition. The public release of the CoFlame code, which has been refined in terms of coding structure, to the research community accompanies this paper. CoFlame is validated against experimental data for reattachment length in an axi-symmetric pipe with a sudden expansion, and ethylene-air and methane-air diffusion flames for multiple soot morphological parameters and gas-phase species. Finally, the parallel performance and computational costs of the code is investigated.

  3. White matter microstructure on diffusion tensor imaging is associated with conventional magnetic resonance imaging findings and cognitive function in adolescents born preterm

    PubMed Central

    FELDMAN, HEIDI M; LEE, ELIANA S; LOE, IRENE M; YEOM, KRISTEN W; GRILL-SPECTOR, KALANIT; LUNA, BEATRIZ

    2013-01-01

    AIM Diffusion tensor imaging (DTI) was used to evaluate white matter architecture after preterm birth. The goals were (1) to compare white matter microstructure in two cohorts of preterm- and term-born children; and (2) within preterm groups, to determine if sex, gestational age, birthweight, white matter injury score from conventional magnetic resonance imaging (MRI), or IQ was associated with DTI measures. METHOD Participants (n=121; 66 females, 55 males) were aged 9 to 16 years. They comprised 58 preterm children (site 1, n=25; and site 2, n=33) born at less than 36 weeks’ gestation (mean 29.4wks; birthweight 1289g) and 63 term children (site 1, n=40; site 2, n=23) born at more than 37 weeks’ gestation. DTI was analyzed using tract-based spatial statistics. Diffusion measures were fractional anisotropy, axial, radial, and mean diffusivity. RESULTS In no region of the white matter skeleton was fractional anisotropy lower in the preterm group at either site. Within the preterm groups, fractional anisotropy was significantly associated with white matter injury score, but not sex, gestational age, or birthweight. At site 1, fractional anisotropy was associated with IQ. INTERPRETATION DTI contributes to understanding individual differences after preterm birth but may not differentiate a relatively high-functioning group of preterm children from a matched group of term-born children. PMID:22803787

  4. Diffusion Coefficients of Endogenous Cytosolic Proteins from Rabbit Skinned Muscle Fibers

    PubMed Central

    Carlson, Brian E.; Vigoreaux, Jim O.; Maughan, David W.

    2014-01-01

    Efflux time courses of endogenous cytosolic proteins were obtained from rabbit psoas muscle fibers skinned in oil and transferred to physiological salt solution. Proteins were separated by gel electrophoresis and compared to load-matched standards for quantitative analysis. A radial diffusion model incorporating the dissociation and dissipation of supramolecular complexes accounts for an initial lag and subsequent efflux of glycolytic and glycogenolytic enzymes. The model includes terms representing protein crowding, myofilament lattice hindrance, and binding to the cytomatrix. Optimization algorithms returned estimates of the apparent diffusion coefficients, D(r,t), that were very low at the onset of diffusion (∼10−10 cm2 s−1) but increased with time as cytosolic protein density, which was initially high, decreased. D(r,t) at later times ranged from 2.11 × 10−7 cm2 s−1 (parvalbumin) to 0.20 × 10−7 cm2 s−1 (phosphofructose kinase), values that are 3.6- to 12.3-fold lower than those predicted in bulk water. The low initial values are consistent with the presence of complexes in situ; the higher later values are consistent with molecular sieving and transient binding of dissociated proteins. Channeling of metabolic intermediates via enzyme complexes may enhance production of adenosine triphosphate at rates beyond that possible with randomly and/or sparsely distributed enzymes, thereby matching supply with demand. PMID:24559981

