Sample records for digested dairy cow

  1. Redundancy in Anaerobic Digestion Microbiomes during Disturbances by the Antibiotic Monensin

    PubMed Central

    Spirito, Catherine M.; Daly, Sarah E.; Werner, Jeffrey J.

    2018-01-01

    ABSTRACT The antibiotic monensin is fed to dairy cows to increase milk production efficiency. A fraction of this monensin is excreted into the cow manure. Previous studies have found that cow manure containing monensin can negatively impact the performance of anaerobic digesters, especially upon first introduction. Few studies have examined whether the anaerobic digester microbiome can adapt to monensin during the operating time. Here, we conducted a long-term time series study of four lab-scale anaerobic digesters fed with cow manure. We examined changes in both the microbiome composition and function of the anaerobic digesters when subjected to the dairy antibiotic monensin. In our digesters, monensin was not rapidly degraded under anaerobic conditions. The two anaerobic digesters that were subjected to manure from monensin feed-dosed cows exhibited relatively small changes in microbiome composition and function due to relatively low monensin concentrations. At higher concentrations of monensin, which we dosed directly to control manure (from dairy cows without monensin), we observed major changes in the microbiome composition and function of two anaerobic digesters. A rapid introduction of monensin to one of these anaerobic digesters led to the impairment of methane production. Conversely, more gradual additions of the same concentrations of monensin to the other anaerobic digester led to the adaptation of the anaerobic digester microbiomes to the relatively high monensin concentrations. A member of the candidate OP11 (Microgenomates) phylum arose in this anaerobic digester and appeared to be redundant with certain Bacteroidetes phylum members, which previously were dominating. IMPORTANCE Monensin is a common antibiotic given to dairy cows in the United States and is partly excreted with dairy manure. An improved understanding of how monensin affects the anaerobic digester microbiome composition and function is important to prevent process failure for farm-based anaerobic digesters. This time series study demonstrates how anaerobic digester microbiomes are inert to low monensin concentrations and can adapt to relatively high monensin concentrations by redundancy in an already existing population. Therefore, our work provides further insight into the importance of microbiome redundancy in maintaining the stability of anaerobic digesters. PMID:29500266

  2. Effect of corn silage hybrids differing in starch and neutral detergent fiber digestibility on lactation performance and total-tract nutrient digestibility by dairy cows.

    PubMed

    Ferraretto, L F; Fonseca, A C; Sniffen, C J; Formigoni, A; Shaver, R D

    2015-01-01

    Selection for hybrids with greater starch and NDF digestibility may be beneficial for dairy producers. The objective of this study was to determine the effect of feeding a TMR containing a floury-leafy corn silage hybrid (LFY) compared with a brown midrib corn silage hybrid (BMR) for intake, lactation performance, and total-tract nutrient digestibility in dairy cows. Ninety-six multiparous Holstein cows, 105±31d in milk at trial initiation, were stratified by DIM and randomly assigned to 12 pens of 8 cows each. Pens were randomly assigned to 1 of 2 treatments, BMR or LFY, in a completely randomized design; a 2-wk covariate period with cows fed a common diet followed by a 14-wk treatment period with cows fed their assigned treatment diet. Starch digestibilities, in situ, in vitro, and in vivo, were greater for LFY compared with BMR; the opposite was observed for NDF digestibility. Cows fed BMR consumed 1.7kg/d more dry matter than LFY. Although, actual-, energy-, and solids-corrected milk yields were greater for BMR than LFY, feed conversions (kg of milk or component-corrected milk per kg of DMI) did not differ. Fat-corrected milk and milk fat yield were similar, as milk fat content was greater for cows fed LFY (4.05%) than BMR (3.83%). Cows fed BMR had lower milk urea nitrogen concentration, but greater milk protein and lactose yields compared with LFY. Body weight change and condition score were unaffected by treatment. Total-tract starch digestibility was greater for cows fed the LFY corn silage; however, dry matter intake and milk and protein yields were greater for cows fed the BMR corn silage. Although total-tract starch digestibility was greater for cows fed the LFY corn silage, feed efficiency was not affected by hybrid type due to greater dry matter intake and milk and protein yields by cows fed the BMR corn silage. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. A meta-analysis of feed digestion in dairy cows. 1. The effects of forage and concentrate factors on total diet digestibility.

    PubMed

    Nousiainen, J; Rinne, M; Huhtanen, P

    2009-10-01

    A meta-analysis based on published experiments with lactating dairy cows was conducted to study the effects of dietary forage and concentrate factors on apparent total diet digestibility. A data set was collected that included a total of 497 dietary treatment means from 92 studies. The diets were based on grass silage or on legume or whole-crop cereal silages partly or completely substituted for grass silage. The silages were supplemented with concentrates given at a flat rate within a dietary comparison. For the statistical evaluation, the data were divided into 5 subsets to quantify silage (digestibility, 42 diets in 17 studies; fermentation characteristics, 108 diets in 39 studies) and concentrate (amount of supplementation, 142 diets in 59 studies; concentration of crude protein, 215 diets in 82 studies; carbohydrate composition, 66 diets in 23 studies) factors on total diet digestibility. The diet digestibility of dairy cows was determined by total fecal collection or by using acid-insoluble ash as an internal marker. Diet organic matter digestibility (OMD) at a maintenance level of feeding (OMD(m)) was estimated using sheep in vivo or corresponding in vitro digestibility values for the forage and reported ingredient and chemical composition values, with tabulated digestibility coefficients for the concentrate components of the diet. A mixed model regression analysis was used to detect the responses of different dietary factors on apparent total diet digestibility. Improved silage OMD(m) resulting from earlier harvest was translated into improved production-level OMD in cows (OMD(p)). The effects of silage fermentation characteristics on OMD(p) were quantitatively small, although sometimes significant. Concentrate supplementation improved total diet OMD(m), but this was not realized in lactating dairy cows because of linearly decreased neutral detergent fiber (NDF) digestibility as concentrate intake increased. Increasing the concentrate crude protein amount quadratically improved OMD(p) in cows, with the response being mostly due to improved NDF digestibility. Replacement of starchy concentrates with fibrous by-products slightly decreased OMD(p) but tended to improve NDF digestibility. The true digestibility of cell solubles (OM - NDF) estimated by the Lucas test both from all data and from the data subsets was not significantly different from 1.00, suggesting that responses in OMD(p) of dairy cows are mediated through changes in the concentration and digestibility of NDF.

  4. Effects of concentrate crude protein content on nutrient digestibility, energy utilization, and methane emissions in lactating dairy cows fed fresh-cut perennial grass.

    PubMed

    Hynes, D N; Stergiadis, S; Gordon, A; Yan, T

    2016-11-01

    Although many studies have investigated mitigation strategies for methane (CH 4 ) output from dairy cows fed a wide variety of diets, research on the effects of concentrate crude protein (CP) content on CH 4 emissions from dairy cows offered fresh grass is limited. The present study was designed to evaluate the effects of cow genotype and concentrate CP level on nutrient digestibility, energy utilization, and CH 4 emissions in dairy cows offered fresh-grass diets. Twelve multiparous lactating dairy cows (6 Holstein and 6 Holstein × Swedish Red) were blocked into 3 groups for each breed and assigned to a low-, medium-, or high-CP concentrate diet [14.1, 16.1, and 18.1% CP on a dry matter (DM) basis, respectively], in a 3-period changeover study (25d per period). Total diets contained (DM basis) 32.8% concentrates and 67.2% perennial ryegrass, which was harvested daily. All measurements were undertaken during the final 6d of each period: digestibility measurements for 6d and calorimetric measurements in respiration chambers for 3d. Feed intake and milk production data were reported in a previous paper. We observed no significant interaction between concentrate CP level and cow genotype on any parameter. Concentrate CP level had no significant effect on any energy utilization parameter, except for urinary energy output, which was positively related to concentrate CP level. Similarly, concentrate CP content had no effect on CH 4 emission (g/d), CH 4 per kg feed intake, or nutrient digestibility. Cross breeding of Holstein cows significantly reduced gross energy, digestible energy, and metabolizable energy intake, heat production, and milk energy output. However, cow genotype had no significant effect on energy utilization efficiency or CH 4 parameters. Furthermore, the present study yielded a value for gross energy lost as CH 4 (5.6%) on fresh grass-based diets that was lower than the widely accepted value of 6.5%. The present findings indicate that reducing concentrate CP content from 18.1 to 14.1% may not be a successful way of alleviating CH 4 emissions from lactating dairy cows offered good-quality fresh grass, but grazing cows could be offered a low-CP concentrate without compromising energy utilization efficiency. Further research is needed to investigate whether larger differences in dietary CP content may yield positive results. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Effects of ruminally degradable starch levels on performance, nitrogen balance, and nutrient digestibility in dairy cows fed low corn-based starch diets.

    PubMed

    Luo, Guobin; Xu, Wenbin; Yang, Jinshan; Li, Yang; Zhang, Liyang; Wang, Yizhen; Lin, Cong; Zhang, Yonggen

    2017-05-01

    This trial was performed to examine the effects of ruminally degradable starch (RDS) levels in total mixed ration (TMR) with low corn-based starch on the milk production, whole-tract nutrient digestibility and nitrogen balance in dairy cows. Eight multiparous Holstein cows (body weight [BW]: 717±63 kg; days in milk [DIM]: 169±29) were assigned to a crossover design with two dietary treatments: a diet containing 62.3% ruminally degradable starch (% of total starch, low RDS) or 72.1% ruminally degradable starch (% of total starch, high RDS). Changes to the ruminally degradable levels were conducted by using either finely ground corn or steam-flaked corn as the starch component. The results showed that dry matter intake, milk yield and composition in dairy cows were not affected by dietary treatments. The concentration of milk urea nitrogen was lower for cows fed high RDS TMR than low RDS TMR. The whole-tract apparent digestibility of neutral detergent fiber, acid detergent fiber and crude protein decreased, and that of starch increased for cows fed high RDS TMR over those fed low RDS TMR, with no dietary effect on the whole-tract apparent digestibility of dry matter and organic matter. The proportion of urinary N excretion in N intake was lower and that of fecal N excretion in N intake was higher for cows fed high RDS TMR than those fed low RDS TMR. The N secretion in milk and the retention of N were not influenced by the dietary treatments. Total purine derivative was similar in cows fed high RDS TMR and low RDS TMR. Consequently, estimated microbial N flow to the duodenum was similar in cows fed high RDS TMR and low RDS TMR. Results of this study show that ruminally degradable starch levels can influence whole-tract nutrient digestibility and nitrogen balance in dairy cows fed low corn-based starch diets, with no influence on performance.

  6. Effects of alfalfa silage storage structure and roasting corn on ruminal digestion and microbial CP synthesis in lactating dairy cows

    USDA-ARS?s Scientific Manuscript database

    The objective of this experiment was to determine the effects of unroasted ground shelled corn (GSC) or roasted GSC (RGSC), when fed with alfalfa, ensiled in bag, bunker, or O2-limiting tower silos on ruminal digestion and microbial protein synthesis in lactating dairy cows. The roasted corn was hea...

  7. Effects of whole-plant corn silage hybrid type on intake, digestion, ruminal fermentation, and lactation performance by dairy cows through a meta-analysis.

    PubMed

    Ferraretto, L F; Shaver, R D

    2015-04-01

    Understanding the effect of whole-plant corn silage (WPCS) hybrids in dairy cattle diets may allow for better decisions on hybrid selection by dairy producers, as well as indicate potential strategies for the seed corn industry with regard to WPCS hybrids. Therefore, the objective of this study was to perform a meta-analysis using literature data on the effects of WPCS hybrid type on intake, digestibility, rumen fermentation, and lactation performance by dairy cows. The meta-analysis was performed using a data set of 162 treatment means from 48 peer-reviewed articles published between 1995 and 2014. Hybrids were divided into 3 categories before analysis. Comparative analysis of WPCS hybrid types differing in stalk characteristics were in 4 categories: conventional, dual-purpose, isogenic, or low-normal fiber digestibility (CONS), brown midrib (BMR), hybrids with greater NDF but lower lignin (%NDF) contents or high in vitro NDF digestibility (HFD), and leafy (LFY). Hybrid types differing in kernel characteristics were in 4 categories: conventional or yellow dent (CONG), NutriDense (ND), high oil (HO), and waxy. Genetically modified (GM) hybrids were compared with their genetically similar non-biotech counterpart (ISO). Except for lower lignin content for BMR and lower starch content for HFD than CONS and LFY, silage nutrient composition was similar among hybrids of different stalk types. A 1.1 kg/d greater intake of DM and 1.5 and 0.05 kg/d greater milk and protein yields, respectively, were observed for BMR compared with CONS and LFY. Likewise, DMI and milk yield were greater for HFD than CONS, but the magnitude of the difference was smaller. Total-tract NDF digestibility was greater, but starch digestibility was reduced, for BMR and HFD compared with CONS or LFY. Silage nutrient composition was similar for hybrids of varied kernel characteristics, except for lower CP and EE content for CONG than ND and HO. Feeding HO WPCS to dairy cows decreased milk fat content and yield and protein content compared with the other kernel-type hybrids. Hybrids varying in kernel characteristics did not affect intake, milk production, or total-tract nutrient digestibilities by lactating dairy cows. Nutrient composition and lactation performance were similar between GM and ISO. Positive effects of BMR and HFD on intake and milk yield were observed for lactating dairy cows, but the reduced total-tract starch digestibility for these hybrids merits further study. Except for negative effects of HO on milk components, differences were minimal among corn silage hybrids differing in kernel type. Feeding GM WPCS did not affect lactation performance by dairy cows. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Feeding Moringa oleifera fresh or ensiled to dairy cows--effects on milk yield and milk flavor.

    PubMed

    Mendieta-Araica, Bryan; Spörndly, Eva; Reyes-Sánchez, Nadir; Spörndly, Rolf

    2011-06-01

    Moringa oleifera, either fresh or ensiled, was compared with Elephant grass as a main feedstuff for dairy cows. To test the effects feed had on milk yield, milk composition, ration digestibility, and the organoleptic characteristics of milk, six lactating dairy cows were used in a Changeover 3 × 3 Latin Square experiment, replicated twice. With equal intake of metabolizable energy the intake of protein and fiber differed (p < 0.001) between all diets where fresh Moringa had the highest and the Elephant grass diet had the lowest intake. Compared with the control diet, ensiled Moringa had higher digestibility (P < 0.05) of both protein and fiber. With the exception of DM digestibility, no digestibility differences were found between fresh Moringa and Moringa silage treatments. Milk yield did not differ between any of the treatments and averaged 13.7 kg cow day(-1). Milk composition was similar among all treatments. Milk from the fresh Moringa treatment, however, had a grassy flavor and aroma, significantly different from the other two treatments, even though it was normal in color and appearance. No organoleptic differences were found between milk from the control treatment and the Moringa silage treatment. The conclusion is that Moringa silage can be fed to dairy cows in large quantities to produce the same quantity and quality of milk as traditional diets.

  9. Identification of lactic acid bacteria in the feces of dairy cows fed whole crop maize silage to assess the survival of silage bacteria in the gut.

    PubMed

    Han, Hongyan; Wang, Chao; Li, Yanbing; Yu, Zhu; Xu, Qingfang; Li, Guangpeng; Minh, Tang Thuy; Nishino, Naoki

    2018-01-01

    In order to assess the survival of lactic acid bacteria (LAB) in whole crop maize silage in the gut of dairy cows, one representative silage sample and three different feces samples were collected from dairy cows on three dairy farms in Hua Bei, China and three dairy farms in Kyushu, Japan. The composition of the bacterial community was examined by denaturing gradient gel electrophoresis and quantitative polymerase chain reaction. Lactobacillus acetotolerans was detected in all bunker-made maize silage samples, regardless of the dairy farm or sampling region from which they were sourced. A total of eight LAB species were detected in the maize silage samples, of which three (L. acetotolerans, L. pontis and L. casei) appeared to survive digestion. The populations of L. acetotolerans in silage and feces were 10 6-7 and 10 3-4 copies/g, respectively, indicating that, even for the LAB species showing potential survival in the gut, competition in this niche may be harsh and the population may substantially decrease during the digestion process. It may be difficult for silage LAB to survive in the gut of silage-fed dairy cows, because marked decrease in population can take place during the digestion process, even for surviving species. © 2017 Japanese Society of Animal Science.

  10. Modification of immune responses and digestive system microbiota of lactating dairy cows by feeding Bovamine(R)

    USDA-ARS?s Scientific Manuscript database

    We evaluated the immune modulatory effects as well as effects on productivity of Bovamine® (Lactobacillus acidophilus strain NP51 and Probionibacterium freudenreichii) fed to Holstein and Jersey dairy cows during late lactation (average DIM = 202.44 days on wk-0). Cows were randomized to treatment g...

  11. Hot topic: apparent total-tract nutrient digestibilities measured commercially using 120-hour in vitro indigestible neutral detergent fiber as a marker are related to commercial dairy cattle performance.

    PubMed

    Schalla, A; Meyer, L; Meyer, Z; Onetti, S; Schultz, A; Goeser, J

    2012-09-01

    Measuring individual feed nutrient concentration is common practice for field dairy nutritionists. However, accurately measuring nutrient digestibility and using digestion values in total digestible nutrients models is more challenging. Our objective was to determine if in vivo apparent total-tract nutrient digestibility measured with a practical approach was related to commercial milk production parameters. Total mixed ration and fecal samples were collected from high-producing cows in pens on 39 commercial dairies and analyzed at a commercial feed and forage testing laboratory for nutrient concentration and 120-h indigestible NDF (iNDF) content using the Combs-Goeser in vitro digestion technique. The 120-h iNDF was used as an internal marker to calculate in vivo apparent nutrient digestibilities. Two samples were taken from each dairy and were separated in time by at least 3 wk. Samples were targeted to be taken within 7d of Dairy Herd Improvement (DHI) herd testing. Approved DHI testers measured individual cow milk weights as well as fat and protein concentrations. Individual cow records were averaged by pen corresponding to the total mixed ration and fecal samples. Formulated diet and dry matter intake (DMI) records for each respective pen were also collected. Mixed model regression analysis with dairy specified as a random effect was used to relate explanatory variables (diet nutrient concentrations, formulated DMI, in vivo apparent nutrient digestibilities, and fecal nutrient concentrations) to milk production measures. Dry matter intake, organic matter (OM) digestibility, fecal crude protein (CP) concentration, and fecal ether extract concentration were related to milk, energy-corrected milk, and fat yields. Milk protein concentration was related to CP digestibility, and milk protein yield was related to DMI, OM digestibility, CP digestibility, and ether extract digestibility. Although many studies have related DMI and OM digestibility to milk production under controlled experimental settings, very few have related practical in vivo measures to milk production. By documenting the practical OM digestibility relationship with milk production, nutritionists and scientists may have confidence in this approach for measuring diet performance and collecting nutritional data for commercial dairies. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Intestinal digestibility of long-chain fatty acids in lactating dairy cows: A meta-analysis and meta-regression.

    PubMed

    Boerman, J P; Firkins, J L; St-Pierre, N R; Lock, A L

    2015-12-01

    The objective of this analysis was to examine the intestinal digestibility of individual long-chain fatty acids (FA) in lactating dairy cows. Available data were collated from 15 publications containing 61 treatments, which reported total and individual FA duodenal flows and calculations of intestinal digestibility. All studies involved lactating dairy cows, and estimates of digestibility were based on measurements either between the duodenum and ileum (18 treatments) or between the duodenum and feces (43 treatments). Fatty acid digestibility was calculated for C16:0, C18:0, C18:1 (cis and trans isomers), C18:2, and C18:3. Digestibility of C18:0 was lower than for C18:1 and C18:3, with no difference in digestibility between saturated FA (C16:0 and C18:0). We weighted the studies by the reciprocal of the variance to generate best-fit equations to predict individual FA digestibility based on duodenal flow of FA and dietary independent variables. The flow of C18:0 negatively affected the digestibility of C18:0 and was also included in the best-fit equations for all other 18-carbon FA using duodenal flow characteristics. The type of fat supplemented had an effect on digestibility of individual FA, with whole seeds having reduced digestibility. Our meta-analysis results showed minimal differences in the digestibility of individual FA. However, C18:0 flow through the duodenum had a negative effect on the digestibility of several individual FA, with the largest negative effect on C18:0 digestibility. The mechanisms that reduce C18:0 absorption at high concentrations are unknown and warrant further investigation. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Grain source and marginal changes in forage particle size modulate digestive processes and nutrient intake of dairy cows.

    PubMed

    Nasrollahi, S M; Khorvash, M; Ghorbani, G R; Teimouri-Yansari, A; Zali, A; Zebeli, Q

    2012-08-01

    This study investigated the effects of, and interactions between, dietary grain source and marginal changes in alfalfa hay (AH) particle size (PS) on digestive processes of dairy cows. A total of eight Holstein dairy cows (175 days in milk) were allocated in a replicated 4 × 4 Latin square design with four 21-day periods. The experiment was a 2 × 2 factorial arrangement with two levels of theoretical PS of AH (fine = 15 mm or long = 30 mm) each combined with two different sources of cereal grains (barley grain alone or barley plus corn grain in a 50 : 50 ratio). Results showed that cows consuming diets supplemented with corn had greater dry matter and nutrient intakes (P < 0.01), independent of forage PS. In addition, the apparent digestibility of fiber fractions was greater for diets supplemented with corn (P = 0.01). The feeding of barley grain-based diets was associated with greater apparent digestibility of non-fiber carbohydrates, and this variable was even greater when long AH was fed (P = 0.04). Moreover, the feeding of long AH resulted in longer time spent eating (P = 0.03) and higher pH (P < 0.01), as well as a tendency for higher acetate-to-propionate ratio in the rumen fluid (P = 0.06) at 3 h post feeding. In conclusion, the results indicated that the marginal increase of PS of AH may prolong eating time and improve rumen fermentation, particularly in diets based on barley grain. Partial substitution of barley grain by corn can improve feed intake and fiber digestibility in mid-lactation dairy cows.

  14. Nutritional and productive performance of dairy cows fed corn silage or sugarcane silage with or without additives.

    PubMed

    de Andrade, Felipe Leite; Rodrigues, João Paulo Pacheco; Detmann, Edenio; Valadares Filho, Sebastião de Campos; Castro, Marcelo Messias Duarte; Trece, Aline Souza; Silva, Tadeu Eder; Fischer, Vivian; Weiss, Kirsten; Marcondes, Marcos Inácio

    2016-04-01

    The objective of this study was to compare the intake, digestibility, and performance of dairy cows fed corn silage, fresh sugarcane, and sugarcane ensiled in three different forms. Twenty-five Holstein cows at 114 ± 12.6 days in milk (DIM) were used. A randomized block design was adopted, using an arrangement of repeated measures over time. The following treatments were tested: corn silage (CS); fresh sugarcane (FS); sugarcane silage without additives (SCS); sugarcane silage enriched with calcium oxide at 5 g/kg of forage (SCSc); and sugarcane silage enriched with Lactobacillus buchneri at 5 × 10(4) cfu/kg of forage (SCSb). The roughage to concentrate ratio was 60:40 for the CS diet and 40:60 for the sugarcane-based diets. The dry matter intake (DMI) as a function of body weight had a downward trend for the cows fed sugarcane silage, compared with those fed FS. The sugarcane silages had higher digestibilities of dry matter (DM), organic matter (OM), and neutral detergent fiber (NDFap), compared with FS. The use of L. buchneri or calcium oxide improved the diet's digestibility. The use of FS, sugarcane silage, or sugarcane silage with additives had no effects on milk and fat-corrected milk yield, compared to corn silage. Cows fed FS presented lower milk total solids content and had a downward trend for milk fat, compared with cows fed sugarcane-silage diets. Cows fed sugarcane silages produced milk with higher casein stability in the alcohol test than cows fed fresh-sugarcane diet. Sugarcane silage, with or without additives, did not reduce the intake of dairy cows, and the use of additives improved the fiber's digestibility.

  15. Effects of corn-based diet starch content and neutral detergent fiber source on lactation performance, digestibility, and bacterial protein flow in dairy cows.

    PubMed

    Fredin, S M; Akins, M S; Ferraretto, L F; Shaver, R D

    2015-01-01

    An experiment was conducted to evaluate the effects of corn-based dietary starch content and source of neutral detergent fiber (NDF) on lactation performance, nutrient digestion, bacterial protein flow, and ruminal parameters in lactating dairy cows. Eight ruminally cannulated multiparous Holstein cows averaging 193±11d in milk were randomly assigned to treatments in a replicated 4×4 Latin square design with 21-d periods. Treatment diets were high corn grain (HCG; 38% corn silage, 19% dry ground corn, and 4% soy hulls), high soy hulls (HSH; 38% corn silage, 11% dry ground corn, and 13% soy hulls), high corn silage (HCS; 50% corn silage, 6% dry ground corn, and 4% soy hulls), and low corn silage (LCS; 29% corn silage, 15% corn, and 19% soy hulls). The HCG, HSH, HCS, and LCS diets contained 29, 23, 24, and 22% starch; 27, 32, 30, and 32% total NDF; and 21, 21, 25, and 17% forage NDF (dry matter basis), respectively. Mean dry matter intake and milk yield were unaffected by treatment. Cows fed LCS had reduced milk fat content compared with HSH and HCS. The concentration of milk urea nitrogen was greater for cows fed HCS compared with the other treatments. Total-tract digestion of NDF was reduced for cows fed the HCG diet. Total-tract starch digestion was increased for cows fed the HSH and HCS compared with HCG and LCS diets. Bacterial protein flow was unaffected by treatment. Ruminal ammonia concentration was reduced in cows fed the HCG and LCS diets compared with the HCS diet. Ruminal propionate increased and the acetate:propionate ratio decreased in cows fed the LCS diet compared with the HCS diet. Ruminal pH was greater for cows fed the HCS diet compared with cows fed the LCS diet. Diet digestibility and performance of mid- to late-lactation cows fed reduced-starch diets by partially replacing corn grain with soy hulls or corn silage was similar to or improved compared with cows fed a normal-starch diet. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. Effects of substitution of different levels of steam-flaked corn for finely ground corn on lactation and digestion in early lactation dairy cows.

    PubMed

    Zhong, R Z; Li, J G; Gao, Y X; Tan, Z L; Ren, G P

    2008-10-01

    Eight multiparous Holstein cows, 4 of them fitted with rumen cannulas, were used to test the effects of substitution of steam-flaked corn (SFC) for equal amounts of finely ground corn (FGC) in diets on feed intake and digestion, blood metabolites, and lactation performance in early lactation dairy cows. Cows were fed 4 diets in a replicated 4 x 4 Latin square design. The fistulated cows formed 1 replicate. Each experimental period lasted for 3 wk. The 4 diets contained 0, 10, 20, or 40% SFC and 40, 30, 20, or 0% FGC (dry matter basis), respectively. The milk protein content and yield, milk solid nonfat content and yield, plasma glucose concentration, and dry matter intake increased as the proportion of SFC increased in diets. Apparent total tract digestibilities of dry matter, organic matter, neutral detergent fiber, acid detergent fiber, and average ruminal fluid NH(3)-N concentration decreased with increasing levels of SFC. The ruminal fluid pH was not affected by the substitution of SFC for FGC. The 20% SFC substitution improved digestion of crude protein, yield of fat-corrected milk, milk lactose content, fat, and fat yield. The 40% SFC substitution increased urea concentration in both plasma and milk. It was concluded that 20% of SFC substitution for FGC appeared to be an appropriate level in diet for early lactation dairy cows.

  17. Effect of dietary inclusion of date seed (Phoenix dactylifera L.) on intake, digestibility, milk production, and milk fatty acid profile of Holstein dairy cows.

    PubMed

    Rezaeenia, A; Naserian, A A; Valizadeh, R; Tahmasbi, A M; Mokhtarpour, A

    2018-03-26

    The objective of this experiment was to investigate the influence of ground date seed (GDS) on intake, digestibility, and milk yield and milk fatty acid (FA) composition of lactating Holstein cows. The experimental design was a 4 × 4 replicated Latin square with eight lactating dairy cows with an average milk production of 35.5 ± 1.5 kg and 75 ± 5 days in milk (DIM). Dairy cows were fed one of the four treatments contained 0, 2, 4, and 6% of diet dry matter (DM) GDS in replacement of wheat bran. All diets contained the same amount of forages (alfalfa hay and corn silage). Dietary treatments had no effect on DM intake (DMI), total tract apparent digestibility, milk yield, and milk composition. Increasing GDS linearly decreased concentration of C13:0 and increased cis-9 C14:1 and trans-11 C18:1 (vaccenic acid) (P < 0.05). A linear tendency for more C16:1 content in milk fat was observed with increasing GDS (P = 0.06). Feeding GDS resulted in a linear decrease (P < 0.01) in saturated FA (SFA) but increased milk fat monounsaturated FA (MUFA) and trans FA (TFA) (P < 0.05). Therefore, low levels of GDS (up to 6%) in the diet of Holstein dairy cows can beneficially modify milk FA composition without any adverse effects on intake, digestibility, and milk yield.

  18. Technical note: assessment of recovery site of mobile nylon bags for measuring ileal digestibility of starch in dairy cows.

    PubMed

    Norberg, E; Volden, H; Harstad, O M

    2007-01-01

    The objective of this study was to evaluate recovery site of mobile nylon bags for measuring ileal digestibility of ruminally undegraded starch in dairy cows. Eight feed samples of untreated and treated concentrates were examined. Three lactating cows equipped with rumen fistula and duodenal and ileal cannulas were used in the experiment. The mobile nylon bags containing intact feeds or residues after a 12-h ruminal incubation were pretreated using a 2-step procedure to simulate abomasal digestion before insertion through the duodenal cannula. To assess the effect of hindgut fermentation on starch digestibility, approximately half of the bags were collected from the ileum and half from the feces. The results indicate that feed samples should be preincubated in rumen before insertion into duodenum, and that samples with relatively high fractions of rumen-undigestible starch should be collected from the ileum instead of from feces.

  19. Host-rumen microbe interactions may be leveraged to improve the productivity of dairy cows

    USDA-ARS?s Scientific Manuscript database

    The cattle rumen serves as a digestive bioreactor for the dairy cow, yet our knowledge of the microbial contents, ecology, and host selection within the rumen is only precursory. This is despite the knowledge that the volatile fatty acids (VFA) and microbial crude protein (MCP) produced by rumen mic...

  20. Modification of digestive system microbiome of lactating dairy cows by feeding Bovamine: effect on ruminal fermentation

    USDA-ARS?s Scientific Manuscript database

    We evaluated the immune modulatory effects as well as effects on productivity of Bovamine® (Lactobacillus acidophilus strain NP51 and Probionibacterium freudenreichii) on the digestive system microbiome of dairy cattle during late lactation (average DIM = 202). To unveil the underlying mechanisms, ...

  1. Short communication: Partial replacement of ground corn with algae meal in a dairy cow diet: Milk yield and composition, nutrient digestibility, and metabolic profile.

    PubMed

    da Silva, G G; Ferreira de Jesus, E; Takiya, C S; Del Valle, T A; da Silva, T H; Vendramini, T H A; Yu, Esther J; Rennó, F P

    2016-11-01

    This study was undertaken to evaluate the effects of partially replacing dietary ground corn with a microalgae meal from Prototheca moriformis (composed of deoiled microalgae and soyhulls) on milk yield and composition, nutrient intake, total-tract apparent digestibility, and blood profile of lactating dairy cows. Twenty multiparous Holstein cows (57.7±49.4d in milk, 25.3±5.3 of milk yield, and 590±71kg of live weight at the start of experiment, mean ± standard deviation) were used in a cross-over design experiment, with 21-d periods. Diets were no microalgae meal (CON) or 91.8g/kg of microalgae meal partially replacing dietary ground corn (ALG). Cows showed similar milk yield and composition. The 3.5% fat-corrected milk production was 30.2±1.34kg/d for CON and 31.1±1.42kg/d for ALG. Despite cows having similar dry matter intake, ALG increased neutral detergent fiber and ether extract intake. In addition, cows fed ALG exhibited higher ether extract digestibility. No differences were detected in glucose, urea, amino-aspartate transferase, and gamma-glutamyl transferase blood concentrations. Feeding ALG increased the total cholesterol and high-density lipoprotein in blood compared with CON. The microalgae meal may partially replace ground corn in diets of lactating cows without impairing the animal's performance. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Histidine deficiency has a negative effect on lactational performance of dairy cows.

    PubMed

    Giallongo, F; Harper, M T; Oh, J; Parys, C; Shinzato, I; Hristov, A N

    2017-04-01

    A 10-wk randomized complete block design experiment with 24 Holstein cows was conducted to investigate the long-term effects of feeding a His-deficient diet on lactational performance of dairy cows. Cows were blocked by days in milk, milk yield, and parity, and randomly assigned to 1 of the following 2 treatments: (1) His-adequate diet [HAD; providing +166 g/d over metabolizable protein (MP) requirements, according to the National Research Council (2001) and digestible His (dHis) supply of 68 g/d, or 2.5% of MP requirements] and (2) His-deficient diet (HDD; +37 g/d over MP requirements and dHis supply of 49 g/d, or 1.9% of MP requirements). Both HAD and HDD were supplemented with rumen-protected (RP) Met and Lys supplying digestible Met and digestible Lys at 2.4 and 2.4% and 7.2 and 7.1% of MP requirements, respectively. At the end of the 10-wk experiment, HDD was supplemented with RPHis (HDD+RPHis; total dHis supply of 61 g/d, or 2.4% of MP requirements) for an additional 9 d. Dry matter intake (DMI; 25.4 and 27.1 kg/d, standard error of the mean = 0.41), yields of milk (37.6 and 40.5 kg/d, standard error of the mean = 0.62), protein and lactose, energy-corrected milk, and milk and plasma urea-N were decreased by HDD compared with HAD. Feed and energy-corrected milk feed efficiencies, milk fat, protein and lactose concentrations, body weight, and body condition score of the cows were not affected by treatment. Apparent total-tract digestibility of dry and organic matter, crude protein, and neutral detergent fiber, and excretion of urinary N and urea-N were decreased by HDD compared with HAD. Concentration of plasma leptin tended to be decreased for HDD compared with HAD. Plasma concentrations of EAA (His, Leu, Lys, Val) and carnosine decreased and total EAA tended to be decreased in cows fed HDD compared with HAD. Muscle concentrations of free His, Leu, and Val decreased and Gly and β-alanine tended to be increased by HDD compared with HAD. Cows fed HDD had a lower blood hemoglobin concentration than cows fed HAD. At the end of the 10-wk study, the 9-d supplementation of HDD with RPHis (i.e., HDD+RPHis) increased DMI and plasma His, and tended to increase energy-corrected milk yield and plasma carnosine, compared with HDD. In conclusion, feeding a diet deficient in dHis supplying adequate MP, digestible Met, and digestible Lys affected negatively lactational performance of dairy cows. These results confirm our previous findings that low dietary His supply can impair DMI, yields of milk and milk protein, and blood hemoglobin in dairy cows. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Effects of feeding hull-less barley on production performance, milk fatty acid composition, and nutrient digestibility of lactating dairy cows.

    PubMed

    Yang, Y; Ferreira, G; Teets, C L; Corl, B A; Thomason, W E; Griffey, C A

    2017-05-01

    The objectives of this study were to evaluate production performance, milk fatty acid composition, and nutrient digestibility in high-producing dairy cows consuming diets containing corn and hull-less barley (cultivar Amaze 10) in different proportions as the grain source. Eight primiparous and 16 multiparous Holstein cows were assigned to 1 of 4 diets in a replicated 4 × 4 Latin square design with 21-d periods. Cows were fed once daily (1200 h) by means of a Calan gate system (American Calan Inc., Northwood, NH). All diets contained ∼20% grain (dry matter basis). Treatments consisted of 100% corn (0B), 67% corn and 33% hull-less barley (33B), 33% corn and 67% hull-less barley (67B), and 100% hull-less barley (100B) as the grain sources. Total-tract nutrient digestibility was estimated using lanthanum chloride (LaCl 3 ) as an external marker. Dry matter intake differed quadratically among treatments, being lowest for 67B and highest for 0B and 100B. Feeding hull-less barley did not affect milk yield, and milk fat concentration differed cubically among treatments. The cubic response was attributed to the higher milk fat concentration observed for the diet containing 67B. Neither the concentrations in milk of protein and lactose nor the yields of protein and lactose differed among treatments. The proportion of de novo synthesized fatty acids in milk did not differ among treatments. The apparent total-tract digestibility of dry matter, crude protein, and neutral detergent fiber did not differ among treatments. Although a quadratic effect was observed, starch digestibility was minimally affected by treatments. In conclusion, this study indicates that hull-less barley grain is as good as corn grain as an energy source when formulating diets for high-producing dairy cows. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Cattle Differ in Ability to Adapt to Small Intestinal Digestion of Starch

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to evaluate the impact of post-ruminal starch digestion on inflammatory response in dairy cattle. Six cull, nonpregnant, nonlactating, multiparous cannulated Holstein dairy cows (BW 804±101 kg) were fed a high forage diet ad libitum starting 15 d before the infusion p...

  5. Comparing the effect of homogenization and heat processing on the properties and in vitro digestion of milk from organic and conventional dairy herds.

    PubMed

    Van Hekken, D L; Tunick, M H; Ren, D X; Tomasula, P M

    2017-08-01

    We compared the effects of homogenization and heat processing on the chemical and in vitro digestion traits of milk from organic and conventional herds. Raw milk from organic (>50% of dry matter intake from pasture) and conventional (no access to pasture) farms were adjusted to commercial whole and nonfat milk fat standards, and processed with or without homogenization, and with high-temperature-short-time or UHT pasteurization. The milk then underwent in vitro gastrointestinal digestion. Comparison of milk from organic and conventional herds showed that the milks responded to processing in similar ways. General composition was the same among the whole milk samples and among the nonfat milk samples. Protein profiles were similar, with intact caseins and whey proteins predominant and only minor amounts of peptides. Whole milk samples from grazing cows contained higher levels of α-linolenic (C18:3), vaccenic (C18:1 trans), and conjugated linoleic acids, and lower levels of palmitic (C16:0) and stearic (C18:0) acids than samples from nongrazing cows. Processing had no effect on conjugated linoleic acid and linolenic acid levels in milk, although homogenization resulted in higher levels of C8 to C14 saturated fatty acids. Of the 9 volatile compounds evaluated, milk from grazing cows contained lower levels of 2-butanone than milk from nongrazing cows, and milk from both farms showed spikes for heptanal in UHT samples and spikes for butanoic, octanoic, nonanoic, and N-decanoic acids in homogenized samples. At the start of in vitro digestion, nonfat raw and pasteurized milk samples formed the largest acid clots, and organic milk clots were larger than conventional milk clots; UHT whole milk formed the smallest clots. Milk digests from grazing cows had lower levels of free fatty acids than digests from nongrazing cows. In vitro proteolysis was similar in milk from both farms and resulted in 85 to 95% digestibility. Overall, milk from organic/grass-fed and conventional herds responded in similar ways to typical homogenization and heat processing used in United States dairy plants and showed only minor differences in chemical traits and in vitro digestion. Findings from this research enhance our knowledge of the effect of processing on the quality traits and digestibility of milk from organic/pasture-fed and confined conventional herds and will help health-conscious consumers make informed decisions about dairy selections. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Incremental amounts of Ascophyllum nodosum meal do not improve animal performance but increase milk iodine output in early lactation dairy cows fed high-forage diets

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to investigate the effects of incremental amounts of Ascophyllum nodosum meal (ANOD) on milk production, milk composition including fatty acids and I, blood metabolites, and nutrient intake and digestibility in early lactation dairy cows fed high-forage diets. Twelve ...

  7. Characteristics of dairy cows with a greater or lower risk of subacute ruminal acidosis: Volatile fatty acid absorption, rumen digestion, and expression of genes in rumen epithelial cells.

    PubMed

    Gao, X; Oba, M

    2016-11-01

    The objective of this study was to examine whether lactating dairy cows with a greater or lower risk of subacute ruminal acidosis (SARA) have differences in volatile fatty acid (VFA) absorption rate, expression of genes involved in VFA metabolism and intracellular pH regulation in rumen epithelial cells, and in situ carbohydrate digestibility in the rumen. We fed 14 ruminally cannulated mid-lactating dairy cows (119±47.2d in milk; body weight 640±47.9kg) a high-grain diet consisting of 30% forage ad libitum, with an 18-d diet adaptation and a 7-d sample and data collection period. Eight cows with the lowest acidosis index [area below pH 5.8 normalized for dry matter intake (DMI); 0.10±0.16 pH × min/kg of DMI] and 5 with the highest acidosis index (3.72±0.19 pH × min/kg of DMI) were classified as animals with lower risk (LS) and higher risk (HS) of SARA, respectively. Minimum (5.75 vs. 5.33) and mean rumen pH (6.33 vs. 5.98) were higher for LS than for HS cows. In addition, the duration and area of rumen pH below 5.8 was lower in LS cows (24.9 vs. 481min/d; 2.94 vs. 102 pH × min/d). Although DMI, milk yield, and milk component yields did not differ, milk fat concentration tended to be higher for LS cows than for HS cows (3.36 vs. 2.93%). However, we observed no difference in VFA absorption rate between LS and HS cows. In situ starch and neutral detergent fiber digestibility were not different between LS and HS cows, but the relative mRNA abundance of lanosterol synthase (LSS) was higher for LS cows than for HS cows. In addition, the mRNA abundance of hydroxy-3-methylglutaryl-CoA synthase 1 (HMGCS1) tended to be higher for LS cows than for HS cows. These results suggested that VFA absorption rate might not explain the difference in rumen pH between LS and HS cows in the current study, even though expression of some genes related to VFA metabolism in rumen epithelium may be associated with variation in the risk of SARA among lactating cows. This variation in the risk of SARA may not be attributed to differences in the capacity of rumen microbes to ferment carbohydrates, because in situ carbohydrate digestibility in the rumen was not different between cows with higher and lower risk of SARA. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Effects of rumen-protected γ-aminobutyric acid on performance and nutrient digestibility in heat-stressed dairy cows.

    PubMed

    Cheng, J B; Bu, D P; Wang, J Q; Sun, X Z; Pan, L; Zhou, L Y; Liu, W

    2014-09-01

    This experiment was conducted to investigate the effects of rumen-protected γ-aminobutyric acid (GABA) on performance and nutrient digestibility in heat-stressed dairy cows. Sixty Holstein dairy cows (141±15 d in milk, 35.9±4.3kg of milk/d, and parity 2.0±1.1) were randomly assigned to 1 of 4 treatments according to a completely randomized block design. Treatments consisted of 0 (control), 40, 80, or 120mg of true GABA/kg of dry matter (DM). The trial lasted 10wk. The average temperature-humidity indices at 0700, 1400, and 2200h were 78.4, 80.2, and 78.7, respectively. Rectal temperatures decreased linearly at 0700, 1400, and 2200h with increasing GABA concentration. Supplementation of GABA had no effect on respiration rates at any time point. Dry matter intake, energy-corrected milk, 4% fat-corrected milk, and milk fat yield tended to increase linearly with increasing GABA concentration. Supplementation of GABA affected, in a quadratic manner, milk protein and lactose concentrations, and milk protein yield, and the peak values were reached at a dose of 40mg of GABA/kg. Milk urea nitrogen concentration responded quadratically. Total solids content increased linearly with increasing GABA concentration. Supplementation of GABA had no effect on milk yield, lactose production, total solids, milk fat concentration, somatic cell score, or feed efficiency. Apparent total-tract digestibilities of DM, organic matter, crude protein, neutral detergent fiber, and acid detergent fiber were similar among treatments. These results indicate that rumen-protected GABA supplementation to dairy cows can alleviate heat stress by reducing rectal temperature, increase DM intake and milk production, and improve milk composition. The appropriate supplemental GABA level for heat-stressed dairy cows is 40mg/kg of DM. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. Omasal sampling technique for assessing fermentative digestion in the forestomach of dairy cows.

    PubMed

    Huhtanen, P; Brotz, P G; Satter, L D

    1997-05-01

    A procedure allowing digesta sampling from the omasum via a ruminal cannula without repeated entry into the omasum was developed. The sampling system consisted of a device inserted into the omasum via the ruminal cannula, a tube connecting the device to the ruminal cannula, and a single compressor/vacuum pump. Eight cows given ad libitum access to a total mixed diet were used in a crossover design to evaluate the effects of the sampling system on digestive activity, animal performance, and animal behavior. Results indicated that the omasal sampling system has minimal effect on normal digestive and productive functions of high-producing dairy cows. Dry matter intake was reduced (24.0 vs 21.8 kg/d; P < .02) and seemed related more to the sampling procedures than to the device in the omasum. Observations of animal behavior indicated that cows with the sampling device were similar to control cows, although rumination and total chewing times were reduced slightly. The composition of digesta samples was biased toward an over-abundance of the liquid phase, but using a double-marker system to calculate digesta flow resulted in fairly small coefficients of variation for measurements of ruminal digestion variables. This technique may prove useful for partitioning digestion between the fermentative portion of the forestomach and the lower gastrointestinal tract. The omasal sampling procedure requires less surgical intervention than the traditional methods using abomasal or duodenal cannulas as sampling sites to study forestomach digestion and avoids potentially confounding endogenous secretions of the abomasum.

  10. Factors associated with early cyclicity in postpartum dairy cows.

    PubMed

    Vercouteren, M M A A; Bittar, J H J; Pinedo, P J; Risco, C A; Santos, J E P; Vieira-Neto, A; Galvão, K N

    2015-01-01

    The objective of this study was to evaluate factors associated with resumption of ovarian cyclicity within 21 days in milk (DIM) in dairy cows. Cows (n=768) from 2 herds in north Florida had their ovaries scanned at 17±3, 21±3, and 24±3 DIM. Cows that had a corpus luteum ≥20mm at 17±3 or at 21±3 DIM or that had a corpus luteum <20mm in 2 consecutive examinations were determined to be cyclic by 21±3 DIM. The following information was collected for up to 14 DIM: calving season, parity, calving problems, metabolic problems, metritis, mastitis, digestive problems, lameness, body weight loss, dry period length, and average daily milk yield. Body condition was scored at 17±3 DIM. Multivariable mixed logistic regression analysis was performed using the GLIMMIX procedure of SAS. Variables with P≤0.2 were considered in each model. Herd was included as a random variable. Three models were constructed: model 1 included all cows, model 2 included only cows from dairy 1 that had daily body weights available, and model 3 included only multiparous cows with a previous dry period length recorded. In model 1, variables associated with greater cyclicity by 21±3 DIM were calving in the summer and fall rather than in the winter or spring, being multiparous rather than primiparous, and not having metabolic or digestive problems. In model 2, variables associated with greater cyclicity by 21±3 DIM were calving in the summer and fall, not having metritis or digestive problems and not losing >28 kg of BW within 14 DIM. In model 3, variables associated with greater cyclicity by 21±3 DIM were absence of metabolic problems and dry period ≤76 d. In summary, cyclicity by 21±3 DIM was negatively associated with calving in winter or spring, primiparity, metritis, metabolic or digestive problems, loss of >28 kg of body weight, and a dry period >76d. Strategies preventing extended dry period length and loss of BW, together with reductions in the incidence of metritis as well as metabolic and digestive problems should improve early cyclicity postpartum. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Performance, digestion, nitrogen balance, and emission of manure ammonia, enteric methane, and carbon dioxide in lactating cows fed diets with varying alfalfa silage-to-corn silage ratios

    USDA-ARS?s Scientific Manuscript database

    Two trials were conducted simultaneously to study the effect of alfalfa silage (AS) to corn silage (CS) ratio in the diet of lactating dairy cows on performance, digestibility, ruminal parameters, nitrogen (N) balance, manure production and composition, and gaseous emissions [carbon dioxide (CO2), ...

  12. Effects of feeding different amounts of supplemental glycerol on ruminal environment and digestibility of lactating dairy cows

    USDA-ARS?s Scientific Manuscript database

    A study was conducted to evaluate the effects of increasing amounts of dietary glycerol on rumen environment, blood metabolites, and nutrient digestibility. Six rumen cannulated Holstein cows averaging 56 ± 18 DIM and 38.0 ± 8.2 kg/d of milk were used in the study. Experimental design was a replicat...

  13. Effects of replacing soybean meal with canola meal or treated canola meal on ruminal digestion, and omasal nutrient flow in lactating dairy cows

    USDA-ARS?s Scientific Manuscript database

    Treated canola meal (TCM) was produced as an attempt to increase the rumen undegradable protein (RUP) fraction of canola meal (CM) with the goal of enhancing amino acid (AA) availability for absorption in the small intestine of dairy cows. The objective of this study was to measure nutrient and micr...

  14. Effects of replacing soybean meal with canola meal or treated canola meal on nitrogen metabolism and total tract digestibility in lactating dairy cows

    USDA-ARS?s Scientific Manuscript database

    Dietary canola meal (CM) has been shown to improve N efficiency in dairy cows when compared with soybean meal (SBM). Treating CM may increase amino acid (AA) supply from the rumen undegradable protein fraction and improve absorbable AA in the metabolizable protein. The objective of this study was to...

  15. Reducing the environmental impact of methane emissions from dairy farms by anaerobic digestion of cattle waste.

    PubMed

    Marañón, E; Salter, A M; Castrillón, L; Heaven, S; Fernández-Nava, Y

    2011-08-01

    Four dairy cattle farms considered representative of Northern Spain milk production were studied. Cattle waste was characterised and energy consumption in the farms was inventoried. Methane emissions due to slurry/manure management and fuel consumption on the farms were calculated. The possibility of applying anaerobic digestion to the slurry to minimise emissions and of using the biogas produced to replace fossil fuels on the farm was considered. Methane emissions due to slurry management (storage and use as fertiliser) ranged from 34 to 66kg CH(4)cow(-1)year(-1) for dairy cows and from 13 to 25kg CH(4)cow(-1)year(-1) for suckler calves. Cattle on these farms are housed for most of the year, and the contribution from emissions from manure dropped in pastures is insignificant due to the very low methane conversion factors. If anaerobic digestion were implemented on the farms, the potential GHG emissions savings per livestock unit would range from 978 to 1776kg CO(2)eq year(-1), with the main savings due to avoided methane emissions during slurry management. The methane produced would be sufficient to supply digester heating needs (35-55% of the total methane produced) and on-farm fuel energy requirements. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Effects of Moringa oleifera silage on milk yield, nutrient digestibility and serum biochemical indexes of lactating dairy cows.

    PubMed

    Zeng, B; Sun, J J; Chen, T; Sun, B L; He, Q; Chen, X Y; Zhang, Y L; Xi, Q Y

    2018-02-01

    This study investigated the effects of Moringa oleifera (MO) as a partial substitute of alfalfa hay on milk yield, nutrient apparent digestibility and serum biochemical indexes of dairy cows. MO was harvested at 120 days post-seeding. Fresh MO was cut, mixed with chopped oat hay (425:575 on a DM basis), ensiled and stored for 60 days. Sixty healthy Holstein dairy cows were allocated to one of three groups: NM (no MO or control), LM (low MO; 25% alfalfa hay and 50% maize silage were replaced by MO silage) or HM (high MO; 50% alfalfa hay and 100% maize silage were replaced by MO silage). The feeding trial lasted 35 days. The LM and HM diets did not affect dry matter (DM) intake, milk yield or milk composition (lactose, milk fat, milk protein and somatic cell count). The apparent digestibility of DM and NDF was lower for HM group than NM group. Additionally, there were no significant differences in serum biochemical indexes between the LM and NM groups. The HM group had lower serum concentrations of total cholesterol, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol and higher serum concentrations of urea than the NM group. The partial replacement of alfalfa hay (≤50%) and maize silage with MO silage had no negative effects on milk yield, in vivo nutrient apparent digestibility or serum biochemical indexes of lactating cows. © 2017 Blackwell Verlag GmbH.

  17. Effects of varying dietary ratios of corn silage to alfalfa silage on digestion of neutral detergent fiber in lactating dairy cows.

    PubMed

    Lopes, F; Cook, D E; Combs, D K

    2015-09-01

    An in vivo study was performed to test an in vitro procedure and model that predicts total-tract neutral detergent fiber (NDF) digestibility for lactating dairy cattle. Corn silage (CS) and alfalfa silage (AS) were used as forages for this study. These forages had similar NDF composition, but fiber in the CS contained less indigestible NDF compared with AS (35.5 and 47.8% of indigestible NDF, respectively). The in vitro method estimated rate of digestion of alfalfa potentially digestible NDF to be approximately 2 times faster than CS fiber (6.11 and 3.21%/h, respectively). Four diets were formulated containing different proportions of CS to AS: 100CS:0AS, 67CS:33AS, 33CS:67AS, and 0CS:100AS, as percentage of diet DM basis. The objective was to construct diets that contained approximately similar levels of NDF but with different pool sizes and rates of digestion of potentially digestible NDF. Diets were fed to 8 ruminally cannulated, multiparous, lactating dairy cows in a replicated 4×4 Latin square with 21-d periods. Total-tract fiber digestibility and fiber digestion kinetic parameters observed in vivo were compared with the values predicted by the in vitro assay and model. Total-tract NDF digestibility coefficients were similar (41.8 and 40.6% of total NDF) for the in vitro and in vivo methods, respectively. As the proportion of dietary alfalfa increased, the digestibility of NDF increased. The rate of digestion of potentially digestible NDF predicted from the in vitro assay was also similar to what was observed in vivo. Results suggest that the in vitro total-tract NDF digestibility model could be used to predict rate of fiber digestion and NDF digestibility for lactating dairy cattle. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Effects of feeding birdsfoot trefoil hay on neutral detergent fiber digestion, nitrogen utilization efficiency, and lactational performance by dairy cows.

    PubMed

    Christensen, R G; Yang, S Y; Eun, J-S; Young, A J; Hall, J O; MacAdam, J W

    2015-11-01

    This experiment was conducted to determine effects of feeding birdsfoot trefoil hay-based diets in comparison with an alfalfa hay-based diet on N utilization efficiency, ruminal fermentation, and lactational performance by mid-lactation dairy cows. Nine multiparous lactating Holstein cows (131 ± 22.6 d in milk), 3 of which were rumen fistulated, were fed 3 experimental diets in a replicated 3 × 3 Latin square design with 3 periods of 14 d of adaptation and 7 d of data and sample collection. Within squares, cows were randomly assigned to diets as follows: alfalfa hay-based diet (AHT), alfalfa and birdsfoot trefoil hay-based diet (ABT), and birdsfoot trefoil hay-based diet (BT). Intakes of dry matter and crude protein were similar across treatments, whereas ABT and BT diets resulted in decreased fiber intake compared with AHT. Feeding BT tended to increase neutral detergent fiber digestibility compared with AHT and ABT. Milk yield tended to increase for cows consuming ABT or BT diets. Milk true protein concentration and yield were greater for cows consuming ABT relative to those fed AHT. Concentration of total volatile fatty acids tended to increase by cows fed BT compared with those fed AHT and ABT. Feeding birdsfoot trefoil hay in a total mixed ration resulted in a tendency to decrease acetate proportion, but it tended to increase propionate proportion, leading to a tendency to decrease acetate-to-propionate ratio. Whereas concentration of ammonia-N was similar across treatments, cows offered BT exhibited greater microbial protein yield relative to those fed AHT and ABT. Cows offered birdsfoot trefoil hay diets secreted more milk N than AHT, resulting in improved N utilization efficiency for milk N. The positive effects due to feeding birdsfoot trefoil hay were attributed to enhanced neutral detergent fiber digestion, and thus it could replace alfalfa hay in high-forage dairy diets while improving N utilization efficiencies and maintaining lactational performance compared with alfalfa hay. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Determining effects of multiple tannin manure applications on dairy forages and soil

    USDA-ARS?s Scientific Manuscript database

    Dietary choices for dairy cows have direct implications to nutrient availability from land-applied manure because of alterations to manure chemistry. Tannin additions to a dairy cow’s diet protect feed protein through rumen fermentation and digestion, resulting in reduced concentrations of urea nitr...

  20. Sugarcane bagasse as exclusive roughage for dairy cows in smallholder livestock system.

    PubMed

    de Almeida, Gleidiana Amélia Pontes; de Andrade Ferreira, Marcelo; de Lima Silva, Janaina; Chagas, Juana Catarina Cariri; Véras, Antônia Sherlânea Chaves; de Barros, Leonardo José Assis; de Almeida, Gledson Luiz Pontes

    2018-03-01

    The study aimed to evaluate sugarcane bagasse as roughage in lactating cow on feed intake, digestibility, ingestive behavior, milk production and composition, and microbial protein synthesis. Ten Girolando cows at initial body weight of 450±25.6 kg and at 143.7±30.7 days in milk were assigned in two 5×5 Latin square designs. Five 21-day experimental periods were adopted (1° to 14-day: diets adaptation period; 15° to 21-day: data collection and sampling period). The diets consisted of four different levels of sugarcane bagasse (45%, 50%, 55%, and 60%) and a control diet, commonly adopted in the region, based on spineless cactus (25% sugarcane bagasse), formulated to meet 12 kg/d milk yield. The dry matter (DM), organic matter (OM), and total digestible nutrients intakes and DM and OM digestibilities observed for 45% and 50% bagasse inclusion were similar to control diet, while that 55% and 60% bagasse inclusion were lower. Cows fed control diet, and bagasse diets of 45%, and 50% levels had the nutritional requirements attended, that guaranteed 12 kg/d of milk yield. The crude protein intake and digestibility of cows fed 45%, 50%, and 55% of bagasse inclusion were similar to control diet. The neutral detergent fiber (NDF) intake and digestibility differ for all bagasse diets related to control diet, while the non-fiber carbohydrates intake and digestibility for cows fed 45% of bagasse were similar for control diet. The intakes and digestibilities of nutrients decreased linearly in function of bagasse inclusion; NDF and indigestible NDF intakes did not vary. The ruminating time, feeding and rumination efficiency, microbial protein synthesis and milk yield decreased linearly with sugarcane bagasse inclusion. Sugarcane bagasse decreases milk production; however, its inclusion level in between 45% to 50% associated to concentrate could replace diets based on spineless cactus for crossbred dairy cow's producing 12 kg/d of milk.

  1. Sugarcane bagasse as exclusive roughage for dairy cows in smallholder livestock system

    PubMed Central

    2018-01-01

    Objective The study aimed to evaluate sugarcane bagasse as roughage in lactating cow on feed intake, digestibility, ingestive behavior, milk production and composition, and microbial protein synthesis. Methods Ten Girolando cows at initial body weight of 450±25.6 kg and at 143.7±30.7 days in milk were assigned in two 5×5 Latin square designs. Five 21-day experimental periods were adopted (1° to 14-day: diets adaptation period; 15° to 21-day: data collection and sampling period). The diets consisted of four different levels of sugarcane bagasse (45%, 50%, 55%, and 60%) and a control diet, commonly adopted in the region, based on spineless cactus (25% sugarcane bagasse), formulated to meet 12 kg/d milk yield. Results The dry matter (DM), organic matter (OM), and total digestible nutrients intakes and DM and OM digestibilities observed for 45% and 50% bagasse inclusion were similar to control diet, while that 55% and 60% bagasse inclusion were lower. Cows fed control diet, and bagasse diets of 45%, and 50% levels had the nutritional requirements attended, that guaranteed 12 kg/d of milk yield. The crude protein intake and digestibility of cows fed 45%, 50%, and 55% of bagasse inclusion were similar to control diet. The neutral detergent fiber (NDF) intake and digestibility differ for all bagasse diets related to control diet, while the non-fiber carbohydrates intake and digestibility for cows fed 45% of bagasse were similar for control diet. The intakes and digestibilities of nutrients decreased linearly in function of bagasse inclusion; NDF and indigestible NDF intakes did not vary. The ruminating time, feeding and rumination efficiency, microbial protein synthesis and milk yield decreased linearly with sugarcane bagasse inclusion. Conclusion Sugarcane bagasse decreases milk production; however, its inclusion level in between 45% to 50% associated to concentrate could replace diets based on spineless cactus for crossbred dairy cow's producing 12 kg/d of milk. PMID:29059720

  2. Inclusion of sainfoin (Onobrychis viciifolia) silage in dairy cow rations affects nutrient digestibility, nitrogen utilization, energy balance, and methane emissions.

    PubMed

    Huyen, N T; Desrues, O; Alferink, S J J; Zandstra, T; Verstegen, M W A; Hendriks, W H; Pellikaan, W F

    2016-05-01

    Sainfoin (Onobrychis viciifolia) is a tanniniferous legume forage that has potential nutritional and health benefits preventing bloating, reducing nematode larval establishment, improving N utilization, and reducing greenhouse gas emissions. However, the use of sainfoin as a fodder crop in dairy cow rations in northwestern Europe is still relatively unknown. The objective of this study was to evaluate the effect of sainfoin silage on nutrient digestibility, animal performance, energy and N utilization, and CH4 production. Six rumen-cannulated, lactating dairy cows with a metabolic body weight (BW(0.75)) of 132.5±3.6kg were randomly assigned to either a control (CON) or a sainfoin (SAIN)-based diet over 2 experimental periods of 25 d each in a crossover design. The CON diet was a mixture of grass silage, corn silage, concentrate, and linseed. In the SAIN diet, 50% of grass silage dry matter (DM) of the CON diet was exchanged for sainfoin silage. The cows were adapted to 95% of ad libitum feed intake for a 21-d period before being housed in climate-controlled respiration chambers for 4 d, during which time feed intake, apparent total-tract digestibility, N and energy balance, and CH4 production was determined. Data were analyzed using a mixed model procedure. Total daily DM, organic matter, and neutral detergent fiber intake did not differ between the 2 diets. The apparent digestibility of DM, organic matter, neutral detergent fiber, and acid detergent fiber were, respectively, 5.7, 4.0, 15.7, and 14.8% lower for the SAIN diet. Methane production per kilogram of DM intake was lowest for the SAIN diet, CH4 production as a percentage of gross energy intake tended to be lower, and milk yield was greater for the SAIN diet. Nitrogen intake, N retention, and energy retained in body protein were greater for the SAIN than for the CON diet. Nitrogen retention as a percentage of N intake tended to be greater for the SAIN diet. These results suggest that inclusion of sainfoin silage in dairy cow rations reduces CH4 per kilogram of DM intake and nutrient digestibility. Moreover, sainfoin silage improves milk production and seems to redirect metabolism toward body protein accretion at the expense of body fat. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Replacement of grass and maize silages with lucerne silage: effects on performance, milk fatty acid profile and digestibility in Holstein-Friesian dairy cows.

    PubMed

    Sinclair, L A; Edwards, R; Errington, K A; Holdcroft, A M; Wright, M

    2015-12-01

    In total, 20 multiparous Holstein-Friesian dairy cows received one of four diets in each of four periods of 28-day duration in a Latin square design to test the hypothesis that the inclusion of lucerne in the ration of high-yielding dairy cows would improve animal performance and milk fatty acid (FA) composition. All dietary treatments contained 0.55 : 0.45 forage to concentrates (dry matter (DM) basis), and within the forage component the proportion of lucerne (Medicago sativa), grass (Lolium perenne) and maize silage (Zea mays) was varied (DM basis): control (C)=0.4 : 0.6 grass : maize silage; L20=0.2 : 0.2 : 0.6 lucerne : grass : maize silage; L40=0.4 : 0.6 lucerne : maize silage; and L60=0.6 : 0.4 lucerne : maize silage. Diets were formulated to contain a similar CP and metabolisable protein content, with the reduction of soya bean meal and feed grade urea with increasing content of lucerne. Intake averaged 24.3 kg DM/day and was lowest in cows when fed L60 (P0.05) by dietary treatment. Digestibility of DM, organic matter, CP and fibre decreased (P<0.01) with increasing content of lucerne in the diet, although fibre digestibility was similar in L40 and L60. It is concluded that first cut grass silage can be replaced with first cut lucerne silage without any detrimental effect on performance and an improvement in the milk FA profile, although intake and digestibility was lowest and plasma urea concentrations highest in cows when fed the highest level of inclusion of lucerne.

  4. The effect of harvesting strategy of grass silage on digestion and nutrient supply in dairy cows.

    PubMed

    Kuoppala, K; Rinne, M; Ahvenjärvi, S; Nousiainen, J; Huhtanen, P

    2010-07-01

    This study examined the effects of primary growth (PG) and regrowth (RG) timothy-meadow fescue silages harvested at 2 stages of growth on feed intake, cell wall digestion and ruminal passage kinetics in lactating dairy cows. Four dairy cows equipped with rumen cannulas were used in a study designed as a 4 x 4 Latin square with 21-d periods. The experimental silages were offered ad libitum with 8 kg/d of concentrate. Ruminal digestion and passage kinetics were assessed by the rumen evacuation technique. Silages of PG were on average more digestible than RG silages. The concentration of neutral detergent fiber (NDF) and indigestible NDF (iNDF) increased and the concentration of digestible organic matter in dry matter (DM) of silages decreased with advancing maturity in PG and RG. Cows consumed more feed DM, energy, and protein and produced more milk when fed PG diets rather than RG diets. Delaying the harvest decreased DM intake and milk production in PG and RG. There were no differences between PG and RG in rumen pH, ammonia N, or total volatile fatty acid concentrations. The intake of N, omasal canal flow of total nonammonia N and microbial N, excretion of N in feces, and ruminal true digestibility of N were higher for PG than for RG diets. The efficiency of microbial N synthesis was not different between PG and RG. Intake and omasal canal flow of organic matter, NDF, and potentially digestible NDF (pdNDF) were higher in PG than in RG. Whole-diet digestibility of organic matter, NDF, or pdNDF in the rumen or in the total tract was not different between PG and RG despite the higher digestibility of PG silages measured in sheep. Rumen pool sizes of crude protein and iNDF were lower for PG diets, whereas the pool size of pdNDF was higher for PG diets than for RG diets. The rate of passage of iNDF was higher for PG diets than for RG diets, with no difference between them in rate of digestion or passage of pdNDF. The lower milk production in cows fed regrowth grass silages compared with primary growth silages could be attributed to the lower silage DM intake potential. Chemical composition of the silages, rumen fill, digestion and passage kinetics of NDF, or the ratio of protein to energy in absorbed nutrients could not explain the differences in DM intake between silages made from primary and regrowth grass. Copyright (c) 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Methane production from thermophilic co‐digestion of dairy manure and waste milk obtained from therapeutically treated cows

    PubMed Central

    Iwasaki, Masahiro; Umetsu, Kazutaka

    2016-01-01

    Abstract Methane production from co‐digestion of dairy manure and waste milk, milk from cows treated with antibiotics for mastitis, was tested in a 2 × 4 factorial design. Four different waste milk percentages (w/w): 0% (SM), 10% (SMWM10), 20% (SMWM20) and 30% (SMWM30), were tested with two slurry percentages (w/w): 50% (A) and 25% (B) and the rest being manure at 55°C for 12 days in batch digesters. The results analyzed using a Gompertz model showed SMWM10 produced the highest methane production potential (Pm)/g volatile solids added followed by SM in both A and B. This Pm of SMWM10 in A and B was statistically non‐significant (P > 0.05). More than 96% of cefazolin‐resistant bacteria and 100% of multi‐drug‐resistant bacteria reductions were observed in all the treatments. Inclusion of waste milk at 10% in single stage digester enhances the methane production from dairy manure and could offer added benefit of waste milk treatment and disposal. PMID:27169788

  6. Anaerobic co-digestion of dairy manure and potato waste

    NASA Astrophysics Data System (ADS)

    Yadanaparthi, Sai Krishna Reddy

    Dairy and potato are two important agricultural commodities in Idaho. Both the dairy and potato processing industries produce a huge amount of waste which could cause environmental pollution. To minimize the impact of potential pollution associated with dairy manure (DM) and potato waste (PW), anaerobic co-digestion has been considered as one of the best treatment process. The purpose of this research is to evaluate the anaerobic co-digestion of dairy manure and potato waste in terms of process stability, biogas generation, construction and operating costs, and potential revenue. For this purpose, I conducted 1) a literature review, 2) a lab study on anaerobic co-digestion of dairy manure and potato waste at three different temperature ranges (ambient (20-25°C), mesophilic (35-37°C) and thermophilic (55-57°C) with five mixing ratios (DM:PW-100:0, 90:10, 80:20, 60:40, 40:60), and 3) a financial analysis for anaerobic digesters based on assumed different capital costs and the results from the lab co-digestion study. The literature review indicates that several types of organic waste were co-digested with DM. Dairy manure is a suitable base matter for the co-digestion process in terms of digestion process stability and methane (CH4) production (Chapter 2). The lab tests showed that co-digestion of DM with PW was better than digestion of DM alone in terms of biogas and CH4 productions (Chapter 3). The financial analysis reveals DM and PW can be used as substrate for full size anaerobic digesters to generate positive cash flow within a ten year time period. Based on this research, the following conclusions and recommendations were made: ▸ The ratio of DM:PW-80:20 is recommended at thermophilic temperatures and the ratio of DM:PW-90:10 was recommended at mesophilic temperatures for optimum biogas and CH4 productions. ▸ In cases of anaerobic digesters operated with electricity generation equipment (generators), low cost plug flow digesters (capital cost of 600/cow) operating at thermophilic temperatures are recommended. • The ratio of DM:PW-90:10 or 80:20 is recommended while operating low cost plug flow digesters at thermophilic temperatures. ▸ In cases of anaerobic digesters operated without electricity generation equipment (generators), completely mixed or high or low cost plug flow digesters can be used. • The ratio of DM:PW-80:20 is recommended for completely mixed digesters operated at thermophilic temperatures; • The ratio of DM:PW-90:10 or 80:20 is recommended for high cost plug flow digesters (capital cost of 1,000/cow) operated at thermophilic temperatures; • All of the four co-digested mixing ratios (i.e. DM:PW-90:10 or 80:20 or 60:40 or 40:60) are good for low cost plug flow digesters (capital cost of $600/cow) operated at thermophilic temperatures. The ratio of DM:PW-90:10 is recommended for positive cash flow within the ten year period if the low cost plug flow digesters are operated at mesophilic temperatures.

  7. Effects of garlic and juniper berry essential oils on ruminal fermentation and on the site and extent of digestion in lactating cows.

    PubMed

    Yang, W Z; Benchaar, C; Ametaj, B N; Chaves, A V; He, M L; McAllister, T A

    2007-12-01

    The objective of this study was to evaluate the effects of feeding essential oils from garlic (GAR) and juniper berry (JUN), or monensin (MO) on feed intake, ruminal fermentation, the site and extent of digestion, microbial protein synthesis, milk production, and immune status in dairy cows. Four midlactating Holstein cows fitted with ruminal and duodenal cannulas were used in a 4 x 4 Latin square design with 21-d periods and 4 treatments: control (no additive), MO (330 mg/cow per d), GAR (5 g/cow per d), and JUN (2 g/cow per d). Cows were fed ad libitum a TMR consisting of 40% forage and 60% barley-based concentrate. Dry matter intake averaged 20.4 kg/d and was not affected by dietary additives. Total tract digestibilities of dry matter, organic matter, fiber, and starch were not affected by experimental treatments. However, ruminal digestibilities of dry matter and organic matter were higher (+13%) for GAR and JUN than for the control diet, mainly because of increased crude protein digestion in the rumen. Feeding GAR and JUN increased ruminal digestion of dietary protein by 11% as compared with the control. In contrast, ruminal digestion of dietary protein was reduced by 11% with MO as compared with the control. Milk fat content was lower for MO (2.68%) than for the GAR (3.46%), JUN (3.40%), and control (3.14%) diets. No effects of GAR, JUN, or MO were observed on milk production, ruminal microbial protein synthesis, ruminal pH, and ruminal concentrations of volatile fatty acids and ammonia N. The total and differential numbers of white blood cells as well as serum amyloid A and haptoglobin were not affected by the treatments, suggesting that additives had no effect on the immune status of cows. Results of this study indicate that supplementing dairy cows with GAR (5 g/d) and JUN (2 g/d) essential oils improved feed digestibility in the rumen, but possibly at the expense of a reduction in the flow of bypass protein to the small intestine. Feeding monensin could be beneficial in terms of increasing bypass protein from the rumen but did not improve feed digestion or milk production under the current experimental conditions.

  8. Replacing alfalfa silage with corn silage in dairy cow diets: Effects on enteric methane production, ruminal fermentation, digestion, N balance, and milk production.

    PubMed

    Hassanat, F; Gervais, R; Julien, C; Massé, D I; Lettat, A; Chouinard, P Y; Petit, H V; Benchaar, C

    2013-07-01

    The objective of this study was to determine the effects of replacing alfalfa silage (AS) with corn silage (CS) in dairy cow total mixed rations (TMR) on enteric CH4 emissions, ruminal fermentation characteristics, apparent total-tract digestibility, N balance, and milk production. Nine ruminally cannulated lactating cows were used in a replicated 3×3 Latin square design (32-d period) and fed (ad libitum) a TMR [forage:concentrate ratio of 60:40; dry matter (DM) basis], with the forage portion consisting of either alfalfa silage (0% CS; 56.4% AS in the TMR), a 50:50 mixture of both silages (50% CS; 28.2% AS and 28.2% CS in the TMR), or corn silage (100% CS; 56.4% CS in the TMR). Increasing the CS proportion (i.e., at the expense of AS) in the diet was achieved by decreasing the corn grain proportion and increasing that of soybean meal. Intake of DM and milk yield increased quadratically, whereas DM digestibility increased linearly as the proportion of CS increased in the diet. Increasing the dietary CS proportion resulted in changes (i.e., lower ruminal pH and acetate:propionate ratio, reduced fiber digestibility, decreased protozoa numbers, and lower milk fat and higher milk protein contents) typical of those observed when cows are fed high-starch diets. A quadratic response in daily CH4 emissions was observed in response to increasing the proportion of CS in the diet (440, 483, and 434 g/d for 0% CS, 50% CS, and 100% CS, respectively). Methane production adjusted for intake of DM, and gross or digestible energy was unaffected in cows fed the 50% CS diet, but decreased in cows fed the 100% CS diet (i.e., quadratic effect). Increasing the CS proportion in the diet at the expense of AS improved N utilization, as reflected by the decreases in ruminal NH3 concentration and manure N excretion, suggesting low potential NH3 and N2O emissions. Results from this study, suggest that total replacement of AS with CS in dairy cow diets offers a means of decreasing CH4 output and N losses. However, the reduction in fiber degradation and the resulting increase in volatile solids content of the manure may lead to increased CH4 emissions from manure storage. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. Herbage intake and ruminal digestion of dairy cows grazed on perennial ryegrass pasture either in the morning or evening.

    PubMed

    Ueda, Koichiro; Mitani, Tomohiro; Kondo, Seiji

    2016-08-01

    This study aimed to clarify diurnal fluctuations of herbage intake, ruminal fermentation of herbage carbohydrates and proteins, and digesta particulate weight in the rumen of grazing dairy cows. Six ruminally cannulated, non-lactating dairy cows were grazed on perennial ryegrass/white clover pasture either in the morning (04.00 to 08.00 hours) or the evening (16.00 to 20.00 hours). Cows grazed in the evening spent more time (P < 0.01) and consumed more herbage (P < 0.01) compared with cows grazed in the morning. Higher (P < 0.05) daily mean concentrations of total volatile fatty acid, propionate and n-butyrate in rumen fluid were observed for cows grazed in the evening compared with cows grazed in the morning. Although cows grazed in the evening ingested more crude protein compared with cows grazed in the morning, no significant difference in NH3 -N concentration in rumen fluid was observed between them. The ratio of purine-derivative concentration to creatinine concentrations was higher (P < 0.01) in the urine of cows grazed in the evening than in cows grazed in the morning. These results clearly indicated that evening grazing was advantageous for dairy cows compared with morning grazing, in terms of ruminal fermentable energy intake and nitrogen utilization efficiency. © 2015 Japanese Society of Animal Science.

  10. Effects of 3-nitrooxypropanol on methane emission, digestion, and energy and nitrogen balance of lactating dairy cows.

    PubMed

    Reynolds, C K; Humphries, D J; Kirton, P; Kindermann, M; Duval, S; Steinberg, W

    2014-01-01

    The objective was to measure effects of 3-nitrooxypropanol (3 NP) on methane production of lactating dairy cows and any associated changes in digestion and energy and N metabolism. Six Holstein-Friesian dairy cows in mid-lactation were fed twice daily a total mixed ration with maize silage as the primary forage source. Cows received 1 of 3 treatments using an experimental design based on two 3 × 3 Latin squares with 5-wk periods. Treatments were a control placebo or 500 or 2,500 mg/d of 3 NP delivered directly into the rumen, via the rumen fistula, in equal doses before each feeding. Measurements of methane production and energy and N balance were obtained during wk 5 of each period using respiration calorimeters and digestion trials. Measurements of rumen pH (48 h) and postprandial volatile fatty acid and ammonia concentrations were made at the end of wk 4. Daily methane production was reduced by 3 NP, but the effects were not dose dependent (reductions of 6.6 and 9.8% for 500 and 2,500 mg/d, respectively). Dosing 3 NP had a transitory inhibitory effect on methane production, which may have been due to the product leaving the rumen in liquid outflow or through absorption or metabolism. Changes in rumen concentrations of volatile fatty acids indicated that the pattern of rumen fermentation was affected by both doses of the product, with a decrease in acetate:propionate ratio observed, but that acetate production was inhibited by the higher dose. Dry matter, organic matter, acid detergent fiber, N, and energy digestibility were reduced at the higher dose of the product. The decrease in digestible energy supply was not completely countered by the decrease in methane excretion such that metabolizable energy supply, metabolizable energy concentration of the diet, and net energy balance (milk plus tissue energy) were reduced by the highest dose of 3 NP. Similarly, the decrease in N digestibility at the higher dose of the product was associated with a decrease in body N balance that was not observed for the lower dose. Milk yield and milk fat concentration and fatty acid composition were not affected but milk protein concentration was greater for the higher dose of 3 NP. Twice-daily rumen dosing of 3 NP reduced methane production by lactating dairy cows, but the dose of 2,500 mg/d reduced rumen acetate concentration, diet digestibility, and energy supply. Further research is warranted to determine the optimal dose and delivery method of the product. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Performance and methane emissions in dairy cows fed oregano and green tea extracts as feed additives.

    PubMed

    Kolling, G J; Stivanin, S C B; Gabbi, A M; Machado, F S; Ferreira, A L; Campos, M M; Tomich, T R; Cunha, C S; Dill, S W; Pereira, L G R; Fischer, V

    2018-05-01

    Plant extracts have been proposed as substitutes for chemical feed additives due to their potential as rumen fermentation modifiers and because of their antimicrobial and antioxidant activities, possibly reducing methane emissions. This study aimed to evaluate the use of oregano (OR), green tea extracts (GT), and their association as feed additives on the performance and methane emissions from dairy between 28 and 87 d of lactation. Thirty-two lactating dairy cows, blocked into 2 genetic groups: 16 Holstein cows and 16 crossbred Holstein-Gir, with 522.6 ± 58.3 kg of body weight, 57.2 ± 20.9 d in lactation, producing 27.5 ± 5.0 kg/cow of milk and with 3.1 ± 1.8 lactations were evaluated (means ± standard error of the means). Cows were allocated into 4 treatments: control (CON), without plant extracts in the diet; oregano extract (OR), with the addition of 0.056% of oregano extract in the dry matter (DM) of the diet; green tea (GT), with the addition of 0.028% of green tea extract in the DM of the diet; and mixture, with the addition of 0.056% oregano extract and 0.028% green tea extract in the DM of the diet. The forage-to-concentrate ratio was 60:40. Forage was composed of corn silage (94%) and Tifton hay (6%); concentrate was based on ground corn and soybean meal. Plant extracts were supplied as powder, which was previously added and homogenized into 1 kg of concentrate in natural matter, top-dressed onto the total mixed diet. No treatment by day interaction was observed for any of the evaluated variables, but some block by treatment interactions were significant. In Holstein cows, the mixture treatment decreased gross energy and tended to decrease the total-tract apparent digestibility coefficient for crude protein and total digestible nutrients when compared with OR. During the gas measurement period, GT and OR increased the digestible fraction of the ingested DM and decreased CH 4 expressed in grams per kilogram of digestible DMI compared with CON. The use of extracts did not change rumen pH, total volatile fatty acid concentration, milk yield, or most milk traits. Compared with CON, oregano addition decreased fat concentration in milk. The use of plant extracts altered some milk fatty acids but did not change milk fatty acids grouped according to chain length (short or long), saturation (unsaturated or saturated), total conjugated linoleic acids, and n-3 and n-6 contents. Green tea and oregano fed separately reduced gas emission in cows during the first third of lactation and have potential to be used as feed additives for dairy cows. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Use of rumination and activity monitoring for the identification of dairy cows with health disorders: Part I. Metabolic and digestive disorders.

    PubMed

    Stangaferro, M L; Wijma, R; Caixeta, L S; Al-Abri, M A; Giordano, J O

    2016-09-01

    The objectives of this study were to evaluate (1) the performance of an automated health-monitoring system (AHMS) to identify cows with metabolic and digestive disorders-including displaced abomasum, ketosis, and indigestion-based on an alert system (health index score, HIS) that combines rumination time and physical activity; (2) the number of days between the first HIS alert and clinical diagnosis (CD) of the disorders by farm personnel; and (3) the daily rumination time, physical activity, and HIS patterns around CD. Holstein cattle (n=1,121; 451 nulliparous and 670 multiparous) were fitted with a neck-mounted electronic rumination and activity monitoring tag (HR Tags, SCR Dairy, Netanya, Israel) from at least -21 to 80 d in milk (DIM). Raw data collected in 2-h periods were summarized per 24 h as daily rumination and activity. A HIS (0 to 100 arbitrary units) was calculated daily for individual cows with an algorithm that used rumination and activity. A positive HIS outcome was defined as a HIS of <86 during at least 1 d from -5 to 2 d after CD. Blood concentrations of nonesterified fatty acids, β-hydroxybutyrate, total calcium, and haptoglobin were determined in a subgroup of cows (n=459) at -11±3, -4±3, 0, 3±1, 7±1, 14±1, and 28±1 DIM. The sensitivity of the HIS was 98% [95% confidence interval (CI): 93, 100] for displaced abomasum (n=41); 91% (95% CI: 83, 99) for ketosis (n=54); 89% (95% CI: 68, 100) for indigestion (n=9); and 93% (95% CI: 89, 98) for all metabolic and digestive disorders combined (n=104). Days (mean and 95% CI) from the first positive HIS <86 and CD were -3 (-3.7, -2.3), -1.6 (-2.3, -1.0), -0.5 (-1.5, 0.5), and -2.1 (-2.5, -1.6) for displaced abomasum, ketosis, indigestion, and all metabolic and digestive disorders, respectively. The patterns of rumination, activity, and HIS for cows flagged by the AHMS were characterized by lower levels than for cows without a health disorder and cows not flagged by the AHMS from -5 to 5 d after CD, depending on the disorder and parameter. Differences between cows without health disorders and those flagged by the AHMS for blood markers of metabolic and health status confirmed the observations of the CD and AHMS alerts. The overall sensitivity and timing of the AHMS alerts for cows with metabolic and digestive disorders indicated that AHMS that combine rumination and activity could be a useful tool for identifying cows with metabolic and digestive disorders. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Silage review: Silage feeding management: Silage characteristics and dairy cow feeding behavior.

    PubMed

    Grant, R J; Ferraretto, L F

    2018-05-01

    Feeding environment and feed accessibility influence the dairy cow's response to the ration and forage composition. Fiber content, physical form, and fermentability influence feeding behavior, feed intake, and overall cow metabolic and lactational responses to forage. It is possible to vary eating time of lactating dairy cattle by over 1 h/d by changing dietary silage fiber content, digestibility, and particle size. Optimizing silage particle size is important because excessively long particles increase the necessary chewing to swallow a bolus of feed, thereby increasing eating time. Under competitive feeding situations, excessively coarse or lower fiber digestibility silages may limit DMI of lactating dairy cows due to eating time requirements that exceed available time at the feed bunk. Additionally, greater silage particle size, especially the particles retained on the 19-mm sieve using the Penn State Particle Separator, are most likely to be sorted. Silage starch content and fermentability may influence ruminal propionate production and thereby exert substantial control over meal patterns and feed consumption. Compared with silage fiber characteristics, relatively little research has assessed how silage starch content and fermentability interact with the feeding environment to influence dairy cow feeding behavior. Finally, voluminous literature exists on the potential effects that silage fermentation end products have on feeding behavior and feed intake. However, the specific mechanisms of how these end products influence behavior and intake are poorly understood in some cases. The compounds shown to have the greatest effect on feeding behavior are lactate, acetate, propionate, butyrate, ammonia-N, and amines. Any limitation in the feeding environment will likely accentuate the negative response to poor silage fermentation. In the future, to optimize feeding behavior and dry matter intake of silage-based diets fed to dairy cattle, we will need to consider the chemical and physical properties of silage, end products of silage fermentation, and the social and physical components of the feeding environment. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Effect of technical cashew nut shell liquid on rumen methane emission and lactation performance of dairy cows.

    PubMed

    Branco, A F; Giallongo, F; Frederick, T; Weeks, H; Oh, J; Hristov, A N

    2015-06-01

    Technical-grade cashew nut shell liquid (TCNSL) is a by-product of the cashew nut industry in tropical countries, and is known to exhibit a wide range of biological activities, including inhibitory effect against gram-positive bacteria. This study was conducted to investigate the effects of TCNSL (73.3% cardanol, 16.4% cardol, and 3.0% methylcardol) on rumen methane emission, nutrient digestibility, dry matter intake, and milk yield and composition in dairy cows. Eight multiparous Holstein cows were used in a crossover design trial with two 21-d experimental periods. The diet was based on corn silage and alfalfa haylage and was formulated to meet or exceed the energy and metabolizable protein requirements of the cows. Treatments were control (no TCNSL supplementation) or 30 g/cow per day of TCNSL. Rumen carbon dioxide emission was not affected by TCNSL. Treatment had no effect on methane emission (542 vs. 511±35.3 g/cow per day, respectively) and methane emission intensity (15.0 vs. 13.9±0.58 g/kg of energy-corrected milk, respectively) and tended to decrease methane emission per kilogram of dry matter intake (20.2 vs. 18.6±1.04 g/kg, respectively). Dry matter intake (average 26.9±1.00 kg/d), milk yield (40.0±1.73 kg/d), and milk composition were not different between treatments. The TCNSL had no effect on N losses in urine and feces and total-tract apparent digestibility of nutrients, except digestibility of neutral detergent fiber tended to be increased compared with the control. Plasma urea and glucose concentrations were not affected by TCNSL. Concentration of milk C18:0 tended to be decreased (17%) by TCNSL compared with the control. In this study, TCNSL did not alter absolute methane emission in the rumen, but tended to decrease it by 8% per kilogram of dry matter intake. The TCNSL had no effect on milk yield and composition in dairy cows. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. Methane production from thermophilic co-digestion of dairy manure and waste milk obtained from therapeutically treated cows.

    PubMed

    Beneragama, Nilmini; Iwasaki, Masahiro; Umetsu, Kazutaka

    2017-02-01

    Methane production from co-digestion of dairy manure and waste milk, milk from cows treated with antibiotics for mastitis, was tested in a 2 × 4 factorial design. Four different waste milk percentages (w/w): 0% (SM), 10% (SMWM10), 20% (SMWM20) and 30% (SMWM30), were tested with two slurry percentages (w/w): 50% (A) and 25% (B) and the rest being manure at 55°C for 12 days in batch digesters. The results analyzed using a Gompertz model showed SMWM10 produced the highest methane production potential (P m )/g volatile solids added followed by SM in both A and B. This P m of SMWM10 in A and B was statistically non-significant (P > 0.05). More than 96% of cefazolin-resistant bacteria and 100% of multi-drug-resistant bacteria reductions were observed in all the treatments. Inclusion of waste milk at 10% in single stage digester enhances the methane production from dairy manure and could offer added benefit of waste milk treatment and disposal. © 2016 The Authors. Animal Science Journal published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Animal Science.

  16. Rumen fermentation and production effects of Origanum vulgare L. leaves in lactating dairy cows

    USDA-ARS?s Scientific Manuscript database

    A lactating cow trial was conducted to study the effects of dietary addition of oregano leaf material (Origanum vulgare L.; 0, control vs. 500 g/d, OV) on ruminal fermentation, methane production, total tract digestibility, manure gas emissions, N metabolism, organoleptic characteristics of milk, an...

  17. Effect of partitioning the nonfiber carbohydrate fraction and neutral detergent fiber method on digestibility of carbohydrates by dairy cows.

    PubMed

    Tebbe, A W; Faulkner, M J; Weiss, W P

    2017-08-01

    Many nutrition models rely on summative equations to estimate feed and diet energy concentrations. These models partition feed into nutrient fractions and multiply the fractions by their estimated true digestibility, and the digestible mass provided by each fraction is then summed and converted to an energy value. Nonfiber carbohydrate (NFC) is used in many models. Although it behaves as a nutritionally uniform fraction, it is a heterogeneous mixture of components. To reduce the heterogeneity, we partitioned NFC into starch and residual organic matter (ROM), which is calculated as 100 - CP - LCFA - ash - starch - NDF, where crude protein (CP), long-chain fatty acids (LCFA), ash, starch, and neutral detergent fiber (NDF) are a percentage of DM. However, the true digestibility of ROM is unknown, and because NDF is contaminated with both ash and CP, those components are subtracted twice. The effect of ash and CP contamination of NDF on in vivo digestibility of NDF and ROM was evaluated using data from 2 total-collection digestibility experiments using lactating dairy cows. Digestibility of NDF was greater when it was corrected for ash and CP than without correction. Conversely, ROM apparent digestibility decreased when NDF was corrected for contamination. Although correcting for contamination statistically increased NDF digestibility, the effect was small; the average increase was 3.4%. The decrease in ROM digestibility was 7.4%. True digestibility of ROM is needed to incorporate ROM into summative equations. Data from multiple digestibility experiments (38 diets) using dairy cows were collated, and ROM concentrations were regressed on concentration of digestible ROM (ROM was calculated without adjusting for ash and CP contamination). The estimated true digestibility coefficient of ROM was 0.96 (SE = 0.021), and metabolic fecal ROM was 3.43 g/100 g of dry matter intake (SE = 0.30). Using a smaller data set (7 diets), estimated true digestibility of ROM when calculated using NDF corrected for ash and CP contamination was 0.87 (SE = 0.025), and metabolic fecal ROM was 3.76 g/100 g (SE = 0.60). Regardless of NDF method, ROM exhibited nutritional uniformity. The ROM fraction also had lower errors associated with the estimated true digestibility and its metabolic fecal fraction than did NFC. Therefore, ROM may result in more accurate estimates of available energy if integrated into models. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Effects of grass silage quality and level of feed intake on enteric methane production in lactating dairy cows.

    PubMed

    Warner, D; Bannink, A; Hatew, B; van Laar, H; Dijkstra, J

    2017-08-01

    The objective of this study was to determine the effect of level of feed intake and quality of ryegrass silage as well as their interaction on enteric methane (CH) emission from dairy cows. In a randomized block design, 56 lactating dairy cows received a diet of grass silage, corn silage, and a compound feed meal (70:10:20 on DM basis). Treatments consisted of 4 grass silage qualities prepared from grass harvested from leafy through late heading stage, and offered to dairy cows at 96 ± 2.4 (mean ± SEM) days in milk (namely, high intake) and 217 ± 2.4 d in milk (namely, low intake). Grass silage CP content varied between 124 and 286 g/kg of DM, and NDF content between 365 and 546 g/kg of DM. After 12 d of adaptation, enteric CH production of cows was measured in open-circuit climate-controlled respiration chambers for 5 d. No interaction between DMI and grass quality on CH emission, or on milk production, diet digestibility, and energy, and N retention was found ( ≥ 0.17). Cows had a greater DMI (16.6 vs. 15.5 kg/d; SEM 0.46) and greater fat- and protein-corrected milk (FPCM) yield (29.9 vs. 25.4 kg/d; SEM 1.24) at high than low intake (both ≤ 0.001). Apparent total-tract nutrient digestibility was not affected ( ≥ 0.08) by DMI level. Total enteric CH production (346 ± 10.9 g/d) was not affected ( = 0.15) by DMI level. A small, significant ( = 0.025) decrease at high compared with low intake occurred for CH yield (21.8 ± 0.59 g/kg of DMI; -4%). Methane emission intensity (12.8 ± 0.56 g/kg of FPCM; -12%) was considerably smaller ( ≤ 0.001) at high intake as a result of greater milk yields realized in early lactation. As grass quality decreased from leafy through late heading stage, FPCM yield and apparent total-tract OM digestibility declined (-12%; ≤ 0.015), whereas total CH production (+13%), CH yield (+21%), and CH emission intensity (+28%) increased ( ≤ 0.001). Our results suggest that improving grass silage quality by cutting grass at an earlier stage considerably reduces enteric CH emissions from dairy cows, independent of DMI. In contrast, losses of N in manure increased for the earlier cut grass silage treatments. The small increase in DMI at high intake was associated with a small to moderate reduction in CH emission per unit of DMI and GE intake. This study confirmed that enteric CH emissions from dairy cows at distinct levels of feed intake depend on the nutritive value and chemical composition of the grass silage.

  19. Effects of nitrogen fertilisation rate and maturity of grass silage on methane emission by lactating dairy cows.

    PubMed

    Warner, D; Hatew, B; Podesta, S C; Klop, G; van Gastelen, S; van Laar, H; Dijkstra, J; Bannink, A

    2016-01-01

    Grass silage is typically fed to dairy cows in temperate regions. However, in vivo information on methane (CH(4)) emission from grass silage of varying quality is limited. We evaluated the effect of two rates of nitrogen (N) fertilisation of grassland (low fertilisation (LF), 65 kg of N/ha; and high fertilisation (HF), 150 kg of N/ha) and of three stages of maturity of grass at cutting: early maturity (EM; 28 days of regrowth), mid maturity (MM; 41 days of regrowth) and late maturity (LM; 62 days of regrowth) on CH(4) production by lactating dairy cows. In a randomised block design, 54 lactating Holstein-Friesian dairy cows (168±11 days in milk; mean±standard error of mean) received grass silage (mainly ryegrass) and compound feed at 80 : 20 on dry matter basis. Cows were adapted to the diet for 12 days and CH(4) production was measured in climate respiration chambers for 5 days. Dry matter intake (DMI; 14.9±0.56 kg/day) decreased with increasing N fertilisation and grass maturity. Production of fat- and protein-corrected milk (FPCM; 24.0±1.57 kg/day) decreased with advancing grass maturity but was not affected by N fertilisation. Apparent total-tract feed digestibility decreased with advancing grass maturity but was unaffected by N fertilisation except for an increase and decrease in N and fat digestibility with increasing N fertilisation, respectively. Total CH(4) production per cow (347±13.6 g/day) decreased with increasing N fertilisation by 4% and grass maturity by 6%. The smaller CH(4) production with advancing grass maturity was offset by a smaller FPCM and lower feed digestibility. As a result, with advancing grass maturity CH(4) emission intensity increased per units of FPCM (15.0±1.00 g CH(4)/kg) by 31% and digestible organic matter intake (33.1±0.78 g CH(4)/kg) by 15%. In addition, emission intensity increased per units of DMI (23.5±0.43 g CH(4)/kg) by 7% and gross energy intake (7.0±0.14% CH(4)) by 9%, implying an increased loss of dietary energy with advancing grass maturity. Rate of N fertilisation had no effect on CH(4) emissions per units of FPCM, DMI and gross energy intake. These results suggest that despite a lower absolute daily CH(4) production with a higher N fertilisation rate, CH(4) emission intensity remains unchanged. A significant reduction of CH(4) emission intensity can be achieved by feeding dairy cows silage of grass harvested at an earlier stage of maturity.

  20. Milk production and energy efficiency of Holstein and Jersey-Holstein crossbred dairy cows offered diets containing grass silage.

