Sample records for digested cow manure

  1. Cow, sheep and llama manure at psychrophilic anaerobic co-digestion with low cost tubular digesters in cold climate and high altitude.

    PubMed

    Martí-Herrero, J; Alvarez, R; Cespedes, R; Rojas, M R; Conde, V; Aliaga, L; Balboa, M; Danov, S

    2015-04-01

    The aim of this research is to evaluate the co-digestion of cow and llama manure combined with sheep manure, in psychrophilic conditions and real field low cost tubular digesters adapted to cold climate. Four digesters were monitored in cold climate conditions; one fed with cow manure, a second one with llama manure, the third one with co-digestion of cow-sheep manure and the fourth one was fed with llama-sheep manure. The slurry had a mean temperature of 16.6 °C, the organic load rate was 0.44 kgvs m(-3) d(-1) and the hydraulic retention time was 80 days. After one hundred days biogas production was stable, as was the methane content and the pH of the effluent. The co-digestion of cow-sheep manure results in a biogas production increase of 100% compared to the mono-digestion of cow manure, while co-digestion of llama-sheep manure results in a decrease of 50% in biogas production with respect to mono-digestion of llama manure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Redundancy in Anaerobic Digestion Microbiomes during Disturbances by the Antibiotic Monensin

    PubMed Central

    Spirito, Catherine M.; Daly, Sarah E.; Werner, Jeffrey J.

    2018-01-01

    ABSTRACT The antibiotic monensin is fed to dairy cows to increase milk production efficiency. A fraction of this monensin is excreted into the cow manure. Previous studies have found that cow manure containing monensin can negatively impact the performance of anaerobic digesters, especially upon first introduction. Few studies have examined whether the anaerobic digester microbiome can adapt to monensin during the operating time. Here, we conducted a long-term time series study of four lab-scale anaerobic digesters fed with cow manure. We examined changes in both the microbiome composition and function of the anaerobic digesters when subjected to the dairy antibiotic monensin. In our digesters, monensin was not rapidly degraded under anaerobic conditions. The two anaerobic digesters that were subjected to manure from monensin feed-dosed cows exhibited relatively small changes in microbiome composition and function due to relatively low monensin concentrations. At higher concentrations of monensin, which we dosed directly to control manure (from dairy cows without monensin), we observed major changes in the microbiome composition and function of two anaerobic digesters. A rapid introduction of monensin to one of these anaerobic digesters led to the impairment of methane production. Conversely, more gradual additions of the same concentrations of monensin to the other anaerobic digester led to the adaptation of the anaerobic digester microbiomes to the relatively high monensin concentrations. A member of the candidate OP11 (Microgenomates) phylum arose in this anaerobic digester and appeared to be redundant with certain Bacteroidetes phylum members, which previously were dominating. IMPORTANCE Monensin is a common antibiotic given to dairy cows in the United States and is partly excreted with dairy manure. An improved understanding of how monensin affects the anaerobic digester microbiome composition and function is important to prevent process failure for farm-based anaerobic digesters. This time series study demonstrates how anaerobic digester microbiomes are inert to low monensin concentrations and can adapt to relatively high monensin concentrations by redundancy in an already existing population. Therefore, our work provides further insight into the importance of microbiome redundancy in maintaining the stability of anaerobic digesters. PMID:29500266

  3. Dry anaerobic co-digestion of cow dung with pig manure for methane production.

    PubMed

    Li, Jianzheng; Jha, Ajay Kumar; Bajracharya, Tri Ratna

    2014-07-01

    The performance of dry anaerobic digestions of cow dung, pig manure, and their mixtures into different ratios were evaluated at 35 ± 1 °C in single-stage batch reactors for 63 days. The specific methane yields were 0.33, 0.37, 0.40, 0.38, 0.36, and 0.35 LCH4/gVSr for cow dung to pig manure ratios of 1:0, 4:1, 3:2, 2:3, 1:4, and 0:1, respectively, while volatile solid (VS) and chemical oxygen demand (COD) removal efficiencies were 48.59, 50.79, 53.20, 47.73, 46.10, and 44.88 % and 55.44, 57.96, 60.32, 56.96, 53.32, and 50.86 %, respectively. The experimental results demonstrated that the co-digestions resulted in 5.10-18.01 % higher methane yields, 2.03-12.95 % greater VS removals, 2.98-12.52 % greater COD degradation and so had positive synergism. The various mixtures of pig manure with cow dung might persuade a better nutrient balance and dilution of high ammonia concentration in pig manure and therefore enhanced digester performance efficiency and higher biogas yields. The dry co-digestion of 60 % cow dung and 40 % pig manure achieved the highest methane yield and the greatest organic materials removal efficiency than other mixtures and controls.

  4. Study on improving anaerobic co-digestion of cow manure and corn straw by fruit and vegetable waste: Methane production and microbial community in CSTR process.

    PubMed

    Wang, Xuemei; Li, Zifu; Bai, Xue; Zhou, Xiaoqin; Cheng, Sikun; Gao, Ruiling; Sun, Jiachen

    2018-02-01

    Based on continuous anaerobic co-digestion of cow manure with available carbon slowly released corn straw, the effect of adding available carbon quickly released fruit and vegetable waste (FVW) was explored, meanwhile microbial community variation was studied in this study. When the FVW added was 5% and 1%, the methane production of the cow manure and corn straw was improved, and the start-up process was shortened. With higher proportion of FVW to 5%, the performance was superior with a mean methane yield increase of 22.4%, and a greater variation of bacterial communities was observed. FVW enhanced the variation of the bacterial communities. The microbial community structure changed during fermentation and showed a trend toward a diverse and balance system. Therefore, the available carbon quickly released FVW was helpful to improve the anaerobic co-digestion of the cow manure and available carbon slowly released corn straw. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Performance, digestion, nitrogen balance, and emission of manure ammonia, enteric methane, and carbon dioxide in lactating cows fed diets with varying alfalfa silage-to-corn silage ratios

    USDA-ARS?s Scientific Manuscript database

    Two trials were conducted simultaneously to study the effect of alfalfa silage (AS) to corn silage (CS) ratio in the diet of lactating dairy cows on performance, digestibility, ruminal parameters, nitrogen (N) balance, manure production and composition, and gaseous emissions [carbon dioxide (CO2), ...

  6. Changes in microbial community structures due to varying operational conditions in the anaerobic digestion of oxytetracycline-medicated cow manure.

    PubMed

    Turker, Gokhan; Aydin, Sevcan; Akyol, Çağrı; Yenigun, Orhan; Ince, Orhan; Ince, Bahar

    2016-07-01

    Management of manure containing veterinary antibiotics is a major concern in anaerobic treatment systems because of their possible adverse effects on microbial communities. Therefore, the aim of study was to investigate how oxytetracycline (OTC) influences bacteria and acetoclastic and hydrogenotrophic methanogens under varying operational conditions in OTC-medicated and non-medicated anaerobic cow manure digesters. Concentrations of OTC and its metabolites throughout the anaerobic digestion were determined using ultraviolet-high-performance liquid chromatography (UV-HPLC) and tandem liquid chromatography-mass spectrometry (LC/MS/MS), respectively. Fluorescent in situ hybridization, denaturing gradient gel electrophoresis, cloning, and sequencing analyses were used to monitor changes in microbial community structures. According to the results of analytical and molecular approaches, operating conditions highly influence active microbial community dynamics and associate with biogas production and elimination of OTC and its metabolites during anaerobic digestion of cow manure in the presence of an average initial concentration of 2.2 mg OTC/L. The impact of operating conditions has a drastic effect on acetoclastic methanogens than hydrogenotrophic methanogens and bacteria.

  7. ANIMAL MANURES AS FEEDSTUFFS: CATTLE MANURE FEEDING TRIALS

    EPA Science Inventory

    The utilization of 'as-collected' and processed beef cattle and dairy cow manure, manure screenings and anaerobically digested cattle manures was evaluated on the basis of the results of feeding trials reported in the literature. The maximum level of incorporating these manures i...

  8. Optimization of methane production by combining organic waste and cow manure as feedstock in anaerobic digestion

    NASA Astrophysics Data System (ADS)

    Theresia, Martha; Priadi, Cindy Rianti

    2017-03-01

    The anaerobic digestion (AD) process from organic waste is often unstable due to the high concentration of Volatile Fatty Acids (VFAs). The purpose of this research was to determine/evaluate the production of methane using biochemical methane potential (BMP) test with two substrate combinations, consisted of organic waste and cow manure as buffer. BMP test conducted for 35 days at a temperature of ± 35°C by measuring the volume and concentration of biogas every week and testing the sample characteristics before and after the test. The result of the sample variation showed there was no significantly difference of methane volume in the 5th week except the variation of organic waste/cow manure: 12/1 to 3/1, but the sample with a ratio of 3/1 yielded the highest methane potential of 0,58 ± 0.015 (n = 3) LCH4/gr Volatile Solid. The addition of cow manure stabilized the condition of all variations during BMP test with VFAs/alkalinity <0.3 although Carbon/Nitogen ratio of each variation is <20.

  9. Methane production from thermophilic co‐digestion of dairy manure and waste milk obtained from therapeutically treated cows

    PubMed Central

    Iwasaki, Masahiro; Umetsu, Kazutaka

    2016-01-01

    Abstract Methane production from co‐digestion of dairy manure and waste milk, milk from cows treated with antibiotics for mastitis, was tested in a 2 × 4 factorial design. Four different waste milk percentages (w/w): 0% (SM), 10% (SMWM10), 20% (SMWM20) and 30% (SMWM30), were tested with two slurry percentages (w/w): 50% (A) and 25% (B) and the rest being manure at 55°C for 12 days in batch digesters. The results analyzed using a Gompertz model showed SMWM10 produced the highest methane production potential (Pm)/g volatile solids added followed by SM in both A and B. This Pm of SMWM10 in A and B was statistically non‐significant (P > 0.05). More than 96% of cefazolin‐resistant bacteria and 100% of multi‐drug‐resistant bacteria reductions were observed in all the treatments. Inclusion of waste milk at 10% in single stage digester enhances the methane production from dairy manure and could offer added benefit of waste milk treatment and disposal. PMID:27169788

  10. Anaerobic co-digestion of aquatic flora and quinoa with manures from Bolivian Altiplano.

    PubMed

    Alvarez, René; Lidén, Gunnar

    2008-01-01

    Quinoa stalk (Chenopodium quinoa Willd.) from agricultural crop residue, totora (Schoenoplectus tatora) and o-macrophytes (aquatic flora) from Lake Titicaca (on the Bolivian Altiplano) were studied in a wet anaerobic co-digestion process together with manure from llama, cow and sheep. Anaerobic semi-continuous experiments were performed in (10) 2-l reactors at a temperature of 25 degrees C with 30 days of hydraulic retention time (HRT) and an organic loading rate (OLR) of 1.8 kg VS m(-3) d(-1). Totora was found to be the best co-substrate. In mixture ratios of 1:1 (VS basis), it increased the biogas productivity by 130% for llama manure, 60% for cow manure, and 40% for sheep manure. It was possible to use up to 58% (VS basis) of totora in the substrate. Higher concentrations (including pure totora) could not be digested, as that caused acidification problems similar to those caused by other lignocellulosic materials. When quinoa and o-macrophytes were used as co-substrates, the increase in biogas productivity was slightly less. However, these co-substrates did not cause any operational problems. An additional advantage of quinoa and o-macrophytes was that they could be used in any proportion (even in pure form) without causing any destabilization problems in the anaerobic digestion process.

  11. Determining effects of multiple tannin manure applications on dairy forages and soil

    USDA-ARS?s Scientific Manuscript database

    Dietary choices for dairy cows have direct implications to nutrient availability from land-applied manure because of alterations to manure chemistry. Tannin additions to a dairy cow’s diet protect feed protein through rumen fermentation and digestion, resulting in reduced concentrations of urea nitr...

  12. Methane production from thermophilic co-digestion of dairy manure and waste milk obtained from therapeutically treated cows.

    PubMed

    Beneragama, Nilmini; Iwasaki, Masahiro; Umetsu, Kazutaka

    2017-02-01

    Methane production from co-digestion of dairy manure and waste milk, milk from cows treated with antibiotics for mastitis, was tested in a 2 × 4 factorial design. Four different waste milk percentages (w/w): 0% (SM), 10% (SMWM10), 20% (SMWM20) and 30% (SMWM30), were tested with two slurry percentages (w/w): 50% (A) and 25% (B) and the rest being manure at 55°C for 12 days in batch digesters. The results analyzed using a Gompertz model showed SMWM10 produced the highest methane production potential (P m )/g volatile solids added followed by SM in both A and B. This P m of SMWM10 in A and B was statistically non-significant (P > 0.05). More than 96% of cefazolin-resistant bacteria and 100% of multi-drug-resistant bacteria reductions were observed in all the treatments. Inclusion of waste milk at 10% in single stage digester enhances the methane production from dairy manure and could offer added benefit of waste milk treatment and disposal. © 2016 The Authors. Animal Science Journal published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Animal Science.

  13. Semi-continuous anaerobic co-digestion of cow manure and steam-exploded Salix with recirculation of liquid digestate.

    PubMed

    Estevez, Maria M; Sapci, Zehra; Linjordet, Roar; Schnürer, Anna; Morken, John

    2014-04-01

    The effects of recirculating the liquid fraction of the digestate during mesophilic anaerobic co-digestion of steam-exploded Salix and cow manure were investigated in laboratory-scale continuously stirred tank reactors. An average organic loading rate of 2.6 g VS L(-1) d(-1) and a hydraulic retention time (HRT) of 30 days were employed. Co-digestion of Salix and manure gave better methane yields than digestion of manure alone. Also, a 16% increase in the methane yield was achieved when digestate was recirculated and used instead of water to dilute the feedstock (1:1 dilution ratio). The reactor in which the larger fraction of digestate was recirculated (1:3 dilution ratio) gave the highest methane yields. Ammonia and volatile fatty acids did not reach inhibitory levels, and some potentially inhibitory compounds released during steam explosion (i.e., furfural and 5-hydroxy methyl furfural) were only detected at trace levels throughout the entire study period. However, accumulation of solids, which was more pronounced in the recycling reactors, led to decreased methane yields in those systems after three HRTs. Refraining from the use of fresh water to dilute biomass with a high-solids content and obtaining a final digestate with increased dry matter content might offer important economic benefits in full-scale processes. To ensure long-term stability in such an approach, it would be necessary to optimize separation of the fraction of digestate to be recirculated and also perform proper monitoring to avoid accumulation of solids. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Anaerobic co-digestion of aquatic flora and quinoa with manures from Bolivian Altiplano

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alvarez, Rene; Liden, Gunnar

    2008-07-01

    Quinoa stalk (Chenopodium quinoa Willd.) from agricultural crop residue, totora (Schoenoplectus tatora) and o-macrophytes (aquatic flora) from Lake Titicaca (on the Bolivian Altiplano) were studied in a wet anaerobic co-digestion process together with manure from llama, cow and sheep. Anaerobic semi-continuous experiments were performed in (10) 2-l reactors at a temperature of 25 deg. C with 30 days of hydraulic retention time (HRT) and an organic loading rate (OLR) of 1.8 kg VS m{sup -3} d{sup -1}. Totora was found to be the best co-substrate. In mixture ratios of 1:1 (VS basis), it increased the biogas productivity by 130% formore » llama manure, 60% for cow manure, and 40% for sheep manure. It was possible to use up to 58% (VS basis) of totora in the substrate. Higher concentrations (including pure totora) could not be digested, as that caused acidification problems similar to those caused by other lignocellulosic materials. When quinoa and o-macrophytes were used as co-substrates, the increase in biogas productivity was slightly less. However, these co-substrates did not cause any operational problems. An additional advantage of quinoa and o-macrophytes was that they could be used in any proportion (even in pure form) without causing any destabilization problems in the anaerobic digestion process.« less

  15. Comparison of Rumen and Manure Microbiomes and Implications for the Inoculation of Anaerobic Digesters

    PubMed Central

    Ozbayram, Emine Gozde; Ince, Orhan; Ince, Bahar; Harms, Hauke

    2018-01-01

    Cattle manure is frequently used as an inoculum for the start-up of agricultural biogas plants or as a co-substrate in the anaerobic digestion of lignocellulosic feedstock. Ruminal microbiota are considered to be effective plant fiber degraders, but the microbes contained in manure do not necessarily reflect the rumen microbiome. The aim of this study was to compare the microbial community composition of cow rumen and manure with respect to plant fiber-digesting microbes. Bacterial and methanogenic communities of rumen and manure samples were examined by 454 amplicon sequencing of bacterial 16S rRNA genes and mcrA genes, respectively. Rumen fluid samples were dominated by Prevotellaceae (29%), whereas Ruminococcaceae was the most abundant family in the manure samples (31%). Fibrobacteraceae (12%) and Bacteroidaceae (13%) were the second most abundant families in rumen fluid and manure, respectively. The high abundances of fiber-degrading bacteria belonging to Prevotellaceae and Fibrobacteraceae might explain the better performance of anaerobic digesters inoculated with rumen fluid. Members of the genus Methanobrevibacter were the predominant methanogens in the rumen fluid, whereas methanogenic communities of the manure samples were dominated by the candidate genus Methanoplasma. Our results suggest that inoculation or bioaugmentation with fiber-digesting rumen microbiota can enhance the anaerobic digestion of lignocellulosic biomass. PMID:29443879

  16. Comparison of Rumen and Manure Microbiomes and Implications for the Inoculation of Anaerobic Digesters.

    PubMed

    Ozbayram, Emine Gozde; Ince, Orhan; Ince, Bahar; Harms, Hauke; Kleinsteuber, Sabine

    2018-02-14

    Cattle manure is frequently used as an inoculum for the start-up of agricultural biogas plants or as a co-substrate in the anaerobic digestion of lignocellulosic feedstock. Ruminal microbiota are considered to be effective plant fiber degraders, but the microbes contained in manure do not necessarily reflect the rumen microbiome. The aim of this study was to compare the microbial community composition of cow rumen and manure with respect to plant fiber-digesting microbes. Bacterial and methanogenic communities of rumen and manure samples were examined by 454 amplicon sequencing of bacterial 16S rRNA genes and mcrA genes, respectively. Rumen fluid samples were dominated by Prevotellaceae (29%), whereas Ruminococcaceae was the most abundant family in the manure samples (31%). Fibrobacteraceae (12%) and Bacteroidaceae (13%) were the second most abundant families in rumen fluid and manure, respectively. The high abundances of fiber-degrading bacteria belonging to Prevotellaceae and Fibrobacteraceae might explain the better performance of anaerobic digesters inoculated with rumen fluid. Members of the genus Methanobrevibacter were the predominant methanogens in the rumen fluid, whereas methanogenic communities of the manure samples were dominated by the candidate genus Methanoplasma . Our results suggest that inoculation or bioaugmentation with fiber-digesting rumen microbiota can enhance the anaerobic digestion of lignocellulosic biomass.

  17. Alkaline and oxidative pretreatments for the anaerobic digestion of cow manure and maize straw: Factors influencing the process and preliminary economic viability of an industrial application.

    PubMed

    Ramos-Suárez, Juan Luis; Gómez, Daniel; Regueiro, Leticia; Baeza, Andrea; Hansen, Felipe

    2017-10-01

    This paper studies the application of calcium oxide (CaO), peracetic acid (PAA) and a combination of both in order to reduce lignin content and increase biogas potential of cow manure and maize straw. Changes in organic matter were mainly affected by the type of reagent use and the dosage, with minimum influence of exposure time and dilution. Changes in pH may limit the application of chemicals. Increase in biogas production with a combination of CaO and PAA, and separate application of PAA and CaO was 156.5%, 39.1% and 26.1% for cow manure and 125%, 137.5% and 37.5% for maize straw, respectively, compared to unpretreated samples. Pretreating cow manure with the aforementioned reagents does not increase the profitability of a biogas plant due mainly to the increase in operational costs from the intensive use of chemicals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Management and characteristics of recycled manure solids used for bedding in Midwest freestall dairy herds.

    PubMed

    Husfeldt, A W; Endres, M I; Salfer, J A; Janni, K A

    2012-04-01

    Interest in using recycled manure solids (RMS) as a bedding material for dairy cows has grown in the US Midwest. Cost of common bedding materials has increased in recent years and availability has decreased. Information regarding the composition of RMS and its use as a bedding material for dairy cows in the Midwest is very limited. The objectives of this study were to characterize RMS as a bedding material, observe bedding management practices, document methods of obtaining RMS, and describe housing facilities. We visited 38 Midwest dairy operations bedding freestalls with RMS to collect data. Methods of obtaining RMS for bedding included separation of anaerobic digested manure, separation of raw manure, and separation of raw manure followed by mechanical drum-composting for 18 to 24 h. Average bedding moisture of unused RMS was 72.4% with a pH of 9.16. Unused samples contained (on a dry basis) 1.4% N, 44.9% C, 32.7C:N ratio, 0.44% P, 0.70% K, 76.5% neutral detergent fiber, 9.4% ash, 4.4% nonfiber carbohydrates, and 1.1% fat. Moisture was lowest for drum-composted solids before and after use as freestall bedding. After use in the stalls, digested solids had lower neutral detergent fiber content (70.5%) than drum-composted (75.0%) and separated raw (73.1%) solids. Total N content was greater in digested solids (2.0%) than in separated raw (1.7%) solids. Total bacterial populations in unused bedding were greatest in separated raw manure solids but were similar between digested and drum-composted manure solids. Drum-composted manure solids had no coliform bacteria before use as freestall bedding. After use as bedding, digested manure solids had lower total bacteria counts compared with drum-composted and separated raw manure solids, which had similar counts. Used bedding samples of digested solids contained fewer environmental streptococci than drum-composted and separated raw solids and had reduced Bacillus counts compared with separated raw solids. Coliform counts were similar for all 3 bedding sources. Addition of a mechanical blower post-separation and use of a shelter for storage were associated with reduced fresh-bedding moisture but not associated with bacterial counts. This was the first survey of herds using RMS for bedding in the Midwest. We learned that RMS was being used successfully as a source of bedding for dairy cows. For most farms in the study, somatic cell count was comparable to the average in the region and not excessively high. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. The flame characteristics of the biogas has produced through the digester method with various starters

    NASA Astrophysics Data System (ADS)

    Ketut, Caturwati Ni; Agung, Sudrajat; Mekro, Permana; Heri, Haryanto; Bachtiar

    2018-01-01

    Increasing the volume of waste, especially in urban areas is a source of problems in realizing the comfort and health of the environment. It needs to do a good handling of garbage so as to provide benefits for the whole community. Organic waste processing through bio-digester method to produce a biogas as an energy source is an effort. This research was conducted to test the characteristics of biogas flame generated from organic waste processing through digester with various of the starter such as: cow dung, goat manure, and leachate that obtained from the landfill at Bagendung-Cilegon. The flame height and maximum temperature of the flame are measured for the same pressure of biogas. The measurements showed the flame produced by bio-digester with leachate starter has the lowest flame height compared to the other types of biogas, and the highest flame height is given by biogas from digester with cow dung as a starter. The maximum flame temperature of biogas produced by leachate as a starter reaches 1027 °C. This value is 7% lower than the maximum flame temperature of biogas produced by cow dung as a starter. Cow dung was observed to be the best starter compared to goat manure and leachate, but the use of leachate as a starter in producing biogas with biodigester method is not the best but it worked.

  20. Rumen fermentation and production effects of Origanum vulgare L. leaves in lactating dairy cows

    USDA-ARS?s Scientific Manuscript database

    A lactating cow trial was conducted to study the effects of dietary addition of oregano leaf material (Origanum vulgare L.; 0, control vs. 500 g/d, OV) on ruminal fermentation, methane production, total tract digestibility, manure gas emissions, N metabolism, organoleptic characteristics of milk, an...

  1. mcrA-Targeted Real-Time Quantitative PCR Method To Examine Methanogen Communities▿

    PubMed Central

    Steinberg, Lisa M.; Regan, John M.

    2009-01-01

    Methanogens are of great importance in carbon cycling and alternative energy production, but quantitation with culture-based methods is time-consuming and biased against methanogen groups that are difficult to cultivate in a laboratory. For these reasons, methanogens are typically studied through culture-independent molecular techniques. We developed a SYBR green I quantitative PCR (qPCR) assay to quantify total numbers of methyl coenzyme M reductase α-subunit (mcrA) genes. TaqMan probes were also designed to target nine different phylogenetic groups of methanogens in qPCR assays. Total mcrA and mcrA levels of different methanogen phylogenetic groups were determined from six samples: four samples from anaerobic digesters used to treat either primarily cow or pig manure and two aliquots from an acidic peat sample stored at 4°C or 20°C. Only members of the Methanosaetaceae, Methanosarcina, Methanobacteriaceae, and Methanocorpusculaceae and Fen cluster were detected in the environmental samples. The three samples obtained from cow manure digesters were dominated by members of the genus Methanosarcina, whereas the sample from the pig manure digester contained detectable levels of only members of the Methanobacteriaceae. The acidic peat samples were dominated by both Methanosarcina spp. and members of the Fen cluster. In two of the manure digester samples only one methanogen group was detected, but in both of the acidic peat samples and two of the manure digester samples, multiple methanogen groups were detected. The TaqMan qPCR assays were successfully able to determine the environmental abundance of different phylogenetic groups of methanogens, including several groups with few or no cultivated members. PMID:19447957

  2. The fate and effect of monensin during anaerobic digestion of dairy manure under mesophilic conditions

    USDA-ARS?s Scientific Manuscript database

    There is growing concern about environmental impact of residual antibiotics and feed additives in the manure of treated animals. Monensin, a polyether ionophore coccidiostat, is the only feed additive permitted for use in the U.S. for lactating dairy cows. Previous research has shown that up to 5...

  3. Effect of oxytetracycline on biogas production and active microbial populations during batch anaerobic digestion of cow manure.

    PubMed

    Ince, Bahar; Coban, Halil; Turker, Gokhan; Ertekin, Emine; Ince, Orhan

    2013-05-01

    The aim of this study was to investigate the effect of a common veterinary antibiotic in biogas plants. 20 mg/kg of oxytetracycline was intramuscularly injected into a cow and its concentration in manure, which was sampled daily during the following 20 days, was measured. A total of 20 % of the injected oxytetracycline was detected in manure. Collected manure samples on days 1, 2, 3, 5, 10, 15, and 20 were digested in triplicate serum bottles at 37 °C for 30 days. Control serum bottles produced 255 ± 13 mL biogas, whereas 50-60 % inhibitions were obtained for the serum bottles operated with samples collected for the 5 days after medication. Multivariate statistics used for the evaluation of FISH results showed that Methanomicrobiales were the main methanogenic group responsible for most of the biogas production. Numbers of active Bacteria and Methanomicrobiales were negatively correlated with the presence of oxytetracycline, whereas Methanosarcinales and Methanobacteriales were less affected.

  4. Methane production, ruminal fermentation characteristics, nutrient digestibility, nitrogen excretion, and milk production of dairy cows fed conventional or brown midrib corn silage.

    PubMed

    Hassanat, F; Gervais, R; Benchaar, C

    2017-04-01

    The objective of this study was to examine the effect of replacing conventional corn silage (CCS) with brown midrib corn silage (BMCS) in dairy cow diets on enteric CH 4 emission, nutrient intake, digestibility, ruminal fermentation characteristics, milk production, and N excretion. Sixteen rumen-cannulated lactating cows used in a crossover design (35-d periods) were fed (ad libitum) a total mixed ration (forage:concentrate ratio = 65:35, dry matter basis) based (59% dry matter) on either CCS or BMCS. Dry matter intake and milk yield increased when cows were fed BMCS instead of CCS. Of the milk components, only milk fat content slightly decreased when cows were fed the BMCS-based diet compared with when fed the CCS-based diet (3.81 vs. 3.92%). Compared with CCS, feeding BMCS to cows increased yields of milk protein and milk fat. Ruminal pH, protozoa numbers, total VFA concentration, and molar proportions of acetate and propionate were similar between cows fed BMCS and those fed CCS. Daily enteric CH 4 emission (g/d) was unaffected by dietary treatments, but CH 4 production expressed as a proportion of gross energy intake or on milk yield basis was lower for cows fed the BMCS-based diet than for cows fed the CCS-based diet. A decline in manure N excretion and a shift in N excretion from urine to feces were observed when BMCS replaced CCS in the diet, suggesting reduced potential of manure N volatilization. Results from this study show that improving fiber quality of corn silage in dairy cow diets through using brown midrib trait cultivar can reduce enteric CH 4 emissions as well as potential emissions of NH 3 and N 2 O from manure. However, CH 4 emissions during manure storage may increase due to excretion of degradable OM when BMCS diet is fed, which merits further investigation. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Dry anaerobic digestion of high solids content dairy manure at high organic loading rates in psychrophilic sequence batch reactor.

    PubMed

    Massé, Daniel I; Saady, Noori M Cata

    2015-05-01

    Cow manure with bedding is renewable organic biomass available around the year on dairy farms. Developing efficient and cost-effective psychrophilic dry anaerobic digestion (PDAD) processes could contribute to solving farm-related environmental, energy, and manure management problems in cold-climate regions. This study was to increase the organic loading rate (OLR), fed to a novel psychrophilic (20 °C) dry anaerobic digestion of 27% total solid dairy manure (cow feces and wheat straw) in sequence batch reactor (PDAD-SBR), by 133 to 160%. The PDAD-SBR process operated at treatment cycle length of 21 days and OLR of 7.0 and 8.0 g total chemical oxygen demand (TCOD) kg(-1) inoculum day(-1) (5.2 ± 0.1 and 5.8 ± 0.0 g volatile solids (VS) kg(-1) inoculum day(-1)) for four successive cycles (84 days) produced average specific methane yields (SMYs) of 147.1 ± 17.2 and 143.2 ± 11.7 normalized liters (NL) CH4 kg(-1) VS fed, respectively. PDAD of cow feces and wheat straw is possible with VS-based inoculum-to-substrate ratio of 1.45 at OLR of 8.0 g TCOD kg(-1) inoculum day(-1). Hydrolysis was the limiting step reaction. The VS removal averaged around 57.4 ± 0.5 and 60.5 ± 5.7% at OLR 7.0 and 8.0 g TCOD kg(-1) inoculum day(-1), respectively.

  6. Anaerobic co-digestion of dairy manure and potato waste

    NASA Astrophysics Data System (ADS)

    Yadanaparthi, Sai Krishna Reddy

    Dairy and potato are two important agricultural commodities in Idaho. Both the dairy and potato processing industries produce a huge amount of waste which could cause environmental pollution. To minimize the impact of potential pollution associated with dairy manure (DM) and potato waste (PW), anaerobic co-digestion has been considered as one of the best treatment process. The purpose of this research is to evaluate the anaerobic co-digestion of dairy manure and potato waste in terms of process stability, biogas generation, construction and operating costs, and potential revenue. For this purpose, I conducted 1) a literature review, 2) a lab study on anaerobic co-digestion of dairy manure and potato waste at three different temperature ranges (ambient (20-25°C), mesophilic (35-37°C) and thermophilic (55-57°C) with five mixing ratios (DM:PW-100:0, 90:10, 80:20, 60:40, 40:60), and 3) a financial analysis for anaerobic digesters based on assumed different capital costs and the results from the lab co-digestion study. The literature review indicates that several types of organic waste were co-digested with DM. Dairy manure is a suitable base matter for the co-digestion process in terms of digestion process stability and methane (CH4) production (Chapter 2). The lab tests showed that co-digestion of DM with PW was better than digestion of DM alone in terms of biogas and CH4 productions (Chapter 3). The financial analysis reveals DM and PW can be used as substrate for full size anaerobic digesters to generate positive cash flow within a ten year time period. Based on this research, the following conclusions and recommendations were made: ▸ The ratio of DM:PW-80:20 is recommended at thermophilic temperatures and the ratio of DM:PW-90:10 was recommended at mesophilic temperatures for optimum biogas and CH4 productions. ▸ In cases of anaerobic digesters operated with electricity generation equipment (generators), low cost plug flow digesters (capital cost of 600/cow) operating at thermophilic temperatures are recommended. • The ratio of DM:PW-90:10 or 80:20 is recommended while operating low cost plug flow digesters at thermophilic temperatures. ▸ In cases of anaerobic digesters operated without electricity generation equipment (generators), completely mixed or high or low cost plug flow digesters can be used. • The ratio of DM:PW-80:20 is recommended for completely mixed digesters operated at thermophilic temperatures; • The ratio of DM:PW-90:10 or 80:20 is recommended for high cost plug flow digesters (capital cost of 1,000/cow) operated at thermophilic temperatures; • All of the four co-digested mixing ratios (i.e. DM:PW-90:10 or 80:20 or 60:40 or 40:60) are good for low cost plug flow digesters (capital cost of $600/cow) operated at thermophilic temperatures. The ratio of DM:PW-90:10 is recommended for positive cash flow within the ten year period if the low cost plug flow digesters are operated at mesophilic temperatures.

  7. Effects of a gradually increased load of fish waste silage in co-digestion with cow manure on methane production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solli, Linn, E-mail: linn.solli@bioforsk.no; Bergersen, Ove; Sørheim, Roald

    2014-08-15

    Highlights: • New results from continuous anaerobic co-digestion of fish waste silage (FWS) and cow manure (CM). • Co-digestion of FWS and CM has a high biogas potential. • Optimal mixing ratio of FWS/CM is 13–16/87–84 volume%. • High input of FWS leads to accumulation of NH4+ and VFAs and process failure. - Abstract: This study examined the effects of an increased load of nitrogen-rich organic material on anaerobic digestion and methane production. Co-digestion of fish waste silage (FWS) and cow manure (CM) was studied in two parallel laboratory-scale (8 L effective volume) semi-continuous stirred tank reactors (designated R1 andmore » R2). A reactor fed with CM only (R0) was used as control. The reactors were operated in the mesophilic range (37 °C) with a hydraulic retention time of 30 days, and the entire experiment lasted for 450 days. The rate of organic loading was raised by increasing the content of FWS in the feed stock. During the experiment, the amount (volume%) of FWS was increased stepwise in the following order: 3% – 6% – 13% – 16%, and 19%. Measurements of methane production, and analysis of volatile fatty acids, ammonium and pH in the effluents were carried out. The highest methane production from co-digestion of FWS and CM was 0.400 L CH4 gVS{sup −1}, obtained during the period with loading of 16% FWS in R2. Compared to anaerobic digestion of CM only, the methane production was increased by 100% at most, when FWS was added to the feed stock. The biogas processes failed in R1 and R2 during the periods, with loadings of 16% and 19% FWS, respectively. In both reactors, the biogas processes failed due to overloading and accumulation of ammonia and volatile fatty acids.« less

  8. Reducing the environmental impact of methane emissions from dairy farms by anaerobic digestion of cattle waste.

    PubMed

    Marañón, E; Salter, A M; Castrillón, L; Heaven, S; Fernández-Nava, Y

    2011-08-01

    Four dairy cattle farms considered representative of Northern Spain milk production were studied. Cattle waste was characterised and energy consumption in the farms was inventoried. Methane emissions due to slurry/manure management and fuel consumption on the farms were calculated. The possibility of applying anaerobic digestion to the slurry to minimise emissions and of using the biogas produced to replace fossil fuels on the farm was considered. Methane emissions due to slurry management (storage and use as fertiliser) ranged from 34 to 66kg CH(4)cow(-1)year(-1) for dairy cows and from 13 to 25kg CH(4)cow(-1)year(-1) for suckler calves. Cattle on these farms are housed for most of the year, and the contribution from emissions from manure dropped in pastures is insignificant due to the very low methane conversion factors. If anaerobic digestion were implemented on the farms, the potential GHG emissions savings per livestock unit would range from 978 to 1776kg CO(2)eq year(-1), with the main savings due to avoided methane emissions during slurry management. The methane produced would be sufficient to supply digester heating needs (35-55% of the total methane produced) and on-farm fuel energy requirements. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Enhancement of biogas production by co-digestion of potato pulp with cow manure in a CSTR system.

    PubMed

    Sanaei-Moghadam, Akbar; Abbaspour-Fard, Mohammad Hossein; Aghel, Hasan; Aghkhani, Mohammad Hossein; Abedini-Torghabeh, Javad

    2014-08-01

    Anaerobic digestion (AD) process is a well-established method to generate energy from the organic wastes both from the environmental and economical perspectives. The purpose of present study is to evaluate energy production from potato wastes by incorporating cow manure into the process. Firstly, a laboratory pilot of one-stage biogas production was designed and built according to continuously stirred tank reactor (CSTR) system. The setup was able to automatically control the environmental conditions of the process including temperature, duration, and rate of stirring. AD experiment was exclusively performed on co-digestion of potato peel (PP) and cow manure (CM) in three levels of mixing ratio including 20:80, 50:50, 80:20 (PP:CM), and 0:100 as control treatment based on the volatile solid (VS) weight without adding initial inoculums. After hydraulic retention time (HRT) of 50 days on average 193, 256, 348, and 149 norm liter (LN) (kg VS)(-1), methane was produced for different mixing ratios, respectively. Statistical analysis shows that these gas productions are significantly different. The average energy was determined based on the produced methane which was about 2.8 kWh (kg VS)(-1), implying a significant energy production potential. The average chemical oxygen demand (COD) removal of treatments was about 61%, showing that it can be leached significantly with high organic matter by the employed pilot. The energy efficiency of 92% of the process also showed the optimum control of the process by the pilot.

  10. Replacing alfalfa silage with corn silage in dairy cow diets: Effects on enteric methane production, ruminal fermentation, digestion, N balance, and milk production.

    PubMed

    Hassanat, F; Gervais, R; Julien, C; Massé, D I; Lettat, A; Chouinard, P Y; Petit, H V; Benchaar, C

    2013-07-01

    The objective of this study was to determine the effects of replacing alfalfa silage (AS) with corn silage (CS) in dairy cow total mixed rations (TMR) on enteric CH4 emissions, ruminal fermentation characteristics, apparent total-tract digestibility, N balance, and milk production. Nine ruminally cannulated lactating cows were used in a replicated 3×3 Latin square design (32-d period) and fed (ad libitum) a TMR [forage:concentrate ratio of 60:40; dry matter (DM) basis], with the forage portion consisting of either alfalfa silage (0% CS; 56.4% AS in the TMR), a 50:50 mixture of both silages (50% CS; 28.2% AS and 28.2% CS in the TMR), or corn silage (100% CS; 56.4% CS in the TMR). Increasing the CS proportion (i.e., at the expense of AS) in the diet was achieved by decreasing the corn grain proportion and increasing that of soybean meal. Intake of DM and milk yield increased quadratically, whereas DM digestibility increased linearly as the proportion of CS increased in the diet. Increasing the dietary CS proportion resulted in changes (i.e., lower ruminal pH and acetate:propionate ratio, reduced fiber digestibility, decreased protozoa numbers, and lower milk fat and higher milk protein contents) typical of those observed when cows are fed high-starch diets. A quadratic response in daily CH4 emissions was observed in response to increasing the proportion of CS in the diet (440, 483, and 434 g/d for 0% CS, 50% CS, and 100% CS, respectively). Methane production adjusted for intake of DM, and gross or digestible energy was unaffected in cows fed the 50% CS diet, but decreased in cows fed the 100% CS diet (i.e., quadratic effect). Increasing the CS proportion in the diet at the expense of AS improved N utilization, as reflected by the decreases in ruminal NH3 concentration and manure N excretion, suggesting low potential NH3 and N2O emissions. Results from this study, suggest that total replacement of AS with CS in dairy cow diets offers a means of decreasing CH4 output and N losses. However, the reduction in fiber degradation and the resulting increase in volatile solids content of the manure may lead to increased CH4 emissions from manure storage. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Characterization of microbial community structure during continuous anaerobic digestion of straw and cow manure

    PubMed Central

    Sun, Li; Pope, Phillip B; Eijsink, Vincent G H; Schnürer, Anna

    2015-01-01

    Responses of bacterial and archaeal communities to the addition of straw during anaerobic digestion of manure at different temperatures (37°C, 44°C and 52°C) were investigated using five laboratory-scale semi-continuous stirred tank reactors. The results revealed that including straw as co-substrate decreased the species richness for bacteria, whereas increasing the operating temperature decreased the species richness for both archaea and bacteria, and also the evenness of the bacteria. Taxonomic classifications of the archaeal community showed that Methanobrevibacter dominated in the manure samples, while Methanosarcina dominated in all digesters regardless of substrate. Increase of the operating temperature to 52°C led to increased relative abundance of Methanoculleus and Methanobacterium. Among the bacteria, the phyla Firmicutes and Bacteroidetes dominated within all samples. Compared with manure itself, digestion of manure resulted in a higher abundance of an uncultured class WWE1 and lower abundance of Bacilli. Adding straw to the digesters increased the level of Bacteroidia, while increasing the operating temperature decreased the level of this class and instead increased the relative abundance of an uncultured genus affiliated to order MBA08 (Clostridia). A considerable fraction of bacterial sequences could not be allocated to genus level, indicating that novel phylotypes are resident in these communities. PMID:26152665

  12. Carbon Sequestration and Nitrogen Mineralization in Soil Cooperated with Organic Composts and Bio-char During Corn (Zea mays) Cultivation

    NASA Astrophysics Data System (ADS)

    Shin, Joung-Du; Lee, Sun-Ill; Park, Wu-Gyun; Choi, Yong-Su; Hong, Seong-Gil; Park, Sang-Won

    2014-05-01

    Objectives of this study were to estimate the carbon sequestration and to evaluate nitrogen mineralization and nitrification in soils cooperated with organic composts and bio-char during corn cultivation. For the experiment, the soil used in this study was clay loam types, and application rates of chemical fertilizer and bio-char were recommended amount after soil test and 2 % to soil weight, respectively. The soil samples were periodically taken at every 15 day intervals during the experimental periods. The treatments were consisted of non-application, cow manure compost, pig manure compost, swine digestate from aerobic digestion system, their bio-char cooperation. For the experimental results, residual amount of inorganic carbon was ranged from 51 to 208kg 10a-1 in soil only cooperated with different organic composts. However it was estimated to be highest at 208kg 10a-1 in the application plot of pig manure compost. In addition to bio-char application, it was ranged from 187.8 to 286kg 10a-1, but was greatest accumulated at 160.3kg 10a-1 in the application plot of cow manure compost. For nitrogen mineralization and nitrification rates, it was shown that there were generally low in the soil cooperated with bio-char compared to the only application plots of different organic composts except for 71 days after sowing. Also, they were observed to be highest in the application plot of swine digestate from aerobic digestion system. For the loss of total inorganic carbon (TIC) by run-off water, it was ranged from 0.18 to 0.36 kg 10a-1 in the different treatment plots. Also, with application of bio-char, total nitrogen was estimated to be reduced at 0.42(15.1%) and 0.38(11.8%) kg 10a-1 in application plots of the pig manure compost and aerobic digestate, respectively.

  13. Improving biogas quality and methane yield via co-digestion of agricultural and urban biomass wastes.

    PubMed

    Poulsen, Tjalfe G; Adelard, Laetitia

    2016-08-01

    Impact of co-digestion versus mono-digestion on biogas and CH4 yield for a set of five biomass materials (vegetable food waste, cow dung, pig manure, grass clippings, and chicken manure) was investigated considering 95 different biomass mixes of the five materials under thermophilic conditions in bench-scale batch experiments over a period of 65days. Average biogas and CH4 yields were significantly higher during co-digestion than during mono-digestion of the same materials. This improvement was most significant for co-digestion experiments involving three biomass types, although it was independent of the specific biomasses being co-digested. Improvement in CH4 production was further more prominent early in the digestion process during co-digestion compared to mono-digestion. Co-digestion also appeared to increase the ultimate CH4/CO2 ratio of the gas produced compared to mono-digestion although this tendency was relatively weak and not statistically significant. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Feces composition and manure derived methane yield from dairy cows: Influence of diet with focus on fat supplement and roughage type

    NASA Astrophysics Data System (ADS)

    Møller, Henrik Bjarne; Moset, Verónica; Brask, Maike; Weisbjerg, Martin Riis; Lund, Peter

    2014-09-01

    The objective of the present study was to evaluate the effect of dairy cow diets on feces composition and methane (CH4) potential from manure with emphasis on fat level and roughage type and compare these results with the corresponding enteric CH4 emission. In experiment 1 six different diets, divided into two fat levels (low and high) and three different roughage types (early cut grass silage, late cut grass silage and maize silage), were used. The high fat level was achieved by adding crushed rapeseed. In experiment 2, the influence of increasing the fat level by using three different types of rapeseed: rapeseed cake, whole seed and rapeseed oil against a low fat ration with no rapeseed fat supplementation was studied. The diet and fat level had a significant influence on feces composition and CH4 yield. In general, ultimate CH4 yields (B0) were 8-9% higher than the present international default values for diets without extra fat and in feces from diets with extra fat supply the yield was 25-31% higher. It was possible to predict the B0 value from feed and feces characteristics; in fact, the best correlation was obtained by including both feed and feces characteristics. Addition of crude fat to diets to dairy cows reduced enteric CH4 emission but at the same time increased CH4 potential from feces both in terms of organic matter in feces and dry matter intake which might lead to increasing emissions unless proper manure handling such as anaerobic digestion is included. Without subsequent anaerobic digestion to produce energy the positive effect achieved at cow level could be counteracted by increasing manure emissions.

  15. Renewable Natural Gas Clean-up Challenges and Applications

    DTIC Science & Technology

    2011-01-13

    produced from digesters ─ Animal manure (dairy cows, swine) ─ Waste water treatment facilities > Methane from Landfills > RNG produced from...AGR used in process • Two stage + trim methanation reactor • Dehydration to achieve gas pipeline specifications ~ 70% conversion efficiency 21... digestion of agricultural waste for on-site electricity generation ─Altamont Landfill—Landfill gas (LFG) cleanup for production of liquefied natural gas

  16. Effects of feedstock ratio and organic loading rate on the anaerobic mesophilic co-digestion of rice straw and cow manure.

    PubMed

    Li, Dong; Liu, Shengchu; Mi, Li; Li, Zhidong; Yuan, Yuexiang; Yan, Zhiying; Liu, Xiaofeng

    2015-01-01

    In order to investigate the effects of feedstock ratio and organic loading rate (OLR) on the anaerobic mesophilic co-digestion of rice straw (RS) and cow manure (CM), batch tests (2.5L) were carried out at volatile solid (VS) ratios of 0:1, 1:2, 1:1, 2:1, and 1:0 (RS/CM), and continuous bench experiments (40 L) were carried out at OLRs of 3.0, 3.6, 4.2, 4.8, 6.0, 8.0, and 12.0 kg VS/(m(3) d) with optimal VS ratio. The optimal VS ratio was found to be 1:1. Stable and efficient co-digestion with average specific biogas production of 383.5L/kg VS and volumetric biogas production rate of 2.30 m(3)/(m(3) d) was obtained at an OLR of 6 kg VS/(m(3) d). Anaerobic co-digestion was severely inhibited by the accumulation of volatile fatty acids instead of ammonia when the OLR was 12 kg VS/(m(3) d). Further, significant foaming was observed at OLR ⩾ 8 kg VS/(m(3) d). Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Biogas and methane yield in response to co- and separate digestion of biomass wastes.

    PubMed

    Adelard, Laetitia; Poulsen, Tjalfe G; Rakotoniaina, Volana

    2015-01-01

    The impact of co-digestion as opposed to separate digestion, on biogas and methane yield (apparent synergetic effects) was investigated for three biomass materials (pig manure, cow manure and food waste) under mesophilic conditions over a 36 day period. In addition to the three biomass materials (digested separately), 13 biomass mixtures (co-digested) were used. Two approaches for modelling biogas and methane yield during co-digestion, based on volatile solids concentration and ultimate gas and methane potentials, were evaluated. The dependency of apparent synergetic effects on digestion time and biomass mixture composition was further assessed using measured cumulative biogas and methane yields and specific biogas and methane generation rates. Results indicated that it is possible, based on known volatile solids concentration and ultimate biogas or methane yields for a set of biomass materials digested separately, to accurately estimate gas yields for biomass mixtures made from these materials using calibrated models. For the biomass materials considered here, modelling indicated that the addition of pig manure is the main cause of synergetic effects. Co-digestion generally resulted in improved ultimate biogas and methane yields compared to separate digestion. Biogas and methane production was furthermore significantly higher early (0-7 days) and to some degree also late (above 20 days) in the digestion process during co-digestion. © The Author(s) 2014.

  18. Improvement in CH4/CO2 ratio and CH4 yield as related to biomass mix composition during anaerobic co-digestion.

    PubMed

    Poulsen, Tjalfe G; Adelard, Laetitia; Wells, Mona

    2017-03-01

    Sixteen data sets (two of which were measured in this study) with a combined total of 145 measurements of ultimate methane yield (UMY) during mono- and co-digestion of ternary biomass mixtures were used to assess impact of co-digestion on the relative change in UMY (ΔUMY) as a function of biomass mix composition. The data involved 9 biomass materials (brewery spent grains, chicken manure, cow manure, fresh grass clippings, pig manure, primary sewage sludge, vegetable food waste, wheat straw, and rice straw). Results of the assessment shows that co-digestion in 85% of yields positive values of ΔUMY regardless of the biomass materials used, however, a smaller fraction (15%) resulted in negative ΔUMY during co-digestion. The data further indicate that for each set of ternary biomass material mixtures there exists an optimal biomass mix composition at which ΔUMY is at a maximum. Statistical analyses based on the data used here indicate that the maximum value of ΔUMY (ΔUMY max ) is always positive regardless of biomass materials being co-digested. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Operating conditions influence microbial community structures, elimination of the antibiotic resistance genes and metabolites during anaerobic digestion of cow manure in the presence of oxytetracycline.

    PubMed

    Turker, Gokhan; Akyol, Çağrı; Ince, Orhan; Aydin, Sevcan; Ince, Bahar

    2018-01-01

    The way that antibiotic residues in manure follow is one of the greatest concerns due to its potential negative impacts on microbial communities, the release of metabolites and antibiotic resistant genes (ARGs) into the nature and the loss of energy recovery in anaerobic digestion (AD) systems. This study evaluated the link between different operating conditions, the biodegradation of oxytetracycline (OTC) and the formation of its metabolites and ARGs in anaerobic digesters treating cow manure. Microbial communities and ARGs were determined through the use of quantitative real-time PCR. The biodegradation of OTC and occurrence of metabolites were determined using UV-HPLC and LC/MS/MS respectively. The maximum quantity of resistance genes was also examined at the beginning of AD tests and concentration was in the order of: tetM >tetO. The numbers of ARGs were always higher at high volatile solids (VS) content and high mixing rate. The results of the investigation revealed that relationship between mixing rate and VS content plays a crucial role for elimination of ARGs, OTC and metabolites. This can be attributed to high abundance of microorganisms due to high VS content and their increased contact with elevated mixing rate. An increased interaction between microorganisms triggers the promotion of ARGs. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Effect of lauric acid and coconut oil on ruminal fermentation, digestion, ammonia losses from manure, and milk fatty acid composition in lactating cows.

    PubMed

    Hristov, A N; Vander Pol, M; Agle, M; Zaman, S; Schneider, C; Ndegwa, P; Vaddella, V K; Johnson, K; Shingfield, K J; Karnati, S K R

    2009-11-01

    This experiment (replicated 3 x 3 Latin square design) was conducted to investigate the effects of lauric acid (LA) or coconut oil (CO) on ruminal fermentation, nutrient digestibility, ammonia losses from manure, and milk fatty acid (FA) composition in lactating cows. Treatments consisted of intraruminal doses of 240 g of stearic acid/d (SA; control), 240 g of LA/d, or 530 g of CO/d administered once daily, before feeding. Between periods, cows were inoculated with ruminal contents from donor cows and allowed a 7-d recovery period. Treatment did not affect dry matter intake, milk yield, or milk composition. Ruminal pH was slightly increased by CO compared with the other treatments, whereas LA and CO decreased ruminal ammonia concentration compared with SA. Both LA and CO decreased protozoal counts by 80% or more compared with SA. Methane production rate in the rumen was reduced by CO compared with LA and SA, with no differences between LA and SA. Treatments had no effect on total tract apparent dry matter, organic matter, N, and neutral detergent fiber digestibility coefficients or on cumulative (15 d) in vitro ammonia losses from manure. Compared with SA, LA and CO increased milk fat 12:0, cis-9 12:1, and trans-9 12:1 content and decreased 6:0, 8:0, 10:0, cis-9 10:1, 16:0, 18:0, cis 18:1, total 18:2, 18:3 n-3 and total polyunsaturated FA concentrations. Administration of LA and 14:0 (as CO) in the rumen were apparently transferred into milk fat with a mean efficiency of 18 and 15%, respectively. In conclusion, current data confirmed that LA and CO exhibit strong antiprotozoal activity when dosed intraruminally, an effect that is accompanied by decreases in ammonia concentration and, for CO, lowered methane production. Administration of LA and CO in the rumen also altered milk FA composition.

  1. A COMPLETE DISPOSAL-RECYCLE SCHEME FOR AGRICULTURAL SOLID WASTES

    EPA Science Inventory

    This investigation applied the anaerobic process to the production of methane gas and a stabilized sludge from cow manure and farm clippings in laboratory pilot plants as well as a full-scale (2,000 gal.) digester system. The quantity and quality of gas produced, the biochemical ...

  2. Nutrient contributions and biogas potential of co-digestion of feedstocks and dairy manure.

    PubMed

    Ma, Guiling; Neibergs, J Shannon; Harrison, Joseph H; Whitefield, Elizabeth M

    2017-06-01

    This study focused on collection of data on nutrient flow and biogas yield at a commercial anaerobic digester managed with dairy manure from a 1000 cow dairy and co-digestion of additional feedstocks. Feedstocks included: blood, fish, paper pulp, out of date beverages and grease trap waste. Mass flow of inputs and outputs, nutrient concentration of inputs and outputs, and biogas yield were obtained. It was determined that manure was the primary source of nutrients to the anaerobic digester when co-digested with feedstocks. The percentage of contribution from manure to the total nutrient inputs for total nitrogen, ammonia-nitrogen, phosphorus and total solids was 46.3%, 67.7%, 32.8% and 23.4%, respectively. On average, manure contributed the greatest amount of total nitrogen and ammonia-nitrogen. Grease trap waste contributed the greatest amount of phosphorus and total solids at approximately 50%. Results demonstrated that a reliable estimate of nutrient inflow could be obtained from the product of the nutrient analyses of a single daily composite of influent subsamples times the total daily flow estimated with an in-line flow meter. This approach to estimate total daily nutrient inflow would be more cost effective than testing and summing the contribution of individual feedstocks. Data collected after liquid-solid separation confirmed that the majority (>75%) of nutrients remain with the liquid effluent portion of the manure stream. It was demonstrated that the ash concentration in solids before and after composting could be used to estimate the mass balance of total solids during the compost process. This data confirms that biogas or methane yield could be accurately measured from the ratio of % volatile solids to % total solids. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Economic feasibility of converting cow manure to electricity: a case study of the CVPS Cow Power program in Vermont.

    PubMed

    Wang, Q; Thompson, E; Parsons, R; Rogers, G; Dunn, D

    2011-10-01

    A case study of the Central Vermont Public Service Corporation (CVPS) Cow Power program examines the economic feasibility for dairy farms to convert cow manure into electricity via anaerobic methane digestion. The study reviews the mechanism for CVPS, dairy farms, electricity customers, and government agencies to develop and operate the program since 2004, examines the costs and returns for the participating dairy farms, and assesses their cash flow over a period of 7 yr under different scenarios. With 6 dairy farms generating about 12 million kilowatt-hours of electricity per year and more than 4,600 CVPS electricity customers voluntarily paying premiums of $0.04 per kilowatt-hour, or a total of about $470,000 per year, the CVPS Cow Power program represents a successful and locally sourced renewable energy project with many environmental and economic benefits. Factors for the successful development and operation of the program include significant grants from government agencies and other organizations, strong consumer support, timely adjustments to the basic electricity price paid to the farms, and close collaboration among the participating parties. This study confirms that it is technically feasible to convert cow manure to electricity on farms, but the economic returns depend highly on the base electricity price, premium rate, financial supports from government agencies and other organizations, and sales of the byproducts of methane generation. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Co-digestion of bovine slaughterhouse wastes, cow manure, various crops and municipal solid waste at thermophilic conditions: a comparison with specific case running at mesophilic conditions.

    PubMed

    Pagés-Díaz, J; Sárvári-Horváth, I; Pérez-Olmo, J; Pereda-Reyes, I

    2013-01-01

    A co-digestion process was evaluated when mixing different ratios of agro-industrial residues, i.e. bovine slaughterhouse waste (SB); cow manure (M); various crop residues (VC); and municipal solid waste (MSW) by anaerobic batch digestion under thermophilic conditions (55 °C). A selected study case at mesophilic condition (37 °C) was also investigated. The performance of the co-digestion was evaluated by kinetics (k(0)). The best kinetic results were obtained under thermophilic operation when a mixture of 22% w/w SB, 22% w/w M, 45% w/w VC and 11% w/w MSW was co-digested, which showed a proper combination of high values in r(s)CH(4) and k(0) (0.066 Nm(3)CH(4)/kgVS*d, 0.336 d(-1)) during the anaerobic process. The effect of temperature on methane yield (Y(CH4)), specific methane rate (r(s)CH(4)) and k(0) was also analyzed for a specific study case; there a mixture of 25% w/w of SB, 37.5% w/w of M, 37.5% of VC and 0% of MSW was used. Response variables were severely affected by mesophilic conditions, diminishing to at least 45% of the thermophilic values obtained for a similar mixture. The effect of temperature suggested that thermophilic conditions are suitable to treat these residues.

  5. Rumen bacteria at work: bioaugmentation strategies to enhance biogas production from cow manure.

    PubMed

    Ozbayram, E G; Akyol, Ç; Ince, B; Karakoç, C; Ince, O

    2018-02-01

    To investigate the effects of different bioaugmentation strategies for enhancing the biogas production from cow manure and evaluate microbial community patterns. Co-inoculation with cow rumen fluid and cow rumen-derived enriched microbial consortia was evaluated in anaerobic batch tests at 36°C and 41°C. Singular addition of both rumen fluid and enriched bioaugmentation culture had a promising enhancement on methane yields; however, the highest methane yield (311 ml CH 4 per gram VS at 41°C) was achieved when the anaerobic seed sludge was co-inoculated together with rumen fluid and enriched bioaugmentation culture. Bacterial community profiles were investigated by Ion PGM Platform, and specific lignocellulolytic bacteria dynamics in batch tests were assessed by qPCR. The temperature had minor effects on the abundance of bacterial community; in which Bacteroidetes and Firmicutes were the most abundant phyla in all digesters. Furthermore, Rikenellaceae, Clostridiaceae, Porphyromonadaceae, Bacteroidaceae and Ruminococcaceae played a crucial role during the anaerobic degradation of cow manure. There was an important impact of Firmicutes flavefaciens and Ruminococcus albus at 41°C, which in turn positively affected the methane production. The degree of enhancement in biogas production can be upgraded by the co-inoculation of rumen-derived bioaugmentation culture with anaerobic seed sludge with high methanogenic activity. A close look at the biotic interactions and their associations with abiotic factors might be valuable for evaluating rumen-related bioaugmentation applications. © 2017 The Society for Applied Microbiology.

  6. Effect of initial pH on anaerobic co-digestion of kitchen waste and cow manure.

    PubMed

    Zhai, Ningning; Zhang, Tong; Yin, Dongxue; Yang, Gaihe; Wang, Xiaojiao; Ren, Guangxin; Feng, Yongzhong

    2015-04-01

    This study investigated the effects of different initial pH (6.0, 6.5, 7.0, 7.5 and 8.0) and uncontrolled initial pH (CK) on the lab-scale anaerobic co-digestion of kitchen waste (KW) with cow manure (CM). The variations of pH, alkalinity, volatile fatty acids (VFAs) and total ammonia nitrogen (NH4(+)-N) were analyzed. The modified Gompertz equation was used for selecting the optimal initial pH through comprehensive evaluation of methane production potential, degradation of volatile solids (VS), and lag-phase time. The results showed that CK and the fermentation with initial pH of 6.0 failed. The pH values of the rest treatments reached 7.7-7.9 with significantly increased methane production. The predicted lag-phase times of treatments with initial pH of 6.5 and 7.5 were 21 and 22 days, which were 10 days shorter than the treatments with initial pH of 7.0 and 8.0, respectively. The maximum methane production potential (8579 mL) and VS degradation rate (179.8 mL/g VS) were obtained when the initial pH was 7.5, which is recommended for co-digestion of KW and CM. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Fate of LCFA in the co-digestion of cow manure, food waste and discontinuous addition of oil.

    PubMed

    Neves, L; Oliveira, R; Alves, M M

    2009-12-01

    Different concentrations of oily waste were added in a discontinuous mode and recurrently to anaerobic continuous stirred tank reactors fed with cow manure and food waste. Four continuous stirred tank reactors were run in parallel. A control reactor (R1) received no additional oil and R2, R3 and R4 received increasing concentrations of oil in two different experimental approaches. First, the lipids composition was forced to change suddenly, in three moments, without changing the total chemical oxygen demand (COD) fed to the reactors. The only long chain fatty acid (LCFA) detected onto the R1 solid matrix was palmitic acid (C16:0). Nevertheless in the solid matrix of R2, R3 and R4C16:0 and stearic acid were detected. For occasional increase in the oil concentration up to 7.7gCOD(oil)/L(reactor) (55% Oil(COD)/Total(COD)) no statistical differences were detected between the reactors, in terms of methane production, effluent soluble COD, effluent volatile fatty acids and total and volatile solids removal. Therefore this experiment allowed to conclude that cow manure-food waste co-digestion presents sufficient buffer capacity to endure solid-associated LCFA concentration up to 20-25gCOD-LCFA/kgTS. In a second experiment higher concentrations of oil were added, raising occasionally the concentration in the reactors to 9, 12, 15 and 18gCOD(oil)/L(reactor). All pulses had a positive effect in methane production, with the exception of the highest oil pulse concentration, that persistently impaired the reactor performance. This experiment demonstrates that threshold values for LCFA and C16:0 accumulation onto the solid matrix, of about 180-220gCOD-LCFA/kgTS and 120-150gCOD-C16:0/kgTS, should not be surpassed in order to prevent persistent reactor failure, as occurs in some full scale co-digestion plants.

  8. Anaerobic digestion of palm oil mill effluent with lampung natural zeolite as microbe immobilization medium and digested cow manure as starter

    NASA Astrophysics Data System (ADS)

    Halim, Lenny; Mellyanawaty, Melly; Cahyono, Rochim Bakti; Sudibyo, Hanifrahmawan; Budhijanto, Wiratni

    2017-05-01

    Indonesia is well-known as the world's biggest palm oil producer with 32.5 million tons of annual production. Palm oil processing contributes to 60% wastewater, leading to environmental problem caused by excessive production of wastewater. This wastewater, i.e. Palm Oil Mill Effluent (POME), has high organic content (40,000-60,000 mg COD/L) which is potential for biogas production. However, its low pH value and long chain fatty acid content likely inhibit the anaerobic digestion. Porous media might reduce the inhibitory effect during POME digestion since the media act as both immobilization media for bacteria and as inhibitor adsorbent. Excessive amount of porous media might interfere with the nutrient consumption by microbes. There will be an optimum amount of porous media added, which depends on the wastewater characteristics. This research studied Lampung natural zeolite as immobilization media in digesting POME. The batch experiment was conducted for 40 days with different amount of natural zeolite, i.e. 0; 45; 100; and 200 g/g COD. Digested cow manure was used as the starter inoculum, considering the abundance of anaerobic bacteria therein. Zeolite addition was proven to accelerate COD reduction and stabilized the volatile fatty acid as the intermediate product of anaerobic digestion. The addition of natural zeolite up to 45 g/g COD is considered enough to increase the COD removal (85.695 %), maintain the methane content up to 50%, and enhance the bacteria activity. However, larger amount of natural zeolite lowered the methane production and COD reduction, which indicated nutrient adsorption on to the media and hence caused decreasing nutrient access by the microbes.

  9. Effect of shear on performance and microbial ecology of continuously stirred anaerobic digesters treating animal manure.

    PubMed

    Hoffmann, Rebecca A; Garcia, Marcelo L; Veskivar, Mehul; Karim, Khursheed; Al-Dahhan, Muthanna H; Angenent, Largus T

    2008-05-01

    We determined the effect of different mixing intensities on the performance, methanogenic population dynamics, and juxtaposition of syntrophic microbes in anaerobic digesters treating cow manure from a dairy farm. Computer automated radioactive particle tracking in conjunction with computational fluid dynamics was performed to quantify the shear levels locally. Four continuously stirred anaerobic digesters were operated at different mixing intensities of 1,500, 500, 250, and 50 revolutions per min (RPM) over a 260-day period at a temperature of 34 +/- 1 degrees C. Animal manure at a volatile solids (VS) concentration of 50 g/L was fed into the digesters daily at five different organic loading rates between 0.6 and 3.5 g VS/L day. The different mixing intensities had no effect on the biogas production rates and yields at steady-state conditions. A methane yield of 0.241 +/- 0.007 L CH(4)/g VS fed was obtained by pooling the data of all four digesters during steady-state periods. However, digester performance was affected negatively by mixing intensity during startup of the digesters, with lower biogas production rates and higher volatile fatty acids concentrations observed for the 1,500-RPM digester. Despite similar methane production yields and rates, the acetoclastic methanogenic populations were different for the high- and low-intensity mixed digesters with Methanosarcina spp. and Methanosaeta concilii as the predominant methanogens, respectively. For all four digesters, epifluorescence microscopy revealed decreasing microbial floc sizes beginning at week 4 and continuing through week 26 after which no microbial flocs remained. This decrease in size, and subsequent loss of microbial flocs did not, however, produce any long-term upsets in digester performance. Copyright 2007 Wiley Periodicals, Inc.

  10. Effects of a gradually increased load of fish waste silage in co-digestion with cow manure on methane production.

    PubMed

    Solli, Linn; Bergersen, Ove; Sørheim, Roald; Briseid, Tormod

    2014-08-01

    This study examined the effects of an increased load of nitrogen-rich organic material on anaerobic digestion and methane production. Co-digestion of fish waste silage (FWS) and cow manure (CM) was studied in two parallel laboratory-scale (8L effective volume) semi-continuous stirred tank reactors (designated R1 and R2). A reactor fed with CM only (R0) was used as control. The reactors were operated in the mesophilic range (37°C) with a hydraulic retention time of 30 days, and the entire experiment lasted for 450 days. The rate of organic loading was raised by increasing the content of FWS in the feed stock. During the experiment, the amount (volume%) of FWS was increased stepwise in the following order: 3% - 6% - 13% - 16%, and 19%. Measurements of methane production, and analysis of volatile fatty acids, ammonium and pH in the effluents were carried out. The highest methane production from co-digestion of FWS and CM was 0.400 L CH4 gVS(-1), obtained during the period with loading of 16% FWS in R2. Compared to anaerobic digestion of CM only, the methane production was increased by 100% at most, when FWS was added to the feed stock. The biogas processes failed in R1 and R2 during the periods, with loadings of 16% and 19% FWS, respectively. In both reactors, the biogas processes failed due to overloading and accumulation of ammonia and volatile fatty acids. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Alternative Fuels Data Center: Fair Oaks Farm Harnesses the Power of

    Science.gov Websites

    Natural Gas from Cow Manure Fair Oaks Farm Harnesses the Power of Natural Gas from Cow Manure Natural Gas from Cow Manure on Facebook Tweet about Alternative Fuels Data Center: Fair Oaks Farm Harnesses the Power of Natural Gas from Cow Manure on Twitter Bookmark Alternative Fuels Data Center: Fair

  12. [Effect of application of cow manure and green manure on corn yield and soil physical-chemical properties in land restoration area].

    PubMed

    Xu, Da Bing; Deng, Jian Qiang; Peng, Wu Xing; Si, Guo Han; Peng, Cheng Lin; Yuan, Jia Fu; Zhao, Shu Jun; Wang, Rui

    2017-03-18

    The effects of cow manure and green manure on maize yield, soil respiration and soil physical-chemical properties in land restoration area was evaluated through field experiments. The results indicated that the maize yield and thousand-grain mass with cow manure were increased by 7.2%-29.9% and 2.5%-18.2%, respectively compared with the application of chemical fertilizer (CF), while the soil active organic carbon and organic matter contents of cow manure were 5.3%-34.6% and 8.0%-17.6% higher than that obtained in CF. The maize yield and thousand-grain mass were increased by 10.8%-15.6% and 4.5%-8.4% with application of green manure, respectively compared with CF. The content of active organic carbon in green manure was 14.1%-48.6% higher than that detected in CF. In the second year, the content of organic matter in green manure treatment was 7.2% higher than that of CF. The soil respiration rates under cow manure and green manure treatments increased by 20.0%-69.3% compared with CF. CF and green manure could improve the soil bulk density and increase the aggregate ratios of <0.01 mm and 0.05-1 mm fractions, respectively. On the other hand, the cow manure and green manure could decrease the soil total porosity and the capillary porosity. In conclusion, the application of cow manure and green manure in land restoration region could increase maize yield during the two consecutive seasons, which showed a positive response to improvement of soil physical-chemical properties.

  13. Effect of Corn Dried Distiller Grains with Solubles (DDGS) in Dairy Cow Diets on Manure Bioenergy Production Potential

    PubMed Central

    Massé, Daniel I.; Jarret, Guillaume; Benchaar, Chaouki; Saady, Noori M. Cata

    2014-01-01

    Simple Summary Among the measures proposed to reduce environmental pollution from the livestock sector, animal nutrition has a strong potential to reduce enteric and manure storages methane emissions. Changes in diet composition also affect the bioenergy potential of dairy manures. Corn dried distillers grains with solubles (DDGS), which are rich in fat, can be included in animal diets to reduce enteric methane (CH4) emissions, while increasing the bioenergy potential of the animal manure during anaerobic digestion. The inclusion of 30% DDGS in the cow diet caused a significant increase of 14% in daily bioenergy production (NL methane day−1·cow−1). abstract The main objective of this study was to obtain scientifically sound data on the bioenergy potential of dairy manures from cows fed different levels of corn dried distillers grains with solubles (DDGS). Three diets differing in corn DDGS content were formulated: 0% corn DDGS (DDGS0; control diet), 10% corn DDGS (DDGS10) and 30% corn DDGS (DDGS30). Bioenergy production was determined in psychrophilic (25 ± 1 °C) sequencing batch reactors (SBRs) fed 3 g COD L−1·day−1 during a two-week feeding period followed by a two-week react period. Compared to the control diet, adding DDGS10 and DDGS30 to the dairy cow diet increased the daily amount of fat excreted in slurry by 29% and 70%, respectively. The addition of DDGS30 increased the cows’ daily production of fresh feces and slurry by 15% and 11%, respectively. Furthermore, the incorporation of DDGS30 in the diet increased the daily amounts of dry matter (DM), volatile solids (VS), neutral detergent fiber (NDF), acid detergent fiber (ADF) and hemicellulose by 18%, 18%, 30%, 15% and 53%, respectively, compared to the control diet. While the addition of DDGS did not significantly affect the specific CH4 production per kg VS compared to the control diet, DDGS30 increased the per cow daily CH4 production by 14% compared to the control diet. PMID:26479885

  14. Performance, digestion, nitrogen balance, and emission of manure ammonia, enteric methane, and carbon dioxide in lactating cows fed diets with varying alfalfa silage-to-corn silage ratios.

    PubMed

    Arndt, C; Powell, J M; Aguerre, M J; Wattiaux, M A

    2015-01-01

    Two trials were conducted simultaneously to study the effects of varying alfalfa silage (AS) to corn silage (CS) ratio in diets formulated to avoid excess protein or starch on lactating dairy cow performance, digestibility, ruminal parameters, N balance, manure production and composition, and gaseous emissions [carbon dioxide (CO2), methane (CH4), and ammonia-N (NH3-N)]. In trial 1 all measurements, except gas emissions, were conducted on 8 rumen-cannulated cows in replicated 4×4 Latin squares. In trial 2, performance and emissions were measured on 16 cows randomly assigned to 1 of 4 air-flow controlled chambers in a 4×4 Latin square. Dietary treatments were fed as total mixed rations with forage-to-concentrate ratio of 55:45 [dietary dry matter (DM) basis] and AS:CS ratios of 20:80, 40:60, 60:40, and 80:20 (forage DM basis). Measurements were conducted the last 3d of each 21-d period. Treatments did not affect DM intake, DM digestibility, and milk/DM intake. However, responses were quadratic for fat-and-protein-corrected milk, fat, and protein production, which reached predicted maxima for AS:CS ratio of 50:50, 49:51, and 34:66, respectively. Nitrogen use efficiency (milk N/N intake) decreased from 31 to 24g/100g as AS:CS ratio increased from 20:80 to 80:20. Treatments did not alter NH3-N/milk-N but tended to have a quadratic effect on daily NH3-N emission. Treatments had a quadratic effect on daily CH4 emission, which was high compared with current literature; they influenced CH4 emission per unit of neutral detergent fiber (NDF) intake and tended to influence CO2/NDF intake. Ruminal acetate-to-propionate ratio and total-tract NDF digestibility increased linearly with increasing AS:CS ratio. In addition, as AS:CS ratio increased from 20:80 to 80:20, NDF digested increased linearly from 2.16 to 3.24kg/d, but CH4/digested NDF decreased linearly from 270 to 190g/kg. These 2 counterbalancing effects likely contributed to the observed quadratic response in daily CH4 emission, which may have been influenced also by increasing starch with increasing CS in the diet as reflected by the increased ruminal propionate molar proportion. Overall, production performances were greatest for the intermediate AS:CS ratios (40:60 and 60:40), but daily excretion of urine, manure, fecal N, urinary urea N, and urinary N decreased with increasing proportion of CS in the diet, whereas daily CH4 emission was reduced for the 2 extreme AS:CS ratios (20:80 and 80:20). However, the proportion of AS and CS in the diet did not affect CH4/fat-and-protein corrected milk. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. Comparative characterization of digestate versus pig slurry and cow manure - Chemical composition and effects on soil microbial activity.

    PubMed

    Risberg, Kajsa; Cederlund, Harald; Pell, Mikael; Arthurson, Veronica; Schnürer, Anna

    2017-03-01

    The growing number of biogas plants in Europe has resulted in increased production of nutrient-rich digestate with great potential as fertilizer for arable land. The nutrient composition of digestate varies with the substrate treated in the biogas plant and may contain compounds that stimulate or inhibit soil microbial activity. This study compared 20 digestates (D) with 10 pig slurries (PS) and 10 cow manures (CM) regarding their chemical content and their effect on soil microbial activities, i.e. potential ammonia oxidation rate (PAO) and soil respiration. The results showed no significant differences within the D group when divided based on substrate type. i.e. manure dominated vs. other organic waste materials in any of the tests. In general D contained significantly higher concentrations of ammonium while the concentrations of total carbon and volatile fatty acids were higher in PS and CM than in D. The D showed both stimulating and inhibiting effects on PAO, while all CM and all PS except one showed inhibiting effects on PAO. However, PAO activity was negatively correlated with the content of volatile fatty acids in the residues indicating that these compounds may be the cause of the inhibition. The maximum respiration activity (h peakmax ) was lower and the time point for the maximum respiration activity (t peakmax ) occurred earlier for D compared with CM and PS. This earlier peak time could be indicative of a high proportion of easily degradable carbon in D compared with PS and CM. However, the utilization rate of carbon, i.e. the proportion of added organic C converted to CO 2 -C during 12days, did not differ significantly between D, PS and CM, indicating that overall carbon quality in the different fertilizers was still roughly comparable. In short, our results suggest that digestates were different compared with PS and CM but without posing a higher risk with respect to their impact on soil microbial activity. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  16. Variation in Weed Seed Fate Fed to Different Holstein Cattle Groups.

    PubMed

    Rahimi, Salman; Mashhadi, Hamid Rahimian; Banadaky, Mehdi Dehghan; Mesgaran, Mohsen Beheshtian

    2016-01-01

    Weed seeds may maintain their viability when passing through the digestive tract of cattle and can be therefore dispersed by animal movement or the application of manure. Whether different cattle types of the same species can cause differential weed seed fate is largely unknown to us particularly under non-grazed systems similar to Holstein-Friesian dairy farming. We investigated the effect on the seed survival of four weed species in the digestive tracts of four groups of Holstein cattle: lactating cows, feedlot male calves, dry cows and growing heifers. The weed species used were Cuscuta campestris, Polygonum aviculare, Rumex crispus and Sorghum halepense. Cattle excretion was sampled for recovery and viability of seeds at four 24 hourly intervals after seed intake. The highest seed recovery occurred two days after seed intake in all cattle groups. Averaged over weed species, dry and lactating cows had the lowest and highest seed recovery of 36.4% and 74.4% respectively. No significant differences were observed in seed recovery of the four weed species when their seeds were fed to dry cows. Based on a power model fitted to seed viability data, the estimated time to 50% viability loss after seed intake, over all cattle groups ranged from 65 h (R. crispus) to 76 h (P. aviculare). Recovered seeds from the dung of feedlot male calves showed the highest mortality among cattle groups. Significant correlation was found between seed viability and ruminal pH (r = 0.86; P<0.05). This study shows that management programs aiming to minimize weed infestation caused by livestock should account for the variation amongst cattle groups in seed persistence. Our findings can be used as a guideline for evaluating the potential risk of the spread of weeds via the application of cattle manure.

  17. Dry anaerobic digestion of cow manure and agricultural products in a full-scale plant: Efficiency and comparison with wet fermentation.

    PubMed

    Chiumenti, Alessandro; da Borso, Francesco; Limina, Sonia

    2018-01-01

    For years, anaerobic digestion processes have been implemented for the management of organic wastes, agricultural residues, and animal manure. Wet anaerobic digestion still represents the most common technology, while dry fermentation, dedicated to the treatment of solid inputs (TS>20%) can be considered as an emerging technology, not in terms of technological maturity, but of diffusion. The first agricultural dry anaerobic digestion plant constructed in Italy was monitored from the start-up, for over a year. The plant was fed with manure and agricultural products, such as corn silage, triticale, ryegrass, alfalfa, and straw. Three Combined Heat and Power units, for a total installed power of 910kW e , converted biogas into thermal and electric energy. The monitoring included the determination of quality and quantity of input feedstocks, of digestate (including recirculation rate), of leachate, biogas quality (CH 4 , CO 2 , H 2 S), biogas yield, energy production, labor requirement for loading, and unloading operations. The results of the monitoring were compared to performance data obtained in several full scale wet digestion plants. The dry fermentation plant revealed a start-up phase that lasted several months, during which the average power resulted in 641kW e (70.4% of nominal power), and the last period the power resulted in 788kW e (86.6% of installed power). Improving the balance of the input, the dry fermentation process demonstrated biogas yields similar to wet anaerobic digestion, congruent to the energy potential of the biomasses used in the process. Furthermore, the operation of the plant required significant man labor, mainly related to loading and unloading of the anaerobic cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Exploitation of olive mill wastewater and liquid cow manure for biogas production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dareioti, Margarita A.; Dokianakis, Spyros N.; Stamatelatou, Katerina

    2010-10-15

    Co-digestion of organic waste streams is an innovative technology for the reduction of methane/greenhouse gas emissions. Different organic substrates are combined to generate a homogeneous mixture as input to the anaerobic reactor in order to increase process performance, realize a more efficient use of equipment and cost-sharing by processing multiple waste streams in a single facility. In this study, the potential of anaerobic digestion for the treatment of a mixture containing olive mill wastewater (OMW) and liquid cow manure (LCM) using a two-stage process has been evaluated by using two continuously stirred tank reactors (CSTRs) under mesophilic conditions (35 {supmore » o}C) in order to separately monitor and control the processes of acidogenesis and methanogenesis. The overall process was studied with a hydraulic retention time (HRT) of 19 days. The digester was continuously fed with an influent composed (v/v) of 20% OMW and 80% LCM. The average removal of dissolved and total COD was 63.2% and 50%, respectively. The volatile solids (VS) removal was 34.2% for the examined mixture of feedstocks operating the system at an overall OLR of 3.63 g CODL{sub reactor}{sup -1}d{sup -1}. Methane production rate at the steady state reached 0.91 L CH{sub 4}L{sub reactor}{sup -1}d{sup -1} or 250.9 L CH{sub 4} at standard temperature and pressure conditions (STP) per kg COD fed to the system.« less

  19. IMPROVED BIOMASS UTILIZATION THROUGH REMOTE FLOW SENSING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washington University- St. Louis: Muthanna Al-Dahhan

    The growth of the livestock industry provides a valuable source of affordable, sustainable, and renewable bioenergy, while also requiring the safe disposal of the large quantities of animal wastes (manure) generated at dairy, swine, and poultry farms. If these biomass resources are mishandled and underutilized, major environmental problems will be created, such as surface and ground water contamination, odors, dust, ammonia leaching, and methane emission. Anaerobic digestion of animal wastes, in which microorganisms break down organic materials in the absence of oxygen, is one of the most promising waste treatment technologies. This process produces biogas typically containing {approx}65% methane andmore » {approx}35% carbon dioxide. The production of biogas through anaerobic digestion from animal wastes, landfills, and municipal waste water treatment plants represents a large source of renewable and sustainable bio-fuel. Such bio-fuel can be combusted directly, used in internal combustion engines, converted into methanol, or partially oxidized to produce synthesis gas (a mixture of hydrogen and carbon monoxide) that can be converted to clean liquid fuels and chemicals via Fischer-Tropsch synthesis. Different design and mixing configurations of anaerobic digesters for treating cow manure have been utilized commercially and/or tested on a laboratory scale. These digesters include mechanically mixed, gas recirculation mixed, and slurry recirculation mixed designs, as well as covered lagoon digesters. Mixing is an important parameter for successful performance of anaerobic digesters. It enhances substrate contact with the microbial community; improves pH, temperature and substrate/microorganism uniformity; prevents stratification and scum accumulation; facilitates the removal of biogas from the digester; reduces or eliminates the formation of inactive zones (dead zones); prevents settling of biomass and inert solids; and aids in particle size reduction. Unfortunately, information and findings in the literature on the effect of mixing on anaerobic digestion are contradictory. One reason is the lack of measurement techniques for opaque systems such as digesters. Better understanding of the mixing and hydrodynamics of digesters will result in appropriate design, configuration selection, scale-up, and performance, which will ultimately enable avoiding digester failures. Accordingly, this project sought to advance the fundamental knowledge and understanding of the design, scale up, operation, and performance of cow manure anaerobic digesters with high solids loading. The project systematically studied parameters affecting cow manure anaerobic digestion performance, in different configurations and sizes by implementing computer automated radioactive particle tracking (CARPT), computed tomography (CT), and computational fluid dynamics (CFD), and by developing novel multiple-particle CARPT (MP-CARPT) and dual source CT (DSCT) techniques. The accomplishments of the project were achieved in a collaborative effort among Washington University, the Oak Ridge National Laboratory, and the Iowa Energy Center teams. The following investigations and achievements were accomplished: Systematic studies of anaerobic digesters performance and kinetics using various configurations, modes of mixing, and scales (laboratory, pilot plant, and commercial sizes) were conducted and are discussed in Chapter 2. It was found that mixing significantly affected the performance of the pilot plant scale digester ({approx}97 liter). The detailed mixing and hydrodynamics were investigated using computer automated radioactive particle tracking (CARPT) techniques, and are discussed in Chapter 3. A novel multiple particle tracking technique (MP-CARPT) technique that can track simultaneously up to 8 particles was developed, tested, validated, and implemented. Phase distribution was investigated using gamma ray computer tomography (CT) techniques, which are discussed in Chapter 4. A novel dual source CT (DSCT) technique was developed to measure the phase distribution of dynamic three phase system such as digesters with high solids loading and other types of gas-liquid-solid fluidization systems. Evaluation and validation of the computational fluid dynamics (CFD) models and closures were conducted to model and simulate the hydrodynamics and mixing intensity of the anaerobic digesters (Chapter 5). It is strongly recommended that additional studies be conducted, both on hydrodynamics and performance, in large scale digesters. The studies should use advanced non-invasive measurement techniques, including the developed novel measurement techniques, to further understand their design, scale-up, performance, and operation to avoid any digester failure. The final goal is a system ready to be used by farmers on site for bioenergy production and for animal/farm waste treatment.« less

  20. Transformation of organic matters in animal wastes during composting.

    PubMed

    Wang, Ke; He, Chao; You, Shijie; Liu, Weijie; Wang, Wei; Zhang, Ruijun; Qi, Huanhuan; Ren, Nanqi

    2015-12-30

    The transformation of organic matters in swine, cow and chicken manures was compared and evaluated using elemental analysis, FTIR, (13)C NMR, pyrolysis/GC/MS, Biolog and multiple fluorochrome over 60 days composting. The results revealed that cow manure exhibited the greatest C/N and aromaticity, whereas chicken manure exhibited the highest nitrogen and sulfur contents. O-alkyl-C was predominant carbon structure in the three manures. Alkyl-C and carboxyl-C were decomposed dramatically in initial 10 days, and mineralization of O-alkyl-C dominated the curing stage. During pyrolysis of chicken, cow, and swine manures, the majority products were fatty acids, phenols and cholestene derivatives, respectively, however, phenols and cholestene derivatives were strongly reduced in the mature manures. Furthermore, microorganisms in the raw cow, chicken and swine manure demonstrated the highest degradation capabilities for carbohydrates, lipids and amino acids, respectively. Spatial differences in the contents of solid organics in the manure particles were negligible through detection by multiple staining methods during composting. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. 76 FR 67146 - Certain Preserved Mushrooms From the People's Republic of China: Final Results of Antidumping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-31

    ... surrogate value to use for the input cow manure. We received comments from Hengyong, Hongda, and Monterey... the correct valuation of the input cow manure. Our September 8, 2011, letter included eight exhibits each consisting of a valuation source for cow manure different from the source we used in the...

  2. Detection and quantification of long chain fatty acids in liquid and solid samples and its relevance to understand anaerobic digestion of lipids.