  5. White Matter and Memory in Healthy Adults: Coupled Changes over Two Years

    PubMed Central

    Bender, Andrew R.; Prindle, John J.; Brandmaier, Andreas M.; Raz, Naftali

    2016-01-01

    Numerous cross-sectional studies have used diffusion tensor imaging (DTI) to link age-related differences in white matter (WM) anisotropy and concomitant decrements in cognitive ability. Due to a dearth of longitudinal evidence, the relationship between changes in diffusion properties of WM and cognitive performance remains unclear. Here we examine the relationship between two-year changes in WM organization and cognitive performance in healthy adults (N = 96, age range at baseline = 18–79 years). We used latent change score models (LCSM) to evaluate changes in age-sensitive cognitive abilities - fluid intelligence and associative memory. WM changes were assessed by fractional anisotropy (FA), axial diffusivity (AD), and radial diffusivity (RD) in WM regions that are considered part of established memory networks and exhibited individual differences in change. In modeling change, we postulated reciprocal paths between baseline measures and change factors, within and between WM and cognition domains, and accounted for individual differences in baseline age. Although baseline cross-sectional memory performance was positively associated with FA and negatively with RD, longitudinal effects told an altogether different story. Independent of age, longitudinal improvements in associative memory were significantly associated with linear reductions in FA and increases in RD. The present findings demonstrate the sensitivity of DTI-derived indices to changes in the brain and cognition and affirm the importance of longitudinal models for evaluating brain-cognition relations. PMID:26545457

  6. Fuel Preheat Effects on Soot-Field Structure in Laminar Gas Jet Diffusion Flames Burning in 0-g and 1-g

    NASA Technical Reports Server (NTRS)

    Konsur, Bogdan; Megaridis, Constantine M.; Griffin, Devon W.

    1999-01-01

    An experimental investigation conducted at the 2.2-s drop tower of the NASA Lewis Research Center is presented to quantify the influence of moderate fuel preheat on soot-field structure within 0-g laminar gas jet diffusion flames. Parallel work in 1-g is also presented to delineate the effect of elevated fuel temperatures on soot-field structure in buoyant flames. The experimental methodology implements jet diffusion flames of nitrogen-diluted acetylene fuel burning in quiescent air at atmospheric pressure. Fuel preheat of approximately 100 K in the 0-g laminar jet diffusion flames is found to reduce soot loadings in the annular region, but causes an increase in soot volume fractions at the centerline. In addition, fuel preheat reduces the radial extent of the soot field in 0-g. In 1-g, the same fuel preheat levels have a more moderated influence on soot loadings in the annular region, but are also seen to enhance soot concentrations near the axis low in the flame. The increased soot loadings near the flame centerline, as caused by fuel preheat, are consistent with the hypothesis that preheat levels of approximately 100 K enhance fuel pyrolysis rates. The results show that the growth stage of particles transported along the soot annulus is shortened both in 1-g and 0-g when elevated fuel temperatures are used.

  7. Delay Discounting and Frontostriatal Fiber Tracts: A Combined DTI and MTR Study on Impulsive Choices in Healthy Young Adults

    PubMed Central

    Peper, Jiska S.; Mandl, René C.W.; Braams, Barbara R.; de Water, Erik; Heijboer, Annemieke C.; Koolschijn, P. Cédric M.P.; Crone, Eveline A.

    2013-01-01

    Delay discounting, a measure of impulsive choice, has been associated with decreased control of the prefrontal cortex over striatum responses. The anatomical connectivity between both brain regions in delaying gratification remains unknown. Here, we investigate whether the quality of frontostriatal (FS) white matter tracts can predict individual differences in delay-discounting behavior. We use tract-based diffusion tensor imaging and magnetization transfer imaging to measure the microstructural properties of FS fiber tracts in 40 healthy young adults (from 18 to 25 years). We additionally explored whether internal sex hormone levels affect the integrity of FS tracts, based on the hypothesis that sex hormones modulate axonal density within prefrontal dopaminergic circuits. We calculated fractional anisotropy (FA), mean diffusivity (MD), longitudinal diffusivity, radial diffusivity (RD), and magnetization transfer ratio (MTR), a putative measure of myelination, for the FS tract. Results showed that lower integrity within the FS tract (higher MD and RD and lower FA), predicts faster discounting in both sexes. MTR was unrelated to delay-discounting performance. In addition, testosterone levels in males were associated with a lower integrity (higher RD) within the FS tract. Our study provides support for the hypothesis that enhanced structural integrity of white matter fiber bundles between prefrontal and striatal brain areas is associated with better impulse control. PMID:22693341

  8. Manual dexterity and brain structure in patients with schizophrenia: A whole-brain magnetic resonance imaging study.

    PubMed

    Hidese, Shinsuke; Ota, Miho; Sasayama, Daimei; Matsuo, Junko; Ishida, Ikki; Hiraishi, Moeko; Teraishi, Toshiya; Hattori, Kotaro; Kunugi, Hiroshi