    PubMed

    Xue, B; Yan, T; Ferris, C F; Mayne, C S

    2011-03-01

    Eight Holstein and 8 Jersey-Holstein crossbred dairy cows (all primiparous) were used in a repeated 2 (genotype) × 2 (concentrate level) factorial design study involving a total of 4 periods (each of 6-wk duration), designed to examine the effect of cross-breeding on the efficiency of milk production and energy use. The 4 periods began at 5, 11, 27, and 33 wk of lactation, respectively. Animals were offered a completely mixed diet containing grass silage and concentrates, with the level of concentrate in the diet either 30 or 70% of dry matter (DM). During the final 10 d of each period, ration digestibility and energy use was measured, the latter in indirect open-circuit respiration calorimeters. No significant interaction existed between cow genotype and dietary concentrate level for feed intake, milk production, or any of the energy use parameters measured. Across the 2 genotypes, total DM intake, milk yield, and milk protein and lactose concentrations increased with increasing dietary concentrate level. Thus, cows offered the high-concentrate diet had a higher gross energy (GE) intake, and a higher energy output in feces, urine, milk as heat, and a higher metabolizable energy (ME) intake as a proportion of GE intake and as a proportion of digestible energy intake. Across the 2 levels of concentrates, the Jersey-Holstein cows had a significantly higher total DM intake and body condition score, and produced milk with higher fat, protein, and energy concentrations, compared with those of the Holstein cows. In addition, the Jersey-Holstein cows had a significantly higher GE intake and energy output in urine, methane, and milk. However, crossbreeding had no significant effect on energy digestibility or metabolizability, energy partitioning between milk and body tissue, or the efficiency of ME use for lactation. Relating ME intake to milk energy output and heat production indicated that crossbreeding did not influence ME requirement for maintenance or energy efficiencies. The energy metabolism data were also used to compare energy efficiencies between "early" (data pooled for the first 2 periods) and "late" (data pooled for the second 2 periods) stages of lactation. Stage of lactation had no effect on energy digestibility or metabolizability, whereas increasing stage of lactation increased the rate of energy partitioning into body tissue and reduced the rate of energy partitioning into milk, irrespective of cow genotype. In conclusion, crossbreeding of Holstein dams with Jersey sires had no adverse effects on the overall production efficiency of Holstein dairy cows in terms of milk production, efficiency of ME use for lactation, and energy partitioning between milk and body tissue. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Effects of partial replacement of corn and alfalfa silage with tall fescue hay on total-tract digestibility and lactation performance in dairy cows.

    PubMed

    Bender, R W; Lopes, F; Cook, D E; Combs, D K

    2016-07-01

    Our objective was to evaluate the effects of replacing either corn or alfalfa silage with tall fescue hay on total-tract neutral detergent fiber (NDF) digestibility and lactation performance in dairy cows. Twenty-four primiparous (75±35 d in milk) and 40 multiparous (68±19 d in milk) Holstein cows were blocked by parity and randomly assigned to 1 of 4 treatment groups in a pen equipped with 32 feeding gates to record intake by cow. Each gate was randomly assigned to 1 treatment group; thus, each cow had access to all 8 gates within the respective treatment and cow was the experimental unit. Treatments were formulated to replace either corn silage (CS) or alfalfa silage (AS) with tall fescue hay (TF) as follows (DM basis): 33% AS and 67% CS (control; 33AS67CS), 60% TF and 40% AS (60TF40AS), 60% TF and 40% CS (60TF40CS), and 33% TF and 67% CS (33TF67CS). The experiment was a 7-wk continuous lactation trial with a 2-wk covariate period. Milk production did not differ among treatments and averaged 40.4 kg/d. Fat yield and concentration and protein yield and concentration did not differ among treatments and averaged 1.58 kg/d, 3.94%, 1.28 kg/d, and 3.15%, respectively. Dry matter intake was greater for 33AS67CS (24.5 kg/d) compared with 60TF40CS (22.1 kg/d) and 33TF67CS (22.7 kg/d), and tended to be greater than 60TF40AS (23.2 kg/d). In vivo total-tract dry matter digestibility did not differ among treatments and averaged 66.2%. In vivo total-tract NDF digestibility was lower for 33AS67CS (37.8%) compared with 60TF40AS (44.4%) and 33TF67CS (45.3%), and similar to 60TF40CS (42.4%). In vivo total-tract NDF digestibility and an estimate of in situ total-tract NDF digestibility were similar between techniques across all treatment diets (42.3 vs. 42.6%, respectively). Inclusion of tall fescue grass hay increased the total-tract NDF digestibility of the diet and has the potential to replace corn silage and alfalfa silage and maintain milk production if economically feasible based on current market prices. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Linseed oil supplementation to dairy cows fed diets based on red clover silage or corn silage: Effects on methane production, rumen fermentation, nutrient digestibility, N balance, and milk production.

    PubMed

    Benchaar, C; Hassanat, F; Martineau, R; Gervais, R

    2015-11-01

    The objective of this study was to examine the effect of linseed oil (LO) supplementation to red clover silage (RCS)- or corn silage (CS)-based diets on enteric CH4 emissions, ruminal fermentation characteristics, nutrient digestibility, N balance, and milk production. Twelve rumen-cannulated lactating cows were used in a replicated 4×4 Latin square design (35-d periods) with a 2×2 factorial arrangement of treatments. Cows were fed (ad libitum) RCS- or CS-based diets [forage:concentrate ratio 60:40; dry matter (DM) basis] without or with LO (4% of DM). Supplementation of LO to the RCS-based diet reduced enteric CH4 production (-9%) and CH4 energy losses (-11%) with no adverse effects on DM intake, digestion, ruminal fermentation characteristics, protozoa numbers, or milk production. The addition of LO to the CS-based diet caused a greater decrease in CH4 production (-26%) and CH4 energy losses (-23%) but was associated with a reduction in DM intake, total-tract fiber digestibility, protozoa numbers, acetate:propionate ratio, and energy-corrected milk yield. Urinary N excretion (g/d) decreased with LO supplementation to RCS- and CS-based diets, suggesting reduced potential of N2O emissions. Results from this study show that the depressive effect of LO supplementation on enteric CH4 production is more pronounced with the CS- than with the RCS-based diet. However, because of reduced digestibility with the CS-based diet, the reduction in enteric CH4 production may be offset by higher CH4 emissions from manure storage. Thus, the type of forage of the basal diet should be taken into consideration when using fat supplementation as a dietary strategy to reduce enteric CH4 production from dairy cows. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Influence of corn silage hybrid type on lactation performance by Holstein dairy cows.

    PubMed

    Akins, M S; Shaver, R D

    2014-12-01

    The primary objective of this study was to determine lactation performance by dairy cows fed nutridense (ND), dual-purpose (DP), or brown midrib (BM) corn silage hybrids at the same concentration in the diets. A secondary objective was to determine lactation performance by dairy cows fed NutriDense corn silage at a higher concentration in the diet. One hundred twenty-eight Holstein and Holstein × Jersey cows (105 ± 38 d in milk) were stratified by breed and parity and randomly assigned to 16 pens of 8 cows each. Pens were then randomly assigned to 1 of 4 treatments. Three treatment total mixed rations (TMR; DP40, BM40, and ND40) contained 40% of dry matter (DM) from the respective corn silage hybrid and 20% of DM from alfalfa silage. The fourth treatment TMR had ND corn silage as the sole forage at 65% of DM (ND65). A 2-wk covariate adjustment period preceded the treatment period, with all pens receiving a TMR with equal proportions of DP40, BM40, and ND40. Following the covariate period, cows were fed their assigned treatment diets for 11 wk. nutridense corn silage had greater starch and lower neutral detergent fiber (NDF) content than DP or BM, resulting in ND40 having greater energy content (73.2% of total digestible nutrients, TDN) than DP40 or BM40 (71.9 and 71.4% TDN, respectively). Cows fed BM40 had greater milk yield than DP40, whereas ND40 tended to have greater milk yield and had greater protein and lactose yields compared with DP40. No differences in intake, component-corrected milk yields, or feed efficiency were detected between DP40, BM40, and ND40. Milk yield differences may be due to increased starch intake for ND40 and increased digestible NDF intake for BM40 compared with DP40. Intake and milk yield and composition were similar for ND40 compared with BM40, possibly due to counteracting effects of higher starch intake for ND40 and higher digestible NDF intake for BM40. Feeding ND65 reduced intake, and thus milk and component yields, compared with ND40 due to either increased ruminal starch digestibility or increased rumen fill for ND65. Nutridense corn silage was a viable alternative to both DP and BM at 40% of diet DM; however, lactation performance was reduced when nutridense corn silage was fed at 65% of DM. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Methane production, ruminal fermentation characteristics, nutrient digestibility, nitrogen excretion, and milk production of dairy cows fed conventional or brown midrib corn silage.

    PubMed

    Hassanat, F; Gervais, R; Benchaar, C

    2017-04-01

    The objective of this study was to examine the effect of replacing conventional corn silage (CCS) with brown midrib corn silage (BMCS) in dairy cow diets on enteric CH 4 emission, nutrient intake, digestibility, ruminal fermentation characteristics, milk production, and N excretion. Sixteen rumen-cannulated lactating cows used in a crossover design (35-d periods) were fed (ad libitum) a total mixed ration (forage:concentrate ratio = 65:35, dry matter basis) based (59% dry matter) on either CCS or BMCS. Dry matter intake and milk yield increased when cows were fed BMCS instead of CCS. Of the milk components, only milk fat content slightly decreased when cows were fed the BMCS-based diet compared with when fed the CCS-based diet (3.81 vs. 3.92%). Compared with CCS, feeding BMCS to cows increased yields of milk protein and milk fat. Ruminal pH, protozoa numbers, total VFA concentration, and molar proportions of acetate and propionate were similar between cows fed BMCS and those fed CCS. Daily enteric CH 4 emission (g/d) was unaffected by dietary treatments, but CH 4 production expressed as a proportion of gross energy intake or on milk yield basis was lower for cows fed the BMCS-based diet than for cows fed the CCS-based diet. A decline in manure N excretion and a shift in N excretion from urine to feces were observed when BMCS replaced CCS in the diet, suggesting reduced potential of manure N volatilization. Results from this study show that improving fiber quality of corn silage in dairy cow diets through using brown midrib trait cultivar can reduce enteric CH 4 emissions as well as potential emissions of NH 3 and N 2 O from manure. However, CH 4 emissions during manure storage may increase due to excretion of degradable OM when BMCS diet is fed, which merits further investigation. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Amylase addition increases starch ruminal digestion in first-lactation cows fed high and low starch diets.

    PubMed

    Nozière, P; Steinberg, W; Silberberg, M; Morgavi, D P

    2014-01-01

    The objective of this study was to evaluate the effect of an exogenous amylase preparation on digestion of low- and high-starch diets in dairy cattle. Rumen and total-tract nutrient digestibility were measured in a 4×4 Latin square design with 28-d periods using 4 first-lactation cows cannulated at the rumen and duodenum. Corn silage-based diets had 20 or 30% starch, attained by changing the composition of concentrate, with or without addition of an exogenous amylase preparation. Effects of the enzyme additive were observed on ruminal digestibility but not at the total-tract level. Ruminal digestibility of starch increased from 75% in control to 81% with amylase supplementation. This difference in ruminal starch digestion was compensated postruminally, so that the total-tract digestibility of starch was almost complete and did not differ between treatments. The amylase supplement also increased the true ruminal digestibility of organic matter but did not affect microbial N flow to the duodenum. Amylase supplement reduced the proportion of acetate and butyrate and increased that of propionate, particularly in the high-starch diet, where it tended to increase the concentration of total volatile fatty acids in the rumen. Other effects were a higher amylase activity in the solid-associated microbial community and a tendency for lower numbers of protozoa. In contrast, we observed no changes in intake, production, dry matter and fiber (neutral detergent fiber and acid detergent fiber) digestibility, or ruminal digestion, and no or small changes on selected fibrolytic and amylolytic bacteria and on the microbial community in general. We conclude that the exogenous amylase improved starch digestion in the rumen in first-lactation cows with moderate intake and production levels. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Alfalfa baleage with increased concentration of nonstructural carbohydrates supplemented with a corn-based concentrate did not improve production and nitrogen utilization in early lactation dairy cows.

    PubMed

    Brito, A F; Tremblay, G F; Bertrand, A; Castonguay, Y; Bélanger, G; Michaud, R; Lafrenière, C; Martineau, R; Berthiaume, R

    2014-11-01

    The objective of this study was to investigate the effects of feeding alfalfa baleage with different concentrations of nonstructural carbohydrates (NSC) supplemented with a common corn-based concentrate on performance, ruminal fermentation profile, N utilization, and omasal flow of nutrients in dairy cows during early lactation. Ten multiparous (8 ruminally cannulated) and 8 primiparous Holstein cows were randomly assigned to treatments (high- or low-NSC diet) in a crossover design. The difference in NSC concentration between the 2 alfalfa baleages fed from d14 to 21 averaged 14 g of NSC/kg of dry matter (DM). Forages and concentrate were offered in separate meals with forages fed once and concentrate offered 3 times daily. Except for the molar proportion of valerate, which was lowest in cows fed the high-NSC diet, no other changes in ruminal fermentation were observed. Omasal flows of most nitrogenous fractions, including bacterial nonammonia N and AA, were not affected by treatments. Apparent ruminal digestibilities of neutral and acid detergent fiber and N were lowest, whereas that of total ethanol-soluble carbohydrates was highest when feeding the high-NSC diet. Postruminal digestibilities of DM, organic matter, fiber, and N were highest in cows fed the high-NSC diet, resulting in no difference in total-tract digestibilities. Total-tract digestibility of total ethanol-soluble carbohydrates was highest in cows fed the high-NSC diet, but that of starch did not differ across treatments. Although milk yield and total DM intake did not differ between treatments, yields of milk fat and 4% fat-corrected milk decreased significantly in cows fed the high-NSC diet. Milk concentration of urea N was lowest, and that of ruminal NH3-N highest, in cows fed the high-NSC diet. Plasma urea N concentration tended to be decreased in cows fed the high-NSC diet, but concentrations of AA were not affected by treatments, with the exception of Asp and Cys, both of which were lowest in cows fed the low-NSC diet. Feeding diets with contrasting NSC concentrations did not improve milk production, N utilization, or bacterial protein synthesis, possibly because intakes of NSC and DM were similar between treatments. Overall, results from the current study should be interpreted cautiously because of the lack of difference in dietary NSC intake between treatments and reduced N and fiber intakes when feeding the high-NSC diet. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. Commercial Dairy Cow Milk microRNAs Resist Digestion under Simulated Gastrointestinal Tract Conditions.

    PubMed

    Benmoussa, Abderrahim; Lee, Chan Ho C; Laffont, Benoit; Savard, Patricia; Laugier, Jonathan; Boilard, Eric; Gilbert, Caroline; Fliss, Ismail; Provost, Patrick

    2016-11-01

    MicroRNAs are small, gene-regulatory noncoding RNA species present in large amounts in milk, where they seem to be protected against degradative conditions, presumably because of their association with exosomes. We monitored the relative stability of commercial dairy cow milk microRNAs during digestion and examined their associations with extracellular vesicles (EVs). We used a computer-controlled, in vitro, gastrointestinal model TNO intestinal model-1 (TIM-1) and analyzed, by quantitative polymerase chain reaction, the concentration of 2 microRNAs within gastrointestinal tract compartments at different points in time. EVs within TIM-1 digested and nondigested samples were studied by immunoblotting, dynamic light scattering, quantitative polymerase chain reaction, and density measurements. A large quantity of dairy milk Bos taurus microRNA-223 (bta-miR-223) and bta-miR-125b (∼10 9 -10 10 copies/300 mL milk) withstood digestion under simulated gastrointestinal tract conditions, with the stomach causing the most important decrease in microRNA amounts. A large quantity of these 2 microRNAs (∼10 8 -10 9 copies/300 mL milk) was detected in the upper small intestine compartments, which supports their potential bioaccessibility. A protocol optimized for the enrichment of dairy milk exosomes yielded a 100,000 × g pellet fraction that was positive for the exosomal markers tumor susceptibility gene-101 (TSG101), apoptosis-linked gene 2-interacting protein X (ALIX), and heat shock protein 70 (HSP70) and containing bta-miR-223 and bta-miR-125b. This approach, based on successive ultracentrifugation steps, also revealed the existence of ALIX - , HSP70 -/low , and TSG101 -/low EVs larger than exosomes and 2-6 times more enriched in bta-miR-223 and bta-miR-125b (P < 0.05). Our findings indicate that commercial dairy cow milk contains numerous microRNAs that can resist digestion and are associated mostly with ALIX - , HSP70 -/low , and TSG101 -/low EVs. Our results support the existence of interspecies transfer of microRNAs mediated by milk consumption and challenge our current view of exosomes as the sole carriers of milk-derived microRNAs. © 2016 American Society for Nutrition.

  8. Sprouted barley for dairy cows: Nutritional composition and digestibility

    USDA-ARS?s Scientific Manuscript database

    A 4-unit dual-flow continuous culture fermentor system was used to assess the effect of supplementing 7-d sprouted barley or barley grain with an haylage or pasture diet on nutrient digestibility and methane output. Barley grain was sprouted in climate controlled growth chambers, to be used as part ...

  9. Effect of raw soya bean particle size on productive performance and digestion of dairy cows.

    PubMed

    Naves, A B; Freitas Júnior, J E; Barletta, R V; Gandra, J R; Calomeni, G D; Gardinal, R; Takiya, C S; Vendramini, T H A; Mingoti, R D; Rennó, F P

    2016-08-01

    Differing soya bean particle sizes may affect productive performance and ruminal fermentation due to the level of fatty acid (FA) exposure of the cotyledon in soya bean grain and because the protein in small particles is more rapidly degraded than the protein in large particles, which influence ruminal fibre digestion and the amounts of ruminally undegradable nutrients. The objective of this experiment was to investigate the effects of raw soya bean particle size on productive performance, digestion and milk FA profile of dairy cows. Twelve Holstein cows were assigned to three 4 × 4 Latin squares with 21-day periods. At the start of the experiment, cows were 121 days in milk (DIM) and yielded 30.2 kg/day of milk. Cows were fed 4 diets: (i) control diet (CO), without raw soya bean; (ii) whole raw soya bean (WRS); (iii) cracked raw soya bean in Wiley mill 4-mm screen (CS4); and (iv) cracked raw soya bean in Wiley mill 2-mm screen (CS2). The inclusion of soya beans (whole or cracked) was 200 g/kg on dry matter (DM) basis and partially replaced ground corn and soya bean meal. Uncorrected milk yield and composition were not influenced by experimental diets; however, fat-corrected milk (FCM) decreased when cows were fed soya bean treatments. Soya bean diets increased the intake of ether extract (EE) and net energy of lactation (NEL ), and decreased the intake of DM and non-fibre carbohydrate (NFC). Ruminal propionate concentration was lower in cows fed WRS than cows fed CS2 or CS4. Cows fed cracked raw soya bean presented lower nitrogen in faeces than cows fed WRS. The milk of cows fed WRS, CS2 and CS4 presented higher unsaturated FA than cows fed CO. The addition of raw soya bean in cow diets, regardless of the particle size, did not impair uncorrected milk yield and nutrient digestion, and increased the concentration of unsaturated FA in milk. Cows fed cracked raw soya bean presented similar productive performance to cows fed whole raw soya bean. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  10. High levels of whole raw soya beans in dairy cow diets: digestibility and animal performance.

    PubMed

    Barletta, R V; Gandra, J R; Freitas Junior, J E; Verdurico, L C; Mingoti, R D; Bettero, V P; Benevento, B C; Vilela, F G; Rennó, F P

    2016-12-01

    The aim of this study was to evaluate the effects of high levels of whole raw soya beans in the diets of lactating cows. Twelve Holstein dairy cows were used, randomized in three 4 ×  4 balanced and contemporary Latin squares and fed the following diets: (i) control (C), without including whole raw soya beans; (ii) 80 g/kg in DM of whole raw soya beans (G80); (iii) 160 g/kg in DM of whole raw soya beans (G160); and (iv) 240 g/kg in DM of whole raw soya beans (G240). There was significant reduction (p < 0.05) in dry matter intake (kg/day) in cows supplemented with G240 compared with C (23.8 vs. 25.3 respectively). G240 diets presented lower crude protein digestibility (g/kg) (p < 0.05) in comparison with C diet (683 vs. 757 respectively). There was significant effect of experimental rations in nitrogen balance (p < 0.05), G240 diet presenting significant reduction in comparison with the other diets, and faecal excretion of nitrogen was higher for G240 diet. The concentration of ruminal ammoniacal nitrogen was significantly higher (p < 0.05) for cows receiving control diet, compared to other diets. G240 diet resulted in significantly lower milk and protein yield (p < 0.05) in comparison with C diet. Significant C18:2 cis fatty acids were observed in milk concentrations (p < 0.05) for G240 diet. The use of high level of whole raw soya beans in dairy cow diets improves the unsaturated fatty acid profile in milk, and the diets (G80 and G160) led to minor alterations in the digestive processes and animal metabolism. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  11. Effect of source of trace minerals in either forage- or by-product-based diets fed to dairy cows: 1. Production and macronutrient digestibility.

    PubMed

    Faulkner, M J; Weiss, W P

    2017-07-01

    Excess rumen-soluble Cu and Zn can alter rumen microbial populations and reduce fiber digestibility. Because of differences in particle size and chemical composition, ruminal and total-tract digestibility of fiber from forage- and by-product-based diets can differ. We hypothesized that, because of differences in mineral solubility, diets with hydroxy rather than sulfate trace minerals would have greater fiber digestibility, but the effect may depend on source of fiber. Eighteen multiparous cows were used in a split-plot replicated Latin square with two 28-d periods to evaluate the effects of Cu, Zn, and Mn source (sulfates or hydroxy; Micronutrients USA LLC, Indianapolis, IN) and neutral detergent fiber (NDF) source (forage diet = 26% NDF vs. by-product = 36%) on total-tract nutrient digestibility. During the entire experiment (56 d) cows remained on the same fiber treatment, but source of supplemental trace mineral was different for each 28-d period so that all cows were exposed to both mineral treatments. During each of the two 28-d periods, cows were fed no supplemental Cu, Zn, or Mn for 16 d followed by 12 d of feeding supplemental Cu, Zn, and Mn from either sulfates or hydroxy sources. Supplemental minerals for each of the mineral sources fed provided approximately 10, 35, and 32 mg/kg of supplemental Cu, Zn, and Mn, respectively, for both fiber treatments. Total dietary concentrations of Cu, Zn, and Mn were approximately 19, 65, and 70 mg/kg for the forage diets and 21, 85, and 79 mg/kg for the by-product diets, respectively. Treatment had no effect on dry matter intake (24.2 kg/d) or milk production (34.9 kg/d). Milk fatty acid profiles were altered by fiber source, mineral source, and their interaction. Cows fed the by-product diets had lower dry matter (65.9 vs. 70.2%), organic matter (67.4 vs. 71.7%), and crude protein digestibility (58.8 vs. 62.1%) but greater starch (97.5 vs. 96.3%) and NDF digestibility (50.5 vs. 44.4%) compared with cows fed the forage treatment. Feeding increased concentrations of by-products decreased total digestible nutrients regardless of mineral source. Feeding hydroxy Cu, Zn, and Mn increased NDF digestibility (48.5 vs. 46.4%) but had no effect on total digestible nutrients. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. The fate and effect of monensin during anaerobic digestion of dairy manure under mesophilic conditions

    USDA-ARS?s Scientific Manuscript database

    There is growing concern about environmental impact of residual antibiotics and feed additives in the manure of treated animals. Monensin, a polyether ionophore coccidiostat, is the only feed additive permitted for use in the U.S. for lactating dairy cows. Previous research has shown that up to 5...

  13. Yeast culture increased plasma niacin concentration, evaporative heat loss, and feed efficiency of dairy cows in a hot environment.

    PubMed

    Dias, Julia D L; Silva, Rayana B; Fernandes, Tatiane; Barbosa, Eugenio F; Graças, Larissa E C; Araujo, Rafael C; Pereira, Renata A N; Pereira, Marcos N

    2018-04-04

    The supplementation of dairy cows with yeast culture may increase diet digestibility, plasma niacin concentration, heat dissipation, and lactation performance. Our objective was to evaluate the response of Holstein cows in late lactation (234 ± 131 d in milk) to dead yeast culture (YC, 15 g/d, Factor SC, GRASP, Saccharomyces cerevisiae) during Brazilian summer (temperature-humidity index >68 for 92.2% of the time). Thirty-two cows were individually fed a standard total mixed ration for 14 d and control (CTL) or YC treatments for 35 d, in a covariate adjusted complete randomized block design. Response was evaluated in wk 5 or as repeated measures over time. Cows were milked 3 times per day and treatments (YC or placebo) were orally dosed to each cow before each milking. Plasma niacin was 1.50 for CTL and 1.66 µg/mL for YC. The YC reduced rectal temperature, respiration rate, and skin temperature, whereas it tended to increase sweating rate. The proportion of cows with rectal temperature ≥39.2°C on CTL and YC was, respectively, 8 and 0% at 0730 h, 52 and 25% at 1500 h, and 35 and 26% at 2200 h. Plasma glucose was increased by YC. The total-tract apparent digestibility of nutrients, plasma urea N concentration, molar proportion of ruminal VFA, and urinary allantoin excretion were not affected by YC. Cows fed YC were less selective against feed particles >19 mm in the morning, in the afternoon were more selective against long feed particles and in favor of particles <8 mm, and refused short particles at night. Milk yield was not different (30.5 kg/d for CTL and 30.2 kg/d for YC). Feeding YC reduced dry matter intake (20.3 vs. 19.4 kg/d) and the digestible organic matter intake (15.6 vs. 13.9 kg/d). The inclusion of YC increased the ratios of milk to dry matter intake (1.50 vs. 1.64) and energy-corrected milk to dry matter intake (1.81 vs. 1.98). The covariate adjusted body weight (648 kg) and body condition score (3.0) did not differ. Milk solids yields and concentrations, linear somatic cell count, and milk urea N were also similar. The supplementation of YC increased plasma niacin concentration, body heat loss, and feed efficiency of late lactation dairy cows by reducing intake at similar milk yield. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Effect of different levels of mangosteen peel powder supplement on the performance of dairy cows fed concentrate containing yeast fermented cassava chip protein.

    PubMed

    Polyorach, Sineenart; Wanapat, Metha; Phesatcha, Kampanat; Kang, Sungchhang

    2015-12-01

    This study aimed to investigate the effect of mangosteen (Garcinia mangostana) peel powder (MSP) supplementation on feed intake, nutrient digestibility, ruminal fermentation, and milk production in lactating dairy cows fed a concentrate containing yeast fermented cassava chip protein (YEFECAP). Four crossbred dairy cows (50 % Holstein-Friesian and 50 % Thai native breed) in mid-lactation, 404 ± 50.0 kg of body weight and 90 ± 5 day in milk with daily milk production of 9 ± 2.0 kg/day, were randomly assigned according to a 4 × 4 Latin square design to receive 4 dietary treatments. The treatments were different levels of MSP supplementation at 0, 100, 200, and 300 g/head/day. Rice straw was used as a roughage source and fed ad libitum to all cows, and concentrate containing YEFECAP at 200 g/kg concentrate was offered corresponding to concentrate to milk yield ratio at 1:2. Results revealed that feed intake, apparent nutrient digestibility, ruminal pH and temperature, and total volatile fatty acid were not significantly affected by MSP supplementation (P > 0.05). However, increasing levels of MSP supplementation increased molar proportion of propionate while ammonia-nitrogen, acetate, and acetate to propionate ratio were decreased (P < 0.01). Moreover, milk production and economic return were increased linearly (P < 0.01) with the increasing level of MSP supplementation. The present findings suggested that supplementation of MSP especially at 300 g/head/day with concentrate containing YEFECAP at 200 g/kg could improve rumen fermentation efficiency, milk production and protein content, and economical return of lactating dairy cows fed on rice straw.

  15. Brown midrib corn shredlage in diets for high-producing dairy cows.

    PubMed

    Vanderwerff, L M; Ferraretto, L F; Shaver, R D

    2015-08-01

    A novel method of harvesting whole-plant corn silage, shredlage, may increase kernel processing and physically effective fiber. Improved fiber effectiveness may be especially advantageous when feeding brown midrib (BMR) corn hybrids, which have reduced lignin content. The objective of this study was to determine the effect of feeding TMR containing BMR corn shredlage (SHRD) compared with BMR conventionally processed corn silage (KP) or KP plus chopped alfalfa hay (KPH) on intake, lactation performance, and total-tract nutrient digestibility in dairy cows. The KP was harvested using conventional rolls (2-mm gap) and the self-propelled forage harvester set at 19mm of theoretical length of cut, whereas SHRD was harvested using novel cross-grooved rolls (2-mm gap) and the self-propelled forage harvester set at 26mm of theoretical length of cut. Holstein cows (n=120; 81±8 d in milk at trial initiation), stratified by parity, days in milk, and milk yield, were randomly assigned to 15 pens of 8 cows each. Pens were randomly assigned to 1 of 3 treatment diets, SHRD, KP, or KPH, in a completely randomized design using a 2-wk covariate period with cows fed a common diet followed by a 14-wk treatment period with cows fed their assigned treatment diet. The TMR contained (dry matter basis) KP or SHRD forages (45%), alfalfa silage (10%), and a concentrate mixture (45%). Hay replaced 10% of KP silage in the KPH treatment TMR (dry matter basis). Milk, protein, and lactose yields were 3.4, 0.08, and 0.16kg/d greater, respectively, for cows fed KP and SHRD than KPH. A week by treatment interaction was detected for milk yield, such that cows fed SHRD produced or tended to produce 1.5kg/d per cow more milk, on average, than cows fed KP during 6 of the 14 treatment weeks. Component-corrected milk yields were similar among treatments. Cows fed KPH had greater milk fat concentration than cows fed KP and SHRD (3.67 vs. 3.30% on average). Consumption of dry matter, rumination activity, and sorting behavior were similar among treatments. Ruminal in situ starch digestibility was greater for SHRD than KP forages, and total-tract dietary starch digestibility was greater for SHRD than KP. Milk yield and starch digestibility were greater for SHRD than KP. Lack of improvement in milk fat content and rumination activity for SHRD compared with KP and reduced milk fat content for SHRD compared with KPH, however, suggest no improvement in physically effective fiber from the longer theoretical length of cut used with SHRD in a BMR hybrid. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. Changes in feed intake, nutrient digestion, plasma metabolites, and oxidative stress parameters in dairy cows with subacute ruminal acidosis and its regulation with pelleted beet pulp

    PubMed Central

    2013-01-01

    The objectives of this study were to 1) determine the variation of nutrient digestion, plasma metabolites and oxidative stress parameters triggered by induced subacute ruminal acidosis (SARA); and 2) evaluate the ability of pelleted beet pulp (BP) as a replacement for ground corn to alleviate SARA. Eight Holstein-Friesian cows were fed four diets during four successive17-day periods: 1) total mixed ration (TMR) containing 0% finely ground wheat (FGW) (W0); 2) TMR containing 10% FGW (W10); 3) TMR containing 20% FGW (W20); and 4) TMR containing 10% BP as a replacement for 10% ground corn (BP10). The SARA induction protocol reduced the mean ruminal pH from 6.37 to 5.94, and the minimum ruminal pH decreased from 5.99 to 5.41 from baseline to challenge period. Mean ruminal pH increased from 5.94 to 6.05, and minimum daily ruminal pH increased from 5.41 to 5.63, when BP was substituted for corn. The apparent digestibility of nutrients was not affected by the dietary treatments, except that the digestibility of neutral detergent fibre (NDF) and acid detergent fibre (ADF) was reduced in cows fed the W20 diet compared with cows fed the W0 and W10 diets, and cows fed the BP10 diet had higher NDF and ADF digestibility than the cows fed the W20 diet. Cows fed the W20 diet had a lower plasma concentration of β-hydroxybutyrate (BHBA), non-esterified fatty acids (NEFA), cholesterol, triglyceride, and total antioxidative capacity (TAC), and a higher plasma concentration of glucose, insulin, malonaldehyde (MDA), super oxygen dehydrogenises (SOD), and glutathione peroxidase (GSH-Px) than cows fed the W0 diet. Substitution of BP for corn increased concentrations of plasma BHBA and TAC, but decreased concentrations of plasma MDA. Our results indicate that reduction of fibre digestion; the concomitant increase of plasma glucose and insulin; the decrease of plasma BHBA, NEFA, cholesterol, and triglyceride; and changes of plasma oxidative stress parameters are highly related to SARA induced by W20 diets. These variables may be alternative candidates for SARA diagnosis. We also suggest that the substitution of BP for corn could reduce the risk of SARA, increase fibre digestion, and improve the antioxidant status in dairy cows. PMID:23947764

  17. Changes in feed intake, nutrient digestion, plasma metabolites, and oxidative stress parameters in dairy cows with subacute ruminal acidosis and its regulation with pelleted beet pulp.

    PubMed

    Guo, Yongqing; Xu, Xiaofeng; Zou, Yang; Yang, Zhanshan; Li, Shengli; Cao, Zhijun

    2013-08-16

    The objectives of this study were to 1) determine the variation of nutrient digestion, plasma metabolites and oxidative stress parameters triggered by induced subacute ruminal acidosis (SARA); and 2) evaluate the ability of pelleted beet pulp (BP) as a replacement for ground corn to alleviate SARA. Eight Holstein-Friesian cows were fed four diets during four successive17-day periods: 1) total mixed ration (TMR) containing 0% finely ground wheat (FGW) (W0); 2) TMR containing 10% FGW (W10); 3) TMR containing 20% FGW (W20); and 4) TMR containing 10% BP as a replacement for 10% ground corn (BP10). The SARA induction protocol reduced the mean ruminal pH from 6.37 to 5.94, and the minimum ruminal pH decreased from 5.99 to 5.41 from baseline to challenge period. Mean ruminal pH increased from 5.94 to 6.05, and minimum daily ruminal pH increased from 5.41 to 5.63, when BP was substituted for corn. The apparent digestibility of nutrients was not affected by the dietary treatments, except that the digestibility of neutral detergent fibre (NDF) and acid detergent fibre (ADF) was reduced in cows fed the W20 diet compared with cows fed the W0 and W10 diets, and cows fed the BP10 diet had higher NDF and ADF digestibility than the cows fed the W20 diet. Cows fed the W20 diet had a lower plasma concentration of β-hydroxybutyrate (BHBA), non-esterified fatty acids (NEFA), cholesterol, triglyceride, and total antioxidative capacity (TAC), and a higher plasma concentration of glucose, insulin, malonaldehyde (MDA), super oxygen dehydrogenises (SOD), and glutathione peroxidase (GSH-Px) than cows fed the W0 diet. Substitution of BP for corn increased concentrations of plasma BHBA and TAC, but decreased concentrations of plasma MDA. Our results indicate that reduction of fibre digestion; the concomitant increase of plasma glucose and insulin; the decrease of plasma BHBA, NEFA, cholesterol, and triglyceride; and changes of plasma oxidative stress parameters are highly related to SARA induced by W20 diets. These variables may be alternative candidates for SARA diagnosis. We also suggest that the substitution of BP for corn could reduce the risk of SARA, increase fibre digestion, and improve the antioxidant status in dairy cows.

  18. Effect of substituting brown rice for corn on lactation and digestion in dairy cows fed diets with a high proportion of grain.

    PubMed

    Miyaji, M; Matsuyama, H; Hosoda, K

    2014-02-01

    The effects of the substitution of brown rice (Oryza sativa L.; BR) for corn (Zea mays L.) in ensiled total mixed ration (TMR) that had a high proportion of grain on feed intake, lactation performance, ruminal fermentation, digestion, and N utilization were evaluated. Nine multiparous Holstein cows (51 ± 9 d in milk) were used in a replicated 3 × 3 Latin square design with 3 dietary treatments: a diet containing 0, 20, or 40% steam-flaked BR and 40, 20, or 0% steam-flaked corn (dry matter basis). Cows were fed ad libitum an ensiled TMR consisting of 40.7% alfalfa silage, 11.8% grass silage, 7.1% soybean meal, and 40.0% steam-flaked grain (dry matter basis). The ensiled TMR was prepared by baling fresh TMR, and then sealed by a bale wrapper and stored outdoors at 5 to 30 °C for over 6 mo. Dry matter intake and milk yield were lower for cows fed 40% BR than for cows fed 40% corn. The ruminal pH and total volatile fatty acid concentrations were not affected by dietary treatment. The ruminal ammonia-N concentration decreased as the percentage of BR in the diets was elevated. The proportion of acetate decreased, and that of propionate and butyrate increased with the increasing levels of BR. Plasma urea-N concentrations was lower and glucose and insulin concentrations were higher for cows fed 40% BR than for cows fed 40% corn. The whole-tract apparent digestibility of dry matter, organic matter, and starch increased, and the digestibility of neutral detergent fiber and acid detergent fiber decreased with the increasing BR level in the diet, with no dietary effect on crude protein digestion. As a proportion of N intake, the urinary N excretion was lower and the retention of N was higher for cows fed 40% BR than for cows fed 40% corn, with no dietary effect observed on N secretion in milk and fecal N excretion. These results show that substituting BR for corn decreases urinary N losses and improves N utilization, but causes adverse effects on milk production when cows are fed high-grain diets at 40% of dietary dry matter. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. The effect of hybrid type and dietary proportions of corn silage on the lactation performance of high-producing dairy cows.

    PubMed

    Lim, J M; Nestor, K E; Kung, L

    2015-02-01

    We evaluated the effects of corn silage hybrids [control vs. brown midrib (BMR)] and the proportion of corn silage in rations on the performance of high-producing dairy cows. The chemical composition of the corn silages was similar except for lignin, which was higher in the control hybrid [3.09%, dry matter (DM) basis] compared with the BMR hybrid (2.19%). The 30-h in vitro neutral detergent fiber (NDF) digestibility was also higher (62.8% of NDF) in the BMR hybrid than in the control hybrid (52.2%). Twenty-seven Holstein cows were fed 1 of 3 diets comprising 62% forage and 38% concentrate (DM basis) containing 35% (DM basis) corn silage from the control hybrid (NLO), 35% of the BMR hybrid (BLO), or 50% of the BMR (BHI). Cows were fed the diets in a replicated 3×3 Latin square design with 28-d periods. Intake of DM was similar among treatments but milk production was greater for cows fed BLO (50.1kg/d) and BHI (51.1kg/d) than for NLO (47.9kg/d). Milk fat percentage was lower for cows fed BHI (3.37%) than for those fed BLO (3.55%) and NLO (3.56%) but yield of milk fat was similar among treatments. Yield and percentage of milk protein was higher for cows in BHI compared with NLO. The concentration of milk urea N was lower in cows fed BHI (14.0mg/dL) than in those fed NLO (14.7mg/dL) and intermediate for BLO (14.5mg/dL). The yield of 3.5% fat-corrected milk was higher in cows fed BLO (50.2kg/d) than in NLO (48.2kg/d) and was intermediate for BHI (49.8kg/d). The total-tract digestibility of dietary DM, organic matter, starch, and crude protein was lower for cows in NLO compared with the other treatments. The total-tract digestibility of NDF was highest for BHI (54.4%), intermediate for BLO (50.9%), and lowest for NLO (43.2%). We conclude that BMR corn silage can be included in rations at moderate and high proportions of a total ration, resulting in high levels of milk production. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Effect of feeding dried distillers' grains with solubles on milk yield and milk composition of cows in mid-lactation and digestibility in sheep.

    PubMed

    Westreicher-Kristen, E; Kaiser, R; Steingass, H; Rodehutscord, M

    2014-04-01

    We evaluated the effect of three sources of dried distillers' grains with solubles (DDGS) in diets of mid-lactating dairy cows on milk production and milk composition and on digestibility in sheep. DDGS from wheat, corn and barley (DDGS1 ), wheat and corn (DDGS2 ) and wheat (DDGS3 ) were studied and compared with a rapeseed meal (RSM). RSM and DDGS were characterized through in situ crude protein (CP) degradability. Nutrient digestibility was determined in sheep. Twenty-four multiparous cows were used in a 4 × 4 Latin square design with 28-day periods. Treatments included total mixed rations containing as primary protein sources RSM (control), DDGS1 (D1), DDGS2 (D2) or DDGS3 (D3). RSM contained less rapidly degradable CP (fraction a), more potentially degradable CP (fraction b) and more rumen undegradable CP (UDP) than the three DDGS. In vivo digestibility of RSM organic matter was similar to DDGS. Calculated net energy for lactation (NEL ) was lower for RSM (7.4 MJ/kg DM) than for DDGS, which averaged 7.7 MJ/kg DM. Cows' dry matter intake did not differ between diets (21.7 kg/day). Cows fed D1 yielded more milk than those fed D3 (31.7 vs. 30.4 kg/day); no differences were found between control and DDGS diets (31.3 vs. 31.1 kg/day). Energy-corrected milk was similar among diets (31.2 kg/day). Diets affected neither milk fat concentration (4.0%) nor milk fat yield (1.24 kg/day). Milk protein yield of control (1.12 kg/day) was significantly higher than D3 (1.06 kg/day) but not different form D1 and D2 (1.08 kg/day each). Feeding DDGS significantly increased milk lactose concentration (4.91%) in relation to control (4.81%). DDGS can be a suitable feed in relation to RSM and can be fed up to 4 kg dry matter per day in rations of dairy cows in mid-lactation. However, high variation of protein and energy values of DDGS should be considered when included in diets of dairy cows. Journal of Animal Physiology and Animal Nutrition © 2013 Blackwell Verlag GmbH.

  1. Assessing circumstances and causes of dairy cow death in Italian dairy farms through a veterinary practice survey (2013-2014).

    PubMed

    Fusi, Francesca; Angelucci, Alessandra; Lorenzi, Valentina; Bolzoni, Luca; Bertocchi, Luigi

    2017-02-01

    A questionnaire survey about on farm dairy cow mortality was carried out among veterinary practitioners in Italy between January 2013 and May 2014. The study aimed at investigating the main circumstances of death in dairy cows (euthanasia, emergency slaughter or unassisted death), the primary causes and the risk factors of death. Out of 251 dead cows involved (across 137 farms), 54.6% died assisted and 45.4% were found dead. The main causes of death were metabolic/digestive disorders (22.3%) and mastitis/udder problems (17.1%), while in 14.7% of all cases, reasons of death were unknown. From the univariable generalised linear mixed models, dry cows showed a significantly higher odds to die unassisted compared to lactating cows (OR=3.2); dry cows also had higher odds of dying from unknown reasons (OR=11.7). Season was not significantly related to the risk of dying unassisted and for unknown reasons, but during the summer (characterised by hot and muggy weather in Northern Italy) cows died mostly for problems at calving. 54.2% of cows died during the first 30days in milk (DIM). Half of the multiparous cows that died, died in the first 29.5 DIM, while half of the primiparous cows that died, died in the first 50 DIM. Results pointed out that, especially in dry cows, around calving and during the summer, some failure in management practices and daily inspections may occur. Improvements should be done in monitoring activities and in recognising early symptoms of diseases among stockperson. In addition, in case of diagnosed diseases with poor prognosis, euthanasia procedures should be implemented to prevent cows from dying unassisted. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Association of residual feed intake with abundance of ruminal bacteria and biopolymer hydrolyzing enzyme activities during the peripartal period and early lactation in Holstein dairy cows.

    PubMed

    Elolimy, Ahmed A; Arroyo, José M; Batistel, Fernanda; Iakiviak, Michael A; Loor, Juan J

    2018-01-01

    Residual feed intake (RFI) in dairy cattle typically calculated at peak lactation is a measure of feed efficiency independent of milk production level. The objective of this study was to evaluate differences in ruminal bacteria, biopolymer hydrolyzing enzyme activities, and overall performance between the most- and the least-efficient dairy cows during the peripartal period. Twenty multiparous Holstein dairy cows with daily ad libitum access to a total mixed ration from d - 10 to d 60 relative to the calving date were used. Cows were classified into most-efficient (i.e. with low RFI, n  = 10) and least-efficient (i.e. with high RFI, n  = 10) based on a linear regression model involving dry matter intake (DMI), fat-corrected milk (FCM), changes in body weight (BW), and metabolic BW. The most-efficient cows had ~ 2.6 kg/d lower DMI at wk 4, 6, 7, and 8 compared with the least-efficient cows. In addition, the most-efficient cows had greater relative abundance of total ruminal bacterial community during the peripartal period. Compared with the least-efficient cows, the most-efficient cows had 4-fold greater relative abundance of Succinivibrio dextrinosolvens at d - 10 and d 10 around parturition and tended to have greater abundance of Fibrobacter succinogenes and Megaspheara elsdenii . In contrast, the relative abundance of Butyrivibrio proteoclasticus and Streptococcus bovis was lower and Succinimonas amylolytica and Prevotella bryantii tended to be lower in the most-efficient cows around calving. During the peripartal period, the most-efficient cows had lower enzymatic activities of cellulase, amylase, and protease compared with the least-efficient cows. The results suggest that shifts in ruminal bacteria and digestive enzyme activities during the peripartal period could, at least in part, be part of the mechanism associated with better feed efficiency in dairy cows.

  3. Between-cow variation in digestion and rumen fermentation variables associated with methane production.

    PubMed

    Cabezas-Garcia, E H; Krizsan, S J; Shingfield, K J; Huhtanen, P

    2017-06-01

    A meta-analysis based on an individual-cow data set was conducted to investigate the effects of between-cow variation and related animal variables on predicted CH 4 emissions from dairy cows. Data were taken from 40 change-over studies consisting of a total of 637 cow/period observations. Animal production and rumen fermentation characteristics were measured for 154 diets in 40 studies; diet digestibility was measured for 135 diets in 34 studies, and ruminal digestion kinetics was measured for 56 diets in 15 studies. The experimental diets were based on grass silage, with cereal grains or by-products as energy supplements, and soybean or canola meal as protein supplements. Average forage:concentrate ratio across all diets on a dry matter basis was 59:41. Methane production was predicted from apparently fermented substrate using stoichiometric principles. Data were analyzed by mixed-model regression using diet and period within experiment as random effects, thereby allowing the effect of experiment, diet, and period to be excluded. Dry matter intake and milk yield were more repeatable experimental measures than rumen fermentation, nutrient outflow, diet digestibility, or estimated CH 4 yield. Between-cow coefficient of variation (CV) was 0.010 for stoichiometric CH 4 per mol of volatile fatty acids and 0.067 for predicted CH 4 yield (CH 4 /dry matter intake). Organic matter digestibility (OMD) also displayed little between-cow variation (CV = 0.013), indicating that between-cow variation in diet digestibility and rumen fermentation pattern do not markedly contribute to between cow-variation in CH 4 yield. Digesta passage rate was much more variable (CV = 0.08) between cows than OMD or rumen fermentation pattern. Increased digesta passage rate is associated with improved energetic efficiency of microbial N synthesis, which partitions fermented substrate from volatile fatty acids and gases to microbial cells that are more reduced than fermented carbohydrates. Positive relationships were observed between CH 4 per mol of volatile fatty acids versus OMD and rumen ammonia N concentration versus OMD; and negative relationships between the efficiency of microbial N synthesis versus OMD and digesta passage rate versus OMD, suggesting that the effects of these variables on CH 4 yield were additive. It can be concluded that variations in OMD and efficiency in microbial N synthesis resulting from variations in digesta passage contribute more to between-animal variation in CH 4 emissions than rumen fermentation pattern. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Tea saponin reduced methanogenesis in vitro but increased methane yield in lactating dairy cows.

    PubMed

    Guyader, J; Eugène, M; Doreau, M; Morgavi, D P; Gérard, C; Martin, C

    2017-03-01

    The effect of tea saponin supplementation in the ruminant diet on methane emissions, rumen fermentation, and digestive processes is still under debate. The objective of this study was to assess the effect of this plant extract on methanogenesis, total-tract digestibility, and lactating performances of dairy cows. The work included 2 independent and successive experiments. First, the effect of 7 tea saponin doses (from 0 to 0.50 g/L) on methane emissions and protozoa concentrations was tested in 2 repeated in vitro batch culture incubations using bovine rumen contents as inoculum and a cereal mixture as substrate. After 18 h of incubation, total gas production and composition as well as rumen fermentation parameters and protozoa concentration were analyzed. Increasing dosage of the plant extract reduced methane production and protozoa concentration, with a maximum reduction of 29% for CH 4 (mL/g of substrate) and 51% for protozoa (10 5 /mL). Tea saponin did not affect volatile fatty acids concentration, but marginally decreased total gas production by 5% at the highest dose. Second, a 2-period crossover design experiment was carried out with 8 lactating dairy cows fed a basal diet (54% corn silage, 6% hay, and 40% pelleted concentrates on a dry matter basis) without (control) or with 0.52% tea saponin (TSP). Each experimental period lasted 5 wk. Animals were fed ad libitum during the first 3 wk of the period (wk 1, 2, and 3) and restricted (95% of ad libitum intake) during the last 2 wk (wk 4 and 5). Intake and milk production were recorded daily. Methane emissions were quantified using open chambers (2 d, wk 4). Total-tract digestibility and nitrogen balance were determined from total feces and urine collected separately (5 d, wk 5). Rumen fermentation parameters and protozoa concentration were analyzed from samples taken after morning feeding (1 d, wk 5). Milk production, dry matter intake, and feed efficiency were reduced with TSP (-18, -12, and -8%, respectively). As daily methane production (g/d) was not affected, methane emissions (g/kg of dry matter intake) increased by 14% with TSP. Total-tract digestibility and nitrogen balance were similar between diets, except for acid detergent fiber digestibility, which tended to be improved with TSP (+4 percentage units). Rumen fermentation parameters and protozoa concentration were relatively unchanged by diets. Under the conditions of this experiment, tea saponin is not efficient to reduce methane emissions from dairy cows. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Effects of feeding lauric acid or coconut oil on ruminal protozoa numbers, fermentation pattern, digestion, omasal nutrient flow, and milk production in dairy cows.

    PubMed

    Faciola, A P; Broderick, G A

    2014-01-01

    The objectives of this study were to evaluate the feeding of coconut oil (CO), in which lauric acid (La) comprises about 50% of the fatty acid composition, as a practical rumen protozoa (RP) suppressing agent, to assess whether the source of La affects ruminal fermentation and animal performance and to test whether suppressing RP improves N utilization, nutrient digestion, nutrient flow at the omasal canal, and milk production. Fifteen multiparous Holstein cows (3 fitted with ruminal cannulas) and 15 primiparous Holstein cows (3 fitted with ruminal cannulas) were used in a replicated 3×3 Latin square experiment with 14d of adaptation and 14d of sample collection. Diets were fed as total mixed ration and contained (dry matter basis) 10% corn silage, 50% alfalfa silage, and 40% concentrate. The control diet contained 3% (dry matter basis) calcium soaps of palm oil fatty acids (Megalac, Church & Dwight Co. Inc., Princeton, NJ) as a ruminally inert fat source and had no added La or CO. Diets with La and CO were formulated to contain equal amounts of La (1.3%, dry matter basis). Dry matter intake was not affected by treatment. Both CO and La reduced RP numbers by about 40%. Lauric acid reduced yield of milk and milk components; however, CO did not affect yield of milk and yields of milk components. Both La and CO caused small reductions in total VFA concentration; CO increased molar proportion of ruminal propionate, reduced ruminal ammonia and branched-chain volatile fatty acids, suggesting reduced protein degradation, and reduced milk urea N and blood urea N concentrations, suggesting improved protein efficiency. Lauric acid reduced total-tract apparent digestibility of neutral detergent fiber and acid detergent fiber as well as ruminal apparent digestibility of neutral detergent fiber and acid detergent fiber as measured at the omasal canal; however, CO did not alter fiber digestion. Microbial protein flow at the omasal canal, as well as the flow of N fractions at the omasal canal, did not differ among treatments. Results from this experiment have confirmed that dietary La is not a practical agent for suppressing RP population in dairy cows, mainly because of its negative effects on fiber digestion and ruminal fermentation. Intake of CO appeared to reduce ruminal and improve protein efficiency, but did not improve milk production, milk composition, or increase microbial outflow from the rumen. Based on the results of this study, a 40% reduction of RP population is not sufficient to improve N utilization in dairy cows. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Economic feasibility of converting cow manure to electricity: a case study of the CVPS Cow Power program in Vermont.

    PubMed

    Wang, Q; Thompson, E; Parsons, R; Rogers, G; Dunn, D

    2011-10-01

    A case study of the Central Vermont Public Service Corporation (CVPS) Cow Power program examines the economic feasibility for dairy farms to convert cow manure into electricity via anaerobic methane digestion. The study reviews the mechanism for CVPS, dairy farms, electricity customers, and government agencies to develop and operate the program since 2004, examines the costs and returns for the participating dairy farms, and assesses their cash flow over a period of 7 yr under different scenarios. With 6 dairy farms generating about 12 million kilowatt-hours of electricity per year and more than 4,600 CVPS electricity customers voluntarily paying premiums of $0.04 per kilowatt-hour, or a total of about $470,000 per year, the CVPS Cow Power program represents a successful and locally sourced renewable energy project with many environmental and economic benefits. Factors for the successful development and operation of the program include significant grants from government agencies and other organizations, strong consumer support, timely adjustments to the basic electricity price paid to the farms, and close collaboration among the participating parties. This study confirms that it is technically feasible to convert cow manure to electricity on farms, but the economic returns depend highly on the base electricity price, premium rate, financial supports from government agencies and other organizations, and sales of the byproducts of methane generation. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. Milk production, nitrogen balance, and fiber digestibility prediction of corn, whole plant grain sorghum, and forage sorghum silages in the dairy cow.

    PubMed

    Colombini, S; Galassi, G; Crovetto, G M; Rapetti, L

    2012-08-01

    Total mixed rations containing corn (CS), whole plant grain sorghum (WPGS), or forage sorghum (FS) silages were fed to 6 primiparous Italian Friesian cows to determine the effects on lactation performance, nutrient digestibility, and N balance. Furthermore, the relationship between in vivo total-tract neutral detergent fiber (NDF) digestibility (ttNDFD) and the ttNDFD derived by the Cornell Net Carbohydrate and Protein System (CNCPS) model was assessed. Cows were assigned to 1 of 3 diets in a replicated 3 × 3 Latin square with 28-d periods. The experimental treatment was silage type and 3 different silages were included in the diets. The diets were formulated to be iso-NDF. Accordingly, each diet was formulated to contain 41.5% CS silage, 36.7% WPGS silage, or 28.0% FS silage, on a DM basis. Starch content was balanced by adding the appropriate amount of corn meal. Separate collection of total urine and feces was performed. Dietary forages were analyzed for in vitro NDF digestibility (6 and 24h of incubation) to predict fiber digestion rate with 2 NDF pools (digestible and indigestible). Rumen digestibility of the potentially digestible NDF pool was predicted using CNCPS version 6.1, using the in vitro forage fiber digestion rate. The ttNDFD was predicted assuming that intestinal digestibility of the NDF amount escaping rumen digestion was 20%, according to the CNCPS model. Dry matter intake was decreased by approximately 1.8 kg/d in cows fed the FS diet compared with the other diets, probably for the greater particle size of FS diet. Hence, milk yield (kg/d) was lowest for FS (23.6), intermediate for WPGS (24.6), and highest for the CS diet (25.4). Milk urea N (mg/dL) was highest for FS (12.9), intermediate for WPGS (11.9), and lowest for CS (10.7) diet. In vivo ttNDFD (%) was 51.4 (CS), 48.6 (WPGS), and 54.1 (FS); this was probably due to a higher retention time of FS diet in the rumen rather than to a better quality of the FS silage, as confirmed by in situ and in vitro results. Urinary N excretion (% N intake) was highest for FS (31.8), intermediate for WPGS (29.3), and lowest for the CS (27.5) diet. The predicted ttNDFD (37.7, 36.3, and 39.5% for CS, WPGS, and FS, respectively) were lower than the in vivo results. Providing an adequate starch supplementation, whole plant grain sorghum silage can replace corn silage in dairy cows TMR. Forage sorghum silage had rumen NDF digestibility comparable to the other silages; however, it had a negative effect on dry matter intake and milk production, probably due to an inadequate effect of processing. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Effect of variation in proportion of cornmeal and steam-rolled corn in diets for dairy cows on behavior, digestion, and yield and composition of milk.

    PubMed

    Uchida, K; Ballard, C S; Mandebvu, P; Sniffen, C J; Carter, M P

    2001-02-01

    Sixty-six lactating multiparous Holstein cows (113+/-46 DIM) housed in a free-stall facility were blocked and assigned randomly to one of three treatments to evaluate the effects on animal performance from feeding cornmeal, cornmeal mixed with steam-rolled corn in a ratio of 1:1 on dry matter basis, or steam-rolled corn. The only difference in the dietary ingredients was the type of corn, which was included in the total mixed ration (TMR) at 17% of dry matter. The densities (g/L) of cornmeal and steam-rolled corn were, respectively, 635 and 553. Diets were fed as TMR and were formulated according to the Cornell Penn Miner Dairy nutrition model. The TMR consisted of 40% forage and 60% concentrate on dry matter basis. The first 2 wk of the 8-wk study was a preliminary period, and data collected during this period were used as covariate in statistical analysis of production data collected during wk 6 to 8. Treatment diets were fed from wk 3 to 8. Total tract digestibilities of dry matter, organic matter, crude protein, starch, and neutral detergent fiber were not significantly different among treatments. Cows fed TMR containing steam-rolled corn had higher body condition and ruminated longer. However, feeding cornmeal and steam-rolled corn together did not improve dry matter and nutrient digestion, milk yield, 3.5% fat-corrected milk yield, and percentage and yield of fat, crude protein, true protein, and lactose in milk, and milk urea nitrogen. In conclusion, feeding steam-rolled corn improved animal body condition and rumination. Partial or complete substitution of cornmeal by steam-rolled corn in diets for lactating dairy cows did not improve dry matter and nutrient digestion, milk yield, and milk composition.

  9. Effects of extruding wheat dried distillers grains with solubles with peas or canola meal on ruminal fermentation, microbial protein synthesis, nutrient digestion, and milk production in dairy cows.

    PubMed

    Claassen, R M; Christensen, D A; Mutsvangwa, T

    2016-09-01

    Our objective was to examine the effects of feeding coextruded and nonextruded supplements consisting of wheat dried distillers grains with solubles with peas (WDDGS-peas) or canola meal (WDDGS-CM) on ruminal fermentation, omasal flow, and production performance in Holstein cows. Eight cows (4 ruminally cannulated) were used in a replicated 4×4 Latin square with 28-d periods and a 2×2 factorial arrangement of dietary treatments. Dietary treatments were coextruded or nonextruded mixtures of WDDGS-peas and WDDGS-CM that were included in total mixed rations at 15.1% [dry matter (DM) basis]. Diet had no effect on DM intake. Milk yield was greater in cows fed coextruded diets compared with those fed nonextruded diets. Milk fat content was greater in cows fed nonextruded diets compared with those fed coextruded diets, but milk fat yield was greater in cows fed coextruded diets compared with those fed nonextruded diets. Milk yield tended to be greater and milk protein yield was greater in cows fed WDDGS-peas compared with those fed WDDGS-CM. Cows fed nonextruded diets had a greater milk urea-N concentration compared with those fed coextruded diets. Cows fed coextruded diets had greater ruminal digestion of DM and tended to have greater ruminal digestion of organic matter compared with those fed nonextruded diets. Total-tract digestibilities of organic matter, crude protein, ether extract, and starch were greater, whereas that of acid detergent fiber and neutral detergent fiber tended to be greater in cows fed coextruded compared with those fed nonextruded diets. Total-tract digestibility of ether extract was lower whereas that of starch was greater and that of crude protein tended to be greater in cows fed WDDGS-peas compared with those fed WDDGS-CM. Total N excretion and milk N efficiency were unaffected by diet. Ruminal NH3-N concentration tended to be greater in cows fed WDDGS-CM compared with those fed WDDGS-peas. Ruminal propionate concentration was greater whereas plasma urea-N concentration tended to be lower in cows fed coextruded compared with those fed nonextruded diets. Plasma glucose concentration was greater in cows fed diets containing WDDGS-CM compared with those fed diets containing WDDGS-peas, but the difference in plasma glucose concentration between WDDGS-CM and WDDGS-peas was greater in cows fed coextruded diets compared with those fed nonextruded diets. In summary, feeding coextruded compared with nonextruded supplements or WDDGS-peas compared WDDGS-CM increased yields of milk, fat, and protein. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Milk production is unaffected by replacing barley or sodium hydroxide wheat with maize cob silage in rations for dairy cows.

    PubMed

    Hymøller, L; Hellwing, A L F; Lund, P; Weisbjerg, M R

    2014-05-01

    Starch is an important energy-providing nutrient for dairy cows that is most commonly provided from cereal grains. However, ruminal fermentation of large amounts of easily degradable starch leads to excessive production and accumulation of volatile fatty acids (VFA). VFA not only play a vital role in the energy metabolism of dairy cows but are also the main cause of ruminal acidosis and depressed feed intake. The aim of the present study was to compare maize cob silage (MCS) as an energy supplement in rations for dairy cows with highly rumen-digestible rolled barley and with sodium hydroxide wheat (SHW), which has a higher proportion of by-pass starch than barley. Two studies were carried out: (1) a production study on 45 Danish Holstein cows and (2) an intensive study to determine digestibilities, rumen fermentation patterns and methane emission using three rumen-cannulated Danish Holstein cows. Both studies were organised as a 3×3 Latin square with three experimental periods and three different mixed rations. The rations consisted of grass-clover silage and maize silage (~60% of dry matter (DM)), rapeseed cake, soybean meal, sugar beet pulp and one of three different cereals as a major energy supplement: MCS, SHW or rolled barley (~25% of DM). When MCS replaced barley or SHW as an energy supplement in the mixed rations, it resulted in a lower dry matter intake; however, the apparent total tract digestibilities of DM, organic matter, NDF, starch and protein were not different between treatments. The energy-corrected milk yield was unaffected by treatment. The fat content of the milk on the MCS ration was not different from the SHW ration, whereas it was higher on the barley ration. The protein content of the milk decreased when MCS was used in the ration compared with barley and SHW. From ruminal VFA patterns and pH measures, it appeared that MCS possessed roughage qualities with respect to rumen environment, while at the same time being sufficiently energy rich to replace barley and SHW as a major energy supplement for milk production. The environmental impact, expressed as methane emissions, was not different when comparing MCS, SHW and barley.

  11. Methane production, digestion, ruminal fermentation, nitrogen balance, and milk production of cows fed corn silage- or barley silage-based diets.

    PubMed

    Benchaar, C; Hassanat, F; Gervais, R; Chouinard, P Y; Petit, H V; Massé, D I

    2014-02-01

    This study evaluated the effects of replacing barley silage (BS) with corn silage (CS) in dairy cow diets on enteric CH4 emissions, ruminal fermentation characteristics, digestion, milk production, and N balance. Nine ruminally cannulated lactating cows were used in a replicated 3 × 3 Latin square design (32-d period) and fed (ad libitum) a total mixed ration (TMR; forage:concentrate ratio 60:40; dry matter basis) with the forage portion consisting of either barley silage (0% CS; 0% CS and 54.4% BS in the TMR), a 50:50 mixture of both silages (27% CS; 27.2% CS and 27.2% BS in the TMR), or corn silage (54% CS; 0% BS and 54.4% CS in the TMR). Increasing the CS proportion (i.e., at the expense of BS) also involved increasing the proportion of corn grain (at the expense of barley grain). Intake and digestibility of dry matter and milk production increased linearly as the proportion of CS increased in the diet. Increasing dietary CS proportion decreased linearly the acetate molar proportion and increased linearly that of propionate. Daily CH4 emissions tended to respond quadratically to increasing proportions of CS in the diet (487, 540, and 523 g/d for 0, 27, and 54% CS, respectively). Methane production adjusted for dry matter or gross energy intake declined as the amount of CS increased in the diet; this effect was more pronounced when cows were fed the 54% CS diet than the 27% CS diet. Increasing the CS proportion in the diet improved N utilization, as reflected by decreases in ruminal ammonia concentration and urinary N excretion and higher use of dietary N for milk protein secretion. Total replacement of BS with CS in dairy cow diets offers a strategy to decrease CH4 energy losses and control N losses without negatively affecting milk performance. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Evidence for increasing digestive and metabolic efficiency of energy utilization with age of dairy cattle as determined in two feeding regimes.

    PubMed

    Grandl, F; Zeitz, J O; Clauss, M; Furger, M; Kreuzer, M; Schwarm, A

    2018-03-01

    The changes taking place with age in energy turnover of dairy cattle are largely unknown. It is unclear whether the efficiency of energy utilization in digestion (characterized by faecal and methane energy losses) and in metabolism (characterized by urine and heat energy losses) is altered with age. In the present study, energy balance data were obtained from 30 lactating Brown Swiss dairy cows aged between 2 and 10 years, and 12 heifers from 0.5 to 2 years of age. In order to evaluate a possible dependence of age effects on diet type, half of the cattle each originated from two herds kept at the same farm, which were fed either on a forage-only diet or on the same forage diet but complemented with 5 kg/day of concentrate since their first calving. During 2 days, the gaseous exchange of the animals was quantified in open-circuit respiration chambers, followed by an 8-day period of feed, faeces, urine and milk collection. Daily amounts and energy contents were used to calculate complete energy balances. Age and feeding regime effects were analysed by parametric regression analysis where BW, milk yield and hay proportion in forage as consumed were considered as covariates. Relative to intake of gross energy, the availability of metabolizable energy (ME) increased with age. This was not the result of an increasing energy digestibility, but of proportionately lower energy losses with methane (following a curvilinear relationship with the greatest losses in middle-aged cows) and urine (continuously declining). The efficiency of utilization of ME for milk production (k l) increased with age. Potential reasons include an increase in the propionate-to-acetate ratio in the rumen because of a shift away from fibre degradation and methane formation as well as lower urine energy losses. The greater k l allowed older cows to accrete more energy reserves in the body. As expected, offering concentrate enhanced digestibility, metabolizability and metabolic utilization of energy. Age and feeding regime did not interact significantly. In conclusion, older cows seem to have digestive and metabolic strategies to use dietary energy to a certain degree more efficiently than younger cows.

  13. Replacing corn silage with different forage millet silage cultivars: effects on milk yield, nutrient digestion, and ruminal fermentation of lactating dairy cows.

    PubMed

    Brunette, T; Baurhoo, B; Mustafa, A F

    2014-10-01

    This study investigated the effects of dietary replacement of corn silage (CS) with 2 cultivars of forage millet silages [i.e., regular millet (RM) and sweet millet (SM)] on milk production, apparent total-tract digestibility, and ruminal fermentation characteristics of dairy cows. Fifteen lactating Holstein cows were used in a replicated 3 × 3 Latin square experiment and fed (ad libitum) a high-forage total mixed ration (68:32 forage:concentrate ratio). Dietary treatments included CS (control), RM, and SM diets. Experimental silages constituted 37% of each diet DM. Three ruminally fistulated cows were used to determine the effect of dietary treatments on ruminal fermentation and total-tract nutrient utilization. Relative to CS, RM and SM silages contained 36% more crude protein, 66% more neutral detergent fiber (NDF), and 88% more acid detergent fiber. Cows fed CS consumed more dry matter (DM; 24.4 vs. 22.7 kg/d) and starch (5.7 vs. 3.7 kg/d), but less NDF (7.9 vs. 8.7 kg/d) than cows fed RM or SM. However, DM, starch and NDF intakes were not different between forage millet silage types. Feeding RM relative to CS reduced milk yield (32.7 vs. 35.2 kg/d), energy-corrected milk (35.8 vs. 38.0 kg/d) and SCM (32.7 vs. 35.3 kg/d). However, cows fed SM had similar milk, energy-corrected milk, and solids-corrected milk yields than cows fed CS or RM. Milk efficiency was not affected by dietary treatments. Milk protein concentration was greatest for cows fed CS, intermediate for cows fed SM, and lowest for cows fed RM. Milk concentration of solids-not-fat was lesser, whereas milk urea nitrogen was greater for cows fed RM than for those fed CS. However, millet silage type had no effect on milk solids-not-fat and milk urea nitrogen levels. Concentrations of milk fat, lactose and total solids were not affected by silage type. Ruminal pH and ruminal NH3-N were greater for cows fed RM and SM than for cows fed CS. Total-tract digestibility of DM (average=67.9%), NDF (average=53.9%), crude protein (average=63.3%), and gross energy (average=67.9%) were not influenced by dietary treatments. It was concluded that cows fed CS performed better than those fed RM or SM likely due to the higher starch and lower NDF intakes. However, no major differences were noted between the 2 forage millet silage cultivars. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Long-term effect of linseed plus nitrate fed to dairy cows on enteric methane emission and nitrate and nitrite residuals in milk.

    PubMed

    Guyader, J; Doreau, M; Morgavi, D P; Gérard, C; Loncke, C; Martin, C

    2016-07-01

    A previous study showed the additive methane (CH4)-mitigating effect of nitrate and linseed fed to non-lactating cows. Before practical application, the use of this new strategy in dairy cows requires further investigation in terms of persistency of methanogenesis reduction and absence of residuals in milk products. The objective of this experiment was to study the long-term effect of linseed plus nitrate on enteric CH4 emission and performance in dairy cows. We also assessed the effect of this feeding strategy on the presence of nitrate residuals in milk products, total tract digestibility, nitrogen (N) balance and rumen fermentation. A total of 16 lactating Holstein cows were allocated to two groups in a randomised design conducted in parallel for 17 weeks. Diets were on a dry matter (DM) basis: (1) control (54% maize silage, 6% hay and 40% concentrate; CON) or (2) control plus 3.5% added fat from linseed and 1.8% nitrate (LIN+NIT). Diets were equivalent in terms of CP (16%), starch (28%) and NDF (33%), and were offered twice daily. Cows were fed ad libitum, except during weeks 5, 16 and 17 in which feed was restricted to 95% of dry matter intake (DMI) to ensure complete consumption of meals during measurement periods. Milk production and DMI were measured weekly. Nitrate and nitrite concentrations in milk and milk products were determined monthly. Daily CH4 emission was quantified in open circuit respiration chambers (weeks 5 and 16). Total tract apparent digestibility, N balance and rumen fermentation parameters were determined in week 17. Daily DMI tended to be lower with LIN+NIT from week 4 to 16 (-5.1 kg/day on average). The LIN+NIT diet decreased milk production during 6 non-consecutive weeks (-2.5 kg/day on average). Nitrate or nitrite residuals were not detected in milk and associated products. The LIN+NIT diet reduced CH4 emission to a similar extent at the beginning and end of the trial (-47%, g/day; -30%, g/kg DMI; -33%, g/kg fat- and protein-corrected milk, on average). Diets did not affect N efficiency and nutrients digestibility. In the rumen, LIN+NIT did not affect protozoa number but reduced total volatile fatty acid (-12%) and propionate (-31%) concentrations. We concluded that linseed plus nitrate may have a long-term CH4-mitigating effect in dairy cows and that consuming milk products from cows fed nitrate may be safe in terms of nitrate and nitrite residuals. Further work is required to optimise the doses of linseed plus nitrate to avoid reduced cows performance.

  15. Effects of prepartum dietary calcium level on calcium and magnesium metabolism in periparturient dairy cows.

    PubMed

    Kronqvist, C; Emanuelson, U; Spörndly, R; Holtenius, K

    2011-03-01

    The aim of this study was to investigate the effects of dietary Ca level (4.9, 9.3, and 13.6 g/kg of DM) on Ca and Mg homeostasis in dairy cows around parturition. Cows of the Swedish Red breed (n = 29) with no previous veterinary treatment for milk fever were divided into 3 groups, and each group was fed one of the different diets during the last 15 to 32 d of gestation. Calcium was added as ground limestone, and the Mg concentration was 1.8 g/kg of DM in all diets. After calving the cows were fed similar diets. Plasma was sampled twice per week until calving, and 6, 12, and 24 h, 2, 4, and 7 d after calving. Spot urine samples were collected twice weekly until calving and creatinine was used as a marker of daily urinary excretion. Fecal samples were collected 2 times per day for 5 d starting 2 wk before expected calving, and acid-insoluble ash was used as an indigestible marker to estimate digestibility. Apparent digestibility of Mg and daily Mg excretion in the urine were lower in the dry period for cows fed the highest Ca level. Plasma Mg concentration was lower on 2, 4, and 7 d after calving in cows fed the highest level of Ca. Treatment groups did not differ in plasma Ca concentration, parathyroid hormone concentration, or bone mobilization, evaluated using crosslinked carboxyterminal telopeptides of type I collagen (CTx) as a marker. Plasma Ca concentration decreased and plasma CTx concentration increased 6 h after calving. The apparent digestibility of Ca during the dry period was not affected by dietary Ca, but the cows fed 4.9 g Ca/kg of DM excreted 1.2 g of Ca/d in the urine, which was higher compared with 0.4 g/d and 0.6 g/d for the cows fed 9.3 g of Ca/kg of DM and 13.6 g of Ca/kg of DM, respectively. The results show that feeding 13.6 g of dietary Ca/kg of DM impaired the Mg absorption during the dry period, and resulted in decreased plasma Mg concentration after calving, but prepartum dietary Ca level did not affect plasma Ca, parathyroid hormone, or CTx concentrations. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. Short-term effects of soybean oil supplementation on performance, digestion, and metabolism in dairy cows fed sugarcane-based diets.

    PubMed

    Rodrigues, João Paulo P; de Paula, Ricardo M; Rennó, Luciana N; Fontes, Marta M S; Machado, Andreia F; de C Valadares Filho, Sebastião; Huhtanen, Pekka; Marcondes, Marcos I

    2017-06-01

    We aimed to quantify the productive and metabolic responses, and digestive changes in dairy cows fed various concentrations of soybean oil (SBO) in high-concentrate, sugarcane-based diets. Eight rumen-cannulated multiparous Holstein cows in mid lactation (574 ± 19.1 kg of body weight and 122 ± 6.9 d in milk), averaging 22.5 ± 1.22 kg/d of milk were assigned to replicated 4 × 4 Latin squares. The experimental period lasted 21 d as follows: 14 d for adaptation, followed by a sampling period from d 15 to 21. The diets were formulated with increasing concentrations of SBO [% of dry matter (DM)]: control (0%), low (LSBO; 1.57%), medium (MSBO; 4.43%), and high (HSBO; 7.34%). Dry matter intake decreased quadratically in response to SBO addition. The greatest decrease in DM intake was observed in MSBO and HSBO diets. Both milk and energy-corrected milk yield were quadratically affected by the SBO inclusion, with a slight decrease up to MSBO and substantial decrease in the HSBO diet. The milk fat concentration linearly decreased from 3.78% in the control to 3.50% in the HSBO diet. The potentially digestible neutral detergent fiber digestibility in the rumen decreased from 55.7% in the control to 35.2% in the HSBO diet. The fractional rate of digestion of potentially digestible neutral detergent fiber in the rumen decreased linearly from 3.13 to 1.39%/h from the control to HSBO diet. The fractional rate of indigestible neutral detergent fiber passage in the rumen was quadratically affected, with the lowest value (2.25%/h) for the HSBO diet. Rumen pH increased from 6.42 to 6.67, and ammonia nitrogen decreased from 28.1 to 21.4 mg/dL, in the control and HSBO diets, respectively. Rumen volatile fatty acids decreased quadratically, with the greatest decrease observed in MSBO and HSBO diets. Serum concentrations of glucose, fatty acids, and β-hydroxybutyrate were unaffected by SBO inclusion. However, serum concentrations of total cholesterol and high- and low-density lipoproteins linearly increased with increasing concentrations of SBO in the diet. Inclusion of SBO at concentrations from 4.43 to 7.34% of the diet DM decreased DM intake, energy-corrected milk production, fiber digestibility, and rumen fermentation and was thus not recommended. Soybean oil supplementation at 1.57% of the diet DM proved to be a safe concentration for dairy cows fed high-concentrate diets with sugarcane as the sole forage. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Digestion, milk production and milk fatty acid profile of dairy cows fed flax hulls and infused with flax oil in the abomasum.

    PubMed

    Côrtes, Cristiano; Kazama, Ricardo; da Silva-Kazama, Daniele; Benchaar, Chaouki; Zeoula, Lucia M; Santos, Geraldo T D; Petit, Hélène V

    2011-08-01

    Flax hull, a co-product obtained from flax processing, is a rich source of n-3 fatty acids (FA) but there is little information on digestion of flax hull based diets and nutritive value of flax hull for dairy production. Flax oil is rich in α-linolenic acid (LNA) and rumen bypass of flax oil contributes to increase n-3 FA proportions in milk. Therefore, the main objective of the experiment was to determine the effects of abomasal infusion of increasing amounts of flax oil on apparent digestibility, dry matter (DM) intake, milk production, milk composition, and milk FA profile with emphasis on the proportion of LNA when cows were supplemented or not with another source of LNA such as flax hull. Six multiparous Holstein cows averaging 650±36 kg body weight and 95±20 d in milk were assigned to a 6×6 Latin square design (21-d experimental periods) with a 2×3 factorial arrangement of treatments. Treatments were: 1) control, neither flax hull nor flax oil (CON), 2) diet containing (DM basis) 15·9% flaxseed hull (FHU); 3) CON with abomasal infusion of 250 g/d flax oil; 4) CON with abomasal infusion of 500 g/d flax oil; 5) FHU with abomasal infusion of 250 g/d flax oil; 6) FHU with abomasal infusion of 500 g/d flax oil. Infusion of flax oil in the abomasum resulted in a more pronounce decrease in DM intake for cows fed the CON diets than for those fed the FHU diets. Abomasal infusion of flax oil had little effect on digestibility and FHU supplementation increased digestibility of DM and crude protein. Milk yield was not changed by abomasal infusion of flax oil where it was decreased with FHU supplementation. Cows fed FHU had higher proportions of 18:0, cis9-18:1, trans dienes, trans monoenes and total trans in milk fat than those fed CON. Proportion of LNA was similar in milk fat of cows infused with 250 and 500 g/d flax oil in the abomasum. Independently of the basal diet, abomasal infusion of flax oil resulted in the lowest n-6:n-3 FA ratio in milk fat, suggesting that the most important factor for modification of milk FA profile was the amount of n-3 FA bypassing the rumen and not the amount of flax hull fed to dairy cows. Moreover, these data suggest that there is no advantage to supply more than 250 g/d of flax oil in the abomasum to increase the proportion of LNA in milk fat.

  18. The effects of calcium hydroxide-treated whole-plant and fractionated corn silage on intake, digestion, and lactation performance in dairy cows.

    PubMed

    Cook, D E; Bender, R W; Shinners, K J; Combs, D K

    2016-07-01

    The objective of this trial was to evaluate, in dairy cattle, the effects of calcium hydroxide treatment of whole-plant corn and a treatment applied to the bottom stalk fraction of the corn plant, achieved by harvesting corn in 2 crop streams. The treatments were calcium hydroxide-treated corn silage (TRTCS), toplage supplemented with calcium hydroxide-treated stalklage (TPL), a positive control of brown midrib corn silage (BMR), and a negative control of conventional whole-plant corn silage (WPCS). The toplage was harvested at a height of 82 cm with 2 of the 6 rows set as ear-snapping to incorporate higher tissues into the stalklage. Stalklage was harvested at 12 cm, and other corn silages were harvested at 27 cm. Sixteen pens, each with 8 Holstein cows averaging 70±25 d in milk and 46±11 kg of milk d(-1), were assigned 4 per treatment in a completely randomized design. The diet was approximately 40% corn silage, 20% alfalfa silage, and 40% concentrate on a dry matter basis. A 2-wk covariate period with conventional corn silage was followed by an 8-wk treatment period in which the 4 corn silage treatments were the only effective difference in diets. Cows fed TPL and TRTCS consumed more (1.9 and 1.4 kg of organic matter d(-1), respectively) than did cows fed WPCS. Milk yield was greater for cows fed BMR, TPL, and TRTCS. Cows fed BMR and TPL produced 2.9 and 2.7 kg d(-1), respectively, more energy-corrected milk (ECM) than cows fed WPCS, and cows fed TRTCS had the greatest ECM production (4.8 kg of ECM d(-1) greater than cows fed WPCS). No differences in body weight or body condition scored were observed. Milk fat concentration was similar among treatments and milk protein concentration was reduced for TRTCS. Starch and neutral detergent fiber digestibility were greater for cows fed TRTCS. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. The effects of and interactions between the maturity of grass silage and concentrate starch source when offered as total mixed rations on the performance of dairy cows.

    PubMed

    Tahir, M N; Lund, P; Hetta, M

    2013-04-01

    A 2 × 2 factorial feeding experiment was conducted to examine the effects of varying the maturity level of the grass used to prepare silage and the nature of concentrate starch source and their interactions on dry matter intake (DMI), diet digestibility, energy corrected milk (ECM) production and milk composition in dairy cows. Twenty-eight multiparous Swedish Red dairy cows, 133 ± 45 days in milk (DIM), with an average milk yield of 30 ± 4 kg/day and a live weight of 624 ± 69 kg were blocked by DIM and randomly assigned to seven replicated balanced 4 × 4 Latin squares with four 21-day experimental periods. The experimental diets consisted of four total mixed rations (TMR) consisting of early-cut grass silage (EGS) supplemented with either barley- or maize-based concentrate and late-cut grass silage (LGS) supplemented with either barley- or maize-based concentrate. All TMR contained identical proportions of forage (51%) and concentrate (49%). Total tract digestibility was estimated by determining indigestible NDF (iNDF) concentrations in feeds and faeces and using iNDF as an internal marker. The feeds' ruminal degradation parameters were determined using both in situ (nylon bag) and in vitro (gas production (GP)) techniques. Cows offered diets containing EGS had greater (P < 0.001) daily dry matter (DM) intakes, ECM yields and total tract digestibilities for DM and organic matter (OM), but these were not affected by the nature of the concentrate starch source. No interaction between the maturity of the silage and the nature of the concentrate starch source was observed for DMI, diet digestibility or ECM yield. Both grass silages and concentrates had similar rates of ruminal degradation of NDF when measured in situ. The in situ DM (P < 0.001) and starch (P = 0.001) degradation rates of barley-based concentrate were greater than those for maize-based concentrate. In vitro OM GP rates and extents were similar for both concentrate feeds. The results showed that diets containing EGS offered better animal performance and diet digestibility than diets containing LGS. The concentrate starch source did not affect animal performance, but total NDF digestibility was better with diet containing barley- than maize-based concentrate.

  20. Renewable Natural Gas Clean-up Challenges and Applications

    DTIC Science & Technology

    2011-01-13

    produced from digesters ─ Animal manure (dairy cows, swine) ─ Waste water treatment facilities > Methane from Landfills > RNG produced from...AGR used in process • Two stage + trim methanation reactor • Dehydration to achieve gas pipeline specifications ~ 70% conversion efficiency 21... digestion of agricultural waste for on-site electricity generation ─Altamont Landfill—Landfill gas (LFG) cleanup for production of liquefied natural gas

  1. Dry anaerobic digestion of high solids content dairy manure at high organic loading rates in psychrophilic sequence batch reactor.

    PubMed

    Massé, Daniel I; Saady, Noori M Cata

    2015-05-01

    Cow manure with bedding is renewable organic biomass available around the year on dairy farms. Developing efficient and cost-effective psychrophilic dry anaerobic digestion (PDAD) processes could contribute to solving farm-related environmental, energy, and manure management problems in cold-climate regions. This study was to increase the organic loading rate (OLR), fed to a novel psychrophilic (20 °C) dry anaerobic digestion of 27% total solid dairy manure (cow feces and wheat straw) in sequence batch reactor (PDAD-SBR), by 133 to 160%. The PDAD-SBR process operated at treatment cycle length of 21 days and OLR of 7.0 and 8.0 g total chemical oxygen demand (TCOD) kg(-1) inoculum day(-1) (5.2 ± 0.1 and 5.8 ± 0.0 g volatile solids (VS) kg(-1) inoculum day(-1)) for four successive cycles (84 days) produced average specific methane yields (SMYs) of 147.1 ± 17.2 and 143.2 ± 11.7 normalized liters (NL) CH4 kg(-1) VS fed, respectively. PDAD of cow feces and wheat straw is possible with VS-based inoculum-to-substrate ratio of 1.45 at OLR of 8.0 g TCOD kg(-1) inoculum day(-1). Hydrolysis was the limiting step reaction. The VS removal averaged around 57.4 ± 0.5 and 60.5 ± 5.7% at OLR 7.0 and 8.0 g TCOD kg(-1) inoculum day(-1), respectively.

  2. Fenugreek (Trigonella foenum-graecum L.) as an alternative forage for dairy cows.

    PubMed

    Alemu, A W; Doepel, L

    2011-08-01

    Fenugreek is a novel forage crop in Canada that is generating interest as an alternative to alfalfa for dairy cows. To evaluate the value of fenugreek haylage relative to alfalfa haylage, six, second lactation Holstein cows (56 ± 8 days in milk), which were fitted with rumen cannulas (10 cm i.d., Bar Diamond Inc., Parma, ID, USA) were used in a replicated three × three Latin square design with 18-day periods. Diets consisting of 400 g/kg haylage, 100 g/kg barley silage and 500 g/kg concentrate on a dry matter (DM) basis were fed once daily for ad libitum intake. The haylage component constituted the dietary treatments: (i) Agriculture and Agri-Food Canada F70 fenugreek (F70), (ii) Crop Development Center Quatro fenugreek (QUAT) and (iii) alfalfa (ALF). DM intake (DMI), milk yield and milk protein and lactose yields were higher (P < 0.001) for cows fed ALF than fenugreek (FEN, average of F70 and QUAT). Milk fat of cows fed FEN contained lower concentrations of saturated, medium-chain and hypercholestrolemic fatty acids (FAs; P < 0.05) than that of cows fed ALF. Apparent total tract digestibility of DM and nutrients was not affected by treatments. Similarly, individual ruminal volatile FA concentrations and rumen pH (5.9) were not affected by treatments. Rumen ammonia-N concentration was higher for FEN than ALF (P < 0.001). Estimates of neutral detergent fiber (NDF) passage rate (P < 0.05) and NDF turnover rate (P < 0.001) in the rumen were higher for ALF than FEN. Our results suggest that although the digestibility of the FEN diets was not different from that of the ALF diet, fenugreek haylage has a lower feeding value than ALF for lactating dairy cows due in part to lower DMI and subsequently lower milk yield.

  3. Management and characteristics of recycled manure solids used for bedding in Midwest freestall dairy herds.

    PubMed

    Husfeldt, A W; Endres, M I; Salfer, J A; Janni, K A

    2012-04-01

    Interest in using recycled manure solids (RMS) as a bedding material for dairy cows has grown in the US Midwest. Cost of common bedding materials has increased in recent years and availability has decreased. Information regarding the composition of RMS and its use as a bedding material for dairy cows in the Midwest is very limited. The objectives of this study were to characterize RMS as a bedding material, observe bedding management practices, document methods of obtaining RMS, and describe housing facilities. We visited 38 Midwest dairy operations bedding freestalls with RMS to collect data. Methods of obtaining RMS for bedding included separation of anaerobic digested manure, separation of raw manure, and separation of raw manure followed by mechanical drum-composting for 18 to 24 h. Average bedding moisture of unused RMS was 72.4% with a pH of 9.16. Unused samples contained (on a dry basis) 1.4% N, 44.9% C, 32.7C:N ratio, 0.44% P, 0.70% K, 76.5% neutral detergent fiber, 9.4% ash, 4.4% nonfiber carbohydrates, and 1.1% fat. Moisture was lowest for drum-composted solids before and after use as freestall bedding. After use in the stalls, digested solids had lower neutral detergent fiber content (70.5%) than drum-composted (75.0%) and separated raw (73.1%) solids. Total N content was greater in digested solids (2.0%) than in separated raw (1.7%) solids. Total bacterial populations in unused bedding were greatest in separated raw manure solids but were similar between digested and drum-composted manure solids. Drum-composted manure solids had no coliform bacteria before use as freestall bedding. After use as bedding, digested manure solids had lower total bacteria counts compared with drum-composted and separated raw manure solids, which had similar counts. Used bedding samples of digested solids contained fewer environmental streptococci than drum-composted and separated raw solids and had reduced Bacillus counts compared with separated raw solids. Coliform counts were similar for all 3 bedding sources. Addition of a mechanical blower post-separation and use of a shelter for storage were associated with reduced fresh-bedding moisture but not associated with bacterial counts. This was the first survey of herds using RMS for bedding in the Midwest. We learned that RMS was being used successfully as a source of bedding for dairy cows. For most farms in the study, somatic cell count was comparable to the average in the region and not excessively high. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Diet-induced bacterial immunogens in the gastrointestinal tract of dairy cows: Impacts on immunity and metabolism

    PubMed Central

    2011-01-01

    Dairy cows are often fed high grain diets to meet the energy demand for high milk production or simply due to a lack of forages at times. As a result, ruminal acidosis, especially subacute ruminal acidosis (SARA), occurs frequently in practical dairy production. When SARA occurs, bacterial endotoxin (or lipopolysaccharide, LPS) is released in the rumen and the large intestine in a large amount. Many other bacterial immunogens may also be released in the digestive tract following feeding dairy cows diets containing high proportions of grain. LPS can be translocated into the bloodstream across the epithelium of the digestive tract, especially the lower tract, due to possible alterations of permeability and injuries of the epithelial tissue. As a result, the concentration of blood LPS increases. Immune responses are subsequently caused by circulating LPS, and the systemic effects include increases in concentrations of neutrophils and the acute phase proteins such as serum amyloid-A (SAA), haptoglobin (Hp), LPS binding protein (LBP), and C-reactive protein (CRP) in blood. Entry of LPS into blood can also result in metabolic alterations. Blood glucose and nonesterified fatty acid concentrations are enhanced accompanying an increase of blood LPS after increasing the amount of grain in the diet, which adversely affects feed intake of dairy cows. As the proportions of grain in the diet increase, patterns of plasma β-hydoxybutyric acid, cholesterol, and minerals (Ca, Fe, and Zn) are also perturbed. The bacterial immunogens can also lead to reduced supply of nutrients for synthesis of milk components and depressed functions of the epithelial cells in the mammary gland. The immune responses and metabolic alterations caused by circulating bacterial immunogens will exert an effect on milk production. It has been demonstrated that increases in concentrations of ruminal LPS and plasma acute phase proteins (CRP, SAA, and LBP) are associated with declines in milk fat content, milk fat yield, 3.5% fat-corrected milk yield, as well as milk energy efficiency. PMID:21824438

  5. Inclusion of brown midrib dwarf pearl millet silage in the diet of lactating dairy cows.

    PubMed

    Harper, M T; Melgar, A; Oh, J; Nedelkov, K; Sanchez, G; Roth, G W; Hristov, A N

    2018-06-01

    Brown midrib brachytic dwarf pearl millet (Pennisetum glaucum) forage harvested at the flag leaf visible stage and subsequently ensiled was investigated as a partial replacement of corn silage in the diet of high-producing dairy cows. Seventeen lactating Holstein cows were fed 2 diets in a crossover design experiment with 2 periods of 28 d each. Both diets had forage:concentrate ratios of 60:40. The control diet (CSD) was based on corn silage and alfalfa haylage, and in the treatment diet, 20% of the corn silage dry matter (corresponding to 10% of the dietary dry matter) was replaced with pearl millet silage (PMD). The effects of partial substitution of corn silage with pearl millet silage on dry matter intake, milk yield, milk components, fatty acid profile, apparent total-tract digestibility of nutrients, N utilization, and enteric methane emissions were analyzed. The pearl millet silage was higher in crude protein and neutral detergent fiber and lower in lignin and starch than the corn silage. Diet did not affect dry matter intake or energy-corrected milk yield, which averaged 46.7 ± 1.92 kg/d. The PMD treatment tended to increase milk fat concentration, had no effect on milk fat yield, and increased milk urea N. Concentrations and yields of milk protein and lactose were not affected by diet. Apparent total-tract digestibility of dry matter decreased from 66.5% in CSD to 64.5% in PMD. Similarly, organic matter and crude protein digestibility was decreased by PMD, whereas neutral- and acid-detergent fiber digestibility was increased. Total milk trans fatty acid concentration was decreased by PMD, with a particular decrease in trans-10 18:1. Urinary urea and fecal N excretion increased with PMD compared with CSD. Milk N efficiency decreased with PMD. Carbon dioxide emission was not different between the diets, but PMD increased enteric methane emission from 396 to 454 g/d and increased methane yield and intensity. Substituting corn silage with brown midrib dwarf pearl millet silage at 10% of the diet dry matter supported high milk production in dairy cows. When planning on farm forage production strategies, brown midrib dwarf pearl millet should be considered as a viable fiber source. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Factors associated with the rectal temperature of Holstein dairy cows during the first 10 days in milk.

    PubMed

    Wenz, J R; Moore, D A; Kasimanickam, R

    2011-04-01

    Daily evaluation of rectal temperature (RT) during the first 10 d in milk (DIM) is used to facilitate the early identification of postpartum complications, particularly metritis in dairy cows. The factors associated with RT of postpartum dairy cows have not been clearly established and the RT threshold used to define fever has been variable. The objectives were to identify factors associated with the RT of postpartum dairy cows and provide descriptive statistics of the RT during the first 10 DIM to clarify the normal range of RT for cows. Daily RT was evaluated from 1 to 10 DIM for all cows calving during 2 consecutive summers on a single 1,500-cow Holstein dairy. Cows were placed into metabolic/digestive (METB), infectious (INF), and no recorded disease (NONE) groups based on disease diagnoses during the first 10 DIM. Cows were grouped based on calving difficulty and parity. Multiple linear regression models with repeated measures were used to evaluate the factors associated with RT. Three hundred and ninety-two cows were evaluated, of which 45% were primiparous and 32% required assistance at calving. No difference was observed in calving assistance by parity. First disease diagnoses peaked in the INF and METB groups at 3 and 1 DIM, respectively. The RT of primiparous cows was 0.1 to 0.2°C higher than that of multiparous cows from 1 to 8 DIM, accounting for calving difficulty, twin births, month of calving, and disease group in the model. The INF group cows had a higher RT than did NONE group cows (38.9±0.04 to 39.2±0.73 vs. 38.7±0.03°C, respectively) on each of the first 10 DIM, which was approximately 0.6°C higher from 3 to 5 DIM. The RT of cows with metritis was at least 0.1°C higher (38.8±0.05°C) than that of NONE group cows beginning 4 d before diagnosis. The mean RT of primiparous, defined healthy (NONE group) cows was 38.8±0.02°C, with an upper normal limit (mean+2 SD) of 39.6°C. The mean RT of multiparous cows in the NONE group during the first 10 DIM was 38.7±0.01°C, with an upper normal limit of 39.5°C. The RT of dairy cattle during the first 10 DIM was associated with parity, month of calving, and an infectious disease diagnosis, particularly the diagnosis of metritis. The normal RT of dairy cattle in the immediate postpartum period, during the warm summer months, is potentially higher than that generally reported. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. Cow-specific diet digestibility predictions based on near-infrared reflectance spectroscopy scans of faecal samples.

    PubMed

    Mehtiö, T; Rinne, M; Nyholm, L; Mäntysaari, P; Sairanen, A; Mäntysaari, E A; Pitkänen, T; Lidauer, M H

    2016-04-01

    This study was designed to obtain information on prediction of diet digestibility from near-infrared reflectance spectroscopy (NIRS) scans of faecal spot samples from dairy cows at different stages of lactation and to develop a faecal sampling protocol. NIRS was used to predict diet organic matter digestibility (OMD) and indigestible neutral detergent fibre content (iNDF) from faecal samples, and dry matter digestibility (DMD) using iNDF in feed and faecal samples as an internal marker. Acid-insoluble ash (AIA) as an internal digestibility marker was used as a reference method to evaluate the reliability of NIRS predictions. Feed and composite faecal samples were collected from 44 cows at approximately 50, 150 and 250 days in milk (DIM). The estimated standard deviation for cow-specific organic matter digestibility analysed by AIA was 12.3 g/kg, which is small considering that the average was 724 g/kg. The phenotypic correlation between direct faecal OMD prediction by NIRS and OMD by AIA over the lactation was 0.51. The low repeatability and small variability estimates for direct OMD predictions by NIRS were not accurate enough to quantify small differences in OMD between cows. In contrast to OMD, the repeatability estimates for DMD by iNDF and especially for direct faecal iNDF predictions were 0.32 and 0.46, respectively, indicating that developing of NIRS predictions for cow-specific digestibility is possible. A data subset of 20 cows with daily individual faecal samples was used to develop an on-farm sampling protocol. Based on the assessment of correlations between individual sample combinations and composite samples as well as repeatability estimates for individual sample combinations, we found that collecting up to three individual samples yields a representative composite sample. Collection of samples from all the cows of a herd every third month might be a good choice, because it would yield a better accuracy. © 2015 Blackwell Verlag GmbH.