    PubMed

    Neves, L; Pereira, M A; Mota, M; Alves, M M

    2009-01-01

    A method for long chain fatty acids (LCFA) extraction, identification and further quantification by gas chromatography was developed and its application to liquid and solid samples collected from anaerobic digesters was demonstrated. After validation, the usefulness of this method was demonstrated in a cow manure digester receiving pulses of an industrial effluent containing high lipid content. From the LCFA analysis data it was showed that the conversion of oleic acid, the main LCFA fed to the reactor, by the adapted biomass became faster and more effective along the successive pulses. Conversely, the accumulation of palmitic acid in the solid phase suggests that degradation of this LCFA, under these conditions, is less effective.

  3. A start-up of psychrophilic anaerobic sequence batch reactor digesting a 35 % total solids feed of dairy manure and wheat straw.

    PubMed

    Saady, Noori M Cata; Massé, Daniel I

    2015-12-01

    Zero liquid discharge is currently an objective in livestock manure management to minimize water pollution. This paper reports the start-up phase of a novel psychrophilic (20 °C) dry anaerobic digestion of dairy manure with bedding fed at 35 % total solids and an organic loading rate of 3.0 g total chemical oxygen demand kg(-1) inoculum day(-1) in anaerobic sequence batch reactors. The specific methane (CH4) yield ranged from 165.4 ± 9.8 to 213.9 ± 13.6 NL CH4 kg(-1) volatile solids (VS) with an overall average of 188 ± 17 NL CH4 kg(-1) VS during 11 successive start-up cycles (231 days) and a maximum CH4 production rate of 10.2 ± 0.6 NL CH4 kg(-1) VS day(-1). The inoculum-to-substrate (VS-based) ratio ranged from 4.06 to 4.47. Although methanogenesis proceeded fairly well the hydrolysis seemed to be the rate limiting step. It is possible start up psychrophilic dry anaerobic digestion of cow feces and wheat straw at feed TS of 35 % within 7-10 successive cycles (147-210 days).

  4. Interaction of Technology Adoption Constraints and Multi-level Policy Coherence at the Energy-Food Nexus

    NASA Astrophysics Data System (ADS)

    Gerst, M.; Cox, M. E.; Laser, M.; Locke, K. A.; Kapuscinski, A. R.

    2017-12-01

    Policy- and decision-making at the food-energy-water (FEW) nexus entails additional complexities due to the multi-objective nature of FEW socio-technical systems: policies and decisions meant to improve one facet of the nexus might be less beneficial, or even detrimental, to achieving goals for other facets. In addition, implementing policies and decisions may be more difficult due to increasing coordination required among stakeholders across each nexus facet. We highlight these issues in an economic, material/energy flow, and institutional assessment of dairy farms that produce power from anaerobic digestion of cow manure. This socio-technical system is an example of an integrated food-energy system (IFES), which co-produces food and energy. In the case of dairy farms, water is also a significant consideration because cow manure, if improperly managed, can negatively impact water bodies. Our assessment asks the questions (i) of whether or not adopting an IFES improves farm resilience under potential economic and environment futures and (ii) how decisions, policies, and information can best be tailored to the FEW nexus. Our study consists of semi-structured interviews of 60 farms split between the US states of New York and Vermont, both of which have enacted policies to encourage digester adoption. Each interview asks farmers about their material and energy flows, costs, and decision-making process for adopting (or not) an anaerobic digester. In addition, farmers are asked questions about challenges and barriers they might have faced and future drivers of change. Preliminary results highlight important interactions between policy and decision-making. Foremost, an analysis of policy cohesion shows that environmental objectives cross sectors and governance levels, as state-level greenhouse gas mitigation policies interact with federal-level nutrient management policies. This form of potential policy incoherence may introduce additional problems that hinder digester adoption and operation because technology options might be constrained and information needs may be too great for farmer's to consider adopting a digester.

  5. Different approaches to assess the environmental performance of a cow manure biogas plant

    NASA Astrophysics Data System (ADS)

    Torrellas, Marta; Burgos, Laura; Tey, Laura; Noguerol, Joan; Riau, Victor; Palatsi, Jordi; Antón, Assumpció; Flotats, Xavier; Bonmatí, August

    2018-03-01

    In intensive livestock production areas, farmers must apply manure management systems to comply with governmental regulations. Biogas plants, as a source of renewable energy, have the potential to reduce environmental impacts comparing with other manure management practices. Nevertheless, manure processing at biogas plants also incurs in non-desired gas emissions that should be considered. At present, available emission calculation methods cover partially emissions produced at a biogas plant, with the subsequent difficulty in the preparation of life cycle inventories. The objective of this study is to characterise gaseous emissions: ammonia (NH3-N), methane (CH4), nitrous oxide (N2Oindirect, and N2Odirect) and hydrogen sulphide (H2S) from the anaerobic co-digestion of cow manure by using different approaches for preparing gaseous emission inventories, and to compare the different methodologies used. The chosen scenario for the study is a biogas plant located next to a dairy farm in the North of Catalonia, Spain. Emissions were calculated by two methods: field measurements and estimation, following international guidelines. International Panel on Climate Change (IPCC) guidelines were adapted to estimate emissions for the specific situation according to Tier 1, Tier 2 and Tier 3 approaches. Total air emissions at the biogas plant were calculated from the emissions produced at the three main manure storage facilities on the plant: influent storage, liquid fraction storage, and the solid fraction storage of the digestate. Results showed that most of the emissions were produced in the liquid fraction storage. Comparing measured emissions with estimated emissions, NH3, CH4, N2Oindirect and H2S total emission results were in the same order of magnitude for both methodologies, while, N2Odirect total measured emissions were one order of magnitude higher than the estimates. A Monte Carlo analysis was carried out to examine the uncertainties of emissions determined from experimental data, providing probability distribution functions. Four emission inventories were developed with the different methodologies used. Estimation methods proved to be a useful tool to determine emissions when field sampling is not possible. Nevertheless, it was not possible to establish which methodology is more reliable. Therefore, more measurements at different biogas plants should be evaluated to validate the methodologies more precisely.

  6. Estimation of the ICBM/2 Organic Matter Simulation Model parameters for biogas digestate mineralisaion in soil using Near Infrared Data.

    NASA Astrophysics Data System (ADS)

    Cabassi, Giovanni; Cavalli, Daniele; Borrelli, Lamberto; Degano, Luigi; Marino Gallina, Pietro

    2014-05-01

    The use of simulation models to study the turnover of soil organic matter (SOM) can support experimental data interpretation and the optimization of manure management. Icbm/2 (Katter, 2001) is a SOM simulation model that describes the turnover of SOM with three pools : one for old humified SOM (CO) and two for added manure, CL ( labile "young" C) and CS (stable "young" C). C outflows from CL and CR to be humified (h) and lost as CO2-C (1-h). All pools decay with firs-order kinetics with parameter kYL, kYR and kO (fig. 1).With this model of SOM turnover, during manure decomposition into the soil, only the evolved CO2 can be easily measured. Near infrared spectroscopy has been proved to be a useful technique for soil C evaluation. Since different soil C pools are expected to have different chemical composition, it was proven that NIR can be used as a cheap technique to develop calibration models to estimate the amount of C belonging to different pools). The aim of this work was compare the calibration of ICBM/2 using C respiration data or optimal NIR prediction of CO and CL pools. A total of six laboratory treatments were established using the same soil corresponding to the application of five fertilisers and a control treatment: 1) control without N fertilisation; 2) ammonium sulphate; 3) anaerobically digested dairy cow slurry (Digested slurry); 4-5) the liquid (Liquid fraction) and solid (Solid fraction) fractions after mechanical separation of Digested slurry; and 6) anaerobically stored dairy cow slurry (Stored slurry). The "nursery" method was used with 12 sampling dates. NIR analysis were performed on the air dried grounded soils. Spectra were collected using an FT-NIR Spectrometer. Parameters calibration was done separately for each soil using the downhill simplex method. For each manure, a C partitioning factor (Fi) was optimised. In each optimization step respiration measured data or NIR estimates CL and CO were used as imput for minimisation objective function. At the end the algorithm found those parameters that gave the lowest averaged RMSE between errors in the estimation of respired C. The model parameter extimations obtained using C respiration data and NIR predictions were comparable indicating a general ability of the NIR method to estimate model parameters together with a good prediction of C mineralisation.

  7. Immobilization of Cd in landfill-leachate-contaminated soil with cow manure compost as soil conditioners: A laboratory study.

    PubMed

    Liao, Zhuwei; Wang, Jia; Wan, Rui; Xi, Shuang; Chen, Zhuqi; Chen, Zhulei; Yu, Yingjian; Long, Sijie; Wang, Huabin

    2016-12-01

    Introducing cow manure compost as an amendment in landfill-leachate-contaminated soils is proved to be an effective technique for the immobilization of Cd in this study. Landfill-leachate-contaminated soil was collected from an unlined landfill in China and amended with a different blending quantity of cow manure compost (0, 12, 24, 36, and 48 g per 200 g soil), which was made by mixing cow manure and chaff at a ratio of 1/1 and maturing for 6 months. pH values of five different blending quantity mixtures increased by 0.2-0.4, and the organic matter levels increased by 2.5-7%, during a remediation period of 5 weeks. Four fractions of Cd named exchangeable Cd, reducible Cd, oxidizable Cd, and residual Cd in soil were respectively analyzed by a sequential extraction procedure. Introducing the cow manure compost application resulted in more than 40% lower exchangeable Cd but a higher concentration of oxidizable Cd in soils, and mass balance results showed nearly no Cd absorption by applied material, indicating that transformation of exchangeable Cd into oxidization forms was the main mechanism of Cd immobilization when cow manure compost was used as an amendment. The Pearson correlation showed that increasing of pH values significantly improved the efficiency of Cd immobilization, with a correlation coefficiency of 0.940 (p < 0.05). This is the first attempt at heavy metal immobilization in landfill-leachate-contaminated soil by cow manure compost, and findings of this work can be integrated to guide the application. Addition of cow manure compost (CMC) was effective in reducing exchangeable Cd in landfill-leachate-contaminated soils (LLCS). The immobilization effect of Cd was mainly assigned to the redistribution of labile soil Cd. Organic matter (OM) and pH value increased with CMC application. The pH values were more sensitive to Cd immobilization efficiency. It was proved that CMC can be safely and effectively used for the restoration of LLCS.

  8. The fate and effect of monensin during anaerobic digestion of dairy manure under mesophilic conditions.

    PubMed

    Arikan, Osman A; Mulbry, Walter; Rice, Clifford; Lansing, Stephanie

    2018-01-01

    There is growing concern about residual antibiotics and feed additives in the manure of treated animals because of the effects of these residues in the environment. Monensin is the most widely used ionophore coccidiostat in the U.S. The objective of this study was to determine the fate and effect of monensin during the anaerobic digestion of dairy manure. Duplicate plug flow field-scale digesters were operated using non-amended dairy manure and dairy manure amended with monensin to 1 and 10 mg/L for 56 days at 30°C at an organic loading rate of 1.4 kg VS/m3-d and 17-day hydraulic retention time. Results showed that monensin was reduced approximately 70% during anaerobic digestion. Methane production from digesters using manure amended with 1 mg/L monensin was comparable to that from digesters operated without added monensin. However, digesters using manure amended with 10 mg/L monensin yielded 75% less methane than digesters using manure without added monensin. These results suggest that anaerobic digestion is an effective treatment for reducing, but not eliminating, monensin in dairy manure. Monensin did not reduce methane production at concentrations expected in dairy manure at recommended dosage rates.

  9. Application of rumen microbes to enhance food waste hydrolysis in acidogenic leach-bed reactors.

    PubMed

    Yan, Bing Hua; Selvam, Ammaiyappan; Wong, Jonathan W C

    2014-09-01

    Effect of rumen microorganisms on hydrolysis of food waste in leach bed reactor (LBR) was investigated. LBRs were inoculated (20%, w/w) with cow manure and anaerobically digested sludge at different ratios, 0:1 (LBR-A), 1:3 (LBR-B), 1:1 (LBR-C), 3:1 (LBR-D) and 1:0 (LBR-E). High volatile solids (VS) conversion efficiency of 68% was achieved in LBR-E. Compared with LBR-A, chemical oxygen demand, total soluble products and total Kjeldahl nitrogen leaching of LBR-E were increased by 16%, 14.3% and 27%, respectively. Recovery of the highest amounts of ethanol and butyrate in LBR-E indicated that the metabolic pathway mediated by rumen microorganisms was favorable for subsequent methanogenesis. Phylogenetic analysis confirmed that the enhanced hydrolysis in LBR-E was mainly due to strong degraders, e.g. Enterobacter, Bifidobacterium thermacidophilum and Caloramator sourced from cow manure. Results demonstrate that rumen microorganisms rapidly degrade the VS and produce useful VFAs with high methane yields in subsequent methanogenesis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Feed conversion efficiency in dairy cows: Repeatability, variation in digestion and metabolism of energy and nitrogen, and ruminal methanogens.

    PubMed

    Arndt, C; Powell, J M; Aguerre, M J; Crump, P M; Wattiaux, M A

    2015-06-01

    The objective was to study repeatability and sources of variation in feed conversion efficiency [FCE, milk kg/kg dry matter intake (DMI)] of lactating cows in mid to late lactation. Trials 1 and 2 used 16 cows (106 to 368 d in milk) grouped in 8 pairs of 1 high- and 1 low-FCE cow less than 16 d in milk apart. Trial 1 determined the repeatability of FCE during a 12-wk period. Trial 2 quantified the digestive and metabolic partitioning of energy and N with a 3-d total fecal and urine collection and measurement of CH4 and CO2 emission. Trial 3 studied selected ruminal methanogens in 2 pairs of cows fitted with rumen cannulas. Cows received a single diet including 28% corn silage, 27% alfalfa silage, 17% crude protein, and 28% neutral detergent fiber (dry matter basis). In trial 1, mean FCE remained repeatedly different and averaged 1.83 and 1.03 for high- and low-FCE cows, respectively. In trial 2, high-FCE cows consumed 21% more DMI, produced 98% more fat- and protein-corrected milk, excreted 42% less manure per kilogram of fat- and protein-corrected milk, but emitted the same daily amount of CH4 and CO2 compared with low-FCE cows. Percentage of gross energy intake lost in feces was higher (28.6 vs. 25.9%), but urinary (2.76 vs. 3.40%) and CH4 (5.23 vs. 6.99%) losses were lower in high- than low-FCE cows. Furthermore, high-FCE cows partitioned 15% more of gross energy intake toward net energy for maintenance, body gain, and lactation (37.5 vs. 32.6%) than low-FCE cows. Lower metabolic efficiency and greater heat loss in low-FCE cows might have been associated in part with greater energy demand for immune function related to subclinical mastitis, as somatic cell count was 3.8 fold greater in low- than high-FCE cows. As a percentage of N intake, high-FCE cows tended to have greater fecal N (32.4 vs. 30.3%) and had lower urinary N (32.2 vs. 41.7%) and greater milk N (30.3 vs. 19.1%) than low-FCE cows. In trial 3, Methanobrevibacter spp. strain AbM4 was less prevalent in ruminal content of high-FCE cows, which emitted less CH4 per unit of DMI and per unit of neutral detergent fiber digested than low-FCE cows. Thus lower digestive efficiency was more than compensated by greater metabolic efficiencies in high- compared with low-FCE cows. There was not a single factor, but rather a series of mechanisms involved in the observed differences in efficiency of energy utilization of the lactating cows in this study. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Bacterial mobilization and transport through manure enriched soils: Experiment and modeling.

    PubMed

    Sepehrnia, N; Memarianfard, L; Moosavi, A A; Bachmann, J; Guggenberger, G; Rezanezhad, F

    2017-10-01

    A precise evaluation of bacteria transport and mathematical investigations are useful for best management practices in agroecosystems. In this study, using laboratory experiments and modeling approaches, we assess the transport of bacteria released from three types of manure (cow, sheep, and poultry) to find the importance of the common manures in agricultural activities in soil and water pollution. Thirty six intact soil columns with different textures (sandy, loamy, and silty clay loam) were sampled. Fecal coliform leaching from layers of the manures on the soil surface was conducted under steady-state saturated flow conditions at 20 °C for up to four Pore Volumes (PVs). Separate leaching experiments were conducted to obtain the initial concentrations of bacteria released from the manures (Co). Influent (Co) and effluent (C) bacteria concentrations were measured by the plate-count method and the normalized concentrations (C/C0) were plotted versus PV representing the breakthrough curves (BTCs). Transport parameters were predicted using the attachment/detachment model (two-kinetic site) in HYDRUS-1D. Simulations fitted well the experimental data (R 2  = 0.50-0.96). The attachment, detachment, and straining coefficients of bacteria were more influenced by the soils treated with cow manure compared to the sheep and poultry manures. Influent curves of fecal coliforms from the manures (leached without soil) illustrated that the poultry manure had the highest potential to pollute the effluent water from the soils in term of concentration, but the BTCs and simulated data related to the treated soils illustrated that the physical shape of cow manure was more important to both straining and detachment of bacteria back into the soil solution. Detachment trends of bacteria were observed through loam and silty clay loam soils treated with cow manure compared to the cow manure enriched sandy soil. We conclude that management strategies must specifically minimize the effect of fecal coliform concentrations before field application, especially for the combination of poultry and cow manures, which has higher solubility and tailing behavior, respectively. Interestingly, the addition of sheep manure with all three soils had the lowest mobilization of bacteria. We also suggest studying the chemistry of soil solution affected by manures to present all relevant information which affect bacterial movement through soils during leaching. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Linseed oil supplementation to dairy cows fed diets based on red clover silage or corn silage: Effects on methane production, rumen fermentation, nutrient digestibility, N balance, and milk production.

    PubMed

    Benchaar, C; Hassanat, F; Martineau, R; Gervais, R

    2015-11-01

    The objective of this study was to examine the effect of linseed oil (LO) supplementation to red clover silage (RCS)- or corn silage (CS)-based diets on enteric CH4 emissions, ruminal fermentation characteristics, nutrient digestibility, N balance, and milk production. Twelve rumen-cannulated lactating cows were used in a replicated 4×4 Latin square design (35-d periods) with a 2×2 factorial arrangement of treatments. Cows were fed (ad libitum) RCS- or CS-based diets [forage:concentrate ratio 60:40; dry matter (DM) basis] without or with LO (4% of DM). Supplementation of LO to the RCS-based diet reduced enteric CH4 production (-9%) and CH4 energy losses (-11%) with no adverse effects on DM intake, digestion, ruminal fermentation characteristics, protozoa numbers, or milk production. The addition of LO to the CS-based diet caused a greater decrease in CH4 production (-26%) and CH4 energy losses (-23%) but was associated with a reduction in DM intake, total-tract fiber digestibility, protozoa numbers, acetate:propionate ratio, and energy-corrected milk yield. Urinary N excretion (g/d) decreased with LO supplementation to RCS- and CS-based diets, suggesting reduced potential of N2O emissions. Results from this study show that the depressive effect of LO supplementation on enteric CH4 production is more pronounced with the CS- than with the RCS-based diet. However, because of reduced digestibility with the CS-based diet, the reduction in enteric CH4 production may be offset by higher CH4 emissions from manure storage. Thus, the type of forage of the basal diet should be taken into consideration when using fat supplementation as a dietary strategy to reduce enteric CH4 production from dairy cows. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Anaerobic digestion of chicken feather with swine manure or slaughterhouse sludge for biogas production.

    PubMed

    Xia, Yun; Massé, Daniel I; McAllister, Tim A; Beaulieu, Carole; Ungerfeld, Emilio

    2012-03-01

    Biogas production from anaerobic digestion of chicken feathers with swine manure or slaughterhouse sludge was assessed in two separate experiments. Ground feathers without any pre-treatment were added to 42-L digesters inoculated with swine manure or slaughterhouse sludge, representing 37% and 23% of total solids, respectively and incubated at 25°C in batch mode. Compared to the control without feather addition, total CH(4) production increased by 130% (P<0.001) and 110% (P=0.09) in the swine manure and the slaughterhouse sludge digesters, respectively. Mixed liquor NH(4)N concentration increased (P<0.001) from 4.8 and 3.1g/L at the beginning of the digestion to 6.9 and 3.5 g/L at the end of digestion in the swine manure and the slaughterhouse sludge digesters, respectively. The fraction of proteolytic microorganisms increased (P<0.001) during the digestion from 12.5% to 14.5% and 11.3% to 13.0% in the swine manure and the slaughterhouse sludge digesters with feather addition, respectively, but decreased in the controls. These results are reflective of feather digestion. Feather addition did not affect CH(4) yields of the swine manure digesters (P=0.082) and the slaughterhouse sludge digesters (P=0.21), indicating that feathers can be digested together with swine manure or slaughterhouse sludge without negatively affecting the digestion of swine manure and slaughterhouse sludge. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  14. The fate and effect of monensin during anaerobic digestion of dairy manure under mesophilic conditions

    PubMed Central

    Mulbry, Walter; Rice, Clifford; Lansing, Stephanie

    2018-01-01

    There is growing concern about residual antibiotics and feed additives in the manure of treated animals because of the effects of these residues in the environment. Monensin is the most widely used ionophore coccidiostat in the U.S. The objective of this study was to determine the fate and effect of monensin during the anaerobic digestion of dairy manure. Duplicate plug flow field-scale digesters were operated using non-amended dairy manure and dairy manure amended with monensin to 1 and 10 mg/L for 56 days at 30°C at an organic loading rate of 1.4 kg VS/m3-d and 17-day hydraulic retention time. Results showed that monensin was reduced approximately 70% during anaerobic digestion. Methane production from digesters using manure amended with 1 mg/L monensin was comparable to that from digesters operated without added monensin. However, digesters using manure amended with 10 mg/L monensin yielded 75% less methane than digesters using manure without added monensin. These results suggest that anaerobic digestion is an effective treatment for reducing, but not eliminating, monensin in dairy manure. Monensin did not reduce methane production at concentrations expected in dairy manure at recommended dosage rates. PMID:29420605

  15. Efficient use of animal manure on cropland--economic analysis.

    PubMed

    Araji, A A; Abdo, Z O; Joyce, P

    2001-09-01

    Manure contains all the macro- and microelements needed for plant growth; however, it represents one of the most underutilized resources in the US. The major problem with the use of manure on cropland is the direct effect of its composition on application cost. This cost is a function of the mineralization process of organic matter. The mineralization process is influenced by the properties of the manure, properties of the soil, moisture, and temperature. This study evaluates the simultaneous effect of these variables on the optimal use of manure on cropland. The results show that the properties of manure and soil significantly affect the mineralization of organic nitrogen and thus the optimal quantity of manure required to satisfy the nutrient requirement of crops in a given rotation system. Manure application costs range from a low of 18% of the cost of commercial fertilizer for chicken manure applied to one type of soil, to a high of 125% of the cost of commercial fertilizer for cow manure applied to another type of soil. The maximum distance to transfer manure to the field, that will equate its application cost to the cost of commercial fertilizer, ranges from a high of 35 km (22 miles) for chicken manure applied to one type of soil, to a low of 1 km (0.62 miles) for cow manure applied to another type of soil. For rotation system 2, manure application costs range from a low of 37% of the cost of commercial fertilizer for chicken manure applied to one type of soil, to a high of 136% of the cost of commercial fertilizer for cow manure applied to another type of soil. The maximum distance to transfer manure to the field, that will equate its cost to the cost of commercial fertilizer, ranges from a high of 20 km (12.5 miles) for chicken manure applied to one type of soil, to a low of 0 km (0 miles) for cow manure applied to another type of soil.

  16. The effect of cattle manure cultivation on moisture content and survival of Escherichia coli.

    PubMed

    Weinberg, Z; Chen, Y; Khanal, P; Pinto, R; Zakin, V; Sela, S

    2011-03-01

    A new practice whereby wet slurry is added daily to the cattle manure bedding at the barn and cultivated has been developed in Israel. The objective of the present study was to examine the effect of manure cultivation on the persistence of Escherichia coli in a model system. A cow manure-derived E. coli strain was tagged with green fluorescence protein (GFP) and antibiotic resistance markers and was used to inoculate cow manure in 10-L buckets. After 3 successive cycles of inoculation and cultivation, wet slurry was added during an additional 2 cycles. After 32 d, the cultivated and noncultivated manure contained 677 ± 14 and 505 ± 2 g·kg(-1) DM, respectively. The cultivated manure remained drier compared with the noncultivated manure after the addition of wet slurry, and its texture remained lumpy compared with the compact, cohesive, and sticky texture of the noncultivated manure. Throughout the experiment, the counts of the tagged E. coli were less (P < 0.05) and disappeared faster in the cultivated than in the noncultivated manure. These results support the hypothesis that daily cultivation of manure may result in reduced incidence of mastitis and improves the welfare and performance of dairy cows.

  17. What dairy cows are fed impacts manure chemistry and the environment

    USDA-ARS?s Scientific Manuscript database

    Over the past 20 years or so there has been increasing evidence and concern that nutrients contained in animal manures can adversely impact water and air quality. Research has demonstrated that the diets fed to dairy cows can be modified to reduce nutrient excretions in manure and environmental impa...

  18. Cayuga County Regional Digester: Vision Becomes Reality. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamyar V. Zadeh; Jim Young

    2013-03-12

    With an average herd size of 113 mature cows, Cayuga County is home to 280 dairy farms and 31,500 dairy milking cows producing approximately 855 million gallons of milk per year. The Cayuga Dairy industry is a major contributor to the countys economy, employing nearly 1200 people, while generating $140,000,000 of revenue from sale of milk alone. At the same time, the Cayuga County dairy industry also produces 5.7 million gallons of manure daily: (a) Nearly 34% of this manure is produced on smaller farms. (b) Digesters are expensive pieces of equipment and require attention and care. ( c) Themore » on-farm digester systems have fairly long payback (>10 years) even for larger CAFO farms (>1000 milking cows). In 2005, Cayuga County Soil and Water Conservation District (The District), a Public Agency under Cayuga County, decided to undertake a centralized community digester project. The primary goal of the project was to develop an economically sustainable model, under the auspices of The District to address manure management issues facing the smaller dairies, improve the water quality and improve the quality of life for Cayuga County residents. It is believed that the District has accomplished this goal by completing construction of Cayuga County Regional Digester on a parcel of land behind the Cayuga County Natural Resource Center located at 7413 County House Road in the Town of Sennett in Cayuga County, New York. The digester facility consists of the following major components. 1. Transfer Station: This an indoor truck bay, where 35,000 gallons of manure from three local farms, 8,500 gallons of liquid organic food-processor waste, and 1,200 gallons of brown grease are unloaded from tanker trucks and the digested slurry is loaded onto the tanker trucks for delivery back to the participating farms. 2. Anaerobic Digester: The project utilizes a hydraulic mix anaerobic digester, a unique design that has no internal moving parts for mixing. The digester, which operates at mesophilic temperatures, is designed to process the daily feedstock and produce 220,000 SCF2 of biogas per day. The digester also produces 44,000 gallons of digested slurry per day. 3. Biogas Conditioning System: The plant employs a biological biogas conditioning system to remove the H2S and moisture contents of the biogas and prepare it to be used by the plant generation system. 4. Combined Heat and Power System (CHP): This is a 633kW high efficiency biogas-fired GE-Jenbacher model JMS-312 GS-NL reciprocating engine cogeneration system. The heat recovery system incorporated into the package is designed to capture the waste heat from the engine exhaust, the jacket cooling water and the engine oil circuit. 5. Electrical Substation and Power Distribution Systems: An electrical distribution system has been constructed on-site that aggregates the electrical service of the different county buildings on the District campus into a county owned electric distribution system that is interconnected with the CHP and the local electric grid. The electrical system is designed, in accordance with the utility guidelines, to allow grid-parallel operation of CHP and provide for import and export of electric power. 6. Thermal Energy Distribution System: The heat recovery system has been integrated into a high temperature water distribution system that distributes the heat to the thermal circuits for the anaerobic digester facility. Additional piping has also been installed to transfer the remaining thermal energy to other county buildings on the campus. On a daily basis, the plant will co-process 35,000 gallons of manure from local dairy farms, 8,500 gallons of food-processor waste and 1,200 gallons of brown grease to produce 200,000 ft3/d of biogas and 44,000 gallons of pathogen-free nutrient-rich digested slurry for agricultural use by farms and in the local area.The biogas fueled CHP produces 5,157,000 kWh of electricity and 19,506 dekatherms of thermal energy per year. Electrical power generated by the cogeneration system powers all the buildings on the Cayuga County campus and any surplus power is exported to the grid under a power purchase agreement. Heat recovered from the cogeneration system will be used to maintain the temperature of the process equipment and the excess will be transported to the Cayuga County Public Safety Building to offset purchase of fossil fuel to fuel the boilers. The majority of plant operations are unmanned and automated. However, the plant will have a small staff of well-trained personnel to coordinate the feedstock deliveries and shipments, supervise the day-to-day operation, monitor the systems and perform maintenance, maintain a safe and reliable operation and to respond to emergencies.« less

  19. Culture of Daphnia sp. (crustacean – cladocera): the effect of manure variation on the growth, natality, and mortality

    NASA Astrophysics Data System (ADS)

    Herman, H.; Andriani, Y.; Sahidin, A.; Hidayat, T.; Herawati, T.

    2018-04-01

    The objective of this research was to analyze the growth rate, reproduction rate, and mortality rate of Daphnia sp. which cultured in variant organic manure. This research used experimental method Randomized Completely Block Design (RCBD) with four treatment and three replications. The treatments in this research were the variant manures from chicken, quail, goat, and cow with same of growth (2,4 g/l). Daphnia cultured with using 100 breeders since from neonets (0 day) until growth up and died in one life cycle. At the 3-days, culture of Daphnia sp was give peak population with maximum age of culture using quail manure is 7 days, and other treatments are 8 days. The growth rate and the reproduction rate of using quail manure was higher than using chicken manure, goat manure, and cow manure (mean GR = 3.68 : 2.32 : 2.74 : 2.97; mean RR = 3.87 : 2.59 : 3.00 : 3.31; p < 0,05). Although all the breeders of Daphnia sp. died at 8th day of culture, quail manure give the lowest of mortality rate than using chicken manure, goat manure, and cow manure (mean MR = 0.19 : 0.28 : 0.26 : 0.34).

  20. Field experiment with liquid manure and enhanced biochar

    NASA Astrophysics Data System (ADS)

    Dunst, Gerald

    2017-04-01

    Field experiments with low amounts of various liquid manure enhanced biochars. In 2016 a new machine was developed to inject liquid biochar based fertilizer directly into the crop root zone. A large-scale field experiment with corn and oil seed pumpkin was set-up on 42 hectares on 15 different fields in the south East of Austria. Three treatments were compared: (1) surface spreading of liquid manure as control (common practice), (2) 20 cm deep root zone injection with same amount of liquid manure, and (3) 20 cm deep root zone injection with same amount of liquid manure mixed with 1 to 2 tons of various nutrient enhanced biochars. The biochar were quenched with the liquid phase from a separated digestate from a biogas plant (feedstock: cow manure). From May to October nitrate and ammonium content was analyzed monthly from 0-30cm and 30-60cm soil horizons. At the end of the growing season the yield was determined. The root zone injection of the liquid manure reduced the nitrate content during the first two months at 13-16% compared to the control. When the liquid manure was blended with biochar, Nitrate soil content was lowest (reduction 40-47%). On average the root zone injection of manure-biochar increased the yield by 7% compared to the surface applied control and 3% compared to the root zone injected manure without biochar. The results shows, that biochar is able to reduce the Nitrate load in soils and increase the yield of corn at the same time. The nutrient efficiency of organic liquid fertilizers can be increased.

  1. A new tracer experiment to estimate the methane emissions from a dairy cow shed using sulfur hexafluoride (SF6)

    NASA Astrophysics Data System (ADS)

    Marik, Thomas; Levin, Ingeborg

    1996-09-01

    Methane emission from livestock and agricultural wastes contribute globally more than 30% to the anthropogenic atmospheric methane source. Estimates of this number have been derived from respiration chamber experiments. We determined methane emission rates from a tracer experiment in a modern cow shed hosting 43 dairy cows in their accustomed environment. During a 24-hour period the concentrations of CH4, CO2, and SF6, a trace gas which has been released at a constant rate into the stable air, have been measured. The ratio between SF6 release rate and measured SF6 concentration was then used to estimate the ventilation rate of the stable air during the course of the experiment. The respective ratio between CH4 or CO2 and SF6 concentration together with the known SF6 release rate allows us to calculate the CH4 (and CO2) emissions in the stable. From our experiment we derive a total daily mean CH4 emission of 441 LSTP per cow (9 cows nonlactating), which is about 15% higher than previous estimates for German cows with comparable milk production obtained during respiration chamber experiments. The higher emission in our stable experiment is attributed to the contribution of CH4 release from about 50 m3 of liquid manure present in the cow shed in underground channels. Also, considering measurements we made directly on a liquid manure tank, we obtained an estimate of the total CH4 production from manure: The normalized contribution of methane from manure amounts to 12-30% of the direct methane release of a dairy cow during rumination. The total CH4 release per dairy cow, including manure, is 521-530 LSTP CH4 per day.

  2. Anaerobic mesophilic co-digestion of ensiled sorghum, cheese whey and liquid cow manure in a two-stage CSTR system: Effect of hydraulic retention time.

    PubMed

    Dareioti, Margarita Andreas; Kornaros, Michael

    2015-01-01

    The aim of this study was to investigate the effect of hydraulic retention time (HRT) on hydrogen and methane production using a two-stage anaerobic process. Two continuously stirred tank reactors (CSTRs) were used under mesophilic conditions (37°C) in order to enhance acidogenesis and methanogenesis. A mixture of pretreated ensiled sorghum, cheese whey and liquid cow manure (55:40:5, v/v/v) was used. The acidogenic reactor was operated at six different HRTs of 5, 3, 2, 1, 0.75 and 0.5d, under controlled pH5.5, whereas the methanogenic reactor was operated at three HRTs of 24, 16 and 12d. The maximum H2 productivity (2.14L/LRd) and maximum H2 yield (0.70mol H2/mol carbohydrates consumed) were observed at 0.5d HRT. On the other hand, the maximum CH4 production rate of 0.90L/LRd was achieved at HRT of 16d, whereas at lower HRT the process appeared to be inhibited and/or overloaded. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. The Influences of Stirring and Cow Manure Added on Biogas Production From Vegetable Waste Using Anaerobic Digester

    NASA Astrophysics Data System (ADS)

    Abdullah, N. O.; Pandebesie, E. S.

    2018-03-01

    Based on Indonesian Government Regulation number 18, 2008, solid waste management should be conducted from the source to minimize the amount of waste. The process includes the waste from domestic, commercial, and institution. This also includes in 3R program (reduce, reuse, and recycle). Vegetable waste from market is a potential material to produce biogas due to its chemical composition (hemi-cellulose, cellulose, and lignin) which transform the biomass to be the raw material of biogas. Acid substance of vegetable becomes an obstacle in process of producing biogas. There has to be buffer material which can improve the performance of biogas process. Cow manure is a material which can be easily obtained as buffer. This research used 24 biogas reactor in volume 6 L by batch method. Biogas volume is measured by checking the preferment in manometer. Methane measurement is conducted by using Gas Chromatography (GC) Hewlett Packard (HP-series 6890) in day 15 and 30. The research was started by sample characterization, sample test by total solid analysis, volatile solid, lignin, ratio C/N, ammonium, and ash. Analysis of pH, temperature, and biogas volume is conducted every day.

  4. Optimizing the Logistics of Anaerobic Digestion of Manure

    NASA Astrophysics Data System (ADS)

    Ghafoori, Emad; Flynn, Peter C.

    Electrical power production from the combustion of biogas from anaerobic digestion (AD) of manure is a means of recovering energy from animal waste. We evaluate the lowest cost method of moving material to and from centralized AD plants serving multiple confined feeding operations. Two areas are modeled, Lethbridge County, Alberta, Canada, an area of concentrated beef cattle feedlots, and Red Deer County, Alberta, a mixed-farming area with hog, dairy, chicken and beef cattle farms, and feedlots. We evaluate two types of AD plant: ones that return digestate to the source confined feeding operation for land spreading (current technology), and ones that process digestate to produce solid fertilizer and a dischargeable water stream (technology under development). We evaluate manure and digestate trucking, trucking of manure with return of digestate by pipelines, and pipelining of manure plus digestate. We compare the overall cost of power from these scenarios to farm or feedlot-based AD units. For a centralized AD plant with digestate return for land spreading the most economical transport option for manure plus digestate is by truck for the mixed-farming area and by pipelines for the concentrated feedlot area. For a centralized AD plant with digestate processing, the most economical transport option is trucking of manure for both cases.

  5. Optimization biogas management as alternative energy from communal scale dairy farm

    NASA Astrophysics Data System (ADS)

    Ruhiyat, R.; Siami, L.

    2018-01-01

    Cow Slurry can be the main pollution source in most villages in Indonesia. In this study, treatment of cow slurry intended to reduce pollution in Citarum river and greenhouse gases effect of CH4 and CO2. As a part of renewable energy, biogas can be one of solution to be implemented in small-scale and remote area. In Pejaten, Tarumajaya Village, the cost-effective reached when 7cattleman united to treat cow slurry in one biodigester. The breed varies cow from calf, veal to adult cattle. The installation of anaerobic-bio digester that produce biogas 28 m3/day equivalent with Rp 168,000 to be consumed for 14 households. In addition, villager also benefitted manure as 42.5 ton monthly. As a whole, the highest profit comes from adult cattle that produce 900 kg/month slurry as Rp 59,919 monthly. Furthermore, this system gives job opportunity for villagers to be biodigester operator is the main beneficial with the higher income compare to mower that only Rp 600.000 monthly as Rp 1.065.000.

  6. Optimization of the co-digestion of catch crops with manure using a central composite design and reactor operation.

    PubMed

    Molinuevo-Salces, Beatriz; Ahring, Birgitte K; Uellendahl, Hinrich

    2015-02-01

    This study investigates the effect of catch crops as co-substrate on manure-based anaerobic digestion. Batch experiments were carried out for two catch crops, namely Italian ryegrass (IR) and oil seed radish (OSR), in co-digestion with manure. Methane yields in the range of 271-558 and 216-361 ml CH4/g volatile solids (VS) were obtained for OSR and IR in co-digestion, respectively. OSR co-digestion was chosen for semi-continuous reactor experiments. The addition of 50 % of OSR to manure (on VS basis) in semi-continuous anaerobic digestion resulted in a methane yield of 348 ml CH4/g VS, an improvement of 1.46 times compared to manure alone. Adaptation to OSR was observed, and no ammonia or volatile fatty acid-mediated inhibition was detected. The results prove that it is feasible to use catch crops as co-substrate for manure-based biogas production, obtaining a stable process with significantly higher methane yields than that of manure alone.

  7. Feeding on microbiomes: effects of detritivory on the taxonomic and phylogenetic bacterial composition of animal manures.

    PubMed

    Aira, Manuel; Bybee, Seth; Pérez-Losada, Marcos; Domínguez, Jorge

    2015-11-01

    Earthworms play a key role in nutrient cycling by interacting with microorganisms thus accelerating organic matter turnover in soil systems. As detritivores, some earthworm types ingest and digest a mixture of dead organic matter and microorganisms, like animal manures (i.e. animal gut microbiomes). Here we described the earthworm cast microbiome and the role ingested bacteria play on its composition. We fed Eisenia andrei with cow, horse and pig manures and determined the taxonomic and phylogenetic composition of the these manures before and after passage through the earthworm gut. Earthworm cast microbiomes showed a smaller diversity than the manure they fed on. Manures strongly differed in their taxonomic and phylogenetic composition, but these differences were markedly reduced once transformed into earthworm cast microbiomes after passage through the earthworm gut. The core earthworm cast microbiome comprised 30 OTUs (2.6% of OTUs from cast samples), of which 10 are possibly native to the earthworm gut. Most of the core cast microbiome OTUs belonged to phyla Actinobacteria and Proteobacteria, as opposed to already described animal core gut microbiomes, which are composed mainly of Firmicutes and Bacteroidetes. Our results suggest that earthworms build up their cast microbiome by selecting from the pool of ingested bacteria. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Scenedesmus dimorphus (Turpin) Kützing growth with digestate from biogas plant in outdoor bag photobioreactors.

    PubMed

    Barbato, F; Venditti, A; Bianco, A; Guarcini, L; Bottari, E; Festa, M R; Cogliani, E; Pignatelli, V

    2016-01-01

    Digestate coming from an Anaerobic Digestion unit in a Biogas Plant, feeded on cow manure and vegetable waste from markets, has been used. About 8-35 L polyethylene transparent bags have been employed as cultivation container, outdoor. Different aliquots of digestate, alone or mixed with commercial liquid fertiliser, were employed to cultivate in batch Scenedesus dimorphus, a freshwater green microalga, in the ENEA facilities of Casaccia Research Center, near Rome, Italy. The cultivation period was June-July 2013. The average daily yields of dry microalgae biomass varied from 20 mg/L/d to 60 mg/L/d, mean 38.2 mg/L/d. Final dry biomass concentration varied from 0.18 to 1.29 g/L, mean 0.55 g/L. S. dimorphus proved to be very efficient in removing N and P from the culture medium. Another fact emerged from these trials is that S. dimorphus inner composition resulted to be variable in response to the tested different culture conditions.

  9. Characterization the potential of biochar from cow and pig manure for geoecology application

    NASA Astrophysics Data System (ADS)

    Gunamantha, I. M.; Widana, G. A. B.

    2018-03-01

    Biochar is a solid product generated from the carbonization of biomass with various potential benefits. The utilisation of biochar should be adapted to its characteristic which is mainly influenced by its feedstock. In this study, cow and pig manure biochar generated by a conventional process, were characterized by its physical and chemical analysis and its potential to be used as soil amendment. For this purpose, several main parameters were analyzed: organic carbon, Nutrient (total-N, available P and K) status, Cation Exchange Capacity (CEC), proximate data analysis (moisture content, ash, volatile matter and fixed carbon) and its ash composition. The comparison between biochar and feedstock will be based on these parameters. The results of this study show that the organic carbon, available P, ash, and fixed carbon content of pig-manure biochar is higher than cow manure-derived biochar; while total-N, available K, CEC and volatile matter is lower. On its ash composition, the pig manure-derived biochar is dominated by SiO2, Al2O3, Fe2O3, P2O5, and CaO while the cow manure-derived biochar is dominated by SiO2, CaO, Al2O3, K2O, and P2O5. However, both biochar show potential for improving soil quality and reducing carbon emission from animal manure.

  10. Effect of forage to concentrate ratio in dairy cow diets on emission of methane, carbon dioxide and ammonia, lactation performance and manure excretion

    USDA-ARS?s Scientific Manuscript database

    Holstein cows housed in a modified tie-stall barn were used to determine the effect of feeding diets with different forage to concentrate ratios (F:C) on performance and emission of methane (CH4), carbon dioxide (CO2) and manure ammonia-nitrogen (NH3-N). Eight multiparous cows (means ± standard devi...

  11. Effect of dietary protein concentration on ammonia and greenhouse gas emitting potential of dairy manure.

    PubMed

    Lee, C; Hristov, A N; Dell, C J; Feyereisen, G W; Kaye, J; Beegle, D

    2012-04-01

    Two experiments were conducted to investigate the effect of dietary crude protein concentration on ammonia (NH(3)) and greenhouse gas (GHG; nitrous oxide, methane, and carbon dioxide) emissions from fresh dairy cow manure incubated in a controlled environment (experiment 1) and from manure-amended soil (experiment 2). Manure was prepared from feces and urine collected from lactating Holstein cows fed diets with 16.7% (DM basis; HCP) or 14.8% CP (LCP). High-CP manure had higher N content and proportion of NH(3)- and urea-N in total manure N than LCP manure (DM basis: 4.4 vs. 2.8% and 51.4 vs. 30.5%, respectively). In experiment 1, NH(3) emitting potential (EP) was greater for HCP compared with LCP manure (9.20 vs. 4.88 mg/m(2) per min, respectively). The 122-h cumulative NH(3) emission tended to be decreased 47% (P=0.09) using LCP compared with HCP manure. The EP and cumulative emissions of GHG were not different between HCP and LCP manure. In experiment 2, urine and feces from cows fed LCP or HCP diets were mixed and immediately applied to lysimeters (61×61×61 cm; Hagerstown silt loam; fine, mixed, mesic Typic Hapludalf) at 277 kg of N/ha application rate. The average NH(3) EP (1.53 vs. 1.03 mg/m(2) per min, respectively) and the area under the EP curve were greater for lysimeters amended with HCP than with LCP manure. The largest difference in the NH(3) EP occurred approximately 24 h after manure application (approximately 3.5 times greater for HCP than LCP manure). The 100-h cumulative NH(3) emission was 98% greater for HCP compared with LCP manure (7,415 vs. 3,745 mg/m(2), respectively). The EP of methane was increased and that of carbon dioxide tended to be increased by LCP compared with HCP manure. The cumulative methane emission was not different between treatments, whereas the cumulative carbon dioxide emission was increased with manure from the LCP diet. Nitrous oxide emissions were low in this experiment and did not differ between treatments. In the conditions of these experiments, fresh manure from dairy cows fed a LCP diet had substantially lower NH(3) EP, compared with manure from cows fed a HCP diet. The LCP manure increased soil methane EP due to a larger mass of manure added to meet plant N requirements compared with HCP manure. These results represent effects of dietary protein on NH(3) and GHG EP of manure in controlled laboratory conditions and do not account for environmental factors affecting gaseous emissions from manure on the farm. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Effect of temperature on methane production from field-scale anaerobic digesters treating dairy manure.

    PubMed

    Arikan, Osman A; Mulbry, Walter; Lansing, Stephanie

    2015-09-01

    Temperature is a critical factor affecting anaerobic digestion because it influences both system heating requirements and methane production. Temperatures of 35-37°C are typically suggested for manure digestion. In temperate climates, digesters require a considerable amount of additional heat energy to maintain temperatures at these levels. In this study, the effects of lower digestion temperatures (22 and 28°C), on the methane production from dairy digesters were evaluated and compared with 35°C using duplicate replicates of field-scale (FS) digesters with a 17-day hydraulic retention time. After acclimation, the FS digesters were operated for 12weeks using solids-separated manure at an organic loading rate (OLR) of 1.4kgVSm(-3)d(-1) and then for 8weeks using separated manure amended with manure solids at an OLR of 2.6kgVSm(-3)d(-1). Methane production values of the FS digesters at 22 and 28°C were about 70% and 87%, respectively, of the values from FS digesters at 35°C. The results suggest that anaerobic digesters treating dairy manure at 28°C were nearly as efficient as digesters operated at 35°C, with 70% of total methane achievable at 22°C. These results are relevant to small farms interested in anaerobic digestion for methane reduction without heat recovery from generators or for methane recovery from covered lagoon digesters. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Performance evaluation of chicken, cow and pig manure in the production of natural fish food in aquadams stocked with Oreochromis mossambicus

    NASA Astrophysics Data System (ADS)

    Rapatsa, M. M.; Moyo, N. A. G.

    The main objective of this study was to characterize the ecological conditions that prevail after the application of chicken, cow and pig manure. Three treatments, chicken, cow, pig manure and a control were assigned to aquadams in a completely randomized design and each treatment was replicated three times. The aquadams were fertilized 2 weeks before the fish were stocked. One hundred Oreochromis mossambicus (mean weight ±40 g) were stocked in each aquadam. Water physico-chemical parameters (temperature, dissolved oxygen, pH, electrical conductivity, salinity, turbidity, ammonia, nitrite, total alkalinity as calcium carbonate, and phosphorus) were determined once a week for the duration of the experiment. Zooplankton and phytoplankton in the different treatments were enumerated once every 2 weeks. The relationship between phytoplankton communities and the water physico-chemical parameters were evaluated using canonical correspondence analysis (CCA). The CCA indicated that the physico-chemical variables which best explain the distribution of phytoplankton were carbonate alkalinity, pH, phosphate, potassium, nitrogen and dissolved oxygen. Phytoplankton abundance was highest in chicken manure because the optimum nutrient conditions for the growth of phytoplankton were found in this treatment. Zooplankton abundance was also highest in the chicken manure treatment. The control was associated with one phytoplankton taxa, Chlorella. The numerical contribution of the different food items in the stomachs of O. mossambicus was determined. The diet of O. mossambicus was dominated by phytoplankton particularly Microcystis species. Total coliforms and Escherichia coli were used to assess the microbiological quality of the water in the different manure treatments. Chicken manure had the lowest total coliform and E. coli count. However, chicken manure had the highest Bacillus count. The implications of the microbial load in the chicken, cow and pig manure are discussed.

  14. Cellulose decomposition and larval biomass production from the co-digestion of dairy manure and chicken manure by mini-livestock (Hermetia illucens L.).

    PubMed

    Rehman, Kashif Ur; Cai, Minmin; Xiao, Xiaopeng; Zheng, Longyu; Wang, Hui; Soomro, Abdul Aziz; Zhou, Yusha; Li, Wu; Yu, Ziniu; Zhang, Jibin

    2017-07-01

    World trends toward the modern dairies intensification on large production units cause massive animal manure production and accumulation. Improper handling of manure produced by industrial farm operation greatly deteriorates the major environmental media including air, water and soil. The black soldier fly utilizes organic waste and converts it into larvae biomass to be used as livestock feed and into residues to be used as bio-fertilizer. However, due to the high ratio of cellulose, hemicellulose and lignin in dairy manure, this conversion is difficult. Therefore, dairy manure treated with chicken manure was digested by Hermetia illucens. In this paper, we found that the co-digestion process significantly enhanced the larval production, waste mass reduction, rate of larvae conversion, feed conversion ratio, nutrient reduction and fibers utilization. Whereas 40% dairy manure and 60% chicken manure group show better results than other manure mixtures and had a significantly increased the cellulose consumption by 61.19%, hemicellulose consumption by 53.22% and lignin consumption by 42.23% compared with 49.89%, 49.77% and 31.95%, respectively, in the dairy-only manure group. Finally, scanning electron microscopy was used to analyze the structural changes of dairy manure, chicken manure and their co-digestion mixtures. The scan electron microscopy showed the deterioration in the structure of dairy and chicken manure fibers by Hermetia illucens. Moreover, the carbon-nitrogen ratio was decreased in all end products of post vermicomposting. The results suggest that the co-digestion of 40% dairy manure with 60% chicken manure is an appropriate proportion for dairy manure management with the black soldier fly. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Evaluation of biogas production potential by dry anaerobic digestion of switchgrass--animal manure mixtures.

    PubMed

    Ahn, H K; Smith, M C; Kondrad, S L; White, J W

    2010-02-01

    Anaerobic digestion is a biological method used to convert organic wastes into a stable product for land application with reduced environmental impacts. The biogas produced can be used as an alternative renewable energy source. Dry anaerobic digestion [>15% total solid (TS)] has an advantage over wet digestion (<10% TS) because it allows for the use of a smaller volume of reactor and because it reduces wastewater production. In addition, it produces a fertilizer that is easier to transport. Performance of anaerobic digestion of animal manure-switchgrass mixture was evaluated under dry (15% TS) and thermophilic conditions (55 degrees C). Three different mixtures of animal manure (swine, poultry, and dairy) and switchgrass were digested using batch-operated 1-L reactors. The swine manure test units showed 52.9% volatile solids (VS) removal during the 62-day trial, while dairy and poultry manure test units showed 9.3% and 20.2%, respectively. Over the 62 day digestion, the swine manure test units yielded the highest amount of methane 0.337 L CH4/g VS, while the dairy and poultry manure test units showed very poor methane yield 0.028 L CH4/g VS and 0.002 L CH4/g VS, respectively. Although dairy and poultry manure performed poorly, they may still have high potential as biomass for dry anaerobic digestion if appropriate designs are developed to prevent significant volatile fatty acid (VFA) accumulation and pH drop.

  16. Influence of free-stall flooring on comfort and hygiene of dairy cows during warm climatic conditions.

    PubMed

    De Palo, P; Tateo, A; Zezza, F; Corrente, M; Centoducati, P

    2006-12-01

    An evaluation of behavioral and hygienic conditions was carried out with 4 materials used as free-stall flooring for dairy cows: polyethylene vinyl acetate (EVA) and polypropylene vinyl acetate (PVA) mats, wood shavings, and solid manure. The free-stall type selected by cows was evaluated in response to changes in environmental temperature and humidity. Two tests were used: 1) a preference test, in which 8 cows were housed in a pen with 32 free stalls and 4 types of flooring; and 2) an aversion test, in which 32 cows were placed in 4 pens, each with 8 free stalls. The free stalls in each pen had a single type of bedding material. These tests showed that the comfort of dairy cows was predominantly influenced by environmental conditions. The preference test for lying showed that cows preferred free-stall floors with EVA mats over those with PVA mats, wood shavings, and solid manure (332.4 +/- 24.0 vs. 130.8 +/- 6.2, 160.9 +/- 23.7, and 102.6 +/- 23.2 min/d, respectively), but under conditions of heat stress, with a temperature-humidity index > 80, they chose wood shavings and solid manure lying areas. These results were confirmed by the aversion test. In all experimental and environmental conditions, the PVA mats were the least suitable. The mats contaminated with organic manure and the free stalls bedded with wood shavings and organic solids did not differ in either the coliform load on the lying surfaces (EVA mats: 290 +/- 25; PVA mats: 306 +/- 33; wood shavings: 290 +/- 39; and solid manure: 305 +/- 23 log(10) cfu/mL) or the total bacterial count in the raw milk (EVA mats: 232 +/- 22; PVA mats: 233 + 24; wood shavings: 221 +/- 24; and solid manure: 220 +/- 25 log(10) cfu/mL). These results demonstrate that the comfort of dairy cows housed in barns with free stalls as resting areas does not depend only on the material used, but also on the value of the material in microenvironmental conditions.

  17. Larval digestion of different manure types by the black soldier fly (Diptera: Stratiomyidae) impacts associated volatile emissions.

    PubMed

    Beskin, Kelly V; Holcomb, Chelsea D; Cammack, Jonathan A; Crippen, Tawni L; Knap, Anthony H; Sweet, Stephen T; Tomberlin, Jeffery K

    2018-04-01

    Volatile emissions from decomposing animal waste are known environmental pollutants. The black soldier fly, Hermetia illucens (L.), is being evaluated for industrialization as a means to recycle wastes and produce protein for use as food and feed. We examined the ability of black soldier fly larvae to reduce odorous compounds associated with animal wastes. Black soldier fly larvae were reared under laboratory conditions on poultry, swine, and dairy manure at feed rates of 18.0 and 27.0 g every other day until 40% reached the prepupal stage. Volatile emissions were collected and analyzed from freshly thawed as well as the digested waste when 90% of the black soldier fly larvae reached the prepupal stage. Volatiles were also collected simultaneously from manure not inoculated with black soldier fly larvae (non-digested) and held under similar conditions. Manure samples were analyzed for relative amounts of nine select odorous volatile organic compounds: phenol, 4-methylphenol, indole, 3-methylindole, propanoic acid, 2-methylpropanoic acid, butanoic acid, 3-methylbutanoic acid and pentanoic acid. Black soldier fly larvae reduced emissions of all volatile organic compounds by 87% or greater. Complete reductions were observed for 2-methly propanoic acid in digested poultry manure, phenol, 4-methylphenol, indole and all five fatty acids in digested swine manure, and 4-methylphenol, indole, 3-methylindole and all five acids in digested dairy manure. This study is the first to identify volatile emissions from manure digested by black soldier fly larvae and compare to those found in non-digested manure. These data demonstrate additional benefits of using black soldier fly larvae as a cost-effective and environmentally friendly means of livestock manure management in comparison to current methods. Black soldier fly larvae are capable of altering the overall profile of volatile organic compounds and reducing levels of targeted odorous compounds in livestock manure. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Effects of anaerobic digestion and aerobic treatment on gaseous emissions from dairy manure storages

    USDA-ARS?s Scientific Manuscript database

    Effects of anaerobic digestion and aerobic treatment on the reduction of gaseous emissions from dairy manure storages were evaluated in this study. Screened dairy manure containing 3.5% volatile solids (VS) was either anaerobically digested or aerobically treated prior to storage in air-tight vessel...

  19. Recovery of ammonia from anaerobically digested manure using gas-permeable membranes

    USDA-ARS?s Scientific Manuscript database

    Nitrogen (N) can be recovered from different types of wastewaters. Among these wastewaters, anaerobically digested swine manure (digestate) is one with the highest N content in ammonia form. It is desirable to reduce the high ammonia content in swine manure because it reduces biogas production by in...

  20. Anaerobic co-digestion of pig manure and algae: impact of intracellular algal products recovery on co-digestion performance.

    PubMed

    Astals, S; Musenze, R S; Bai, X; Tannock, S; Tait, S; Pratt, S; Jensen, P D

    2015-04-01

    This paper investigates anaerobic co-digestion of pig manure and algae (Scenedesmus sp.) with and without extraction of intracellular algal co-products, with views towards the development of a biorefinery concept for lipid, protein and/or biogas production. Protein and/or lipids were extracted from Scenedesmus sp. using free nitrous acid pre-treatments and solvent-based Soxhlet extraction, respectively. Processing increased algae methane yield between 29% and 37% compared to raw algae (VS basis), but reduced the amount of algae available for digestion. Co-digestion experiments showed a synergy between pig manure and raw algae that increased raw algae methane yield from 0.163 to 0.245 m(3) CH4 kg(-1)VS. No such synergy was observed when algal residues were co-digested with pig manure. Finally, experimental results were used to develop a high-level concept for an integrated biorefinery processing pig manure and onsite cultivated algae, evaluating methane production and co-product recovery per mass of pig manure entering the refinery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Co-digestion of municipal sewage sludge and solid waste: modelling of carbohydrate, lipid and protein content influence.

    PubMed

    Nielfa, A; Cano, R; Pérez, A; Fdez-Polanco, M

    2015-03-01

    Solid wastes from industrial, commercial and community activities are of growing concern as the total volume of waste produced continues to increase. The knowledge of the specific composition and characteristics of the waste is an important tool in the correct development of the anaerobic digestion process. The problems derived from the anaerobic digestion of sole substrates with high lipid, carbohydrate or protein content lead to the co-digestion of these substrates with another disposed waste, such as sewage sludge. The kinetic of the anaerobic digestion is especially difficult to explain adequately, although some mathematical models are able to represent the main aspects of a biological system, thus improving understanding of the parameters involved in the process. The aim of this work is to evaluate the experimental biochemical methane potential on the co-digestion of sewage sludge with different solid wastes (grease; spent grain and cow manure) through the implementation of four kinetic models. The co-digestion of grease waste and mixed sludge obtained the best improvements from the sole substrates, with additional positive synergistic effects. The Gompertz model fits the experimental biochemical methane potential to an accuracy of 99%, showing a correlation between the percentage of lipid in the substrates and co-digestions and the period of lag phase. © The Author(s) 2015.

  2. Pre-digestion to enhance volatile fatty acids (VFAs) concentration as a carbon source for denitrification in treatment of liquid swine manure.

    PubMed

    Wu, Sarah Xiao; Chen, Lide; Zhu, Jun; Walquist, McKenzie; Christian, David

    2018-04-30

    Insufficient denitrification in biological treatment is often a result of the lack of a carbon source. In this study, use of the volatile fatty acids (VFAs) generated via pre-digestion as a carbon source to improve denitrification in sequencing batch reactor (SBR) treatment of liquid swine manure was investigated. The pre-digestion of swine manure was realized by storing the manure in a sealed container in room temperature and samples were taken periodically from the container to determine the VFA levels. The results showed that after 14 days of pre-digestion, the VFA level in the digested liquid was increased by 200%. A polynomial relationship for the VFA level in the digested manure with the digestion time was observed with a correlation coefficient being 0.9748. Two identical SBRs were built and operated on 8-h cycles in parallel, with one fed with pre-digested and the other raw swine manure. There were five phases included in each cycle, i.e., anaerobic (90 min), anoxic (150 min), anoxic/anaerobic (90 min), anoxic/aerobic (120 min), and settle/decant (30 min), and the feeding was split to 600 mL/200 mL and performed at the beginning of and 240 min into the cycle. The SBR fed on pre-digested swine manure achieved successful denitrification with only 0.35 mg/L nitrate left in the effluent, compared to 15.9 mg/L found in the effluent of the other SBR. Nitrite was not detected in the effluent from both SBRs. The results also indicated that there was no negative impact of feeding SBRs with the pre-digested liquid swine manure for treatment on the removal of other constituents such as total solids (TS), volatile solids (VS), suspended solids (SS), volatile suspended solids (VSS), and soluble chemical oxygen demand (COD). Therefore, anaerobic digestion as a pretreatment can be an effective way to condition liquid swine manure for SBR treatment to achieve sufficient nitrate removal.

  3. [Effects of long-term mixed application of organic and inorganic fertilizers on canopy apparent photosynthesis and yield of winter wheat].

    PubMed

    Zhao, Jun; Dong, Shu-ting; Liu, Peng; Zhang, Ji-wang; Zhao, Bin

    2015-08-01

    A field experiment was conducted using the winter wheat (Triticum aestivum) variety Shimai 15. The source of organic nitrogen was cow manure, and four fertilization treatments were included, i.e., no N fertilizer application, single application of urea, single application of cow manure, and mixed application of urea and cow manure. The effects of different applications of inorganic and organic nitrogen on canopy apparent photosynthesis (CAP), photosynthetic rate of flag leaves (Pn), leaf area index (LAI), florescence parameters and grain yield of winter wheat were determined. The results showed that urea had the largest effect on the early growth period, as at this stage the CAP, Pn and LAI of the single application of urea were the highest, which was followed by the mixed application and the single application of cow manure. However, 10 days after anthesis, the single application of cow manure and the mixed application delayed the leaf senescence process when compared with the single application of urea. This could be due to the two treatments having higher anti-oxidant enzyme activity and promoting a longer green leaf duration, which could maintain a higher photosynthetic capability. What' s more, the mixed application had a better performance and got the highest grain yield. Consequently, the mixed application of organic and inorganic fertilizers could delay leaf senescence and maintain a better canopy structure and higher photosynthesis capability at the late grain filling stage, which resulted in a higher grain yield.

  4. Inactivation of selected bacterial pathogens in dairy cattle manure by mesophilic anaerobic digestion (balloon type digester).

    PubMed

    Manyi-Loh, Christy E; Mamphweli, Sampson N; Meyer, Edson L; Okoh, Anthony I; Makaka, Golden; Simon, Michael

    2014-07-14

    Anaerobic digestion of animal manure in biogas digesters has shown promise as a technology in reducing the microbial load to safe and recommended levels. We sought to treat dairy manure obtained from the Fort Hare Dairy Farm by investigating the survival rates of bacterial pathogens, through a total viable plate count method, before, during and after mesophilic anaerobic digestion. Different microbiological media were inoculated with different serial dilutions of manure samples that were withdrawn from the biogas digester at 3, 7 and 14 day intervals to determine the viable cells. Data obtained indicated that the pathogens of public health importance were 90%-99% reduced in the order: Campylobacter sp. (18 days) < Escherichia coli sp. (62 days) < Salmonella sp. (133 days) from a viable count of 10.1 × 103, 3.6 × 105, 7.4 × 103 to concentrations below the detection limit (DL = 102 cfu/g manure), respectively. This disparity in survival rates may be influenced by the inherent characteristics of these bacteria, available nutrients as well as the stages of the anaerobic digestion process. In addition, the highest p-value i.e., 0.957 for E. coli showed the statistical significance of its model and the strongest correlation between its reductions with days of digestion. In conclusion, the results demonstrated that the specific bacterial pathogens in manure can be considerably reduced through anaerobic digestion after 133 days.

  5. Reactor performance and energy analysis of solid state anaerobic co-digestion of dairy manure with corn stover and tomato residues.

    PubMed

    Li, Yangyang; Xu, Fuqing; Li, Yu; Lu, Jiaxin; Li, Shuyan; Shah, Ajay; Zhang, Xuehua; Zhang, Hongyu; Gong, Xiaoyan; Li, Guoxue

    2018-03-01

    Anaerobic co-digestion is commonly believed to be benefical for biogas production. However, additional of co-substrates may require additional energy inputs and thus affect the overall energy efficiency of the system. In this study, reactor performance and energy analysis of solid state anaerobic digestion (SS-AD) of tomato residues with dairy manure and corn stover were investigated. Different fractions of tomato residues (0, 20, 40, 60, 80 and 100%, based on volatile solid weight (VS)) were co-digested with dairy manure and corn stover at 15% total solids. Energy analysis based on experimental data was conducted for three scenarios: SS-AD of 100% dairy manure, SS-AD of binary mixture (60% dairy manure and 40% corn stover, VS based), and SS-AD of ternary mixture (36% dairy manure, 24% corn stover, and 40% tomato residues, VS based). For each scenario, the energy requirements for individual process components, including feedstock collection and transportation, feedstock pretreatment, biogas plant operation, digestate processing and handling, and the energy production were examined. Results showed that the addition of 20 and 40% tomato residues increased methane yield compared to that of the dairy manure and corn stover mixture, indicating that the co-digestion could balance nutrients and improve the performance of solid-state anaerobic digestion. The energy required for heating substrates had the dominant effect on the total energy consumption. The highest volatile solids (VS) reduction (57.0%), methane yield (379.1 L/kg VS feed ), and net energy production were achieved with the mixture of 24% corn stover, 36% dairy manure, and 40% tomato residues. Thus, the extra energy input for adding tomato residues for co-digestion could be compensated by the increase of methane yield. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. The anaerobic co-digestion of sheep bedding and ⩾ 50% cattle manure increases biogas production and improves biofertilizer quality.

    PubMed

    Cestonaro, Taiana; Costa, Mônica Sarolli Silva de Mendonça; Costa, Luiz Antônio de Mendonça; Rozatti, Marcos Antonio Teofilo; Pereira, Dercio Ceri; Lorin, Higor Eisten Francisconi; Carneiro, Leocir José

    2015-12-01

    Sheep manure pellets are peculiarly shaped as small 'capsules' of limited permeability and thus are difficult to degrade. Fragmentation of manure pellets into a homogeneous mass is important for decomposition by microorganisms, and occurs naturally by physical shearing due to animal trampling, when sheep bedding is used. However, the high lignocellulose content of sheep bedding may limit decomposition of sheep manure. Here, we evaluated if co-digestion of sheep bedding with cattle manure would improve the yield and quality of the useful products of anaerobic digestion of sheep bedding--biogas and biofertilizer--by providing a source of nutrients and readily available carbon. Mixtures of sheep bedding and cattle manure in varying proportions (0%, 25%, 50%, 75%, or 100% cattle manure) were added to 6-L digesters, used in a batch system, and analyzed by uni and multivariate statistical tools. PC1, which explained 64.96% of data variability, can be referred to as 'organic fraction/productivity', because higher rates of organic fraction consumption (COD, cellulose and hemicellulose contents) led to higher digester productivity (biogas production, nutrient concentration, and sample stability changes). Therefore, productivity and organic fraction variables were most influenced by manure mixtures with higher (⩾ 50%) or lower (⩽ 25%) ratios of cattle manure, respectively. Increasing the amount of cattle manure up to 50% enhanced the biogas potential production from 142 L kg(-1)TS (0% of cattle manure) to 165, 171, 160 L biogas kg(-1)TS for the mixtures containing 100%, 75% and 50% of cattle manure, respectively. Our results show that the addition of ⩾ 50% cattle manure to the mixture increases biogas production and improves the quality of the final biofertilizer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Potential of Biological Processes to Eliminate Antibiotics in Livestock Manure: An Overview

    PubMed Central

    Massé, Daniel I.; Cata Saady, Noori M.; Gilbert, Yan

    2014-01-01

    Simple Summary Beside their use to treat infections, antibiotics are used excessively as growth promoting factors in livestock industry. Animals discharge in their feces and urine between 70%–90% of the antibiotic administrated unchanged or in active metabolites. Because livestock manure is re-applied to land as a fertilizer, concerns are growing over spread of antibiotics in water and soil. Development of antibiotic resistant bacteria is a major risk. This paper reviewed the potential of anaerobic digestion to degrade antibiotics in livestock manure. Anaerobic digestion can degrade manure-laden antibiotic to various extents depending on the concentration and class of antibiotic, bioreactor operating conditions, type of feedstock and inoculum sources. Abstract Degrading antibiotics discharged in the livestock manure in a well-controlled bioprocess contributes to a more sustainable and environment-friendly livestock breeding. Although most antibiotics remain stable during manure storage, anaerobic digestion can degrade and remove them to various extents depending on the concentration and class of antibiotic, bioreactor operating conditions, type of feedstock and inoculum sources. Generally, antibiotics are degraded during composting > anaerobic digestion > manure storage > soil. Manure matrix variation influences extraction, quantification, and degradation of antibiotics, but it has not been well investigated. Fractioning of manure-laden antibiotics into liquid and solid phases and its effects on their anaerobic degradation and the contribution of abiotic (physical and chemical) versus biotic degradation mechanisms need to be quantified for various manures, antibiotics types, reactor designs and temperature of operations. More research is required to determine the kinetics of antibiotics’ metabolites degradation during anaerobic digestion. Further investigations are required to assess the degradation of antibiotics during psychrophilic anaerobic digestion. PMID:26480034

  8. Inactivation of Selected Bacterial Pathogens in Dairy Cattle Manure by Mesophilic Anaerobic Digestion (Balloon Type Digester)

    PubMed Central

    Manyi-Loh, Christy E.; Mamphweli, Sampson N.; Meyer, Edson L.; Okoh, Anthony I.; Makaka, Golden; Simon, Michael

    2014-01-01

    Anaerobic digestion of animal manure in biogas digesters has shown promise as a technology in reducing the microbial load to safe and recommended levels. We sought to treat dairy manure obtained from the Fort Hare Dairy Farm by investigating the survival rates of bacterial pathogens, through a total viable plate count method, before, during and after mesophilic anaerobic digestion. Different microbiological media were inoculated with different serial dilutions of manure samples that were withdrawn from the biogas digester at 3, 7 and 14 day intervals to determine the viable cells. Data obtained indicated that the pathogens of public health importance were 90%–99% reduced in the order: Campylobacter sp. (18 days) < Escherichia coli sp. (62 days) < Salmonella sp. (133 days) from a viable count of 10.1 × 103, 3.6 × 105, 7.4 × 103 to concentrations below the detection limit (DL = 102 cfu/g manure), respectively. This disparity in survival rates may be influenced by the inherent characteristics of these bacteria, available nutrients as well as the stages of the anaerobic digestion process. In addition, the highest p-value i.e., 0.957 for E. coli showed the statistical significance of its model and the strongest correlation between its reductions with days of digestion. In conclusion, the results demonstrated that the specific bacterial pathogens in manure can be considerably reduced through anaerobic digestion after 133 days. PMID:25026086

  9. Substrate Type and Free Ammonia Determine Bacterial Community Structure in Full-Scale Mesophilic Anaerobic Digesters Treating Cattle or Swine Manure.

    PubMed

    Li, Jiabao; Rui, Junpeng; Yao, Minjie; Zhang, Shiheng; Yan, Xuefeng; Wang, Yuanpeng; Yan, Zhiying; Li, Xiangzhen

    2015-01-01

    The microbial-mediated anaerobic digestion (AD) process represents an efficient biological process for the treatment of organic waste along with biogas harvest. Currently, the key factors structuring bacterial communities and the potential core and unique bacterial populations in manure anaerobic digesters are not completely elucidated yet. In this study, we collected sludge samples from 20 full-scale anaerobic digesters treating cattle or swine manure, and investigated the variations of bacterial community compositions using high-throughput 16S rRNA amplicon sequencing. Clustering and correlation analysis suggested that substrate type and free ammonia (FA) play key roles in determining the bacterial community structure. The COD: [Formula: see text] (C:N) ratio of substrate and FA were the most important available operational parameters correlating to the bacterial communities in cattle and swine manure digesters, respectively. The bacterial populations in all of the digesters were dominated by phylum Firmicutes, followed by Bacteroidetes, Proteobacteria and Chloroflexi. Increased FA content selected Firmicutes, suggesting that they probably play more important roles under high FA content. Syntrophic metabolism by Proteobacteria, Chloroflexi, Synergistetes and Planctomycetes are likely inhibited when FA content is high. Despite the different manure substrates, operational conditions and geographical locations of digesters, core bacterial communities were identified. The core communities were best characterized by phylum Firmicutes, wherein Clostridium predominated overwhelmingly. Substrate-unique and abundant communities may reflect the properties of manure substrate and operational conditions. These findings extend our current understanding of the bacterial assembly in full-scale manure anaerobic digesters.

  10. Substrate Type and Free Ammonia Determine Bacterial Community Structure in Full-Scale Mesophilic Anaerobic Digesters Treating Cattle or Swine Manure

    PubMed Central

    Li, Jiabao; Rui, Junpeng; Yao, Minjie; Zhang, Shiheng; Yan, Xuefeng; Wang, Yuanpeng; Yan, Zhiying; Li, Xiangzhen

    2015-01-01

    The microbial-mediated anaerobic digestion (AD) process represents an efficient biological process for the treatment of organic waste along with biogas harvest. Currently, the key factors structuring bacterial communities and the potential core and unique bacterial populations in manure anaerobic digesters are not completely elucidated yet. In this study, we collected sludge samples from 20 full-scale anaerobic digesters treating cattle or swine manure, and investigated the variations of bacterial community compositions using high-throughput 16S rRNA amplicon sequencing. Clustering and correlation analysis suggested that substrate type and free ammonia (FA) play key roles in determining the bacterial community structure. The COD: NH4+-N (C:N) ratio of substrate and FA were the most important available operational parameters correlating to the bacterial communities in cattle and swine manure digesters, respectively. The bacterial populations in all of the digesters were dominated by phylum Firmicutes, followed by Bacteroidetes, Proteobacteria and Chloroflexi. Increased FA content selected Firmicutes, suggesting that they probably play more important roles under high FA content. Syntrophic metabolism by Proteobacteria, Chloroflexi, Synergistetes and Planctomycetes are likely inhibited when FA content is high. Despite the different manure substrates, operational conditions and geographical locations of digesters, core bacterial communities were identified. The core communities were best characterized by phylum Firmicutes, wherein Clostridium predominated overwhelmingly. Substrate-unique and abundant communities may reflect the properties of manure substrate and operational conditions. These findings extend our current understanding of the bacterial assembly in full-scale manure anaerobic digesters. PMID:26648921

  11. Implications from distinct sulfate-reducing bacteria populations between cattle manure and digestate in the elucidation of H2S production during anaerobic digestion of animal slurry.

    PubMed

    St-Pierre, Benoit; Wright, André-Denis G

    2017-07-01

    Biogas produced from the anaerobic digestion of animal slurry consists mainly of methane (CH 4 ) and carbon dioxide (CO 2 ), but also includes other minor gases, such as hydrogen sulfide (H 2 S). Since it can act as a potent corrosive agent and presents a health hazard even at low concentrations, H 2 S is considered an undesirable by-product of anaerobic digestion. Sulfate-reducing bacteria (SRBs) have been identified as the main biological source of H 2 S in a number of natural, biological, and human-made habitats, and thus represent likely candidate microorganisms responsible for the production of H 2 S in anaerobic manure digesters. Phylogenetically, SRBs form a divergent group of bacteria that share a common anaerobic respiration pathway that allows them to use sulfate as a terminal electron acceptor. While the composition and activity of SRBs have been well documented in other environments, their metabolic potential remains largely uncharacterized and their populations poorly defined in anaerobic manure digesters. In this context, a combination of in vitro culture-based studies and DNA-based approaches, respectively, were used to gain further insight. Unexpectedly, only low to nondetectable levels of H 2 S were produced by digestate collected from a manure biogas plant documented to have persistently high concentrations of H 2 S in its biogas (2000-3000 ppm). In contrast, combining digestate with untreated manure (a substrate with comparatively lower sulfate and SRB cell densities than digestate) was found to produce elevated H 2 S levels in culture. While a 16S rRNA gene-based community composition approach did not reveal likely candidate SRBs in digestate or untreated manure, the use of the dsrAB gene as a phylogenetic marker provided more insight. In digestate, the predominant SRBs were found to be uncharacterized species likely belonging to the genus Desulfosporosinus (Peptococcaceae, Clostridiales, Firmicutes), while Desulfovibrio-related SRBs (Desulfovibrionaceae, Desulfovibrionales, Proteobacteria) were the most highly represented in untreated manure. Intriguingly, the same species-level OTUs with a similar pattern of opposite relative abundance were also found in two other digesters with lower H 2 S levels in their biogas. Together, our results suggest that elevated H 2 S production in anaerobic digesters requires the combination of biological and nutritional factors from both untreated manure and digestate.

  12. Inactivation of dairy manure-borne pathogens by anaerobic digestion

    USDA-ARS?s Scientific Manuscript database

    Background: Anaerobic digestion of animal manure has the potential to inactivate enteric pathogens, thereby reducing exposures to livestock and humans when the products of digestion are disposed by land-spreading or irrigation or returned to livestock uses such as bedding. Data on digester effectiv...

  13. [Anaerobic digestion of animal manure contaminated by tetracyclines].

    PubMed

    Tong, Zi-Lin; Liu, Yuan-Lu; Hu, Zhen-Hu; Yuan, Shou-Jun

    2012-03-01

    Anaerobic digestion of pig manure spiked with tetracycline (TC) and chlortetracycline (CTC) and the degradation of the two antibiotics during the anaerobic digestion at 35 degrees C were investigated. The results indicate that propionate was the main volatile fatty acid produced during the anaerobic digestion followed by acetate. Compared with the CTC addition, TC + CTC addition showed obvious inhibitory effect on the hydrolysis and acidification of easily digestible organic components of pig manure. The cumulative methane production of TC, CTC, TC + CTC and CK2 during anaerobic digestion was 386.4 mL, 406.0 mL, 412.1 mL and 464.6 mL, respectively. Degradation of TC and CTC followed the first-order kinetic equation. The half-life of TC and CTC was 14-18 days and 10 days, respectively. After the treatment of 45-day anaerobic digestion, the degradation efficiency of TC was 88.6%-91.6% with 97.7%-98.2% of CTC. Therefore, anaerobic digestion shows the benefit on the management of animal manures contaminated by tetracyclines.

  14. High rate psychrophilic anaerobic digestion of high solids (35%) dairy manure in sequence batch reactor.

    PubMed

    Saady, Noori M Cata; Massé, Daniel I

    2015-06-01

    Zero liquid discharge is increasingly adopted as an objective for waste treatment process. The objective of this study was to increase the feed total solids (TS) and the organic loading rate (OLR) fed to a novel psychrophilic (20°C) dry anaerobic digestion (PDAD). Duplicate laboratory-scale bioreactors were fed cow feces and wheat straw (35% TS in feed) at OLR of 6.0 g TCOD kg(-1) inoculum d(-1) during long-term operation (147 days consisting of 7 successive cycles). An overall average specific methane yield (SMY) of 151.8±7.9 N L CH4 kg(-1) VS fed with an averaged volatile solids removal of 42.4±4.3% were obtained at a volatile solids-based inoculum-to-substrate ratio (ISR) of 2.13±0.2. The operation was stable as indicated by biogas and VFAs profiles and the results were reproducible in successive cycles; a maximum SMY of 163.3±5.7 N L CH4 kg(-1) VS fed was obtained. Hydrolysis was the reaction limiting step. High rate PDAD of 35% TS dairy manure is possible in sequential batch reactor within 21 days treatment cycle length. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  15. Does the addition of proteases affect the biogas yield from organic material in anaerobic digestion?

    PubMed

    Müller, Liane; Kretzschmar, Jörg; Pröter, Jürgen; Liebetrau, Jan; Nelles, Michael; Scholwin, Frank

    2016-03-01

    The aim of this study was to investigate the biochemical disintegration effect of hydrolytic enzymes in lab scale experiments. Influences of enzyme addition on the biogas yield as well as effects on the process stability were examined. The addition of proteases occurred with low and high dosages in batch and semi-continuous biogas tests. The feed mixture consisted of maize silage, chicken dung and cow manure. Only very high concentrated enzymes caused an increase in biogas production in batch experiments. In semi-continuous biogas tests no positive long-term effects (100 days) were observed. Higher enzyme-dosage led to a reduced biogas-yield (13% and 36% lower than the reference). Phenylacetate and -propionate increased (up to 372 mgl(-1)) before the other volatile fatty acids did. Volatile organic acids rose up to 6.8 gl(-1). The anaerobic digestion process was inhibited. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Detection of Clostridium botulinum in liquid manure and biogas plant wastes.

    PubMed

    Neuhaus, Jürgen; Schrödl, Wieland; Shehata, Awad A; Krüger, Monika

    2015-09-01

    Biogas plants have been considered as a source for possible amplification and distribution of pathogenic bacteria capable of causing severe infections in humans and animals. Manure and biogas wastes could be sources for spore-forming bacteria such as Clostridium botulinum. In the present study, 24 liquid manure and 84 biogas waste samples from dairies where the majority of the cows suffered from chronic botulism were investigated for the presence of botulinum neurotoxins (BoNT) and C. botulinum spores. The prevalence of BoNT/A, B, C, D, and E in biogas wastes was 16.6, 8.3, 10.7, 7.1, and 10.8 %, respectively, while in manure, the prevalence was 0.0, 0.0, 0.0, 8.3, and 4.1 %, respectively. After enrichment of samples in reinforced cultural medium, they were tested for C. botulinum BoNT/A, B, C, D, and E using ELISA (indirect C. botulinum detection). The prevalence of C. botulinum type A, B, C, D, and E samples in biogas wastes was 20.2, 15.5, 19, 10.7, and 34.8 %, respectively, while the prevalence in liquid manure was 0.0, 0.0, 0.0, 8.3, and 12.5 %, respectively. In conclusion, the occurrence of BoNT and C. botulinum spores in biogas waste of diseased animals indicates an increased and underestimated hygienic risk. Application of digestates from biogas fermentations as fertilizers could lead to an accumulation of long lifespan spores in the environment and could be a possible health hazard.

  17. The economics of energy from animal manure for greenhouse gas mitigation

    NASA Astrophysics Data System (ADS)

    Ghafoori, Emad

    2007-12-01

    Anaerobic digestion (AD) has significant economies of scale, i.e. per unit processing costs decrease with increasing size. The economics of AD to produce biogas and in turn electric power in farm or feedlot based units as well as centralized plants is evaluated for two settings in Alberta: a mixed farming area, Red Deer County, and an area of concentrated beef cattle feedlots, Lethbridge County. A centralized plant drawing manure from 61 sources in the mixed farming area could produce power at a cost of 218 MWh-1 (2005 US). A centralized plant drawing manure from 560,000 beef cattle in Lethbridge County, can produce power at a cost of 138 MWh-1. Digestate processing, if commercially available, shifts the balance in favor of centralized processing. At larger scales, pipelines could be used to deliver manure to a centralized plant and return the processed digestate back to the manure source for spreading. Pipeline transport of beef cattle manure is more economic than truck transport for the manure produced by more than 90,000 animals. Pipeline transport of digestate is more economic when manure from more than 21,000 beef cattle is available and two-way pipelining of manure plus digestate is more economic when manure from more than 29,000 beef cattle is available. The value of carbon credits necessary to make AD profitable in a mixed farming region is also calculated based on a detailed analysis of manure and digestate transport and processing costs at an AD plant. Carbon emission reductions from power generation are calculated for displacement of power from coal and natural gas. The required carbon credit to cover the cost of AD processing of manure is greater than 150 per tonne of CO2. These results show that AD treatment of manure from mixed farming areas is not economic given current values of carbon credits. Power from biogas has a high cost relative to current power prices and to the cost of power from other large scale renewable sources. Power from biogas would need to be justified by other factors than energy value alone, such as phosphate, pathogen or odor control.

  18. Characterizing food waste substrates for co-digestion through biochemical methane potential (BMP) experiments.

    PubMed

    Lisboa, Maria Sol; Lansing, Stephanie

    2013-12-01

    Co-digestion of food waste with dairy manure is increasingly utilized to increase energy production and make anaerobic digestion more affordable; however, there is a lack of information on appropriate co-digestion substrates. In this study, biochemical methane potential (BMP) tests were conducted to determine the suitability of four food waste substrates (meatball, chicken, cranberry and ice cream processing wastes) for co-digestion with flushed dairy manure at a ratio of 3.2% food waste and 96.8% manure (by volume), which equated to 14.7% (ice-cream) to 80.7% (chicken) of the VS being attributed to the food waste. All treatments led to increases in methane production, ranging from a 67.0% increase (ice cream waste) to a 2940% increase (chicken processing waste) compared to digesting manure alone, demonstrating the large potential methane production of food waste additions compared to relatively low methane production potential of the flushed dairy manure, even if the overall quantity of food waste added was minimal. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Effect of temperature on methane production from field-scale anaerobic digesters treating dairy manure

    USDA-ARS?s Scientific Manuscript database

    Temperature is a critical factor affecting anaerobic digestion because it influences both system heating requirements and methane production. Temperatures of 35-37°C are typically suggested for manure digestion, yet in temperate climate digesters, require a considerable amount of additional heat en...

  20. Methane and hydrogen sulfide production during co-digestion of forage radish and dairy manure

    USDA-ARS?s Scientific Manuscript database

    Forage radish cover crops were investigated as a co-substrate to increase biogas production from dairy manure-based anaerobic digestion. Lab-scale batch digesters (300 mL) were operated under mesophilic conditions during two experiments. In the first experiment, the optimal co-digestion ratio for ...

  1. Effect of anaerobic digestion temperature on odour, coliforms and chlortetracycline in swine manure or monensin in cattle manure.