    2018-04-14

    The Purdue Pegboard Test (PPT) is a motor coordination task used to assess manual dexterity. Although several brain regions are thought to be involved in PPT performance, the relationship of the task with decreased insular volume has not been investigated. The PPT was administered to 83 subjects diagnosed with schizophrenia (mean ± standard deviation age: 38.6 ± 11.2 years; 47 males, 36 females) and 130 healthy controls (42.1 ± 15.2 years; 67 males, 63 females). All subjects were Japanese and right-handed. Gray matter volume was analyzed using voxel-based morphometry in statistical parametric mapping, while white matter measures were analyzed using diffusion tensor imaging in tract-based spatial statistics. For the patients with schizophrenia, the left-hand scores positively correlated with the right insular and bilateral operculum volumes, while the summation score (sum of left-, right-, and both-hands scores) positively correlated with the right insular volume, and the summation and assembly (number of assemblies completed) scores correlated with the diffuse white matter fractional anisotropy, axial diffusivity, and radial diffusivity values. In contrast, no significant correlations were found for the controls. These results suggested that decreased insular volume and white matter measures contributed to the impairments in manual dexterity observed in subjects with schizophrenia. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Diffusivity in the core of chronic multiple sclerosis lesions.

    PubMed

    Klistorner, Alexander; Wang, Chenyu; Yiannikas, Con; Parratt, John; Barton, Joshua; You, Yuyi; Graham, Stuart L; Barnett, Michael H

    2018-01-01

    Diffusion tensor imaging (DTI) has been suggested as a potential biomarker of disease progression, neurodegeneration and de/remyelination in MS. However, the pathological substrates that underpin alterations in brain diffusivity are not yet fully delineated. We propose that in highly cohesive fiber tracts: 1) a relative increase in parallel (axial) diffusivity (AD) may serve as a measure of increased extra-cellular space (ESC) within the core of chronic MS lesions and, as a result, may provide an estimate of the degree of tissue destruction, and 2) the contribution of the increased extra-cellular water to perpendicular (radial) diffusivity (RD) can be eliminated to provide a more accurate assessment of membranal (myelin) loss. The purpose of this study was to isolate the contribution of extra-cellular water and demyelination to observed DTI indices in the core of chronic MS lesions, using the OR as an anatomically cohesive tract. Pre- and post-gadolinium (Gd) enhanced T1, T2 and DTI images were acquired from 75 consecutive RRMS patients. In addition, 25 age and gender matched normal controls were imaged using an identical MRI protocol (excluding Gd). The optic radiation (OR) was identified in individual patients using probabilistic tractography. The T2 lesions were segmented and intersected with the OR. Average eigenvalues were calculated within the core of OR lesions mask. The proportion of extra-cellular space (ECS) within the lesional core was calculated based on relative increase of AD, which was then used to normalise the perpendicular eigenvalues to eliminate the effect of the expanded ECS. In addition, modelling was implemented to simulate potential effect of various factors on lesional anisotropy. Of 75 patients, 41 (55%) demonstrated sizable T2 lesion volume within the ORs. All lesional eigenvalues were significantly higher compared to NAWM and controls. There was a strong correlation between AD and RD within the core of OR lesions, which was, however, not seen in OR NAWM of MS patients or normal controls. In addition, lesional anisotropy (FA) was predominantly driven by the perpendicular diffusivity, while in NAWM and in OR of normal controls all eigenvectors contributed to variation in FA. Estimated volume of ECS component constituted significant proportion of OR lesional volume and correlated significantly with lesional T1 hypointensity. While perpendicular diffusivity dropped significantly following normalisation, it still remained higher compared with diffusivity in OR NAWM. The "residual" perpendicular diffusivity also showed a substantial reduction of inter-subject variability. Both observed and modelled diffusion data suggested anisotropic nature of water diffusion in ESC. In addition, the simulation procedure offered a possible explanation for the discrepancy in relationship between eigenvalues and anisotropy in lesional tissue and NAWM. This paper presents a potential technique for more reliably quantifying the effects of neurodegeneration (tissue loss) versus demyelination in OR MS lesions. This may provide a simple and effective way for applying single tract diffusion analysis in MS clinical trials, with particular relevance to pro-remyelinating and neuroprotective therapeutics.