  8. Response of lactating dairy cows to degree of steam-flaked barley grain in low-forage diets.

    PubMed

    Safaei, Kh; Ghorbani, G R; Alikhani, M; Sadeghi-Sefidmazgi, A; Yang, W Z

    2017-10-01

    This study was conducted to investigate the effects of processing method (grinding vs. steam flaking) and increasing densities of steam-flaked barley grain on dry matter intake (DMI), rumen pH and fermentation characteristics, digestibility of dry matter in the total digestive tract (DDTT), and milk production of dairy cows. Eight multiparous mid-lactation Holstein cows averaging 103 ± 24 DIM, 44.5 ± 4.7 kg milk/day and weighing 611 ± 43 kg at the start of the experiment were used in a replicated 4 × 4 Latin square design with 21-day periods. Cows were fed diets consisting of (DM basis) 23.8% corn silage, 13.5% chopped alfalfa hay and 62.7% concentrate. The dietary treatments were either ground barley (GB) using a hammer mill or steam-flaked barley (SFB) - varying density at 390, 340 or 290 g/l. Processing method (GB vs. SFB) did not affect DMI (23.6 kg/day on average), DDTT (71.0% on average), milk yield (43.4 kg/day on average), milk components, rumen pH and molar proportions of acetate, propionate, butyrate and sorting activity. Ruminal isovalerate concentration tended (p = 0.06) to be higher for cows fed GB than those fed SFB-based diets. Decreasing the density of SFB from 390, 340 to 290 g/l tended to linearly increase DMI (p = 0.09), decrease total solids percentage of milk (p = 0.10) and linearly decreased milk urea nitrogen (12.8, 12.4 and 12.1 mg/dl; p = 0.04); also, the sorting index (SI) of the particles retained on the 19.0-mm sieve without affecting the SI of the particles retained on 8.0-mm, 1.18-mm or passed through 1.18-mm sieve (p = 0.05). These results indicated the limited effects of processing method (grinding vs. steam flaking) and densities of SFB (390, 290 or 290 g/l) on cows' performance and feed utilization for dairy cows fed low-forage diets. Therefore, both processing methods could be recommended under current feeding conditions of dairy cows. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  9. Using brown midrib 6 dwarf forage sorghum silage and fall-grown oat silage in lactating dairy cow rations.

    PubMed

    Harper, M T; Oh, J; Giallongo, F; Lopes, J C; Roth, G W; Hristov, A N

    2017-07-01

    Double cropping and increasing crop diversity could improve dairy farm economic and environmental sustainability. In this experiment, corn silage was partially replaced with 2 alternative forages, brown midrib-6 brachytic dwarf forage sorghum (Sorghum bicolor) or fall-grown oat (Avena sativa) silage, in the diet of lactating dairy cows. We investigated the effect on dry matter (DM) intake, milk yield (MY), milk components and fatty acid profile, apparent total-tract nutrient digestibility, N utilization, enteric methane emissions, and income over feed cost. We analyzed the in situ DM and neutral detergent fiber disappearance of the alternative forages versus corn silage and alfalfa haylage. Sorghum was grown in the summer and harvested in the milk stage. Oats were grown in the fall and harvested in the boot stage. Compared with corn silage, neutral detergent fiber and acid detergent fiber concentrations were higher in the alternative forages. Lignin content was highest for sorghum silage and similar for corn silage and oat silage. The alternative forages had less than 1% starch compared with the approximately 35% starch in the corn silage. Ruminal in situ DM effective degradability was similar, although statistically different, for corn silage and oat silage, but lower for sorghum silage. Diets with the alternative forages were fed in a replicated 3 × 3 Latin square design experiment with three 28-d periods and 12 Holstein cows. The control diet contained 44% (DM basis) corn silage. In the other 2 diets, sorghum or oat silages were included at 10% of dietary DM, replacing corn silage. Sorghum silage inclusion decreased DM intake, MY, and milk protein content but increased milk fat and maintained energy-corrected MY similar to the control. Oat silage had no effect on DM intake, MY, or milk components compared to the control. The oat silage diet increased apparent total-tract digestibility of dietary nutrients, except starch, whereas the sorghum diet slightly decreased DM, organic matter, crude protein, and starch digestibility. Cows consuming the oat silage diet had higher milk urea N and urinary urea N concentrations. Milk N efficiency was decreased by the sorghum diet. Diet did not affect enteric methane or carbon dioxide emissions. This study shows that oat silage can partially replace corn silage at 10% of the diet DM with no effect on MY. Brown midrib sorghum silage harvested at the milk stage with <1% starch may decrease DM intake and MY in dairy cows. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Short communication: Evaluation of acid-insoluble ash and indigestible neutral detergent fiber as total-tract digestibility markers in dairy cows fed corn silage-based diets.

    PubMed

    Lee, C; Hristov, A N

    2013-08-01

    The objective of this experiment was to evaluate acid-insoluble ash (AIA) and indigestible NDF (iNDF) as intrinsic digestibility markers in comparison with total fecal collection (TC) in dairy cows fed corn silage- and alfalfa haylage-based diets. The experiment was part of a larger experiment, which involved 8 Holstein cows [102±28.4 d in milk, 26.4±0.27 kg/d of dry matter (DM) intake, and 43±5.3 kg/d milk yield]. The experimental design was a replicated 4×4 Latin square with the following treatments: metabolizable protein (MP)-adequate diet [15.6% crude protein (CP); high-CP], MP-deficient diet (14.0% CP; low-CP), and 2 other low-CP diets supplemented (top-dressed) with ruminally protected Lys or Lys and Met. Data for the 3 low-CP diets were combined for this analysis. Total feces were collected for 5 consecutive days during each period to estimate total-tract apparent digestibility. Digestibility was also estimated using AIA (digestion with 2 N HCl) and iNDF (12-d ruminal incubation in 25-μm-pore-size bags). Significant diet × digestibility method interactions were observed for fecal output of nutrients and digestibility. Fecal output of nutrients estimated using AIA or iNDF was lower compared with TC and fecal output of DM, organic matter, and CP tended to be higher for iNDF compared with AIA for the high-CP diet. For the low-CP diet, however, fecal output of all nutrients was lower for AIA compared with TC and was higher for iNDF compared with TC. Data from this experiment showed that, compared with TC, AIA underestimated fecal output and overestimated digestibility, particularly evident with the fiber fractions and the protein-deficient diet. Compared with TC, fecal output was overestimated and digestibility of the low-CP diet was underestimated when iNDF was used as a marker, although the magnitude of the difference was smaller compared with that for AIA. In the conditions of the current study, iNDF appeared to be a more reliable digestibility marker than AIA in terms of detecting dietary differences in apparent digestibility of some nutrients, but significant diet × marker interactions existed that need to be considered when estimating total-tract digestibility using intrinsic markers. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. The effects of high-sugar ryegrass/red clover silage diets on intake, production, digestibility, and N utilization in dairy cows, as measured in vivo and predicted by the NorFor model.

    PubMed

    Bertilsson, J; Åkerlind, M; Eriksson, T

    2017-10-01

    Grass silage-based diets often result in poor nitrogen utilization when fed to dairy cows. Perennial ryegrass cultivars with high concentrations of water-soluble carbohydrates (WSC) have proven potential for correcting this imbalance when fed fresh, and have also been shown to increase feed intake, milk production, and N utilization. The possibility of achieving corresponding effects with silage-based diets was investigated in change-over experiments in an incomplete block design with 16 (yr 1) or 12 (yr 2) Swedish Red dairy cows in mid lactation. Measurements on N excretion and rumen parameters were performed on subgroups of 8 and 4 cows, respectively. In yr 1, 2 ryegrass cultivars (standard = Fennema; high-WSC = Aberdart) and 2 cuts (first and second) were compared. In all treatments, ryegrass silage was mixed 75/25 on a dry matter (DM) basis, with red clover silage before feeding out. In yr 2, 1 basic mixture from the different cuts of these 2 cultivars was used and experimental factors were red clover silage inclusion (25 or 50%) and sucrose addition (0 or 10%) on a silage DM basis. Differences in WSC concentration in the silage mixtures in yr 1 were minor, whereas the differences between cuts were more substantial: 100 compared with 111 g/kg of DM for first-cut silage and 39 compared with 47 g/kg of DM for second-cut silage. The silages fed in yr 2 had a WSC concentration of 115 or 102 g/kg of DM (25 or 50% red clover, respectively), but when sucrose was added WSC concentration reached 198 and 189 g/kg of DM, respectively. Milk production (kg/d) did not differ between treatments in either year. Red clover inclusion to 50% of silage DM increased milk protein. Nitrogen efficiency (milk N/feed N) increased from 0.231 to 0.254 with sucrose inclusion in yr 2 (average for the 2 red clover levels). Overall rumen pH was 5.99 and increased sucrose level did not affect pH level or daily pH pattern. Sucrose addition reduced neutral detergent fiber digestibility, particularly at higher inclusion rates of clover. Rumen pool of total purines did not differ between treatments, nor did protein production assessed from urinary allantoin. The NorFor feed evaluation model overestimated digestibility of neutral detergent fiber and N, but underestimated N excretion in feces. We concluded that addition of WSC to dairy cow diets at levels up to 3 kg of WSC per day (>14% of DM) does not dramatically affect cow performance. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Validation of an in vitro model for predicting rumen and total-tract fiber digestibility in dairy cows fed corn silages with different in vitro neutral detergent fiber digestibilities at 2 levels of dry matter intake.

    PubMed

    Lopes, F; Cook, D E; Combs, D K

    2015-01-01

    An in vivo study was performed to validate an in vitro procedure that predicts rate of fiber digestion and total-tract neutral detergent fiber digestibility (TTNDFD). Two corn silages that differed in fiber digestibility were used in this trial. The corn silage with lower fiber digestibility (LFDCS) had the TTNDFD prediction of 36.0% of total NDF, whereas TTNDFD for the corn silage with higher fiber digestibility (HFDCS) was 44.9% of total neutral detergent fiber (NDF). Two diets (1 with LFDCS and 1 with HFDCS) were formulated and analyzed using the in vitro assay to predict the TTNDFD and rumen potentially digestible NDF (pdNDF) digestion rate. Similar diets were fed to 8 ruminally cannulated, multiparous, high-producing dairy cows in 2 replicated 4×4 Latin squares with 21-d periods. A 2×2 factorial arrangement of treatments was used with main effects of intake (restricted to approximately 90% of ad libitum intake vs. ad libitum) and corn silage of different fiber digestibility. Treatments were restricted and ad libitum LFDCS as well as restricted and ad libitum HFDCS. The input and output values predicted from the in vitro model were compared with in vivo measurements. The pdNDF intake predicted by the in vitro model was similar to pdNDF intake observed in vivo. Also, the pdNDF digestion rate predicted in vitro was similar to what was observed in vivo. The in vitro method predicted TTNDFD of 50.2% for HFDCS and 42.9% for LFDCS as a percentage of total NDF in the diets, whereas the in vivo measurements of TTNDFD averaged 50.3 and 48.6% of total NDF for the HFDCS and LFDCS diets, respectively. The in vitro TTNDFD assay predicted total-tract NDF digestibility of HFDCS diets similar to the digestibility observed in vivo, but for LFDCS diets the assay underestimated the digestibility compared with in vivo. When the in vitro and in vivo measurements were compared without intake effect (ad libitum and restricted) considering only diet effect of silage fiber digestibility (HFDCS and LFDCS), no differences were observed between methods. These values suggest that our in vitro TTNDFD model could be used to predicted rate of fiber digestion and NDF digestibility for dairy cattle. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Effects of alfalfa flavonoids on the production performance, immune system, and ruminal fermentation of dairy cows.

    PubMed

    Zhan, Jinshun; Liu, Mingmei; Su, Xiaoshuang; Zhan, Kang; Zhang, Chungang; Zhao, Guoqi

    2017-10-01

    The objective of this study was to examine the effects of alfalfa flavonoids on the production performance, immunity, and ruminal fermentation of dairy cows. The experiments employed four primiparous Holstein cows fitted with ruminal cannulas, and used a 4×4 Latin square design. Cattle were fed total mixed ration supplemented with 0 (control group, Con), 20, 60, or 100 mg of alfalfa flavonoids extract (AFE) per kg of dairy cow body weight (BW). The feed intake of the group receiving 60 mg/kg BW of AFE were significantly higher (p<0.05) than that of the group receiving 100 mg/kg BW. Milk yields and the fat, protein and lactose of milk were unaffected by AFE, while the total solids content of milk reduced (p = 0.05) linearly as AFE supplementation was increased. The somatic cell count of milk in group receiving 60 mg/kg BW of AFE was significantly lower (p<0.05) than that of the control group. Apparent total-tract digestibility of neutral detergent fiber and crude protein showed a tendency to increase (0.05

  14. Effects of replacing soybean meal with canola meal or treated canola meal on ruminal digestion, fermentation pattern, omasal nutrient flow, and performance in lactating dairy cows

    USDA-ARS?s Scientific Manuscript database

    Extrusion-treated canola meal (TCM) was produced in an attempt to increase the rumen undegradable protein (RUP) fraction of canola meal (CM). The objective of this study was to evaluate the effects of replacing soybean meal (SBM) with CM or TCM on ruminal digestion, fermentation pattern, omasal nutr...

  15. Feed conversion efficiency in dairy cows: Repeatability, variation in digestion and metabolism of energy and nitrogen, and ruminal methanogens.

    PubMed

    Arndt, C; Powell, J M; Aguerre, M J; Crump, P M; Wattiaux, M A

    2015-06-01

    The objective was to study repeatability and sources of variation in feed conversion efficiency [FCE, milk kg/kg dry matter intake (DMI)] of lactating cows in mid to late lactation. Trials 1 and 2 used 16 cows (106 to 368 d in milk) grouped in 8 pairs of 1 high- and 1 low-FCE cow less than 16 d in milk apart. Trial 1 determined the repeatability of FCE during a 12-wk period. Trial 2 quantified the digestive and metabolic partitioning of energy and N with a 3-d total fecal and urine collection and measurement of CH4 and CO2 emission. Trial 3 studied selected ruminal methanogens in 2 pairs of cows fitted with rumen cannulas. Cows received a single diet including 28% corn silage, 27% alfalfa silage, 17% crude protein, and 28% neutral detergent fiber (dry matter basis). In trial 1, mean FCE remained repeatedly different and averaged 1.83 and 1.03 for high- and low-FCE cows, respectively. In trial 2, high-FCE cows consumed 21% more DMI, produced 98% more fat- and protein-corrected milk, excreted 42% less manure per kilogram of fat- and protein-corrected milk, but emitted the same daily amount of CH4 and CO2 compared with low-FCE cows. Percentage of gross energy intake lost in feces was higher (28.6 vs. 25.9%), but urinary (2.76 vs. 3.40%) and CH4 (5.23 vs. 6.99%) losses were lower in high- than low-FCE cows. Furthermore, high-FCE cows partitioned 15% more of gross energy intake toward net energy for maintenance, body gain, and lactation (37.5 vs. 32.6%) than low-FCE cows. Lower metabolic efficiency and greater heat loss in low-FCE cows might have been associated in part with greater energy demand for immune function related to subclinical mastitis, as somatic cell count was 3.8 fold greater in low- than high-FCE cows. As a percentage of N intake, high-FCE cows tended to have greater fecal N (32.4 vs. 30.3%) and had lower urinary N (32.2 vs. 41.7%) and greater milk N (30.3 vs. 19.1%) than low-FCE cows. In trial 3, Methanobrevibacter spp. strain AbM4 was less prevalent in ruminal content of high-FCE cows, which emitted less CH4 per unit of DMI and per unit of neutral detergent fiber digested than low-FCE cows. Thus lower digestive efficiency was more than compensated by greater metabolic efficiencies in high- compared with low-FCE cows. There was not a single factor, but rather a series of mechanisms involved in the observed differences in efficiency of energy utilization of the lactating cows in this study. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. The effects on digestibility and ruminal measures of chemically treated corn stover as a partial replacement for grain in dairy diets.

    PubMed

    Cook, D E; Combs, D K; Doane, P H; Cecava, M J; Hall, M B

    2016-08-01

    Alkaline treatment of gramineous crop residues can convert an abundant, minimally utilized, poorly digestible straw into a moderately digestible feedstuff. Given the volatile nature of grain prices, substitution of treated stover for grain was investigated with dairy cows to provide insights on ruminal and digestibility effects of a feed option that makes use of alternative, available resources. The objective of this study was to evaluate changes in diet digestibility and ruminal effects when increasing levels of calcium oxide-treated corn stover (CaOSt) were substituted for corn grain in diets of lactating cows. Mature corn stover was treated with calcium oxide at a level of 50g∙kg(-1) dry matter (DM), brought up to a moisture content of 50% following bale grinding, and stored anaerobically at ambient temperatures for greater than 60d before the feeding experiment. Eight ruminally cannulated Holstein cows averaging 686kg of body weight and 35kg of milk∙d(-1) were enrolled in a replicated 4×4 Latin square, where CaOSt replaced corn grain on a DM basis in the ration at rates of 0, 40, 80, and 120g∙kg(-1) DM. All reported significant responses were linear. The DM intake declined by approximately 1kg per 4% increase in CaOSt inclusion. With increasing replacement of corn grain, dietary neutral detergent fiber (NDF) concentration increased. However, rumen NDF turnover, NDF digestibility, NDF passage rate, and digestion rate of potentially digestible NDF were unaffected by increasing CaOSt inclusion. Total-tract organic matter digestibility declined by 5 percentage units over the range of treatments, approximately 1.5 units per 4-percentage-unit substitution of CaOSt for grain. With increasing CaOSt, the molar proportions of butyrate and valerate declined, whereas the lowest detected ruminal pH increased from 5.83 to 5.94. Milk, fat, and protein yields declined as CaOSt increased and DM intake declined with the result that net energy in milk declined by approximately 1 Mcal per 4% increase in CaOSt. Time spent ruminating (min∙kg(-1) DM intake) increased with increasing CaOSt, though total minutes per day were unaffected. These insights on the effect of substitution of treated corn stover for corn grain may be used to predict the effect on nutrient supply to the cow over a range of substitution levels. The acceptability of the effect will depend on the economics of milk production and availabilities of feedstuffs. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Stay-green ranking and maturity of corn hybrids: 2. Effects on the performance of lactating dairy cows.

    PubMed

    Arriola, K G; Kim, S C; Staples, C R; Adesogan, A T

    2012-02-01

    To address producer concerns that feeding high stay-green (SG) corn hybrids is associated with decreased performance and health problems in dairy cows, this study examined how the performance of cows was affected by feeding hybrids with contrasting SG rankings and maturities. Two near-isogenic corn hybrids with high (HSG; Croplan Genetics 691, Croplan Genetics, St. Paul, MN) and low (LSG; Croplan Genetics 737) SG rankings were grown on separate halves of a 10-ha field, harvested at 27% (maturity 1) or 35% (maturity 2) dry matter (DM) and ensiled in bag silos for 84 and 77 d, respectively. A further treatment involved addition of water (15 L/t) to the HSG maturity 1 hybrid during packing to compound the potential negative effects of excess water in the HSG hybrid. Each of the resulting silages was included in a total mixed ration consisting of 35, 55, and 10% (DM basis) of corn silage, concentrate, and alfalfa hay, respectively. In experiment 1, the total mixed ration was fed for ad libitum consumption twice daily to 30 Holstein cows (92±18 d in milk). This experiment had a completely randomized design and consisted of two 28-d periods, each with 14 d for adaptation and 14 d for sample collection. In experiment 2, the ruminal fermentation of the diets was measured using 5 ruminally cannulated cows on the last day of three 15-d periods. Ruminal contraction rate (2.28±0.14 contractions/min), milk yield (36.7±1.3 kg/d), yield of milk protein (1.1±0.03 kg/d), and concentration of milk protein (2.9±0.03%) were not affected by treatment. Feeding diets containing HSG instead of LSG reduced intake of crude protein (CP) and neutral detergent fiber, digestibility of neutral detergent fiber, and concentrations of ruminal total volatile fatty acids (VFA) and milk fat when the hybrids were harvested at 27% DM but not 35% DM. Across maturity stages, feeding diets containing HSG instead of LSG decreased DM and CP digestibility, increased rectal temperature and plasma ceruloplasmin concentration, and increased the efficiency of milk production. Except for increasing yeast and mold counts, adding water to the HSG hybrid harvested at 27% DM did not have adverse effects but was associated with greater starch intake, CP digestibility, and ruminal total VFA concentration, and decreased acetate to propionate ratio in dairy cows. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Effects of replacing rapeseed meal with fava bean at 2 concentrate crude protein levels on feed intake, nutrient digestion, and milk production in cows fed grass silage-based diets.

    PubMed

    Puhakka, L; Jaakkola, S; Simpura, I; Kokkonen, T; Vanhatalo, A

    2016-10-01

    The objective of this study was to evaluate the production and physiological responses of dairy cows to the substitution of fava bean for rapeseed meal at 2 protein supplementation levels in grass silage-based diets. We used 6 primiparous and 6 multiparous Finnish Ayrshire cows in a cyclic changeover trial with a 2×3 factorial arrangement of treatments. The experimental diets consisted of formic acid-treated timothy-meadow fescue silage and 3 isonitrogenous concentrates containing either rapeseed meal, fava bean, or a 1:1 mixture of rapeseed meal and fava bean at low and high inclusion rates, resulting in concentrate crude protein (CP) levels of 15.4 and 19.0% in dry matter. Silage dry matter intake decreased linearly when rapeseed meal was replaced with fava bean, the negative effect being more distinct at the high CP level than the low (-2.3 vs. -0.9kg/d, respectively). Similarly, milk and milk protein yields decreased linearly with fava bean, the change tending to be greater at the high CP level than the low. Yield of milk fat was lower for fava bean compared with rapeseed meal, the difference showing no interaction with CP level. Especially at the high CP level, milk urea concentration was higher with fava bean compared with rapeseed meal indicating better utilization of protein from the rapeseed meal. The apparent total-tract organic matter digestibility did not differ between treatments at the low CP level, but digestibility was higher for fava bean than for rapeseed meal at the high CP level. Plasma concentrations of essential amino acids, including methionine and lysine, were lower for fava bean than for rapeseed meal. Compared with rapeseed meal, the use of fava bean in dairy cow diets as the sole protein supplement decreased silage intake and milk production in highly digestible formic acid-treated grass silage-based diets. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Tomato seeds as a novel by-product feed for lactating dairy cows.

    PubMed

    Cassinerio, C A; Fadel, J G; Asmus, J; Heguy, J M; Taylor, S J; DePeters, E J

    2015-07-01

    Whole tomato seeds, a novel by-product feedstuff, were fed to lactating Holstein cows to determine the nutritive value of whole tomato seeds by replacing whole cottonseed in the total mixed ration. Four primiparous and 4 multiparous Holstein cows were used in a 4×4 Latin square design and fed 1 of 4 total mixed rations. Whole tomato seeds replaced whole cottonseed on a weight-to-weight basis for lipid. The proportion of whole tomato seeds to whole cottonseed in the diets were 100:0, 50:50, 25:75, and 0:100 on a lipid basis. Thus, tomato seeds were 4.0, 2.4, 1.1, and 0% of the ration dry matter, respectively. Milk yield and the concentrations and yields of protein, lactose, and solids-not-fat did not differ for the effect of diet. However, milk fat concentration decreased and milk fat yield tended to decrease as whole tomato seeds replaced whole cottonseed. Intakes of dry matter, lipid, and crude protein did not differ. Whole-tract apparent digestibility of dry matter and ash-free neutral detergent fiber did not differ, but digestibility of total fatty acids and crude protein decreased with increasing proportion of whole tomato seeds. Urea concentration in milk and plasma both decreased with increasing whole tomato seeds. Fecal concentration of linoleic and α-linolenic acids increased with increasing whole tomato seeds, suggesting that seeds were passing out of the digestive tract undigested. The concentrations of C18:2n-6 and C18:3n-3 in milk fat had small increases, but their yields were not different, suggesting that only a small amount of whole-tomato-seed lipid might have been digested postruminally. Amounts of trans C18:1 fatty acids in milk fat were higher with increasing whole cottonseed, which might suggest a shift in rumen biohydrogenation pathways. At the level of feeding used in the current study, whole tomato seeds replaced whole cottonseed in the diet of lactating dairy cows without a change in production. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Why are dairy cows not able to cope with the subacute ruminal acidosis?

    PubMed

    Brzozowska, A M; Sloniewski, K; Oprzadek, J; Sobiech, P; Kowalski, Z M

    2013-01-01

    One of the largest challenges for the dairy industry is to provide cows with a diet which is highly energetic but does not negatively affect their rumens' functions. In highly productive dairy cows, feeding diets rich in readily fermentable carbohydrates provides energy precursors needed for maximum milk production, but simultaneously decreases ruminal pH, leading to a widespread prevalence of subacute ruminal acidosis. Maximizing milk production without triggering rumen acidosis still challenges dairy farmers, who try to prevent prolonged bouts of low ruminal pH mainly by proper nutrition and management practices. The animals try to avoid overeating fermentable feeds, as it causes negative consequences by disturbing digestive processes. The results of several experiments show that ruminants, including sheep and beef cattle, are able to modify some aspects of feeding behaviour in order to adjust nutrient intake to their needs and simultaneously prevent physiological disturbances. Particularly, such changes (e.g., increased preference for fibrous feeds, reduced intake of concentrates) were observed in animals, which were trying to prevent the excessive drop of rumen fluid pH. Thanks to a specific mechanism called "the postingestive feedback", animals should be able to work out such a balance in intake, so they do not suffer either from hunger or from negative effects of over-ingesting the fermentable carbohydrates. This way, an acidosis should not be a frequent problem in ruminants. However, prolonged periods of excessively decreased rumen pH are still a concern in dairy cows. It raises a question, why the regulation of feed intake by postingestive feedback does not help to maintain stable rumen environment in dairy cows?

  1. Effects of replacing grass silage with forage pearl millet silage on milk yield, nutrient digestion, and ruminal fermentation of lactating dairy cows.

    PubMed

    Brunette, T; Baurhoo, B; Mustafa, A F

    2016-01-01

    This study investigated the effects of dietary replacement of grass silage (GS) with forage millet silages that were harvested at 2 stages of maturity [i.e., vegetative stage and dough to ripe seed (mature) stage] on milk production, apparent total-tract digestibility, and ruminal fermentation characteristics of dairy cows. Fifteen lactating Holstein cows were used in a replicated 3 × 3 Latin square experiment and fed (ad libitum) a total mixed ration (60:40 forage:concentrate ratio). Dietary treatments included control (GS), vegetative millet silage (EM), and mature millet silage (MM) diets. Experimental silages comprised 24% of dietary dry matter (DM). Soybean meal and slow-release urea were added in millet diets to balance for crude protein (CP). Three additional ruminally fistulated cows were used to determine the effect of treatments on ruminal fermentation and total-tract nutrient utilization. Cows fed the GS diet consumed more DM (22.9 vs. 21.7 ± 1.02 kg/d) and CP (3.3 vs. 3.1 ± 0.19 kg/d), and similar starch (4.9 ± 0.39 kg/d) and neutral detergent fiber (NDF; 8.0 ± 0.27 kg/d) compared with cows fed the MM diet. Replacing the EM diet with the MM diet did not affect DM, NDF, or CP intakes. Cows fed the MM diet produced less milk (26.1 vs. 29.1 ± 0.79 kg/d), energy-corrected milk (28.0 vs.30.5 ± 0.92 kg/d), and 4% fat-corrected milk (26.5 vs. 28.3 ± 0.92 kg/d) yields than cows fed the GS diet. However, cows fed diets with EM and GS produced similar yields of milk, energy-corrected milk, and 4% fat-corrected milk. Feed efficiency (milk yield:DM intake) was greater only for cows fed the GS diet than those fed the MM diet. Milk protein yield and concentration were greater among cows fed the GS diet compared with those fed the EM or MM diets. Milk fat and lactose concentrations were not influenced by diet. However, milk urea N was lower for cows fed the GS diet than for those fed the MM diet. Ruminal NH3-N was greater for cows fed the EM diet than for those fed the GS diet. Total-tract-digestibility of DM (average = 66.1 ± 3.3%), NDF (average = 55.1 ± 2.4%), CP (average = 63.6 ± 4.2%), and gross energy (average = 64.5 ± 2.6%) were not influenced by experimental diets. We concluded that cows fed GS and EM diets had comparable performance, whereas milk yield was significantly reduced with the MM diet, likely because reduced intakes of DM and net energy for lactation. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Effects of dietary Capsicum oleoresin on productivity and immune responses in lactating dairy cows.

    PubMed

    Oh, J; Giallongo, F; Frederick, T; Pate, J; Walusimbi, S; Elias, R J; Wall, E H; Bravo, D; Hristov, A N

    2015-09-01

    This study investigated the effect of Capsicum oleoresin in granular form (CAP) on nutrient digestibility, immune responses, oxidative stress markers, blood chemistry, rumen fermentation, rumen bacterial populations, and productivity of lactating dairy cows. Eight multiparous Holstein cows, including 3 ruminally cannulated, were used in a replicated 4×4 Latin square design experiment. Experimental periods were 25 d in duration, including a 14-d adaptation and an 11-d data collection and sampling period. Treatments included control (no CAP) and daily supplementation of 250, 500, or 1,000 mg of CAP/cow. Dry matter intake was not affected by CAP (average 27.0±0.64 kg/d), but milk yield tended to quadratically increase with CAP supplementation (50.3 to 51.9±0.86 kg/d). Capsicum oleoresin quadratically increased energy-corrected milk yield, but had no effect on milk fat concentration. Rumen fermentation variables, apparent total-tract digestibility of nutrients, and N excretion in feces and urine were not affected by CAP. Blood serum β-hydroxybutyrate was quadratically increased by CAP, whereas the concentration of nonesterified fatty acids was similar among treatments. Rumen populations of Bacteroidales, Prevotella, and Roseburia decreased and Butyrivibrio increased quadratically with CAP supplementation. T cell phenotypes were not affected by treatment. Mean fluorescence intensity for phagocytic activity of neutrophils tended to be quadratically increased by CAP. Numbers of neutrophils and eosinophils and the ratio of neutrophils to lymphocytes in peripheral blood linearly increased with increasing CAP. Oxidative stress markers were not affected by CAP. Overall, in the conditions of this experiment, CAP did not affect feed intake, rumen fermentation, nutrient digestibility, T cell phenotypes, and oxidative stress markers. However, energy-corrected milk yield was quadratically increased by CAP, possibly as a result of enhanced mobilization of body fat reserves. In addition, CAP increased neutrophil activity and immune cells related to acute phase immune response. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Factors affecting energy and nitrogen efficiency of dairy cows: a meta-analysis.

    PubMed

    Phuong, H N; Friggens, N C; de Boer, I J M; Schmidely, P

    2013-01-01

    A meta-analysis was performed to explore the correlation between energy and nitrogen efficiency of dairy cows, and to study nutritional and animal factors that influence these efficiencies, as well as their relationship. Treatment mean values were extracted from 68 peer-reviewed studies, including 306 feeding trials. The main criterion for inclusion of a study in the meta-analysis was that it reported, or permitted calculation of, energy efficiency (Eeff; energy in milk/digestible energy intake) and nitrogen efficiency (Neff; nitrogen in milk/digestible nitrogen intake) at the digestible level (digestible energy or digestible protein). The effect of nutritional and animal variables, including neutral detergent fiber, acid detergent fiber (ADF), digestible energy, digestible protein, proportion of concentrate (PCO), dry matter intake, milk yield, days in milk, and body weight, on Eeff, Neff, and the Neff:Eeff ratio was analyzed using mixed models. The interstudy correlation between Eeff and Neff was 0.62, whereas the intrastudy correlation was 0.30. The higher interstudy correlation was partly due to milk yield and dry matter intake being present in both Eeff and Neff. We, therefore, also explored the Neff:Eeff ratio. Energy efficiency was negatively associated with ADF and PCO, whereas Neff was negatively associated with ADF and digestible energy. The Neff:Eeff ratio was affected by ADF and PCO only. In conclusion, the results indicate a possibility to maximize feed efficiency in terms of both energy and nitrogen at the same time. In other words, an improvement in Eeff would also mean an improvement in Neff. The current study also shows that these types of transverse data are not sufficient to study the effect of animal factors, such as days in milk, on feed efficiency. Longitudinal measurements per animal would probably be more appropriate. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. ANIMAL MANURES AS FEEDSTUFFS: CATTLE MANURE FEEDING TRIALS

    EPA Science Inventory

    The utilization of 'as-collected' and processed beef cattle and dairy cow manure, manure screenings and anaerobically digested cattle manures was evaluated on the basis of the results of feeding trials reported in the literature. The maximum level of incorporating these manures i...

  5. Effect of stocking rate and supplementation on performance of dairy cows grazing native grassland in small-scale systems in the highlands of central Mexico.

    PubMed

    Sainz-Sánchez, Pedro Alan; López-González, Felipe; Estrada-Flores, Julieta Gertrudis; Martínez-García, Carlos Galdino; Arriaga-Jordán, Carlos Manuel

    2017-01-01

    The use and management of native grassland for dairy production during the rainy season was studied on two small-scale dairy farms in the highlands of central Mexico. Two stocking rates (2 and 4 cows/ha) and two levels of supplementation with commercial concentrate (4 and 6 kg/cow/day) under grazing were given to 12 milking Holstein cows in a 4 × 4 Latin square design replicated three times in a factorial arrangement. Net herbage accumulation (NHA), sward height, chemical composition, and in vitro digestibility of organic matter were recorded for the grassland, as well as vegetation cover and herbage mass 12 weeks post experiment. Animal performance variables were milk yield and composition, live weight, and body condition score. A partial budget analysis of feeding costs, returns, and margins was calculated. There were no differences between periods for NHA and herbage height and between plots for chemical composition (P > 0.05). However, there were highly significant differences among periods (P < 0.01) for organic matter, neutral detergent fibre (NDF), acid detergent fibre, in vitro organic matter digestibility (IVOMD), and estimated metabolisable energy (eME), with highly significant plot × period interactions (P < 0.01) for NDF, IVOMD, and eME. There were no statistical differences (P > 0.05) between treatments for milk yield, chemical composition of milk, live weight, or body condition score. Post-experimental vegetation cover was 72 % for both stocking rates, indicating there was no degradation of the grassland. Lower feeding costs were for the low supplementation treatments. It is concluded that a high stocking rate in studied native grasslands of 4 cows/ha with moderate concentrate supplementation supports a mean milk yield of 11.9 kg/cow/day during the rainy season without deleterious effects on the grassland.

  6. Effects of alfalfa and orchardgrass on digestion by dairy cows.

    PubMed

    Holden, L A; Glenn, B P; Erdman, R A; Potts, W E

    1994-09-01

    The effects of alfalfa and orchardgrass diets of similar NDF content on ruminal digestion and digesta kinetics as measured using radiolabeled herbage were evaluated in Holstein cows. Two dry and two lactating cows, fitted with ruminal and duodenal cannulas, were fed 12 times daily at restricted and ad libitum intakes, respectively, in a crossover design. Diets were 65:35 and 55:45 hay: concentrate in DM for alfalfa and orchardgrass, respectively, with approximately 19% CP and 42% NDF. The DMI by lactating cows was greater for the alfalfa diet than for the orchardgrass diet. Ruminal and apparent total tract digestibilities of NDF and ADF were less for cows consuming the alfalfa diet than for those on the orchardgrass diet. Particle size of ruminal digesta, based on specific activity from a ruminal pulse-dose of 14C-labeled alfalfa or orchardgrass, did not decrease consistently with time and was greater than fecal particle size, suggesting selective retention of large digesta particles before passage. Ruminal and total tract fractional passage rates of indigestible NDF, based on 14C-labeled forage, did not differ as a result of forage or lactation stage, but NDF gut fill was greater in lactating than in dry cows, indicating that changes in gut fill were related more to differences in intake than to passage rate.

  7. Effects of carbohydrate type or bicarbonate addition to grass silage-based diets on enteric methane emissions and milk fatty acid composition in dairy cows.

    PubMed

    Bougouin, A; Ferlay, A; Doreau, M; Martin, C

    2018-04-18

    The aim of the study was to compare the effect of fiber- or starch-rich diets based on grass silage, supplemented or not with bicarbonate, on CH 4 emissions and milk fatty acid (FA) profile in dairy cows. The experiment was conducted as a 4 × 4 Latin square design with a 2 × 2 factorial arrangement: carbohydrate type [starch- or fiber-rich diets with dietary starch level of 23.1 and 5.9% on a dry matter basis, respectively], without or with bicarbonate addition [0 and 1% of the dry matter intake, respectively]. Four multiparous lactating Holstein cows were fed 4 diets with 42% grass silage, 8% hay, and 50% concentrate in 4 consecutive 4-wk periods: (1) starch-rich diet, (2) starch-rich diet with bicarbonate, (3) fiber-rich diet, and (4) fiber-rich diet with bicarbonate. Intake and milk production were measured daily and milk composition was measured weekly; CH 4 emission and total-tract digestibility were measured simultaneously (5 d, wk 4) when animals were in open-circuit respiration chambers. Sensors continuously monitored rumen pH (3 d, wk 4), and fermentation parameters were analyzed from rumen fluid samples taken before feeding (1 d, wk 3). Cows fed starch-rich diets had less CH 4 emissions (on average, -18% in g/d; -15% in g/kg of dry matter intake; -19% in g/kg of milk) compared with fiber-rich diets. Carbohydrate type did not affect digestion of nutrients, except starch, which increased with starch-rich diets. The decrease in rumen protozoa number (-36%) and the shift in rumen fermentation toward propionate at the expense of butyrate for cows fed the starch-rich diets may be the main factor in reducing CH 4 emissions. Milk of cows fed starch-rich diets had lower concentrations in trans-11 C18:1, sum of cis-C18, cis-9,trans-11 conjugated linoleic acid (CLA), and sum of CLA, along with greater concentration of some minor isomers of CLA and saturated FA in comparison to the fiber-rich diet. Bicarbonate addition did not influence CH 4 emissions or nutrient digestibility regardless of the carbohydrate type in the diet. Rumen pH increased with bicarbonate addition, whereas other rumen parameters and milk FA composition were almost comparable between diets. Feeding dairy cows a starch-rich diet based on grass silage helps to limit the negative environmental effect of ruminants, but does not lead to greater milk nutritional value because milk saturated FA content is increased. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Effect of the type of silage on milk yield, intake and rumen metabolism of dairy cows grazing swards with low herbage mass.

    PubMed

    Ruiz-Albarrán, Miguel; Balocchi, Oscar A; Noro, Mirela; Wittwer, Fernando; Pulido, Rubén G

    2016-07-01

    The aim of this study was to evaluate the effect of herbage allowance (HA) and type of silage supplemented (TS) on milk yield, dry matter intake (DMI) and metabolism of dairy cows in early lactation. Thirty-six Holstein-Friesian dairy cows were allocated to four treatments derived from an arrangement of two HA (LHA = 17 or HHA = 25 kg of DM/cow/day) and two TS (grass (GS) or maize (MS)). Herbage allowance had no effect on DMI or milk yield. Rumen pH and NH3 -N concentration were not affected by HA. The efficiency of microbial protein synthesis in the rumen (microbial protein (MP)) was affected by HA with 21.5 and 23.9 g microbial nitrogen per kg ruminal digestible organic matter for LHA and HHA, respectively (P < 0.05). Supplementation with MS showed higher values of milk yield by 2.4 kg/cow/day (P < 0.001), milk protein content by 0.10 % (P < 0.023) and herbage DMI by 2.2 kg/cow/day, and showed lower values for milk urea compared to GS (P < 0.001). The former results suggest that TS had a greater effect on milk yield, total feed intake and energy intake than increase in herbage allowance; however, increase in HA had greater effects on MP than TS. © 2015 Japanese Society of Animal Science.

  9. Impact of biogas digesters on wood utilisation and self-reported back pain for women living on rural Kenyan smallholder dairy farms.

    PubMed

    Dohoo, Carolyn; VanLeeuwen, John; Read Guernsey, Judith; Critchley, Kim; Gibson, Mark

    2013-01-01

    Women living on rural Kenyan dairy farms spend significant amounts of time collecting wood for cooking. Biogas digesters, which generate biogas for cooking from the anaerobic decomposition of livestock manure, are an alternative fuel source. The objective of this study was to quantify the quality of life and health benefits of installing biogas digesters on rural Kenyan dairy farms with respect to wood utilisation. Women from 62 farms (31 biogas farms and 31 referent farms) participated in interviews to determine reliance on wood and the impact of biogas digesters on this reliance. Self-reported back pain, time spent collecting wood and money spent on wood were significantly lower (p < 0.01) for the biogas group, compared to referent farms. Multivariable linear regression showed that wood consumption increased by 2 lbs/day for each additional family member living on a farm. For an average family of three people, the addition of one cow was associated with increased wood consumption by 1.0 lb/day on biogas farms but by 4.4 lbs/day on referent farms (significant interaction variable - likely due to additional hot water for cleaning milk collection equipment). Biogas digesters represent a potentially important technology that can reduce reliance on wood fuel and improve health for Kenyan dairy farmers.

  10. Effect of sources of calcium salts of fatty acids on production, nutrient digestibility, energy balance, and carryover effects of early lactation grazing dairy cows.

    PubMed

    de Souza, Jonas; Batistel, Fernanda; Santos, Flávio Augusto Portela

    2017-02-01

    The objective of our study was to investigate the effects of sources of calcium salts of fatty acids (FA) on production, nutrient digestibility, energy balance, and carryover effects of early lactation grazing dairy cows. Treatment diets were offered from 3 to 16 wk postpartum (the treatment period), in which all cows grazed elephantgrass (Pennisetum purpureum 'Cameroon') and treatments were added to a concentrate supplement. The treatments were (1) control (concentrate without supplemental fat); (2) concentrate with calcium salts of soybean FA (CSSO); and (3) concentrate with calcium salts of palm FA (CSPO). From 17 to 42 wk postpartum (the carryover period), all cows received a common diet fed as a total mixed ration. During the treatment period, CSPO increased milk yield, milk fat yield, 3.5% fat-corrected milk, energy-corrected milk, and cumulative milk yield compared with control and CSSO. Treatment CSSO increased the yield of milk but did not affect 3.5% fat-corrected milk or energy-corrected compared with control. Also, CSSO decreased milk fat yield, dry matter intake, neutral detergent fiber digestibility, and body weight and body condition loss. Compared with control, both CSSO and CSPO increased feed efficiency (3.5% fat-corrected milk:dry matter intake), and CSPO increased feed efficiency compared with CSSO. When considering energy partitioning (as % energy intake), CSPO increased energy partitioning toward milk and increased energy mobilized from body reserves compared with control and CSSO. Furthermore, CSSO tended to reduce the mobilization of energy from body reserves compared with control. In the carryover period, no differences in milk composition were observed among treatments. A treatment by time interaction was observed during the carryover period for milk yield because cows on CSPO maintained higher production compared with control and CSSO cows until 30 wk postpartum; CSSO had a lower carryover effect sustaining higher milk yield compared with control until 25 wk postpartum. In conclusion, supplementation with CSPO was an effective strategy to increase energy intake and yields of milk and milk solids and it had a greater carryover effect. Supplementation with CSSO resulted in lower mobilization of reserves and less variation in body weight and body condition throughout lactation. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Relationship between residual feed intake and digestibility for lactating Holstein cows fed high and low starch diets.

    PubMed

    Potts, S B; Boerman, J P; Lock, A L; Allen, M S; VandeHaar, M J

    2017-01-01

    We determined if differences in digestibility among cows explained variation in residual feed intake (RFI) in 4 crossover design experiments. Lactating Holstein cows (n=109; 120±30d in milk; mean ± SD) were fed diets high (HS) or low (LS) in starch. The HS diets were 30% (±1.8%) starch and 27% (±1.2%) neutral detergent fiber (NDF); LS diets were 14% (±2.2%) starch and 40% (±5.3%) NDF. Each experiment consisted of two 28-d treatment periods, with apparent total-tract digestibility measured using indigestible NDF as an internal marker during the last 5d of each period. Individual cow dry matter (DM) intake and milk yield were recorded daily, body weight was measured 3 to 5 times per week, and milk components were analyzed 2 d/wk. Individual DM intake was regressed on milk energy output, metabolic body weight, body energy gain, and fixed effects of parity, experiment, cohort (a group of cows that received treatments in the same sequence) nested within experiment, and diet nested within cohort and experiment, with the residual being RFI. High RFI cows ate more than expected and were deemed less efficient. Residual feed intake correlated negatively with digestibility of starch for both HS (r=-0.31) and LS (r=-0.23) diets, and with digestibilities of DM (r=-0.30) and NDF (r=-0.23) for LS diets but was not correlated with DM or NDF digestibility for HS diets. For each cohort within an experiment, cows were classified as high RFI (HRFI; >0.5 SD), medium RFI (MRFI; ±0.5 SD), and low RFI (LRFI; <-0.5 SD). Digestibility of DM was similar (~66%) among HRFI and LRFI for HS diets but greater for LRFI when fed LS diets (64 vs. 62%). For LS diets, digestibility of DM could account for up to 31% of the differences among HRFI and LRFI for apparent diet energy density, as determined from individual cow performance, indicating that digestibility explains some of the between-animal differences for the ability to convert gross energy into net energy. Some of the differences in digestibility between HRFI and LRFI were expected because cows with high RFI eat at a greater multiple of maintenance, and greater intake is associated with increased passage rate and digestibility depression. Based on these data, we conclude that a cow's digestive ability explains none of the variation in RFI for cows eating high starch diets but 9 to 31% of the variation in RFI when cows are fed low starch diets. Perhaps differences in other metabolic processes, such as tissue turnover, heat production, or others related to maintenance, can account for more variation in RFI than digestibility. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Is there a role for organic trace element supplements in transition cow health?

    PubMed

    Andrieu, S

    2008-04-01

    Optimal transition cow health is the key to success of the subsequent lactation, and increasing attention has been focused on management and nutritional practices that support it. Physiological stress during the transition period alters the efficiency of the immune system, making the lactating dairy cow more susceptible to infectious diseases, such as mastitis and metritis, with subsequent impairment of reproductive performance. Trace elements have a specific role in free radical control at the cellular level and influence the anti-oxidant/free radical balance. Dietary trace elements must be available for absorption throughout the whole of the digestive process until they reach the final site of absorption in the small intestine. Negative interactions between minerals can occur and, as the intestinal environment lowers the absorption of ionic minerals, chelation technology has been developed to increase mineral bioavailability. Organic trace elements have been used in dairy cow experiments, resulting in significant improvements in udder health, lameness and reproductive performance.

  13. Rumen-protected lysine, methionine, and histidine increase milk protein yield in dairy cows fed a metabolizable protein-deficient diet.

    PubMed

    Lee, C; Hristov, A N; Cassidy, T W; Heyler, K S; Lapierre, H; Varga, G A; de Veth, M J; Patton, R A; Parys, C

    2012-10-01

    The objective of this experiment was to evaluate the effect of supplementing a metabolizable protein (MP)-deficient diet with rumen-protected (RP) Lys, Met, and specifically His on dairy cow performance. The experiment was conducted for 12 wk with 48 Holstein cows. Following a 2-wk covariate period, cows were blocked by DIM and milk yield and randomly assigned to 1 of 4 diets, based on corn silage and alfalfa haylage: control, MP-adequate diet (ADMP; MP balance: +9 g/d); MP-deficient diet (DMP; MP balance: -317 g/d); DMP supplemented with RPLys (AminoShure-L, Balchem Corp., New Hampton, NY) and RPMet (Mepron; Evonik Industries AG, Hanau, Germany; DMPLM); and DMPLM supplemented with an experimental RPHis preparation (DMPLMH). The analyzed crude protein content of the ADMP and DMP diets was 15.7 and 13.5 to 13.6%, respectively. The apparent total-tract digestibility of all measured nutrients, plasma urea-N, and urinary N excretion were decreased by the DMP diets compared with ADMP. Milk N secretion as a proportion of N intake was greater for the DMP diets compared with ADMP. Compared with ADMP, dry matter intake (DMI) tended to be lower for DMP, but was similar for DMPLM and DMPLMH (24.5, 23.0, 23.7, and 24.3 kg/d, respectively). Milk yield was decreased by DMP (35.2 kg/d), but was similar to ADMP (38.8 kg/d) for DMPLM and DMPLMH (36.9 and 38.5kg/d, respectively), paralleling the trend in DMI. The National Research Council 2001model underpredicted milk yield of the DMP cows by an average (±SE) of 10.3 ± 0.75 kg/d. Milk fat and true protein content did not differ among treatments, but milk protein yield was increased by DMPLM and DMPLMH compared with DMP and was not different from ADMP. Plasma essential amino acids (AA), Lys, and His were lower for DMP compared with ADMP. Supplementation of the DMP diets with RP AA increased plasma Lys, Met, and His. In conclusion, MP deficiency, approximately 15% below the National Research Council requirements from 2001, decreased DMI and milk yield in dairy cows. Supplementation of the MP-deficient diet with RPLys and RPMet diminished the difference in DMI and milk yield compared with ADMP and additional supplementation with RPHis eliminated it. As total-tract fiber digestibility was decreased with the DMP diets, but DMI tended to increase with RP AA supplementation, we propose that, similar to monogastric species, AA play a role in DMI regulation in dairy cows. Our data implicate His as a limiting AA in high-producing dairy cows fed corn silage- and alfalfa haylage-based diets, deficient in MP. The MP-deficient diets clearly increased milk N efficiency and decreased dramatically urinary N losses. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Utilization of kura clover-reed canarygrass silage versus alfalfa silage by lactating dairy cows.

    PubMed

    Kammes, K L; Heemink, G B H; Albrecht, K A; Combs, D K

    2008-08-01

    The mixture of kura clover (Trifolium ambiguum M. Bieb.) and reed canarygrass (Phalaris arundinacea L.) has proven to be extremely persistent in the northern United States, but information about dairy cow performance on this mixture is lacking. Twenty lactating Holstein cows were used in a crossover design to compare dry matter (DM) intake and milk production from diets containing kura clover-reed canarygrass silage (KRS) or alfalfa (Medicago sativa L.) silage (AS). Forages were cut, wilted, ensiled in horizontal plastic bags, and allowed to ferment for at least 50 d before beginning the feeding experiment. The KRS was approximately 40% kura clover and 60% reed canarygrass. Treatments were total mixed rations formulated with either 57% of total DM from 1) AS or 2) KRS. Experimental periods were 28 d, with the first 14 d for diet adaptation and the last 14 d for measurement of intake and milk production. The neutral detergent fiber (NDF) concentrations of AS and KRS were 37.3 and 47.3%, respectively. The fermentation analyses indicated that both silages underwent a restricted fermentation, producing primarily lactic acid and some acetic acid. Dry matter intake (24.2 vs. 22.8 kg) and 4% fat-corrected milk (32.8 vs. 30.9 kg) were significantly higher for cows fed AS than for cows fed KRS. Cows consumed less NDF (6.7 vs. 8.0 kg) and less digestible NDF (3.0 vs. 4.4 kg) when fed AS diets compared with KRS diets, but the pool of ruminally undegraded NDF was similar (3.7 kg) between diets. Cows produced 1.5 kg of milk/kg of DM consumed regardless of the diet, indicating that digestible NDF of KRS was utilized with similar efficiency as the cell wall constituents of AS, but the intake of cows fed KRS may have been limited by rumen fill. Milk fat concentration tended to be higher for cows fed AS, but the milk true protein concentration and yields of fat and protein did not differ by treatment. Milk urea nitrogen content was higher when cows consumed AS (16.4 mg/ dL) compared with KRS (13.4 mg/dL). The cows fed KRS consumed more NDF but less total DMI, based on the results from this trial with diets formulated to contain approximately 60% of DM as forage, resulting in slightly lower milk yields than cows fed excellent-quality AS. This grass-legume mixture has the potential to be a source of quality forage for dairy cows in regions where alfalfa persistence is a problem.

  15. Effects of high ambient temperature on urea-nitrogen recycling in lactating dairy cows.

    PubMed

    Obitsu, Taketo; Kamiya, Mitsuru; Kamiya, Yuko; Tanaka, Masahito; Sugino, Toshihisa; Taniguchi, Kohzo

    2011-08-01

    Effects of exposure to hot environment on urea metabolism were studied in lactating Holstein cows. Four cows were fed ad libitum a total mixed ration and housed in a temperature-controlled chamber at constant moderate (18°C) or high (28°C) ambient temperatures in a cross-over design. Urea nitrogen (N) kinetics was measured by determining urea isotopomer in urine after single injection of [(15) N(2) ]urea into the jugular vein. Both dry matter intake and milk yield were decreased under high ambient temperature. Intakes of total N and digestible N were decreased under high ambient temperature but urinary urea-N excretion was increased. The ratio of urea-N production to digestible N was increased, whereas the proportion of gut urea-N entry to urea-N production tended to be decreased under high ambient temperature. Neither return to the ornithine cycle, anabolic use nor fecal excretion of urea-N recycled to the gut was affected by ambient temperature. Under high ambient temperature, renal clearance of plasma urea was not affected but the gut clearance was decreased. Increase of urea-N production and reduction of gut urea-N entry, in relative terms, were associated with increased urinary urea-N excretion of lactating dairy cows in higher thermal environments. 2011 The Authors. Animal Science Journal © 2011 Japanese Society of Animal Science.

  16. Comparison of rumen bacterial communities in dairy herds of different production.

    PubMed

    Indugu, Nagaraju; Vecchiarelli, Bonnie; Baker, Linda D; Ferguson, James D; Vanamala, Jairam K P; Pitta, Dipti W

    2017-08-30

    The purpose of this study was to compare the rumen bacterial composition in high and low yielding dairy cows within and between two dairy herds. Eighty five Holstein dairy cows in mid-lactation (79-179 days in milk) were selected from two farms: Farm 12 (M305 = 12,300 kg; n = 47; 24 primiparous cows, 23 multiparous cows) and Farm 9 (M305 = 9700 kg; n = 38; 19 primiparous cows, 19 multiparous cows). Each study cow was sampled once using the stomach tube method and processed for 16S rRNA gene amplicon sequencing using the Ion Torrent (PGM) platform. Differences in bacterial communities between farms were greater (Adonis: R 2  = 0.16; p < 0.001) than within farm. Five bacterial lineages, namely Prevotella (48-52%), unclassified Bacteroidales (10-12%), unclassified bacteria (5-8%), unclassified Succinivibrionaceae (1-7%) and unclassified Prevotellaceae (4-5%) were observed to differentiate the community clustering patterns among the two farms. A notable finding is the greater (p < 0.05) contribution of Succinivibrionaceae lineages in Farm 12 compared to Farm 9. Furthermore, in Farm 12, Succinivibrionaceae lineages were higher (p < 0.05) in the high yielding cows compared to the low yielding cows in both primiparous and multiparous groups. Prevotella, S24-7 and Succinivibrionaceae lineages were found in greater abundance on Farm 12 and were positively correlated with milk yield. Differences in rumen bacterial populations observed between the two farms can be attributed to dietary composition, particularly differences in forage type and proportion in the diets. A combination of corn silage and alfalfa silage may have contributed to the increased proportion of Proteobacteria in Farm 12. It was concluded that Farm 12 had a greater proportion of specialist bacteria that have the potential to enhance rumen fermentative digestion of feedstuffs to support higher milk yields.

  17. Cow Power: A Case Study of Renewable Compressed Natural Gas as a Transportation Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mintz, Marianne; Tomich, Matthew

    This case study explores the production and use of renewable compressed natural gas (R-CNG)—derived from the anaerobic digestion (AD) of dairy manure—to fuel 42 heavy-duty milk tanker trucks operating in Indiana, Michigan, Tennessee, and Kentucky.

  18. Feces composition and manure derived methane yield from dairy cows: Influence of diet with focus on fat supplement and roughage type

    NASA Astrophysics Data System (ADS)

    Møller, Henrik Bjarne; Moset, Verónica; Brask, Maike; Weisbjerg, Martin Riis; Lund, Peter

    2014-09-01

    The objective of the present study was to evaluate the effect of dairy cow diets on feces composition and methane (CH4) potential from manure with emphasis on fat level and roughage type and compare these results with the corresponding enteric CH4 emission. In experiment 1 six different diets, divided into two fat levels (low and high) and three different roughage types (early cut grass silage, late cut grass silage and maize silage), were used. The high fat level was achieved by adding crushed rapeseed. In experiment 2, the influence of increasing the fat level by using three different types of rapeseed: rapeseed cake, whole seed and rapeseed oil against a low fat ration with no rapeseed fat supplementation was studied. The diet and fat level had a significant influence on feces composition and CH4 yield. In general, ultimate CH4 yields (B0) were 8-9% higher than the present international default values for diets without extra fat and in feces from diets with extra fat supply the yield was 25-31% higher. It was possible to predict the B0 value from feed and feces characteristics; in fact, the best correlation was obtained by including both feed and feces characteristics. Addition of crude fat to diets to dairy cows reduced enteric CH4 emission but at the same time increased CH4 potential from feces both in terms of organic matter in feces and dry matter intake which might lead to increasing emissions unless proper manure handling such as anaerobic digestion is included. Without subsequent anaerobic digestion to produce energy the positive effect achieved at cow level could be counteracted by increasing manure emissions.

  19. Effect of supplemental yeast culture and dietary starch content on rumen fermentation and digestion in dairy cows.

    PubMed

    Dias, A L G; Freitas, J A; Micai, B; Azevedo, R A; Greco, L F; Santos, J E P

    2018-01-01

    The objectives of this experiment were to evaluate the effect of feeding a culture of Saccharomyces cerevisiae on rumen metabolism and digestibility when cows are fed diets varying in starch content. Four lactating Holstein cows were assigned to a 4 × 4 Latin square design with a 2 × 2 factorial arrangement of treatments. Treatments were low starch (LS; 23% of diet DM) and no yeast culture (YC; LS-control), LS and 15 g of YC/d (LS-YC), high starch (HS; 29% of diet DM) and no YC (HS-control), and HS and 15 g of YC/d (HS-YC). Periods lasted 28 d, with the last 9 d for data collection. Days 20 to 24 were used to determine production, nutrient flow, and digestibility. On d 25, 3 kg of corn grain DM was placed in the rumen 1 h before the morning feeding, and yields of milk and milk components were measured after the challenge. Blood was sampled -1, 3, 7, and 11 h relative to the morning feeding on d 24 and 25. Rumen pH was measured continuously on d 24 and 25. Rumen papillae were collected on d 24 and 28 to quantify mRNA expression of select genes. Supplementing YC increased yields of milk (26.3 vs. 29.6 kg/d), energy-corrected milk (ECM; 26.5 vs. 30.3 kg/d), fat (0.94 vs. 1.08 kg/d), true protein (0.84 vs. 0.96 kg/d), and ECM/dry matter intake (1.15 vs. 1.30) compared with the control but did not affect dry matter intake (22.6 vs. 22.9 kg/d). Cows fed HS had increased milk true protein percentage (3.18 vs. 3.31%) and yield (0.87 vs. 0.94 kg/d) compared with cows fed LS. Feeding HS-YC increased the proportion of dietary N incorporated into milk true protein from 24.9% in the other 3 treatments to 29.6%. Feeding HS increased the concentration of propionate (21.7 vs. 32.3 mM) and reduced that of NH 3 -N (8.3 vs. 6.7 mg/dL) in rumen fluid compared with the control, and combining HS with YC in HS-YC tended to increase microbial N synthesis compared with LS-YC (275 vs. 322 g/d). Supplementing YC to cows fed HS reduced plasma haptoglobin and rumen lactate concentrations, increased mean rumen pH, reduced the time with pH <6.0, and prevented the decrease in rumen neutral detergent fiber digestion caused by HS. Cows fed HS had less total-tract digestion of organic matter (73.9 vs. 72.4%) because of reduced acid detergent fiber (57.6 vs. 51.7%) and neutral detergent fiber (60.9 vs. 56.7%) digestibility. Production performance after the challenge was similar to that before the challenge, and YC improved yield of ECM. After the challenge, supplementing YC tended to reduce rumen lactate concentration compared with the control and reduced haptoglobin in cows fed HS. Feeding HS but not YC increased expression in rumen papillae of genes for receptors (FFAR2 and FFAR3) and transporter (SLC16A3) of short-chain fatty acids but did not affect genes involved in transport of Na + /H + or water or in inflammatory response. Supplementing YC to dairy cows improved lactation performance in diets containing low or high starch, and mechanisms might be partially attributed to improvements in rumen pH, digestion of fiber, microbial N synthesis, and reduction in acute phase response. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Harnessing the genetics of the modern dairy cow to continue improvements in feed efficiency.

    PubMed

    VandeHaar, M J; Armentano, L E; Weigel, K; Spurlock, D M; Tempelman, R J; Veerkamp, R

    2016-06-01

    Feed efficiency, as defined by the fraction of feed energy or dry matter captured in products, has more than doubled for the US dairy industry in the past 100 yr. This increased feed efficiency was the result of increased milk production per cow achieved through genetic selection, nutrition, and management with the desired goal being greater profitability. With increased milk production per cow, more feed is consumed per cow, but a greater portion of the feed is partitioned toward milk instead of maintenance and body growth. This dilution of maintenance has been the overwhelming driver of enhanced feed efficiency in the past, but its effect diminishes with each successive increment in production relative to body size and therefore will be less important in the future. Instead, we must also focus on new ways to enhance digestive and metabolic efficiency. One way to examine variation in efficiency among animals is residual feed intake (RFI), a measure of efficiency that is independent of the dilution of maintenance. Cows that convert feed gross energy to net energy more efficiently or have lower maintenance requirements than expected based on body weight use less feed than expected and thus have negative RFI. Cows with low RFI likely digest and metabolize nutrients more efficiently and should have overall greater efficiency and profitability if they are also healthy, fertile, and produce at a high multiple of maintenance. Genomic technologies will help to identify these animals for selection programs. Nutrition and management also will continue to play a major role in farm-level feed efficiency. Management practices such as grouping and total mixed ration feeding have improved rumen function and therefore efficiency, but they have also decreased our attention on individual cow needs. Nutritional grouping is key to helping each cow reach its genetic potential. Perhaps new computer-driven technologies, combined with genomics, will enable us to optimize management for each individual cow within a herd, or to optimize animal selection to match management environments. In the future, availability of feed resources may shift as competition for land increases. New approaches combining genetic, nutrition, and other management practices will help optimize feed efficiency, profitability, and environmental sustainability. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Effects of maturity and harvest season of grass-clover silage and of forage-to-concentrate ratio on milk production of dairy cows.

    PubMed

    Alstrup, L; Søegaard, K; Weisbjerg, M R

    2016-01-01

    This study examined the effects of maturity and season of harvest of grass-clover silages and forage:concentrate ratio (FCR) on feed intake, milk production, chewing activity, digestibility, and fecal consistency of Holstein dairy cows. Comparison included 2 cuts in spring season (early and late) and 2 cuts in summer season (early and late) combined with high FCR (80:20; HFCR) and low FCR (50:50; LFCR). The experiment included 24 lactating Holstein cows arranged as 2 repeated 4 × 4 Latin squares with four 21-d periods and included measurements of feed composition, feed intake, milk production and composition, chewing activities, digestibilities, and fecal dry matter (DM) concentration and scoring. Forages were fed as two-thirds grass-clover and one-third corn silage supplemented with either 20 or 50% concentrate. Rations were fed ad libitum as total mixed rations. Early maturity cuts were more digestible than late maturity cuts, which was also reflected in a lower concentration of neutral detergent fiber (NDF) in early maturity cuts, whereas summer cuts had a higher crude protein concentration than spring cuts. Increased maturity decreased the intake of DM and energy, increased NDF intake, and decreased the yield of energy-corrected milk (ECM). Summer cuts increased the ECM yield compared with spring cuts. Milk yield (kg and kilogram of ECM) was numerically higher for cows fed early summer cut, independent of FCR in the ration. Milk protein concentration decreased, or tended to decrease, with maturity. For LFCR, the milk fat concentration increased with maturity resulting in a decreased protein:fat ratio. At HFCR, increased maturity increased the time spent chewing per kilogram of DM. Digestibility of silages was positively correlated with the fecal DM concentration. The DM intake and ECM yield showed no significant response to FCR in the ration, but the milk composition was affected. The LFCR decreased the milk fat percentage and increased the milk protein percentage numerically followed by a higher protein:fat ratio. Total chewing time per kilogram of DM decreased and total chewing time per kilogram of NDF increased with LFCR. This study indicates that silages from summer cuts have a similar value for milk production as do spring cuts, when forage digestibility is taken into account. Moreover, it appears that supplementation of extra concentrate has no effect on ECM production when forages with a high digestibility are fed, and that the physical structural value is adequate even when feeding high digestible forages. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Dairy cow responses to graded levels of rapeseed and soya bean expeller supplementation on a red clover/grass silage-based diet.

    PubMed

    Rinne, M; Kuoppala, K; Ahvenjärvi, S; Vanhatalo, A

    2015-12-01

    The effects of rapeseed and soya bean expeller (SBE) supplementation on digestion and milk production responses in dairy cows were investigated in an incomplete Latin square design using five cows and four 3-week periods. The experimental diets consisted of five concentrate treatments fed at a rate of 9 kg/day: a mixture of barley and oats, which was replaced with rapeseed or SBE at two levels (CP concentration (g/kg dry matter (DM)) of 130 for the control concentrate and 180 and 230 for the two protein supplemented levels). A mixture of grass and red clover silage (1:1) was fed ad libitum and it had a CP concentration of 157 g/kg DM. Supply of nutrients to the lower tract was measured using the omasal canal sampling technique, and total digestion from total faecal collection. Protein supplementation increased omasal canal amino acid (AA) flows and plasma concentrations of AA, and was also reflected as increased milk production. However, N use efficiency (NUE) decreased with increased protein supplementation. Rapeseed expeller (RSE) tended to increase silage DM intake and elicited higher milk production responses compared with SBE and also resulted in a higher NUE. The differences between the protein supplements in nitrogen metabolism were relatively small, for example, there were no differences in the efficiency of microbial protein synthesis or omasal canal flows of nitrogenous components between them, but plasma methionine concentration was lower for soya bean-fed cows at the high CP level in particular. The lower milk protein production responses to SBE than to RSE supplementation were at least partly caused by increased silage DM and by the lower methionine supply, which may further have been amplified by the use of red clover in the basal diet. Although feed intake, diet digestion, AA supply and milk production were all consistently improved by protein supplementation, there was a simultaneous decrease in NUE. In the current study, the milk protein production increased only 9% and energy-corrected milk production by 7% when high level of protein supplementation (on average 2.9 kg DM/day) was compared with the control diet without protein supplementation showing that dairy production could be sustained at a high level even without external protein supplements, at least in the short term. The economic and environmental aspects need to be carefully evaluated when decisions about protein supplementation for dairy cows are taken.

  3. Effects of including NaOH-treated corn straw as a substitute for wheat hay in the ration of lactating cows on performance, digestibility, and rumen microbial profile.

    PubMed

    Jami, E; Shterzer, N; Yosef, E; Nikbachat, M; Miron, J; Mizrahi, I

    2014-03-01

    This study measured the effects of including 5% NaOH-treated corn straw (T-CS) as a substitute for 15% wheat hay in the control total mixed ration (TMR) of lactating cows on performance, digestibility, and rumen microbial profile. Two groups of 21 cows each, similar in initial performance, were fed individually 1 of the 2 TMR examined. Voluntary dry matter intake of cows fed the control TMR was 4.3% higher than that of the T-CS cows, but in vivo dry matter and organic matter digestibilities of both groups were similar. Crude protein digestibility was higher in the control cows but digestibility of neutral detergent fiber polysaccharides (cellulose and hemicelluloses) was higher in the T-CS TMR. This was followed by 4.6% reduction in rumination time of the T-CS group. A slightly higher milk yield was observed in the control cows compared with the T-CS group; however, milk fat and milk protein content were higher in cows fed the T-CS TMR. This was reflected in 1.3% increase in energy-corrected milk yield and 5.34% increase in production efficiency (energy-corrected milk yield/intake) of the T-CS cows compared with the control. Welfare of the cows, as assessed by length of daily recumbence time, was improved by feeding the T-CS TMR relative to the control group. As a whole, the rumen bacterial community was significantly modulated in the T-CS group in the experimental period compared with the preexperimental period, whereas the bacterial community of the control group remained unchanged during this period. Out of the 8 bacterial species that were quantified using real-time PCR, a notable decrease in cellulolytic bacteria was observed in the T-CS group, as well as an increase in lactic acid-utilizing bacteria. These results illustrate the effect of T-CS on the composition of rumen microbiota, which may play a role in improving the performance of the lactating cow. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Effect of extended underfeeding on digestion and nitrogen balance in nonlactating cows.

    PubMed

    Grimaud, P; Doreau, M

    1995-01-01

    The effect of extended underfeeding on digestion was studied in dairy cows. Four nonlactating cows (BW = 747 kg) were first fed a forage-based diet at a level above energy maintenance requirements for 7 wk (9.4 kg DM/d) then were restricted at a low level of intake of the same diet for 5 mo (5.2 kg DM/d), then refed at the first level. Digestion measurements were made before and after the underfeeding period, and at 1, 5, 9, and 19 wk of underfeeding. Organic matter digestibility decreased with underfeeding then increased (62.7, 56.2, and 61.5% before, 1 wk after, and 19 wk after underfeeding, respectively). Differences in ruminal apparent OM digestion were nonsignificant (P > .05). This lack of difference was related to the absence of variation of ruminal particle passage rate and DM degradability measured in situ. However, the decrease in feed intake decreased ruminal (P < .01) and intestinal (P < .05) liquid dilution rates, ruminal DM pool size and DM content (P < .01), and protozoa concentration (P < .01). The decrease (P < .01) in N retention with underfeeding was followed by an increase (P < .05) during the underfeeding period, due to a decrease in fecal and urine N losses. This experiment has shown an unusual and temporary response of digestion to underfeeding. Knowledge of adaptation of digestion to low intakes needs to be improved.

  5. Effects of slow-release urea and rumen-protected methionine and histidine on performance of dairy cows.

    PubMed

    Giallongo, F; Hristov, A N; Oh, J; Frederick, T; Weeks, H; Werner, J; Lapierre, H; Patton, R A; Gehman, A; Parys, C

    2015-05-01

    This experiment was conducted with the objective to investigate the effects of slow-release urea and rumen-protected (RP) Met and His supplementation of a metabolizable protein (MP)-deficient diet (according to NRC, 2001) on lactation performance of dairy cows. Sixty lactating Holstein cows were used in a 10-wk randomized complete block-design trial. Cows were fed a covariate diet for 2 wk and then assigned to one of the following treatments for an 8-wk experimental period: (1) MP-adequate diet [AMP; 107% of MP requirements, based on the National Research Council (NRC, 2001)]; (2) MP-deficient diet (DMP; 95% of MP requirements); (3) DMP supplemented with slow-release urea (DMPU); (4) DMPU supplemented with RPMet (DMPUM); and (5) DMPUM supplemented with RPHis (DMPUMH). Total-tract apparent digestibility of dry matter, organic matter, neutral detergent fiber, and crude protein, and urinary N and urea-N excretions were decreased by DMP, compared with AMP. Addition of slow-release urea to the DMP diet increased urinary urea-N excretion. Dry matter intake (DMI) and milk yield (on average 44.0±0.9kg/d) were not affected by treatments, except DMPUMH increased DMI and numerically increased milk yield, compared with DMPUM. Milk true protein concentration and yield were increased and milk fat concentration tended to be decreased by DMPUMH, compared with DMPUM. Cows gained less body weight on the DMP diet, compared with AMP. Plasma concentrations of His and Lys were not affected by treatments, whereas supplementation of RPMet increased plasma Met concentration. Plasma concentration of 3-methylhistidine was or tended to be higher for DMP compared with AMP and DMPU, respectively. Addition of RPHis to the DMPUM diet tended to increase plasma glucose and creatinine. In conclusion, feeding a 5% MP-deficient diet (according to NRC, 2001) did not decrease DMI and yields of milk and milk components, despite a reduction in nutrient digestibility. Supplementation of RPHis increased DMI and milk protein concentration and yield. These results are in line with our previous data and suggest that His may have a positive effect on voluntary feed intake and milk production and composition in high-yielding dairy cows fed MP-deficient diets. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Effect of maturity and hybrid on ruminal and intestinal digestion of corn silage in dry cows.

    PubMed

    Peyrat, J; Baumont, R; Le Morvan, A; Nozière, P

    2016-01-01

    The aim of this study was to evaluate the effect of stage of maturity at harvest on extent of starch, neutral detergent fiber (NDF), and protein digestion, and rumen fermentation in dry cows fed whole-plant corn silage from different hybrids. Four nonlactating Holstein cows cannulated at the rumen and proximal duodenum were fed 4 corn silages differing in hybrid (flint vs. flint-dent) and maturity stage (early vs. late) in a 4 × 4 Latin square design. From early to late maturity, starch content increased (from 234.5 to 348.5 g/kg), whereas total-tract (99.7 to 94.5%) and ruminal starch digestibility (91.3 to 86.5%) decreased significantly. The decrease in ruminal starch digestibility with increasing maturity was similar between hybrids. No effects were found of maturity, hybrid, or maturity × hybrid interaction on total-tract NDF digestibility, ruminal NDF digestibility, true digestibility of N and organic matter in the rumen, or microbial synthesis. Harvesting at later maturity led to increased ruminal ammonia, total volatile fatty acid concentrations, and acetate/propionate ratio but not pH. This study concludes that delaying date of harvest modifies the proportions of digestible starch and NDF supplied to cattle. Adjusting date of corn harvest to modulate amount of rumen-digested starch could be used as a strategy to control nutrient delivery to ruminants. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. Milk production and nutrient digestibility responses to increasing levels of stearic acid supplementation of dairy cows.

    PubMed

    Boerman, J P; de Souza, J; Lock, A L

    2017-04-01

    The objective of our study was to evaluate the dose-response effects of a stearic acid (C18:0)-enriched supplement on nutrient digestibility, production responses, and the maximum amount of C18:0 that can be incorporated into the milk fat of dairy cows. Multiparous Holstein cows (n = 32; 145 ± 66 d in milk) with a wide range in milk yield (30 to 70 kg/d) were blocked by milk yield and assigned to replicated 4 × 4 Latin squares. Treatments were diets supplemented with a C18:0-enriched supplement (SA; 93% C18:0) at 0, 0.80, 1.50, or 2.30% of diet dry matter (DM). Periods were 21 d with the final 5 d used for data and sample collection. Dry matter intake increased linearly as SA supplementation increased. Supplementation of SA had no effect on the yield of milk or milk components. Due to the increase in DM intake, SA linearly reduced the ratio of energy-corrected milk to DM intake. Supplementation of SA did not affect body weight. Increasing SA reduced digestibility of 16-carbon, 18-carbon, and total fatty acids (FA), with the reduction in digestibility of 18-carbon FA being approximately 30 percentage units from the 0.0 to 2.30% SA supplemented diets. Supplementation of SA linearly increased concentrations of preformed milk fatty acids (FA) but did not affect the yield of preformed milk FA. Yields of C18:0 plus cis-9 C18:1 were increased by SA supplementation; however, the increase from 0 to 2.3% SA was only 16 g/d. The concentration and yield of de novo and 16-carbon milk FA were unaffected by SA supplementation. In conclusion, increasing doses of SA decreased FA digestibility and had little effect on production parameters. Although SA increased the yield of C18:0 and cis-9 C18:1 in milk fat, it had no overall effect on milk fat yield. The lack of production responses to a C18:0-enriched fat supplement was most likely associated with the marked decrease in FA digestibility. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Response profiles of enteric methane emissions and lactational performance during habituation to dietary coconut oil in dairy cows.

    PubMed

    Hollmann, M; Powers, W J; Fogiel, A C; Liesman, J S; Beede, D K

    2013-03-01

    Dietary coconut oil (CNO) can reduce dry matter intake (DMI), enteric methane (eCH(4)) emissions, and milk fat yield of lactating cows. The goals of this research were to examine responses to different CNO concentrations during the habituation period (34-d) and to evaluate temporal patterns of DMI, eCH(4), and milk fat yield. Treatment diets contained (dry basis): 0.0% (CNO0), 1.3% (CNO1.3), 2.7% (CNO2.7), 3.3% (CNO3.3), or 4.0% CNO (CNO4). In experiment 1, 12 primi- or small secundiparous cows were housed in individual, environmentally controlled rooms and fed CNO0, CNO1.3, CNO2.7, or CNO4. Measurements included DMI, eCH(4), and milk yield and composition. Due to a precipitous drop in DMI (26%), cows fed CNO4 were replaced with cows fed CNO3.3 following d 10. Dietary CNO of 2.7% or more reduced eCH(4) emissions. Reduction was greater with increased CNO and during the first than the second half of the day. Simultaneously, decline in DMI of cows fed CNO2.7, CNO3.3, or CNO4 was increasingly precipitous with increased CNO concentration. Total-tract neutral detergent fiber (NDF) digestibility during wk 5 was reduced in cows fed CNO2.7 or CNO3.3, which in part explained concomitantly reduced eCH(4)/DMI. In addition, milk fat yield was depressed at an increasing rate in cows fed CNO2.7, CNO3.3, and CNO4. In experiment 2, DMI was measured individually in 12 multiparous cows during habituation to CNO0, CNO1.3, CNO2.7, or CNO3.3 for 21 d before relocation to individual, environmentally controlled rooms. Dietary CNO2.7 or CNO3.3 reduced DMI by d 4 and total-tract NDF digestibility during wk 5. Relocation to individual rooms was associated with a 15% reduction in DMI, which was not affected by treatment. Results showed that 2.7% or more dietary CNO reduced eCH(4) and DMI, caused milk fat depression, and decreased NDF digestibility. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. Meta-analysis of effects of inoculation with homofermentative and facultative heterofermentative lactic acid bacteria on silage fermentation, aerobic stability, and the performance of dairy cows.

    PubMed

    Oliveira, André S; Weinberg, Zwi G; Ogunade, Ibukun M; Cervantes, Andres A P; Arriola, Kathy G; Jiang, Yun; Kim, Donghyeon; Li, Xujiao; Gonçalves, Mariana C M; Vyas, Diwakar; Adesogan, Adegbola T

    2017-06-01

    Forages are usually inoculated with homofermentative and facultative heterofermentative lactic acid bacteria (LAB) to enhance lactic acid fermentation of forages, but effects of such inoculants on silage quality and the performance of dairy cows are unclear. Therefore, we conducted a meta-analysis to examine the effects of LAB inoculation on silage quality and preservation and the performance of dairy cows. A second objective was to examine the factors affecting the response to silage inoculation with LAB. The studies that met the selection criteria included 130 articles that examined the effects of LAB inoculation on silage quality and 31 articles that investigated dairy cow performance responses. The magnitude of the effect (effect size) was evaluated using raw mean differences (RMD) between inoculated and uninoculated treatments. Heterogeneity was explored by meta-regression and subgroup analysis using forage type, LAB species, LAB application rate, and silo scale (laboratory or farm-scale) as covariates for the silage quality response and forage type, LAB species, diet type [total mixed ration (TMR) or non-TMR], and the level of milk yield of the control cows as covariates for the performance responses. Inoculation with LAB (≥10 5 cfu/g as fed) markedly increased silage fermentation and dry matter recovery in temperate and tropical grasses, alfalfa, and other legumes. However, inoculation did not improve the fermentation of corn, sorghum, or sugarcane silages. Inoculation with LAB reduced clostridia and mold growth, butyric acid production, and ammonia-nitrogen in all silages, but it had no effect on aerobic stability. Silage inoculation (≥10 5 cfu/g as fed) increased milk yield and the response had low heterogeneity. However, inoculation had no effect on diet digestibility and feed efficiency. Inoculation with LAB improved the fermentation of grass and legume silages and the performance of dairy cows but did not affect the fermentation of corn, sorghum, and sugar cane silages or the aerobic stability of any silage. Further research is needed to elucidate how silage inoculated with homofermentative and facultative heterofermentative LAB improves the performance of dairy cows. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

  10. Effects of canola meal pellet conditioning temperature and time on ruminal and intestinal digestion, hourly effective degradation ratio, and potential nitrogen to energy synchronization in dairy cows.

    PubMed

    Huang, Xuewei; Khan, Nazir A; Zhang, Xuewei; Yu, Peiqiang

    2015-12-01

    The increase in bio-oil production in North America has resulted in millions of tonnes of co-products: canola meal and carinata meal. Little research has been conducted to determine the effect of pellet conditioning temperature, time, and their interaction on processing-induced changes in nutrient digestibility in the rumen and intestine (in vitro) of dairy cattle. The objectives of this study were to investigate the effects of conditioning temperature (70, 80, and 90°C), time (50 and 75 s), and their interaction (temperature × time) during the pelleting of canola meal on (1) rumen degradation kinetics and effective rumen degradability of dry matter, crude protein (CP), and neutral detergent fiber; (2) intestinal digestibility of rumen-undegradable protein (RUP); and (3) hourly effective rumen degradation ratio and potential N to energy synchronization in dairy cattle. The results showed that the temperature and duration of pellet conditioning significantly altered the degradation characteristics of nutrients in the rumen. Pelleting increased CP degradation in the rumen, and CP digestion site was shifted to the rumen rather than to the small intestine. When conditioning temperature was set 80°C, the rumen degradation of CP and neutral detergent fiber was highest, but postrumen digestion was lowest. With respect to intestinal digestion, the available CP for intestinal digestion became less because of reduced RUP supply to the small intestine. The pelleting process tended to significantly affect the intestinal digestibility of RUP. However, the total digestible CP content of canola meal was not affected. In conclusion, pelleting induced changes in rumen and intestinal digestion profiles, and altered the potential N to energy synchronization and hourly effective rumen degradation ratio of canola meal in dairy cattle. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Characterization of faecal microbial communities of dairy cows fed diets containing ensiled Moringa oleifera fodder

    PubMed Central

    Sun, Jiajie; Zeng, Bin; Chen, Zujing; Yan, Shijuan; Huang, Wenjie; Sun, Baoli; He, Qian; Chen, Xiaoyang; Chen, Ting; Jiang, Qingyan; Xi, Qianyun; Zhang, Yongliang

    2017-01-01

    Moringa oleifera (M. oleifera) is a remarkable species with high nutritional value and good biomass production, which can be used as livestock fodder. In this study, we examined changes in the faecal microbiota of thirty dairy cows in response to alternative M. oleifera diets and their effects on nutrient digestion, milk traits and the faecal concentrations of short-chain fatty acids. No differences in milk yield and constituents were found between the control and the M. oleifera alternative groups. Cows fed M. oleifera silage had lower dry matter digestibility, as well as the propionate and isovalerate concentrations in M. oleifera treated group. Using 16S rDNA gene sequencing, 1,299,556 paired-end reads were obtained. Clustering analysis revealed 13 phyla and 93 genera across all samples. Firmicutes and Bacteroidetes were the co-dominant phyla. Ten taxa displayed a significant difference in response to the high M. oleifera diet. In addition, strong correlations between Akkermansia and Prevotella with milk yield and protein indicated that some bacterial groups could be used to improve milk traits. Our results provided an insight into the microbiome-associated responses to M. oleifera in livestock diets, and could aid the development of novel applications of M. oleifera. PMID:28134261

  12. Survey of quality defects in market beef and dairy cows and bulls sold through livestock auction markets in the Western United States: I. Incidence rates.

    PubMed

    Ahola, J K; Foster, H A; Vanoverbeke, D L; Jensen, K S; Wilson, R L; Glaze, J B; Fife, T E; Gray, C W; Nash, S A; Panting, R R; Rimbey, N R

    2011-05-01

    A survey was conducted to quantify incidence of Beef Quality Assurance (BQA)-related defects in market beef and dairy cows and bulls selling at auction during 2 seasons in 2008. Twenty-three BQA-related traits were evaluated by 9 trained personnel during sales at 10 livestock auction markets in Idaho (n = 5; beef and dairy), California, (n = 4; dairy only), and Utah (n = 1; beef and dairy). Overall, 18,949 unique lots (8,213 beef cows, 1,036 beef bulls, 9,177 dairy cows, and 523 dairy bulls,) consisting of 23,479 animals (9,299 beef cows, 1,091 beef bulls, 12,429 dairy cows, and 660 dairy bulls) were evaluated during 125 sales (64 spring, 61 fall) for dairy and 79 sales (40 spring, 39 fall) for beef. The majority of market beef cows and bulls (60.9 and 71.3%, respectively) were predominantly black-hided, and the Holstein hide pattern was observed in 95.4 and 93.6% of market dairy cows and bulls, respectively. Market cattle weighed 548 ± 103.6 kg (beef cows), 751 ± 176.1 kg (beef bulls), 658 ± 129.7 kg (dairy cows), and 731 ± 150.8 kg (dairy bulls). Most beef cows (79.6%) weighed 455 to 726 kg, and most beef bulls (73.8%) weighed 545 to 954 kg, respectively. Among market beef cattle, 16.0% of cows and 14.5% of bulls weighed less than 455 and 545 kg, respectively, and 63.7% of dairy cows and 81.5% of dairy bulls weighed 545 to 817 kg or 545 to 954 kg, respectively. However, 19.5% of dairy cows and 13.1% of dairy bulls weighed less than 545 kg. Mean BCS for beef cattle (9-point scale) was 4.7 ± 1.2 (cows) and 5.3 ± 0.9 (bulls), and for dairy cattle (5-point scale) was 2.6 ± 0.8 (cows) and 2.9 ± 0.6 (bulls). Some 16.5% of beef cows and 4.1% of beef bulls had a BCS of 1 to 3, whereas 34.8% of dairy cows and 10.4% of dairy bulls had a BCS of 2 or less. Emaciation (beef BCS = 1, dairy BCS = 1.0) or near-emaciation (beef BCS = 2, dairy BCS = 1.5) was observed in 13.3% of dairy cows and 3.9% of beef cows. Among beef cattle, 15.1% of cows and 15.4% of bulls were considered lame. In contrast, 44.7% of dairy cows and 26.1% of dairy bulls were lame. Ocular neoplasia (cancer eye) was observed in only 0.6% of beef cows, 0.3% of beef bulls, 0.3% of dairy cows, and 0.0% of dairy bulls. However, among animals with ocular neoplasia, it was cancerous in 34.4% of beef bulls, 48.0% of dairy cows, and 73.3% of beef cows. In conclusion, numerous quality defects are present in market beef and dairy cattle selling at auction in the Western United States, which could influence their value at auction.

  13. Incidence and transmission of Mycoplasma bovis mastitis in Holstein dairy cows in a hospital pen: A case study.

    PubMed

    Punyapornwithaya, V; Fox, L K; Hancock, D D; Gay, J M; Wenz, J R; Alldredge, J R

    2011-01-01

    The objective was to determine the incidence and transmission of mycoplasma mastitis in the hospital pen in a dairy herd of 650 lactating cows after a hospital pen was established following an outbreak of this disease. Mycoplasma mastitis status was monitored for 3 months through repeated collection of milk samples from cows with clinical mastitis (CM) and from bulk tank milk. During the outbreak 13 cows were diagnosed with Mycoplasma bovis CM, 1 cow with Mycoplasma sp. mastitis and 8 cows showed signs of arthritis, 3 of which were confirmed as having M. bovis arthritis. M. bovis isolates from cows with CM, arthritis and bulk tank milk had indistinguishable chromosomal digest pattern fingerprints. Incidence rates of M. bovis CM cases in the milking and hospital pens were 0.01 and 1.7 cases per 100 cow-days at risk. Approximately 70% of cows with M. bovis CM became infected within 12 days of entering the hospital pen. Transmission of M. bovis in the hospital pen occurred as 3 episodes. Each episode corresponded to the introduction of a cow with M. bovis CM from a milking pen. Evidence indicates that cows with M. bovis CM from milking pens were the source of transmission of the disease in the hospital pen and thus their presence in the hospital pen appeared to be a risk factor for transmission of M. bovis mastitis in this single case study herd. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Effect of dietary supplementation of rutin on lactation performance, ruminal fermentation and metabolism in dairy cows.

    PubMed

    Cui, K; Guo, X D; Tu, Y; Zhang, N F; Ma, T; Diao, Q Y

    2015-12-01

    The effect of long-term dietary supplementation with rutin on the lactation performance, ruminal fermentation and metabolism of dairy cows were investigated in this study. Twenty multiparous Chinese Holstein cows were randomly divided into four groups, and each was offered a basal diet supplemented with 0, 1.5, 3.0 or 4.5 mg rutin/kg of diet. The milk yield of the cows receiving 3.0 and 4.5 mg rutin/kg was higher than that of the control group, and the milk yield was increased by 10.06% and 3.37% (p < 0.05). On the basis of that finding, the cows supplemented with 0 or 3.0 mg rutin/kg of diet were used to investigate the effect of rutin supplementation on blood metabolites and hormone levels. Compared with the control group, the serum blood urea nitrogen (BUN) concentration of the 3.0 mg rutin/kg group is significantly decreased (p < 0.05). In another trial, four adult cows with permanent rumen fistula and duodenal cannulae were attributed in a self-control design to investigate the peak occurrence of rutin and quercetin in different parts of the gastrointestinal tract, ruminal fermentation and microbial population in dairy cows. The cows supplemented with 3.0 mg rutin/kg in the diet differed from the control period. Samples of rumen fluid, duodenal fluid and blood were collected at 1, 2, 3, 4, 5, 6, 7 and 8 h after morning feeding. Compared to the control group, the pH, ammonia nitrogen concentration, number and protein content of rumen protozoa and blood urea nitrogen were lower, but the concentration of total volatile fatty acid (TVFA), microbial crude protein (MCP) and serum lysozyme content were higher for the cows fed the rutin diets. The addition of 3.0 mg rutin/kg to diets for a long term tended to increase the milk yield and improve the metabolism and digestibility of the dairy cows. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  15. Methane production, nutrient digestion, ruminal fermentation, N balance, and milk production of cows fed timothy silage- or alfalfa silage-based diets.

    PubMed

    Hassanat, F; Gervais, R; Massé, D I; Petit, H V; Benchaar, C

    2014-10-01

    The objective of this study was to investigate the effects of changing forage source in dairy cow diets from timothy silage (TS) to alfalfa silage (AS) on enteric CH₄ emissions, ruminal fermentation characteristics, digestion, milk production, and N balance. Nine ruminally cannulated lactating cows were used in a replicated 3 × 3 Latin square design (32-d period) and fed (ad libitum) a total mixed ration (TMR; forage:concentrate ratio of 60:40, dry matter basis), with the forage portion consisting of either TS (0% AS; 0% AS and 54.4% TS in the TMR), a 50:50 mixture of both silages (50% AS; 27.2% AS and 27.2% TS in the TMR), or AS (100% AS; 54.4% AS and 0% TS in the TMR). Compared with TS, AS contained less (36.9 vs. 52.1%) neutral detergent fiber but more (20.5 vs. 13.6%) crude protein (CP). In sacco 24-h ruminal degradability of organic matter (OM) was higher for AS than for TS (73.5 vs. 66.9%). Replacement of TS with AS in the diet entailed increasing proportions of corn grain and bypass protein supplement at the expense of soybean meal. As the dietary proportion of AS increased, CP and starch concentrations increased, whereas fiber content declined in the TMR. Dry matter intake increased linearly with increasing AS proportions in the diet. Apparent total-tract digestibility of OM and gross energy remained unaffected, whereas CP digestibility increased linearly and that of fiber decreased linearly with increasing inclusion of AS in the diet. The acetate-to-propionate ratio was not affected, whereas ruminal concentration of ammonia (NH₃) and molar proportion of branched-chain VFA increased as the proportion of AS in the diet increased. Daily CH₄ emissions tended to increase (476, 483, and 491 g/d for cows fed 0% AS, 50% AS, and 100% AS, respectively) linearly as cows were fed increasing proportions of AS. Methane production adjusted for dry matter intake (average=19.8 g/kg) or gross energy intake (average=5.83%) was not affected by increasing AS inclusion in the diet. When expressed on a fat-corrected milk or energy-corrected milk yield basis, CH₄ production increased linearly with increasing AS dietary proportion. Urinary N excretion (g/d) increased linearly when cows were fed increasing amounts of AS in the diet, suggesting a potential for higher nitrous oxide (N₂O) and NH₃ emissions. Efficiency of dietary N use for milk protein secretion (g of milk N/g of N intake) declined with the inclusion of AS in the diet. Despite marked differences in chemical composition and ruminal degradability, under the conditions of this study, replacing TS with AS in dairy cow diets was not effective in reducing CH₄ energy losses. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. Evaluation of the change of serum copper and zinc concentrations of dairy cows with subclinical ketosis.

    PubMed

    Zhang, Zhigang; Liu, Guowen; Li, Xiaobing; Gao, Li; Guo, Changming; Wang, Hongbin; Wang, Zhe

    2010-12-01

    Ketosis in dairy cows can lead to poor reproductive success and decreased milk production. Since the serum concentrations of copper (Cu) and zinc (Zn) are closely associated with the health status of cows, we investigated whether serum concentrations of Cu and Zn differed in dairy cows with subclinical ketosis and healthy dairy cows. Blood samples of 19 healthy dairy cows and 15 subclinically ketotic dairy cows were collected from three farms, and the concentrations of β-hydroxybutyrate (BHBA), glucose, non-esterified fatty acids (NEFA), Cu, and Zn were determined. Subclinically ketotic dairy cows had significantly higher BHBA and NEFA levels (p < 0.01) and lower glucose (p < 0.01) than healthy dairy cows. Likewise, serum concentrations of Zn were significantly decreased (p < 0.05) in dairy cows with subclinical ketosis. There was no significant difference observed for serum Cu concentration between healthy and subclinically ketotic dairy cows. This study suggests that a decreased serum Zn concentration could be a cause of decreased reproductive performance in subclinically ketotic dairy cows.

  17. Microbial release of ferulic and p-coumaric acids from forages and their digestibility in lactating cows fed total mixed rations with different forage combinations.

    PubMed

    Cao, Bin-Bin; Jin, Xin; Yang, Hong-Jian; Li, Sheng-Li; Jiang, Lin-Shu

    2016-01-30

    Ferulic acid (FA) and p-coumaric acid (PCA) are widely distributed in graminaceous plant cell walls. This study investigated the in vitro and in vivo digestibility of ester-linked FA (FAest) and PCA (PCAest) in lactating dairy cows. Regarding corn stover, ensiled corn stover, whole corn silage, Chinese wild ryegrass and alfalfa hay with different phenolic acid profiles, the in vitro rumen digestibility of forage FAest and PCAest was negatively correlated with the ether-linked FA content and original PCA/FA ratio in the forages. The concentration of both phenolic acids in culture fluids was low after a 72 h incubation, and the mixed rumen microorganisms metabolized nearly all phenolic acids released into the culture fluids. FAest digestibility in the whole digestive tract was negatively correlated with dietary PCA/FA ratio, but a converse result occurred with dietary PCAest digestibility. The digestibility in either the rumen or the whole digestive tract was greater for FAest than for PCAest. Forage PCAest in comparison with FAest is not easily digested in either the rumen or the whole digestive tract, and they were negatively affected by forage FAeth content and lignification extent indicated by the original dietary PCA/FA ratio. © 2015 Society of Chemical Industry.

  18. Comparison of brown midrib-6 and -18 forage sorghum with conventional sorghum and corn silage in diets of lactating dairy cows.

    PubMed

    Oliver, A L; Grant, R J; Pedersen, J F; O'Rear, J

    2004-03-01

    Total mixed rations containing conventional forage sorghum, brown midrib (bmr)-6 forage sorghum, bmr-18 forage sorghum, or corn silage were fed to Holstein dairy cows to determine the effect on lactation, ruminal fermentation, and total tract nutrient digestion. Sixteen multiparous cows (4 ruminally fistulated; 124 d in milk) were assigned to 1 of 4 diets in a replicated Latin square design with 4-wk periods (21-d adaptation and 7 d of collection). Diets consisted of 40% test silage, 10% alfalfa silage, and 50% concentrate mix (dry basis). Acid detergent lignin concentration was reduced by 21 and 13%, respectively, for the bmr-6 and bmr-18 sorghum silages when compared with the conventional sorghum. Dry matter intake was not affected by diet. Production of 4% fat-corrected milk was greatest for cows fed bmr-6 (33.7 kg/d) and corn silage (33.3 kg/d), was least for cows fed the conventional sorghum (29.1 kg/d), and was intermediate for cows fed the bmr-18 sorghum (31.2 kg/d), which did not differ from any other diet. Total tract neutral detergent fiber (NDF) digestibility was greatest for the bmr-6 sorghum (54.4%) and corn silage (54.1%) diets and was lower for the conventional (40.8%) and bmr-18 sorghum (47.9%) diets. In situ extent of NDF digestion was greatest for the bmr-6 sorghum (76.4%) and corn silage (79.0%) diets, least for the conventional sorghum diet (70.4%), and intermediate for the bmr-18 sorghum silage diet (73.1%), which was not different from the other diets. Results of this study indicate that the bmr-6 sorghum hybrid outperformed the conventional sorghum hybrid; the bmr-18 sorghum was intermediate between conventional and bmr-6 in most cases. Additionally, the bmr-6 hybrid resulted in lactational performance equivalent to the corn hybrid used in this study. There are important compositional differences among bmr forage sorghum hybrids that need to be characterized to predict animal response accurately.