    PubMed

    Varel, V H; Wells, J E; Shelver, W L; Rice, C P; Armstrong, D L; Parker, D B

    2012-04-01

    This study evaluated the effect of anaerobic digestion at 22, 38 and 55°C on odour, coliforms and chlortetracycline (CTC) in swine manure or monensin (MON) in cattle manure. Swine or cattle were fed the respective growth promotant, manure was collected, and 2-l laboratory methane digesters were established at the various temperatures and sampled over 25 or 28 days. After 21 days, the concentration of CTC in the 22, 38 and 55°C swine digester slurries decreased 7, 80 and 98%, respectively. Coliforms in the 22°C digester slurries were still viable after 25 days; however, they were not detectable in the 38 and 55°C slurries after 3 and 1 days, respectively. After 28 days, the concentration of MON in the 22, 38 and 55°C cattle digester slurries decreased 3, 8 and 27%, respectively. Coliforms in the 22°C cattle digester slurries were still viable after 28 days; however, they were not detectable in the 38 and 55°C slurries after 14 and 1 days, respectively. These studies indicate that anaerobic digestion at 38 or 55°C may be an effective treatment to reduce coliforms and CTC; however, it is not an effective treatment to reduce MON. More studies are needed to determine which pharmaceuticals are susceptible to degradation by a specific manure treatment to prevent negative environmental consequences. © 2012 The Authors. Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  2. Horse manure as feedstock for anaerobic digestion.

    PubMed

    Hadin, Sa; Eriksson, Ola

    2016-10-01

    Horse keeping is of great economic, social and environmental benefit for society, but causes environmental impacts throughout the whole chain from feed production to manure treatment. According to national statistics, the number of horses in Sweden is continually increasing and is currently approximately 360,000. This in turn leads to increasing amounts of horse manure that have to be managed and treated. Current practices could cause local and global environmental impacts due to poor performance or lack of proper management. Horse manure with its content of nutrients and organic material can however contribute to fertilisation of arable land and recovery of renewable energy following anaerobic digestion. At present anaerobic digestion of horse manure is not a common treatment. In this paper the potential for producing biogas and biofertiliser from horse manure is analysed based on a thorough literature review in combination with mathematical modelling and simulations. Anaerobic digestion was chosen as it has a high degree of resource conservation, both in terms of energy (biogas) and nutrients (digestate). Important factors regarding manure characteristics and operating factors in the biogas plant are identified. Two crucial factors are the type and amount of bedding material used, which has strong implications for feedstock characteristics, and the type of digestion method applied (dry or wet process). Straw and waste paper are identified as the best materials in an energy point of view. While the specific methane yield decreases with a high amount of bedding, the bedding material still makes a positive contribution to the energy balance. Thermophilic digestion increases the methane generation rate and yield, compared with mesophilic digestion, but the total effect is negligible. Copyright © 2016. Published by Elsevier Ltd.

  3. Inoculum and zeolite synergistic effect on anaerobic digestion of poultry manure.

    PubMed

    Fotidis, Ioannis A; Kougias, Panagiotis G; Zaganas, Ioannis D; Kotsopoulos, Thomas A; Martzopoulos, Gerasimos G

    2014-01-01

    Poultry manure is an ammonia-rich substrate due to its high content of proteins and amino acids. Ammonia is the major inhibitor of anaerobic digestion (AD) process, affecting biogas production and causing great economic losses to the biogas plants. In this study, the effect of different natural zeolite dosages on the mesophilic AD of poultry manure inoculated with a non-acclimatized to ammonia inoculum (dairy manure) was investigated. Additionally, a comparative analysis was performed between the data extracted from this study and the results of a previous study, which has been conducted under the same experimental conditions but with the use of ammonia acclimatized inoculum (swine manure). At 5 and 10 g zeolite L(-1), the methane yield of poultry manure was 43.4% and 80.3% higher compared with the experimental set without zeolite addition. However, the ammonia non-acclimatized inoculum was not efficient in digesting poultry manure even in the presence of 10 g zeolite L(-1), due to low methane production (only 39%) compared with the maximum theoretical yield. Finally, ammonia acclimatized inoculum and zeolite have demonstrated a possible 'synergistic effect', which led to a more efficient AD of poultry manure. The results of this study could potentially been used by the biogas plant operators to efficiently digest poultry manure.

  4. Biogas production from wheat straw and manure--impact of pretreatment and process operating parameters.

    PubMed

    Risberg, Kajsa; Sun, Li; Levén, Lotta; Horn, Svein Jarle; Schnürer, Anna

    2013-12-01

    Non-treated or steam-exploded straw in co-digestion with cattle manure was evaluated as a substrate for biogas production compared with manure as the sole substrate. All digestions were performed in laboratory-scale CSTR reactors (5L) operating with an organic loading late of approximately 2.8 g VS/L/day, independent of substrate mixture. The hydraulic retention was 25 days and an operating temperature of 37, 44 or 52°C. The co-digestion with steam exploded straw and manure was evaluated with two different mixtures, with different proportion. The results showed stable performance but low methane yields (0.13-0.21 N L CH4/kg VS) for both manure alone and in co-digestion with the straw. Straw appeared to give similar yield as manure and steam-explosion treatment of the straw did not increase gas yields. Furthermore, there were only slight differences at the different operating temperatures. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Optimization of anaerobic digestion of a mixture of Zea mays and Miscanthus sacchariflorus silages with various pig manure dosages.

    PubMed

    Bułkowska, K; Pokój, T; Klimiuk, E; Gusiatin, Z M

    2012-12-01

    Digestion of crop silage (Zea mays L. and Miscanthus sacchariflorus) with 0%, 7.5%, 12.5% and 25% pig manure as co-substrate was performed in continuous stirred-tank reactors, for a constant hydraulic retention time of 45 d and organic load rate of 2.1 g L(-1)d(-1). A matrix of correlations between biogas/methane production and parameters of anaerobic digestion was created in order to estimate process stability. The values of the correlation coefficients indicated that the most stable anaerobic digestion was achieved using 7.5% and 12.5% pig manure. In contrast, the positive correlation between ammonium and volatile fatty acids (r=0.8698, p<0.001) at 25% pig manure showed process instability. Compared to crop silage alone, pig manure favored the production of biogas and methane; the highest production rates were obtained with 12.5% pig manure. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. ALTERNATE METHODS OF MANURE HANDLING

    EPA Science Inventory

    The objectives of this research project were to (a) construct an inexpensive storage facility for solid dairy cow manure, (b) evaluate its performance and the extent of pollutants in runoff from storage facilities, and (c) determine current manure handling practices in Vermont an...

  7. Prokaryote community dynamics in anaerobic co-digestion of swine manure, rice straw and industrial clay residuals.

    PubMed

    Jiménez, Janet; Theuerl, Susanne; Bergmann, Ingo; Klocke, Michael; Guerra, Gilda; Romero-Romero, Osvaldo

    The aim of this study was to analyze the effect of the addition of rice straw and clay residuals on the prokaryote methane-producing community structure in a semi-continuously stirred tank reactor fed with swine manure. Molecular techniques, including terminal restriction fragment length polymorphism and a comparative nucleotide sequence analyses of the prokaryotic 16S rRNA genes, were performed. The results showed a positive effect of clay addition on methane yield during the co-digestion of swine manure and rice straw. At the digestion of swine manure, the bacterial phylum Firmicutes and the archaeal family Methanosarcinaceae, particularly Methanosarcina species, were predominant. During the co-digestion of swine manure and rice straw the microbial community changed, and with the addition of clay residual, the phylum Bacteroidetes predominated. The new nutritional conditions resulted in a shift in the archaeal family Methanosarcinaceae community as acetoclastic Methanosaeta species became dominant.

  8. Using biochar in animal farming to recycle nutrients and reduce greenhouse gas emissions

    NASA Astrophysics Data System (ADS)

    Schmidt, Hans-Peter; Wilson, Kelpie; Kammann, Claudia

    2017-04-01

    Charcoal has been used to treat digestive disorder in animals since several thousand years. But only since about 2010 biochar has increasingly been used as regular feed additive in animal farming usually mixed with standard feed at approximately 1% of the daily feed intake. The use of biochar as feed additive has the potential to improve animal health, feed efficiency and the animal-stable environment; to reduce nutrient losses and GHG emissions; and to increase soil organic mater and thus soil fertility. The evaluation of more than 150 scientific papers on feeding (activated) biochar showed in most of the studies and for all investigated livestock species positive effects on parameters like toxin adsorption, digestion, blood values, feed use efficiency and livestock weight gain, meat quality and GHG emissions. The facilitation of direct electron transfers between different species of bacteria or microbial consortia via the biochar mediator in the animal digestion tract is hypothesized to be the main reason for a more energy efficient digestion and thus higher feed efficiency, for its selective probiotic effect, for reduced N-losses and eventually for less GHG emissions. While chicken, pigs, fish and other omnivore animals provoke GHG-emissions (mainly NH3, CH4, N2O) when their liquid and solid excretions decompose anaerobically, ruminants cause direct methane emissions through flatulence and burps (eructation). Preliminary studies demonstrated that feeding high temperature biochars might reduce ruminant CH4 emissions though more systematic research is needed. It is likely that microbial decomposition of manure containing digested biochar produces less ammonia, less methane and thus retain more nitrogen, as seen when manure was composted with and without biochar or when biochar is used as bedding or manure treatment additive. Laboratory adsorption trials estimated that using biochar for liquid manure treatment could safe 57,000 t NH4 and 4,600 t P2O5 fertilizer per year in California alone. It was further shown that feeding 0.3 to 1% biochar could replace antibiotic treatment in chicken and ducks, respectively. Feeding biochar could thus have an indirect effect on GHG emissions when it is able to replace regular antibiotic "feeding" that produces high indirect GHG emissions after soil application of antibiotic contaminated manure. Moreover, it was demonstrated that feeding biochar to grazing cows had positive secondary effects on soil fertility and fertilizer efficiency reducing mineral N-fertilizing requirements which could be another indirect biochar GHG mitigation effect. Considering an average C-content of fed biochar of 80% and produced at recommended temperatures above 500°C resulting in H/Corg ratios below 0.4, at least 56% of the dry weight of the fed and manure-applied biochar would persist as stable carbon in soil for at least 100 years. If the global livestock would receive 1% of their feed in form of such a biochar, a total of about 400 Mt of CO2eq or 1.2 % of the global CO2 emissions could be compensated. The apparent potential for improving animal health and nutrient efficiency, for reducing enteric methane emissions as well as GHG emissions from manure management and for sequestering carbon with soil fertility improvements makes it compelling to increase the scientific effort to investigate, measure and optimize the GHG reduction potential of biochar use in animal farming systems. The main results from literature and own experiments will be presented to illustrate and calculate this potential.

  9. Impact of organic loading rate on the performance of psychrophilic dry anaerobic digestion of dairy manure and wheat straw: long-term operation.

    PubMed

    Saady, Noori M Cata; Massé, Daniel I

    2015-04-01

    Development of efficient processes for valorising animal wastes would be a major advancement in cold-climate regions. This paper reports the results of long term (315 days experiment) of novel psychrophilic (20°C) dry anaerobic digestion (PDAD) of cow feces and wheat straw in laboratory scale sequence batch reactor operated at increasing organic loading rate. The PDAD process fed with a mixture of feces and straw (TS of 27%) over a treatment cycle length of 21 days at organic loading rate (OLR) 4.0, 5.0 and 6.0 g TCOD kg(-1) inoculum d(-1) (of 2.9 ± 0.1, 3.7 ± 0.1, and 4.4 ± 0.1g VS kg(-1) inoculum d(-1), respectively) resulted in average specific methane yield (SMY) of 187.3 ± 18.1, 163.6 ± 39.5, 150.8 ± 32.9 N L CH4 kg(-1)VS fed, respectively. PDAD of cow feces and wheat straw is possible with VS-based inoculum-to-substrate ratio of 1.4 at OLR of 6.0 g TCOD kg(-1) inoculum d(-1). Hydrolysis was the limiting step reaction. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  10. Anaerobic co-digestion of swine and poultry manure with municipal sewage sludge.

    PubMed

    Borowski, Sebastian; Domański, Jarosław; Weatherley, Laurence

    2014-02-01

    The anaerobic digestion of municipal sewage sludge (SS) with swine manure (SM) and poultry manure (PM) was undertaken. It was found that a mixture of sewage sludge with a 30% addition of swine manure gave around 400 dm(3)/kg VS of biogas, whereas the maximal biogas yield from ternary mixture (SS:SM:PM=70:20:10 by weight) was only 336 dm(3)/kg VS. An inhibition of methanogenesis by free ammonia was observed in poultry manure experiments. The anaerobic digestion was inefficient in pathogen inactivation as the reduction in the number of E. coli an Enterobacteriaceae was only by one logarithmic unit. A substantial portion of pathogens was also released into the supernatant. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Mechanism and Effect of Temperature on Variations in Antibiotic Resistance Genes during Anaerobic Digestion of Dairy Manure.

    PubMed

    Sun, Wei; Qian, Xun; Gu, Jie; Wang, Xiao-Juan; Duan, Man-Li

    2016-07-22

    Animal manure comprises an important reservoir for antibiotic resistance genes (ARGs), but the variation in ARGs during anaerobic digestion at various temperatures and its underlying mechanism remain unclear. Thus, we performed anaerobic digestion using dairy manure at three temperature levels (moderate: 20 °C, mesophilic: 35 °C, and thermophilic: 55 °C), to analyze the dynamics of ARGs and bacterial communities by quantitative PCR and 16S rRNA gene sequencing. We found that 8/10 detected ARGs declined and 5/10 decreased more than 1.0 log during thermophilic digestion, whereas only four and five ARGs decreased during moderate and mesophilic digestion, respectively. The changes in ARGs and bacterial communities were similar under the moderate and mesophilic treatments, but distinct from those in the thermophilic system. Potential pathogens such as Bacteroidetes, Proteobacteria, and Corynebacterium were removed by thermophilic digestion but not by moderate and mesophilic digestion. The bacterial community succession was the dominant mechanism that influenced the variation in ARGs and integrons during anaerobic digestion. Thermophilic digestion decreased the amount of mesophilic bacteria (Bacteroidetes and Proteobacteria) carrying ARGs. Anaerobic digestion generally decreased the abundance of integrons by eliminating the aerobic hosts of integrons (Actinomycetales and Bacilli). Thermophilic anaerobic digestion is recommended for the treatment and reuse of animal manure.

  12. Mechanism and Effect of Temperature on Variations in Antibiotic Resistance Genes during Anaerobic Digestion of Dairy Manure

    NASA Astrophysics Data System (ADS)

    Sun, Wei; Qian, Xun; Gu, Jie; Wang, Xiao-Juan; Duan, Man-Li

    2016-07-01

    Animal manure comprises an important reservoir for antibiotic resistance genes (ARGs), but the variation in ARGs during anaerobic digestion at various temperatures and its underlying mechanism remain unclear. Thus, we performed anaerobic digestion using dairy manure at three temperature levels (moderate: 20 °C, mesophilic: 35 °C, and thermophilic: 55 °C), to analyze the dynamics of ARGs and bacterial communities by quantitative PCR and 16S rRNA gene sequencing. We found that 8/10 detected ARGs declined and 5/10 decreased more than 1.0 log during thermophilic digestion, whereas only four and five ARGs decreased during moderate and mesophilic digestion, respectively. The changes in ARGs and bacterial communities were similar under the moderate and mesophilic treatments, but distinct from those in the thermophilic system. Potential pathogens such as Bacteroidetes, Proteobacteria, and Corynebacterium were removed by thermophilic digestion but not by moderate and mesophilic digestion. The bacterial community succession was the dominant mechanism that influenced the variation in ARGs and integrons during anaerobic digestion. Thermophilic digestion decreased the amount of mesophilic bacteria (Bacteroidetes and Proteobacteria) carrying ARGs. Anaerobic digestion generally decreased the abundance of integrons by eliminating the aerobic hosts of integrons (Actinomycetales and Bacilli). Thermophilic anaerobic digestion is recommended for the treatment and reuse of animal manure.

  13. Spatial nitrifications of microbial processes during composting of swine, cow and chicken manure

    PubMed Central

    Wang, Ke; Li, Weiguang; Li, Xiangkun; Ren, Nanqi

    2015-01-01

    Composting is a widely-used method to recycle the nutrients in livestock manure for agriculture. The spatial stratifications of microbial processes inside the manure particle that determine organic and nitrogen transformation are virtually unclear. Here, we show the evolution of the interior microenvironment of swine, cow and chicken manure by using microelectrodes during forced-aeration composting. Composting has generally been regarded as an aerobic bioprocess, however, the long-existing of a large anoxic zone inside these manures was confirmed during the active phase in this study. The profile of the oxidation–reduction potential dramatically decreased first and then gradually increased. The spatial difference in the ammonia concentration was not significant, but nitrate concentration continuously decreased with depth. The anoxic condition within the manure particle was demonstrated to be a primary cause of the severe ammonia emission and the long composting period. These founding provided a new insight toward “aerobic” composting process and a sound foundation for the development of efficient composting technology. PMID:26442637

  14. Spatial nitrifications of microbial processes during composting of swine, cow and chicken manure

    NASA Astrophysics Data System (ADS)

    Wang, Ke; Li, Weiguang; Li, Xiangkun; Ren, Nanqi

    2015-10-01

    Composting is a widely-used method to recycle the nutrients in livestock manure for agriculture. The spatial stratifications of microbial processes inside the manure particle that determine organic and nitrogen transformation are virtually unclear. Here, we show the evolution of the interior microenvironment of swine, cow and chicken manure by using microelectrodes during forced-aeration composting. Composting has generally been regarded as an aerobic bioprocess, however, the long-existing of a large anoxic zone inside these manures was confirmed during the active phase in this study. The profile of the oxidation-reduction potential dramatically decreased first and then gradually increased. The spatial difference in the ammonia concentration was not significant, but nitrate concentration continuously decreased with depth. The anoxic condition within the manure particle was demonstrated to be a primary cause of the severe ammonia emission and the long composting period. These founding provided a new insight toward “aerobic” composting process and a sound foundation for the development of efficient composting technology.

  15. Molecular-based environmental risk assessment of three varieties of genetically engineered cows.

    PubMed

    Xu, Jianxiang; Zhao, Jie; Wang, Jianwu; Zhao, Yaofeng; Zhang, Lei; Chu, Mingxing; Li, Ning

    2011-10-01

    The development of animal biotechnology has led to an increase in attention to biosafety issues. Here we evaluated the impact of genetically engineered cows on the environment. The probability of horizontal gene transfer and the impact on the microbial communities in cow gut and soil were tested using three varieties of genetically engineered cows that were previously transformed with a human gene encoding lysozyme, lactoferrin, or human alpha lactalbumin. The results showed that the transgenes were not detectable by polymerase chain reaction (PCR) or quantitative real-time PCR in gut microbial DNA extracts of manure or microbial DNA extracts of topsoil. In addition, the transgenes had no impact on the microbial communities in cow gut or soil as assessed by PCR-denaturing gradient gel electrophoresis or 16S rDNA sequencing. Furthermore, phylogenetic analyses showed that the manure bacteria sampled during each of the four seasons belonged primarily to two groups, Firmicutes and Bacteroidetes, and the soil bacteria belonged to four groups, Firmicutes, Bacteroidetes, Actinobacteria, and α-proteobacteria. Other groups, such as β-proteobacteria, γ-proteobacteria, δ-proteobacteria, ε-proteobacteria, Spirochaetes, Acidobacteria, Chloroflexi, and Nitrospira, were not dominant in the manure or soil.

  16. The ManureEcoMine pilot installation: advanced integration of technologies for the management of organics and nutrients in livestock waste.

    PubMed

    Pintucci, Cristina; Carballa, Marta; Varga, Sam; Sarli, Jimena; Peng, Lai; Bousek, Johannes; Pedizzi, Chiara; Ruscalleda, Maël; Tarragó, Elena; Prat, Delphine; Colica, Giovanni; Picavet, Merijn; Colsen, Joop; Benito, Oscar; Balaguer, Marilos; Puig, Sebastià; Lema, Juan M; Colprim, Jesús; Fuchs, Werner; Vlaeminck, Siegfried E

    2017-03-01

    Manure represents an exquisite mining opportunity for nutrient recovery (nitrogen and phosphorus), and for their reuse as renewable fertilisers. The ManureEcoMine proposes an integrated approach of technologies, operated in a pilot-scale installation treating swine manure (83.7%) and Ecofrit ® (16.3%), a mix of vegetable residues. Thermophilic anaerobic digestion was performed for 150 days, the final organic loading rate was 4.6 kgCOD m -3 d -1 , with a biogas production rate of 1.4 Nm 3 m -3 d -1 . The digester was coupled to an ammonia side-stream stripping column and a scrubbing unit for free ammonia inhibition reduction in the digester, and nitrogen recovery as ammonium sulphate. The stripped digestate was recirculated daily in the digester for 15 days (68% of the digester volume), increasing the gas production rate by 27%. Following a decanter centrifuge, the digestate liquid fraction was treated with an ultrafiltration membrane. The filtrate was fed into a struvite reactor, with a phosphorus recovery efficiency of 83% (as orthophosphate). Acidification of digestate could increment the soluble orthophosphate concentration up to four times, enhancing phosphorus enrichment in the liquid fraction and its recovery via struvite. A synergistic combination of manure processing steps was demonstrated to be technologically feasible to upgrade livestock waste into refined, concentrated fertilisers.

  17. Identity and diversity of archaeal communities during anaerobic co-digestion of chicken feathers and other animal wastes.

    PubMed

    Xia, Yun; Massé, Daniel I; McAllister, Tim A; Kong, Yunhong; Seviour, Robert; Beaulieu, Carole

    2012-04-01

    Digestion of raw feathers in anaerobic digesters inoculated with adapted swine manure, slaughterhouse sludge or dairy manure was investigated using twelve 42-L anaerobic digesters at 25°C. After 120days 74%, 49% and 40% added feathers were converted to methane in swine manure, dairy manure and slaughterhouse sludge anaerobic digesters respectively. 16S rRNA gene clone library analyses identified twenty-one operational taxonomic units containing clone sequences from 5 genera, 5 families and 2 phyla of members of the Archaea from 158 sequenced clones. Fluorescence insitu hybridization revealed that methanogens from the Methanomicrobiales, Methanosarcinales and Methanobacteriales constituted a major fraction (>78%) of these Archaea. A high correlation was seen between the distribution of functional archaeal groups and the NH(3)-N levels of digester mixed liquors. The compositions of archaeal communities fed different substrates were statistically significantly different (P<0.05). Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  18. Gas-permeable membrane technology coupled with anaerobic digestion for swine manure treatment

    USDA-ARS?s Scientific Manuscript database

    This study was aimed at evaluating gas-permeable membrane technology (N-recovery) coupled to anaerobic digestion for the treatment of swine manure. For this purpose, 69 percent (%) of the initial ammonium contained in centrifuged swine manure (SM) (i.e. 3.5 g N-NH4 per liter (L) was firstly recovere...

  19. High-solid Anaerobic Co-digestion of Sewage Sludge and Cattle Manure: The Effects of Volatile Solid Ratio and pH

    PubMed Central

    Dai, Xiaohu; Chen, Yang; Zhang, Dong; Yi, Jing

    2016-01-01

    High-solid anaerobic digestion is an attractive solution to the problem of sewage sludge disposal. One method that can be used to enhance the production of volatile fatty acids (VFAs) and the generation of methane from anaerobic digestion involves combining an alkaline pretreatment step with the synergistic effects of sewage sludge and cattle manure co-digestion, which improves the activity of key enzymes and microorganisms in the anaerobic co-digestion system to promote the digestion of organic waste. In this study, we describe an efficient strategy that involves adjusting the volatile solid (VS) ratio (sewage sludge/cattle manure: 3/7) and initial pH (9.0) to improve VFA production and methane generation from the co-digestion of sludge and manure. The experimental results indicate that the maximum VFA production was 98.33 g/kg-TS (total solid) at the optimal conditions. Furthermore, methane generation in a long-term semi-continuously operated reactor (at a VS ratio of 3/7 and pH of 9.0) was greater than 120.0 L/kg-TS. PMID:27725704

  20. High-solid Anaerobic Co-digestion of Sewage Sludge and Cattle Manure: The Effects of Volatile Solid Ratio and pH

    NASA Astrophysics Data System (ADS)

    Dai, Xiaohu; Chen, Yang; Zhang, Dong; Yi, Jing

    2016-10-01

    High-solid anaerobic digestion is an attractive solution to the problem of sewage sludge disposal. One method that can be used to enhance the production of volatile fatty acids (VFAs) and the generation of methane from anaerobic digestion involves combining an alkaline pretreatment step with the synergistic effects of sewage sludge and cattle manure co-digestion, which improves the activity of key enzymes and microorganisms in the anaerobic co-digestion system to promote the digestion of organic waste. In this study, we describe an efficient strategy that involves adjusting the volatile solid (VS) ratio (sewage sludge/cattle manure: 3/7) and initial pH (9.0) to improve VFA production and methane generation from the co-digestion of sludge and manure. The experimental results indicate that the maximum VFA production was 98.33 g/kg-TS (total solid) at the optimal conditions. Furthermore, methane generation in a long-term semi-continuously operated reactor (at a VS ratio of 3/7 and pH of 9.0) was greater than 120.0 L/kg-TS.

  1. Optimizing feeding composition and carbon-nitrogen ratios for improved methane yield during anaerobic co-digestion of dairy, chicken manure and wheat straw.

    PubMed

    Wang, Xiaojiao; Yang, Gaihe; Feng, Yongzhong; Ren, Guangxin; Han, Xinhui

    2012-09-01

    This study investigated the possibilities of improving methane yield from anaerobic digestion of multi-component substrates, using a mixture of dairy manure (DM), chicken manure (CM) and wheat straw (WS), based on optimized feeding composition and the C/N ratio. Co-digestion of DM, CM and WS performed better in methane potential than individual digestion. A larger synergetic effect in co-digestion of DM, CM and WS was found than in mixtures of single manures with WS. As the C/N ratio increased, methane potential initially increased and then declined. C/N ratios of 25:1 and 30:1 had better digestion performance with stable pH and low concentrations of total ammonium nitrogen and free NH(3). Maximum methane potential was achieved with DM/CM of 40.3:59.7 and a C/N ratio of 27.2:1 after optimization using response surface methodology. The results suggested that better performance of anaerobic co-digestion can be fulfilled by optimizing feeding composition and the C/N ratio. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. A study on cow comfort and risk for lameness and mastitis in relation to different types of bedding materials.

    PubMed

    van Gastelen, S; Westerlaan, B; Houwers, D J; van Eerdenburg, F J C M

    2011-10-01

    The aim was to obtain data regarding the effects of 4 freestall bedding materials (i.e., box compost, sand, horse manure, and foam mattresses) on cow comfort and risks for lameness and mastitis. The comfort of freestalls was measured by analyzing the way cows entered the stalls, the duration and smoothness of the descent movement, and the duration of the lying bout. The cleanliness of the cows was evaluated on 3 different body parts: (1) udder, (2) flank, and (3) lower rear legs, and the bacteriological counts of the bedding materials were determined. The combination of the cleanliness of the cows and the bacteriological count of the bedding material provided an estimate of the risk to which dairy cows are exposed in terms of intramammary infections. The results of the hock assessment revealed that the percentage of cows with healthy hocks was lower (20.5 ± 6.7), the percentage of cows with both damaged and swollen hocks was higher (26.8 ± 3.2), and the severity of the damaged hock was higher (2.32 ± 0.17) on farms using foam mattresses compared with deep litter materials [i.e., box compost (64.0 ± 10.4, 3.5 ± 4.7, 1.85 ± 0.23, respectively), sand (54.6 ± 8.2, 2.0 ± 2.8, 1.91 ± 0.09, respectively), and horse manure (54.6 ± 4.5, 5.5 ± 5.4, 1.85 ± 0.17, respectively)]. In addition, cows needed more time to lie down (140.2 ± 84.2s) on farms using foam mattresses compared with the deep litter materials sand and horse manure (sand: 50.1 ± 31.6s, horse manure: 32.9 ± 0.8s). Furthermore, the duration of the lying bout was shorter (47.9 ± 7.4 min) on farms using foam mattresses compared to sand (92.0 ± 12.9 min). These results indicate that deep litter materials provide a more comfortable lying surface compared with foam mattresses. The 3 deep litter bedding materials differed in relation to each other in terms of comfort and their estimate of risk to which cows were exposed in terms of intramammary infections [box compost: 17.8 cfu (1.0(4)) ± 19.4/g; sand: 1.2 cfu (1.0(4)) ± 1.6/g; horse manure: 110.5 cfu (1.0(4)) ± 86.3/g]. Box compost had a low gram-negative bacterial count compared with horse manure, and was associated with less hock injury compared with foam mattresses, but did not improve lying behavior (lying descent duration: 75.6 ± 38.8s, lying bout duration: 46.1 ± 18.5 min). Overall, sand provided the best results, with a comfortable lying surface and a low bacterial count. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Life Cycle Assessment of Biogas Production in Small-scale Household Digesters in Vietnam

    PubMed Central

    Vu, T. K. V.; Vu, D. Q.; Jensen, L. S.; Sommer, S. G.; Bruun, S.

    2015-01-01

    Small-scale household digesters have been promoted across Asia as a sustainable way of handling manure. The major advantages are that they produce biogas and reduce odor. However their disadvantages include the low recycling of nutrients, because digestate is dilute and therefore difficult to transport, and the loss of biogas as a result of cracks and the intentional release of excess biogas. In this study, life cycle assessment (LCA) methodology was used to assess the environmental impacts associated with biogas digesters in Vietnam. Handling 1,000 kg of liquid manure and 100 kg of solid manure in a system with a biogas digester reduced the impact potential from 4.4 kg carbon dioxide (CO2) equivalents to 3.2 kg CO2 equivalents compared with traditional manure management. However, this advantage could easily be compromised if digester construction is considered in the LCA or in situations where there is an excess of biogas which is intentionally released. A sensitivity analysis showed that biogas digesters could be a means of reducing global warming if methane emissions can be kept low. In terms of eutrophication, farms with biogas digesters had 3 to 4 times greater impacts. In order to make biogas digesters sustainable, methods for recycling digestates are urgently required. PMID:25715690

  4. Biogas production from vietnamese animal manure, plant residues and organic waste: influence of biomass composition on methane yield.

    PubMed

    Cu, T T T; Nguyen, T X; Triolo, J M; Pedersen, L; Le, V D; Le, P D; Sommer, S G

    2015-02-01

    Anaerobic digestion is an efficient and renewable energy technology that can produce biogas from a variety of biomasses such as animal manure, food waste and plant residues. In developing countries this technology is widely used for the production of biogas using local biomasses, but there is little information about the value of these biomasses for energy production. This study was therefore carried out with the objective of estimating the biogas production potential of typical Vietnamese biomasses such as animal manure, slaughterhouse waste and plant residues, and developing a model that relates methane (CH4) production to the chemical characteristics of the biomass. The biochemical methane potential (BMP) and biomass characteristics were measured. Results showed that piglet manure produced the highest CH4 yield of 443 normal litter (NL) CH4 kg(-1) volatile solids (VS) compared to 222 from cows, 177 from sows, 172 from rabbits, 169 from goats and 153 from buffaloes. Methane production from duckweed (Spirodela polyrrhiza) was higher than from lawn grass and water spinach at 340, 220, and 110.6 NL CH4 kg(-1) VS, respectively. The BMP experiment also demonstrated that the CH4 production was inhibited with chicken manure, slaughterhouse waste, cassava residue and shoe-making waste. Statistical analysis showed that lipid and lignin are the most significant predictors of BMP. The model was developed from knowledge that the BMP was related to biomass content of lipid, lignin and protein from manure and plant residues as a percentage of VS with coefficient of determination (R-square) at 0.95. This model was applied to calculate the CH4 yield for a household with 17 fattening pigs in the highlands and lowlands of northern Vietnam.

  5. Biogas Production from Vietnamese Animal Manure, Plant Residues and Organic Waste: Influence of Biomass Composition on Methane Yield

    PubMed Central

    Cu, T. T. T.; Nguyen, T. X.; Triolo, J. M.; Pedersen, L.; Le, V. D.; Le, P. D.; Sommer, S. G.

    2015-01-01

    Anaerobic digestion is an efficient and renewable energy technology that can produce biogas from a variety of biomasses such as animal manure, food waste and plant residues. In developing countries this technology is widely used for the production of biogas using local biomasses, but there is little information about the value of these biomasses for energy production. This study was therefore carried out with the objective of estimating the biogas production potential of typical Vietnamese biomasses such as animal manure, slaughterhouse waste and plant residues, and developing a model that relates methane (CH4) production to the chemical characteristics of the biomass. The biochemical methane potential (BMP) and biomass characteristics were measured. Results showed that piglet manure produced the highest CH4 yield of 443 normal litter (NL) CH4 kg−1 volatile solids (VS) compared to 222 from cows, 177 from sows, 172 from rabbits, 169 from goats and 153 from buffaloes. Methane production from duckweed (Spirodela polyrrhiza) was higher than from lawn grass and water spinach at 340, 220, and 110.6 NL CH4 kg−1 VS, respectively. The BMP experiment also demonstrated that the CH4 production was inhibited with chicken manure, slaughterhouse waste, cassava residue and shoe-making waste. Statistical analysis showed that lipid and lignin are the most significant predictors of BMP. The model was developed from knowledge that the BMP was related to biomass content of lipid, lignin and protein from manure and plant residues as a percentage of VS with coefficient of determination (R-square) at 0.95. This model was applied to calculate the CH4 yield for a household with 17 fattening pigs in the highlands and lowlands of northern Vietnam. PMID:25557826

  6. Impact of biogas digesters on wood utilisation and self-reported back pain for women living on rural Kenyan smallholder dairy farms.

    PubMed

    Dohoo, Carolyn; VanLeeuwen, John; Read Guernsey, Judith; Critchley, Kim; Gibson, Mark

    2013-01-01

    Women living on rural Kenyan dairy farms spend significant amounts of time collecting wood for cooking. Biogas digesters, which generate biogas for cooking from the anaerobic decomposition of livestock manure, are an alternative fuel source. The objective of this study was to quantify the quality of life and health benefits of installing biogas digesters on rural Kenyan dairy farms with respect to wood utilisation. Women from 62 farms (31 biogas farms and 31 referent farms) participated in interviews to determine reliance on wood and the impact of biogas digesters on this reliance. Self-reported back pain, time spent collecting wood and money spent on wood were significantly lower (p < 0.01) for the biogas group, compared to referent farms. Multivariable linear regression showed that wood consumption increased by 2 lbs/day for each additional family member living on a farm. For an average family of three people, the addition of one cow was associated with increased wood consumption by 1.0 lb/day on biogas farms but by 4.4 lbs/day on referent farms (significant interaction variable - likely due to additional hot water for cleaning milk collection equipment). Biogas digesters represent a potentially important technology that can reduce reliance on wood fuel and improve health for Kenyan dairy farmers.

  7. The effect of moisture content on solid-state anaerobic digestion of dairy manure from a sawdust-bedded pack barn

    USDA-ARS?s Scientific Manuscript database

    The effect of moisture content on solid-state anaerobic digestion of dairy manure from a Korean sawdust-bedded pack barn was determined using laboratory-scale digesters operated at three moisture levels (70, 76, and 83% on a wet basis) at 37 C for 85 days. Results showed that digesters containing m...

  8. Phosphorus forms and extractability in dairy manure: a case study for Wisconsin on-farm anaerobic digesters.

    PubMed

    Güngör, Kerem; Karthikeyan, K G

    2008-01-01

    The effect of anaerobic digestion on phosphorus (P) forms and water P extractability was investigated using dairy manure samples from six full-scale on-farm anaerobic digesters in Wisconsin, USA. On an average, total dissolved P (TDP) constituted 12 +/- 4% of total P (TP) in the influent to the anaerobic digesters. Only 7 +/- 2% of the effluent was in a dissolved form. Dissolved unreactive P (DUP), comprising polyphosphates and organic P, dominated the dissolved P component in both the influent and effluent. In most cases, it appeared that the fraction of DUP mineralized during anaerobic digestion became subsequently associated with particulate-bound solids. Geochemical equilibrium modeling with Mineql+ indicated that dicalcium phosphate dihydrate, dicalcium phosphate anhydrous, octacalcium phosphate, newberyite, and struvite were the probable solid phases in both the digester influent and effluent samples. The water-extractable P (WEP) fraction in undigested manure ranged from 45% to 70% of TP, which reduced substantially after anaerobic digestion to 25% to 45% of TP. Anaerobic digestion of dairy manure appears capable of reducing the fraction of P that is immediately available by increasing the stability of the solid phases controlling P solubility.

  9. What we feed dairy cows impacts manure chemistry and the environment

    USDA-ARS?s Scientific Manuscript database

    During the last part of the 20th century, animal manure management became an environmental concern. In response to these concerns, legislation was enacted to control manure management and the emission of undesirable gasses (e.g., ammonia and methane) from animal production systems. The purpose of th...

  10. Removal of excess nutrients by Australian zeolite during anaerobic digestion of swine manure.

    PubMed

    Wijesinghe, D Thushari N; Dassanayake, Kithsiri B; Scales, Peter; Sommer, Sven G; Chen, Deli

    2018-03-21

    The objective of this study was to investigate the feasibility of using natural and NaCl-treated Australian zeolites to simultaneously remove excess nutrients from anaerobically digested swine manure. Ion adsorption and desorption properties of Australian zeolite during the anaerobic digestion of swine manure were investigated. Two experiments were conducted: the first was an adsorption experiment with multi-component solutions that corresponded with the ionic composition of swine manure digestates. The second experiment determined the effects of zeolite dose rates during anaerobic digestion of swine manure on the removal of N, P and K from solution. Adsorption isotherms confirmed selectivity for K + over NH 4 + by Australian natural and sodium zeolites. Therefore, NH 4 + removal was considerably reduced when there was simultaneous K + uptake. Natural zeolite desorbed more Ca 2+ during K + and NH 4 + adsorption than sodium zeolite. The ion exchange reaction was independent of the presence of P. P removal was very dependent on the pH of the medium. Natural Australian zeolite was shown to be a potential sorbent for the removal of NH 4 + , K + and P during the anaerobic digestion of swine manure. However, the application of high concentrations of zeolite at higher pH values (> 7.5) might not be appropriate for anaerobic digestion, because zeolite desorbed more Ca 2+ ions into the solution at the higher doses of zeolite and then availability of P for microbial growth might be reduced as a result of PO 4 3- precipitation with Ca 2+ at the higher pH.

  11. Enhancing anaerobic digestibility and phosphorus recovery of dairy manure through microwave-based thermochemical pretreatment.

    PubMed

    Jin, Ying; Hu, Zhenhu; Wen, Zhiyou

    2009-08-01

    Anaerobic digestion and struvite precipitation are two effective ways of treating dairy manure for recovering biogas and phosphorus. Anaerobic digestion of dairy manure is commonly limited by slow fiber degradation, while struvite precipitation is limited by the availability of orthophosphate. The aim of this work is to study the possibility of using microwave-based thermochemical pretreatment to simultaneously enhance manure anaerobic digestibility (through fiber degradation) and struvite precipitation (through phosphorus solubilization). Microwave heating combined with different chemicals (NaOH, CaO, H(2)SO(4), or HCl) enhanced solubilization of manure and degradation of glucan/xylan in dairy manure. However, sulfuric acid-based pretreatment resulted in a low anaerobic digestibility, probably due to the sulfur inhibition and Maillard side reaction. The pretreatments released 20-40% soluble phosphorus and 9-14% ammonium. However, CaO-based pretreatment resulted in lower orthophosphate releases and struvite precipitation efficiency as calcium interferes with phosphate to form calcium phosphate. Collectively, microwave heating combined with NaOH or HCl led to a high anaerobic digestibility and phosphorus recovery. Using these two chemicals, the performance of microwave- and conventional-heating in thermochemical pretreatment was further compared. The microwave heating resulted in a better performance in terms of COD solubilization, glucan/xylan reduction, phosphorus solubilization and anaerobic digestibility. Lastly, temperature and heating time used in microwave treatment were optimized. The optimal values of temperature and heating time were 147 degrees C and 25.3 min for methane production, and 135 degrees C and 26 min for orthophosphate release, respectively.

  12. Microbial community composition is consistent across anaerobic digesters processing wheat-based fuel ethanol waste streams.

    PubMed

    Town, Jennifer; Annand, Holly; Pratt, Dyan; Dumonceaux, Tim; Fonstad, Terrance

    2014-04-01

    Biochemical methane potential (BMP) assays were conducted on byproducts from dry-grind wheat-based ethanol plants amended with feedlot manure at two input ratios. Whole stillage (WST), thin stillage (TST) and wet cake (WCK) were tested alone and with 1:1 and 2:1 ratios (VS basis) of byproduct:feedlot manure in bench-scale batch reactors. The addition of manure increased both the rate and consistency of methane production in triplicate reactors. In addition, digesters co-digesting thin stillage and cattle manure at 1:1 and 2:1 stillage:manure produced 125% and 119% expected methane based on the biomethane potential of each substrate digested individually. Bacterial community analysis using universal target amplification and pyrosequencing indicated there was a numerically dominant core of 42 bacteria that was universally present in the reactors regardless of input material. A smaller-scale analysis of the archaeal community showed that both hydrogenotrophic and acetoclastic methanogens were present in significant quantities. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  13. Anaerobic digestion performance of sweet potato vine and animal manure under wet, semi-dry, and dry conditions.

    PubMed

    Zhang, Enlan; Li, Jiajia; Zhang, Keqiang; Wang, Feng; Yang, Houhua; Zhi, Suli; Liu, Guangqing

    2018-03-22

    Sweet potato vine (SPV) is an abundant agricultural waste, which is easy to obtain at low cost and has the potential to produce clean energy via anaerobic digestion (AD). The main objectives of this study were to reveal methane production and process stability of SPV and the mixtures with animal manure under various total solid conditions, to verify synergetic effect in co-digestion of SPV and manure in AD systems, and to determine the kinetics characteristics during the full AD process. The results showed that SPV was desirable feedstock for AD with 200.22 mL/g VS added of methane yield in wet anaerobic digestion and 12.20 L methane /L working volume in dry anaerobic digestion (D-AD). Synergistic effects were found in semi-dry anaerobic digestion and D-AD with each two mixing feedstock. In contrast with SPV mono-digestion, co-digestion with manure increased methane yield within the range of 14.34-49.11% in different AD digesters. The values of final volatile fatty acids to total alkalinity (TA) were below 0.4 and the values of final pH were within the range of 7.4-8.2 in all the reactors, which supported a positive relationship between carbohydrate hydrolysis and methanogenesis during AD process. The mathematical modified first order model was applied to estimate substrate biodegradability and methane production potential well with conversion constant ranged from 0.0003 to 0.0953 1/day, which indicated that co-digestion increased hydrolysis efficiency and metabolic activity. This work provides useful information to improve the utilization and stability of digestion using SPV and livestock or poultry manure as substrates.

  14. Effects of grass silage quality and level of feed intake on enteric methane production in lactating dairy cows.

    PubMed

    Warner, D; Bannink, A; Hatew, B; van Laar, H; Dijkstra, J

    2017-08-01

    The objective of this study was to determine the effect of level of feed intake and quality of ryegrass silage as well as their interaction on enteric methane (CH) emission from dairy cows. In a randomized block design, 56 lactating dairy cows received a diet of grass silage, corn silage, and a compound feed meal (70:10:20 on DM basis). Treatments consisted of 4 grass silage qualities prepared from grass harvested from leafy through late heading stage, and offered to dairy cows at 96 ± 2.4 (mean ± SEM) days in milk (namely, high intake) and 217 ± 2.4 d in milk (namely, low intake). Grass silage CP content varied between 124 and 286 g/kg of DM, and NDF content between 365 and 546 g/kg of DM. After 12 d of adaptation, enteric CH production of cows was measured in open-circuit climate-controlled respiration chambers for 5 d. No interaction between DMI and grass quality on CH emission, or on milk production, diet digestibility, and energy, and N retention was found ( ≥ 0.17). Cows had a greater DMI (16.6 vs. 15.5 kg/d; SEM 0.46) and greater fat- and protein-corrected milk (FPCM) yield (29.9 vs. 25.4 kg/d; SEM 1.24) at high than low intake (both ≤ 0.001). Apparent total-tract nutrient digestibility was not affected ( ≥ 0.08) by DMI level. Total enteric CH production (346 ± 10.9 g/d) was not affected ( = 0.15) by DMI level. A small, significant ( = 0.025) decrease at high compared with low intake occurred for CH yield (21.8 ± 0.59 g/kg of DMI; -4%). Methane emission intensity (12.8 ± 0.56 g/kg of FPCM; -12%) was considerably smaller ( ≤ 0.001) at high intake as a result of greater milk yields realized in early lactation. As grass quality decreased from leafy through late heading stage, FPCM yield and apparent total-tract OM digestibility declined (-12%; ≤ 0.015), whereas total CH production (+13%), CH yield (+21%), and CH emission intensity (+28%) increased ( ≤ 0.001). Our results suggest that improving grass silage quality by cutting grass at an earlier stage considerably reduces enteric CH emissions from dairy cows, independent of DMI. In contrast, losses of N in manure increased for the earlier cut grass silage treatments. The small increase in DMI at high intake was associated with a small to moderate reduction in CH emission per unit of DMI and GE intake. This study confirmed that enteric CH emissions from dairy cows at distinct levels of feed intake depend on the nutritive value and chemical composition of the grass silage.

  15. Anaerobic digestibility of beef hooves with swine manure or slaughterhouse sludge.

    PubMed

    Xia, Yun; Wang, Ding-Kang; Kong, Yunhong; Ungerfeld, Emilio M; Seviour, Robert; Massé, Daniel I

    2015-04-01

    Anaerobic digestion is an effective method for treating animal by-products, generating at the same time green energy as methane (CH4). However, the methods and mechanisms involved in anaerobic digestion of α-keratin wastes like hair, nails, horns and hooves are still not clear. In this study we investigated the feasibility of anaerobically co-digesting ground beef hooves in the presence of swine manure or slaughterhouse sludge at 25 °C using eight 42-L Plexiglas lab-scale digesters. Our results showed addition of beef hooves statistically significantly increased the rate of CH4 production with swine manure, but only increased it slightly with slaughterhouse sludge. After 90-day digestion, 73% of beef hoof material added to the swine manure-inoculated digesters had been converted into CH4, which was significantly higher than the 45% level achieved in the slaughterhouse sludge inoculated digesters. BODIPY-Fluorescent casein staining detected proteolytic bacteria in all digesters with and without added beef hooves, and their relative abundances corresponded to the rate of methanogenesis of the digesters with the different inocula. Fluorescence in situ hybridization in combination with BODIPY-Fluorescent casein staining identified most proteolytic bacteria as members of genus Alkaliphilus in the subfamily Clostridiaceae 2 of family Clostridiaceae. They thus appear to be the bacteria mainly responsible for digestion of beef hooves. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  16. Mechanism and Effect of Temperature on Variations in Antibiotic Resistance Genes during Anaerobic Digestion of Dairy Manure

    PubMed Central

    Sun, Wei; Qian, Xun; Gu, Jie; Wang, Xiao-Juan; Duan, Man-Li

    2016-01-01

    Animal manure comprises an important reservoir for antibiotic resistance genes (ARGs), but the variation in ARGs during anaerobic digestion at various temperatures and its underlying mechanism remain unclear. Thus, we performed anaerobic digestion using dairy manure at three temperature levels (moderate: 20 °C, mesophilic: 35 °C, and thermophilic: 55 °C), to analyze the dynamics of ARGs and bacterial communities by quantitative PCR and 16S rRNA gene sequencing. We found that 8/10 detected ARGs declined and 5/10 decreased more than 1.0 log during thermophilic digestion, whereas only four and five ARGs decreased during moderate and mesophilic digestion, respectively. The changes in ARGs and bacterial communities were similar under the moderate and mesophilic treatments, but distinct from those in the thermophilic system. Potential pathogens such as Bacteroidetes, Proteobacteria, and Corynebacterium were removed by thermophilic digestion but not by moderate and mesophilic digestion. The bacterial community succession was the dominant mechanism that influenced the variation in ARGs and integrons during anaerobic digestion. Thermophilic digestion decreased the amount of mesophilic bacteria (Bacteroidetes and Proteobacteria) carrying ARGs. Anaerobic digestion generally decreased the abundance of integrons by eliminating the aerobic hosts of integrons (Actinomycetales and Bacilli). Thermophilic anaerobic digestion is recommended for the treatment and reuse of animal manure. PMID:27444518

  17. Effect of temperature and temperature fluctuation on thermophilic anaerobic digestion of cattle manure.

    PubMed

    El-Mashad, Hamed M; Zeeman, Grietje; van Loon, Wilko K P; Bot, Gerard P A; Lettinga, Gatze

    2004-11-01

    The influence of temperature, 50 and 60 degrees C, at hydraulic retention times (HRTs) of 20 and 10 days, on the performance of anaerobic digestion of cow manure has been investigated in completely stirred tank reactors (CSTRs). Furthermore, the effect of both daily downward and daily upward temperature fluctuations has been studied. In the daily downward temperature fluctuation regime the temperatures of each reactor was reduced by 10 degrees C for 10 h while in the daily upward fluctuation regime the temperature of each reactor was increased 10 degrees C for 5 h. The results show that the methane production rate at 60 degrees C is lower than that at 50 degrees C at all experimental conditions of imposed HRT except when downward temperature fluctuations were applied at an HRT of 10 days. It also was found that the free ammonia concentration not only affects the acetate-utilising bacteria but also the hydrolysis and acidification process. The upward temperature fluctuation affects the maximum specific methanogenesis activity more severely as compared to imposed downward temperature fluctuations. The results clearly reveal the possibility of using available solar energy at daytime to heat up the reactor(s) without the need of heat storage during nights, especially at an operational temperature of 50 degrees C and at a 20 days HRT, and without the jeopardising of the overheating.

  18. Degradation and metabolization of chlortetracycline during the anaerobic digestion of manure from medicated calves.

    PubMed

    Arikan, Osman A

    2008-10-30

    The fate of antibiotic residues in the manure of treated animals is of considerable concern because of the potential development of antibiotic-resistant bacteria in the environment. The objective of this study was to determine the fate of chlortetracycline (CTC) during the anaerobic digestion of manure from medicated calves. Five beef calves were medicated for 5 days with 22 mg/kg/day of CTC. Manure samples collected from calves after medication were diluted 5-fold with water, loaded into triplicate 1L anaerobic digesters and incubated at 35 degrees C. The CTC concentration decreased approximately 75% (from 5.9 to 1.4 ppm) during the 33 days digestion period, yielding a half-life of about 18 days. The concentration of the CTC epimer, 4-epi-chlortetracycline (ECTC), declined roughly 33% (from 4.1 to 2.5mg/L) during anaerobic digestion. However, the concentration of the CTC metabolite, iso-chlortetracycline (ICTC), increased 2-fold (from 2.3 to 4.6 mg/L) during the digestion period. Although the water-soluble concentration of CTC decreased 84% (from 0.3 to 0.04 mg/L), the water-soluble concentrations of ECTC and ICTC increased roughly 2-fold during digestion (from 0.5 to 0.93, and 1.0 to 2.7 mg/L, respectively). Since ECTC and ICTC are more water-soluble than the parent tetracycline CTC, it is more likely that these compounds present in digested manure slurry will be detected in water monitoring samples.

  19. Methane Recovery from Animal Manures The Current Opportunities Casebook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lusk, P.

    1998-09-01

    Growth and concentration of the livestock industry create opportunities for the proper disposal of the large quantities of manures generated at dairy, swine, and poultry farms. Pollutants from unmanaged livestock wastes can degrade the environment, and methane emitted from decomposing manure may contribute to global climate change. One management system not only provides pollution prevention but also can convert a manure problem into a new profit center. Economic evaluations and case studies of operating systems indicate that the anaerobic digestion (AD) of livestock manures is a commercially available bioconversion technology with considerable potential for providing profitable coproducts, including a cost-effectivemore » renewable fuel for livestock production operations. This Casebook examines some of the current opportunities for the recovery of methane from the AD animal manures. U.S. livestock operations currently employ four types of anaerobic digester technology: slurry, plug-flow, complete-mix, and covered lagoon. An introduction to the engineering economies of these technologies is provided, and possible end-use applications for the methane gas generated by the digestion process are discussed. The economic evaluations are based on engineering studies of digesters that generate electricity from the recovered methane. Case studies of operating digesters, with project and maintenance histories and the operators ''lessons learned,'' are included as reality checks. Factors necessary for successful projects, as well as a list of reasons explaining why some AD projects fail, are provided. The role of farm management is key; not only must digesters be well engineered and built with high-quality components, they must also be sited at farms willing to incorporate the uncertainties of a new technology. More than two decades of research has provided much information about how manure can be converted to an energy source; however, the American farmer has not been motivated to adopt new practices. More cost-effective and easily managed manure management techniques are still needed to encourage farmers to use animal manure for conversion into energy and nutrients, especially for smaller farms. AD benefits farmers monetarily and mitigates possible manure pollution problems, thereby sustaining development while maintaining environmental quality. Moreover, rural economic development will benefit from the implicit multiplier effect resulting from jobs created by implementing digester systems. Promising future waste-to-profit activities may add to the economic performance of AD. New end-use applications, which provide added value to coproducts, are discussed.« less

  20. Impact of dairy manure pre-application treatment on manure composition, soil dynamics of antibiotic resistance genes, and abundance of antibiotic-resistance genes on vegetables at harvest.

    PubMed

    Tien, Yuan-Ching; Li, Bing; Zhang, Tong; Scott, Andrew; Murray, Roger; Sabourin, Lyne; Marti, Romain; Topp, Edward

    2017-03-01

    Manuring ground used for crop production is an important agricultural practice. Should antibiotic-resistant enteric bacteria carried in the manure be transferred to crops that are consumed raw, their consumption by humans or animals will represent a route of exposure to antibiotic resistance genes. Treatment of manures prior to land application is a potential management option to reduce the abundance of antibiotic resistance genes entrained with manure application. In this study, dairy manure that was untreated, anaerobically digested, mechanically dewatered or composted was applied to field plots that were then cropped to lettuce, carrots and radishes. The impact of treatment on manure composition, persistence of antibiotic resistance gene targets in soil following application, and distribution of antibiotic resistance genes and bacteria on vegetables at harvest was determined. Composted manure had the lowest abundance of antibiotic resistance gene targets compared to the other manures. There was no significant difference in the persistence characteristics of antibiotic resistance genes following land application of the various manures. Compared to unmanured soil, antibiotic resistance genes were detected more frequently in soil receiving raw or digested manure, whereas they were not in soil receiving composted manure. The present study suggests that vegetables grown in ground receiving raw or digested manure are at risk of contamination with manure-borne antibiotic resistant bacteria, whereas vegetables grown in ground receiving composted manure are less so. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  1. The dynamic changes and interactional networks of prokaryotic community between co-digestion and mono-digestions of corn stalk and pig manure.

    PubMed

    Wang, Min; Zhang, Xueying; Zhou, Jun; Yuan, Yuexiang; Dai, Yumei; Li, Dong; Li, Zhidong; Liu, Xiaofeng; Yan, Zhiying

    2017-02-01

    Anaerobic co-digestion is considered to be an efficient way to improve the biogas production. The abundance, dynamic and interactional networks of prokaryotic community were investigated between co-digestion and mono-digestions of corn stalk and pig manure in mesophilic batch test. Co-digestion showed higher methane production, and contributed to suitable microenvironment as well as stable prokaryotic community structure. The highest methane production was achieved with the highest relative abundance of Methanosaeta. Prokaryotic community in mono-digestions might inhibited by FA or FVFA. The functional modules in co-digestion and mono-digestion of pig manure clustered together with bigger size and higher degree, and the connections of metabolic functions were better-organized, which means high-efficient utilization of substrate and prevention of the two digestion systems crash. The partial mantel tests showed the functional modules were significantly affected by environmental factors. These results further explained that why co-digestion was more efficient than mono-digestion owing to suitable microenvironment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Effectiveness of cow manure and mycorrhiza on the growth of soybean

    NASA Astrophysics Data System (ADS)

    Muktiyanta, M. N. A.; Samanhudi; Yunus, A.; Pujiasmanto, B.; Minardi, S.

    2018-03-01

    Soybean is one of the major food crop commodities in Indonesia. The needs of soybean each year is always increasing, but the the production rate is low. The research aimed to know the influence of treatment doses of cow manure and mycorrhiza towards growth and yield of soybeans. This research was conducted using Randomized Complete Block Design with two factors. The first factor is the dose of cow manure: S0 (0 g/plot), S1 (781.25 g/plot), S2 (1562.5 g/plot), and S3 (2343.75 g/plot). The second factor is the dose of mycorrhiza: M0 (0 g/plot), M1 (100 g/plot), and M2 (200 g/plot). The observed parameters is plant height, the number of productive branches, weight of 100 seeds, root length, fresh weight of biomass, dry weight of biomass, conversion calculation results of soybeans per hectacre and the percentage of roots infected with mycorrhiza. Data were analyzed with ANOVA at 5% significance level, continued with Duncan test at 5% confidence level. The results showed that no interaction between the two treatments. Doses of cow manure provides significant influence to plant height and the length of the root. Whereas, the doses of mycorrhiza provides significant effect to the number of productive branch, weight of 100 seeds, dry weight of biomass, and the conversion of soybean yield per hectare.

  3. Effect of the chlortetracycline addition method on methane production from the anaerobic digestion of swine wastewater.

    PubMed

    Huang, Lu; Wen, Xin; Wang, Yan; Zou, Yongde; Ma, Baohua; Liao, Xindi; Liang, Juanboo; Wu, Yinbao

    2014-10-01

    Effects of antibiotic residues on methane production in anaerobic digestion are commonly studied using the following two antibiotic addition methods: (1) adding manure from animals that consume a diet containing antibiotics, and (2) adding antibiotic-free animal manure spiked with antibiotics. This study used chlortetracycline (CTC) as a model antibiotic to examine the effects of the antibiotic addition method on methane production in anaerobic digestion under two different swine wastewater concentrations (0.55 and 0.22mg CTC/g dry manure). The results showed that CTC degradation rate in which manure was directly added at 0.55mg CTC/g (HSPIKE treatment) was lower than the control values and the rest of the treatment groups. Methane production from the HSPIKE treatment was reduced (p<0.05) by 12% during the whole experimental period and 15% during the first 7days. The treatments had no significant effect on the pH and chemical oxygen demand value of the digesters, and the total nitrogen of the 0.55mg CTC/kg manure collected from mediated swine was significantly higher than the other values. Therefore, different methane production under different antibiotic addition methods might be explained by the microbial activity and the concentrations of antibiotic intermediate products and metabolites. Because the primary entry route of veterinary antibiotics into an anaerobic digester is by contaminated animal manure, the most appropriate method for studying antibiotic residue effects on methane production may be using manure from animals that are given a particular antibiotic, rather than adding the antibiotic directly to the anaerobic digester. Copyright © 2014. Published by Elsevier B.V.

  4. Anaerobic digestion of dairy cattle manure autoheated by aerobic pretreatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achkari-Begdouri, A.

    1989-01-01

    A novel way to heat anaerobic digesters was investigated. Dairy cattle manure was autoheated by an aerobic pretreatment process and then fed to the anaerobic digester. Important physical properties of the dairy cattle manure were determined. These included bulk density, specific heat, thermal conductivity and the rheological properties; consistency coefficient, behavior index and apparent viscosity. These parameters were used to calculate the overall heat transfer coefficients, and to estimate the heat losses from the aerobic reactor to the outside environment. The total energy balance of the aerobic treatment system was then established. An optimization study of the main parameters influencingmore » the autoheating process showed that the total solids, the air flow rate and the stirring speed for operation of the aerobic pretreatment should be approximately 7%, 70 L/H and 1,400 rpm respectively. Temperatures as high as 65C were reached in 40 hours of aerobic treatment. At the above recommended levels of total solids, the air flow rate and the stirring speed, there was little difference in the energy requirements for heating the influent by aeration and heating the influent by a conventional heating system. In addition to the temperature increase, the aerobic pretreatment assisted in balancing the anaerobic digestion process and increased the methanogenesis of the dairy cattle manure. Despite the 8% decomposition of organic matter that occurred during the aerobic pretreatment process, methane production of the digester started with the aerobically heated manure was significantly higher (at least 20% higher) than of the digester started with conventionally heated manure. The aerobic system successfully autoheated the dairy cattle manure with an energy cost equal to that of conventionally heated influent.« less

  5. Digester effluent’s agronomic and odor emission potential: A swine case study

    USDA-ARS?s Scientific Manuscript database

    This on-farm study looked at the full-scale treatment effects of anaerobic digestion on the composition of manure effluent from an agronomic and air quality perspective. The goal was to improve our understanding of the role that anaerobic digestion may play in managing manure as a fertilizer and in...

  6. Co-digestion of manure with grass silage and pulp and paper mill sludge using nutrient additions.

    PubMed

    Hagelqvist, Alina; Granström, Karin

    2016-08-01

    There is an increasing worldwide demand for biogas. Anaerobic co-digestion involves the treatment of different substrates with the aim of improving the production of biogas and the stability of the process. This study evaluates how methane production is affected by the co-digestion of pig and dairy manure with grass silage and pulp and paper mill sludge and assesses whether methane production is affected by factors other than nutrient deficiency, low buffering capacity, inadequate dilution, and an insufficient activity and amount of microorganism culture. Anaerobic digestion was performed in batch reactors under mesophilic conditions for 20 days. The season of grass silage and manure collection proved to be an important factor affecting methane production. Spring grass silage produced a maximum of 250 mL/VSadded and spring manure 150 mL/VSadded, whereas autumn grass silage produced at most 140 ml/VSadded and autumn manure 45 mL/VSadded. The pulp mill sludge used is comprised of both primary and secondary sludge and produced at most 50 mL/VSadded regardless of season; this substrate benefitted most from co-digestion.

  7. Biogas from mesophilic anaerobic digestion of cow dung using gelatin as additive

    NASA Astrophysics Data System (ADS)

    Salam, Bodius; Rahman, Md Mizanur; Sikder, Md Asif R.; Islam, Majedul

    2017-06-01

    A research work was conducted to investigate the enhanced production ability of biogas from mesophilic anaerobic digestions of cow dung (CD) using gelatin as additive. Five laboratory scale digesters were constructed to digest cow dung, where one set up was used for digestion of cow dung without additive and the other set up were used for digestion with additive. Gelatin additive was added in the slurry of amount 0.29, 0,57, 0.85 and 1.14% (wt.). The digesters were made of glass conical flask of 1-liter capacity each. Cow dung was used 335 gm and water was used 365 gm in each experiment. In the slurry, total solid content was maintained 8% (wt.) for all the observations. The digesters were fed on batch basis. The digesters were operated at ambient temperatures of 26 - 35°C. The total gas yield was obtained about 14.4 L/kg CD for digestion without additive and about 65% more biogas for digestion with 0.29% gelatin additive. The retention time for digestion without additive was 38 days and with additive retention time varied between 24 and 52 days.

  8. Alteration of dairy cattle diets for beneficial on-farm recycling of manure nutrients

    USDA-ARS?s Scientific Manuscript database

    Feed and manure nutrients pass through a continuous cycle on dairy farms. Cows are fed forages, grain, protein and mineral supplements to produce milk; land applied manure recycles nutrients through crops and pastures; and so on. The purpose of this chapter is to demonstrate how the types and amount...

  9. COMPARISON OF ALTERNATIVE MANURE MANAGEMENT SYSTEMS: EFFECT ON THE ENVIRONMENT, TOTAL ENERGY REQUIREMENT, NUTRIENT CONSERVATION, CONTRIBUTION TO CORN SILAGE PRODUCTION AND ECONOMICS

    EPA Science Inventory

    This study compares alternative dairy manure management systems operated under full scale commercial conditions. The study investigates weight of manure handled per cow per year, labor and energy requirements, effect on the environment, nutrient conservation, corn silage producti...

  10. Nitrous oxide and methane emissions following application of animal manures to grassland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chadwick, D.R.; Pain, B.F.; Brookman, S.K.E.

    2000-02-01

    Nitrous oxide (N{sub 2}O) and methane (CH{sub 4}) emissions were measured from grassland following manure applications at three times of the year. Pig (Sus scrofa) slurry and dairy cow (Bos taurus) slurry were applied in April, at equal rates of ammoniacal-N (NH{sub 4}{sup +}-N), and in July, at equal volumetric rates (50 m{sup 3}ha{sup {minus}1}). In October, five manure types were applied to grassland plots at typical application rates: pig slurry, dilute diary cow effluent, pig farm yard manure (FYM), beef FYM and layer manure. Emissions were measured for 20, 22, and 24 d, respectively. In April, greater cumulative emissionsmore » of N{sub 2}O-N were measured following application of dairy cow slurry (1.51 kg ha{sup {minus}1}) than pig slurry (90.77 kg ha{sup {minus}1}). Cumulative CH{sub 4} emissions following application in April were significantly greater from the dairy cow slurry treatment (0.58 kg ha{sup {minus}1}) than the pig slurry treatment (0.13 kg ha{sup {minus}1}) (P < 0.05). In July, significantly greater N{sub 2}O-N emissions resulted from pig slurry-treated plots (0.57 kg ha{sup {minus}1}) than dairy cow slurry-treated plots (0.34 kg ha{sup {minus}1}). Cumulative net CH{sub 4} emissions were very low following July applications (<10 g ha{sup {minus}1}). In October, the lowest N{sub 2}O-N emission resulted from application of dilute dairy effluent, 0.15 kg ha{sup {minus}1}, with the greatest net emission from the application of pig slurry, 0.74 kg ha{sup {minus}1}. Methane emissions were greatest from the plots that received pig FYM, resulting in a mean cumulative net emission of 2.39 kg ha{sup {minus}1}.« less

  11. Associations between biosecurity practices and bovine digital dermatitis in Danish dairy herds.

    PubMed

    Oliveira, Victor H S; Sørensen, Jan T; Thomsen, Peter T

    2017-10-01

    The relationship between biosecurity and digital dermatitis (DD) was evaluated in 8,269 cows from a convenience sample of 39 freestall dairy herds. The hypothesis was that poor implementation of biosecurity was associated with higher within-herd prevalence of DD. All lactating cows were scored as negative or positive for DD at the hind legs during milking in the milking parlor. Information about biosecurity was obtained through questionnaires addressed to farmers, on-farm observations, and information from the Danish Cattle Database (www.seges.dk). These assessment tools covered potential infection sources of DD pathogens to susceptible cows (e.g., via animals, humans, manure, vehicles, equipment, and facilities). External and internal biosecurity measures were explanatory variables in 2 separate logistic regression models, whereas within-herd DD prevalence was the outcome. Overall DD prevalence among cows and herds were 24 and 97%, respectively; the within-herd DD prevalence ranged from 0 to 56%. Poor external biosecurity measures associated with higher prevalence of DD were recent animal purchase, access to pasture, lack of boots available for visitors, farm staff working at other dairy farms as well, hoof trimming without a professional attending, and animal transporters having access to cattle area. For internal biosecurity, higher DD prevalence were associated with infrequent hoof bathing, manure scraping less than 8 times a day, manure removal direction from cows to heifers, animal pens' exit without water hoses, manure-handling vehicle used in other activities, and water troughs contaminated with manure. These findings showed that improvements on biosecurity may be beneficial for controlling DD in dairy herds. The study is relevant for farmers facing problems with DD, as well as hoof trimmers, advisors, and veterinarians, who can use the results for optimized recommendations regarding biosecurity in relation to DD. Furthermore, our results might be considered by future studies investigating DD pathogen reservoirs and transmission routes. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Mycobacterium avium subsp. paratuberculosis from free-ranging deer and rabbits surrounding Minnesota dairy herds

    PubMed Central

    2005-01-01

    Abstract The objectives of this study were to estimate the prevalence of Mycobacterium avium subsp. paratuberculosis (MAP) among deer and rabbits surrounding infected and noninfected Minnesota dairy farms using fecal culture, and to describe the frequency that farm management practices were used that could potentially lead to transmission of infection between these species. Fecal samples from cows and the cow environment were collected from 108 Minnesota dairy herds, and fecal pellets from free-ranging white-tailed deer and eastern cottontail rabbits were collected from locations surrounding 114 farms; all samples were tested using bacterial culture. In addition, a questionnaire was administered to 114 herd owners. Sixty-two percent of the dairy herds had at least 1 positive fecal pool or environmental sample. A total of 218 rabbit samples were collected from 90% of the herds, and 309 deer samples were collected from 47% of the herds. On 2 (4%) of the farms sampled, 1 deer fecal sample was MAP positive. Both farms had samples from the cow fecal pool and cow environment that were positive by culture. On 2 (2%) other farms, 1 rabbit fecal sample was positive by culture to MAP, with one of these farms having positive cow fecal pools and cow environmental samples. Pasture was used on 79% of the study farms as a grazing area for cattle, mainly for dry cows (75%) and bred or prebred heifers (87%). Of the 114 farms, 88 (77%) provided access to drylot for their cattle, mainly for milking cows (77/88; 88%) and bred heifers (87%). Of all study farms, 90 (79%) used some solid manure broadcasting on their crop fields. Of all 114 farms, the estimated probability of daily physical contact between cattle manure and deer or rabbits was 20% and 25%, respectively. Possible contact between cattle manure and deer or rabbits was estimated to occur primarily from March through December. The frequency of pasture or drylot use and manure spreading on crop fields may be important risk factors for transmission of MAP among dairy cattle, deer, and rabbits. Although the MAP prevalence among rabbits and deer is low, their role as MAP reservoirs should be considered. PMID:15745220

  13. Evaluation of conductive cooling of lactating dairy cows under controlled environmental conditions.

    PubMed

    Ortiz, X A; Smith, J F; Rojano, F; Choi, C Y; Bruer, J; Steele, T; Schuring, N; Allen, J; Collier, R J

    2015-03-01

    Cooling systems used to reduce heat stress in dairy operations require high energy, water usage, or both. Steady increases in electricity costs and reduction of water availability and an increase in water usage regulations require evaluation of passive cooling systems to cool cows and reduce use of water and electricity. A study was conducted to evaluate the use of heat exchangers buried 25 cm below the surface as components in a conductive system for cooling cows. Six cows were housed in environmentally controlled rooms with tie-stall beds, which were equipped with a heat exchanger and filled with 25 cm of either sand or dried manure. Beds were connected to supply and return lines and individually controlled. Two beds (one per each kind of bedding material) constituted a control group (water off), and the other 4 (2 sand and 2 dried manure) used water at 7°C passing through the heat exchangers (water on). The experiment was divided in 2 periods of 40 d, and each period involved 3 repetitions of 3 different climates (hot and dry, thermo neutral, and hot and humid). Each cow was randomly assigned to a different treatment after each repetition was over. Sand bedding remained cooler than dried manure bedding in all environments and at all levels of cooling (water on or off). Bed temperatures were lower and heat flux higher during the bed treatment with sand and water on. We also detected a reduction in core body temperatures, respiration rates, rectal temperatures, and skin temperatures of those cows during the sand and water on treatment. Feed intake and milk yield numerically increased during the bed treatment with sand and water on for all climates. No major changes were observed in the lying time of cows or the composition of the milk produced. We conclude that use of heat exchangers is a viable adjunct to systems that employ fans, misters, and evaporative cooling methods to mitigate effects of heat stress on dairy cows. Sand was superior to dried manure as a bedding material in combination with heat exchangers. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Aerobic treatment of swine manure to enhance anaerobic digestion and microalgal cultivation.

    PubMed

    Bekoe, Dominic; Wang, Lijun; Zhang, Bo; Scott Todd, Matthew; Shahbazi, Abolghasem

    2018-02-01

    Aerobic treatment of swine manure was coupled with anaerobic digestion and microalgal cultivation. A 14-day aerobic treatment reduced the total solid content of swine manure by >15%. Ammonia and carbon dioxide were stripped by the air supplied, and this off-gas was further used to aerate the culture of Chlorella vulgaris. The microalgal growth rates in Bristol medium and the wastewater with the off-gas increased from 0.08 to 0.22 g/L/d and from 0.15 to 0.24 g/L/d, respectively. Meanwhile, the aerobically treated swine manure showed a higher methane yield during anaerobic digestion. The experimental results were used to establish a demonstration unit consisting of a 100 L composter, a 200 L anaerobic digester, a 60 L tubular photobioreactor, and a 300 L micro-open raceway pond.

  15. Solid state anaerobic co-digestion of tomato residues with dairy manure and corn stover for biogas production.

    PubMed

    Li, Yangyang; Li, Yu; Zhang, Difang; Li, Guoxue; Lu, Jiaxin; Li, Shuyan

    2016-10-01

    Solid-state anaerobic co-digestion of tomato residues with dairy manure and corn stover was conducted at 20% total solids under 35°C for 45days. Results showed digestion of mixed tomato residues with dairy manure and corn stover improved methane yields. The highest VS reduction (46.2%) and methane yield (415.4L/kg VSfeed) were achieved with the ternary mixtures of 33% corn stover, 54% dairy manure, and 13% tomato residues, lead to a 0.5-10.2-fold higher than that of individual feedstocks. Inhibition of volatile fatty acids (VFAs) to biogas production occurred when more than 40% tomato residues were added. The results indicated that ternary mixtures diluted the inhibitors that would otherwise cause inhibition in the digestion of tomato residues as a mono-feedstock. Copyright © 2016. Published by Elsevier Ltd.

  16. Spent coffee enhanced biomethane potential via an integrated hydrothermal carbonization-anaerobic digestion process.

    PubMed

    Codignole Luz, Fábio; Volpe, Maurizio; Fiori, Luca; Manni, Alessandro; Cordiner, Stefano; Mulone, Vincenzo; Rocco, Vittorio

    2018-05-01

    This study reports the implications of using spent coffee hydrochar as substrate for anaerobic digestion (AD) processes. Three different spent coffee hydrochars produced at 180, 220 and 250 °C, 1 h residence time, were investigated for their biomethane potential in AD process inoculated with cow manure. Spent coffee hydrochars were characterized in terms of ultimate, proximate and higher heating value (HHV), and their theoretical bio-methane yield evaluated using Boyle-Buswell equation and compared to the experimental values. The results were then analyzed using the modified Gompertz equation to determine the main AD evolution parameters. Different hydrochar properties were related to AD process performances. AD of spent coffee hydrochars produced at 180 °C showed the highest biomethane production rate (46 mL CH 4 /gVS . d), a biomethane potential of 491 mL/gVS (AD lasting 25 days), and a biomethane gas daily composition of about 70%. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Degradation of oxytetracycline and its impacts on biogas-producing microbial community structure.

    PubMed

    Coban, Halil; Ertekin, Emine; Ince, Orhan; Turker, Gokhan; Akyol, Çağrı; Ince, Bahar

    2016-07-01

    The effect of veterinary antibiotics in anaerobic digesters is a concern where methane production efficiency is highly dependent on microbial community structure. In this study, both anaerobic degradation of a common veterinary antibiotic, oxytetracycline (OTC), and its effects on an anaerobic digester microbial community were investigated. Qualitative and quantitative molecular tools were used to monitor changes in microbial community structure during a 60-day batch incubation period of cow manure with the addition of different concentrations of the antibiotic. Molecular data were interpreted by a further redundancy analysis as a multivariate statistics approach. At the end of the experiment, approximately 48, 33, and 17 % of the initially added 50, 100, and 200 mg l(-1) of OTC was still present in the serum bottles which reduced the biogas production via accumulation of some of the volatile fatty acids (VFAs). Biogas production was highly correlated with Methanobacteriales and Methanosarcinales gene copy numbers, and those parameters were negatively affected with oxytetracycline and VFA concentrations.

  18. Optimizing the performance of a reactor by reducing the retention time and addition of glycerin for anaerobically digesting manure

    PubMed Central

    Timmerman, Maikel; Schuman, Els; van Eekert, Miriam; van Riel, Johan

    2015-01-01

    Anaerobic digestion of manure is a widely accepted technology for energy production. However, only a minimal portion of the manure production in the EU is anaerobically digested and occurs predominantly in codigestion plants. There is substantial potential for biogas plants that primarily operate on manure (>90%); however, the methane yields of manure are less compared to coproducts, which is one of the reasons for manure-based biogas plants often being economically non-viable. Therefore, it is essential to begin increasing the efficiency of these biogas plants. This study investigated the effect of decreasing retention time and introducing a moderate amount of glycerin on the biogas production as methods to improve efficiency. An experiment has been conducted with two different manure types in four biogas reactors. The results of the study demonstrated that, first, it was possible to decrease the retention time to 10–15 days; however, the effect on biogas production varied per manure type. Secondly, the biogas production almost triples at a retention time of 15.6 days with an addition of 4% glycerin. The relative production-enhancing effect of glycerin did not vary significantly with both manure types. However, the absolute production-enhancing effect of glycerin differed per manure type since the biogas production per gram VS differed per manure type. Thirdly, the positive effect of the glycerin input declines with shorter retention times. Therefore, the effect of glycerin addition depends on the manure type and retention time. PMID:25401272

  19. Optimizing the performance of a reactor by reducing the retention time and addition of glycerin for anaerobically digesting manure.

    PubMed

    Timmerman, Maikel; Schuman, Els; van Eekert, Miriam; van Riel, Johan

    2015-01-01

    Anaerobic digestion of manure is a widely accepted technology for energy production. However, only a minimal portion of the manure production in the EU is anaerobically digested and occurs predominantly in codigestion plants. There is substantial potential for biogas plants that primarily operate on manure (>90%); however, the methane yields of manure are less compared to coproducts, which is one of the reasons for manure-based biogas plants often being economically non-viable. Therefore, it is essential to begin increasing the efficiency of these biogas plants. This study investigated the effect of decreasing retention time and introducing a moderate amount of glycerin on the biogas production as methods to improve efficiency. An experiment has been conducted with two different manure types in four biogas reactors. The results of the study demonstrated that, first, it was possible to decrease the retention time to 10-15 days; however, the effect on biogas production varied per manure type. Secondly, the biogas production almost triples at a retention time of 15.6 days with an addition of 4% glycerin. The relative production-enhancing effect of glycerin did not vary significantly with both manure types. However, the absolute production-enhancing effect of glycerin differed per manure type since the biogas production per gram VS differed per manure type. Thirdly, the positive effect of the glycerin input declines with shorter retention times. Therefore, the effect of glycerin addition depends on the manure type and retention time.

  20. Zeolite and swine inoculum effect on poultry manure biomethanation

    NASA Astrophysics Data System (ADS)

    Kougias, P. G.; Fotidis, I. A.; Zaganas, I. D.; Kotsopoulos, T. A.; Martzopoulos, G. G.

    2013-03-01

    Poultry manure is an ammonia-rich substrate that inhibits methanogenesis, causing severe problems to the anaerobic digestion process. In this study, the effect of different natural zeolite concentrations on the mesophilic anaerobic digestion of poultry waste inoculated with well-digested swine manure was investigated. A significant increase in methane production was observed in treatments where zeolite was added, compared to the treatment without zeolite.Methane production in the treatment with 10 g dm-3 of natural zeolite was found to be 109.75% higher compared to the treatment without zeolite addition. The results appear to be influenced by the addition of zeolite, which reduces ammonia toxicity in anaerobic digestion and by the ammonia-tolerant swine inoculum.

  1. Psychrophilic anaerobic digestion of guinea pig manure in low-cost tubular digesters at high altitude.

    PubMed

    Garfí, Marianna; Ferrer-Martí, Laia; Villegas, Vidal; Ferrer, Ivet

    2011-05-01

    Guinea pig is one of the most common livestock in rural communities of the Andes. The aim of this research was to study the anaerobic digestion of guinea pig manure in low-cost unheated tubular digesters at high altitude. To this end, the performance of two pilot digesters was monitored during 7 months; and two greenhouse designs were compared. In the dome roof digester the temperature and biogas production were significantly higher than in the shed roof digester. However, the biogas production rate was low (0.04 m(biogas)(3)m(digester)(-3) d(-1)), which is attributed to the low organic loading rate (0.6 kg(VS)m(digester)(-3)d(-1)) and temperature (23°C) of the system, among other factors. In a preliminary fertilization study, the potato yield per hectare was increased by 100% using the effluent as biofertilizer. Improving manure management techniques, increasing the organic loading rate and co digesting other substrates may be considered to enhance the process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Occurrence and transformation of veterinary antibiotics and antibiotic resistance genes in dairy manure treated by advanced anaerobic digestion and conventional treatment methods.

    PubMed

    Wallace, Joshua S; Garner, Emily; Pruden, Amy; Aga, Diana S

    2018-05-01

    Manure treatment technologies are rapidly developing to minimize eutrophication of surrounding environments and potentially decrease the introduction of antibiotics and antibiotic resistant genes (ARGs) into the environment. While laboratory and pilot-scale manure treatment systems boast promising results, antibiotic and ARG removals in full-scale systems receiving continuous manure input have not been evaluated. The effect of treatment on ARGs is similarly lacking. This study examines the occurrence and transformation of sulfonamides, tetracyclines, tetracycline degradation products, and related ARGs throughout a full-scale advanced anaerobic digester (AAD) receiving continuous manure and antibiotic input. Manure samples were collected throughout the AAD system to evaluate baseline antibiotic and ARG input (raw manure), the effect of hygenization (post-pasteurized manure) and anaerobic digestion (post-digestion manure) on antibiotic and ARG levels. Antibiotics were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and the ARGs tet(O), tet(W), sul1 and sul2 were analyzed by quantitative polymerase chain reaction (Q-PCR). Significant reductions in the concentrations of chlortetracycline, oxytetracycline, tetracycline and their degradation products were observed in manure liquids following treatment (p < 0.001), concomitant to significant increases in manure solids (p < 0.001). These results suggest sorption is the major removal route for tetracyclines during AAD. Significant decreases in the epimer-to-total residue ratios for chlortetracycline and tetracycline in manure solids further indicate degradation is desorption-limited. Moreover, sul1 and sul2 copies decreased significantly (p < 0.001) following AAD in the absence of sulfonamide antibiotics, while tetracyclines-resistant genes remained unchanged. A cross-sectional study of dairy farms utilizing natural aeration and liquid-solid separation treatments was additionally performed to compare levels of antibiotics and ARGs found in AAD with the levels in common manure management systems. The concentration of antibiotics in raw manure varied greatly between farms while minimal differences in ARGs were observed. However, significant (p < 0.01) differences in the levels of antibiotics and ARGs (except tet(W)) were observed in the effluents from the three different manure management systems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Laboratory testing on the removal of the veterinary antibiotic doxycycline during long-term liquid pig manure and digestate storage.

    PubMed

    Widyasari-Mehta, Arum; Suwito, Hanna Resti Kartika Ayu; Kreuzig, Robert

    2016-04-01

    The veterinary antibiotic doxycycline (DOXY) is today frequently applied in conventional pig husbandry for the control of respiratory diseases. After the treatment, pigs excrete major amounts of DOXY as the unchanged active substance. Thus, DOXY residues were found in liquid manures and digestates of biogas plants at concentrations of mg kg(-1) dry weight. In order to assess the impact of field applications of contaminated manures and digestates on the entry of DOXY residues into arable and grassland soils, thorough information about the removal of DOXY during long-term storage of farm fertilizers is required. Since this aspect has been only less investigated for manures but not for digestates, first long-term storage simulation tests were performed at laboratory scale. Within the 170-d incubation periods under strictly anaerobic conditions, doxycycline was removed in liquid pig manure by 61% and in digestate by 76%. The calculated half-lives of 120 d and 91 d thus emphasized the persistence of doxycycline in both matrices. Due to the substance specific properties of DOXY, this removal was caused neither by mineralization, epimerization nor biotransformation. According to the high affinity of DOXY to manure and digestate solids, however, the formation of non-extractable residues has to be taken into account as the predominant concentration determining process. This was indicated by the sequential extraction procedure applied. Hence, these results confirmed that a full removal capacity for doxycycline cannot be reached through the long-term storage of farm fertilizers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Fertilizer performance of liquid fraction of digestate as synthetic nitrogen substitute in silage maize cultivation for three consecutive years.

    PubMed

    Sigurnjak, I; Vaneeckhaute, C; Michels, E; Ryckaert, B; Ghekiere, G; Tack, F M G; Meers, E

    2017-12-01

    Following changes over recent years in fertilizer legislative framework throughout Europe, phosphorus (P) is taking over the role of being the limiting factor in fertilizer application rate of animal manure. This results in less placement area for spreading animal manure. As a consequence, more expensive and energy demanding synthetic fertilizers are required to meet crop nutrient requirements despite existing manure surpluses. Anaerobic digestion followed by mechanical separation of raw digestate, results in liquid fraction (LF) of digestate, a product poor in P but rich in nitrogen (N) and potassium (K). A 3-year field experiment was conducted to evaluate the impact of using the LF of digestate as a (partial) substitute for synthetic N fertilizer. Two different fertilization strategies, the LF of digestate in combination with respectively animal manure and digestate, were compared to the conventional fertilization regime of raw animal manure with synthetic fertilizers. Results from the 3-year trial indicate that the LF of digestate may substitute synthetic N fertilizers without crop yield losses. Through fertilizer use efficiency assessment it was observed that under-fertilization of soils with a high P status could reduce P availability and consequently the potential for P leaching. Under conditions of lower K application, more sodium was taken up by the crop. In arid regions, this effect might reduce the potential risk of salt accumulation that is associated with organic fertilizer application. Finally, economic and ecological benefits were found to be higher when LF of digestate was used as a synthetic N substitute. Future perspectives indicate that nutrient variability in bio-based fertilizers will be one of the greatest challenges to address in the future utilization of these products. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Enhanced biogas production from anaerobic co-digestion of pig slurry and horse manure with mechanical pre-treatment.