  10. Particle trapping and snow lines in the Trappist-1 disk

    NASA Astrophysics Data System (ADS)

    White, Kevin; Desch, Steven; Kalyaan, Anusha

    2018-01-01

    The Trappist-1 system has 7 transiting planets with constrained masses and radii (Gillon et al. 2017; Wang et al. 2017), and represents a laboratory for understanding planet formation in M dwarf disks. All the planets are about 1 ME, consistent with the pebble isolation masses in M dwarf disks, in the same way ~ 30 ME Jupiter’s core matches the pebble isolation mass in the solar nebula (Ormel et al. 2017). Trappist-1 f, g, and h are apparently ice-rich (> 50%), but planets b and c are <15% ice, suggesting they formed inside the snow line in Trappist-1’s disk (Unterborn et al. 2017). Earth formed inside the snow line in the solar nebula, but is only ~ 0.1wt% water, much drier than Trappist-1 b and c. If the pebbles excluded by Jupiter were icy, this would explain the dryness of the inner solar system (Morbidelli et al. 2016). This raises the question why the Trappist-1 inner disk was not equally dry. We have calculated the efficiency by which pebbles are trapped in the pressure maxima outside of planet-opened disk gaps, comparing the rates of radial diffusion vs. radial drift (as in Desch et al. 2017). We find that while Jupiter can exclude particles mm-sized or larger, only for particles > cm-sized does radial drift act faster than radial diffusion in the Trappist-1 pressure maxima. Pressure maxima in M dwarf disks are relatively leaky particle traps, possibly admitting more icy pebbles and water into the inner disk. We predict lower emission contrast between rings and gaps in M dwarf disks observable by ALMA.

  11. Imaging and modelling root water uptake

    NASA Astrophysics Data System (ADS)

    Zarebanadkouki, M.; Meunier, F.; Javaux, M.; Kaestner, A.; Carminati, A.

    2017-12-01

    Spatially resolved measurement and modelling of root water uptake is urgently needed to identify root traits that can improve capture of water from the soil. However, measuring water fluxes into roots of transpiring plants growing in soil remains challenging. Here, we describe an in-situ technique to measure local fluxes of water into roots. The technique consists of tracing the transport of deuterated water (D2O) in soil and roots using time series neutron radiography and tomography. A diffusion-convection model was used to model the transport of D2O in roots. The model includes root features such as the endodermis, xylem and the composite flow of water in the apoplastic and symplastic pathways. Diffusion permeability of root cells and of the endodermis were estimated by fitting the experiment during the night, when transpiration was negligible. The water fluxes at different position of the root system were obtained by fitting the experiments at daytime. The results showed that root water uptake was not uniform along root system and varied among different root types. The measured profiles of root water uptake into roots were used to estimate the radial and axial hydraulic of the roots. A three-dimensional model of root water uptake was used to fit the measured water fluxes by adjusting the root radial and axial hydraulic conductivities. We found that the estimated radial conductivities decreased with root age, while the axial conducances increased, and they are different among root types. The significance of this study is the development of a method to estimate 1) water uptake and 2) the radial and axial hydraulic conductivities of roots of transpiring plants growing in the soil.

  12. The evolution of Saturn's radiation belts modulated by changes in radial diffusion

    NASA Astrophysics Data System (ADS)

    Kollmann, P.; Roussos, E.; Kotova, A.; Paranicas, C.; Krupp, N.

    2017-12-01

    Globally magnetized planets, such as the Earth1 and Saturn2, are surrounded by radiation belts of protons and electrons with kinetic energies well into the million electronvolt range. The Earth's proton belt is supplied locally from galactic cosmic rays interacting with the atmosphere3, as well as from slow inward radial transport4. Its intensity shows a relationship with the solar cycle4,5 and abrupt dropouts due to geomagnetic storms6,7. Saturn's proton belts are simpler than the Earth's because cosmic rays are the principal source of energetic protons8 with virtually no contribution from inward transport, and these belts can therefore act as a prototype to understand more complex radiation belts. However, the time dependence of Saturn's proton belts had not been observed over sufficiently long timescales to test the driving mechanisms unambiguously. Here we analyse the evolution of Saturn's proton belts over a solar cycle using in-situ measurements from the Cassini Saturn orbiter and a numerical model. We find that the intensity in Saturn's proton radiation belts usually rises over time, interrupted by periods that last over a year for which the intensity is gradually dropping. These observations are inconsistent with predictions based on a modulation in the cosmic-ray source, as could be expected4,9 based on the evolution of the Earth's proton belts. We demonstrate that Saturn's intensity dropouts result instead from losses due to abrupt changes in magnetospheric radial diffusion.