  19. Nutrient demand interacts with grass maturity to affect milk fat concentration and digestion responses in dairy cows.

    PubMed

    Kammes, K L; Allen, M S

    2012-09-01

    Effects of grass maturity on dry matter intake (DMI), milk production, ruminal fermentation and pool sizes, digestion and passage kinetics, and chewing activity and the relationship of these effects with preliminary DMI (pDMI) were evaluated using 13 ruminally and duodenally cannulated Holstein cows in a crossover design with a 14-d preliminary period and two 18-d treatment periods. During the preliminary period, pDMI of individual cows ranged from 23.5 to 28.2 kg/d (mean=26.1 kg/d) and 3.5% fat-corrected milk (FCM) yield ranged from 30.8 to 57.2 kg/d (mean=43.7 kg/d). Experimental treatments were diets containing orchardgrass silage harvested either (1) early-cut, less mature (EC) or (2) late-cut, more mature (LC) as the sole forage. Early- and late-cut orchardgrass contained 44.9 and 54.4% neutral detergent fiber (NDF) and 20.1 and 15.3% crude protein, respectively. Forage:concentrate ratio was 58:42 and 46:54 for EC and LC, respectively; both diets contained approximately 25% forage NDF and 30% total NDF. Preliminary DMI, an index of nutrient demand, was determined during the last 4d of the preliminary period when cows were fed a common diet and used as a covariate. Main effects of grass maturity and their interaction with pDMI were tested by ANOVA. The EC diet decreased milk yield and increased milk fat concentration compared with the LC diet. Grass maturity and its interaction with pDMI did not affect FCM yield, DMI, rumen pH, or microbial efficiency. The EC diet increased rates of ruminal digestion of potentially digestible NDF and passage of indigestible NDF (iNDF) compared with the LC diet. The lower concentration and faster passage rate of iNDF for EC resulted in lower rumen pools of iNDF, total NDF, organic matter, and dry matter for EC than LC. Ruminal passage rates of potentially digestible NDF and starch were related to level of intake (quadratic and linear interactions, respectively) and subsequently affected ruminal digestibility of these nutrients. The EC diet decreased eating, ruminating, and total chewing time per unit of forage NDF intake compared with the LC diet. When grass silage was the only source of forage in the diet, cows supplemented with additional concentrate to account for decreasing protein and increasing fiber concentrations associated with more mature grass had similar feed intake and produced similar FCM yields as cows fed less mature grass. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Model studies on the detectability of genetically modified feeds in milk.

    PubMed

    Poms, R E; Hochsteiner, W; Luger, K; Glössl, J; Foissy, H

    2003-02-01

    Detecting the use of genetically modified feeds in milk has become important, because the voluntary labeling of milk and dairy products as "GMO free" or as "organically grown" prohibits the employment of genetically modified organisms (GMOs). The aim of this work was to investigate whether a DNA transfer from foodstuffs like soya and maize was analytically detectable in cow's milk after digestion and transportation via the bloodstream of dairy cows and, thus, whether milk could report for the employment of transgene feeds. Blood, milk, urine, and feces of dairy cows were examined, and foreign DNA was detected by polymerase chain reaction by specifically amplifying a 226-bp fragment of the maize invertase gene and a 118-bp fragment of the soya lectin gene. An intravenous application of purified plant DNA showed a fast elimination of marker DNA in blood or its reduction below the detection limit. With feeding experiments, it could be demonstrated that a specific DNA transfer from feeds into milk was not detectable. Therefore, foreign DNA in milk cannot serve as an indicator for the employment of transgene feeds unless milk is directly contaminated with feed components or airborne feed particles.

  1. Macrophage infiltration in the omental and subcutaneous adipose tissues of dairy cows with displaced abomasum.

    PubMed

    Contreras, G Andres; Kabara, Ed; Brester, Jill; Neuder, Louis; Kiupel, Matti

    2015-09-01

    High concentrations of plasma nonesterified fatty acids (NEFA), a direct measure of lipolysis, are considered a risk factor for displaced abomasum (DA) and other clinical diseases. In nonruminants, uncontrolled lipolysis is commonly associated with adipose tissue macrophage (ATM) infiltration. In dairy cows, recent studies report ATM infiltration in specific adipose depots during the first week of lactation. Depending on their phenotype, ATM can be broadly classified as classically activated (M1) or alternatively activated (M2). The M1 ATM are considered pro-inflammatory, whereas M2 ATM enhance inflammation resolution. Currently, it is not known whether multiparous transition cows with DA have increased ATM infiltration, and the predominant phenotype of these mononuclear cells remains unclear. The objective of this study was to characterize ATM infiltration into different adipose tissue depots in transition cows with DA (days in milk=7.8±4.6 d; body condition score=2.95±0.10; n=6). Serum samples and biopsies from omental (OM) and subcutaneous (SC) fat depots were obtained during corrective surgery for DA. In an effort to compare ATM infiltration in DA cows with that of healthy cows in anabolic state (AS), adipose biopsies and blood samples were collected from nonlactating, nongestating dairy cows at the time of slaughter (body condition score=3.75±0.12; n=6). Adipose tissues were digested and cells from the stromal vascular fraction (SVF) were analyzed using flow cytometry to establish cell surface expression of specific macrophage markers including CD14, CD11c, CD163, and CD172a. Tissue sections were analyzed by immunohistochemistry to assess ATM localization. Cows with DA were ketotic and had plasma NEFA above 1.0 mEq/L. The same group of cows had significant infiltration of ATM in OM characterized by increased numbers of SVF cells expressing CD14 and CD172a. At the same time, expression of CD11c, and CD163 was significantly higher in SVF from OM and SC of DA cows compared with those from AS animals. Expression of M1 macrophage inflammatory phenotype-related genes CCL2, IL6, and TNFα in SVF from cows with DA was significantly higher than that in healthy cows (AS). Significant populations of ATM in OM and SC depots of cows with DA were localized in multiple cellular aggregates that included multinucleated cells. In contrast, ATM in AS cows were fewer and randomly localized in both SC and OM. Together, these results indicate that infiltration of classically activated ATM is a concurrent finding in DA cases and may be associated with metabolic stress around parturition contributing to the pro-inflammatory status of transition dairy cows. Future studies are needed to establish whether ATM infiltration is more pronounced in cows with DA compared with healthy dairy cows at the same lactation stage and if this increased mononuclear immune cell trafficking has any pathophysiological significance. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Replacing maize silage plus soybean meal with red clover silage plus wheat in diets for lactating dairy cows.

    PubMed

    Schulz, Franziska; Westreicher-Kristen, Edwin; Knappstein, Karin; Molkentin, Joachim; Susenbeth, Andreas

    2018-02-01

    The objectives of this study were to evaluate the effects of replacing maize silage plus soybean meal with red clover silage (RCS) plus wheat on feed intake, diet digestibility, N partitioning, urinary excretion of purine derivatives, and milk production in dairy cows. Forty-four lactating German Holstein cows were used in a 4 × 4 Latin square design with 21-d periods composed of a 13-d adaptation phase followed by an 8-d sampling phase. Experimental diets offered as total mixed ration consisted of a constant forage-to-concentrate ratio (75:25) with targeted proportions of RCS-to-maize silage of 15:60 (RCS 15 ), 30:45 (RCS 30 ), 45:30 (RCS 45 ), and 60:15 (RCS 60 ) on a dry matter (DM) basis. Increasing the proportion of RCS plus wheat in the diet decreased linearly the intake of DM from 22.4 to 19.8 kg/d, and of organic matter from 21.1 to 18.1 kg/d. The apparent total tract digestibility (ATTD) of DM and organic matter did not differ across diets and averaged 68.4 and 70.5%, respectively. However, ATTD of N decreased linearly from 68.5 to 63.2%, whereas ATTD of neutral detergent fiber and acid detergent fiber increased linearly from 50.4 to 59.6% and from 48.4 to 57.7%, respectively, when increasing the proportion of RCS plus wheat. Fecal N excretion increased from 31.6 (RCS 15 ) to 37.2% (RCS 60 ) of N intake, whereas urinary N excretion was the lowest (32.8% of N intake) with RCS 45 . Hence, N efficiency (milk N/N intake) decreased linearly with incremental levels of RCS plus wheat, being the lowest when feeding RCS 60 (25.4%), probably due to increased nonprotein N proportion in total dietary N. Urinary excretion of purine derivatives decreased linearly from 378 to 339 mmol/d, which suggests that increasing levels of RCS plus wheat reduced the microbial crude protein flow at the duodenum. Milk yield and milk protein concentration declined linearly from 35.9 to 30.2 kg/d and from 3.20 to 3.01%, respectively, when increasing the proportion of RCS plus wheat. In conclusion, caution should be taken before introducing high levels of RCS plus wheat in diets of high-yielding dairy cows. However, RCS plus wheat can be included up to 30% of the dairy cow diet (DM basis) without a reduction in lactation performance. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Shredded beet pulp substituted for corn silage in diets fed to dairy cows under ambient heat stress: Feed intake, total-tract digestibility, plasma metabolites, and milk production.

    PubMed

    Naderi, N; Ghorbani, G R; Sadeghi-Sefidmazgi, A; Nasrollahi, S M; Beauchemin, K A

    2016-11-01

    The effects of substituting increasing concentrations of dried, shredded beet pulp for corn silage on dry matter intake, nutrient digestibility, rumen fermentation, blood metabolites, and milk production of lactating dairy cows was evaluated under conditions of ambient heat stress. Four multiparous (126±13d in milk) and 4 primiparous (121±11d in milk) Holstein cows were used in a 4×4 Latin square design experiment with 4 periods of 21d. Each period had 14d of adaptation and 7d of sampling, and parity was the square. Dietary treatments were (dry matter basis): 16% of dietary dry matter as corn silage without BP (0BP, control diet); 8% corn silage and 8% beet pulp (8BP); 4% corn silage and 12% beet pulp (12BP); and 0% corn silage and 16% beet pulp (16BP). Alfalfa hay was included in all diets (24% dietary dry matter). Dietary concentrations of forage neutral detergent fiber and nonfiber carbohydrates were 21.3 and 39.2% (0BP), 16.5 and 40.9% (8BP), 14.1 and 42.2% (12BP), and 11.7 and 43.4% (16BP), respectively (dry matter basis). The ambient temperature-humidity index indicated that the cows were in heat stress for almost the entire duration of the study. Dry matter intake and nutrient digestibilities were similar across treatments and between multi- and primiparous cows. Mean rumen pH tended to decrease with increasing proportions of beet pulp in the diet. Also, increasing proportions of beet pulp in the diet linearly decreased acetate and butyrate concentrations in the rumen and increased propionate concentrations, leading to a linear decrease in acetate:propionate ratio. Milk yield linearly increased (38.5, 39.3, 40.9, and 39.6kg/d for 0BP, 8BP, 12BP, and 16BP, respectively), but fat content linearly decreased (3.46, 3.47, 3.27, and 2.99), such that we observed no effect on fat-corrected milk. Substituting beet pulp for corn silage increased the neutral detergent insoluble crude protein content of the diet, leading to a decrease in rumen concentration of ammonia-nitrogen and milk concentration of urea, corresponding to an increase in percentage of protein in milk. Compared with multiparous cows, primiparous cows had greater rumen pH, metabolite concentrations in plasma (glucose, cholesterol, urea nitrogen, total protein, and globulins), milk production, and concentrations of milk components. Substituting beet pulp for corn silage at up to 12% of dietary dry matter can be beneficial during heat stress conditions. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Identification of biological traits associated with differences in residual energy intake among lactating Holstein cows.

    PubMed

    Fischer, A; Delagarde, R; Faverdin, P

    2018-05-01

    Residual feed intake, which is usually used to estimate individual variation of feed efficiency, requires frequent and accurate measurements of individual feed intake to be carried out. Developing a breeding scheme based on residual feed intake in dairy cows is therefore complicated, especially because feed intake is not measurable for a large population. Another solution could be to focus on biological determinants of feed efficiency, which could potentially be directly and broadband measurable on farm. Several phenotypes have been identified in literature as being associated with differences in feed efficiency. The present study therefore aims to identify which biological mechanisms are associated with residual energy intake (REI) differences among dairy cows. Several candidate phenotypes were recorded frequently and simultaneously throughout the first 238 d in milk for 60 Holstein cows fed on a constant diet based on maize silage. A multiple linear regression of the 238 d in milk average of net energy intake was fitted on the 238 d in milk averages for milk energy output, metabolic body weight, the sum over the 238 d in milk of both, body condition score loss and gain, and the residuals were defined as REI. A partial least square regression was fitted over all biological traits to explain REI variability. Linear multiple regression explained 93.6% of net energy intake phenotypic variation, with 65.5% associated with lactation requirement, 23.2% with maintenance, and 4.9% with body reserves change; the 6.4% residuals represented REI. Overall, measured biological traits contributed to 58.9% of REI phenotypic variability, which were mainly explained by activity (26.5%) and feeding behavior (21.3%). However, apparent confounding was observed between behavior, activity, digestibility, and rumen-temperature variables. Drawing a conclusion on biological traits that explain feed efficiency differences among dairy cows was not possible due to this apparent confounding between the measured variables. Further investigation is needed to validate these results and to characterize the causal relationship of feed efficiency with feeding behavior, digestibility, body reserves change, activity, and rumen temperature. The Authors. Published by FASS Inc. and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

  5. An inhibitor persistently decreased enteric methane emission from dairy cows with no negative effect on milk production

    PubMed Central

    Hristov, Alexander N.; Oh, Joonpyo; Giallongo, Fabio; Frederick, Tyler W.; Harper, Michael T.; Weeks, Holley L.; Branco, Antonio F.; Moate, Peter J.; Deighton, Matthew H.; Williams, S. Richard O.; Kindermann, Maik; Duval, Stephane

    2015-01-01

    A quarter of all anthropogenic methane emissions in the United States are from enteric fermentation, primarily from ruminant livestock. This study was undertaken to test the effect of a methane inhibitor, 3-nitrooxypropanol (3NOP), on enteric methane emission in lactating Holstein cows. An experiment was conducted using 48 cows in a randomized block design with a 2-wk covariate period and a 12-wk data collection period. Feed intake, milk production, and fiber digestibility were not affected by the inhibitor. Milk protein and lactose yields were increased by 3NOP. Rumen methane emission was linearly decreased by 3NOP, averaging about 30% lower than the control. Methane emission per unit of feed dry matter intake or per unit of energy-corrected milk were also about 30% less for the 3NOP-treated cows. On average, the body weight gain of 3NOP-treated cows was 80% greater than control cows during the 12-wk experiment. The experiment demonstrated that the methane inhibitor 3NOP, applied at 40 to 80 mg/kg feed dry matter, decreased methane emissions from high-producing dairy cows by 30% and increased body weight gain without negatively affecting feed intake or milk production and composition. The inhibitory effect persisted over 12 wk of treatment, thus offering an effective methane mitigation practice for the livestock industries. PMID:26229078

  6. An inhibitor persistently decreased enteric methane emission from dairy cows with no negative effect on milk production.

    PubMed

    Hristov, Alexander N; Oh, Joonpyo; Giallongo, Fabio; Frederick, Tyler W; Harper, Michael T; Weeks, Holley L; Branco, Antonio F; Moate, Peter J; Deighton, Matthew H; Williams, S Richard O; Kindermann, Maik; Duval, Stephane

    2015-08-25

    A quarter of all anthropogenic methane emissions in the United States are from enteric fermentation, primarily from ruminant livestock. This study was undertaken to test the effect of a methane inhibitor, 3-nitrooxypropanol (3NOP), on enteric methane emission in lactating Holstein cows. An experiment was conducted using 48 cows in a randomized block design with a 2-wk covariate period and a 12-wk data collection period. Feed intake, milk production, and fiber digestibility were not affected by the inhibitor. Milk protein and lactose yields were increased by 3NOP. Rumen methane emission was linearly decreased by 3NOP, averaging about 30% lower than the control. Methane emission per unit of feed dry matter intake or per unit of energy-corrected milk were also about 30% less for the 3NOP-treated cows. On average, the body weight gain of 3NOP-treated cows was 80% greater than control cows during the 12-wk experiment. The experiment demonstrated that the methane inhibitor 3NOP, applied at 40 to 80 mg/kg feed dry matter, decreased methane emissions from high-producing dairy cows by 30% and increased body weight gain without negatively affecting feed intake or milk production and composition. The inhibitory effect persisted over 12 wk of treatment, thus offering an effective methane mitigation practice for the livestock industries.

  7. A rapid high-performance liquid chromatography-tandem mass spectrometry assay for unambiguous detection of different milk species employed in cheese manufacturing.

    PubMed

    Bernardi, Nadia; Benetti, Giuseppe; Haouet, Naceur M; Sergi, Manuel; Grotta, Lisa; Marchetti, Sonia; Castellani, Federica; Martino, Giuseppe

    2015-12-01

    The aim of the study was to investigate the possibility to differentiate the 4 most important species in Italian dairy industry (cow, buffalo, sheep, and goat), applying a bottom-up proteomic approach to assess the milk species involved in cheese production. Selective peptides were detected in milk to use as markers in cheese products. Trypsin-digested milk samples of cow, sheep, goat, and buffalo, analyzed by HPLC-tandem mass spectrometry provided species-specific peptides, some of them recognized by Mascot software (Matrix Science Ltd., Boston, MA) as derived from well-known species specific proteins. A multianalyte multiple reaction monitoring method, built with these specific peptides, was successfully applied to cheeses with different composition, showing high specificity in detection of species involved. Neither aging nor production method seemed to affect the response, demonstrating that chosen peptides well act as species markers for dairy products. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Silage review: Foodborne pathogens in silage and their mitigation by silage additives.

    PubMed

    Queiroz, O C M; Ogunade, I M; Weinberg, Z; Adesogan, A T

    2018-05-01

    Silage is one of the main ingredients in dairy cattle diets and it is an important source of nutrients, particularly energy and digestible fiber. Unlike properly made and managed silage, poorly made or contaminated silage can also be a source of pathogenic bacteria that may decrease dairy cow performance, reduce the safety and quality dairy products, and compromise animal and human health. Some of the pathogenic bacteria that are frequently or occasionally associated with silage are enterobacteria, Listeria, Bacillus spp., Clostridium spp., and Salmonella. The symptoms caused by these bacteria in dairy cows vary from mild diarrhea and reduced feed intake by Clostridium spp. to death and abortion by Listeria. Contamination of food products with pathogenic bacteria can cause losses of millions of dollars due to recalls of unsafe foods and decreases in the shelf life of dairy products. The presence of pathogenic bacteria in silage is usually due to contamination or poor management during the fermentation, aerobic exposure, or feed-out stages. Silage additives and inoculants can improve the safety of silage as well as the fermentation, nutrient recovery, quality, and shelf life. This review summarizes the literature on the main foodborne pathogens that occasionally infest silage and how additives can improve silage safety. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. Comparison of updates to the Molly cow model to predict methane production from dairy cows fed pasture.

    PubMed

    Gregorini, P; Beukes, P C; Hanigan, M D; Waghorn, G; Muetzel, S; McNamara, J P

    2013-08-01

    Molly is a deterministic, mechanistic, dynamic model representing the digestion, metabolism, and production of a dairy cow. This study compared the predictions of enteric methane production from the original version of Molly (MollyOrigin) and 2 new versions of Molly. Updated versions included new ruminal fiber digestive parameters and animal hormonal parameters (Molly84) and a revised version of digestive and ruminal parameters (Molly85), using 3 different ruminal volatile fatty acid (VFA) stoichiometry constructs to describe the VFA pattern and methane (CH4) production (g of CH4/d). The VFA stoichiometry constructs were the original forage and mixed-diet VFA constructs and a new VFA stoichiometry based on a more recent and larger set of data that includes lactate and valerate production, amylolytic and cellulolytic bacteria, as well as protozoal pools. The models' outputs were challenged using data from 16 dairy cattle 26 mo old [standard error of the mean (SEM)=1.7], 82 (SEM=8.7) d in milk, producing 17 (SEM=0.2) kg of milk/d, and fed fresh-cut ryegrass [dry matter intake=12.3 (SEM=0.3) kg of DM/d] in respiration chambers. Mean observed CH4 production was 266±5.6 SEM (g/d). Mean predicted values for CH4 production were 287 and 258 g/d for MollyOrigin without and with the new VFA construct. Model Molly84 predicted 295 and 288 g of CH4/d with and without the new VFA settings. Model Molly85 predicted the same CH4 production (276 g/d) with or without the new VFA construct. The incorporation of the new VFA construct did not consistently reduce the low prediction error across the versions of Molly evaluated in the present study. The improvements in the Molly versions from MollyOrigin to Molly84 to Molly85 resulted in a decrease in mean square prediction error from 8.6 to 8.3 to 4.3% using the forage diet setting. The majority of the mean square prediction error was apportioned to random bias (e.g., 43, 65, and 70% in MollyOrigin, Molly84, and Molly85, respectively, on the forage setting, showing that with the updated versions a greater proportion of error was random). The slope bias was less than 2% in all cases. We concluded that, of the versions of Molly used for pastoral systems, Molly85 has the capability to predict CH4 production from grass-fed dairy cows with the highest accuracy. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Milk composition, milk fatty acid profile, digestion, and ruminal fermentation in dairy cows fed whole flaxseed and calcium salts of flaxseed oil.

    PubMed

    Côrtes, C; da Silva-Kazama, D C; Kazama, R; Gagnon, N; Benchaar, C; Santos, G T D; Zeoula, L M; Petit, H V

    2010-07-01

    Four ruminally lactating Holstein cows averaging 602+/-25 kg of body weight and 64+/-6 d in milk at the beginning of the experiment were randomly assigned to a 4 x 4 Latin square design to determine the effects of feeding whole flaxseed and calcium salts of flaxseed oil on dry matter intake, digestibility, ruminal fermentation, milk production and composition, and milk fatty acid profile. The treatments were a control with no flaxseed products (CON) or a diet (on a dry matter basis) of 4.2% whole flaxseed (FLA), 1.9% calcium salts of flaxseed oil (SAL), or 2.3% whole flaxseed and 0.8% calcium salts of flaxseed oil (MIX). The 4 isonitrogenous and isoenergetic diets were fed for ad libitum intake. Experimental periods consisted of 21 d of diet adaptation and 7 d of data collection and sampling. Dry matter intake, digestibility, milk production, and milk concentrations of protein, lactose, urea N, and total solids did not differ among treatments. Ruminal pH was reduced for cows fed the CON diet compared with those fed the SAL diet. Propionate proportion was higher in ruminal fluid of cows fed CON than in that of those fed SAL, and cows fed the SAL and CON diets had ruminal propionate concentrations similar to those of cows fed the FLA and MIX diets. Butyrate concentration was numerically higher for cows fed the SAL diet compared with those fed the FLA diet. Milk fat concentration was lower for cows fed SAL than for those fed CON, and there was no difference between cows fed CON and those fed FLA and MIX. Milk yields of protein, fat, lactose, and total solids were similar among treatments. Concentrations of cis-9 18:1 and of intermediates of ruminal biohydrogenation of fatty acids such as trans-9 18:1 were higher in milk fat of cows fed SAL and MIX than for those fed the CON diet. Concentration of rumenic acid (cis-9, trans-11 18:2) in milk fat was increased by 63% when feeding SAL compared with FLA. Concentration of alpha-linolenic acid was higher in milk fat of cows fed SAL and MIX than in milk of cows fed CON (75 and 61%, respectively), whereas there was no difference between FLA and CON. Flaxseed products (FLA, SAL, and MIX diets) decreased the n-6 to n-3 fatty acid ratio in milk fat. Results confirm that flax products supplying 0.7 to 1.4% supplemental fat in the diet can slightly improve the nutritive value of milk fat for better human health. Copyright (c) 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Effects of feeding hulled and hull-less barley with low- and high-forage diets on lactation performance, nutrient digestibility, and milk fatty acid composition of lactating dairy cows.

    PubMed

    Yang, Y; Ferreira, G; Teets, C L; Corl, B A; Thomason, W E; Griffey, C A

    2018-04-01

    The objective of this study was to evaluate lactation performance, nutrient digestibility, and milk fatty acid composition of high-producing dairy cows consuming diets containing hulled or hull-less barley as the grain source when feeding low-forage (LF) or high-forage (HF) diets. Eight primiparous (610 ± 40 kg of body weight and 72 ± 14 d in milk) and 16 multiparous (650 ± 58 kg of body weight and 58 ± 16 d in milk) Holstein cows were randomly assigned to 1 of 4 diets in a replicated 4 × 4 Latin square design with a 2 × 2 factorial arrangement of treatments and 21-d periods. Cows were assigned to squares based on parity (1, 2, and ≥3) and days in milk. Diets were formulated to contain on a dry matter basis (1) 45% forage and hulled barley as the sole grain source, (2) 65% forage and hulled barley as the sole grain source, (3) 45% forage and hull-less barley as the sole grain source, and (4) 65% forage and hull-less barley as the sole grain source. Dry matter intake tended to be lower for the diet with 65% forage and hulled barley than for the rest of the diets (24.4 vs. 26.6 kg/d). Neither the type of barley nor the forage-to-concentrate ratio affected milk yield (41.7 kg/d). Barley type did not affect milk fat or protein concentrations. Feeding LF diets decreased milk fat concentration from 3.91% to 3.50%. This decrease was less than anticipated and resulted in a 7% decrease in milk fat yield relative to cows consuming HF diets (1.60 and 1.49 kg/d for HF and LF diets, respectively). Feeding LF diets increased the concentration of C18:1 trans-10 in milk fat, suggesting that feeding LF diets may have marginally altered rumen function. In conclusion, LF diets containing barley grains can marginally decrease milk fat concentration. Overall, and based on the conditions of this study, there is limited evidence to anticipate a dramatic or acute milk fat depression when feeding hull-less barley as the grain source in diets for high-producing dairy cows. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Examining the occurrence of residues of flunixin meglumine in cull dairy cows by use of the flunixin cull cow survey.

    PubMed

    Deyrup, Cynthia L; Southern, Kristal J; Cornett, Julie A; Shultz, Craig E; Cera, Deborah A

    2012-07-15

    To determine whether cull dairy cows with signs of certain clinical conditions, termed suspect, are more likely than healthy-appearing cull dairy cows to have violative concentrations of flunixin meglumine in their tissues at slaughter. Cross-sectional study. 961 cull dairy cows. Suspect cull dairy cows were selected from 21 beef slaughter establishments with a high production volume of dairy cows, and kidney and liver tissues were collected for screening. Kidney tissues were screened for antibiotics and sulfonamides with the fast antimicrobial screening test (FAST). Liver tissues were screened for flunixin meglumine with an ELISA, and quantitative analysis of ELISA-positive samples was performed with high-performance liquid chromatography. During the same time period, liver tissues from 251 healthy-appearing cull dairy cows were collected for the Food Safety and Inspection Service National Residue Program Scheduled Sampling Plan, but were screened only for flunixin meglumine. Of 710 suspect cull dairy cows, 50 (7.04%) had liver tissue flunixin concentrations higher than the flunixin tolerance concentration (0.125 ppm). Thirty-one of 168 (18.45%) FAST-positive and 19 of 542 (3.51%) FAST-negative suspect cull dairy cows had violative tissue flunixin concentrations. Two of the 251 (0.80%) healthy-appearing cull dairy cows had violative tissue flunixin concentrations. Suspect cull dairy cows, especially those that were also FAST positive, had a significantly higher incidence of violative tissue flunixin concentrations than healthy-appearing cull dairy cows at slaughter. Targeted sampling plans for flunixin meglumine in suspect dairy cows can help to support more efficient use of resources and further safeguard the nation's food supply.

  13. Effects of different sources of carbohydrates on intake, digestibility, chewing, and performance of Holstein dairy cows

    PubMed Central

    2014-01-01

    To investigate the effects of different sources of carbohydrates on intake, digestibility, chewing, and performance, nine lactating Holstein dairy cows (day in milk= 100±21 d; body weight=645.7 ± 26.5 kg) were allotted to a 3 × 3 Latin square design at three 23-d periods. The three treatments included 34.91% (B), 18.87% (BC), and 18.86% (BB) barley that in treatment B was partially replaced with only corn or corn plus beet pulp in treatments BC and BB, respectively. The concentration of starch and neutral detergent soluble carbohydrate varied (22.2, 20.2, and 14.5; 13.6, 15.9, and 20.1% of DM in treatments B, BC, and BB, respectively). Cows in treatment BB showed a higher DMI and improved digestibility of DM, NDF, and EE compared with treatments B or BC. Ruminal pH was higher in cows fed on BB (6.83) compared with those that received B or BC treatments (6.62 and 6.73, respectively). A lower proportion of propionate accompanied the higher pH in the BB group; however, a greater proportion of acetate and acetate: propionate ratio was observed compared with cows fed either on the B or BC diet. Moreover, cows fed on the BB diet showed the lowest ruminal passage rate and longest ruminal and total retention time. Eating time did not differ among treatments, rumination time was greater among cows fed on the BB diet compared with the others, whereas total chewing activity was greater than those fed on BC, but similar to those fed on B. The treatments showed no effect on milk yield. Partially replacing barley with corn or beet pulp resulted in an increase in milk fat and a lower protein concentration. Changing dietary NFC with that of a different degradability thus altered intake, chewing activity, ruminal environment, retention time or passage rate, and lactation performance. The results of this study showed that beet pulp with a higher NDF and a detergent-soluble carbohydrate or pectin established a more consistent ruminal mat than barley and corn, thus resulting in higher mean retention time and chewing activity, whereas no changes in 3.5% FCM and milk fat were observed. PMID:24410961

  14. Short- and longer-term effects of feeding increased metabolizable protein with or without an altered amino acid profile to dairy cows immediately postpartum.

    PubMed

    Carder, E G; Weiss, W P

    2017-06-01

    The first few weeks after parturition is marked by low, but increasing feed intake and sharply increasing milk production by dairy cows. Because of low intake, the nutrient density of the diet may need to be higher during this period to support increasing milk yields. We hypothesized that feeding higher levels of metabolizable protein (MP) or a protein supplement with rumen-protected lysine and methionine during the immediate postpartum period would increase yields of milk and milk components. Fifty-six Holstein cows (21 primiparous and 35 multiparous) starting at 3 d in milk were used in a randomized block design. In phase 1 (3 through 23 d in milk), cows were fed 1 of 3 diets that differed in supply of MP and AA profile. At 23 d in milk, all cows were moved to a common freestall pen and fed the control diet used in phase 1 for an additional 63 d (phase 2). Diets were formulated using the National Research Council model and were control [16.5% crude protein (CP), 10.9% rumen-degradable protein (RDP), and 5.6% rumen-undegradable protein (RUP)], high MP (HMP; 18.5% CP, 11.6% RDP, 6.9% RUP), and AA (MPAA; 17.5% CP, 10.5% RDP, 7.0% RUP 29.7). The MPAA diet included a proprietary spray-dried blood meal product (Perdue Agribusiness, Salisbury, MD) and contained a model-estimated 7.2 and 2.6% of digestible lysine and methionine (% of MP). The HMP and control diets contained 6.3 and 6.7% digestible lysine and both had 1.8% digestible methionine. In phase 1, diet did not affect milk yield (33.6, 34.7, and 33.2 kg for control, HMP, and MPAA, respectively), dry matter intake (17.8, 18.0, and 18.5 kg/d for control, HMP, and MPAA), or milk protein yield (1.07 kg/d). Feeding additional protein (HMP or MPAA) increased both the concentration and yield of milk fat, and milk protein concentration was greater (3.30 vs. 3.17%) for MPAA compared with the HMP diet. Energy-corrected milk was greater (38.4 and 38.6 vs. 35.3 kg/d, respectively) for MPAA and HP than for the control. Cows fed MPAA had the greatest plasma concentrations of Met and the lowest concentrations of isoleucine, but lysine was not affected by treatment. Feeding additional MP (HMP or MPAA) reduced the concentrations of 3-methylhistidine in plasma, indicating reduced muscle breakdown. Diet effects on milk composition continued after cows were changed to a common diet in that cows fed MPAA the first 3 wk of lactation had greater concentration of milk protein for the entire experiment than cows fed HMP, and cows fed additional MP (HMP and MPAA) during phase 1 had greater concentrations of milk fat for the entire experiment. Increasing dietary protein and AA supply in early lactation had short-term effects on yield of energy-corrected milk and long-term effects on milk composition. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. A 100-Year Review: Protein and amino acid nutrition in dairy cows.

    PubMed

    Schwab, Charles G; Broderick, Glen A

    2017-12-01

    Considerable progress has been made in understanding the protein and amino acid (AA) nutrition of dairy cows. The chemistry of feed crude protein (CP) appears to be well understood, as is the mechanism of ruminal protein degradation by rumen bacteria and protozoa. It has been shown that ammonia released from AA degradation in the rumen is used for bacterial protein formation and that urea can be a useful N supplement when lower protein diets are fed. It is now well documented that adequate rumen ammonia levels must be maintained for maximal synthesis of microbial protein and that a deficiency of rumen-degradable protein can decrease microbial protein synthesis, fiber digestibility, and feed intake. Rumen-synthesized microbial protein accounts for most of the CP flowing to the small intestine and is considered a high-quality protein for dairy cows because of apparent high digestibility and good AA composition. Much attention has been given to evaluating different methods to quantify ruminal protein degradation and escape and for measuring ruminal outflows of microbial protein and rumen-undegraded feed protein. The methods and accompanying results are used to determine the nutritional value of protein supplements and to develop nutritional models and evaluate their predictive ability. Lysine, methionine, and histidine have been identified most often as the most-limiting amino acids, with rumen-protected forms of lysine and methionine available for ration supplementation. Guidelines for protein feeding have evolved from simple feeding standards for dietary CP to more complex nutrition models that are designed to predict supplies and requirements for rumen ammonia and peptides and intestinally absorbable AA. The industry awaits more robust and mechanistic models for predicting supplies and requirements of rumen-available N and absorbed AA. Such models will be useful in allowing for feeding lower protein diets and increased efficiency of microbial protein synthesis. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. Selenium-fertilized forage as a way to supplement lactating dairy cows.

    PubMed

    Séboussi, R; Tremblay, G F; Ouellet, V; Chouinard, P Y; Chorfi, Y; Bélanger, G; Charbonneau, É

    2016-07-01

    Fertilization with Se improves forage organic Se concentration, but comparisons with other forms of Se supplementation in feeding lactating dairy cows are scarce. Our objective was to compare the effect of Se-enriched forages to dietary sources of inorganic and organic Se. Digestibility, retention, and balance were assessed by measuring Se concentrations in feces, urine, milk, and blood. The resulting effect on antioxidant status and lactation performance of dairy cows was also determined. High-Se silages [1.72 mg of Se/kg of dry matter (DM)] were produced following a spring application of 2.5 kg/ha of Selcote Ultra, whereas low-Se silages (0.05 mg of Se/kg of DM) were produced in the Se-unfertilized portion of the same fields. After a 77±17 d period of Se depletion, 33 late-lactation primiparous Holstein cows were blocked and randomly assigned for 43 d to 1 of 4 experimental total mixed rations fed for ad libitum intake in an unbalanced randomized block design. Treatments consisted of 4 diets: control with low-Se silages, without Se supplement (0.12±0.04 mg of Se/kg of DM); ISe with low-Se silages and inorganic Se (0.80±0.14 mg of Se/kg of DM); YSe with low-Se silages and organic Se from yeast (0.70±0.11 mg of Se/kg of DM); and FSe with high-Se silages, without Se supplement (0.79±0.14 mg of Se/kg of DM). Organic Se, either as YSe or FSe, was more available and more effective to increase blood and milk Se concentrations than ISe. Moreover, FSe was more available than YSe, as cows fed FSe excreted 16 and 22% less Se (as percentage of intake) in feces and urine, respectively, had higher Se apparent absorption (17%), retention (37%), and balance (45%), and had greater concentration of Se in serum (16%) and milk (11%) than cows fed YSe. Antioxidant status (whole blood and plasma glutathione peroxidase, and milk thioredoxin reductase and malondialdehyde) was not affected by treatments. Dry matter intake, yield of actual, energy-corrected, and fat-corrected milk, as well as milk fat and lactose concentrations, were not affected by the dietary treatments. Cows fed ISe had lower milk protein concentration (3.44%) than cows fed YSe (3.58%) or FSe (3.51%). Cows fed Se-supplemented diets had a lower milk somatic cell count than cows fed the control diet. Results from the current study showed that the production of Se-enriched forages is an effective method to supplement dairy cows in Se as it was more available than YSe, and did not alter antioxidant status and performances of lactating dairy cows. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Impact of cow strain and concentrate supplementation on grazing behaviour, milk yield and metabolic state of dairy cows in an organic pasture-based feeding system.

    PubMed

    Heublein, C; Dohme-Meier, F; Südekum, K-H; Bruckmaier, R M; Thanner, S; Schori, F

    2017-07-01

    As ruminants are able to digest fibre efficiently and assuming that competition for feed v. food use would intensify in the future, cereals and other field crops should primarily be destined to cover the dietary needs of humans and monogastric animals such as poultry and pigs. Farming systems with a reduced or absent concentrate supplementation, as postulated by organic agriculture associations, require adapted dairy cows. The aim of this experiment was to examine the impact of concentrate supplementation on milk production, grazing and rumination behaviour, feed intake, physical activity and blood traits with two Holstein-Friesian cow strains and to conclude the consequences for sustainable and organic farming. The experiment was a cross-over study and took place on an organic farm in Switzerland. In all, 12 Swiss Holstein-Friesian (HCH) cows and 12 New Zealand Holstein-Friesian (HNZ) cows, which were paired according to lactation number, days in milk and age for primiparous cows, were used. All cows grazed full time and were supplemented either with 6 kg/day of a commercial, organic cereal-grain mix or received no supplement. After an adaptation period of 21 days, a measurement period of 7 days followed, where milk yield and composition, pasture dry matter intake estimated with the n-alkane double-indicator technique, physical activity based on pedometer measurements, grazing behaviour recorded by automatic jaw movement recorder and blood samples were investigated. Non-supplemented cows had a lower milk yield and supplemented HCH cows produced more milk than supplemented HNZ cows. Grazing time and physical activity were greater for non-supplemented cows. Supplementation had no effect on rumination behaviour, but HNZ cows spent longer ruminating compared with HCH cows. Pasture dry matter intake decreased with the concentrate supplementation. Results of blood analysis did not indicate a strong negative energy balance for either non-supplemented or supplemented cows. Minor differences between cow strains in this short-term study indicated that both cow strains are equally suited for an organic pasture-based production system with no concentrate supplementation. Many factors such as milk yield potential, animal welfare and health, efficiency, grazing behaviour and social aspects influence the decision to supplement grazing dairy cows with concentrates.

  18. Total tract nutrient digestion and milk fatty acid profile of dairy cows fed diets containing different levels of whole raw soya beans.

    PubMed

    Venturelli, B C; de Freitas Júnior, J E; Takiya, C S; de Araújo, A P C; Santos, M C B; Calomeni, G D; Gardinal, R; Vendramini, T H A; Rennó, F P

    2015-12-01

    Whole oilseeds such as soya beans have been utilized in dairy rations to supply additional fat and protein. However, antinutritional components contained in soya beans, such as trypsin inhibitors and haemagglutinins (lectins) may alter digestibility of nutrients and consequently affect animal performance. The objective of the present experiment was to quantify the effect of different levels of whole raw soya beans in diets of dairy cows on nutrient intake, total tract digestion, nutrient balances and milk yield and composition. Sixteen mid to late-lactation cows (228 ± 20 days in milk; mean ± SD) were used in four replicated 4 × 4 Latin square design experiment with 21-d periods. Cows were assigned to each square according to milk yield and DIM. The animals were randomly allocated to treatments: control (without soya beans addition; CO), WS9, WS18 and WS27, with addition of 9%, 18% and 27% of whole raw soya bean in diet on a dry matter (DM) basis respectively. All diets contained identical forage and concentrate components and consisted of maize silage and concentrate based on ground corn and soya beans at a ratio of 60:40. There were no differences in OM, CP, NDF and NEL intakes (kg/day and MJ/day) among the treatments (p > 0.05). However, DM and NFC intakes were negatively affected (p = 0.04 and p < 0.01, respectively) and ether extract (EE) intake was positively affected (p < 0.01). Total tract digestion increased linearly with whole raw soya beans for EE (p < 0.01) and NDF (p = 0.01). The excretion (kg/day) of digested soya beans grains increased linearly according to addition of whole raw soya beans. However, the nutritive characteristics of excreted grains were not altered. Milk (kg), milk lactose (kg) and protein (kg) yield decreased linearly (p < 0.01, p < 0.01 and p = 0.04, respectively) milk fat content (%) increased linearly (p < 0.01) with whole raw soya beans inclusion. Increasing addition of whole raw soya beans affected milk fatty acid profile with a linear decrease of cis-9-trans 11CLA and total saturated FA; and linear increase of total unsaturated and C18:3 FA. Energy balance was positively affected (p = 0.03) by whole raw soya beans as well as efficiency of NEL milk/DE intake (p = 0.02). Nitrogen balance and microbial protein synthesis were not affected by whole raw soya beans. Increasing doses of whole raw soya beans decreased dry matter intake and milk yield, however, led to an increase of unsaturated acids in milk and higher milk fat concentration. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  19. Effect of dietary starch concentration and fish oil supplementation on milk yield and composition, diet digestibility, and methane emissions in lactating dairy cows.

    PubMed

    Pirondini, M; Colombini, S; Mele, M; Malagutti, L; Rapetti, L; Galassi, G; Crovetto, G M

    2015-01-01

    The aim of this study was to evaluate the effects of diets with different starch concentrations and fish oil (FO) supplementation on lactation performance, in vivo total-tract nutrient digestibility, N balance, and methane (CH4) emissions in lactating dairy cows. The experiment was conducted as a 4×4 Latin square design with a 2×2 factorial arrangement: 2 concentrations of dietary starch [low vs. high: 23.7 and 27.7% on a dry matter (DM) basis; neutral detergent fiber/starch ratios: 1.47 and 1.12], the presence or absence of FO supplement (0.80% on a DM basis), and their interaction were evaluated. Four Italian Friesian cows were fed 1 of the following 4 diets in 4 consecutive 26-d periods: (1) low starch (LS), (2) low starch plus FO (LSO), (3) high starch (HS), and (4) high starch plus FO (HSO). The diets contained the same amount of forages (corn silage, alfalfa and meadow hays). The starch concentration was balanced using different proportions of corn meal and soybean hulls. The cows were housed in metabolic stalls inside open-circuit respiration chambers to allow measurement of CH4 emission and the collection of separate urine and feces. No differences among treatments were observed for DM intake. We observed a trend for FO to increase milk yield: 29.2 and 27.5kg/d, on average, for diets with and without FO, respectively. Milk fat was affected by the interaction between dietary starch and FO: milk fat decreased only in the HSO diet. Energy-corrected milk (ECM) was affected by the interaction between starch and FO, with a positive effect of FO on the LS diet. Fish oil supplementation decreased the n-6:n-3 ratio of milk polyunsaturated fatty acids. High-starch diets negatively influenced all digestibility parameters measured except starch, whereas FO improved neutral detergent fiber digestibility (41.9 vs. 46.1% for diets without and with FO, respectively, and ether extract digestibility (53.7 vs. 67.1% for diets without and with FO, respectively). We observed a trend for lower CH4 emission (g/d) and intensity (g/kg of milk) with the high-starch diets compared with the low-starch diets: 396 versus 415g/d on average, respectively, and 14.1 versus 14.9g/kg of milk, respectively. Methane intensity per kilogram of ECM was affected by the interaction between starch and FO, with a positive effect of FO for the LS diet: 14.5 versus 13.3g of CH4/kg of ECM for LS and LSO diets, respectively. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Comparison of maintenance energy requirement and energetic efficiency between lactating Holstein-Friesian and other groups of dairy cows.

    PubMed

    Dong, L F; Yan, T; Ferris, C P; McDowell, D A

    2015-02-01

    The objectives of the present study were to investigate the effects of cow group on energy expenditure and utilization efficiency. Data used were collated from 32 calorimetric chamber experiments undertaken from 1992 to 2010, with 823 observations from lactating Holstein-Friesian (HF) cows and 112 observations from other groups of lactating cows including Norwegian (n=50), Jersey × HF (n=46), and Norwegian × HF (n=16) cows. The metabolizable energy (ME) requirement for maintenance (MEm) for individual cows was calculated from heat production (HP) minus energy losses from inefficiencies of ME use for lactation, energy retention, and pregnancy. The efficiency of ME use for lactation (kl) was obtained from milk energy output adjusted to zero energy balance (El(0)) divided by ME available for production. The effects of cow groups were first evaluated using Norwegian cows against HF crossbred cows (F1 hybrid, Jersey × HF and Norwegian × HF). The results indicated no significant difference between the 2 groups in terms of energy digestibility, ratio of ME intake over gross energy intake, MEm (MJ per kg of metabolic body weight, MJ/kg(0.75)), or kl. Consequently, their data were combined (categorized as non-HF cows) and used to compare with those of HF cows. Again, we detected no significant difference in energy digestibility, ratio of ME intake over gross energy intake, MEm (MJ/kg(0.75)), or kl between non-HF and HF cows. The effects were further evaluated using linear regression to examine whether any significant differences existed between HF and non-HF cows in terms of relationships between ME intake and energetic parameters. With a common constant, no significant difference was observed between the 2 groups of cows in coefficients in each set of relationships between ME intake (MJ/kg(0.75)) and MEm (MJ/kg(0.75)), El(0) (MJ/kg(0.75)), HP (MJ/kg(0.75)), MEm:ME intake, El(0):ME intake, or HP:ME intake. However, MEm values (MJ/kg(0.75)) were positively related to ME intake (MJ/kg(0.75)), irrespective of cow group. We concluded, therefore, that cow groups evaluated in the present study had no significant effects on energy expenditure or energetic efficiency. However, the maintenance energy requirement (MJ/kg(0.75)) was not constant (as adopted in the majority of energy rationing systems across the world) but increased with increasing feed intake. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Methane production and digestion of different physical forms of rapeseed as fat supplements in dairy cows.

    PubMed

    Brask, M; Lund, P; Weisbjerg, M R; Hellwing, A L F; Poulsen, M; Larsen, M K; Hvelplund, T

    2013-04-01

    The purpose of this experiment was to study the effect of the physical form of rapeseed fat on methane (CH4) mitigation properties, feed digestion, and rumen fermentation. Four lactating ruminal-, duodenal-, and ileal-cannulated Danish Holstein dairy cows (143 d in milk, milk yield of 34.3 kg) were submitted to a 4×4 Latin square design with 4 rations: 1 control with rapeseed meal (low-fat, CON) and 3 fat-supplemented rations with either rapeseed cake (RSC), whole cracked rapeseed (WCR), or rapeseed oil (RSO). Dietary fat concentrations were 3.5 in CON, 5.5 in RSC, 6.2 in WCR, and 6.5% in RSO. The amount of fat-free rapeseed was kept constant for all rations. The forage consisted of corn silage and grass silage and the forage to concentrate ratio was 50:50 on a dry matter basis. Diurnal samples of duodenal and ileal digesta and feces were compiled. The methane production was measured for 4 d in open-circuit respiration chambers. Additional fat reduced the CH4 production per kilogram of dry matter intake and as a proportion of the gross energy intake by 11 and 14%, respectively. Neither the total tract nor the rumen digestibility of organic matter (OM) or neutral detergent fiber were significantly affected by the treatment. Relating the CH4 production to the total-tract digested OM showed a tendency to decrease CH4 per kilogram of digested OM for fat-supplemented rations versus CON. The acetate to propionate ratio was not affected for RSC and WCR but was increased for RSO compared with CON. The rumen ammonia concentration was not affected by the ration. The milk and energy-corrected milk yields were unaffected by the fat supplementation. In conclusion, rapeseed is an appropriate fat source to reduce the enteric CH4 production without affecting neutral detergent fiber digestion or milk production. The physical form of fat did not influence the CH4-reducing effect of rapeseed fat. However, differences in the volatile fatty acid pattern indicate that different mechanisms may be involved. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Effect of increasing dietary nonfiber carbohydrate with starch, sucrose, or lactose on rumen fermentation and productivity of lactating dairy cows.

    PubMed

    Gao, X; Oba, M

    2016-01-01

    The objective of this study was to investigate effects of increasing dietary nonfiber carbohydrate (NFC) with starch, sucrose, or lactose on rumen fermentation, volatile fatty acid absorption, and milk production of lactating dairy cows. Twenty-eight multiparous, lactating Holstein cows (141 ± 50 d in milk; 614 ± 53 kg of body weight) including 8 ruminally cannulated cows were used in this study. Cows were assigned to 4 dietary treatments in a 4 × 4 Latin square design with 21-d periods. The treatments were control [27% starch and 4% sugar on a dry matter (DM) basis], a high-NFC diet by increasing dietary starch content (STA; 32% starch and 4% sugar on a DM basis), and 2 more high-NFC diets by increasing dietary sugar content (27% starch and 9% sugar on a DM basis) in which sucrose (SUC) or lactose (LAC) was supplemented. Dry matter intake was greater for cows fed high-NFC diets compared with control diet (27.1 vs. 26.3 kg/d), but rumen pH and milk production did not differ between cows fed control and high-NFC diets. However, cows fed high-disaccharide diets had lower mean rumen pH than those fed STA diet (6.19 vs. 6.32). Although molar proportion of butyrate was greater for high-disaccharide treatments than STA treatment (15.2 vs. 13.7 mol/100 mol), absorption rate of volatile fatty acid in the rumen was not affected by treatment. In addition, cows fed high-disaccharide diets had higher energy-corrected milk yield than cows fed STA diet (39.6 vs. 38.0 kg/d). Dry matter intake did not differ between cows fed 2 high-disaccharide diets. Although cows fed the SUC diet had lower molar proportion of butyrate in the rumen compared with those fed the LAC diet (14.4 vs. 15.9 mol/100 mol), the SUC diet did not decrease rumen pH. In addition, cows fed the SUC diet had lower nutrient digestibility of organic matter than did those fed the LAC diet (59.7 vs. 64.4%), but milk component yields did not differ between the 2 high-disaccharide diet treatments. The results of the present study suggested that partially replacing dietary starch with disaccharides increased DM intake and energy-corrected milk, although rumen pH decreased for high-disaccharide diets, and that the rumen pH responses cannot be attributed to difference in absorption rate of volatile fatty acids in the rumen. In addition, type of sugars affected nutrient digestibility and rumen fermentation, but the effects were not large enough to affect rumen pH and milk production. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Methane Emission and Milk Production of Dairy Cows Grazing Pastures Rich in Legumes or Rich in Grasses in Uruguay.

    PubMed

    Dini, Yoana; Gere, José; Briano, Carolina; Manetti, Martin; Juliarena, Paula; Picasso, Valentin; Gratton, Roberto; Astigarraga, Laura

    2012-06-08

    Understanding the impact of changing pasture composition on reducing emissions of GHGs in dairy grazing systems is an important issue to mitigate climate change. The aim of this study was to estimate daily CH₄ emissions of dairy cows grazing two mixed pastures with contrasting composition of grasses and legumes: L pasture with 60% legumes on Dry Matter (DM) basis and G pasture with 75% grasses on DM basis. Milk production and CH₄ emissions were compared over two periods of two weeks during spring using eight lactating Holstein cows in a 2 × 2 Latin square design. Herbage organic matter intake (HOMI) was estimated by chromic oxide dilution and herbage organic matter digestibility (OMD) was estimated by faecal index. Methane emission was estimated by using the sulfur hexafluoride (SF6) tracer technique adapted to collect breath samples over 5-day periods. OMD (0.71) and HOMI (15.7 kg OM) were not affected by pasture composition. Milk production (20.3 kg/d), milk fat yield (742 g/d) and milk protein yield (667 g/d) were similar for both pastures. This may be explained by the high herbage allowance (30 kg DM above 5 cm/cow) which allowed the cows to graze selectively, in particular in grass sward. Similarly, methane emission expressed as absolute value (368 g/d or 516 L/d) or expressed as methane yield (6.6% of Gross Energy Intake (GEI)) was not affected by treatments. In conclusion, at high herbage allowance, the quality of the diet selected by grazing cows did not differ between pastures rich in legumes or rich in grasses, and therefore there was no effect on milk or methane production.

  4. Prediction of water intake and excretion flows in Holstein dairy cows under thermoneutral conditions.

    PubMed

    Khelil-Arfa, H; Boudon, A; Maxin, G; Faverdin, P

    2012-10-01

    The increase in the worldwide demand for dairy products, associated with global warming, will emphasize the issue of water use efficiency in dairy systems. The evaluation of environmental issues related to the management of animal dejections will also require precise biotechnical models that can predict effluent management in farms. In this study, equations were developed and evaluated for predicting the main water flows at the dairy cow level, based on parameters related to cow productive performance and diet under thermoneutral conditions. Two datasets were gathered. The first one comprised 342 individual measurements of water balance in dairy cows obtained during 18 trials at the experimental farm of Méjussaume (INRA, France). Predictive equations of water intake, urine and fecal water excretion were developed by multiple regression using a stepwise selection of regressors from a list of seven candidate parameters, which were milk yield, dry matter intake (DMI), body weight, diet dry matter content (DM), proportion of concentrate (CONC) and content of crude protein (CP) ingested with forage and concentrate (CPf and CPc, g/kg DM). The second dataset was used for external validation of the developed equations and comprised 196 water flow measurements on experimental lots obtained from 43 published papers related to water balance or digestibility measurements in dairy cows. Although DMI was the first predictor of the total water intake (TWI), with a partial r(2) of 0.51, DM was the first predictive parameter of free water intake (FWI), with a partial r(2) of 0.57, likely due to the large variability of DM in the first dataset (from 11.5 to 91.4 g/100 g). This confirmed the compensation between water drunk and ingested with diet when DM changes. The variability of urine volume was explained mainly by the CPf associated with DMI (r.s.d. 5.4 kg/day for an average flow of 24.0 kg/day) and that of fecal water was explained by the proportion of CONC in the diet and DMI. External validation showed that predictive equations excluding DMI as predictive parameters could be used for FWI, urine and fecal water predictions if cows were fed a well-known total mixed ration. It also appeared that TWI and FWI were underestimated when ambient temperature increased above 25°C and possible means of including climatic parameters in future predictive equations were proposed.

  5. Effects of replacing wild rye, corn silage, or corn grain with CaO-treated corn stover and dried distillers grains with solubles in lactating cow diets on performance, digestibility, and profitability.

    PubMed

    Shi, H T; Li, S L; Cao, Z J; Wang, Y J; Alugongo, G M; Doane, P H

    2015-10-01

    The objective of this study was to measure the effects of partially replacing wild rye (Leymus chinensis; WR), corn silage (CS), or corn grain (CG) in dairy cow diets with CaO-treated corn stover (T-CS) and corn dried distillers grains with soluble (DDGS) on performance, digestibility, blood metabolites, and income over feed cost. Thirty tonnes of air-dried corn stover was collected, ground, and mixed with 5% CaO. Sixty-four Holstein dairy cows were blocked based on days in milk, milk yield, and parity and were randomly assigned to 1 of 4 treatments. The treatments were (1) a diet containing 50% concentrate, 15% WR, 25% CS, and 10% alfalfa hay (CON); (2) 15% WR, 5% CG, and 6% soybean meal were replaced by 15% T-CS and 12% DDGS (RWR); (3) 12.5% CS, 6% CG, and 5% soybean meal were replaced by 12.5% T-CS and 12%DDGS (RCS); (4) 13% CG and 6% soybean meal were replaced by 7% T-CS and 13% DDGS (RCG). Compared with CON treatment, cows fed RCS and RCG diets had similar dry matter intake (CON: 18.2 ± 0.31 kg, RCS: 18.6 ± 0.31 kg, and RCG: 18.4 ± 0.40 kg). The RWR treatment tended to have lower dry matter intake than other treatments. The inclusion of T-CS and DDGS in treatment diets as a substitute for WR, CS, or CG had no effects on lactose percentage (CON: 4.96 ± 0.02%, RWR: 4.97 ± 0.02%, RCS: 4.96 ± 0.02%, and RCG: 4.94 ± 0.02%), 4% fat-corrected milk yield (CON: 22.7 ± 0.60 kg, RWR: 22.1 ± 0.60 kg, RCS: 22.7 ± 0.60 kg, and RCG: 22.7 ± 0.60 kg), milk fat yield (CON: 0.90 ± 0.03 kg, RWR: 0.86 ± 0.03 kg, RCS: 0.87 ± 0.03 kg, and RCG: 0.89 ± 0.03 kg), and milk protein yield (CON: 0.74 ± 0.02 kg, RWR: 0.72 ± 0.02 kg, RCS: 0.73 ± 0.02 kg, and RCG: 0.71 ± 0.02 kg). Cows fed the RWR diet had higher apparent dry matter digestibility (73.7 ± 1.30 vs. 70.2 ± 1.15, 69.9 ± 1.15, and 69.9 ± 1.15% for RWR vs. CON, RCS, and RCG, respectively) and lower serum urea N (3.55 ± 0.11 vs. 4.03 ± 0.11, 3.95 ± 0.11, and 3.99 ± 0.11 mmol/L for RWR vs. CON, RCS, and RCG, respectively) than cows fed other diets. No significant differences were noted in apparent neutral detergent fiber digestibility among the treatments. Compared with CON treatment, the RWR, RCS, and RCG treatments generated an additional $0.77, $0.70, and $0.81 income over feed cost per cow per day, respectively. In conclusion, feeding diets containing a portion of T-CS and DDGS can improve profitability of the treatment groups without negatively affecting the lactation performance of mid- to late-lactation cows. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Effects of feeding lauric acid on ruminal protozoa numbers, fermentation, and digestion and on milk production in dairy cows

    USDA-ARS?s Scientific Manuscript database

    The objectives of this study were: (1) to determine the level of lauric acid (LA) addition to the diet necessary to effectively suppress ruminal protozoa (RP) to the extent observed when a single dose was given directly into the rumen; (2) to assess its effects on production and ruminal metabolism; ...

  7. Replacing conventional or brown-mid rib corn silage with brown-mid rib sudangrass silage in the diets of lactating dairy cows

    USDA-ARS?s Scientific Manuscript database

    Forages that use less water, but are high in digestibility, are sought as alternatives to traditional forages such as corn silage. Brown mid-rib (BMR) sudangrass is a possible alternative that can provide high-quality forage as a replacement for corn silage. The objective of this study was to evalua...

  8. Effects of day of gestation and feeding regimen in Holstein × Gyr cows: I. Apparent total-tract digestibility, nitrogen balance, and fat deposition.

    PubMed

    Rotta, P P; Filho, S C Valadares; Gionbelli, T R S; Costa E Silva, L F; Engle, T E; Marcondes, M I; Machado, F S; Villadiego, F A C; Silva, L H R

    2015-05-01

    This study investigated how feeding regimen (FR) alters apparent total-tract digestibility, performance, N balance, excretion of purine derivatives, and fat deposition in Holstein × Gyr cows at different days of gestation (DG). Forty-four pregnant multiparous Holstein × Gyr cows with an average initial body weight of 480±10.1 kg and an initial age of 5±0.5 yr old were allocated to 1 of 2 FR: ad libitum (AL; n=20) and maintenance level (ML; n=24). Maintenance level was considered to be 1.15% of body weight on a dry matter (DM) basis and met 100% of the energy requirements, whereas AL provided 190% of total net energy requirements. Data for hot and cold carcass dressing, fat deposition, average daily gain, empty body gain, and average daily gain without the gravid uterus were analyzed as a 4×2 factorial design. Intake, apparent total-tract digestibility, N balance, urinary concentration of urea, and purine derivatives data were analyzed as repeated measurements taken over the 28-d period (122, 150, 178, 206, 234, and 262 d of gestation). Cows were individually fed a corn silage-concentrate based diet composed of 93% roughage and 7% concentrate (DM basis) as a total mixed ration. Pregnant cows were slaughtered on 4 different DG: 139 (n=11), 199 (n=11), 241 (n=11), and 268 d (n=11). Overall, DM intake decreased as DG increased. This decrease observed in DM intake may be associated with the reduction in ruminal volume caused by the rapid increase in fetal size during late gestation. We observed an interaction for DM and organic matter apparent total-tract digestibility between FR and DG; at 150, 178, and 206 d of gestation, ML-fed cows had greater DM and organic matter apparent total-tract digestibility values than AL-fed cows. Rib fat thickness, mesentery, and kidney, pelvic, and heart fat were greater in AL-fed than in ML-fed cows at all DG, with the exception of rib fat thickness on d 139. Ad libitum-fed cows excreted more N in their feces and urine compared with ML-fed cows. Pregnant cows that were fed at maintenance had greater digestibility during some DG, excreted less N in feces and less N and urea in urine, and deposited less fat in the body. We therefore recommend ML (1.15% of body weight with 93% of roughage) as a FR for pregnant dry cows; however, during the last month of gestation, AL seems to be the most appropriate FR to avoid loss of body weight. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. Effect of niacin supplementation on digestibility, nitrogen utilisation and milk and blood variables in lactating dairy cows fed a diet with a negative rumen nitrogen balance.

    PubMed

    Aschemann, Martina; Lebzien, Peter; Hüther, Liane; Döll, Susanne; Südekum, Karl-Heinz; Dänicke, Sven

    2012-06-01

    The aim of the present experiment was to determine if a niacin supplementation of 6 g/d to lactating dairy cow diets can compensate negative effects of a rumen nitrogen balance (RNB) deficit. A total of nine ruminally and duodenally fistulated lactating multiparous German Holstein cows were successively assigned to one of three diets consisting of 10 kg maize silage (dry matter [DM] basis) and 7 kg DM concentrate: Diet RNB- (n = 6) with energy and utilisable crude protein at the duodenum (uCP) according to the average requirement of the animals but with a negative RNB (-0.41 g N/MJ metabolisable energy [ME]); Diet RNB0 (n = 7) with energy, uCP and a RNB (0.08 g N/MJ ME) according to the average requirement of the animals and, finally, Diet NA (n = 5), which was the same diet as RNB-, but supplemented with 6 g niacin/d. Samples of milk were taken on two consecutive days, blood samples were taken on one day pre- and post-feeding and faeces and urine were collected completely over five consecutive days. The negative RNB reduced milk and blood urea content and apparent total tract digestibility of DM, organic matter (OM) and neutral detergent fibre (NDF). Also N excretion with urine, the total N excreted with urine and faeces and the N balance were reduced when the RNB was negative. Supplementation of niacin elevated plasma glucose concentration after feeding and the N balance increased. Supplementing the diet with a negative RNB with niacin led to a more efficient use of dietary N thereby avoiding the negative effects of the negative RNB on the digestibility of DM, OM and NDF.

  10. Effect of replacing ground corn and soybean meal with licuri cake on the performance, digestibility, nitrogen metabolism and ingestive behavior in lactating dairy cows.

    PubMed

    Ferreira, A C; Vieira, J F; Barbosa, A M; Silva, T M; Bezerra, L R; Nascimento, N G; de Freitas, J E; Jaeger, S M P L; Oliveira, P de A; Oliveira, R L

    2017-11-01

    Licuri (Syagrus coronate) cake is a biodiesel by-product used in ruminant feed as a beneficial energy source for supplementation in managed pastures. The objective was to evaluate the performance, digestibility, nitrogen balance, blood metabolites, ingestive behavior and diet profitability of eight crossbred Holstein (3/4)×Gyr (5/8) multiparous cows (480±25 kg BW and 100 days milking) grazing and supplemented with licuri cake partially replacing ground corn and soybean meal in concentrate (0, 200, 400 and 600 g/kg in dry matter (DM)), distributed in an experimental duplicated 4×4 Latin square design. Licuri cake partially replacing ground corn and soybean meal increased (P<0.01) the intake and digestibility of ether extract and decreased the non-fiber carbohydrates; however, there were no influences on the intakes of DM, CP, NDF and total digestible nutrients (TDN). The digestibilities of DM, CP and NDF were not influenced by licuri cake addition. There was a decrease trend on TDN digestibility (P=0.08). Licuri cake replacing ground corn and soybean meal in concentrate did not affect the intake; fecal, urinary and mammary excretions; N balance; and triglycerides concentrations. However, the blood urea nitrogen (P=0.04) concentration decreased with the licuri cakes inclusion in cow supplementation. There was an increasing trend for serum creatinine (P=0.07). Licuri cake inclusion did not affect body condition score, production, yield, protein, lactose, total solids and solid non-fat contents of milk and Minas frescal cheese. There was a linear decrease in average daily weight gain (g/day). The milk fat concentration and cheese fat production (P<0.1) presented a linear increase with partial replacement of ground corn and soybean meal with licuri cakes. The addition of licuri cake did not alter the time spent feeding, ruminating or idling. There was an increasing trend in NDF feeding efficiency (P=0.09). The replacing of ground corn and soybean meal with licuri cake up to 600 g/kg decreased the concentrate cost by US$0.45/cow per day. Licuri cake replacing corn and soybeans (400 g/kg) in concentrate promoted a profit of US$0.07/animal per day. Licuri cake is indicated to concentrate the supplementation of dairy cows with average productions of 10 kg/day at levels up to 400 g/kg in the concentrate supplement because it provides an additional profit of US$0.07/animal per day and increased milk and Minas frescal cheese fat without negative effects on productive parameters.

  11. Supplementation of increasing amounts of linseed oil to dairy cows fed total mixed rations: effects on digestion, ruminal fermentation characteristics, protozoal populations, and milk fatty acid composition.

    PubMed

    Benchaar, C; Romero-Pérez, G A; Chouinard, P Y; Hassanat, F; Eugene, M; Petit, H V; Côrtes, C

    2012-08-01

    The effect of linseed oil (LO) supplementation on nutrient digestibility, forage (i.e., timothy hay) in sacco ruminal degradation, ruminal fermentation characteristics, protozoal populations, milk production, and milk fatty acid (FA) profile in dairy cows was investigated. Four ruminally cannulated, primiparous lactating cows were used in a 4 × 4 Latin square design (28-d periods). They were fed a total mixed ration (50:50 forage:concentrate (F:C) ratio [dry matter (DM) basis] without supplementation (control, CTL), or supplemented (wt/wt; DM basis) with LO at 2, 3, or 4%. Supplementation with LO had no effect on DM intake (19 kg/d) and apparent total-tract digestibility of nutrients (organic matter, neutral detergent fiber, acid detergent fiber, starch, and gross energy). Ruminal pH, ammonia, and total volatile FA concentrations were not changed by LO supplementation to diets. Extent of changes in volatile FA pattern and effective ruminal degradability of DM of timothy hay were minor. Neither the total numbers nor the genera distribution of protozoa was changed by the addition of increasing amounts of LO to the diet. Milk yield increased linearly (26.1, 27.3, 27.4, and 28.4 kg/d for CTL to LO4, respectively) as the amount of LO added to the diet increased. Milk fat content was not affected by LO supplementation, whereas milk protein content decreased linearly with increasing amounts of LO in the diet. Milk fat proportions of several intermediates of ruminal biohydrogenation of polyunsaturated FA (i.e., trans-10 18:1, trans-11 18:1, cis-9,trans-11 18:2, trans-11,cis-15 18:2, and cis-9,trans-11,cis-15 18:3) increased linearly with LO addition to the diet. The proportion of cis-9,cis-12 18:2 decreased linearly (2.06, 1.99, 1.91, and 1.83% for CTL to LO4, respectively) as the amount of LO in the diet increased. Milk fat content of cis-9,cis-12,cis-15 18:3 increased as the level of LO in the diet increased up to 3% but no further increase was observed when 4% of LO was fed (0.33, 0.79, 0.86, and 0.86% for CTL to LO4, respectively). A similar quadratic response to LO supplementation was also observed for cis-5,cis-8,cis-11,cis-14,cis-17 20:5 and cis-5,cis-7,cis-10,cis-13,cis-16 22:5. The results of the present study show that LO can be safely supplemented up to 4% in forage-based diets of dairy cows to enrich milk with potential health beneficial FA (i.e., n-3 FA) without causing any detrimental effects on rumen function, digestion, and milk production. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Molecular spectroscopic features of protein in newly developed chickpea: Relationship with protein chemical profile and metabolism in the rumen and intestine of dairy cows

    NASA Astrophysics Data System (ADS)

    Sun, Baoli; Khan, Nazir Ahmad; Yu, Peiqiang

    2018-05-01

    The first aim of this study was to investigate the nutritional value of crude protein (CP) in CDC [Crop Development Centre (CDC), University of Saskatchewan] chickpea varieties (Frontier kabuli and Corinne desi) in comparison with a CDC barley variety in terms of: 1) CP chemical profile and subfractions; (2) in situ rumen degradation kinetics and intestinal digestibility of CP; 2) metabolizable protein (MP) supply to dairy cows; and (3) protein molecular structure characteristics using advanced molecular spectroscopy. The second aim was to quantify the relationship between protein molecular spectral characteristics and CP subfractions, in situ rumen CP degradation characteristics, intestinal digestibility of CP, and MP supply to dairy cows. Samples (n = 4) of each variety, from two consecutive years were analyzed. Chickpeas had higher (P < 0.01) CP content (21.71-22.11 vs 12.96% DM), with higher (P < 0.05) soluble CP subfraction (59.07-70.27 vs 26.18% CP), and in situ soluble (23.44-25.85 vs 1.30% CP) and rumen degradable (RDP; 72.23-72.57 vs 58.48% CP) fractions than barley. The potentially slowly rumen degradable (D; 74.14-76.56 vs 93.31% CP) and undegradable (RUP; 27.43-27.66 vs 41.52% CP) fractions were lower (P < 0.01) in the chickpeas than barley. The effective degradability ratio of N to organic matter (OM) (36.07-38.44 g N/kg OM) of the chickpeas was higher than the optimal for achieving optimum microbial CP (MCP) synthesis. The truly digested MCP (64.94-66.43 vs. 41.43 g/kg DM); MP (81.10-83.67 vs 61.0 g/kg DM) feed milk value (1.64-1.70 vs 1.24) was higher in the chickpeas than barley grain. The chickpeas had higher (P < 0.05) amide I and II peaks area and height, and α-helix and β-sheet peaks height than barley. Multivariate analysis showed that protein molecular spectral data of chickpeas can be distinguished from the barley. The two chickpeas did not differ in CP content, and any of the measured in situ degradation and molecular spectral characteristics of protein. The content of RUP was positively (r = 0.94, P < 0.01) and that of RDP was negatively (r = -0.94, P < 0.01) correlated with amide I/II area ratio. The regression analysis showed that the content of CP (R2 = 0.91) D-fraction (R2 = 0.82), RDP (R2 = 0.77), RUP (R2 = 0.77), TDP (R2 = 0.98), MP (R2 = 0.80), and FMV (R2 = 0.80) can be predicted from amide II peak height. Despite extensive ruminal degradation, chickpea is a good source of MP for dairy cows, and molecular spectroscopy can be used to rapidly characterize feed protein molecular structures and predict their digestibility and nutritive value.

  13. Effects of Saccharomyces cerevisiae fermentation product on ruminal starch digestion are dependent upon dry matter intake for lactating cows.

    PubMed

    Allen, M S; Ying, Y

    2012-11-01

    This experiment was conducted to evaluate ruminal digestion responses to Saccharomyces cerevisiae fermentation product (SCFP) supplementation and to determine if responses are influenced by voluntary feed intake. Fifteen ruminally and duodenally cannulated Holstein cows with a wide range in preliminary dry matter intake (pDMI; 20.1 to 31.0 kg/d) measured during a 14-d preliminary period were used in a crossover design experiment. Treatments were SCFP and control (a mix of dry ground corn and soybean meal), top-dressed at the rate of 56 g/d per head. The base diet contained 28% NDF, 30% starch, and 16.5% CP and included corn silage, alfalfa silage, high-moisture corn, protein supplement, and a mineral and vitamin supplement. Treatment periods were 28 d, with the final 8d used for sample and data collection. Voluntary dry matter intake was determined during the last 4d of the preliminary period. Ruminal digestion kinetics were determined using the pool-and-flux method. Main effects of SCFP treatment and their interaction with pDMI were tested by ANOVA. An interaction was detected between SCFP treatment and pDMI for ruminal digestion rate of starch; SCFP increased the rate of starch digestion compared with the control for cows with pDMI below 26 kg/d and decreased it for cows with higher pDMI. This resulted in an interaction between treatment and pDMI for turnover rate of starch in the rumen and true and apparent ruminal starch digestibility because passage rate of starch from the rumen was not affected by treatment (mean=24.3%/h). Ruminal pH (mean=6.0), dry matter intake, milk yield and component percentages were not affected by treatment or its interaction with pDMI. Supplementation of SCFP reduced the rate of ruminal starch digestion for cows with higher feed intake, which could help stabilize the ruminal environment when large amounts of starch are consumed to support higher milk production. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. 40 CFR 412.30 - Applicability.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CONCENTRATED ANIMAL FEEDING OPERATIONS (CAFO) POINT SOURCE CATEGORY Dairy Cows and Cattle Other Than Veal... operations (CAFOs) under 40 CFR 122.23 and includes the following animals: mature dairy cows, either milking or dry; cattle other than mature dairy cows or veal calves. Cattle other than mature dairy cows...

  15. 40 CFR 412.30 - Applicability.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CONCENTRATED ANIMAL FEEDING OPERATIONS (CAFO) POINT SOURCE CATEGORY Dairy Cows and Cattle Other Than Veal... operations (CAFOs) under 40 CFR 122.23 and includes the following animals: mature dairy cows, either milking or dry; cattle other than mature dairy cows or veal calves. Cattle other than mature dairy cows...

  16. 40 CFR 412.30 - Applicability.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CONCENTRATED ANIMAL FEEDING OPERATIONS (CAFO) POINT SOURCE CATEGORY Dairy Cows and Cattle Other Than Veal... operations (CAFOs) under 40 CFR 122.23 and includes the following animals: mature dairy cows, either milking or dry; cattle other than mature dairy cows or veal calves. Cattle other than mature dairy cows...

  17. 40 CFR 412.30 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CONCENTRATED ANIMAL FEEDING OPERATIONS (CAFO) POINT SOURCE CATEGORY Dairy Cows and Cattle Other Than Veal... operations (CAFOs) under 40 CFR 122.23 and includes the following animals: mature dairy cows, either milking or dry; cattle other than mature dairy cows or veal calves. Cattle other than mature dairy cows...

  18. Application of transmission infrared spectroscopy and partial least squares regression to predict immunoglobulin G concentration in dairy and beef cow colostrum.

    PubMed

    Elsohaby, Ibrahim; Windeyer, M Claire; Haines, Deborah M; Homerosky, Elizabeth R; Pearson, Jennifer M; McClure, J Trenton; Keefe, Greg P

    2018-03-06

    The objective of this study was to explore the potential of transmission infrared (TIR) spectroscopy in combination with partial least squares regression (PLSR) for quantification of dairy and beef cow colostral immunoglobulin G (IgG) concentration and assessment of colostrum quality. A total of 430 colostrum samples were collected from dairy (n = 235) and beef (n = 195) cows and tested by a radial immunodiffusion (RID) assay and TIR spectroscopy. Colostral IgG concentrations obtained by the RID assay were linked to the preprocessed spectra and divided into combined and prediction data sets. Three PLSR calibration models were built: one for the dairy cow colostrum only, the second for beef cow colostrum only, and the third for the merged dairy and beef cow colostrum. The predictive performance of each model was evaluated separately using the independent prediction data set. The Pearson correlation coefficients between IgG concentrations as determined by the TIR-based assay and the RID assay were 0.84 for dairy cow colostrum, 0.88 for beef cow colostrum, and 0.92 for the merged set of dairy and beef cow colostrum. The average of the differences between colostral IgG concentrations obtained by the RID- and TIR-based assays were -3.5, 2.7, and 1.4 g/L for dairy, beef, and merged colostrum samples, respectively. Further, the average relative error of the colostral IgG predicted by the TIR spectroscopy from the RID assay was 5% for dairy cow, 1.2% for beef cow, and 0.8% for the merged data set. The average intra-assay CV% of the IgG concentration predicted by the TIR-based method were 3.2%, 2.5%, and 6.9% for dairy cow, beef cow, and merged data set, respectively.The utility of TIR method for assessment of colostrum quality was evaluated using the entire data set and showed that TIR spectroscopy accurately identified the quality status of 91% of dairy cow colostrum, 95% of beef cow colostrum, and 89% and 93% of the merged dairy and beef cow colostrum samples, respectively. The results showed that TIR spectroscopy demonstrates potential as a simple, rapid, and cost-efficient method for use as an estimate of IgG concentration in dairy and beef cow colostrum samples and assessment of colostrum quality. The results also showed that merging the dairy and beef cow colostrum sample data sets improved the predictive ability of the TIR spectroscopy.

  19. 7 CFR 1430.606 - Determination of losses incurred.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... of daily dairy cow additions or reductions to the milking herd during the applicable claim period... of dairy cow purchases, sales, or death losses. Production adjustments can be calculated using the average number of dairy cows in a dairy operation's milking herd and the average production per cow during...

  20. The energy content of wet corn distillers grains for lactating dairy cows.

    PubMed

    Birkelo, C P; Brouk, M J; Schingoethe, D J

    2004-06-01

    Forty-five energy balances were completed with 12 multiparous, lactating Holstein cows in a study designed to determine the energy content of wet corn distillers grains. Treatments were applied in a repeated switchback design and consisted of total mixed diets containing 31.4% corn silage, 18.4% alfalfa hay, and either 30.7% rolled corn and 16.7% soybean meal or 17.0% rolled corn and 31.2% wet corn distillers grains (dry matter basis). Replacement of corn and soybean meal with wet corn distillers grains reduced dry matter intake 10.9% but did not affect milk production. Neither digestible nor metabolizable energy were affected by diet composition. Heat and milk energy output did not differ by diet, but body energy retained was 2.8 Mcal/d less in cows fed the wet corn distillers grains diet. Multiple regression estimates of maintenance metabolizable energy requirement and partial efficiencies of metabolizable energy used for lactation and body energy deposition did not differ by diet. Pooled estimates were 136.2, 0.66, and 0.85, kcal of metabolizable energy/ body weight0.75 per day, respectively. Calculated by difference, wet corn distillers grains was estimated to contain 4.09, 3.36, and 2.27 Mcal/kg of dry matter as digestible, metabolizable, and lactational net energy, respectively. These energy estimates were 7 to 11% and 10 to 15%, respectively, greater than those reported for dried corn distillers grains by the 1989 and 2001 dairy NRC publications.

  1. Psychrophilic dry anaerobic digestion of dairy cow feces: Long-term operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massé, Daniel I., E-mail: Daniel.masse@agr.gc.ca; Cata Saady, Noori M.

    2015-02-15

    Highlights: • Psychrophilic dry anaerobic digestion (PDAD) of cow feces (CF) is feasible. • PDAD of CF is as efficient as mesophilic and thermophilic AD at TCL 21 days. • CF (13–16% TS at OLR 5.0 g TCOD{sub fed} kg{sup −1} inoculum d{sup −1}) yielded 222 ± 27 {sub N}L CH{sub 4} kg{sup −1} VS fed. - Abstract: This paper reports experimental results which demonstrate psychrophilic dry anaerobic digestion of cow feces during long-term operation in sequence batch reactor. Cow feces (13–16% total solids) has been anaerobically digested in 12 successive cycles (252 days) at 21 days treatment cycle lengthmore » (TCL) and temperature of 20 °C using psychrotrophic anaerobic mixed culture. An average specific methane yield (SMY) of 184.9 ± 24.0, 189.9 ± 27.3, and 222 ± 27.7 {sub N}L CH{sub 4} kg{sup −1} of VS fed has been achieved at an organic loading rate of 3.0, 4.0, and 5.0 g TCOD kg{sup −1} inoculum d{sup −1} and TCL of 21 days, respectively. The corresponding substrate to inoculum ratio (SIR) was 0.39 ± 0.06, 0.48 ± .02, 0.53 ± 0.05, respectively. Average methane production rate of 10 ± 1.4 {sub N}L CH{sub 4} kg{sup −1} VS fed d{sup −1} has been obtained. The low concentration of volatile fatty acids indicated that hydrolysis was the reaction limiting step.« less

  2. Corn bran versus corn grain at 2 levels of forage: Intake, apparent digestibility, and production responses by lactating dairy cows

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to determine the effect of substituting corn bran (CB) for dried ground corn grain (CG) in the supplement portion of high-forage (HF) and low-forage (LF) diets. Twelve multiparous and 12 primiparous Holsteins were assigned to 4 diets using six 4 x 4 Latin squares with...

  3. What is the true supply of amino acids for a dairy cow?

    PubMed

    Lapierre, H; Pacheco, D; Berthiaume, R; Ouellet, D R; Schwab, C G; Dubreuil, P; Holtrop, G; Lobley, G E

    2006-03-01

    Improving the prediction of milk protein yield relies on knowledge of both protein supply and requirement. Definition of protein/amino acid supply in ruminants is a challenging task, due to feedstuff variety and variability and to the remodeling of nutrient intake by the rumen microflora. The questions arise, therefore, how and where should we measure the real supply of AA in the dairy cow? This review will follow the downstream flow of AA from duodenum to peripheral tissue delivery, with a glance at the efficiency of transfer into milk protein. Duodenal AA flow comprises rumen undegradable feed, microbial protein, and endogenous secretions. Most attention has been directed toward definition of the first two contributions but the latter fraction can represent as much as 20% of duodenal flow. More information is needed on what factors affect its magnitude and overall impact. Once digested, AA are absorbed into the portal vein. The ratio of portal absorption to small intestinal apparent digestion varies among essential AA, from 0.43 (threonine) to 0.76 (phenylalanine), due to the contributions of preduodenal endogenous secretions to the digestive flow, non-reabsorption of endogenous secretions and gut oxidation of AA. Few data are available on these phenomena in dairy cows but the evidence indicates that they alter the profile of AA available for anabolic purposes. Recent comparisons of estimated duodenal flux and measured portal flux have prompted a revisit of the NRC (2001) approach to estimate AA flows at the duodenum. Changes to the model are proposed that yield predictions that better fit the current knowledge of AA metabolism across the gut. After absorption, AA flow first to the liver where substantial and differential net removal occurs, varying from zero for the branched-chain AA to 50% of portal absorption for phenylalanine. This process alters the pattern of net supply to the mammary gland. Overall, intermediary metabolism of AA between the duodenum and the mammary gland biologically explains the decreased efficiency of the transfer of absorbed AA into milk protein as maximal yield is approached. Therefore, variable, rather than fixed, factors for transfer efficiencies must be incorporated into future predictive models.

  4. The effects of feeding time on milk production, total-tract digestibility, and daily rhythms of feeding behavior and plasma metabolites and hormones in dairy cows.

    PubMed

    Niu, M; Ying, Y; Bartell, P A; Harvatine, K J

    2014-12-01

    The timing of feed intake entrains circadian rhythms regulated by internal clocks in many mammals. The objective of this study was to determine if the timing of feeding entrains daily rhythms in dairy cows. Nine Holstein cows were used in a replicated 3 × 3 Latin square design with 14-d periods. An automated system recorded the timing of feed intake over the last 7 d of each period. Treatments were feeding 1×/d at 0830 h (AM) or 2030 h (PM) and feeding 2×/d in equal amounts at 0830 and 2030 h. All treatments were fed at 110% of daily intake. Cows were milked 2×/d at 0500 and 1700 h. Milk yield and composition were not changed by treatment. Daily intake did not differ, but twice-daily feeding tended to decrease total-tract digestibility of organic matter and neutral detergent fiber (NDF). A treatment by time of day interaction was observed for feeding behavior. The amount of feed consumed in the first 2h after feeding was 70% greater for PM compared with AM feeding. A low rate of intake overnight (2400 to 0500 h; 2.2 ± 0.74% daily intake/h, mean ± SD) and a moderate rate of intake in the afternoon (1200 to 1700 h; 4.8 ± 1.1% daily intake/h) was noted for all treatments, although PM slightly reduced the rate during the afternoon period compared with AM. A treatment by time of day interaction was seen for fecal NDF and indigestible NDF (iNDF) concentration, blood urea nitrogen, plasma glucose and insulin concentrations, body temperature, and lying behavior. Specifically, insulin increased and glucose decreased more after evening feeding than after morning feeding. A cosine function within a 24-h period was used to characterize daily rhythms using a random regression. Rate of feed intake during spontaneous feeding, fecal NDF and iNDF concentration, plasma glucose, insulin, NEFA, body temperature, and lying behavior fit a cosine function within a 24-h period that was modified by treatment. In conclusion, feeding time can reset the daily rhythms of feeding and lying behavior, core body temperature, fecal NDF and iNDF concentration, and plasma blood urea nitrogen, glucose, and insulin concentration of dairy cows, but has no effect on daily DMI and milk production. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Effects of pregrazing herbage mass in late spring on enteric methane emissions, dry matter intake, and milk production of dairy cows.

    PubMed

    Muñoz, C; Letelier, P A; Ungerfeld, E M; Morales, J M; Hube, S; Pérez-Prieto, L A

    2016-10-01

    Few studies have examined the effects of fresh forage quality on enteric methane (CH4) emissions of dairy cows under grazing conditions. The aim of the current study was to evaluate the effects of 2 contrasting forage qualities induced by different pregrazing herbage masses in late spring on enteric CH4 emissions and milk production of grazing dairy cows. The experiment was conducted as a crossover design with 24 lactating Holstein Friesian dairy cows randomly assigned to 1 of 2 treatments in 2 experimental periods. Each period had a duration of 3wk (2wk for diet adaptation and 1wk for measurements), and the interval between them was 2wk. Treatments consisted of 2 target pregrazing herbage masses [2,200 and 5,000kg of dry matter (DM)/ha above 3cm], generated by different regrowth periods, corresponding to low (LHM) and high (HHM) herbage mass treatments, respectively. Daily herbage allowance (Lolium perenne) for both treatments was 20kg of DM per cow measured above 3cm. Enteric CH4 emissions were individually determined during the last week of each period using the sulfur hexafluoride tracer technique. Daily herbage intakes by individual cows during the CH4 measurement weeks were estimated using the n-alkanes technique. During the CH4 measurement weeks, milk yield and body mass were determined twice daily, whereas milk composition was determined once in the week. The LHM pasture had a higher crude protein concentration, lower neutral detergent fiber and acid detergent fiber concentrations, and higher in vitro digestibility, with a lower proportion of ryegrass pseudostems, than the HHM pasture. Cows offered the LHM pasture had greater herbage (+13%) and total DM (+12%) intakes, increased milk (+13%) and energy-corrected milk (+11%) yields, and tendencies toward higher milk protein (+4.5%) and higher milk urea nitrogen (+15%) concentrations than their counterparts offered the HHM pasture. No differences were found between treatments in total daily CH4 production. However, the LHM treatment reduced enteric CH4 emissions per unit of milk yield (-11%) and enteric CH4 energy as a percentage of ingested gross energy (-9%) and tended to reduce CH4 per unit of dry matter intake (-8.2%) and energy-corrected milk yield (-10%) compared with the HHM treatment. The results from this study suggest that a grazing management that favors better quality pasture, as was the case of the LHM pasture in late spring compared with the HHM pasture, increases milk production of grazing dairy cows and reduces enteric CH4 emissions per unit of milk produced, constituting a viable CH4 mitigation strategy. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Methane Production in Dairy Cows Correlates with Rumen Methanogenic and Bacterial Community Structure.

    PubMed

    Danielsson, Rebecca; Dicksved, Johan; Sun, Li; Gonda, Horacio; Müller, Bettina; Schnürer, Anna; Bertilsson, Jan

    2017-01-01

    Methane (CH 4 ) is produced as an end product from feed fermentation in the rumen. Yield of CH 4 varies between individuals despite identical feeding conditions. To get a better understanding of factors behind the individual variation, 73 dairy cows given the same feed but differing in CH 4 emissions were investigated with focus on fiber digestion, fermentation end products and bacterial and archaeal composition. In total 21 cows (12 Holstein, 9 Swedish Red) identified as persistent low, medium or high CH 4 emitters over a 3 month period were furthermore chosen for analysis of microbial community structure in rumen fluid. This was assessed by sequencing the V4 region of 16S rRNA gene and by quantitative qPCR of targeted Methanobrevibacter groups. The results showed a positive correlation between low CH 4 emitters and higher abundance of Methanobrevibacter ruminantium clade. Principal coordinate analysis (PCoA) on operational taxonomic unit (OTU) level of bacteria showed two distinct clusters ( P < 0.01) that were related to CH 4 production. One cluster was associated with low CH 4 production (referred to as cluster L) whereas the other cluster was associated with high CH 4 production (cluster H) and the medium emitters occurred in both clusters. The differences between clusters were primarily linked to differential abundances of certain OTUs belonging to Prevotella . Moreover, several OTUs belonging to the family Succinivibrionaceae were dominant in samples belonging to cluster L. Fermentation pattern of volatile fatty acids showed that proportion of propionate was higher in cluster L, while proportion of butyrate was higher in cluster H. No difference was found in milk production or organic matter digestibility between cows. Cows in cluster L had lower CH 4 /kg energy corrected milk (ECM) compared to cows in cluster H, 8.3 compared to 9.7 g CH 4 /kg ECM, showing that low CH 4 cows utilized the feed more efficient for milk production which might indicate a more efficient microbial population or host genetic differences that is reflected in bacterial and archaeal (or methanogens) populations.

  7. Methane Production in Dairy Cows Correlates with Rumen Methanogenic and Bacterial Community Structure

    PubMed Central

    Danielsson, Rebecca; Dicksved, Johan; Sun, Li; Gonda, Horacio; Müller, Bettina; Schnürer, Anna; Bertilsson, Jan

    2017-01-01

    Methane (CH4) is produced as an end product from feed fermentation in the rumen. Yield of CH4 varies between individuals despite identical feeding conditions. To get a better understanding of factors behind the individual variation, 73 dairy cows given the same feed but differing in CH4 emissions were investigated with focus on fiber digestion, fermentation end products and bacterial and archaeal composition. In total 21 cows (12 Holstein, 9 Swedish Red) identified as persistent low, medium or high CH4 emitters over a 3 month period were furthermore chosen for analysis of microbial community structure in rumen fluid. This was assessed by sequencing the V4 region of 16S rRNA gene and by quantitative qPCR of targeted Methanobrevibacter groups. The results showed a positive correlation between low CH4 emitters and higher abundance of Methanobrevibacter ruminantium clade. Principal coordinate analysis (PCoA) on operational taxonomic unit (OTU) level of bacteria showed two distinct clusters (P < 0.01) that were related to CH4 production. One cluster was associated with low CH4 production (referred to as cluster L) whereas the other cluster was associated with high CH4 production (cluster H) and the medium emitters occurred in both clusters. The differences between clusters were primarily linked to differential abundances of certain OTUs belonging to Prevotella. Moreover, several OTUs belonging to the family Succinivibrionaceae were dominant in samples belonging to cluster L. Fermentation pattern of volatile fatty acids showed that proportion of propionate was higher in cluster L, while proportion of butyrate was higher in cluster H. No difference was found in milk production or organic matter digestibility between cows. Cows in cluster L had lower CH4/kg energy corrected milk (ECM) compared to cows in cluster H, 8.3 compared to 9.7 g CH4/kg ECM, showing that low CH4 cows utilized the feed more efficient for milk production which might indicate a more efficient microbial population or host genetic differences that is reflected in bacterial and archaeal (or methanogens) populations. PMID:28261182

  8. Effects of dehydrated lucerne and soya bean meal on milk production and composition, nutrient digestion, and methane and nitrogen losses in dairy cows receiving two different forages.

    PubMed

    Doreau, M; Ferlay, A; Rochette, Y; Martin, C

    2014-03-01

    Dehydrated lucerne is used as a protein source in dairy cow rations, but little is known about the effects of lucerne on greenhouse gas production by animals. Eight Holstein dairy cows (average weight: 582 kg) were used in a replicated 4 × 4 Latin square design. They received diets based on either maize silage (M) or grass silage (G) (45% of diet on dry matter (DM) basis), with either soya bean meal (15% of diet DM) completed with beet pulp (15% of diet DM) (SP) or dehydrated lucerne (L) (30% of diet DM) as protein sources; MSP, ML, GSP and GL diets were calculated to meet energy requirements for milk production by dairy cows and degradable protein for rumen microbes. Dry matter intake (DMI) did not differ among diets (18.0 kg/day DMI); milk production was higher with SP diets than with L diets (26.0 v. 24.1 kg/day), but milk production did not vary with forage type. Milk fatty-acid (FA) composition was modified by both forage and protein sources: L and G diets resulted in less saturated FA, less linoleic acid, more trans-monounsaturated FA, and more linolenic acid than SP and M diets, respectively. Enteric methane (CH4) production, measured by the SF6 tracer method, was higher for G diets than for M diets, but did not differ with protein source. The same effects were observed when CH4 was expressed per kg milk. Minor effects of diets on rumen fermentation pattern were observed. Manure CH4 emissions estimated from faecal organic matter were negatively related to diet digestibility and were thus higher for L than SP diets, and higher for M than G diets; the resulting difference in total CH4 production was small. Owing to diet formulation constraints, N intake was higher for SP than for L diets; interaction between forage type and protein source was significant for N intake. The same statistical effects were found for N in milk. Faecal and urinary N losses were determined from total faeces and urine collection. Faecal N output was lower for M than for G diets but did not differ between protein sources. Urinary N output did not differ between forage types, but was lower for cows fed L diets than for cows fed SP diets, potentially resulting in lower ammonia emissions with L diets. Replacing soya bean meal plus beet pulp with dehydrated lucerne did not change CH4 production, but resulted in more N in faeces and less N in urine.

  9. Quality defects in market beef and dairy cows and bulls sold through livestock auction markets in the Western United States: II. Relative effects on selling price.

    PubMed

    Ahola, J K; Foster, H A; Vanoverbeke, D L; Jensen, K S; Wilson, R L; Glaze, J B; Fife, T E; Gray, C W; Nash, S A; Panting, R R; Rimbey, N R

    2011-05-01

    Relative effects of Beef Quality Assurance (BQA)-related defects in market beef and dairy cows and bulls on selling price at auction was evaluated during 2008. The presence and severity of 23 BQA-related traits were determined during sales in Idaho, California, and Utah. Overall, 18,949 unique lots consisting of 23,479 animals were assessed during 125 dairy sales and 79 beef sales. Mean sale price ± SD (per 45.5 kg) for market beef cows, beef bulls, dairy cows, and dairy bulls was $45.15 ± 9.42, $56.30 ± 9.21, $42.23 ± 12.26, and $55.10 ± 9.07, respectively. When combined, all recorded traits explained 36% of the variation in selling price in beef cows, 35% in beef bulls, 61% in dairy cows, and 56% in dairy bulls. Premiums and discounts were determined in comparison with a "par" or "base" animal. Compared with a base BCS 5 beef cow (on a 9-point beef scale), BCS 1 to 4 cows were discounted (P < 0.0001), whereas premiums (P < 0.05) were estimated for BCS 6 to 8. Compared with a base BCS 3.0 dairy cow (on a 5-point dairy scale), more body condition resulted in a premium (P ≤ 0.001), whereas a less-than-desirable BCS of 2.0 or 2.5 was discounted (P < 0.0001). Emaciated or near-emaciated cows (beef BCS 1 or 2; dairy BCS 1.0 or 1.5) were discounted (P < 0.0001). Compared with base cows weighing 545 to 635 kg, lighter BW beef cows were discounted (P < 0.0001), whereas heavier beef cows received (P < 0.05) a premium. Compared with a base dairy cow weighing 636 to 727 kg, lighter BW cows were discounted (P < 0.0001), whereas heavier cows (727 to 909 kg) received a premium (P < 0.01). Beef and dairy cows with any evidence of lameness were discounted (P < 0.0001). Presence of ocular neoplasia in the precancerous stage discounted (P = 0.05) beef cows and discounted (P < 0.01) dairy cows, whereas at the cancerous stage, it discounted (P < 0.0001) all cows. Hide color influenced (P < 0.0001) selling price in beef cattle but had no effect (P = 0.17) in dairy cows. Animals that were visibly sick were discounted (P < 0.0001). Results suggest that improving BCS and BW, which producers can do at the farm or ranch level, positively affects sale price. Furthermore, animals that are visibly sick or have a defect associated with a possible antibiotic risk will be discounted. Ultimately, animals with minor quality defects should be sold in a timely manner before the defect advances and the discount increases.

  10. Association between liver failure and hepatic UDP-glucuronosyltransferase activity in dairy cows with follicular cysts.