    PubMed

    Lopes, Madalena; Baptista, Patrícia; Duarte, Elizabeth; Moreira, António L N

    2018-01-02

    Enhanced biogas production from anaerobic co-digestion of pig slurry and horse manure with mechanical pre-treatment. In this study, co-digestion of horse manure and pig slurry was investigated in a continuously stirred tank reactor, with a mechanical pre-treatment. Experiments were conducted at 37°C, with hydraulic retention times of 23 days and increasing shares of horse manure, corresponding to different horse manure to pig slurry ratios (HM:PS) equal to 0:100, 10:90, 13:87 and 20:80, in terms of percentage of inlet volatile solids (%VS inlet). The results show that the best synergetic effect between the microbial consortia of pig slurry and the high Carbon to Nitrogen ratio (C/N) of horse manure is obtained for the mixture of 20:80%VS inlet, yielding the highest specific methane production (SMP = 142.6 L kg TCOD -1 ) and the highest soluble chemical oxygen demand (SCOD) reduction (68.5%), due to the high volatile dissolved solids content and soluble chemical oxygen demand to total chemical oxygen demand ratio (SCOD/TCOD). Thus, co-digestion of horse manure and pig slurry is shown to be a promising approach for biogas production and as a waste treatment solution. Furthermore, the analysis provides a methodology for the pre-treatment of these substrates and to investigate into the best combination for improved biogas production.

  6. Effect of corn silage hybrids differing in starch and neutral detergent fiber digestibility on lactation performance and total-tract nutrient digestibility by dairy cows.

    PubMed

    Ferraretto, L F; Fonseca, A C; Sniffen, C J; Formigoni, A; Shaver, R D

    2015-01-01

    Selection for hybrids with greater starch and NDF digestibility may be beneficial for dairy producers. The objective of this study was to determine the effect of feeding a TMR containing a floury-leafy corn silage hybrid (LFY) compared with a brown midrib corn silage hybrid (BMR) for intake, lactation performance, and total-tract nutrient digestibility in dairy cows. Ninety-six multiparous Holstein cows, 105±31d in milk at trial initiation, were stratified by DIM and randomly assigned to 12 pens of 8 cows each. Pens were randomly assigned to 1 of 2 treatments, BMR or LFY, in a completely randomized design; a 2-wk covariate period with cows fed a common diet followed by a 14-wk treatment period with cows fed their assigned treatment diet. Starch digestibilities, in situ, in vitro, and in vivo, were greater for LFY compared with BMR; the opposite was observed for NDF digestibility. Cows fed BMR consumed 1.7kg/d more dry matter than LFY. Although, actual-, energy-, and solids-corrected milk yields were greater for BMR than LFY, feed conversions (kg of milk or component-corrected milk per kg of DMI) did not differ. Fat-corrected milk and milk fat yield were similar, as milk fat content was greater for cows fed LFY (4.05%) than BMR (3.83%). Cows fed BMR had lower milk urea nitrogen concentration, but greater milk protein and lactose yields compared with LFY. Body weight change and condition score were unaffected by treatment. Total-tract starch digestibility was greater for cows fed the LFY corn silage; however, dry matter intake and milk and protein yields were greater for cows fed the BMR corn silage. Although total-tract starch digestibility was greater for cows fed the LFY corn silage, feed efficiency was not affected by hybrid type due to greater dry matter intake and milk and protein yields by cows fed the BMR corn silage. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. Mass and Energy Balances of Dry Thermophilic Anaerobic Digestion Treating Swine Manure Mixed with Rice Straw.

    PubMed

    Zhou, Sheng; Zhang, Jining; Zou, Guoyan; Riya, Shohei; Hosomi, Masaaki

    2015-01-01

    To evaluate the feasibility of swine manure treatment by a proposed Dry Thermophilic Anaerobic Digestion (DT-AD) system, we evaluated the methane yield of swine manure treated using a DT-AD method with rice straw under different C/N ratios and solid retention time (SRT) and calculated the mass and energy balances when the DT-AD system is used for swine manure treatment from a model farm with 1000 pigs and the digested residue is used for forage rice production. A traditional swine manure treatment Oxidation Ditch system was used as the study control. The results suggest that methane yield using the proposed DT-AD system increased with a higher C/N ratio and shorter SRT. Correspondently, for the DT-AD system running with SRT of 80 days, the net energy yields for all treatments were negative, due to low biogas production and high heat loss of digestion tank. However, the biogas yield increased when the SRT was shortened to 40 days, and the generated energy was greater than consumed energy when C/N ratio was 20 : 1 and 30 : 1. The results suggest that with the correct optimization of C/N ratio and SRT, the proposed DT-AD system, followed by using digestate for forage rice production, can attain energy self-sufficiency.

  8. Mass and Energy Balances of Dry Thermophilic Anaerobic Digestion Treating Swine Manure Mixed with Rice Straw

    PubMed Central

    Zhou, Sheng; Zhang, Jining; Zou, Guoyan; Riya, Shohei; Hosomi, Masaaki

    2015-01-01

    To evaluate the feasibility of swine manure treatment by a proposed Dry Thermophilic Anaerobic Digestion (DT-AD) system, we evaluated the methane yield of swine manure treated using a DT-AD method with rice straw under different C/N ratios and solid retention time (SRT) and calculated the mass and energy balances when the DT-AD system is used for swine manure treatment from a model farm with 1000 pigs and the digested residue is used for forage rice production. A traditional swine manure treatment Oxidation Ditch system was used as the study control. The results suggest that methane yield using the proposed DT-AD system increased with a higher C/N ratio and shorter SRT. Correspondently, for the DT-AD system running with SRT of 80 days, the net energy yields for all treatments were negative, due to low biogas production and high heat loss of digestion tank. However, the biogas yield increased when the SRT was shortened to 40 days, and the generated energy was greater than consumed energy when C/N ratio was 20 : 1 and 30 : 1. The results suggest that with the correct optimization of C/N ratio and SRT, the proposed DT-AD system, followed by using digestate for forage rice production, can attain energy self-sufficiency. PMID:26609436

  9. Anaerobic co-digestion of cyanide containing cassava pulp with pig manure.

    PubMed

    Glanpracha, Naraporn; Annachhatre, Ajit P

    2016-08-01

    Anaerobic co-digestion of cyanide-containing cassava pulp with pig manure was evaluated using laboratory scale mesophilic digester. The digester was operated in a semi-continuous mode with the mixed feedstock having C/N ratio of 35:1. Digester startup was accomplished in 60days with loading of 0.5-1kgVS/m(3)d. Subsequently, the loading to digester was increased step-wise from 2 to 9kgVS/m(3)d. Digester performance was stable at loading between 2 and 6kgVS/m(3)d with an average volatile solid removal and methane yield of 82% and 0.38m(3)/kgVSadded, respectively. However, beyond loading of 7kgVS/m(3)d, solubilization of particulate matter did not take place efficiently. Cyanide present in cassava pulp was successfully degraded indicating that anaerobic sludge in the digester was well acclimatized to cyanide. The results show that cassava pulp can be successfully digested anaerobically with pig manure as co-substrate without any inhibitory effect of cyanide present in the cassava pulp. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Using Fenton Oxidation to Simultaneously Remove Different Estrogens from Cow Manure

    PubMed Central

    Sun, Minxia; Xu, Defu; Ji, Yuefei; Liu, Juan; Ling, Wanting; Li, Shunyao; Chen, Mindong

    2016-01-01

    The presence of estrogens in livestock excrement has raised concerns about their potential negative influence on animals and the overall food cycle. This is the first investigation to simultaneously remove estrogens, including estriol (E3), bisphenol A (BPA), diethylstilbestrol (DES), estradiol (E2), and ethinyl estradiol (EE2), from cow manure using a Fenton oxidation technique. Based on the residual concentrations and removal efficiency of estrogens, the Fenton oxidation reaction conditions were optimized as follows: a H2O2 dosage of 2.56 mmol/g, a Fe(II) to H2O2 molar ratio of 0.125 M/M, a solid to water mass ratio of 2 g/mL, an initial pH of 3, and a reaction time of 24 h. Under these conditions, the simultaneous removal efficiencies of E3, BPA, DES, E2, and EE2, with initial concentrations in cow manure of 97.40, 96.54, 100.22, 95.01, and 72.49 mg/kg, were 84.9%, 99.5%, 99.1%, 97.8%, and 84.5%, respectively. We clarified the possible Fenton oxidation reaction mechanisms that governed the degradation of estrogens. We concluded that Fenton oxidation technique could be effective for efficient removal of estrogens in livestock excrement. Results are of great importance for cow manure reuse in agricultural management, and can be used to reduce the threat of environmental estrogens to human health and ecological safety. PMID:27649223

  11. Effects of co-digestion of cucumber residues to corn stover and pig manure ratio on methane production in solid state anaerobic digestion.

    PubMed

    Wang, Yaya; Li, Guoxue; Chi, Menghao; Sun, Yanbo; Zhang, Jiaxing; Jiang, Shixu; Cui, Zongjun

    2018-02-01

    This study investigated the performance of co-digesting cucumber residues, corn stover, and pig manure at different ratios. Microbial community structure was analyzed to elucidate functional microorganism contributing to methane production during co-digestion. Results show that mixing cucumber residues with pig manure and corn stover could significantly improved methane yields 1.27-3.46 times higher than mono-feedstock. The methane yields decreased with the cucumber residues increasing when the pig manure ratio was fixed at 4 and 3, and was opposite at ratio 5. The optimal mixture ratio was T2 with the highest methane yield (305.4 mL/g VS) and co-digestion performance index (1.97). The main microbiological community in T2 was bacteria of Firmicutes (44.6%), Bacteroidetes (32.5%), Synergistetes (3.8%) and archaea of Methanosaeta (37.1%), Methanospirillum (18.2%). The mixture ratios changed the microbial community structures. The adding proportion of cucumber residues changed the community composition of the archaea, especially the proportion of Methanosaeta. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. The effects of temperature, organic matter and time-dependency on rheological properties of dry anaerobic digested swine manure.

    PubMed

    Liu, Gang-Jin; Liu, Yi; Wang, Zhi-Yong; Lei, Yun-Hui; Chen, Zi-Ai; Deng, Liang-Wei

    2015-04-01

    An efficient way to avoid the pollution of swine wastewater is the application of dry anaerobic digestion, which needs rheological parameter for stirring and pipe designing. The rheological properties of this kind of sludge have been studied for many decades, yet their effects only solid concentration has been investigated widely. In this paper, the influences of temperature, organic and time-dependency on the efficiency of anaerobic digested swine manure were studied. The viscosity decreased with temperature arranged from 10 to 60 °C which caused increase in protein from 7.18 to 8.49 g/kg. 60 °C can make the digested swine manure with TS from 16.6% to 21.5% reach to the same rheology state. The added peptone decreased the viscosity because of its function of water-reducing admixture and air entraining mixture. Time-dependent experiment showed the decrease of shear stress over time. The first and the second yield stress of dry anaerobic digested swine manure were evaluated through time-dependent model. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Kinetics of Methane Production from Swine Manure and Buffalo Manure.

    PubMed

    Sun, Chen; Cao, Weixing; Liu, Ronghou

    2015-10-01

    The degradation kinetics of swine and buffalo manure for methane production was investigated. Six kinetic models were employed to describe the corresponding experimental data. These models were evaluated by two statistical measurements, which were root mean square prediction error (RMSPE) and Akaike's information criterion (AIC). The results showed that the logistic and Fitzhugh models could predict the experimental data very well for the digestion of swine and buffalo manure, respectively. The predicted methane yield potential for swine and buffalo manure was 487.9 and 340.4 mL CH4/g volatile solid (VS), respectively, which was close to experimental values, when the digestion temperature was 36 ± 1 °C in the biochemical methane potential assays. Besides, the rate constant revealed that swine manure had a much faster methane production rate than buffalo manure.

  14. Diverse Antibiotic Resistance Genes in Dairy Cow Manure

    PubMed Central

    Wichmann, Fabienne; Udikovic-Kolic, Nikolina; Andrew, Sheila; Handelsman, Jo

    2014-01-01

    ABSTRACT Application of manure from antibiotic-treated animals to crops facilitates the dissemination of antibiotic resistance determinants into the environment. However, our knowledge of the identity, diversity, and patterns of distribution of these antibiotic resistance determinants remains limited. We used a new combination of methods to examine the resistome of dairy cow manure, a common soil amendment. Metagenomic libraries constructed with DNA extracted from manure were screened for resistance to beta-lactams, phenicols, aminoglycosides, and tetracyclines. Functional screening of fosmid and small-insert libraries identified 80 different antibiotic resistance genes whose deduced protein sequences were on average 50 to 60% identical to sequences deposited in GenBank. The resistance genes were frequently found in clusters and originated from a taxonomically diverse set of species, suggesting that some microorganisms in manure harbor multiple resistance genes. Furthermore, amid the great genetic diversity in manure, we discovered a novel clade of chloramphenicol acetyltransferases. Our study combined functional metagenomics with third-generation PacBio sequencing to significantly extend the roster of functional antibiotic resistance genes found in animal gut bacteria, providing a particularly broad resource for understanding the origins and dispersal of antibiotic resistance genes in agriculture and clinical settings. PMID:24757214

  15. Comparison on batch anaerobic digestion of five different livestock manures and prediction of biochemical methane potential (BMP) using different statistical models.

    PubMed

    Kafle, Gopi Krishna; Chen, Lide

    2016-02-01

    There is a lack of literature reporting the methane potential of several livestock manures under the same anaerobic digestion conditions (same inoculum, temperature, time, and size of the digester). To the best of our knowledge, no previous study has reported biochemical methane potential (BMP) predicting models developed and evaluated by solely using at least five different livestock manure tests results. The goal of this study was to evaluate the BMP of five different livestock manures (dairy manure (DM), horse manure (HM), goat manure (GM), chicken manure (CM) and swine manure (SM)) and to predict the BMP using different statistical models. Nutrients of the digested different manures were also monitored. The BMP tests were conducted under mesophilic temperatures with a manure loading factor of 3.5g volatile solids (VS)/L and a feed to inoculum ratio (F/I) of 0.5. Single variable and multiple variable regression models were developed using manure total carbohydrate (TC), crude protein (CP), total fat (TF), lignin (LIG) and acid detergent fiber (ADF), and measured BMP data. Three different kinetic models (first order kinetic model, modified Gompertz model and Chen and Hashimoto model) were evaluated for BMP predictions. The BMPs of DM, HM, GM, CM and SM were measured to be 204, 155, 159, 259, and 323mL/g VS, respectively and the VS removals were calculated to be 58.6%, 52.9%, 46.4%, 81.4%, 81.4%, respectively. The technical digestion time (T80-90, time required to produce 80-90% of total biogas production) for DM, HM, GM, CM and SM was calculated to be in the ranges of 19-28, 27-37, 31-44, 13-18, 12-17days, respectively. The effluents from the HM showed the lowest nitrogen, phosphorus and potassium concentrations. The effluents from the CM digesters showed highest nitrogen and phosphorus concentrations and digested SM showed highest potassium concentration. Based on the results of the regression analysis, the model using the variable of LIG showed the best (R(2)=0.851, p=0.026) for BMP prediction among the single variable models, and the model including variables of TC and TF showed the best prediction for BMPs (R(2)=0.913, p=0.068-0.075) comparing with other two-variable models, while the model including variables of CP, LIG and ADF performed the best in BMP prediction (R(2)=0.999, p=0.009-0.017) if three-variable models were compared. Among the three kinetic models used, the first order kinetic model fitted the measured BMPs data best (R(2)=0.996-0.998, rRMSE=0.171-0.381) and deviations between measured and the first order kinetic model predicted BMPs were less than 3.0%. Published by Elsevier Ltd.

  16. Optimization of Aqueous Ammonia Soaking of manure fibers by Response Surface Methodology for unlocking the methane potential of swine manure.

    PubMed

    Lymperatou, Anna; Gavala, Hariklia N; Skiadas, Ioannis V

    2017-11-01

    Swine manure mono-digestion often results to economically non-feasible processes, due to the high dilution and ammonia concentration together with the low degradation rates it presents. The effects of different parameters of Aqueous Ammonia Soaking (AAS) as a pretreatment for improving the digestion of manure fibers when coupled to an ammonia removal step were investigated in this study. Response Surface Methodology was followed and the influence and interactions of the following AAS parameters were studied: NH 3 concentration, duration and solid-to-liquid ratio. The mild conditions found to be optimal (7%w/w NH 3 , 96h, and 0.16kg/L) in combination to a significant increase of the short term CH 4 yield (244% in 17days), make this pretreatment a promising solution for improving swine manure mono-digestion. Furthermore, compositional analysis of the manure fibers revealed significant solubilization of hemicellulose, while no lignin removal or loss of cellulose occurred under optimal conditions. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Comparison of anaerobic digestion characteristics and kinetics of four livestock manures with different substrate concentrations.

    PubMed

    Li, Kun; Liu, Ronghou; Sun, Chen

    2015-12-01

    Anaerobic digestions of pig manure (PM), dairy manure (DM), chicken manure (CM) and rabbit manure (RM) at initial volatile solid loading (VSL) of 8 g VS/L, 16 g VS/L, 32 g VS/L, 64 g VS/L were investigated under mesophilic conditions. The maximum methane yields of 410, 270, 377 and 323 mL CH4/g VSadded for PM, DM, CM and RM were all obtained at initial VSL of 8 g VS/L, respectively. The improvement of substrate concentration to 64 g VS/L not only decreased the methane yield and biodegradability both by 22.4%, 37.3%, 49.1% and 34.6% for PM, DM, CM and RM respectively, but also reduced the methane content in final biogas production. The Cone model (R(2): 0.9910-0.9974) showed a better fit to the experiment data and the calculated parameters indicated that anaerobic digestion of manures at higher loading has longer lag phase and lower hydrolysis rate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Comparing environmental consequences of anaerobic mono- and co-digestion of pig manure to produce bio-energy--a life cycle perspective.

    PubMed

    De Vries, J W; Vinken, T M W J; Hamelin, L; De Boer, I J M

    2012-12-01

    The aim of this work was to assess the environmental consequences of anaerobic mono- and co-digestion of pig manure to produce bio-energy, from a life cycle perspective. This included assessing environmental impacts and land use change emissions (LUC) required to replace used co-substrates for anaerobic digestion. Environmental impact categories considered were climate change, terrestrial acidification, marine and freshwater eutrophication, particulate matter formation, land use, and fossil fuel depletion. Six scenarios were evaluated: mono-digestion of manure, co-digestion with: maize silage, maize silage and glycerin, beet tails, wheat yeast concentrate (WYC), and roadside grass. Mono-digestion reduced most impacts, but represented a limited source for bio-energy. Co-digestion with maize silage, beet tails, and WYC (competing with animal feed), and glycerin increased bio-energy production (up to 568%), but at expense of increasing climate change (through LUC), marine eutrophication, and land use. Co-digestion with wastes or residues like roadside grass gave the best environmental performance. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Methane Recovery from Animal Manures The Current Opportunities Casebook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lusk, P.

    1998-09-22

    Growth and concentration of the livestock industry create opportunities for the proper disposal of the large quantities of manures generated at dairy, swine, and poultry farms. Pollutants from unmanaged livestock wastes can degrade the environment, and methane emitted from decomposing manure may contribute to global climate change. One management system not only helps prevent pollution but can also convert a manure problem into a new profit center. Economic evaluations and case studies of operating systems indicate that the anaerobic digestion of livestock manures is a commercially viable conversion technology with considerable potential for providing profitable coproducts, including a cost-effective renewablemore » fuel for livestock production operations. This casebook examines some of the current opportunities for recovering methane from anaerobic digestion animal manures.« less

  20. Co-digestion of manure and industrial waste--The effects of trace element addition.

    PubMed

    Nordell, Erik; Nilsson, Britt; Nilsson Påledal, Sören; Karisalmi, Kaisa; Moestedt, Jan

    2016-01-01

    Manure is one of the most common substrates for biogas production. Manure from dairy- and swine animals are often considered to stabilize the biogas process by contributing nutrients and trace elements needed for the biogas process. In this study two lab-scale reactors were used to evaluate the effects of trace element addition during co-digestion of manure from swine- and dairy animals with industrial waste. The substrate used contained high background concentrations of both cobalt and nickel, which are considered to be the most important trace elements. In the reactor receiving additional trace elements, the volatile fatty acids (VFA) concentration was 89% lower than in the control reactor. The lower VFA concentration contributed to a more digested digestate, and thus lower methane emissions in the subsequent storage. Also, the biogas production rate increased with 24% and the biogas production yield with 10%, both as a result of the additional trace elements at high organic loading rates. All in all, even though 50% of the feedstock consisted of manure, trace element addition resulted in multiple positive effects and a more reliable process with stable and high yield. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Relationship between residual feed intake and digestibility for lactating Holstein cows fed high and low starch diets.

    PubMed

    Potts, S B; Boerman, J P; Lock, A L; Allen, M S; VandeHaar, M J

    2017-01-01

    We determined if differences in digestibility among cows explained variation in residual feed intake (RFI) in 4 crossover design experiments. Lactating Holstein cows (n=109; 120±30d in milk; mean ± SD) were fed diets high (HS) or low (LS) in starch. The HS diets were 30% (±1.8%) starch and 27% (±1.2%) neutral detergent fiber (NDF); LS diets were 14% (±2.2%) starch and 40% (±5.3%) NDF. Each experiment consisted of two 28-d treatment periods, with apparent total-tract digestibility measured using indigestible NDF as an internal marker during the last 5d of each period. Individual cow dry matter (DM) intake and milk yield were recorded daily, body weight was measured 3 to 5 times per week, and milk components were analyzed 2 d/wk. Individual DM intake was regressed on milk energy output, metabolic body weight, body energy gain, and fixed effects of parity, experiment, cohort (a group of cows that received treatments in the same sequence) nested within experiment, and diet nested within cohort and experiment, with the residual being RFI. High RFI cows ate more than expected and were deemed less efficient. Residual feed intake correlated negatively with digestibility of starch for both HS (r=-0.31) and LS (r=-0.23) diets, and with digestibilities of DM (r=-0.30) and NDF (r=-0.23) for LS diets but was not correlated with DM or NDF digestibility for HS diets. For each cohort within an experiment, cows were classified as high RFI (HRFI; >0.5 SD), medium RFI (MRFI; ±0.5 SD), and low RFI (LRFI; <-0.5 SD). Digestibility of DM was similar (~66%) among HRFI and LRFI for HS diets but greater for LRFI when fed LS diets (64 vs. 62%). For LS diets, digestibility of DM could account for up to 31% of the differences among HRFI and LRFI for apparent diet energy density, as determined from individual cow performance, indicating that digestibility explains some of the between-animal differences for the ability to convert gross energy into net energy. Some of the differences in digestibility between HRFI and LRFI were expected because cows with high RFI eat at a greater multiple of maintenance, and greater intake is associated with increased passage rate and digestibility depression. Based on these data, we conclude that a cow's digestive ability explains none of the variation in RFI for cows eating high starch diets but 9 to 31% of the variation in RFI when cows are fed low starch diets. Perhaps differences in other metabolic processes, such as tissue turnover, heat production, or others related to maintenance, can account for more variation in RFI than digestibility. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Effect of ultrasound pre-treatment in the anaerobic co-digestion of cattle manure with food waste and sludge.

    PubMed

    Quiroga, G; Castrillón, L; Fernández-Nava, Y; Marañón, E; Negral, L; Rodríguez-Iglesias, J; Ormaechea, P

    2014-02-01

    This paper presents a study of the effect of applying ultrasound pre-treatment in the production of methane when co-digesting mixtures of cattle manure with food waste and sludge. A series of experiments were carried out under mesophilic and thermophilic conditions in continuously stirred-tank reactors containing 70% cattle manure, 20% food waste and 10% sewage sludge. Ultrasound pre-treatment allows operating at lower HRT, achieving higher volumetric methane yields: 0.85 L CH4/L day at 36°C and 0.82 CH4/L day at 55°C, when cattle manure and sewage sludge were sonicated. With respect to the non-sonicated waste, these values represent increases of up to 31% and 67% for mesophilic and thermophilic digestion, respectively. Copyright © 2014. Published by Elsevier Ltd.

  3. Modelling the energy balance of an anaerobic digester fed with cattle manure and renewable energy crops.

    PubMed

    Lübken, Manfred; Wichern, Marc; Schlattmann, Markus; Gronauer, Andreas; Horn, Harald

    2007-10-01

    Knowledge of the net energy production of anaerobic fermenters is important for reliable modelling of the efficiency of anaerobic digestion processes. By using the Anaerobic Digestion Model No. 1 (ADM1) the simulation of biogas production and composition is possible. This paper shows the application and modification of ADM1 to simulate energy production of the digestion of cattle manure and renewable energy crops. The paper additionally presents an energy balance model, which enables the dynamic calculation of the net energy production. The model was applied to a pilot-scale biogas reactor. It was found in a simulation study that a continuous feeding and splitting of the reactor feed into smaller heaps do not generally have a positive effect on the net energy yield. The simulation study showed that the ratio of co-substrate to liquid manure in the inflow determines the net energy production when the inflow load is split into smaller heaps. Mathematical equations are presented to calculate the increase of biogas and methane yield for the digestion of liquid manure and lipids for different feeding intervals. Calculations of different kinds of energy losses for the pilot-scale digester showed high dynamic variations, demonstrating the significance of using a dynamic energy balance model.

  4. The Impact of Input and Output Prices on The Household Economic Behavior of Rice-Livestock Integrated Farming System (Rlifs) and Non Rlifs Farmers

    NASA Astrophysics Data System (ADS)

    Lindawati, L.; Kusnadi, N.; Kuntjoro, S. U.; Swastika, D. K. S.

    2018-02-01

    Integrated farming system is a system that emphasized linkages and synergism of farming units waste utilization. The objective of the study was to analyze the impact of input and output prices on both Rice Livestock Integrated Farming System (RLIFS) and non RLIFS farmers. The study used econometric model in the form of a simultaneous equations system consisted of 36 equations (18 behavior and 18 identity equations). The impact of changes in some variables was obtained through simulation of input and output prices on simultaneous equations. The results showed that the price increasing of the seed, SP-36, urea, medication/vitamins, manure, bran, straw had negative impact on production of the rice, cow, manure, bran, straw and household income. The decrease in the rice and cow production, production input usage, allocation of family labor, rice and cow business income was greater in RLIFS than non RLIFS farmers. The impact of rising rice and cow cattle prices in the two groups of farmers was not too much different because (1) farming waste wasn’t used effectively (2) manure and straw had small proportion of production costs. The increase of input and output price didn’t have impact on production costs and household expenditures on RLIFS.

  5. Opportunities for optimization: fate of manure-borne pathogens during anaerobic digestion and solids separation

    USDA-ARS?s Scientific Manuscript database

    Anaerobic digestion can inactivate zoonotic pathogens present in cattle manure, which reduces transmission of these pathogens from farms to humans through the environment. However, the variability in extent of inactivation across farms and over time is unknown because most studies have examined pat...

  6. Impact of food industrial waste on anaerobic co-digestion of sewage sludge and pig manure.

    PubMed

    Murto, M; Björnsson, L; Mattiasson, B

    2004-02-01

    The performance of an anaerobic digestion process is much dependent on the type and the composition of the material to be digested. The effects on the degradation process of co-digesting different types of waste were examined in two laboratory-scale studies. In the first investigation, sewage sludge was co-digested with industrial waste from potato processing. The co-digestion resulted in a low buffered system and when the fraction of starch-rich waste was increased, the result was a more sensitive process, with process overload occurring at a lower organic loading rate (OLR). In the second investigation, pig manure, slaughterhouse waste, vegetable waste and various kinds of industrial waste were digested. This resulted in a highly buffered system as the manure contributed to high amounts of ammonia. However, it is important to note that ammonia might be toxic to the micro-organisms. Although the conversion of volatile fatty acids was incomplete the processes worked well with high gas yields, 0.8-1.0 m3 kg(-1) VS.

  7. Comparison of varying operating parameters on heavy metals ecological risk during anaerobic co-digestion of chicken manure and corn stover.

    PubMed

    Yan, Yilong; Zhang, Liqiu; Feng, Li; Sun, Dezhi; Dang, Yan

    2018-01-01

    In this study, the potential ecological risk of heavy metals (Mn, Zn, Cu, Ni, As, Cd, Pb, Cr) accumulation from anaerobic co-digestion of chicken manure (CM) and corn stover (CS) was evaluated by comparing different initial substrate concentrations, digestion temperatures, and mixture ratios. Results showed that the highest volumetric methane yield of 20.3±1.4L/L reactor was achieved with a CS:CM ratio of 3:1 (on volatile solid basis) in mesophilic solid state anaerobic digestion (SS-AD). Although co-digestion increased the concentrations of all tested heavy metals and the direct toxicity of some heavy metals, the potential ecological risk index indicated that the digestates were all classified as low ecological risk. The biogasification and risk variation of heavy metals were affected by the operating parameters. These results are significant and should be taken into consideration when optimizing co-digestion of animal manure and crop residues during full-scale projects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Pathogen inactivation in liquid dairy manure during anaerobic and aerobic digestions

    NASA Astrophysics Data System (ADS)

    Biswas, S.; Pandey, P.; Castillo, A. R.; Vaddella, V. K.

    2014-12-01

    Controlling manure-borne pathogens such as E. coli O157:H7, Salmonella spp. and Listeria monocytogenes are crucial for protecting surface and ground water as well as mitigating risks to human health. In California dairy farms, flushing of dairy manure (mainly animal feces and urine) from freestall barns and subsequent liquid-solid manure separation is a common practice for handling animal waste. The liquid manure fraction is generally pumped into the settling ponds and it goes into aerobic and/or anaerobic lagoons for extended period of time. Considering the importance of controlling pathogens in animal waste, the objective of the study was to understand the effects of anaerobic and aerobic digestions on the survival of three human pathogens in animal waste. The pathogen inactivation was assessed at four temperatures (30, 35, 42, and 50 °C), and the relationships between temperature and pathogen decay were estimated. Results showed a steady decrease of E. coli levels in aerobic and anaerobic digestion processes over the time; however, the decay rates varied with pathogens. The effect of temperature on Salmonella spp. and Listeria monocytogenes survival was different than the E. coli survival. In thermophilic temperatures (42 and 50 °C), decay rate was considerable greater compared to the mesophilic temperatures (30 and 35°C). The E. coli log reductions at 50 °C were 2.1 in both aerobic and anaerobic digestions after 13 days of incubation. The Salmonella spp. log reductions at 50 °C were 5.5 in aerobic digestion, and 5.9 in anaerobic digestion. The Listeria monocytogenes log reductions at 50 °C were 5.0 in aerobic digestion, and 5.6 in anaerobic digestion. The log reduction of E. coli, Salmonella spp., and Listeria monocytogens at 30 °C in aerobic environment were 0.1, 4.7, and 5.6, respectively. In anaerobic environment, the corresponding reductions were 0.4, 4.3, and 5.6, respectively. We anticipate that the outcomes of the study will help improving the existing animal waste management processes to control manure-borne pathogens.

  9. 40 CFR 412.37 - Additional measures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... STANDARDS CONCENTRATED ANIMAL FEEDING OPERATIONS (CAFO) POINT SOURCE CATEGORY Dairy Cows and Cattle Other... application; (4) Test methods used to sample and analyze manure, litter, process waste water, and soil; (5) Results from manure, litter, process waste water, and soil sampling; (6) Explanation of the basis for...

  10. 40 CFR 412.37 - Additional measures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... STANDARDS CONCENTRATED ANIMAL FEEDING OPERATIONS (CAFO) POINT SOURCE CATEGORY Dairy Cows and Cattle Other... application; (4) Test methods used to sample and analyze manure, litter, process waste water, and soil; (5) Results from manure, litter, process waste water, and soil sampling; (6) Explanation of the basis for...

  11. 40 CFR 412.37 - Additional measures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... STANDARDS CONCENTRATED ANIMAL FEEDING OPERATIONS (CAFO) POINT SOURCE CATEGORY Dairy Cows and Cattle Other... application; (4) Test methods used to sample and analyze manure, litter, process waste water, and soil; (5) Results from manure, litter, process waste water, and soil sampling; (6) Explanation of the basis for...

  12. The Cows Come Home. A Farm Kid Milks Her Experiences for All They're Worth

    ERIC Educational Resources Information Center

    Panciera, Carla

    2005-01-01

    Carla Panciera, is a farmer's daughter who grew up on a hundred acres of corn, pasture with a herd of dairy cows. As a child she learned that cows have 4 stomachs, the average gestation period of a calf, how to back the manure spreader into the shed, and the art of clipping, and bathing cows on show day. Her father eventually sold the farm and…

  13. Anaerobic digestion of olive oil mill effluents together with swine manure in UASB reactors.

    PubMed

    Aangelidaki, I; Ahrin, B K; Deng, H; Schmidt, J E

    2002-01-01

    Combined anaerobic digestion of olive oil mill effluent (OME) with swine manure, was investigated. In batch experiments was shown that for anaerobic degradation of OME alone nitrogen addition was needed. A COD:N ratio in the range of 65:1 to 126:1 was necessary for the optimal degradation process. Furthermore, it was found that methane productions rates during digestion of either swine manure alone or OME alone were much lower than the rates achieved when OME and manure were digested together. Admixing OME with manure at a concentration of 5 to 10% OME resulted in the highest methane production rates. Using upflow anaerobic sludge blanket (UASB) reactors, it was shown that codigestion of OME with swine manure (up to 50% OME) was successful with a COD reduction up to 75%. The process was adapted for degradation of OME with stepwise increase of the OME load to the UASB reactor. The results showed that the high content of ammonia in swine manure, together with content of other nutrients, make it possible to degrade OME without addition of external alkalinity and without addition of external nitrogen source. Anaerobic treatment of OME in UASB reactors resulted in reduction of simple phenolic compounds such as mequinol, phenyl ethyl alcohol and ethyl methyl phenol. After anaerobic treatment the concentration of these compounds was reduced between 75 and 100%. However, the concentration of some degradation products such as methyl phenol and ethyl phenol were detected in significantly higher concentrations after treatment, indicating that the process has to be further optimised to achieve satisfactory removal of all xenobiotic compounds.

  14. Anaerobically digested food waste in compost for Agaricus bisporus and Agaricus subrufescens and its effect on mushroom productivity.

    PubMed

    Stoknes, Ketil; Beyer, David M; Norgaard, Erik

    2013-07-01

    Source-separated food waste is increasingly being treated by means of hygienisation followed by anaerobic digestion. The fibrous digester residue (digestate) is a potential mushroom substrate, while heat from the biogas can provide steam for the cultivation process. Using bag experiments the present study explored digestate as a full substitute for chicken manure conventionally used in mushroom composts. After mixing, a rapid temperature development in the compost was stimulated by a small amount of chicken manure, as aerobic microbial seeding. Mechanical elimination of lumps was essential for full mycelial colonisation. Three straw digestate composts had Agaricus bisporus mushroom yields above 370 g kg⁻¹ substrate. The optimal compost water content was 600 g kg⁻¹ at inoculation, and high digestate content (up to 500 g kg⁻¹ by dry weight) did not affect yield for this species. High yields of A. subrufescens (200 g kg⁻¹) were related to drier composts of lower digestate content (more straw) and lower pH values at inoculation. Digestate successfully substituted chicken manure in straw composts without affecting mushroom yields for both species. There were no clear differences between straw digestate and control composts in terms of mushroom dry matter, size, nitrogen or ash content. © 2012 Society of Chemical Industry.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    GTI

    Manure management is an ever-increasing environmental impact problem within the U.S. livestock industry due to the trends in growing scale of operation of individual animal raising facilities. Anaerobic digestion, the fermentation of organic matter into a mixture of methane and carbon dioxide called biogas, offers the livestock industry a viable solution to this problem. When anaerobic digestion is combined with by-product recovery and biogas utilization, the integrated system can potentially solve manure handling issues while creating significant energy, environmental and economic opportunities. The overall objective of this project was to conduct a laboratory proof-of-concept evaluation to determine the potential energymore » generation and pathogen control benefits of applying anaerobic digestion for the management of swine manure.« less

  16. Effects of dietary protein concentration on ammonia volatilization, nitrate leaching, and plant nitrogen uptake from dairy manure applied to lysimeters

    USDA-ARS?s Scientific Manuscript database

    This lysimeter experiment was designed to investigate the effects of dietary crude protein (CP) concentration on nitrate-N (NO3-N) and ammonia (NH3) losses from dairy manure applied to soil and manure N use for plant growth. Lactating dairy cows were fed diets with 16.7 (HighCP) or 14.8% (LowCP) cru...

  17. Pilot project of biogas production from pig manure and urine mixture at ambient temperature in Ventanilla (Lima, Peru).

    PubMed

    Ferrer, I; Gamiz, M; Almeida, M; Ruiz, A

    2009-01-01

    Parque Porcino de Ventanilla has an extension of 840ha with 2200 farmers dedicated to pig production. There is a lack of services in the area (i.e., water supply, electricity, or waste collection). Anaerobic treatment of pig manure would replace current dumping and incineration, reducing environmental pollution and hazards to public health, as well as providing an organic fertilizer and biogas. The objective of the present work was to study the viability of ambient temperature anaerobic digestion of pig manure diluted in urine, by means of on-site pilot scale reactors. The final goal was to establish design parameters for anaerobic digesters to be implemented; since it was part of a project to improve life conditions for the farmers through the incorporation of better management techniques. Experiments were carried out in a low-cost pilot plant, which consists of three anaerobic digesters (225L total volume), without heating or agitation, placed in a greenhouse. The start-up of the digestion process was performed with a mixture of temperature adapted pig manure-sludge and fresh rumen, and showed a good performance regardless of the dilution of pig manure with water or urine, which is a key parameter due to the scarcity of water in the area under study.

  18. Dutch dairy farms after milk quota abolition: Economic and environmental consequences of a new manure policy.

    PubMed

    Klootwijk, C W; Van Middelaar, C E; Berentsen, P B M; de Boer, I J M

    2016-10-01

    The abolition of the Dutch milk quota system has been accompanied by the introduction of a new manure policy to limit phosphate production (i.e., excretion via manure) on expanding dairy farms. The objective of this study was to evaluate the effect of these recent policy changes on the farm structure, management, labor income, nitrogen and phosphate surpluses, and greenhouse gas emissions of an average Dutch dairy farm. The new manure policy requires that any increase in phosphate production be partly processed and partly applied to additional farmland. In addition, phosphate quotas have been introduced. Herein, we used a whole-farm optimization model to simulate an average farm before and after quota abolition and introduction of the new manure policy. The objective function of the model maximized labor income. We combined the model with a farm nutrient balance and life-cycle assessment to determine environmental impact. Based on current prices, increasing the number of cows after quota abolition was profitable until manure processing or additional land was required to comply with the new manure policy. Manure processing involved treatment so that phosphate was removed from the national manure market. Farm intensity in terms of milk per hectare increased by about 4%, from 13,578kg before quota abolition to 14,130kg after quota abolition. Labor income increased by €505/yr. When costs of manure processing decreased from €13 to €8/t of manure or land costs decreased from €1,187 to €573/ha, farm intensity could increase up to 20% until the phosphate quota became limiting. Farms that had already increased their barn capacity to prepare for expansion after milk quota abolition could benefit from purchasing extra phosphate quota to use their full barn capacity. If milk prices increased from €355 to €420/t, farms could grow unlimited, provided that the availability of external inputs such as labor, land, barn capacity, feed, and phosphate quota at current prices were also unlimited. The milk quota abolition, accompanied by a new manure policy, will slightly increase nutrient losses per hectare, due to an increase in farm intensity. Greenhouse gas emissions per unit of milk will hardly change, so at a given milk production per cow, total greenhouse gas emissions will increase linearly with an increase in the number of cows. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Utilization of Re-processed Anaerobically Digested Fiber from Dairy Manure as a Container Media Substrate

    USDA-ARS?s Scientific Manuscript database

    The solid fraction (fiber) from the effluent of the anaerobic digestion of dairy manure by plug flow technology yields material that has consistent physical properties (total porosity, air filled porosity at saturation, and water holding capacity) to perform satisfactorily as a plant growth media su...

  20. Feasibility of biogas production from anaerobic co-digestion of herbal-extraction residues with swine manure.

    PubMed

    Li, Yan; Yan, Xi-Luan; Fan, Jie-Ping; Zhu, Jian-Hang; Zhou, Wen-Bin

    2011-06-01

    The objective of this work was to examine the feasibility of biogas production from the anaerobic co-digestion of herbal-extraction residues with swine manure. Batch and semi-continuous experiments were carried out under mesophilic anaerobic conditions. Batch experiments revealed that the highest specific biogas yield was 294 mL CH(4) g(-1) volatile solids added, obtained at 50% of herbal-extraction residues and 3.50 g volatile solids g(-1) mixed liquor suspended solids. Specific methane yield from swine manure alone was 207 mL CH(4) g(-1) volatile solid added d(-1) at 3.50 g volatile solids g(-1) mixed liquor suspended solids. Furthermore, specific methane yields were 162, 180 and 220 mL CH(4) g (-1) volatile solids added d(-1) for the reactors co-digesting mixtures with 10%, 25% and 50% herbal-extraction residues, respectively. These results suggested that biogas production could be enhanced efficiently by the anaerobic co-digestion of herbal-extraction residues with swine manure. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Seasonal and soil-type dependent emissions of nitrous oxide from irrigated desert soils amended with digested poultry manures.

    PubMed

    Posmanik, Roy; Nejidat, Ali; Dahan, Ofer; Gross, Amit

    2017-09-01

    Expansion of dryland agriculture requires intensive supplement of organic fertilizers to improve the fertility of nutrient-poor desert soils. The environmental impact of organic supplements in hot desert climates is not well understood. We report on seasonal emissions of nitrous oxide (N 2 O) from sand and loess soils, amended with limed and non-limed anaerobic digestate of poultry manure in the Israeli Negev desert. All amended soils had substantially higher N 2 O emissions, particularly during winter applications, compared to unammended soils. Winter emissions from amended loess (10-175mgN 2 Om -2 day -1 ) were markedly higher than winter emissions from amended sand (2-7mgN 2 Om -2 day -1 ). Enumeration of marker genes for nitrification and denitrification suggested that both have contributed to N 2 O emissions according to prevailing environmental conditions. Lime treatment of digested manure inhibited N 2 O emissions regardless of season or soil type, thus reducing the environmental impact of amending desert soils with manure digestate. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Lifecycle Greenhouse Gas Analysis of an Anaerobic Codigestion Facility Processing Dairy Manure and Industrial Food Waste.

    PubMed

    Ebner, Jacqueline H; Labatut, Rodrigo A; Rankin, Matthew J; Pronto, Jennifer L; Gooch, Curt A; Williamson, Anahita A; Trabold, Thomas A

    2015-09-15

    Anaerobic codigestion (AcoD) can address food waste disposal and manure management issues while delivering clean, renewable energy. Quantifying greenhouse gas (GHG) emissions due to implementation of AcoD is important to achieve this goal. A lifecycle analysis was performed on the basis of data from an on-farm AcoD in New York, resulting in a 71% reduction in GHG, or net reduction of 37.5 kg CO2e/t influent relative to conventional treatment of manure and food waste. Displacement of grid electricity provided the largest reduction, followed by avoidance of alternative food waste disposal options and reduced impacts associated with storage of digestate vs undigested manure. These reductions offset digester emissions and the net increase in emissions associated with land application in the AcoD case relative to the reference case. Sensitivity analysis showed that using feedstock diverted from high impact disposal pathways, control of digester emissions, and managing digestate storage emissions were opportunities to improve the AcoD GHG benefits. Regional and parametrized emissions factors for the storage emissions and land application phases would reduce uncertainty.

  3. A meta-analysis of feed digestion in dairy cows. 1. The effects of forage and concentrate factors on total diet digestibility.

    PubMed

    Nousiainen, J; Rinne, M; Huhtanen, P

    2009-10-01

    A meta-analysis based on published experiments with lactating dairy cows was conducted to study the effects of dietary forage and concentrate factors on apparent total diet digestibility. A data set was collected that included a total of 497 dietary treatment means from 92 studies. The diets were based on grass silage or on legume or whole-crop cereal silages partly or completely substituted for grass silage. The silages were supplemented with concentrates given at a flat rate within a dietary comparison. For the statistical evaluation, the data were divided into 5 subsets to quantify silage (digestibility, 42 diets in 17 studies; fermentation characteristics, 108 diets in 39 studies) and concentrate (amount of supplementation, 142 diets in 59 studies; concentration of crude protein, 215 diets in 82 studies; carbohydrate composition, 66 diets in 23 studies) factors on total diet digestibility. The diet digestibility of dairy cows was determined by total fecal collection or by using acid-insoluble ash as an internal marker. Diet organic matter digestibility (OMD) at a maintenance level of feeding (OMD(m)) was estimated using sheep in vivo or corresponding in vitro digestibility values for the forage and reported ingredient and chemical composition values, with tabulated digestibility coefficients for the concentrate components of the diet. A mixed model regression analysis was used to detect the responses of different dietary factors on apparent total diet digestibility. Improved silage OMD(m) resulting from earlier harvest was translated into improved production-level OMD in cows (OMD(p)). The effects of silage fermentation characteristics on OMD(p) were quantitatively small, although sometimes significant. Concentrate supplementation improved total diet OMD(m), but this was not realized in lactating dairy cows because of linearly decreased neutral detergent fiber (NDF) digestibility as concentrate intake increased. Increasing the concentrate crude protein amount quadratically improved OMD(p) in cows, with the response being mostly due to improved NDF digestibility. Replacement of starchy concentrates with fibrous by-products slightly decreased OMD(p) but tended to improve NDF digestibility. The true digestibility of cell solubles (OM - NDF) estimated by the Lucas test both from all data and from the data subsets was not significantly different from 1.00, suggesting that responses in OMD(p) of dairy cows are mediated through changes in the concentration and digestibility of NDF.

  4. Comparison digestibility and protozoa population of Khuzestan water buffalo and Holstein cow.

    PubMed

    Jabari, Safora; Eslami, Moosa; Chaji, Morteza; Mohammadabadi, Tahereh; Bojarpour, Mohammad

    2014-01-01

    The major aim of this study was to compare the morphology and activity of rumen protozoa of Khuzestan water buffalo and Holstein cow using in vitro digestibility and gas production parameters of steam treated sugarcane pith. Rumen fluid obtained from two buffalo and cow steers fed the same diet, 30:70 concentrate: forage. To separate rumen protozoa, antibiotic solution and fungicides were added to rumen fluid. The results of present experiment indicated that the neutral detergent fiber (NDF; 7.8 vs. 1.69%) and acid detergent fiber (ADF; 6.24 vs. 3.24%) digestibility of steam treated sugarcane pith by rumen protozoal population of Khuzestan buffalo was higher than those of cow (p < 0.05). Also, digestibility of dry matter, NDF and ADF by whole buffalo micro-organisms was more than those in cow (p < 0.05). The results indicated that the potential of gas production of sugarcane pith by rumen protozoa in water buffalo was more than that of cow (p < 0.05). Total rumen ciliate protozoa numbers in water buffalo were significantly higher than those of cow (3.68 × 10(5) vs. 2.18 × 10(5) mL(-1) of rumen content) (p < 0.05). The number of Diplodinium in buffalo was more than that of cow (41.27 vs. 35.7% of total rumen protozoa, respectively). Percentage of Entodinium, Epidinium, Ophryoscolex and Isotricha in cow was more than those of buffalo. Therefore, in the same diet, protozoa and total rumen micro-organisms of Khuzestan water buffalo have higher digestion activity compared to Holstein cow.

  5. Effects of biochar and alkaline amendments on cadmium immobilization, selected nutrient and cadmium concentrations of lettuce (Lactuca sativa) in two contrasting soils.

    PubMed

    Woldetsadik, Desta; Drechsel, Pay; Keraita, Bernard; Marschner, Bernd; Itanna, Fisseha; Gebrekidan, Heluf

    2016-01-01

    To assess the efficiency of seven treatments including biochars produced from dried faecal matter and manures as stabilizing agents of cadmium (Cd)-spiked soils, lettuce was grown in glasshouse on two contrasting soils. The soils used were moderately fertile silty loam and less fertile sandy loam and the applied treatments were 7 % w/w. The reduction of bioavailable Cd (ammonium nitrate extractable) and its phytoavailability for lettuce were used as assessment criteria in the evaluation of stabilization performance of each treatment. Moreover, the agronomic values of the treatments were also investigated. Ammonium nitrate extraction results indicated that faecal matter biochar, cow manure biochar and lime significantly reduced bioavailable Cd by 84-87, 65-68 and 82-91 %, respectively, as compared to the spiked controls. Unpredictably, coffee husk biochar induced significant increment of Cd in NH4NO3 extracts. The immobilization potential of faecal matter biochar and lime were superior than the other treatments. However, lime and egg shell promoted statistically lower yield and P, K and Zn concentrations response of lettuce plants compared to the biochar treatments. The lowest Cd and highest P tissue concentrations of lettuce plants were induced by faecal matter and cow manure biochar treatments in both soils. Additionally, the greatest Cd phytoavailability reduction for lettuce was induced by poultry litter and cow manure biochars in the silty loam soil. Our results indicate that faecal matter and animal manure biochars have shown great potential to promote Cd immobilization and lettuce growth response in heavily contaminated agricultural fields.

  6. Bloom of resident antibiotic-resistant bacteria in soil following manure fertilization.

    PubMed

    Udikovic-Kolic, Nikolina; Wichmann, Fabienne; Broderick, Nichole A; Handelsman, Jo

    2014-10-21

    The increasing prevalence of antibiotic-resistant bacteria is a global threat to public health. Agricultural use of antibiotics is believed to contribute to the spread of antibiotic resistance, but the mechanisms by which many agricultural practices influence resistance remain obscure. Although manure from dairy farms is a common soil amendment in crop production, its impact on the soil microbiome and resistome is not known. To gain insight into this impact, we cultured bacteria from soil before and at 10 time points after application of manure from cows that had not received antibiotic treatment. Soil treated with manure contained a higher abundance of β-lactam-resistant bacteria than soil treated with inorganic fertilizer. Functional metagenomics identified β-lactam-resistance genes in treated and untreated soil, and indicated that the higher frequency of resistant bacteria in manure-amended soil was attributable to enrichment of resident soil bacteria that harbor β-lactamases. Quantitative PCR indicated that manure treatment enriched the blaCEP-04 gene, which is highly similar (96%) to a gene found previously in a Pseudomonas sp. Analysis of 16S rRNA genes indicated that the abundance of Pseudomonas spp. increased in manure-amended soil. Populations of other soil bacteria that commonly harbor β-lactamases, including Janthinobacterium sp. and Psychrobacter pulmonis, also increased in response to manure treatment. These results indicate that manure amendment induced a bloom of certain antibiotic-resistant bacteria in soil that was independent of antibiotic exposure of the cows from which the manure was derived. Our data illustrate the unintended consequences that can result from agricultural practices, and demonstrate the need for empirical analysis of the agroecosystem.

  7. Bloom of resident antibiotic-resistant bacteria in soil following manure fertilization

    PubMed Central

    Udikovic-Kolic, Nikolina; Wichmann, Fabienne; Broderick, Nichole A.; Handelsman, Jo

    2014-01-01

    The increasing prevalence of antibiotic-resistant bacteria is a global threat to public health. Agricultural use of antibiotics is believed to contribute to the spread of antibiotic resistance, but the mechanisms by which many agricultural practices influence resistance remain obscure. Although manure from dairy farms is a common soil amendment in crop production, its impact on the soil microbiome and resistome is not known. To gain insight into this impact, we cultured bacteria from soil before and at 10 time points after application of manure from cows that had not received antibiotic treatment. Soil treated with manure contained a higher abundance of β-lactam–resistant bacteria than soil treated with inorganic fertilizer. Functional metagenomics identified β-lactam–resistance genes in treated and untreated soil, and indicated that the higher frequency of resistant bacteria in manure-amended soil was attributable to enrichment of resident soil bacteria that harbor β-lactamases. Quantitative PCR indicated that manure treatment enriched the blaCEP-04 gene, which is highly similar (96%) to a gene found previously in a Pseudomonas sp. Analysis of 16S rRNA genes indicated that the abundance of Pseudomonas spp. increased in manure-amended soil. Populations of other soil bacteria that commonly harbor β-lactamases, including Janthinobacterium sp. and Psychrobacter pulmonis, also increased in response to manure treatment. These results indicate that manure amendment induced a bloom of certain antibiotic-resistant bacteria in soil that was independent of antibiotic exposure of the cows from which the manure was derived. Our data illustrate the unintended consequences that can result from agricultural practices, and demonstrate the need for empirical analysis of the agroecosystem. PMID:25288759

  8. Dairy diet phosphorus and rainfall timing effects on runoff phosphorus from land-applied manure.

    PubMed

    Hanrahan, Laura P; Jokela, William E; Knapp, Joanne R

    2009-01-01

    Surface-applied dairy manure can increase P concentrations in runoff, which may contribute to eutrophication of lakes and streams. The amount of dietary P fed to dairy cows (Bos taurus) and the timing of a rain event after manure application may further affect runoff P losses. The objective of this study was to examine dietary P supplementation effects on manure and runoff P concentrations from rain events occurring at different time intervals after manure application. Manure from dairy cows fed an unsupplemented low P diet (LP; 3.6 g P kg(-1)) or a diet supplemented with either an inorganic (HIP; 4.4 g P kg(-1)) or an organic (HOP; 4.6 g P kg(-1)) source was hand-applied onto soil-packed pans at 56 wet Mg ha(-1). Thirty min of runoff was collected from simulated rain events (30 mm h(-1)) 2, 5, or 9 d after manure application. Total P (TP) concentrations in runoff from HIP and HOP diet manure from the 2-d rain were 46 and 31% greater than that of the LP diet. Runoff P concentrations from high P diets were numerically higher than that of the LP diet at 5 and 9 d after application, but differences were significant only for dissolved reactive P (DRP) at 5 d. Large decreases in runoff TP (89%) and DRP (65%) concentrations occurred with delay of rainfall from 2 d until 5 d. The proportion of TP as DRP increased as the time between manure application and runoff increased. Results showed that reducing dietary P and extending the time between manure application and a rain event can significantly reduce concentrations of TP and DRP in runoff.

  9. The effects of energy concentration in roughage and allowance of concentrates on performance, health and energy efficiency of pluriparous dairy cows during early lactation.

    PubMed

    Schmitz, Rolf; Schnabel, Karina; von Soosten, Dirk; Meyer, Ulrich; Spiekers, Hubert; Rehage, Jürgen; Dänicke, Sven

    2018-04-01

    The aim of this study was to investigate the effects of different energy supplies from roughage and concentrates on performance, health and energy efficiency during early lactation. For this purpose an experiment was conducted containing 64 pluriparous German Holstein cows from 3 weeks prepartum until 16 weeks postpartum. During dry period all cows received an equal dry cow ration. After calving, cows were assigned in a 2 × 2 factorial arrangement to one of four groups, receiving either a moderate (MR, 6.0 MJ NE L ) or a high (HR, 6.4 MJ NE L ) energy concentration in roughage and furthermore moderate (MC, 150 g/kg energy-corrected milk (ECM)) or high amounts of concentrates (HC, 250 g/kg ECM) on dry matter (DM) basis, which were allocated from an automatic feeding system. Higher allocation of concentrates resulted in an increase of DM intake at expense of roughage intake. HC cows had a higher milk yield than MC cows, whereas ECM was higher in HR cows due to a decrease of milk fat yield in MR groups. Energy balance and body condition score were elevated in HC cows, but no differences occurred in development of subclinical ketosis. Furthermore, energy efficiency variables were lower in HC groups because the greater energy intake was not associated with a considerable elevation of milk yield. Consistency of faeces did not indicate digestive disorders in any of the treatment groups although the faecal manure score was significantly lower in HR groups. Our results underline the importance of a high energy uptake from roughage, which can contribute to an adequate performance and beneficial efficiency, especially at lower amounts of concentrates in ration. Feeding concentrates on an average amount of 9.4 kg/d compared to 6.4 kg/d on DM basis improved the energy balance in our trial, but without consequences for metabolic blood variables and general health of the cows.

  10. Thermochemical conversion of biomass storage covers to reduce ammonia emissions from dairy manure Thermochemical conversion of biomass storage covers to reduce ammonia emissions from dairy manure

    USDA-ARS?s Scientific Manuscript database

    Manure storages, and in particular those storing digested manure, are a source of ammonia (NH3) emissions. Permeable manure storage covers can reduce NH3 emissions, however performance can decline as they degrade. Thermochemical conversion of biomass through pyrolysis and steam treatment could incre...

  11. Lead sorption-desorption from organic residues.

    PubMed

    Duarte Zaragoza, Victor M; Carrillo, Rogelio; Gutierrez Castorena, Carmen M

    2011-01-01

    Sorption and desorption are mechanisms involved in the reduction of metal mobility and bioavailability in organic materials. Metal release from substrates is controlled by desorption. The capacity of coffee husk and pulp residues, vermicompost and cow manure to adsorb Pb2+ was evaluated. The mechanisms involved in the sorption process were also studied. Organic materials retained high concentrations of lead (up to 36,000 mg L(-1)); however, the mechanisms of sorption varied according to the characteristics of each material: degree of decomposition, pH, cation exchange capacity and percentage of organic matter. Vermicompost and manure removed 98% of the Pb from solution. Lead precipitated in manure and vermicompost, forming lead oxide (PbO) and lead ferrite (PbFe4O7). Adsorption isotherms did not fit to the typical Freundlich and Langmuir equations. Not only specific and non-specific adsorption was observed, but also precipitation and coprecipitation. Lead desorption from vermicompost and cow manure was less than 2%. For remediation of Pb-polluted sites, the application of vermicompost and manure is recommended in places with alkaline soils because Pb precipitation can be induced, whereas coffee pulp residue is recommended for acidic soils where Pb is adsorbed.

  12. Low degradable protein supply to increase nitrogen efficiency in lactating dairy cows and reduce environmental impacts at barn level.

    PubMed

    Edouard, N; Hassouna, M; Robin, P; Faverdin, P

    2016-02-01

    Generally, <30% of dairy cattle's nitrogen intake is retained in milk. Large amounts of nitrogen are excreted in manure, especially in urine, with damaging impacts on the environment. This study explores the effect of lowering dietary degradable nitrogen supplies--while maintaining metabolisable protein--on dairy cows' performance, nitrogen use efficiency and gas emissions (NH3, N2O, CH4) at barn level with tied animals. Two dietary N concentrations (CP: 12% DM for LowN; 18% DM for HighN) were offered to two groups of three lactating dairy cows in a split-plot design over four periods of 2 weeks. Diets were formulated to provide similar metabolisable protein supply, with degradable N either in deficit or in excess (PDIN of 84 and 114 g/kg DM for LowN and HighN, respectively). Cows ingested 0.8 kg DM/day less on the LowN diet, which was also 2.5% less digestible. Milk yield and composition were not significantly affected. N exported in milk was 5% lower (LowN: 129 g N/day; HighN: 136 g N/day; P<0.001) but milk protein yield was not significantly affected (LowN: 801 g/day; HighN: 823 g/day; P=0.10). Cows logically ingested less nitrogen on the LowN diet (LowN: 415 g N/day; HighN: 626 g N/day; P<0.001) resulting in a higher N use efficiency (N milk/N intake; LowN: 0.31; HighN: 0.22; P<0.001). N excreted in urine was almost four times lower on the LowN diet (LowN: 65 g N/day; HighN: 243 g N/day; P<0.001) while urinary urea N concentration was eightfold lower (LowN: 4.6 g/l; HighN: 22.9 g/l; P<0.001). Ammonia emission (expressed in g/h in order to remove periods of the day with potential interferences with volatile molecules from feed) was also lower on the LowN diet (LowN: 1.03 g/h per cow; HighN: 1.25 g/h per cow; P<0.05). Greenhouse gas emissions (N2O and CH4) at barn level were not significantly affected by the amount of dietary N. Offering low amounts of degradable protein with suitable metabolisable protein amounts to cattle improved nitrogen use efficiency and lowered ammonia emissions at barn level. This strategy would, however, need to be validated for longer periods, other housing systems (free stall barns) and at farm level including all stages of manure management.

  13. Potential for methane production from anaerobic co-digestion of swine manure with winery wastewater.

    PubMed

    Riaño, B; Molinuevo, B; García-González, M C

    2011-03-01

    This work examines the methane production potential for the anaerobic co-digestion of swine manure (SM) with winery wastewater (WW). Batch and semi-continuous experiments were carried out under mesophilic conditions. Batch experiments revealed that the highest specific methane yield was 348 mL CH(4)g(-1) COD added, obtained at 85.4% of WW and 0.7 g COD g(-1)VS. Specific methane yield from SM alone was 27 mL CH(4)g(-1) COD added d(-1). Furthermore, specific methane yields were 49, 87 and 107 mL CH(4)g(-1) COD added d(-1) for the reactors co-digesting mixtures with 10% WW, 25% WW and 40% WW, respectively. Co-digestion with 40% WW improved the removal efficiencies up to 52% (TCOD), 132% (SCOD) and 61% (VSS) compared to SM alone. These results suggest that methane can be produced very efficiently by the co-digestion of swine manure with winery wastewater. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Effect of feeding long or short wheat hay v. wheat silage in the ration of lactating cows on intake, milk production and digestibility.

    PubMed

    Shaani, Y; Nikbachat, M; Yosef, E; Ben-Meir, Y; Mizrahi, I; Miron, J

    2017-12-01

    The objective of this study was to evaluate in lactating cows the effect of either chopping or ensiling of wheat roughage on: intake, digestibility, lactation performance and animal behavior. Three groups of 14 lactating cows each, were fed total mixed rations (TMRs) based on either long wheat hay (HL), short wheat hay (HS) or wheat silage (SI), as the sole roughage source (30% of TMR dry matter (DM)). Parameters examined: sorting behavior, DM intake, milk yield and composition, rumination, recumbence, average daily rumen pH, digesta passage rate, and in-vivo digestibility. Performance data was summarized by day and analyzed using a proc-mixed model. The content of physically effective neutral detergent fiber (peNDF) was similar in the HL and SI and lower in the HS, resulting in similar differences among the three corresponding TMRs. In vitro DM digestibility of wheat silage was higher than that of the two hays (65.6% v. 62.8%) resulting in higher in vitro DM digestibility of the SI-TMR compared with the hay-based TMRs (79.3 v. 77.0%). HS-TMR was better than HL- or SI-TMRs at preventing feed sorting by cows after 12 or 24 h eating of the diets. Cows fed HS-TMR consumed more DM and NDF but less peNDF than the other two groups. Average daily rumen pH was similar in the three groups, but daily rumination time was highest in the cows fed HS-TMR. Rumen retention time was longest in cows fed HL-TMR. DM digestibility in cows fed SI-TMR was higher than that of HS and HL groups (65.2%, 61.8% and 62.4%, respectively), but NDF digestibility was similar in the three treatments. The highest intake of digestible DM was observed in cows fed SI-TMR, HS cows were intermediate and HL cows were the lowest. Consequently, cows fed SI-TMR had higher yields of milk, 4% fat corrected milk and energy-corrected milk (47.1, 42.9 and 43.2 kg/day, respectively) than cows fed HS-TMR (45.7, 41.0 and 41.0 kg/day, respectively) or HL-TMR (44.1, 40.3 and 40.3 kg/day, respectively). Net energy production (NEL+M+gain) per kg DM intake was highest in the SI-TMR, lowest in the HS-TMR and intermediate in the HL-TMR (1.52, 1.40 and 1.45, respectively). Animal welfare, as expressed in daily recumbence time and BW gain was similar in the SI and HS groups and higher than the HL cows.

  15. Geographic Inventory Framework (GiF) for estimating N2O and CH4 emissions from agriculture in the province of Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Dimitrov, D. D.; Wang, J.

    2016-12-01

    A Geographic Information Framework (GiF) has been created to estimate and map agricultural N2O and CH4 emissions of the province of Alberta, Canada. The GiF consists of a modelling component, a GIS component, and application software to communicate between the model, database and census data. For compatibility, GiF follows the IPCC Tier 1 method and contains census data for animal populations, crop areas, and farms for the main IPCC animal and plant types (dairy cows, cattle cows, pigs, sheep, poultry, other animals, grasses, legumes, other crops), and estimated N2O and CH4 emissions from manure management, enteric fermentation, direct soil emissions (with applied manure, synthetic fertilizer, crop residue degradation, biological fixation) and indirect soil emissions (with atmospheric deposition and leaching). Methane emissions from enteric fermentation (609.24 Gg) prevailed over those from manure (44.99 Gg), and nitrous oxide emission from manure (22.01 Gg) prevailed over those from soil (17.73 Gg), with cattle cows emitting most N2O and CH4, followed by plant N2O emissions, and pigs and dairy cows CH4 emissions. The GIS maps showed discernible pattern of N2O and CH4 emissions increasing from North and West to the central Alberta and then slightly declining to South and East, which could be useful to address various mitigation strategies. The framework allows easy replacement of Tier 1 emission factors by Tire 2 or 3 ones from process-based models. Future applying of the latter will allow accounting for CO2 source/sink strength of agricultural ecosystems, hence their complete GHG balance affected by soil, water, and climate.

  16. Environmental occurrence and shallow ground water detection of the antibiotic monensin from dairy farms

    USGS Publications Warehouse

    Watanabe, N.; Harter, T.H.; Bergamaschi, B.A.

    2008-01-01

    Pharmaceuticals used in animal feeding operations have been detected in various environmental settings. There is a growing concern about the impact on terrestrial and aquatic organisms and the development of antibiotic-resistant strains of microorganisms. Pharmaceutical use in milking cows is relatively limited compared with other livestock operations, except for the ionophore monensin, which is given to lactating cows as a feed. By weight, monensin can be the most significant antibiotic used in a dairy farm. This study investigates the potential of monensin to move from dairy operations into the surrounding ground water. Using two dairy farms in California as study sites, we twice collected samples along the environmental pathway-from flush lanes, lagoon waters, and shallow ground water beneath the dairies and beneath its associated manured fields. Monensin concentrations were determined using solid-phase extraction and liquid chromatography-tandem mass spectrometry with positive electrospray ionization. Monensin was detected in all of the flush lane and lagoon water samples. Theoretical maximum concentration estimated from the actual dosing rate and the theoretical excretion rate assuming no attenuation was one order of magnitude greater than observed concentrations, suggesting significant attenuation in the manure collection and storage system. Monensin was also detected, at levels ranging from 0.04 to 0.39 microg L(-1), in some of the ground water samples underneath the production area of the dairy but not from the adjacent manured fields. Concentrations in ground water immediately downgradient of the lagoons were one to two orders of magnitude lower than the concentrations detected in lagoons, suggesting attenuation in the subsurface. The data suggest the possibility of monensin transport into shallow (2-5 m) alluvial ground water from dairy management units, including manure storage lagoons and freestalls occupied by heifers, lactating cows, and dry cows.

  17. Characterizing the Performance of Gas-Permeable Membranes as an Ammonia Recovery Strategy from Anaerobically Digested Dairy Manure

    PubMed Central

    Fillingham, Melanie; Singh, Jessica; Burtt, Stephen; Crolla, Anna; Kinsley, Chris; MacDonald, J. Douglas

    2017-01-01

    Capturing ammonia from anaerobically digested manure could simultaneously decrease the adverse effects of ammonia inhibition on biogas production, reduce reactive nitrogen (N) loss to the environment, and produce mineral N fertilizer as a by-product. In this study, gas permeable membranes (GPM) were used to capture ammonia from dairy manure and digestate by the diffusion of gaseous ammonia across the membrane where ammonia is captured by diluted acid, forming an aqueous ammonium salt. A lab-scale prototype using tubular expanded polytetrafluoroethylene (ePTFE) GPM was used to (1) characterize the effect of total ammonium nitrogen (TAN) concentration, temperature, and pH on the ammonia capture rate using GPM, and (2) to evaluate the performance of a GPM system in conditions similar to a mesophilic anaerobic digester. The GPM captured ammonia at a rate between 2.2 and 6.3% of gaseous ammonia in the donor solution per day. Capture rate was faster in anaerobic digestate than raw manure. The ammonia capture rate could be predicted using non-linear regression based on the factors of total ammonium nitrogen concentration, temperature, and pH. This use of membranes shows promise in reducing the deleterious impacts of ammonia on both the efficiency of biogas production and the release of reactive N to the environment. PMID:28991162

  18. Effects of Temperature and Carbon-Nitrogen (C/N) Ratio on the Performance of Anaerobic Co-Digestion of Dairy Manure, Chicken Manure and Rice Straw: Focusing on Ammonia Inhibition

    PubMed Central

    Wang, Xiaojiao; Lu, Xingang; Li, Fang; Yang, Gaihe

    2014-01-01

    Anaerobic digestion is a promising alternative to disposal organic waste and co-digestion of mixed organic wastes has recently attracted more interest. This study investigated the effects of temperature and carbon-nitrogen (C/N) ratio on the performance of anaerobic co-digestion of dairy manure (DM), chicken manure (CM) and rice straw (RS). We found that increased temperature improved the methane potential, but the rate was reduced from mesophilic (30∼40°C) to thermophilic conditions (50∼60°C), due to the accumulation of ammonium nitrogen and free ammonia and the occurrence of ammonia inhibition. Significant ammonia inhibition was observed with a C/N ratio of 15 at 35°C and at a C/N ratio of 20 at 55°C. The increase of C/N ratios reduced the negative effects of ammonia and maximum methane potentials were achieved with C/N ratios of 25 and 30 at 35°C and 55°C, respectively. When temperature increased, an increase was required in the feed C/N ratio, in order to reduce the risk of ammonia inhibition. Our results revealed an interactive effect between temperature and C/N on digestion performance. PMID:24817003

  19. Testing of Co-Fermentation of Poultry Manure and Corn Silage

    NASA Astrophysics Data System (ADS)

    Jędrczak, Andrzej; Królik, Dariusz; Sądecka, Zofia; Myszograj, Sylwia; Suchowska-Kisielewicz, Monika; Bojarski, Jacek

    2014-12-01

    The development of the production of poultry meat is connected with an increase in the quantity of the manure. The chemical characteristics predisposes this waste to processing by methane fermentation method. This study investigated the influence of ammonia and volatile fat acids on mesophilic anaerobic digestion of poultry manure. The aim of the studies was: to determine the degree of biodegradation of the poultry manure as well as manure and corn silage mixed in various proportions in the process of mesophilic fermentation, to evaluate the impact of mineral nitrogen and volatile fat acids on the course of fermentation, and to establish optimum proportions of these types of waste. The tests confirmed the positive effect of co-fermentation of poultry manure with corn silage. The most favourable ratio for mixing the substrates is the equal percentage of their dry matter in the mixture. With such waste mixing proportions, the degree of degradation of organic substances contained in the manure amounted to 61.8% and was higher than in the mono-digestion of manure and corn silage.

  20. Greenhouse gas and ammonia emissions from digested and separated dairy manure during storage and after land application

    USDA-ARS?s Scientific Manuscript database

    Manure management at dairy production facilities, including anaerobic digestion (AD) and solid-liquid separation (SLS), has a strong potential for the abatement of greenhouse gas (GHG) and ammonia (NH3) emissions. This study evaluated the effects of AD, SLS, and AD+SLS on GHG and NH3 emissions durin...

  1. Effects of forage polyphenols on chemistry of ruminant excreta and fate of nitrogen in soils and the environment

    USDA-ARS?s Scientific Manuscript database

    The chemical composition of forages consumed by ruminants affects forage intake, digestion, meat and milk production, as well as manure chemistry and manure impacts on the environment. The digestion of forages by ruminants and the decomposition of organic materials applied to soils are governed by s...

  2. Distribution of sulfonamides in liquid and solid anaerobic digestates: effects of hydraulic retention time and swine manure to rice straw ratio.

    PubMed

    Jin, Hongmei; Xu, Caiyun; Du, Jing; Wu, Huashan; Huang, Hongying; Chang, Zhizhou; Xu, Yueding; Zhou, Lixiang

    2017-02-01

    The effects of hydraulic retention time (20 and 15 days) and swine manure to rice straw ratios on distribution of sulfonamides (SAs) in liquid and solid anaerobic digestates were studied using bench-scale completely stirred tank reactors at (37 ± 1) °C. Results showed that anaerobic digestion (AD) treatment exhibited a good removal effect on sulfadiazine (SDZ), sulfadimidine (SM2) and sulfachloropyridazine (SCP), especially at HRT = 20 days and co-digestion with swine manure and rice straw. The removal rates of SDZ and SM2 were more than 90%, but only 72.8% for SCP. The residual SAs were mainly remained in solid digestates, with residual rates ranging from 28.8% to 71.3%, 40.6% to 88.0, and 82.7% to 97.0% for SDZ, SM2 and SCP, respectively. Due to lower pKa and higher log K ow of SCP, its residue in solid digestates was far more than SDZ and SM2. Higher HRT and co-digestion could improve the degradation of SAs, which can also be put down to the occurrence of cometabolism of SAs and COD.

  3. Effects of chlortetracycline and copper on tetracyclines and copper resistance genes and microbial community during swine manure anaerobic digestion.

    PubMed

    Wang, Rui; Chen, Meixue; Feng, Feng; Zhang, Junya; Sui, Qianwen; Tong, Juan; Wei, Yuansong; Wei, Dongbin

    2017-08-01

    As antibiotic and heavy metals are over used in the livestock industry, animal manure is a reservoir of antibiotic resistance genes (ARGs). Anaerobic digestion has been reported to have the potential to reduce ARGs. However, few studies investigated whether reduction of ARGs would be affected by different external pressures including antibiotics and heavy metals during anaerobic digestion. The purpose of this study was thus to investigate effects of both chlortetracycline (CTC) and Cu on reduction of ARGs, heavy metal resistance genes (HMRGs) and mobile genetic elements (MGEs) during the swine manure anaerobic digestion. The results showed that the predominant ARGs (tetO, tetW, tetX, tetL) could be effectively reduced (approximately 1.00 log copies/g TS) through mesophilic anaerobic digestion. Microbial community evolution was the main driver. It was interesting that Treponema might indicate the termination of anaerobic digestion and compete with ARGs host bacteria. Addition of CTC, Cu and CTC+Cu affected microbial community change and hindered removal of ARGs, especially, CTC+Cu seriously affected Treponema and ARGs during anaerobic digestion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Utilization of biogas produced by anaerobic digestion of agro-industrial waste: Energy, economic and environmental effects.

    PubMed

    Hublin, Andrea; Schneider, Daniel Rolph; Džodan, Janko

    2014-07-01

    Anaerobic digestion of agro-industrial waste is of significant interest in order to facilitate a sustainable development of energy supply. Using of material and energy potentials of agro-industrial waste, in the framework of technical, economic, and ecological possibilities, contributes in increasing the share of energy generated from renewable energy sources. The paper deals with the benefits arising from the utilization of biogas produced by co-digestion of whey and cow manure. The advantages of this process are the profitability of the plant and the convenience in realizing an anaerobic digestion plant to produce biogas that is enabled by the benefits from the sale of electric energy at favorable prices. Economic aspects are related to the capital cost (€ 2,250,000) of anaerobic digestion treatment in a biogas plant with a 300 kW power and 510 kW heating unit in a medium size farm (450 livestock units). Considering the optimum biogas yield of 20.7 dm(3) kg(-1) of wet substrate and methane content in the biogas obtained of 79%, the anaerobic process results in a daily methane production of 2,500 kg, with the maximum power generation of 2,160,000 kWh y(-1) and heat generation of 2,400,000 kWh y(-1) The net present value (NPV), internal rate of return (IRR) and payback period for implementation of profitable anaerobic digestion process is evaluated. Ecological aspects related to carbon dioxide (CO2) and methane (CH4) emission reduction are assessed. © The Author(s) 2014.

  5. Ammonia losses and nitrogen partitioning at a southern High Plains open lot dairy

    NASA Astrophysics Data System (ADS)

    Todd, Richard W.; Cole, N. Andy; Hagevoort, G. Robert; Casey, Kenneth D.; Auvermann, Brent W.

    2015-06-01

    Animal agriculture is a significant source of ammonia (NH3). Cattle excrete most ingested nitrogen (N); most urinary N is converted to NH3, volatilized and lost to the atmosphere. Open lot dairies on the southern High Plains are a growing industry and face environmental challenges as well as reporting requirements for NH3 emissions. We quantified NH3 emissions from the open lot and wastewater lagoons of a commercial New Mexico dairy during a nine-day summer campaign. The 3500-cow dairy consisted of open lot, manure-surfaced corrals (22.5 ha area). Lactating cows comprised 80% of the herd. A flush system using recycled wastewater intermittently removed manure from feeding alleys to three lagoons (1.8 ha area). Open path lasers measured atmospheric NH3 concentration, sonic anemometers characterized turbulence, and inverse dispersion analysis was used to quantify emissions. Ammonia fluxes (15-min) averaged 56 and 37 μg m-2 s-1 at the open lot and lagoons, respectively. Ammonia emission rate averaged 1061 kg d-1 at the open lot and 59 kg d-1 at the lagoons; 95% of NH3 was emitted from the open lot. The per capita emission rate of NH3 was 304 g cow-1 d-1 from the open lot (41% of N intake) and 17 g cow-1 d-1 from lagoons (2% of N intake). Daily N input at the dairy was 2139 kg d-1, with 43, 36, 19 and 2% of the N partitioned to NH3 emission, manure/lagoons, milk, and cows, respectively.

  6. Effects of garlic and juniper berry essential oils on ruminal fermentation and on the site and extent of digestion in lactating cows.

    PubMed

    Yang, W Z; Benchaar, C; Ametaj, B N; Chaves, A V; He, M L; McAllister, T A

    2007-12-01

    The objective of this study was to evaluate the effects of feeding essential oils from garlic (GAR) and juniper berry (JUN), or monensin (MO) on feed intake, ruminal fermentation, the site and extent of digestion, microbial protein synthesis, milk production, and immune status in dairy cows. Four midlactating Holstein cows fitted with ruminal and duodenal cannulas were used in a 4 x 4 Latin square design with 21-d periods and 4 treatments: control (no additive), MO (330 mg/cow per d), GAR (5 g/cow per d), and JUN (2 g/cow per d). Cows were fed ad libitum a TMR consisting of 40% forage and 60% barley-based concentrate. Dry matter intake averaged 20.4 kg/d and was not affected by dietary additives. Total tract digestibilities of dry matter, organic matter, fiber, and starch were not affected by experimental treatments. However, ruminal digestibilities of dry matter and organic matter were higher (+13%) for GAR and JUN than for the control diet, mainly because of increased crude protein digestion in the rumen. Feeding GAR and JUN increased ruminal digestion of dietary protein by 11% as compared with the control. In contrast, ruminal digestion of dietary protein was reduced by 11% with MO as compared with the control. Milk fat content was lower for MO (2.68%) than for the GAR (3.46%), JUN (3.40%), and control (3.14%) diets. No effects of GAR, JUN, or MO were observed on milk production, ruminal microbial protein synthesis, ruminal pH, and ruminal concentrations of volatile fatty acids and ammonia N. The total and differential numbers of white blood cells as well as serum amyloid A and haptoglobin were not affected by the treatments, suggesting that additives had no effect on the immune status of cows. Results of this study indicate that supplementing dairy cows with GAR (5 g/d) and JUN (2 g/d) essential oils improved feed digestibility in the rumen, but possibly at the expense of a reduction in the flow of bypass protein to the small intestine. Feeding monensin could be beneficial in terms of increasing bypass protein from the rumen but did not improve feed digestion or milk production under the current experimental conditions.

  7. Thermophilic anaerobic co-digestion of garbage, screened swine and dairy cattle manure.

    PubMed

    Liu, Kai; Tang, Yue-Qin; Matsui, Toru; Morimura, Shigeru; Wu, Xiao-Lei; Kida, Kenji

    2009-01-01

    Methane fermentation characteristics of garbage, swine manure (SM), dairy cattle manure (DCM) and mixtures of these wastes were studied. SM and DCM showed much lower volatile total solid (VTS) digestion efficiencies and methane yield than those of garbage. VTS digestion efficiency of SM was significantly increased when it was co-digested with garbage (Garbage: SM=1:1). Co-digestion of garbage, SM and DCM with respect to the relative quantity of each waste discharged in the Kikuchi (1: 16: 27) and Aso (1: 19: 12) areas indicated that co-digestion with garbage would improve the digestion characteristic of SM and DCM as far as the ratio of DCM in the wastes was maintained below a certain level. When the mixed waste (Garbage: SM: DCM=1:19:12) was treated using a thermophilic UAF reactor, methanogens responsible for the methane production were Methanoculleus and Methanosarcina species. Bacterial species in the phylum Firmicutes were dominant bacteria responsible for the digestion of these wastes. As the percentage of garbage in the mixed wastes used in this study was low (2-3%) and the digestion efficiency of DCM was obviously improved, the co-digestion of SM and DCM with limited garbage was a prospective method to treat the livestock waste effectively and was an attractive alternative technology for the construction of a sustainable environment and society in stock raising area.

  8. Applying functional metagenomics to search for novel lignocellulosic enzymes in a microbial consortium derived from a thermophilic composting phase of sugarcane bagasse and cow manure.

    PubMed

    Colombo, Lívia Tavares; de Oliveira, Marcelo Nagem Valério; Carneiro, Deisy Guimarães; de Souza, Robson Assis; Alvim, Mariana Caroline Tocantins; Dos Santos, Josenilda Carlos; da Silva, Cynthia Canêdo; Vidigal, Pedro Marcus Pereira; da Silveira, Wendel Batista; Passos, Flávia Maria Lopes

    2016-09-01

    Environments where lignocellulosic biomass is naturally decomposed are sources for discovery of new hydrolytic enzymes that can reduce the high cost of enzymatic cocktails for second-generation ethanol production. Metagenomic analysis was applied to discover genes coding carbohydrate-depleting enzymes from a microbial laboratory subculture using a mix of sugarcane bagasse and cow manure in the thermophilic composting phase. From a fosmid library, 182 clones had the ability to hydrolyse carbohydrate. Sequencing of 30 fosmids resulted in 12 contigs encoding 34 putative carbohydrate-active enzymes belonging to 17 glycosyl hydrolase (GH) families. One third of the putative proteins belong to the GH3 family, which includes β-glucosidase enzymes known to be important in the cellulose-deconstruction process but present with low activity in commercial enzyme preparations. Phylogenetic analysis of the amino acid sequences of seven selected proteins, including three β-glucosidases, showed low relatedness with protein sequences deposited in databases. These findings highlight microbial consortia obtained from a mixture of decomposing biomass residues, such as sugar cane bagasse and cow manure, as a rich resource of novel enzymes potentially useful in biotechnology for saccharification of lignocellulosic substrate.

  9. Improved biogas production from rice straw by co-digestion with kitchen waste and pig manure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Jingqing; School of Environmental Sciences and Engineering, Sun Yat-sen University, Guangzhou 510275; Li, Dong

    Highlights: • Biogas production was enhanced by co-digestion of rice straw with other materials. • The optimal ratio of kitchen waste, pig manure and rice straw is 0.4:1.6:1. • The maximum biogas yield of 674.4 L/kg VS was obtained. • VFA inhibition occurred when kitchen waste content was more than 26%. • The dominant VFA were propionate and acetate in successful reactors. - Abstract: In order to investigate the effect of feedstock ratios in biogas production, anaerobic co-digestions of rice straw with kitchen waste and pig manure were carried out. A series of single-stage batch mesophilic (37 ± 1 °C)more » anaerobic digestions were performed at a substrate concentration of 54 g/L based on volatile solids (VS). The results showed that the optimal ratio of kitchen waste, pig manure, and rice straw was 0.4:1.6:1, for which the C/N ratio was 21.7. The methane content was 45.9–70.0% and rate of VS reduction was 55.8%. The biogas yield of 674.4 L/kg VS was higher than that of the digestion of rice straw or pig manure alone by 71.67% and 10.41%, respectively. Inhibition of biogas production by volatile fatty acids (VFA) occurred when the addition of kitchen waste was greater than 26%. The VFA analysis showed that, in the reactors that successfully produced biogas, the dominant intermediate metabolites were propionate and acetate, while they were lactic acid, acetate, and propionate in the others.« less

  10. Cow-specific diet digestibility predictions based on near-infrared reflectance spectroscopy scans of faecal samples.

    PubMed

    Mehtiö, T; Rinne, M; Nyholm, L; Mäntysaari, P; Sairanen, A; Mäntysaari, E A; Pitkänen, T; Lidauer, M H

    2016-04-01

    This study was designed to obtain information on prediction of diet digestibility from near-infrared reflectance spectroscopy (NIRS) scans of faecal spot samples from dairy cows at different stages of lactation and to develop a faecal sampling protocol. NIRS was used to predict diet organic matter digestibility (OMD) and indigestible neutral detergent fibre content (iNDF) from faecal samples, and dry matter digestibility (DMD) using iNDF in feed and faecal samples as an internal marker. Acid-insoluble ash (AIA) as an internal digestibility marker was used as a reference method to evaluate the reliability of NIRS predictions. Feed and composite faecal samples were collected from 44 cows at approximately 50, 150 and 250 days in milk (DIM). The estimated standard deviation for cow-specific organic matter digestibility analysed by AIA was 12.3 g/kg, which is small considering that the average was 724 g/kg. The phenotypic correlation between direct faecal OMD prediction by NIRS and OMD by AIA over the lactation was 0.51. The low repeatability and small variability estimates for direct OMD predictions by NIRS were not accurate enough to quantify small differences in OMD between cows. In contrast to OMD, the repeatability estimates for DMD by iNDF and especially for direct faecal iNDF predictions were 0.32 and 0.46, respectively, indicating that developing of NIRS predictions for cow-specific digestibility is possible. A data subset of 20 cows with daily individual faecal samples was used to develop an on-farm sampling protocol. Based on the assessment of correlations between individual sample combinations and composite samples as well as repeatability estimates for individual sample combinations, we found that collecting up to three individual samples yields a representative composite sample. Collection of samples from all the cows of a herd every third month might be a good choice, because it would yield a better accuracy. © 2015 Blackwell Verlag GmbH.

  11. Assessment of different bedding systems for lactating cows in freestall housing

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to compare different bedding systems for lactating cows in freestall housing. Bedding systems included new sand (NS), recycled byproducts of manure separation (organic solids [OS] and recycled sand [RS]), and foam-core mattresses with a shallow layer of OS (MS). The e...

  12. Environmental implications of anaerobic digestion for manure management in dairy farms in Mexico: a life cycle perspective.