  13. Babcock-Leighton Solar Dynamo: The Role of Downward Pumping and the Equatorward Propagation of Activity

    NASA Astrophysics Data System (ADS)

    Karak, Bidya Binay; Cameron, Robert

    2016-11-01

    The key elements of the Babcock-Leighton dynamos are the generation of poloidal field through decay and the dispersal of tilted bipolar active regions and the generation of toroidal field through the observed differential rotation. These models are traditionally known as flux transport dynamo models as the equatorward propagations of the butterfly wings in these models are produced due to an equatorward flow at the bottom of the convection zone. Here we investigate the role of downward magnetic pumping near the surface using a kinematic Babcock-Leighton model. We find that the pumping causes the poloidal field to become predominately radial in the near-surface shear layer, which allows the negative radial shear to effectively act on the radial field to produce a toroidal field. We observe a clear equatorward migration of the toroidal field at low latitudes as a consequence of the dynamo wave even when there is no meridional flow in the deep convection zone. Both the dynamo wave and the flux transport type solutions are thus able to reproduce some of the observed features of the solar cycle including the 11-year periodicity. The main difference between the two types of solutions is the strength of the Babcock-Leighton source required to produce the dynamo action. A second consequence of the magnetic pumping is that it suppresses the diffusion of fields through the surface, which helps to allow an 11-year cycle at (moderately) larger values of magnetic diffusivity than have previously been used.

  14. Investigation of the solar UV/EUV heating effect on the Jovian radiation belt by GMRT-IRTF observation

    NASA Astrophysics Data System (ADS)

    Kita, H.; Misawa, H.; Bhardwaj, A.; Tsuchiya, F.; Tao, C.; Uno, T.; Kondo, T.; Morioka, A.

    2012-12-01

    Jupiter's synchrotron radiation (JSR) is the emission from relativistic electrons, and it is the most effective probe for remote sensing of Jupiter's radiation belt from the Earth. Recent intensive observations of JSR revealed short term variations of JSR with the time scale of days to weeks. Brice and McDonough (1973) proposed a scenario for the short term variations; i.e, the solar UV/EUV heating for Jupiter's upper atmosphere causes enhancement of total flux density. The purpose of this study is to investigate whether sufficient solar UV/EUV heating in Jupiter's upper atmosphere can actually causes variation in the JSR total flux and brightness distribution. Previous JSR observations using the Giant Metrewave Radio Telescope (GMRT) suggested important characteristics of short term variations; relatively low energy particles are accelerated by some acceleration processes which might be driven by solar UV/EUV heating and/or Jupiter's own magnetic activities. In order to evaluate the effect of solar UV/EUV heating on JSR variations, we made coordinated observations using the GMRT and NASA Infra-Red Telescope Facility (IRTF). By using IRTF, we can estimate the temperature of Jupiter's upper atmosphere from spectroscopic observation of H_3^+ infrared emission. Hence, we can evaluate the relationship between variations in Jupiter's upper atmosphere initiated by the solar UV/EUV heating and its linkage with the JSR. The GMRT observations were made during Nov. 6-17, 2011 at the frequency of 235/610MHz. The H_3^+ 3.953 micron line was observed using the IRTF during Nov. 7-12, 2011. During the observation period, the solar UV/EUV flux variations expected on Jupiter showed monotonic increase. A preliminary analysis of GMRT 610MHz band showed a radio flux variation similar to that in the solar UV/EUV. Radio images showed that the emission intensity increased at the outer region and the position of equatorial peak emission moved in the outward direction. If radial diffusion increases globally by the solar UV/EUV heating, it is expected that the peak intensity would increase and the peak position move inwards. However, our results are not consistent with the global enhancement of radial diffusion. In addition to that, the equatorial H_3^+ emission indicated that emission intensity decreased from the first day of observation to the last day. It is expected that equatorial temperature of Jupiter's atmosphere decreases during this observation period. Therefore, we propose that radial diffusion increased not globally but only at the outer region around L=2-3 during this period. From this hypothesis, it is expected that enhancement of radial diffusion at the outer region is caused by high latitude temperature enhancement. We discuss possible causes of the short term variations of JSR from the IRTF observation results at high latitude.