    PubMed

    Tanemura, Kouichi; Ohtaki, Tadatoshi; Kuwahara, Yasushi; Tsumagari, Shigehisa

    2017-01-20

    Uridine 5'-diphospho-glucuronosyltransferase (UGT) liver activity was measured using estradiol-17β as a substrate in dairy cows with follicular cysts. The activity was significantly lower than that in dairy cows with normal estrous cycles (P<0.01). Liver disorders, such as fatty liver and hepatitis, were observed in half cows with follicular cysts, and liver UGT activity was lower than that in cows with normal estrus cycles. In addition, the liver UGT activity was significantly lower in dairy cows with follicular cysts without liver disorders than in dairy cows with normal estrous cycles. Therefore, the cows were divided into those with low, middle and high liver UGT activities, and liver disorder complication rates were investigated. The complication rate was significantly higher in the low- (78.1%) than in the middle- (22.2%) and high-level (8.3%) groups, suggesting that liver disorders are closely associated with the development of follicular cysts in dairy cows and that steroid hormone metabolism is delayed because of reduced liver UGT activity, resulting in follicular cyst formation. We conclude that reduced estradiol-17β glucuronidation in the liver and liver disorders are associated with follicular cyst occurrence in dairy cows.

  11. Association between liver failure and hepatic UDP-glucuronosyltransferase activity in dairy cows with follicular cysts

    PubMed Central

    TANEMURA, Kouichi; OHTAKI, Tadatoshi; KUWAHARA, Yasushi; TSUMAGARI, Shigehisa

    2016-01-01

    Uridine 5’-diphospho-glucuronosyltransferase (UGT) liver activity was measured using estradiol-17β as a substrate in dairy cows with follicular cysts. The activity was significantly lower than that in dairy cows with normal estrous cycles (P<0.01). Liver disorders, such as fatty liver and hepatitis, were observed in half cows with follicular cysts, and liver UGT activity was lower than that in cows with normal estrus cycles. In addition, the liver UGT activity was significantly lower in dairy cows with follicular cysts without liver disorders than in dairy cows with normal estrous cycles. Therefore, the cows were divided into those with low, middle and high liver UGT activities, and liver disorder complication rates were investigated. The complication rate was significantly higher in the low- (78.1%) than in the middle- (22.2%) and high-level (8.3%) groups, suggesting that liver disorders are closely associated with the development of follicular cysts in dairy cows and that steroid hormone metabolism is delayed because of reduced liver UGT activity, resulting in follicular cyst formation. We conclude that reduced estradiol-17β glucuronidation in the liver and liver disorders are associated with follicular cyst occurrence in dairy cows. PMID:27666462

  12. Effect of niacin supplementation on rumen fermentation characteristics and nutrient flow at the duodenum in lactating dairy cows fed a diet with a negative rumen nitrogen balance.

    PubMed

    Aschemann, Martina; Lebzien, Peter; Hüther, Liane; Südekum, Karl-Heinz; Dänicke, Sven

    2012-08-01

    The aim of the present experiment was to ascertain if a daily niacin supplementation of 6 g/cow to lactating dairy cow diets can compensate for the decrease in rumen microbial fermentation due to a negative rumen nitrogen balance (RNB). A total of nine ruminally and duodenally fistulated lactating multiparous German Holstein cows was used. The diets consisted of 10 kg dry matter (DM) maize silage and 7 kg DM concentrate and differed as follows: (i) Diet RNB- (n = 6) with energy and utilisable crude protein (CP) at the duodenum (uCP) according to the average requirement of the animals, but with a negative RNB (-0.41 g N/MJ metabolisable energy [ME]); (ii) Diet RNB0 (n = 7) with energy, uCP, and RNB (0.08 g N/MJ ME) according to the average requirement of the animals; and (iii) Diet NA (nicotinic acid; n = 5), which was the same diet as RNB-, but supplemented with 6 g niacin/d. The negative RNB affected the rumen fermentation pattern and reduced ammonia content in rumen fluid and the daily duodenal flows of microbial CP (MP) and uCP. Niacin supplementation increased the apparent ruminal digestibility of neutral detergent fibre. The efficiency of microbial protein synthesis per unit of rumen degradable CP was higher, whereby the amount of MP reaching the duodenum was unaffected by niacin supplementation. The number of protozoa in rumen fluid was higher in NA treatment. The results indicated a more efficient use of rumen degradable N due to changes in the microbial population in the rumen when niacin was supplemented to diets deficient in RNB for lactating dairy cows.

  13. Prediction of digestibility and energy concentration of winter pasture forage and herbage of low-input grassland--a comparison of methods.

    PubMed

    Opitz v Boberfeld, W; Theobald, P C; Laser, H

    2003-06-01

    Regarding the estimation of the energy concentration or digestibility of herb-dominated forage and plant samples from winter pastures, it could be expected that the estimation is only reliable when in vitro methods with rumen fluid as inoculum (= gas production techniques) are used. For the verification of this thesis based on logical reflections, an in vitro-method with rumen fluid added as inoculum, as well as chemical, and enzymatic methods were applied under consideration of existing estimating functions. As a possible reason for the observed divergence of the methods, effects of fungal infections or, respectively, secondary compounds in herbs are discussed. At the present state of knowledge, it is adequate to estimate the energy concentration in vitro by gas tests, as far as fattening types like suckler cows and beef cattle are concerned, maybe in contrast to the forage evaluation for dairy cows.

  14. Digestion, milk production, milk composition, and blood composition of dairy cows fed whole flaxseed.

    PubMed

    Petit, Helene V

    2002-06-01

    A total of 90 lactating Holstein cows averaging 628 kg (SE = 8) of body weight (BW) were allotted at calving to 30 groups of three cows blocked for similar calving dates to determine the effects of feeding whole untreated flaxseed on milk production and composition, fatty acid composition of blood and milk, and digestibility, and to determine whether flaxseed could substitute for other sources of fat such as Megalac and micronized soybeans. Cows were fed a total mixed diet based on grass and corn silage and fat supplements for ad libitum intake. The experiment was carried out from calving up to wk 16 of lactation. Cows within each block were assigned to one of the three isonitrogenous, isoenergetic, and isolipidic supplements based on either whole flaxseed (FLA), Megalac (MEG), or micronized soybeans (SOY). Intake of dry matter and change in BW were similar among diets. Cows fed FLA had greater milk yield than those fed MEG (35.7 vs. 33.5 kg/d) and there was no difference between cows fed FLA and those fed SOY (34.4 kg/d). Fat percentage was higher in the milk of cows fed MEG (4.14%) than in the milk of those fed FLA (3.81%) or SOY (3.70%), but milk protein percentage was higher for cows fed FLA (2.98%) than for those fed MEG (2.86%) and SOY (2.87%). Digestibilities of acid detergent fiber, neutral detergent fiber, and ether extract were lower for cows fed FLA than for those fed SOY and MEG. Retention of N was similar among diets. Feeding FLA resulted in the lowest omega-6-to-omega-3-fatty-acids ratio, which would improve the nutritive value of milk from a human health point of view. The data suggest that micronized soybeans and Megalac can be completely substituted by whole untreated flaxseed as the fat source in the diet of early lactating cows without any adverse effect on production and that flaxseed increased milk protein percentage and its omega-6-to-omega-3-fatty-acids ratio.

  15. Black gram (Vigna Mungo L.) foliage supplementation to crossbred cows: effects on feed intake, nutrient digestibility and milk production

    PubMed Central

    Dey, Avijit; De, Partha Sarathi; Gangopadhyay, Prabir Kumar

    2017-01-01

    Objective An experiment was conducted to examine the effect of dietary supplementation of dried and ground foliage of black gram (Vigna mungo L.) on feed intake and utilization, and production performance of crossbred lactating cows. Methods Eighteen lactating crossbred (Bos taurus×Bos indicus) cows (body weight 330.93± 10.82 kg) at their second and mid lactation (milk yield 6.77±0.54 kg/d) were randomly divided into three groups of six each in a completely randomized block design. Three supplements were formulated by quantitatively replacing 0, 50, and 100 per cent of dietary wheat bran of concentrate mixture with dried and ground foliage of black gram. The designated supplement was fed to each group with basal diet of rice straw (ad libitum) to meet the requirements for maintenance and milk production. Daily feed intake and milk yield was recorded. A digestion trial was conducted to determine the total tract digestibility of various nutrients. Results The daily feed intake was increased (p<0.05) with the supplementation of black gram foliage. Although the digestibility of dry matter, organic matter, crude protein, and ether extract did not vary (p>0.05), the fibre digestibility was increased (p<0.05), which ultimately improved (p<0.05) the total digestible nutrients content of composite diet. Although, the average milk yield (kg/animal/d) and composition did not differ (p>0.05) among the groups, milk yield was increased by 10 per cent with total replacement of wheat bran in concentrate mixture with of black gram foliage. The economics of milk production calculated as feed cost per kg milk yield (INR 10.61 vs 7.98) was reduced by complete replacement of wheat bran with black gram foliage. Conclusion Black gram foliage could be used as complete replacement for wheat bran in concentrate mixture of dairy cows in formulating least cost ration for economic milk production in small holders’ animal production. PMID:27282971

  16. Integrating spot short-term measurements of carbon emissions and backward dietary energy partition calculations to estimate intake in lactating dairy cows fed ad libitum or restricted.

    PubMed

    Pereira, A B D; Utsumi, S A; Dorich, C D; Brito, A F

    2015-12-01

    The objective of this study was to use spot short-term measurements of CH4 (QCH4) and CO2 (QCO2) integrated with backward dietary energy partition calculations to estimate dry matter intake (DMI) in lactating dairy cows. Twelve multiparous cows averaging 173±37d in milk and 4 primiparous cows averaging 179±27d in milk were blocked by days in milk, parity, and DMI (as a percentage of body weight) and, within each block, randomly assigned to 1 of 2 treatments: ad libitum intake (AL) or restricted intake (RI=90% DMI) according to a crossover design. Each experimental period lasted 22d with 14d for treatments adaptation and 8d for data and sample collection. Diets contained (dry matter basis): 40% corn silage, 12% grass-legume haylage, and 48% concentrate. Spot short-term gas measurements were taken in 5-min sampling periods from 15 cows (1 cow refused sampling) using a portable, automated, open-circuit gas quantification system (GreenFeed, C-Lock Inc., Rapid City, SD) with intervals of 12h between the 2daily samples. Sampling points were advanced 2h from a day to the next to yield 16 gas samples per cow over 8d to account for diurnal variation in QCH4 and QCO2. The following equations were used sequentially to estimate DMI: (1) heat production (MJ/d)=(4.96 + 16.07 ÷ respiratory quotient) × QCO2; respiratory quotient=0.95; (2) metabolizable energy intake (MJ/d)=(heat production + milk energy) ± tissue energy balance; (3) digestible energy (DE) intake (MJ/d)=metabolizable energy + CH4 energy + urinary energy; (4) gross energy (GE) intake (MJ/d)=DE + [(DE ÷ in vitro true dry matter digestibility) - DE]; and (5) DMI (kg/d)=GE intake estimated ÷ diet GE concentration. Data were analyzed using the MIXED procedure of SAS (SAS Institute Inc., Cary, NC) and Fit Model procedure in JMP (α=0.05; SAS Institute Inc.). Cows significantly differed in DMI measured (23.8 vs. 22.4kg/d for AL and RI, respectively). Dry matter intake estimated using QCH4 and QCO2 coupled with dietary backward energy partition calculations (Equations 1 to 5 above) was highest in cows fed for AL (22.5 vs. 20.2kg/d). The resulting R(2) were 0.28 between DMI measured and DMI estimated by gaseous measurements, and 0.36 between DMI measured and DMI predicted by the National Research Council model (2001). Results showed that spot short-term measurements of QCH4 and QCO2 coupled with dietary backward estimations of energy partition underestimated DMI by 7.8%. However, the approach proposed herein was able to significantly discriminate differences in DMI between cows fed for AL or RI. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Effect of a single growth hormone (rbST) treatment at breeding on conception rates and pregnancy retention in dairy and beef cattle.

    PubMed

    Starbuck, Melanie J; Inskeep, E Keith; Dailey, Robert A

    2006-07-01

    Initiation of long-term treatment with rbST (Posilac, Monsanto, St. Louis, MO) coincident with first insemination increased pregnancy rates in dairy cattle, but neither the efficacy of using only the initial injection, nor its effects on retention of pregnancy are known. Lactating dairy cows, dairy heifers, and lactating beef cows were assigned at random to treatment (rbST) or control. Dairy cows, dairy heifers, and beef cows received 500 mg rbST (n = 48, 35, 137 inseminations, respectively) at artificial insemination or were left untreated (n = 62, 33, 130 inseminations, respectively). Pregnancy was diagnosed by ultrasonography at 28-36 days. Treatment with rbST at insemination improved conception rates in dairy cows (60.4% versus 40.3%; P < 0.05), but not in dairy heifers or beef cows. Conception rates did not differ in dairy cows at < or =100 days in milk (DIM), but were improved in cows treated with rbST after 100 DIM (64.3% versus 25.8%; P < 0.05). Retention of pregnancy to approximately 60 days and sizes of CL, diameter of follicles > or =5 mm, and crown-rump lengths of embryos were not affected by treatment. The second objective was to examine the effects of rbST at insemination on birth weight and post-natal calf growth in beef cows. However, birth and weaning weights of beef calves were not affected by treatment. In conclusion, a single treatment with rbST at insemination increased conception rates in dairy cows, specifically in those >100 DIM.

  18. A mechanistic model of small intestinal starch digestion and glucose uptake in the cow.

    PubMed

    Mills, J A N; France, J; Ellis, J L; Crompton, L A; Bannink, A; Hanigan, M D; Dijkstra, J

    2017-06-01

    The high contribution of postruminal starch digestion (up to 50%) to total-tract starch digestion on energy-dense, starch-rich diets demands that limitations to small intestinal starch digestion be identified. A mechanistic model of the small intestine was described and evaluated with regard to its ability to simulate observations from abomasal carbohydrate infusions in the dairy cow. The 7 state variables represent starch, oligosaccharide, glucose, and pancreatic amylase in the intestinal lumen, oligosaccharide and glucose in the unstirred water layer at the intestinal wall, and intracellular glucose of the enterocyte. Enzymatic hydrolysis of starch was modeled as a 2-stage process involving the activity of pancreatic amylase in the lumen and of oligosaccharidase at the brush border of the enterocyte confined within the unstirred water layer. The Na + -dependent glucose transport into the enterocyte was represented along with a facilitative glucose transporter 2 transport system on the basolateral membrane. The small intestine is subdivided into 3 main sections, representing the duodenum, jejunum, and ileum for parameterization. Further subsections are defined between which continual digesta flow is represented. The model predicted nonstructural carbohydrate disappearance in the small intestine for cattle unadapted to duodenal infusion with a coefficient of determination of 0.92 and a root mean square prediction error of 25.4%. Simulation of glucose disappearance for mature Holstein heifers adapted to various levels of duodenal glucose infusion yielded a coefficient of determination of 0.81 and a root mean square prediction error of 38.6%. Analysis of model behavior identified limitations to the efficiency of small intestinal starch digestion with high levels of duodenal starch flow. Limitations to individual processes, particularly starch digestion in the proximal section of the intestine, can create asynchrony between starch hydrolysis and glucose uptake capacity. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Effect of reduced ferulate-mediated lignin/arabinoxylan cross-linking in corn silage on feed intake, digestibility, and milk production.

    PubMed

    Jung, H G; Mertens, D R; Phillips, R L

    2011-10-01

    Cross-linking of lignin to arabinoxylan by ferulates limits in vitro rumen digestibility of grass cell walls. The effect of ferulate cross-linking on dry matter intake (DMI), milk production, and in vivo digestibility was investigated in ad libitum and restricted-intake digestion trials with lambs, and in a dairy cow performance trial using the low-ferulate sfe corn mutant. Silages of 5 inbred corn lines were fed: W23, 2 W23sfe lines (M04-4 and M04-21), B73, and B73bm3. As expected, the W23sfe silages contained fewer ferulate ether cross-links and B73bm3 silage had a lower lignin concentration than the respective genetic controls. Silages were fed as the sole ingredient to 4 lambs per silage treatment. Lambs were confined to metabolism crates and fed ad libitum for a 12-d adaptation period followed by a 5-d collection period of feed refusals and feces. Immediately following the ad libitum feeding trial, silage offered was limited to 2% of body weight. After a 2-d adaptation to restricted feeding, feed refusals and feces were collected for 5 d. Seventy Holstein cows were blocked by lactation, days in milk, body weight, and milk production and assigned to total mixed ration diets based on the 5 corn silages. Diets were fed for 28 d and data were collected on weekly DMI and milk production and composition. Fecal grab samples were collected during the last week of the lactation trial for estimation of feed digestibility using acid-insoluble ash as a marker. Silage, total mixed ration, feed refusals, and fecal samples were analyzed for crude protein, starch, neutral detergent fiber (NDF), cell wall polysaccharides, and lignin. The W23sfe silages resulted in lower DMI in the ad libitum trial than the W23 silage, but DMI did not differ in the restricted trial. No differences were observed for NDF or cell wall polysaccharide digestibility by lambs with restricted feeding, but the amount of NDF digested daily increased for lambs fed the M04-21 W23sfe silage ad libitum. Lambs were less selective against NDF and lignin when offered W23sfe silages. The B73bm3 silage did not affect DMI or digestibility of cell walls at the restricted feeding level, but total daily NDF digested was greater at ad libitum intake. Intake, milk production, and cell wall digestibility were greater for cows fed diets containing W23sfe silages than for those fed W23 silage. Although milk production was greater for the B73bm3 diet, DMI and cell wall digestibility were not altered. Cows were less selective against cell wall material when fed both W23sfe and B73bm3 silages. Reduced ferulate cross-linking in sfe corn silage is a new genetic mechanism for improving milk production. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Effects of corn-based reduced-starch diets using alternative carbohydrate sources on performance of lactating Holstein cows.

    PubMed

    Dann, H M; Fredin, S M; Cotanch, K W; Grant, R J; Kokko, C; Ji, P; Fujita, K

    2015-06-01

    Increases in grain prices have led to renewed interest in feeding reduced-starch diets to lactating dairy cows. An experiment was conducted to determine the effects of altering carbohydrate sources and reducing dietary starch on lactational performance, feeding behavior, and ruminal measures of Holstein dairy cows. Fifteen multiparous cows (6 ruminally cannulated) were blocked and assigned to 1 of 5 squares and used in a replicated 3×3 Latin square design with 21-d periods. Cows were fed 1 of 3 experimental diets: a control diet containing 20% brown midrib corn silage, 20% conventional corn silage, and 10% hay crop silage (CON); a reduced-starch high-forage diet containing 53% brown midrib corn silage and 10% hay crop silage (HFOR); and a reduced-starch diet containing the same forages as CON with partial replacement of corn meal by nonforage fiber sources (HNFFS). The CON diet contained (% of dry matter) 26.0% starch and 34.7% neutral detergent fiber (NDF), whereas the HFOR and HNFFS diets contained 21.4 or 21.3% starch and 38.3 or 38.0% NDF, respectively. Dry matter intake tended to be greater for cows fed the CON diet (28.2 kg/d) compared with those fed the HFOR diet (27.2 kg/d). Dry matter intake for cows fed the HNFFS diet was intermediate (27.7 kg/d). Milk yield was greater for cows fed the CON diet (51.6 kg/d) compared with those fed the HFOR diet (48.4 kg/d), but milk fat content tended to increase for cows fed the HFOR diet (3.98%) compared with those fed the CON diet (3.66%). Consequently, fat-corrected and solids-corrected milk yields were unaffected by dietary treatments. Total chewing, eating, and rumination times were similar across all dietary treatments. Rumination time per kilogram of DM was greatest for the HFOR diet, intermediate for the HNFFS diet, and least for the CON diet, whereas rumination time per kilogram of NDF was greatest for the CON diet and least for the HNFFS diet. Mean ruminal pH, NH3-N (mg/dL), and total volatile fatty acid concentrations (mM) were similar across all dietary treatments. Molar proportion of ruminal acetate (mol/100 mol) was increased for cows fed the HFOR diet compared with cows fed the CON diet. Microbial N yield measured by urinary purine derivatives was unaffected by dietary treatment. Reduced-starch diets containing greater amounts of high quality, highly digestible forage or nonforage fiber sources in place of corn meal resulted in similar fat-corrected or solids-corrected milk yield for high-producing dairy cows in the short term. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Dairy cows fed on tropical legume forages: effects on milk yield, nutrients use efficiency and profitability.

    PubMed

    Castro-Montoya, J M; García, R A; Ramos, R A; Flores, J M; Alas, E A; Corea, E E

    2018-04-01

    Two trials with multiparous dairy cows were conducted. Experiment 1 tested the effects of increasing forage proportion in the diet (500, 600, and 700 g/kg DM) when a mixed sorghum (Sorghum bicolor) and jackbean (Cannavalia ensiformis) silage was used as forage. Experiment 2 studied the substitution of sorghum silage and soybean meal by jackbean silage or fresh cowpea (Vigna unguiculata) forage in the diet. All diets were iso-energetic and iso-proteic. In each experiment, 30 cows were used and separated into three groups. In experiment 1, there were no differences in dry matter intake (DMI), milk yield (MY), or apparent total tract digestibility (aTTd) among the three diets, but milk fat content increased with increasing forage proportion, even though the similar neutral detergent fiber of all diets. Nitrogen use efficiency was highest in the diet containing 600 g forage/kg DM, and some evidence was observed for a better profitability with this forage proportion. In experiment 2, feeding legumes increased DMI despite no effects on aTTd. Milk yield increased in line with DMI, with a larger increase for the fresh cowpea. Nitrogen use efficiency and milk composition were not affected by the diets. The increased MY and lower feed costs increased the economic benefits when feeding legumes, particularly when feeding fresh cowpea. Feeding fresh cowpea or jackbean silage to dairy cows appears to be an alternative to soybean as protein source, ideally at a forage proportions of 600 g/kg DM, without altering milk yield and quality and increasing the farm profitability.

  2. Effects of dietary protein concentration and coconut oil supplementation on nitrogen utilization and production in dairy cows.

    PubMed

    Lee, C; Hristov, A N; Heyler, K S; Cassidy, T W; Long, M; Corl, B A; Karnati, S K R

    2011-11-01

    The objective of this study was to investigate the effect of metabolizable protein (MP) deficiency and coconut oil supplementation on N utilization and production in lactating dairy cows. The hypothesis of the study was that a decrease in ruminal protozoal counts with coconut oil would increase microbial protein synthesis in the rumen, thus compensating for potential MP deficiency. The experiment was conducted for 10 wk with 36 cows (13 primiparous and 23 multiparous), including 6 ruminally cannulated cows. The experimental period, 6 wk, was preceded by 2-wk adaptation and 2-wk covariate periods. Cows were blocked by parity, days in milk, milk yield, and rumen cannulation and randomly assigned to one of the following diets: a diet with a positive MP balance (+44 g/d) and 16.7% dietary crude protein (CP) concentration (AMP); a diet deficient in MP (-156 g/d) and 14.8% CP concentration (DMP); or DMP supplemented with approximately 500 g of coconut oil/head per day (DMPCO). Ruminal ammonia tended to be greater and plasma urea N (20.1, 12.8, and 13.1 mg/dL, for AMP, DMP, and DMPCO diets, respectively) and milk urea N (12.5, 8.3, and 9.5mg/dL, respectively) were greater for AMP compared with DMP and DMPCO. The DMPCO diet decreased total protozoa counts (by 60%) compared with DMP, but had no effect on the methanogens profile in the rumen. Total tract apparent digestibility of dry matter and CP was decreased by DMP compared with AMP. Fiber digestibility was lower for both DMP and DMPCO compared with AMP. Urinary N excretion was decreased (by 37%) by both DMP and DMPCO compared with AMP. The DMP and DMPCO diets resulted in greater milk N efficiency compared with AMP (32.0 and 35.1 vs. 27.6%, respectively). Milk yield was decreased by both DMP and DMPCO compared with AMP (36.2, 34.4, and 39.3 kg/d, respectively) and coconut oil supplementation suppressed feed intake and caused milk fat depression. Coconut oil supplementation decreased short-chain fatty acid (C4:0, C6:0, and C8:0) concentration and increased medium-chain (C12:0 and C14:0) and total trans fatty acids in milk. Overall, the MP-deficient diets decreased N losses, but could not sustain milk production in this study. Coconut oil decreased feed intake and similar to DMP, suppressed fiber digestibility. Despite decreased protozoal counts, coconut oil had no effect on the methanogen population in the rumen. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Brown midrib corn silage fed during the peripartal period increased intake and resulted in a persistent increase in milk solids yield of Holstein cows.

    PubMed

    Stone, W C; Chase, L E; Overton, T R; Nestor, K E

    2012-11-01

    The objective of this study was to evaluate transition cow performance when brown midrib corn silage (BMRCS; Mycogen F2F444) was included in the diet during the transition period, and to determine if any production response occurring during the first 3 wk of lactation would persist from wk 4 to 15 when a common diet was fed. Seventy Holstein dairy cows were blocked by parity (either second or third and greater) and calving date and randomly assigned to the CCS (a mixture of varieties of conventional corn silage) or BMRCS treatment. Diets were formulated with the objective of keeping all ration parameters the same, with the exception of neutral detergent fiber digestibility. Neutral detergent fiber digestibility values (30 h) for CCS and BMRCS averaged 56.8 and 73.8%, respectively. Prepartum rations contained 47% corn silage, 18% wheat straw, 7% alfalfa haylage, and 28% concentrate, and averaged 45% neutral detergent fiber (DM basis). Postpartum rations contained 40% corn silage, 15% alfalfa haylage, 1% straw, and 44% concentrate. Milk weights (3×/d) and dry matter intake were recorded daily, and milk composition was measured weekly. Cows fed BMRCS had higher dry matter intake during the 2-wk period before calving (14.3 vs. 13.2 kg/d) and the 3-wk period after calving (20.1 vs. 18.1 kg/d) than did cows fed CCS. Yields of milk, solids, and lactose were increased, whereas a trend was observed for a reduction in somatic cell counts and linear scores in the postpartum period for cows receiving BMRCS during the transition. A significant carryover effect of BMRCS was observed on production from wk 4 to 15 when the common diet was fed, with yields of protein (1.36 vs. 1.30 kg/d), lactose (2.24 vs. 2.12 kg/d), and solids (5.82 vs. 5.51 kg/d) increasing significantly, and yields of fat-corrected milk, energy-corrected milk, and fat tending to increase during this period for cows that had been fed BMRCS. The increased intakes during the last 2 wk of the prepartum period in the BMRCS treatment were likely because of a reduction in fill, whereas the increased intakes in the postpartum period in cows fed the BMRCS were either because of the higher intakes during the prepartum period or because of a reduction in fill limitations in the postpartum period. The carryover response in wk 4 to 15 may have resulted from cows that received BMRCS during the transition period being in a more positive nutrient balance than cows fed CCS. The results of this study indicate the importance that digestible NDF can have in transition diets and the long-term production responses that can occur when intake is increased in the transition period. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Assessing the impact of rumen microbial communities on methane emissions and production traits in Holstein cows in a tropical climate.

    PubMed

    Cunha, Camila S; Veloso, Cristina M; Marcondes, Marcos I; Mantovani, Hilario C; Tomich, Thierry R; Pereira, Luiz Gustavo R; Ferreira, Matheus F L; Dill-McFarland, Kimberly A; Suen, Garret

    2017-12-01

    The evaluation of how the gut microbiota affects both methane emissions and animal production is necessary in order to achieve methane mitigation without production losses. Toward this goal, the aim of this study was to correlate the rumen microbial communities (bacteria, archaea, and fungi) of high (HP), medium (MP), and low milk producing (LP), as well as dry (DC), Holstein dairy cows in an actual tropical production system with methane emissions and animal production traits. Overall, DC cows emitted more methane, followed by MP, HP and LP cows, although HP and LP cow emissions were similar. Using next-generation sequencing, it was found that bacteria affiliated with Christensenellaceae, Mogibacteriaceae, S24-7, Butyrivibrio, Schwartzia, and Treponema were negatively correlated with methane emissions and showed positive correlations with digestible dry matter intake (dDMI) and digestible organic matter intake (dOMI). Similar findings were observed for archaea in the genus Methanosphaera. The bacterial groups Coriobacteriaceae, RFP12, and Clostridium were negatively correlated with methane, but did not correlate with dDMI and dOMI. For anaerobic fungal communities, no significant correlations with methane or animal production traits were found. Based on these findings, it is suggested that manipulation of the abundances of these microbial taxa may be useful for modulating methane emissions without negatively affecting animal production. Copyright © 2017 Elsevier GmbH. All rights reserved.

  5. Fresh-cow handling practices and methods for identification of health disorders on 45 dairy farms in California.

    PubMed

    Espadamala, A; Pallarés, P; Lago, A; Silva-Del-Río, N

    2016-11-01

    The aim of the present study was to describe fresh-cow handling practices and techniques used during fresh cow evaluations to identify postpartum health disorders on 45 dairy farms in California ranging from 450 to 9,500 cows. Fresh cow practices were surveyed regarding (a) grouping and housing, (b) scheduling and work organization, (c) screening for health disorders, and (d) physical examination methods. Information was collected based on cow-side observations and responses from fresh cow evaluators. Cows were housed in the fresh cow pen for 3 to 14 (20%), 15 to 30 (49%), or >31 (31%) d in milk. Fresh cow evaluations were performed daily (78%), 6 times a week (11%), 2 to 5 times a week (9%), or were not routinely performed (2%). There was significant correlation between the duration of fresh cow evaluations and the number of cows housed in the fresh pen. Across all farms, the duration of evaluations ranged from 5 to 240 min, with an average of 16 s spent per cow. During fresh cow checks, evaluators always looked for abnormal vaginal discharge, retained fetal membranes, and down cows. Dairies evaluated appetite based on rumen fill (11%), reduction of feed in the feed bunk (20%), rumination sensors (2%), or a combination of these (29%). Milk yield was evaluated based on udder fill at fresh cow checks (40%), milk flow during milking (11%), milk yield records collected by milk meters (2%), or a combination of udder fill and milk meters (5%). Depressed attitude was evaluated on 64% of the dairies. Health-monitoring exams for early detection of metritis were implemented on 42% of the dairies based on rectal examination (13%), rectal temperature (22%), or both (7%). Dairies implementing health-monitoring exams took longer to perform fresh cow evaluations. Physical examination methods such as rectal examination, auscultation, rectal temperature evaluation, and cow-side ketosis tests were used on 76, 67, 38, and 9% of dairies, respectively. Across dairies, we found large variation in signs of health disorders screened and how those signs were evaluated. Fresh cows were primarily evaluated based on nonspecific and subjective observations during screening. Future research efforts should focus on developing and validating scoring systems to more objectively identify health disorders in postpartum cows. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. The effect of temperate or tropical pasture grazing state and grain-based concentrate allocation on dairy cattle production and behavior.

    PubMed

    Clark, C E F; Kaur, R; Millapan, L O; Golder, H M; Thomson, P C; Horadagoda, A; Islam, M R; Kerrisk, K L; Garcia, S C

    2018-06-01

    Grain-based concentrate (GBC) supplement is of high cost to dairy farmers as a feed source as opposed to grazed pasture. Milk production response to GBC is affected by the composition and nutritive value of the remainder of the diet, animal factors, and interactions between forage type and level of GBC. In grazing systems, dairy cattle encounter contrasting pasture states, primarily because the social structure of the herd affects the timing of when each animal accesses a paddock after milking as a result of a relatively consistent cow milking order. However, the effect of feed management, namely pasture state and GBC allocation, on dairy cattle production and behavior is unknown. We examined the effect of varying GBC allocation for dairy cattle grazing differing states of kikuyu grass (Pennisetum clandestinum, a tropical pasture species; experiment 1) and annual ryegrass (Lolium multiflorum L., a temperate pasture species; experiment 2) on dry matter intake, milk production and composition, and grazing behavior. For each experiment, 90 lactating dairy cattle were randomly allocated to 2 consistent (fresh-fresh and depleted-depleted) and 2 inconsistent (fresh-depleted and depleted-fresh pasture state treatments (defined as sequences of pasture state allocation for the morning and afternoon grazing events) and 3 GBC treatments [2.7, 5.4, and 8.1 kg of dry matter (DM)/cow per day], giving 12 treatment combinations for each experiment. The duration of each experiment was 14 d, with the first 7 d used as adaptation to treatment. In each experiment, 3 cattle were selected from each of the 12 pasture type × GBC treatment groups within the experimental herd to determine herbage intake and total DM digestibility using the n-alkanes method (n = 36). There was no interaction between kikuyu grass or ryegrass pasture state and GBC level for intake, digestibility, or milk yield or components. Dairy cattle offered fresh-fresh and depleted-fresh ryegrass produced 9% more milk yield, in line with greater pasture intakes, compared with fresh-depleted and depleted-depleted pasture states. Dairy cattle offered fresh-fresh kikuyu grass had 8% more milk yield and 14% more milk protein yield than other pastures states, but there was no effect of pasture state on milk composition. Milk yield increased with GBC level for both pasture species (∼0.7-0.8 kg of milk/kg of DM GBC) as GBC level increased from 2.5 to 5.4 kg of DM/cow per day. There was a poor response (0.3 kg of milk/kg of DM GBC), and no response, when GBC levels increased from 5.4 to 8.1 kg of DM/cow per day for kikuyu grass and ryegrass, respectively, in line with pasture DMD. Time spent grazing, lying, and ruminating were not associated with kikuyu grass pasture state, GBC, or their interaction. Despite this, there was a linear increase in grazing time in the afternoon coinciding with a linear decrease in lying and rumination time for both kikuyu grass and ryegrass pasture. Together these findings reveal the effect of pasture state and GBC allocation on dairy cattle production and behavior. Tailoring GBC allocation to the state of pasture accessed by cattle appears unwarranted, but there is an opportunity to alter the timing of pasture access to increase herd-level milk production efficiency. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. Molecular spectroscopic features of protein in newly developed chickpea: Relationship with protein chemical profile and metabolism in the rumen and intestine of dairy cows.

    PubMed

    Sun, Baoli; Khan, Nazir Ahmad; Yu, Peiqiang

    2018-05-05

    The first aim of this study was to investigate the nutritional value of crude protein (CP) in CDC [Crop Development Centre (CDC), University of Saskatchewan] chickpea varieties (Frontier kabuli and Corinne desi) in comparison with a CDC barley variety in terms of: 1) CP chemical profile and subfractions; (2) in situ rumen degradation kinetics and intestinal digestibility of CP; 2) metabolizable protein (MP) supply to dairy cows; and (3) protein molecular structure characteristics using advanced molecular spectroscopy. The second aim was to quantify the relationship between protein molecular spectral characteristics and CP subfractions, in situ rumen CP degradation characteristics, intestinal digestibility of CP, and MP supply to dairy cows. Samples (n=4) of each variety, from two consecutive years were analyzed. Chickpeas had higher (P<0.01) CP content (21.71-22.11 vs 12.96% DM), with higher (P<0.05) soluble CP subfraction (59.07-70.27 vs 26.18% CP), and in situ soluble (23.44-25.85 vs 1.30% CP) and rumen degradable (RDP; 72.23-72.57 vs 58.48% CP) fractions than barley. The potentially slowly rumen degradable (D; 74.14-76.56 vs 93.31% CP) and undegradable (RUP; 27.43-27.66 vs 41.52% CP) fractions were lower (P<0.01) in the chickpeas than barley. The effective degradability ratio of N to organic matter (OM) (36.07-38.44gN/kg OM) of the chickpeas was higher than the optimal for achieving optimum microbial CP (MCP) synthesis. The truly digested MCP (64.94-66.43 vs. 41.43g/kg DM); MP (81.10-83.67 vs 61.0g/kg DM) feed milk value (1.64-1.70 vs 1.24) was higher in the chickpeas than barley grain. The chickpeas had higher (P<0.05) amide I and II peaks area and height, and α-helix and β-sheet peaks height than barley. Multivariate analysis showed that protein molecular spectral data of chickpeas can be distinguished from the barley. The two chickpeas did not differ in CP content, and any of the measured in situ degradation and molecular spectral characteristics of protein. The content of RUP was positively (r=0.94, P<0.01) and that of RDP was negatively (r=-0.94, P<0.01) correlated with amide I/II area ratio. The regression analysis showed that the content of CP (R2=0.91) D-fraction (R 2 =0.82), RDP (R 2 =0.77), RUP (R 2 =0.77), TDP (R 2 =0.98), MP (R 2 =0.80), and FMV (R 2 =0.80) can be predicted from amide II peak height. Despite extensive ruminal degradation, chickpea is a good source of MP for dairy cows, and molecular spectroscopy can be used to rapidly characterize feed protein molecular structures and predict their digestibility and nutritive value. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  8. 21 CFR 522.2112 - Sometribove zinc suspension.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) Indications for use. To increase production of marketable milk in healthy lactating dairy cows. (3) Limitations. Use in lactating dairy cows only. Safety to replacement bulls born to treated dairy cows has not.... Use may reduce pregnancy rates and increase days open. Treated cows are at an increased risk for...

  9. 21 CFR 522.2112 - Sometribove zinc suspension.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) Indications for use. To increase production of marketable milk in healthy lactating dairy cows. (3) Limitations. Use in lactating dairy cows only. Safety to replacement bulls born to treated dairy cows has not.... Use may reduce pregnancy rates and increase days open. Treated cows are at an increased risk for...

  10. 21 CFR 522.2112 - Sometribove zinc suspension.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) Indications for use. To increase production of marketable milk in healthy lactating dairy cows. (3) Limitations. Use in lactating dairy cows only. Safety to replacement bulls born to treated dairy cows has not.... Use may reduce pregnancy rates and increase days open. Treated cows are at an increased risk for...

  11. 21 CFR 522.2112 - Sometribove zinc suspension.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Indications for use. To increase production of marketable milk in healthy lactating dairy cows. (3) Limitations. Use in lactating dairy cows only. Safety to replacement bulls born to treated dairy cows has not.... Use may reduce pregnancy rates and increase days open. Treated cows are at an increased risk for...

  12. Reducing crude protein and rumen degradable protein with a constant concentration of rumen undegradable protein in the diet of dairy cows: Production performance, nutrient digestibility, nitrogen efficiency, and blood metabolites.

    PubMed

    Bahrami-Yekdangi, M; Ghorbani, G R; Khorvash, M; Khan, M A; Ghaffari, M H

    2016-02-01

    The goals of ruminant protein nutrition are to provide adequate amounts of RDP for optimal ruminal efficiency and to obtain the desired animal productivity with a minimum amount of dietary CP. The aim of the present study was to examine effects of decreasing dietary protein by decreasing RDP with the optimum concentration of RUP on production performance, nutrient digestibility, N retention, rumen fermentation parameters, and blood metabolites in high-producing Holstein cows in early lactation. Nine multiparous lactating cows (second parities, averaging 50 ± 12 d in milk and milk yield of 48 ± 5 kg/d) were used in a triplicate 3 × 3 Latin square design with 3 rations: 1) a total mixed ration (TMR) containing 16.4% CP (10.9% RDP based on DM), 2) a TMR containing 15.6% CP (10% RDP), and 3) a TMR containing 14.8% CP (9.3% RDP). The level of RUP was constant at 5.5% DM across the treatments. All diets were calculated to supply a postruminal lysine to methionine ratio of about 3:1. Dry matter intake, milk yield and composition, 4% fat-corrected milk, and energy-corrected milk were not significantly affected by decreasing dietary CP and RDP levels. Cows fed 16.4% CP diets had greater ( < 0.01) CP and RDP intakes, which resulted in a trend toward greater concentrations of plasma urea N compared with other treatments. Daily N intake linearly decreased ( < 0.01) with decreasing dietary CP and RDP levels, whereas the intake of RUP and fecal N excretion (g/d) did not change. Apparent digestibility of nutrients, ruminal pH, and NH-N concentration were not affected with decreasing dietary CP and RDP levels. Apparent N efficiency increased, and RDP N intake and predicted urine N output decreased with decreased concentration of dietary CP and RDP in the diets ( < 0.01). Blood metabolites were not affected by treatments. In conclusion, to improve the efficiency of N utilization by early-lactation dairy cows, 9.3% RDP in rations provides adequate protein to optimize milk production while minimizing N excretion in urine when the amounts of lysine and methionine and the lysine to methionine ratio are balanced with sufficient dietary RUP.

  13. Effects of decreasing metabolizable protein and rumen-undegradable protein on milk production and composition and blood metabolites of Holstein dairy cows in early lactation.

    PubMed

    Bahrami-Yekdangi, H; Khorvash, M; Ghorbani, G R; Alikhani, M; Jahanian, R; Kamalian, E

    2014-01-01

    This study was conducted to evaluate the effects of decreasing dietary protein and rumen-undegradable protein (RUP) on production performance, nitrogen retention, and nutrient digestibility in high-producing Holstein cows in early lactation. Twelve multiparous Holstein lactating cows (2 lactations; 50 ± 7 d in milk; 47 kg/d of milk production) were used in a Latin square design with 4 treatments and 3 replicates (cows). Treatments 1 to 4 consisted of diets containing 18, 17.2, 16.4, and 15.6% crude protein (CP), respectively, with the 18% CP diet considered the control group. Rumen-degradable protein levels were constant across the treatments (approximately 10.9% on a dry matter basis), whereas RUP was gradually decreased. All diets were calculated to supply a postruminal Lys:Met ratio of about 3:1. Dietary CP had no significant effects on milk production or milk composition. In fact, 16.4% dietary CP compared with 18% dietary CP led to higher milk production; however, this effect was not significant. Feed intake was higher for 16.4% CP than for 18% CP (25.7 vs. 24.3 kg/d). Control cows had greater CP and RUP intakes, which resulted in higher concentrations of plasma urea nitrogen and milk urea nitrogen; cows receiving 16.4 and 15.6% CP, respectively, exhibited lower concentrations of milk urea nitrogen (15.2 and 15.1 vs. 17.3 mg/dL). The control diet had a significant effect on predicted urinary N. Higher CP digestibility was recorded for 18% CP compared with the other diets. Decreasing CP and RUP to 15.6 and 4.6% of dietary dry matter, respectively, had no negative effects on milk production or composition when the amounts of Lys and Met and the Lys:Met ratio were balanced. Furthermore, decreasing CP and RUP to 16.4 and 5.4%, respectively, increased dry matter intake. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Influence of calcium and phosphorus feeding on markers of bone metabolism in transition cows.

    PubMed

    Moreira, V R; Zeringue, L K; Williams, C C; Leonardi, C; McCormick, M E

    2009-10-01

    A study was carried out to verify the effect of Ca and P levels on production, digestibility, and serum bone metabolism biomarkers in dairy cows. Fifty-two nonlactating multiparous cows (>or=3 lactations) were confined in a free-stall barn approximately 20 d before calving. A standard close-up diet was fed to cows once daily until d 2 postpartum. Cows were randomly assigned to 1 of 4 dietary treatments arranged in a 2 x 2 factorial approach averaging 0.64% Ca for high Ca (HCa), 0.46% Ca for low Ca (LCa), 0.47% P for high P (HP), and 0.38% P for low P (LP) on a dry matter basis. Experimental diets were fed twice daily from 3 d in milk (DIM) until 31 DIM. Intake and milk yield were recorded daily. Milk samples were collected on d 28, 29, and 30 postpartum for components analyses. Blood samples were drawn 10 d before expected calving, at calving, and at 15 and 30 DIM for serum analyses of osteocalcin, a biomarker of bone accretion, and pyridinoline, a biomarker of bone resorption. Total fecal collection was conducted when cows in a block averaged 20 DIM. Intake and production traits were not significantly affected by any of the dietary treatments. Cows averaged nearly 21 kg/d dry matter intake and 44 kg/d milk yield from 6 to 31 DIM. There were no significant differences across treatments in body weight or body condition score loss. Phosphorus intake, P fecal output, P digestibility, and P apparent absorption were affected by dietary P content. Calcium intake was higher with HCa, but Ca fecal output, digestibility, and apparent absorption showed an interaction between dietary Ca and dietary P. Calcium fecal output was 100.6 g/d for cows fed HCaHP, intermediate for cows on the HCaLP diet (89 g/d), and similar among cows fed the 2 LCa diets (70 g/d with LCaHP and 75 with LCaLP). There was no significant effect of Ca or P on osteocalcin measurements. Pyridinoline concentrations were affected by dietary Ca levels and tended to have a significant dietary Ca x dietary P interaction. Phosphorus apparent digestibility occurred independently of dietary Ca levels. Results of this study suggest that more bone was mobilized in cows fed LCa diets, but excess dietary P caused greater and prolonged bone mobilization regardless of dietary Ca content.

  15. Molecular insights into the mechanisms of liver-associated diseases in early-lactating dairy cows: hypothetical role of endoplasmic reticulum stress.

    PubMed

    Ringseis, R; Gessner, D K; Eder, K

    2015-08-01

    The transition period represents the most critical period in the productive life of high-yielding dairy cows due to both metabolic and inflammatory stimuli, which challenge the liver and predispose dairy cows to develop liver-associated diseases such as fatty liver and ketosis. Despite the fact that all high-yielding dairy cows are affected by marked metabolic stress due to a severe negative energy balance (NEB) during early lactation, not all cows develop liver-associated diseases. Although the reason for this is largely unknown, this indicates that the capacity of the liver to cope with metabolic and inflammatory challenges varies between individual high-yielding dairy cows. Convincing evidence exists that endoplasmic reticulum (ER) stress plays a key role in the development of fatty liver, and it has been recently shown that ER stress occurs in the liver of high-yielding dairy cows. This indicates that ER stress may be involved in the development of liver-associated diseases in dairy cows. The present review shows that the liver of dairy cows during early lactation is exposed to several metabolic and inflammatory challenges, such as non-esterified fatty acids, tumour necrosis factor α, interleukin-1β, reactive oxygen species and lipopolysaccharides, which are known inducers of ER stress. Thus, ER stress may represent a molecular basis for fatty liver development and account for the frequent occurrence of fatty liver and ketosis in high-yielding dairy cows. Interindividual differences between dairy cows in the activation of hepatic stress response pathways, such as nuclear factor E2-related factor 2, which is activated during ER stress and reduces the sensitivity of tissues to oxidative and inflammatory damage, might provide an explanation at the molecular level for differences in the capacity to cope with pathological inflammatory challenges during early lactation and the susceptibility to develop liver-associated diseases between early-lactating dairy cows with similar NEB and milk yield. Journal of Animal Physiology and Animal Nutrition © 2014 Blackwell Verlag GmbH.

  16. Survey of transportation procedures, management practices, and health assessment related to quality, quantity, and value for market beef and dairy cows and bulls.

    PubMed

    Nicholson, J D W; Nicholson, K L; Frenzel, L L; Maddock, R J; Delmore, R J; Lawrence, T E; Henning, W R; Pringle, T D; Johnson, D D; Paschal, J C; Gill, R J; Cleere, J J; Carpenter, B B; Machen, R V; Banta, J P; Hale, D S; Griffin, D B; Savell, J W

    2013-10-01

    This survey consisted of data collected from 23 beef harvest plants to document transportation procedures, management practices, and health assessments of market beef and dairy cows and bulls (about n ≅ 7,000 animals). Gooseneck/bumper-pulled trailers were used more often to transport dairy cattle than beef cattle to market whereas tractor-trailers were used more often to transport beef cattle than dairy cattle. All loads (n = 103) met the American Meat Institute Foundation guidelines for spacing. Loads where more than 3% of the cattle slipped during unloading were observed in 27.3% of beef loads and 29.0% of the dairy loads. Beef loads had numerically greater usage of electrical prods (32.4%) versus dairy loads (15.4%) during unloading and were more likely to have a variety of driving aids used more aggressively on them. Fewer cattle had horns, brands, and mud/manure contamination on hides than in the previous survey in 1999. The predominant hide color for beef cows was black (44.2%) whereas the predominant color for dairy cows was the Holstein pattern (92.9%). Fewer cattle displayed evidence of bovine ocular neoplasia (2.9%) than in previous surveys in 1994 (8.5%) and 1999 (4.3%). Knots on live cattle were found less in the round (0.5%) and more in the shoulder region (4.6%) than in 1999 (1.4% and 0.4%, respectively). Dairy cows were more frequently lame in 2007 (48.7%) than 1999 (39.2%) whereas beef cows had numerically less lameness (16.3% vs. 26.6%, respectively). Most beef cows (62.3%) and dairy cows (68.9%) received midpoint body condition scores (3, 4, and 5 for beef; 2 and 3 for dairy). Beef cows had higher numerical percentages of no defects present (72.0%) versus dairy cows (63.0%) when evaluated for a variety of reproductive, health, or management conditions. Continued improvements in several key factors related to transportation, management, and health were observed in this survey, which could result in increased value in market beef and dairy cows and bulls.

  17. Automap User’s Guide 2013

    DTIC Science & Technology

    2013-06-03

    dairyFarm.txt Ted runs a dairy farm. He milks the cows , runs the office, and cleans the barn. 136 dairyFarmDeleteList.txt There are some...applying the delete list, the text appears in the display like this: Ted runs dairy farm. He milks cows , runs office, cleans ...in the file. dairyFarmMeta.csv Ted,agent runs,task dairy,resource farm,location He,agent milks ,task cows ,resource office,location cleans

  18. Varying type of forage, concentration of metabolizable protein, and source of carbohydrate affects nutrient digestibility and production by dairy cows.

    PubMed

    Weiss, W P; St-Pierre, N R; Willett, L B

    2009-11-01

    The effects of forage source, concentration of metabolizable protein (MP), type of carbohydrate, and their interactions on nutrient digestibility and production were evaluated using a central composite treatment design. All diets (dry basis) contained 50% forage that ranged from 25:75 to 75:25 alfalfa silage:corn silage. Rumen-degradable protein comprised 10.7% of the dry matter (DM) in all diets, but undegradable protein ranged from 4.1 to 7.1%, resulting in dietary MP concentrations of 8.8 to 12.0% of the DM. Dietary starch ranged from 22 to 30% of the DM with a concomitant decrease in neutral detergent fiber concentrations. A total of 15 diets were fed to 36 Holstein cows grouped in 6 blocks. Each block consisted of three 21-d periods, and each cow was assigned a unique sequence of 3 diets, resulting in 108 observations. Milk production and composition, feed intake, and digestibility of major nutrients (via total collection of feces and urine) were measured. Few significant interactions between main effects were observed. Starch concentration had only minor effects on digestibility and production. Replacing corn silage with alfalfa decreased digestibility of N but increased digestibility of neutral detergent fiber. Increasing the concentration of MP increased N digestibility. The concentration (Mcal/kg) of dietary digestible energy (DE) increased linearly as starch concentration increased (very small effect) and was affected by a forage by MP interaction. At low MP, high alfalfa reduced DE concentration, but at high MP, increasing alfalfa increased DE concentration. Increasing alfalfa increased DM and DE intakes, which increased yields of energy-corrected milk, protein, and fat. Increasing MP increased yields of energy-corrected milk and protein. The response in milk protein to changes in MP was much less than predicted using the National Research Council (2001) model.

  19. Effect of diet composition and incubation time on feed indigestible neutral detergent fiber concentration in dairy cows.

    PubMed

    Krizsan, S J; Huhtanen, P

    2013-03-01

    Indigestible neutral detergent fiber (NDF) predicts forage digestibility accurately and precisely when determined by a 288-h ruminal in situ incubation, and it is an important parameter in mechanistic rumen models. The long incubation time required is a disadvantage. Further, intrinsic cell wall characteristics of feeds should be determined under ideal conditions for fiber digestion. The objective of this study was to determine the effects of diet composition and rumen incubation time on the concentrations of indigestible NDF (iNDF) for a wide range of feeds in dairy cows. Additionally, predicted concentrations of unavailable NDF generated using the National Research Council (NRC) model and the Cornell Net Carbohydrate and Protein System (CNCPS) were evaluated. Indigestible NDF was evaluated in 18 feeds using 4 cows in a split-split plot design. Treatments were in a 3 × 3 factorial arrangement, consisting of different diets and incubation times. Diet composition was primarily varied by changing the level of concentrate supplementation between 190 (low), 421 (medium), and 625 (high)g/kg of diet dry matter (DM). Grass silage was used as the basal forage for all cows. The feeds were incubated for 144, 216, and 288 h. Indigestible NDF was determined from 2-g samples weighed into polyester bags with a pore size of 12 µm and a pore area equal to 6% of the total surface area, giving a sample size to surface ratio of 10mg/cm(2). Across all feeds, the measured iNDF concentrations ranged from 6 to 516 g/kg of DM. The feed iNDF concentration was not affected by the cow used, but diet composition had a significant effect. The mean measured iNDF concentrations for cows consuming low-, medium-, and high-concentrate diets were 178, 186, and 197 g/kg of DM, respectively. The incubation time also affected the feed iNDF concentrations, which averaged 199, 185, and 177 g/kg of DM for 144-, 216-, and 288-h incubations, respectively. We also observed significant interactions between incubation time and feed, and between diet composition and feed, with fiber-rich feeds being most sensitive to these factors. The evaluation of model predictions of unavailable NDF indicated poor precision with prediction errors of 56 (NRC) and 84 (CNCPS)g/kg of DM. Indigestible NDF should be determined based on 288-h ruminal in situ incubations in cows consuming diets with a low proportion of concentrate to represent the feed fraction that is unavailable to the animal. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Effects of bacterial direct-fed microbials on ruminal characteristics, methane emission, and milk fatty acid composition in cows fed high- or low-starch diets.

    PubMed

    Philippeau, C; Lettat, A; Martin, C; Silberberg, M; Morgavi, D P; Ferlay, A; Berger, C; Nozière, P

    2017-04-01

    This study investigated the effects of bacterial direct-fed microbials (DFM) on ruminal fermentation and microbial characteristics, methane (CH 4 ) emission, diet digestibility, and milk fatty acid (FA) composition in dairy cows fed diets formulated to induce different ruminal volatile fatty acid (VFA) profiles. Eight ruminally cannulated dairy cows were divided into 2 groups based on parity, days in milk, milk production, and body weight. Cows in each group were fed either a high-starch (38%, HS) or a low-starch (2%, LS) diet in a 55:45 forage-to-concentrate ratio on a dry matter (DM) basis. For each diet, cows were randomly assigned to 1 of 4 treatments in a Latin square design of (1) control (CON); (2) Propionibacterium P63 (P63); (3) P63 plus Lactobacillus plantarum 115 (P63+Lp); (4) P63 plus Lactobacillus rhamnosus 32 (P63+Lr). Strains of DFM were administered at 10 10 cfu/d. Methane emission (using the sulfur hexafluoride tracer technique), total-tract digestibility, dry matter intake, and milk production and composition were quantified in wk 3. Ruminal fermentation and microbial characteristics were measured in wk 4. Data were analyzed using the mixed procedure of SAS (SAS Institute Inc., Cary, NC). The 2 diets induced different ruminal VFA profiles, with a greater proportion of propionate at the expense of acetate and butyrate for the HS diet. Greater concentrations of total bacteria and selected bacterial species of methanogenic Archaea were reported for the HS diet, whereas the protozoa concentration in HS decreased. For both diets, bacterial DFM supplementation raised ruminal pH (+0.18 pH units, on average) compared with CON. Irrespective of diet, P63+Lp and P63+Lr increased ruminal cellulase activity (3.8-fold, on average) compared with CON, but this effect was not associated with variations in ruminal microbial numbers. Irrespective of diet, no effect of bacterial DFM on ruminal VFA was observed. For the LS diet, supplementing cows with P63+Lr tended to decrease CH 4 emission (26.5%, on average, when expressed per kilogram of milk or 4% fat-corrected milk). Only P63 supplementation to cows fed the HS diet affected the concentration of some milk FA, such as cis isomers of 18:1 and intermediates of ruminal biohydrogenation of polyunsaturated FA. Overall, bacterial DFM could be useful to stabilize ruminal pH. Their effects on CH 4 production mitigation and milk FA profile depended on DFM strain and diet and should be confirmed under a greater variation of dietary conditions. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Effect of dietary nitrate level on enteric methane production, hydrogen emission, rumen fermentation, and nutrient digestibility in dairy cows.

    PubMed

    Olijhoek, D W; Hellwing, A L F; Brask, M; Weisbjerg, M R; Højberg, O; Larsen, M K; Dijkstra, J; Erlandsen, E J; Lund, P

    2016-08-01

    Nitrate may lower methane production in ruminants by competing with methanogenesis for available hydrogen in the rumen. This study evaluated the effect of 4 levels of dietary nitrate addition on enteric methane production, hydrogen emission, feed intake, rumen fermentation, nutrient digestibility, microbial protein synthesis, and blood methemoglobin. In a 4×4 Latin square design 4 lactating Danish Holstein dairy cows fitted with rumen, duodenal, and ileal cannulas were assigned to 4 calcium ammonium nitrate addition levels: control, low, medium, and high [0, 5.3, 13.6, and 21.1g of nitrate/kg of dry matter (DM), respectively]. Diets were made isonitrogenous by replacing urea. Cows were fed ad libitum and, after a 6-d period of gradual introduction of nitrate, adapted to the corn-silage-based total mixed ration (forage:concentrate ratio 50:50 on DM basis) for 16d before sampling. Digesta content from duodenum, ileum, and feces, and rumen liquid were collected, after which methane production and hydrogen emissions were measured in respiration chambers. Methane production [L/kg of dry matter intake (DMI)] linearly decreased with increasing nitrate concentrations compared with the control, corresponding to a reduction of 6, 13, and 23% for the low, medium, and high diets, respectively. Methane production was lowered with apparent efficiencies (measured methane reduction relative to potential methane reduction) of 82.3, 71.9, and 79.4% for the low, medium, and high diets, respectively. Addition of nitrate increased hydrogen emissions (L/kg of DMI) quadratically by a factor of 2.5, 3.4, and 3.0 (as L/kg of DMI) for the low, medium, and high diets, respectively, compared with the control. Blood methemoglobin levels and nitrate concentrations in milk and urine increased with increasing nitrate intake, but did not constitute a threat for animal health and human food safety. Microbial crude protein synthesis and efficiency were unaffected. Total volatile fatty acid concentration and molar proportions of acetate, butyrate, and propionate were unaffected, whereas molar proportions of formate increased. Milk yield, milk composition, DMI and digestibility of DM, organic matter, crude protein, and neutral detergent fiber in rumen, small intestine, hindgut, and total tract were unaffected by addition of nitrate. In conclusion, nitrate lowered methane production linearly with minor effects on rumen fermentation and no effects on nutrient digestibility. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Contrasting effects of progesterone on fertility of dairy and beef cows.

    PubMed

    Stevenson, J S; Lamb, G C

    2016-07-01

    The role of progesterone in maintaining pregnancy is well known in the bovine. Subtle differences exist between dairy and beef cows because of differing concentrations of progesterone during recrudescence of postpartum estrous cycles, rate of follicular growth and maturation, proportions of 2- and 3-follicular wave cycles, and other effects on pregnancy outcomes per artificial insemination (P/AI). Because proportions of anovulatory cows before the onset of the artificial insemination (AI) period are greater and more variable in beef (usually ranging from 30 to 70%) than dairy (25%) cows, AI programs were developed to accommodate anovulatory and cycling beef cows enrolled therein. Incorporating a progestin as part of an AI program in beef cows improved P/AI by reducing the proportion of cows having premature luteal regression and short post-AI luteal phases. In both genotypes, prolonged dominant follicle growth in a reduced progesterone milieu resulted in increased (1) LH pulses, (2) preovulatory follicle diameter, and (3) concentrations of estradiol and a subsequently larger corpora lutea (CL). In contrast, the progesterone milieu during growth of the ovulatory follicle in an ovulation control program does not seem to affect subsequent P/AI in beef cows, whereas in dairy cows follicle development in an elevated compared with a low progesterone environment increases P/AI. Progesterone status in beef cows at the onset of ovulation synchronization is not related to P/AI in multiparous cows, whereas P/AI was suppressed in primiparous cows that began a timed AI program in a low-progesterone environment. In timed AI programs, elevated concentrations of progesterone just before PGF2α and reduced concentrations at AI are critical to maximizing subsequent P/AI in dairy cows, but seemingly much less important in beef cows. By inducing ancillary CL and increasing concentrations of progesterone, human chorionic gonadotropin may increase P/AI when administered to beef cows 7d after AI or at embryo transfer, and its success seems to depend on induction of ancillary CL, whereas in dairy cows increased fertility was detected in cows with multiple CL, human chorionic gonadotropin-enhanced progesterone from original CL, or both. Pregnancy losses after AI are less frequent in beef cows and are not associated with pre-AI progesterone or cycling status, whereas losses in dairy cows are inversely related to progesterone and adversely affected in anovular dairy cows. Genotype and nutritional management likely influence several physiological differences including circulating concentrations of progesterone and responses to supplemental progesterone. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Study on Intelligent Multi-concentrates Feeding System for Dairy Cow

    NASA Astrophysics Data System (ADS)

    Yan, Yinfa; Wang, Ranran; Song, Zhanhua; Yan, Shitao; Li, Fa-De

    To implement precision feeding for dairy cow, an intelligent multi-concentrates feeding system was developed. The system consists of two parts, one is precision ingredients control subsystem, the other is multi-concentrates discharge subsystem. The former controls the latter with 4 stepper motors. The precision ingredients control subsystem was designed based on Samsung S3C2440 ARM9 microprocessor and WinCE5.0 embedded operating system. The feeding system identifies the dairy cow with passive transponder using RFID (Radio frequency identification) reader. According to the differences of based diet intake and individual dairy cow milk yield, the system can automatically and quantificationally discharge 4 kinds of different concentrates on the basis of the cow identification ID. The intelligent multi-concentrates feeding system for dairy cow has been designed and implemented. According to the experiment results, the concentrate feeding error is less than 5%, the cow inditification delay time is less than 0.5s and the cow inditification error rate is less than 0.01%.

  4. Effect of Heating Method on Alteration of Protein Molecular Structure in Flaxseed: Relationship with Changes in Protein Subfraction Profile and Digestion in Dairy Cows.

    PubMed

    Ahmad Khan, Nazir; Booker, Helen; Yu, Peiqiang

    2015-02-04

    This study evaluated the effect of heating methods on alteration of protein molecular structure in flaxseed (Linum usitatissimum L.) in relation to changes in protein subfraction profile and digestion in dairy cows. Seeds from two flaxseed varieties, sampled from two replicate plots at two locations, were evaluated. The seeds were either maintained in their raw state or heated in an air-draft oven (dry heating) or autoclave (moist heating) for 60 min at 120 °C or by microwave irradiation (MIR) for 5 min. Compared to raw seeds, moist heating decreased (P < 0.05) soluble protein (SP) content [56.5 ± 5.55 to 25.9 ± 6.16% crude protein (CP)] and increased (P < 0.05) rumen undegraded protein (RUP) content (36.0 ± 5.19 to 46.9 ± 2.72% CP) and intestinal digestibility of RUP (61.0 ± 2.28 to 63.8 ± 2.67% RUP). Dry heating did not alter (P > 0.05) the protein subfraction profile and rumen degradation kinetics, whereas MIR increased (P < 0.05) the RUP content from 36.0 ± 5.19 to 40.4 ± 4.67% CP. The MIR and dry heating did not alter (P > 0.05) the amide I to amide II ratio, but moist heating decreased (P < 0.05) both the amide I to amide II ratio and α-helix-to-β-sheet ratio. Regression equations based on protein molecular spectral intensities provided high prediction power for estimation of heat-induced changes in SP (R 2 = 0.62), RUP (R 2 = 0.71), and intestinal digestibility of RUP (R 2 = 0.72). Overall, heat-induced changes in protein nutritive value and digestion were strongly associated with heat-induced alteration in protein molecular structures.

  5. Interaction of Technology Adoption Constraints and Multi-level Policy Coherence at the Energy-Food Nexus

    NASA Astrophysics Data System (ADS)

    Gerst, M.; Cox, M. E.; Laser, M.; Locke, K. A.; Kapuscinski, A. R.

    2017-12-01

    Policy- and decision-making at the food-energy-water (FEW) nexus entails additional complexities due to the multi-objective nature of FEW socio-technical systems: policies and decisions meant to improve one facet of the nexus might be less beneficial, or even detrimental, to achieving goals for other facets. In addition, implementing policies and decisions may be more difficult due to increasing coordination required among stakeholders across each nexus facet. We highlight these issues in an economic, material/energy flow, and institutional assessment of dairy farms that produce power from anaerobic digestion of cow manure. This socio-technical system is an example of an integrated food-energy system (IFES), which co-produces food and energy. In the case of dairy farms, water is also a significant consideration because cow manure, if improperly managed, can negatively impact water bodies. Our assessment asks the questions (i) of whether or not adopting an IFES improves farm resilience under potential economic and environment futures and (ii) how decisions, policies, and information can best be tailored to the FEW nexus. Our study consists of semi-structured interviews of 60 farms split between the US states of New York and Vermont, both of which have enacted policies to encourage digester adoption. Each interview asks farmers about their material and energy flows, costs, and decision-making process for adopting (or not) an anaerobic digester. In addition, farmers are asked questions about challenges and barriers they might have faced and future drivers of change. Preliminary results highlight important interactions between policy and decision-making. Foremost, an analysis of policy cohesion shows that environmental objectives cross sectors and governance levels, as state-level greenhouse gas mitigation policies interact with federal-level nutrient management policies. This form of potential policy incoherence may introduce additional problems that hinder digester adoption and operation because technology options might be constrained and information needs may be too great for farmer's to consider adopting a digester.

  6. Plasma-based proteomics reveals immune response, complement and coagulation cascades pathway shifts in heat-stressed lactating dairy cows.

    PubMed

    Min, Li; Cheng, Jianbo; Zhao, Shengguo; Tian, He; Zhang, Yangdong; Li, Songli; Yang, Hongjian; Zheng, Nan; Wang, Jiaqi

    2016-09-02

    Heat stress (HS) has an enormous economic impact on the dairy industry. In recent years, many researchers have investigated changes in the gene expression and metabolomics profiles in dairy cows caused by HS. However, the proteomics profiles of heat-stressed dairy cows have not yet been completely elucidated. We compared plasma proteomics from HS-free and heat-stressed dairy cows using an iTRAQ labeling approach. After the depletion of high abundant proteins in the plasma, 1472 proteins were identified. Of these, 85 proteins were differentially abundant in cows exposed to HS relative to HS-free. Database searches combined with GO and KEGG pathway enrichment analyses revealed that many components of the complement and coagulation cascades were altered in heat-stressed cows compared with HS-free cows. Of these, many factors in the complement system (including complement components C1, C3, C5, C6, C7, C8, and C9, complement factor B, and factor H) were down-regulated by HS, while components of the coagulation system (including coagulation factors, vitamin K-dependent proteins, and fibrinogens) were up-regulated by HS. In conclusion, our results indicate that HS decreases plasma levels of complement system proteins, suggesting that immune function is impaired in dairy cows exposed to HS. Though many aspects of heat stress (HS) have been extensively researched, relatively little is known about the proteomics profile changes that occur during heat exposure. In this work, we employed a proteomics approach to investigate differential abundance of plasma proteins in HS-free and heat-stressed dairy cows. Database searches combined with GO and KEGG pathway enrichment analyses revealed that HS resulted in a decrease in complement components, suggesting that heat-stressed dairy cows have impaired immune function. In addition, through integrative analyses of proteomics and previous metabolomics, we showed enhanced glycolysis, lipid metabolic pathway shifts, and nitrogen repartitioning in dairy cows exposed to HS. Our findings expand our current knowledge on the effects of HS on plasma proteomics in dairy cows and offer a new perspective for future research. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Validation of an approach to predict total-tract fiber digestibility using a standardized in vitro technique for different diets fed to high-producing dairy cows.

    PubMed

    Lopes, F; Ruh, K; Combs, D K

    2015-04-01

    The experimental objective was to validate an in vitro model to predict total-tract neutral detergent fiber (NDF) digestibility in dairy cattle. Twenty-one diets from 7 studies conducted at University of Wisconsin-Madison were analyzed for in vitro fiber digestibility. Forages varied among diets (corn, alfalfa, tall and meadow fescue, and wheat straw silages) and nutrient composition (ranges: NDF = 22.5 to 33.8%; crude protein = 15.8 to 18.9%; nonfiber carbohydrates = 38.0 to 51.0%). Total-tract NDF digestibility (TTNDFD) observed in in vivo trials was determined using different markers as described in the individual studies. The in vitro TTNDFD model predicted total-tract fiber digestibility from the proportion of total NDF potentially digestible (pdNDF), rate of pdNDF degradation, and rate of passage of pdNDF. The model predicted TTNDFD similar to in vivo measurements. The relationship between TTNDFD measured in vivo and TTNDFD predicted by the in vitro assay was significant (R(2) = 0.68). The relationship between in vitro 30-h NDF digestibility values and in vivo total-tract NDF digestibility values was not significant, whereas in vitro 48-h NDF digestibility values were correlated (R(2) = 0.30) with in vivo TTNDFD measurements. Indigestible NDF (iNDF) showed a negative relationship (R(2) = 0.40) with TTNDFD in vivo. Each 1-percentage-unit increase of iNDF resulted in a decrease of 0.96 percentage units of total-tract NDF digestibility; however, iNDF by itself was not a good predictor of TTNDFD because of the difference among the means. This study showed that an in vitro TTNDFD model that uses iNDF, pdNDF, and rates of pdNDF digestion and passage can predict (R(2) = 0.68) total-tract NDF digestibility. Most importantly, we demonstrated the ability to predict total-tract fiber digestibility from a model based on in vitro NDF degradation, which could improve our ability to optimize forage utilization and milk production. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. The influence of grass silage-to-maize silage ratio and concentrate composition on methane emissions, performance and milk composition of dairy cows.

    PubMed

    Hart, K J; Huntington, J A; Wilkinson, R G; Bartram, C G; Sinclair, L A

    2015-06-01

    It is well-established that altering the proportion of starch and fibre in ruminant diets can alter ruminal and post-ruminal digestion, although quantitative evidence that this reduces enteric methane (CH4) production in dairy cattle is lacking. The objective of this study was to examine the effect of varying grass-to-maize silage ratio (70 : 30 and 30 : 70 DM basis), offered ad libitum, with either a concentrate that was high in starch or fibre, on CH4 production, intake, performance and milk composition of dairy cows. A total of 20 cows were allocated to one of the four experimental diets in a two-by-two factorial design run as a Latin square with each period lasting 28 days. Measurements were conducted during the final 7 days of each period. Cows offered the high maize silage ration had a higher dry matter intake (DMI), milk yield, milk energy output and lower CH4 emissions when expressed per kg DMI and per unit of ingested gross energy, but there was no difference in total CH4 production. Several of the milk long-chain fatty acids (FA) were affected by forage treatment with the most notable being an increase in 18:0, 18:1 c9, 18:2 c9 c12 and total mono unsaturated FA, observed in cows offered the higher inclusion of maize silage, and an increase in 18:3 c9 c12 c15 when offered the higher grass silage ration. Varying the composition of the concentrate had no effect on DMI or milk production; however, when the high-starch concentrate was fed, milk protein concentration and milk FAs, 10:0, 14:1, 15:0, 16:1, increased and 18:0 decreased. Interactions were observed for milk fat concentration, being lower in cows offered high-grass silage and high-fibre concentrates compared with the high-starch concentrate, and FA 17:0, which was the highest in milk from cows fed the high-grass silage diet supplemented with the high-starch concentrate. In conclusion, increasing the proportion of maize silage in the diets of dairy cows increased intake and performance, and reduced CH4 production, but only when expressed on a DM or energy intake basis, whereas starch-to-fibre ratio in the concentrate had little effect on performance or CH4 production.

  9. Methane Emission and Milk Production of Dairy Cows Grazing Pastures Rich in Legumes or Rich in Grasses in Uruguay

    PubMed Central

    Dini, Yoana; Gere, José; Briano, Carolina; Manetti, Martin; Juliarena, Paula; Picasso, Valentin; Gratton, Roberto; Astigarraga, Laura

    2012-01-01

    Simple Summary GHGs emissions are relevant in evaluating environmental impact of farming systems. Methane (CH4) produced by enteric fermentation accounts for half of all anthropogenic emissions of GHGs in Uruguay, where ruminant production is based on year round grazing of forages. Here we compared milk production and CH4 emissions by dairy cows grazing two contrasting mixed pastures (rich in legumes or rich in grasses) using the SF6 tracer technique adapted to collect breath samples over 5-days periods. There were no differences in milk or CH4 production between the contrasting pastures, probably because of the high herbage allowance that enabled selective grazing by cows. Abstract Understanding the impact of changing pasture composition on reducing emissions of GHGs in dairy grazing systems is an important issue to mitigate climate change. The aim of this study was to estimate daily CH4 emissions of dairy cows grazing two mixed pastures with contrasting composition of grasses and legumes: L pasture with 60% legumes on Dry Matter (DM) basis and G pasture with 75% grasses on DM basis. Milk production and CH4 emissions were compared over two periods of two weeks during spring using eight lactating Holstein cows in a 2 × 2 Latin square design. Herbage organic matter intake (HOMI) was estimated by chromic oxide dilution and herbage organic matter digestibility (OMD) was estimated by faecal index. Methane emission was estimated by using the sulfur hexafluoride (SF6) tracer technique adapted to collect breath samples over 5-day periods. OMD (0.71) and HOMI (15.7 kg OM) were not affected by pasture composition. Milk production (20.3 kg/d), milk fat yield (742 g/d) and milk protein yield (667 g/d) were similar for both pastures. This may be explained by the high herbage allowance (30 kg DM above 5 cm/cow) which allowed the cows to graze selectively, in particular in grass sward. Similarly, methane emission expressed as absolute value (368 g/d or 516 L/d) or expressed as methane yield (6.6% of Gross Energy Intake (GEI)) was not affected by treatments. In conclusion, at high herbage allowance, the quality of the diet selected by grazing cows did not differ between pastures rich in legumes or rich in grasses, and therefore there was no effect on milk or methane production. PMID:26486922

  10. Enteric methane emissions and lactational performance of Holstein cows fed different concentrations of coconut oil.

    PubMed

    Hollmann, M; Powers, W J; Fogiel, A C; Liesman, J S; Bello, N M; Beede, D K

    2012-05-01

    To determine if dietary medium-chain fatty acids (FA; C(8) to C(14)) may mitigate enteric methane emissions, 24 cows were blocked by body size (n=2) and randomly assigned to 1 sequence of dietary treatments. Diets were fed for 35 d each in 2 consecutive periods. Diets differed in concentrations of coconut oil (CNO; ~75% medium-chain FA): 0.0 (control) or 1.3, 2.7, or 3.3% CNO, dry matter basis. The control diet contained 50% forage (74% from corn silage), 16.5% crude protein (60% from rumen-degradable protein), 34% neutral detergent fiber (NDF; 71% from forage), and 28% starch, dry matter basis. Data and sample collections were from d 29 to 35 in environmentally controlled rooms to measure methane (CH(4)) production. Methane emitted was computed from the difference in concentrations of inlet and outlet air and flux as measured 8 times per day. Control cows emitted 464 g of CH(4)/d, consumed 22.9 kg of DM/d, and produced 34.8 kg of solids-corrected milk/d and 1.3 kg of milk fat/d. Treatment with 1.3, 2.7, or 3.3% dietary CNO reduced CH(4) (449, 291, and 253 g/d, respectively), but concomitantly depressed dry matter intake (21.4, 17.9, and 16.2 kg/d, respectively), solids-corrected milk yield (36.3, 28.4, and 26.8 kg/d, respectively), and milk fat yield (1.4, 0.9, and 0.9 kg/d, respectively). The amount of NDF digested in the total tract decreased with increased dietary CNO concentrations; thus, CH(4) emitted per unit of NDF digested rose from 118 to 128, 153, and 166 g/kg across CNO treatments. Dietary CNO did not significantly affect apparent digestibility of CP but increased apparent starch digestibility from 92 to 95%. No FA C(10) or shorter were detected in feces, and apparent digestibility decreased with increasing FA chain length. Coconut oil concentrations of 2.7 or 3.3% decreased yields of milk FA C(14). The highest milk fat concentration (3.69%; 1.3% CNO) was due to the greatest yields of C(12) to C(16) milk FA. Milk FA concentrations of C(18:2 trans-10,cis-12) were related to increased dietary CNO concentrations and presumably to depressed ruminal NDF digestion. Moderate dietary CNO concentrations (e.g., 1.3%) may benefit lactational performance; however, CNO concentrations greater than or equal to 2.7% depressed dry matter intake, milk yield, milk fat yield, and NDF utilization. If mitigation of enteric CH(4) emissions is due to decreased digestion of dietary NDF, then this will lessen a major advantage of ruminants compared with nonruminants in food-production systems. Thus, CNO has limited use for enteric CH(4) mitigation in lactating dairy cows. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Carryover effect of postpartum inflammatory diseases on developmental biology and fertility in lactating dairy cows.

    PubMed

    Ribeiro, E S; Gomes, G; Greco, L F; Cerri, R L A; Vieira-Neto, A; Monteiro, P L J; Lima, F S; Bisinotto, R S; Thatcher, W W; Santos, J E P

    2016-03-01

    The objective of this series of studies was to investigate the effects of inflammatory diseases occurring before breeding on the developmental biology and reproductive responses in dairy cows. Data from 5 studies were used to investigate different questions associating health status before breeding and reproductive responses. Health information for all studies was composed of the incidence of retained fetal membranes, metritis, mastitis, lameness, and respiratory and digestive problems from parturition until the day of breeding. Retained placenta and metritis were grouped as uterine disease (UTD). Mastitis, lameness, digestive and respiratory problems were grouped as nonuterine diseases (NUTD). Study 1 evaluated the effect of disease before artificial insemination (AI), anovulation before synchronization of the estrous cycle, and low body condition score at AI on pregnancy per AI, as well as their potential interactions or additive effects. Study 2 investigated the effect of site of inflammation (UTD vs. NUTD) and time of occurrence relative to preantral or antral stages of ovulatory follicle development, and the effect of UTD and NUTD on fertility responses of cows bred by AI or by embryo transfer. Study 3 evaluated the effect of disease on fertilization and embryonic development to the morula stage. Study 4 evaluated the effect of disease on preimplantation conceptus development as well as secretion of IFN-τ and transcriptome. Study 5 investigated the effect of diseases before AI on the transcript expression of interferon-stimulated genes in peripheral blood leukocytes during peri-implantation stages of conceptus development after first AI postpartum. Altogether, these studies demonstrated that inflammatory disease before breeding reduced fertilization of oocytes and development to morula, and impaired early conceptus development to elongation stages and secretion of IFN-τ in the uterine lumen. Diseases caused inflammation-like changes in transcriptome of conceptus cells, increased risk of pregnancy loss, and reduced pregnancy or calving per breeding. Moreover, the effects on reproduction were independent of cyclic status before synchronization of the estrous cycle and body condition score at breeding, which all had additive negative effects on fertility of dairy cows. Occurrence of disease at preantral or at antral stages of ovulatory follicle development had similar detrimental effects on pregnancy results. The carryover effects of diseases on developmental biology might last longer than 4 mo. Reduced oocyte competence is a likely reason for carryover effects of diseases on developmental biology, but impaired uterine environment was also shown to be involved. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Inclusion of wheat and triticale silage in the diet of lactating dairy cows.

    PubMed

    Harper, M T; Oh, J; Giallongo, F; Roth, G W; Hristov, A N

    2017-08-01

    The objective of this experiment was to partially replace corn silage with 2 alternative forages, wheat (Triticum aestivum) or triticale (X Triticosecale) silages at 10% of the diet dry matter (DM), and investigate the effects on dairy cow productivity, nutrient utilization, enteric CH 4 emissions, and farm income over feed costs. Wheat and triticale were planted in the fall as cover crops and harvested in the spring at the boot stage. Neutral- and acid-detergent fiber and lignin concentrations were higher in the wheat and triticale silages compared with corn silage. The forages had similar ruminal in situ effective degradability of DM. Both alternative forages had 1% starch or less compared with the approximately 35% starch in corn silage. Diets with the alternative forages were fed in a replicated 3 × 3 Latin square design experiment with three 28-d periods and 12 Holstein cows. The control diet contained 44% (DM basis) corn silage. In the other 2 diets, wheat or triticale silages were included at 10% of dietary DM, replacing corn silage. Dry matter intake was not affected by diet, but both wheat and triticale silage decreased yield of milk (41.4 and 41.2 vs. 42.7 ± 5.18 kg/d) and milk components, compared with corn silage. Milk fat from cows fed the alternative forage diets contained higher concentrations of 4:0, 6:0, and 18:0 and tended to have lower concentrations of total trans fatty acids. Apparent total-tract digestibility of DM and organic matter was decreased in the wheat silage diet, and digestibility of neutral-and acid-detergent fiber was increased in the triticale silage diet. The wheat and triticale silage diets resulted in higher excretion of urinary urea, higher milk urea N, and lower milk N efficiency compared with the corn silage diet. Enteric CH 4 emission per kilogram of energy-corrected milk was highest in the triticale silage diet, whereas CO 2 emission was decreased by both wheat and triticale silage. This study showed that, at milk production of around 42 kg/d, wheat silage and triticale silage can partially replace corn silage DM and not affect DM intake, but milk yield may decrease slightly. For dairy farms in need of more forage, triticale or wheat double cropped with corn silage may be an appropriate cropping strategy. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Brown midrib corn silage and Tifton 85 bermudagrass in rations for early-lactation cows.

    PubMed

    Castro, J J; Bernard, J K; Mullis, N A; Eggleston, R B

    2010-05-01

    Forty Holstein cows were used in an 8-wk randomized trial to evaluate the effects of feeding combinations of forages with improved fiber digestibility on performance during early lactation. Treatments were arranged as a 2 x 2 factorial to include silage from normal (NCS) or brown midrib (BMR) corn silage with or without 10% Tifton 85 bermudagrass hay (T85). In a simultaneous digestion trial, degradation and passage kinetics and ruminal fermentation parameters were evaluated in a 4 x 4 Latin square design trial using late-lactation Holstein cows fitted with ruminal cannulas. Dry matter intake (DMI) and neutral detergent fiber (NDF) intake were greater with BMR than with NCS; however, milk yield and composition were similar among corn silage types. Inclusion of T85 reduced milk yield but supported higher milk fat percentage, resulting in similar yields of energy-corrected milk. Blood glucose concentrations were higher for BMR compared with NCS, and inclusion of T85 increased blood urea N concentrations. Treatments did not alter liquid or solid phase passage rates or rumen turnover. Corn silage type did not affect ruminal pH or volatile fatty acid concentrations, but inclusion of T85 increased pH and molar proportion of acetate but decreased butyrate. Molar proportions of propionate were greater for NCS and T85 compared with BMR and T85, resulting in an interaction. Results of this trial indicate that combinations of forages with improved fiber digestibility can be used to support intake and performance of cows during early lactation. Copyright 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Shifts in Rumen Fermentation and Microbiota Are Associated with Dissolved Ruminal Hydrogen Concentrations in Lactating Dairy Cows Fed Different Types of Carbohydrates.

    PubMed

    Wang, Min; Wang, Rong; Xie, Tian Yu; Janssen, Peter H; Sun, Xue Zhao; Beauchemin, Karen A; Tan, Zhi Liang; Gao, Min

    2016-09-01

    Different carbohydrates ingested greatly influence rumen fermentation and microbiota and gaseous methane emissions. Dissolved hydrogen concentration is related to rumen fermentation and methane production. We tested the hypothesis that carbohydrates ingested greatly alter the rumen environment in dairy cows, and that dissolved hydrogen concentration is associated with these changes in rumen fermentation and microbiota. Twenty-eight lactating Chinese Holstein dairy cows [aged 4-5 y, body weight 480 ± 37 kg (mean ± SD)] were used in a randomized complete block design to investigate effects of 4 diets differing in forage content (45% compared with 35%) and source (rice straw compared with a mixture of rice straw and corn silage) on feed intake, rumen fermentation, and microbial populations. Feed intake (10.7-12.6 kg/d) and fiber degradation (0.584-0.692) greatly differed (P ≤ 0.05) between cows fed the 4 diets, leading to large differences (P ≤ 0.05) in gaseous methane yield (27.2-37.3 g/kg organic matter digested), dissolved hydrogen (0.258-1.64 μmol/L), rumen fermentation products, and microbiota. Ruminal dissolved hydrogen was negatively correlated (r < -0.40; P < 0.05) with molar proportion of acetate, numbers of fungi, abundance of Fibrobacter succinogenes, and methane yield, but positively correlated (r > 0.40; P < 0.05) with molar proportions of propionate and n-butyrate, numbers of methanogens, and abundance of Selenomonas ruminantium and Prevotella spp. Ruminal dissolved hydrogen was positively correlated (r = 0.93; P < 0.001) with Gibbs free energy changes of reactions producing greater acetate and hydrogen, but not correlated with those reactions producing more propionate without hydrogen. Changes in fermentation pathways from acetate toward propionate production and in microbiota from fibrolytic toward amylolytic species were closely associated with ruminal dissolved hydrogen in lactating dairy cows. An unresolved paradox was that greater dissolved hydrogen was associated with greater numbers of methanogens but with lower gaseous methane emissions. © 2016 American Society for Nutrition.

  15. Effects of rumen-protected Capsicum oleoresin on productivity and responses to a glucose tolerance test in lactating dairy cows.

    PubMed

    Oh, J; Harper, M; Giallongo, F; Bravo, D M; Wall, E H; Hristov, A N

    2017-03-01

    The objective of this experiment was to investigate the effects of rumen-protected Capsicum oleoresin (RPC) supplementation on feed intake, milk yield and composition, nutrient utilization, fecal microbial ecology, and responses to a glucose tolerance test in lactating dairy cows. Nine multiparous Holstein cows were used in a replicated 3 × 3 Latin square design balanced for residual effects with three 28-d periods. Each period consisted of 14 d for adaptation and 14 d for data collection and sampling. Treatments were 0 (control), 100, and 200 mg of RPC/cow per day. They were mixed with a small portion of the total mixed ration and top-dressed. Glucose tolerance test was conducted once during each experimental period by intravenous administration of glucose at a rate of 0.3 g/kg of body weight. Dry matter intake was not affected by RPC. Milk yield tended to increase for RPC treatments compared to the control. Feed efficiency was linearly increased by RPC supplementation. Concentrations of fat, true protein, and lactose in milk were not affected by RPC. Apparent total-tract digestibility of dry matter, organic matter, and crude protein was linearly increased, and fecal nitrogen excretion was linearly decreased by RPC supplementation. Rumen-protected Capsicum oleoresin did not affect the composition of fecal bacteria. Glucose concentration in serum was not affected by RPC supplementation post glucose challenge. However, compared to the control, RPC decreased serum insulin concentration at 5, 10, and 40 min post glucose challenge. The area under the insulin concentration curve was also decreased 25% by RPC. Concentration of nonesterified fatty acids and β-hydroxybutyrate in serum were not affected by RPC following glucose administration. In this study, RPC tended to increase milk production and increased feed efficiency in dairy cows. In addition, RPC decreased serum insulin concentration during the glucose tolerance test, but glucose concentration was not affected by treatment. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. Effect of Corn Dried Distiller Grains with Solubles (DDGS) in Dairy Cow Diets on Manure Bioenergy Production Potential

    PubMed Central

    Massé, Daniel I.; Jarret, Guillaume; Benchaar, Chaouki; Saady, Noori M. Cata

    2014-01-01

    Simple Summary Among the measures proposed to reduce environmental pollution from the livestock sector, animal nutrition has a strong potential to reduce enteric and manure storages methane emissions. Changes in diet composition also affect the bioenergy potential of dairy manures. Corn dried distillers grains with solubles (DDGS), which are rich in fat, can be included in animal diets to reduce enteric methane (CH4) emissions, while increasing the bioenergy potential of the animal manure during anaerobic digestion. The inclusion of 30% DDGS in the cow diet caused a significant increase of 14% in daily bioenergy production (NL methane day−1·cow−1). abstract The main objective of this study was to obtain scientifically sound data on the bioenergy potential of dairy manures from cows fed different levels of corn dried distillers grains with solubles (DDGS). Three diets differing in corn DDGS content were formulated: 0% corn DDGS (DDGS0; control diet), 10% corn DDGS (DDGS10) and 30% corn DDGS (DDGS30). Bioenergy production was determined in psychrophilic (25 ± 1 °C) sequencing batch reactors (SBRs) fed 3 g COD L−1·day−1 during a two-week feeding period followed by a two-week react period. Compared to the control diet, adding DDGS10 and DDGS30 to the dairy cow diet increased the daily amount of fat excreted in slurry by 29% and 70%, respectively. The addition of DDGS30 increased the cows’ daily production of fresh feces and slurry by 15% and 11%, respectively. Furthermore, the incorporation of DDGS30 in the diet increased the daily amounts of dry matter (DM), volatile solids (VS), neutral detergent fiber (NDF), acid detergent fiber (ADF) and hemicellulose by 18%, 18%, 30%, 15% and 53%, respectively, compared to the control diet. While the addition of DDGS did not significantly affect the specific CH4 production per kg VS compared to the control diet, DDGS30 increased the per cow daily CH4 production by 14% compared to the control diet. PMID:26479885

  17. AutoMap User’s Guide 2012

    DTIC Science & Technology

    2012-06-11

    accompanied by supporting details. All : The entire text Example dairyFarm.txt Ted runs a dairy farm. He milks the cows , runs the office, and...dairy, farm, He, milks , the, cows , runs, the, office, and, cleans, the, barn Property List: Number of Characters,79 Number of Clauses,4 Number of... cows ,runs,1 dairy,farm,1 farm,He,1 milks ,the,1 office,and,1 runs,a,1 runs,the,1 the,barn,1 the, cows ,1 the,office,1 23 SEP 09 Process

  18. 78 FR 17866 - New Animal Drug Approvals; Change of Sponsor; Change of Sponsor's Drug Labeler Code; Gonadorelin...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-25

    ... estrous cycles to allow for fixed time artificial insemination in lactating dairy cows and beef cows.\\1... insemination in lactating dairy cows and beef cows. Administer to each cow 100 [micro]g gonadorelin by...

  19. Site and extent of starch degradation in the dairy cow - a comparison between in vivo, in situ and in vitro measurements.

    PubMed

    Hindle, V A; Vuuren van, A M; Klop, A; Mathijssen-Kamman, A A; van Gelder, A H; Cone, J W

    2005-01-01

    Prediction of the supply of glycogenic precursors to dairy cows and the site of degradation of wheat, maize and potato starch (PS) were determined in an in vivo experiment and the results were compared with data obtained from experiments involving in situ nylon bag and in vitro gas production techniques. In a Latin square design experiment four lactating dairy cows fitted with a rumen cannula and T-piece cannulae in the duodenum and terminal ileum, received either a low-starch control diet or diets in which sugar beet pulp in the concentrate mixture had been replaced by wheat, maize or PS. Starch from the different sources was almost completely degraded in the total gastrointestinal tract. For all starches, the rumen was the main site of degradation in vivo. No digestion of PS in the small intestine was observed. In situ results suggested that 14% of wheat starch (WS), 47% of maize starch and 34% of PS escaped rumen fermentation. According to the gas production technique WS ferments quickest and potato slowest. PS had a low degradability during the first 8 (gas production) to 11 (in situ) h. However, according to both in vitro and in vivo measurements rumen degradability of PS was high. The results suggest that in situ and in vitro techniques should be performed in animals that have adapted to starch source to provide a more accurate simulation of the in vivo situation.

  20. Production response to corn silage produced from normal, brown midrib, or waxy corn hybrids.

    PubMed

    Barlow, J S; Bernard, J K; Mullis, N A

    2012-08-01

    The objective was to evaluate the nutrient intake and digestibility and milk production response of lactating dairy cows fed diets based on corn silage produced from 3 different types of corn hybrids. Experimental diets contained 36.4% of the dietary dry matter (DM) from corn silage produced from normal (Agratech 1021, AgraTech Seeds Inc., Atlanta, GA), brown midrib (BMR; Mycogen F2F797, Mycogen Seeds, Indianapolis, IN), or waxy (Master's Choice 590, Master's Choice Hybrids, Ullin, IL) hybrids. Thirty-six multiparous and primiparous Holstein cows (66 ± 22 d in milk, 41 ± 8 kg/d of milk) were used in an 11-wk completely randomized design trial during the fall of 2009. All cows were fed a diet containing normal corn silage during the first 2wk of the trial before being assigned to 1 of 3 treatments for the following 9 wk. Data collected during the first 2 wk were used as a covariate in the statistical analysis. No difference was observed in dry matter intake (DMI) among treatments, which averaged 22.6 kg/d. Milk yield was higher for cows fed BMR (37.6 kg/d) compared with waxy (35.2 kg/d) but was similar to that of cows fed control (36.2 kg/d). Milk fat percentage tended to be lower for cows fed control (3.28%) compared with those fed BMR (3.60%) or waxy (3.55%) corn silage. Milk protein percentage tended to be lower for cows fed control (2.79%) compared with waxy (2.89%) but similar to that of those fed BMR (2.85%). No differences were observed in yield of milk components. Energy-corrected milk (ECM) yield and dairy efficiency (ECM:DMI) did not differ among treatments. Cows fed BMR tended to gain more body weight compared with those fed control and waxy. Results of this trial are consistent with previous reports in which cows fed diets based on corn silage produced from BMR hybrids have higher milk yield compared with those fed other hybrids. Corn silage produced from the waxy hybrid supported a similar yield of ECM because of higher milk components, but milk yield was not improved compared with the control. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Cayuga County Regional Digester: Vision Becomes Reality. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamyar V. Zadeh; Jim Young

    2013-03-12

    With an average herd size of 113 mature cows, Cayuga County is home to 280 dairy farms and 31,500 dairy milking cows producing approximately 855 million gallons of milk per year. The Cayuga Dairy industry is a major contributor to the countys economy, employing nearly 1200 people, while generating $140,000,000 of revenue from sale of milk alone. At the same time, the Cayuga County dairy industry also produces 5.7 million gallons of manure daily: (a) Nearly 34% of this manure is produced on smaller farms. (b) Digesters are expensive pieces of equipment and require attention and care. ( c) Themore » on-farm digester systems have fairly long payback (>10 years) even for larger CAFO farms (>1000 milking cows). In 2005, Cayuga County Soil and Water Conservation District (The District), a Public Agency under Cayuga County, decided to undertake a centralized community digester project. The primary goal of the project was to develop an economically sustainable model, under the auspices of The District to address manure management issues facing the smaller dairies, improve the water quality and improve the quality of life for Cayuga County residents. It is believed that the District has accomplished this goal by completing construction of Cayuga County Regional Digester on a parcel of land behind the Cayuga County Natural Resource Center located at 7413 County House Road in the Town of Sennett in Cayuga County, New York. The digester facility consists of the following major components. 1. Transfer Station: This an indoor truck bay, where 35,000 gallons of manure from three local farms, 8,500 gallons of liquid organic food-processor waste, and 1,200 gallons of brown grease are unloaded from tanker trucks and the digested slurry is loaded onto the tanker trucks for delivery back to the participating farms. 2. Anaerobic Digester: The project utilizes a hydraulic mix anaerobic digester, a unique design that has no internal moving parts for mixing. The digester, which operates at mesophilic temperatures, is designed to process the daily feedstock and produce 220,000 SCF2 of biogas per day. The digester also produces 44,000 gallons of digested slurry per day. 3. Biogas Conditioning System: The plant employs a biological biogas conditioning system to remove the H2S and moisture contents of the biogas and prepare it to be used by the plant generation system. 4. Combined Heat and Power System (CHP): This is a 633kW high efficiency biogas-fired GE-Jenbacher model JMS-312 GS-NL reciprocating engine cogeneration system. The heat recovery system incorporated into the package is designed to capture the waste heat from the engine exhaust, the jacket cooling water and the engine oil circuit. 5. Electrical Substation and Power Distribution Systems: An electrical distribution system has been constructed on-site that aggregates the electrical service of the different county buildings on the District campus into a county owned electric distribution system that is interconnected with the CHP and the local electric grid. The electrical system is designed, in accordance with the utility guidelines, to allow grid-parallel operation of CHP and provide for import and export of electric power. 6. Thermal Energy Distribution System: The heat recovery system has been integrated into a high temperature water distribution system that distributes the heat to the thermal circuits for the anaerobic digester facility. Additional piping has also been installed to transfer the remaining thermal energy to other county buildings on the campus. On a daily basis, the plant will co-process 35,000 gallons of manure from local dairy farms, 8,500 gallons of food-processor waste and 1,200 gallons of brown grease to produce 200,000 ft3/d of biogas and 44,000 gallons of pathogen-free nutrient-rich digested slurry for agricultural use by farms and in the local area.The biogas fueled CHP produces 5,157,000 kWh of electricity and 19,506 dekatherms of thermal energy per year. Electrical power generated by the cogeneration system powers all the buildings on the Cayuga County campus and any surplus power is exported to the grid under a power purchase agreement. Heat recovered from the cogeneration system will be used to maintain the temperature of the process equipment and the excess will be transported to the Cayuga County Public Safety Building to offset purchase of fossil fuel to fuel the boilers. The majority of plant operations are unmanned and automated. However, the plant will have a small staff of well-trained personnel to coordinate the feedstock deliveries and shipments, supervise the day-to-day operation, monitor the systems and perform maintenance, maintain a safe and reliable operation and to respond to emergencies.« less

  2. A field study on the effects of dietary monensin on milk production and milk composition in dairy cows

    PubMed Central

    Dubuc, Jocelyn; DuTremblay, Denis; Baril, Jean; Bagg, Randy; Brodeur, Marcel; Duffield, Todd; DesCôteaux, Luc

    2010-01-01

    The objectives of this study were to quantify the effect of 16 ppm of dietary monensin on milk production and composition of dairy cows, and to investigate factors having a potential impact on this effect. Data were generated from a total of 3577 Holstein dairy cows (47 herds) in Quebec enrolled in a herd-level, randomized clinical trial investigating the effects of monensin supplementation. Milk production and composition data were collected from monthly dairy herd improvement (DHI) testing. Monensin increased milk production by 0.9 kg/cow/d in cows under 150 days in milk (DIM) (P < 0.05). Monensin decreased milk fat percentage by 0.18 percentage points during the whole lactation (P < 0.05). This decreasing effect was larger for component-fed cows (P < 0.05) and for cows being fed low levels of dietary physically effective particles (P < 0.05) when compared respectively to cows fed total mixed ration and cows fed high levels of dietary physically effective particles. The results of this study suggest that monensin influences milk production and milk composition of dairy cows, and that diet composition and feeding system influence those effects. PMID:20592825

  3. Protective effects of zymosan on heat stress-induced immunosuppression and apoptosis in dairy cows and peripheral blood mononuclear cells.