    PubMed

    Rivas-García, Pasiano; Botello-Álvarez, José E; Abel Seabra, Joaquim E; da Silva Walter, Arnaldo C; Estrada-Baltazar, Alejandro

    2015-01-01

    The environmental profile of milk production in Mexico was analysed for three manure management scenarios: fertilization (F), anaerobic digestion (AD) and enhanced anaerobic digestion (EAD). The study used the life cycle assessment (LCA) technique, considering a 'cradle-to-gate' approach. The assessment model was constructed using SimaPro LCA software, and the life cycle impact assessment was performed according to the ReCiPe method. Dairy farms with AD and EAD scenarios were found to exhibit, respectively, 12% and 27% less greenhouse gas emissions, 58% and 31% less terrestrial acidification, and 3% and 18% less freshwater eutrophication than the F scenario. A different trend was observed in the damage to resource availability indicator, as the F scenario presented 6% and 22% less damage than the EAD and AD scenarios, respectively. The magnitude of environmental damage from milk production in the three dairy manure management scenarios, using a general single score indicator, was 0.118, 0.107 and 0.081 Pt/L of milk for the F, AD and EAD scenarios, respectively. These results indicate that manure management systems with anaerobic digestion can improve the environmental profile of each litre of milk produced.

  13. Effects of thermal treatment on high solid anaerobic digestion of swine manure: Enhancement assessment and kinetic analysis.

    PubMed

    Wu, Jing; Hu, Yu-Ying; Wang, Shi-Feng; Cao, Zhi-Ping; Li, Huai-Zhi; Fu, Xin-Mei; Wang, Kai-Jun; Zuo, Jian-E

    2017-04-01

    Anaerobic digestion (AD), which is a process for generating biogas, can be applied to the treatment of organic wastes. Owing to its smaller footprint, lower energy consumption, and less digestate, high solid anaerobic digestion (HSAD) has attracted increasing attention. However, its biogas production is poor. In order to improve biogas production and decrease energy consumption, an improved thermal treatment process was proposed. Raw swine manure (>20% solid content) without any dilution was thermally treated at 70±1°C for different retention times, and then its effect on HSAD was investigated via batch AD experiments at 8.9% solid content. Results showed that the main organic components of swine manure hydrolyzed significantly during the thermal treatment, and HSAD's methane production rate was improved by up to 39.5%. Analysis using two kinetic models confirmed that the treatment could increase biodegradable organics (especially the readily biodegradable organics) in swine manure rather than upgrading its hydrolysis rate. It is worth noting that the superimposed first-order kinetics model was firstly applied in AD, and was a good tool to reveal the AD kinetics mechanism of substrates with complex components. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrer, I.; GIRO Technological Center, Rambla Pompeu Fabra 1, 08100 Mollet del Valles, Barcelona; Gamiz, M.

    Parque Porcino de Ventanilla has an extension of 840 ha with 2200 farmers dedicated to pig production. There is a lack of services in the area (i.e., water supply, electricity, or waste collection). Anaerobic treatment of pig manure would replace current dumping and incineration, reducing environmental pollution and hazards to public health, as well as providing an organic fertilizer and biogas. The objective of the present work was to study the viability of ambient temperature anaerobic digestion of pig manure diluted in urine, by means of on-site pilot scale reactors. The final goal was to establish design parameters for anaerobicmore » digesters to be implemented; since it was part of a project to improve life conditions for the farmers through the incorporation of better management techniques. Experiments were carried out in a low-cost pilot plant, which consists of three anaerobic digesters (225 L total volume), without heating or agitation, placed in a greenhouse. The start-up of the digestion process was performed with a mixture of temperature adapted pig manure-sludge and fresh rumen, and showed a good performance regardless of the dilution of pig manure with water or urine, which is a key parameter due to the scarcity of water in the area under study.« less

  15. Prevalence and persistence of potentially pathogenic and antibiotic resistant bacteria during anaerobic digestion treatment of cattle manure.

    PubMed

    Resende, Juliana Alves; Silva, Vânia Lúcia; de Oliveira, Tamara Lopes Rocha; de Oliveira Fortunato, Samuel; da Costa Carneiro, Jailton; Otenio, Marcelo Henrique; Diniz, Cláudio Galuppo

    2014-02-01

    Anaerobic digestion figures as a sustainable alternative to avoid discharge of cattle manure in the environment, which results in biogas and biofertilizer. Persistence of potentially pathogenic and drug-resistant bacteria during anaerobic digestion of cattle manure was evaluated. Selective cultures were performed for enterobacteria (ENT), non-fermenting Gram-negative rods (NFR) and Gram-positive cocci (GPC). Antimicrobial susceptibility patterns were determined and a decay of all bacterial groups was observed after 60days. Multidrug-resistant bacteria were detected both the influent and effluent. GPC, the most prevalent group was highly resistant against penicillin and levofloxacin, whereas resistance to ampicillin, ampicillin-sulbactam and chloramphenicol was frequently observed in the ENT and NFR groups. The data point out the need of discussions to better address management of biodigesters and the implementation of sanitary and microbiological safe treatments of animal manures to avoid consequences to human, animal and environmental health. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Improved biogas production from whole stillage by co-digestion with cattle manure.

    PubMed

    Westerholm, Maria; Hansson, Mikael; Schnürer, Anna

    2012-06-01

    Whole stillage, as sole substrate or co-digested with cattle manure, was evaluated as substrate for biogas production in five mesophilic laboratory-scale biogas reactors, operating semi-continuously for 640 days. The process performance was monitored by chemical parameters and by quantitative analysis of the methanogenic and acetogenic population. With whole stillage as sole substrate the process showed clear signs of instability after 120 days of operation. However, co-digestion with manure clearly improved biogas productivity and process stability and indicated increased methane yield compared with theoretical values. The methane yield at an organic loading rate (OLR) at 2.8 g VS/(L×day) and a hydraulic retention time (HRT) of 45 days with a substrate mixture 85% whole stillage and 15% manure (based on volatile solids [VS]) was 0.31 N L CH(4)/gVS. Surprisingly, the abundance of the methanogenic and acetogenic populations remained relatively stable throughout the whole operation and was not influenced by process performance. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Gaseous nitrogen and bacterial responses to raw and digested dairy manure applications in incubated soil.

    PubMed

    Saunders, Olivia E; Fortuna, Ann-Marie; Harrison, Joe H; Cogger, Craig G; Whitefield, Elizabeth; Green, Tonia

    2012-11-06

    A study was conducted under laboratory conditions to compare rates of nitrous oxide (N(2)O) and ammonia (NH(3)) emissions when soil was amended with anaerobically digested dairy manure slurry containing <30% food byproducts, raw dairy manure slurry, or urea. Slurries were applied via surface and subsurface methods. A second objective was to correlate genes regulating nitrification and denitrification with rates of N(2)O production, slurry treatment, and application method. Ammonia volatilization from incubated soil ranged from 140 g kg(-1) of total N applied in digested slurry to 230 g kg(-1) in urea. Subsurface application of raw dairy manure slurry decreased ammonia volatilization compared with surface application. Anaerobic digestion increased N(2)O production. Cumulative N(2)O loss averaged 27 g kg(-1) of total N applied for digested slurry, compared with 5 g kg(-1) for raw dairy slurry. Genes of interest included a 16S rRNA gene selective for β-subgroup proteobacterial ammonia-oxidizers, amoA, narG, and nosZ quantified with quantitative polymerase chain reaction (qPCR) and real-time polymerase chain reaction (RT-PCR). Application of anaerobically digested slurry increased nitrifier and denitrifier gene copies that correlated with N(2)O production. Expression of all genes measured via mRNA levels was affected by N applications to soil. This study provides new information linking genetic markers in denitrifier and nitrifier populations to N(2)O production.

  18. The fate of crop nutrients during digestion of swine manure in psychrophilic anaerobic sequencing batch reactors.

    PubMed

    Massé, D I; Croteau, F; Masse, L

    2007-11-01

    The objectives of the study were to measure the levels of manure nutrients retained in psychrophilic anaerobic sequencing batch reactors (PASBRs) digesting swine manure, and to determine the distribution of nutrients in the sludge and supernatant zones of settled bioreactor effluent. Anaerobic digestion reduced the total solids (TS) concentration and the soluble chemical oxygen demand (SCOD) of manure by 71.4% and 79.9%, respectively. The nitrogen, potassium, and sodium fed with the manure to the PASBRs were recovered in the effluent. The bioreactors retained on average 25.5% of the P, 8.7% of the Ca, 41.5% of the Cu, 18.4% of the Zn, and 67.7% of the S fed to the PASBRs. The natural settling of bioreactor effluent allowed further nutrient separation. The supernatant fraction, which represented 71.4% of effluent volume, contained 61.8% of the total N, 67.1% of the NH4-N, and 73.3% of the Na. The settled sludge fraction, which represented 28.6% of the volume, contained 57.6% of the solids, 62.3% of the P, 71.6% of the Ca, 89.6% of the Mg, 76.1% of the Al, 90.0% of the Cu, 74.2% of the Zn, and 52.2% of the S. The N/P ratio was increased from 3.9 in the raw manure to 5.2 in the bioreactor effluent and 9.2 in the supernatant fraction of the settled effluent. The PASBR technology will then substantially decrease the manure management costs of swine operations producing excess phosphorus, by reducing the volume of manure to export outside the farm. The separation of nutrients will also allow land spreading strategies that increase the agronomic value of manure by matching more closely the crop nutrient requirements.

  19. Anaerobic Digestion of Cattle Manure Influenced by Swirling Jet Induced Hydrodynamic Cavitation.

    PubMed

    Langone, Michela; Soldano, Mariangela; Fabbri, Claudio; Pirozzi, Francesco; Andreottola, Gianni

    2018-04-01

    In this work, a modified swirling jet-induced cavitation has been employed for increasing anaerobic digestion efficiency of cattle manure. The hydrodynamic cavitation (HC) treatment improved the organic matter solubilization and the anaerobic biodegradability of cattle manure. The degree of disintegration increased by 5.8, 8.9, and 15.8% after the HC treatment at 6.0, 7.0, and 8.0 bars, respectively. However, the HC treatment at 7.0 bars had better results in terms of methane production. This result may be attributed to the possible formation of toxic and refractory compounds at higher inlet pressures, which could inhibit the methanization process. Further, total Kjeldahl nitrogen content was found to decrease with increasing inlet pressures, as the pH and the turbulent mixing favored the ammonia stripping processes. HC treatment decreased the viscosity of the treated cattle manure, favoring the manure pumping and mixing. Considerations on the energy input due to the HC pre-treatment and the energy output due to the enhanced methane yield have been presented. A positive energy balance can be obtained looking at the improved operational practices in the anaerobic digesters after the implementation of the HC pre-treatment.

  20. Anaerobic digestion characteristics of pig manures depending on various growth stages and initial substrate concentrations in a scaled pig farm in Southern China.

    PubMed

    Zhang, Wanqin; Lang, Qianqian; Wu, Shubiao; Li, Wei; Bah, Hamidou; Dong, Renjie

    2014-03-01

    The characteristics of anaerobic digestion of pig manure from different growth stages were investigated. According to growth stage, batch experiments were performed using gestating sow manure (GSM), swine nursery with post-weaned piglet manure (SNM), growing fattening manure (GFM) and mixed manure (MM) as substrates at four substrate concentrations (40, 50, 65 and 80gVS/L) under mesophilic conditions. The maximum methane yields of MM, SNM, GSM and GFM were 354.7, 328.7, 282.4 and 263.5mLCH4/gVSadded, respectively. Volatile fatty acids/total inorganic carbon (VFA/TIC) ratio increased from 0.10 to 0.89 when loading increased from 40 to 80gVS/L for GFM. The modified Gompertz model shows a better fit to the experimental results than the first order model with a lower difference between measured and predicted methane yields. The kinetic parameters indicated that the methane production curve on the basis of differences in biodegradability of the pig manure at different growth stages. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Anaerobic co-digestion of food waste and dairy manure: effects of food waste particle size and organic loading rate.

    PubMed

    Agyeman, Fred O; Tao, Wendong

    2014-01-15

    This study was to comprehensively evaluate the effects of food waste particle size on co-digestion of food waste and dairy manure at organic loading rates increased stepwise from 0.67 to 3 g/L/d of volatile solids (VS). Three anaerobic digesters were fed semi-continuously with equal VS amounts of food waste and dairy manure. Food waste was ground to 2.5 mm (fine), 4 mm (medium), and 8 mm (coarse) for the three digesters, respectively. Methane production rate and specific methane yield were significantly higher in the digester with fine food waste. Digestate dewaterability was improved significantly by reducing food waste particle size. Specific methane yield was highest at the organic loading rate of 2g VS/L/d, being 0.63, 0.56, and 0.47 L CH4/g VS with fine, medium, and coarse food waste, respectively. Methane production rate was highest (1.40-1.53 L CH4/L/d) at the organic loading rate of 3 g VS/L/d. The energy used to grind food waste was minor compared with the heating value of the methane produced. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Development of a quantitative real-time PCR assay for detection and enumeration of methanogenic archaea in stored swine manure

    USDA-ARS?s Scientific Manuscript database

    Storage of swine manure is associated with the microbial production of a variety of odors and emissions which result from anaerobic digestion of materials present in the manure. In the United States, methane emissions from lagoons and manure storage pits are estimated to be over 40 Tg/year, account...

  3. Effects of corn-based diet starch content and neutral detergent fiber source on lactation performance, digestibility, and bacterial protein flow in dairy cows.

    PubMed

    Fredin, S M; Akins, M S; Ferraretto, L F; Shaver, R D

    2015-01-01

    An experiment was conducted to evaluate the effects of corn-based dietary starch content and source of neutral detergent fiber (NDF) on lactation performance, nutrient digestion, bacterial protein flow, and ruminal parameters in lactating dairy cows. Eight ruminally cannulated multiparous Holstein cows averaging 193±11d in milk were randomly assigned to treatments in a replicated 4×4 Latin square design with 21-d periods. Treatment diets were high corn grain (HCG; 38% corn silage, 19% dry ground corn, and 4% soy hulls), high soy hulls (HSH; 38% corn silage, 11% dry ground corn, and 13% soy hulls), high corn silage (HCS; 50% corn silage, 6% dry ground corn, and 4% soy hulls), and low corn silage (LCS; 29% corn silage, 15% corn, and 19% soy hulls). The HCG, HSH, HCS, and LCS diets contained 29, 23, 24, and 22% starch; 27, 32, 30, and 32% total NDF; and 21, 21, 25, and 17% forage NDF (dry matter basis), respectively. Mean dry matter intake and milk yield were unaffected by treatment. Cows fed LCS had reduced milk fat content compared with HSH and HCS. The concentration of milk urea nitrogen was greater for cows fed HCS compared with the other treatments. Total-tract digestion of NDF was reduced for cows fed the HCG diet. Total-tract starch digestion was increased for cows fed the HSH and HCS compared with HCG and LCS diets. Bacterial protein flow was unaffected by treatment. Ruminal ammonia concentration was reduced in cows fed the HCG and LCS diets compared with the HCS diet. Ruminal propionate increased and the acetate:propionate ratio decreased in cows fed the LCS diet compared with the HCS diet. Ruminal pH was greater for cows fed the HCS diet compared with cows fed the LCS diet. Diet digestibility and performance of mid- to late-lactation cows fed reduced-starch diets by partially replacing corn grain with soy hulls or corn silage was similar to or improved compared with cows fed a normal-starch diet. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Effects of Adding Corn Dried Distiller Grains with Solubles (DDGS) to the Dairy Cow Diet and Effects of Bedding in Dairy Cow Slurry on Fugitive Methane Emissions

    PubMed Central

    Massé, Daniel I.; Jarret, Guillaume; Benchaar, Chaouki; Hassanat, Fadi

    2014-01-01

    Simple Summary The objectives of this experiment were to investigate the effects of adding corn DDGS to the dairy cow diet as well as the bedding types (wood shavings, straw or peat moss) on manure fugitive CH4 emissions. The incorporation of DDGS in the diet has increased manure methane emission by 15% and the use of peat moss as bedding has increased manure methane emission by 27%. Abstract The specific objectives of this experiment were to investigate the effects of adding 10% or 30% corn dried distillers grains with solubles (DDGS) to the dairy cow diet and the effects of bedding type (wood shavings, straw or peat moss) in dairy slurry on fugitive CH4 emissions. The addition of DDGS10 to the dairy cow diet significantly increased (29%) the daily amount of fat excreted in slurry compared to the control diet. The inclusion of DDGS30 in the diet increased the daily amounts of excreted DM, volatile solids (VS), fat, neutral detergent fiber (NDF), acid detergent fiber (ADF) and hemicellulose by 18%, 18%, 70%, 30%, 15% and 53%, respectively, compared to the control diet. During the storage experiment, daily fugitive CH4 emissions showed a significant increase of 15% (p < 0.05) for the slurry resulting from the corn DDGS30 diet. The addition of wood shavings and straw did not have a significant effect on daily fugitive CH4 emissions relative to the control diet, whereas the addition of peat moss caused a significant increase of 27% (p < 0.05) in fugitive CH4 emissions. PMID:26479012

  5. Potential for reducing on-farm greenhouse gas and ammonia emissions from dairy cows with prolonged diet alterations

    USDA-ARS?s Scientific Manuscript database

    Animal agriculture significantly contributes to gaseous emissions that are implicated in global climate change and local environmental problems. Dairy cows specifically are responsible for enteric methane (CH4) emissions, and produce nitrous oxide (N2O) and ammonia (NH3) emissions from manure. Here,...

  6. Influence of the ultrasound pretreatment on anaerobic digestion of cattle manure, food waste and crude glycerine.

    PubMed

    Ormaechea, Pedro; Castrillón, Leonor; Marañón, Elena; Fernández-Nava, Yolanda; Negral, Luis; Megido, Laura

    2017-03-01

    To increase the production of methane, when cattle manure (CM) is digested, pretreatments can be applied and/or the manure can be co-digested with other wastes. In this research work, a mixture of CM, food waste (FW) and raw glycerine (Gly) in a proportion in weight of 87% CM, 10% FW and 3% Gly was digested, (a) without pretreatment and (b) with pretreatment by ultrasound, applying a sonication energy of 1040 kJ/kg total solids. Specific methane production was 290 L CH 4 /kg volatile solids (VS) without pretreatment and 520 L CH 4 /kg VS with pretreatment. With respect to the volumetric methane production, 1.07 L CH 4 /L reactor .day was produced in the first case, and in the second case, 1.98 L CH 4 /L reactor .day. We can conclude that the application of ultrasound pretreatment significantly improved the production of biogas.

  7. The effect of anaerobic digestion and storage on indicator microorganisms in swine and dairy manure.

    PubMed

    Costa, Annamaria; Gusmara, Claudia; Gardoni, Davide; Zaninelli, Mauro; Tambone, Fulvia; Sala, Vittorio; Guarino, Marcella

    2017-11-01

    The aim of this experimental study was to evaluate the influence of anaerobic digestion and storage on indicator microorganisms in swine and dairy excreta. Samples were collected every 90 days for 15 months at eight farms, four pig, and four dairy farms, four of them having a biogas plant. Moreover, to evaluate storage effects on samples, 20 l of manure and slurry taken at each farm (digested manure only in farms with a biogas plant) were stored in a controlled climatic chamber at 18 °C, for 6 months. The bacterial load and the chemical-physical characteristics of excreta were evaluated at each sampling time, stored slurry, and manure were sampled and analyzed every 2 months. A high variability of the concentration of bacteria in the different excreta types was observed during the experiment, mainly depending on the type and time of treatment. No sample revealed either the presence of Escherichia coli O157:H7 or of Salmonella, usually linked to the temporary rearing of infected animals in facilities. Anaerobic digestion and storage affected in a significant way the reduction of indicator bacteria like lactobacilli, coliforms, and streptococci. Anaerobic digestion lowered coliforms in pig slurry (- 2.80 log, P < 0.05), streptococci in dairy manure (- 2.44 log, P < 0.001) and in pig slurry (- 1.43 log, P < 0.05), and lactobacilli in pig slurry (- 3.03 log, P < 0.05). Storage lowered coliforms and the other indicators counts, in particular in fresh wastes, while clostridia did not show a reduction in concentration.

  8. Escherichia coli inactivation kinetics in anaerobic digestion of dairy manure under moderate, mesophilic and thermophilic temperatures

    PubMed Central

    2011-01-01

    Batch anaerobic digestion experiments using dairy manure as feedstocks were performed at moderate (25°C), mesophilic (37°C), and thermophilic (52.5°C) temperatures to understand E. coli, an indicator organism for pathogens, inactivation in dairy manure. Incubation periods at 25, 37, and 52.5°C, were 61, 41, and 28 days respectively. Results were used to develop models for predicting E. coli inactivation and survival in anaerobic digestion. For modeling we used the decay of E. coli at each temperature to calculate the first-order inactivation rate coefficients, and these rates were used to formulate the time - temperature - E. coli survival relationships. We found the inactivation rate coefficient at 52.5°C was 17 and 15 times larger than the inactivation rate coefficients at 25 and 37°C, respectively. Decimal reduction times (D10; time to achieve one log removal) at 25, 37, and 52.5°C, were 9 -10, 7 - 8 days, and < 1 day, respectively. The Arrhenius correlation between inactivation rate coefficients and temperatures over the range 25 -52.5°C was developed to understand the impacts of temperature on E. coli inactivation rate. Using this correlation, the time - temperature - E. coli survival relationships were derived. Besides E. coli inactivation, impacts of temperature on biogas production, methane content, pH change, ORP, and solid reduction were also studied. At higher temperatures, biogas production and methane content was greater than that at low temperatures. While at thermophilic temperature pH was increased, at mesophilic and moderate temperatures pH were reduced over the incubation period. These results can be used to understand pathogen inactivation during anaerobic digestion of dairy manure, and impacts of temperatures on performance of anaerobic digesters treating dairy manure. PMID:21906374

  9. A highly concentrated diet increases biogas production and the agronomic value of young bull's manure.

    PubMed

    Mendonça Costa, Mônica Sarolli Silva de; Lucas, Jorge de; Mendonça Costa, Luiz Antonio de; Orrico, Ana Carolina Amorim

    2016-02-01

    The increasing demand for animal protein has driven significant changes in cattle breeding systems, mainly in feedlots, with the use of young bulls fed on diets richer in concentrate (C) than in forage (F). These changes are likely to affect animal manure, demanding re-evaluation of the biogas production per kg of TS and VS added, as well as of its agronomic value as a biofertilizer, after anaerobic digestion. Here, we determined the biogas production and agronomic value (i.e., the macronutrient concentration in the final biofertilizer) of the manure of young bulls fed on diets with more (80% C+20% F; 'HighC' diet) or less (65% C+35% F; 'LowC' diet) concentrate, evaluating the effects of temperature (25, 35, and 40°C) and the use of an inoculum, during anaerobic digestion. A total of 24 benchtop reactors were used, operating in a semi-continuous system, with a 40-day hydraulic retention time (HRT). The manure from animals given the HighC diet had the greatest potential for biogas production, when digested with the use of an inoculum and at 35 or 40°C (0.6326 and 0.6207m(3)biogas/kg volatile solids, or VS, respectively). We observed the highest levels of the macronutrients N, P, and K in the biofertilizer from the manure of animals given HighC. Our results show that the manure of young bulls achieves its highest potential for biogas production and agronomic value when animals are fed diets richer in concentrate, and that biogas production increases if digestion is performed at higher temperatures, and with the use of an inoculum. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Effects of ruminally degradable starch levels on performance, nitrogen balance, and nutrient digestibility in dairy cows fed low corn-based starch diets.

    PubMed

    Luo, Guobin; Xu, Wenbin; Yang, Jinshan; Li, Yang; Zhang, Liyang; Wang, Yizhen; Lin, Cong; Zhang, Yonggen

    2017-05-01

    This trial was performed to examine the effects of ruminally degradable starch (RDS) levels in total mixed ration (TMR) with low corn-based starch on the milk production, whole-tract nutrient digestibility and nitrogen balance in dairy cows. Eight multiparous Holstein cows (body weight [BW]: 717±63 kg; days in milk [DIM]: 169±29) were assigned to a crossover design with two dietary treatments: a diet containing 62.3% ruminally degradable starch (% of total starch, low RDS) or 72.1% ruminally degradable starch (% of total starch, high RDS). Changes to the ruminally degradable levels were conducted by using either finely ground corn or steam-flaked corn as the starch component. The results showed that dry matter intake, milk yield and composition in dairy cows were not affected by dietary treatments. The concentration of milk urea nitrogen was lower for cows fed high RDS TMR than low RDS TMR. The whole-tract apparent digestibility of neutral detergent fiber, acid detergent fiber and crude protein decreased, and that of starch increased for cows fed high RDS TMR over those fed low RDS TMR, with no dietary effect on the whole-tract apparent digestibility of dry matter and organic matter. The proportion of urinary N excretion in N intake was lower and that of fecal N excretion in N intake was higher for cows fed high RDS TMR than those fed low RDS TMR. The N secretion in milk and the retention of N were not influenced by the dietary treatments. Total purine derivative was similar in cows fed high RDS TMR and low RDS TMR. Consequently, estimated microbial N flow to the duodenum was similar in cows fed high RDS TMR and low RDS TMR. Results of this study show that ruminally degradable starch levels can influence whole-tract nutrient digestibility and nitrogen balance in dairy cows fed low corn-based starch diets, with no influence on performance.

  11. Sugarcane bagasse as exclusive roughage for dairy cows in smallholder livestock system.

    PubMed

    de Almeida, Gleidiana Amélia Pontes; de Andrade Ferreira, Marcelo; de Lima Silva, Janaina; Chagas, Juana Catarina Cariri; Véras, Antônia Sherlânea Chaves; de Barros, Leonardo José Assis; de Almeida, Gledson Luiz Pontes

    2018-03-01

    The study aimed to evaluate sugarcane bagasse as roughage in lactating cow on feed intake, digestibility, ingestive behavior, milk production and composition, and microbial protein synthesis. Ten Girolando cows at initial body weight of 450±25.6 kg and at 143.7±30.7 days in milk were assigned in two 5×5 Latin square designs. Five 21-day experimental periods were adopted (1° to 14-day: diets adaptation period; 15° to 21-day: data collection and sampling period). The diets consisted of four different levels of sugarcane bagasse (45%, 50%, 55%, and 60%) and a control diet, commonly adopted in the region, based on spineless cactus (25% sugarcane bagasse), formulated to meet 12 kg/d milk yield. The dry matter (DM), organic matter (OM), and total digestible nutrients intakes and DM and OM digestibilities observed for 45% and 50% bagasse inclusion were similar to control diet, while that 55% and 60% bagasse inclusion were lower. Cows fed control diet, and bagasse diets of 45%, and 50% levels had the nutritional requirements attended, that guaranteed 12 kg/d of milk yield. The crude protein intake and digestibility of cows fed 45%, 50%, and 55% of bagasse inclusion were similar to control diet. The neutral detergent fiber (NDF) intake and digestibility differ for all bagasse diets related to control diet, while the non-fiber carbohydrates intake and digestibility for cows fed 45% of bagasse were similar for control diet. The intakes and digestibilities of nutrients decreased linearly in function of bagasse inclusion; NDF and indigestible NDF intakes did not vary. The ruminating time, feeding and rumination efficiency, microbial protein synthesis and milk yield decreased linearly with sugarcane bagasse inclusion. Sugarcane bagasse decreases milk production; however, its inclusion level in between 45% to 50% associated to concentrate could replace diets based on spineless cactus for crossbred dairy cow's producing 12 kg/d of milk.

  12. Sugarcane bagasse as exclusive roughage for dairy cows in smallholder livestock system

    PubMed Central

    2018-01-01

    Objective The study aimed to evaluate sugarcane bagasse as roughage in lactating cow on feed intake, digestibility, ingestive behavior, milk production and composition, and microbial protein synthesis. Methods Ten Girolando cows at initial body weight of 450±25.6 kg and at 143.7±30.7 days in milk were assigned in two 5×5 Latin square designs. Five 21-day experimental periods were adopted (1° to 14-day: diets adaptation period; 15° to 21-day: data collection and sampling period). The diets consisted of four different levels of sugarcane bagasse (45%, 50%, 55%, and 60%) and a control diet, commonly adopted in the region, based on spineless cactus (25% sugarcane bagasse), formulated to meet 12 kg/d milk yield. Results The dry matter (DM), organic matter (OM), and total digestible nutrients intakes and DM and OM digestibilities observed for 45% and 50% bagasse inclusion were similar to control diet, while that 55% and 60% bagasse inclusion were lower. Cows fed control diet, and bagasse diets of 45%, and 50% levels had the nutritional requirements attended, that guaranteed 12 kg/d of milk yield. The crude protein intake and digestibility of cows fed 45%, 50%, and 55% of bagasse inclusion were similar to control diet. The neutral detergent fiber (NDF) intake and digestibility differ for all bagasse diets related to control diet, while the non-fiber carbohydrates intake and digestibility for cows fed 45% of bagasse were similar for control diet. The intakes and digestibilities of nutrients decreased linearly in function of bagasse inclusion; NDF and indigestible NDF intakes did not vary. The ruminating time, feeding and rumination efficiency, microbial protein synthesis and milk yield decreased linearly with sugarcane bagasse inclusion. Conclusion Sugarcane bagasse decreases milk production; however, its inclusion level in between 45% to 50% associated to concentrate could replace diets based on spineless cactus for crossbred dairy cow's producing 12 kg/d of milk. PMID:29059720

  13. The effects of digestion temperature and temperature shock on the biogas yields from the mesophilic anaerobic digestion of swine manure.

    PubMed

    Chae, K J; Jang, Am; Yim, S K; Kim, In S

    2008-01-01

    In order to obtain basic design criteria for anaerobic digesters of swine manure, the effects of different digesting temperatures, temperature shocks and feed loads, on the biogas yields and methane content were evaluated. The digester temperatures were set at 25, 30 and 35 degrees C, with four feed loads of 5%, 10%, 20% and 40% (feed volume/digester volume). At a temperature of 30 degrees C, the methane yield was reduced by only 3% compared to 35 degrees C, while a 17.4% reduction was observed when the digestion was performed at 25 degrees C. Ultimate methane yields of 327, 389 and 403 mL CH(4)/g VS(added) were obtained at 25, 30 and 35 degrees C, respectively; with moderate feed loads from 5% to 20% (V/V). From the elemental analysis of swine manure, the theoretical biogas and methane yields at standard temperature and pressure were 1.12L biogas/g VS(destroyed) and 0.724 L CH(4)/g VS(destroyed), respectively. Also, the methane content increased with increasing digestion temperatures, but only to a small degree. Temperature shocks from 35 to 30 degrees C and again from 30 to 32 degrees C led to a decrease in the biogas production rate, but it rapidly resumed the value of the control reactor. In addition, no lasting damage was observed for the digestion performance, once it had recovered.

  14. Impact of co-digestion on existing salt and nutrient mass balances for a full-scale dairy energy project.

    PubMed

    Camarillo, Mary Kay; Stringfellow, William T; Spier, Chelsea L; Hanlon, Jeremy S; Domen, Jeremy K

    2013-10-15

    Anaerobic digestion of manure and other agricultural waste streams with subsequent energy production can result in more sustainable dairy operations; however, importation of digester feedstocks onto dairy farms alters previously established carbon, nutrient, and salinity mass balances. Salt and nutrient mass balance must be maintained to avoid groundwater contamination and salination. To better understand salt and nutrient contributions of imported methane-producing substrates, a mass balance for a full-scale dairy biomass energy project was developed for solids, carbon, nitrogen, sulfur, phosphorus, chloride, and potassium. Digester feedstocks, consisting of thickened manure flush-water slurry, screened manure solids, sudan grass silage, and feed-waste, were tracked separately in the mass balance. The error in mass balance closure for most elements was less than 5%. Manure contributed 69.2% of influent dry matter while contributing 77.7% of nitrogen, 90.9% of sulfur, and 73.4% of phosphorus. Sudan grass silage contributed high quantities of chloride and potassium, 33.3% and 43.4%, respectively, relative to the dry matter contribution of 22.3%. Five potential off-site co-digestates (egg waste, grape pomace, milk waste, pasta waste, whey wastewater) were evaluated for anaerobic digestion based on salt and nutrient content in addition to bio-methane potential. Egg waste and wine grape pomace appeared the most promising co-digestates due to their high methane potentials relative to bulk volume. Increasing power production from the current rate of 369 kW to the design value of 710 kW would require co-digestion with either 26800 L d(-1) egg waste or 60900 kg d(-1) grape pomace. However, importation of egg waste would more than double nitrogen loading, resulting in an increase of 172% above the baseline while co-digestion with grape pomace would increase potassium by 279%. Careful selection of imported co-digestates and management of digester effluent is required to manage salt and nutrient mass loadings and reduce groundwater impacts. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Anaerobic Ammonium-Oxidizing Bacteria in Cow Manure Composting.

    PubMed

    Wang, Tingting; Cheng, Lijun; Zhang, Wenhao; Xu, Xiuhong; Meng, Qingxin; Sun, Xuewei; Liu, Huajing; Li, Hongtao; Sun, Yu

    2017-07-28

    Composting is widely used to transform waste into valuable agricultural organic fertilizer. Anaerobic ammonium-oxidizing (anammox) bacteria play an important role in the global nitrogen cycle, but their role in composting remains poorly understood. In the present study, the community structure, diversity, and abundance of anammox bacteria were analyzed using cloning and sequencing methods by targeting the 16S rRNA gene and the hydrazine oxidase gene ( hzo ) in samples isolated from compost produced from cow manure and rice straw. A total of 25 operational taxonomic units were classified based on 16S rRNA gene clone libraries, and 14 operational taxonomic units were classified based on hzo gene clone libraries. The phylogenetic tree analysis of the 16S rRNA gene and deduced HZO protein sequences from the corresponding encoding genes indicated that the majority of the obtained clones were related to the known anammox bacteria Candidatus "Brocadia," Candidatus "Kuenenia," and Candidatus "Scalindua." The abundances of anammox bacteria were determined by quantitative PCR, and between 2.13 × 10 5 and 1.15 × 10 6 16S rRNA gene copies per gram of compost were found. This study provides the first demonstration of the existence of anammox bacteria with limited diversity in cow manure composting.

  16. Environmental occurrence and shallow ground water detection of the antibiotic monensin from dairy farms

    USGS Publications Warehouse

    Watanabe, N.; Harter, T.H.; Bergamaschi, B.A.

    2008-01-01

    Pharmaceuticals used in animal feeding operations have been detected in various environmental settings. There is a growing concern about the impact on terrestrial and aquatic organisms and the development of antibiotic-resistant strains of microorganisms. Pharmaceutical use in milking cows is relatively limited compared with other livestock operations, except for the ionophore monensin, which is given to lactating cows as a feed. By weight, monensin can be the most significant antibiotic used in a dairy farm. This study investigates the potential of monensin to move from dairy operations into the surrounding ground water. Using two dairy farms in California as study sites, we twice collected samples along the environmental pathway - from flush lanes, lagoon waters, and shallow ground water beneath the dairies and beneath its associated manured fields. Monensin concentrations were determined using solid-phase extraction and liquid chromatography-tandem mass spectrometry with positive electrospray ionization. Monensin was detected in all of the flush lane and lagoon water samples. Theoretical maximum concentration estimated from the actual dosing rate and the theoretical excretion rate assuming no attenuation was one order of magnitude greater than observed concentrations, suggesting significant attenuation in the manure collection and storage system. Monensin was also detected, at levels ranging from 0.04 to 0.39 ??g L-1, in some of the ground water samples underneath the production area of the dairy but not from the adjacent manured fields. Concentrations in ground water immediately downgradient of the lagoons were one to two orders of magnitude lower than the concentrations detected in lagoons, suggesting attenuation in the subsurface. The data suggest the possibility of monensin transport into shallow (2-5 m) alluvial ground water from dairy management units, including manure storage lagoons and freestalls occupied by heifers, lactating cows, and dry cows. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  17. Thermophilic co-digestion feasibility of distillers grains and swine manure: effect of C/N ratio and organic loading rate during high solid anaerobic digestion (HSAD).

    PubMed

    Sensai, P; Thangamani, A; Visvanathan, C

    2014-01-01

    Anaerobic co-digestion of high solids containing distillers grains and swine manure (total solids, 27 +/- 2% and 18 +/- 2%, respectively) was evaluated in this study to assess the effect of C/N ratio and organic loading rate (OLR). Feed mixture was balanced to achieve a C/N ratio of 30/1 by mixing distillers grains and swine manure. Pilot-scale co-digestion of distillers grains and swine manure was carried out under thermophilic conditions in the continuous mode for seven different OLRs from R1 to R7 (3.5, 5, 6, 8, 10, 12 and 14 kg VS/m3 day) under high solid anaerobic digestion. The methane yield and volatile solid (VS) removal were consistent; ranging from 0.33 to 0.34 m3CH4/kg VS day and 50-53%, respectively, until OLR 8 kg VS/m3 day. After which methane yield and VS removal significantly decreased to 0.26 m3 CH4/kg VS day and 42%, respectively, when OLR was increased to 14 kg VS/m3 day. However, during operation, at OLR of 10 kg VS/m3 day, the methane yield and VS removal increased after the 19th day to 0.33 m3 CH4/kg VS day and 46%, respectively, indicating that a longer acclimatization period is required by methanogens at a higher loading rate.

  18. Effect of microscale ZVI/magnetite on methane production and bioavailability of heavy metals during anaerobic digestion of diluted pig manure.

    PubMed

    Liang, Yue-Gan; Li, Xiu-Juan; Zhang, Jin; Zhang, Li-Gan; Cheng, Beijiu

    2017-05-01

    Low methane production and high levels of heavy metal in pig slurries limit the feasibility of anaerobic digestion of pig manure. In this study, changes in the methane production and bioavailability of heavy metals in the anaerobic digestion of diluted pig manure were evaluated using single and combined action of microscale zero-valence iron (ZVI) and magnetite. After 30 days of anaerobic digestion, the methane yield ranged from 246.9 to 334.5 mL/g VS added, which increased by 20-26% in the group added with microscale ZVI and/or magnetite relative to that in the control group. Results of the first-order kinetic model revealed that addition of microscale ZVI and/or magnetite increased the biogas production potential, rather than the biogas production rate constant. These treatments also changed the distribution of chemical fractions for heavy metal. The addition of ZVI decreased the bioavailability of Cu and Zn in the solid digested residues. Moreover, a better performance was observed in the combined action of microscale ZVI and magnetite, and the ZVI anaerobic corrosion end-product, magnetite, might help enhance methane production through direct interspecies electron transfer in ZVI-anaerobic digestion process.

  19. Effect of hydraulic retention time (HRT) on the anaerobic co-digestion of agro-industrial wastes in a two-stage CSTR system.

    PubMed

    Dareioti, Margarita Andreas; Kornaros, Michael

    2014-09-01

    A two-stage anaerobic digestion system consisting of two continuously stirred tank reactors (CSTRs) operating at mesophilic conditions (37°C) were used to investigate the effect of hydraulic retention time (HRT) on hydrogen and methane production. The acidogenic reactor was fed with a mixture consisting of olive mill wastewater, cheese whey and liquid cow manure (in a ratio 55:40:5, v/v/v) and operated at five different HRTs (5, 3, 2, 1 and 0.75 d) aiming to evaluate hydrogen productivity and operational stability. The highest system efficiency was achieved at HRT 0.75 d with a maximum hydrogen production rate of 1.72 L/LRd and hydrogen yield of 0.54 mol H2/mol carbohydrates consumed. The methanogenic reactor was operated at HRTs 20 and 25 d with better stability observed at HRT 25 d, whereas accumulation of volatile fatty acids took place at HRT 20 d. The methane production rate at the steady state of HRT 25 d reached 0.33 L CH4/LRd. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Effects of chlortetracycline amended feed on anaerobic sequencing batch reactor performance of swine manure digestion.

    PubMed

    Dreher, Teal M; Mott, Henry V; Lupo, Christopher D; Oswald, Aaron S; Clay, Sharon A; Stone, James J

    2012-12-01

    The effects of antimicrobial chlortetracycline (CTC) on the anaerobic digestion (AD) of swine manure slurry using anaerobic sequencing batch reactors (ASBRs) was investigated. Reactors were loaded with manure collected from pigs receiving CTC and no-antimicrobial amended diets at 2.5 g/L/d. The slurry was intermittently fed to four 9.5L lab-scale anaerobic sequencing batch reactors, two with no-antimicrobial manure, and two with CTC-amended manure, and four 28 day ASBR cycles were completed. The CTC concentration within the manure was 2 8 mg/L immediately after collection and 1.02 mg/L after dilution and 250 days of storage. CTC did not inhibit ASBR biogas production extent, however the volumetric composition of methane was significantly less (approximately 13% and 15% for cycles 1 and 2, respectively) than the no-antimicrobial through 56 d. CTC decreased soluble chemical oxygen demand and acetic acid utilization through 56 d, after which acclimation to CTC was apparent for the duration of the experiment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Antibiotic degradation and microbial community structures during acidification and methanogenesis of swine manure containing chlortetracycline or oxytetracycline.

    PubMed

    Yin, Fubin; Dong, Hongmin; Zhang, Wanqin; Zhu, Zhiping; Shang, Bin

    2018-02-01

    Anaerobic digestion (AD) has been applied to animal manure stabilization, and antibiotics is frequently found in animal manure. However, antibiotic degradation and microbial community structures during two-stage AD (acidification and methanogenesis) remain poorly understood. This experiments on two-stage anaerobic swine manure digesters were performed to investigate the degradation mechanisms and effects of chlortetracycline (CTC) and oxytetracycline (OTC) on microbial community structures. Results showed that acidification and methanogenesis showed good degradation performance for manure containing CTC and OTC at 60 and 40 mg/kg·TS, respectively. CTC and OTC were degraded by 59.8% and 41.3% in the acidogenic stage and by 76.3% and 78.3% in the methanogenic stage, respectively. CTC and OTC negatively affected bacterial community in methanogenic and acidogenic stages, respectively. They also adversely influenced the archaeal species in the methanogenic stage. Two-stage AD was proposed to treat manure containing antibiotics and to reduce the negative effects of antibiotics on AD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Voluntary intake and milk production in F1 Holstein × zebu cows in confinement.

    PubMed

    Santos, Stefanie Alvarenga; de Campos Valadares Filho, Sebastião; Detmann, Edenio; Valadares, Rilene Ferreira Diniz; de Mendes Ruas, José Reinaldo; Prados, Laura Franco; da Silva Menchaca Vega, Danielle

    2012-08-01

    The objective of this study was to evaluate the nutrient intake and milk production in Holstein × zebu (F1) cows in feedlot. Eighteen F1 cows were used, divided into three treatments; six were Holstein × Gir (HGI), six were Holstein × Guzerat (HGU), and another six were Holstein × Nelore (HNE), which had recently calved, distributed into simple, random samples, under the same feeding conditions of corn silage and concentrate with 20% crude protein. The three-marker method was used (LIPE, titanium dioxide, and iADF) to estimate the individual intake and digestibility of the nutrients for the cows in group. The mathematical model used to establish the lactation curves was: Y = at(b)e(-ct) by Wood (Nature 216:164-165, 1967). The statistical analyses for the nutrient intake and digestibility, as well as parameters of metabolic efficiency, were performed using multiple linear regression (α = 5%). No effect (P > 0.05) of genetic group was observed for any of the variables studied. The intake and digestibility of the nutrients and the microbial nitrogen presented quadratic curves as a function of the lactation period (P < 0.05). The HGU cows exhibited an accumulated milk production of 4,946.81 kg at 305 days, whereas the HGI cows produced 4,821.78 kg. The HNE cows displayed inferior performance, with a production of 3,674.98 kg. It was concluded that, in confinement, F1 cows from different genetic groups do not exhibit different intake, digestibility, or metabolic efficiency. The HGU and HGI cows have greater cumulative production at 305 days.

  3. Improved control of multiple-antibiotic-resistance-related microbial risk in swine manure wastes by autothermal thermophilic aerobic digestion.

    PubMed

    Han, Il; Congeevaram, Shankar; Park, Joonhong

    2009-01-01

    In this study, we microbiologically evaluated antibiotic resistance and pathogenicity in livestock (swine) manure as well as its biologically stabilized products. One of new livestock manure stabilization techniques is ATAD (Autothermal Thermophilic Aerobic Digestion). Because of its high operation temperature (60-65 degrees C), it has been speculated to have effective microbial risk control in livestock manure. This hypothesis was tested by evaluating microbial risk in ATAD-treated swine manure. Antibiotic resistance, multiple antibiotic resistance (MAR), and pathogenicity were microbiologically examined for swine manure as well as its conventionally stabilized (anaerobically fermented) and ATAD-stabilized products. In the swine manure and its conventionally stabilized product, antibiotic resistant (tetracycline-, kanamycine-, ampicillin-, and rifampicin-resistant) bacteria and the pathogen indicator bacteria were detected. Furthermore, approximately 2-5% of the Staphylococcus and Salmonella colonies from their selective culture media were found to exhibit a MAR-phenotypes, suggesting a serious level of microbe induced health risk. In contrast, after the swine manure was stabilized with a pilot-scale ATAD treatment for 3 days at 60-65 degrees C, antibiotic resistant bacteria, pathogen indicator bacteria, and MAR-exhibiting pathogens were all undetected. These findings support the improved control of microbial risk in livestock wastes by ATAD treatment.

  4. Bioconversion of dairy manure by black soldier fly (Diptera: Stratiomyidae) for biodiesel and sugar production.

    PubMed

    Li, Qing; Zheng, Longyu; Qiu, Ning; Cai, Hao; Tomberlin, Jeffery K; Yu, Ziniu

    2011-06-01

    Modern dairies cause the accumulation of considerable quantity of dairy manure which is a potential hazard to the environment. Dairy manure can also act as a principal larval resource for many insects such as the black soldier fly, Hermetia illucens. The black soldier fly larvae (BSFL) are considered as a new biotechnology to convert dairy manure into biodiesel and sugar. BSFL are a common colonizer of large variety of decomposing organic material in temperate and tropical areas. Adults do not need to be fed, except to take water, and acquired enough nutrition during larval development for reproduction. Dairy manure treated by BSFL is an economical way in animal facilities. Grease could be extracted from BSFL by petroleum ether, and then be treated with a two-step method to produce biodiesel. The digested dairy manure was hydrolyzed into sugar. In this study, approximately 1248.6g fresh dairy manure was converted into 273.4 g dry residue by 1200 BSFL in 21 days. Approximately 15.8 g of biodiesel was gained from 70.8 g dry BSFL, and 96.2g sugar was obtained from the digested dairy manure. The residual dry BSFL after grease extraction can be used as protein feedstuff. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Anaerobic co-digestion of chicken manure and microalgae Chlorella sp.: Methane potential, microbial diversity and synergistic impact evaluation.

    PubMed

    Li, Ruirui; Duan, Na; Zhang, Yuanhui; Liu, Zhidan; Li, Baoming; Zhang, Dongming; Dong, Taili

    2017-10-01

    Anaerobic digestion (AD) is a promising alternative for livestock manure management. This paper presents the experimental results obtained through a batch experiment by using chicken manure (CM) and microalgae Chlorella sp. as co-substrates. The effect of co-digestion was evaluated by varying CM to Chlorella sp. ratios (0:10, 2:8, 4:6, 6:4, 8:2, 10: 0 based on the volatile solids (VS)). The major objective of this study is to evaluate the feasibility and synergistic impact of co-digestion of CM and Chlorella sp. Enhanced 14.20% and 76.86% methane production than CM and Chlorella sp. mono-digestion respectively was achieved in co-digestion at the ratio 8:2. In addition, the co-digestion at the ratio 8:2 showed significantly higher methane yield than the weighted average of the individual substrates' specific methane yield (WSMY), indicating strong synergy effect. The Illumina Miseq sequencing analysis showed that the AD process suppressed the acetoclastic methanogenesis Methanosaeta content; but partly enhanced hydrogenotrophic methanogenesis Methanosarcina, Methanospirillum and Methanobacterium, which was responsible for the methane production. The pre-treated microalgae was then introduced at the optimal ratio 8:2 to estimate the effect of pre-treatment of microalgae on AD process. However, the pre-treatment exhibited no positive effect. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Effects of including NaOH-treated corn straw as a substitute for wheat hay in the ration of lactating cows on performance, digestibility, and rumen microbial profile.

    PubMed

    Jami, E; Shterzer, N; Yosef, E; Nikbachat, M; Miron, J; Mizrahi, I

    2014-03-01

    This study measured the effects of including 5% NaOH-treated corn straw (T-CS) as a substitute for 15% wheat hay in the control total mixed ration (TMR) of lactating cows on performance, digestibility, and rumen microbial profile. Two groups of 21 cows each, similar in initial performance, were fed individually 1 of the 2 TMR examined. Voluntary dry matter intake of cows fed the control TMR was 4.3% higher than that of the T-CS cows, but in vivo dry matter and organic matter digestibilities of both groups were similar. Crude protein digestibility was higher in the control cows but digestibility of neutral detergent fiber polysaccharides (cellulose and hemicelluloses) was higher in the T-CS TMR. This was followed by 4.6% reduction in rumination time of the T-CS group. A slightly higher milk yield was observed in the control cows compared with the T-CS group; however, milk fat and milk protein content were higher in cows fed the T-CS TMR. This was reflected in 1.3% increase in energy-corrected milk yield and 5.34% increase in production efficiency (energy-corrected milk yield/intake) of the T-CS cows compared with the control. Welfare of the cows, as assessed by length of daily recumbence time, was improved by feeding the T-CS TMR relative to the control group. As a whole, the rumen bacterial community was significantly modulated in the T-CS group in the experimental period compared with the preexperimental period, whereas the bacterial community of the control group remained unchanged during this period. Out of the 8 bacterial species that were quantified using real-time PCR, a notable decrease in cellulolytic bacteria was observed in the T-CS group, as well as an increase in lactic acid-utilizing bacteria. These results illustrate the effect of T-CS on the composition of rumen microbiota, which may play a role in improving the performance of the lactating cow. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. Testing low cost anaerobic digestion (AD) systems

    USDA-ARS?s Scientific Manuscript database

    To evaluate the potential for low technology and low cost digesters for small dairies, BARC and researchers from the University of Maryland installed six modified Taiwanese-model field-scale (FS) digesters near the original dairy manure digester. The FS units receive the same post-separated liquid ...

  8. Degradation of organophosphate esters in sewage sludge: Effects of aerobic/anaerobic treatments and bacterial community compositions.

    PubMed

    Pang, Long; Ge, Liming; Yang, Peijie; He, Han; Zhang, Hongzhong

    2018-05-01

    In this study, the degradation of organophosphate esters (OPEs) in sewage sludge with aerobic composting and anaerobic digestion was investigated. The total concentrations of six OPEs (ΣOPEs) in the whole treatment process reduced in the order of anaerobic digestion combined with pig manure (T3) > aerobic composting combined with pig manure (T1) > aerobic composting (T2) > anaerobic digestion (T4). The addition of pig manure significantly enhanced the removal rate of OPEs in both aerobic and anaerobic treatments. The abundance and diversity of bacterial community reduced after the treatment process. Shannon index, principal component analysis, network analysis, and heat map further confirmed the variation of bacterial community compositions among different treatments. Five genera (i.e., Flavobacterium, Bacillus, Alcaligene, Pseudomonas, and Bacillus megaterium) might be responsible for the degradation of OPE compounds in sewage sludge. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Effect of antimicrobial compounds tylosin and chlortetracycline during batch anaerobic swine manure digestion.

    PubMed

    Stone, James J; Clay, Sharon A; Zhu, Zhenwei; Wong, Kwok L; Porath, Laura R; Spellman, Garth M

    2009-10-01

    Tylosin and chlortetracycline (CTC) are antimicrobial chemicals that are fed to >45% of the US swine herds at therapeutic and sub-therapeutic dosages to enhance growth rates and treat swine health problems. These compounds are poorly absorbed during digestion so that the bioactive compound or metabolites are excreted. This study investigated the degradation and stabilization of swine manure that contained no additives and compared the observed processes with those of manure containing either tylosin or CTC. The batch anaerobic incubation lasted 216 days. The breakdown of insoluble organic matter through anaerobic hydrolysis reactions was faster for manure containing CTC compared with tylosin or no-antimicrobial treatments. Volatile fatty acid (VFA) accumulation, including acetate, butyrate, and propionate, was greater for CTC-containing manure compared to tylosin and no-antimicrobial treatments. The relative abundance of two aceticlastic methanogens, Methanosaetaceae and Methanosarcinaceae spp., were less for CTC manure than manure with no-antimicrobial treatment. In addition, generation of methane and carbon dioxide was inhibited by 27.8% and 28.4%, respectively, due to the presence of CTC. Tylosin effects on manure degradation were limited, however the relative abundance of Methanosarcinaceae spp. was greater than found in the CTC or no-antimicrobial manures. These data suggest that acetate and other C-1 VFA compounds would be effectively utilized during methanogenesis in the presence of tylosin.

  10. An Overview of the Control of Bacterial Pathogens in Cattle Manure

    PubMed Central

    Manyi-Loh, Christy E.; Mamphweli, Sampson N.; Meyer, Edson L.; Makaka, Golden; Simon, Michael; Okoh, Anthony I.

    2016-01-01

    Cattle manure harbors microbial constituents that make it a potential source of pollution in the environment and infections in humans. Knowledge of, and microbial assessment of, manure is crucial in a bid to prevent public health and environmental hazards through the development of better management practices and policies that should govern manure handling. Physical, chemical and biological methods to reduce pathogen population in manure do exist, but are faced with challenges such as cost, odor pollution, green house gas emission, etc. Consequently, anaerobic digestion of animal manure is currently one of the most widely used treatment method that can help to salvage the above-mentioned adverse effects and in addition, produces biogas that can serve as an alternative/complementary source of energy. However, this method has to be monitored closely as it could be fraught with challenges during operation, caused by the inherent characteristics of the manure. In addition, to further reduce bacterial pathogens to a significant level, anaerobic digestion can be combined with other methods such as thermal, aerobic and physical methods. In this paper, we review the bacterial composition of cattle manure as well as methods engaged in the control of pathogenic microbes present in manure and recommendations that need to be respected and implemented in order to prevent microbial contamination of the environment, animals and humans. PMID:27571092

  11. Evaluating the toxicity of food processing wastes as co-digestion substrates with dairy manure.

    PubMed

    Lisboa, Maria Sol; Lansing, Stephanie

    2014-07-01

    Studies have shown that including food waste as a co-digestion substrate in the anaerobic digestion of livestock manure can increase energy production. However, the type and inclusion rate of food waste used for co-digestion need to be carefully considered in order to prevent adverse conditions in the digestion environment. This study determined the effect of increasing the concentration (2%, 5%, 15% and 30%, by volume) of four food-processing wastes (meatball, chicken, cranberry and ice cream processing wastes) on methane production. Anaerobic toxicity assay (ATA) and specific methanogenic activity (SMA) tests were conducted to determine the concentration at which each food waste became toxic to the digestion environment. Decreases in methane production were observed at concentrations above 5% for all four food waste substrates, with up to 99% decreases in methane production at 30% food processing wastes (by volume). Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Effect of alkaline microwaving pretreatment on anaerobic digestion and biogas production of swine manure.

    PubMed

    Yu, Tao; Deng, Yihuan; Liu, Hongyu; Yang, Chunping; Wu, Bingwen; Zeng, Guangming; Lu, Li; Nishimura, Fumitake

    2017-05-10

    Microwave assisted with alkaline (MW-A) condition was applied in the pretreatment of swine manure, and the effect of the pretreatment on anaerobic treatment and biogas production was evaluated in this study. The two main microwaving (MW) parameters, microwaving power and reaction time, were optimized for the pretreatment. Response surface methodology (RSM) was used to investigate the effect of alkaline microwaving process for manure pretreatment at various values of pH and energy input. Results showed that the manure disintegration degree was maximized of 63.91% at energy input of 54 J/g and pH of 12.0, and variance analysis indicated that pH value played a more important role in the pretreatment than in energy input. Anaerobic digestion results demonstrated that MW-A pretreatment not only significantly increased cumulative biogas production, but also shortened the duration for a stable biogas production rate. Therefore, the alkaline microwaving pretreatment could become an alternative process for effective treatment of swine manure.

  13. Evaluating the effects of activated carbon on methane generation and the fate of antibiotic resistant genes and class I integrons during anaerobic digestion of solid organic wastes.

    PubMed

    Zhang, Jingxin; Mao, Feijian; Loh, Kai-Chee; Gin, Karina Yew-Hoong; Dai, Yanjun; Tong, Yen Wah

    2018-02-01

    The effects of activated carbon (AC) on methane production and the fate of antibiotic resistance genes (ARGs) were evaluated through comparing the anaerobic digestion performance and transformation of ARGs among anaerobic mono-digestion of food waste, co-digestion of food waste and chicken manure, and co-digestion of food waste and waste activated sludge. Results showed that adding AC in anaerobic digesters improved methane yield by at least double through the enrichment of bacteria and archaea. Conventional digestion process showed ability in removing certain types of ARGs, such as tetA, tetX, sul1, sul2, cmlA, floR, and intl1. Supplementing AC in anaerobic digester enhanced the removal of most of the ARGs in mono-digestion of food waste. The effects tended to be minimal in co-digestion of co-substrates such as chicken manure and waste activated sludge, both of which contain a certain amount of antibiotics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Feeding distillers' grains, soybean hulls, or a mixture of both to cows as a forage replacement: Effects on intake, digestibility, and ruminal fermentation characteristics.

    PubMed

    Smith, W B; Coffey, K P; Rhein, R T; Kegley, E B; Philipp, D; Powell, J G; Caldwell, J D; Young, A N

    2017-08-01

    Coproduct feedstuffs offer a unique and potentially profitable avenue for cattle feeding strategies. However, research is lacking in the evaluation of varying coproducts on ruminal fermentation and digestive characteristics when included as the major component of the diet of cows. Our objective was to determine the effect of coproduct feedstuffs as a forage replacement on digestive and fermentative characteristics of cows. Eight ruminally fistulated cows (672 ± 32.0 kg initial BW and approximately 9 yr of age) were stratified by BW and randomly allocated to 1 of 4 diets (2 cows∙diet∙period) in a 2-period study: soybean hulls (SH), distillers' dried grains with solubles (DG), an isoenergetic mixture of soybean hulls and distillers' dried grains with solubles (MX), or ad libitum hay plus 0.9 kg/d of an isoenergetic mixture of soybean hulls and distillers' dried grains with solubles (HY). Diets were formulated to meet the ME requirements of a similar, companion study. Coproduct amounts were increased over a 14-d period. This was followed by a 14-d adaptation to diet and facilities and 5 d of total fecal collections. On the final day of fecal collections, rumen fluid was sampled immediately prior to feeding and 2, 4, 6, 8, 10 and 12 h after feeding for measurement of rumen VFA and ammonia concentrations. Intake of DM and OM was not different ( ≥ 0.28) among treatments, but digestibilities of DM, OM, NDF, and ADF were improved ( < 0.05) by coproduct feeding and by MX vs. the mean of SH and DG. Ruminal DM and OM fill were greater ( < 0.05) for cows offered HY than for cows offered the coproduct diets, greater for cows offered SH than for cows offered DG, and for the mean of SH and DG vs. MX. Ruminal retention time was greater ( < 0.05) for HY vs. the coproduct diets and for SH vs. DG. Apparent N absorption tended ( < 0.10) to be greater for cows offered the coproduct diets than for cows offered HY and greater for cows offered DG than for cows offered SH. Total VFA averaged across sampling times were greatest ( < 0.05) for cows offered SH, and ruminal ammonia N was greatest ( < 0.05) for cows offered either DG or MX at all sampling times. Based on these data, coproduct feedstuffs may be fed to meet the energy requirement of cows without negative effects on digestion or ruminal fermentation.

  15. Mechanisms and effects of arsanilic acid on antibiotic resistance genes and microbial communities during pig manure digestion.

    PubMed

    Sun, Wei; Qian, Xun; Gu, Jie; Wang, Xiao-Juan; Zhang, Li; Guo, Ai-Yun

    2017-06-01

    High concentrations of residual arsanilic acid occur in pig manure due to its use in feed to promote growth and control diseases. This study compared the effects of arsanilic acid at three concentrations (0, 325, and 650mg/kg dry pig manure) on the abundance of antibiotic resistance genes (ARGs) and the microbial community during anaerobic digestion. Addition of 650mg/kg arsanilic acid enhanced the absolute abundances of tetC, sul2, ermB, and gyrA more than twofold in the digestion product. Redundancy analysis indicated that the change in the microbial community structure was the main driver of variation in the ARGs profile. The As resistance gene arsC co-occurred with four ARGs and intI1, possibly causing the increase in ARGs under pressure by arsanilic acid. High arsanilic acid concentrations can increase the risk of ARGs occurring in anaerobic digestion products. The amount of arsanilic acid used as a feed additive should be controlled. Copyright © 2017. Published by Elsevier Ltd.

  16. Batch and semi-continuous anaerobic co-digestion of goose manure with alkali solubilized wheat straw: A case of carbon to nitrogen ratio and organic loading rate regression optimization.

    PubMed

    Hassan, Muhammad; Ding, Weimin; Umar, Muhammad; Rasool, Ghulam

    2017-04-01

    The present study focused on carbon to nitrogen ratio (C/N) and organic loading rate (OLR) optimization of goose manure (GM) and wheat straw (WS). Dealing the anaerobic digestion of poultry manure on industrial scale; the question of optimum C/N (mixing ratio) and OLR (daily feeding concentration) have significant importance still lack in literature. Therefore, Batch and CSTR co-digestion experiments of the GM and WS were carried out at mesophilic condition. The alkali (NaOH) solubilization pretreatment for the WS had greatly enhanced its anaerobic digestibility. The highest methane production was evaluated between the C/N of 20-30 during Batch experimentation while for CSTRs; the second applied OLR of (3g.VS/L.d) was proved as the optimum with maximum methane production capability of 254.65ml/g.VS for reactor B at C/N of 25. The C/N and OLR regression optimization models were developed for their commercial scale usefulness. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Associations of selected bedding types with incidence rates of subclinical and clinical mastitis in primiparous Holstein dairy cows.

    PubMed

    Rowbotham, R F; Ruegg, P L

    2016-06-01

    The objective of this observational study was to determine the association of exposure to selected bedding types with incidence of subclinical (SM) and clinical mastitis (CM) in primiparous Holstein dairy cows housed in identical pens at a single facility. At parturition, primiparous cows were randomly assigned to pens containing freestalls with 1 of 4 bedding materials: (1) deep-bedded new sand (NES, n=27 cows), (2) deep-bedded recycled sand (RS, n=25 cows), (3) deep-bedded manure solids (DBMS, n=31 cows), and (4) shallow-bedded manure solids over foam-core mattresses (SBMS, n=26 cows). For 12mo, somatic cell counts of quarter milk samples were determined every 28d and duplicate quarter milk samples were collected for microbiological analysis from all quarters with SM (defined as somatic cell count >200,000 cells/mL). During this period, duplicate quarter milk samples were also collected for microbial analysis from all cases of CM. For an additional 16mo, cases of CM were recorded; however, no samples were collected. Quarter days at risk (62,980) were distributed among bedding types and most quarters were enrolled for >150d. Of 135 cases of SM, 63% resulted in nonsignificant growth and 87% of recovered pathogens (n=33) were identified as coagulase-negative staphylococci. The distribution of etiologies of pathogens recovered from cases of SM was associated with bedding type. Coagulase-negative staphylococci were recovered from 12, 38, 11, and 46% of quarters with SM from cows in pens containing NES, RS, DBMS, and SBMS, respectively. A result of nonsignificant growth was obtained for 81, 59, 89, and 46% of quarters with SM from cows in pens containing NES, RS, DBMS, and SBMS, respectively. Quarters of primiparous cows bedded with NES tended to have greater survival time to incidence of CM than quarters of primiparous cows bedded with RS or DBMS. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Effect of anaerobic digestion temperature on odour, coliforms and chlortetracycline in swine manure or monensin in cattle manure

    USDA-ARS?s Scientific Manuscript database

    Antibiotics used in animal feeding operations have been detected in the environment. There is a growing concern about the impact of these pharmaceutical compounds in the manure and the effect they may have on aquatic and terrestrial organisms, and the potential development of antibiotic resistant m...

  19. Group specific quantitative real-time polymerase chain reaction (qRT-PCR) analysis of methanogenic archaea in stored swine manure

    USDA-ARS?s Scientific Manuscript database

    Consolidated storage of swine manure is associated with the production of a variety of odors and emissions which result from anaerobic digestion of materials present in the manure. Methanogenic archaea are a diverse group of anaerobic microorganisms responsible for the production of methane. In th...

  20. Combined borax and tannin treatment of stored dairy manure to reduce bacterial populations and hydrogen sulfide emissions

    USDA-ARS?s Scientific Manuscript database

    Background: Anaerobic digestion of organic residues in stored livestock manure is associated with the production of odors and emissions. Hydrogen sulfide (H2S) is one such emission that can reach hazardous levels during manure storage and handling, posing a risk to both farmers and livestock. New te...

  1. Omasal sampling technique for assessing fermentative digestion in the forestomach of dairy cows.

    PubMed

    Huhtanen, P; Brotz, P G; Satter, L D

    1997-05-01

    A procedure allowing digesta sampling from the omasum via a ruminal cannula without repeated entry into the omasum was developed. The sampling system consisted of a device inserted into the omasum via the ruminal cannula, a tube connecting the device to the ruminal cannula, and a single compressor/vacuum pump. Eight cows given ad libitum access to a total mixed diet were used in a crossover design to evaluate the effects of the sampling system on digestive activity, animal performance, and animal behavior. Results indicated that the omasal sampling system has minimal effect on normal digestive and productive functions of high-producing dairy cows. Dry matter intake was reduced (24.0 vs 21.8 kg/d; P < .02) and seemed related more to the sampling procedures than to the device in the omasum. Observations of animal behavior indicated that cows with the sampling device were similar to control cows, although rumination and total chewing times were reduced slightly. The composition of digesta samples was biased toward an over-abundance of the liquid phase, but using a double-marker system to calculate digesta flow resulted in fairly small coefficients of variation for measurements of ruminal digestion variables. This technique may prove useful for partitioning digestion between the fermentative portion of the forestomach and the lower gastrointestinal tract. The omasal sampling procedure requires less surgical intervention than the traditional methods using abomasal or duodenal cannulas as sampling sites to study forestomach digestion and avoids potentially confounding endogenous secretions of the abomasum.

  2. Transformation of nitrogen contained in alfalfa silage, corn silage, corn grain and soybean meal into milk, manure and recycled back to corn

    USDA-ARS?s Scientific Manuscript database

    To better understand the transformative nature of feed nitrogen (N) on confinement dairy farms (cows fed stored feed in barns), a series of cow, laboratory, and field experiments was undertaken to quantify the relative amounts of N contained in individual ration components that are secreted in milk,...

  3. Effect of source of trace minerals in either forage- or by-product-based diets fed to dairy cows: 1. Production and macronutrient digestibility.

    PubMed

    Faulkner, M J; Weiss, W P

    2017-07-01

    Excess rumen-soluble Cu and Zn can alter rumen microbial populations and reduce fiber digestibility. Because of differences in particle size and chemical composition, ruminal and total-tract digestibility of fiber from forage- and by-product-based diets can differ. We hypothesized that, because of differences in mineral solubility, diets with hydroxy rather than sulfate trace minerals would have greater fiber digestibility, but the effect may depend on source of fiber. Eighteen multiparous cows were used in a split-plot replicated Latin square with two 28-d periods to evaluate the effects of Cu, Zn, and Mn source (sulfates or hydroxy; Micronutrients USA LLC, Indianapolis, IN) and neutral detergent fiber (NDF) source (forage diet = 26% NDF vs. by-product = 36%) on total-tract nutrient digestibility. During the entire experiment (56 d) cows remained on the same fiber treatment, but source of supplemental trace mineral was different for each 28-d period so that all cows were exposed to both mineral treatments. During each of the two 28-d periods, cows were fed no supplemental Cu, Zn, or Mn for 16 d followed by 12 d of feeding supplemental Cu, Zn, and Mn from either sulfates or hydroxy sources. Supplemental minerals for each of the mineral sources fed provided approximately 10, 35, and 32 mg/kg of supplemental Cu, Zn, and Mn, respectively, for both fiber treatments. Total dietary concentrations of Cu, Zn, and Mn were approximately 19, 65, and 70 mg/kg for the forage diets and 21, 85, and 79 mg/kg for the by-product diets, respectively. Treatment had no effect on dry matter intake (24.2 kg/d) or milk production (34.9 kg/d). Milk fatty acid profiles were altered by fiber source, mineral source, and their interaction. Cows fed the by-product diets had lower dry matter (65.9 vs. 70.2%), organic matter (67.4 vs. 71.7%), and crude protein digestibility (58.8 vs. 62.1%) but greater starch (97.5 vs. 96.3%) and NDF digestibility (50.5 vs. 44.4%) compared with cows fed the forage treatment. Feeding increased concentrations of by-products decreased total digestible nutrients regardless of mineral source. Feeding hydroxy Cu, Zn, and Mn increased NDF digestibility (48.5 vs. 46.4%) but had no effect on total digestible nutrients. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Nutritional and productive performance of dairy cows fed corn silage or sugarcane silage with or without additives.

    PubMed

    de Andrade, Felipe Leite; Rodrigues, João Paulo Pacheco; Detmann, Edenio; Valadares Filho, Sebastião de Campos; Castro, Marcelo Messias Duarte; Trece, Aline Souza; Silva, Tadeu Eder; Fischer, Vivian; Weiss, Kirsten; Marcondes, Marcos Inácio

    2016-04-01

    The objective of this study was to compare the intake, digestibility, and performance of dairy cows fed corn silage, fresh sugarcane, and sugarcane ensiled in three different forms. Twenty-five Holstein cows at 114 ± 12.6 days in milk (DIM) were used. A randomized block design was adopted, using an arrangement of repeated measures over time. The following treatments were tested: corn silage (CS); fresh sugarcane (FS); sugarcane silage without additives (SCS); sugarcane silage enriched with calcium oxide at 5 g/kg of forage (SCSc); and sugarcane silage enriched with Lactobacillus buchneri at 5 × 10(4) cfu/kg of forage (SCSb). The roughage to concentrate ratio was 60:40 for the CS diet and 40:60 for the sugarcane-based diets. The dry matter intake (DMI) as a function of body weight had a downward trend for the cows fed sugarcane silage, compared with those fed FS. The sugarcane silages had higher digestibilities of dry matter (DM), organic matter (OM), and neutral detergent fiber (NDFap), compared with FS. The use of L. buchneri or calcium oxide improved the diet's digestibility. The use of FS, sugarcane silage, or sugarcane silage with additives had no effects on milk and fat-corrected milk yield, compared to corn silage. Cows fed FS presented lower milk total solids content and had a downward trend for milk fat, compared with cows fed sugarcane-silage diets. Cows fed sugarcane silages produced milk with higher casein stability in the alcohol test than cows fed fresh-sugarcane diet. Sugarcane silage, with or without additives, did not reduce the intake of dairy cows, and the use of additives improved the fiber's digestibility.

  5. Biogas production from undiluted chicken manure and maize silage: A study of ammonia inhibition in high solids anaerobic digestion.

    PubMed

    Sun, Chen; Cao, Weixing; Banks, Charles J; Heaven, Sonia; Liu, Ronghou

    2016-10-01

    The feasibility of co-digestion of chicken manure (CM) and maize silage (MS) without water dilution was investigated in 5-L digesters. Specific methane production (SMP) of 0.309LCH4g(-1) volatile solids (VS) was achieved but only at lower %CM. Above a critical threshold for total ammonia nitrogen (TAN), estimated at 7gNL(-1), VFA accumulated with a characteristic increase in acetic acid followed by its reduction and an increase in propionic acid. During this transition the predominant methanogenic pathway was hydrogenotrophic. Methanogenesis was completely inhibited at TAN of 9gNL(-1). The low digestibility of the mixed feedstock led to a rise in digestate TS and a reduction in SMP over the 297-day experimental period. Methanogenesis appeared to be failing in one digester but was recovered by reducing the %CM. Co-digestion was feasible with CM ⩽20% of feedstock VS, and the main limiting factor was ammonia inhibition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Methane and nitrous oxide analyzer comparison and emissions from dairy freestall barns with manure flushing and scraping

    NASA Astrophysics Data System (ADS)

    Cortus, Erin L.; Jacobson, Larry D.; Hetchler, Brian P.; Heber, Albert J.; Bogan, Bill W.

    2015-01-01

    Continuous methane (CH4) and nitrous oxide (N2O) emission measurements were conducted at two crossflow-ventilated dairy freestall barns located in the state of Wisconsin, USA during a 19-month period from 2008 to 2010. The two cross-flow mechanically ventilated buildings (275 and 375 cow capacities) were evaluated in the National Air Emissions Monitoring Study. In September of 2008, the barns' manure collection systems were changed from flushing open gutter using manure basin effluent to a tractor scrape. A photoacoustic multi-gas analyzer (PAMGA) and a direct methane/non-methane hydrocarbon analyzer (GC-FID) provided side-by-side measurements of methane (CH4) for 13 months. The PAMGA also measured nitrous oxide (N2O), and a side-by-side comparison was performed with a gas-filter correlation analyzer (GFC) for six months. Barn ventilation rates were measured by recording run times of the 127-cm diameter exhaust fans. All 125 belt-driven exhaust fans were identical, and in situ airflow measurements using the Fan Assessment Numeration System (FANS) were conducted once at the beginning and twice during the test. Daily CH4 and N2O emission rates were calculated over approximately 19 and 6 month periods respectively, on per barn, head, animal unit, floor area space and barn capacity bases. The differences between the analyzers' concentration measurements were compared in conjunction with water vapor and other gases. The analyzer type had a significant impact on the average CH4 emission rate (p < 0.001) and the average N2O emission rate (p < 0.05). Based on the CH4 measurements with the GC-FID, average daily mean CH4 emissions were approximately 290 g AU-1 d-1 (390 g cow-1 d-1) with very limited seasonal effects. Little variation was observed in CH4 emission rates before and after the change in manure collection method, suggesting that most of the CH4 emissions were enteric losses directly from the cows. The average daily mean N2O emission rates based on the GFC were very low, with an approximate rate of only 690 mg AU-1 d-1 (970 mg cow-1 d-1). The change in manure collection had no apparent effect on N2O emission.

  7. [Impact of Thermal Treatment on Biogas Production by Anaerobic Digestion of High-solid-content Swine Manure].

    PubMed

    Hu, Yu-ying; Wu, Jing; Wang, Shi-feng; Cao, Zhi-ping; Wang, Kai-jun; Zuo, Jian-e

    2015-08-01

    Livestock manure is a kind of waste with high organic content and sanitation risk. In order to investigate the impact of thermal treatment on the anaerobic digestion of high-solid-content swine manure, 70 degrees C thermal treatment was conducted to treat raw manure (solid content 27.6%) without any dilution. The results indicated that thermal treatment could reduce the organic matters and improve the performance of anaerobic digestion. When the thermal treatment time was 1d, 2d, 3d, 4d, the VS removal rates were 15.1%, 15.5%, 17.8% and 20.0%, respectively. The methane production rates (CH4/VSadd) were 284.4, 296.3, 309.2 and 264.4 mL x g(-1), which was enhanced by 49.7%, 55.9%, 62.7% and 39.2%, respectively. The highest methane production rate occurred when the thermal treatment time was 3d. The thermal treatment had an efficient impact on promoting the performance of methane production rate with a suitable energy consumption. On the other hand, thermal treatment could act as pasteurization. This showed that thermal treatment would be of great practical importance.

  8. Effects of psychrophilic storage on manures as substrate for anaerobic digestion.

    PubMed

    Bergland, Wenche; Dinamarca, Carlos; Bakke, Rune

    2014-01-01

    The idea that storage can enhance manure quality as substrate for anaerobic digestion (AD) to recover more methane is evaluated by studying storage time and temperature effects on manure composition. Volatile fatty acids (VFA) and total dissolved organics (CODs) were measured in full scale pig manure storage for a year and in multiple flasks at fixed temperatures, mainly relevant for colder climates. The CODs generation, influenced by the source of the pig manure, was highest initially (0.3 g COD L(-1)d(-1)) gradually dropping for 3 months towards a level of COD loss by methane production at 15°C. Methane emission was low (<0.01 g COD L(-1)d(-1)) after a brief initial peak. Significant CODs generation was obtained during the warmer season (T > 10°C) in the full scale storage and almost no generation at lower temperatures (4-6°C). CODs consisted mainly of VFA, especially acetate. All VFAs were present at almost constant ratios. The naturally separated manure middle layer without sediment and coarser particles is suitable for sludge bed AD and improved further during an optimal storage time of 1-3 month(s). This implies that high rate AD can be integrated with regular manure slurry handling systems to obtain efficient biogas generation.

  9. Effects of Psychrophilic Storage on Manures as Substrate for Anaerobic Digestion

    PubMed Central

    Bergland, Wenche; Dinamarca, Carlos

    2014-01-01

    The idea that storage can enhance manure quality as substrate for anaerobic digestion (AD) to recover more methane is evaluated by studying storage time and temperature effects on manure composition. Volatile fatty acids (VFA) and total dissolved organics (CODs) were measured in full scale pig manure storage for a year and in multiple flasks at fixed temperatures, mainly relevant for colder climates. The CODs generation, influenced by the source of the pig manure, was highest initially (0.3 g COD L−1d−1) gradually dropping for 3 months towards a level of COD loss by methane production at 15°C. Methane emission was low (<0.01 g COD L−1d−1) after a brief initial peak. Significant CODs generation was obtained during the warmer season (T > 10°C) in the full scale storage and almost no generation at lower temperatures (4–6°C). CODs consisted mainly of VFA, especially acetate. All VFAs were present at almost constant ratios. The naturally separated manure middle layer without sediment and coarser particles is suitable for sludge bed AD and improved further during an optimal storage time of 1–3 month(s). This implies that high rate AD can be integrated with regular manure slurry handling systems to obtain efficient biogas generation. PMID:25165712

  10. Anaerobic digestion of glycerol and co-digestion of glycerol and pig manure.

    PubMed

    Nuchdang, Sasikarn; Phalakornkule, Chantaraporn

    2012-06-30

    The potential of glycerol obtained from transesterification of waste cooking oil as a main carbon source for biogas production was investigated. The glycerol was highly contaminated with oils and fats and was pretreated with sulfuric acid. Using a carbon source of glucose as a control, we compared biogas production from the acid-treated glycerol in a synthetic medium and the acid-treated glycerol mixed with pig manure. The anaerobic digestion of acid-treated glycerol with supplement in a synthetic medium was found to be satisfactory at organic loading rates (OLR) between 1.3, 1.6 and 2.6 g chemical oxygen demand (COD) L(-1) d(-1). The maximum methane yield of 0.32 L at Standard temperature and pressure (STP) g(-1) COD removal was achieved at an OLR of 1.6 g COD L(-1) d(-1) and the methane content was 54% on an average. At a higher organic loading rate of 5.4 g COD L(-1) d(-1), the propionic acid to acetic acid ratio was higher than the critical threshold limit for metabolic imbalance. Anaerobic digestion of acid-treated glycerol with pig manure was also investigated at the COD ratio of 80:20 (glycerol:pig manure). The anaerobic digestion of acid-treated glycerol with pig manure was found to be satisfactory at organic loading rates between 1.3, 1.7, 2.9 and 5.0 g COD L(-1) d(-1) in terms of COD reduction (>80%) and methane content of (62% on an average). However, the biogas production rate was found to significantly decrease at the highest load. The maximum methane yield of 0.24 L STP g(-1) COD removal was achieved at an OLR of 1.3 g COD L(-1) d(-1). Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Marsh soils as potential sinks for Bacteroides fecal indicator bacteria, Waccamaw National Wildlife Refuge, Georgetown, SC, USA

    USGS Publications Warehouse

    Drexler, Judith Z.; Johnson, Heather E.; Duris, Joseph W.; Krauss, Ken W.

    2014-01-01

    A soil core collected in a tidal freshwater marsh in the Waccamaw National Wildlife Refuge (Georgetown, SC) exuded a particularly strong odor of cow manure upon extrusion. In order to test for manure and determine its provenance, we carried out microbial source tracking using DNA markers for Bacteroides, a noncoliform, anaerobic bacterial group that represents a broad group of the fecal population. Three core sections from 0-3 cm, 9-12 cm and 30-33 were analyzed for the presence of Bacteroides. The ages of core sediments were estimated using 210Pb and 137Cs dating. All three core sections tested positive for Bacteroides DNA markers related to cow or deer feces. Because cow manure is stockpiled, used as fertilizer, and a source of direct contamination in the Great Pee Dee River/Winyah Bay watershed, it is very likely the source of the Bacteroides that was deposited on the marsh. The mid-points of the core sections were dated as follows: 0-3 cm: 2009; 9-12 cm: 1999, and 30-33 cm: 1961. The presence of Bacteroides at different depths/ages in the soil profile indicates that soils in tidal freshwater marshes are, at the least, capable of being short-term sinks for Bacteroides and, may have the potential to be long-term sinks of stable, naturalized populations.

  12. Changes in feed intake, nutrient digestion, plasma metabolites, and oxidative stress parameters in dairy cows with subacute ruminal acidosis and its regulation with pelleted beet pulp

    PubMed Central

    2013-01-01

    The objectives of this study were to 1) determine the variation of nutrient digestion, plasma metabolites and oxidative stress parameters triggered by induced subacute ruminal acidosis (SARA); and 2) evaluate the ability of pelleted beet pulp (BP) as a replacement for ground corn to alleviate SARA. Eight Holstein-Friesian cows were fed four diets during four successive17-day periods: 1) total mixed ration (TMR) containing 0% finely ground wheat (FGW) (W0); 2) TMR containing 10% FGW (W10); 3) TMR containing 20% FGW (W20); and 4) TMR containing 10% BP as a replacement for 10% ground corn (BP10). The SARA induction protocol reduced the mean ruminal pH from 6.37 to 5.94, and the minimum ruminal pH decreased from 5.99 to 5.41 from baseline to challenge period. Mean ruminal pH increased from 5.94 to 6.05, and minimum daily ruminal pH increased from 5.41 to 5.63, when BP was substituted for corn. The apparent digestibility of nutrients was not affected by the dietary treatments, except that the digestibility of neutral detergent fibre (NDF) and acid detergent fibre (ADF) was reduced in cows fed the W20 diet compared with cows fed the W0 and W10 diets, and cows fed the BP10 diet had higher NDF and ADF digestibility than the cows fed the W20 diet. Cows fed the W20 diet had a lower plasma concentration of β-hydroxybutyrate (BHBA), non-esterified fatty acids (NEFA), cholesterol, triglyceride, and total antioxidative capacity (TAC), and a higher plasma concentration of glucose, insulin, malonaldehyde (MDA), super oxygen dehydrogenises (SOD), and glutathione peroxidase (GSH-Px) than cows fed the W0 diet. Substitution of BP for corn increased concentrations of plasma BHBA and TAC, but decreased concentrations of plasma MDA. Our results indicate that reduction of fibre digestion; the concomitant increase of plasma glucose and insulin; the decrease of plasma BHBA, NEFA, cholesterol, and triglyceride; and changes of plasma oxidative stress parameters are highly related to SARA induced by W20 diets. These variables may be alternative candidates for SARA diagnosis. We also suggest that the substitution of BP for corn could reduce the risk of SARA, increase fibre digestion, and improve the antioxidant status in dairy cows. PMID:23947764

  13. Changes in feed intake, nutrient digestion, plasma metabolites, and oxidative stress parameters in dairy cows with subacute ruminal acidosis and its regulation with pelleted beet pulp.

    PubMed

    Guo, Yongqing; Xu, Xiaofeng; Zou, Yang; Yang, Zhanshan; Li, Shengli; Cao, Zhijun

    2013-08-16

    The objectives of this study were to 1) determine the variation of nutrient digestion, plasma metabolites and oxidative stress parameters triggered by induced subacute ruminal acidosis (SARA); and 2) evaluate the ability of pelleted beet pulp (BP) as a replacement for ground corn to alleviate SARA. Eight Holstein-Friesian cows were fed four diets during four successive17-day periods: 1) total mixed ration (TMR) containing 0% finely ground wheat (FGW) (W0); 2) TMR containing 10% FGW (W10); 3) TMR containing 20% FGW (W20); and 4) TMR containing 10% BP as a replacement for 10% ground corn (BP10). The SARA induction protocol reduced the mean ruminal pH from 6.37 to 5.94, and the minimum ruminal pH decreased from 5.99 to 5.41 from baseline to challenge period. Mean ruminal pH increased from 5.94 to 6.05, and minimum daily ruminal pH increased from 5.41 to 5.63, when BP was substituted for corn. The apparent digestibility of nutrients was not affected by the dietary treatments, except that the digestibility of neutral detergent fibre (NDF) and acid detergent fibre (ADF) was reduced in cows fed the W20 diet compared with cows fed the W0 and W10 diets, and cows fed the BP10 diet had higher NDF and ADF digestibility than the cows fed the W20 diet. Cows fed the W20 diet had a lower plasma concentration of β-hydroxybutyrate (BHBA), non-esterified fatty acids (NEFA), cholesterol, triglyceride, and total antioxidative capacity (TAC), and a higher plasma concentration of glucose, insulin, malonaldehyde (MDA), super oxygen dehydrogenises (SOD), and glutathione peroxidase (GSH-Px) than cows fed the W0 diet. Substitution of BP for corn increased concentrations of plasma BHBA and TAC, but decreased concentrations of plasma MDA. Our results indicate that reduction of fibre digestion; the concomitant increase of plasma glucose and insulin; the decrease of plasma BHBA, NEFA, cholesterol, and triglyceride; and changes of plasma oxidative stress parameters are highly related to SARA induced by W20 diets. These variables may be alternative candidates for SARA diagnosis. We also suggest that the substitution of BP for corn could reduce the risk of SARA, increase fibre digestion, and improve the antioxidant status in dairy cows.