  15. Diffusive Transport and Structural Properties of Liquid Iron Alloys at High Pressure

    NASA Astrophysics Data System (ADS)

    Posner, E.; Rubie, D. C.; Steinle-Neumann, G.; Frost, D. J.

    2017-12-01

    Diffusive transport properties of liquid iron alloys at high pressures (P) and temperatures (T) place important kinetic constraints on processes related to the origin and evolution of planetary cores. Earth's core composition is largely controlled by the extent of chemical equilibration achieved between liquid metal bodies and a silicate magma ocean during core formation, which can be estimated using chemical diffusion data. In order to estimate the time and length scales of metal-silicate chemical equilibration, we have measured chemical diffusion rates of Si, O and Cr in liquid iron over the P-T range of 1-18 GPa and 1873-2643 K using a multi-anvil apparatus. We have also performed first-principles molecular dynamic simulations of comparable binary liquid compositions, in addition to pure liquid Fe, over a much wider P-T range (1 bar-330 GPa, 2200-5500 K) in order to both validate the simulation results with experimental data at conditions accessible in the laboratory and to extend our dataset to conditions of the Earth's core. Over the entire P-T range studied using both methods, diffusion coefficients are described consistently and well using an exponential function of the homologous temperature relation. Si, Cr and Fe diffusivities of approximately 5 × 10-9 m2 s-1 are constant along the melting curve from ambient to core pressures, while oxygen diffusion is 2-3 times faster. Our results indicate that in order for the composition of the Earth's core to represent chemical equilibrium, impactor cores must have broken up into liquid droplet sizes no larger than a few tens of cm. Structural properties, analyzed using partial radial distribution functions from the molecular dynamics simulations, reveal a pressure-induced structural change in liquid Fe0.96O0.04 at densities of 8 g cm-3, in agreement with previous experimental studies. For densities above 8 g cm-3, the liquid is essentially close packed with a local CsCl-like (B2) packing of Fe around O under conditions of the Earth's core.

  16. Multiple sclerosis: changes in microarchitecture of white matter tracts after training with a video game balance board.

    PubMed

    Prosperini, Luca; Fanelli, Fulvia; Petsas, Nikolaos; Sbardella, Emilia; Tona, Francesca; Raz, Eytan; Fortuna, Deborah; De Angelis, Floriana; Pozzilli, Carlo; Pantano, Patrizia

    2014-11-01

    To determine if high-intensity, task-oriented, visual feedback training with a video game balance board (Nintendo Wii) induces significant changes in diffusion-tensor imaging ( DTI diffusion-tensor imaging ) parameters of cerebellar connections and other supratentorial associative bundles and if these changes are related to clinical improvement in patients with multiple sclerosis. The protocol was approved by local ethical committee; each participant provided written informed consent. In this 24-week, randomized, two-period crossover pilot study, 27 patients underwent static posturography and brain magnetic resonance (MR) imaging at study entry, after the first 12-week period, and at study termination. Thirteen patients started a 12-week training program followed by a 12-week period without any intervention, while 14 patients received the intervention in reverse order. Fifteen healthy subjects also underwent MR imaging once and underwent static posturography. Virtual dissection of white matter tracts was performed with streamline tractography; values of DTI diffusion-tensor imaging parameters were then obtained for each dissected tract. Repeated measures analyses of variance were performed to evaluate whether DTI diffusion-tensor imaging parameters significantly changed after intervention, with false discovery rate correction for multiple hypothesis testing. There were relevant differences between patients and healthy control subjects in postural sway and DTI diffusion-tensor imaging parameters (P < .05). Significant main effects of time by group interaction for fractional anisotropy and radial diffusivity of the left and right superior cerebellar peduncles were found (F2,23 range, 5.555-3.450; P = .036-.088 after false discovery rate correction). These changes correlated with objective measures of balance improvement detected at static posturography (r = -0.381 to 0.401, P < .05). However, both clinical and DTI diffusion-tensor imaging changes did not persist beyond 12 weeks after training. Despite the low statistical power (35%) due to the small sample size, the results showed that training with the balance board system modified the microstructure of superior cerebellar peduncles. The clinical improvement observed after training might be mediated by enhanced myelination-related processes, suggesting that high-intensity, task-oriented exercises could induce favorable microstructural changes in the brains of patients with multiple sclerosis.