    PubMed

    Sun, Yuhang; Liu, Jin; Ye, Gengping; Gan, Fang; Hamid, Mohammed; Liao, Shengfa; Huang, Kehe

    2018-06-02

    Dairy cows exposed to heat stress (HS) show decreased performance and immunity, but increased heat shock protein expressions and apoptosis. Zymosan, an extract from yeast cell walls, has been shown to modulate immune responses and defense against oxidative stress. However, few literatures are available about the effects of zymosan on immune responses and other parameters of the dairy cows under HS. Here, both primary peripheral blood mononuclear cell (PBMC) and dairy cow models were established to assess the effects of zymosan on performance, immunity, heat shock protein, and apoptosis-related gene expressions of dairy cows under HS. In vitro study showed that proliferation, IL-2 production, and Bcl-2/Bax-α ratio of cow primary PBMC were reduced, whereas hsp70 mRNA and protein expressions, as well as Annexin V-bing, were increased when PBMCs were exposed to heat. In contrast, zymosan significantly reversed these above changes induced by the HS. In the in vivo study, 40 Holstein dairy cows were randomly selected and assigned into zymosan group (supplemental zymosan; n = 20) and control group (no supplemental zymosan; n = 20). The results showed that zymosan improved significantly the dry matter intake and milk yield, increased IgA, IL-2, and tumor necrosis factor-α (TNF-α) contents in sera, as well as hepatic Bcl-2/Bax-α ratio, but decreased respiration rate and hepatic hsp70 expressions in the dairy cows under HS. Taken together, zymosan could alleviate HS-induced immunosuppression and apoptosis and improve significantly the productive performance and immunity of dairy cows under HS.

  4. Nutritive value of maize silage in relation to dairy cow performance and milk quality.

    PubMed

    Khan, Nazir A; Yu, Peiqiang; Ali, Mubarak; Cone, John W; Hendriks, Wouter H

    2015-01-01

    Maize silage has become the major forage component in the ration of dairy cows over the last few decades. This review provides information on the mean content and variability in chemical composition, fatty acid (FA) profile and ensiling quality of maize silages, and discusses the major factors which cause these variations. In addition, the effect of the broad range in chemical composition of maize silages on the total tract digestibility of dietary nutrients, milk production and milk composition of dairy cows is quantified and discussed. Finally, the optimum inclusion level of maize silage in the ration of dairy cows for milk production and composition is reviewed. The data showed that the nutritive value of maize silages is highly variable and that most of this variation is caused by large differences in maturity at harvest. Maize silages ensiled at a very early stage (dry matter (DM) < 250 g kg(-1)) were particularly low in starch content and starch/neutral detergent fibre (NDF) ratio, and resulted in a lower DM intake (DMI), milk yield and milk protein content. The DMI, milk yield and milk protein content increased with advancing maturity, reaching an optimum level for maize silages ensiled at DM contents of 300-350 g kg(-1), and then declined slightly at further maturity beyond 350 g kg(-1). The increases in milk (R(2) = 0.599) and protein (R(2) = 0.605) yields with maturity of maize silages were positively related to the increase in starch/NDF ratio of the maize silages. On average, the inclusion of maize silage in grass silage-based diets improved the forage DMI by 2 kg d(-1), milk yield by 1.9 kg d(-1) and milk protein content by 1.2 g kg(-1). Further comparisons showed that, in terms of milk and milk constituent yields, the optimum grass/maize silage ratio depends on the quality of both the grass and maize silages. Replacement of grass silage with maize silage in the ration, as well as an increasing maturity of the maize silages, altered the milk FA profile of the dairy cows, notably, the concentration of the cis-unsaturated FAs, C18:3n-3 and n-3/n-6 ratio decreased in milk fat. Despite variation in nutritive value, maize silage is rich in metabolizable energy and supports higher DMI and milk yield. Harvesting maize silages at a DM content between 300 and 350 g kg(-1) and feeding in combination with grass silage results in a higher milk yield of dairy cows. © 2014 Society of Chemical Industry.

  5. Effect of decreasing dietary phosphorus supply on net recycling of inorganic phosphate in lactating dairy cows.

    PubMed

    Puggaard, L; Kristensen, N B; Sehested, J

    2011-03-01

    Five ruminally cannulated lactating Holstein cows, fitted with permanent indwelling catheters in the mesenteric vein, hepatic vein, portal vein, and an artery were used to study intestinal absorption and net recycling of inorganic phosphate (P(i)) to the gastrointestinal tract. Treatments were low P (LP; 2.4 g of P/kg of DM) and high P (HP; 3.4 g of P/kg of DM). The dietary total P (tP) concentrations were obtained by replacing 0.50% calcium carbonate in the LP diet with 0.50% monocalcium phosphate in the HP diet. Diets were fed for 14 d and cows were sampled on d 14 in each period. Cows were fed restrictively, resulting in equal dry matter intakes as well as milk, fat, and protein yields between treatments. Net P(i) recycling (primarily salivary) was estimated as the difference between net portal plasma flux (net absorption of P(i)) and apparently digested tP (feed - fecal tP difference). Phosphorus intake, apparently digested tP, and fecal tP excretion decreased with LP. An effect of decreased tP intake on net portal plasma flux of P(i) could not be detected. However, despite numerically minute net fluxes across the liver, the net splanchnic flux of P(i) was less in LP compared with that in HP. Though arterial plasma P(i) concentration decreased, net P(i) recycling was not decreased when tP intake was decreased, and recycling of P(i) was maintained at the expense of deposition of P(i) in bones. Data are not consistent with salivary P(i) secretion being the primary regulator of P(i) homeostasis at low tP intakes. On the contrary, maintaining salivary P(i) recycling at low tP intakes indicates that rumen function was prioritized at the expense of bone P reserves. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Association between Lameness and Indicators of Dairy Cow Welfare Based on Locomotion Scoring, Body and Hock Condition, Leg Hygiene and Lying Behavior

    PubMed Central

    Ramanoon, Siti Z.; Shaik Mossadeq, Wan Mastura; Mansor, Rozaihan; Syed-Hussain, Sharifah Salmah

    2017-01-01

    Simple Summary Lameness is a major welfare issue in dairy cows. Locomotion scoring (LS) is mostly used in identifying lame cows based on gait and postural changes. However, lameness shares some important associations with body condition, hock condition, leg hygiene and behavioral changes such as lying behavior. These measures are considered animal-based indicators in assessing welfare in dairy cows. This review discusses lameness as a welfare problem, the use of LS, and the relationship with the aforementioned welfare assessment protocols. Such information could be useful in depicting the impact on cow welfare as well as in reducing the occurrence of lameness in dairy herds. Abstract Dairy cow welfare is an important consideration for optimal production in the dairy industry. Lameness affects the welfare of dairy herds by limiting productivity. Whilst the application of LS systems helps in identifying lame cows, the technique meets with certain constraints, ranging from the detection of mild gait changes to on-farm practical applications. Recent studies have shown that certain animal-based measures considered in welfare assessment, such as body condition, hock condition and leg hygiene, are associated with lameness in dairy cows. Furthermore, behavioural changes inherent in lame cows, especially the comfort in resting and lying down, have been shown to be vital indicators of cow welfare. Highlighting the relationship between lameness and these welfare indicators could assist in better understanding their role, either as risk factors or as consequences of lameness. Nevertheless, since the conditions predisposing a cow to lameness are multifaceted, it is vital to cite the factors that could influence the on-farm practical application of such welfare indicators in lameness studies. This review begins with the welfare consequences of lameness by comparing normal and abnormal gait as well as the use of LS system in detecting lame cows. Animal-based measures related to cow welfare and links with changes in locomotion as employed in lameness research are discussed. Finally, alterations in lying behaviour are also presented as indicators of lameness with the corresponding welfare implication in lame cows. PMID:29113033

  7. Effect of undigested neutral detergent fiber content of alfalfa hay on lactating dairy cows: Feeding behavior, fiber digestibility, and lactation performance.

    PubMed

    Fustini, M; Palmonari, A; Canestrari, G; Bonfante, E; Mammi, L; Pacchioli, M T; Sniffen, G C J; Grant, R J; Cotanch, K W; Formigoni, A

    2017-06-01

    The objective of this study was to investigate the effects of 2 alfalfa hays differing in undigested neutral detergent fiber content and digestibility used as the main forage source in diets fed to high producing cows for Parmigiano-Reggiano cheese production. Diets were designed to have 2 different amounts of undigestible NDF [high (Hu) and low (Lu)], as determined by 240-h in vitro analysis (uNDF 240 ). Alfalfa hay in vitro digestibility [% of amylase- and sodium sulfite-treated NDF with ash correction (aNDFom)] at 24 and 240 h was 40.2 and 31.2% and 53.6 and 45.7% for low- (LD) and high-digestibility (HD) hays, respectively. The 4 experimental diets (Hu-HD, Lu-HD, Hu-LD, and Lu-LD) contained 46.8, 36.8, 38.8, and 30.1% of alfalfa hay, respectively, 8.6% wheat straw, and 35.3% corn (50% flake and 50% meal; DM basis). Soy hulls and soybean meal were used to replace hay to balance protein and energy among diets. Eight multiparous Holstein cows (average milk production = 46.0 ± 5.2 kg/d, 101 ± 38 d in milk, and 662 ± 42 kg of average body weight) were assigned to a 4 × 4 Latin square design, with 2 wk of adaptation and a 1-wk collection period. Dry matter and water intake, rumination time, ruminal pH, and milk production and composition were measured. Diets and feces were analyzed for NDF on an organic matter basis (aNDFom), acid detergent fiber, acid detergent lignin, and uNDF 240 to estimate total-tract fiber digestibility. Dry matter intake and rumination times were higher in HD diets compared with LD diets, regardless of forage amount. Rumination time was constant per unit of dry matter intake but differed when expressed as a function of uNDF 240 , aNDFom, or physically effective NDF intake. No differences were found among treatments on average ruminal pH, but the amount of time with pH <5.8 was lower in Hu-HD diets. Milk production and components were not different among diets. Total-tract aNDFom and potentially digestible neutral detergent fiber fraction digestibility was higher for the LD diets (88.3 versus 85.8% aNDFom in HD), for which lower feed intakes were also observed. The Hu-HD diet allowed greater dry matter intake, longer rumination time, and higher ruminal pH, suggesting that the limiting factor for dry matter intake is neutral detergent fiber digestibility and its relative rumen retention time. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. 7 CFR 1430.605 - Proof of production.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... commercial production, including any dumped production and dairy cow purchases, for each month of the... by the dairy operation. (d) Adequate proof of dairy cow additions to the milking herd during the... any other documents available to confirm the cow purchases. (e) If adequate proof of normally marketed...

  9. Corn silage versus corn silage:alfalfa hay mixtures for dairy cows: effects of dietary potassium, calcium, and cation-anion difference.

    PubMed

    Erdman, R A; Piperova, L S; Kohn, R A

    2011-10-01

    Corn silage (CS) has replaced alfalfa hay (AH) and haylage as the major forage fed to lactating dairy cows, yet many dairy producers believe that inclusion of small amounts of alfalfa hay or haylage improves feed intake and milk production. Alfalfa contains greater concentrations of K and Ca than corn silage and has an inherently higher dietary cation-anion difference (DCAD). Supplemental dietary buffers such as NaHCO(3) and K(2)CO(3) increase DCAD and summaries of studies with these buffers showed improved performance in CS-based diets but not in AH-based diets. We speculated that improvements in performance with AH addition to CS-based diets could be due to differences in mineral and DCAD concentrations between the 2 forages. The objective of this experiment was to test the effects of forage (CS vs. AH) and mineral supplementation on production responses using 45 lactating Holstein cows during the first 20 wk postpartum. Dietary treatments included (1) 50:50 mixture of AH and CS as the forage (AHCS); (2) CS as the sole forage; and (3) CS fortified with mineral supplements (CaCO(3) and K(2)CO(3)) to match the Ca and K content of the AHCS diet (CS-DCAD). Feed intake and milk production were equivalent or greater for cows fed the CS and CS-DCAD diets compared with those fed the AHCS diet. Fat percentage was greater in cows fed the CS compared with the AHCS diet. Fat-corrected milk (FCM; 3.5%) tended to be greater in cows fed the CS and CS-DCAD diets compared with the AHCS diet. Feed efficiencies measured as FCM/dry matter intake were 1.76, 1.80, and 1.94 for the AHCS, CS, and CS-DCAD diets, respectively. The combined effects of reduced feed intake and increased FCM contributed to increased feed efficiency with the CS-DCAD diet, which contained 1.41% K compared with 1.18% K in the CS diet, and we speculate that this might be the result of added dietary K and DCAD effects on digestive efficiency. These results indicate no advantage to including AH in CS-based diets, but suggest that improving mineral supplementation in CS-based diets may increase feed efficiency. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Comparison of Fecal Microbiota between German Holstein Dairy Cows with and without Left-Sided Displacement of the Abomasum

    PubMed Central

    Song, Eun-Sik; Jung, Sang Il; Park, Hyung-Jin; Seo, Kyoung-Won; Son, Jeong-Hoon; Hong, Sanghyun; Shim, Minkyung

    2016-01-01

    One of the most common diseases in high-performance German Holstein dairy cows is left-sided displacement of the abomasum (LDA). Hypomotility of the abomasum is detrimental during the pathogenesis of LDA. It is known that improper interactions between the gut microbiota and the enteric nervous system contribute to dysfunctions of gastrointestinal motility. Therefore, we hypothesized that the gut microbial composition will be different between German Holstein dairy cows with and without LDA. We used 16S rRNA gene analysis to evaluate whether there are any differences in bacterial composition between German Holstein dairy cows with and without LDA. Even though our data are limited to being used to correlate compositional changes with corresponding functional aspects in the pathogenesis of LDA, results from this study show that the fecal microbial compositions of German Holstein dairy cows with LDA shifted and were less diverse than those in normal cows. In particular, Spirochaetes were absent in cows with LDA. PMID:26842700

  11. 1H-Nuclear Magnetic Resonance-Based Plasma Metabolic Profiling of Dairy Cows with Fatty Liver

    PubMed Central

    Xu, Chuang; Sun, Ling-wei; Xia, Cheng; Zhang, Hong-you; Zheng, Jia-san; Wang, Jun-song

    2016-01-01

    Fatty liver is a common metabolic disorder of dairy cows during the transition period. Historically, the diagnosis of fatty liver has involved liver biopsy, biochemical or histological examination of liver specimens, and ultrasonographic imaging of the liver. However, more convenient and noninvasive methods would be beneficial for the diagnosis of fatty liver in dairy cows. The plasma metabolic profiles of dairy cows with fatty liver and normal (control) cows were investigated to identify new biomarkers using 1H nuclear magnetic resonance. Compared with the control group, the primary differences in the fatty liver group included increases in β-hydroxybutyric acid, acetone, glycine, valine, trimethylamine-N-oxide, citrulline, and isobutyrate, and decreases in alanine, asparagine, glucose, γ-aminobutyric acid glycerol, and creatinine. This analysis revealed a global profile of endogenous metabolites, which may present potential biomarkers for the diagnosis of fatty liver in dairy cows. PMID:26732447

  12. Short communication: Characterizing metabolic and oxidant status of pastured dairy cows postpartum in an automatic milking system.

    PubMed

    Elischer, M F; Sordillo, L M; Siegford, J M; Karcher, E L

    2015-10-01

    The periparturient period represents a stressful time for dairy cows as they transition from late gestation to early lactation. Undesirable fluctuations in metabolites and impaired immune defense mechanisms near parturition can severely affect cow health and have residual effects on performance and longevity. Metabolic and oxidative stress profiles of multiparous and primiparous dairy cows in traditional parlor and feeding systems are well characterized, but status of these profiles in alternative management systems, such as grazing cows managed with an automatic milking system (AMS), are poorly characterized. Therefore, the objective of this case study was to characterize the metabolic and oxidant status of pastured cows milked with an AMS. It was hypothesized that primiparous and multiparous cows milked with an AMS would experience changes in oxidative and metabolic status after parturition; however, these changes would not impair cow health or production. Blood was collected from 14 multiparous and 8 primiparous Friesian-cross dairy cows at 1, 7, 14, and 21 d relative to calving for concentrations of insulin, glucose, nonesterified fatty acids (NEFA), β-hydroxybutyrate, reduced glutathione, oxidized glutathione, and antioxidant potential. Milk production and milking frequency data were collected postpartum. Milk production differed on d 7 and 14 between primiparous and multiparous cows and frequency was not affected by parity. Primiparous cows had higher levels of glucose than multiparous cows. No differences in insulin, NEFA, or β-hydroxybutyrate concentrations were noted between multiparous and primiparous cows postpartum, though days relative to calving significantly affected insulin and NEFA. Primiparous cows also had higher antioxidant potential than multiparous cows during the postpartum period. Results from this study show that, although responses were within expected ranges, periparturient multiparous cows responded differently than periparturient primiparous cows with respect to metabolic and oxidative measures during the postpartum period at this pastured-AMS dairy, suggesting different management strategies may need to be considered with primiparous and multiparous cows. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Development of a Bilingual Training Tool to Train Dairy Workers on the Prevention and Management of Non-Ambulatory Cows

    ERIC Educational Resources Information Center

    Roman-Muniz, Ivette N.; Van Metre, David C.

    2011-01-01

    Dairy cows at risk of becoming non-ambulatory or downers represent economic losses and animal well-being issues for the dairy industry. Colorado State University researchers and Extension faculty collaborated with Colorado's dairy industry to create a training tool for the early identification and management of cows at risk of becoming downers on…

  14. Duodenal infusions of palmitic, stearic or oleic acids differently affect mammary gland metabolism of fatty acids in lactating dairy cows.

    PubMed

    Enjalbert, F; Nicot, M C; Bayourthe, C; Moncoulon, R

    1998-09-01

    The effect of dietary lipids on the fatty acid (FA) profile of cows' milk fat is mainly dependent on digestive processes and mammary gland uptake and metabolism of FA. The objective of this study was to determine the separate effects of high arterial concentrations of 16:0, 18:0 and cis-18:1(n-9) on uptake, synthesis and 18:0 desaturation rate in the mammary gland of lactating dairy cows, via arterio-venous differences and mammary gland balance of FA. In a 4 x 4 Latin square, four lactating Holstein cows with cannula in the proximal duodenum were infused duodenally with a mixture providing daily 0 (C treatment) or 500 g FA with mainly 16:0 (P treatment), 18:0 (S treatment) or cis-18:1(n-9) (O treatment). Significantly higher arterial concentrations of infused FA in arterial plasma nonesterified FA and triglycerides (NETGFA) were observed with P and O treatments, but the effect of the S treatment was much lower. Arterio-venous differences of NETGFA increased with arterial concentrations. The number of synthesized FA in the mammary gland was not significantly affected by duodenal infusion of FA. Mean chain length was significantly reduced by P and O treatments, suggesting an effect of mammary gland uptake of long-chain FA on the termination process of mammary gland synthesis of FA. Across all treatments, 4:0 mammary gland balance increased linearly (r = 0.67, P = 0.004) with mammary gland FA uptake. Mammary gland desaturation of 18:0 to cis-18:1(n-9) averaged 52% and was not significantly affected by treatments, but was reduced by trans-18:1 mammary gland uptake. Uptake, synthesis and desaturation of FA by the mammary gland of dairy cows are affected by arterial concentrations of 16:0, 18:0 and cis-18:1(n-9).

  15. 21 CFR 558.254 - Famphur.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... as an aid in control of sucking lice. (ii) Limitations. For beef cattle and nonlactating dairy cows; feed for 30 days; withdraw from dry dairy cows and heifers 21 days prior to freshening; withdraw 4 days.... For control of grubs. (ii) Limitations. For beef cattle and nonlactating dairy cows; feed for 10 days...

  16. 21 CFR 558.254 - Famphur.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... as an aid in control of sucking lice. (ii) Limitations. For beef cattle and nonlactating dairy cows; feed for 30 days; withdraw from dry dairy cows and heifers 21 days prior to freshening; withdraw 4 days.... For control of grubs. (ii) Limitations. For beef cattle and nonlactating dairy cows; feed for 10 days...

  17. 21 CFR 558.254 - Famphur.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... as an aid in control of sucking lice. (ii) Limitations. For beef cattle and nonlactating dairy cows; feed for 30 days; withdraw from dry dairy cows and heifers 21 days prior to freshening; withdraw 4 days.... For control of grubs. (ii) Limitations. For beef cattle and nonlactating dairy cows; feed for 10 days...

  18. 21 CFR 558.254 - Famphur.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... as an aid in control of sucking lice. (ii) Limitations. For beef cattle and nonlactating dairy cows; feed for 30 days; withdraw from dry dairy cows and heifers 21 days prior to freshening; withdraw 4 days.... For control of grubs. (ii) Limitations. For beef cattle and nonlactating dairy cows; feed for 10 days...

  19. 21 CFR 529.1940 - Progesterone intravaginal inserts.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... synchronization of estrus in suckled beef cows and replacement beef and dairy heifers; for advancement of first postpartum estrus in suckled beef cows; and for advancement of first pubertal estrus in replacement beef... of estrous cycles in anestrous lactating dairy cows. (iii) Limitations. Do not use in beef or dairy...

  20. 7 CFR 1430.305 - Proof of production.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., including any dumped production and dairy cow purchases, for each month of the period July 2004 through... confirm the production history and losses incurred by the dairy operation. (d) Adequate proof of dairy cow..., invoices, State health certificates, or any other documents available to confirm the cow purchases. (e) All...

  1. 7 CFR 786.106 - Determination of losses incurred.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... of the dairy operation's average number of cows in the dairy herd and actual commercial production... cow determined according to the following: (1) The average of annual marketed production during the base period calendar years of 2003 and 2004, divided by; (2) The average number of cows in the dairy...

  2. 21 CFR 558.254 - Famphur.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... as an aid in control of sucking lice. (ii) Limitations. For beef cattle and nonlactating dairy cows; feed for 30 days; withdraw from dry dairy cows and heifers 21 days prior to freshening; withdraw 4 days.... For control of grubs. (ii) Limitations. For beef cattle and nonlactating dairy cows; feed for 10 days...

  3. Technical note: Validation of a commercial system for the continuous and automated monitoring of dairy cow activity.

    PubMed

    Tullo, E; Fontana, I; Gottardo, D; Sloth, K H; Guarino, M

    2016-09-01

    Current farm sizes do not allow the precise identification and tracking of individual cows and their health and behavioral records. Currently, the application of information technology within intensive dairy farming takes a key role in proper routine management to improve animal welfare and to enhance the comfort of dairy cows. An existing application based on information technology is represented by the GEA CowView system (GEA Farm Technologies, Bönen, Germany). This system is able to detect and monitor animal behavioral activities based on positioning, through the creation of a virtual map of the barn that outlines all the areas where cows have access. The aim of this study was to validate the accuracy, sensitivity, and specificity of data provided by the CowView system. The validation was performed by comparing data automatically obtained from the CowView system with those obtained by a manual labeling procedure performed on video recordings. Data used for the comparisons were represented by the zone-related activities performed by the selected dairy cows and were classified into 2 categories: activity and localization. The duration in seconds of each of the activities/localizations detected both with the manual labeling and with the automated system were used to evaluate the correlation coefficients among data; and subsequently the accuracy, sensitivity, specificity, and positive and negative predictive values of the automated monitoring system were calculated. The results of this validation study showed that the CowView automated monitoring system is able to identify the cow localization/position (alley, trough, cubicles) with high reliability in relation to the zone-related activities performed by dairy cows (accuracy higher than 95%). The results obtained support the CowView system as an innovative potential solution for the easier management of dairy cows. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. 7 CFR 1430.305 - Proof of production.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., including any dumped production and dairy cow purchases, for each month of the period July 2004 through... confirm the production history and losses incurred by the dairy operation. (d) Adequate proof of dairy cow... OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS DAIRY PRODUCTS 2004 Dairy Disaster Assistance...

  5. 7 CFR 1430.305 - Proof of production.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., including any dumped production and dairy cow purchases, for each month of the period July 2004 through... confirm the production history and losses incurred by the dairy operation. (d) Adequate proof of dairy cow... OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS DAIRY PRODUCTS 2004 Dairy Disaster Assistance...

  6. 7 CFR 1430.305 - Proof of production.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., including any dumped production and dairy cow purchases, for each month of the period July 2004 through... confirm the production history and losses incurred by the dairy operation. (d) Adequate proof of dairy cow... OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS DAIRY PRODUCTS 2004 Dairy Disaster Assistance...

  7. 7 CFR 1430.305 - Proof of production.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., including any dumped production and dairy cow purchases, for each month of the period July 2004 through... confirm the production history and losses incurred by the dairy operation. (d) Adequate proof of dairy cow... OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS DAIRY PRODUCTS 2004 Dairy Disaster Assistance...

  8. Shifts in the rumen microbiota due to the type of carbohydrate and level of protein ingested by dairy cattle are associated with changes in rumen fermentation.

    PubMed

    Belanche, Alejandro; Doreau, Michel; Edwards, Joan E; Moorby, Jon M; Pinloche, Eric; Newbold, Charles J

    2012-09-01

    Balancing energy and nitrogen in the rumen is a key to both profitability and environmental sustainability. Four dairy cows were used in a Latin square experimental design to investigate the effect of severe nitrogen underfeeding (110 vs. 80% of requirements) and the type of carbohydrate consumed [neutral detergent fiber rich (FIB) vs. starch rich (STA)] on the rumen ecosystem. These dietary treatments modified both rumen fermentation and microbial populations. Compared with STA diets, consumption of FIB diets increased bacterial and fungal diversity in the rumen and also increased the concentrations of cellulolytic microorganisms, including protozoa (+38%), anaerobic fungi (+59%), and methanogens (+27%). This microbial adaptation to fiber utilization led to similar digestibility values for the 2 carbohydrate sources and was accompanied by a shift in the rumen fermentation patterns; when the FIB diets were consumed, the cows had greater ruminal pH, ammonia concentrations, and molar proportions of acetate and propionate compared with when they consumed the STA diets. Certain rumen microorganisms were sensitive to a shortage of nitrogen; rumen concentrations of ammonia were 49% lower when the low-protein (LP) diets were consumed as were total bacteria (-13%), anaerobic fungi (-28%), methanogens (-27%), protozoa (-19%), cellulolytic bacteria, and microbial diversity compared with when the high-protein (HP) diets were consumed. As a result, the digestibility of the LP diets was less than that of the HP diets. These findings demonstrated that the rumen microbial ecosystem is directly linked to the rumen fermentation pattern and, to some extent, to the efficiency of diet utilization by dairy cattle.

  9. Modeling the adequacy of dietary fiber in dairy cows based on the responses of ruminal pH and milk fat production to composition of the diet.

    PubMed

    Zebeli, Q; Dijkstra, J; Tafaj, M; Steingass, H; Ametaj, B N; Drochner, W

    2008-05-01

    The main objective of this study was to develop practical models to assess and predict the adequacy of dietary fiber in high-yielding dairy cows. We used quantitative methods to analyze relevant research data and critically evaluate and determine the responses of ruminal pH and production performance to different variables including physical, chemical, and starch-degrading characteristics of the diet. Further, extensive data were used to model the magnitude of ruminal pH fluctuations and determine the threshold for the development of subacute ruminal acidosis (SARA). Results of this study showed that to minimize the risk of SARA, the following events should be avoided: 1) a daily mean ruminal pH lower than 6.16, and 2) a time period in which ruminal pH is <5.8 for more than 5.24 h/d. As the content of physically effective neutral detergent fiber (peNDF) or the ratio between peNDF and rumen-degradable starch from grains in the diet increased up to 31.2 +/- 1.6% [dry matter (DM) basis] or 1.45 +/- 0.22, respectively, so did the daily mean ruminal pH, for which a asymptotic plateau was reached at a pH of 6.20 to 6.27. This study also showed that digestibility of fiber in the total tract depends on ruminal pH and outflow rate of digesta from reticulorumen; thereby both variables explained 62% of the variation of fiber digestibility. Feeding diets with peNDF content up to 31.9 +/- 1.97% (DM basis) slightly decreased DM intake and actual milk yield; however, 3.5% fat-corrected milk and milk fat yield were increased, resulting in greater milk energy efficiency. In conclusion, a level of about 30 to 33% peNDF in the diet may be considered generally optimal for minimizing the risk of SARA without impairing important production responses in high-yielding dairy cows. In terms of improvement of the accuracy to assessing dietary fiber adequacy, it is suggested that the content of peNDF required to stabilize ruminal pH and maintain milk fat content without compromising milk energy efficiency can be arranged based on grain or starch sources included in the diet, on feed intake level, and on days in milk of the cows.

  10. Nutrient contributions and biogas potential of co-digestion of feedstocks and dairy manure.

    PubMed

    Ma, Guiling; Neibergs, J Shannon; Harrison, Joseph H; Whitefield, Elizabeth M

    2017-06-01

    This study focused on collection of data on nutrient flow and biogas yield at a commercial anaerobic digester managed with dairy manure from a 1000 cow dairy and co-digestion of additional feedstocks. Feedstocks included: blood, fish, paper pulp, out of date beverages and grease trap waste. Mass flow of inputs and outputs, nutrient concentration of inputs and outputs, and biogas yield were obtained. It was determined that manure was the primary source of nutrients to the anaerobic digester when co-digested with feedstocks. The percentage of contribution from manure to the total nutrient inputs for total nitrogen, ammonia-nitrogen, phosphorus and total solids was 46.3%, 67.7%, 32.8% and 23.4%, respectively. On average, manure contributed the greatest amount of total nitrogen and ammonia-nitrogen. Grease trap waste contributed the greatest amount of phosphorus and total solids at approximately 50%. Results demonstrated that a reliable estimate of nutrient inflow could be obtained from the product of the nutrient analyses of a single daily composite of influent subsamples times the total daily flow estimated with an in-line flow meter. This approach to estimate total daily nutrient inflow would be more cost effective than testing and summing the contribution of individual feedstocks. Data collected after liquid-solid separation confirmed that the majority (>75%) of nutrients remain with the liquid effluent portion of the manure stream. It was demonstrated that the ash concentration in solids before and after composting could be used to estimate the mass balance of total solids during the compost process. This data confirms that biogas or methane yield could be accurately measured from the ratio of % volatile solids to % total solids. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Checking into China's cow hotels: have policies following the milk scandal changed the structure of the dairy sector?

    PubMed

    Mo, D; Huang, J; Jia, X; Luan, H; Rozelle, S; Swinnen, J

    2012-05-01

    China's milk scandal is well known for causing the nation's largest food safety crisis and for its effect on thousands of children. Less, however, is known about the effect on the other victim: China's small dairy farmers. Although small backyard producers were not the ones that added melamine to the milk supply, the incomes of dairy farmers fell sharply after the crisis. In response, one of the actions taken by the government was to encourage small dairy producers to check into production complexes that were supposed to supply services, new technologies, and provide for easy/bulk procurement of the milk produced by the cows of the farmers. Because both farmers and their cows were living (and working) away from home, in the rest of the paper we call these complexes cow hotels. In this paper we examine the dynamics of China's dairy production structure before and after the milk scandal. In particular, we seek to gain a better understanding about how China's policies have been successful in encouraging farmers to move from the backyard into cow hotels. We also seek to find if larger or smaller farmers respond differently to these policy measures. Using data from a sample of farmers from dairy-producing villages in Greater Beijing, our empirical analysis finds that 1 yr after the milk scandal, the dairy production structure changed substantially. Approximately one quarter (26%) of the sample checked into cow hotels after the milk scandal, increasing from 2% before the crisis. Our results also demonstrate that the increase in cow hotel production can largely be attributed to China's dairy policies. Finally, our results suggest that the effects of government policy differ across farm sizes; China's dairy policies are more likely to persuade larger farms to join cow hotels. Apparently, larger farms benefit more when they join cow hotels. Overall, these results suggest that during the first year after the crisis, the government policies were effective in moving some of the backyard farmers into cow hotels (although 60% farmers remained backyard producing). Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. The Relationship of Cow Comfort and Flooring to Lameness Disorders in Dairy Cattle.

    PubMed

    Endres, Marcia I

    2017-07-01

    Cow comfort and flooring contribute to lameness incidence in dairy herds. The trigger factors for lameness can all be exacerbated by poor cow comfort. Reduced cow comfort influences lameness incidence by increasing the risk for development of new cases and the time it takes for a cow to recover. Reduction in resting time will increase the cow's exposure to hard flooring surfaces. Many factors are associated with lameness prevalence. Housing and management factors should be optimized to reduce lameness incidence on dairy farms. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Effect of dietary Quebracho tannin extract on feed intake, digestibility, excretion of urinary purine derivatives and milk production in dairy cows.

    PubMed

    Henke, Anika; Dickhoefer, Uta; Westreicher-Kristen, Edwin; Knappstein, Karin; Molkentin, Joachim; Hasler, Mario; Susenbeth, Andreas

    2017-02-01

    The aim of this study was to evaluate the effects of dietary Quebracho tannin extract (QTE) on feed intake, apparent total tract digestibility (ATTD), excretion of urinary purine derivatives (PD) and milk composition and yield in dairy cows. Fifty Holstein cows were divided into two groups. To reach a similar performance of both groups, cows were divided according to their milk yield, body weight, days in milk and number of lactations at the start of the experiment averaging 33.2 ± 8.2 kg/d, 637 ± 58 kg, 114 ± 73 d and 2.3 ± 1.6 lactations, respectively. The cows were fed a basal diet as total mixed ration containing on dry matter (DM) basis 34% grass silage, 32% maize silage and 34% concentrate feeds. Three dietary treatments were tested, the control (CON, basal diet without QTE), QTE 15 (basal diet with QTE at 15 g/kg DM) and QTE 30 (basal diet with QTE at 30 g/kg DM). Two treatments were arranged along six periods each 21 d (13 d adaptation phase and 8 d sampling phase). The ATTD of DM and organic matter were reduced only in Diet QTE 30 , whereas both QTE treatments reduced ATTD of fibre and nitrogen (N), indicating that QTE impaired rumen fermentation. Nevertheless, feed intake was unaffected by QTE. In Diet CON, urinary N excretion accounted for 29.8% of N intake and decreased in treatments QTE 15 and QTE 30 to 27.5% and 17.9%, respectively. Daily faecal N excretion increased in treatments CON, QTE 15 and QTE 30 from 211 to 237 and 273 g/d, respectively, which amounted to 39.0%, 42.4% and 51.7% of the N intake, respectively. Hence, QTE shifted N excretion from urine to faeces, whereas the proportion of ingested N appearing in milk was not affected by QTE (average 30.7% of N intake). Daily PD excretion as indicator for microbial crude protein (CP) flow at the duodenum decreased in treatment QTE 30 compared with Diet CON from 413 to 280 mmol/d. The ratios of total PD to creatinine suggest that urinary PD excretion was already lower when feeding Diet QTE 15 . While there was no effect of Diet QTE 15 , treatment QTE 30 reduced milk yield, milk fat and protein. Both QTE treatments reduced milk urea concentration, which suggest that ruminal degradation of dietary CP was reduced. In summary, adding QTE at dosages of 15 and 30 g/kg DM to diets of lactating dairy cows to improve feed and protein use efficiency is not recommended.

  14. Effects of feeding crude glycerin on performance and ruminal kinetics of lactating Holstein cows fed corn silage- or cottonseed hull-based, low-fiber diets.

    PubMed

    Shin, J H; Wang, D; Kim, S C; Adesogan, A T; Staples, C R

    2012-07-01

    The objective was to determine whether crude glycerin could partially replace concentrate ingredients in corn silage- or cottonseed hull-based diets formulated to support minimal milk fat production without reducing milk production. Multiparous, lactating Holstein cows (n=24; 116 ± 13d in milk) were assigned to dietary treatments arranged in a 2 × 3 factorial design; namely, 2 dietary roughage sources (cottonseed hulls or corn silage) and 3 dietary concentrations of glycerin [0, 5, or 10% on a dry matter (DM) basis]. Four different cows received each dietary treatment in each of 3 periods such that each diet was evaluated using 12 cows. Crude glycerin, produced using soybean oil, contained 12% water, 5% oil, 6.8% sodium chloride, and 0.4% methanol. Glycerin partially replaced ground corn, corn gluten feed, and citrus pulp. Diets of minimum fiber concentrations were fed to lactating dairy cows and resulted in low concentrations of milk fat (averaging 3.12% for cows fed diets without glycerin). The effects of glycerin on cow performance and ruminal measurements were the same for both dietary roughage sources with the exception of feed efficiency. Replacing concentrate with crude glycerin at 5% of dietary DM increased DM intake without increasing milk yield. Concentration and yield of milk fat were reduced when glycerin was fed at 10% of dietary DM. This was accompanied by a 30% reduction in apparent total-tract digestion of dietary neutral detergent fiber. Crude glycerin affected the microbial population in the rumen as evidenced by increased molar proportions of propionic, butyric, and valeric acids and decreased molar proportions of acetic acid. Efficiency of N utilization was improved as evidenced by lower concentrations of blood urea nitrogen and ruminal ammonia-N. Cows fed cottonseed hull-based diets consumed 5.3 kg/d more DM but produced only 1.7 kg/d more milk, resulting in reduced efficiency. Increased production of ruminal microbial protein, molar proportion of propionic acid, and passage of ruminal fluid resulted from feeding the cottonseed hull- versus corn silage-based diets, although apparent digestibilities of DM and neutral detergent fiber were reduced. Replacing 5 and 10% of concentrate ingredients with crude glycerin improved efficiency of 4% fat-corrected milk production when corn silage-based diets were fed but decreased it when cottonseed hull-based diets were fed. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. Factors associated with age at slaughter and carcass weight, price, and value of dairy cull cows.

    PubMed

    Bazzoli, I; De Marchi, M; Cecchinato, A; Berry, D P; Bittante, G

    2014-02-01

    The sale of cull cows contributes to the overall profit of dairy herds. The objective of this study was to quantify the factors associated with slaughter age (mo), cow carcass weight (kg), price (€/kg of carcass weight), and value (€/head) of dairy cull cows. Data included 20,995 slaughter records in the period from 2003 to 2011 of 5 different breeds: 2 dairy [Holstein Friesian (HF) and Brown Swiss (BS)] and 3 dual-purpose [Simmental (Si), Alpine Grey (AG), and Rendena (Re)]. Associations of breed, age of cow (except when the dependent variable was slaughter age), and year and month of slaughter with slaughter age, carcass weight, price, and value were quantified using a mixed linear model; herd was included as a random effect. The seasonal trends in cow price and value traits were inversely related to the number of cows slaughtered, whereas annual variation in external factors affected market conditions. Relative to BS cows, HF cows were younger at slaughter (73.1 vs. 80.7 mo), yielded slightly lighter carcasses (242 vs. 246 kg), and received a slightly lower price (1.69 vs. 1.73 €/kg) and total value (394 vs. 417 €/head). Dual-purpose breeds were older and heavier and received a much greater price and total value at slaughter (521, 516, and 549 €/head, respectively for Si, Re, and AG) than either dairy breed. Of the dual-purpose cows, Si carcasses were heavier (271 kg), whereas the carcasses of local breeds received a higher price (2.05 and 2.18 €/kg for Re and AG, respectively) and Alpine Grey cows were the oldest at slaughter (93.3 mo). The price per kilogram of cull cow carcasses was greatest for very young cows (i.e., <3 yr of age) and the differential in price and value between younger and older cows was greater in dual-purpose than in dairy breeds. Large differences in cull cow whole carcass value (carcass weight × unit price) among dairy breeds suggest that such a trait could be considered in the breeding objectives of the breeds. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. Effect of dietary starch level and high rumen-undegradable protein on endocrine-metabolic status, milk yield, and milk composition in dairy cows during early and late lactation.

    PubMed

    Piccioli-Cappelli, F; Loor, J J; Seal, C J; Minuti, A; Trevisi, E

    2014-12-01

    Diet composition defines the amount and type of nutrients absorbed by dairy cows. Endocrine-metabolic interactions can influence these parameters, and so nutrient availability for the mammary gland can significantly vary and affect milk yield and its composition. Six dairy cows in early and then late lactation received, for 28 d in a changeover design, 2 diets designed to provide, within the same stage of lactation, similar amounts of rumen fermentable material but either high starch plus sugar (HS) content or low starch plus sugar content (LS). All diets had similar dietary crude protein and calculated supply of essential amino acids. Dry matter intake within each stage of lactation was similar between groups. Milk yield was similar between groups in early lactation, whereas a higher milk yield was observed in late lactation when feeding HS. At the metabolic level, the main difference observed between the diets in both stages of lactation was lower blood glucose in cows fed LS. The lower glucose availability during consumption of LS caused substantial modifications in the circulating and postprandial pattern of metabolic hormones. Feeding LS versus HS resulted in an increase in the ratio of bovine somatotropin to insulin. This increased mobilization of lipid reserves resulted in higher blood concentrations of nonesterified fatty acids and β-hydroxybutyrate, which contributed to the higher milk fat content in both stages of lactation in the LS group. This greater recourse to body fat stores was confirmed by the greater loss of body weight during early lactation and the slower recovery of body weight in late lactation in cows fed LS. The lower insulin to glucagon ratio observed in cows fed LS in early and late lactation likely caused an increase in hepatic uptake and catabolism of amino acids, as confirmed by the higher blood urea concentrations. Despite the higher catabolism of amino acids in LS in early lactation, similar milk protein output was observed for both diets, suggesting similar availability of amino acids for peripheral tissue and mammary gland. The latter could be the result of sparing of amino acids at the gut level due to starch that escaped from the rumen, and to the balanced amino acid profile of digestible protein. This last aspect appears worthy of further research, with the aim to enhance the efficiency of protein metabolism of dairy cows, reducing environmental nitrogen pollution without affecting milk yield potential.

  17. Identification of diagnostic biomarkers and metabolic pathway shifts of heat-stressed lactating dairy cows.

    PubMed

    Tian, He; Wang, Weiyu; Zheng, Nan; Cheng, Jianbo; Li, Songli; Zhang, Yangdong; Wang, Jiaqi

    2015-07-01

    Controlling heat stress (HS) is a global challenge for the dairy industry. However, simple and reliable biomarkers that aid the diagnoses of HS-induced metabolic disorders have not yet been identified. In this work, an integrated metabolomic and lipidomic approach using (1)H nuclear magnetic resonance and ultra-fast LC-MS was employed to investigate the discrimination of plasma metabolic profiles between HS-free and HS lactating dairy cows. Targeted detection using LC-MS in multiple reaction monitoring mode was used to verify the reliability of the metabolites as biomarker candidates. Overall, 41 metabolites were identified as candidates for lactating dairy cows exposed to HS, among which 13 metabolites, including trimethylamine, glucose, lactate, betaine, creatine, pyruvate, acetoacetate, acetone, β-hydroxybutyrate, C16 sphinganine, lysophosphatidylcholine (18:0), phosphatidylcholine (16:0/14:0), and arachidonic acid, had high sensitivity and specificity in diagnosing HS status, and are likely to be the potential biomarkers of HS dairy cows. All of these potentially diagnostic biomarkers were involved in carbohydrate, amino acid, lipid, or gut microbiome-derived metabolism, indicating that HS affected the metabolic pathways in lactating dairy cows. Further research is warranted to evaluate these biomarkers in practical applications and to elucidate the physiological mechanisms of HS-induced metabolic disorders. Heat stress (HS) annually causes huge losses to global dairy industry, including animal performance decrease, metabolic disorder and health problem. So far, physiological mechanisms underlying HS of dairy cows still remain elusive. To our best knowledge, this is the first attempt to elucidate the HS-induced metabolic disorders of dairy cows using integrated (1)H NMR and LC-MS-based metabolic study. The results not only provided potential diagnostic biomarkers for HS lactating dairy cows, but also significantly explored the related physiological mechanisms of metabolic pathway shifts induced by HS environment. This work offers comprehensive insights into the global metabolic alterations of dairy cows exposed to HS and provides a new perspective for further study. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Design and calibration of chambers for the measurement of housed dairy cow gaseous emissions

    USDA-ARS?s Scientific Manuscript database

    The increased global demand for milk and other dairy products over the past decade has heightened concerns about potential for increased environmental impacts. Accurate measurement of gas emissions from dairy cows is essential to assess the effect of cow diets and other management practices on both ...

  19. 7 CFR 1430.102 - Eligible products.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... must be manufactured from dairy cow's milk produced in the United States, and must not have been previously owned by CCC. Dairy cow in this instance means an animal of the kind that produces the majority of dairy products in the United States and not, for example, cows of other species of animals such as yaks...

  20. 7 CFR 1430.102 - Eligible products.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... must be manufactured from dairy cow's milk produced in the United States, and must not have been previously owned by CCC. Dairy cow in this instance means an animal of the kind that produces the majority of dairy products in the United States and not, for example, cows of other species of animals such as yaks...

  1. 7 CFR 1430.102 - Eligible products.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... must be manufactured from dairy cow's milk produced in the United States, and must not have been previously owned by CCC. Dairy cow in this instance means an animal of the kind that produces the majority of dairy products in the United States and not, for example, cows of other species of animals such as yaks...

  2. 7 CFR 1430.102 - Eligible products.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... must be manufactured from dairy cow's milk produced in the United States, and must not have been previously owned by CCC. Dairy cow in this instance means an animal of the kind that produces the majority of dairy products in the United States and not, for example, cows of other species of animals such as yaks...

  3. 7 CFR 1430.306 - Determination of losses incurred.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... average of daily dairy cow additions or reductions to the milking herd during the period of July 1, 2004 through October 31, 2004, to account for production adjustments as a result of dairy cow purchases, sales, or death losses. Production adjustments can be calculated using the average number of dairy cows in a...

  4. Metabolic Profile and Inflammatory Responses in Dairy Cows with Left Displaced Abomasum Kept under Small-Scaled Farm Conditions

    PubMed Central

    Klevenhusen, Fenja; Humer, Elke; Metzler-Zebeli, Barbara; Podstatzky-Lichtenstein, Leopold; Wittek, Thomas; Zebeli, Qendrim

    2015-01-01

    Simple Summary This research established an association between lactation number and milk production and metabolic and inflammatory responses in high-producing dairy cows affected by left abomasal displacement in small-scaled dairy farms. The study showed metabolic alterations, liver damage, and inflammation in the sick cows, which were further exacerbated with increasing lactation number and milk yield of the cows. Abstract Left displaced abomasum (LDA) is a severe metabolic disease of cattle with a strong negative impact on production efficiency of dairy farms. Metabolic and inflammatory alterations associated with this disease have been reported in earlier studies, conducted mostly in large dairy farms. This research aimed to: (1) evaluate metabolic and inflammatory responses in dairy cows affected by LDA in small-scaled dairy farms; and (2) establish an association between lactation number and milk production with the outcome of metabolic variables. The cows with LDA had lower serum calcium (Ca), but greater concentrations of non-esterified fatty acids (NEFA) and beta-hydroxy-butyrate (BHBA), in particular when lactation number was >2. Cows with LDA showed elevated levels of aspartate aminotransferase, glutamate dehydrogenase, and serum amyloid A (SAA), regardless of lactation number. In addition, this study revealed strong associations between milk yield and the alteration of metabolic profile but not with inflammation in the sick cows. Results indicate metabolic alterations, liver damage, and inflammation in LDA cows kept under small-scale farm conditions. Furthermore, the data suggest exacerbation of metabolic profile and Ca metabolism but not of inflammation and liver health with increasing lactation number and milk yield in cows affected by LDA. PMID:26479481

  5. Performance, digestion, nitrogen balance, and emission of manure ammonia, enteric methane, and carbon dioxide in lactating cows fed diets with varying alfalfa silage-to-corn silage ratios.

    PubMed

    Arndt, C; Powell, J M; Aguerre, M J; Wattiaux, M A

    2015-01-01

    Two trials were conducted simultaneously to study the effects of varying alfalfa silage (AS) to corn silage (CS) ratio in diets formulated to avoid excess protein or starch on lactating dairy cow performance, digestibility, ruminal parameters, N balance, manure production and composition, and gaseous emissions [carbon dioxide (CO2), methane (CH4), and ammonia-N (NH3-N)]. In trial 1 all measurements, except gas emissions, were conducted on 8 rumen-cannulated cows in replicated 4×4 Latin squares. In trial 2, performance and emissions were measured on 16 cows randomly assigned to 1 of 4 air-flow controlled chambers in a 4×4 Latin square. Dietary treatments were fed as total mixed rations with forage-to-concentrate ratio of 55:45 [dietary dry matter (DM) basis] and AS:CS ratios of 20:80, 40:60, 60:40, and 80:20 (forage DM basis). Measurements were conducted the last 3d of each 21-d period. Treatments did not affect DM intake, DM digestibility, and milk/DM intake. However, responses were quadratic for fat-and-protein-corrected milk, fat, and protein production, which reached predicted maxima for AS:CS ratio of 50:50, 49:51, and 34:66, respectively. Nitrogen use efficiency (milk N/N intake) decreased from 31 to 24g/100g as AS:CS ratio increased from 20:80 to 80:20. Treatments did not alter NH3-N/milk-N but tended to have a quadratic effect on daily NH3-N emission. Treatments had a quadratic effect on daily CH4 emission, which was high compared with current literature; they influenced CH4 emission per unit of neutral detergent fiber (NDF) intake and tended to influence CO2/NDF intake. Ruminal acetate-to-propionate ratio and total-tract NDF digestibility increased linearly with increasing AS:CS ratio. In addition, as AS:CS ratio increased from 20:80 to 80:20, NDF digested increased linearly from 2.16 to 3.24kg/d, but CH4/digested NDF decreased linearly from 270 to 190g/kg. These 2 counterbalancing effects likely contributed to the observed quadratic response in daily CH4 emission, which may have been influenced also by increasing starch with increasing CS in the diet as reflected by the increased ruminal propionate molar proportion. Overall, production performances were greatest for the intermediate AS:CS ratios (40:60 and 60:40), but daily excretion of urine, manure, fecal N, urinary urea N, and urinary N decreased with increasing proportion of CS in the diet, whereas daily CH4 emission was reduced for the 2 extreme AS:CS ratios (20:80 and 80:20). However, the proportion of AS and CS in the diet did not affect CH4/fat-and-protein corrected milk. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. 21 CFR 522.1073 - Gonadorelin acetate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... insemination in lactating dairy cows and beef cows. Administer to each cow 100 µg gonadorelin by intramuscular... cysts in dairy cattle. Administer 100 µg gonadorelin by intramuscular or intravenous injection. (ii) For...

  7. 21 CFR 522.1073 - Gonadorelin acetate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... insemination in lactating dairy cows and beef cows. Administer to each cow 100 µg gonadorelin by intramuscular... cysts in dairy cattle. Administer 100 µg gonadorelin by intramuscular or intravenous injection. (ii) For...

  8. Effects of lactic acid bacteria silage inoculation on methane emission and productivity of Holstein Friesian dairy cattle.

    PubMed

    Ellis, J L; Hindrichsen, I K; Klop, G; Kinley, R D; Milora, N; Bannink, A; Dijkstra, J

    2016-09-01

    Inoculants of lactic acid bacteria (LAB) are used to improve silage quality and prevent spoilage via increased production of lactic acid and other organic acids and a rapid decline in silage pH. The addition of LAB inoculants to silage has been associated with increases in silage digestibility, dry matter intake (DMI), and milk yield. Given the potential change in silage and rumen fermentation conditions accompanying these silage additives, the aim of this study was to investigate the effect of LAB silage inoculants on DMI, digestibility, milk yield, milk composition, and methane (CH4) production from dairy cows in vivo. Eight mid-lactation Holstein-Friesian dairy cows were grouped into 2 blocks of 4 cows (multiparous and primiparous) and used in a 4×4 double Latin square design with 21-d periods. Methane emissions were measured by indirect calorimetry. Treatments were grass silage (mainly ryegrass) with no inoculant (GS), with a long-term inoculant (applied at harvest; GS+L), with a short-term inoculant (applied 16h before feeding; GS+S), or with both long and short-term inoculants (GS+L+S). All diets consisted of grass silage and concentrate (75:25 on a dry matter basis). The long-term inoculant consisted of a 10:20:70 mixture of Lactobacillus plantarum, Lactococcus lactis, and Lactobacillus buchneri, and the short-term inoculant was a preparation of Lc. lactis. Dry matter intake was not affected by long-term or short-term silage inoculation, nor was dietary neutral detergent fiber or fat digestibility, or N or energy balance. Milk composition (except milk urea) and fat and protein-corrected milk yield were not affected by long- or short-term silage inoculation, nor was milk microbial count. However, milk yield tended to be greater with long-term silage inoculation. Methane expressed in units of grams per day, grams per kilogram of DMI, grams per kilogram of milk, or grams per kilogram of fat and protein-corrected milk yield was not affected by long- or short-term silage inoculation. However, CH4 expressed in units of kilojoules per kilogram of metabolic body weight per day tended to be greater with long-term silage inoculation. Results of this study indicate minimal responses in animal performance to both long- and short-term inoculation of grass silage with LAB. Strain and dose differences as well as different basal silages and ensiling conditions are likely responsible for the lack of significant effects observed here, although positive effects have been observed in other studies. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. Genetic strain and diet effects on grazing behavior, pasture intake, and milk production.

    PubMed

    Sheahan, A J; Kolver, E S; Roche, J R

    2011-07-01

    Understanding how dairy cows adjust their grazing behavior in response to feed supplements is important for the development of management strategies that optimize profit from supplementation. New Zealand Holstein-Friesian (HF) cows have been selected for milk production on a predominantly pasture-based diet; in comparison, HF cows of North American (NA) ancestry have been selected almost exclusively for milk yield and fed diets high in nonfiber carbohydrates (NFC). We hypothesized, therefore, that supplementation would have differing effects on grazing behavior, pasture dry matter intake (DMI), and milk production in these genetic strains at peak, mid, and late lactation. A study was conducted over 2 consecutive lactations, with NA and NZ cows randomly allocated at calving to 0, 3, or 6 kg of dry matter/day concentrate plus unrestricted access to pasture. Pasture DMI, milk production, and grazing behavior were recorded at peak, mid, and late lactation. Concentrates were fed in equal amounts at morning and afternoon milking. The NA cows produced more milk and milk components, and had a greater pasture DMI, despite spending less time grazing. Declines in time spent grazing and pasture DMI were associated with increasing concentrate DMI. Grazing behavior following morning supplementation was different from that recorded following afternoon supplementation. Grazing ceased following morning supplementation before rumen fill could be a limiting factor, and the length of the grazing interval was inversely proportional to the amount of concentrate offered; these results suggest that physiological rather than physical stimuli were responsible for grazing cessation. The decrease in time spent grazing with increasing concentrate DMI is consistent with changes in neuroendocrine factors secreted in response to the presence of food in the digestive tract or with circulating products of digestion. After afternoon supplementation, sunset signaled the end of grazing irrespective of stage of lactation, timing of sunset, or supplementation status, suggesting that photoperiod influenced grazing behavior. Results confirmed changes in grazing behavior, an associated reduction in pasture DMI, and an increase in milk production when cows consume increasing amounts of concentrates. However, as the effect of supplement on grazing behavior differed between morning and afternoon supplementation, further research is required to better understand the factors controlling grazing behavior, to allow improved milk production responses to supplementary feeding. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Effects of branched-chain volatile fatty acids on lactation performance and mRNA expression of genes related to fatty acid synthesis in mammary gland of dairy cows.

    PubMed

    Liu, Q; Wang, C; Guo, G; Huo, W J; Zhang, S L; Pei, C X; Zhang, Y L; Wang, H

    2018-02-12

    Branched-chain volatile fatty acids (BCVFA) supplements could promote lactation performance and milk quality by improving ruminal fermentation and milk fatty acid synthesis. This study was conducted to evaluate the effects of BCVFA supplementation on milk performance, ruminal fermentation, nutrient digestibility and mRNA expression of genes related to fatty acid synthesis in mammary gland of dairy cows. A total of 36 multiparous Chinese Holstein cows averaging 606±4.7 kg of BW, 65±5.2 day in milk (DIM) with daily milk production of 30.6±0.72 kg were assigned to one of four groups blocked by lactation number, milk yield and DIM. The treatments were control, low-BCVFA (LBCVFA), medium-BCVFA (MBCVFA) and high-BCVFA (HBCVFA) with 0, 30, 60 and 90 g BCVFA per cow per day, respectively. Experimental periods were 105 days with 15 days of adaptation and 90 days of data collection. Dry matter (DM) intake tended to increase, but BW changes were similar among treatments. Yields of actual milk, 4% fat corrected milk, milk fat and true protein linearly increased, but feed conversion ratio (FCR) linearly decreased with increasing BCVFA supplementation. Milk fat content linearly increased, but true protein content tended to increase. Contents of C4:0, C6:0, C8:0, C10:0, C12:0, C14:0 and C15:0 fatty acids in milk fat linearly increased, whereas other fatty acids were not affected with increasing BCVFA supplementation. Ruminal pH, ammonia N concentration and propionate molar proportion linearly decreased, but total VFA production and molar proportions of acetate and butyrate linearly increased with increasing BCVFA supplementation. Consequently, acetate to propionate ratios linearly increased. Digestibilities of DM, organic matter, CP, NDF and ADF also linearly increased. In addition, mRNA expressions of peroxisome proliferator-activated receptor γ, sterol regulatory element-binding factor 1 and fatty acid-binding protein 3 linearly increased, mRNA expressions of acetyl-coenzyme A carboxylase-α, fatty acid synthase and stearoyl-CoA desaturase quadratically increased. However, lipoprotein lipase mRNA expression was not affected by treatments. The results indicated that lactation performance and milk fat synthesis increased with BCVFA supplementation by improving ruminal fermentation, nutrient digestibility and mRNA expressions of genes related to milk fat synthesis.

  11. Body Temperature Versus Microclimate Selection in Heat Stressed Dairy Cows

    USDA-ARS?s Scientific Manuscript database

    The purpose of this study is to characterize the thermoregulatory responses of unrestrained heat-stressed dairy cows within a freestall environment using fan and spray configurations for cooling cows while lying or standing. An experimental treatment sprayed individual cows lying in freestalls from ...

  12. Short communication: Development of the first follicular wave dominant follicle on the ovary ipsilateral to the corpus luteum is associated with decreased conception rate in dairy cattle.

    PubMed

    Miura, R; Haneda, S; Kayano, M; Matsui, M

    2015-01-01

    In this study, we examined the effect of the locations of the first-wave dominant follicle (DF) and corpus luteum (CL) on fertility. In total, 350 artificial insemination (AI) procedures were conducted (lactating dairy cows: n=238, dairy heifers: n=112). Ovulation was confirmed 24 h after AI. The locations of the first-wave DF and CL were examined 5 to 9d after AI using rectal palpation or transrectal ultrasonography. Lactating dairy cows and dairy heifers were divided into 2 groups: (1) the ipsilateral group (IG), in which the DF was ipsilateral to the CL; and (2) the contralateral group (CG), in which the DF was contralateral to the CL. Pregnancy was diagnosed using transrectal ultrasonography 40d after AI. Conception rates were 54.0% in all cattle: 48.9% in lactating dairy cows, and 58.9% in dairy heifers. The incidence of the first-wave DF location did not differ between IG and CG (all cattle: 184 vs. 166; lactating cows: 129 vs. 109; heifers: 55 vs. 57 for IG vs. CG). Conception rates were lower in IG than in CG (all cattle: 40.2 vs. 69.3%; lactating dairy cows: 38.0 vs. 67.0%; dairy heifers: 45.5 vs. 73.7%, for IG vs. CG). Conception rate was not affected by season or live weight in heifers and lactating cows. In addition, days in milk at AI, milk production, body condition score, and parity did not affect conception in lactating cows. In summary, development of the first-wave DF in the ovary ipsilateral to the CL was associated with reduced conception rates in both lactating cows and heifers. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Utilization of protein in red clover and alfalfa silages by lactating dairy cows and growing lambs.

    PubMed

    Broderick, Glen A

    2018-02-01

    Feeding trials were conducted with lactating cows and growing lambs to quantify effects of replacing dietary alfalfa silage (AS) with red clover silage (RCS) on nutrient utilization. The lactation trial had a 2 × 4 arrangement of treatments: AS or RCS fed with no supplement, rumen-protected Met (RPM), rumen-protected Lys (RPL), or RPM plus RPL. Grass silage was fed at 13% of dry matter (DM) with AS to equalize dietary neutral detergent fiber (NDF) and crude protein contents. All diets contained (DM basis) 5% corn silage and 16% crude protein. Thirty-two multiparous (4 ruminally cannulated) plus 16 primiparous Holstein cows were blocked by parity and days in milk and fed diets as total mixed rations in an incomplete 8 × 8 Latin square trial with four 28-d periods. Production data (over the last 14 d of each period) and digestibility and excretion data (at the end of each period) were analyzed using the MIXED procedure of SAS (SAS Institute Inc., Cary, NC). Although DM intake was 1.2 kg/d greater on AS than RCS, milk yield and body weight gain were not different. However, yields of fat and energy-corrected milk as well as milk content of fat, true protein, and solids-not-fat were greater on AS. Relative to AS, feeding RCS increased milk and energy-corrected milk yield per unit of DM intake, milk lactose content, and apparent N efficiency and reduced milk urea. Relative to AS, apparent digestibility of DM, organic matter, NDF, and acid detergent fiber were greater on RCS, whereas apparent and estimated true N digestibility were lower. Urinary N excretion and ruminal concentrations of ammonia, total AA, and branched-chain volatile fatty acids were reduced on RCS, indicating reduced ruminal protein degradation. Supplementation of RPM increased intake, milk true protein, and solids-not-fat content and tended to increase milk fat content. There were no silage × RPM interactions, suggesting that RPM was equally limiting on both AS and RCS. Supplementation of RPL did not influence any production trait; however, a significant silage × RPL interaction was detected for intake: RPL reduced intake of AS diets but increased intake of RCS diets. Duplicated metabolism trials were conducted with lambs confined to metabolism crates and fed only silage. After adaptation, collections of silage refusals and excreta were made during ad libitum feeding followed by feeding DM restricted to 2% of body weight. Intake of DM was not different when silages were fed ad libitum. Apparent digestibility of DM, organic matter, NDF, and hemicellulose was greater in lambs fed RCS on both ad libitum and restricted intake; however, acid detergent fiber digestibility was only greater at restricted intake. Apparent and estimated true N digestibility was substantially lower, and N retention was reduced, on RCS. Results confirmed greater DM and fiber digestibility in ruminants and N efficiency in cows fed RCS. Specific loss of Lys bioavailability on RCS was not observed. Based on milk composition, Met was the first-limiting AA on both silages; however, Met was not limiting based on production and nutrient efficiency. Depressed true N digestibility suggested impaired intestinal digestibility of rumen-undegraded protein from RCS. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Relationship between proteolysis in the silo and efficiency of utilization of dietary protein by lactating dairy cows

    USDA-ARS?s Scientific Manuscript database

    Ensiling is used widely to conserve forages for feeding to dairy cows. However, the protein in hay-crop silages is particularly susceptible to microbial breakdown in the rumen, and utilization of protein in alfalfa and grass silages by dairy cows is particularly poor. Dependent on maturity, hay-crop...

  15. 7 CFR 760.204 - Eligible livestock, honeybees, and farm-raised fish.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... beef cows or bulls, (2) Adult buffalo or beefalo cows or bulls, (3) Adult dairy cows or bulls, (4... determined by FSA; (2) Yaks; (3) Ostriches; (4) All beef and dairy cattle, and buffalo and beefalo that... alpacas, adult or non-adult dairy cattle, beef cattle, beefalo, buffalo, deer, elk, emus, equine, goats...

  16. 7 CFR 760.204 - Eligible livestock, honeybees, and farm-raised fish.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... beef cows or bulls, (2) Adult buffalo or beefalo cows or bulls, (3) Adult dairy cows or bulls, (4... determined by FSA; (2) Yaks; (3) Ostriches; (4) All beef and dairy cattle, and buffalo and beefalo that... alpacas, adult or non-adult dairy cattle, beef cattle, beefalo, buffalo, deer, elk, emus, equine, goats...

  17. 7 CFR 760.204 - Eligible livestock, honeybees, and farm-raised fish.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... beef cows or bulls, (2) Adult buffalo or beefalo cows or bulls, (3) Adult dairy cows or bulls, (4... determined by FSA; (2) Yaks; (3) Ostriches; (4) All beef and dairy cattle, and buffalo and beefalo that... alpacas, adult or non-adult dairy cattle, beef cattle, beefalo, buffalo, deer, elk, emus, equine, goats...

  18. 7 CFR 760.204 - Eligible livestock, honeybees, and farm-raised fish.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... beef cows or bulls, (2) Adult buffalo or beefalo cows or bulls, (3) Adult dairy cows or bulls, (4... determined by FSA; (2) Yaks; (3) Ostriches; (4) All beef and dairy cattle, and buffalo and beefalo that... alpacas, adult or non-adult dairy cattle, beef cattle, beefalo, buffalo, deer, elk, emus, equine, goats...

  19. Review: welfare of dairy cows in continuously housed and pasture-based production systems.

    PubMed

    Arnott, G; Ferris, C P; O'Connell, N E

    2017-02-01

    There is increasing interest in the use of continuous housing systems for dairy cows, with various reasons put forward to advocate such systems. However, the welfare of dairy cows is typically perceived to be better within pasture-based systems, although such judgements are often not scientifically based. The aim of this review was to interrogate the existing scientific literature to compare the welfare, including health, of dairy cows in continuously housed and pasture-based systems. Although summarising existing work, knowledge gaps and directions for future research are also identified. The scope of the review is broad, examining relevant topics under three main headings; health, behaviour and physiology. Regarding health, cows on pasture-based systems had lower levels of lameness, hoof pathologies, hock lesions, mastitis, uterine disease and mortality compared with cows on continuously housed systems. Pasture access also had benefits for dairy cow behaviour, in terms of grazing, improved lying/resting times and lower levels of aggression. Moreover, when given the choice between pasture and indoor housing, cows showed an overall preference for pasture, particularly at night. However, the review highlighted the need for a deeper understanding of cow preference and behaviour. Potential areas for concern within pasture-based systems included physiological indicators of more severe negative energy balance, and in some situations, the potential for compromised welfare with exposure to unpredictable weather conditions. In summary, the results from this review highlight that there remain considerable animal welfare benefits from incorporating pasture access into dairy production systems.

  20. Behavior and Milk Yield Responses of Dairy Cattle to Simulated Jet Aircraft Noise.

    DTIC Science & Technology

    1992-01-01

    dairy cows and release of prolactin (Prl) and Cortisol (Gc) in response to the milking stimuli. Thirty-six lactating Holstein dairy cows were...assigned to experiment when between 79 and 155 days in milk (DIM). Experiment was an incomplete block design with three treatments. Cows were... Cows were exposed to noise on 10-12 d/period with a frequency of 1-4 times/d. Milk yields, milk composition and residual milk were measured

  1. Measurement of cardiac troponin I in healthy lactating dairy cows using a point of care analyzer (i-STAT-1).

    PubMed

    Labonté, Josiane; Roy, Jean-Philippe; Dubuc, Jocelyn; Buczinski, Sébastien

    2015-06-01

    Cardiac troponin I (cTnI) has been shown to be an accurate predictor of myocardial injury in cattle. The point-of-care i-STAT 1 immunoassay can be used to quantify blood cTnI in cattle. However, the cTnI reference interval in whole blood of healthy early lactating dairy cows remains unknown. To determine a blood cTnI reference interval in healthy early lactating Holstein dairy cows using the analyzer i-STAT 1. Forty healthy lactating dairy Holstein cows (0-60 days in milk) were conveniently selected from four commercial dairy farms. Each selected cow was examined by a veterinarian and transthoracic echocardiography was performed. A cow-side blood cTnI dosage was measured at the same time. A bootstrap statistical analysis method using unrestricted resampling was used to determine a reference interval for blood cTnI values. Forty healthy cows were recruited in the study. Median blood cTnI was 0.02 ng/mL (minimum: 0.00, maximum: 0.05). Based on the bootstrap analysis method with 40 cases, the 95th percentile of cTnI values in healthy cows was 0.036 ng/mL (90% CI: 0.02-0.05 ng/mL). A reference interval for blood cTnI values in healthy lactating cows was determined. Further research is needed to determine whether cTnI blood values could be used to diagnose and provide a prognosis for cardiac and noncardiac diseases in lactating dairy cows. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Faecal bacterial composition in dairy cows shedding Mycobacterium avium subsp. paratuberculosis in faeces in comparison with nonshedding cows.

    PubMed

    Kaevska, Marija; Videnska, Petra; Sedlar, Karel; Bartejsova, Iva; Kralova, Alena; Slana, Iva

    2016-06-01

    The aim of this study was to determine possible differences in the faecal microbiota of dairy cows infected with Mycobacterium avium subsp. paratuberculosis (Johne's disease) in comparison with noninfected cows from the same herds. Faecal samples from cows in 4 herds were tested for M. avium subsp. paratuberculosis by real-time PCR, and faecal bacterial populations were analysed by 454 pyrosequencing of the 16S rRNA gene. The most notable differences between shedding and nonshedding cows were an increase in the genus Psychrobacter and a decrease in the genera Oscillospira, Ruminococcus, and Bifidobacterium in cows infected with M. avium subsp. paratuberculosis. The present study is the first to report the faecal microbial composition in dairy cows infected with M. avium subsp. paratuberculosis.

  3. 40 CFR Table Jj-3 to Subpart Jj of... - State-Specific Volatile Solids (VS) and Nitrogen (N) Excretion Rates for Cattle

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... VS/day/1000 kg animal mass) Dairy cows Dairy heifers Feedlot steer Feedlot heifers Nitrogen excretion rate (kg VS/day/1000 kg animal mass) Dairy cows Dairy heifers Feedlot steer Feedlot heifers Alabama 8...

  4. 40 CFR Table Jj-3 to Subpart Jj of... - State-Specific Volatile Solids (VS) and Nitrogen (N) Excretion Rates for Cattle

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... VS/day/1000 kg animal mass) Dairy cows Dairy heifers Feedlot steer Feedlot heifers Nitrogen excretion rate (kg VS/day/1000 kg animal mass) Dairy cows Dairy heifers Feedlot steer Feedlot heifers Alabama 8...

  5. 40 CFR Table Jj-3 to Subpart Jj of... - State-Specific Volatile Solids (VS) and Nitrogen (N) Excretion Rates for Cattle

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... VS/day/1000 kg animal mass) Dairy cows Dairy heifers Feedlot steer Feedlot heifers Nitrogen excretion rate (kg VS/day/1000 kg animal mass) Dairy cows Dairy heifers Feedlot steer Feedlot heifers Alabama 8...

  6. Supplementation of methionine and selection of highly digestible rumen undegradable protein to improve nitrogen efficiency for milk production.

    PubMed

    Noftsger, S; St-Pierre, N R

    2003-03-01

    Metabolizable protein (MP) supply and amino acid balance were manipulated through selection of highly digestible rumen-undegradable protein (RUP) sources and methionine (Met) supplementation. Effects on production efficiency and N utilization of lactating dairy cows were determined. Thirty-two multiparous (647 kg) and 28 primiparous (550 kg) Holstein cows were assigned during the fourth week of lactation to one of four dietary treatments. Treatments were 1) 18.3% crude protein (CP) with low estimated intestinal digestibility of RUP (HiCP-LoDRUP), 2) 18.3% CP with high digestibility RUP (HiCP-HiDRUP), 3) 16.9% CP with high digestibility RUP (LoCP-HiDRUP), and 4) 17.0% CP with high digestibility RUP and supplemental Met (LoCP-HiDRUP + Met). Diets were balanced to have equal concentrations of net energy for lactation (NE(L)), acid detergent fiber (ADF), neutral detergent fiber (NDF), and ash. Milk yields (40.8, 46.2, 42.9, 46.6 kg/d), protein percentages (2.95, 2.98, 2.99, 3.09%), and fat percentages (3.42, 3.64, 3.66, 3.73%) are reported here for HiCP-LoDRUP, HiCP-HiDRUP, LoCP-HiDRUP, and LoCP-HiDRUP + Met, respectively. Milk urea N and BUN decreased when feeding a lower CP diet. Efficiency of use of N for milk protein production was higher when feeding higher digestibility RUP, especially with the LoCP-HiDRUP + Met diet. A digestibility study followed the production trial, with six cows per treatment group continuing on the same treatment for an additional week. The experimental periods were 5 d long, with 1 d of adjustment and 4 d of total collection of urine and feces. Dry matter intake, milk production, milk protein production, and N digestibility were not significantly different among treatments during the collection trial, whereas N intake and N absorbed increased with the higher CP diets. The quantity of N in feces did not change with diet, but quantity of N in urine decreased in the low CP diets. Milk N as a percentage of intake N and milk N as a percentage of N absorbed showed a trend toward increasing as CP concentration in the diet decreased. The supplementation of Met did not improve the efficiency of N utilization during the digestibility study, in contrast to what was estimated during the production trial. Supplementing the highly digestible RUP source with rumen available and rumen escape sources of Met resulted in maximal milk and protein production and maximum N efficiency by cows during the production trial, indicating that postruminal digestibility of RUP and amino acid balance can be more important than total RUP supplementation.

  7. The Preliminary Pollutant Limit Value Approach: Manual for Users

    DTIC Science & Technology

    1988-07-01

    48 5.2.3 Plant Consumption by Dairy Cows (Upd) ............. 48 5.2.4 Water Consumption by Dairy Cows (Uwd) ............. 48 5.2.5 Soil...other equations include the effect of concurrent consumption of soil by grazing cows (equation 19), and for contaminated water intake, such as from a...ingestion of soil by dairy cow , kg/day. A default value of 0.87 kg/day is suggested (see Section 5.2.5) 4.2.6 Direct Soil Intake Two pathway equations are

  8. 21 CFR 522.970 - Flunixin.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... for 36 hours after the last treatment must not be used for food. Do not use in dry dairy cows. A..., 055529, 059130, and 061623: Do not use in dry dairy cows. Milk that has been taken during treatment and... lactating or dry dairy cows. (3) Swine—(i) Amount. Administer 2.2 mg/kg (1.0 mg/lb) of body weight as a...

  9. 21 CFR 522.970 - Flunixin.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... for 36 hours after the last treatment must not be used for food. Do not use in dry dairy cows. A..., 055529, 059130, and 061623: Do not use in dry dairy cows. Milk that has been taken during treatment and... lactating or dry dairy cows. (3) Swine—(i) Amount. Administer 2.2 mg/kg (1.0 mg/lb) of body weight as a...

  10. 21 CFR 522.970 - Flunixin.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... for 36 hours after the last treatment must not be used for food. Do not use in dry dairy cows. A..., 055529, 059130, and 061623: Do not use in dry dairy cows. Milk that has been taken during treatment and... lactating or dry dairy cows. (3) Swine—(i) Amount. Administer 2.2 mg/kg (1.0 mg/lb) of body weight as a...

  11. 21 CFR 522.970 - Flunixin.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... for 36 hours after the last treatment must not be used for food. Do not use in dry dairy cows. A..., 055529, 059130, and 061623: Do not use in dry dairy cows. Milk that has been taken during treatment and... lactating or dry dairy cows. (3) Swine—(i) Amount. Administer 2.2 mg/kg (1.0 mg/lb) of body weight as a...

  12. Effect of water extract from spent mushroom substrate after Ganoderma balabacense cultivation by using JUNCAO technique on production performance and hematology parameters of dairy cows.

    PubMed

    Liu, Yanling; Zhao, Chao; Lin, Dongmei; Lin, Hui; Lin, Zhanxi

    2015-09-01

    The spent mushroom substrate of Ganoderma balabacense cultivation (SMSGB) contains a large amount of bioactive substances. However, the potentials of SMSGB for improving milk production in dairy cows have not been thoroughly studied. In this study, the effects of hot water extract (HWE) from spent mushroom substrate after G. balabacense cultivated with JUNCAO, the herbaceous plants long-known to be suitable for cultivating edible and medicinal fungi, on production performance and hematology parameters of dairy cows, were determined. Holstein dairy cows were fed different doses of HWE. After a 60-day administration period with 100 g/day of HWE, milk yield, milk protein and triglyceride (TG) levels increased by 4.02% (P < 0.01), 4.49% (P < 0.05) and 32.65% (P < 0.05), respectively; somatic cell count (SCC) and alanine aminotransferase (ALT) were significantly decreased (P < 0.05). The production performance of dairy cows suggests that HWE with SMSGB treatment is effective in improving milk yield (P < 0.01) and hematology parameters of dairy cows, and may be useful as a functional feed additive. © 2015 Japanese Society of Animal Science.

  13. Relationship between the stockperson's attitudes and dairy productivity in Japan.

    PubMed

    Fukasawa, Michiru; Kawahata, Masatoshi; Higashiyama, Yumi; Komatsu, Tokushi

    2017-02-01

    The aim of this study is to identify the factors that comprise farmer attitudes toward dairy cows and jobs in Japan, and examine the relationship between these attitudes and dairy productivity. At first, we executed a questionnaire survey to determine factors that comprise attitudes of farmers toward their jobs and dairy cows, and three factors were extracted. These were named as 'Positive beliefs to cows', 'Negative beliefs to cows' and 'Job satisfaction', respectively. Second, we examined the relationships between attitude and dairy productivity in 35 dairy farms. The positive beliefs scores correlated positively both with milk yield and milk urea nitrogen concentration. We found there to be three farm groups by cluster analysis using three attitude score. The group B farms showed significantly higher positive beliefs scores and job satisfaction scores; on the other hand, the group C farms showed significantly lower positive beliefs scores and higher negative belief scores. The milk yield in group B was significantly higher than that in group C. This study showed that Japanese farmers' attitudes toward cows considerably resemble those seen in previous studies in Western cultures. Positive attitudes toward cows could enhance stockmanship, and could improving animal welfare and productivity. © 2016 Japanese Society of Animal Science.

  14. Treatment of lactating dairy cows with gonadotropin-releasing hormone before first insemination during summer heat stress.

    PubMed

    Voelz, B E; Rocha, L; Scortegagna, F; Stevenson, J S; Mendonça, L G D

    2016-09-01

    The objectives of the experiments were to compare ovarian responses, pregnancy per artificial insemination, and pattern of insemination of 2 estrus detection-based presynchronization protocols before first artificial insemination (AI) during heat stress. In experiment 1, primiparous lactating dairy cows (n=1,358) from 3 dairies were assigned randomly to 2 treatments at 60±3 (±SD) DIM (study d 0): (1) treatment with 100 µg of GnRH on study d 0 (Gpresynch), or (2) no treatment on study d 0 (control). In experiment 2, multiparous lactating dairy cows (n=1,971) from 3 dairies were assigned randomly to 2 treatments at 49±3 (±SD) DIM (study d 0), similar to experiment 1. In both experiments, PGF2α injections were administered 14 d apart starting on study d 7 for all cows. Cows not inseminated after detection of estrus were submitted to a timed artificial insemination protocol at study d 35. In a subgroup of cows from 2 dairies, concentrations of progesterone were determined from blood samples collected on study d 0 and 7. Furthermore, ovaries were examined by ultrasonography on study d -14, 0, and 7 to determine cyclic status and ovulation in response to GnRH treatment. In experiment 1, progesterone concentration was not different on d 0, but progesterone was increased for Gpresynch compared with control cows on study d 7 (3.6±0.3 vs. 2.7±0.4 ng/mL), respectively. Ovulation risk from study d 0 to 7 was increased for Gpresynch compared with control (50.6 vs. 15.2%). Control cows were inseminated at a faster rate than Gpresynch cows [adjusted hazard ratio (AHR)=0.89, 95% confidence interval=0.80 to 1.00], and the interaction between treatment and dairy affected pregnancy per artificial insemination at 36 and 94 d post-artificial insemination. In experiment 2, concentrations of progesterone did not differ on study d 0 or 7, despite ovulation risk from study d 0 to 7 being greater in Gpresynch than control cows (46.9 vs. 23.8%). The interaction between treatment and dairy affected hazard of insemination with Gpresynch cows from dairy 1 (AHR=1.21; 1.05 to 1.41) being inseminated faster than control cows. Hazard of pregnancy was affected by treatment because Gpresynch cows became pregnant at a faster rate than control cows (AHR=1.25; 1.04 to 1.50). In conclusion, GnRH-based presynchronization protocols initiated before the end of the voluntary waiting period may have benefits in reproductive efficiency of estrus detection-based programs during heat stress. In addition, treatment with GnRH decreased the prevalence of anovular cows at the initiation of PGF2α injections. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. Short communication: Effect of casein haplotype on angiotensin-converting enzyme inhibitory and antioxidant capacities of milk casein from Italian Holstein cows before and following in vitro digestion with gastrointestinal enzymes.

    PubMed

    Perna, Annamaria; Simonetti, Amalia; Gambacorta, Emilio

    2016-09-01

    The aim of this work was to investigate the effect of casein haplotype (αS1, β, and κ) on antioxidative and angiotensin-converting enzyme (ACE) inhibitory capacities of milk casein from Italian Holstein cows before and following in vitro digestion with gastrointestinal enzymes. The antioxidant capacity was measured using 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid and ferric-reducing antioxidant power assays, whereas ACE inhibition was determined by ACE-inhibitory assay. The ACE-inhibitory and antioxidant capacities of milk casein increased during in vitro gastrointestinal digestion. Casein haplotype significantly influenced the antioxidative and ACE-inhibitory capacities of digested casein. In particular, BB-A(2)A(1)-AA casein and BB-A(1)A(1)-AA casein showed the highest ACE-inhibitory capacity, BB-A(2)A(2)-AA casein showed the highest antioxidant capacity, whereas BB-A(2)A(2)-BB casein showed the lowest biological capacity. To date, few studies have been done on the effect of casein haplotype on biological capacity of milk casein, thus the present study sets the basis for a new knowledge that could lead to the production of milk with better nutraceutical properties. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. Production and nitrogen utilization in lactating dairy cows fed ground field peas with or without ruminally protected lysine and methionine.

    PubMed

    Pereira, A B D; Whitehouse, N L; Aragona, K M; Schwab, C S; Reis, S F; Brito, A F

    2017-08-01

    Previous research has shown that cows fed ≥24% of the diet dry matter (DM) as field peas decreased milk yield as well as concentration and yield of milk protein, possibly due to reduced DM intake and limited supply of Lys and Met. Twelve multiparous and 4 primiparous lactating Holstein cows were randomly assigned to 1 of 4 diets in a replicated 4 × 4 Latin square design. The diets contained (DM basis) 34.8% corn silage, 15.2% grass-legume silage, 5.9% roasted soybean, 2.4% mineral-vitamin premix, 2.0% alfalfa pellets, and either (1) 36% ground corn, 2.4% soybean meal, and 1.3% urea (UR), (2) 29.7% ground corn, 9.8% soybean meal, 0.13% ruminally protected (RP) Lys, and 0.07% RP-Met (CSBAA), (3) 25% ground field peas, 12.3% ground corn, and 2.4% soybean meal (FP), or (4) FP supplemented with 0.15% RP-Lys and 0.05% RP-Met (FPAA). Our objective was to test the effects of FP versus UR, FPAA versus CSBAA, and FPAA versus FP on milk yield and composition, N utilization, nutrient digestibility, ruminal fermentation profile, and plasma concentration of AA. Milk yield did not differ across diets. Compared with cows fed UR, those fed FP had greater DM intake, concentration and yield of milk true protein, apparent total-tract digestibility of fiber, urinary excretion of purine derivatives, and concentrations of total volatile fatty acids in the rumen and Lys in plasma, and less milk urea N and ruminal NH 3 -N. The concentration of milk urea N, as well as the concentration and yield of milk fat increased in cows fed FPAA versus CSBAA. Moreover, cows fed FPAA had greater ruminal concentration of total volatile fatty acids, increased proportions of acetate and isobutyrate, and decreased proportions of propionate and valerate than those fed CSBAA. The plasma concentrations of His, Leu, and Phe decreased, whereas plasma Met increased and plasma Lys tended to increase in cows fed FPAA versus CSBAA. Concentration of milk true protein, but not yield, was increased in cows fed FPAA versus FP. However, cows fed FPAA showed decreased concentrations of His and Leu in plasma compared with those fed FP. Overall, compared with the CSBAA diet, feeding FPAA did not negatively affect milk yield and milk protein synthesis. Furthermore, RP-Lys and RP-Met supplementation of the FP diet did not improve milk yield or milk protein synthesis, but decreased urinary urea N excretion. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. The relationship between dairy cow hygiene and somatic cell count in milk.

    PubMed

    Sant'anna, A C; Paranhos da Costa, M J R

    2011-08-01

    Corporal hygiene is an important indicator of welfare for dairy cows and is dependent on facilities, climate conditions, and the behavior of the animals. The objectives of this study were to describe how the hygiene conditions of dairy cows vary over time and to assess whether a relationship exists between hygiene and somatic cell count (SCC) in milk. Monthly hygiene evaluations were conducted on lactating cows in 2 dairy farms for 9 consecutive months, totaling 3,554 evaluations from 545 animals. Hygiene was measured using a 4-point scoring system (very clean, clean, dirty, and very dirty) for 4 areas of the animal's body (leg, flank, abdomen, and udder) and combining these scores to generate a composite cleanliness score. A total of 2,218 milk samples was analyzed from 404 cows to determine SCC and somatic cell linear scores (SCLS). Individual variation was observed in the hygiene of cows throughout the year, with the highest proportion of clean cows being observed in August and the lowest in January. In spite of this seasonal variation, approximately half (55.62%) of the cows displayed consistent cleanliness scores, with 45.86% of them remaining consistently clean (very clean or clean) and 9.76% remaining dirty (very dirty or dirty) over the course of the study. The very clean cows had the lowest SCLS, followed by the clean, dirty, and very dirty cows (no statistically significant differences were found between the latter 2 groups). The most critical months for cow hygiene were those with the greatest rainfall, when a reduction in the welfare of cows and higher SCC values were observed. The evaluation and control of dairy cow hygiene are useful in defining management strategies to reduce problems with milk and improve the welfare of the animals. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Use of rumination and activity monitoring for the identification of dairy cows with health disorders: Part III. Metritis.

    PubMed

    Stangaferro, M L; Wijma, R; Caixeta, L S; Al-Abri, M A; Giordano, J O

    2016-09-01

    The objectives of this study were to evaluate (1) the performance of an automated health-monitoring system (AHMS) to identify cows with metritis based on an alert system (health index score, HIS) that combines rumination time and physical activity; (2) the number of days between the first HIS alert and clinical diagnosis (CD) of metritis by farm personnel; and (3) the daily rumination time, physical activity, and HIS patterns around CD. In this manuscript, the overall performance of HIS to detect cows with all disorders of interest in this study [ketosis, displaced abomasum, indigestion (companion paper, part I), mastitis (companion paper, part II), and metritis] is also reported. Holstein cattle (n=1,121; 451 nulliparous and 670 multiparous) were fitted with a neck-mounted electronic rumination and activity monitoring tag (HR Tags, SCR Dairy, Netanya, Israel) from at least -21 to 80 d in milk (DIM). Raw data collected in 2-h periods were summarized per 24 h as daily rumination and activity. An HIS (0 to 100 arbitrary units) was calculated daily for individual cows with an algorithm that used rumination and activity. A positive HIS outcome was defined as an HIS of <86 units during at least 1 d from -5 to 2 d after CD. Blood concentrations of nonesterified fatty acids, β-hydroxybutyrate, total calcium, and haptoglobin were determined in a subgroup of cows (n=459) at -11±3, -4±3, 0, 3±1, 7±1, 14±1, and 28±1 DIM. The overall sensitivity of HIS was 55% for all cases of metritis (n=349), but it was greater for cows with metritis and another disorder (78%) than for cows with metritis only (53%). Cows diagnosed with metritis and flagged based on HIS had substantial alterations in their rumination, activity, and HIS patterns around CD, alterations of blood markers of metabolic and health status around calving, reduced milk production, and were more likely to exit the herd than cows not flagged based on the HIS and cows without disease, suggesting that cows flagged based on the HIS had a more severe episode of metritis. Including all disorders of interest for this study, the overall sensitivity was 59%, specificity was 98%, positive predictive value was 58%, negative predictive value was 98%, and accuracy was 96%. The AHMS was effective for identifying cows with severe cases of metritis, but less effective for identifying cows with mild cases of metritis. Also, the overall accuracy and timing of the AHMS alerts for cows with health disorders indicated that AHMS that combine rumination and activity could be a useful tool for identifying cows with metabolic and digestive disorders, and more severe cases of mastitis and metritis. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Anti-methanogenic effects of monensin in dairy and beef cattle: a meta-analysis.

    PubMed

    Appuhamy, J A D Ranga Niroshan; Strathe, A B; Jayasundara, S; Wagner-Riddle, C; Dijkstra, J; France, J; Kebreab, E

    2013-08-01

    Monensin is a widely used feed additive with the potential to minimize methane (CH4) emissions from cattle. Several studies have investigated the effects of monensin on CH4, but findings have been inconsistent. The objective of the present study was to conduct meta-analyses to quantitatively summarize the effect of monensin on CH4 production (g/d) and the percentage of dietary gross energy lost as CH4 (Ym) in dairy cows and beef steers. Data from 22 controlled studies were used. Heterogeneity of the monensin effects were estimated using random effect models. Due to significant heterogeneity (>68%) in both dairy and beef studies, the random effect models were then extended to mixed effect models by including fixed effects of DMI, dietary nutrient contents, monensin dose, and length of monensin treatment period. Monensin reduced Ym from 5.97 to 5.43% and diets with greater neutral detergent fiber contents (g/kg of dry matter) tended to enhance the monensin effect on CH4 in beef steers. When adjusted for the neutral detergent fiber effect, monensin supplementation [average 32 mg/kg of dry matter intake (DMI)] reduced CH4 emissions from beef steers by 19±4 g/d. Dietary ether extract content and DMI had a positive and a negative effect on monensin in dairy cows, respectively. When adjusted for these 2 effects in the final mixed-effect model, monensin feeding (average 21 mg/kg of DMI) was associated with a 6±3 g/d reduction in CH4 emissions in dairy cows. When analyzed across dairy and beef cattle studies, DMI or monensin dose (mg/kg of DMI) tended to decrease or increase the effect of monensin in reducing methane emissions, respectively. Methane mitigation effects of monensin in dairy cows (-12±6 g/d) and beef steers (-14±6 g/d) became similar when adjusted for the monensin dose differences between dairy cow and beef steer studies. When adjusted for DMI differences, monensin reduced Ym in dairy cows (-0.23±0.14) and beef steers (-0.33±0.16). Monensin treatment period length did not significantly modify the monensin effects in dairy cow or beef steer studies. Overall, monensin had stronger antimethanogenic effects in beef steers than dairy cows, but the effects in dairy cows could potentially be improved by dietary composition modifications and increasing the monensin dose. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Economic and environmental feasibility of a perennial cow dairy farm.

    PubMed

    Rotz, C A; Zartman, D L; Crandall, K L

    2005-08-01

    More efficient and economical production systems are needed to improve the sustainability of dairy farms. One concept to consider is using perennial cows. Perennial cows are those that maintain a relatively high milk production for >or=2 yr without going through the typical dry period followed by calving. Farm records show that some cows have produced over 20 kg/d after 4 yr of continuous lactation. A farm simulation model was used to evaluate the long-term performance, environmental impact, and economics of a conceptual perennial cow production system on a typical dairy farm in Pennsylvania. Compared with a traditional 100-cow farm with replacement heifers produced on the farm, a perennial herd of 100 cows and purchased replacements provided environmental benefit but sustained a substantial economic loss. However, increasing the perennial herd to 128 cows better utilized the feed produced on the farm. Compared with the traditional 100-cow farm, use of the perennial 128-cow herd reduced supplemental protein and mineral feed purchases by 38%, increased annual milk sales by 21%, reduced nitrogen losses by 17%, maintained a phosphorus balance, and increased annual net return to farm management by 3200 dollars. A traditional 120-cow dairy farm with purchased replacements also used a similar amount of farm-produced feed. Compared with this option, the farm with 128 perennial cows reduced protein and mineral feed purchases by 36%, maintained similar annual milk sales, increased manure production by 7%, reduced N losses by 10%, and increased annual net return by 12,700 dollars. The economic feasibility of the perennial-cow dairy farm was very sensitive to the milk production maintained by the perennial herd and market prices for milk and perennial replacement animals. The analysis was relatively insensitive to the assumed useful life of perennial cows as long as they could be maintained in the herd for at least 3 yr. Thus, a perennial cow production system can improve the economic and environmental sustainability of a traditional dairy farm if a similar level in annual milk production per cow can be maintained.

  1. In situ provision of drinking water to grazing dairy cows improves milk production.

    PubMed

    Miglierina, M M; Bonadeo, N; Ornstein, A M; Becú-Villalobos, D; Lacau-Mengido, I M

    2018-01-01

    To determine the effect of providing water within the area grazed by dairy cows on milk yield and quality, compared to requiring cows to walk to a distant water trough, on a dairy farm in the Pampa region of Argentina during summer. Holstein dairy cows were allocated to two herds with similar parity, days in milk and milk production. They were grazed in one paddock that was divided in two, with a fixed water trough at one end. Cows were moved twice daily to grazing plots within the paddock. Control cows (n=66) could only access water from the fixed trough, whereas supplemented cows (n=67) also received water from a mobile trough within the grazing plot. Milk production of each cow, and water consumption of the two herds were measured daily over 62 days. Milk composition for each herd was determined weekly from Days 18 to 60 of the study, and grazing behaviour was observed between 08:00 and 16:00 hours on Days 11-15, 19-22 and 39-43. Over the 62 days of the study, supplemented cows produced 1.39 (SE 0.11) L/cow/day more milk than Control cows (p=0.027). Estimated mean daily water intake was 50.4 (SE 2.1) L/cow/day for supplemented cows and 58.2 (SE 2.7) L/cow/day for Control cows (p=0.004). Percentage total solids in milk was higher for supplemented (12.5 (SE 0.06)%) than Control (12.4 (SE 0.04)%) cows (p=0.047). During the periods of behavioural observation, a higher percentage of cows in the water supplemented than the Control herd were observed in the grazing area (p=0.012). This preliminary study demonstrated that provision of water to dairy cows within the grazing plot was beneficial for milk production and composition, and may be associated with longer periods spent within the grazing area, during hot weather in the Pampa region of Argentina.