  14. Vermicomposting as manure management strategy for urban small-holder animal farms – Kampala case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lalander, Cecilia Helena, E-mail: cecilia.lalander@slu.se; Komakech, Allan John; Department of Agricultural & Bio-systems Engineering, Makerere University, Kampala

    Highlights: • Poor manure management can increase burden of disease and environmental impact. • A low-maintenance vermicompost reactor was set-up in Kampala, Uganda. • High material reduction (45.9%) and waste-to-biomass conversion (3.6% on a TS basis). • Five year return on investment of 275% of system in Uganda. • Technically and economically viable system for improved urban manure management. - Abstract: Inadequate organic waste management can contribute to the spread of diseases and have negative impacts on the environment. Vermicomposting organic waste could have dual beneficial effects by generating an economically viable animal feed protein in the form of wormmore » biomass, while alleviating the negative effects of poor organic waste management. In this study, a low-maintenance vermicomposting system was evaluated as manure and food waste management system for small-holder farmers. A vermicomposting system using the earthworm species Eudrilus eugeniae and treating cow manure and food waste was set up in Kampala, Uganda, and monitored for 172 days. The material degradation and protein production rates were evaluated after 63 days and at the end of the experiment. The material reduction was 45.9% and the waste-to-biomass conversion rate was 3.5% in the vermicomposting process on a total solids basis. A possible increase in the conversion rate could be achieved by increasing the frequency of worm harvesting. Vermicomposting was found to be a viable manure management method in small-scale urban animal agriculture; the return of investment was calculated to be 280% for treating the manure of a 450 kg cow. The vermicompost was not sanitised, although hygiene quality could be improved by introducing a post-stabilisation step in which no fresh material is added. The value of the animal feed protein generated in the process can act as an incentive to improve current manure management strategies.« less

  15. Decision-support for Digester-Algae IntegRation for Improved Environmental and Economic Sustainability (DAIRIEES)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guillen, Donna Post

    Manure management is a major concern for dairy farms, as manure emits significant quantities of greenhouse gases and contains concentrated nutrients, especially nitrogen and phosphorus. Current manure management practices consist of spreading minimally processed manure on agricultural fields, which releases greenhouse gases directly to the atmosphere and often leads to nutrient overloading on fields and runoff to surface and groundwater. A novel manure treatment system has been proposed that mitigates many of the current environmental concerns and creates value added products from the manure including bioplastics, electricity, fertilizer, and animal bedding. DAIRIEES, an Excel based model, allows users to entermore » characteristics about a dairy farm’s manure, manure management plan, and regional market. Based on these inputs, the five main processes of the integrated system—fermenter, anaerobic digester, bioplastics reactor, algae cultivation, and hydrothermal liquefaction or fast pyrolysis system—are analyzed in detail using data from laboratory scale experiments supplemented by information on full-scale processes from the literature. The model can be used to estimate performance of the integrated manure treatment system, including: 1) carbon and nutrient sequestration, 2) quantities and market value of end products, and 3) the system’s overall economic viability. The DAIRIEES model outlines the major economic considerations for construction and operation of a full scale integrated treatment system. This information can be used to inform a more detailed pro forma analysis of the deployed system.« less

  16. Low-temperature anaerobic digestion of swine manure in a plug-flow reactor.

    PubMed

    Massé, Daniel I; Gilbert, Yan; Saady, N M C; Liu, Charle

    2013-01-01

    A low-temperature (25 degrees C) anaerobic eight-compartment (PF01 to PF08) cascade reactor simulating a plug-flow reactor (PFR) treating pig manure was monitored for a year. The bioreactor was fed at an average loading rate of 2.4 +/- 0.2 g of total chemical oxygen demand (TCOD) per litre of reactor per day for a theoretical hydraulic retention time (HRT) of 67 +/- 7 d. An average of 79% of TCOD was removed from pig manure (converted into biogas and in sediments), whereas specific methane yields ranging from 397 to 482 NL CH4 kg(-1) VS (148.6 to 171.4 NL CH4 kg(-1) TCOD) were obtained. After 150 d, fluctuating performances of the process were observed, associated with solids accumulation in the upstream compartments, preventing the complete anaerobic digestion of swine manure in the compartments PF01 to PF04. Low-temperature anaerobic PFR represents an interesting alternative for the treatment of pig manure and recovery of green energy. Further investigations regarding a modified design, with better accumulating solids management, are needed to optimize the performance of this low-temperature PFR treating pig manure.

  17. Cadmium in animal production and its potential hazard on Beijing and Fuxin farmlands.

    PubMed

    Li, Yan-xia; Xiong, Xiong; Lin, Chun-ye; Zhang, Feng-song; Wei, Li; Wei, Han

    2010-05-15

    A random sample of pairs of animal feeds and manures were collected from 215 animal barns in Beijing and Fuxin regions of China. The concentrations of Cd in manures and feeds ranged from non-detectable to 129.8 mg/kg dry weight and non-detectable to 31 mg/kg dry weight, respectively. The concentrations of Cd in pig, dairy cow and chicken manures were positively correlated to those in their feeds. About 30% of the manure samples contained Cd concentrations higher than the upper limit for use in farmlands, and pig and chicken manures might be the primary contributors of Cd to farmlands. The farmlands in Beijing and around the Fuxin Downtown areas would exceed the soil quality criteria within several decades according to current manure Cd loading rates. Undoubtedly, more scientific animal production and manure management practices to minimize soil pollution risks are necessary for the two regions. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  18. A NEW NITROGEN INDEX: An Adaptive Management Tool for Reducing Nitrogen Losses to the Environment from Mexican Forage Production Systems

    USDA-ARS?s Scientific Manuscript database

    Mexico has about 2 million ha planted in forage, which is used to feed 2.2 million dairy cows. It is estimated that up to 70% of the ingested nitrogen (N) is cycled back into the system via manure and urea depositions. This contributes to an undesirably high ratio of manure N to land available to us...

  19. Bacterial community dynamics in aerated cow manure slurry at different aeration intensities.

    PubMed

    Hanajima, D; Fukumoto, Y; Yasuda, T; Suzuki, K; Maeda, K; Morioka, R

    2011-12-01

    This study aimed to characterize microbial community dynamics in aerated cow manure slurry at different aeration intensities. Batch aerobic treatments were set up in 5-l jar fermentor, each containing 3 l of manure slurry; the slurries were subjected to low, medium and high (50, 150 and 250 ml min(-1), respectively) aeration for 9 days. Microbial community composition was determined using terminal restriction fragment length polymorphism and a clone library targeting 16S rRNA genes. High and medium aeration accelerated organic carbon degradation in parallel with the degree of aeration intensity; however, 90% of the initial total organic carbon was retained during low-aeration treatment. During the active stages of organic carbon decomposition, clones belonging to the class Bacilli accumulated. Moreover, Bacilli accumulation occurred earlier under high aeration than under medium aeration. Organic matter degradation was mainly governed by a common microbial assemblage consisting of many lineages belonging to the class Bacilli. The timing of community development differed depending on aeration intensity. This study reports on changes in several environmentally important parameters and the principal microbial assemblage during the pollution-reducing phase of cattle manure aeration treatment. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  20. Effects of day of gestation and feeding regimen in Holstein × Gyr cows: I. Apparent total-tract digestibility, nitrogen balance, and fat deposition.

    PubMed

    Rotta, P P; Filho, S C Valadares; Gionbelli, T R S; Costa E Silva, L F; Engle, T E; Marcondes, M I; Machado, F S; Villadiego, F A C; Silva, L H R

    2015-05-01

    This study investigated how feeding regimen (FR) alters apparent total-tract digestibility, performance, N balance, excretion of purine derivatives, and fat deposition in Holstein × Gyr cows at different days of gestation (DG). Forty-four pregnant multiparous Holstein × Gyr cows with an average initial body weight of 480±10.1 kg and an initial age of 5±0.5 yr old were allocated to 1 of 2 FR: ad libitum (AL; n=20) and maintenance level (ML; n=24). Maintenance level was considered to be 1.15% of body weight on a dry matter (DM) basis and met 100% of the energy requirements, whereas AL provided 190% of total net energy requirements. Data for hot and cold carcass dressing, fat deposition, average daily gain, empty body gain, and average daily gain without the gravid uterus were analyzed as a 4×2 factorial design. Intake, apparent total-tract digestibility, N balance, urinary concentration of urea, and purine derivatives data were analyzed as repeated measurements taken over the 28-d period (122, 150, 178, 206, 234, and 262 d of gestation). Cows were individually fed a corn silage-concentrate based diet composed of 93% roughage and 7% concentrate (DM basis) as a total mixed ration. Pregnant cows were slaughtered on 4 different DG: 139 (n=11), 199 (n=11), 241 (n=11), and 268 d (n=11). Overall, DM intake decreased as DG increased. This decrease observed in DM intake may be associated with the reduction in ruminal volume caused by the rapid increase in fetal size during late gestation. We observed an interaction for DM and organic matter apparent total-tract digestibility between FR and DG; at 150, 178, and 206 d of gestation, ML-fed cows had greater DM and organic matter apparent total-tract digestibility values than AL-fed cows. Rib fat thickness, mesentery, and kidney, pelvic, and heart fat were greater in AL-fed than in ML-fed cows at all DG, with the exception of rib fat thickness on d 139. Ad libitum-fed cows excreted more N in their feces and urine compared with ML-fed cows. Pregnant cows that were fed at maintenance had greater digestibility during some DG, excreted less N in feces and less N and urea in urine, and deposited less fat in the body. We therefore recommend ML (1.15% of body weight with 93% of roughage) as a FR for pregnant dry cows; however, during the last month of gestation, AL seems to be the most appropriate FR to avoid loss of body weight. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Contaminations of organic fertilizers with antibiotic residues, resistance genes, and mobile genetic elements mirroring antibiotic use in livestock?

    PubMed

    Wolters, Birgit; Widyasari-Mehta, Arum; Kreuzig, Robert; Smalla, Kornelia

    2016-11-01

    Pig manures are frequently used as fertilizer or co-substrate in biogas plants (BGPs) and typically contain antibiotic residues (ARs), as well as bacteria carrying resistance genes (RGs) and mobile genetic elements (MGEs). A survey of manures from eight pig fattening and six pig breeding farms and digestates from eight BGPs in Lower Saxony, Germany was conducted to evaluate the link between antibiotic usage and ARs to RGs and MGEs present in organic fertilizers. In total, 11 different antibiotics belonging to six substance classes were applied in the farms investigated. Residue analysis revealed concentrations of tetracycline up to 300 mg kg -1 dry weight (DW) in manures and of doxycycline up to 10.1 mg kg -1 DW in digestates indicating incomplete removal during anaerobic digestion. RGs (sul1, sul2, tet(A), tet(M), tet(X), qacE∆1) were detected in total community DNA of all samples by PCR-Southern blot hybridization. Broad-host range plasmids (IncP-1, IncQ, IncN, and IncW) and integron integrase genes (intI1, intI2) were found in most manure samples with IncN and IncW plasmids being more abundant in manure from pig breeding compared to pig fattening farms. IntI1, IncQ, and IncW plasmids were also detected in all digestates, while IncP-1, IncN, and LowGC plasmids were detected only sporadically. Our findings strongly reinforce the need for further research to identify mitigation strategies to reduce the level of contamination of organic fertilizers with ARs and transferable RGs that are applied to soil and that might influence the mobile resistome of the plant microbiome.

  2. Potential of anaerobic digestion for mitigation of greenhouse gas emissions and production of renewable energy from agriculture: barriers and incentives to widespread adoption in Europe.

    PubMed

    Banks, C J; Salter, A M; Chesshire, M

    2007-01-01

    The paper considers the role of anaerobic digestion in promoting good agricultural practice on farms and the contribution this would make to reducing the environmental impacts associated with manure management. There are no regulatory drivers to promote the use of digestion in Europe, and the technology has only been widely adopted where economic drivers and coherent policies have been implemented at a national level. These measures have included direct subsidy on the energy price paid for "green electricity", and exemption of tax when biogas is used as a vehicle fuel. In those countries where financial incentives are not available or where a financial penalty is incurred through the regulatory regime, the uptake of digestion has been poor. Even with subsidies, digestion of animal manures as a single substrate is not common, and countries with successful schemes have achieved this either by permitting the import of wastes onto the farm or offering bonus subsidies for the use of energy crops. Both of these measures improve the energy efficiency of the process by increasing the volumetric methane production, although concerns are expressed that attention could concentrate on energy production at the expense of improving manure management.

  3. Microbial community structure and dynamics during anaerobic digestion of various agricultural waste materials.

    PubMed

    Ziganshin, Ayrat M; Liebetrau, Jan; Pröter, Jürgen; Kleinsteuber, Sabine

    2013-06-01

    The influence of the feedstock type on the microbial communities involved in anaerobic digestion was investigated in laboratory-scale biogas reactors fed with different agricultural waste materials. Community composition and dynamics over 2 months of reactors' operation were investigated by amplicon sequencing and profiling terminal restriction fragment length polymorphisms of 16S rRNA genes. Major bacterial taxa belonged to the Clostridia and Bacteroidetes, whereas the archaeal community was dominated by methanogenic archaea of the orders Methanomicrobiales and Methanosarcinales. Correlation analysis revealed that the community composition was mainly influenced by the feedstock type with the exception of a temperature shift from 38 to 55 °C which caused the most pronounced community shifts. Bacterial communities involved in the anaerobic digestion of conventional substrates such as maize silage combined with cattle manure were relatively stable and similar to each other. In contrast, special waste materials such as chicken manure or Jatropha press cake were digested by very distinct and less diverse communities, indicating partial ammonia inhibition or the influence of other inhibiting factors. Anaerobic digestion of chicken manure relied on syntrophic acetate oxidation as the dominant acetate-consuming process due to the inhibition of aceticlastic methanogenesis. Jatropha as substrate led to the enrichment of fiber-degrading specialists belonging to the genera Actinomyces and Fibrobacter.

  4. Effect of Corn Dried Distiller Grains with Solubles (DDGS) in Dairy Cow Diets on Manure Bioenergy Production Potential.

    PubMed

    Massé, Daniel I; Jarret, Guillaume; Benchaar, Chaouki; Saady, Noori M Cata

    2014-03-05

    The main objective of this study was to obtain scientifically sound data on the bioenergy potential of dairy manures from cows fed different levels of corn dried distillers grains with solubles (DDGS). Three diets differing in corn DDGS content were formulated: 0% corn DDGS (DDGS0; control diet), 10% corn DDGS (DDGS10) and 30% corn DDGS (DDGS30). Bioenergy production was determined in psychrophilic (25 ± 1 °C) sequencing batch reactors (SBRs) fed 3 g COD L(-1)·day(-1) during a two-week feeding period followed by a two-week react period. Compared to the control diet, adding DDGS10 and DDGS30 to the dairy cow diet increased the daily amount of fat excreted in slurry by 29% and 70%, respectively. The addition of DDGS30 increased the cows' daily production of fresh feces and slurry by 15% and 11%, respectively. Furthermore, the incorporation of DDGS30 in the diet increased the daily amounts of dry matter (DM), volatile solids (VS), neutral detergent fiber (NDF), acid detergent fiber (ADF) and hemicellulose by 18%, 18%, 30%, 15% and 53%, respectively, compared to the control diet. While the addition of DDGS did not significantly affect the specific CH₄ production per kg VS compared to the control diet, DDGS30 increased the per cow daily CH₄ production by 14% compared to the control diet.

  5. Recovery of ammonia in raw and co-digested swine manure using gas-permeable membrane technology

    USDA-ARS?s Scientific Manuscript database

    Anaerobic digestion of agro-industrial and livestock waste generates considerable digestate volumes that are important sources of nitrogen (N). However, on some occasions, the high concentrations of N present in the digestates may represent an obstacle to its use locally as fertilizer, since it can ...

  6. Methane production and characteristics of the microbial community in the co-digestion of spent mushroom substrate with dairy manure.

    PubMed

    Luo, Xiaosha; Yuan, Xufeng; Wang, Shiyu; Sun, Fanrong; Hou, Zhanshan; Hu, Qingxiu; Zhai, Limei; Cui, Zongjun; Zou, Yajie

    2018-02-01

    Spent mushroom substrate (SMS) is a potential biomass material generated during mushroom cultivation. In this study, the methane yield and microbial community resulting from co-digestion of SMS and dairy manure (DM) at different mixing ratios (0:4, 1:1, 3:1, and 1:3), were evaluated. Co-digestion analysis showed that the methane yield from the mixtures was 6%-61% higher than the yield from SMS or DM alone, indicating a synergistic effect of co-digestion of SMS with DM. For the SMS of F.velutipes (SFv) and P.erygii var. tuoliensis (SPt), co-digestion of DM/SMS at a ratio of 1:1 was optimal, but for the SMS of P. eryngi (SPe), co-digestion of DM/SMS at a ratio of 3:1 was ideal. The pH at all co-digestion ratios was in the range of 6.8-8.0, indicating that adding DM could increase the systemic buffering capacity. Methanosaetaceae was shown to be the predominant methanogens present during the co-digestion of DM/SMS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Nitrogen use efficiencies to grow, feed, and recycle manure from the major diet components fed to dairy cows in the USA

    USDA-ARS?s Scientific Manuscript database

    Crops and livestock transform a general range of 20% to 50% of applied N into product N. Most applied N not transformed into agricultural products is lost to the environment. The objective of this study was to quantify soil N input (fertilizer N, biologically fixed-N) incorporation into dairy cow di...

  8. Effects of extruding wheat dried distillers grains with solubles with peas or canola meal on ruminal fermentation, microbial protein synthesis, nutrient digestion, and milk production in dairy cows.

    PubMed

    Claassen, R M; Christensen, D A; Mutsvangwa, T

    2016-09-01

    Our objective was to examine the effects of feeding coextruded and nonextruded supplements consisting of wheat dried distillers grains with solubles with peas (WDDGS-peas) or canola meal (WDDGS-CM) on ruminal fermentation, omasal flow, and production performance in Holstein cows. Eight cows (4 ruminally cannulated) were used in a replicated 4×4 Latin square with 28-d periods and a 2×2 factorial arrangement of dietary treatments. Dietary treatments were coextruded or nonextruded mixtures of WDDGS-peas and WDDGS-CM that were included in total mixed rations at 15.1% [dry matter (DM) basis]. Diet had no effect on DM intake. Milk yield was greater in cows fed coextruded diets compared with those fed nonextruded diets. Milk fat content was greater in cows fed nonextruded diets compared with those fed coextruded diets, but milk fat yield was greater in cows fed coextruded diets compared with those fed nonextruded diets. Milk yield tended to be greater and milk protein yield was greater in cows fed WDDGS-peas compared with those fed WDDGS-CM. Cows fed nonextruded diets had a greater milk urea-N concentration compared with those fed coextruded diets. Cows fed coextruded diets had greater ruminal digestion of DM and tended to have greater ruminal digestion of organic matter compared with those fed nonextruded diets. Total-tract digestibilities of organic matter, crude protein, ether extract, and starch were greater, whereas that of acid detergent fiber and neutral detergent fiber tended to be greater in cows fed coextruded compared with those fed nonextruded diets. Total-tract digestibility of ether extract was lower whereas that of starch was greater and that of crude protein tended to be greater in cows fed WDDGS-peas compared with those fed WDDGS-CM. Total N excretion and milk N efficiency were unaffected by diet. Ruminal NH3-N concentration tended to be greater in cows fed WDDGS-CM compared with those fed WDDGS-peas. Ruminal propionate concentration was greater whereas plasma urea-N concentration tended to be lower in cows fed coextruded compared with those fed nonextruded diets. Plasma glucose concentration was greater in cows fed diets containing WDDGS-CM compared with those fed diets containing WDDGS-peas, but the difference in plasma glucose concentration between WDDGS-CM and WDDGS-peas was greater in cows fed coextruded diets compared with those fed nonextruded diets. In summary, feeding coextruded compared with nonextruded supplements or WDDGS-peas compared WDDGS-CM increased yields of milk, fat, and protein. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. Green cheese: partial life cycle assessment of greenhouse gas emissions and energy intensity of integrated dairy production and bioenergy systems.

    PubMed

    Aguirre-Villegas, H A; Passos-Fonseca, T H; Reinemann, D J; Armentano, L E; Wattiaux, M A; Cabrera, V E; Norman, J M; Larson, R

    2015-03-01

    The objective of this study was to evaluate the effect of integrating dairy and bioenergy systems on land use, net energy intensity (NEI), and greenhouse gas (GHG) emissions. A reference dairy farm system representative of Wisconsin was compared with a system that produces dairy and bioenergy products. This integrated system investigates the effects at the farm level when the cow diet and manure management practices are varied. The diets evaluated were supplemented with varying amounts of dry distillers grains with solubles and soybean meal and were balanced with different types of forages. The manure-management scenarios included manure land application, which is the most common manure disposal method in Wisconsin, and manure anaerobic digestion (AD) to produce biogas. A partial life cycle assessment from cradle to farm gate was conducted, where the system boundaries were expanded to include the production of biofuels in the analysis and the environmental burdens between milk and bioenergy products were partitioned by system expansion. Milk was considered the primary product and the functional unit, with ethanol, biodiesel, and biogas considered co-products. The production of the co-products was scaled according to milk production to meet the dietary requirements of each selected dairy ration. Results indicated that land use was 1.6 m2, NEI was 3.86 MJ, and GHG emissions were 1.02 kg of CO2-equivalents per kilogram of fat- and protein-corrected milk (FPCM) for the reference system. Within the integrated dairy and bioenergy system, diet scenarios that maximize dry distillers grains with solubles and implement AD had the largest reduction of GHG emissions and NEI, but the greatest increase in land use compared with the reference system. Average land use ranged from 1.68 to 2.01 m2/kg of FPCM; NEI ranged from -5.62 to -0.73 MJ/kg of FPCM; and GHG emissions ranged from 0.63 to 0.77 kg of CO2-equivalents/kg of FPCM. The AD contributed 65% of the NEI and 77% of the GHG emission reductions. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Effect of raw soya bean particle size on productive performance and digestion of dairy cows.

    PubMed

    Naves, A B; Freitas Júnior, J E; Barletta, R V; Gandra, J R; Calomeni, G D; Gardinal, R; Takiya, C S; Vendramini, T H A; Mingoti, R D; Rennó, F P

    2016-08-01

    Differing soya bean particle sizes may affect productive performance and ruminal fermentation due to the level of fatty acid (FA) exposure of the cotyledon in soya bean grain and because the protein in small particles is more rapidly degraded than the protein in large particles, which influence ruminal fibre digestion and the amounts of ruminally undegradable nutrients. The objective of this experiment was to investigate the effects of raw soya bean particle size on productive performance, digestion and milk FA profile of dairy cows. Twelve Holstein cows were assigned to three 4 × 4 Latin squares with 21-day periods. At the start of the experiment, cows were 121 days in milk (DIM) and yielded 30.2 kg/day of milk. Cows were fed 4 diets: (i) control diet (CO), without raw soya bean; (ii) whole raw soya bean (WRS); (iii) cracked raw soya bean in Wiley mill 4-mm screen (CS4); and (iv) cracked raw soya bean in Wiley mill 2-mm screen (CS2). The inclusion of soya beans (whole or cracked) was 200 g/kg on dry matter (DM) basis and partially replaced ground corn and soya bean meal. Uncorrected milk yield and composition were not influenced by experimental diets; however, fat-corrected milk (FCM) decreased when cows were fed soya bean treatments. Soya bean diets increased the intake of ether extract (EE) and net energy of lactation (NEL ), and decreased the intake of DM and non-fibre carbohydrate (NFC). Ruminal propionate concentration was lower in cows fed WRS than cows fed CS2 or CS4. Cows fed cracked raw soya bean presented lower nitrogen in faeces than cows fed WRS. The milk of cows fed WRS, CS2 and CS4 presented higher unsaturated FA than cows fed CO. The addition of raw soya bean in cow diets, regardless of the particle size, did not impair uncorrected milk yield and nutrient digestion, and increased the concentration of unsaturated FA in milk. Cows fed cracked raw soya bean presented similar productive performance to cows fed whole raw soya bean. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  11. Between-cow variation in digestion and rumen fermentation variables associated with methane production.

    PubMed

    Cabezas-Garcia, E H; Krizsan, S J; Shingfield, K J; Huhtanen, P

    2017-06-01

    A meta-analysis based on an individual-cow data set was conducted to investigate the effects of between-cow variation and related animal variables on predicted CH 4 emissions from dairy cows. Data were taken from 40 change-over studies consisting of a total of 637 cow/period observations. Animal production and rumen fermentation characteristics were measured for 154 diets in 40 studies; diet digestibility was measured for 135 diets in 34 studies, and ruminal digestion kinetics was measured for 56 diets in 15 studies. The experimental diets were based on grass silage, with cereal grains or by-products as energy supplements, and soybean or canola meal as protein supplements. Average forage:concentrate ratio across all diets on a dry matter basis was 59:41. Methane production was predicted from apparently fermented substrate using stoichiometric principles. Data were analyzed by mixed-model regression using diet and period within experiment as random effects, thereby allowing the effect of experiment, diet, and period to be excluded. Dry matter intake and milk yield were more repeatable experimental measures than rumen fermentation, nutrient outflow, diet digestibility, or estimated CH 4 yield. Between-cow coefficient of variation (CV) was 0.010 for stoichiometric CH 4 per mol of volatile fatty acids and 0.067 for predicted CH 4 yield (CH 4 /dry matter intake). Organic matter digestibility (OMD) also displayed little between-cow variation (CV = 0.013), indicating that between-cow variation in diet digestibility and rumen fermentation pattern do not markedly contribute to between cow-variation in CH 4 yield. Digesta passage rate was much more variable (CV = 0.08) between cows than OMD or rumen fermentation pattern. Increased digesta passage rate is associated with improved energetic efficiency of microbial N synthesis, which partitions fermented substrate from volatile fatty acids and gases to microbial cells that are more reduced than fermented carbohydrates. Positive relationships were observed between CH 4 per mol of volatile fatty acids versus OMD and rumen ammonia N concentration versus OMD; and negative relationships between the efficiency of microbial N synthesis versus OMD and digesta passage rate versus OMD, suggesting that the effects of these variables on CH 4 yield were additive. It can be concluded that variations in OMD and efficiency in microbial N synthesis resulting from variations in digesta passage contribute more to between-animal variation in CH 4 emissions than rumen fermentation pattern. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Enhancing recovery of ammonia from swine manure anaerobic digester effluent using gas-permeable membrane technology.

    PubMed

    Dube, P J; Vanotti, M B; Szogi, A A; García-González, M C

    2016-03-01

    Gas-permeable membrane technology is useful to recover ammonia from manure. In this study, the technology was enhanced using aeration instead of alkali chemicals to increase pH and the ammonium (NH4(+)) recovery rate. Digested effluents from covered anaerobic swine lagoons containing 1465-2097 mg NH4(+)-N L(-1) were treated using submerged membranes (0.13 cm(2) cm(-3)), low-rate aeration (120 mL air L-manure(-1) min(-1)) and nitrification inhibitor (22 mg L(-1)) to prevent nitrification. The experiment included a control without aeration. The pH of the manure with aeration rose from 8.6 to 9.2 while the manure without aeration decreased from 8.6 to 8.1. With aeration, 97-99% of the NH4(+) was removed in about 5 days of operation with 96-98% recovery efficiency. In contrast, without aeration it took 25 days to treat the NH4(+). Therefore, the recovery of NH4(+) was five times faster with the low-rate aeration treatment. This enhancement could reduce costs by 70%. Published by Elsevier Ltd.

  13. Bacterial community analysis of swine manure treated with autothermal thermophilic aerobic digestion.

    PubMed

    Han, Il; Congeevaram, Shankar; Ki, Dong-Won; Oh, Byoung-Taek; Park, Joonhong

    2011-02-01

    Due to the environmental problems associated with disposal of livestock sludge, many stabilization studies emphasizing on the sludge volume reduction were performed. However, little is known about the microbial risk present in sludge and its stabilized products. This study microbiologically explored the effects of anaerobic lagoon fermentation (ALF) and autothermal thermophilic aerobic digestion (ATAD) on pathogen-related risk of raw swine manure by using culture-independent 16S rDNA cloning and sequencing methods. In raw swine manure, clones closely related to pathogens such as Dialister pneumosintes, Erysipelothrix rhusiopathiae, Succinivibrioan dextrinosolvens, and Schineria sp. were detected. Meanwhile, in the mesophilic ALF-treated swine manure, bacterial community clones closely related to pathogens such as Schineria sp. and Succinivibrio dextrinosolvens were still detected. Interestingly, the ATAD treatment resulted in no detection of clones closely related to pathogens in the stabilized thermophilic bacterial community, with the predominance of novel Clostridia class populations. These findings support the superiority of ATAD in selectively reducing potential human and animal pathogens compared to ALF, which is a typical manure stabilization method used in livestock farms.

  14. Effects of anaerobic digestion on chlortetracycline and oxytetracycline degradation efficiency for swine manure.

    PubMed

    Yin, Fubin; Dong, Hongmin; Ji, Chao; Tao, Xiuping; Chen, Yongxing

    2016-10-01

    Manure containing antibiotics is considered a hazardous substance that poses a serious health risk to the environment and to human health. Anaerobic digestion (AD) could not only treatment animal waste but also generate valuable biogas. However, the interaction between antibiotics in manure and the AD process has not been clearly understood. In this study, experiments on biochemical methane potential (BMP) were conducted to determine the inhibition of the AD process from antibiotics and the threshold of complete antibiotic removal. The thresholds of the complete antibiotic removal were 60 and 40mg/kg·TS for CTC and OTC, respectively. CTC and OTC with concentrations below thresholds could increase the BMP of manure. When the CTC and OTC concentrations exceeded the thresholds, they inhibited manure fermentation, and the CTC removal rate declined exponentially with concentration (60-500mg/kg·TS). The relationship between OTC antibiotic concentration and its removal rate in AD treatment was described with exponential (40-100mg/kg·TS) and linear equations (100-500mg/kg·TS). Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Effects of dehydrated lucerne and soya bean meal on milk production and composition, nutrient digestion, and methane and nitrogen losses in dairy cows receiving two different forages.

    PubMed

    Doreau, M; Ferlay, A; Rochette, Y; Martin, C

    2014-03-01

    Dehydrated lucerne is used as a protein source in dairy cow rations, but little is known about the effects of lucerne on greenhouse gas production by animals. Eight Holstein dairy cows (average weight: 582 kg) were used in a replicated 4 × 4 Latin square design. They received diets based on either maize silage (M) or grass silage (G) (45% of diet on dry matter (DM) basis), with either soya bean meal (15% of diet DM) completed with beet pulp (15% of diet DM) (SP) or dehydrated lucerne (L) (30% of diet DM) as protein sources; MSP, ML, GSP and GL diets were calculated to meet energy requirements for milk production by dairy cows and degradable protein for rumen microbes. Dry matter intake (DMI) did not differ among diets (18.0 kg/day DMI); milk production was higher with SP diets than with L diets (26.0 v. 24.1 kg/day), but milk production did not vary with forage type. Milk fatty-acid (FA) composition was modified by both forage and protein sources: L and G diets resulted in less saturated FA, less linoleic acid, more trans-monounsaturated FA, and more linolenic acid than SP and M diets, respectively. Enteric methane (CH4) production, measured by the SF6 tracer method, was higher for G diets than for M diets, but did not differ with protein source. The same effects were observed when CH4 was expressed per kg milk. Minor effects of diets on rumen fermentation pattern were observed. Manure CH4 emissions estimated from faecal organic matter were negatively related to diet digestibility and were thus higher for L than SP diets, and higher for M than G diets; the resulting difference in total CH4 production was small. Owing to diet formulation constraints, N intake was higher for SP than for L diets; interaction between forage type and protein source was significant for N intake. The same statistical effects were found for N in milk. Faecal and urinary N losses were determined from total faeces and urine collection. Faecal N output was lower for M than for G diets but did not differ between protein sources. Urinary N output did not differ between forage types, but was lower for cows fed L diets than for cows fed SP diets, potentially resulting in lower ammonia emissions with L diets. Replacing soya bean meal plus beet pulp with dehydrated lucerne did not change CH4 production, but resulted in more N in faeces and less N in urine.

  16. Influence of initial pH on thermophilic anaerobic co-digestion of swine manure and maize stalk.

    PubMed

    Zhang, Tong; Mao, Chunlan; Zhai, Ningning; Wang, Xiaojiao; Yang, Gaihe

    2015-01-01

    The contradictions between the increasing energy demand and decreasing fossil fuels are making the use of renewable energy the key to the sustainable development of energy in the future. Biogas, a renewable clean energy, can be obtained by the anaerobic fermentation of manure waste and agricultural straw. This study examined the initial pH value had obvious effect on methane production and the process in the thermophilic anaerobic co-digestion. Five different initial pH levels with three different manure ratios were tested. All digesters in different initial pH showed a diverse methane production after 35 days. The VFA/alkalinity ratio of the optimum reaction condition for methanogens activity was in the range of 0.1-0.3 and the optimal condition that at the 70% dung ratio and initial pH 6.81, was expected to achieve maximum total biogas production (146.32 mL/g VS). Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Improving methane production from digested manure biofibers by mechanical and thermal alkaline pretreatment.

    PubMed

    Tsapekos, P; Kougias, Panagiotis G; Frison, A; Raga, R; Angelidaki, I

    2016-09-01

    Animal manure digestion is associated with limited methane production, due to the high content in fibers, which are hardly degradable lignocellulosic compounds. In this study, different mechanical and thermal alkaline pretreatment methods were applied to partially degradable fibers, separated from the effluent stream of biogas reactors. Batch and continuous experiments were conducted to evaluate the efficiency of these pretreatments. In batch experiments, the mechanical pretreatment improved the degradability up to 45%. Even higher efficiency was shown by applying thermal alkaline pretreatments, enhancing fibers degradability by more than 4-fold. In continuous experiments, the thermal alkaline pretreatment, using 6% NaOH at 55°C was proven to be the most efficient pretreatment method as the methane production was increased by 26%. The findings demonstrated that the methane production of the biogas plants can be increased by further exploiting the fraction of the digested manure fibers which are discarded in the post-storage tank. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. A Life Cycle Assessment of integrated dairy farm-greenhouse systems in British Columbia.

    PubMed

    Zhang, Siduo; Bi, Xiaotao Tony; Clift, Roland

    2013-12-01

    The purpose of this study was to evaluate the anticipated environmental benefits from integrating a dairy farm and a greenhouse; the integration is based on anaerobic digestion of manures to produce biogas energy, biogenic CO2, and digested slurry. A full Life Cycle Assessment (LCA) has been conducted on six modeled cases applicable in British Columbia, to evaluate non-renewable energy consumption, climate change, acidification, eutrophication, respiratory effects and human toxicity. Compared to conventional practice, an integrated system has the potential to nearly halve eutrophication and respiratory effects caused by inorganic emissions and to reduce non-renewable energy consumption, climate change, and acidification by 65-90%, while respiratory effects caused by organic emissions become negative as co-products substitute for other materials. Co-digestion of other livestock manures, greenhouse plant waste, or food and food processing waste with dairy manure can further improve the performance of the integrated system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Dynamics of Escherichia coli Virulence Factors in Dairy Herds and Farm Environments in a Longitudinal Study in the United States

    PubMed Central

    Lambertini, Elisabetta; Karns, Jeffrey S.; Van Kessel, Jo Ann S.; Cao, Huilin; Schukken, Ynte H.; Wolfgang, David R.; Smith, Julia M.

    2015-01-01

    Pathogenic Escherichia coli or its associated virulence factors have been frequently detected in dairy cow manure, milk, and dairy farm environments. However, it is unclear what the long-term dynamics of E. coli virulence factors are and which farm compartments act as reservoirs. This study assessed the occurrence and dynamics of four E. coli virulence factors (eae, stx1, stx2, and the gamma allele of the tir gene [γ-tir]) on three U.S. dairy farms. Fecal, manure, water, feed, milk, and milk filter samples were collected from 2004 to 2012. Virulence factors were measured by postenrichment quantitative PCR (qPCR). All factors were detected in most compartments on all farms. Fecal and manure samples showed the highest prevalence, up to 53% for stx and 21% for γ-tir in fecal samples and up to 84% for stx and 44% for γ-tir in manure. Prevalence was low in milk (up to 1.9% for stx and 0.7% for γ-tir). However, 35% of milk filters were positive for stx and 20% were positive for γ-tir. All factors were detected in feed and water. Factor prevalence and levels, expressed as qPCR cycle threshold categories, fluctuated significantly over time, with no clear seasonal signal independent from year-to-year variability. Levels were correlated between fecal and manure samples, and in some cases autocorrelated, but not between manure and milk filters. Shiga toxins were nearly ubiquitous, and 10 to 18% of the lactating cows were potential shedders of E. coli O157 at least once during their time in the herds. E. coli virulence factors appear to persist in many areas of the farms and therefore contribute to transmission dynamics. PMID:25911478

  20. Potential Role of Diploscapter sp. Strain LKC25, a Bacterivorous Nematode from Soil, as a Vector of Food-Borne Pathogenic Bacteria to Preharvest Fruits and Vegetables

    PubMed Central

    Gibbs, Daunte S.; Anderson, Gary L.; Beuchat, Larry R.; Carta, Lynn K.; Williams, Phillip L.

    2005-01-01

    Diploscapter, a thermotolerant, free-living soil bacterial-feeding nematode commonly found in compost, sewage, and agricultural soil in the United States, was studied to determine its potential role as a vehicle of Salmonella enterica serotype Poona, enterohemorrhagic Escherichia coli O157:H7, and Listeria monocytogenes in contaminating preharvest fruits and vegetables. The ability of Diploscapter sp. strain LKC25 to survive on agar media, in cow manure, and in composted turkey manure and to be attracted to, ingest, and disperse food-borne pathogens inoculated into soil or a mixture of soil and composted turkey manure was investigated. Diploscapter sp. strain LKC25 survived and reproduced in lawns of S. enterica serotype Poona, E. coli O157:H7, and L. monocytogenes on agar media and in cow manure and composted turkey manure. Attraction of Diploscapter sp. strain LKC25 to colonies of pathogenic bacteria on tryptic soy agar within 10, 20, 30, and 60 min and 24 h was determined. At least 85% of the worms initially placed 0.5 to 1 cm away from bacterial colonies migrated to the colonies within 1 h. Within 24 h, ≥90% of the worms were embedded in colonies. The potential of Diploscapter sp. strain LKC25 to shed pathogenic bacteria after exposure to bacteria inoculated into soil or a mixture of soil and composted turkey manure was investigated. Results indicate that Diploscapter sp. strain LKC25 can shed pathogenic bacteria after exposure to pathogens in these milieus. They also demonstrate its potential to serve as a vector of food-borne pathogenic bacteria in soil, with or without amendment with compost, to the surface of preharvest fruits and vegetables in contact with soil. PMID:15870330

  1. Increasing serotonin concentrations alter calcium and energy metabolism in dairy cows.

    PubMed

    Laporta, Jimena; Moore, Spencer A E; Weaver, Samantha R; Cronick, Callyssa M; Olsen, Megan; Prichard, Austin P; Schnell, Brian P; Crenshaw, Thomas D; Peñagaricano, Francisco; Bruckmaier, Rupert M; Hernandez, Laura L

    2015-07-01

    A 4×4 Latin square design in which varied doses (0, 0.5, 1.0, and 1.5 mg/kg) of 5-hydroxy-l-tryptophan (5-HTP, a serotonin precursor) were intravenously infused into late-lactation, non-pregnant Holstein dairy cows was used to determine the effects of serotonin on calcium and energy metabolism. Infusion periods lasted 4 days, with a 5-day washout between periods. Cows were infused at a constant rate for 1 h each day. Blood was collected pre- and 5, 10, 30, 60, 90, and 120 min post-infusion, urine was collected pre- and post-infusion, and milk was collected daily. All of the 5-HTP doses increased systemic serotonin as compared to the 0 mg/kg dose, and the 1.0 and 1.5 mg/kg doses increased circulating glucose and non-esterified fatty acids (NEFA) and decreased beta-hydroxybutyrate (βHBA) concentrations. Treatment of cows with either 1.0 or 1.5 mg/kg 5-HTP doses decreased urine calcium elimination, and the 1.5 mg/kg dose increased milk calcium concentrations. No differences were detected in the heart rates, respiration rates, or body temperatures of the cows; however, manure scores and defecation frequency were affected. Indeed, cows that received 5-HTP defecated more, and the consistency of their manure was softer. Treatment of late-lactation dairy cows with 5-HTP improved energy metabolism, decreased loss of calcium into urine, and increased calcium secretion into milk. Further research should target the effects of increasing serotonin during the transition period to determine any benefits for post-parturient calcium and glucose metabolism. © 2015 Society for Endocrinology.

  2. Edible Oil Barriers for Treatment of Perchlorate Contaminated Groundwater

    DTIC Science & Technology

    2006-02-16

    perchlorate is relatively recent. Work performed in soil at Longhorn Army Ammunition Plant in Texas identified chicken manure, cow manure, and...Missile Plant , NC Pilot July-Aug. 2004 Recirculation of emulsion through source area Other DoD Facilities Confidential Site, MD Pilot Oct...G.M. Birk, 2004. A Dash of Oil and Let Marinate. Pollution Engineering, May 2004, pages 30-34. 6.3 End-User Issues Potential end users of the

  3. Comparison of the composting process using ear corn residue and three other conventional bulking agents during cow manure composting under high-moisture conditions.

    PubMed

    Hanajima, Dai

    2014-10-01

    To elucidate the characteristics of ear corn residue as a bulking agent, the composting process using this residue was compared with processes using three other conventional materials such as sawdust, wheat straw and rice husk, employing a bench-scale composting reactor. As evaluated via biochemical oxygen demand (BOD), ear corn residue contains 3.3 and 2.0 times more easily digestible materials than sawdust and rice husk, respectively. In addition, mixing ear corn residue with manure resulted in reduced bulk density, which was the same as that of wheat straw and was 0.58 and 0.67 times lower than that of sawdust and a rice husk mixture, respectively. To evaluate temperature generation during the composting process, the maximum temperature and area under the temperature curve (AUCTEMP) were compared among the mixed composts of four bulking agents. Maximum temperature (54.3°C) as well as AUCTEMP (7310°C●h) of ear corn residue were significantly higher than those of sawdust and rice husk (P<0.05), and they are similar to that of wheat straw mixed compost. Along with the value of AUCTEMP, the highest organic matter losses of 31.1% were observed in ear corn residue mixed compost, followed by wheat straw, saw dust and rice husk. © 2014 Japanese Society of Animal Science.

  4. Environmental and economic analysis of power generation in a thermophilic biogas plant.

    PubMed

    Ruiz, D; San Miguel, G; Corona, B; Gaitero, A; Domínguez, A

    2018-08-15

    This paper investigates the environmental and economic performance of the power production from biogas using Life Cycle Assessment, Life Cycle Costing and Cost Benefit Analysis methodologies. The analysis is based on a commercial thermophilic biogas plant located in Spain where is installed a Combined Heat and Power system that produces electricity that is sold to the grid. Power generation has been assumed as the only function of the biogas system, expanding the system boundaries to include the additional function related to the end-of-life management of the biowastes. Thus environmental burdens from the conventional management of residues were calculated separately and subtracted. The base scenario involves using agri-food waste, sewage sludge and pig/cow manure as substrates. This situation is compared against an alternative scenario where the production of synthetic fertilizer is surrogated by the digestate. The results have shown that the most impacting activities in all impacts categories of power production are primarily attributable to the operation and maintenance of the biogas plant except for water resource depletion and climate change. The avoided emissions associated with the conventional management of pig/cow manure more than offset GHG emissions of the biogas system resulting in a negative impact value of -73.9gCO 2 eq/kWh in the base case scenario. The normalized results show that local impact categories such as primarily human toxicity, fresh water ecotoxicity and particulate matter are the most significantly affected by the biogas system while global impact categories as climate change and ozone depletion are less severely affected. The operation and maintenance phase is also shown to be the largest contributor after the life cycle cost analysis, followed by the construction and dismantling of the biogas plant and the profitability of the project is primarily related to the income obtained from the management of the biowastes used as substrates. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Effect of substituting brown rice for corn on lactation and digestion in dairy cows fed diets with a high proportion of grain.

    PubMed

    Miyaji, M; Matsuyama, H; Hosoda, K

    2014-02-01

    The effects of the substitution of brown rice (Oryza sativa L.; BR) for corn (Zea mays L.) in ensiled total mixed ration (TMR) that had a high proportion of grain on feed intake, lactation performance, ruminal fermentation, digestion, and N utilization were evaluated. Nine multiparous Holstein cows (51 ± 9 d in milk) were used in a replicated 3 × 3 Latin square design with 3 dietary treatments: a diet containing 0, 20, or 40% steam-flaked BR and 40, 20, or 0% steam-flaked corn (dry matter basis). Cows were fed ad libitum an ensiled TMR consisting of 40.7% alfalfa silage, 11.8% grass silage, 7.1% soybean meal, and 40.0% steam-flaked grain (dry matter basis). The ensiled TMR was prepared by baling fresh TMR, and then sealed by a bale wrapper and stored outdoors at 5 to 30 °C for over 6 mo. Dry matter intake and milk yield were lower for cows fed 40% BR than for cows fed 40% corn. The ruminal pH and total volatile fatty acid concentrations were not affected by dietary treatment. The ruminal ammonia-N concentration decreased as the percentage of BR in the diets was elevated. The proportion of acetate decreased, and that of propionate and butyrate increased with the increasing levels of BR. Plasma urea-N concentrations was lower and glucose and insulin concentrations were higher for cows fed 40% BR than for cows fed 40% corn. The whole-tract apparent digestibility of dry matter, organic matter, and starch increased, and the digestibility of neutral detergent fiber and acid detergent fiber decreased with the increasing BR level in the diet, with no dietary effect on crude protein digestion. As a proportion of N intake, the urinary N excretion was lower and the retention of N was higher for cows fed 40% BR than for cows fed 40% corn, with no dietary effect observed on N secretion in milk and fecal N excretion. These results show that substituting BR for corn decreases urinary N losses and improves N utilization, but causes adverse effects on milk production when cows are fed high-grain diets at 40% of dietary dry matter. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Effects of substitution of different levels of steam-flaked corn for finely ground corn on lactation and digestion in early lactation dairy cows.

    PubMed

    Zhong, R Z; Li, J G; Gao, Y X; Tan, Z L; Ren, G P

    2008-10-01

    Eight multiparous Holstein cows, 4 of them fitted with rumen cannulas, were used to test the effects of substitution of steam-flaked corn (SFC) for equal amounts of finely ground corn (FGC) in diets on feed intake and digestion, blood metabolites, and lactation performance in early lactation dairy cows. Cows were fed 4 diets in a replicated 4 x 4 Latin square design. The fistulated cows formed 1 replicate. Each experimental period lasted for 3 wk. The 4 diets contained 0, 10, 20, or 40% SFC and 40, 30, 20, or 0% FGC (dry matter basis), respectively. The milk protein content and yield, milk solid nonfat content and yield, plasma glucose concentration, and dry matter intake increased as the proportion of SFC increased in diets. Apparent total tract digestibilities of dry matter, organic matter, neutral detergent fiber, acid detergent fiber, and average ruminal fluid NH(3)-N concentration decreased with increasing levels of SFC. The ruminal fluid pH was not affected by the substitution of SFC for FGC. The 20% SFC substitution improved digestion of crude protein, yield of fat-corrected milk, milk lactose content, fat, and fat yield. The 40% SFC substitution increased urea concentration in both plasma and milk. It was concluded that 20% of SFC substitution for FGC appeared to be an appropriate level in diet for early lactation dairy cows.

  7. Evaluation of biogas production by dry anaerobic digestion of switchgrass-animal manure mixtures

    USDA-ARS?s Scientific Manuscript database

    Anaerobic digestion is a biological method used to convert organic wastes into a stable product for land application without adverse environmental effects. The biogas produced can be used as an alternative renewable energy source. Dry anaerobic digestion (> 15% TS; total solid) has an advantage ov...

  8. Technical note: assessment of recovery site of mobile nylon bags for measuring ileal digestibility of starch in dairy cows.

    PubMed

    Norberg, E; Volden, H; Harstad, O M

    2007-01-01

    The objective of this study was to evaluate recovery site of mobile nylon bags for measuring ileal digestibility of ruminally undegraded starch in dairy cows. Eight feed samples of untreated and treated concentrates were examined. Three lactating cows equipped with rumen fistula and duodenal and ileal cannulas were used in the experiment. The mobile nylon bags containing intact feeds or residues after a 12-h ruminal incubation were pretreated using a 2-step procedure to simulate abomasal digestion before insertion through the duodenal cannula. To assess the effect of hindgut fermentation on starch digestibility, approximately half of the bags were collected from the ileum and half from the feces. The results indicate that feed samples should be preincubated in rumen before insertion into duodenum, and that samples with relatively high fractions of rumen-undigestible starch should be collected from the ileum instead of from feces.

  9. Anatomical characteristics of teats and premilking bacterial counts of teat skin swabs of primiparous cows exposed to different types of bedding.

    PubMed

    Guarín, J F; Baumberger, C; Ruegg, P L

    2017-02-01

    Bacterial populations of teat skin are associated with risk of intramammary infection and may be influenced by anatomical characteristics of teats. The objective of this study was to evaluate associations of selected anatomical characteristics of teats with bacterial counts of teat skin of cows exposed to different types of bedding. Primarily primiparous Holstein cows (n = 128) were randomly allocated to 4 pens within a single barn. Each pen contained 1 type of bedding [new sand (NES), recycled sand (RS), deep-bedded manure solids (DBMS), and shallow-bedded manure solids over foam core mattresses (SBMS)]. During a single farm visit udders (n = 112) were scored for hygiene and 1 front (n = 112) and 1 rear teat (n = 111) of each enrolled cow were scored for hyperkeratosis (HK). Teat length, teat barrel diameter, and teat apex diameter were measured and teat skin swabs were systematically collected for microbiological analysis. Linear type evaluation data for udders of each cow were retrieved for each cow. Teat position (front or rear) was associated with occurrence of clinical mastitis during the 12 mo before the farm visit and more cases occurred in front quarters. The proportion of udders that were classified as clean (score 1 or 2) was 68, 82, 54, and 95% for cows housed in pens containing NES, RS, SBMS, and DBMS, respectively. No association was found between HK score and teat position and no association was found between HK score and teat skin bacterial count. Bacterial counts of teat skin swabs from front teats of cows in pens containing RS and SBMS were significantly less than those of rear teats of cows in pens containing DBMS or NES. Teat skin bacterial counts were significantly greater for swabs obtained from teats of cows with udder hygiene scores of 3 and 4 as compared with swabs obtained from cows with cleaner udders. Of all udder conformation traits evaluated, only narrower rear teat placement was positively associated with bacterial counts on teat skin. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Anaerobic digestion of nitrogen rich poultry manure: Impact of thermophilic biogas process on metal release and microbial resistances.

    PubMed

    Anjum, Reshma; Grohmann, Elisabeth; Krakat, Niclas

    2017-02-01

    Poultry manure is a nitrogen rich fertilizer, which is usually recycled and spread on agricultural fields. Due to its high nutrient content, chicken manure is considered to be one of the most valuable animal wastes as organic fertilizer. However, when chicken litter is applied in its native form, concerns are raised as such fertilizers also include high amounts of antibiotic resistant pathogenic Bacteria and heavy metals. We studied the impact of an anaerobic thermophilic digestion process on poultry manure. Particularly, microbial antibiotic resistance profiles, mobile genetic elements promoting the resistance dissemination in the environment as well as the presence of heavy metals were focused in this study. The initiated heat treatment fostered a community shift from pathogenic to less pathogenic bacterial groups. Phenotypic and molecular studies demonstrated a clear reduction of multiple resistant pathogens and self-transmissible plasmids in the heat treated manure. That treatment also induced a higher release of metals and macroelements. Especially, Zn and Cu exceeded toxic thresholds. Although the concentrations of a few metals reached toxic levels after the anaerobic thermophilic treatment, the quality of poultry manure as organic fertilizer may raise significantly due to the elimination of antibiotic resistance genes (ARG) and self-transmissible plasmids. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Nonstructural carbohydrate supplementation of yearling heifers and range beef cows.

    PubMed

    Bowman, J G P; Sowell, B F; Surber, L M M; Daniels, T K

    2004-09-01

    A digestion study with 28 yearling heifers (428 +/- 9.9 kg; Exp. 1) and a 2-yr winter grazing trial with 60 crossbred cows (552 +/- 6.9 kg; Exp. 2) were used to determine the effects of level of nonstructural carbohydrate (NSC) supplementation on intake and digestibility of low-quality forage. Treatments were as follows: 1) control, no supplement; 2) 0.32 kg of NSC (1.8 kg/d of soybean hulls and soybean meal; DM basis); 3) 0.64 kg of NSC (1.7 kg/d of wheat middlings; DM basis); and 4) 0.96 kg of NSC (1.7 kg/d of barley and soybean meal; DM basis). Supplements provided 0.34 kg of CP/d and 5.1 Mcal of ME/d. In Exp. 1, heifers were individually fed hay (5.5% CP, DM basis) and their respective supplements in Calan gates for 28 d. Data were analyzed as a completely randomized design. In Exp. 2, cows were individually fed supplement on alternate days, and grazed a single rangeland pasture stocked at 1.8 ha/ animal unit month. Two ruminally cannulated cows were used per treatment to obtain forage extrusa and to measure in situ DM disappearance (DMD) and carboxymethylcellulase (CMCase) activity of particle-associated ruminal microbes. Data were analyzed as a completely randomized design with the effects of treatment, year, and their interaction. In both experiments, Cr2O3 boluses were used to determine fecal output, individual animal was the experimental unit, and contrasts were used to test linear and quadratic effects of NSC level and control vs. supplemented treatments. In Exp. 1, hay and diet DM, NDF, and CP intakes and digestibilities were increased (P < 0.01) by NSC supplementation compared with the control. In Exp. 2, 72-h in situ DMD and CMCase were decreased linearly (P < 0.08) with increasing NSC supplementation. Intake of forage DM, NDF, and CP was decreased linearly (P < 0.01) with increasing NSC supplementation during both years. Supplementation with NSC decreased (P = 0.01) cow BW loss compared with the control in yr 1, whereas in yr 2, cow BW loss was linearly increased (P = 0.03) by increasing NSC supplementation. Supplements containing NSC improved forage digestion and intake when heifers consumed forage deficient in CP relative to energy (digestible OM:CP > 7), but decreased forage digestion and intake when cows grazed forage with adequate CP relative to energy (digestible OM:CP < 7). Forage and supplement digestible OM:CP seemed to be superior predictors of response to supplementation with NSC compared with forage CP levels alone.

  12. Catalytic degradation of the soil fumigant 1,3-dichloropropene in aqueous biochar slurry.

    PubMed

    Qin, Jiaolong; Cheng, Yuxiao; Sun, Mingxing; Yan, Lili; Shen, Guoqing

    2016-11-01

    Biochar has been explored as a cost-effective sorbent of contaminants, such as soil fumigant. However, contaminant-loaded biochar probably becomes a source of secondary air pollution. In this study, biochars developed from cow manure and rice husk at 300°C or 700°C were used to investigate the catalytic degradation of the soil fumigant 1,3-dichloropropene (1,3-D) in aqueous biochar slurry. Results showed that the adsorption of 1,3-D on the biochars was influenced by Langmuir surface monolayer adsorption. The maximum adsorption capacity of cow manure was greater than that of rice husk at the same pyrolysis temperature. Batch experiments revealed that 1,3-D degradation was improved in aqueous biochar slurry. The most rapid 1,3-D degradation occurred on cow manure-derived biochar produced at 300°C (C-300), with t1/2=3.47days. The degradation efficiency of 1,3-D on C-300 was 95.52%. Environmentally persistent free radicals (EPFRs) in biochars were detected via electron paramagnetic resonance (EPR) techniques. Dissolved organic matter (DOM) and hydroxyl radical (·OH) in biochars were detected by using a fluorescence spectrophotometer coupled with a terephthalic acid trapping method. The improvement of 1,3-D degradation efficiency may be attributed to EPFRs and DOM in aqueous biochar slurry. Our results may pose implications in the development of effective reduction strategies for soil fumigant emission with biochar. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Poultry Biosolids as Granular Activated Carbons for Environmental Remediation

    USDA-ARS?s Scientific Manuscript database

    Water quality and public health impacts of animal manure produced at large concentrated animal facilities prompted the need for viable solutions for their conversion and reuse. Current approaches to dispose of raw manure such as lagoon storage, anaerobic digestion and composting or transformation i...

  14. Expanding a Natural Product Line.

    ERIC Educational Resources Information Center

    Conrad, Paul

    1994-01-01

    Describes a business started as a profitable solution to one dairy farm's manure management challenges. Manure is anaerobically digested, dewatered, composted and sold as bagged potting soil, germinating mix, and soil amendments for the gardening market. Describes the development of the business and keys to its success. (LZ)

  15. Effects of concentrate crude protein content on nutrient digestibility, energy utilization, and methane emissions in lactating dairy cows fed fresh-cut perennial grass.

    PubMed

    Hynes, D N; Stergiadis, S; Gordon, A; Yan, T

    2016-11-01

    Although many studies have investigated mitigation strategies for methane (CH 4 ) output from dairy cows fed a wide variety of diets, research on the effects of concentrate crude protein (CP) content on CH 4 emissions from dairy cows offered fresh grass is limited. The present study was designed to evaluate the effects of cow genotype and concentrate CP level on nutrient digestibility, energy utilization, and CH 4 emissions in dairy cows offered fresh-grass diets. Twelve multiparous lactating dairy cows (6 Holstein and 6 Holstein × Swedish Red) were blocked into 3 groups for each breed and assigned to a low-, medium-, or high-CP concentrate diet [14.1, 16.1, and 18.1% CP on a dry matter (DM) basis, respectively], in a 3-period changeover study (25d per period). Total diets contained (DM basis) 32.8% concentrates and 67.2% perennial ryegrass, which was harvested daily. All measurements were undertaken during the final 6d of each period: digestibility measurements for 6d and calorimetric measurements in respiration chambers for 3d. Feed intake and milk production data were reported in a previous paper. We observed no significant interaction between concentrate CP level and cow genotype on any parameter. Concentrate CP level had no significant effect on any energy utilization parameter, except for urinary energy output, which was positively related to concentrate CP level. Similarly, concentrate CP content had no effect on CH 4 emission (g/d), CH 4 per kg feed intake, or nutrient digestibility. Cross breeding of Holstein cows significantly reduced gross energy, digestible energy, and metabolizable energy intake, heat production, and milk energy output. However, cow genotype had no significant effect on energy utilization efficiency or CH 4 parameters. Furthermore, the present study yielded a value for gross energy lost as CH 4 (5.6%) on fresh grass-based diets that was lower than the widely accepted value of 6.5%. The present findings indicate that reducing concentrate CP content from 18.1 to 14.1% may not be a successful way of alleviating CH 4 emissions from lactating dairy cows offered good-quality fresh grass, but grazing cows could be offered a low-CP concentrate without compromising energy utilization efficiency. Further research is needed to investigate whether larger differences in dietary CP content may yield positive results. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. Environmental and economic comparisons of manure application methods in farming systems.

    PubMed

    Rotz, C A; Kleinman, P J A; Dell, C J; Veith, T L; Beegle, D B

    2011-01-01

    Alternative methods for applying livestock manure to no-till soils involve environmental and economic trade-offs. A process-level farm simulation model (Integrated Farm System Model) was used to evaluate methods for applying liquid dairy (Bos taurus L.) and swine (Sus scrofa L.) manure, including no application, broadcast spreading with and without incorporation by tillage, band application with soil aeration, and shallow disk injection. The model predicted ammonia emissions, nitrate leaching, and phosphorus (P) runoff losses similar to those measured over 4 yr of field trials. Each application method was simulated over 25 yr of weather on three Pennsylvania farms. On a swine and cow-calf beef operation under grass production, shallow disk injection increased profit by $340 yr(-1) while reducing ammonia nitrogen and soluble P losses by 48 and 70%, respectively. On a corn (Zea mays L.)-and-grass-based grazing dairy farm, shallow disk injection reduced ammonia loss by 21% and soluble P loss by 76% with little impact on farm profit. Incorporation by tillage and band application with aeration provided less environmental benefit with a net decrease in farm profit. On a large corn-and-alfalfa (Medicago sativa L.)-based dairy farm where manure nutrients were available in excess of crop needs, incorporation methods were not economically beneficial, but they provided environmental benefits with relatively low annual net costs ($13 to $18 cow). In all farming systems, shallow disk injection provided the greatest environmental benefit at the least cost or greatest profit for the producer. With these results, producers are better informed when selecting manure application equipment.

  17. Use of rumination and activity monitoring for the identification of dairy cows with health disorders: Part I. Metabolic and digestive disorders.

    PubMed

    Stangaferro, M L; Wijma, R; Caixeta, L S; Al-Abri, M A; Giordano, J O

    2016-09-01

    The objectives of this study were to evaluate (1) the performance of an automated health-monitoring system (AHMS) to identify cows with metabolic and digestive disorders-including displaced abomasum, ketosis, and indigestion-based on an alert system (health index score, HIS) that combines rumination time and physical activity; (2) the number of days between the first HIS alert and clinical diagnosis (CD) of the disorders by farm personnel; and (3) the daily rumination time, physical activity, and HIS patterns around CD. Holstein cattle (n=1,121; 451 nulliparous and 670 multiparous) were fitted with a neck-mounted electronic rumination and activity monitoring tag (HR Tags, SCR Dairy, Netanya, Israel) from at least -21 to 80 d in milk (DIM). Raw data collected in 2-h periods were summarized per 24 h as daily rumination and activity. A HIS (0 to 100 arbitrary units) was calculated daily for individual cows with an algorithm that used rumination and activity. A positive HIS outcome was defined as a HIS of <86 during at least 1 d from -5 to 2 d after CD. Blood concentrations of nonesterified fatty acids, β-hydroxybutyrate, total calcium, and haptoglobin were determined in a subgroup of cows (n=459) at -11±3, -4±3, 0, 3±1, 7±1, 14±1, and 28±1 DIM. The sensitivity of the HIS was 98% [95% confidence interval (CI): 93, 100] for displaced abomasum (n=41); 91% (95% CI: 83, 99) for ketosis (n=54); 89% (95% CI: 68, 100) for indigestion (n=9); and 93% (95% CI: 89, 98) for all metabolic and digestive disorders combined (n=104). Days (mean and 95% CI) from the first positive HIS <86 and CD were -3 (-3.7, -2.3), -1.6 (-2.3, -1.0), -0.5 (-1.5, 0.5), and -2.1 (-2.5, -1.6) for displaced abomasum, ketosis, indigestion, and all metabolic and digestive disorders, respectively. The patterns of rumination, activity, and HIS for cows flagged by the AHMS were characterized by lower levels than for cows without a health disorder and cows not flagged by the AHMS from -5 to 5 d after CD, depending on the disorder and parameter. Differences between cows without health disorders and those flagged by the AHMS for blood markers of metabolic and health status confirmed the observations of the CD and AHMS alerts. The overall sensitivity and timing of the AHMS alerts for cows with metabolic and digestive disorders indicated that AHMS that combine rumination and activity could be a useful tool for identifying cows with metabolic and digestive disorders. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Evaluation of anaerobic co-digestion of dairy manure with food wastes via bio-methane potential assay and CSTR reactor.

    PubMed

    Ye, Yulin; Zamalloa, Carlos; Lin, Hongjian; Yan, Mi; Schmidt, David; Hu, Bo

    2015-01-01

    The introduction of food wastes into anaerobic digestion (AD) brings a promising scenario of increasing feedstock availability and overall energy production from AD. This study evaluated the biodegradability and methane potential from co-digestion of two typical food wastes, kitchen waste and chicken fat, with dairy manure. For single substrate, the bio-methane potential assays showed that kitchen waste had the highest methane yield of 352 L-CH4 kg(-1)-VS added, 92% more than dairy manure alone. Chicken fat at the same Volatile Solid (VS) level (2 g L(-1)) inhibited bio-methane production. Addition of kitchen waste and chicken fat to a VS percentage of up to 40% improved overall methane yield by 44% and 34%, respectively. Synergistic effect was observed when either combining two or three substrates as AD feedstock, possibly as a result of increased biodegradability of organic materials in chicken fat and kitchen waste compared with dairy manure. Addition of chicken fat improved methane yield more than kitchen waste. However, addition of chicken fat VS over 0.8 g L(-1) should be cautiously done because it may cause reactor failure due to decrease in pH. The maximum methane yield was 425 L-CH4 kg(-1)-VS, achieved at a VS ratio of 2:2:1 for kitchen waste, chicken fat, and dairy manure. Results from batch AD experiment demonstrated that supplementing dairy manure to chicken fat and/or kitchen waste improved alkalinity of substrate due to the inclusion of more titratable bases in dairy manure, and therefore stabilized the methanogenesis and substantially improved biogas yield. A mixture of substrates of kitchen waste, chicken fat, and dairy manure at a ratio of 1:1:3 was fed to a continuously stirred tank reactor operated at organic loading rates of 3.28, 6.55, and 2.18 g-COD L(-1)-day (hydraulic retention time of 20, 10, and 30 days, respectively) under mesophilic condition, and methane production rate reached 0.65, 0.95, and 0.34 L-CH4 L(-1)-reactor-day.

  19. Potential of low-temperature anaerobic digestion to address current environmental concerns on swine production.

    PubMed

    Massé, D I; Masse, L; Xia, Y; Gilbert, Y

    2010-04-01

    Environmental issues associated with swine production are becoming a major concern among the general public and are thus an important challenge for the swine industry. There is now a renewed interest in environmental biotechnologies that can minimize the impact of swine production and add value to livestock by-products. An anaerobic biotechnology called psychrophilic anaerobic digestion (PAD) in sequencing batch reactors (SBR) has been developed at Agriculture and Agri-Food Canada. This very stable biotechnology recovers usable energy, stabilizes and deodorizes manure, and increases the availability of plant nutrients. Experimental results indicated that PAD of swine manure slurry at 15 to 25 degrees C in intermittently fed SBR reduces the pollution potential of manure by removing up to 90% of the soluble chemical oxygen demand. The process performs well under intermittent feeding, once to 3 times a week, and without external mixing. Bioreactor feeding activities can thus be easily integrated into the routine manure removal procedures in the barn, with minimal interference with other farm operations and use of existing manure-handling equipment. Process stability was not affected by the presence of antibiotics in manure. The PAD process was efficient in eliminating populations of zoonotic pathogens and parasites present in raw livestock manure slurries. Psychrophilic anaerobic digestion in SBR could also be used for swine mortality disposal. The addition of swine carcasses, at loading rates representing up to 8 times the normal mortality rates on commercial farms, did not affect the stability of SBR. No operational problems were related to the formation of foam and scum. The biotechnology was successfully operated at semi-industrial and full commercial scales. Biogas production rate exceeded 0.20 L of methane per gram of total chemical oxygen demand fed to the SBR. The biogas was of excellent quality, with a methane concentration ranging from 70 to 80%. The recovery of green energy, the production of a value-added odorless fertilizer, the elimination of manure pathogens, and the proper disposal of swine mortalities will substantially reduce the carbon and environmental footprints on products of swine origin.

  20. Vertical nutrient and trace element migration in cambisoils after application of residues from anaerobic digestion of pig manure

    NASA Astrophysics Data System (ADS)

    Sager, Manfred; Unterfrauner, Hans

    2013-04-01

    Cambisols sampled in alpine pastures were packed into soil columns in order to monitor downward migration of nutrient and trace elements, applied within the residue from anaerobic digestion of a pig manure. 2 rain events per week were simulated. The manure added substantial amounts of K, ammonium, Na, Ca, P, S, Cl, B, Zn and Cu to the soil, whereas Mg, Mn, Ni, Cr, Pb, Cd and V were at the same level. In the eluates, total elemental composition as well as nitrate and ammonium were monitored. Addition of soluble Fe (at 1000 mg/l as FeCl3) decreased the release of soluble sulphate, but had no significant effect on the release of Fe and P. During subsequent rain events, exchangeable K remained enriched in the topsoil, wheras total sulfur moved to deeper layers. After 8 weeks, the columns were dismantled and analyzed for quasi-total and mobile fractions. Both in topsoils and subsoils, manure addition finally increased soil pH in case of low P soils, but decreased soil pH in case of high pH soils. Effects of manure applications on groundwater formation processes will be discussed.

  1. Codigestion of manure and organic wastes in centralized biogas plants: status and future trends.

    PubMed

    Angelidaki, I; Ellegaard, L

    2003-01-01

    Centralized biogas plants in Denmark codigest mainly manure, together with other organic waste such as industrial organic waste, source sorted household waste, and sewage sludge. Today 22 large-scale centralized biogas plants are in operation in Denmark, and in 2001 they treated approx 1.2 million tons of manure as well as approx 300,000 of organic industrial waste. Besides the centralized biogas plants there are a large number of smaller farm-scale plants. The long-term energy plan objective is a 10-fold increase of the 1998 level of biogas production by the year 2020. This will help to achieve a target of 12-14% of the national energy consumption being provided by renewable energy by the year 2005 and 33% by the year 2030. A major part of this increase is expected to come from new centralized biogas plants. The annual potential for biogas production from biomass resources available in Denmark is estimated to be approx 30 Peta Joule (PJ). Manure comprises about 80% of this potential. Special emphasis has been paid to establishing good sanitation and pathogen reduction of the digested material, to avoid risk of spreading pathogens when applying the digested manure as fertilizer to agricultural soils.

  2. Enhanced anaerobic treatment of CSTR-digested effluent from chicken manure: The effect of ammonia inhibition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Zhanguang; Zhou Xuefei; Zhang Yalei, E-mail: zhangyalei2003@163.com

    Highlights: Black-Right-Pointing-Pointer Enhanced anaerobic treatment of CSTR-digested effluent from chicken manure. Black-Right-Pointing-Pointer The SCOD/TAN (soluble COD/total ammonia nitrogen) ratio was key controlling factor. Black-Right-Pointing-Pointer The threshold of the SCOD/TAN ratio was 2.4 at an influent pH of 8.5-9. - Abstract: The effect of ammonia inhibition was evaluated during the enhanced anaerobic treatment of digested effluent from a 700 m{sup 3} chicken-manure continuous stirred tank reactor (CSTR). A 12.3 L internal circulation (IC) reactor inoculated with an anaerobic granular sludge and operated at 35 {+-} 1 Degree-Sign C was employed for the investigation. With a corresponding organic loading rate of 1.5-3.5more » kg-COD/m{sup 3} d over a hydraulic retention time of 1.5 d, a maximum volumetric biogas production rate of 1.2 m{sup 3}/m{sup 3} d and TCOD (total COD) removal efficiency ranging from 70% to 80% was achieved. However, the continual increase in the influent TAN content led to ammonia inhibition in the methanogenesis system. The SCOD/TAN (soluble COD/total ammonia nitrogen) ratio was presented to be the key controlling factor for the anaerobic treatment of semi-digested chicken manure, and further validation through shock loading and ammonia inhibition experiments was conducted. The threshold value of the SCOD/TAN ratio was determined to be 2.4 (corresponding to a TAN of 1250 mg/L) at an influent pH of 8.5-9.« less

  3. Multiple approaches to characterize the microbial community in a thermophilic anaerobic digester running on swine manure: a case study.

    PubMed

    Tuan, Nguyen Ngoc; Chang, Yi-Chia; Yu, Chang-Ping; Huang, Shir-Ly

    2014-01-01

    In this study, the first survey of microbial community in thermophilic anaerobic digester using swine manure as sole feedstock was performed by multiple approaches including denaturing gradient gel electrophoresis (DGGE), clone library and pyrosequencing techniques. The integrated analysis of 21 DGGE bands, 126 clones and 8506 pyrosequencing read sequences revealed that Clostridia from the phylum Firmicutes account for the most dominant Bacteria. In addition, our analysis also identified additional taxa that were missed by the previous researches, including members of the bacterial phyla Synergistetes, Planctomycetes, Armatimonadetes, Chloroflexi and Nitrospira which might also play a role in thermophilic anaerobic digester. Most archaeal 16S rRNA sequences could be assigned to the order Methanobacteriales instead of Methanomicrobiales comparing to previous studies. In addition, this study reported that the member of Methanothermobacter genus was firstly found in thermophilic anaerobic digester. Copyright © 2014 Elsevier GmbH. All rights reserved.

  4. Feeding Moringa oleifera fresh or ensiled to dairy cows--effects on milk yield and milk flavor.

    PubMed

    Mendieta-Araica, Bryan; Spörndly, Eva; Reyes-Sánchez, Nadir; Spörndly, Rolf

    2011-06-01

    Moringa oleifera, either fresh or ensiled, was compared with Elephant grass as a main feedstuff for dairy cows. To test the effects feed had on milk yield, milk composition, ration digestibility, and the organoleptic characteristics of milk, six lactating dairy cows were used in a Changeover 3 × 3 Latin Square experiment, replicated twice. With equal intake of metabolizable energy the intake of protein and fiber differed (p < 0.001) between all diets where fresh Moringa had the highest and the Elephant grass diet had the lowest intake. Compared with the control diet, ensiled Moringa had higher digestibility (P < 0.05) of both protein and fiber. With the exception of DM digestibility, no digestibility differences were found between fresh Moringa and Moringa silage treatments. Milk yield did not differ between any of the treatments and averaged 13.7 kg cow day(-1). Milk composition was similar among all treatments. Milk from the fresh Moringa treatment, however, had a grassy flavor and aroma, significantly different from the other two treatments, even though it was normal in color and appearance. No organoleptic differences were found between milk from the control treatment and the Moringa silage treatment. The conclusion is that Moringa silage can be fed to dairy cows in large quantities to produce the same quantity and quality of milk as traditional diets.

  5. The Contrasting Effects of Alum-Treated Chicken Manures and KH2PO4 on Phosphorus Behavior in Soils.

    PubMed

    Huang, Lidong; Yang, Junming; Xu, Yuting; Lei, Jiayan; Luo, Xiaoshan; Cade-Menun, Barbara J

    2018-03-01

    Alum [KAl(SO)⋅12HO] is often added to chicken manure to limit P solubility after land application. This is generally ascribed to the formation of Al-PO complexes. However, Al-PO complex formation could be affected by the matrix of chicken manure, which varies with animal diet. Alum was added to KHPO (as a reference material) and two manures from typical chicken farms in China, one from an intensive farm (CMIF) and another from free-ranging chickens (CMFR). These were subsequently incubated with soils for 100 d to investigate P transformations. Alum reduced water-soluble colorimetrically reactive phosphorus (RP) from soils amended with manure more effectively than in soils amended with KHPO. Alum addition lowered Mehlich-3 RP in soils with CMFR but had no influence on Mehlich-3 RP in CMIF- or KHPO-amended soils. A comparison of P in digested Mehlich-3 extracts with RP in undigested samples showed significantly increased P in digests of alum-treated CMFR only. Fractionation data indicated that alum treatment increased P in the NHF-RP (Al-P) fraction only in soils with KHPO, but not in soils with manure treatments. Furthermore, NaOH-extracted nonreactive P was markedly higher in soil with alum-treated CMFR relative to normal CMFR. The CMFR manure was assumed to contain higher concentrations of organic P because these chickens were fed grains only. These results suggest that the formation of alum-organic P complexes may reduce P solubility. By comparing alum-treated KHPO and manures, it appears that organic matter in manure could interfere with the formation of Al-PO complexes. Copyright © Her Majesty the Queen in Right of Canada, as represented by the Minister of Agriculture and AgriFood Canada.

  6. Greenhouse Gas and Ammonia Emissions from Different Stages of Liquid Manure Management Chains: Abatement Options and Emission Interactions.

    PubMed

    Mohankumar Sajeev, Erangu Purath; Winiwarter, Wilfried; Amon, Barbara

    2018-01-01

    Farm livestock manure is an important source of ammonia and greenhouse gases. Concerns over the environmental impact of emissions from manure management have resulted in research efforts focusing on emission abatement. However, questions regarding the successful abatement of manure-related emissions remain. This study uses a meta-analytical approach comprising 89 peer-reviewed studies to quantify emission reduction potentials of abatement options for liquid manure management chains from cattle and pigs. Analyses of emission reductions highlight the importance of accounting for interactions between emissions. Only three out of the eight abatement options considered (frequent removal of manure, anaerobic digesters, and manure acidification) reduced ammonia (3-60%), nitrous oxide (21-55%), and methane (29-74%) emissions simultaneously, whereas in all other cases, tradeoffs were identified. The results demonstrate that a shift from single-stage emission abatement options towards a whole-chain perspective is vital in reducing overall emissions along the manure management chain. The study also identifies some key elements like proper clustering, reporting of influencing factors, and explicitly describing assumptions associated with abatement options that can reduce variability in emission reduction estimates. Prioritization of abatement options according to their functioning can help to determine low-risk emission reduction options, specifically options that alter manure characteristics (e.g., reduced protein diets, anaerobic digestion, or slurry acidification). These insights supported by comprehensive emission measurement studies can help improve the effectiveness of emission abatement and harmonize strategies aimed at reducing air pollution and climate change simultaneously. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  7. Recovery of Phenolic Acid and Enzyme Production from Corn Silage Biologically Treated by Trametes versicolor.

    PubMed

    Bucić-Kojić, Ana; Šelo, Gordana; Zelić, Bruno; Planinić, Mirela; Tišma, Marina

    2017-03-01

    Corn silage is used as high-energy forage for dairy cows and more recently for biogas production in a process of anaerobic co-digestion with cow manure. In this work, fresh corn silage after the harvest was used as a substrate in solid-state fermentations with T. versicolor with the aim of phenolic acid recovery and enzyme (laccase and manganese peroxidase) production. During 20 days of fermentation, 10.4-, 3.4-, 3.0-, and 1.8-fold increments in extraction yield of syringic acid, vanillic acid, p-hydroxybenzoic acid, and caffeic acid, respectively, were reached when compared to biologically untreated corn silage. Maximal laccase activity was gained on the 4th day of fermentation (V.A. = 180.2 U/dm 3 ), and manganese peroxidase activity was obtained after the 3rd day of fermentation (V.A. = 30.1 U/dm 3 ). The addition of copper(II) sulfate as inducer during solid state fermentation resulted in 8.5- and 7-fold enhancement of laccase and manganese peroxidase activities, respectively. Furthermore, the influence of pH and temperature on enzyme activities was investigated. Maximal activity of laccase was obtained at T = 50 °C and pH = 3.0, while manganese peroxidase is active at temperature range T = 45-70 °C with the maximal activity at pH = 4.5.

  8. Whole farm impact of anaerobic digestion and biogas use on a New York dairy farm

    USDA-ARS?s Scientific Manuscript database

    Anaerobic digestion of manure for biogas production is one of many options for reducing the carbon footprint of milk production. This process reduces greenhouse gas emissions but increases the potential nitrogen and phosphorus losses from the farm. An anaerobic digester component was added to the In...

  9. Characteristics of dairy cows with a greater or lower risk of subacute ruminal acidosis: Volatile fatty acid absorption, rumen digestion, and expression of genes in rumen epithelial cells.

    PubMed

    Gao, X; Oba, M

    2016-11-01

    The objective of this study was to examine whether lactating dairy cows with a greater or lower risk of subacute ruminal acidosis (SARA) have differences in volatile fatty acid (VFA) absorption rate, expression of genes involved in VFA metabolism and intracellular pH regulation in rumen epithelial cells, and in situ carbohydrate digestibility in the rumen. We fed 14 ruminally cannulated mid-lactating dairy cows (119±47.2d in milk; body weight 640±47.9kg) a high-grain diet consisting of 30% forage ad libitum, with an 18-d diet adaptation and a 7-d sample and data collection period. Eight cows with the lowest acidosis index [area below pH 5.8 normalized for dry matter intake (DMI); 0.10±0.16 pH × min/kg of DMI] and 5 with the highest acidosis index (3.72±0.19 pH × min/kg of DMI) were classified as animals with lower risk (LS) and higher risk (HS) of SARA, respectively. Minimum (5.75 vs. 5.33) and mean rumen pH (6.33 vs. 5.98) were higher for LS than for HS cows. In addition, the duration and area of rumen pH below 5.8 was lower in LS cows (24.9 vs. 481min/d; 2.94 vs. 102 pH × min/d). Although DMI, milk yield, and milk component yields did not differ, milk fat concentration tended to be higher for LS cows than for HS cows (3.36 vs. 2.93%). However, we observed no difference in VFA absorption rate between LS and HS cows. In situ starch and neutral detergent fiber digestibility were not different between LS and HS cows, but the relative mRNA abundance of lanosterol synthase (LSS) was higher for LS cows than for HS cows. In addition, the mRNA abundance of hydroxy-3-methylglutaryl-CoA synthase 1 (HMGCS1) tended to be higher for LS cows than for HS cows. These results suggested that VFA absorption rate might not explain the difference in rumen pH between LS and HS cows in the current study, even though expression of some genes related to VFA metabolism in rumen epithelium may be associated with variation in the risk of SARA among lactating cows. This variation in the risk of SARA may not be attributed to differences in the capacity of rumen microbes to ferment carbohydrates, because in situ carbohydrate digestibility in the rumen was not different between cows with higher and lower risk of SARA. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Co-digestion of livestock effluents, energy crops and agro-waste: feeding and process optimization in mesophilic and thermophilic conditions.

    PubMed

    Giuliano, A; Bolzonella, D; Pavan, P; Cavinato, C; Cecchi, F

    2013-01-01

    In this study the optimization of the biogas yield from anaerobic co-digestion of manures and energy crops was carried out using four pilot scale CSTRs under different operating conditions. The effect on biogas yield of the partial substitution of energy crops with agro-waste was also investigated. For each substrate used during the continuous trials, BMP batch assays were also carried out to verify the maximum methane yield theoretically obtainable. Continuous operation results indicated that the co-digestion of manures, energy crops and agro-waste was viable at all operating conditions tested, with the greatest specific gas production of 0.54 m(3)/kg VS(fed) at an organic load rate of 2 kg TVS/m(3)(r)d consisting of 50% manure, 25% energy crops and 25% agro-waste on VS basis. No significant differences were observed between high and low loaded reactors suggesting the possibility of either improving the OLR in existing anaerobic reactors or reducing the design volumes of new reactors. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Effects of alfalfa silage storage structure and roasting corn on ruminal digestion and microbial CP synthesis in lactating dairy cows

    USDA-ARS?s Scientific Manuscript database

    The objective of this experiment was to determine the effects of unroasted ground shelled corn (GSC) or roasted GSC (RGSC), when fed with alfalfa, ensiled in bag, bunker, or O2-limiting tower silos on ruminal digestion and microbial protein synthesis in lactating dairy cows. The roasted corn was hea...

  12. Effects of feeding different amounts of supplemental glycerol on ruminal environment and digestibility of lactating dairy cows

    USDA-ARS?s Scientific Manuscript database

    A study was conducted to evaluate the effects of increasing amounts of dietary glycerol on rumen environment, blood metabolites, and nutrient digestibility. Six rumen cannulated Holstein cows averaging 56 ± 18 DIM and 38.0 ± 8.2 kg/d of milk were used in the study. Experimental design was a replicat...

  13. Comparing the effect of homogenization and heat processing on the properties and in vitro digestion of milk from organic and conventional dairy herds.

    PubMed

    Van Hekken, D L; Tunick, M H; Ren, D X; Tomasula, P M

    2017-08-01

    We compared the effects of homogenization and heat processing on the chemical and in vitro digestion traits of milk from organic and conventional herds. Raw milk from organic (>50% of dry matter intake from pasture) and conventional (no access to pasture) farms were adjusted to commercial whole and nonfat milk fat standards, and processed with or without homogenization, and with high-temperature-short-time or UHT pasteurization. The milk then underwent in vitro gastrointestinal digestion. Comparison of milk from organic and conventional herds showed that the milks responded to processing in similar ways. General composition was the same among the whole milk samples and among the nonfat milk samples. Protein profiles were similar, with intact caseins and whey proteins predominant and only minor amounts of peptides. Whole milk samples from grazing cows contained higher levels of α-linolenic (C18:3), vaccenic (C18:1 trans), and conjugated linoleic acids, and lower levels of palmitic (C16:0) and stearic (C18:0) acids than samples from nongrazing cows. Processing had no effect on conjugated linoleic acid and linolenic acid levels in milk, although homogenization resulted in higher levels of C8 to C14 saturated fatty acids. Of the 9 volatile compounds evaluated, milk from grazing cows contained lower levels of 2-butanone than milk from nongrazing cows, and milk from both farms showed spikes for heptanal in UHT samples and spikes for butanoic, octanoic, nonanoic, and N-decanoic acids in homogenized samples. At the start of in vitro digestion, nonfat raw and pasteurized milk samples formed the largest acid clots, and organic milk clots were larger than conventional milk clots; UHT whole milk formed the smallest clots. Milk digests from grazing cows had lower levels of free fatty acids than digests from nongrazing cows. In vitro proteolysis was similar in milk from both farms and resulted in 85 to 95% digestibility. Overall, milk from organic/grass-fed and conventional herds responded in similar ways to typical homogenization and heat processing used in United States dairy plants and showed only minor differences in chemical traits and in vitro digestion. Findings from this research enhance our knowledge of the effect of processing on the quality traits and digestibility of milk from organic/pasture-fed and confined conventional herds and will help health-conscious consumers make informed decisions about dairy selections. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Effects of oxytetracycline on archaeal community, and tetracycline resistance genes in anaerobic co-digestion of pig manure and wheat straw.