  17. Insights into crystal growth rates from a study of orbicular granitoids from western Australia

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Lee, C. T.

    2017-12-01

    The purpose of this study is to develop new tools for constraining crystal growth rate in geologic systems. Of interest is the growth of crystals in magmatic systems because crystallization changes the rheology of a magma as well as provides surfaces on which bubbles can nucleate. To explore crystal growth in more detail, we conducted a case study of orbicular granitoids from western Australia. The orbicules occur as spheroids dispersed in a granitic matrix. Most orbicules have at least two to three concentric bands, composed of elongate and radially oriented hornblende surrounded by interstitial plagioclase. We show that mineral modes and hence bulk composition at the scale of the band is homogeneous from rim to core. Crystal number density decreases and crystal size increases from rim to core. These observations suggest that the orbicules crystallized rapidly from rim to core. We hypothesize that the orbicules are blobs of hot dioritic liquid injected into a cold granitic magma and subsequently cooled and solidified. Crystals stop growing when the mass transport rate tends to zero due to the low temperature. We estimated cooling timescales based on conductive cooling models, constraining crystal growth rates to be 10-6 to 10-5 m/s. We also show that the oscillatory banding is controlled by disequilibrium crystallization, wherein hornblende preferentially crystallizes, resulting in the diffusive growth of a chemical boundary layer enriched in plagioclase component, which in turns results in crystallization of plagioclase. We show that the correlation between the width of each crystallization couplet (band) with distance from orbicule rim is linear, with the slope corresponding to the square root of the ratio between chemical diffusivity in the growth medium and thermal diffusivity. We estimate chemical diffusivity of 2*10-7 m2/s, which is remarkably fast for silicate liquids but reasonable for diffusion in hot aqueous fluids, suggesting that crystallization occurred during water-saturated conditions. Combined with the estimate of the boundary layer thickness, we use the diffusivity to estimate the diffusive flux, arriving at crystal growth rates similar to that constrained by thermal modeling. In the presence of fluids, we show that crystal growth rates in magmatic systems may be under-estimated.

  18. Determination of the diffusivity, dispersion, skewness and kurtosis in heterogeneous porous flow. Part I: Analytical solutions with the extended method of moments.

    NASA Astrophysics Data System (ADS)

    Ginzburg, Irina; Vikhansky, Alexander

    2018-05-01

    The extended method of moments (EMM) is elaborated in recursive algorithmic form for the prediction of the effective diffusivity, the Taylor dispersion dyadic and the associated longitudinal high-order coefficients in mean-concentration profiles and residence-time distributions. The method applies in any streamwise-periodic stationary d-dimensional velocity field resolved in the piecewise continuous heterogeneous porosity field. It is demonstrated that EMM reduces to the method of moments and the volume-averaging formulation in microscopic velocity field and homogeneous soil, respectively. The EMM simultaneously constructs two systems of moments, the spatial and the temporal, without resorting to solving of the high-order upscaled PDE. At the same time, the EMM is supported with the reconstruction of distribution from its moments, allowing to visualize the deviation from the classical ADE solution. The EMM can be handled by any linear advection-diffusion solver with explicit mass-source and diffusive-flux jump condition on the solid boundary and permeable interface. The prediction of the first four moments is decisive in the optimization of the dispersion, asymmetry, peakedness and heavy-tails of the solute distributions, through an adequate design of the composite materials, wetlands, chemical devices or oil recovery. The symbolic solutions for dispersion, skewness and kurtosis are constructed in basic configurations: diffusion process and Darcy flow through two porous blocks in "series", straight and radial Poiseuille flow, porous flow governed by the Stokes-Brinkman-Darcy channel equation and a fracture surrounded by penetrable diffusive matrix or embedded in porous flow. We examine the moments dependency upon porosity contrast, aspect ratio, Péclet and Darcy numbers, but also for their response on the effective Brinkman viscosity applied in flow modeling. Two numerical Lattice Boltzmann algorithms, a direct solver of the microscopic ADE in heterogeneous structure and a novel scheme for EMM numerical formulation, are called for validation of the constructed analytical predictions.