  2. The effect of conspecific removal on behavioral and physiological responses of dairy cattle.

    PubMed

    Walker, Jessica K; Arney, David R; Waran, Natalie K; Handel, Ian G; Phillips, Clive J C

    2015-12-01

    Adverse social and welfare implications of mixing dairy cows or separating calves from their mothers have been documented previously. Here we investigated the behavioral and physiological responses of individuals remaining after conspecifics were removed. We conducted a series of 4 experiments incorporating a range of types of different dairy cattle groupings [experiment 1 (E1), 126 outdoor lactating dairy cows; experiment 2 (E2), 120 housed lactating dairy cows; experiment 3 (E3), 18 housed dairy calves; and experiment 4 (E4), 22 housed dairy bulls] from which a subset of individuals were permanently removed (E1, n=7; E2, n=5; E3, n=9; E4, n=18). Associations between individuals were established using near-neighbor scores (based upon identities and distances between animals recorded before removal) in E1, E2, and E3. Behavioral recordings were taken for 3 to 5 d, before and after removal on a sample of cattle in all 4 experiments (E1, n=20; E2, n=20; E3, n=9; E4, n=4). In 2 experiments with relatively large groups of dairy cows, E1 and E2, the responses of cows that did and did not associate with the removed cows were compared. An increase in time that both nonassociates and associates spent eating was observed after conspecific removal in E1. In E2, this increase was restricted to cows that had not associated with the removed cows. A reduction in ruminating in remaining cattle was observed in E3 and eating in E4. Immunoglobulin A concentrations increased after separation in both E3 and E4 cattle, but did not differ significantly between associates and nonassociates in E2. Blood and milk cortisol concentrations were not affected by conspecific removal. These findings suggest that some animals had affected feeding behavior and IgA concentrations after removal of conspecifics. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Parturition to resumption of ovarian cyclicity: comparative aspects of beef and dairy cows.

    PubMed

    Crowe, M A; Diskin, M G; Williams, E J

    2014-05-01

    There is a variable anoestrous period following parturition in the cow. Follicular growth generally resumes within 7 to 10 days in the majority of cows associated with a transient FSH rise that occurs within 3 to 5 days of parturition. Dairy cows that are not nutritionally stressed generally ovulate their first postpartum dominant follicle (~15 days), whereas beef suckler cows in good body condition normally have a mean of 3.2±0.2 dominant follicles (~30 days) to first ovulation; moreover, beef cows in poor body condition have a mean of 10.6±1.2 dominant follicles (~70 to 100 days) to first ovulation. The lack of ovulation of dominant follicles during the postpartum period is associated with infrequent LH pulses, with both maternal-offspring bonding and low body condition score (BCS) at calving being implicated as the predominant causes of delayed resumption of cyclicity in nursed beef cows. In dairy cows, the normal pattern of early resumption of ovulation may be delayed in high-yielding Holstein type cows generally owing to the effects of severe negative energy balance, dystocia, retained placental membranes and uterine infections. First ovulation, in both dairy and beef cows, is generally silent (i.e., no behavioural oestrus) and followed by a short inter-ovulatory interval (>70%). The key to optimizing the resumption of ovulation in both beef and dairy cows is appropriate pre-calving nutrition and management so that cows calve down in optimal body condition (BCS; 2.75 to 3.0) with postpartum body condition loss restricted to <0.5 BCS units.

  4. Nitrate but not tea saponin feed additives decreased enteric methane emissions in nonlactating cows.

    PubMed

    Guyader, J; Eugène, M; Doreau, M; Morgavi, D P; Gérard, C; Loncke, C; Martin, C

    2015-11-01

    Tea saponin is considered a promising natural compound for reducing enteric methane emissions in ruminants. A trial was conducted to study the effect of this plant extract fed alone or in combination with nitrate on methane emissions, total tract digestive processes, and ruminal characteristics in cattle. The experiment was conducted as a 2 × 2 factorial design with 4 ruminally cannulated nonlactating dairy cows. Feed offer was restricted to 90% of voluntary intake and diets consisted of (DM basis): 1) control (CON; 50% hay and 50% pelleted concentrates), 2) CON with 0.5% tea saponin (TEA), 3) CON with 2.3% nitrate (NIT), and 4) CON with 0.5% tea saponin and 2.3% nitrate (TEA+NIT). Tea saponin and nitrate were included in pelleted concentrates. Diets contained similar amounts of CP (12.2%), starch (26.0%), and NDF (40.1%). Experimental periods lasted 5 wk including 2 wk of measurement (wk 4 and 5), during which intake was measured daily. In wk 4, daily methane emissions were quantified for 4 d using open circuit respiratory chambers. In wk 5, total tract digestibility, N balance, and urinary excretion of purine derivatives were determined from total feces and urine collected separately for 6 d. Ruminal fermentation products and protozoa concentration were analyzed from samples taken after morning feeding for 2 nonconsecutive days in wk 5. Tea saponin and nitrate supplementation decreased feed intake ( < 0.05), with an additive effect when fed in combination. Compared with CON, tea saponin did not modify methane emissions (g/kg DMI; > 0.05), whereas nitrate-containing diets (NIT and TEA+NIT) decreased methanogenesis by 28%, on average ( < 0.001). Total tract digestibility, N balance, and urinary excretion of purine derivatives were similar among diets. Ruminal fermentation products were not affected by tea saponin, whereas nitrate-containing diets increased acetate proportion and decreased butyrate proportion and ammonia concentration ( < 0.05). Under the experimental conditions tested, we confirmed the antimethanogenic effect of nitrate, whereas tea saponin alone included in pelleted concentrates failed to decrease enteric methane emissions in nonlactating dairy cows.

  5. Effects of inclusion of graded amounts of soya bean hulls on feed intake, chewing activity and nutrient digestibility in dairy cows.

    PubMed

    Mohammadzadeh, H; Rezayazdi, K; Nikkhah, A

    2014-06-01

    Twelve multiparous Holstein dairy cows were used in a replicated 4 × 4 Latin square changeover design to evaluate the effects of graded inclusion of soya bean hulls (SHs) in replacement of diet forages at 0%, 10%, 20% and 30% of dietary dry matter (DM) basis on peNDF > 8 and peNDF > 1.18 contents of diets and their resulting effects on chewing activity, nutrient digestibility and milk production of dairy cattle. The control diet contained 50% forage, 50% concentrate and no SH. In the other three diets, SH was substituted for alfalfa hay, corn silage and wheat bran to supply 10%, 20% and 30% of the dietary DM. Increasing SH concentration in the diets resulted in decreasing concentrations of forage neutral detergent fibre (NDF), physically effective NDF (peNDF) and mean particle size (p < 0.01). Chewing activity per kilogram of daily dry matter intake (DMI) was not affected by the different diets tested. However, chewing activity significantly decreased for kilogram intake of NDF, but increased for peNDF > 1.18 when SH was included in the diets (p < 0.01). Total tract apparent digestibility of nutrients significantly increased for DM, organic matter (p < 0.05) and NDF (p < 0.01) but decreased for crude protein (p < 0.05) as the proportion of SH was increased in the diets. Rumen pH value of cattle was not influenced by the diets. Including medium and high amounts of SH in the diets decreased DMI of the animals (p < 0.05) without any significant effect on their daily milk or 4% fat-corrected milk production. In conclusion, the results of this study showed that the NDF from a non-forage fibre source like SH had a lower potential for stimulating chewing activity than did forage NDF. Despite this, the small size of dietary particles increased not only the chewing activity per kilogram of peNDF intake but also saliva secretion as well as the potential for rumen to neutralize acids. The findings of this study demonstrate the greater differences in peNDF > 8 among the diets and that these differences are better reflected in terms of DMI, chewing activity and nutrient digestibility, but not in rumen pH. Journal of Animal Physiology and Animal Nutrition © 2013 Blackwell Verlag GmbH.

  6. Relationship of plasma nonesterified fatty acids and walking activity in postpartum dairy cows.

    PubMed

    Adewuyi, A A; Roelofs, J B; Gruys, E; Toussaint, M J M; van Eerdenburg, F J C M

    2006-08-01

    To survive and produce milk, postpartum dairy cows use their reserves through lipolysis. If the negative energy balance is severe, nonesterified fatty acids (NEFA) are formed that can impair several physiological processes. A pilot study suggested that increased walking activity after calving may be related to a reduced serum concentration of NEFA. The objective of this study was to determine the relationship between plasma concentrations of NEFA and walking activity in dairy cattle during the postpartum period. Data were collected from 33 multiparous Holstein-Friesian dairy cows. Walking activities were quantified using pedometry, and blood samples were collected for determination of NEFA. Results of this study indicated that a negative relationship existed between walking activity and plasma NEFA concentrations in postpartum dairy cows.

  7. Effects of folic acid supplementation to rations differing in the concentrate to roughage ratio on ruminal fermentation, nutrient flow at the duodenum, and on serum and milk variables of dairy cows.

    PubMed

    Ragaller, Veronika; Lebzien, Peter; Bigalke, Wiebke; Südekum, Karl-Heinz; Hüthera, Liane; Flachowsky, Gerhard

    2010-12-01

    The present study was undertaken to determine the effects of dietary folic acid (FOL) supplementation on ruminal fermentation, duodenal nutrient flow, serum and milk variables, and on B-vitamin concentration in serum. The study was divided into two experiments: in Exp. 1 the forage to concentrate (F:C) ratio of the diet (DM basis) was 34:66 (high concentrate, HC), while in Exp. 2 the F:C ratio was 66:34 (high forage, HF). In addition, the cows received 0 or 1 g FOL/d. In Exp. 1, two German Holstein cows equipped with cannulas in the dorsal sac of the rumen and in the proximal duodenum were dry and five were lactating (186 +/- 144 days in milk); in Exp. 2 four cows were dry and four were lactating (165 +/- 57 days in milk). In cows fed the HC diet, FOL supplementation decreased the ruminally-fermented organic matter. Thus, less energy was available for ruminal microorganisms, which resulted in a reduced microbial crude protein flow at the duodenum. Feeding the HF diet, FOL supplementation only increased the apparent ruminal digestibility of acid detergent fibre (ADF). With the HF diet, FOL had no influence on the serum levels of glucose, non-esterified fatty acids, beta-hydroxybutyrate, urea, thiamine, riboflavin, pyridoxal-5'-phosphate, pyridoxic acid, pyridoxal, pyridoxine, pyridoxamine, pantothenic acid, nicotinamide or nicotinic acid, whereas supplementing FOL to the HC diet lowered the serum glucose and riboflavin levels. In both experiments, the supplementation of FOL had no effects on milk composition. Folic acid supplementation to both diets increased the concentrations of serum 5-methyl-tetrahydrofolate. However, no beneficial effects to dairy cows were obvious. Therefore, to achieve certain results, studies with a higher number of non-fistulated cows would be necessary.

  8. Plasma metabolic profiling of dairy cows affected with clinical ketosis using LC/MS technology.

    PubMed

    Li, Y; Xu, C; Xia, C; Zhang, Hy; Sun, Lw; Gao, Y

    2014-01-01

    Ketosis in dairy cattle is an important metabolic disorder. Currently, the plasma metabolic profile of ketosis as determined using liquid chromatography-mass spectrometry (LC/MS) has not been reported. To investigate plasma metabolic profiles from cows with clinical ketosis in comparison to control cows. Twenty Holstein dairy cows were divided into two groups based on clinical signs and plasma β-hydroxybutyric acid and glucose concentrations 7-21 days postpartum: clinical ketosis and control cows. Plasma metabolic profiles were analyzed using LC/MS. Data were processed using principal component analysis and orthogonal partial least-squares discriminant analysis. Compared to control cows, the levels of valine, glycine, glycocholic, tetradecenoic acid, and palmitoleic acid increased significantly in clinical ketosis. On the other hand, the levels of arginine, aminobutyric acid, leucine/isoleucine, tryptophan, creatinine, lysine, norcotinine, and undecanoic acid decreased markedly. Our results showed that the metabolic changes in cows with clinical ketosis involve complex metabolic networks and signal transduction. These results are important for future studies elucidating the pathogenesis, diagnosis, and prevention of clinical ketosis in dairy cows.

  9. Risk factors associated with the incidence rate of clinical mastitis in smallholder dairy cows in the Dar es Salaam region of Tanzania.

    PubMed

    Kivaria, F M; Noordhuizen, J P T M; Msami, H M

    2007-05-01

    Smallholder dairy herds around the Dar es Salaam region of Tanzania supply 86% of raw milk consumed by the city dwellers. Previous studies have indicated that clinical mastitis is an important disease affecting smallholder dairy cows and an 18-month questionnaire-based longitudinal field-study was conducted between July 2003 and March 2005 to elucidate risk factors associated with the incidence. A total of 6057 quarter-level observations from 317 lactating cows on 87 randomly selected smallholder dairy herds were analysed at the quarter and cow level using logistic and Poisson regression models, respectively. At the quarter level, the average incidence rate of clinical mastitis was 38.4 cases per 100 quarter-years at risk whereas at the cow level the incidence rate was 43.3 cases per 100 cow-years at risk. The incidence was significantly (P< or =0.001) associated with cow factors (body condition score, parity, stage of lactation, and udder consistency), housing (floor type) conditions and milking (cow and udder preparation) practices. It was concluded that the extrapolation of the classic ten-point mastitis control plan into smallholder dairy herds should be undertaken cautiously. An integrated approach to dairy extension should focus more on the creation of mastitis awareness among smallholder producers and on the improvement of animal nutrition and reproduction indices-factors that may also have a direct impact on milk yield.

  10. Comparison of Microbial Communities Isolated from Feces of Asymptomatic Salmonella-Shedding and Non-Salmonella Shedding Dairy Cows

    PubMed Central

    Haley, Bradd J.; Pettengill, James; Gorham, Sasha; Ottesen, Andrea; Karns, Jeffrey S.; Van Kessel, Jo Ann S.

    2016-01-01

    In the United States Salmonella enterica subsp. enterica serotypes Kentucky and Cerro are frequently isolated from asymptomatic dairy cows. However, factors that contribute to colonization of the bovine gut by these two serotypes have not been identified. To investigate associations between Salmonella status and bacterial diversity, as well as the diversity of the microbial community in the dairy cow hindgut, the bacterial and archaeal communities of fecal samples from cows on a single dairy farm were determined by high-throughput sequencing of 16S rRNA gene amplicons. Fecal grab samples were collected from two Salmonella-positive cows and two Salmonella-negative cows on five sampling dates (n = 20 cows), and 16S rRNA gene amplicons from these samples were sequenced on the Illumina MiSeq platform. A high level of alpha (within) and beta diversity (between) samples demonstrated that microbial profiles of dairy cow hindguts are quite diverse. To determine whether Salmonella presence, sampling year, or sampling date explained a significant amount of the variation in microbial diversity, we performed constrained ordination analyses (distance based RDA) on the unifrac distance matrix produced with QIIME. Results indicated that there was not a significant difference in the microbial diversity associated with Salmonella presence (P > 0.05), but there were significant differences between sampling dates and years (Pseudo-F = 2.157 to 4.385, P < 0.05). Based on these data, it appears that commensal Salmonella infections with serotypes Cerro and Kentucky in dairy cows have little or no association with changes in the abundance of major bacterial groups in the hindgut. Rather, our results indicated that temporal dynamics and other undescribed parameters associated with them were the most influential drivers of the differences in microbial diversity and community structure in the dairy cow hindgut. PMID:27313565

  11. Impact of longevity on greenhouse gas emissions and profitability of individual dairy cows analysed with different system boundaries.

    PubMed

    Grandl, F; Furger, M; Kreuzer, M; Zehetmeier, M

    2018-05-29

    Dairy production systems are often criticized as being major emitters of greenhouse gases (GHG). In this context, the extension of the length of the productive life of dairy cows is gaining interest as a potential GHG mitigation option. In the present study, we investigated cow and system GHG emission intensity and profitability based on data from 30 dairy cows of different productive lifetime fed either no or limited amounts of concentrate. Detailed information concerning productivity, feeding and individual enteric methane emissions of the individuals was available from a controlled experiment and herd book databases. A simplified GHG balance was calculated for each animal based on the milk produced at the time of the experiment and for their entire lifetime milk production. For the lifetime production, we also included the emissions arising from potential beef produced by fattening the offspring of the dairy cows. This accounted for the effect that changes in the length of productive life will affect the replacement rate and thus the number of calves that can be used for beef production. Profitability was assessed by calculating revenues and full economic costs for the cows in the data set. Both emission intensity and profitability were most favourable in cows with long productive life, whereas cows that had not finished their first lactation performed particularly unfavourably with regard to their emissions per unit of product and rearing costs were mostly not repaid. Including the potential beef production, GHG emissions in relation to total production of animal protein also decreased with age, but the overall variability was greater, as the individual cow history (lifetime milk yield, twin births, stillbirths, etc.) added further sources of variation. The present results show that increasing the length of productive life of dairy cows is a viable way to reduce the climate impact and to improve profitability of dairy production.

  12. 78 FR 63870 - New Animal Drugs; Change of Sponsor; Gonadorelin; Ivermectin; Ractopamine; Trimethoprim and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ... estrous cycles to allow fixed-time artificial insemination (FTAI) in lactating dairy cows. 141-349 Zoetis...-time artificial insemination (FTAI) in lactating dairy cows, administer to each cow 100 to 200 mcg...

  13. Dairy cows welfare quality in tie-stall housing system with or without access to exercise.

    PubMed

    Popescu, Silvana; Borda, Cristin; Diugan, Eva Andrea; Spinu, Marina; Groza, Ioan Stefan; Sandru, Carmen Dana

    2013-06-01

    Tie-stall housing of dairy cows is used extensively worldwide, despite of the welfare concerns regarding the restriction of voluntary movement and limitation of expression of the cows' natural behaviour. The aim of this study was to compare the welfare quality of dairy cows kept in two types of tie-stall housing systems: with regular outdoor exercise and without access to exercise. In addition, the study investigated the relationship between different welfare measures of dairy cows kept in tie-stalls. 3,192 lactating cows were assessed using the Welfare Quality® assessment protocol for cattle in 80 commercial dairy farms, half of the farms providing outdoor access for the animals to exercise. The descriptive statistical indicators were determined for the assessed measures and for the welfare criteria and principle scores. The data obtained in the two housing types were compared and the correlation coefficients were calculated between the different welfare measures. The significant differences found between the two housing systems for the majority of the animal based measures indicate the positive effect of exercise on the welfare of tethered cows. Many of the animal welfare parameters correlated with each other. For the farms allowing the cows' turnout in a paddock, pasture or both, the mean scores for the welfare criteria and principles were higher than for the farms with permanent tethering of the cows, except the criteria absence of prolonged hunger and expression of social behaviours. The lowest scores were obtained for the criterion positive emotional state, in both housing systems. With regard to the overall classification, none of the farms were considered excellent. In the not classified category were only farms with all-year-round tethering of the animals and in the enhanced category only farms where the cows had outdoor access. The welfare quality of the investigated dairy cows was significantly better in the tie-stall farms which allow exercise for cows (paddocks, pasture or both) than in those which do not. In the light of our results we consider that dairy cattle welfare is not necessarily poor in tie-stall housing systems, its quality depending on the management practices.

  14. Retrospective evaluation of milk production and culling risk following either surgical, toggle-pin suture or conservative treatment of left displaced abomasum in Chilean dairy cows.

    PubMed

    Melendez, P; Romero, C; Pithua, P; Marin, M P; Pinedo, P; Duchens, M

    2017-11-01

    AIMS To describe milk yield and culling risk in cows diagnosed with left displacement of abomasum (LDA) treated either conservatively, by right flank pyloric omentopexy, or rolling and toggling, compared with normal herdmates from four Chilean dairy herds. METHODS Historical records were obtained from four commercial dairy farms located in Central Chile for cows with a history of LDA between 2010 and 2012, and healthy herdmates. Cows with LDA were categorised into three groups: cows treated with right omentopexy (ST, n=58), cows treated by toggle suturing (TT, n=15) and cows treated conservatively (CT, n=56). Control cows (n=129) were selected from unaffected cows, matched by days in milk (DIM), parity and herd with affected cows. Groups were compared for risk of culling up to 300 DIM and for milk production up to 5 months of lactation using survival and Cox proportional hazard models and mixed models for repeated measures, respectively. RESULTS Compared with cows in the Control group, the risk of being culled up to 300 DIM was 9.1 (SE 0.62) times greater in ST cows, 10.4 (SE 0.68) times greater in TT cows, and 37.3 (SE 0.61) times greater in CT cows (p<0.01). In the first 5 months of lactation, compared with cows in the Control group, mean daily milk production was 23.3 (SE 1.5) kg less in ST cows, 15.3 (SE 1.6) kg less in TT cows, and 30.1 (SE 1.3) kg less in CT cows (p<0.001). CONCLUSIONS AND CLINICAL RELEVANCE Cows in four dairy herds in central Chile diagnosed and treated for LDA produced significantly less milk and had a higher risk of culling than healthy herdmates. Although cows treated surgically or with toggle suture never recovered to the extent of healthy cows, they produced more milk than cows treated conservatively. However, the retrospective nature of the data, the inclusion of only four herds and the non-random allocation to treatments means that these conclusions cannot be extrapolated to the overall dairy cattle population in Chile.

  15. Calving traits, milk production, body condition, fertility, and survival of Holstein-Friesian and Norwegian Red dairy cattle on commercial dairy farms over 5 lactations.

    PubMed

    Ferris, C P; Patterson, D C; Gordon, F J; Watson, S; Kilpatrick, D J

    2014-01-01

    The objective of this study was to compare calving traits, BCS, milk production, fertility, and survival of Holstein-Friesian (HF) and Norwegian Red (NR) dairy cattle in moderate-concentrate input systems. The experiment was conducted on 19 commercial Northern Ireland dairy farms, and involved 221 HF cows and 221 NR cows. Cows completed 5 lactations during the experiment, unless they died or were culled or sold. Norwegian Red cows had a lower calving difficulty score than HF cows when calving for the first and second time, but not for the third and fourth time. At first calving, the incidence of stillbirths for NR cows was 4%, compared with 13% for HF cows, whereas no difference existed between breeds in the proportion of calves born alive when calving for the second time. When calving for the first time, NR cows had a poorer milking temperament than HF cows, whereas milking temperament was unaffected by breed following the second calving. Holstein-Friesian cows had a higher full-lactation milk yield than NR cows, whereas NR cows produced milk with a higher milk fat and protein content. Full-lactation fat + protein yield was unaffected by genotype. Norwegian Red cows had a lower somatic cell score than HF cows during all lactations. Although NR cattle had a higher BCS than the HF cows during lactations 1 and 2, no evidence existed that the 2 genotypes either lost or gained body condition at different rates. Conception rates to first artificial insemination were higher with the NR cows during lactations 1 to 4 (57.8 vs. 40.9%, respectively), with 28.5% of HF cows and 11.8% of NR cows culled as infertile before lactation 6. A greater percentage of NR cows calved for a sixth time compared with HF cows (27.2 vs. 16.3%, respectively). In general, NR cows outperformed HF cows in traits that have been historically included in the NR breeding program. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. Technical note: a novel approach to the detection of estrus in dairy cows using ultra-wideband technology.

    PubMed

    Homer, E M; Gao, Y; Meng, X; Dodson, A; Webb, R; Garnsworthy, P C

    2013-10-01

    Detection of estrus is a key determinant of profitability of dairy herds, but estrus is increasingly difficult to observe in the modern dairy cow with shorter duration and less-intense estrus. Concurrent with the unfavorable correlation between milk yield and fertility, estrus-detection rates have declined to less than 50%. We tested ultra-wideband (UWB) radio technology (Thales Research & Technology Ltd., Reading, UK) for proof of concept that estrus could be detected in dairy cows (two 1-wk-long trials; n=16 cows, 8 in each test). The 3-dimensional positions of 12 cows with synchronized estrous cycles and 4 pregnant control cows were monitored continuously using UWB mobile units operating within a network of 8 base units for a period of 7d. In the study, 10 cows exhibited estrus as confirmed by visual observation, activity monitoring, and milk progesterone concentrations. Automated software was developed for analysis of UWB data to detect cows in estrus and report the onset of estrus in real time. The UWB technology accurately detected 9 out of 10 cows in estrus. In addition, UWB technology accurately confirmed all 6 cows not in estrus. In conclusion, UWB technology can accurately detect estrus and hence we have demonstrated proof of concept for a novel technology that has significant potential to improve estrus-detection rates. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. The influence of fat and hemicellulose on methane production and energy utilization in lactating Jersey cattle.

    PubMed

    Drehmel, O R; Brown-Brandl, T M; Judy, J V; Fernando, S C; Miller, P S; Hales, K E; Kononoff, P J

    2018-06-13

    Feeding fat to lactating dairy cows may reduce methane production. Relative to cellulose, fermentation of hemicellulose is believed to result in less methane; however, these factors have not been studied simultaneously. Eight multiparous, lactating Jersey cows averaging (±SD) 98 ± 30.8 d in milk and body weight of 439.3 ± 56.7 kg were used in a twice-replicated 4 × 4 Latin square to determine the effects of fat and hemicellulose on energy utilization and methane production using a headbox-type indirect calorimetry method. To manipulate the concentration of fat, porcine tallow was included at either 0 or 2% of the diet dry matter. The concentration of hemicellulose was adjusted by manipulating the inclusion rate of corn silage, alfalfa hay, and soybean hulls resulting in either 11.3 or 12.7% hemicellulose (dry matter basis). The resulting factorial arrangement of treatments were low fat low hemicellulose (LFLH), low fat high hemicellulose (LFHH), high fat low hemicellulose (HFLH), and high fat high hemicellulose (HFHH). Neither fat nor hemicellulose affected dry matter intake, averaging 16.2 ± 1.18 kg/d across treatments. Likewise, treatments did not affect milk production, averaging 23.0 ± 1.72 kg/d, or energy-corrected milk, averaging 30.1 ± 2.41 kg/d. The inclusion of fat tended to reduce methane produced per kilogram of dry matter intake from 24.9 to 23.1 ± 1.59 L/kg, whereas hemicellulose had no effect. Increasing hemicellulose increased neutral detergent fiber (NDF) digestibility from 43.0 to 51.1 ± 2.35%. Similarly, increasing hemicellulose concentration increased total intake of digestible NDF from 6.62 to 8.42 ± 0.89 kg/d, whereas fat had no effect. Methane per unit of digested NDF tended to decrease from 64.8 to 49.2 ± 9.60 L/kg with increasing hemicellulose, whereas fat had no effect. An interaction between hemicellulose and fat content on net energy balance (milk plus tissue energy) was observed. Specifically, increasing hemicellulose in low-fat diets tended to increase net energy balance, but this was not observed in high-fat diets. These results confirm that methane production may be reduced with the inclusion of fat, whereas energy utilization of lactating dairy cows is improved by increasing hemicellulose in low-fat diets. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Nutrient digestibility and milk production responses to increasing levels of palmitic acid supplementation vary in cows receiving diets with or without whole cottonseed.

    PubMed

    Rico, J E; de Souza, J; Allen, M S; Lock, A L

    2017-01-01

    Our study evaluated the dose-dependent effects of a palmitic acid-enriched supplement in basal diets with or without the inclusion of whole cottonseed on nutrient digestibility and production responses of dairy cows. Sixteen Holstein cows (149 ± 56 days in milk) were used in a split plot Latin square design experiment. Cows were blocked by 3.5% fat-corrected milk (FCM) and allocated to a main plot receiving either a basal diet with soyhulls (SH, = 8) or a basal diet with whole cottonseed (CS, = 8) that was fed throughout the experiment. A palmitic acid-enriched supplement (PA 88.5% C16:0) was fed at 0, 0.75, 1.50, or 2.25% of ration DM in a replicated 4 × 4 Latin Square design within each basal diet group. Periods were 14 d with the final 4 d used for data collection. PA dose increased milk fat content linearly, and cubically affected yields of milk fat and 3.5% FCM. The PA dose did not affect milk protein and lactose contents, BW, and BCS, but tended to increase yields of milk, milk protein, and milk lactose. Also, PA dose reduced DMI and 16-carbon fatty acid digestibility quadratically, and increased 18-carbon fatty acid digestibility quadratically. There were no effects of basal diet on the yield of milk or milk components, but DMI tended to decrease in CS compared with SH, increasing feed efficiency (3.5% FCM/DMI). Compared with SH, CS diets increased yield of preformed milk fatty acids and 16-carbon fatty acid digestibility, and tended to decrease 18-carbon fatty acid digestibility. We observed basal diet × PA dose interactions for yields of milk and milk protein and for 16-carbon and total fatty acid digestibility, as well as tendency for yields of milk fat and 3.5% FCM. Also, there was a tendency for an interaction between basal diet and PA dose for NDF digestibility, which increased more for CS with increasing PA than for SH. PA dose linearly decreased digestibility of total fatty acids in SH diets but did not affect it in CS diets Results demonstrate that responses to PA dose are affected by the dietary basal diet. Additionally, the decrease in fatty acid digestibility only in the SH diets suggests that digestibility is impacted mainly by the profile of 16- and 18-carbon fatty acids reaching the duodenum. Under the dietary conditions evaluated, the yield of 3.5% FCM and milk fat were optimal when PA was fed at 1.5% of ration DM.

  19. Decomposing variation in dairy profitability: the impact of output, inputs, prices, labour and management.

    PubMed

    Wilson, P

    2011-08-01

    The UK dairy sector has undergone considerable structural change in recent years, with a decrease in the number of producers accompanied by an increased average herd size and increased concentrate use and milk yields. One of the key drivers to producers remaining in the industry is the profitability of their herds. The current paper adopts a holistic approach to decomposing the variation in dairy profitability through an analysis of net margin data explained by physical input-output measures, milk price variation, labour utilization and managerial behaviours and characteristics. Data are drawn from the Farm Business Survey (FBS) for England in 2007/08 for 228 dairy enterprises. Average yields are 7100 litres/cow/yr, from a herd size of 110 cows that use 0·56 forage ha/cow/yr and 43·2 labour h/cow/yr. An average milk price of 22·57 pence per litre (ppl) produced milk output of £1602/cow/yr, which after accounting for calf sales, herd replacements and quota leasing costs, gave an average dairy output of £1516/cow/yr. After total costs of £1464/cow/yr this left an economic return of £52/cow/yr (0·73 ppl) net margin profit. There is wide variation in performance, with the most profitable (as measured by net margin per cow) quartile of producers achieving 2000 litres/cow/yr more than the least profitable quartile, returning a net margin of £335/cow/yr compared to a loss of £361/cow/yr for the least profitable. The most profitable producers operate larger, higher yielding herds and achieve a greater milk price for their output. In addition, a significantly greater number of the most profitable producers undertake financial benchmarking within their businesses and operate specialist dairy farms. When examining the full data set, the most profitable enterprises included significantly greater numbers of organic producers. The most profitable tend to have a greater reliance on independent technical advice, but this finding is not statistically significant. Decomposing the variation in net margin performance between the most and least profitable groups, an approximate ratio of 65:23:12 is observed for higher yields: lower costs: higher milk price. This result indicates that yield differentials are the key performance driver in dairy profitability. Lower costs per cow are dominated by the significantly lower cost of farmer and spouse labour per cow of the most profitable group, flowing directly from the upper quartile expending 37·7 labour h/cow/yr in comparison with 58·8 h/cow/yr for the lower quartile. The upper quartile's greater milk price is argued to be achieved through contract negotiations and higher milk quality, and this accounts for 0·12 of the variation in net margin performance. The average economic return to the sample of dairy enterprises in this survey year was less than £6000/farm/yr. However, the most profitable quartile returned an average economic return of approximately £50 000 per farm/yr. Structural change in the UK dairy sector is likely to continue with the least profitable and typically smaller dairy enterprises being replaced by a smaller number of expanding dairy production units.

  20. Decomposing variation in dairy profitability: the impact of output, inputs, prices, labour and management

    PubMed Central

    WILSON, P.

    2011-01-01

    SUMMARY The UK dairy sector has undergone considerable structural change in recent years, with a decrease in the number of producers accompanied by an increased average herd size and increased concentrate use and milk yields. One of the key drivers to producers remaining in the industry is the profitability of their herds. The current paper adopts a holistic approach to decomposing the variation in dairy profitability through an analysis of net margin data explained by physical input–output measures, milk price variation, labour utilization and managerial behaviours and characteristics. Data are drawn from the Farm Business Survey (FBS) for England in 2007/08 for 228 dairy enterprises. Average yields are 7100 litres/cow/yr, from a herd size of 110 cows that use 0·56 forage ha/cow/yr and 43·2 labour h/cow/yr. An average milk price of 22·57 pence per litre (ppl) produced milk output of £1602/cow/yr, which after accounting for calf sales, herd replacements and quota leasing costs, gave an average dairy output of £1516/cow/yr. After total costs of £1464/cow/yr this left an economic return of £52/cow/yr (0·73 ppl) net margin profit. There is wide variation in performance, with the most profitable (as measured by net margin per cow) quartile of producers achieving 2000 litres/cow/yr more than the least profitable quartile, returning a net margin of £335/cow/yr compared to a loss of £361/cow/yr for the least profitable. The most profitable producers operate larger, higher yielding herds and achieve a greater milk price for their output. In addition, a significantly greater number of the most profitable producers undertake financial benchmarking within their businesses and operate specialist dairy farms. When examining the full data set, the most profitable enterprises included significantly greater numbers of organic producers. The most profitable tend to have a greater reliance on independent technical advice, but this finding is not statistically significant. Decomposing the variation in net margin performance between the most and least profitable groups, an approximate ratio of 65:23:12 is observed for higher yields: lower costs: higher milk price. This result indicates that yield differentials are the key performance driver in dairy profitability. Lower costs per cow are dominated by the significantly lower cost of farmer and spouse labour per cow of the most profitable group, flowing directly from the upper quartile expending 37·7 labour h/cow/yr in comparison with 58·8 h/cow/yr for the lower quartile. The upper quartile's greater milk price is argued to be achieved through contract negotiations and higher milk quality, and this accounts for 0·12 of the variation in net margin performance. The average economic return to the sample of dairy enterprises in this survey year was less than £6000/farm/yr. However, the most profitable quartile returned an average economic return of approximately £50 000 per farm/yr. Structural change in the UK dairy sector is likely to continue with the least profitable and typically smaller dairy enterprises being replaced by a smaller number of expanding dairy production units. PMID:22505774

  1. Effects of dietary forage level and monensin on lactation performance, digestibility and fecal excretion of nutrients, and efficiency of feed nitrogen utilization of Holstein dairy cows.

    PubMed

    Martinez, C M; Chung, Y-H; Ishler, V A; Bailey, K W; Varga, G A

    2009-07-01

    Two experiments (Exp. 1 and 2) were conducted using a 4 x 4 Latin square design with 2 replications (n = 8) to evaluate effects of feeding Holstein dairy cows a total mixed ration containing 50 or 60% of ration dry matter (DM) from forages with or without supplementation of monensin. In Exp. 1, alfalfa silage (AS) was used as the major forage (55% forage DM), and corn silage (CS; 45% forage DM) was used to make up the rest of the forage portion of diets (55AS:45CS). In Exp. 2, CS was used as the major forage (70% forage DM) and alfalfa hay (AH; 30% forage DM) was used to make up the rest of the forage portion of diets (70CS:30AH). Experimental diets were arranged in a 2 x 2 factorial with 50 or 60% ration DM from forages and monensin supplemented at 0 or 300 mg/cow daily. In Exp. 1 (55AS:45CS), feeding 60% forage diets decreased DM intake (DMI; 27.3 vs. 29.6 kg/d) but maintained the same levels of milk (45.8 vs. 47.0 kg/d) compared with 50% forage diets. The efficiency of converting feed to milk or 3.5% fat-corrected milk was greater for cows fed 60% compared with 50% forage diets (1.7 vs. 1.6 kg milk or 3.5% fat-corrected milk/kg of DMI, respectively). Increasing dietary forage level from 50 to 60% of ration DM increased milk fat percentage (3.4 to 3.5%); however, adding monensin to the 60% forage diet inhibited the increase in milk fat percentage. Feeding 60% forage diets decreased feed cost, but this decrease ($0.5/head per day) in feed cost did not affect income over feed cost. Feeding 60% forage diets decreased fecal excretion of DM (10.6 to 9.6 kg/d) and nitrogen (N; 354 to 324 g/d) and improved apparent digestibility of neutral detergent fiber from 43 to 49% and apparent efficiency of feed N utilization from 32.3 to 35.9% compared with 50% forage diets. In Exp. 2 (70CS:30AH), feeding 60% forage diets decreased DMI from 29.6 to 28.2 kg but maintained the same level of milk (41.1 vs. 40.8 kg/d) and therefore increased the efficiency of converting feed to milk (1.46 vs. 1.38 kg milk/kg DMI) compared with 50% forage diets. Daily feed cost for feeding 60% forage diets was $0.3/head lower than for the 50% forage diets. Fecal excretion of DM (10.3 vs. 11.5 kg/d) was lower and fecal excretion of N (299 vs. 328 g/d) tended to be lower for 60% compared with 50% forage diets. Results from these 2 experiments suggest that a 60% forage diet consisting of either AS or CS as the major forage can be fed to high producing Holstein dairy cows without affecting milk production while improving or maintaining the efficiency of converting feed to milk and the apparent efficiency of utilization of feed N. Cows receiving a 60% forage diet had a similar or improved digestibility of nutrients with a similar or reduced fecal excretion of nutrients. Effects of monensin under the conditions of the current experiments were minimal.

  2. Contextual herd factors associated with cow culling risk in Québec dairy herds: A multilevel analysis.

    PubMed

    Haine, Denis; Delgado, Hector; Cue, Roger; Sewalem, Asheber; Wade, Kevin; Lacroix, René; Lefebvre, Daniel; Arsenault, Julie; Bouchard, Émile; Dubuc, Jocelyn

    2017-09-01

    Several health disorders, such as milk fever, displaced abomasum, and mastitis, as well as impaired reproductive performance, are known risk factors for the removal of affected cows from a dairy herd. While cow-level risk factors are well documented in the literature, herd-level associations have been less frequently investigated. The objective of this study was to investigate the effect of cow- and herd-level determinants on variations in culling risk in Québec dairy herds: whether herd influences a cow's culling risk. For this, we assessed the influence of herd membership on cow culling risk according to displaced abomasum, milk fever, and retained placenta. A retrospective longitudinal study was conducted on data from dairy herds in the Province of Québec, Canada, by extracting health information events from the dairy herd health management software used by most Québec dairy producers and their veterinarians. Data were extracted for all lactations starting between January 1st and December 31st, 2010. Using multilevel logistic regression, we analysed a total of 10,529 cows from 201 herds that met the inclusion criteria. Milk fever and displaced abomasum were demonstrated to increase the cow culling risk. A minor general herd effect was found for the culling risk (i.e. an intra-class correlation of 1.0% and median odds ratio [MOR] of 1.20). The proportion of first lactation cows was responsible for this significant, but weak herd effect on individual cow culling risk, after taking into account the cow-level factors. On the other hand, the herd's average milk production was a protective factor. The planning and management of forthcoming replacement animals has to be taken into consideration when assessing cow culling risks and herd culling rates. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Comparison of the Effects of Goat Dairy and Cow Dairy Based Breakfasts on Satiety, Appetite Hormones, and Metabolic Profile.

    PubMed

    Rubio-Martín, Elehazara; García-Escobar, Eva; Ruiz de Adana, Maria-Soledad; Lima-Rubio, Fuensanta; Peláez, Laura; Caracuel, Angel-María; Bermúdez-Silva, Francisco-Javier; Soriguer, Federico; Rojo-Martínez, Gemma; Olveira, Gabriel

    2017-08-15

    The satiating effects of cow dairy have been thoroughly investigated; however, the effects of goat dairy on appetite have not been reported so far. Our study investigates the satiating effect of two breakfasts based on goat or cow dairy and their association with appetite related hormones and metabolic profile. Healthy adults consumed two breakfasts based on goat (G-Breakfast) or cow (C-Breakfast) dairy products. Blood samples were taken and VAS tests were performed at different time points. Blood metabolites were measured and Combined Satiety Index (CSI) and areas under the curves (AUC) were calculated. Desire to eat rating was significantly lower (breakfast & time interaction p < 0.01) and hunger rating tended to be lower (breakfast & time interaction p = 0.06) after the G-breakfast. None of the blood parameters studied were different between breakfasts; however, AUC GLP-1 was inversely associated with the AUC hunger and AUC desire-to-eat after the G-Breakfast, whereas triglyceride levels were directly associated with AUC CSI after the C-Breakfast. Our results suggest a slightly higher satiating effect of goat dairy when compared to cow dairy products, and pointed to a potential association of GLP-1 and triglyceride levels with the mechanisms by which dairy products might affect satiety after the G-Breakfast and C-Breakfast, respectively.

  4. Comparison of conventional linted cottonseed and mechanically delinted cottonseed in diets for dairy cows.

    PubMed

    Moreira, V R; Satter, L D; Harding, B

    2004-01-01

    Performance of lactating dairy cows fed diets containing either mechanically delinted whole cottonseed (DWCS; 3.7% lint) or linted whole cottonseed (LWCS; 11.7% lint) was measured. Forty primiparous (86 +/- 39 d in milk) and 40 multiparous (88 +/- 30 d in milk) cows were fed a total mixed ration containing 13% (dry matter basis) DWCS or LWCS in two blocks of 112 d (n = 53 and 27, respectively). Other total mixed ration ingredients (dry matter basis) were corn silage (28.1%), alfalfa silage (23%), high moisture shelled corn (27.8%), soybean meal (1.8%), expeller soybean meal (1.8%), blood meal (2%), and mineral-vitamin supplements (2.5%). Dry matter intake and milk yield were measured daily and milk composition every other week. Fecal grab samples were taken during wk 3 and 13 of each block to estimate excretion of intact whole cottonseeds. Milk yield, 3.5% fat-corrected milk, energy-corrected milk, milk composition and dry matter intake were not affected by whole cottonseed source. Body condition score tended to increase more with DWCS (0.22 vs. 0.11) for primiparous cows, although this was not reflected in body weight change. Dry matter digestibilities, based on indigestible ADF, were 63.5 and 64.8% for the DWCS and LWCS diets. It was calculated that 2.5 and 1.5% of the consumed seeds were excreted as whole cottonseeds in feces with the DWCS and LWCS diets, respectively. Although statistically significant, treatment differences in the proportion of intact seeds in the fecal DM would have little nutritional consequence. Mechanically delinted WCS performed as well as LWCS for all of the cow performance and milk composition variables measured.

  5. Herd factors associated with dairy cow mortality.

    PubMed

    McConnel, C; Lombard, J; Wagner, B; Kopral, C; Garry, F

    2015-08-01

    Summary studies of dairy cow removal indicate increasing levels of mortality over the past several decades. This poses a serious problem for the US dairy industry. The objective of this project was to evaluate associations between facilities, herd management practices, disease occurrence and death rates on US dairy operations through an analysis of the National Animal Health Monitoring System's Dairy 2007 survey. The survey included farms in 17 states that represented 79.5% of US dairy operations and 82.5% of the US dairy cow population. During the first phase of the study operations were randomly selected from a sampling list maintained by the National Agricultural Statistics Service. Only farms that participated in phase I and had 30 or more dairy cows were eligible to participate in phase II. In total, 459 farms had complete data for all selected variables and were included in this analysis. Univariable associations between dairy cow mortality and 162 a priori identified operation-level management practices or characteristics were evaluated. Sixty of the 162 management factors explored in the univariate analysis met initial screening criteria and were further evaluated in a multivariable model exploring more complex relationships. The final weighted, negative binomial regression model included six variables. Based on the incidence rate ratio, this model predicted 32.0% less mortality for operations that vaccinated heifers for at least one of the following: bovine viral diarrhea, infectious bovine rhinotracheitis, parainfluenza 3, bovine respiratory syncytial virus, Haemophilus somnus, leptospirosis, Salmonella, Escherichia coli or clostridia. The final multivariable model also predicted a 27.0% increase in mortality for operations from which a bulk tank milk sample tested ELISA positive for bovine leukosis virus. Additionally, an 18.0% higher mortality was predicted for operations that used necropsies to determine the cause of death for some proportion of dead dairy cows. The final model also predicted that increased proportions of dairy cows with clinical mastitis and infertility problems were associated with increased mortality. Finally, an increase in mortality was predicted to be associated with an increase in the proportion of lame or injured permanently removed dairy cows. In general terms, this model identified that mortality was associated with reproductive problems, non-infectious postpartum disease, infectious disease and infectious disease prevention, and information derived from postmortem evaluations. Ultimately, addressing excessive mortality levels requires a concerted effort that recognizes and appropriately manages the numerous and diverse underlying risks.

  6. Optimization biogas management as alternative energy from communal scale dairy farm

    NASA Astrophysics Data System (ADS)

    Ruhiyat, R.; Siami, L.

    2018-01-01

    Cow Slurry can be the main pollution source in most villages in Indonesia. In this study, treatment of cow slurry intended to reduce pollution in Citarum river and greenhouse gases effect of CH4 and CO2. As a part of renewable energy, biogas can be one of solution to be implemented in small-scale and remote area. In Pejaten, Tarumajaya Village, the cost-effective reached when 7cattleman united to treat cow slurry in one biodigester. The breed varies cow from calf, veal to adult cattle. The installation of anaerobic-bio digester that produce biogas 28 m3/day equivalent with Rp 168,000 to be consumed for 14 households. In addition, villager also benefitted manure as 42.5 ton monthly. As a whole, the highest profit comes from adult cattle that produce 900 kg/month slurry as Rp 59,919 monthly. Furthermore, this system gives job opportunity for villagers to be biodigester operator is the main beneficial with the higher income compare to mower that only Rp 600.000 monthly as Rp 1.065.000.

  7. Studies on hepatic lipidosis and coinciding health and fertility problems of high-producing dairy cows using the "Utrecht fatty liver model of dairy cows". A review.

    PubMed

    Geelen, M J H; Wensing, T

    2006-09-01

    Fatty liver or hepatic lipidosis is a major metabolic disorder of high-producing dairy cows that occurs rather frequently in early lactation and is associated with decreased health, production and fertility. A background section of the review explores reasons why high-producing dairy cows are prone to develop fatty liver post partum. Hepatic lipidosis and coinciding health and fertility problems seriously endanger profitability and longevity of the dairy cow. Results from a great number of earlier epidemiological and clinical studies made it clear that a different approach was needed for elucidation of pathogenesis and etiology of this complex of health problems. There was a need for an adequate animal model in which hepatic lipidosis and production, health and fertility problems could be provoked under controlled conditions. It was hypothesized that overconditioning ante partum and feed restriction post partum might induce lipolysis in adipose tissue and triacylglycerol accumulation in the liver following calving. This consideration formed the basis for the experiments, which resulted in the "Utrecht fatty liver model of dairy cows". In this model, post partum triacylglycerol-lipidosis as well as the whole complex of health and fertility problems are induced under well-controlled conditions. The experimental protocol based on this hypothesis produced in all cases (10 feeding trials with over 150 dairy cattle) the intended result, i.e. all experimental cows developed post partum higher hepatic triacylglycerol concentrations than did control cows. The model was evaluated in biochemical, clinical pathology, immunological, clinical and fertility terms. It turned out that in this model, post partum triacylglycerol-lipidosis as well as the whole complex of health and fertility problems were induced under well-controlled conditions.

  8. Measurement of EPF for detection of cow pregnancy using rosette inhibition test.

    PubMed

    Ghaffari Laleh, V; Ghaffari Laleh, R; Pirany, N; Moghadaszadeh Ahrabi, M

    2008-07-01

    Early embryonic death of calves due to sub-fertility in cows is of great economic concern to dairy industry. Early pregnancy factor (EPF) is a secretory protein with pregnancy associated immunosuppressive properties. Rosette inhibition test (RIT) was used to detect EPF in inseminated dairy cows. Blood samples were collected at two intervals, 1-3 and 5-7 days after insemination from 23 inseminated and 18 non-inseminated control cows for RIT and pregnancy diagnosis performed between 42 and 45 days on palpation. The study indicates that RIT (P<0.05) has the potential to distinguish pregnant from non-pregnant dairy cows in the first week of pregnancy.

  9. The effect of floor surface on dairy cow immune function and locomotion score

    USDA-ARS?s Scientific Manuscript database

    The study evaluated the effect of 2 dairy cow housing systems on cow locomotion, leukocyte activity and expression of genes associated with lameness, during the dry and peri-parturient period. Cows were assigned to free-stall housing with either rubber (RUB; n=13) or concrete (CON; n=14) at the feed...

  10. Significance of insulin resistance and oxidative stress in dairy cattle with subclinical ketosis during the transition period.

    PubMed

    Youssef, Mohamed; El-Ashker, Maged

    2017-02-01

    Health problems occurring during the transition period in dairy cattle are of utmost importance as they can decrease the animal's reproductive performance and favor the development of various metabolic diseases with resultant significant reproductive disorders. Among the commonly reported metabolic diseases occurring during that time, hyperketonemia is the most prevalent and could provoke a significant economic impact. The failing of a dairy cow to transit optimally between pregnancy and lactation is economically very relevant and should be considered. Until now, the role of insulin resistance (IR) in the etiology of subclinical ketosis (SCK) in dairy cattle is not clearly understood. This review aims to shed some light on the role of IR and oxidative stress in dairy cows with SCK during the transition period. The data presented in this review demonstrates that dairy cows could be vulnerable to the development of negative energy balance during transition. Moreover, the transitional cows could succumb to both IR and oxidative stress; however, the exact role of IR in cows with SCK needs further investigations. It is imperative to elaborate a suitable nutritional strategy to facilitate an easy transit of cows through this critical period and to minimize health problems and improve productivity during lactation.

  11. Perspectives on pasture versus indoor feeding of dairy cows.

    PubMed

    Knaus, Wilhelm

    2016-01-15

    The dairy industry in many regions of the world has moved towards a high-input/high-output system maximising annual milk production per cow, primarily through increasing concentrate-based total mixed rations fed indoors year round, as opposed to allowing cows to feed on pasture. Pasture-based dairy systems in regions like New Zealand and Ireland are oriented towards maximum milk yield per unit of pasture, which has led to Holstein strains that are 50 to 100 kg lighter, exhibit a higher body condition score, and produce roughly half the annual amount of milk as compared to their Holstein counterparts kept in confinement in North America and Europe. Freedom from hunger might not be guaranteed when high-yielding dairy cows are kept on pasture without any supplemental feed, but at the same time no access to pasture can be considered an animal welfare concern, because pasturing is generally beneficial to the animals' health. On pasture, lighter-weight dairy cows with a medium milk production potential have proven to be superior with regard to feed efficiency and fertility. The year-round indoor feeding of high-yielding dairy cows with total mixed rations containing substantial amounts of human-edible crops from arable land puts global food security at risk and fails to utilise the evolutionary advantages of ruminants. © 2015 Society of Chemical Industry.

  12. Effects of glucose on lactose synthesis in mammary epithelial cells from dairy cow.

    PubMed

    Lin, Ye; Sun, Xiaoxu; Hou, Xiaoming; Qu, Bo; Gao, Xuejun; Li, Qingzhang

    2016-05-26

    Lactose, as the primary osmotic component in milk, is the major determinant of milk volume. Glucose is the primary precursor of lactose. However, the effect of glucose on lactose synthesis in dairy cow mammary glands and the mechanism governing this process are poorly understood. Here we showed that glucose has the ability to induce lactose synthesis in dairy cow mammary epithelial cells, as well as increase cell viability and proliferation. A concentration of 12 mM glucose was the optimum concentration to induce cell growth and lactose synthesis in cultured dairy cow mammary epithelial cells. In vitro, 12 mM glucose enhanced lactose content, along with the expression of genes involved in glucose transportation and the lactose biosynthesis pathway, including GLUT1, SLC35A2, SLC35B1, HK2, β4GalT-I, and AKT1. In addition, we found that AKT1 knockdown inhibited cell growth and lactose synthesis as well as expression of GLUT1, SLC35A2, SLC35B1, HK2, and β4GalT-I. Glucose induces cell growth and lactose synthesis in dairy cow mammary epithelial cells. Protein kinase B alpha acts as a regulator of metabolism in dairy cow mammary gland to mediate the effects of glucose on lactose synthesis.

  13. Defining the Adipose Tissue Proteome of Dairy Cows to Reveal Biomarkers Related to Peripartum Insulin Resistance and Metabolic Status.

    PubMed

    Zachut, Maya

    2015-07-02

    Adipose tissue is a central regulator of metabolism in dairy cows; however, little is known about the association between various proteins in adipose tissue and the metabolic status of peripartum cows. Therefore, the objectives were to (1) examine total protein expression in adipose tissue of dairy cows and (2) identify biomarkers in adipose that are linked to insulin resistance and to cows' metabolic status. Adipose tissue biopsies were obtained from eight multiparous cows at -17 and +4 days relative to parturition. Proteins were analyzed by intensity-based, label-free, quantitative shotgun proteomics (nanoLC-MS/MS). Cows were divided into groups with insulin-resistant (IR) and insulin-sensitive (IS) adipose according to protein kinase B phosphorylation following insulin stimulation. Cows with IR adipose lost more body weight postpartum compared with IS cows. Differential expression of 143 out of 586 proteins was detected in prepartum versus postpartum adipose. Comparing IR to IS adipose revealed differential expression of 18.9% of the proteins; those related to lipolysis (hormone-sensitive lipase, perilipin, monoglycerol lipase) were increased in IR adipose. In conclusion, we found novel biomarkers related to IR in adipose and to metabolic status that could be used to characterize high-yielding dairy cows that are better adapted to peripartum metabolic stress.

  14. Dairy Cows Productivity and Socio-Economic Profile of Dairy Smallholder’s Communities in Yogyakarta, Indonesia

    NASA Astrophysics Data System (ADS)

    Widyobroto, B. P.; Rochijan; Noviandi, C. T.; Astuti, A.

    2018-02-01

    The objective of this field questionnaire survey was to describe the dairy cow productivity and socio-economic profile of dairy cattle farmers in Daerah Istimewa Yogyakarta smallholder farming communities which have been targeted dairy development policy. The study was conducted on 190 Friesian Holstein (FH) cows maintained under smallholder’s management system in Daerah Istimewa Yogyakarta, Indonesia. A total of 83 farmers were randomly selected and interviewed with structured questionnaire to assess the socio-economic dairy farmer and productivity performance of dairy cows. The number of dairy productivity performance within the normal. Shortages as well as high cost of feed, occurrence of disease, scarce information about feeding and high medicament cost were the main constraints which might have contributed considerably to delayed age at first service, late age at first calving, long calving interval, short lactation length and low milk production. Therefore, strategies designed to solve the existing problem should be important by involving all stakeholders in the formulation and implementation of improvement strategiesor dairy development policy was being implemented and necessary respect to environmental factors affecting agricultural activities such as a constraint on land use and access to water resources.

  15. Short communication: Using diurnal patterns of (13)C enrichment of CO2 to evaluate the effects of nitrate and docosahexaenoic acid on fiber degradation in the rumen of lactating dairy cows.

    PubMed

    Klop, G; Bannink, A; Dieho, K; Gerrits, W J J; Dijkstra, J

    2016-09-01

    Nitrate decreases enteric CH4 production in ruminants, but may also negatively affect fiber degradation. In this experiment, 28 lactating Holstein dairy cows were grouped into 7 blocks. Within blocks, cows were randomly assigned to 1 of 4 isonitrogenous treatments in a 2×2 factorial arrangement: control (CON); NO3 [21g of nitrate/kg of dry matter (DM)]; DHA [3g of docosahexaenoic acid (DHA)/kg of DM]; or NO3+DHA (21g of nitrate/kg of DM and 3g of DHA/kg of DM). Cows were fed a total mixed ration consisting of 21% grass silage, 49% corn silage, and 30% concentrates on a DM basis. Based on the difference in natural (13)C enrichment and neutral detergent fiber and starch content between grass silage and corn silage, we investigated whether a negative effect on rumen fiber degradation could be detected by evaluating diurnal patterns of (13)C enrichment of exhaled carbon dioxide. A significant nitrate × DHA interaction was found for neutral detergent fiber digestibility, which was reduced on the NO3 treatment to an average of 55%, as compared with 61, 64, and 65% on treatments CON, DHA, and NO3+DHA, respectively. Feeding nitrate, but not DHA, resulted in a pronounced increase in (13)C enrichment of CO2 in the first 3 to 4 h after feeding only. Results support the hypothesis that effects of a feed additive on the rate of fiber degradation in the rumen can be detected by evaluating diurnal patterns of (13)C enrichment of CO2. To be able to detect this, the main ration components have to differ considerably in fiber and nonfiber carbohydrate content as well as in natural (13)C enrichment. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. Identification of predictive biomarkers of disease state in transition dairy cows.

    PubMed

    Hailemariam, D; Mandal, R; Saleem, F; Dunn, S M; Wishart, D S; Ametaj, B N

    2014-05-01

    In dairy cows, periparturient disease states, such as metritis, mastitis, and laminitis, are leading to increasingly significant economic losses for the dairy industry. Treatments for these pathologies are often expensive, ineffective, or not cost-efficient, leading to production losses, high veterinary bills, or early culling of the cows. Early diagnosis or detection of these conditions before they manifest themselves could lower their incidence, level of morbidity, and the associated economic losses. In an effort to identify predictive biomarkers for postpartum or periparturient disease states in dairy cows, we undertook a cross-sectional and longitudinal metabolomics study to look at plasma metabolite levels of dairy cows during the transition period, before and after becoming ill with postpartum diseases. Specifically we employed a targeted quantitative metabolomics approach that uses direct flow injection mass spectrometry to track the metabolite changes in 120 different plasma metabolites. Blood plasma samples were collected from 12 dairy cows at 4 time points during the transition period (-4 and -1 wk before and 1 and 4 wk after parturition). Out of the 12 cows studied, 6 developed multiple periparturient disorders in the postcalving period, whereas the other 6 remained healthy during the entire experimental period. Multivariate data analysis (principal component analysis and partial least squares discriminant analysis) revealed a clear separation between healthy controls and diseased cows at all 4 time points. This analysis allowed us to identify several metabolites most responsible for separating the 2 groups, especially before parturition and the start of any postpartum disease. Three metabolites, carnitine, propionyl carnitine, and lysophosphatidylcholine acyl C14:0, were significantly elevated in diseased cows as compared with healthy controls as early as 4 wk before parturition, whereas 2 metabolites, phosphatidylcholine acyl-alkyl C42:4 and phosphatidylcholine diacyl C42:6, could be used to discriminate healthy controls from diseased cows 1 wk before parturition. A 3-metabolite plasma biomarker profile was developed that could predict which cows would develop periparturient diseases, up to 4 wk before clinical symptoms appearing, with a sensitivity of 87% and a specificity of 85%. This is the first report showing that periparturient diseases can be predicted in dairy cattle before their development using a multimetabolite biomarker model. Further research is warranted to validate these potential predictive biomarkers. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Comparison of the effect of a CIDR-Select Synch versus a long-term CIDR based AI protocol on reproductive performance in multiparous dairy cows in Swiss dairy farms.

    PubMed

    Rudolph, Jürn; Bruckmaier, Rupert M; Kasimanickam, Ramanathan; Steiner, Adrian; Kirchhofer, Marc; Hüsler, Jürg; Hirsbrunner, Gaby

    2011-11-25

    Synchronization programs have become standard in the dairy industry in many countries. In Switzerland, these programs are not routinely used for groups of cows, but predominantly as a therapy for individual problem cows. The objective of this study was to compare the effect of a CIDR-Select Synch and a 12-d CIDR protocol on the pregnancy rate in healthy, multiparous dairy cows in Swiss dairy farms. Cows (N = 508) were randomly assigned to CIDR-Select Synch (N = 262) or 12-d CIDR (N = 246) protocols. Cows in the CIDR-Select Synch group received a CIDR and 2.5 ml of buserelin i.m. on d 0. On d 7, the CIDR insert was removed and 5 ml of dinoprost was administered i.m.. Cows in the 12-d CIDR group received the CIDR on d 0 and it was removed on d 12 (the routine CIDR protocol in Swiss dairies). On d 0 a milk sample for progesterone analysis was taken. Cows were inseminated upon observed estrus. Pregnancy was determined at or more than 35 days after artificial insemination. As a first step, the two groups were compared as to indication for treatment, breed, stud book, stall, pasture, and farmer's business using chi square tests or Fisher's exact test. Furthermore, groups were compared as to age, DIM, number of AI's, number of cows per farm, and yearly milk yield per cow using nonparametric ANOVA. A multiple logistic model was used to relate the success of the protocols to all of the available factors; in particular treatment (CIDR-Select Synch/12-d CIDR), milk progesterone value, age, DIM, previous treatment of the uterus, previous gynecological treatment, and number of preceding inseminations. The pregnancy rate was higher in cows following the CIDR-Select Synch compared to the 12-d CIDR protocol (50.4% vs. 22.4%; P < 0.0001). The CIDR-Select Synch protocol may be highly recommended for multiparous dairy cows. The reduced time span of the progesterone insert decreased the number of days open, improved the pregnancy rate compared to the 12-d CIDR protocol and the cows did not to have to be handled more often.

  18. Comparison of the effect of a CIDR-Select Synch versus a long-term CIDR based AI protocol on reproductive performance in multiparous dairy cows in Swiss dairy farms

    PubMed Central

    2011-01-01

    Background Synchronization programs have become standard in the dairy industry in many countries. In Switzerland, these programs are not routinely used for groups of cows, but predominantly as a therapy for individual problem cows. The objective of this study was to compare the effect of a CIDR-Select Synch and a 12-d CIDR protocol on the pregnancy rate in healthy, multiparous dairy cows in Swiss dairy farms. Methods Cows (N = 508) were randomly assigned to CIDR-Select Synch (N = 262) or 12-d CIDR (N = 246) protocols. Cows in the CIDR-Select Synch group received a CIDR and 2.5 ml of buserelin i.m. on d 0. On d 7, the CIDR insert was removed and 5 ml of dinoprost was administered i.m.. Cows in the 12-d CIDR group received the CIDR on d 0 and it was removed on d 12 (the routine CIDR protocol in Swiss dairies). On d 0 a milk sample for progesterone analysis was taken. Cows were inseminated upon observed estrus. Pregnancy was determined at or more than 35 days after artificial insemination. As a first step, the two groups were compared as to indication for treatment, breed, stud book, stall, pasture, and farmer's business using chi square tests or Fisher's exact test. Furthermore, groups were compared as to age, DIM, number of AI's, number of cows per farm, and yearly milk yield per cow using nonparametric ANOVA. A multiple logistic model was used to relate the success of the protocols to all of the available factors; in particular treatment (CIDR-Select Synch/12-d CIDR), milk progesterone value, age, DIM, previous treatment of the uterus, previous gynecological treatment, and number of preceding inseminations. Results The pregnancy rate was higher in cows following the CIDR-Select Synch compared to the 12-d CIDR protocol (50.4% vs. 22.4%; P < 0.0001). Conclusion The CIDR-Select Synch protocol may be highly recommended for multiparous dairy cows. The reduced time span of the progesterone insert decreased the number of days open, improved the pregnancy rate compared to the 12-d CIDR protocol and the cows did not to have to be handled more often. PMID:22117599

  19. The Effect of Hock Injury Laterality and Lameness on Lying Behaviors and Lying Laterality in Holstein Dairy Cows

    PubMed Central

    Krawczel, Peter D.

    2017-01-01

    Simple Summary Dairy cattle may experience discomfort in a myriad of ways throughout their life cycle, particularly when sustaining hock injuries or suboptimal locomotion. Lactating dairy cattle divide their lying time equally between left and right sides; however, discomfort experienced during pregnancy or following cannulation can cause a shift in the normal lying laterality. The objective of this study was to determine the effect of hock injuries and lameness on the lying behaviors of dairy cattle, particularly lying laterality. Lying laterality did not differ from the expected 50% (left side lying time) in cattle with hock injuries, lameness, or both. The current results suggest that lying laterality does not differ between varying levels of hock injury or lameness severity. Going forward, further research could determine if lying laterality shifts over the course of the animal developing a hock injury or lameness. Abstract Lactating dairy cattle divide their lying equally between their left side and their right side. However, discomfort, such as pregnancy and cannulation, can cause a cow to shift lying side preference. The objective of this study was to determine the effect of lameness and hock injuries on lying behaviors, particularly lying laterality, of lactating dairy cows. Cows from four commercial farms in eastern Croatia that had lying behavior data, health score data, and production records were used in the study. Health scores including hock injuries and locomotion were collected once per cow. Severely lame cows had greater daily lying time compared to sound cows and moderately lame cows. Overall, cows spent 51.3 ± 1.2% of their daily lying time on the left side. Maximum hock score, locomotion score, hock injury laterality, or parity did not result in lying laterality differing from 50%. PMID:29149044

  20. Central genomic regulation of the expression of oestrous behaviour in dairy cows: a review.

    PubMed

    Woelders, H; van der Lende, T; Kommadath, A; te Pas, M F W; Smits, M A; Kaal, L M T E

    2014-05-01

    The expression of oestrous behaviour in Holstein Friesian dairy cows has progressively decreased over the past 50 years. Reduced oestrus expression is one of the factors contributing to the current suboptimal reproductive efficiency in dairy farming. Variation between and within cows in the expression of oestrous behaviour is associated with variation in peripheral blood oestradiol concentrations during oestrus. In addition, there is evidence for a priming role of progesterone for the full display of oestrous behaviour. A higher rate of metabolic clearance of ovarian steroids could be one of the factors leading to lower peripheral blood concentrations of oestradiol and progesterone in high-producing dairy cows. Oestradiol acts on the brain by genomic, non-genomic and growth factor-dependent mechanisms. A firm base of understanding of the ovarian steroid-driven central genomic regulation of female sexual behaviour has been obtained from studies on rodents. These studies have resulted in the definition of five modules of oestradiol-activated genes in the brain, referred to as the GAPPS modules. In a recent series of studies, gene expression in the anterior pituitary and four brain areas (amygdala, hippocampus, dorsal hypothalamus and ventral hypothalamus) in oestrous and luteal phase cows, respectively, has been measured, and the relation with oestrous behaviour of these cows was analysed. These studies identified a number of genes of which the expression was associated with the intensity of oestrous behaviour. These genes could be grouped according to the GAPPS modules, suggesting close similarity of the regulation of oestrous behaviour in cows and female sexual behaviour in rodents. A better understanding of the central genomic regulation of the expression of oestrous behaviour in dairy cows may in due time contribute to improved (genomic) selection strategies for appropriate oestrus expression in high-producing dairy cows.

  1. Low degradable protein supply to increase nitrogen efficiency in lactating dairy cows and reduce environmental impacts at barn level.

    PubMed

    Edouard, N; Hassouna, M; Robin, P; Faverdin, P

    2016-02-01

    Generally, <30% of dairy cattle's nitrogen intake is retained in milk. Large amounts of nitrogen are excreted in manure, especially in urine, with damaging impacts on the environment. This study explores the effect of lowering dietary degradable nitrogen supplies--while maintaining metabolisable protein--on dairy cows' performance, nitrogen use efficiency and gas emissions (NH3, N2O, CH4) at barn level with tied animals. Two dietary N concentrations (CP: 12% DM for LowN; 18% DM for HighN) were offered to two groups of three lactating dairy cows in a split-plot design over four periods of 2 weeks. Diets were formulated to provide similar metabolisable protein supply, with degradable N either in deficit or in excess (PDIN of 84 and 114 g/kg DM for LowN and HighN, respectively). Cows ingested 0.8 kg DM/day less on the LowN diet, which was also 2.5% less digestible. Milk yield and composition were not significantly affected. N exported in milk was 5% lower (LowN: 129 g N/day; HighN: 136 g N/day; P<0.001) but milk protein yield was not significantly affected (LowN: 801 g/day; HighN: 823 g/day; P=0.10). Cows logically ingested less nitrogen on the LowN diet (LowN: 415 g N/day; HighN: 626 g N/day; P<0.001) resulting in a higher N use efficiency (N milk/N intake; LowN: 0.31; HighN: 0.22; P<0.001). N excreted in urine was almost four times lower on the LowN diet (LowN: 65 g N/day; HighN: 243 g N/day; P<0.001) while urinary urea N concentration was eightfold lower (LowN: 4.6 g/l; HighN: 22.9 g/l; P<0.001). Ammonia emission (expressed in g/h in order to remove periods of the day with potential interferences with volatile molecules from feed) was also lower on the LowN diet (LowN: 1.03 g/h per cow; HighN: 1.25 g/h per cow; P<0.05). Greenhouse gas emissions (N2O and CH4) at barn level were not significantly affected by the amount of dietary N. Offering low amounts of degradable protein with suitable metabolisable protein amounts to cattle improved nitrogen use efficiency and lowered ammonia emissions at barn level. This strategy would, however, need to be validated for longer periods, other housing systems (free stall barns) and at farm level including all stages of manure management.

  2. Effects of rutin and buckwheat seeds on energy metabolism and methane production in dairy cows.

    PubMed

    Stoldt, Ann-Kathrin; Derno, Michael; Das, Gürbüz; Weitzel, Joachim M; Wolffram, Siegfried; Metges, Cornelia C

    2016-03-01

    Flavonoids are secondary plant metabolites with several health promoting effects. As dairy cows often suffer from metabolic imbalance and health problems, interest is growing in health improvements by plant substances such as flavonoids. Our group has recently shown that the flavonoids quercetin and rutin (a glucorhamnoside of quercetin) are bioavailable in cows when given via a duodenal fistula or orally, respectively, affect glucose metabolism, and have beneficial effects on liver health. Furthermore, flavonoids may reduce rumen methane production in vitro through their antibacterial properties. To test the hypothesis that rutin has effects on energy metabolism, methane production, and production performance in dairy cows, we fed rutin trihydrate at a dose of 100mg/kg of body weight to a group of 7 lactating dairy cows for 2 wk in a crossover design. In a second experiment, 2 cows were fed the same ration but were supplemented with buckwheat seeds (Fagopyrum tartaricum), providing rutin at a dose comparable to the first experiment. Two other cows receiving barley supplements were used as controls in a change-over mode. Blood samples were taken weekly and respiration measurements were performed at the end of each treatment. Supplementation of pure rutin, but not of rutin contained in buckwheat seeds, increased the plasma quercetin content. Methane production and milk yield and composition were not affected by rutin treatment in either form. Plasma glucose, β-hydroxybutyrate, and albumin were increased by pure rutin treatment, indicating a possible metabolic effect of rutin on energy metabolism of dairy cows. In addition, we did not show that in vivo ruminal methane production was reduced by rutin. In conclusion, we could not confirm earlier reports on in vitro methane reduction by rutin supplementation in dairy cows in established lactation. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Effect of oil content and kernel processing of corn silage on digestibility and milk production by dairy cows.

    PubMed

    Weiss, W P; Wyatt, D J

    2000-02-01

    Corn silages were produced from a high oil corn hybrid and from its conventional hybrid counterpart and were harvested with a standard silage chopper or a chopper equipped with a kernel processing unit. High oil silages had higher concentrations of fatty acids (5.5 vs. 3.4% of dry matter) and crude protein (8.4 vs. 7.5% of dry matter) than the conventional hybrid. Processed silage had larger particle size than unprocessed silage, but more starch was found in small particles for processed silage. Dry matter intake was not influenced by treatment (18.4 kg/d), but yield of fat-corrected milk (23.9 vs. 22.6 kg/d) was increased by feeding high oil silage. Overall, processing corn silage did not affect milk production, but cows fed processed conventional silage tended to produce more milk than did cows fed unprocessed conventional silage. Milk protein percent, but not yield, was reduced with high oil silage. Milk fat percent, but not yield, was higher with processed silage. Overall, processed silage had higher starch digestibility, but the response was much greater for the conventional silage hybrid. The concentration of total digestible nutrients (TDN) tended to be higher for diets with high oil silage (71.6 vs. 69.9%) and tended to be higher for processed silage than unprocessed silage (71.7 vs. 69.8%), but an interaction between variety and processing was observed. Processing conventional corn silage increased TDN to values similar to high oil corn silage but processing high oil corn silage did not influence TDN.

  4. Designing Better Water Troughs: Does Trough Color Influence Dairy Cows' Preference?

    PubMed

    Lemos Teixeira, Dayane; Hötzel, Maria José; Pinheiro Machado Filho, Luiz Carlos; Cazale, José Daniel; Enríquez-Hidalgo, Daniel

    2017-01-01

    Eighteen lactating dairy cows were used to elucidate their preference for green, grey, or red troughs. The herd was managed under a rotational grazing system with ad-libitum access to water until 11:30 h. For 9 days, all cows were tested individually following the afternoon milking. Cows drank similar quantities, spent a similar amount of time drinking, and took a similar number of sips from the 3 trough colors (p > .05). In 75% of the tests, cows drank more than 95% of the test period from the same trough. Within this time, the percentage of choices did not differ among colors (33.3% green, 39.0% grey, and 27.7% red). When they chose the red trough, cows spent less time drinking (p ≤ .05) and tended to take fewer sips (p = .07), which could suggest a partial aversion to this color. Suboptimal water trough design may have long-term negative effects on both the production and welfare of dairy cattle; however, the results suggest that color does not play a major role in the drinking behavior of dairy cows.

  5. Selenium and Antioxidant Status in Dairy Cows at Different Stages of Lactation.

    PubMed

    Gong, Jian; Xiao, Min

    2016-05-01

    Thirty-five multiparous Holstein cows averaging 550 ± 50 kg of body weight and in 2 to 4 parity were divided into three groups according to lactation stage (group A: nine cows from 4 to 1 weeks prepartum; group B: 11 cows from 1 to 30 days postpartum; group C: 15 cows from 30 to 100 days postpartum). Selenium concentration, malondialdehyde (MDA) level, glutathione peroxidase (GSH-Px) activity, thioredoxin reductase (TrxR) activity, and total antioxidant status (TAS) in serum were determined to evaluate selenium and antioxidant status in dairy cows at different stages of lactation. The results showed that mean serum selenium concentration, MDA level, and GSH-Px activity of cows in early lactation increased significantly (P < 0.05) when compared with cows in the dry period and peak lactation. Conversely, serum TrxR activity and TAS declined during this period (P < 0.05). The increase of serum MDA level during early lactation indicate that the reactive oxygen species, including lipid hydroperoxides, increase in this period, thus placing the cows at a greater risk of oxidative stress. The significant decrease in TrxR activity that is accompanied with a decrease in TAS during early lactation suggests that dairy cows have low antioxidant defense in this period and TrxR may be an important antioxidant defense mechanism in transition dairy cows.

  6. Models for predicting enteric methane emissions from dairy cows in North America, Europe, and Australia and New Zealand.

    PubMed

    Appuhamy, Jayasooriya A D R N; France, James; Kebreab, Ermias

    2016-09-01

    There are several models in the literature for predicting enteric methane (CH4 ) emissions. These models were often developed on region or country-specific data and may not be able to predict the emissions successfully in every region. The majority of extant models require dry matter intake (DMI) of individual animals, which is not routinely measured. The objectives of this study were to (i) evaluate performance of extant models in predicting enteric CH4 emissions from dairy cows in North America (NA), Europe (EU), and Australia and New Zealand (AUNZ) and (ii) explore the performance using estimated DMI. Forty extant models were challenged on 55, 105, and 52 enteric CH4 measurements (g per lactating cow per day) from NA, EU, and AUNZ, respectively. The models were ranked using root mean square prediction error as a percentage of the average observed value (RMSPE) and concordance correlation coefficient (CCC). A modified model of Nielsen et al. (Acta Agriculturae Scand Section A, 63, 2013 and 126) using DMI, and dietary digestible neutral detergent fiber and fatty acid contents as predictor variables, were ranked highest in NA (RMSPE = 13.1% and CCC = 0.78). The gross energy intake-based model of Yan et al. (Livestock Production Science, 64, 2000 and 253) and the updated IPCC Tier 2 model were ranked highest in EU (RMSPE = 11.0% and CCC = 0.66) and AUNZ (RMSPE = 15.6% and CCC = 0.75), respectively. DMI of cows in NA and EU was estimated satisfactorily with body weight and fat-corrected milk yield data (RMSPE < 12.0% and CCC > 0.60). Using estimated DMI, the Nielsen et al. (2013) (RMSPE = 12.7 and CCC = 0.79) and Yan et al. (2000) (RMSPE = 13.7 and CCC = 0.50) models still predicted emissions in respective regions well. Enteric CH4 emissions from dairy cows can be predicted successfully (i.e., RMSPE < 15%), if DMI can be estimated with reasonable accuracy (i.e., RMSPE < 10%). © 2016 John Wiley & Sons Ltd.

  7. Treatments of clinical mastitis occurring in cows on 51 large dairy herds in Wisconsin.

    PubMed

    Oliveira, L; Ruegg, P L

    2014-09-01

    Antimicrobials are frequently used for treatment of bovine mastitis and few studies have examined modern treatment strategies on large US dairy farms. The objective of this study was to describe treatment practices for clinical mastitis occurring in cows on large dairy herds in Wisconsin. Treatments performed on 747 cows experiencing cases of mild, moderate, or severe symptoms of clinical mastitis were recorded on 51 Wisconsin dairy farms. Duplicate milk samples were collected from the affected quarter for microbiological analysis at the onset of clinical mastitis and 14 to 21 d after treatment ended. Cows were treated according to individual farm protocol. Drugs and doses used for treatments were recorded for each case. Among all herds, 5 intramammary (IMM) antimicrobials (amoxicillin, hetacillin, pirlimycin, ceftiofur, and cephapirin) were used to treat cows for clinical mastitis. Of 712 cows with complete treatment data, 71.6% were treated with IMM ceftiofur either solely or combined with other antimicrobials (administered either IMM or systemically). Of cows experiencing severe symptoms of clinical mastitis, 43.8% received IMM treatment concurrent with systemic antimicrobials. Of all cows treated, 23.1% received an additional secondary treatment (either IMM, systemic, or both) because of perceived lack of response to the initial treatment. The majority of IMM treatments were administered to cows with a microbiological diagnosis of no growth (34.9%) or Escherichia coli (27.2%). Half of the cows experiencing cases caused by E. coli were treated using systemic antimicrobials in contrast to only 6.8% of cows experiencing cases caused by coagulase-negative staphylococci. In conflict with FDA regulations, which do not allow extra-label treatments using sulfonamides, a total of 22 cows from 8 farms were treated with systemic sulfadimethoxine either solely or in combination with oxytetracycline. Antimicrobial drugs were used on all herds and many cows received extra-label treatments. Great opportunity exists to improve mastitis therapy on large dairy herds, but use of more diagnostic methodologies is necessary to guide treatments. Farmers and veterinarians should work together to create protocols based on the herd needs considering reduced inappropriate and excessive use of antimicrobials. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Evaluation of between-cow variation in milk urea and rumen ammonia nitrogen concentrations and the association with nitrogen utilization and diet digestibility in lactating cows.

    PubMed

    Huhtanen, P; Cabezas-Garcia, E H; Krizsan, S J; Shingfield, K J

    2015-05-01

    Concentrations of milk urea N (MUN) are influenced by dietary crude protein concentration and intake and could therefore be used as a biomarker of the efficiency of N utilization for milk production (milk N/N intake; MNE) in lactating cows. In the present investigation, data from milk-production trials (production data set; n=1,804 cow/period observations from 21 change-over studies) and metabolic studies involving measurements of nutrient flow at the omasum in lactating cows (flow data set; n=450 cow/period observations from 29 studies) were used to evaluate the influence of between-cow variation on the relationship of MUN with MNE, urinary N (UN) output, and diet digestibility. All measurements were made on cows fed diets based on grass silage supplemented with a range of protein supplements. Data were analyzed by mixed-model regression analysis with diet within experiment and period within experiment as random effects, allowing the effect of diet and period to be excluded. Between-cow coefficient of variation in MUN concentration and MNE was 0.13 and 0.07 in the production data set and 0.11 and 0.08 in the flow data set, respectively. Based on residual variance, the best model for predicting MNE developed from the production data set was MNE (g/kg)=238 + 7.0 × milk yield (MY; kg/d) - 0.064 × MY(2) - 2.7 × MUN (mg/dL) - 0.10 body weight (kg). For the flow data set, including both MUN and rumen ammonia N concentration with MY in the model accounted for more variation in MNE than when either term was used with MY alone. The best model for predicting UN excretion developed from the production data set (n=443) was UN (g/d)=-29 + 4.3 × dry matter intake (kg/d) + 4.3 × MUN + 0.14 × body weight. Between-cow variation had a smaller influence on the association of MUN with MNE and UN output than published estimates of these relationships based on treatment means, in which differences in MUN generally arise from variation in dietary crude protein concentration. For the flow data set, between-cow variation in MUN and rumen ammonia N concentrations was positively associated with total-tract organic matter digestibility. In conclusion, evaluation of phenotypic variation in MUN indicated that between-cow variation in MUN had a smaller effect on MNE compared with published responses of MUN to dietary crude protein concentration, suggesting that a closer control over diet composition relative to requirements has greater potential to improve MNE and lower UN on farm than genetic selection. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. The impact of body condition after calving on metabolism and milk progesterone profiles in two breeds of dairy cows.

    PubMed

    O'Hara, Lisa A; Båge, Renée; Holtenius, Kjell

    2016-10-20

    Optimal body condition in early lactation is generally accepted as a prerequisite for good reproductive performance. Examination of milk progesterone profiles offers an objective method for characterization of postpartum ovarian activity in dairy cows. The present study investigated the relationship between body condition after calving, some metabolic parameters in blood plasma, and fertility, as reflected by milk progesterone profiles in the two dairy breeds Swedish Red (SR) and Swedish Holstein (SH). Multiparous dairy cows (n = 73) of SR and SH breeds were selected and divided into three groups based on their body condition score (BCS) after parturition. Selected plasma metabolites were determined, milk progesterone profiles were identified and body condition was scored. Over-conditioned cows and atypical progesterone profiles were more common among SR cows. Insulin sensitivity was lower and IGF 1 higher among SR cows. Insulin was positively related to body condition, but not related to breed. Atypical progesterone profiles were more common and insulin sensitivity lower in SR than in SH cows, but the SR breed had a higher proportion of over-conditioned SR cows. It is reasonable to assume that breed differences in body condition contributed to these results.

  10. Effect of sand and rubber surface on the lying behavior of lame dairy cows in hospital pens.

    PubMed

    Bak, A S; Herskin, M S; Jensen, M B

    2016-04-01

    Housing lame cows in designated hospital pens with a soft surface may lessen the pain the animals feel when lying and changing position. This study investigated the effect of the lying surface on the behavior of lame cows in hospital pens. Thirty-two lame dairy cows were kept in individual hospital pens, provided with either 30-cm deep-bedded sand or 24-mm rubber mats during 24 h in a crossover design. On each surface, the lying behavior of each cow was recorded during 18 h. On deep-bedded sand, cows lay down more and changed position more often than when housed on the rubber surface. Furthermore, a shorter duration of lying down and getting up movements and a shorter duration of lying intention movements were observed. These results suggest that lame dairy cows are more reluctant to change position on rubber compared with sand, and that sand is more comfortable to lie on. Thus, deep bedding such as sand may provide better lying comfort for lame cows than an unbedded rubber surface. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Human-animal interactions and safety during dairy cattle handling--Comparing moving cows to milking and hoof trimming.

    PubMed

    Lindahl, C; Pinzke, S; Herlin, A; Keeling, L J

    2016-03-01

    Cattle handling is a dangerous activity on dairy farms, and cows are a major cause of injuries to livestock handlers. Even if dairy cows are generally tranquil and docile, when situations occur that they perceive or remember as aversive, they may become agitated and hazardous to handle. This study aimed to compare human-animal interactions, cow behavior, and handler safety when moving cows to daily milking and moving cows to more rarely occurring and possibly aversive hoof trimming. These processes were observed on 12 Swedish commercial dairy farms. The study included behavioral observations of handler and cows and cow heart rate recordings, as well as recording frequencies of situations and incidents related to an increased injury risk to the handler. At milking, cows were quite easily moved using few interactions. As expected, the cows showed no behavioral signs of stress, fear, or resistance and their heart rate only rose slightly from the baseline (i.e., the average heart rate during an undisturbed period before handling). Moving cows to hoof trimming involved more forceful and gentle interactions compared with moving cows to milking. Furthermore, the cows showed much higher frequencies of behaviors indicative of aversion and fear (e.g., freezing, balking, and resistance), as well as a higher increase in heart rate. The risk of injury to which handlers were exposed also increased when moving cows to hoof trimming rather than to routine milking. Some interactions (such as forceful tactile interactions with an object and pulling a neck strap or halter) appeared to be related to potentially dangerous incidents where the handler was being kicked, head-butted, or run over by a cow. In conclusion, moving cows to hoof trimming resulted in higher frequencies of behaviors indicating fear, more forceful interactions, and increased injury risks to the handler than moving cows to milking. Improving potentially stressful handling procedures (e.g., by better animal handling practices and preparation of cows to cope with such procedures) can increase handler safety, animal welfare, ease of handling, and efficiency. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Performance of Holstein and Swedish-Red × Jersey/Holstein crossbred dairy cows within low- and medium-concentrate grassland-based systems.

    PubMed

    Ferris, C P; Purcell, P J; Gordon, A W; Larsen, T; Vestergaard, M

    2018-05-09

    This 2 × 2 factorial design experiment was conducted to compare the performance of spring-calving Holstein dairy cows (HOL, n = 34) with Swedish Red × Jersey/Holstein crossbred (SR × J/HOL, n = 34) dairy cows within low and medium concentrate input grassland-based dairy systems. The experiment commenced when cows calved and encompassed 1 full lactation. Cows were offered diets containing grass silage and concentrates [70:30 dry matter (DM) ratio, and 40:60 DM ratio, for low and medium, respectively] until turnout, grazed grass plus either 1.0 or 4.0 kg of concentrate/d during the grazing period (low and medium, respectively), and grass silage and concentrates (85:15 DM ratio, and 70:30 DM ratio, for low and medium, respectively) from rehousing and until drying off. No significant genotype × system interactions were present for any of the feed intake or full-lactation milk production data examined. Full-lactation concentrate DM intakes were 769 and 1,902 kg/cow for the low and medium systems, respectively, whereas HOL cows had a higher total DM intake than SR × J/HOL cows in early lactation, but not in late lactation. Although HOL cows had a higher lactation milk yield than SR × J/HOL cows, the latter produced milk with a higher fat and protein content, and thus fat plus protein yield was unaffected by genotype. Milk produced by the SR × J/HOL cows had a higher degree of saturation of fatty acids than milk produced by the HOL cows, and the somatic cell score of milk produced by the former was also higher. Throughout the lactation, HOL cows were on average 30 kg heavier than SR × J/HOL cows, whereas the SR × J/HOL cows had a higher body condition score than the HOL cows. Holstein cows had a higher incidence of mastitis and ovarian dysfunction that SR × J/HOL cows. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Effects of heat stress on serum insulin, adipokines, AMP-activated protein kinase, and heat shock signal molecules in dairy cows.

    PubMed

    Min, Li; Cheng, Jian-bo; Shi, Bao-lu; Yang, Hong-jian; Zheng, Nan; Wang, Jia-qi

    2015-06-01

    Heat stress affects feed intake, milk production, and endocrine status in dairy cows. The temperature-humidity index (THI) is employed as an index to evaluate the degree of heat stress in dairy cows. However, it is difficult to ascertain whether THI is the most appropriate measurement of heat stress in dairy cows. This experiment was conducted to investigate the effects of heat stress on serum insulin, adipokines (leptin and adiponectin), AMP-activated protein kinase (AMPK), and heat shock signal molecules (heat shock transcription factor (HSF) and heat shock proteins (HSP)) in dairy cows and to research biomarkers to be used for better understanding the meaning of THI as a bioclimatic index. To achieve these objectives, two experiments were performed. The first experiment: eighteen lactating Holstein dairy cows were used. The treatments were: heat stress (HS, THI average=81.7, n=9) and cooling (CL, THI average=53.4, n=9). Samples of HS were obtained on August 16, 2013, and samples of CL were collected on April 7, 2014 in natural conditions. The second experiment: HS treatment cows (n=9) from the first experiment were fed for 8 weeks from August 16, 2013 to October 12, 2013. Samples for moderate heat stress, mild heat stress, and no heat stress were obtained, respectively, according to the physical alterations of the THI. Results showed that heat stress significantly increased the serum adiponectin, AMPK, HSF, HSP27, HSP70, and HSP90 (P<0.05). Adiponectin is strongly associated with AMPK. The increases of adiponectin and AMPK may be one of the mechanisms to maintain homeostasis in heat-stressed dairy cows. When heat stress treatment lasted 8 weeks, a higher expression of HSF and HSP70 was observed under moderate heat stress. Serum HSF and HSP70 are sensitive and accurate in heat stress and they could be potential indicators of animal response to heat stress. We recommend serum HSF and HSP70 as meaningful biomarkers to supplement the THI and evaluate moderate heat stress in dairy cows in the future.

  14. Effects of heat stress on serum insulin, adipokines, AMP-activated protein kinase, and heat shock signal molecules in dairy cows*

    PubMed Central

    Min, Li; Cheng, Jian-bo; Shi, Bao-lu; Yang, Hong-jian; Zheng, Nan; Wang, Jia-qi

    2015-01-01

    Heat stress affects feed intake, milk production, and endocrine status in dairy cows. The temperature-humidity index (THI) is employed as an index to evaluate the degree of heat stress in dairy cows. However, it is difficult to ascertain whether THI is the most appropriate measurement of heat stress in dairy cows. This experiment was conducted to investigate the effects of heat stress on serum insulin, adipokines (leptin and adiponectin), AMP-activated protein kinase (AMPK), and heat shock signal molecules (heat shock transcription factor (HSF) and heat shock proteins (HSP)) in dairy cows and to research biomarkers to be used for better understanding the meaning of THI as a bioclimatic index. To achieve these objectives, two experiments were performed. The first experiment: eighteen lactating Holstein dairy cows were used. The treatments were: heat stress (HS, THI average=81.7, n=9) and cooling (CL, THI average=53.4, n=9). Samples of HS were obtained on August 16, 2013, and samples of CL were collected on April 7, 2014 in natural conditions. The second experiment: HS treatment cows (n=9) from the first experiment were fed for 8 weeks from August 16, 2013 to October 12, 2013. Samples for moderate heat stress, mild heat stress, and no heat stress were obtained, respectively, according to the physical alterations of the THI. Results showed that heat stress significantly increased the serum adiponectin, AMPK, HSF, HSP27, HSP70, and HSP90 (P<0.05). Adiponectin is strongly associated with AMPK. The increases of adiponectin and AMPK may be one of the mechanisms to maintain homeostasis in heat-stressed dairy cows. When heat stress treatment lasted 8 weeks, a higher expression of HSF and HSP70 was observed under moderate heat stress. Serum HSF and HSP70 are sensitive and accurate in heat stress and they could be potential indicators of animal response to heat stress. We recommend serum HSF and HSP70 as meaningful biomarkers to supplement the THI and evaluate moderate heat stress in dairy cows in the future. PMID:26055916

  15. A comparison of ruminal or reticular digesta sampling as an alternative to sampling from the omasum of lactating dairy cows.

    PubMed

    Fatehi, F; Krizsan, S J; Gidlund, H; Huhtanen, P

    2015-05-01

    The objective of this study was to develop and compare techniques for determining nutrient flow based on digesta samples collected from the reticulum or rumen of lactating dairy cows with estimates generated by the omasal sampling technique. Pre-experimental method development suggested, after comparing with the particle size distribution of feces, application of primary sieving of ruminal and reticular digesta from lactating cows through an 11.6-mm sieve, implying that digesta particles smaller than this were eligible to flow out of the rumen. For flow measurements at the different sampling sites 4 multiparous, lactating Nordic Red cows fitted with ruminal cannulas were used in a Latin square design with 4 dietary treatments, in which crimped barley was replaced with 3 incremental levels of protein supplementation of canola meal. Digesta was collected from the rumen, reticulum, and omasum to represent a 24-h feeding cycle. Nutrient flow was calculated using the reconstitution system based on Cr, Yb, and indigestible neutral detergent fiber and using (15)N as microbial marker. Large and small particles and the fluid phase were recovered from digesta collected at all sampling sites. Bacterial samples were isolated from the digesta collected from the omasum. Several differences existed for digesta composition, nutrient flows, and estimates of ruminal digestibility among the 3 different sampling sites. Sampling site × diet interactions were not significant. The estimated flows of DM, potentially digestible neutral detergent fiber, nonammonia N, and microbial N were significantly different between all sampling sites. However, the difference between DM flow based on sampling from the reticulum and the omasum was small (0.13kg/d greater in the omasum). The equality between the reticulum and the omasum as sampling sites was supported by the following regression: omasal DM flow=0.37 (±0.649) + 0.94 (±0.054) reticular DM flow (R(2)=0.96 and root mean square error=0.438kg/d). More deviating nutrient-flow estimates when sampling digesta from the rumen than the reticulum compared with the omasum suggested that sampling from the reticulum is the most promising alternative to the omasal sampling technique. To definitively promote sampling from the reticulum as an alternative to the omasal sampling technique, more research is needed to determine selection criteria of reticular digesta for accurate and precise flow estimates across a range of diets. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. Effect of a grain challenge on ruminal, urine, and fecal pH, apparent total-tract starch digestibility, and milk composition of Holstein and Jersey cows.

    PubMed

    Luan, S; Cowles, K; Murphy, M R; Cardoso, F C

    2016-03-01

    The effects of a grain challenge on ruminal, urine, and fecal pH, apparent total-tract starch digestibility, and milk composition were determined. Six Holstein cows, 6 rumen-cannulated Holstein cows, and 6 Jersey cows were used in a replicated 3 × 3 Latin square design balanced to measure carryover effects. Periods (10 d) were divided into 4 stages (S): S1, d 1 to 3, served as baseline with regular total mixed ration ad libitum; S2, d 4, served as restricted feeding, with cows offered 50% of the total mixed ration fed on S1 (dry matter basis); S3, d 5, a grain challenge was performed, in which cows were fed total mixed ration ad libitum and not fed (CON) or fed an addition of 10% (MG) or 20% (HG) pellet wheat-barley (1:1) top-dressed onto the total mixed ration, based on dry matter intake obtained in S1; S4, d 6 to 10, served as recovery stage with regular total mixed ration fed ad libitum. Overall, cows had a quadratic treatment effect for milk yield where CON (22.6 kg/d) and HG (23.5 kg/d) had lower milk yield than cows in MG (23.7 kg/d). Jersey cows had a quadratic treatment effect for dry matter intake where cows in CON (13.2 kg/d) and HG (12.4 kg/d) had lower dry matter intake than cows in MG (14 kg/d). Holstein cows had a linear treatment effect for dry matter intake (17.7, 18.4, and 18.6 kg/d for CON, MG, and HG, respectively). Rumen pH for the rumen-cannulated cows had a linear treatment effect (6.45, 6.35, and 6.24 for CON, MG, and HG, respectively). Cows in HG spent more time with rumen pH below 5.8 (4.33 h) than MG (2 h) or CON (2.17 h) as shown by the quadratic treatment effect. Holstein cows in HG (8.46) had lower urine pH than MG (8.51) or CON (8.54) as showed by the linear treatment effect for urine pH. Apparent total-tract starch digestibility had a tendency for a linear treatment effect on S3 (97.62 ± 1.5, 97.47 ± 1.5, and 91.84 ± 1.6%, for CON, MG, and HG, respectively). Fecal pH was associated with rumen pH depression as early as 15 h after feeding for Holstein cows. In conclusion, a grain challenge reduced urine pH in Holstein cows but not in Jersey cows. Holstein cows' health were not affected when rumen pH was depressed. A potentially useful link between rumen pH and systemic (urine) pH within 2 h after feeding was quantified in Holstein cows. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. A review of current timed-AI (TAI) programs for beef and dairy cattle

    PubMed Central

    Colazo, Marcos G.; Mapletoft, Reuben J.

    2014-01-01

    This is a review of the physiology and endocrinology of the estrous cycle and how ovarian physiology can be manipulated and controlled for timed artificial insemination (TAI) in beef and dairy cattle. Estrus detection is required for artificial insemination (AI), but it is done poorly in dairy cattle and it is difficult in beef cattle. Protocols that synchronize follicle growth, corpus luteum regression and ovulation, allowing for TAI, result in improved reproductive performance, because all animals are inseminated whether they show estrus or not. As result, TAI programs have become an integral part of reproductive management in many dairy herds and offer beef producers the opportunity to incorporate AI into their herds. Gonadotropin-releasing hormone-based protocols are commonly used in North America for estrus synchronization as part of a TAI program. Protocols that increase pregnancy rates in lactating dairy cows and suckling beef cows have been developed. Protocols that improve pregnancy rates in heifers, acyclic beef cows, and resynchronized lactating dairy cows are also discussed. PMID:25082993

  18. Metabolic responses and "omics" technologies for elucidating the effects of heat stress in dairy cows.

    PubMed

    Min, Li; Zhao, Shengguo; Tian, He; Zhou, Xu; Zhang, Yangdong; Li, Songli; Yang, Hongjian; Zheng, Nan; Wang, Jiaqi

    2017-06-01

    Heat stress (HS) negatively affects various industries that rely on animal husbandry, particularly the dairy industry. A better understanding of metabolic responses in HS dairy cows is necessary to elucidate the physiological mechanisms of HS and offer a new perspective for future research. In this paper, we review the current knowledge of responses of body metabolism (lipid, carbohydrate, and protein), endocrine profiles, and bovine mammary epithelial cells during HS. Furthermore, we summarize the metabolomics and proteomics data that have revealed the metabolite profiles and differentially expressed proteins that are a feature of HS in dairy cows. Analysis of metabolic changes and "omics" data demonstrated that HS is characterized by reduced lipolysis, increased glycolysis, and catabolism of amino acids in dairy cows. Here, analysis of the impairment of immune function during HS and of the inflammation that arises after long-term HS might suggest new strategies to ameliorate the effects of HS in dairy production.