    PubMed

    Wang, Xiaojuan; Pan, Hongjia; Gu, Jie; Qian, Xun; Gao, Hua; Qin, Qingjun

    2016-12-01

    In this study, the effects of different concentrations of oxytetracycline (OTC) on biogas production, archaeal community structure, and the levels of tetracycline resistance genes (TRGs) were investigated in the anaerobic co-digestion products of pig manure and wheat straw. PCR denaturing gradient gel electrophoresis analysis and real-time quantitative polymerase chain reaction (RT-qPCR) (PCR) were used to detect the archaeal community structure and the levels of four TRGs: tet(M), tet(Q), tet(W), and tet(C). The results showed that anaerobic co-digestion with OTC at concentrations of 60, 100, and 140 mg/kg (dry weight of pig manure) reduced the cumulative biogas production levels by 9.9%, 10.4%, and 14.1%, respectively, compared with that produced by the control, which lacked the antibiotic. The addition of OTC substantially modified the structure of the archaeal community. Two orders were identified by phylogenetic analysis, that is, Pseudomonadales and Methanomicrobiales, and the methanogen present during anaerobic co-digestion with OTC may have been resistant to OTC. The abundances of tet(Q) and tet(W) genes increased as the OTC concentration increased, whereas the abundances of tet(M) and tet(C) genes decreased as the OTC concentration increased.

  15. Effects of alfalfa and orchardgrass on digestion by dairy cows.

    PubMed

    Holden, L A; Glenn, B P; Erdman, R A; Potts, W E

    1994-09-01

    The effects of alfalfa and orchardgrass diets of similar NDF content on ruminal digestion and digesta kinetics as measured using radiolabeled herbage were evaluated in Holstein cows. Two dry and two lactating cows, fitted with ruminal and duodenal cannulas, were fed 12 times daily at restricted and ad libitum intakes, respectively, in a crossover design. Diets were 65:35 and 55:45 hay: concentrate in DM for alfalfa and orchardgrass, respectively, with approximately 19% CP and 42% NDF. The DMI by lactating cows was greater for the alfalfa diet than for the orchardgrass diet. Ruminal and apparent total tract digestibilities of NDF and ADF were less for cows consuming the alfalfa diet than for those on the orchardgrass diet. Particle size of ruminal digesta, based on specific activity from a ruminal pulse-dose of 14C-labeled alfalfa or orchardgrass, did not decrease consistently with time and was greater than fecal particle size, suggesting selective retention of large digesta particles before passage. Ruminal and total tract fractional passage rates of indigestible NDF, based on 14C-labeled forage, did not differ as a result of forage or lactation stage, but NDF gut fill was greater in lactating than in dry cows, indicating that changes in gut fill were related more to differences in intake than to passage rate.

  16. 40 CFR 98.364 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... or operator shall document the procedures used to ensure the accuracy of gas flow rate, gas... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Manure Management § 98.364 Monitoring and QA/QC requirements... fraction of total manure managed in each system component. (c) The CH4 concentration of gas from digesters...

  17. 40 CFR 98.364 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... or operator shall document the procedures used to ensure the accuracy of gas flow rate, gas... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Manure Management § 98.364 Monitoring and QA/QC requirements... fraction of total manure managed in each system component. (c) The CH4 concentration of gas from digesters...

  18. 40 CFR 98.364 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... or operator shall document the procedures used to ensure the accuracy of gas flow rate, gas... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Manure Management § 98.364 Monitoring and QA/QC requirements... fraction of total manure managed in each system component. (c) The CH4 concentration of gas from digesters...

  19. Recovery of ammonia from anaerobically digested manure using gas-permeable membranes

    USDA-ARS?s Scientific Manuscript database

    The gas-permeable membrane process can recover ammonia from wastewater with high nitrogen load, reducing pollution whilst converting ammonia into an ammonium salt fertilizer. The process involves manure pH control to increase ammonium (NH4) recovery rate that is normally carried out using an alkali....

  20. Intestinal digestibility of long-chain fatty acids in lactating dairy cows: A meta-analysis and meta-regression.

    PubMed

    Boerman, J P; Firkins, J L; St-Pierre, N R; Lock, A L

    2015-12-01

    The objective of this analysis was to examine the intestinal digestibility of individual long-chain fatty acids (FA) in lactating dairy cows. Available data were collated from 15 publications containing 61 treatments, which reported total and individual FA duodenal flows and calculations of intestinal digestibility. All studies involved lactating dairy cows, and estimates of digestibility were based on measurements either between the duodenum and ileum (18 treatments) or between the duodenum and feces (43 treatments). Fatty acid digestibility was calculated for C16:0, C18:0, C18:1 (cis and trans isomers), C18:2, and C18:3. Digestibility of C18:0 was lower than for C18:1 and C18:3, with no difference in digestibility between saturated FA (C16:0 and C18:0). We weighted the studies by the reciprocal of the variance to generate best-fit equations to predict individual FA digestibility based on duodenal flow of FA and dietary independent variables. The flow of C18:0 negatively affected the digestibility of C18:0 and was also included in the best-fit equations for all other 18-carbon FA using duodenal flow characteristics. The type of fat supplemented had an effect on digestibility of individual FA, with whole seeds having reduced digestibility. Our meta-analysis results showed minimal differences in the digestibility of individual FA. However, C18:0 flow through the duodenum had a negative effect on the digestibility of several individual FA, with the largest negative effect on C18:0 digestibility. The mechanisms that reduce C18:0 absorption at high concentrations are unknown and warrant further investigation. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Chuang; Zheng, Dan; Liu, Gang–Jin

    Highlights: • Continuous dry fermentation of swine manure for biogas production is feasible. • The feedstock TS concentration exerted a significant impact on biogas production. • Influences of ammonia and digestate liquidity were investigated in this study. • The results showed that the feedstock TS of swine manure should not exceed 30%. - Abstract: A down plug-flow anaerobic reactor (DPAR) was designed for the feasibility study on continuous dry fermentation of swine manure without any additional stirring. Using fresh swine manure as the feedstock with TS concentration (w/w) of 20%, 25%, 30%, and 35%, stable volumetric biogas production rates ofmore » 2.40, 1.92, 0.911, and 0.644 L·(L d){sup −1} and biogas yields of 0.665, 0.532, 0.252, and 0.178 L g{sup −1}VS were obtained respectively, and the TS degradation rates were 46.5%, 45.4%, 53.2%, and 55.6%, respectively. With the increase of feedstock TS concentration, the concentration of ammonia nitrogen grew up to the maximum value of 3500 mg L{sup −1}. Biogas production was obviously inhibited when the concentration of ammonia nitrogen was above 3000 mg L{sup −1}. The maximal volumetric biogas production rate of 2.34 L·(L d){sup −1} and biogas yield of 0.649 L g{sup −1}VS were obtained with TS concentration of 25% at 25 °C without inhibition. Liquidity experiments showed that TS concentration of digestate could be less than 15.8%, and the flow rate of digestate more than 0.98 m s{sup −1} when the feedstock TS concentration was less than 35%, which indicated the digestate could be easily discharged from a DPAR. Therefore, it is feasible to conduct a continuous dry fermentation in a DPAR using fresh swine manure as the feedstock with TS concentration less than 35%, whereas the feedstock TS concentration should not exceed 30% to achieve the maximal biogas production rate and biogas yield.« less

  2. Nitrogen removal from digested slurries using a simplified ammonia stripping technique.

    PubMed

    Provolo, Giorgio; Perazzolo, Francesca; Mattachini, Gabriele; Finzi, Alberto; Naldi, Ezio; Riva, Elisabetta

    2017-11-01

    This study assessed a novel technique for removing nitrogen from digested organic waste based on a slow release of ammonia that was promoted by continuous mixing of the digestate and delivering a continuous air stream across the surface of the liquid. Three 10-day experiments were conducted using two 50-L reactors. In the first two, nitrogen removal efficiencies were evaluated from identical digestates maintained at different temperatures (30°C and 40°C). At the start of the first experiment, the digestates were adjusted to pH 9 using sodium hydroxide, while in the second experiment pH was not adjusted. The highest ammonia removal efficiency (87%) was obtained at 40°C with pH adjustment. However at 40°C without pH adjustment, removal efficiencies of 69% for ammonia and 47% for total nitrogen were obtained. In the third experiment two different digestates were tested at 50°C without pH adjustment. Although the initial chemical characteristics of the digestates were different in this experiment, the ammonia removal efficiencies were very similar (approximately 85%). Despite ammonia removal, the pH increased in all experiments, most likely due to carbon dioxide stripping that was promoted by temperature and mixing. The technique proved to be suitable for removing nitrogen following anaerobic digestion of livestock manure because effective removal was obtained at natural pH (≈8) and 40°C, common operating conditions at typical biogas plants that process manure. Furthermore, the electrical energy requirement to operate the process is limited (estimated to be 3.8kWhm -3 digestate). Further improvements may increase the efficiency and reduce the processing time of this treatment technique. Even without these advances slow-rate air stripping of ammonia is a viable option for reducing the environmental impact associated with animal manure management. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Environmental assessment of digestate treatment technologies using LCA methodology.

    PubMed

    Vázquez-Rowe, Ian; Golkowska, Katarzyna; Lebuf, Viooltje; Vaneeckhaute, Céline; Michels, Evi; Meers, Erik; Benetto, Enrico; Koster, Daniel

    2015-09-01

    The production of biogas from energy crops, organic waste and manure has augmented considerably the amounts of digestate available in Flanders. This has pushed authorities to steadily introduce legislative changes to promote its use as a fertilising agent. There is limited arable land in Flanders, which entails that digestate has to compete with animal manure to be spread. This forces many anaerobic digestion plants to further treat digestate in such a way that it can either be exported or the nitrogen be removed. Nevertheless, the environmental impact of these treatment options is still widely unknown, as well as the influence of these impacts on the sustainability of Flemish anaerobic digestion plants in comparison to other regions where spreading of raw digestate is allowed. Despite important economic aspects that must be considered, the use of Life Cycle Assessment (LCA) is suggested in this study to identify the environmental impacts of spreading digestate directly as compared to four different treatment technologies. Results suggest relevant environmental gains when the digestate mix is treated using the examined conversion technologies prior to spreading, although important trade-offs between impact categories were observed and discussed. The promising results of digestate conversion technologies suggest that further LCA analyses should be performed to delve into, for instance, the appropriateness to shift to nutrient recovery technologies rather than digestate conversion treatments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Metagenomic Analysis of Antibiotic Resistance Genes in Dairy Cow Feces following Therapeutic Administration of Third Generation Cephalosporin

    PubMed Central

    Ray, Partha; Zhang, Tong; Pruden, Amy; Strickland, Michael; Knowlton, Katharine

    2015-01-01

    Although dairy manure is widely applied to land, it is relatively understudied compared to other livestock as a potential source of antibiotic resistance genes (ARGs) to the environment and ultimately to human pathogens. Ceftiofur, the most widely used antibiotic used in U.S. dairy cows, is a 3rd generation cephalosporin, a critically important class of antibiotics to human health. The objective of this study was to evaluate the effect of typical ceftiofur antibiotic treatment on the prevalence of ARGs in the fecal microbiome of dairy cows using a metagenomics approach. β-lactam ARGs were found to be elevated in feces from Holstein cows administered ceftiofur (n = 3) relative to control cows (n = 3). However, total numbers of ARGs across all classes were not measurably affected by ceftiofur treatment, likely because of dominance of unaffected tetracycline ARGs in the metagenomics libraries. Functional analysis via MG-RAST further revealed that ceftiofur treatment resulted in increases in gene sequences associated with “phages, prophages, transposable elements, and plasmids”, suggesting that this treatment also enriched the ability to horizontally transfer ARGs. Additional functional shifts were noted with ceftiofur treatment (e.g., increase in genes associated with stress, chemotaxis, and resistance to toxic compounds; decrease in genes associated with metabolism of aromatic compounds and cell division and cell cycle), along with measureable taxonomic shifts (increase in Bacterioidia and decrease in Actinobacteria). This study demonstrates that ceftiofur has a broad, measureable and immediate effect on the cow fecal metagenome. Given the importance of 3rd generation cephalospirins to human medicine, their continued use in dairy cattle should be carefully considered and waste treatment strategies to slow ARG dissemination from dairy cattle manure should be explored. PMID:26258869

  5. Effect of manure and plants spacing on yield and flavonoid content of Elephantopus scaber L.

    NASA Astrophysics Data System (ADS)

    Riyana, D.; Widiyastuti, Y.; Widodo, H.; Purwanto, E.; Samanhudi

    2018-03-01

    This experiment is aimed to observe the growth and flavonoid contain of Tapak Liman (Elephantopus scaber L.) with different manure types and plants spacing treatment. This experiment is conducted at Tegal Gede Village, Karanganyar District on June until August 2016. The analysis of secondary metabolism was done in B2P2TOOT, Tawangamangu. This experiment is conducted with Randomized Complete Block Design (RCBD) with two treatment factors, those are manure and plants spacing. Animal manure treatment had 3 levels, those are without manure, cow manure with 20 ton/ha dose, and chicken manure with 20 ton/ha dose. Plants spacing treatment had 3 phrase, those are 20 cm × 20 cm; 30 × 30 cm; 40 cm × 40 cm. The result of this experiment shows that chicken manure with 20 ton/ha dosage increase the development of leaves’ lengthiness, header’s diameter, plant’s fresh weight, and plant’s dry weight. Plants spacing 40 cm × 40 cm increase for the development of leaves’ lengthiness, header’s diameter, plant’s wet weight, and plant’s dry weight. The combination between chicken manure with 20 ton/ha dose and plants spacing 40 cm × 40cm treatments show the highest amount of tapak liman extract and alleged having the biggest amount of flavonoid substance.

  6. Environmental impacts and resource use of milk production on the North China Plain, based on life cycle assessment.

    PubMed

    Wang, Xiaoqin; Ledgard, Stewart; Luo, Jiafa; Guo, Yongqin; Zhao, Zhanqin; Guo, Liang; Liu, Song; Zhang, Nannan; Duan, Xueqin; Ma, Lin

    2018-06-01

    Life cycle assessment methodology was used to quantify the environmental impacts and resource use of milk production on the North China Plain, the largest milk production area in China. Variation in environmental burden caused by cow productivity was evaluated, as well as scenario analysis of the effects of improvement practices. The results indicated that the average environmental impact potential and resource use for producing 1kg of fat and protein corrected milk was 1.34kgCO 2 eq., 9.27gPO 4 3- eq., 19.5gSO 2 eq., 4.91MJ, 1.83m 2 and 266L for global warming potential (GWP), eutrophication potential (EP), acidification potential (AP), non-renewable energy use (NREU), land use (LU) and blue water use (BWU; i.e. water withdrawal), respectively. Feed production was a significant determinant of GWP, NREU, LU and BWU, while AP and EP were mainly affected by manure management. Scenario analysis showed that reducing use of concentrates and substituting with alfalfa hay decreased GWP, EP, AP, NREU and LU (by 1.0%-5.5%), but caused a significant increase of BWU (by 17.2%). Using imported soybean instead of locally-grown soybean decreased LU by 2.6%, but significantly increased GWP and NREU by 20% and 6.9%, respectively. There was no single perfect manure management system, with variable effects from different management practices. The environmental burden shifting observed in this study illustrates the importance of assessing a wide range of impact categories instead of single or limited indicators for formulating environmental policies, and the necessity of combining multiple measures to decrease the environmental burden. For the North China Plain, improving milking cow productivity and herd structure (i.e. increased proportion of milking cows), combining various manure management systems, and encouraging dairy farmers to return manure to nearby crop lands are promising measures to decrease multiple environmental impacts. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. A comparison of emission calculations using different modeled indicators with 1-year online measurements.

    PubMed

    Lengers, Bernd; Schiefler, Inga; Büscher, Wolfgang

    2013-12-01

    The overall measurement of farm level greenhouse gas (GHG) emissions in dairy production is not feasible, from either an engineering or administrative point of view. Instead, computational model systems are used to generate emission inventories, demanding a validation by measurement data. This paper tests the GHG calculation of the dairy farm-level optimization model DAIRYDYN, including methane (CH₄) from enteric fermentation and managed manure. The model involves four emission calculation procedures (indicators), differing in the aggregation level of relevant input variables. The corresponding emission factors used by the indicators range from default per cow (activity level) emissions up to emission factors based on feed intake, manure amount, and milk production intensity. For validation of the CH₄ accounting of the model, 1-year CH₄ measurements of an experimental free-stall dairy farm in Germany are compared to model simulation results. An advantage of this interdisciplinary study is given by the correspondence of the model parameterization and simulation horizon with the experimental farm's characteristics and measurement period. The results clarify that modeled emission inventories (2,898, 4,637, 4,247, and 3,600 kg CO₂-eq. cow(-1) year(-1)) lead to more or less good approximations of online measurements (average 3,845 kg CO₂-eq. cow(-1) year(-1) (±275 owing to manure management)) depending on the indicator utilized. The more farm-specific characteristics are used by the GHG indicator; the lower is the bias of the modeled emissions. Results underline that an accurate emission calculation procedure should capture differences in energy intake, owing to milk production intensity as well as manure storage time. Despite the differences between indicator estimates, the deviation of modeled GHGs using detailed indicators in DAIRYDYN from on-farm measurements is relatively low (between -6.4% and 10.5%), compared with findings from the literature.

  8. Effect of maturity and hybrid on ruminal and intestinal digestion of corn silage in dry cows.

    PubMed

    Peyrat, J; Baumont, R; Le Morvan, A; Nozière, P

    2016-01-01

    The aim of this study was to evaluate the effect of stage of maturity at harvest on extent of starch, neutral detergent fiber (NDF), and protein digestion, and rumen fermentation in dry cows fed whole-plant corn silage from different hybrids. Four nonlactating Holstein cows cannulated at the rumen and proximal duodenum were fed 4 corn silages differing in hybrid (flint vs. flint-dent) and maturity stage (early vs. late) in a 4 × 4 Latin square design. From early to late maturity, starch content increased (from 234.5 to 348.5 g/kg), whereas total-tract (99.7 to 94.5%) and ruminal starch digestibility (91.3 to 86.5%) decreased significantly. The decrease in ruminal starch digestibility with increasing maturity was similar between hybrids. No effects were found of maturity, hybrid, or maturity × hybrid interaction on total-tract NDF digestibility, ruminal NDF digestibility, true digestibility of N and organic matter in the rumen, or microbial synthesis. Harvesting at later maturity led to increased ruminal ammonia, total volatile fatty acid concentrations, and acetate/propionate ratio but not pH. This study concludes that delaying date of harvest modifies the proportions of digestible starch and NDF supplied to cattle. Adjusting date of corn harvest to modulate amount of rumen-digested starch could be used as a strategy to control nutrient delivery to ruminants. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. AN INNOVATIVE DESIGN FOR ANAEROBIC CO-DIGESTION OF ANIMAL WASTES FOR SUSTAINABLE DEVELOPMENT IN RURAL COMMUNITIES

    EPA Science Inventory

    With the aim of the Phase I project to develop an innovative anaerobic co-digestion design for the treatment of dairy manure and poultry waste, our Phase I team has evaluated the technical and economic feasibility of the anaerobic co-digestion design concept with a thorough in...

  10. Strategies of supplementation of female suckling calves and nutrition parameters of beef cows on tropical pasture.

    PubMed

    Valente, Eriton Egidio Lisboa; Paulino, Mario Fonseca; Detmann, Edenio; Valadares Filho, Sebastião de Campos; Barros, Livia Vieira; Cabral, Carla Heloisa Avelino; Silva, Aline Gomes; Duarte, Marcio de Souza

    2012-10-01

    The performance of female calves in creep feeding under different strategies of supplementation and milk production, intake, and digestibility of grazing Nellore and crossbred cows (Nellore × Holstein) during the dry-rainy transition season were assessed. Forty-four female beef suckling calves, with initial age between 90 and 150 days and average initial body weight of 117.7 ± 4.3 kg, and their respective dams (24 Nellore and 20 crossbred) with average initial body weight of 417.5 ± 8.3 kg, were used. The experimental treatments consisted of: control group--mineral mixture only; strategy 1--supplementation from 112 days prior to weaning (0.375 kg/animal/day); strategy 2--supplementation from 112 days prior to weaning, in increasing amounts of 0.15, 0.30, 0.45, and 0.60 kg/animal/day through the four experimental periods, respectively; and strategy 3--supplementation from 56 days prior to weaning (0.750 kg/animal/day). Calves from strategy 1 had greater (P < 0.05) average daily gain (0.672 kg/day) than control animals (0.582 kg/day) and greater (P < 0.05) efficiency of supplement use than the other groups. Crossbred cows produced more milk than Nellore cows (P < 0.05). Crossbred cows presented greater (P < 0.05) dry matter intake (DMI) than Nellore cows. However, no differences were found (P > 0.05) for nutrient digestibility among genetic types. It can be concluded that strategies of supplementation that present an equitable distribution of supplement provides greater weight gain in suckling female beef calves. Crossbred cows produce more milk and present greater DMI than Nellore cows. There are no differences in the nutrient digestibility between Nellore and Nellore × Holstein crossbred cows.

  11. Recycling manure as cow bedding: Potential benefits and risks for UK dairy farms.

    PubMed

    Leach, Katharine A; Archer, Simon C; Breen, James E; Green, Martin J; Ohnstad, Ian C; Tuer, Sally; Bradley, Andrew J

    2015-11-01

    Material obtained from physical separation of slurry (recycled manure solids; RMS) has been used as bedding for dairy cows in dry climates in the US since the 1970s. Relatively recently, the technical ability to produce drier material has led to adoption of the practice in Europe under different climatic conditions. This review collates the evidence available on benefits and risks of using RMS bedding on dairy farms, with a European context in mind. There was less evidence than expected for anecdotal claims of improved cow comfort. Among animal health risks, only udder health has received appreciable attention. There are some circumstantial reports of difficulties of maintaining udder health on RMS, but no large scale or long term studies of effects on clinical and subclinical mastitis have been published. Existing reports do not give consistent evidence of inevitable problems, nor is there any information on clinical implications for other diseases. The scientific basis for guidelines on management of RMS bedding is limited. Decisions on optimum treatment and management may present conflicts between controls of different groups of organisms. There is no information on the influence that such 'recycling' of manure may have on pathogen virulence. The possibility of influence on genetic material conveying antimicrobial resistance is a concern, but little understood. Should UK or other non-US farmers adopt RMS, they are advised to do so with caution, apply the required strategies for risk mitigation, maintain strict hygiene of bed management and milking practices and closely monitor the effects on herd health. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Transport of pollutants from cow feedlots in eastern Colorado into Rocky Mountain alpine lakes

    NASA Astrophysics Data System (ADS)

    Pina, A.; Denning, S.; Schumacher, R. S.

    2012-12-01

    Concentrated Animal Feeding Operations (CAFOs), also called factory farms, are known for raising tens of millions head of livestock including cows (beef and dairy), swine, and poultry. With as many as 250 head of cattle per acre, a United States Department of Agriculture's (USDA) Agricultural Research Service (ARS) report showed beef cattle from CAFOs in the United States produce as much as 24.1 million tons of manure annually. Gases released from cow manure include methane (CH4), nitrous oxide (N2O), hydrogen sulfide (H2S), and ammonia (NH3). During boreal summers Colorado experiences fewer synoptic weather systems, allowing the diurnal cycle to exert greater control of meteorological events along the mountain-plains interface. Anabatic, or upslope winds induced by the diurnal cycle, contribute largely to the transport of gases and particulates from feedlots in eastern Colorado into the Rocky Mountains, presenting a potential harm to natural alpine ecosystems. This study focuses on locating the source of transport of gases from feedlots along the eastern Front Range of Colorado into alpine lakes of the Rocky Mountains. Source regions are approximated using backward time simulation of a Lagrangian Transport model.

  13. Quantification of volatile fatty acids from cattle manure via non-catalytic esterification for odour indication.

    PubMed

    Lee, Sang-Ryong; Lee, Jechan; Cho, Seong-Heon; Kim, Jieun; Oh, Jeong-Ik; Tsang, Daniel C W; Jeong, Kwang-Hwa; Kwon, Eilhann E

    2018-01-01

    This report proposes a new approach to evaluate the odour nuisance of cattle manure samples from three different cattle breeds (i.e., native cattle, beef cattle, and milk cow) by means of quantification and speciation of volatile fatty acids (VFAs). To this end, non-catalytic esterification thermally induced in the presence of a porous material (silica) was undertaken, and the optimal operational parameters such as the derivatizing temperature (330°C) for the maximum yield (≥99±0.4%) of volatile fatty acid methyl esters (VFAMEs) were established. Among the VFA species in cattle manure based on quantification of VFAs, the major species were acetic, butyric and valeric acid. Considering the odour threshold of each VFA, our experimental results suggested that the major contributors to odour nuisance were C 4-5 VFA species (i.e., butyric and valeric acid). Hydrothermal treatment was performed at 150°C for 0-40min to correlate the formation of VFAs with different types of cattle feed formulations. Our experimental data demonstrated that the formation of total VFAs is linearly proportional to the hydrothermal treatment duration and the total content of VFAs in native cattle, beef cattle, and milk cow manure samples reached up to ~1000, ~3200, and ~2800ppm, respectively. Thus, this study demonstrated that the degree of VFA formation is highly dependent on cattle feed formulations, which rely significantly on the protein content. Furthermore, the hydrothermal treatment provides a favourable condition for generating more VFAs. In this context, producing cattle manure into refused derived fuel (RDF) via a hydrothermal treatment is not a viable option to control odour. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Short communication: Partial replacement of ground corn with algae meal in a dairy cow diet: Milk yield and composition, nutrient digestibility, and metabolic profile.

    PubMed

    da Silva, G G; Ferreira de Jesus, E; Takiya, C S; Del Valle, T A; da Silva, T H; Vendramini, T H A; Yu, Esther J; Rennó, F P

    2016-11-01

    This study was undertaken to evaluate the effects of partially replacing dietary ground corn with a microalgae meal from Prototheca moriformis (composed of deoiled microalgae and soyhulls) on milk yield and composition, nutrient intake, total-tract apparent digestibility, and blood profile of lactating dairy cows. Twenty multiparous Holstein cows (57.7±49.4d in milk, 25.3±5.3 of milk yield, and 590±71kg of live weight at the start of experiment, mean ± standard deviation) were used in a cross-over design experiment, with 21-d periods. Diets were no microalgae meal (CON) or 91.8g/kg of microalgae meal partially replacing dietary ground corn (ALG). Cows showed similar milk yield and composition. The 3.5% fat-corrected milk production was 30.2±1.34kg/d for CON and 31.1±1.42kg/d for ALG. Despite cows having similar dry matter intake, ALG increased neutral detergent fiber and ether extract intake. In addition, cows fed ALG exhibited higher ether extract digestibility. No differences were detected in glucose, urea, amino-aspartate transferase, and gamma-glutamyl transferase blood concentrations. Feeding ALG increased the total cholesterol and high-density lipoprotein in blood compared with CON. The microalgae meal may partially replace ground corn in diets of lactating cows without impairing the animal's performance. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. Effects of animal activity and air temperature on methane and ammonia emissions from a naturally ventilated building for dairy cows

    NASA Astrophysics Data System (ADS)

    Ngwabie, N. M.; Jeppsson, K.-H.; Gustafsson, G.; Nimmermark, S.

    2011-12-01

    Knowledge of how different factors affect gas emissions from animal buildings can be useful for emission prediction purposes and for the improvement of emission abatement techniques. In this study, the effects of dairy cow activity and indoor air temperature on gas emissions were examined. The concentrations of CH 4, NH 3, CO 2 and N 2O inside and outside a dairy cow building were measured continuously between February and May together with animal activity and air temperature. The building was naturally ventilated and had a solid concrete floor which sloped towards a central urine gutter. Manure was scraped from the floor once every hour in the daytime and once every second hour at night into a partly covered indoor pit which was emptied daily at 6 a.m. and at 5 p.m. Gas emissions were calculated from the measured gas concentrations and ventilation rates estimated by the CO 2 balance method. The animal activity and emission rates of CH 4 and NH 3 showed significant diurnal variations with two peaks which were probably related to the feeding routine. On an average day, CH 4 emissions ranged from 7 to 15 g LU -1 h -1 and NH 3 emissions ranged from 0.4 to 1.5 g LU -1 h -1 (1 LU = 500 kg animal weight). Mean emissions of CH 4 and NH 3 were 10.8 g LU -1 h -1 and 0.81 g LU -1 h -1, respectively. The NH 3 emissions were comparable to emissions from tied stall buildings and represented a 4% loss in manure nitrogen. At moderate levels, temperature seems to affect the behaviour of dairy cows and in this study where the daily indoor air temperature ranged from about 5 up to about 20 °C, the daily activity of the cows decreased with increasing indoor air temperature ( r = -0.78). Results suggest that enteric fermentation is the main source of CH 4 emissions from systems of the type in this study, while NH 3 is mainly emitted from the manure. Daily CH 4 emissions increased significantly with the activity of the cows ( r = 0.61) while daily NH 3 emissions increased significantly with the indoor air temperatures ( r = 0.66). Daily CH 4 emissions were negatively correlated to the indoor air temperature ( r = -0.84). This suggests that increased daily indoor air temperatures due to seasonal changes may bring about decreased animal activity which may decrease the release of CH 4 from dairy cows. Finally, changes in daily NH 3 emissions were influenced more by the indoor air temperature than by the activity of the cows.

  16. Effect of temperature on continuous dry fermentation of swine manure.

    PubMed

    Deng, Liangwei; Chen, Chuang; Zheng, Dan; Yang, Hongnan; Liu, Yi; Chen, Ziai

    2016-07-15

    Laboratory-scale experiments were performed on the dry digestion of solid swine manure in a semi-continuous mode using 4.5 L down plug-flow anaerobic reactors with an organic loading rate of 3.46 kg volatile solids (VS) m(-3) d(-1) to evaluate the effects of temperature (15, 25 and 35 °C). At 15 °C, biogas production was the poorest due to organic overload and acidification, with a methane yield of 0.036 L CH4 g(-1) VS added and a volumetric methane production rate of 0.125 L CH4 L(-1) d(-1). The methane yield and volumetric methane production rate at 25 °C (0.226 L CH4 g(-1) VS added and 0.783 L CH4 L(-1) d(-1), respectively) were 6.24 times higher than those at 15 °C. However, the methane yield (0.237 L CH4 g(-1) VS added) and the volumetric methane production rate (0.821 L CH4 L(-1) d(-1)) at 35 °C were only 4.86% higher than those at 25 °C, which indicated similar results were obtained at 25 °C and 35 °C. The lower biogas production at 35 °C in dry digestion compared with that in wet digestion could be attributed to ammonia inhibition. For a single pig farm, digestion of solid manure is accomplished in small-scale domestic or small-farm bioreactors, for which operating temperatures of 35 °C are sometimes difficult to achieve. Considering biogas production, ammonia inhibition and net energy recovery, an optimum temperature for dry digestion of solid swine manure is 25 °C. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Comparison of VFA titration procedures used for monitoring the biogas process.

    PubMed

    Lützhøft, Hans-Christian Holten; Boe, Kanokwan; Fang, Cheng; Angelidaki, Irini

    2014-05-01

    Titrimetric determination of volatile fatty acids (VFAs) contents is a common way to monitor a biogas process. However, digested manure from co-digestion biogas plants has a complex matrix with high concentrations of interfering components, resulting in varying results when using different titration procedures. Currently, no standardized procedure is used and it is therefore difficult to compare the performance among plants. The aim of this study was to evaluate four titration procedures (for determination of VFA-levels of digested manure samples) and compare results with gas chromatographic (GC) analysis. Two of the procedures are commonly used in biogas plants and two are discussed in literature. The results showed that the optimal titration results were obtained when 40 mL of four times diluted digested manure was gently stirred (200 rpm). Results from samples with different VFA concentrations (1-11 g/L) showed linear correlation between titration results and GC measurements. However, determination of VFA by titration generally overestimated the VFA contents compared with GC measurements when samples had low VFA concentrations, i.e. around 1 g/L. The accuracy of titration increased when samples had high VFA concentrations, i.e. around 5 g/L. It was further found that the studied ionisable interfering components had lowest effect on titration when the sample had high VFA concentration. In contrast, bicarbonate, phosphate and lactate had significant effect on titration accuracy at low VFA concentration. An extended 5-point titration procedure with pH correction was best to handle interferences from bicarbonate, phosphate and lactate at low VFA concentrations. Contrary, the simplest titration procedure with only two pH end-points showed the highest accuracy among all titration procedures at high VFA concentrations. All in all, if the composition of the digested manure sample is not known, the procedure with only two pH end-points should be the procedure of choice, due to its simplicity and accuracy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. HIGH FLUX MEMBRANES TO UPGRADE BIOGAS FROM ANAEROBIC DIGESTERS - PHASE I

    EPA Science Inventory

    Despite the general decrease in total methane emissions since 1990, methane emissions from manure management increased by 33% from 1.5 Tg in 1990 to 2.0 Tg in 2006. The majority of this increase was due to general changes in methods of manure management. It is reasonable to ...

  19. Anaerobic digestion of pig and dairy manure under photo-dark fermentation condition.

    PubMed

    Yin, Dongxue; Liu, Wei; Zhai, Ningning; Yang, Gaihe; Wang, Xiaojiao; Feng, Yongzhong; Ren, Guangxin

    2014-08-01

    Anaerobic digestion (AD) with livestock manure is a promising way for biogas production. This work presents the influence of photo-dark fermentation on biogas production of pig manure (PM) and dairy manure (DM). All sets were conducted with temperature 35 ± 2 °C and total solid concentrations 8%: PM₁ and DM₁ in transparent reactor under sunlight for photo-dark fermentation, and PM₂ and DM₂ in non-transparent reactor for dark fermentation. DM₂ had the best cumulative biogas production (CBP) of 15,447.5 mL, followed by PM₁ (15,020 mL) with stable pH and low total ammonium nitrogen (TAN) concentration (1384.99 mg/L), and DM₁ and PM₂. The CBP of DM₂ was 5.77 times as much as PM₂. The relationship between CBP and four factors including volatile fatty acid (VFA), TAN, total alkalinity and pH was analyzed. pH gained the maximum determination coefficient with the CBP among all sets and total alkalinity showed negative correlation with CBP of PM₁ and DM₁. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Grain source and marginal changes in forage particle size modulate digestive processes and nutrient intake of dairy cows.

    PubMed

    Nasrollahi, S M; Khorvash, M; Ghorbani, G R; Teimouri-Yansari, A; Zali, A; Zebeli, Q

    2012-08-01

    This study investigated the effects of, and interactions between, dietary grain source and marginal changes in alfalfa hay (AH) particle size (PS) on digestive processes of dairy cows. A total of eight Holstein dairy cows (175 days in milk) were allocated in a replicated 4 × 4 Latin square design with four 21-day periods. The experiment was a 2 × 2 factorial arrangement with two levels of theoretical PS of AH (fine = 15 mm or long = 30 mm) each combined with two different sources of cereal grains (barley grain alone or barley plus corn grain in a 50 : 50 ratio). Results showed that cows consuming diets supplemented with corn had greater dry matter and nutrient intakes (P < 0.01), independent of forage PS. In addition, the apparent digestibility of fiber fractions was greater for diets supplemented with corn (P = 0.01). The feeding of barley grain-based diets was associated with greater apparent digestibility of non-fiber carbohydrates, and this variable was even greater when long AH was fed (P = 0.04). Moreover, the feeding of long AH resulted in longer time spent eating (P = 0.03) and higher pH (P < 0.01), as well as a tendency for higher acetate-to-propionate ratio in the rumen fluid (P = 0.06) at 3 h post feeding. In conclusion, the results indicated that the marginal increase of PS of AH may prolong eating time and improve rumen fermentation, particularly in diets based on barley grain. Partial substitution of barley grain by corn can improve feed intake and fiber digestibility in mid-lactation dairy cows.

  1. Histidine deficiency has a negative effect on lactational performance of dairy cows.

    PubMed

    Giallongo, F; Harper, M T; Oh, J; Parys, C; Shinzato, I; Hristov, A N

    2017-04-01

    A 10-wk randomized complete block design experiment with 24 Holstein cows was conducted to investigate the long-term effects of feeding a His-deficient diet on lactational performance of dairy cows. Cows were blocked by days in milk, milk yield, and parity, and randomly assigned to 1 of the following 2 treatments: (1) His-adequate diet [HAD; providing +166 g/d over metabolizable protein (MP) requirements, according to the National Research Council (2001) and digestible His (dHis) supply of 68 g/d, or 2.5% of MP requirements] and (2) His-deficient diet (HDD; +37 g/d over MP requirements and dHis supply of 49 g/d, or 1.9% of MP requirements). Both HAD and HDD were supplemented with rumen-protected (RP) Met and Lys supplying digestible Met and digestible Lys at 2.4 and 2.4% and 7.2 and 7.1% of MP requirements, respectively. At the end of the 10-wk experiment, HDD was supplemented with RPHis (HDD+RPHis; total dHis supply of 61 g/d, or 2.4% of MP requirements) for an additional 9 d. Dry matter intake (DMI; 25.4 and 27.1 kg/d, standard error of the mean = 0.41), yields of milk (37.6 and 40.5 kg/d, standard error of the mean = 0.62), protein and lactose, energy-corrected milk, and milk and plasma urea-N were decreased by HDD compared with HAD. Feed and energy-corrected milk feed efficiencies, milk fat, protein and lactose concentrations, body weight, and body condition score of the cows were not affected by treatment. Apparent total-tract digestibility of dry and organic matter, crude protein, and neutral detergent fiber, and excretion of urinary N and urea-N were decreased by HDD compared with HAD. Concentration of plasma leptin tended to be decreased for HDD compared with HAD. Plasma concentrations of EAA (His, Leu, Lys, Val) and carnosine decreased and total EAA tended to be decreased in cows fed HDD compared with HAD. Muscle concentrations of free His, Leu, and Val decreased and Gly and β-alanine tended to be increased by HDD compared with HAD. Cows fed HDD had a lower blood hemoglobin concentration than cows fed HAD. At the end of the 10-wk study, the 9-d supplementation of HDD with RPHis (i.e., HDD+RPHis) increased DMI and plasma His, and tended to increase energy-corrected milk yield and plasma carnosine, compared with HDD. In conclusion, feeding a diet deficient in dHis supplying adequate MP, digestible Met, and digestible Lys affected negatively lactational performance of dairy cows. These results confirm our previous findings that low dietary His supply can impair DMI, yields of milk and milk protein, and blood hemoglobin in dairy cows. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Application of Bio-digestion for Capsule Gelatin-- From the Pharmaceutical Wastes to the Manure

    NASA Astrophysics Data System (ADS)

    Pan, C.; Huang, S.; Chang, Y.; Wen, J.

    2013-12-01

    The purpose of this study was to bio-digest the capsule gelatin from the waste of pharmaceutical processes such as cutting and stamping for capsule shells producing. We screened soil bacterial flora for capsule gelatin biolysis, and found the most competent one named Yuntech-7. A 15% (w/w) of capsule gelatin could fully digested by Yuntech-7 for 3 days growth with an N-limited medium in a 37°C incubator. In order to recycle and reuse the gelatin waste, the different percentages of capsule gelatin were co-composted with the vegetable residues to produce manure in an anaerobic fermentation by an extra Yuntech-7 inoculation. After 14 days incubation, we collected the filtrate to examine the contents of N, P, and K. The data shows that the P and K keep the same value by roughly between the blank and the control sets, but the total N values were approximately a 5-fold increase in 20% and a 10-fold increase in 40% of capsule gelatin integrated. We suggested that the capsule gelatin was majorly decomposed by Yuntech-7, because the total N value was no observable change in the capsule gelatin and vegetable residues co-compost with a Yuntech-7-free condition. We also performed some field tests using the capsule gelatin generated liquid manure, and the preliminary test shows the plants got great benefits on culture size and in environmental resistance. In conclusion, the process in bio-digestion of waste capsule gelatin by soil bacteria, Yuntech-7, was produced a valuable manure not only aliment the plants but also complement the soil bacterial populations.

  3. Co-digestion of cattle manure with food waste and sludge to increase biogas production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maranon, E., E-mail: emara@uniovi.es; Castrillon, L.; Quiroga, G.

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Small increase in methane production was observed applying sonication pretreatment. Black-Right-Pointing-Pointer Biogas productions between 720 and 1100 mL/Lreactor day were achieved. Black-Right-Pointing-Pointer Volatile solids removal efficiencies ranged between 53% and 60%. Black-Right-Pointing-Pointer Lower methane yields were obtained when operating under thermophilic conditions. Black-Right-Pointing-Pointer Optimum OLR in lab-scale CSTR was 1.2-1.3 g VS/L day (HRT: 20 days). - Abstract: Anaerobic co-digestion strategies are needed to enhance biogas production, especially when treating certain residues such as cattle/pig manure. This paper presents a study of co-digestion of cattle manure with food waste and sewage sludge. With the aim of maximising biogasmore » yields, a series of experiments were carried out under mesophilic and thermophilic conditions using continuously stirred-tank reactors, operating at different hydraulic residence times. Pretreatment with ultrasound was also applied to compare the results with those obtained with non-pretreated waste. Specific methane production decreases when increasing the OLR and decreasing HRT. The maximum value obtained was 603 LCH{sub 4}/kg VS{sub feed} for the co-digestion of a mixture of 70% manure, 20% food waste and 10% sewage sludge (total solid concentration around 4%) at 36 Degree-Sign C, for an OLR of 1.2 g VS/L day. Increasing the OLR to 1.5 g VS/L day led to a decrease of around 20-28% in SMP. Lower methane yields were obtained when operating at 55 Degree-Sign C. The increase in methane production when applying ultrasound to the feed mixtures does not compensate for the energy spent in this pretreatment.« less

  4. Phytostabilization potential of two ecotypes of Vetiveria zizanioides in cadmium-contaminated soils: greenhouse and field experiments.

    PubMed

    Phusantisampan, Theerawut; Meeinkuirt, Weeradej; Saengwilai, Patompong; Pichtel, John; Chaiyarat, Rattanawat

    2016-10-01

    Soil contamination by cadmium (Cd) poses a serious environmental and public health concern. Phytoremediation, i.e., the use of plants to remove contaminants from soil, has been proposed for treatment of Cd-contaminated ecosystems. In this study, we demonstrated the potential of Vetiveria zizanioides, commonly known as vetiver, to serve as an effective phytoremediation agent. Two ecotypes, i.e., India and Sri Lanka, were grown in greenhouse pots and in the field. Soils were amended with cow manure, pig manure, bat manure, and an organic fertilizer. Among all amendments, pig manure performed best in both greenhouse and field studies in terms of increasing total V. zizanioides biomass production in both ecotypes. In both greenhouse and in the field, tissue of the Sri Lanka ecotype had higher Cd concentrations than did the India ecotype. In the greenhouse, the presence of Cd did not affect total biomass production or root dry weight. The Sri Lanka ecotype had 2.7 times greater adventitious root numbers and 3.6 times greater Cd accumulation in roots than did the India ecotype. In the field study, the Sri Lanka ecotype offers potential as an excluder species, as it accumulated Cd primarily in roots, with translocation factor values <1 and a bioconcentration coefficient for roots >1 for all experiments except for the pig manure amendment. In addition, the highest Cd concentration in the Sri Lanka ecotype root (71.3 mg kg(-1)) was consistent with highest Cd uptake (10.4 mg plant(-1)) in the cow manure treatment. The India ecotype contained lower root Cd concentrations, and Cd accumulation was slightly higher in shoots compared to roots, with translocation factor (TF) values >1. The India ecotype was therefore not considered as an excluder in the Cd-contaminated soil. With the use of excluder species combined with application of organic amendments, soil contamination by Cd may be treated by alternative remediation methods such as phytostabilization.

  5. Global Warming Potential from early phase decomposition of soil organic matter amendments

    NASA Astrophysics Data System (ADS)

    Mayer, A.; Silver, W. L.

    2015-12-01

    Organic matter amendments to soil are widely used as a method of enhancing nutrient availability for crops or grassland. Amendments such as composted manure or greenwaste also have the co-benefits of potentially increasing soil carbon (C) stocks (DeLonge et al., 2013) and diverting organic waste from landfills or manure lagoons. However, application of organic matter amendments can also stimulate emissions of greenhouse gases (GHGs). In this study we determined how the chemical quality of organic matter amendments affected soil C and N content and GHG emissions during early stage decomposition. California grassland soils were amended with six different amendments of varying C and N content including three composts and three feedstocks (goat and horse bedding and cattle manure). Amendments and soils were incubated in the laboratory for 7 weeks; GHG fluxes were measured weekly. The three feedstocks emitted significantly more GHGs than the composted materials. With the exception of cow manure, N content of the amendment was linearly correlated with global warming potential emitted (R2= 0.66, P <0.0001). C:N ratios were not a significant predictor of GHG emissions. Cow manure stimulated a net loss of C (or C equivalents) in the mineral soil, as expected. However, greenwaste compost also surprisingly resulted in net C losses, while goat bedding, horse bedding, and the other compost were either C neutral or a slight net C sink at the end of the incubation. Ongoing analyses are examining the fate of the C incorporated from the amendment to the soil as occluded or free light fraction, as well as N mineralization rates. Our data suggest that N content of organic matter amendments is a good predictor of initial GHG emissions. The study also indicates that composting greenwaste with N-rich bedding and manure can result in lower GHG emissions and C sequestration compared to the individual uncomposted components.

  6. SUSTAINABLE WASTEWATER TREATMENT: NUTRIENT UPCYCLING OF AMMONIA INTO FERTILIZER

    EPA Science Inventory

    We intend to identify appropriate locations for treatment and feasibility of recovery for each of three types of wastewater treatment plants: municipal sewage treatment, manure digester, and cheese processing waste digester. We anticipate that a modular design for the elect...

  7. High rate manure supernatant digestion.

    PubMed

    Bergland, Wenche Hennie; Dinamarca, Carlos; Toradzadegan, Mehrdad; Nordgård, Anna Synnøve Røstad; Bakke, Ingrid; Bakke, Rune

    2015-06-01

    The study shows that high rate anaerobic digestion may be an efficient way to obtain sustainable energy recovery from slurries such as pig manure. High process capacity and robustness to 5% daily load increases are observed in the 370 mL sludge bed AD reactors investigated. The supernatant from partly settled, stored pig manure was fed at rates giving hydraulic retention times, HRT, gradually decreased from 42 to 1.7 h imposing a maximum organic load of 400 g COD L(-1) reactor d(-1). The reactors reached a biogas production rate of 97 g COD L(-1) reactor d(-1) at the highest load at which process stress signs were apparent. The yield was ∼0.47 g COD methane g(-1) CODT feed at HRT above 17 h, gradually decreasing to 0.24 at the lowest HRT (0.166 NL CH4 g(-1) CODT feed decreasing to 0.086). Reactor pH was innately stable at 8.0 ± 0.1 at all HRTs with alkalinity between 9 and 11 g L(-1). The first stress symptom occurred as reduced methane yield when HRT dropped below 17 h. When HRT dropped below 4 h the propionate removal stopped. The yield from acetate removal was constant at 0.17 g COD acetate removed per g CODT substrate. This robust methanogenesis implies that pig manure supernatant, and probably other similar slurries, can be digested for methane production in compact and effective sludge bed reactors. Denaturing gradient gel electrophoresis (DGGE) analysis indicated a relatively fast adaptation of the microbial communities to manure and implies that non-adapted granular sludge can be used to start such sludge bed bioreactors. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Effect of extended underfeeding on digestion and nitrogen balance in nonlactating cows.

    PubMed

    Grimaud, P; Doreau, M

    1995-01-01

    The effect of extended underfeeding on digestion was studied in dairy cows. Four nonlactating cows (BW = 747 kg) were first fed a forage-based diet at a level above energy maintenance requirements for 7 wk (9.4 kg DM/d) then were restricted at a low level of intake of the same diet for 5 mo (5.2 kg DM/d), then refed at the first level. Digestion measurements were made before and after the underfeeding period, and at 1, 5, 9, and 19 wk of underfeeding. Organic matter digestibility decreased with underfeeding then increased (62.7, 56.2, and 61.5% before, 1 wk after, and 19 wk after underfeeding, respectively). Differences in ruminal apparent OM digestion were nonsignificant (P > .05). This lack of difference was related to the absence of variation of ruminal particle passage rate and DM degradability measured in situ. However, the decrease in feed intake decreased ruminal (P < .01) and intestinal (P < .05) liquid dilution rates, ruminal DM pool size and DM content (P < .01), and protozoa concentration (P < .01). The decrease (P < .01) in N retention with underfeeding was followed by an increase (P < .05) during the underfeeding period, due to a decrease in fecal and urine N losses. This experiment has shown an unusual and temporary response of digestion to underfeeding. Knowledge of adaptation of digestion to low intakes needs to be improved.

  9. A novel alternate feeding mode for semi-continuous anaerobic co-digestion of food waste with chicken manure.

    PubMed

    Wang, Ming; Sun, Xianli; Li, Pengfei; Yin, Lili; Liu, Dan; Zhang, Yingwei; Li, Wenzhe; Zheng, Guoxiang

    2014-07-01

    A novel alternate feeding mode was introduced to study the possibilities of improving methane yield from anaerobic co-digestion of food waste (FW) with chicken manure (CM). Two kinds of feeding sequence (a day FW and next day CM (FM/CM), two days FM and the third day CM (FW/FM/CM)) were investigated in semi-continuous anaerobic digestion and lasted 225 days, and the mono-digestions of FW and CM were used as control group, respectively. The feeding sequence of FW/CM and mono-digestion of CM were observed to fail to produce gas at hydraulic retention time (HRT) of 70 days due to the ammonia inhibition, however, the mode of FW/FM/CM was proved to successfully run at HRT of 35 days with a higher OLR of 2.50 kg L(-1)d(-1) and obtain a higher methane production rate of 507.58 ml g(-1) VS and volumetric biogas production rate of 2.1 L L(-1)d(-1). Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Amylase addition increases starch ruminal digestion in first-lactation cows fed high and low starch diets.

    PubMed

    Nozière, P; Steinberg, W; Silberberg, M; Morgavi, D P

    2014-01-01

    The objective of this study was to evaluate the effect of an exogenous amylase preparation on digestion of low- and high-starch diets in dairy cattle. Rumen and total-tract nutrient digestibility were measured in a 4×4 Latin square design with 28-d periods using 4 first-lactation cows cannulated at the rumen and duodenum. Corn silage-based diets had 20 or 30% starch, attained by changing the composition of concentrate, with or without addition of an exogenous amylase preparation. Effects of the enzyme additive were observed on ruminal digestibility but not at the total-tract level. Ruminal digestibility of starch increased from 75% in control to 81% with amylase supplementation. This difference in ruminal starch digestion was compensated postruminally, so that the total-tract digestibility of starch was almost complete and did not differ between treatments. The amylase supplement also increased the true ruminal digestibility of organic matter but did not affect microbial N flow to the duodenum. Amylase supplement reduced the proportion of acetate and butyrate and increased that of propionate, particularly in the high-starch diet, where it tended to increase the concentration of total volatile fatty acids in the rumen. Other effects were a higher amylase activity in the solid-associated microbial community and a tendency for lower numbers of protozoa. In contrast, we observed no changes in intake, production, dry matter and fiber (neutral detergent fiber and acid detergent fiber) digestibility, or ruminal digestion, and no or small changes on selected fibrolytic and amylolytic bacteria and on the microbial community in general. We conclude that the exogenous amylase improved starch digestion in the rumen in first-lactation cows with moderate intake and production levels. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Effects of Saccharomyces cerevisiae fermentation product on ruminal starch digestion are dependent upon dry matter intake for lactating cows.

    PubMed

    Allen, M S; Ying, Y

    2012-11-01

    This experiment was conducted to evaluate ruminal digestion responses to Saccharomyces cerevisiae fermentation product (SCFP) supplementation and to determine if responses are influenced by voluntary feed intake. Fifteen ruminally and duodenally cannulated Holstein cows with a wide range in preliminary dry matter intake (pDMI; 20.1 to 31.0 kg/d) measured during a 14-d preliminary period were used in a crossover design experiment. Treatments were SCFP and control (a mix of dry ground corn and soybean meal), top-dressed at the rate of 56 g/d per head. The base diet contained 28% NDF, 30% starch, and 16.5% CP and included corn silage, alfalfa silage, high-moisture corn, protein supplement, and a mineral and vitamin supplement. Treatment periods were 28 d, with the final 8d used for sample and data collection. Voluntary dry matter intake was determined during the last 4d of the preliminary period. Ruminal digestion kinetics were determined using the pool-and-flux method. Main effects of SCFP treatment and their interaction with pDMI were tested by ANOVA. An interaction was detected between SCFP treatment and pDMI for ruminal digestion rate of starch; SCFP increased the rate of starch digestion compared with the control for cows with pDMI below 26 kg/d and decreased it for cows with higher pDMI. This resulted in an interaction between treatment and pDMI for turnover rate of starch in the rumen and true and apparent ruminal starch digestibility because passage rate of starch from the rumen was not affected by treatment (mean=24.3%/h). Ruminal pH (mean=6.0), dry matter intake, milk yield and component percentages were not affected by treatment or its interaction with pDMI. Supplementation of SCFP reduced the rate of ruminal starch digestion for cows with higher feed intake, which could help stabilize the ruminal environment when large amounts of starch are consumed to support higher milk production. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Effects of chlortetracycline, Cu and their combination on the performance and microbial community dynamics in swine manure anaerobic digestion.

    PubMed

    Wang, Rui; Zhang, Junya; Liu, Jibao; Yu, Dawei; Zhong, Hui; Wang, Yawei; Chen, Meixue; Tong, Juan; Wei, Yuansong

    2018-05-01

    Swine manure was typical for the combined pollution of heavy metals and antibiotics. The effects of widely used veterinary antibiotic chlortetracycline (CTC), Cu and their combination on swine manure anaerobic digestion performance and microbial community have never been investigated. Thus, four 2L anaerobic digestion reactors were established including reactor A (control), B (CTC spiked by 0.5g/kg dry weight, dw), C (Cu spiked by 5g/kg dw) and D (combination of CTC, 0.5g/kg dw, and Cu, 5g/kg dw), and dynamics of bacterial and archaeal community structure was investigated using high throughput sequencing method. Results showed that addition of CTC and Cu separately could increase the total biogas production by 21.6% and 15.8%, respectively, while combination of CTC and Cu severely inhibited anaerobic digestion (by 30.3%). Furthermore, corresponding to different stages and reactors, four kinds of microbes including bacteria and archaea were described in detail, and the effects of CTC, Cu and their combination mainly occurred at hydrolysis and acidification phases. The addition of Cu alone changed the dynamics of archaeal community significantly. It was genus Methanomassiliicoccus that dominated at the active methane production for A, B and D, while it was genus Methanobrevibacter and Methanoculleus for C. Copyright © 2017. Published by Elsevier B.V.

  13. Relationships between sulfachloropyridazine sodium, zinc, and sulfonamide resistance genes during the anaerobic digestion of swine manure.

    PubMed

    Zhang, Ranran; Gu, Jie; Wang, Xiaojuan; Qian, Xun; Duan, Manli; Sun, Wei; Zhang, Yajun; Li, Haichao; Li, Yang

    2017-02-01

    In this study, swine manure containing sulfachloropyridazine sodium (SCPS) and zinc was subjected to mesophilic (37°C) anaerobic digestion (AD). The absolute abundances (AAs) of antibiotic resistance genes (ARGs) were evaluated, as well as intI1 and intI2, and the degradation of SCPS according to variation in the amount of bio-available zinc (bio-Zn). In digester that only contained SCPS, the concentrations of SCPS were lower than that digesters both contain SCPS and Zn. Compared with the control digester, the addition of SCPS increased the AAs of sul1, sul3, drfA1, and drfA7 by 1.3-13.1 times. However, compared with the digester with SCPS but no added Zn, the AAs of sul3, drfA1, and drfA7 were decreased by 21.4-70.3% in the presence of SCPS and Zn, whereas sul1 and sul2 increased 1.3-10.7 times. There were significant positive correlations (P<0.05) between the concentrations of SCPS with several ARGs and bio-Zn. Copyright © 2016. Published by Elsevier Ltd.

  14. Anaerobic co-digestion of chicken manure and corn stover in batch and continuously stirred tank reactor (CSTR).

    PubMed

    Li, Yeqing; Zhang, Ruihong; He, Yanfeng; Zhang, Chenyu; Liu, Xiaoying; Chen, Chang; Liu, Guangqing

    2014-03-01

    Anaerobic co-digestion of chicken manure and corn stover in batch and CSTR were investigated. The batch co-digestion tests were performed at an initial volatile solid (VS) concentration of 3gVS/L, carbon-to-nitrogen (C/N) ratio of 20, and retention time of 30d. The methane yield was determined to be 281±12mL/gVSadded. Continuous reactor was carried out with feeding concentration of 12% total solids and C/N ratio of 20 at organic loading rates (OLRs) of 1-4gVS/L/d. Results showed that at OLR of 4gVS/L/d, stable and preferable methane yield of 223±7mL/gVSadded was found, which was equal to energy yield (EY) of 8.0±0.3MJ/kgVSadded. Post-digestion of digestate gave extra EY of 1.5-2.6MJ/kgVSadded. Pyrolysis of digestate provided additional EY of 6.1MJ/kgVSadded. Pyrolysis can be a promising technique to reduce biogas residues and to produce valuable gas products simultaneously. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Measurement of the postruminal digestibility of crude protein by the bag technique in cows.

    PubMed

    Voigt, J; Piatkowski, B; Engelmann, H; Rudolph, E

    1985-08-01

    A new method has been developed which permits the crude protein digestibility of feedstuffs in the intestine of cattle to be measured with little effort in terms of samples and experimental work. It consists of welding 0.4 ... 0.8 g of the feedstuff (particle size: 125 ... 1000 micron) into polyamide fabric bags (25 X 40 mm) which are inserted via cannulae into the digestive tracts of fistulated cows from the abomasum/duodenum to the ileum or from the abomasum/duodenum to the faeces. The mean retention time of the bags in the animal was 8.5 +/- 2.7 h from the abomasum to the end of the ileum and (13.3 +/- 1.9 h from the abomasum to the faeces. Up to 15 bags per day and cow may be used. The random error of the method is 1.3% (absolute) when the measurements are performed on two animals using two bags each. Intestinal digestibilities of over 90% were measured for concentrate proteins (except linseed meal) and of 72 ... 95% for forage proteins. Post-ruminal digestion was virtually finished at the end of the small intestine.

  16. Brazilian beef cattle feedlot manure management: a country survey.

    PubMed

    Costa, C; Goulart, R S; Albertini, T Z; Feigl, B J; Cerri, C E P; Vasconcelos, J T; Bernoux, M; Lanna, D P D; Cerri, C C

    2013-04-01

    No information regarding the management of manure from beef cattle feedlots is available for Brazil. To fill this knowledge gap, a survey of 73 feedlots was conducted in 7 Brazilian states. In this survey, questions were asked regarding animal characteristics, their diets, and manure handling management from generation to disposal. These feedlots finished 831,450 animals in 2010. The predominant breed fed was Nellore, with average feeding periods of 60 to 135 d. Corn was the primary source of grain used in the feedlot diets (76% of surveyed animals) with concentrate inclusion levels ranging from 81 to 90% (38% of surveyed animals). The most representative manure management practice was the removal of manure from pens only at the end of the feeding period. Subsequently, the manure was stored in mounds before being applied to crop and pasture lands. Runoff, mainly from rainwater, was collected in retention ponds and used for agriculture. However, the quantity of runoff was not known. Manure was composted for only 20% of the animals in the survey and was treated in anaerobic digesters for only 1% of the animals. Manure from 59% of the cattle surveyed was used as fertilizer, providing a cost savings over the use of synthetic fertilizers. Overall, chemical analysis of the manure before application to fields was conducted for the manure of 56% of the surveyed animals, but the exact quantity applied (per hectare) was unknown for 48%. Feedlots representing 48% of the surveyed animals noted similar or greater crop and pasture yields when using manure, rather than synthetic fertilizers. In addition, 32% mentioned an increase in soil organic matter. Feedlots representing 88% of the surveyed cattle indicated that information concerning management practices that improve manure use efficiency is lacking. Feedlots representing 93% of the animals in the survey reported having basic information regarding the generation of energy and fertilizer with anaerobic digesters. However, only 1 feedlot implemented this technology. In conclusion, the manure management evaluated in this study represents an important indirect economic benefit that was represented by decreased use of synthetic fertilizers in crops. However, little attention was given to the specific treatments and environmental impacts of handling manure. This survey provides information that should assist in the development of better research practices and broader application of future models.

  17. Variation of the microbial community in thermophilic anaerobic digestion of pig manure mixed with different ratios of rice straw.

    PubMed

    Zhou, Sheng; Nikolausz, Marcell; Zhang, Jining; Riya, Shohei; Terada, Akihiko; Hosomi, Masaaki

    2016-09-01

    The effect of pig manure mixed with rice straw on methane yield and the microbial community involved in a thermophilic (55°C) anaerobic digestion process was investigated. Three substrates composed of mixed pig manure and rice straw at different ratios (95:5; 78:22 and 65:35 w/w, which resulted in C/N ratios of 10:1, 20:1 and 30:1) were used for the experiment. The substrate type had a major influence on the total bacterial community, while the methanogens were less affected. The members of the class Clostridia (phylum Firmicutes) were predominant regardless of mixture ratio (C/N ratio), but at species level there was a major difference between the low and high C/N ratio samples. The hydrogenotrophic methanogenic genus of Methanothermobacter was predominant in all samples but higher C/N ratio sequences affiliated to the genus Methanosarcina were also detected. The appearance of Methanosarcina sp. is most likely due to the less inhibition of ammonia during the anaerobic digestion. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  18. Growing Chlorella vulgaris on thermophilic anaerobic digestion swine manure for nutrient removal and biomass production.

    PubMed

    Deng, Xiang-Yuan; Gao, Kun; Zhang, Ren-Chuan; Addy, Min; Lu, Qian; Ren, Hong-Yan; Chen, Paul; Liu, Yu-Huan; Ruan, Roger

    2017-11-01

    Liquid swine manure was subjected to thermophilic anaerobic digestion, ammonia stripping and centrifugation in order to increase the available carbon sources and decrease the ammonia concentration and turbidity. Chlorella vulgaris (UTEX 2714) was grown on minimally diluted (2×, 3× and 4×) autoclaved and non-autoclaved pretreated anaerobic digestion swine manure (PADSM) in a batch-culture system for 7days. Results showed that C. vulgaris (UTEX 2714) grew best on 3× PADSM media, and effectively removed NH 4 + -N, TN, TP and COD by 98.5-99.8%, 49.2-55.4%, 20.0-29.7%, 31.2-34.0% and 99.8-99.9%, 67.4-70.8%, 49.3-54.4%, 73.6-78.7% in differently diluted autoclaved and non-autoclaved PADSM, respectively. Results of chemical compositions indicated that contents of pigment, carbohydrate, protein and lipid in C. vulgaris (UTEX 2714) changed with the culture conditions. Moreover, its fatty acid profiles suggested that this alga could be used as animal feed if cultivated in autoclaved PADSM or as good-quality biodiesel feedstock if cultivated in non-autoclaved PADSM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Struvite Crystallization of Anaerobic Digestive Fluid of Swine Manure Containing Highly Concentrated Nitrogen

    PubMed Central

    Lee, Eun Young; Oh, Min Hwan; Yang, Seung-Hak; Yoon, Tae Han

    2015-01-01

    In this study, the optimal operation factors for struvite crystallization for removing and recovering nitrogen and phosphorus from anaerobic digestive fluid of swine manure containing highly concentrated nitrogen was determined. Every experiment for the struvite crystallization reaction was conducted by placing 1,000 mL of digestion fluid in a 2,000 mL Erlenmeyer flask at various temperatures, pH, and mixing speed. Except for special circumstances, the digestion fluid was centrifuged (10,000 rpm, 10 min) and then the supernatant was used for the experiment at room temperature and 100 rpm. The optimal mole ratio of PO43−:Mg2+ was 1:1.5, and the pH effect ranging from 9 to 11 was similar, when mixed for 1 hour. Under this condition, the removal efficiency of NH4+-N and PO43−-P was 40% and 88.6%, respectively. X-shaped crystal was observed by light and scanning electron microscopy. In addition, struvite crystal structure was confirmed through X-ray diffraction analysis. PMID:26104412

  20. Environmental aspects of the anaerobic digestion of the organic fraction of municipal solid wastes and of solid agricultural wastes.

    PubMed

    Edelmann, W; Baier, U; Engeli, H

    2005-01-01

    In order to obtain more detailed information for better decision making in future biogenic waste treatment, different processes to treat biogenic wastes in plants with a treatment capacity of 10,000 tons of organic household wastes per year as well as agricultural codigestion plants were compared by life cycle assessments (LCA). With the tool EcoIndicator, anaerobic digestion is shown to be advantageous as compared to composting, incineration or a combination of digestion and composting, mainly because of a better energy balance. The management of the liquid manure in agricultural codigestion of organic solid wastes causes increased gaseous emissions, which have negative effects on the LCA, however. It is recommended to cover the slurry pit and to use an improved manure management in order to compensate for the additional gaseous emissions. In the LCAs, the quality of the digester output could only be taken into account to a small extent; the reasons are discussed.

  1. The fate of antibiotic resistance genes and class 1 integrons following the application of swine and dairy manure to soils.

    PubMed

    Sandberg, Kyle D; LaPara, Timothy M

    2016-02-01

    The goal of this study was to determine the fate of antibiotic resistance genes (ARGs) and class 1 integrons following the application of swine and dairy manure to soil. Soil microcosms were amended with either manure from swine fed subtherapeutic levels of antibiotics or manure from dairy cows that were given antibiotics only rarely and strictly for veterinary purposes. Microcosms were monitored for 6 months using quantitative PCR targeting 16S rRNA genes (a measure of bacterial biomass), intI1, erm(B), tet(A), tet(W) and tet(X). Swine manure had 10- to 100-fold higher levels of ARGs than the dairy manure, all of which decayed over time after being applied to soil. A modified Collins-Selleck model described the decay of ARGs in the soil microcosms well, particularly the characteristic in which the decay rate declined over time. By the completion of the soil microcosm experiments, ARGs in the dairy manure-amended soils returned to background levels, whereas the ARGs in swine manure remained elevated compared to control microcosms. Our research suggests that the use of subtherapeutic use of antibiotics in animal feed could lead to the accumulation of ARGs in soils to which manure is applied. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Anaerobic slurry co-digestion of poultry manure and straw: effect of organic loading and temperature

    PubMed Central

    2013-01-01

    In order to obtain basic design criteria for anaerobic digestion of a mixture of poultry manure and wheat straw, the effects of different temperatures and organic loading rates on the biogas yield and methane contents were evaluated. Since poultry manure is a poor substrate, in term of the availability of the nutrients, external supplementation of carbon has to be regularly performed, in order to achieve a stable and efficient process. The complete-mix, pilot-scale digester with working volume of 70 L was used. The digestion operated at 25°C, 30°C and 35°C with organic loading rates of 1.0, 2.0, 2.5, 3.0, 3.5 and 4.0 kg Volatile solid/m3d and a HRT of 15 days. At a temperature of 35°C, the methane yield was increased by 43% compared to 25°C. Anaerobic co-digestion appeared feasible with a loading rate of 3.0 kg VS/m3d at 35°C. At this state, the specific methane yield was calculated about 0.12 m3/kg VS with a methane content of 53–70.2% in the biogas. The volatile solid (VS) removal was 72%. As a result of volatile fatty acid accumulation and decrease in pH, when the loading rate was less than 1 or greater than 4 kg VS/m3d, the process was inhibited or overloaded, respectively. Both the lower and higher loading rates resulted in a decline in the methane yield. PMID:24502409

  3. Zinc and copper distribution in swine wastewater treated by anaerobic digestion.

    PubMed

    Cestonaro do Amaral, André; Kunz, Airton; Radis Steinmetz, Ricardo Luís; Justi, Karin Cristiane

    2014-08-01

    Swine wastewater contain high levels of metals, such as copper and zinc, which can cause a negative impact on the environment. Anaerobic digestion is a process commonly used to remove carbon, and can act on metal availability (e.g., solubility or oxidation state). The present study aimed to evaluate the influence of anaerobic digestion on total Zn and Cu contents, and their chemical fractioning due to the biodegradation of the effluent over different hydraulic retention times (HRTs). The sequential extraction protocol proposed by the Community Bureau of Reference (BCR), plus two additional fractions, was the method chosen for this study of Cu and Zn distribution evaluation in swine wastewater. The Zn and Cu concentrations in raw swine manure were 63.58 ± 27.72 mg L(-1) and 8.98 ± 3.99 mg L(-1), respectively. The metal retention capacity of the bioreactor decreased when the HRT was reduced from 17.86 d to 5.32 d. Anaerobic digestion had a direct influence on zinc and copper distribution when raw manure (RM) and digested manure (DM) were compared. The reducible fraction showed a reduction of between 3.17% and 7.84% for Zn and between 2.52% and 11.92% for Cu when DM was compared with RM. However, the metal concentration increased in the oxidizable fraction of DM, viz. from 3.01% to 10.64% for Zn and from 4.49% to 16.71% for Cu, thus demonstrating the effect of anaerobic conditions on metal availability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Anaerobic Co-digestion of Cow Dung and Rice Straw to Produce Biogas using Semi-Continuous Flow Digester: Effect of Urea Addition

    NASA Astrophysics Data System (ADS)

    Haryanto, A.; Sugara, B. P.; Telaumbanua, M.; Rosadi, R. A. B.

    2018-05-01

    The objective this research was to investigate the effect of urea addition on the biogas yield from co-digestion of rice straw and cow dung using semi-continuous anaerobic digester. The experiment was conducted by using self-made semi-continuous anaerobic digester having a working volume of 30 L. Cow dung was provided from Department of Animal Husbandry, University of Lampung; while rice straw was collected from farmer at Way Galih, Tanjung Bintang, South Lampung. Rice straw was sun-dried to about 12% of moisture content and then ground into fine particles. Cow dung and ground straw were mixed at a dung-to-straw ratio of 3:1 based on total solid (TS) and four different urea additions (0, 0.25, 0.65, and 1.30 g/L) were applied to have a C/N ratio between 20 and 30. The mixture was diluted with water to create TS content of 10%. As much as 30 L of the substrate mixture was introduced into the digester as a starting load. The same substrate was added daily at a loading rate of 0.5 L/d. The experiment was made in triplicate and observation was performed for two months. Total and volatile solids of influent and effluent and daily biogas production were observed. The biogas quality was measured by its methane content using gas chromatography. Results showed that urea addition influenced the biogas yield and its quality. Substrate mixture with urea addition of 0.25 g/L (C/N ratio of 27.3) was the best in terms of biogas yield (434.2 L/kgVSr), methane content (50.12%), and methane yield (217.6 L/kgVSr).

  5. The Boron Isotopic Composition of Elephant Dung: Inputs to the Global Boron Budget

    NASA Astrophysics Data System (ADS)

    Williams, L. B.; Hervig, R. L.

    2011-12-01

    A survey of boron in kerogen showed isotopically light δ11B values (0 to -50%) that are distinctly different from most mineral and natural water B reservoirs. Diagenesis releases this isotopically light B into pore fluids when hydrocarbons are generated, thus enriching oilfield brines in 10B. This observation suggests that borated biomolecules (BM) are primarily tetrahedral favoring 10B, whereas 11B is preferred in trigonal coordination. Plants, with optimal concentrations up to 100ppm, contribute more B than animal remains to sediment. Elephants are one of the largest herbivores on earth, consuming 200 - 250 kg of plant material/day and producing 50 kg of manure/day. They are inefficient at digestion, thus the manure contains >50% undigested plant material. Dung samples are therefore ideal for studying the δ11B of both the food input and digested output of a significant B supply to sedimentary systems. Horse and rabbit manure were studied for comparison to evaluate B isotope variations in the food supply and potential vital effects on the output. B-content and isotopic composition of dung plant material and digested fractions were measured in the solid state by secondary ion mass spectrometry. The digests were rinsed in 1.8% mannitol, a B-complexing agent, to remove surface adsorbed-B, then air dried and Au-coated for charge compensation. Results showed that the elephant diet contains 3-13 ppm B, with an average δ11B of -20 ± 0.8% (1σ), while rabbit food had 88 ppm B with a δ11B of -50 ± 1.3 %. The digested fraction of the elephant dung contains 4-10ppm B with average δ11B values of -12 ± 1.2%. In comparison, horse manure with 11-21 ppm B has a δ11B of -10.7 ± 0.5% and rabbit manure contains 2-3 ppm B with a δ11B of -8.8 ± 1%. Boron isotope compositions of these manures are indistinguishable (within error). Clearly plant material is a major contributor of isotopically light B to sediments. The herbivores studied fractionate their total B intake in favor of 11B, thus increasing the δ11B of the (solid) digested material relative to the food source. This would not affect the overall BM input to the sediment because the dung contains the undigested plants. If we assume that the average B isotopic composition of dung, ~10ppm B at -20%, represents an average BM in sediment, and that the mass of sediments (1E24 g) is comparable to the mass of seawater with an average 5ppm B at +40%, then it is clear that BM plays a major role in balancing the global B budget. Note: This research was NOT funded by taxpayer dollars. The Phoenix Zoo kindly approved the proposal to sample elephant dung for this study and their support is greatly appreciated.

  6. Alternative Fuels Data Center: Veolia Transportation Converts Taxi Fleet to

    Science.gov Websites

    Fair Oaks Farm Harnesses the Power of Natural Gas from Cow Manure July 9, 2016 Photo of a truck Krug Powers Milk Delivery Trucks in Indiana Aug. 20, 2011 Reynolds Logistics Reduces Fuel Costs With EVs July

  7. Alternative Fuels Data Center: Kern County Schools Expands CNG Station for

    Science.gov Websites

    23, 2016 Photo of a truck Fair Oaks Farm Harnesses the Power of Natural Gas from Cow Manure July 9 . 17, 2011 Natural Gas Powers Milk Delivery Trucks in Indiana Aug. 20, 2011 Reynolds Logistics Reduces

  8. Alternative Fuels Data Center: Rental Cars Go Electric in Florida

    Science.gov Websites

    , 2016 Photo of a truck Fair Oaks Farm Harnesses the Power of Natural Gas from Cow Manure July 9, 2016 , 2011 Natural Gas Powers Milk Delivery Trucks in Indiana Aug. 20, 2011 Reynolds Logistics Reduces Fuel

  9. Influence of calcium and phosphorus feeding on markers of bone metabolism in transition cows.

    PubMed

    Moreira, V R; Zeringue, L K; Williams, C C; Leonardi, C; McCormick, M E

    2009-10-01

    A study was carried out to verify the effect of Ca and P levels on production, digestibility, and serum bone metabolism biomarkers in dairy cows. Fifty-two nonlactating multiparous cows (>or=3 lactations) were confined in a free-stall barn approximately 20 d before calving. A standard close-up diet was fed to cows once daily until d 2 postpartum. Cows were randomly assigned to 1 of 4 dietary treatments arranged in a 2 x 2 factorial approach averaging 0.64% Ca for high Ca (HCa), 0.46% Ca for low Ca (LCa), 0.47% P for high P (HP), and 0.38% P for low P (LP) on a dry matter basis. Experimental diets were fed twice daily from 3 d in milk (DIM) until 31 DIM. Intake and milk yield were recorded daily. Milk samples were collected on d 28, 29, and 30 postpartum for components analyses. Blood samples were drawn 10 d before expected calving, at calving, and at 15 and 30 DIM for serum analyses of osteocalcin, a biomarker of bone accretion, and pyridinoline, a biomarker of bone resorption. Total fecal collection was conducted when cows in a block averaged 20 DIM. Intake and production traits were not significantly affected by any of the dietary treatments. Cows averaged nearly 21 kg/d dry matter intake and 44 kg/d milk yield from 6 to 31 DIM. There were no significant differences across treatments in body weight or body condition score loss. Phosphorus intake, P fecal output, P digestibility, and P apparent absorption were affected by dietary P content. Calcium intake was higher with HCa, but Ca fecal output, digestibility, and apparent absorption showed an interaction between dietary Ca and dietary P. Calcium fecal output was 100.6 g/d for cows fed HCaHP, intermediate for cows on the HCaLP diet (89 g/d), and similar among cows fed the 2 LCa diets (70 g/d with LCaHP and 75 with LCaLP). There was no significant effect of Ca or P on osteocalcin measurements. Pyridinoline concentrations were affected by dietary Ca levels and tended to have a significant dietary Ca x dietary P interaction. Phosphorus apparent digestibility occurred independently of dietary Ca levels. Results of this study suggest that more bone was mobilized in cows fed LCa diets, but excess dietary P caused greater and prolonged bone mobilization regardless of dietary Ca content.

  10. Phosphorus uptake by potato from fertilizers recovered from anaerobic digestion

    USDA-ARS?s Scientific Manuscript database

    Field experiments were conducted in the Columbia Basin of South Central Washington to assess the yield of potato (Solanum tuberosum) in response to application of phosphorus enriched materials recovered from anaerobic digestion of manure. The treatments were comprised of four rates (0, 56, 112 and ...

  11. Economic analysis of small-scale agricultural digesters in the United States

    USDA-ARS?s Scientific Manuscript database

    Anaerobic digestion is a manure treatment option that is gaining popularity throughout the world due to its multiple environmental and economic benefits. However, further research is needed for anaerobic technology to become more readily available, cost effective and manageable for small-scale to m...

  12. Effects of prepartum supplementation of linoleic and mid-oleic sunflower seed on cow performance, cow reproduction, and calf performance from birth through slaughter, and effects on intake and digestion in steers.

    PubMed

    Banta, J P; Lalman, D L; Owens, F N; Krehbiel, C R; Wettemann, R P

    2011-11-01

    Two experiments were conducted to determine the effects of sunflower seed supplements with varying fatty acid profiles on performance, reproduction, intake, and digestion in beef cattle. In Exp. 1, 127 multiparous spring-calving beef cows with free-choice access to bermudagrass hay were individually fed 1 of 3 supplements for an average of 83 d during mid to late gestation. Supplements (DM basis) included 1) 1.23 kg/d of a soybean hull-based supplement (control treatment); 2) 0.68 kg/d of linoleic sunflower seed plus 0.23 kg/d of the control supplement (linoleic treatment); and 3) 0.64 kg/d of mid-oleic sunflower seed plus 0.23 kg/d of the control supplement (oleic treatment). During the first 62 d of supplementation, the BW change was 11, 3, and -3 kg for cows fed the control, linoleic, and oleic supplements, respectively (P < 0.001). No difference in BW change was observed during the subsequent period (-65 kg, P = 0.83) or during the entire 303-d experiment (-31 kg, P = 0.49). During the first 62 d of supplementation, cows fed sunflower supplements tended (P = 0.08) to lose more body condition than cows fed the control diet, but BCS was not different (P > 0.22) for any subsequent measurement. At the beginning of the breeding season, the percentage of cows exhibiting luteal activity was greater for cows fed the control diet (43%; P = 0.02) than for cows fed either linoleic (20%) or oleic (16%) supplementation; however, first-service conception rate (67%; P = 0.22) and pregnancy rate at weaning (92%; P = 0.18) were not different among supplements. No differences were detected in calf birth (P = 0.46) or weaning BW (P = 0.74). In Exp. 2, 8 ruminally cannulated steers were used to determine the effects of sunflower seed supplementation on forage intake and digestion. Treatments (DM basis) included 1) no supplement; 2) a soybean hull-based supplement fed at 0.29% of BW/d; 3) whole linoleic sunflower seed fed at 0.16% of BW/d; and 4) whole high-oleic sunflower seed fed at 0.16% of BW/d. Hay intake was not influenced (P = 0.25) by supplement (1.51% of BW/d); however, DMI was greatest (P < 0.01) for steers fed the soybean hull-based supplement (1.93% of BW/d). Sunflower seed supplementation reduced (P < 0.01) NDF and ADF digestibility while increasing (P < 0.01) apparent CP and apparent lipid digestibility. In conclusion, whole sunflower seed supplementation resulted in reduced cow BW gain during mid to late gestation, but this reduction did not influence subsequent cow BW change, pregnancy rate, or calf performance.

  13. Effect of dietary inclusion of date seed (Phoenix dactylifera L.) on intake, digestibility, milk production, and milk fatty acid profile of Holstein dairy cows.

    PubMed

    Rezaeenia, A; Naserian, A A; Valizadeh, R; Tahmasbi, A M; Mokhtarpour, A

    2018-03-26

    The objective of this experiment was to investigate the influence of ground date seed (GDS) on intake, digestibility, and milk yield and milk fatty acid (FA) composition of lactating Holstein cows. The experimental design was a 4 × 4 replicated Latin square with eight lactating dairy cows with an average milk production of 35.5 ± 1.5 kg and 75 ± 5 days in milk (DIM). Dairy cows were fed one of the four treatments contained 0, 2, 4, and 6% of diet dry matter (DM) GDS in replacement of wheat bran. All diets contained the same amount of forages (alfalfa hay and corn silage). Dietary treatments had no effect on DM intake (DMI), total tract apparent digestibility, milk yield, and milk composition. Increasing GDS linearly decreased concentration of C13:0 and increased cis-9 C14:1 and trans-11 C18:1 (vaccenic acid) (P < 0.05). A linear tendency for more C16:1 content in milk fat was observed with increasing GDS (P = 0.06). Feeding GDS resulted in a linear decrease (P < 0.01) in saturated FA (SFA) but increased milk fat monounsaturated FA (MUFA) and trans FA (TFA) (P < 0.05). Therefore, low levels of GDS (up to 6%) in the diet of Holstein dairy cows can beneficially modify milk FA composition without any adverse effects on intake, digestibility, and milk yield.

  14. Greenhouse gas emissions from liquid dairy manure: Prediction and mitigation.

    PubMed

    Petersen, Søren O

    2017-12-07

    The handling and use of manure on livestock farms contributes to emissions of the greenhouse gases (GHG) CH 4 and N 2 O, especially with liquid manure management. Dairy farms are diverse with respect to manure management, with practices ranging from daily spreading to long-term storage for more efficient recycling of manure nutrients for crop production. Opportunities for GHG mitigation will depend on the baseline situation with respect to handling and storage, and therefore prediction and mitigation at the farm level requires a dynamic description of housing systems and storage conditions, and use of treatment technologies. Also, effects of treatment and handling on the properties of field-applied manure must be taken into account. Storage conditions and manure composition importantly define carbon and nitrogen transformations, and the resulting emissions of CH 4 and N 2 O, as well as CO 2 and NH 3 , which are all important for the GHG balance. Currently, inventories for CH 4 and N 2 O emissions from manure are based on emission factors for a limited number of production systems, together with average annual temperature, but the inherent uncertainty of this approach is a barrier toward prediction and mitigation. Although more representative emission factors may be determined at country level, this is both challenging and costly, and effects of management changes for GHG mitigation are not easily quantified. An empirical model of CH 4 emissions during storage is discussed that is based on daily time steps, and a parameterization based on measurements. A distinction between emissions from manure in barns and outside storage facilities is important for assessing effects of treatment technologies, such as anaerobic digestion, where only posttreatment emissions are affected. Upon field application, manure and soil together define the equilibrium distribution of labile carbon and nitrogen between bulk soil and manure hotspots. This introduces heterogeneity with respect to potential for N 2 O emissions, which is not represented in existing prediction models. Manure treatment and management options for GHG mitigation are discussed with emphasis on effects on manure volatile solids and N availability. Anaerobic digestion and acidification represent treatment technologies that are relevant for GHG mitigation on dairy farms. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. Roadmap for Biomass Technologies in the United States

    DTIC Science & Technology

    2002-12-01

    landfill gases, anaerobic digestion of animal manure and food/feed/grain products and by-products, use of wastewater treatment digestion gas, sludge...include ethanol, biodiesel, and methanol. Biogas : A methane-bearing gas from the digestion of biomass. Biomass: Any organic matter that is available...Research pathways and milestones to improving the understanding of plant biochemis- try and enzyme production are provided in Exhibit 4. Objective Two

  16. Comparative adsorption of Pb2+ and Cd2+ by cow manure and its vermicompost.

    PubMed

    Zhu, Weiqin; Du, Wenhui; Shen, Xuyang; Zhang, Hangjun; Ding, Ying

    2017-08-01

    Organic waste has great potential for use as an amendment to immobilize heavy metals in the environment. Therefore, this study investigates various properties of cow manure (CM) and its derived vermicompost (CV), including the pH, cationic exchangeable capacity (CEC), elemental composition and surface structure, to determine the potential of these waste products to remove Pb 2+ and Cd 2+ from solution. The results demonstrate that CV has a much higher pH, CEC and more irregular pores than CM and is enriched with minerals and ash content but has a lower C, H, O and N content. Adsorption isotherms studies shows that the adsorption of Pb 2+ and Cd 2+ onto either CM or CV follows a Langmuir model and presents maximum Pb 2+ and Cd 2+ adsorption capacities of 102.77 mg g -1 and 38.11 mg g -1 onto CM and 170.65 and 43.01 mg g -1 onto CV, respectively. Kinetic studies show that the adsorption of Pb 2+ onto CM and CV fits an Elovich model, whereas the adsorption of Cd 2+ onto CM and CV fits a pseudo-second-order model. Desorption studies indicate that CV is more effective than CM in removing Pb 2+ and Cd 2+ . FTIR analysis demonstrates that the adsorption of Pb 2+ and Cd 2+ onto CM mainly depends on existed aliphatic alcohol, aromatic acid as well as new produced carbonates, whereas that onto CV may be contributed by the existed aliphatic alcohol, aromatic acids as well as some carbonates and phosphates. Thus, vermicomposting disposal of cow manure with destination mineral addition may broaden the way of its recycle and environmental usage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. The effect of harvesting strategy of grass silage on digestion and nutrient supply in dairy cows.