  19. Normal development of human brain white matter from infancy to early adulthood: a diffusion tensor imaging study.

    PubMed

    Uda, Satoshi; Matsui, Mie; Tanaka, Chiaki; Uematsu, Akiko; Miura, Kayoko; Kawana, Izumi; Noguchi, Kyo

    2015-01-01

    Diffusion tensor imaging (DTI), which measures the magnitude of anisotropy of water diffusion in white matter, has recently been used to visualize and quantify parameters of neural tracts connecting brain regions. In order to investigate the developmental changes and sex and hemispheric differences of neural fibers in normal white matter, we used DTI to examine 52 healthy humans ranging in age from 2 months to 25 years. We extracted the following tracts of interest (TOIs) using the region of interest method: the corpus callosum (CC), cingulum hippocampus (CGH), inferior longitudinal fasciculus (ILF), and superior longitudinal fasciculus (SLF). We measured fractional anisotropy (FA), apparent diffusion coefficient (ADC), axial diffusivity (AD), and radial diffusivity (RD). Approximate values and changes in growth rates of all DTI parameters at each age were calculated and analyzed using LOESS (locally weighted scatterplot smoothing). We found that for all TOIs, FA increased with age, whereas ADC, AD and RD values decreased with age. The turning point of growth rates was at approximately 6 years. FA in the CC was greater than that in the SLF, ILF and CGH. Moreover, FA, ADC and AD of the splenium of the CC (sCC) were greater than in the genu of the CC (gCC), whereas the RD of the sCC was lower than the RD of the gCC. The FA of right-hemisphere TOIs was significantly greater than that of left-hemisphere TOIs. In infants, growth rates of both FA and RD were larger than those of AD. Our data show that developmental patterns differ by TOIs and myelination along with the development of white matter, which can be mainly expressed as an increase in FA together with a decrease in RD. These findings clarify the long-term normal developmental characteristics of white matter microstructure from infancy to early adulthood. © 2015 S. Karger AG, Basel.

  20. Evaluation of multi-modal, multi-site neuroimaging measures in Huntington's disease: Baseline results from the PADDINGTON study☆

    PubMed Central

    Hobbs, Nicola Z.; Cole, James H.; Farmer, Ruth E.; Rees, Elin M.; Crawford, Helen E.; Malone, Ian B.; Roos, Raymund A.C.; Sprengelmeyer, Reiner; Durr, Alexandra; Landwehrmeyer, Bernhard; Scahill, Rachael I.; Tabrizi, Sarah J.; Frost, Chris

    2012-01-01

    Background Macro- and micro-structural neuroimaging measures provide valuable information on the pathophysiology of Huntington's disease (HD) and are proposed as biomarkers. Despite theoretical advantages of microstructural measures in terms of sensitivity to pathology, there is little evidence directly comparing the two. Methods 40 controls and 61 early HD subjects underwent 3 T MRI (T1- and diffusion-weighted), as part of the PADDINGTON study. Macrostructural volumetrics were obtained for the whole brain, caudate, putamen, corpus callosum (CC) and ventricles. Microstructural diffusion metrics of fractional anisotropy (FA), mean-, radial- and axial-diffusivity (MD, RD, AD) were computed for white matter (WM), CC, caudate and putamen. Group differences were examined adjusting for age, gender and site. A formal comparison of effect sizes determined which modality and metrics provided a statistically significant advantage over others. Results Macrostructural measures showed decreased regional and global volume in HD (p < 0.001); except the ventricles which were enlarged (p < 0.01). In HD, FA was increased in the deep grey-matter structures (p < 0.001), and decreased in the WM (CC, p = 0.035; WM, p = 0.053); diffusivity metrics (MD, RD, AD) were increased for all brain regions (p < 0.001). The largest effect sizes were for putamen volume, caudate volume and putamen diffusivity (AD, RD and MD); each was significantly larger than those for all other metrics (p < 0.05). Conclusion The highest performing macro- and micro-structural metrics had similar sensitivity to HD pathology quantified via effect sizes. Region-of-interest may be more important than imaging modality, with deep grey-matter regions outperforming the CC and global measures, for both volume and diffusivity. FA appears to be relatively insensitive to disease effects. PMID:24179770

Top