    PubMed

    Kuoppala, K; Rinne, M; Ahvenjärvi, S; Nousiainen, J; Huhtanen, P

    2010-07-01

    This study examined the effects of primary growth (PG) and regrowth (RG) timothy-meadow fescue silages harvested at 2 stages of growth on feed intake, cell wall digestion and ruminal passage kinetics in lactating dairy cows. Four dairy cows equipped with rumen cannulas were used in a study designed as a 4 x 4 Latin square with 21-d periods. The experimental silages were offered ad libitum with 8 kg/d of concentrate. Ruminal digestion and passage kinetics were assessed by the rumen evacuation technique. Silages of PG were on average more digestible than RG silages. The concentration of neutral detergent fiber (NDF) and indigestible NDF (iNDF) increased and the concentration of digestible organic matter in dry matter (DM) of silages decreased with advancing maturity in PG and RG. Cows consumed more feed DM, energy, and protein and produced more milk when fed PG diets rather than RG diets. Delaying the harvest decreased DM intake and milk production in PG and RG. There were no differences between PG and RG in rumen pH, ammonia N, or total volatile fatty acid concentrations. The intake of N, omasal canal flow of total nonammonia N and microbial N, excretion of N in feces, and ruminal true digestibility of N were higher for PG than for RG diets. The efficiency of microbial N synthesis was not different between PG and RG. Intake and omasal canal flow of organic matter, NDF, and potentially digestible NDF (pdNDF) were higher in PG than in RG. Whole-diet digestibility of organic matter, NDF, or pdNDF in the rumen or in the total tract was not different between PG and RG despite the higher digestibility of PG silages measured in sheep. Rumen pool sizes of crude protein and iNDF were lower for PG diets, whereas the pool size of pdNDF was higher for PG diets than for RG diets. The rate of passage of iNDF was higher for PG diets than for RG diets, with no difference between them in rate of digestion or passage of pdNDF. The lower milk production in cows fed regrowth grass silages compared with primary growth silages could be attributed to the lower silage DM intake potential. Chemical composition of the silages, rumen fill, digestion and passage kinetics of NDF, or the ratio of protein to energy in absorbed nutrients could not explain the differences in DM intake between silages made from primary and regrowth grass. Copyright (c) 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Cow excrements enhance the occurrence of tetracycline resistance genes in soil regardless of their oxytetracycline content.

    PubMed

    Kyselková, Martina; Jirout, Jiří; Chroňáková, Alica; Vrchotová, Naděžda; Bradley, Robert; Schmitt, Heike; Elhottová, Dana

    2013-11-01

    Fertilizing soils with animal excrements from farms with common antibiotic use represents a risk of disseminating antibiotic resistance genes into the environment. In the case of tetracycline antibiotics, it is not clear, however, whether the presence of antibiotic residues further enhances the gene occurrence in manured soils. We established a microcosm experiment in which 3 farm soils that had no recent history of fertilization with animal excrements were amended on a weekly basis (9 times) with excrements from either an oxytetracycline-treated or an untreated cow. Throughout the study, the concentration of oxytetracycline in excrements from the treated cow was above 500 μg g(-1)dw, whereas no oxytetracycline was detected in excrements from the healthy cow. Both excrements contained tetracycline resistance (TC-r) genes tet(L), tet(M), tet(V), tet(Z), tet(Q) and tet(W). The excrements from the treated cow also contained the tet(B) gene, and a higher abundance of tet(Z), tet(Q) and tet(W). Three weeks after the last excrement addition, the individual TC-r genes differed in their persistence in soil: tet(Q) and tet(B) were not detectable while tet(L), tet(M), tet(Z) and tet(W) were found in all 3 soils. There were, however, no significant differences in the total number, nor in the abundance, of TC-r genes between soil samples amended with each excrement type. The oxytetracycline-rich and the oxytetracycline-free excrement therefore contributed equally to the increase of tetracycline resistome in soil. Our results indicate that other mechanisms than OTC-selection pressure may be involved in the maintenance of TC-r genes in manured soils. Copyright © 2013. Published by Elsevier Ltd.

  19. Modification of immune responses and digestive system microbiota of lactating dairy cows by feeding Bovamine(R)

    USDA-ARS?s Scientific Manuscript database

    We evaluated the immune modulatory effects as well as effects on productivity of Bovamine® (Lactobacillus acidophilus strain NP51 and Probionibacterium freudenreichii) fed to Holstein and Jersey dairy cows during late lactation (average DIM = 202.44 days on wk-0). Cows were randomized to treatment g...

  20. Effects of partial replacement of corn and alfalfa silage with tall fescue hay on total-tract digestibility and lactation performance in dairy cows.

    PubMed

    Bender, R W; Lopes, F; Cook, D E; Combs, D K

    2016-07-01

    Our objective was to evaluate the effects of replacing either corn or alfalfa silage with tall fescue hay on total-tract neutral detergent fiber (NDF) digestibility and lactation performance in dairy cows. Twenty-four primiparous (75±35 d in milk) and 40 multiparous (68±19 d in milk) Holstein cows were blocked by parity and randomly assigned to 1 of 4 treatment groups in a pen equipped with 32 feeding gates to record intake by cow. Each gate was randomly assigned to 1 treatment group; thus, each cow had access to all 8 gates within the respective treatment and cow was the experimental unit. Treatments were formulated to replace either corn silage (CS) or alfalfa silage (AS) with tall fescue hay (TF) as follows (DM basis): 33% AS and 67% CS (control; 33AS67CS), 60% TF and 40% AS (60TF40AS), 60% TF and 40% CS (60TF40CS), and 33% TF and 67% CS (33TF67CS). The experiment was a 7-wk continuous lactation trial with a 2-wk covariate period. Milk production did not differ among treatments and averaged 40.4 kg/d. Fat yield and concentration and protein yield and concentration did not differ among treatments and averaged 1.58 kg/d, 3.94%, 1.28 kg/d, and 3.15%, respectively. Dry matter intake was greater for 33AS67CS (24.5 kg/d) compared with 60TF40CS (22.1 kg/d) and 33TF67CS (22.7 kg/d), and tended to be greater than 60TF40AS (23.2 kg/d). In vivo total-tract dry matter digestibility did not differ among treatments and averaged 66.2%. In vivo total-tract NDF digestibility was lower for 33AS67CS (37.8%) compared with 60TF40AS (44.4%) and 33TF67CS (45.3%), and similar to 60TF40CS (42.4%). In vivo total-tract NDF digestibility and an estimate of in situ total-tract NDF digestibility were similar between techniques across all treatment diets (42.3 vs. 42.6%, respectively). Inclusion of tall fescue grass hay increased the total-tract NDF digestibility of the diet and has the potential to replace corn silage and alfalfa silage and maintain milk production if economically feasible based on current market prices. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Factors associated with early cyclicity in postpartum dairy cows.

    PubMed

    Vercouteren, M M A A; Bittar, J H J; Pinedo, P J; Risco, C A; Santos, J E P; Vieira-Neto, A; Galvão, K N

    2015-01-01

    The objective of this study was to evaluate factors associated with resumption of ovarian cyclicity within 21 days in milk (DIM) in dairy cows. Cows (n=768) from 2 herds in north Florida had their ovaries scanned at 17±3, 21±3, and 24±3 DIM. Cows that had a corpus luteum ≥20mm at 17±3 or at 21±3 DIM or that had a corpus luteum <20mm in 2 consecutive examinations were determined to be cyclic by 21±3 DIM. The following information was collected for up to 14 DIM: calving season, parity, calving problems, metabolic problems, metritis, mastitis, digestive problems, lameness, body weight loss, dry period length, and average daily milk yield. Body condition was scored at 17±3 DIM. Multivariable mixed logistic regression analysis was performed using the GLIMMIX procedure of SAS. Variables with P≤0.2 were considered in each model. Herd was included as a random variable. Three models were constructed: model 1 included all cows, model 2 included only cows from dairy 1 that had daily body weights available, and model 3 included only multiparous cows with a previous dry period length recorded. In model 1, variables associated with greater cyclicity by 21±3 DIM were calving in the summer and fall rather than in the winter or spring, being multiparous rather than primiparous, and not having metabolic or digestive problems. In model 2, variables associated with greater cyclicity by 21±3 DIM were calving in the summer and fall, not having metritis or digestive problems and not losing >28 kg of BW within 14 DIM. In model 3, variables associated with greater cyclicity by 21±3 DIM were absence of metabolic problems and dry period ≤76 d. In summary, cyclicity by 21±3 DIM was negatively associated with calving in winter or spring, primiparity, metritis, metabolic or digestive problems, loss of >28 kg of body weight, and a dry period >76d. Strategies preventing extended dry period length and loss of BW, together with reductions in the incidence of metritis as well as metabolic and digestive problems should improve early cyclicity postpartum. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Associations of dairy cow behavior, barn hygiene, cow hygiene, and risk of elevated somatic cell count.

    PubMed

    Devries, T J; Aarnoudse, M G; Barkema, H W; Leslie, K E; von Keyserlingk, M A G

    2012-10-01

    Poor dairy cow hygiene has been consistently associated with elevated somatic cell count (SCC) and the risk of subclinical mastitis. The objective of this study was to determine the associations between dairy cow standing and lying behavior, barn hygiene, cow hygiene, and the risk of experiencing elevated SCC. Lactating Holstein dairy cows (n=69; 86 ± 51 DIM; parity: 2.0 ± 1.2; means ± SD), kept in 1 of 2 groups, were monitored over a 4-mo period. Each group contained 61 ± 1 (mean ± SD) cows over the study period; complete data were obtained from 37 and 32 animals within each respective group. Cows were housed in a sand-bedded, freestall barn with 2 symmetrical pens, each with a free cow traffic automatic milking system. To vary barn hygiene, in 4 consecutive 28-d periods, alley manure scrapers in each of the 2 pens were randomly assigned to frequencies of operation of 3, 6, 12, and 24 times per day. During the last 7 d of each period, cow hygiene (upper leg/flank, lower legs, and udder; scale of 1 = very clean to 4 = very dirty) and stall hygiene (number of 0.15×0.15-m squares contaminated with manure in a 1.20×1.65-m grid) were recorded. Standing and lying behavior of the cows were collected during those days using data loggers. Individual-cow SCC was recorded at the beginning and end of each 28-d period. Elevated SCC was used as an indicator of subclinical mastitis; incidence of elevated SCC was defined as having a SCC >200,000 cells/mL at the end of each 28-d period, when SCC was <100,000 cells/mL at the beginning of the period. Less frequent scraping of the barn alleys was associated with cows having poorer hygiene. Poor udder hygiene was associated with poor stall hygiene. Longer lying duration was associated with poor hygiene of the upper legs/flank and udder. Greater premilking standing duration was associated with poor udder hygiene and decreased frequency of lying bouts was associated with poor hygiene of the lower legs. Higher milk yield was associated with poor hygiene of the udder and lower legs; multiparous cows had poorer hygiene of the upper legs/flank and udder. Over the study period, 24 new cases of elevated SCC were detected. No associations existed for the risk of experiencing an elevated SCC with alley scraping frequency or cow behavior patterns. However, increased odds of occurrence of elevated SCC were noted for cows of lower milk yield as well as for multiparous cows. In summary, these results show that cow hygiene is affected by the standing and lying behavior of cows and by the cleanliness of the cow's environment. These findings emphasize the need for cows to be provided clean standing and lying environments. The results also show that frequent cleaning of barn alley floors will help improve cow hygiene. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Co-digestion of agricultural and municipal waste to produce energy and soil amendment

    USDA-ARS?s Scientific Manuscript database

    In agriculture, manure and cotton gin waste are major environmental liabilities. Likewise, grass is an important organic component of municipal waste. These wastes were combined and used as substrates in a two-phase, pilot-scale anaerobic digester to evaluate the potential for biogas (methane) produ...

  4. New concepts of ammonia removal from digested swine effluents using anammox based deammonification process

    USDA-ARS?s Scientific Manuscript database

    Production of biogas from swine manure using anaerobic digesters (AD) is projected to be important in the future. However, surplus nitrogen (N) in AD effluents is difficult to remove using current technology (nitrification/denitrification) because low carbon availability after biogas production. W...

  5. Effects of whole-plant corn silage hybrid type on intake, digestion, ruminal fermentation, and lactation performance by dairy cows through a meta-analysis.

    PubMed

    Ferraretto, L F; Shaver, R D

    2015-04-01

    Understanding the effect of whole-plant corn silage (WPCS) hybrids in dairy cattle diets may allow for better decisions on hybrid selection by dairy producers, as well as indicate potential strategies for the seed corn industry with regard to WPCS hybrids. Therefore, the objective of this study was to perform a meta-analysis using literature data on the effects of WPCS hybrid type on intake, digestibility, rumen fermentation, and lactation performance by dairy cows. The meta-analysis was performed using a data set of 162 treatment means from 48 peer-reviewed articles published between 1995 and 2014. Hybrids were divided into 3 categories before analysis. Comparative analysis of WPCS hybrid types differing in stalk characteristics were in 4 categories: conventional, dual-purpose, isogenic, or low-normal fiber digestibility (CONS), brown midrib (BMR), hybrids with greater NDF but lower lignin (%NDF) contents or high in vitro NDF digestibility (HFD), and leafy (LFY). Hybrid types differing in kernel characteristics were in 4 categories: conventional or yellow dent (CONG), NutriDense (ND), high oil (HO), and waxy. Genetically modified (GM) hybrids were compared with their genetically similar non-biotech counterpart (ISO). Except for lower lignin content for BMR and lower starch content for HFD than CONS and LFY, silage nutrient composition was similar among hybrids of different stalk types. A 1.1 kg/d greater intake of DM and 1.5 and 0.05 kg/d greater milk and protein yields, respectively, were observed for BMR compared with CONS and LFY. Likewise, DMI and milk yield were greater for HFD than CONS, but the magnitude of the difference was smaller. Total-tract NDF digestibility was greater, but starch digestibility was reduced, for BMR and HFD compared with CONS or LFY. Silage nutrient composition was similar for hybrids of varied kernel characteristics, except for lower CP and EE content for CONG than ND and HO. Feeding HO WPCS to dairy cows decreased milk fat content and yield and protein content compared with the other kernel-type hybrids. Hybrids varying in kernel characteristics did not affect intake, milk production, or total-tract nutrient digestibilities by lactating dairy cows. Nutrient composition and lactation performance were similar between GM and ISO. Positive effects of BMR and HFD on intake and milk yield were observed for lactating dairy cows, but the reduced total-tract starch digestibility for these hybrids merits further study. Except for negative effects of HO on milk components, differences were minimal among corn silage hybrids differing in kernel type. Feeding GM WPCS did not affect lactation performance by dairy cows. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Dynamics of E.coli virulence factors in dairy cow herds

    USDA-ARS?s Scientific Manuscript database

    Background. Dairy farms are known reservoirs of entero-pathogenic E. coli (EPEC). EPEC, or the virulence factors associated with pathogenicity, have been detected in manure, milk, and the farm environment. However, it is unclear which farm compartments are reservoirs contributing to EPEC persistence...

  7. Alternative Fuels Data Center: Car2Go Launches Electric Carsharing Fleet in

    Science.gov Websites

    Gas from Cow Manure July 9, 2016 Photo of a truck Krug Energy Opens Natural Gas Fueling Station in City Schools Sept. 17, 2011 San Diego Leads in Promoting EVs Sept. 3, 2011 Natural Gas Powers Milk

  8. Changes in structure and function of fungal community in cow manure composting.

    PubMed

    Wang, Ke; Yin, Xiangbo; Mao, Hailong; Chu, Chu; Tian, Yu

    2018-05-01

    In this study, dynamic changes in fungal communities, trophic modes and effect factors in 60 days composting of cow manure were analyzed by using high throughput sequencing, FUNGuild and Biolog FF MicroPlate, respectively. Orpinomyces (relative abundance >10.85%) predominated in feedstock, and Mycothermus became the dominating genus (relative abundance >75%) during the active phase. Aerobic composting treatment had a significant effect on fungal trophic modes with pathogenic fungi fading away and wood saprotrophs increasing over composting time. Fungal communities had the higher carbon sources utilization capabilities at the thermophilic phase and mature phase than those in the other periods. Oxidation reduction potential (ORP) significantly increased from -180 to 180 mV during the treatment. Redundancy analysis showed that the succession of fungal community during composting had a significant association with ORP (p < .05). This indicated that aerobic composting treatment not only influenced fungal community structure, but also changed fungal trophic modes and metabolic characteristics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Urease activity as an index for assessing the maturity of cow manure and wheat residue vermicomposts.

    PubMed

    Sudkolai, Saber Tayebi; Nourbakhsh, Farshid

    2017-06-01

    The establishment of a reliable index is an essential need to assess the degree of stability and maturity of solid wastes vermicomposts. The objective of this study was to investigate the effects of vermicomposting process on some chemical (pH, EC, OC, TN, lignin and C:N ratio) and biochemical properties of the cow manure (CM) and wheat residue (WR). Results demonstrated that during vermicomposting process of CM and WR urease activity was highly correlated with the time of vermicomposting (r=-0.97 ∗∗ for CM and r=-0.99 ∗∗ for WR), and well able to show the stability of organic waste. The urease activity showed significant correlations with the C:N ratio during the vermicomposting of CM and WR (r=0.89 ∗ and r=0.93 ∗∗ respectively) therefore it can be considered as a reliable indicator for determining the maturity and stability of organic wastes during vermicomposting process. Copyright © 2017. Published by Elsevier Ltd.

  10. Digestion, milk production, milk composition, and blood composition of dairy cows fed whole flaxseed.

    PubMed

    Petit, Helene V

    2002-06-01

    A total of 90 lactating Holstein cows averaging 628 kg (SE = 8) of body weight (BW) were allotted at calving to 30 groups of three cows blocked for similar calving dates to determine the effects of feeding whole untreated flaxseed on milk production and composition, fatty acid composition of blood and milk, and digestibility, and to determine whether flaxseed could substitute for other sources of fat such as Megalac and micronized soybeans. Cows were fed a total mixed diet based on grass and corn silage and fat supplements for ad libitum intake. The experiment was carried out from calving up to wk 16 of lactation. Cows within each block were assigned to one of the three isonitrogenous, isoenergetic, and isolipidic supplements based on either whole flaxseed (FLA), Megalac (MEG), or micronized soybeans (SOY). Intake of dry matter and change in BW were similar among diets. Cows fed FLA had greater milk yield than those fed MEG (35.7 vs. 33.5 kg/d) and there was no difference between cows fed FLA and those fed SOY (34.4 kg/d). Fat percentage was higher in the milk of cows fed MEG (4.14%) than in the milk of those fed FLA (3.81%) or SOY (3.70%), but milk protein percentage was higher for cows fed FLA (2.98%) than for those fed MEG (2.86%) and SOY (2.87%). Digestibilities of acid detergent fiber, neutral detergent fiber, and ether extract were lower for cows fed FLA than for those fed SOY and MEG. Retention of N was similar among diets. Feeding FLA resulted in the lowest omega-6-to-omega-3-fatty-acids ratio, which would improve the nutritive value of milk from a human health point of view. The data suggest that micronized soybeans and Megalac can be completely substituted by whole untreated flaxseed as the fat source in the diet of early lactating cows without any adverse effect on production and that flaxseed increased milk protein percentage and its omega-6-to-omega-3-fatty-acids ratio.

  11. Brown midrib corn shredlage in diets for high-producing dairy cows.

    PubMed

    Vanderwerff, L M; Ferraretto, L F; Shaver, R D

    2015-08-01

    A novel method of harvesting whole-plant corn silage, shredlage, may increase kernel processing and physically effective fiber. Improved fiber effectiveness may be especially advantageous when feeding brown midrib (BMR) corn hybrids, which have reduced lignin content. The objective of this study was to determine the effect of feeding TMR containing BMR corn shredlage (SHRD) compared with BMR conventionally processed corn silage (KP) or KP plus chopped alfalfa hay (KPH) on intake, lactation performance, and total-tract nutrient digestibility in dairy cows. The KP was harvested using conventional rolls (2-mm gap) and the self-propelled forage harvester set at 19mm of theoretical length of cut, whereas SHRD was harvested using novel cross-grooved rolls (2-mm gap) and the self-propelled forage harvester set at 26mm of theoretical length of cut. Holstein cows (n=120; 81±8 d in milk at trial initiation), stratified by parity, days in milk, and milk yield, were randomly assigned to 15 pens of 8 cows each. Pens were randomly assigned to 1 of 3 treatment diets, SHRD, KP, or KPH, in a completely randomized design using a 2-wk covariate period with cows fed a common diet followed by a 14-wk treatment period with cows fed their assigned treatment diet. The TMR contained (dry matter basis) KP or SHRD forages (45%), alfalfa silage (10%), and a concentrate mixture (45%). Hay replaced 10% of KP silage in the KPH treatment TMR (dry matter basis). Milk, protein, and lactose yields were 3.4, 0.08, and 0.16kg/d greater, respectively, for cows fed KP and SHRD than KPH. A week by treatment interaction was detected for milk yield, such that cows fed SHRD produced or tended to produce 1.5kg/d per cow more milk, on average, than cows fed KP during 6 of the 14 treatment weeks. Component-corrected milk yields were similar among treatments. Cows fed KPH had greater milk fat concentration than cows fed KP and SHRD (3.67 vs. 3.30% on average). Consumption of dry matter, rumination activity, and sorting behavior were similar among treatments. Ruminal in situ starch digestibility was greater for SHRD than KP forages, and total-tract dietary starch digestibility was greater for SHRD than KP. Milk yield and starch digestibility were greater for SHRD than KP. Lack of improvement in milk fat content and rumination activity for SHRD compared with KP and reduced milk fat content for SHRD compared with KPH, however, suggest no improvement in physically effective fiber from the longer theoretical length of cut used with SHRD in a BMR hybrid. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Energy conversion of animal manures: Feasibility analysis for thirteen western states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whittier, J.; Haase, S.; Milward, R.

    1993-12-31

    The growth and concentration of the livestock industry has led to environmental disposal problems for large quantities of manure at feedlots, dairies, poultry production plants, animal holding areas and pasturelands. Consequently, waste management systems that facilitate energy recovery are becoming increasingly attractive since they address pollution problems and allow for energy generation from manure resources. This paper presents a manure resource assessment for the 13 US Department of Energy, Western Regional Biomass Energy Program states, describes and evaluates available energy conversion technologies, identifies environmental and regulatory factors associated with manure collection, storage and disposal, and identifies common disposal practices specificmore » to animal types and areas within the WRBEP region. The paper also presents a pro forma economic analysis for selected manure-to-energy conversion technologies. The annual energy potential of various manures within the WRBEP region is equivalent to approximately 111 {times} 10{sup 13} Btu. Anaerobic digestion systems, both lagoon and plug flow, offer positive economic returns in a broad range of utility service territories.« less

  13. Effects of feeding hull-less barley on production performance, milk fatty acid composition, and nutrient digestibility of lactating dairy cows.

    PubMed

    Yang, Y; Ferreira, G; Teets, C L; Corl, B A; Thomason, W E; Griffey, C A

    2017-05-01

    The objectives of this study were to evaluate production performance, milk fatty acid composition, and nutrient digestibility in high-producing dairy cows consuming diets containing corn and hull-less barley (cultivar Amaze 10) in different proportions as the grain source. Eight primiparous and 16 multiparous Holstein cows were assigned to 1 of 4 diets in a replicated 4 × 4 Latin square design with 21-d periods. Cows were fed once daily (1200 h) by means of a Calan gate system (American Calan Inc., Northwood, NH). All diets contained ∼20% grain (dry matter basis). Treatments consisted of 100% corn (0B), 67% corn and 33% hull-less barley (33B), 33% corn and 67% hull-less barley (67B), and 100% hull-less barley (100B) as the grain sources. Total-tract nutrient digestibility was estimated using lanthanum chloride (LaCl 3 ) as an external marker. Dry matter intake differed quadratically among treatments, being lowest for 67B and highest for 0B and 100B. Feeding hull-less barley did not affect milk yield, and milk fat concentration differed cubically among treatments. The cubic response was attributed to the higher milk fat concentration observed for the diet containing 67B. Neither the concentrations in milk of protein and lactose nor the yields of protein and lactose differed among treatments. The proportion of de novo synthesized fatty acids in milk did not differ among treatments. The apparent total-tract digestibility of dry matter, crude protein, and neutral detergent fiber did not differ among treatments. Although a quadratic effect was observed, starch digestibility was minimally affected by treatments. In conclusion, this study indicates that hull-less barley grain is as good as corn grain as an energy source when formulating diets for high-producing dairy cows. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Milk production, nitrogen balance, and fiber digestibility prediction of corn, whole plant grain sorghum, and forage sorghum silages in the dairy cow.

    PubMed

    Colombini, S; Galassi, G; Crovetto, G M; Rapetti, L

    2012-08-01

    Total mixed rations containing corn (CS), whole plant grain sorghum (WPGS), or forage sorghum (FS) silages were fed to 6 primiparous Italian Friesian cows to determine the effects on lactation performance, nutrient digestibility, and N balance. Furthermore, the relationship between in vivo total-tract neutral detergent fiber (NDF) digestibility (ttNDFD) and the ttNDFD derived by the Cornell Net Carbohydrate and Protein System (CNCPS) model was assessed. Cows were assigned to 1 of 3 diets in a replicated 3 × 3 Latin square with 28-d periods. The experimental treatment was silage type and 3 different silages were included in the diets. The diets were formulated to be iso-NDF. Accordingly, each diet was formulated to contain 41.5% CS silage, 36.7% WPGS silage, or 28.0% FS silage, on a DM basis. Starch content was balanced by adding the appropriate amount of corn meal. Separate collection of total urine and feces was performed. Dietary forages were analyzed for in vitro NDF digestibility (6 and 24h of incubation) to predict fiber digestion rate with 2 NDF pools (digestible and indigestible). Rumen digestibility of the potentially digestible NDF pool was predicted using CNCPS version 6.1, using the in vitro forage fiber digestion rate. The ttNDFD was predicted assuming that intestinal digestibility of the NDF amount escaping rumen digestion was 20%, according to the CNCPS model. Dry matter intake was decreased by approximately 1.8 kg/d in cows fed the FS diet compared with the other diets, probably for the greater particle size of FS diet. Hence, milk yield (kg/d) was lowest for FS (23.6), intermediate for WPGS (24.6), and highest for the CS diet (25.4). Milk urea N (mg/dL) was highest for FS (12.9), intermediate for WPGS (11.9), and lowest for CS (10.7) diet. In vivo ttNDFD (%) was 51.4 (CS), 48.6 (WPGS), and 54.1 (FS); this was probably due to a higher retention time of FS diet in the rumen rather than to a better quality of the FS silage, as confirmed by in situ and in vitro results. Urinary N excretion (% N intake) was highest for FS (31.8), intermediate for WPGS (29.3), and lowest for the CS (27.5) diet. The predicted ttNDFD (37.7, 36.3, and 39.5% for CS, WPGS, and FS, respectively) were lower than the in vivo results. Providing an adequate starch supplementation, whole plant grain sorghum silage can replace corn silage in dairy cows TMR. Forage sorghum silage had rumen NDF digestibility comparable to the other silages; however, it had a negative effect on dry matter intake and milk production, probably due to an inadequate effect of processing. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. Low cost digester monitoring under realistic conditions: Rural use of biogas and digestate quality.

    PubMed

    Castro, L; Escalante, H; Jaimes-Estévez, J; Díaz, L J; Vecino, K; Rojas, G; Mantilla, L

    2017-09-01

    The purpose of this work was to assess the behaviour of anaerobic digestion of cattle manure in a rural digester under realistic conditions, and estimate the quality and properties of the digestate. The data obtained during monitoring indicated that the digester operation was stable without risk of inhibition. It produced an average of 0.85Nm 3 biogas/d at 65.6% methane, providing an energy savings of 76%. In addition, the digestate contained high nutrient concentrations, which is an important feature of fertilizers. However, this method requires post-treatment due to the presence of pathogens. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Anaerobic digestion of sulfate-acidified cattle slurry: One-stage vs. two-stage.

    PubMed

    Moset, Veronica; Ottosen, Lars Ditlev Mørck; Xavier, Cristiane de Almeida Neves; Møller, Henrik Bjarne

    2016-05-15

    Two strategies to include acidified cattle manure (AcCM) in co-digestion with normal cattle manure (CM) are presented in this work. The strategies are a single thermophilic (50 °C) continuous stirred tank reactor (CSTR) anaerobic digestion and a two-step (65 °C + 50 °C) CSTR process. In both strategies, two different inclusion levels of H2SO4-acidified CM (10% and 20%) in co-digestion with normal CM were tested and compared with a control CSTR fed only CM. Important enhancement of methane (CH4) yield and solid reductions were observed in the thermophilic one-step CSTR working with 10% AcCM. However, a higher inclusion level of AcCM (20%) caused volatile fatty acid accumulation in the reactor and a more than 30% reduction in CH4 production. In terms of CH4 production, when 10% of AcCM was co-digested with 90% of CM, the two-step anaerobic co-digestion yielded less than the single step. During the first step of the two-step CSTR process, acidogenesis and a partial sulfate reduction were achieved. However, sulfide stripping between the first and the second step must be promoted in order to advance this technology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Alfalfa baleage with increased concentration of nonstructural carbohydrates supplemented with a corn-based concentrate did not improve production and nitrogen utilization in early lactation dairy cows.

    PubMed

    Brito, A F; Tremblay, G F; Bertrand, A; Castonguay, Y; Bélanger, G; Michaud, R; Lafrenière, C; Martineau, R; Berthiaume, R

    2014-11-01

    The objective of this study was to investigate the effects of feeding alfalfa baleage with different concentrations of nonstructural carbohydrates (NSC) supplemented with a common corn-based concentrate on performance, ruminal fermentation profile, N utilization, and omasal flow of nutrients in dairy cows during early lactation. Ten multiparous (8 ruminally cannulated) and 8 primiparous Holstein cows were randomly assigned to treatments (high- or low-NSC diet) in a crossover design. The difference in NSC concentration between the 2 alfalfa baleages fed from d14 to 21 averaged 14 g of NSC/kg of dry matter (DM). Forages and concentrate were offered in separate meals with forages fed once and concentrate offered 3 times daily. Except for the molar proportion of valerate, which was lowest in cows fed the high-NSC diet, no other changes in ruminal fermentation were observed. Omasal flows of most nitrogenous fractions, including bacterial nonammonia N and AA, were not affected by treatments. Apparent ruminal digestibilities of neutral and acid detergent fiber and N were lowest, whereas that of total ethanol-soluble carbohydrates was highest when feeding the high-NSC diet. Postruminal digestibilities of DM, organic matter, fiber, and N were highest in cows fed the high-NSC diet, resulting in no difference in total-tract digestibilities. Total-tract digestibility of total ethanol-soluble carbohydrates was highest in cows fed the high-NSC diet, but that of starch did not differ across treatments. Although milk yield and total DM intake did not differ between treatments, yields of milk fat and 4% fat-corrected milk decreased significantly in cows fed the high-NSC diet. Milk concentration of urea N was lowest, and that of ruminal NH3-N highest, in cows fed the high-NSC diet. Plasma urea N concentration tended to be decreased in cows fed the high-NSC diet, but concentrations of AA were not affected by treatments, with the exception of Asp and Cys, both of which were lowest in cows fed the low-NSC diet. Feeding diets with contrasting NSC concentrations did not improve milk production, N utilization, or bacterial protein synthesis, possibly because intakes of NSC and DM were similar between treatments. Overall, results from the current study should be interpreted cautiously because of the lack of difference in dietary NSC intake between treatments and reduced N and fiber intakes when feeding the high-NSC diet. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Microbial community shifts in a farm-scale anaerobic digester treating swine waste: Correlations between bacteria communities associated with hydrogenotrophic methanogens and environmental conditions.

    PubMed

    Cho, Kyungjin; Shin, Seung Gu; Kim, Woong; Lee, Joonyeob; Lee, Changsoo; Hwang, Seokhwan

    2017-12-01

    Microbial community structure in a farm-scale anaerobic digester treating swine manure was investigated during three process events: 1) prolonged starvation, and changes of 2) operating temperature (between meso- and thermophilic) and 3) hydraulic retention time (HRT). Except during the initial period, the digester was dominated by hydrogenotrophic methanogens (HMs). The bacterial community structure significantly shifted with operating temperature and HRT but not with long-term starvation. Clostridiales (26.5-54.4%) and Bacteroidales (2.5-13.7%) became dominant orders in the digester during the period of HM dominance. Abundance of diverse meso- and thermophilic bacteria increased during the same period; many of these species may be H 2 producers, and/or syntrophic acetate oxidizers. Some of these species showed positive correlations with [NH 4 + -N] (p<0.1); this relationship suggests that ammonia was a significant parameter for bacterial selection. The bacterial niche information reported in this study can be useful to understand the ecophysiology of anaerobic digesters treating swine manure that contains high ammonia content. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Short term effects of copper, sulfadiazine and difloxacin on the anaerobic digestion of pig manure at low organic loading rates.

    PubMed

    Guo, Jianbin; Ostermann, Anne; Siemens, Jan; Dong, Renjie; Clemens, Joachim

    2012-01-01

    Antibiotics of inorganic and organic origin in pig manure can inhibit the anaerobic process in biogas plants. The influence of three frequently used antibiotics, copper dosed as CuSO(4), sulfadiazine (SDZ), and difloxacin (DIF), on the anaerobic digestion process of pig manure was studied in semi-continuous experiments. Biogas production recovered after every Cu dosage up to a sum of 12.94g Cukg(-1) organic dry matter (ODM), probably due to Cu precipitation following the formation of sulphide from sulphate. Complete inhibition was found at the very high Cu concentration of 19.40g Cukg(-1) ODM. Inhibitory effect of SDZ and DIF was observed at concentrations as high as 2.70gkg(-1) ODM and 0.54gkg(-1) ODM, respectively. It seems very unlikely that the antibiotics tested would inhibit the anaerobic process in a full-scale biogas plant. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Co-pyrolysis of sewage sludge and manure.

    PubMed

    Ruiz-Gómez, Nadia; Quispe, Violeta; Ábrego, Javier; Atienza-Martínez, María; Murillo, María Benita; Gea, Gloria

    2017-01-01

    The management and valorization of residual organic matter, such as sewage sludge and manure, is gaining interest because of the increasing volume of these residues, their localized generation and the related problems. The anaerobic digestion of mixtures of sewage sludge and manure could be performed due to the similarities between both residues. The purpose of this study is to evaluate the feasibility of the co-pyrolysis of sewage sludge (SS) and digested manure (DM) as a potential management technology for these residues. Pyrolysis of a sewage sludge/manure blend (50:50%) was performed at 525°C in a stirred batch reactor under N 2 atmosphere. The product yields and some characteristics of the product were analyzed and compared to the results obtained in the pyrolysis of pure residues. Potential synergetic and antagonist effects during the co-pyrolysis process were evaluated. Although sewage sludge and manure seem similar in nature, there are differences in their pyrolysis product properties and distribution due to their distinct ash and organic matter composition. For the co-pyrolysis of SS and DM, the product yields did not show noticeable synergistic effects with the exception of the yields of organic compounds, being slightly higher than the predicted average, and the H 2 yield, being lower than expected. Co-pyrolysis of SS and DM could be a feasible management alternative for these residues in locations where both residues are generated, since the benefits and the drawbacks of the co-pyrolysis are similar to those of the pyrolysis of each residue. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Effects of inclusion levels of pelleted silvergrass (Miscanthus sinensis Andress.) in the diet on digestibility, chewing activity, ruminal fermentation and blood metabolites in breeding Japanese Black cows.

    PubMed

    Asano, Keigo; Ishida, Miho; Ishida, Motohiko

    2017-03-01

    To examine the effects of inclusion levels of pelleted silvergrass (PS) in the diet on digestibility, ruminal fermentation and nutrient status of breeding Japanese Black cows, four cows were allotted to a 4 × 4 Latin square design experiment. Treatments were control fed a diet consisting of 89.4% Sudangrass hay and 10.6% soybean meal on a dry matter (DM) basis, and PS18, PS27 and PS45 fed the diet replaced with 18%, 27% and 45% of control with PS, respectively. The total digestible nutrients (TDN) content of PS was 45.6% on a DM basis. The TDN intakes were significantly decreased by increasing PS level in the diet (P < 0.05), but were higher than the TDN requirement of maintenance cows in all treatments. The total chewing time was decreased significantly by increasing PS level in the diets (P < 0.05). However, the pH and concentration of volatile fatty acid in the ruminal fluid and serum metabolite concentrations were not significantly different among the treatments. The results suggested that including PS up to 45% in the diet did not have adverse effects on the ruminal fermentation and nutrient status in breeding Japanese Black cows at the maintenance stage. © 2016 Japanese Society of Animal Science.

  2. Enhanced anaerobic treatment of CSTR-digested effluent from chicken manure: The effect of ammonia inhibition.

    PubMed

    Liu, Zhan-Guang; Zhou, Xue-Fei; Zhang, Ya-Lei; Zhu, Hong-Guang

    2012-01-01

    The effect of ammonia inhibition was evaluated during the enhanced anaerobic treatment of digested effluent from a 700m(3) chicken-manure continuous stirred tank reactor (CSTR). A 12.3L internal circulation (IC) reactor inoculated with an anaerobic granular sludge and operated at 35±1°C was employed for the investigation. With a corresponding organic loading rate of 1.5-3.5kg-COD/m(3)d over a hydraulic retention time of 1.5d, a maximum volumetric biogas production rate of 1.2m(3)/m(3)d and TCOD (total COD) removal efficiency ranging from 70% to 80% was achieved. However, the continual increase in the influent TAN content led to ammonia inhibition in the methanogenesis system. The SCOD/TAN (soluble COD/total ammonia nitrogen) ratio was presented to be the key controlling factor for the anaerobic treatment of semi-digested chicken manure, and further validation through shock loading and ammonia inhibition experiments was conducted. The threshold value of the SCOD/TAN ratio was determined to be 2.4 (corresponding to a TAN of 1250mg/L) at an influent pH of 8.5-9. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Mesophilic versus thermophilic anaerobic digestion of cattle manure: methane productivity and microbial ecology

    PubMed Central

    Moset, Veronica; Poulsen, Morten; Wahid, Radziah; Højberg, Ole; Møller, Henrik Bjarne

    2015-01-01

    In this study, productivity and physicochemical and microbiological (454 sequencing) parameters, as well as environmental criteria, were investigated in anaerobic reactors to contribute to the ongoing debate about the optimal temperature range for treating animal manure, and expand the general knowledge on the relation between microbiological and physicochemical process indicators. For this purpose, two reactor sizes were used (10 m3 and 16 l), in which two temperature conditions (35°C and 50°C) were tested. In addition, the effect of the hydraulic retention time was evaluated (16 versus 20 days). Thermophilic anaerobic digestion showed higher organic matter degradation (especially fiber), higher pH and higher methane (CH4) yield, as well as better percentage of ultimate CH4 yield retrieved and lower residual CH4 emission, when compared with mesophilic conditions. In addition, lower microbial diversity was found in the thermophilic reactors, especially for Bacteria, where a clear intensification towards Clostridia class members was evident. Independent of temperature, some similarities were found in digestates when comparing with animal manure, including low volatile fatty acids concentrations and a high fraction of Euryarchaeota in the total microbial community, in which members of Methanosarcinales dominated for both temperature conditions; these indicators could be considered a sign of process stability. PMID:25737010

  4. Replacement of grass and maize silages with lucerne silage: effects on performance, milk fatty acid profile and digestibility in Holstein-Friesian dairy cows.

    PubMed

    Sinclair, L A; Edwards, R; Errington, K A; Holdcroft, A M; Wright, M

    2015-12-01

    In total, 20 multiparous Holstein-Friesian dairy cows received one of four diets in each of four periods of 28-day duration in a Latin square design to test the hypothesis that the inclusion of lucerne in the ration of high-yielding dairy cows would improve animal performance and milk fatty acid (FA) composition. All dietary treatments contained 0.55 : 0.45 forage to concentrates (dry matter (DM) basis), and within the forage component the proportion of lucerne (Medicago sativa), grass (Lolium perenne) and maize silage (Zea mays) was varied (DM basis): control (C)=0.4 : 0.6 grass : maize silage; L20=0.2 : 0.2 : 0.6 lucerne : grass : maize silage; L40=0.4 : 0.6 lucerne : maize silage; and L60=0.6 : 0.4 lucerne : maize silage. Diets were formulated to contain a similar CP and metabolisable protein content, with the reduction of soya bean meal and feed grade urea with increasing content of lucerne. Intake averaged 24.3 kg DM/day and was lowest in cows when fed L60 (P0.05) by dietary treatment. Digestibility of DM, organic matter, CP and fibre decreased (P<0.01) with increasing content of lucerne in the diet, although fibre digestibility was similar in L40 and L60. It is concluded that first cut grass silage can be replaced with first cut lucerne silage without any detrimental effect on performance and an improvement in the milk FA profile, although intake and digestibility was lowest and plasma urea concentrations highest in cows when fed the highest level of inclusion of lucerne.

  5. Effect of wheat hay particle size and replacement of wheat hay with wheat silage on rumen pH, rumination and digestibility in ruminally cannulated non-lactating cows.

    PubMed

    Shaani, Y; Nikbachat, M; Yosef, E; Ben-Meir, Y; Friedman, N; Miron, J; Mizrahi, I

    2017-03-01

    This study examined the effects on intake, diurnal rumen pH changes, rumination and digestibility of feeding ruminally cannulated non-lactating cows in a Latin square design (four cows×four periods) with four total mixed rations (TMRs) typical for lactating cows. TMRs were based on: long wheat hay or short wheat hay, wheat silage or wheat silage+1.5% NaHCO3 buffer, as the sole roughage source (30% of TMR dry matter (DM)). The level of physically effective NDF remaining above the 8 mm screen (peNDF) was similar in the long hay and silage-based TMRs (9.45% to 9.64% of DM) and lower in the short hay TMR (7.47% of DM). The four TMRs were offered individually at 95% of ad libitum intake to avoid orts within 24 h. Cows fed long hay consumed less DM than the short hay and silage groups (9.6 v. 10.5 and 10.8 kg/day, respectively) and sorted against large hay particles at 12 h post-feeding. Under the limitations of this study (non-lactating cows fed at restricted intake) short hay TMR prevented sorting within 12 h post-feeding, encouraged rumination per kg peNDF ingested, and had higher average rumen pH (6.24), whereas preventing sub acute ruminal acidosis (SARA, defined as pH<5.8 for at least 5 h/day). In contrast, the long hay and silage-based groups were under SARA. In vitro methane production of rumen fluid was higher in the hay-fed cows than in their silage-fed counterparts, and in all treatments lower at 1 h pre-feeding than at 6 h post-feeding. In vivo DM and NDF digestibility were similar for the short hay and silage TMRs, and higher than those of the long hay TMR. Under the conditions of this study, addition of 1.5% buffer to the wheat silage TMR had no effect on intake, rumen pH, creation of SARA and digestibility.

  6. Evaluation of Biogas Production Performance and Archaeal Microbial Dynamics of Corn Straw during Anaerobic Co-Digestion with Cattle Manure Liquid.

    PubMed

    Zhang, Benyue; Zhao, Hongyan; Yu, Hairu; Chen, Di; Li, Xue; Wang, Weidong; Piao, Renzhe; Cui, Zongjun

    2016-04-28

    The rational utilization of crop straw as a raw material for natural gas production is of economic significance. In order to increase the efficiency of biogas production from agricultural straw, seasonal restrictions must be overcome. Therefore, the potential for biogas production via anaerobic straw digestion was assessed by exposing fresh, silage, and dry yellow corn straw to cow dung liquid extract as a nitrogen source. The characteristics of anaerobic corn straw digestion were comprehensively evaluated by measuring the pH, gas production, chemical oxygen demand, methane production, and volatile fatty acid content, as well as applying a modified Gompertz model and high-throughput sequencing technology to the resident microbial community. The efficiency of biogas production from fresh straw (433.8 ml/g) was higher than that of production from straw silage and dry yellow straw (46.55 ml/g and 68.75 ml/g, respectively). The cumulative biogas production from fresh straw, silage straw, and dry yellow straw was 365 l(-1) g(-1) VS, 322 l(-1) g-1 VS, and 304 l(-1) g(-1) VS, respectively, whereas cumulative methane production was 1,426.33%, 1,351.35%, and 1,286.14%, respectively, and potential biogas production was 470.06 ml(-1) g(-1) VS, 461.73 ml(-1) g(-1) VS, and 451.76 ml(-1) g(-1) VS, respectively. Microbial community analysis showed that the corn straw was mainly metabolized by acetate-utilizing methanogens, with Methanosaeta as the dominant archaeal community. These findings provide important guidance to the biogas industry and farmers with respect to rational and efficient utilization of crop straw resources as material for biogas production.

  7. Influence of liquid surface area on hydrogen sulfide oxidation during micro-aeration in dairy manure digesters

    USDA-ARS?s Scientific Manuscript database

    The specific objectives of this study were to evaluate headspace aeration for reducing hydrogen sulfide levels in low cost plug flow digesters, and to characterize the relationship between the liquid surface area and hydrogen sulfide oxidation rates. Experiments with replicate field scale plug flow ...

  8. Hygienic aspects of livestock manure management and biogas systems operated by small-scale pig farmers in Vietnam.

    PubMed

    Huong, Luu Quynh; Madsen, Henry; Anh, Le Xuan; Ngoc, Pham Thi; Dalsgaard, Anders

    2014-02-01

    Biogas digesters are widely promoted and increasingly used to treat and generate gas from pig slurry worldwide. The objective of this study was to describe manure management practices with focus on biogas digestion among small scale pig farmers in Hue (50 farmers) and Hanoi (96 farmers) and to assess fecal contamination levels in biogas effluent. Results showed that 84% of the farmers in Hanoi and 42% in Hue used both pig slurry and human excreta for biogas production. Biogas digestion only reduced E. coli concentrations by 1 to 2 log units to 3.70 ± 0.84 Escherichia coli (log10) cfu/ml on average in effluent as compared with raw slurry. Biogas effluent was commonly used to fertilize vegetables or discharged directly into the garden or aquatic recipients. Reduced problems with bad smells and flies were reported as main reasons for establishing a biogas digester. Further studies are needed to assess human and animal health hazards associated with the discharge and use of biogas effluent from small-scale biogas systems. © 2013.

  9. Enhancement of methane production from co-digestion of chicken manure with agricultural wastes.

    PubMed

    Abouelenien, Fatma; Namba, Yuzaburo; Kosseva, Maria R; Nishio, Naomichi; Nakashimada, Yutaka

    2014-05-01

    The potential for methane production from semi-solid chicken manure (CM) and mixture of agricultural wastes (AWS) in a co-digestion process has been experimentally evaluated at thermophilic and mesophilic temperatures. To the best of author(')s knowledge, it is the first time that CM is co-digested with mixture of AWS consisting of coconut waste, cassava waste, and coffee grounds. Two types of anaerobic digestion processes (AD process) were used, process 1 (P1) using fresh CM (FCM) and process 2 (P2) using treated CM (TCM), ammonia stripped CM, were conducted. Methane production in P1 was increased by 93% and 50% compared to control (no AWS added) with maximum methane production of 502 and 506 mL g(-1)VS obtained at 55°C and 35°C, respectively. Additionally, 42% increase in methane production was observed with maximum volume of 695 mL g(-1)VS comparing P2 test with P2 control under 55°C. Ammonia accumulation was reduced by 39% and 32% in P1 and P2 tests. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. The influence of the environment on dairy cow behavior, claw health and herd lameness dynamics.

    PubMed

    Cook, Nigel B; Nordlund, Kenneth V

    2009-03-01

    Free stall housing increases the exposure of dairy cows' claws to concrete walk-ways and to manure between periods of rest, and generally shows the highest rate of lameness compared with other dairy management systems. However, there is great variation within a system, and the rate of new cases of lameness can be reduced to very low levels provided time spent resting per day is maximized through good stall design, access to stalls through stocking density control and comfortable transition cow facilities, limiting the time spent milking, provision of adequate heat abatement, and good leg hygiene. Sand bedded stalls are useful as they also permit lame cows to maintain adequate daily rest. Rubberized alley flooring surfaces benefit the cow by reducing claw wear and trauma compared to concrete, making them ideal for parlor holding areas and long transfer lanes and walk ways. However, caution is required when using rubber floors in pens with uncomfortable stalls due to apparent adverse effects on cow time budgets, which may in turn have a detrimental effect on lameness.

  11. Nuevas Perspectivas en la Efficiencia del Uso Nirogeno en Vaca Lecheras

    USDA-ARS?s Scientific Manuscript database

    Dairy cows utilize feed crude protein (CP) with greater efficiency than other ruminants, but still excrete about 2 to 3 times more nitrogen (N) in manure than they secrete in milk. This increases milk production costs plus environmental N pollution. Optimizing microbial protein formation in the rume...

  12. Decay of Fecal Indicator Bacterial Populations and Bovine-Associated Source-Tracking Markers in Freshly Deposited Cow Pats

    EPA Science Inventory

    Understanding the survival of fecal indicator bacteria (FIB) and microbial source-tracking (MST) markers is critical to developing pathogen fate and transport models. Although pathogen survival in water microcosms and manure-amended soils is well documented, little is known about...

  13. Manipulation of the rhizosphere microbial community through application of a new bio-organic fertilizer improves watermelon quality and health

    PubMed Central

    Huang, Jing; Chen, Zhe; Nie, Yuanjun; Wang, Changbiao

    2018-01-01

    Bio-organic fertilizers (BOFs) combine functional microbes with a suitable substrate and have been shown to effectively suppress soil-borne diseases and promote plant growth. Here, we developed a novel bio-organic fertilizer (BOF) by fermentation of a cow plus chicken manure (M) compost using Fen-liquor Daqu (FLD) as a fermentation starter and compared the compositions of bacterial and fungal communities in the rhizosphere soil of watermelon plants after treatment with different fertilizers. Further, we aimed to explore the mechanisms underlying plant-promoting and disease (Fusarium wilt)-suppressing activities of each rhizosphere microbial community. The microbial communities of soil amended with cow plus chicken manure compost (S+M), soil amended with the BOF (S+BOF), and untreated control soil (S) without plants were analyzed through sequence analysis using the Illumina MiSeq platform. The results showed that a new microbial community was formed in the manure compost after fermentation by the Daqu. Application of the BOF to the soil induced remarkable changes in the rhizosphere microbial communities, with increased bacterial diversity and decreased fungal diversity. Most importantly, S+BOF showed the lowest abundance of Fusarium. Moreover, watermelon quality was higher (P < 0.05) in the S+BOF than in the S+M treatment. Thus, application of the BOF favorably altered the composition of the rhizosphere microbial community, suppressing Fusarium wilt disease and promoting plant quality. PMID:29451918

  14. Manipulation of the rhizosphere microbial community through application of a new bio-organic fertilizer improves watermelon quality and health.

    PubMed

    Zhao, Jia; Liu, Jiang; Liang, Hong; Huang, Jing; Chen, Zhe; Nie, Yuanjun; Wang, Changbiao; Wang, Yuguo

    2018-01-01

    Bio-organic fertilizers (BOFs) combine functional microbes with a suitable substrate and have been shown to effectively suppress soil-borne diseases and promote plant growth. Here, we developed a novel bio-organic fertilizer (BOF) by fermentation of a cow plus chicken manure (M) compost using Fen-liquor Daqu (FLD) as a fermentation starter and compared the compositions of bacterial and fungal communities in the rhizosphere soil of watermelon plants after treatment with different fertilizers. Further, we aimed to explore the mechanisms underlying plant-promoting and disease (Fusarium wilt)-suppressing activities of each rhizosphere microbial community. The microbial communities of soil amended with cow plus chicken manure compost (S+M), soil amended with the BOF (S+BOF), and untreated control soil (S) without plants were analyzed through sequence analysis using the Illumina MiSeq platform. The results showed that a new microbial community was formed in the manure compost after fermentation by the Daqu. Application of the BOF to the soil induced remarkable changes in the rhizosphere microbial communities, with increased bacterial diversity and decreased fungal diversity. Most importantly, S+BOF showed the lowest abundance of Fusarium. Moreover, watermelon quality was higher (P < 0.05) in the S+BOF than in the S+M treatment. Thus, application of the BOF favorably altered the composition of the rhizosphere microbial community, suppressing Fusarium wilt disease and promoting plant quality.

  15. Comparison of start-up strategies and process performance during semi-continuous anaerobic digestion of sugarcane filter cake co-digested with bagasse.

    PubMed

    Janke, Leandro; Leite, Athaydes F; Nikolausz, Marcell; Radetski, Claudemir M; Nelles, Michael; Stinner, Walter

    2016-02-01

    The anaerobic digestion of sugarcane filter cake and the option of co-digestion with bagasse were investigated in a semi-continuous feeding regime to assess the main parameters used for large-scale process designing. Moreover, fresh cattle manure was considered as alternative inoculum for the start-up of biogas reactors in cases where digestate from a biogas plant would not be available in remote rural areas. Experiments were carried out in 6 lab-scale semi-continuous stirred-tank reactors at mesophilic conditions (38±1°C) while the main anaerobic digestion process parameters monitored. Fresh cattle manure demonstrated to be appropriate for the start-up process. However, an acclimation period was required due to the high initial volatile fatty acids concentration (8.5gL(-1)). Regardless the mono-digestion of filter cake presented 50% higher biogas yield (480mLgVS(-1)) than co-digestion with bagasse (320mLgVS(-1)) during steady state conditions. A large-scale co-digestion system would produce 58% more biogas (1008m(3)h(-1)) than mono-digestion of filter cake (634m(3)h(-1)) due to its higher biomass availability for biogas conversion. Considering that the biogas production rate was the technical parameter that displayed the most relevant differences between the analyzed substrate options (0.99-1.45m(3)biogasm(3)d(-1)). The decision of which substrate option should be implemented in practice would be mainly driven by the available construction techniques, since economically efficient tanks could compensate the lower biogas production rate of co-digestion option. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Effects of Moringa oleifera silage on milk yield, nutrient digestibility and serum biochemical indexes of lactating dairy cows.

    PubMed

    Zeng, B; Sun, J J; Chen, T; Sun, B L; He, Q; Chen, X Y; Zhang, Y L; Xi, Q Y

    2018-02-01

    This study investigated the effects of Moringa oleifera (MO) as a partial substitute of alfalfa hay on milk yield, nutrient apparent digestibility and serum biochemical indexes of dairy cows. MO was harvested at 120 days post-seeding. Fresh MO was cut, mixed with chopped oat hay (425:575 on a DM basis), ensiled and stored for 60 days. Sixty healthy Holstein dairy cows were allocated to one of three groups: NM (no MO or control), LM (low MO; 25% alfalfa hay and 50% maize silage were replaced by MO silage) or HM (high MO; 50% alfalfa hay and 100% maize silage were replaced by MO silage). The feeding trial lasted 35 days. The LM and HM diets did not affect dry matter (DM) intake, milk yield or milk composition (lactose, milk fat, milk protein and somatic cell count). The apparent digestibility of DM and NDF was lower for HM group than NM group. Additionally, there were no significant differences in serum biochemical indexes between the LM and NM groups. The HM group had lower serum concentrations of total cholesterol, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol and higher serum concentrations of urea than the NM group. The partial replacement of alfalfa hay (≤50%) and maize silage with MO silage had no negative effects on milk yield, in vivo nutrient apparent digestibility or serum biochemical indexes of lactating cows. © 2017 Blackwell Verlag GmbH.

  17. Short communication: Environmental mastitis pathogen counts in freestalls bedded with composted and fresh recycled manure solids.

    PubMed

    Cole, K J; Hogan, J S

    2016-02-01

    An experiment was conducted to compare bacterial counts of environmental mastitis pathogens in composted recycled manure solids bedding with those in fresh recycled manure solids. Eighteen Holstein cows were housed in 1 pen with 18 stalls. One row of 9 freestalls included mattresses and was bedded weekly with composted recycled manure solids. The second row of 9 freestalls included mattresses and was bedded weekly with fresh recycled manure solids. The back one-third of stalls toward the alleyway was covered in 25 to 50 mm of bedding. Samples were taken from the back one-third of 4 stalls for both treatments on d 0, 1, 2, and 6 of each week. After 3 wk, bedding treatments were switched between rows, making the total duration 6 wk. Mean total gram-negative bacterial counts were approximately 0.5 log10 cfu/g of dry matter lower in the composted recycled manure solids on d 0 compared with fresh recycled manure solids. Klebsiella species, coliform, and Streptococcus species counts were at least 1.0 log10 cfu/g of dry matter lower in composted compared with fresh recycled manure solids on d 0. Only gram-negative bacterial counts on d 1 were reduced in composted recycled manure solids compared with fresh recycled manure solids. Differences were not observed between treatments in gram-negative bacterial, coliform, Klebsiella species, or Streptococcus species counts on d 2 and 6. Ash content was higher in composted recycled manure solids compared with fresh recycled manure solids on d 0, 1, 2, and 6. Despite the increase in ash after composting, bacterial counts of mastitis pathogens in composted recycled manure solids were comparable with those in fresh recycled manure when used as freestall bedding. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Microbial release of ferulic and p-coumaric acids from forages and their digestibility in lactating cows fed total mixed rations with different forage combinations.

    PubMed

    Cao, Bin-Bin; Jin, Xin; Yang, Hong-Jian; Li, Sheng-Li; Jiang, Lin-Shu

    2016-01-30

    Ferulic acid (FA) and p-coumaric acid (PCA) are widely distributed in graminaceous plant cell walls. This study investigated the in vitro and in vivo digestibility of ester-linked FA (FAest) and PCA (PCAest) in lactating dairy cows. Regarding corn stover, ensiled corn stover, whole corn silage, Chinese wild ryegrass and alfalfa hay with different phenolic acid profiles, the in vitro rumen digestibility of forage FAest and PCAest was negatively correlated with the ether-linked FA content and original PCA/FA ratio in the forages. The concentration of both phenolic acids in culture fluids was low after a 72 h incubation, and the mixed rumen microorganisms metabolized nearly all phenolic acids released into the culture fluids. FAest digestibility in the whole digestive tract was negatively correlated with dietary PCA/FA ratio, but a converse result occurred with dietary PCAest digestibility. The digestibility in either the rumen or the whole digestive tract was greater for FAest than for PCAest. Forage PCAest in comparison with FAest is not easily digested in either the rumen or the whole digestive tract, and they were negatively affected by forage FAeth content and lignification extent indicated by the original dietary PCA/FA ratio. © 2015 Society of Chemical Industry.

  19. A comparison of free-stall barns used by modernized Wisconsin dairies.

    PubMed

    Bewley, J; Palmer, R W; Jackson-Smith, D B

    2001-02-01

    A primary objective of the Wisconsin Dairy Modernization Survey was to compare features of free-stall barns available to dairy producers. This study used data from a large random sample of expanding dairy farms to determine whether the theoretical benefits of particular free-stall configurations bear out under on-farm conditions. Comparisons were made among herds using free-stall barns as their primary housing for new versus remodeled facilities, barn design, bedding used, feed-delivery design, manure removal strategies, animal restraint, maternity areas, overcrowding, and cooling methods. Producers who made the transition from tie-stall housing to free-stall housing were satisfied with this decision. New free-stall barns provided a more desirable environment for the herds than remodeled free-stall barns, although initial investments were higher. When new free-stall barns were compared, herds with four-row barns had higher production, lower somatic cell count, and higher stocking rates than herds with six-row barns. Respondents were more satisfied with four- and six-row barns than with two- and three-row barns. Respondents felt sand provided some advantages for cow comfort, while satisfaction with bedding cost and manure handling was higher with mattresses. Dairy Herd Improvement data showed no difference in milk production or somatic cell count for producers who chose sand or mattress-based free stalls. Respondents were more satisfied with the use of drive-through feeding than other feed-delivery designs. Most producers chose to use tractor scrapers to remove manure; however, producers who used automated systems were more satisfied with manure management. Few differences were observed when comparing self-locking head gates to palpation rails. Overcrowding did not have any adverse affect on production or user satisfaction with feed intake or cow comfort. Using supplemental cooling appeared to facilitate higher production.

  20. Black gram (Vigna Mungo L.) foliage supplementation to crossbred cows: effects on feed intake, nutrient digestibility and milk production

    PubMed Central

    Dey, Avijit; De, Partha Sarathi; Gangopadhyay, Prabir Kumar

    2017-01-01

    Objective An experiment was conducted to examine the effect of dietary supplementation of dried and ground foliage of black gram (Vigna mungo L.) on feed intake and utilization, and production performance of crossbred lactating cows. Methods Eighteen lactating crossbred (Bos taurus×Bos indicus) cows (body weight 330.93± 10.82 kg) at their second and mid lactation (milk yield 6.77±0.54 kg/d) were randomly divided into three groups of six each in a completely randomized block design. Three supplements were formulated by quantitatively replacing 0, 50, and 100 per cent of dietary wheat bran of concentrate mixture with dried and ground foliage of black gram. The designated supplement was fed to each group with basal diet of rice straw (ad libitum) to meet the requirements for maintenance and milk production. Daily feed intake and milk yield was recorded. A digestion trial was conducted to determine the total tract digestibility of various nutrients. Results The daily feed intake was increased (p<0.05) with the supplementation of black gram foliage. Although the digestibility of dry matter, organic matter, crude protein, and ether extract did not vary (p>0.05), the fibre digestibility was increased (p<0.05), which ultimately improved (p<0.05) the total digestible nutrients content of composite diet. Although, the average milk yield (kg/animal/d) and composition did not differ (p>0.05) among the groups, milk yield was increased by 10 per cent with total replacement of wheat bran in concentrate mixture with of black gram foliage. The economics of milk production calculated as feed cost per kg milk yield (INR 10.61 vs 7.98) was reduced by complete replacement of wheat bran with black gram foliage. Conclusion Black gram foliage could be used as complete replacement for wheat bran in concentrate mixture of dairy cows in formulating least cost ration for economic milk production in small holders’ animal production. PMID:27282971

  1. Comparison of bacterial community structure and dynamics during the thermophilic composting of different types of solid wastes: anaerobic digestion residue, pig manure and chicken manure

    PubMed Central

    Song, Caihong; Li, Mingxiao; Jia, Xuan; Wei, Zimin; Zhao, Yue; Xi, Beidou; Zhu, Chaowei; Liu, Dongming

    2014-01-01

    This study investigated the impact of composting substrate types on the bacterial community structure and dynamics during composting processes. To this end, pig manure (PM), chicken manure (CM), a mixture of PM and CM (PM + CM), and a mixture of PM, CM and anaerobic digestion residue (ADR) (PM + CM + ADR) were selected for thermophilic composting. The bacterial community structure and dynamics during the composting process were detected and analysed by polymerase chain reaction–denaturing gradient gel electrophoresis (DGGE) coupled with a statistic analysis. The physical-chemical analyses indicated that compared to single-material composting (PM, CM), co-composting (PM + CM, PM + CM + ADR) could promote the degradation of organic matter and strengthen the ability of conserving nitrogen. A DGGE profile and statistical analysis demonstrated that co-composting, especially PM + CM + ADR, could improve the bacterial community structure and functional diversity, even in the thermophilic stage. Therefore, co-composting could weaken the screening effect of high temperature on bacterial communities. Dominant sequencing analyses indicated a dramatic shift in the dominant bacterial communities from single-material composting to co-composting. Notably, compared with PM, PM + CM increased the quantity of xylan-degrading bacteria and reduced the quantity of human pathogens. PMID:24963997

  2. Anaerobic digestion of Chinese cabbage waste silage with swine manure for biogas production: batch and continuous study.

    PubMed

    Kafle, Gopi Krishna; Bhattarai, Sujala; Kim, Sang Hun; Chen, Lide

    2014-01-01

    The aim of this study was to investigate the potential for anaerobic co-digestion of Chinese cabbage waste silage (CCWS) with swine manure (SM). Batch and continuous experiments were carried out under mesophilic anaerobic conditions (36-38°C). The batch test evaluated the effect of CCWS co-digestion with SM (SM: CCWS=100:0; 25:75; 33:67; 0:100, % volatile solids (VS) basis). The continuous test evaluated the performance of a single stage completely stirred tank reactor with SM alone and with a mixture of SM and CCWS. Batch test results showed no significant difference in biogas yield up to 25-33% of CCWS; however, biogas yield was significantly decreased when CCWS contents in feed increased to 67% and 100%. When testing continuous digestion, the biogas yield at organic loading rate (OLR) of 2.0 g VSL⁻¹ d⁻¹ increased by 17% with a mixture of SM and CCWS (SM:CCWS=75:25) (423 mL g⁻¹ VS) than with SM alone (361 mL g⁻¹ VS). The continuous anaerobic digestion process (biogas production, pH, total volatile fatty acids (TVFA) and TVFA/total alkalinity ratios) was stable when co-digesting SM and CCWS (75:25) at OLR of 2.0 g VSL⁻¹ d⁻¹ and hydraulic retention time of 20 days under mesophilic conditions.

  3. Effects of feeding birdsfoot trefoil hay on neutral detergent fiber digestion, nitrogen utilization efficiency, and lactational performance by dairy cows.

    PubMed

    Christensen, R G; Yang, S Y; Eun, J-S; Young, A J; Hall, J O; MacAdam, J W

    2015-11-01

    This experiment was conducted to determine effects of feeding birdsfoot trefoil hay-based diets in comparison with an alfalfa hay-based diet on N utilization efficiency, ruminal fermentation, and lactational performance by mid-lactation dairy cows. Nine multiparous lactating Holstein cows (131 ± 22.6 d in milk), 3 of which were rumen fistulated, were fed 3 experimental diets in a replicated 3 × 3 Latin square design with 3 periods of 14 d of adaptation and 7 d of data and sample collection. Within squares, cows were randomly assigned to diets as follows: alfalfa hay-based diet (AHT), alfalfa and birdsfoot trefoil hay-based diet (ABT), and birdsfoot trefoil hay-based diet (BT). Intakes of dry matter and crude protein were similar across treatments, whereas ABT and BT diets resulted in decreased fiber intake compared with AHT. Feeding BT tended to increase neutral detergent fiber digestibility compared with AHT and ABT. Milk yield tended to increase for cows consuming ABT or BT diets. Milk true protein concentration and yield were greater for cows consuming ABT relative to those fed AHT. Concentration of total volatile fatty acids tended to increase by cows fed BT compared with those fed AHT and ABT. Feeding birdsfoot trefoil hay in a total mixed ration resulted in a tendency to decrease acetate proportion, but it tended to increase propionate proportion, leading to a tendency to decrease acetate-to-propionate ratio. Whereas concentration of ammonia-N was similar across treatments, cows offered BT exhibited greater microbial protein yield relative to those fed AHT and ABT. Cows offered birdsfoot trefoil hay diets secreted more milk N than AHT, resulting in improved N utilization efficiency for milk N. The positive effects due to feeding birdsfoot trefoil hay were attributed to enhanced neutral detergent fiber digestion, and thus it could replace alfalfa hay in high-forage dairy diets while improving N utilization efficiencies and maintaining lactational performance compared with alfalfa hay. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Continuous dry fermentation of swine manure for biogas production.

    PubMed

    Chen, Chuang; Zheng, Dan; Liu, Gang-Jin; Deng, Liang-Wei; Long, Yan; Fan, Zhan-Hui

    2015-04-01

    A down plug-flow anaerobic reactor (DPAR) was designed for the feasibility study on continuous dry fermentation of swine manure without any additional stirring. Using fresh swine manure as the feedstock with TS concentration (w/w) of 20%, 25%, 30%, and 35%, stable volumetric biogas production rates of 2.40, 1.92, 0.911, and 0.644L · (Ld)(-1) and biogas yields of 0.665, 0.532, 0.252, and 0.178 L g(-)(1)VS were obtained respectively, and the TS degradation rates were 46.5%, 45.4%, 53.2%, and 55.6%, respectively. With the increase of feedstock TS concentration, the concentration of ammonia nitrogen grew up to the maximum value of 3500 mg L(-1). Biogas production was obviously inhibited when the concentration of ammonia nitrogen was above 3000 mg L(-1). The maximal volumetric biogas production rate of 2.34 L ·(Ld)(-1) and biogas yield of 0.649 L g(-1)VS were obtained with TS concentration of 25% at 25°C without inhibition. Liquidity experiments showed that TS concentration of digestate could be less than 15.8%, and the flow rate of digestate more than 0.98 m s(-1) when the feedstock TS concentration was less than 35%, which indicated the digestate could be easily discharged from a DPAR. Therefore, it is feasible to conduct a continuous dry fermentation in a DPAR using fresh swine manure as the feedstock with TS concentration less than 35%, whereas the feedstock TS concentration should not exceed 30% to achieve the maximal biogas production rate and biogas yield. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Anaerobic co-digestion of recalcitrant agricultural wastes: Characterizing of biochemical parameters of digestate and its impacts on soil ecosystem.

    PubMed

    Muscolo, Adele; Settineri, Giovanna; Papalia, Teresa; Attinà, Emilio; Basile, Carmelo; Panuccio, Maria Rosaria

    2017-05-15

    Anaerobic digestion (AD) of organic wastes is a promising alternative to landfilling for reducing Greenhouse Gas Emission (GHG) and it is encouraged by current regulation in Europe. Biogas-AD produced, represents a useful source of green energy, while its by-product (digestate) is a waste, that needs to be safely disposal. The sustainability of anaerobic digestion plants partly depends on the management of their digestion residues. This study has been focused on the environmental and economic benefits of co-digest recalcitrant agricultural wastes such olive wastes and citrus pulp, in combination with livestock wastes, straw and cheese whey for biogas production. The aim of this work was to investigate the effects of two different bioenergy by-products on soil carbon stock, enzymes involved in nutrient cycling and microbial content. The two digestates were obtained from two plants differently fed: the first plant (Uliva) was powered with 60% of recalcitrant agricultural wastes, and 40% of livestock manure milk serum and maize silage. The second one (Fattoria) was fed with 40% of recalcitrant agricultural wastes and 60% of livestock manure, milk serum and maize silage. Each digestate, separated in liquid and solid fractions, was added to the soil at different concentrations. Our results evidenced that mixing and type of input feedstock affected the composition of digestates. Three months after treatments, our results showed that changes in soil chemical and biochemical characteristics depended on the source of digestate, the type of fraction and the concentration used. The mainly affected soil parameters were: Soil Organic Matter (SOM), Microbial Biomass Carbon (MBC), Fluorescein Diacetate Hydrolysis (FDA), Water Soluble Phenol (WSP) and Catalase (CAT) that can be used to assess the digestate agronomical feasibility. These results show that the agronomic quality of a digestate is strictly dependent on percentage and type of feedstocks that will be used to power the digester. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Anaerobic Mesophilic Codigestion of Rice Straw and Chicken Manure: Effects of Organic Loading Rate on Process Stability and Performance.

    PubMed

    Mei, Zili; Liu, Xiaofeng; Huang, Xianbo; Li, Dong; Yan, Zhiying; Yuan, Yuexiang; Huang, Yajun

    2016-07-01

    To investigate the effects of organic loading rate (OLR) on performance and stability of mesophilic co-digestion of rice straw (RS) and chicken manure (CM), benchtop experiments (40 L) were carried out at OLRs of 3.0, 3.6, 4.2, 4.8, 6.0, 8.0, and 12.0 kg volatile solid (VS)/(m(3)·day) with volatile solid (VS) ratio of 1:1 (RS/CM) which was based on batch tests. Anaerobic co-digestion was slightly and severely inhibited by the accumulation of ammonia when the digester was overloaded at an OLR of 6 and 12 kg VS/(m(3)·day), respectively. The recommended OLR for co-digestion is 4.8 kg VS/(m(3)·day), which corresponds to average specific biogas production (SBP) of 380 L/kg VS and volumetric biogas production rate (VBPR) of 1.8 m(3)/(m(3)·day). An OLR of 6-8 kg VS/(m(3)·d) with SBP of 360-440 L/kg VS and VBPR of 2.1-3.5 m(3)/(m(3)·day) could be considered, if an Anaerobic digestion (AD) system assisted by in situ removal of ammonia was adopted.

  7. Contribution of Anaerobic Digesters to Emissions Mitigation and Electricity Generation Under U.S. Climate Policy

    PubMed Central

    2011-01-01

    Livestock husbandry in the U.S. significantly contributes to many environmental problems, including the release of methane, a potent greenhouse gas (GHG). Anaerobic digesters (ADs) break down organic wastes using bacteria that produce methane, which can be collected and combusted to generate electricity. ADs also reduce odors and pathogens that are common with manure storage and the digested manure can be used as a fertilizer. There are relatively few ADs in the U.S., mainly due to their high capital costs. We use the MIT Emissions Prediction and Policy Analysis (EPPA) model to test the effects of a representative U.S. climate stabilization policy on the adoption of ADs which sell electricity and generate methane mitigation credits. Under such policy, ADs become competitive at producing electricity in 2025, when they receive methane reduction credits and electricity from fossil fuels becomes more expensive. We find that ADs have the potential to generate 5.5% of U.S. electricity. PMID:21761880

  8. Contribution of anaerobic digesters to emissions mitigation and electricity generation under U.S. climate policy.

    PubMed

    Zaks, David P M; Winchester, Niven; Kucharik, Christopher J; Barford, Carol C; Paltsev, Sergey; Reilly, John M

    2011-08-15

    Livestock husbandry in the U.S. significantly contributes to many environmental problems, including the release of methane, a potent greenhouse gas (GHG). Anaerobic digesters (ADs) break down organic wastes using bacteria that produce methane, which can be collected and combusted to generate electricity. ADs also reduce odors and pathogens that are common with manure storage and the digested manure can be used as a fertilizer. There are relatively few ADs in the U.S., mainly due to their high capital costs. We use the MIT Emissions Prediction and Policy Analysis (EPPA) model to test the effects of a representative U.S. climate stabilization policy on the adoption of ADs which sell electricity and generate methane mitigation credits. Under such policy, ADs become competitive at producing electricity in 2025, when they receive methane reduction credits and electricity from fossil fuels becomes more expensive. We find that ADs have the potential to generate 5.5% of U.S. electricity.

  9. Mesophilic co-digestion of dairy manure and lipid rich solid slaughterhouse wastes: process efficiency, limitations and floating granules formation.

    PubMed

    Pitk, Peep; Palatsi, Jordi; Kaparaju, Prasad; Fernández, Belén; Vilu, Raivo

    2014-08-01

    Lipid and protein rich solid slaughterhouse wastes are attractive co-substrates to increase volumetric biogas production in co-digestion with dairy manure. Addition of decanter sludge (DS), containing 42.2% of lipids and 35.8% of proteins (total solids basis), up to 5% of feed mixture resulted in a stable process without any indication of long chain fatty acids (LCFA) or free ammonia (NH3) inhibition and in 3.5-fold increase of volumetric biogas production. Contrary, only lipids addition as technical fat (TF) at over 2% of feed mixture resulted in formation of floating granules (FG) and process efficiency decrease. Formed FG had low biodegradability and its organic part was composed of lipids and calcium salts of LCFAs. Anaerobic digestion process intentionally directed to FG formation, could be a viable option for mitigation and control of lipids overload and derived LCFA inhibition. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Effect of yeast culture and Aspergillus oryzae fermentation extract on ruminal characteristics and nutrient digestibility.

    PubMed

    Wiedmeier, R D; Arambel, M J; Walters, J L

    1987-10-01

    Four nonpregnant and nonlactating Holstein cows fitted with ruminal fistulas were assigned to each of four diets in a 4 X 4 Latin square design. Dietary treatments were 1) basal diet containing 50% concentrate; 2) basal diet plus 90 g/d yeast culture; 3) basal diet plus 2.63 g/d Aspergillus oryzae fermentation extract; 4) basal diet plus 90 g/d of A. oryzae fermentation extract and yeast culture. Cows were fed diets at a rate of 86 g DM/kg BW.75 for 14 d adaptation followed by an 8-d collection period. Digestibility of dry matter was increased by A. oryzae and A. oryzae and yeast culture combination treatments. Digestibility of CP was increased regardless of fungal culture addition. Hemicellulose digestibility, percent ruminal cellulolytic organisms, and acetate to propionate ratio were increased by the addition of fungal supplements.

  11. Improving methane yield and quality via co-digestion of cow dung mixed with food waste.

    PubMed

    Awasthi, Sanjeev Kumar; Joshi, Rutu; Dhar, Hiya; Verma, Shivpal; Awasthi, Mukesh Kumar; Varjani, Sunita; Sarsaiya, Surendra; Zhang, Zengqiang; Kumar, Sunil

    2018-03-01

    Methane (CH 4 ) production and quality were enhanced by the co-digestion of cow dung and food waste (FW) mixed with organic fraction of municipal solid waste (OFMSW) under optimized conditions in bench and semi continuous-scale mode for a period of 30 days. A bacterium capable of high yield of CH 4 was enriched and isolated by employing activated sewage sludge as the inoculums. The thirteen bacterial isolates were identified through morphological and biochemical tests. Gas chromatography was used to analyze the chemical compositions of the generated biogas. CH 4 yields were significantly higher during co-digestion of Run II (7.59 L) than Run I (3.7 L). Therefore, the co-digestion of FW with OFMSW and Run II was observed to be a competent method for biogas conversion from organic waste resources. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Replacing corn silage with different forage millet silage cultivars: effects on milk yield, nutrient digestion, and ruminal fermentation of lactating dairy cows.

    PubMed

    Brunette, T; Baurhoo, B; Mustafa, A F

    2014-10-01

    This study investigated the effects of dietary replacement of corn silage (CS) with 2 cultivars of forage millet silages [i.e., regular millet (RM) and sweet millet (SM)] on milk production, apparent total-tract digestibility, and ruminal fermentation characteristics of dairy cows. Fifteen lactating Holstein cows were used in a replicated 3 × 3 Latin square experiment and fed (ad libitum) a high-forage total mixed ration (68:32 forage:concentrate ratio). Dietary treatments included CS (control), RM, and SM diets. Experimental silages constituted 37% of each diet DM. Three ruminally fistulated cows were used to determine the effect of dietary treatments on ruminal fermentation and total-tract nutrient utilization. Relative to CS, RM and SM silages contained 36% more crude protein, 66% more neutral detergent fiber (NDF), and 88% more acid detergent fiber. Cows fed CS consumed more dry matter (DM; 24.4 vs. 22.7 kg/d) and starch (5.7 vs. 3.7 kg/d), but less NDF (7.9 vs. 8.7 kg/d) than cows fed RM or SM. However, DM, starch and NDF intakes were not different between forage millet silage types. Feeding RM relative to CS reduced milk yield (32.7 vs. 35.2 kg/d), energy-corrected milk (35.8 vs. 38.0 kg/d) and SCM (32.7 vs. 35.3 kg/d). However, cows fed SM had similar milk, energy-corrected milk, and solids-corrected milk yields than cows fed CS or RM. Milk efficiency was not affected by dietary treatments. Milk protein concentration was greatest for cows fed CS, intermediate for cows fed SM, and lowest for cows fed RM. Milk concentration of solids-not-fat was lesser, whereas milk urea nitrogen was greater for cows fed RM than for those fed CS. However, millet silage type had no effect on milk solids-not-fat and milk urea nitrogen levels. Concentrations of milk fat, lactose and total solids were not affected by silage type. Ruminal pH and ruminal NH3-N were greater for cows fed RM and SM than for cows fed CS. Total-tract digestibility of DM (average=67.9%), NDF (average=53.9%), crude protein (average=63.3%), and gross energy (average=67.9%) were not influenced by dietary treatments. It was concluded that cows fed CS performed better than those fed RM or SM likely due to the higher starch and lower NDF intakes. However, no major differences were noted between the 2 forage millet silage cultivars. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. ESTRATEGIAS PARA HACER EL MEJOR USO DE LA PROTEINA EN RACIONES PARA VACAS LECHERAS

    USDA-ARS?s Scientific Manuscript database

    Dairy cows utilize feed CP with greater efficiency than other ruminants, but still excrete about 2 to 3 times more N in manure than they secrete in milk. This increases milk production costs plus environmental N pollution. Optimizing microbial protein formation in the rumen is the most effective way...

  14. Nutritional and environmental effects on ammonia emissions from dairy cattle housing: A meta-analysis

    USDA-ARS?s Scientific Manuscript database

    Nitrogen (N) excreted in urine by dairy cows can be potentially transformed to ammonia (NH3) and emitted to the atmosphere. Dairy production contributes to NH3 emission, which can create human respiratory problems and odor issues, reduces manure quality, and is an indirect source of nitrous oxide (N...

  15. Dietary CP and Tannin Extracts Impact Ammonia Emissions From Manure Deposited On Dairy Barn Floors

    USDA-ARS?s Scientific Manuscript database

    The impact of dietary CP and Quebracho-Chestnut tannin extracts on dairy cow performance and N partitioning are reported elsewhere at this meeting. Mixtures of feces/urine from these studies were applied to lab-scale ventilated chambers to measure ammonia-N emissions (ANE) from simulated concrete ba...

  16. Epidemiology of 3rd generation cephalosporin-resistant Escherichia coli on dairy farms

    USDA-ARS?s Scientific Manuscript database

    Dairy cattle have been identified as a reservoir for 3rd generation cephalosporin (3GC)-resistant Escherichia coli. We previously identified 3GC-resistant E. coli from manure composite samples of calves and cows in a survey of 80 farms in Pennsylvania. Resistant strains were most frequently isolated...

  17. Investigating the efficiency of co-composting and vermicomposting of vinasse with the mixture of cow manure wastes, bagasse, and natural zeolite.

    PubMed

    Alavi, Nadali; Daneshpajou, Monavvar; Shirmardi, Mohammad; Goudarzi, Gholamreza; Neisi, Abdolkazem; Babaei, Ali Akbar

    2017-11-01

    Fermentation of ethanol as a product of sugarcane agro-industry causes the discharge of large amounts of a liquid waste called vinasse into the environment. In this study, co-composting followed by vermicomposting process of the mixtures of vinasse, cow manure, and chopped bagasse was performed for 60days using earthworms of Eisenia fetida species. The results showed that the trend of changes in C/N was decreasing. The pH of the final fertilizer was in alkaline range (8.1-8.4). The total potassium decreased during the process, ranging from 0.062 to 0.15%, while the total phosphorus increased and its values ranged from 0.06 to 0.10%. The germination index (GI) for all samples was 100%, while the cellular respiration maturity index was<2mg C-CO 2 g -1 organic carbon day -1 , confirming a very stable compost. The results of this study indicate that the compost obtained from the co-composting-vermicomposting process could be used as a sound soil amendment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Thalassic biogas production from sea wrack biomass using different microbial seeds: cow manure, marine sediment and sea wrack-associated microflora.

    PubMed

    Marquez, Gian Powell B; Reichardt, Wolfgang T; Azanza, Rhodora V; Klocke, Michael; Montaño, Marco Nemesio E

    2013-04-01

    Sea wrack (dislodged sea grasses and seaweeds) was used in biogas production. Fresh water scarcity in island communities where sea wrack could accumulate led to seawater utilization as liquid substrate. Three microbial seeds cow manure (CM), marine sediment (MS), and sea wrack-associated microflora (SWA) were explored for biogas production. The average biogas produced were 2172±156 mL (MS), 1223±308 mL (SWA) and 551±126 mL (CM). Though methane potential (396.9 mL(CH4) g(-1) volatile solid) computed from sea wrack proximate values was comparable to other feedstocks, highest methane yield was low (MS=94.33 mL(CH4) g(-1) VS). Among the microbial seeds, MS proved the best microbial source in utilizing sea wrack biomass and seawater. However, salinity (MS=42‰) observed exceeded average seawater salinity (34‰). Hence, methanogenic activity could have been inhibited. This is the first report on sea wrack biomass utilization for thalassic biogas production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. The effects of nitrogen pollutants on the isotopic signal (δ15N) of Ulva lactuca: Microcosm experiments.

    PubMed

    Orlandi, Lucia; Calizza, Edoardo; Careddu, Giulio; Carlino, Pasquale; Costantini, Maria Letizia; Rossi, Loreto

    2017-02-15

    Effects of two chemical forms of Nitrogen (NH 4 + and NO 3 - ) on δ 15 N in Ulva lactuca were analysed separately and in mixture at two concentrations. We assessed whether the δ 15 N values of U. lactuca discriminate between Nitrogen from synthetic fertilisers (inorganic) and from fresh cow manure (organic), and the isotopic ability of the macroalga to reflect Nitrogen concentrations. Isotopic signature and N content of the macroalga reflected different nitrogenous sources and their concentrations after 48h. The inorganic Nitrogen source (NH 4 NO 3 ) altered the isotopic values of the macroalgae more than Nitrogen from fresh cow manure (NO 3 - ). δ 15 N values observed in the mixed solution did not differ from those displayed in NH 4 NO 3 treatment alone. We conclude that stable isotope analysis of U. lactuca collected in an unpolluted site and experimentally submerged in sites suspected of being affected by disturbance is a useful tool for rapid monitoring of anthropogenic discharges of Nitrogen pollutants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Community analysis of hydrogen-producing extreme thermophilic anaerobic microflora enriched from cow manure with five substrates.

    PubMed

    Yokoyama, Hiroshi; Moriya, Naoko; Ohmori, Hideyuki; Waki, Miyoko; Ogino, Akifumi; Tanaka, Yasuo

    2007-11-01

    The present study analyzed the community structures of anaerobic microflora producing hydrogen under extreme thermophilic conditions by two culture-independent methods: denaturing gradient gel electrophoresis (DGGE) and clone library analyses. Extreme thermophilic microflora (ETM) was enriched from cow manure by repeated batch cultures at 75 degrees C, using a substrate of xylose, glucose, lactose, cellobiose, or soluble starch, and produced hydrogen at yields of 0.56, 2.65, 2.17, 2.68, and 1.73 mol/mol-monosaccharide degraded, respectively. The results from the DGGE and clone library analyses were consistent and demonstrated that the community structures of ETM enriched with the four hexose-based substrates (glucose, lactose, cellobiose, and soluble starch) consisted of a single species, closely related to a hydrogen-producing extreme thermophile, Caldoanaerobacter subterraneus, with diversity at subspecies levels. The ETM enriched with xylose was more diverse than those enriched with the other substrates, and contained the bacterium related to C. subterraneus and an unclassified bacterium, distantly related to a xylan-degrading and hydrogen-producing extreme thermophile, Caloramator fervidus.

Top