  19. A review of current timed-AI (TAI) programs for beef and dairy cattle.

    PubMed

    Colazo, Marcos G; Mapletoft, Reuben J

    2014-08-01

    This is a review of the physiology and endocrinology of the estrous cycle and how ovarian physiology can be manipulated and controlled for timed artificial insemination (TAI) in beef and dairy cattle. Estrus detection is required for artificial insemination (AI), but it is done poorly in dairy cattle and it is difficult in beef cattle. Protocols that synchronize follicle growth, corpus luteum regression and ovulation, allowing for TAI, result in improved reproductive performance, because all animals are inseminated whether they show estrus or not. As result, TAI programs have become an integral part of reproductive management in many dairy herds and offer beef producers the opportunity to incorporate AI into their herds. Gonadotropin-releasing hormone-based protocols are commonly used in North America for estrus synchronization as part of a TAI program. Protocols that increase pregnancy rates in lactating dairy cows and suckling beef cows have been developed. Protocols that improve pregnancy rates in heifers, acyclic beef cows, and resynchronized lactating dairy cows are also discussed.

  20. 21 CFR 526.464a - Cloxacillin benzathine.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) of this chapter for use in dairy cows. (1) Amount. Administer aseptically into each quarter... Staphylococcus aureus and Streptococcus agalactiae including penicillin resistant strains in dairy cows during the dry period. (3) Limitations. For use in dry cows only. Not to be used within 30 days of calving...

  1. Associations between housing and management practices and the prevalence of lameness, hock lesions, and thin cows on US dairy operations.

    PubMed

    Adams, A E; Lombard, J E; Fossler, C P; Román-Muñiz, I N; Kopral, C A

    2017-03-01

    The objective of this study was to determine the association among different housing and management practices on the prevalence of lameness, hock lesions, and thin cows on US dairy operations. This study was conducted as part of the National Animal Health Monitoring System's Dairy 2014 study, which included dairy operations in 17 states. Size categories were assigned as follows: small (30-99 cows), medium (100-499 cows), and large (≥500 cows). Trained assessors visited 191 dairy operations from March through July 2014 and recorded locomotion and hock scores (on a 3-point scale), and the number of thin cows (body condition score ≤2.25) from a total of 22,622 cows (average 118 cows per farm). The majority of cows (90.4%) were considered to be sound (locomotion score = 1), 6.9% were mild/moderately lame (locomotion score = 2), and 2.7% were severely lame (locomotion score = 3). Similarly, most cows (87.3%) had no hock lesions (hock score = 1), 10.1% had mild lesions (hock score = 2), and 2.6% had severe hock lesions (hock score = 3). A low percentage of cows (4.2%) were thin. Univariate comparisons were performed using PROC LOGLINK, which accounts for study design and weighting. Variables meeting the univariate screening criterion of P < 0.20 were eligible for entry into multivariable models. Statistical significance in the multivariable models was declared at P < 0.05. Large operations had a lower within-herd prevalence of cows with locomotion score ≥2 and locomotion score = 3 compared with small or medium-sized operations. Operations on which cows were kept primarily on pasture had a lower percentage of locomotion score = 3 than those housed in freestall or open/dry lot operations. The use of sand bedding was associated with a lower within-herd prevalence of locomotion score ≥2 than straw/hay or dry/composted manure as the primary bedding material. Sand bedding was also associated with a lower within-herd prevalence of locomotion score = 3 than other bedding types except for rubber mats or mattresses. Operations that housed cows in an open/dry lot had a lower percentage of hock score ≥2 and hock score = 3 than other housing types. Providing sprinklers for heat abatement and having a nutritionist balance rations for cows was associated with a lower percentage of thin cows. Results from this study highlight management practices that may reduce the prevalence of lameness, hock lesions, and thin cows on dairy operations in the United States. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Invited review: Current perspectives on eating and rumination activity in dairy cows.

    PubMed

    Beauchemin, K A

    2018-06-01

    Many early studies laid the foundation for our understanding of the mechanics of chewing, the physiological role of chewing for the cow, and how chewing behavior is affected by dietary characteristics. However, the dairy cow has changed significantly over the past decades, as have the types of diets fed and the production systems used. The plethora of literature published in recent years provides new insights on eating and ruminating activity of dairy cows. Lactating dairy cows spend about 4.5 h/d eating (range: 2.4-8.5 h/d) and 7 h/d ruminating (range: 2.5-10.5 h/d), with a maximum total chewing time of 16 h/d. Chewing time is affected by many factors, most importantly whether access to feed is restricted, intake of neutral detergent fiber from forages, and mean particle size of the diet. Feed restriction and long particles (≥19 mm) have a greater effect on eating time, whereas intake of forage neutral detergent fiber and medium particles (4-19 mm) affects rumination time. It is well entrenched in the literature that promoting chewing increases salivary secretion of dairy cows, which helps reduce the risk of acidosis. However, the net effect of a change in chewing time on rumen buffing is likely rather small; therefore, acidosis prevention strategies need to be broad. Damage to plant tissues during mastication creates sites that provide access to fungi, adhesion of bacteria, and formation of biofilms that progressively degrade carbohydrates. Rumination and eating are the main ways in which feed is reduced in particle size. Contractions of the rumen increase during eating and ruminating activity and help move small particles to the escapable pool and into the omasum. Use of recently developed low-cost sensors that monitor chewing activity of dairy cows in commercial facilities can provide information that is helpful in management decisions, especially when combined with other criteria. Although accuracy and precision can be somewhat variable depending on sensor and conditions of use, relative changes in cow behavior, such as a marked decrease in rumination time of a cow or sustained low rumination time compared with a contemporary group of cows, can be used to help detect estrus, parturition, and some illnesses. This review provides a comprehensive understanding of the dietary, animal, and management factors that affect eating and ruminating behavior in dairy cows and presents an overview of the physiological importance of chewing with emphasis on recent developments and practical implications for feeding and managing the modern housed dairy cow. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Effect of barley and its amylopectin content on ruminal fermentation and nitrogen utilization in lactating dairy cows.

    PubMed

    Foley, A E; Hristov, A N; Melgar, A; Ropp, J K; Etter, R P; Zaman, S; Hunt, C W; Huber, K; Price, W J

    2006-11-01

    The effect of type of grain (corn vs. barley) and amylopectin content of barley grain (normal vs. waxy) on ruminal fermentation, digestibility, and utilization of ruminal ammonia nitrogen for milk protein synthesis was studied in a replicated 3 x 3 Latin square design trial with 6 lactating dairy cows. The experimental treatments were (proportion of dietary dry matter): CORN, 40% corn grain, NBAR, 30% normal Baronesse barley:10% corn grain, and WBAR, 30% high-amylopectin (waxy) Baronesse barley:10% corn grain. All grains were steam-rolled and fed as part of a total mixed ration. The NBAR and WBAR diets resulted in increased ruminal ammonia concentrations compared with CORN (8.2, 7.4, and 5.6 mM, respectively), but other ruminal fermentation parameters were not affected. Ruminal digestibility of dietary nutrients and microbial protein synthesis in the rumen were also not affected by diet. Corn grain had greater in situ effective ruminal dry matter degradability (62.8%) than the barley grains (58.2 and 50.7%, respectively), and degradability of the normal barley starch was greater than that of the waxy barley (69.3 and 58.9%, respectively). A greater percentage of relative starch crystallinity was observed for the waxy compared with the normal barley grain. Total tract apparent digestibility of dry matter and organic matter were decreased by WBAR compared with CORN and NBAR. Total tract starch digestibility was greater and milk urea nitrogen content was lower for CORN compared with the 2 barley diets. In this study, the extent of processing of the grain component of the diet was most likely the factor that determined the diet responses. Minimal processing of barley grain (processing indexes of 79.2 to 87.9%) reduced its total tract digestibility of starch compared with steam-rolled corn (processing index of 58.8%). As a result of the increased ammonia concentration and reduced degradability of barley dry matter in the rumen, the utilization of ruminal ammonia nitrogen for microbial protein synthesis was decreased with the barley diets compared with the corn-based diet. In this study, waxy Baronesse barley was less degradable in the rumen and the total digestive tract than its normal counterpart. The most likely reasons for these effects were the differences in starch characteristics and chemical composition, and perhaps the different response to processing between the 2 barleys.

  4. A meta-analysis of variability in continuous-culture ruminal fermentation and digestibility data.

    PubMed

    Hristov, A N; Lee, C; Hristova, R; Huhtanen, P; Firkins, J L

    2012-09-01

    A meta-analysis was conducted to compare ruminal fermentation and digestibility data and variability between continuous-culture (CC) experiments and in vivo data. One hundred eighty CC studies representing 1,074 individual treatments, published in refereed journals between 1980 and 2010 were used in this analysis. Studies were classified into 2 groups based on the type of CC used: CC systems specified as rumen simulation techniques (RUSITEC) and non-RUSITEC CC systems (non-RUSITEC). The latter was a diverse group of systems, all of which were termed CC by the investigators. The CC data were compared with a data set of in vivo trials with ruminally cannulated lactating dairy cows (data from a total of 366 individual cows). The reported neutral detergent fiber (NDF) concentration of the diets fed in the 3 data sets was, on average (dry matter basis), 44, 34, and 32%, respectively. The average total volatile fatty acid (VFA) concentration for the RUSITEC and non-RUSITEC data sets was 67 and 80% (respectively) of the total VFA concentration in vivo. The average concentration of acetate was also lower for the CC data sets compared with in vivo and that of propionate was considerably lower for RUSITEC compared with in vivo, but butyrate concentrations were similar between the CC and in vivo data sets. Variability in the VFA data was generally the highest (higher coefficients of variation and variance) for the non-RUSITEC data set, followed by RUSITEC, and was the lowest for in vivo. Digestibilities of NDF and particularly organic matter were lower in the CC data sets compared with in vivo; the average NDF digestibility was 34.2, 45.5, and 53.0% for RUSITEC, non-RUSITEC, and in vivo, respectively. Variability in nutrient digestibility data followed the pattern of variability of the VFA data: highest variability for the non-RUSITEC data set, followed by RUSITEC, and the lowest for in vivo. This analysis showed that CC systems are generally characterized by lower total VFA and acetate concentrations, extremely low counts or lack of ruminal protozoa, and lower organic matter and NDF digestibilities than in vivo. Overall, variability was much greater for CC than for in vivo experimental data. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Comparison of Various Indices of Energy Metabolism in Recumbent and Healthy Dairy Cows.

    PubMed

    Guyot, Hugues; Detilleux, Johann; Lebreton, Pascal; Garnier, Catherine; Bonvoisin, Marie; Rollin, Frederic; Sandersen, Charlotte

    2017-01-01

    Downer cow syndrome (DCS) is often diagnosed in dairy cattle during the early post-partum period. The etiology of this condition is not completely understood, as it can be related to the energetic or electrolyte metabolism, as well as to infectious diseases or to trauma. The aim of this study is to compare energy metabolism and insulin sensitivity indices and various biochemical parameters between recumbent and healthy dairy cows. A prospective study has been undertaken on 361 recumbent and 80 healthy Holstein cows. Plasmatic glucose, insulin, non-esterified fatty acid (NEFA) and β-hydroxybutyrate (BHB) were assayed in all cows in order to calculate the insulin sensitivity indices but also minerals (Calcium, Phosphorous and Magnesium), thyroxin and creatine kinase. Body Condition Scores (BCS) was assessed. Significant differences in NEFA, and the glucose and insulin sensitivity indices ("Homeostasis Model Assessment" HOMA, "Revised Quantitative Insulin Sensitivity Check Index" RQUICKI, RQUICKI-BHB) were observed between healthy and recumbent cows in the early post-parturient period indicating disturbances of glucose and insulin homeostasis in the recumbent cows. In the same manner, mineral concentrations were significantly different between healthy and recumbent cows. Glucose, insulin NEFA, and HOMA, were different between early post-partum downer cows and the DCS-affected cows later in lactation. Results indicate disturbances in energy homeostasis in DCS-affected dairy cows. Further research should determine a prognostic value of the indices in cows suffering from recumbency of metabolic origin.

  6. Ultrasonographic ovarian dynamic, plasma progesterone, and non-esterified fatty acids in lame postpartum dairy cows

    PubMed Central

    Gomez, Veronica; Bothe, Hans; Rodriguez, Francisco; Velez, Juan; Lopez, Hernando; Bartolome, Julian; Archbald, Louis

    2018-01-01

    The objective of this study was to compare ovulation rate, number of large ovarian follicles, and concentrations of plasma progesterone (P4) and non-esterified fatty acids (NEFA) between lame (n = 10) and non-lame (n = 10) lactating Holstein cows. The study was conducted in an organic dairy farm, and cows were evaluated by undertaking ultrasonography and blood sampling every 3 days from 30 days postpartum for a period of 34 days. Cows which became lame during the first 30 days postpartum experienced a lower ovulation rate determined by the presence of a corpus luteum (50% presence for lame cows and 100% for non-lame cows, p ≤ 0.05). The number of large ovarian follicles in the ovaries was 5 for lame cows and 7 for non-lame cows (p = 0.09). Compared to non-lame cows, lame cows had significantly lower (p ≤ 0.05) concentrations of plasma P4. Furthermore, NEFA concentrations were lower (p ≤ 0.05) in lame cows than in non-lame cows. It is concluded that lameness in postpartum dairy cows is associated with ovulation failure and lower concentrations of P4 and NEFA. PMID:29486532

  7. Dairy cows welfare quality in tie-stall housing system with or without access to exercise

    PubMed Central

    2013-01-01

    Background Tie-stall housing of dairy cows is used extensively worldwide, despite of the welfare concerns regarding the restriction of voluntary movement and limitation of expression of the cows’ natural behaviour. The aim of this study was to compare the welfare quality of dairy cows kept in two types of tie-stall housing systems: with regular outdoor exercise and without access to exercise. In addition, the study investigated the relationship between different welfare measures of dairy cows kept in tie-stalls. Methods 3,192 lactating cows were assessed using the Welfare Quality® assessment protocol for cattle in 80 commercial dairy farms, half of the farms providing outdoor access for the animals to exercise. The descriptive statistical indicators were determined for the assessed measures and for the welfare criteria and principle scores. The data obtained in the two housing types were compared and the correlation coefficients were calculated between the different welfare measures. Results The significant differences found between the two housing systems for the majority of the animal based measures indicate the positive effect of exercise on the welfare of tethered cows. Many of the animal welfare parameters correlated with each other. For the farms allowing the cows’ turnout in a paddock, pasture or both, the mean scores for the welfare criteria and principles were higher than for the farms with permanent tethering of the cows, except the criteria absence of prolonged hunger and expression of social behaviours. The lowest scores were obtained for the criterion positive emotional state, in both housing systems. With regard to the overall classification, none of the farms were considered excellent. In the not classified category were only farms with all-year-round tethering of the animals and in the enhanced category only farms where the cows had outdoor access. Conclusions The welfare quality of the investigated dairy cows was significantly better in the tie-stall farms which allow exercise for cows (paddocks, pasture or both) than in those which do not. In the light of our results we consider that dairy cattle welfare is not necessarily poor in tie-stall housing systems, its quality depending on the management practices. PMID:23724804

  8. Dairy farmers' use and non-use values in animal welfare: Determining the empirical content and structure with anchored best-worst scaling.

    PubMed

    Hansson, H; Lagerkvist, C J

    2016-01-01

    In this study, we sought to identify empirically the types of use and non-use values that motivate dairy farmers in their work relating to animal welfare of dairy cows. We also sought to identify how they prioritize between these use and non-use values. Use values are derived from productivity considerations; non-use values are derived from the wellbeing of the animals, independent of the present or future use the farmer may make of the animal. In particular, we examined the empirical content and structure of the economic value dairy farmers associate with animal welfare of dairy cows. Based on a best-worst scaling approach and data from 123 Swedish dairy farmers, we suggest that the economic value those farmers associate with animal welfare of dairy cows covers aspects of both use and non-use type, with non-use values appearing more important. Using principal component factor analysis, we were able to check unidimensionality of the economic value construct. These findings are useful for understanding why dairy farmers may be interested in considering dairy cow welfare. Such understanding is essential for improving agricultural policy and advice aimed at encouraging dairy farmers to improve animal welfare; communicating to consumers the values under which dairy products are produced; and providing a basis for more realistic assumptions when developing economic models about dairy farmers' behavior. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. Effects of physiological and/or disease status on the response of postpartum dairy cows to synchronization of estrus using an intravaginal progesterone device.

    PubMed

    McNally, Julie C; Crowe, Mark A; Roche, James F; Beltman, Marijke E

    2014-12-01

    Progesterone treatments are used to increase submission rates in postpartum dairy cows; however, in many cases the protocol is used as a blanket therapy for all cows without regard for physiological or disease state. The objective of this study was to identify the physiological or disease classes of cows that respond well (or not) to synchronization of estrus via progesterone. Dairy cows (n = 402) were monitored peri and postpartum to establish their physiological or disease status. Animals were classified as having negative energy balance, clinical lameness, uterine infection (UI), anovulatory anestrus, high somatic cell counts, and healthy (H). Blood samples were collected at five different time points and analyzed for metabolites. All animals received an 8-day controlled internal drug release protocol, which included GnRH at insertion and PGF2α the day before removal. Response to the protocol was determined by visual observation of estrus synchronization. Conception rate was determined by ultrasonography between Days 32 and 35 after artificial insemination. Animals without UI were 1.9 times more likely to respond and two times more likely to be confirmed pregnant than those with UI. There was no relationship between negative energy balance and clinical lameness in the visual estrous response, but both conditions were associated with reduced conception rates. Dairy cows in anovulatory anestrus responded successfully to the protocol in both estrous response and conception rates. High glutathione peroxidase concentrations had a positive effect on conception rates, whereas high non-esterified fatty acids and beta-hydroxybutyrate had a negative effect on the estrous response. In conclusion, disease and physiological states of dairy cows determined the response to progesterone-based synchronization. The more disease or physiological problems the cows had, the lower the estrous response and conception rates; cows with these problems were not ideal candidates for synchronization. Both anestrus and healthy dairy cows were good responders to progesterone-based synchronization. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. A model to estimate insulin sensitivity in dairy cows.

    PubMed

    Holtenius, Paul; Holtenius, Kjell

    2007-10-11

    Impairment of the insulin regulation of energy metabolism is considered to be an etiologic key component for metabolic disturbances. Methods for studies of insulin sensitivity thus are highly topical. There are clear indications that reduced insulin sensitivity contributes to the metabolic disturbances that occurs especially among obese lactating cows. Direct measurements of insulin sensitivity are laborious and not suitable for epidemiological studies. We have therefore adopted an indirect method originally developed for humans to estimate insulin sensitivity in dairy cows. The method, "Revised Quantitative Insulin Sensitivity Check Index" (RQUICKI) is based on plasma concentrations of glucose, insulin and free fatty acids (FFA) and it generates good and linear correlations with different estimates of insulin sensitivity in human populations. We hypothesized that the RQUICKI method could be used as an index of insulin function in lactating dairy cows. We calculated RQUICKI in 237 apparently healthy dairy cows from 20 commercial herds. All cows included were in their first 15 weeks of lactation. RQUICKI was not affected by the homeorhetic adaptations in energy metabolism that occurred during the first 15 weeks of lactation. In a cohort of 24 experimental cows fed in order to obtain different body condition at parturition RQUICKI was lower in early lactation in cows with a high body condition score suggesting disturbed insulin function in obese cows. The results indicate that RQUICKI might be used to identify lactating cows with disturbed insulin function.

  11. Rubber Flooring Impact on Production and Herdlife of Dairy Cows

    USDA-ARS?s Scientific Manuscript database

    Use of rubber flooring in dairies has become popular because of perceived cow comfort. The overall objective of this longitudinal study was to evaluate production, reproduction, and retention of first and second lactations of cows assigned to either rubber (RUB) or concrete (CON) flooring at the fe...

  12. Cow genotyping strategies for genomic selection in small dairy cattle population

    USDA-ARS?s Scientific Manuscript database

    This study compares how different cow genotyping strategies increase the accuracy of genomic estimated breeding values (EBV) in dairy cattle breeds with low numbers. In these breeds there are few sires with progeny records and genotyping cows can improve the accuracy of genomic EBV. The Guernsey bre...

  13. 7 CFR 760.202 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... dairy cow means a female bovine dairy breed animal used for the purpose of providing milk for human... adverse weather or eligible loss condition. Adult beef cow means a female beef breed bovine animal that... eligible loss condition. A first-time bred beef heifer is also considered an adult beef cow if it was...

  14. 9 CFR 50.1 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    .... Heifer. A female dairy cow that has not given birth. Herd. Except for livestock assembled at feedlots... other products, for sport, or for exhibition. Milking cow. A female dairy cow that has given birth and is being used for milk production. Mortgage. Any mortgage, lien or other security or interest that is...

  15. Does ownership of improved dairy cow breeds improve child nutrition? A pathway analysis for Uganda.

    PubMed

    Kabunga, Nassul S; Ghosh, Shibani; Webb, Patrick

    2017-01-01

    The promotion of livestock production is widely believed to support enhanced diet quality and child nutrition, but the empirical evidence for this causal linkage remains narrow and ambiguous. This study examines whether adoption of improved dairy cow breeds is linked to farm-level outcomes that translate into household-level benefits including improved child nutrition outcomes in Uganda. Using nationwide data from Uganda's National Panel Survey, propensity score matching is used to create an unbiased counterfactual, based on observed characteristics, to assess the net impacts of improved dairy cow adoption. All estimates were tested for robustness and sensitivity to variations in observable and unobservable confounders. Results based on the matched samples showed that households adopting improved dairy cows significantly increased milk yield-by over 200% on average. This resulted in higher milk sales and milk intakes, demonstrating the potential of this agricultural technology to both integrate households into modern value chains and increase households' access to animal source foods. Use of improved dairy cows increased household food expenditures by about 16%. Although undernutrition was widely prevalent in the study sample and in matched households, the adoption of improved dairy cows was associated with lower child stunting in adopter household. In scale terms, results also showed that holding larger farms tends to support adoption, but that this also stimulates the household's ability to achieve gains from adoption, which can translate into enhanced nutrition.

  16. Cow, sheep and llama manure at psychrophilic anaerobic co-digestion with low cost tubular digesters in cold climate and high altitude.

    PubMed

    Martí-Herrero, J; Alvarez, R; Cespedes, R; Rojas, M R; Conde, V; Aliaga, L; Balboa, M; Danov, S

    2015-04-01

    The aim of this research is to evaluate the co-digestion of cow and llama manure combined with sheep manure, in psychrophilic conditions and real field low cost tubular digesters adapted to cold climate. Four digesters were monitored in cold climate conditions; one fed with cow manure, a second one with llama manure, the third one with co-digestion of cow-sheep manure and the fourth one was fed with llama-sheep manure. The slurry had a mean temperature of 16.6 °C, the organic load rate was 0.44 kgvs m(-3) d(-1) and the hydraulic retention time was 80 days. After one hundred days biogas production was stable, as was the methane content and the pH of the effluent. The co-digestion of cow-sheep manure results in a biogas production increase of 100% compared to the mono-digestion of cow manure, while co-digestion of llama-sheep manure results in a decrease of 50% in biogas production with respect to mono-digestion of llama manure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Effects of urea formaldehyde condensation polymer treatment of flaxseed on ruminal digestion and lactation in dairy cows.

    PubMed

    Hawkins, A; Yuan, K; Armendariz, C K; Highland, G; Bello, N M; Winowiski, T; Drouillard, J S; Titgemeyer, E C; Bradford, B J

    2013-06-01

    Flaxseed is a potent source of the n-3 fatty acid α-linolenic acid (ALA), yet most ALA is lost during ruminal biohydrogenation when ground flaxseed is fed to ruminants. Heat processing and urea formaldehyde condensation polymer (UFCP) treatment of flaxseed were investigated as possible means of protecting ALA from ruminal degradation. Ground flaxseed (GF), heated ground flaxseed (HGF), or UFCP-treated ground flaxseed (UFCPGF) were incubated for 0, 4, 8, and 12h in 4 ruminally cannulated multiparous lactating Holstein cows. Compared with GF, HGF and UFCPGF decreased ruminal disappearance of dry matter, crude protein, and ALA. Pepsin-digestible protein remaining after 12h of ruminal incubation was greater for UFCPGF and HGF than for GF. Twenty-four lactating Holstein cows (207 ± 37 d in milk, 668 ± 66 kg of body weight, and 1.33 ± 0.56 lactations) were then used in a randomized complete block design experiment with a basal feeding period to assess effects of flaxseed treatment on ALA enrichment of plasma and milk as well as lactational performance. No evidence existed that supplementation of HGF and UFCPGF affected dry matter intake, milk fat content, milk protein content, or energy-corrected milk yield, but UFCPGF marginally decreased milk yield compared with HGF. Plasma concentration of ALA was not affected by treatment. Concentrations of n-3 fatty acids and conjugated linoleic acids in milk fat were increased by UFCPGF relative to HGF, but ALA yield was not affected. Taken together, in situ results suggest that heat-treated flaxseed, with or without UFCP treatment, slowed ruminal disappearance of ALA. Feeding UFCP-treated flaxseed failed to alter ALA content of plasma or milk ALA yield relative to heating alone. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Screening for bovine leukocyte adhesion deficiency, deficiency of uridine monophosphate synthase, complex vertebral malformation, bovine citrullinaemia, and factor XI deficiency in Holstein cows reared in Turkey.

    PubMed

    Meydan, Hasan; Yildiz, Mehmet A; Agerholm, Jørgen S

    2010-10-07

    Bovine leukocyte adhesion deficiency (BLAD), deficiency of uridine monophosphate synthase (DUMPS), complex vertebral malformation (CVM), bovine citrullinaemia (BC) and factor XI deficiency (FXID) are autosomal recessive hereditary disorders, which have had significant economic impact on dairy cattle breeding worldwide. In this study, 350 Holstein cows reared in Turkey were screened for BLAD, DUMPS, CVM, BC and FXID genotypes to obtain an indication on the importance of these defects in Turkish Holsteins. Genomic DNA was obtained from blood and the amplicons of BLAD, DUMPS, CVM, BC and FXID were obtained by using PCR. PCR products were digested with TaqI, AvaI and AvaII restriction enzymes for BLAD, DUMPS, and BC, respectively. These digested products and PCR product of FXID were analyzed by agarose gel electrophoresis stained with ethidium bromide. CVM genotypes were detected by DNA sequencing. Additionally, all genotypes were confirmed by DNA sequencing to determine whether there was a mutant allele or not. Fourteen BLAD, twelve CVM and four FXID carriers were found among the 350 Holstein cows examined, while carriers of DUMPS and BC were not detected. The mutant allele frequencies were calculated as 0.02, 0.017, and 0.006 for BLAD, CVM and FXID, respectively with corresponding carrier prevalence of 4.0% (BLAD), 3.4% (CVM) and 1.2% (FXID). This study demonstrates that carriers of BLAD, CVM and FXID are present in the Turkish Holstein population, although at a low frequency. The actual number of clinical cases is unknown, but sporadic cases may appear. As artificial insemination is widely used in dairy cattle breeding, carriers of BLAD, CVM and FXID are likely present within the population of breeding sires. It is recommended to screen breeding sires for these defective genes in order to avoid an unwanted spread within the population.

  19. Screening for bovine leukocyte adhesion deficiency, deficiency of uridine monophosphate synthase, complex vertebral malformation, bovine citrullinaemia, and factor XI deficiency in Holstein cows reared in Turkey

    PubMed Central

    2010-01-01

    Background Bovine leukocyte adhesion deficiency (BLAD), deficiency of uridine monophosphate synthase (DUMPS), complex vertebral malformation (CVM), bovine citrullinaemia (BC) and factor XI deficiency (FXID) are autosomal recessive hereditary disorders, which have had significant economic impact on dairy cattle breeding worldwide. In this study, 350 Holstein cows reared in Turkey were screened for BLAD, DUMPS, CVM, BC and FXID genotypes to obtain an indication on the importance of these defects in Turkish Holsteins. Methods Genomic DNA was obtained from blood and the amplicons of BLAD, DUMPS, CVM, BC and FXID were obtained by using PCR. PCR products were digested with TaqI, AvaI and AvaII restriction enzymes for BLAD, DUMPS, and BC, respectively. These digested products and PCR product of FXID were analyzed by agarose gel electrophoresis stained with ethidium bromide. CVM genotypes were detected by DNA sequencing. Additionally, all genotypes were confirmed by DNA sequencing to determine whether there was a mutant allele or not. Results Fourteen BLAD, twelve CVM and four FXID carriers were found among the 350 Holstein cows examined, while carriers of DUMPS and BC were not detected. The mutant allele frequencies were calculated as 0.02, 0.017, and 0.006 for BLAD, CVM and FXID, respectively with corresponding carrier prevalence of 4.0% (BLAD), 3.4% (CVM) and 1.2% (FXID). Conclusion This study demonstrates that carriers of BLAD, CVM and FXID are present in the Turkish Holstein population, although at a low frequency. The actual number of clinical cases is unknown, but sporadic cases may appear. As artificial insemination is widely used in dairy cattle breeding, carriers of BLAD, CVM and FXID are likely present within the population of breeding sires. It is recommended to screen breeding sires for these defective genes in order to avoid an unwanted spread within the population. PMID:20929557

  20. Pre-breeding ovaro-uterine ultrasonography and its relationship with first service pregnancy rate in seasonal-calving dairy herds.

    PubMed

    Mee, J F; Buckley, F; Ryan, D; Dillon, P

    2009-04-01

    The objectives of the study were to characterize an ultrasound reproductive tract scoring (URTS) system to assess suitability for breeding in dairy cows, to describe the prevalence of these scores in commercial dairy herds and to examine their relationship with subsequent fertility. Ultrasound examinations (7797) were performed on 5751 Holstein-Friesian cows prior to breeding in 62 seasonally calving herds over 2 years. Data recorded from images of both ovaries and the uterus were combined into a six point scoring system and the prevalence of cows with cystic ovarian follicles and uterine abscesses and adhesions was recorded separately. The prevalence of ovulatory cows which had completed uterine involution (score 1), or had mild (2) or moderate endometritis (3) was 62.5%, 21.7% and 2.2%, respectively. The prevalence of anovulatory cows with moderate endometritis (4), ovulatory cows with pyometra (5) and anovulatory cows which had completed uterine involution (6) was 3.3%, 2.2% and 8.1%, respectively. The interval between calving and examination differed between cows with each of the scores 1, 2, 5 and 6 (61, 46, 53 and 50 days, respectively, p < 0.05) but not between cows with scores 3 and 4 (37 and 35 days, respectively). Ovulatory cows which had completed uterine involution (score 1) had a higher likelihood of pregnancy to first service than ovulatory or anovulatory cows which had not completed uterine involution (p

  1. Impact of dietary starch concentration formulated with two types of corn silage on methane and ammonia emissions in dairy cows

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to evaluate methane (CH4) and ammonia (NH3) emissions of lactating dairy cows fed different starch level and corn silage type. After the completion of an 8-wk production study, 48 Holstein cows were allocated to 1 of 4 air-flow controlled chambers (2 cows/chamber) for...

  2. Long-term heat stress induces the inflammatory response in dairy cows revealed by plasma proteome analysis.

    PubMed

    Min, Li; Zheng, Nan; Zhao, Shengguo; Cheng, Jianbo; Yang, Yongxin; Zhang, Yangdong; Yang, Hongjian; Wang, Jiaqi

    2016-03-04

    In this work we employed a comparative proteomic approach to evaluate seasonal heat stress and investigate proteomic alterations in plasma of dairy cows. Twelve lactating Holstein dairy cows were used and the treatments were: heat stress (n = 6) in hot summer (at the beginning of the moderate heat stress) and no heat stress (n = 6) in spring natural ambient environment, respectively. Subsequently, heat stress treatment lasted 23 days (at the end of the moderate heat stress) to investigate the alterations of plasma proteins, which might be employed as long-term moderate heat stress response in dairy cows. Changes in plasma proteins were analyzed by two-dimensional electrophoresis (2-DE) combined with mass spectrometry. Analysis of the properties of the identified proteins revealed that the alterations of plasma proteins were related to inflammation in long-term moderate heat stress. Furthermore, the increase in plasma tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) directly demonstrated that long-term moderate heat stress caused an inflammatory response in dairy cows. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Gene-Based Mapping and Pathway Analysis of Metabolic Traits in Dairy Cows

    PubMed Central

    Ha, Ngoc-Thuy; Gross, Josef Johann; van Dorland, Annette; Tetens, Jens; Thaller, Georg; Schlather, Martin; Bruckmaier, Rupert; Simianer, Henner

    2015-01-01

    The metabolic adaptation of dairy cows during the transition period has been studied intensively in the last decades. However, until now, only few studies have paid attention to the genetic aspects of this process. Here, we present the results of a gene-based mapping and pathway analysis with the measurements of three key metabolites, (1) non-esterified fatty acids (NEFA), (2) beta-hydroxybutyrate (BHBA) and (3) glucose, characterizing the metabolic adaptability of dairy cows before and after calving. In contrast to the conventional single-marker approach, we identify 99 significant and biologically sensible genes associated with at least one of the considered phenotypes and thus giving evidence for a genetic basis of the metabolic adaptability. Moreover, our results strongly suggest three pathways involved in the metabolism of steroids and lipids are potential candidates for the adaptive regulation of dairy cows in their early lactation. From our perspective, a closer investigation of our findings will lead to a step forward in understanding the variability in the metabolic adaptability of dairy cows in their early lactation. PMID:25789767

  4. Invited review: summary of steam-flaking corn or sorghum grain for lactating dairy cows.

    PubMed

    Theurer, C B; Huber, J T; Delgado-Elorduy, A; Wanderley, R

    1999-09-01

    Nineteen lactation trials (43 grain processing comparisons) are summarized, in addition to digestibility and postabsorptive metabolism studies. The net energy for lactation (NEL) of steam-flaked corn or sorghum grain is about 20% greater than the NEL for dry-rolled corn or sorghum. Based on lactational performance, steam-flaked sorghum grain is of equal value to steam-flaked corn, and steam-flaked corn is superior to steam-rolled corn. Steam-flaking of corn or sorghum compared to steam-rolling of corn or dry-rolling of corn or sorghum consistently improves milk production and milk protein yield. This result is because of a much greater proportion of dietary starch fermented in the rumen, enhanced digestibility of the smaller fraction of dietary starch reaching the small intestine, and increased total starch digestion. Steam-flaking increases cycling of urea to the gut, microbial protein flow to the small intestine, and estimated mammary uptake of amino acids. Steam-rolling compared to dry-rolling of barley or wheat did not alter total starch digestibilities in two trials, one with each grain source. Lactation studies with these processing comparisons have not been reported. Most cited studies have been with total mixed rations (TMR) and alfalfa hay as the principal forage. Additional studies are needed with lactating cows fed steam-flaked corn or sorghum in TMR containing alfalfa or corn silage. Optimal flake density of steam-processed corn or sorghum grain appears to be about 360 g/L (approximately 28 lb/bu).

  5. Identification of Escherichia coli and Trueperella pyogenes isolated from the uterus of dairy cows using routine bacteriological testing and Fourier transform infrared spectroscopy.

    PubMed

    Jaureguiberry, María; Madoz, Laura Vanina; Giuliodori, Mauricio Javier; Wagener, Karen; Prunner, Isabella; Grunert, Tom; Ehling-Schulz, Monika; Drillich, Marc; de la Sota, Rodolfo Luzbel

    2016-11-28

    Uterine disorders are common postpartum diseases in dairy cows. In practice, uterine treatment is often based on systemic or locally applied antimicrobials with no previous identification of pathogens. Accurate on-farm diagnostics are not available, and routine testing is time-consuming and cost intensive. An accurate method that could simplify the identification of uterine pathogenic bacteria and improve pathogen-specific treatments could be an important advance to practitioners. The objective of the present study was to evaluate whether a database built with uterine bacteria from European dairy cows could be used to identify bacteria from Argentinean cows by Fourier transformed infrared (FTIR) spectroscopy. Uterine samples from 64 multiparous dairy cows with different types of vaginal discharge (VD) were collected between 5 and 60 days postpartum, analyzed by routine bacteriological testing methods and then re-evaluated by FTIR spectroscopy (n = 27). FTIR spectroscopy identified Escherichia coli in 12 out of 14 samples and Trueperella pyogenes in 8 out of 10 samples. The agreement between the two methods was good with a Kappa coefficient of 0.73. In addition, the likelihood for bacterial growth of common uterine pathogens such as E. coli and T. pyogenes tended to increase with VD score. The odds for a positive result to E. coli or T. pyogenes was 1.88 times higher in cows with fetid VD than in herdmates with clear normal VD. We conclude that the presence of E. coli and T. pyogenes in uterine samples from Argentinean dairy cows can be detected with FTIR with the use of a database built with uterine bacteria from European dairy cows. Future studies are needed to determine if FTIR can be used as an alternative to routine bacteriological testing methods.

  6. Nutrient Restriction Increases Circulating and Hepatic Ceramide in Dairy Cows Displaying Impaired Insulin Tolerance.

    PubMed

    Davis, Amanda N; Clegg, J L; Perry, C A; McFadden, J W

    2017-09-01

    The progression of insulin resistance in dairy cows represents a maternal adaptation to support milk production during heightened energy demand; however, excessive adipose tissue lipolysis can develop. In diabetic non-ruminants, the mechanisms that mediate insulin resistance involve the sphingolipid ceramide. We tested the hypothesis that ceramide accumulates in dairy cows experiencing lipolysis and insulin resistance. Nine dairy cows were utilized in a replicated 3 × 3 Latin square design. Cows were ad libitum fed, nutrient-restricted (NR), or NR with nicotinic acid (NA; 5 mg of NA/h per kg BW; delivered i.v.) for 34 h. When provided access, cows were ad libitum fed a mixed ration of grass hay and ground corn to meet requirements. Intake for NR cows was limited to vitamins and minerals. Nicotinic acid was administered to suppress lipolysis. Saline was infused in cows not provided NA. At 32 and 33 h of treatment, a liver biopsy and insulin tolerance test were performed, respectively. Samples were analyzed using colorimetry, immunoassay, and mass spectrometry. Nutrient restriction increased serum fatty acids and ceramide levels, and impaired insulin sensitivity; however, NA infusion was unable to prevent these responses. We also show that NR increases hepatic ceramide accumulation, a response that was positively associated with serum ceramide supply. Our data demonstrate that circulating and hepatic 24:0-Cer are inversely associated with systemic insulin tolerance, an effect not observed for the 16:0 moiety. In conclusion, our results suggest that ceramide accrual represents a metabolic adaptation to nutrient restriction and impaired insulin action in dairy cows.

  7. Comparison of claw health and milk yield in dairy cows on elastic or concrete flooring.

    PubMed

    Kremer, P V; Nueske, S; Scholz, A M; Foerster, M

    2007-10-01

    This article reports on the effects of elastic (rubber) flooring compared with concrete flooring on claw health and milk yield in dairy cows. Milk yield and activity data of 53 complete lactations from 49 cows were recorded by an automatic milking system in the University of Munich Livestock Center dairy herd. Cows were kept in a loose housing system on concrete-slatted or rubber-matted slatted flooring. Claws were trimmed and measured linearly in combination with claw lesion diagnosis 3 times during one lactation period (including the transition phase). An automatic milking system recorded milk yield and activity. The net horn growth of the claws increased on elastic flooring. Therefore, correct and frequent claw trimming is at least as important for claw health in dairy herds kept on rubber flooring as for those on concrete-slatted flooring. Cows housed on rubber had an increased incidence of sole ulcers. Sole hemorrhages (except for hemorrhages associated with sole ulcers) occurred less frequently on rubber than on concrete. Results concerning digital dermatitis were difficult to assess, because manual manure scraping on rubber required sprinkling the flooring twice daily, which additionally moistened the digital skin of the cows. This might explain the greater incidence of digital dermatitis on elastic flooring. The incidence of clinically lame cows did not differ between flooring types. Cows showed greater activity on rubber, most likely caused by the more comfortable walking surface compared with the concrete-slatted flooring. The greater activity may indicate better overall health of high-yielding dairy cows on rubber flooring. Milk yield, however, did not differ between flooring types.

  8. Effects of grass hay proportion in a corn silage-based diet on rumen digesta kinetics and digestibility in dairy cows.

    PubMed

    Win, Kyaw San; Ueda, Koichiro; Kondo, Seiji

    2015-09-01

    In this study, we aimed to evaluate the effects of six levels of orchardgrass hay (GH) proportion (0%, 10%, 20%, 30%, 40% or 50% of dry matter) in finely chopped corn silage (CS)-based diets on digesta kinetics of CS and GH in the rumen. Six non-lactating, rumen-cannulated Holstein cows were used in a 6 × 6 Latin square design. Ruminal digesta kinetics was measured by ruminal dosing of feed particle markers (dysprosium for CS, erbium for GH) followed by fecal sampling. The increase of GH proportion had a quadratic effect (P < 0.01) on total tract digestibility of neutral detergent fiber (NDF) and acid detergent fiber. The proportion of GH did not affect the particle size distribution of rumen digesta, total weight of dry matter or NDF in the rumen. The rates of large particle size reduction in the rumen for CS tended to increase linearly with increasing GH proportion (P = 0.077). A quadratic effect (P < 0.05) was found with increasing the GH proportion for the ruminal passage rate of small GH particles, but not for CS particles. The results suggested that associative effects between CS and GH could be generated on rumen digesta kinetics when cows were fed a CS-based diet with an increased proportion of GH. © 2015 Japanese Society of Animal Science.

  9. Relationships between certain metabolic diseases and selected serum biochemical parameters in seropositive dairy cows against Neospora caninum infection in different stages of lactation

    PubMed

    Alekish, Myassar O.; Talafha, Abdelsalam Q; Alshehabat, Musa A; Ismail, Zuhair A Bani

    Neospora caninum is an important cause of abortion in dairy cattle. The general health of affected cows has not been investigated before. Therefore, the main objective of this study was to identify possible relationships between certain metabolic diseases and selected serum biochemical parameters in seropositive dairy cows against N. caninum antibodies in different stages of lactation. The study was carried out using 72 N. caninum seropositive cows and 61 seronegative dairy cows (control). Serum from all cows was tested to determine their N. caninum status (seropositive vs seronegative) using commercially available indirect enzyme-linked immunosorbent assay test kit (iELISA). In addition, serum biochemical parameters including beta-hydroxybutyrate (BHB), glucose, creatinine, blood urea nitrogen, total protein, albumin, alkaline phosphatase (ALP), aspartate aminotransferase (AST), alanine transaminase (ALT), lactate dehydrogenase (LDH) and gamma-glutamyltranspeptidase (GGT) were determined using routine laboratory methods. The stage of lactation was obtained at the time of sampling from farm records. Student independent t-test showed that there was a significant difference in the serum concentrations of BHB, AST, ALT, and LDH between seropositive and seronegative cows. There was no significant association between seropositivity and the stage of lactation. However, multivariable logistic regression analysis showed that there was a strong association between seropositivity and BHB concentrations. Results of this study indicate a possible relationship between N. caninum seropositivity and certain metabolic diseases such as ketosis and fatty liver syndrome in dairy cows.

  10. Ammonia Emissions From Dairy Barns: What Have We Learned?

    USDA-ARS?s Scientific Manuscript database

    Research, extension, the feed industry and veterinarians have long advocated dairy cow diets that maximize milk production while assuring good animal health and reproduction. Under practical conditions, only 20 to 30% of the crude protein (CP) fed to a dairy cow is converted into milk protein. The r...

  11. Short communication: Intestinal digestibility of amino acids in fluid- and particle-associated rumen bacteria determined using a precision-fed cecectomized rooster bioassay.

    PubMed

    Fonseca, A C; Fredin, S M; Ferraretto, L F; Parsons, C M; Utterback, P L; Shaver, R D

    2014-01-01

    Microbial protein represents the majority of metabolizable protein absorbed by ruminant animals. Enhanced understanding of the AA digestibility of rumen microbes will improve estimates of metabolizable protein. The objective of this experiment was to determine the digestibility of AA in fluid- (FAB) and particle-associated bacteria (PAB) using the precision-fed cecectomized rooster bioassay. Bacteria were isolated from 4 ruminally cannulated lactating Holstein cows by differential centrifugation, including particle suspension in 0.1% Tween-80 for increased removal of PAB from ruminal digesta. Samples of FAB and PAB were fed to 9 cecectomized roosters to determine standardized digestibility of AA. Total AA digestibility was 76.8 and 75.5% for FAB and PAB, respectively, but did not differ. Differences existed in AA digestibilities within bacterial type when compared with the mean essential AA digestibility value. Compared with previous literature estimates of AA digestibility in microbes (mean = 76%; range = 57-87%) and relative to National Research Council estimates of total AA from rumen bacteria (80%), the precision-fed cecectomized rooster assay is an acceptable in vivo model to determine AA digestibility of rumen bacteria. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Associations of farm management practices with annual milk sales on smallholder dairy farms in Kenya.

    PubMed

    Richards, Shauna; VanLeeuwen, John; Shepelo, Getrude; Gitau, George Karuoya; Kamunde, Collins; Uehlinger, Fabienne; Wichtel, Jeff

    2015-01-01

    Cows on smallholder dairy farms (SDF) in developing countries such as Kenya typically produce volumes of milk that are well below their genetic potential. An epidemiological study was conducted to determine reasons for this low milk production, including limited use of best management practices, such as suboptimal nutritional management. An observational cross-sectional study of 111 SDF was performed in Nyeri County, Kenya in June of 2013 determining the effect of cow factors, farmer demographics and farm management practices on the volume of milk sold per cow per year (kg milk sold/cow). In particular, the effect of feeding high protein fodder trees and other nutritional management practices were examined. Approximatly 38% of farmers fed fodder trees, but such feeding was not associated with volume of milk sold per cow, likely due to the low number of fodder trees per farm. Volume of milk sold per cow was positively associated with feeding dairy meal during the month prior to calving, feeding purchased hay during the past year, deworming cows every 4 or more months (as opposed to more regularly), and having dairy farming as the main source of family income. Volume of milk sold per cow was negatively associated with a household size of >5 people and feeding Napier grass at >2 meters in height during the dry season. An interaction between gender of the principal farmer and feed shortages was noted; volume of milk sold per cow was lower when female farmers experienced feed shortages whereas milk sold per cow was unaffected when male farmers experienced feed shortages. These demographic and management risk factors should be considered by smallholder dairy farmers and their advisors when developing strategies to improve income from milk sales and animal-source food availability for the farming families.

  13. Effects of feed delivery frequency in different environmental conditions on time budget of lactating dairy cows.

    PubMed

    Mattachini, Gabriele; Bava, Luciana; Sandrucci, Anna; Tamburini, Alberto; Riva, Elisabetta; Provolo, Giorgio

    2017-08-01

    This study aimed to examine the influence of feed delivery frequency and environmental conditions on daily time budget of lactating dairy cows. The study was carried out in two commercial dairy farms with Holstein herds. Fifty lactating dairy cows milked in automatic milking units (AMS farm) and 96 primiparous lactating dairy cows milked in a conventional milking parlour (conventional farm) were exposed to different frequencies of feed delivery replicated in different periods of the year (warm and mild) that were characterized by different temperature-humidity indices (THI). On each farm, feeding treatments consisted of two different feed delivery frequencies (1× and 2× on the AMS farm; 2× and 3× on the conventional farm). All behaviours of the cows were monitored for the last 8 d of each treatment period using continuous video recording. The two data sets from different farm systems were considered separately for analysis. On both farms, environmental conditions expressed as THI affected time budgets and the pattern of the behavioural indices throughout the day. The variation in the frequency of feed delivery seems to affect the cow's time budget only in a limited way. Standing time of cows on the conventional farm and the time spent by cows in the milking waiting area on the AMS farm both increased in response to increased feeding frequency. Although feed delivery frequency showed limited influence on cow's time budget, the effect on standing time could be carefully considered, especially on farms equipped with AMS where the type of cow traffic system (e.g., milking first) might amplify the negative consequences of more frequent feed delivery. Further investigations are required to evaluate the effect of THI and feed delivery frequency on other aspects of behavioural activity.

  14. Alterations of Innate Immunity Reactants in Transition Dairy Cows before Clinical Signs of Lameness

    PubMed Central

    Zhang, Guanshi; Hailemariam, Dagnachew; Dervishi, Elda; Deng, Qilan; Goldansaz, Seyed A.; Dunn, Suzanna M.; Ametaj, Burim N.

    2015-01-01

    Simple Summary Lameness is prevalent in dairy cows and early diagnosis and timely treatment of the disease can lower animal suffering, improve recovery rate, increase longevity, and minimize cow loss. However, there are no indications of disease until it appears clinically, and presently the only approach to deal with the sick cow is intensive treatment or culling. The results suggest that lameness affected serum concentrations of the several parameters related to innate immunity and carbohydrate metabolism that might be used to monitor health status of transition dairy cows in the near future. Abstract The objectives of this study were to evaluate metabolic and innate immunity alterations in the blood of transition dairy cows before, during, and after diagnosis of lameness during periparturient period. Blood samples were collected from the coccygeal vain once per week before morning feeding from 100 multiparous Holstein dairy cows during −8, −4, disease diagnosis, and +4 weeks (wks) relative to parturition. Six healthy cows (CON) and six cows that showed clinical signs of lameness were selected for intensive serum analyses. Concentrations of interleukin-1 (IL-1), interleukin-6 (IL-6), tumor necrosis factor (TNF), haptoglobin (Hp), serum amyloid A (SAA), lipopolysaccharide binding protein (LBP), lactate, non-esterified fatty acids (NEFA), and β-hydroxybutyrate (BHBA) were measured in serum by ELISA or colorimetric methods. Health status, DMI, rectal temperature, milk yield, and milk composition also were monitored for each cow during the whole experimental period. Results showed that cows affected by lameness had greater concentrations of lactate, IL-6, and SAA in the serum vs. CON cows. Concentrations of TNF tended to be greater in cows with lameness compared with CON. In addition, there was a health status (Hs) by time (week) interaction for IL-1, TNF, and Hp in lameness cows vs. CON ones. Enhanced serum concentrations of lactate, IL-6, and SAA at −8 and −4 wks before parturition were different in cows with lameness as compared with those of the CON group. The disease was also associated with lowered overall milk production and DMI as well as milk fat and fat-to-protein ratio. In conclusion, cows affected postpartum by lameness had alterations in several serum variables related to innate immunity and carbohydrate metabolism that give insights into the etiopathogenesis of the disease and might serve to monitor health status of transition dairy cows in the near future. PMID:26479383

  15. On-farm feeding interventions to increase milk production in lactating dairy cows.

    PubMed

    Wanapat, Metha; Foiklang, Suban; Phesatcha, Kampanat; Paoinn, Chainarong; Ampapon, Thiwakorn; Norrapoke, Thitima; Kang, Sungchhang

    2017-04-01

    The objective of this study was to investigate the effect of tropical legume (Phaseolus calcaratus) mixed with ruzi grass feeding on the performance of lactating dairy cows. Eighty-eight lactating dairy cows from 22 smallholder dairy farms northeast of Thailand were assigned to respective dietary treatments according to a Randomized Completely Block Design (RCBD). Four cows were selected from each farm and were allocated into two different feeding groups as follows: ruzi grass and P. calcaratus mixed with ruzi grass (1:1 ratio), respectively. All cows were fed with roughage ad libitum with 1:2 ratio of concentrate diet to milk yield. The results revealed that total dry matter intake, ruminal volatile fatty acids, and ammonia nitrogen concentration were enhanced when cows were fed with P. calcaratus mixed with ruzi grass (P < 0.05). Moreover, feeding tropical legume mixed with ruzi grass could increase milk production and milk protein in this study. Importantly, an economical assessment showed that milk income and the profit from milk sale were significantly greater in cows fed the mixture of roughage than those from the non-mixed group. This study concluded that high-quality roughage as tropical legume mixed with ruzi grass at the ratio of 1:1 brought out the remarkable and practical implementation for smallholder dairy farms, and the intervention was practical and deserving of more on-farm intervention.

  16. Immune response and milk production of dairy cows fed graded levels of rumen-protected glutamine.

    PubMed

    Caroprese, M; Albenzio, M; Marino, R; Santillo, A; Sevi, A

    2012-08-01

    The objective of the study was to determine the effects of dietary supplementation with glutamine on the immune function and milk production of dairy cows. The experiment involved 24 Friesian cows, divided into three groups of eight each, according to the level of rumen-protected glutamine supplementation: a diet with no supplementation (Control), a diet supplemented with 160 g/day/cow (G160) and a diet supplemented with 320 g/day/cow (G320). At 0, 30, and 60 days of the experiment, lymphocyte response to phytohemoagglutinin (PHA) was determined in vivo for each animal. Humoral response to chicken egg albumin (OVA) and interleukin - (IL)-1β, IL-6 and IL-10 plasma levels were measured at 0, 15, 30, 45, and 60 days. Results demonstrate that supplementing 160 g/day/cow of glutamine can modulate immune responses of dairy cows and enhance the amino acid profile of cow milk. Copyright © 2011. Published by Elsevier India Pvt Ltd.

  17. Impact of Daily Grazing Time on Dairy Cow Welfare—Results of the Welfare Quality® Protocol

    PubMed Central

    Wagner, Kathrin; Brinkmann, Jan; March, Solveig; Hinterstoißer, Peter; Warnecke, Sylvia; Schüler, Maximilian; Paulsen, Hans Marten

    2017-01-01

    Simple Summary It is often presumed that grazing dairy cows experience better welfare than those that are housed all year round. But is this really the case? In this study, we wanted to find out whether the daily amount of time cows spent on pasture affected their welfare. We used the Welfare Quality® assessment protocol for dairy cattle to measure cow welfare on 32 farms (organic and conventional) once in winter (=housing period) and once in summer (=grazing period, if provided). Farms were grouped according to daily grazing time (‘minor/zero’, ‘medium’, and ‘high’). In farms with grazing, overall welfare improved from winter to summer, whereas the situation in minor/zero grazing farms remained largely unchanged. While we found no overall effect of the amount of daily grazing time on cow welfare, the individual measures “% of cows with hairless patches” and “% of lame cows” received better scores in the high grazing farms. However, other measures e.g., related to water provision, scored worse in the grazing farms in summer as opposed to winter. We conclude that grazing offers a high potential to enhance dairy cow welfare during summer. However, beneficial effects are not guaranteed when the overall management does not satisfy the cows´ needs. Abstract Grazing provides livestock better opportunities to act out their species-specific behavior compared to restrictive stable conditions. The aim of the present study was to examine the effects of daily grazing time on welfare of dairy cows in organic and conventional farms based on the Welfare Quality® assessment protocol for dairy cattle (WQ®). Therefore, we applied the WQ® on 32 dairy farms (classified in 3 groups: Group 0, minor/zero grazing, n = 14; Group 1, medium grazing, n = 10; Group 2, high grazing, n = 8). We assessed the status of animal welfare once in winter and once in summer. For statistical analyses we used mixed models for repeated measures, with group, season, and their interaction as fixed factors. At the WQ® criteria level, five out of nine examined criteria improved in farms with grazing between winter and summer. In contrast, the welfare situation in minor/zero grazing farms remained largely unchanged. At the level of WQ® measures, only the individual parameters “% of cows with hairless patches” and “% of lame cows” were affected positively by high grazing. Grazing offers a potential to enhance welfare of dairy cows during the summer season, while beneficial effects are not guaranteed when management does not satisfy the animals´ needs. PMID:29271918

  18. Feeding of by-products completely replaced cereals and pulses in dairy cows and enhanced edible feed conversion ratio.

    PubMed

    Ertl, P; Zebeli, Q; Zollitsch, W; Knaus, W

    2015-02-01

    When fed human-edible feeds, such as grains and pulses, dairy cows are very inefficient in transforming them into animal products. Therefore, strategies to reduce human-edible inputs in dairy cow feeding are needed to improve food efficiency. The aim of this feeding trial was to analyze the effect of the full substitution of a common concentrate mixture with a by-product concentrate mixture on milk production, feed intake, blood values, and the edible feed conversion ratio (eFCR), defined as human-edible output per human edible input. The experiment was conducted as a change-over design, with each experimental period lasting for 7wk. Thirteen multiparous and 5 primiparous Holstein cows were randomly assigned to 1 of 2 treatments. Treatments consisted of a grass silage-based forage diet supplemented with either conventional ingredients or solely by-products from the food processing industry (BP). The BP mixture had higher contents of fiber and ether extract, whereas starch content was reduced compared with the conventional mixture. Milk yield and milk solids were not affected by treatment. The eFCR in the BP group were about 4 and 2.7 times higher for energy and protein, respectively. Blood values did not indicate negative effects on cows' metabolic health status. Results of this feeding trial suggest that by-products could replace common concentrate supplements in dairy cow feeding, resulting in an increased eFCR for energy and protein which emphasizes the unique role of dairy cows as net food producers. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Invited review: The impact of automatic milking systems on dairy cow management, behavior, health, and welfare.

    PubMed

    Jacobs, J A; Siegford, J M

    2012-05-01

    Over the last 100 yr, the dairy industry has incorporated technology to maximize yield and profit. Pressure to maximize efficiency and lower inputs has resulted in novel approaches to managing and milking dairy herds, including implementation of automatic milking systems (AMS) to reduce labor associated with milking. Although AMS have been used for almost 20 yr in Europe, they have only recently become more popular in North America. Automatic milking systems have the potential to increase milk production by up to 12%, decrease labor by as much as 18%, and simultaneously improve dairy cow welfare by allowing cows to choose when to be milked. However, producers using AMS may not fully realize these anticipated benefits for a variety of reasons. For example, producers may not see a reduction in labor because some cows do not milk voluntarily or because they have not fully or efficiently incorporated the AMS into their management routines. Following the introduction of AMS on the market in the 1990s, research has been conducted examining AMS systems versus conventional parlors focusing primarily on cow health, milk yield, and milk quality, as well as on some of the economic and social factors related to AMS adoption. Additionally, because AMS rely on cows milking themselves voluntarily, research has also been conducted on the behavior of cows in AMS facilities, with particular attention paid to cow traffic around AMS, cow use of AMS, and cows' motivation to enter the milking stall. However, the sometimes contradictory findings resulting from different studies on the same aspect of AMS suggest that differences in management and farm-level variables may be more important to AMS efficiency and milk production than features of the milking system itself. Furthermore, some of the recommendations that have been made regarding AMS facility design and management should be scientifically tested to demonstrate their validity, as not all may work as intended. As updated AMS designs, such as the automatic rotary milking parlor, continue to be introduced to the dairy industry, research must continue to be conducted on AMS to understand the causes and consequences of differences between milking systems as well as the impacts of the different facilities and management systems that surround them on dairy cow behavior, health, and welfare. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Grazing dairy cows had decreased interferon-γ, tumor necrosis factor, and interleukin-17, and increased expression of interleukin-10 during the first week after calving.

    PubMed

    Heiser, Axel; McCarthy, Allison; Wedlock, Neil; Meier, Susanne; Kay, Jane; Walker, Caroline; Crookenden, Mallory A; Mitchell, Murray D; Morgan, Stuart; Watkins, Kate; Loor, Juan J; Roche, John R

    2015-02-01

    Peripartum, and especially during the transition period, dairy cows undergo dramatic physiological changes. These coincide with an increased risk of disease during the first 2 wk after calving and have been linked to dairy cows failing to achieve production as well as reproductive targets. Previous evidence suggests that these physiological changes affect the immune system and that transition dairy cows experience some form of reduced immunocompetence. However, almost all of these studies were undertaken in high-production, housed dairy cows. Grazing cows have much lower levels of production and this study aimed to provide clarity whether or not the dysfunctional attributes of the peripartum immune system reported in high production housed cows are evident in these animals. Therefore, cell culture techniques, flow cytometry, and quantitative PCR were applied to analyze the cellular composition of peripheral blood mononuclear cells from transition dairy cows as well as the performance of these cells in an in vitro assay. First, a combination of in vitro stimulation and quantitative PCR for cytokines was validated as a quantifiable immunocompetence assay in 29 cattle and a correlation of quantitative PCR and ELISA demonstrated. Second, the relative number of T helper cells, cytotoxic T cells, B cells, γδ T cells, natural killer cells, and monocytes in peripheral blood was measured, of which B cells and natural killer cells increased in number postcalving (n=29) compared with precalving. Third, following in vitro stimulation cytokine profiles indicated decreased expression of IFNγ, tumor necrosis factor, and IL-17 and increased expression of IL-10 wk 1 after calving, which later all returned to precalving values (n=39). Additionally, treatment of transition cows with a nonsteroidal anti-inflammatory drug (i.e., carprofen) administered on d 1, 3, and 5 postcalving (n=19; untreated control n=20) did not affect the cytokine expression at any time point. In conclusion, an immunocompetence assay has been developed that highlights a characteristic expression pattern for IFNγ, tumor necrosis factor, IL-17, and IL-10 that reflects a state of reduced immunocompetence in moderate-yielding pasture-based transition cows after calving, which is similar to that described for higher-yielding housed cows. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Short communication: survey of fresh cow management practices of dairy cattle on small and large commercial farms.

    PubMed

    Heuwieser, W; Iwersen, M; Gossellin, J; Drillich, M

    2010-03-01

    The objective was to conduct a survey of current fresh cow management practices that have an effect on health and diseases postpartum considering different herd sizes of commercial dairy farms. A mail survey regarding aspects of the fresh cow program including general management issues, calving, diseases, and veterinary service was conducted utilizing a convenience sample. A total of 429 survey forms were returned (12.0% response rate) and could be used for final analysis. Only 21.6% of the farms had a designated fresh cow pen. Almost every farm executed some type of fresh cow examination. Only 18.5% of farm managers documented the observations. Most of the dairy managers used more or less subjective criteria such as general appearance (97.0%) and appetite (69.7%). Only a minority of the responding dairy managers monitored their fresh cows using objective (fever 33.6%) or semiquantitative measures (subclinical ketosis 2.8%; body condition score 36.4%). On most farms, the veterinarian visited the herd only if needed (72.6%). Most cases of retained fetal membranes were treated by manual removal (72.3%) and antibiotic pills (89.5%). Several challenges and opportunities were identified to improve cow management practices.

  2. The control of short-term feed intake by metabolic oxidation in late-pregnant and early lactating dairy cows exposed to high ambient temperatures.

    PubMed

    Eslamizad, Mehdi; Lamp, Ole; Derno, Michael; Kuhla, Björn

    2015-06-01

    The objective of the present study was to integrate the dynamics of feed intake and metabolic oxidation in late pregnant and early lactating Holstein cows under heat stress conditions. On day 21 before parturition and again on day 20 after parturition, seven Holstein cows were kept for 7days at thermoneutral (TN) conditions (15°C; temperature-humidity-index (THI)=60) followed by a 7day heat stress (HS) period at 28°C (THI=76). On the last day of each temperature condition, gas exchange, feed intake and water intake were recorded every 6min in a respiration chamber. Pre- and post-partum cows responded to HS by decreasing feed intake. The reduction in feed intake in pre-partum cows was achieved through decreased meal size, meal duration, eating rate and daily eating time with no change in meal frequency, while post-partum cows kept under HS conditions showed variable responses in feeding behavior. In both pre- and post-partum cows exposed to heat stress, daily and resting metabolic heat production decreased while the periprandial respiratory quotient (RQ) increased. The prolonged time between meal and the postprandial minimum in fat oxidation and the postprandial RQ maximum, respectively, revealed that HS as compared to TN early-lactating cows have slower postprandial fat oxidation, longer feed digestion, and thereby showing a shift from fat to glucose utilization. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Future consequences of decreasing marginal production efficiency in the high-yielding dairy cow.

    PubMed

    Moallem, U

    2016-04-01

    The objectives were to examine the gross and marginal production efficiencies in high-yielding dairy cows and the future consequences on dairy industry profitability. Data from 2 experiments were used in across-treatments analysis (n=82 mid-lactation multiparous Israeli-Holstein dairy cows). Milk yields, body weights (BW), and dry matter intakes (DMI) were recorded daily. In both experiments, cows were fed a diet containing 16.5 to 16.6% crude protein and net energy for lactation (NEL) at 1.61 Mcal/kg of dry matter (DM). The means of milk yield, BW, DMI, NEL intake, and energy required for maintenance were calculated individually over the whole study, and used to calculate gross and marginal efficiencies. Data were analyzed in 2 ways: (1) simple correlation between variables; and (2) cows were divided into 3 subgroups, designated low, moderate, and high DMI (LDMI, MDMI, and HDMI), according to actual DMI per day: ≤ 26 kg (n=27); >26 through 28.2 kg (n=28); and >28.2 kg (n=27). The phenotypic Pearson correlations among variables were analyzed, and the GLM procedure was used to test differences between subgroups. The relationships between milk and fat-corrected milk yields and the corresponding gross efficiencies were positive, whereas BW and gross production efficiency were negatively correlated. The marginal production efficiency from DM and energy consumed decreased with increasing DMI. The difference between BW gain as predicted by the National Research Council model (2001) and the present measurements increased with increasing DMI (r=0.68). The average calculated energy balances were 1.38, 2.28, and 4.20 Mcal/d (standard error of the mean=0.64) in the LDMI, MDMI, and HDMI groups, respectively. The marginal efficiency for milk yields from DMI or energy consumed was highest in LDMI, intermediate in MDMI, and lowest in HDMI. The predicted BW gains for the whole study period were 22.9, 37.9, and 75.8 kg for the LDMI, MDMI, and HDMI groups, respectively. The present study demonstrated that marginal production efficiency decreased with increasing feed intake. Because of the close association between production and intake, the principle of diminishing marginal productivity may explain why increasing milk production (and consequently increasing intake) does not always enhance profitability. To maintain high production efficiency in the future, more attention should be given to optimizing rather than maximizing feed intake, a goal that could be achieved by nutritional manipulations that would increase digestibility or by using a diet of denser nutrients that would provide all nutritional requirements from lower intake. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Effect of uterine size on fertility of lactating dairy cows.

    PubMed

    Baez, Giovanni M; Barletta, Rafael V; Guenther, Jerry N; Gaska, Jerry M; Wiltbank, Milo C

    2016-05-01

    There are multiple reasons for reduced fertility in lactating dairy cows. We hypothesized that one cause of reduced fertility could be the overall size of the reproductive tract, particularly the uterus, given well-established uterine functions in many aspects of the reproductive process. Thus, the objectives of this study were to evaluate the variability in uterine size in primiparous and multiparous dairy cows and to analyze whether there was an association between uterine size and fertility, particularly within a given parity. Lactating Holstein dairy cows (n = 704) were synchronized to receive timed artificial insemination (TAI) on Day 81 ± 3 of lactation by using the Double-Ovsynch protocol (GnRH-7d-PGF-3d-GnRH-7d-GnRH-7d-PGF-56h-GnRH-16h-TAI). At the time of the last injection of PGF, uterine diameter was determined at the greater curvature using ultrasound, uterine length was determined by rectal palpation, and uterine volume was calculated from these two measurements. Blood samples were also taken to measure progesterone to assure synchronization of all cows used in the final analysis (n = 616; primiparous, n = 289; multiparous, n = 327). Primiparous cows had greater percentage pregnant/AI (P/AI) compared to multiparous cows (49.8% vs. 39.1% at 67 days of pregnancy diagnosis, P = 0.009). Diameter, length, and volume of the uterus were larger in multiparous than in primiparous cows (P < 0.001). For multiparous cows, uterine diameter and volume were smaller in cows that became pregnant compared to cows that were not pregnant to the TAI with a similar tendency observed in primiparous cows. Logistic regression and quartile analysis also showed that as uterine volume increased, there was decreased P/AI in either primiparous or multiparous cows. Thus, there is a negative association between uterine size and fertility in lactating dairy cows with a larger uterus associated with reduced fertility, particularly for multiparous cows. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Relationships between fertility and postpartum changes in body condition and body weight in lactating dairy cows.

    PubMed

    Carvalho, P D; Souza, A H; Amundson, M C; Hackbart, K S; Fuenzalida, M J; Herlihy, M M; Ayres, H; Dresch, A R; Vieira, L M; Guenther, J N; Grummer, R R; Fricke, P M; Shaver, R D; Wiltbank, M C

    2014-01-01

    The relationship between energy status and fertility in dairy cattle was retrospectively analyzed by comparing fertility with body condition score (BCS) near artificial insemination (AI; experiment 1), early postpartum changes in BCS (experiment 2), and postpartum changes in body weight (BW; experiment 3). To reduce the effect of cyclicity status, all cows were synchronized with Double-Ovsynch protocol before timed AI. In experiment 1, BCS of lactating dairy cows (n = 1,103) was evaluated near AI. Most cows (93%) were cycling at initiation of the breeding Ovsynch protocol (first GnRH injection). A lower percentage pregnant to AI (P/AI) was found in cows with lower (≤ 2.50) versus higher (≥ 2.75) BCS (40.4 vs. 49.2%). In experiment 2, lactating dairy cows on 2 commercial dairies (n = 1,887) were divided by BCS change from calving until the third week postpartum. Overall, P/AI at 70-d pregnancy diagnosis differed dramatically by BCS change and was least for cows that lost BCS, intermediate for cows that maintained BCS, and greatest for cows that gained BCS [22.8% (180/789), 36.0% (243/675), and 78.3% (331/423), respectively]. Surprisingly, a difference existed between farms with BCS change dramatically affecting P/AI on one farm and no effect on the other farm. In experiment 3, lactating dairy cows (n = 71) had BW measured weekly from the first to ninth week postpartum and then had superovulation induced using a modified Double-Ovsynch protocol. Cows were divided into quartiles (Q) by percentage of BW change (Q1 = least change; Q4 = most change) from calving until the third week postpartum. No effect was detected of quartile on number of ovulations, total embryos collected, or percentage of oocytes that were fertilized; however, the percentage of fertilized oocytes that were transferable embryos was greater for cows in Q1, Q2, and Q3 than Q4 (83.8, 75.2, 82.6, and 53.2%, respectively). In addition, percentage of degenerated embryos was least for cows in Q1, Q2, and Q3 and greatest for Q4 (9.6, 14.5, 12.6, and 35.2% respectively). In conclusion, for cows synchronized with a Double-Ovsynch protocol, an effect of low BCS (≤ 2.50) near AI on fertility was detected, but change in BCS during the first 3 wk postpartum had a more profound effect on P/AI to first timed AI. This effect could be partially explained by the reduction in embryo quality and increase in degenerate embryos byd 7 after AI in cows that lost more BW from the first to third week postpartum. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Measurement of heat stress conditions at cow level and comparison to climate conditions at stationary locations inside a dairy barn.

    PubMed

    Schüller, Laura K; Heuwieser, Wolfgang

    2016-08-01

    The objectives of this study were to examine heat stress conditions at cow level and to investigate the relationship to the climate conditions at 5 different stationary locations inside a dairy barn. In addition, we compared the climate conditions at cow level between primiparous and multiparous cows for a period of 1 week after regrouping. The temperature-humidity index (THI) differed significantly between all stationary loggers. The lowest THI was measured at the window logger in the experimental stall and the highest THI was measured at the central logger in the experimental stall. The THI at the mobile cow loggers was 2·33 THI points higher than at the stationary loggers. Furthermore, the mean daily THI was higher at the mobile cow loggers than at the stationary loggers on all experimental days. The THI in the experimental pen was 0·44 THI points lower when the experimental cow group was located inside the milking parlour. The THI measured at the mobile cow loggers was 1·63 THI points higher when the experimental cow group was located inside the milking parlour. However, there was no significant difference for all climate variables between primiparous and multiparous cows. These results indicate, there is a wide range of climate conditions inside a dairy barn and especially areas with a great distance to a fresh air supply have an increased risk for the occurrence of heat stress conditions. Furthermore, the heat stress conditions are even higher at cow level and cows not only influence their climatic environment, but also generate microclimates within different locations inside the barn. Therefore climate conditions should be obtained at cow level to evaluate the heat stress conditions that dairy cows are actually exposed to.

  7. 7 CFR 1416.104 - Payment calculation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... of part 760 of this title. (c) The eligible livestock categories are: (1) Adult beef cows or bulls; (2) Non-adult beef cattle; (3) Adult buffalo or beefalo cows or bulls; (4) Non-adult buffalo or beefalo; (5) Adult dairy cows or bulls; (6) Non-adult dairy cattle; (7) Goats; (8) Sheep; (9) Equine; (10...

  8. 7 CFR 1416.104 - Payment calculation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... of part 760 of this title. (c) The eligible livestock categories are: (1) Adult beef cows or bulls; (2) Non-adult beef cattle; (3) Adult buffalo or beefalo cows or bulls; (4) Non-adult buffalo or beefalo; (5) Adult dairy cows or bulls; (6) Non-adult dairy cattle; (7) Goats; (8) Sheep; (9) Equine; (10...

  9. 7 CFR 1416.104 - Payment calculation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... of part 760 of this title. (c) The eligible livestock categories are: (1) Adult beef cows or bulls; (2) Non-adult beef cattle; (3) Adult buffalo or beefalo cows or bulls; (4) Non-adult buffalo or beefalo; (5) Adult dairy cows or bulls; (6) Non-adult dairy cattle; (7) Goats; (8) Sheep; (9) Equine; (10...

  10. 7 CFR 1416.104 - Payment calculation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... of part 760 of this title. (c) The eligible livestock categories are: (1) Adult beef cows or bulls; (2) Non-adult beef cattle; (3) Adult buffalo or beefalo cows or bulls; (4) Non-adult buffalo or beefalo; (5) Adult dairy cows or bulls; (6) Non-adult dairy cattle; (7) Goats; (8) Sheep; (9) Equine; (10...

  11. Circulating blood metabolites in early-lactation dairy cows fed canola or soybean meals

    USDA-ARS?s Scientific Manuscript database

    A successful transition from pregnancy to lactation is imperative for dairy cows to maximize milk production potential. Altering the dietary protein source can change the availability of energy to the cow. The objective of this experiment was to evaluate the effect of crude protein (CP) source canol...

  12. Rubber Flooring Impact on Health of Dairy Cows

    USDA-ARS?s Scientific Manuscript database

    Use of rubber flooring in dairies has become popular because of perceived cow comfort. The objective of this longitudinal study was to evaluate locomotion, health, production, and immunity over the first 180d of each of the 1st and 2nd lactations of cows assigned to free-stall housing with either r...

  13. Sweating rates of dairy cows and beef heifers in hot conditions

    USDA-ARS?s Scientific Manuscript database

    Sweating rates from heat-stressed dairy and feedlot cows were measured using a “Portable Calorimeter” and a “Bovine Evaporation Meter” designed and fabricated for the studies reported herein. Measurements were taken when cows were in their natural habitat. The focus of the study was to compare swea...

  14. 75 FR 76260 - Implantation or Injectable Dosage Form New Animal Drugs; Flunixin

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-08

    ... meglumine solution by intravenous injection in lactating dairy cows for control of pyrexia associated with... cows for control of pyrexia associated with acute bovine mastitis. The supplemental application is... for 36 hours after the last treatment must not be used for food. Do not use in dry dairy cows. A...

  15. 7 CFR 1416.104 - Payment calculation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... of part 760 of this title. (c) The eligible livestock categories are: (1) Adult beef cows or bulls; (2) Non-adult beef cattle; (3) Adult buffalo or beefalo cows or bulls; (4) Non-adult buffalo or beefalo; (5) Adult dairy cows or bulls; (6) Non-adult dairy cattle; (7) Goats; (8) Sheep; (9) Equine; (10...

  16. 21 CFR 526.464a - Cloxacillin benzathine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... chapter for use in dairy cows. (d) Sponsor. See No. 000069 in § 510.600(c) of this chapter for use in dairy cows. (1) Amount. Administer one dose in each quarter immediately after last milking. (2) Indications for use. Treatment and prophylaxis of bovine mastitis in nonlactating cows due to S. agalactiae...

  17. Evaluation of a lysostaphin-fusion protein as a dry-cow therapy for Staphylococcus aureus mastitis in dairy cattle

    USDA-ARS?s Scientific Manuscript database

    This study evaluated the efficacy of a lysostaphin-fusion protein (Lyso-PTD) as a dry-cow therapy for the treatment of experimentally-induced chronic, subclinical Staphylococcus aureus mastitis. Twenty-two Holstein dairy cows were experimentally infected with Staph. aureus in a single pair of diago...

  18. Impact of antibiotic use in adult dairy cows on antimicrobial resistance of veterinary and human pathogens: a comprehensive review.

    PubMed

    Oliver, Stephen P; Murinda, Shelton E; Jayarao, Bhushan M

    2011-03-01

    Antibiotics have saved millions of human lives, and their use has contributed significantly to improving human and animal health and well-being. Use of antibiotics in food-producing animals has resulted in healthier, more productive animals; lower disease incidence and reduced morbidity and mortality in humans and animals; and production of abundant quantities of nutritious, high-quality, and low-cost food for human consumption. In spite of these benefits, there is considerable concern from public health, food safety, and regulatory perspectives about the use of antimicrobials in food-producing animals. Over the last two decades, development of antimicrobial resistance resulting from agricultural use of antibiotics that could impact treatment of diseases affecting the human population that require antibiotic intervention has become a significant global public health concern. In the present review, we focus on antibiotic use in lactating and nonlactating cows in U.S. dairy herds, and address four key questions: (1) Are science-based data available to demonstrate antimicrobial resistance in veterinary pathogens that cause disease in dairy cows associated with use of antibiotics in adult dairy cows? (2) Are science-based data available to demonstrate that antimicrobial resistance in veterinary pathogens that cause disease in adult dairy cows impacts pathogens that cause disease in humans? (3) Does antimicrobial resistance impact the outcome of therapy? (4) Are antibiotics used prudently in the dairy industry? On the basis of this review, we conclude that scientific evidence does not support widespread, emerging resistance among pathogens isolated from dairy cows to antibacterial drugs even though many of these antibiotics have been used in the dairy industry for treatment and prevention of disease for several decades. However, it is clear that use of antibiotics in adult dairy cows and other food-producing animals does contribute to increased antimicrobial resistance. Although antimicrobial resistance does occur, we are of the opinion that the advantages of using antibiotics in adult dairy cows far outweigh the disadvantages. Last, as this debate continues, we need to consider the consequences of "what would happen if antibiotics are banned for use in the dairy industry and in other food-producing animals?" The implications of this question are far reaching and include such aspects as animal welfare, health, and well-being, and impacts on food quantity, quality, and food costs, among others. This question should be an important aspect in this ongoing and controversial debate.

  19. Comparison of Various Indices of Energy Metabolism in Recumbent and Healthy Dairy Cows

    PubMed Central

    Guyot, Hugues; Detilleux, Johann; Lebreton, Pascal; Garnier, Catherine; Bonvoisin, Marie; Rollin, Frederic

    2017-01-01

    Background Downer cow syndrome (DCS) is often diagnosed in dairy cattle during the early post-partum period. The etiology of this condition is not completely understood, as it can be related to the energetic or electrolyte metabolism, as well as to infectious diseases or to trauma. Hypothesis/Objectives The aim of this study is to compare energy metabolism and insulin sensitivity indices and various biochemical parameters between recumbent and healthy dairy cows. Animals A prospective study has been undertaken on 361 recumbent and 80 healthy Holstein cows. Methods Plasmatic glucose, insulin, non-esterified fatty acid (NEFA) and β-hydroxybutyrate (BHB) were assayed in all cows in order to calculate the insulin sensitivity indices but also minerals (Calcium, Phosphorous and Magnesium), thyroxin and creatine kinase. Body Condition Scores (BCS) was assessed. Results Significant differences in NEFA, and the glucose and insulin sensitivity indices (“Homeostasis Model Assessment” HOMA, “Revised Quantitative Insulin Sensitivity Check Index” RQUICKI, RQUICKI-BHB) were observed between healthy and recumbent cows in the early post-parturient period indicating disturbances of glucose and insulin homeostasis in the recumbent cows. In the same manner, mineral concentrations were significantly different between healthy and recumbent cows. Glucose, insulin NEFA, and HOMA, were different between early post-partum downer cows and the DCS-affected cows later in lactation. Conclusion and clinical importance Results indicate disturbances in energy homeostasis in DCS-affected dairy cows. Further research should determine a prognostic value of the indices in cows suffering from recumbency of metabolic origin. PMID:28107442

  20. Compared to dinoprost tromethamine, cloprostenol sodium increased rates of estrus detection, conception and pregnancy in lactating dairy cows on a large commercial dairy.

    PubMed

    Pursley, J R; Martins, J P N; Wright, C; Stewart, N D

    2012-09-01

    Using two PGF(2α) treatments 14 days apart as a way to enhance estrus detection rate following the 2nd treatment is a reproductive management tool that continues to be used on large dairy farms. In one study, in cows with a functional CL and a dominant follicle, treatment with cloprostenol vs. dinoprost resulted in greater peripheral estradiol concentrations. The objective of the present study was to determine if cloprostenol could enhance pregnancy rates of cows in a large dairy herd using a PGF(2α) program for 1st artificial insemination (AI). Lactating dairy cows (n = 4549) were randomly assigned to receive two treatments of either 500 μg cloprostenol or 25 mg dinoprost 14 days apart, with the 2nd treatment on the 1st day of the voluntary waiting period (57 DIM). Cows detected in estrus within 5 days after the 2nd treatment were inseminated. There was no effect of treatment on day of estrus detection, with 78% of cows inseminated on Days 3 or 4 following treatment. Cloprostenol increased (P < 0.01) estrus detection rates in 1st parity cows compared to dinoprost, 42.4 vs. 34.0%. In cows inseminated on Days 3 or 4 after treatment, cloprostenol increased (P = 0.05) conception rates compared to dinoprost, 38.3 vs. 34.4%. When treatments and parities were combined, conception rates increased (P < 0.02) with interval after treatment (27.0, 36.4, and 44.5% for Days 1 or 2, Days 3 or 4, and Day 5, respectively). Cloprostenol increased (P = 0.02) overall pregnancy rate compared to dinoprost, 14.4 vs. 12.2%. In summary, cloprostenol increased fertility in 1st parity cows inseminated on Days 3 or 4 following treatment and subsequently enhanced pregnancy rates of 1st parity lactating dairy cows compared to dinoprost. Fertility appeared greater in cows expected to have had a young antral ovarian follicle at treatment. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Assessment of management and basic beef quality assurance practices on Idaho dairies.

    PubMed

    Glaze, J B; Chahine, M

    2009-03-01

    In 2004 a mail-in survey was conducted to establish a baseline level of awareness and knowledge related to dairy beef quality assurance (BQA) issues in Idaho. A 30-question survey was mailed to every (n = 736) registered Idaho dairy. Two-hundred seventy-three (37%) dairies participated and were categorized as small (n <201 cows; 53.5%), medium-sized (n = 201 to 1,000 cows; 27.1%) or large (n >1,000 cows; 19.4%). The majority of respondents were dairy owners (83%). Eighty-nine percent of respondents indicated they followed BQA recommendations for animal care. The neck region in cows was used by 68% of respondents for i.m. injections and by 80% for s.c. injections. In calves, the values were 61 and 78%, respectively. Seventy-four percent of respondents indicated they had been trained for injections. Training methods cited included veterinarians (19.8%), dairy owners (16.8%), experience (9.9%), and BQA events or schools (4.5%). The importance of BQA in the dairy industry was rated 2.6 on a 5-point scale (0 = low; 4 = high). Participants rated the effect of dairy animals on the beef industry at 2.5. Plastic ear tags were the preferred method of animal identification, with 100% of large dairies, 97.3% of medium-sized dairies, and 84% of small dairies citing their use. Less than 10% used electronic identification for their animals. Almost half (48%) of large and medium-sized (49%) dairies and 32% of small dairies supported a national animal identification program. A mandatory identification program was supported by 41, 69, and 59% for small, medium-sized, and large dairies, respectively. The percentage of dairies keeping records was similar between small (93%), medium-sized (99%), and large (100%) dairies. Most small dairies (58%) used some form of paper records, whereas most medium-sized (85%) and large (100%) dairies used computers for record keeping. The preferred method to market cull cows by Idaho dairies was the auction market (64%), followed by order buyers (17%), direct to the packer (17%), private treaty sales (16%), and forward contracts (1%). To market calves, dairies used private treaty sales (52%), auction markets (42%), order buyers (14%), and forward contracts (1%). The results of this study will be used by University of Idaho Extension faculty in the design, development, and delivery of dairy BQA program information and materials.

  2. Proteomic analysis of physiological function response to hot summer in liver from lactating dairy cows.

    PubMed

    Wang, Qiangjun; Zhao, Xiaowei; Zhang, Zijun; Zhao, Huiling; Huang, Dongwei; Cheng, Guanglong; Yang, Yongxin

    2017-04-01

    Lactation performance of dairy cattle is susceptible to heat stress. The liver is one of the most crucial organs affected by high temperature in dairy cows. However, the physiological adaption by the liver to hot summer conditions has not been well elucidated in lactating dairy cows. In the present study, proteomic analysis of the liver in dairy cows in spring and hot summer was performed using a label-free method. In total, 127 differentially expressed proteins were identified; most of the upregulated proteins were involved in protein metabolic processes and responses to stimuli, whereas most of the downregulated proteins were related to oxidation-reduction. Pathway analysis indicated that 3 upregulated heat stress proteins (HSP90α, HSP90β, and endoplasmin) were enriched in the NOD-like receptor signaling pathway, whereas several downregulated NADH dehydrogenase proteins were involved in the oxidative phosphorylation pathway. The protein-protein interaction network indicated that several upregulated HSPs (HSP90α, HSP90β, and GRP78) were involved in more interactions than other proteins and were thus considered as central hub nodes. Our findings provide novel insights into the physiological adaption of liver function in lactating dairy cows to natural high temperature. Copyright © 2017. Published by Elsevier Ltd.

  3. Seasonal and parity effects on ghrelin levels throughout the estrous cycle in dairy cows.

    PubMed

    Honig, Hen; Ofer, Lior; Elbaz, Michal; Kaim, Moshe; Shinder, Dima; Gershon, Eran

    2016-09-01

    In dairy cows, heat stress depresses appetite, leading to decreased food intake, a negative energy balance, and modifies ghrelin levels. Ghrelin is a gut-brain peptide with two major forms: acylated, with an O-n-octanoylated serine in position 3, and nonacylated. To date, the effect of heat stress and estrous cycle on ghrelin secretion in dairy cows has not been studied. We characterized ghrelin secretion during the estrous cycle in each, the winter and the summer seasons. We further examined the effects of parity on ghrelin secretion. Blood was collected from 10 primiparous or multiparous Israeli-Holstein dairy cows throughout the estrous cycle, in both, the hot and cold seasons. The levels of acylated and total ghrelin were measured in the blood samples. We found that both acylated and total ghrelin levels during heat stress were lower than their respective levels in the winter in both, primiparous and multiparous cows. No differences in acylated and total ghrelin levels were found between primiparous and multiparous cows in both seasons. We further found that in multiparous but not primiparous cows acylated ghrelin secretion oscillated during the estrous cycle in both seasons. Its levels peaked on the last days of the first follicular wave and on the days before and during ovulation. Interestingly, we found that elevated acylated ghrelin levels correlated with conception success and increased total ghrelin levels were associated with successful conception from first insemination. Our data is the first to demonstrate seasonal variation in ghrelin secretion. This study provides evidence for the yet unfamiliar link between heat stress, ghrelin and fertility. Increased circulating acylated ghrelin may contribute to improved fertility in dairy cows. It further raises the possibility of a link between ghrelin levels and successful inseminations. Further research is required to determine the effects of ghrelin on dairy cow performance. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Prevalence of subclinical ketosis in mainly pasture-grazed dairy cows in New Zealand in early lactation.

    PubMed

    Compton, C W R; McDougall, S; Young, L; Bryan, M A

    2014-01-01

    The main aim of this study was to describe the prevalence of primary subclinical ketosis (SCK) in mainly pasture-grazed dairy cows in three dairy-farming regions of New Zealand 7-12, and 35-40 days post-calving. A second aim was to investigate herd- and cow-level factors associated with the prevalence of SCK. A cross-sectional longitudinal prevalence survey was undertaken in 1,620 dairy cows from 57 herds. A random sample of cows without disease in the prior 30 days were enrolled at one farm visit within 5 days of calving, and blood samples were collected 7 and 28 days later (7-12 and 35-40 days post-calving) for measurement of beta-hydroxy butyrate (BHBA) concentrations using an electronic cow-side meter. SCK was defined as blood BHBA concentration ≥1.4 mmol/L. Mean cow-level prevalence of SCK varied with interval post-calving (16.8 and 3.2% at 7-12 days and 35-40 days post-calving, respectively) and age (13.0 and 13.1% of 2-year olds and ≥8-year olds, respectively, compared to 7.2% of 3-4-year-old cows). Mean herd-level prevalence of SCK was 14.3 (min 0, max 60.0)% and 2.6 (min 0, max 24.4)% at 7-12 days and 35-40 days post-calving, respectively, and was greater in Southland (13.3%) than Waikato and Canterbury herds (6.9 and 4.7%, respectively). This is the first population-based report of the prevalence of SCK in New Zealand dairy herds and demonstrates that age and interval post-calving are important risk factors determining prevalence; and that there is wide variation in prevalence between herds. Subclinical ketosis may be unrecognised but common in many New Zealand dairy cows in the first 2 weeks of lactation.

  5. Analysis of hepatic transcript profile and plasma lipid profile in early lactating dairy cows fed grape seed and grape marc meal extract.

    PubMed

    Gessner, Denise K; Winkler, Anne; Koch, Christian; Dusel, Georg; Liebisch, Gerhard; Ringseis, Robert; Eder, Klaus

    2017-03-23

    It was recently reported that dairy cows fed a polyphenol-rich grape seed and grape marc meal extract (GSGME) during the transition period had an increased milk yield, but the underlying reasons remained unclear. As polyphenols exert a broad spectrum of metabolic effects, we hypothesized that feeding of GSGME influences metabolic pathways in the liver which could account for the positive effects of GSGME in dairy cows. In order to identify these pathways, we performed genome-wide transcript profiling in the liver and lipid profiling in plasma of dairy cows fed GSGME during the transition period at 1 week postpartum. Transcriptomic analysis of the liver revealed 207 differentially expressed transcripts, from which 156 were up- and 51 were down-regulated, between cows fed GSGME and control cows. Gene set enrichment analysis of the 155 up-regulated mRNAs showed that the most enriched gene ontology (GO) biological process terms were dealing with cell cycle regulation and the most enriched Kyoto Encyclopedia of Genes and Genomes pathways were p53 signaling and cell cycle. Functional analysis of the 43 down-regulated mRNAs revealed that a great part of these genes are involved in endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR) and inflammatory processes. Accordingly, protein folding, response to unfolded protein, unfolded protein binding, chemokine activity and heat shock protein binding were identified as one of the most enriched GO biological process and molecular function terms assigned to the down-regulated genes. In line with the transcriptomics data the plasma concentrations of the acute phase proteins serum amyloid A (SAA) and haptoglobin were reduced in cows fed GSGME compared to control cows. Lipidomic analysis of plasma revealed no differences in the concentrations of individual species of major and minor lipid classes between cows fed GSGME and control cows. Analysis of hepatic transcript profile in cows fed GSGME during the transition period at 1 week postpartum indicates that polyphenol-rich feed components are able to inhibit ER stress-induced UPR and inflammatory processes, both of which are considered to contribute to liver-associated diseases and to impair milk performance in dairy cows, in the liver of dairy cows during early lactation.

  6. Short communication: Association of lying behavior and subclinical ketosis in transition dairy cows.

    PubMed

    Kaufman, E I; LeBlanc, S J; McBride, B W; Duffield, T F; DeVries, T J

    2016-09-01

    The objective of this study was to characterize the association of lying behavior and subclinical ketosis (SCK) in transition dairy cows. A total of 339 dairy cows (107 primiparous and 232 multiparous) on 4 commercial dairy farms were monitored for lying behavior and SCK from 14d before calving until 28 d after calving. Lying time, frequency of lying bouts, and average lying bout length were measured using automated data loggers 24h/d. Cows were tested for SCK 1×/wk by taking a blood sample and analyzing for β-hydroxybutyrate; cows with β-hydroxybutyrate ≥1.2mmol/L postpartum were considered to have SCK. Cases of retained placenta, metritis, milk fever, or mastitis during the study period were recorded and cows were categorized into 1 of 4 groups: healthy (HLT) cows had no SCK or any other health problem (n=139); cows treated for at least 1 health issue other than SCK (n=50); SCK (HYK) cows with no other health problems during transition (n=97); or subclinically ketotic plus (HYK+) cows that had SCK and 1 or more other health problems (n=53). Daily lying time was summarized by week and comparisons were made between HLT, HYK, and HYK+, respectively. We found no difference among health categories in lying time, bout frequency, or bout length fromwk -2 towk +4 relative to calving for first-lactation cows. Differences in lying time for multiparous cows were seen inwk +1, when HYK+ cows spent 92±24.0 min/d more time lying down than HLT cows, and duringwk +3 and +4 when HYK cows spent 44±16.7 and 41±18.9 min/d, respectively, more time lying down than HLT cows. Increased odds of HYK+ were found to be associated with higher parity, longer dry period, and greater stall stocking density inwk -1 and longer lying time duringwk +1. When comparing HYK to HLT cows, the same variables were associated with odds of SCK; however, lying time was not retained in the final model. These results suggest that monitoring lying time may contribute to identifying multiparous cows experiencing SCK with another health problem after calving, but may not be useful in the early detection of SCK. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. Biogas from mesophilic anaerobic digestion of cow dung using gelatin as additive

    NASA Astrophysics Data System (ADS)

    Salam, Bodius; Rahman, Md Mizanur; Sikder, Md Asif R.; Islam, Majedul

    2017-06-01

    A research work was conducted to investigate the enhanced production ability of biogas from mesophilic anaerobic digestions of cow dung (CD) using gelatin as additive. Five laboratory scale digesters were constructed to digest cow dung, where one set up was used for digestion of cow dung without additive and the other set up were used for digestion with additive. Gelatin additive was added in the slurry of amount 0.29, 0,57, 0.85 and 1.14% (wt.). The digesters were made of glass conical flask of 1-liter capacity each. Cow dung was used 335 gm and water was used 365 gm in each experiment. In the slurry, total solid content was maintained 8% (wt.) for all the observations. The digesters were fed on batch basis. The digesters were operated at ambient temperatures of 26 - 35°C. The total gas yield was obtained about 14.4 L/kg CD for digestion without additive and about 65% more biogas for digestion with 0.29% gelatin additive. The retention time for digestion without additive was 38 days and with additive retention time varied between 24 and 52 days.

  8. Composition and digestive tract retention time of ruminal particles with functional specific gravity greater or less than 1.02.

    PubMed

    Hristov, A N; Ahvenjarvi, S; McAllister, T A; Huhtanen, P

    2003-10-01

    The objective of this study was to determine composition, particle size distribution, and in vivo kinetics of ruminal particles having functional specific gravity (FSG) greater or less than FSG of particles found in the omasum and reticulum of lactating dairy cows. Particles from the reticulum and the omasal had FSG of 1.03 and 1.02, respectively. Particles from ruminal contents with FSG higher (HP) or lower (LP) than 1.02 were isolated and labeled with Er or Dy, respectively. Four ruminally cannulated, lactating Ayrshire dairy cows were fed all-grass silage (AS) or 54% grass silage:46% concentrate (SC) diets in a cross-over design trial and used to study chemical composition and ruminal and total tract kinetics of HP and LP. Labeled particles were pulse dosed into the rumen of the cows and disappearance of the markers from ruminal HP and LP pools and excretion in feces was monitored for 72 and 120 h, respectively. Fecal marker excretion data were fitted using two-compartment mathematical age-dependent/age-independent (Gn-->G1) models. Inclusion of concentrate in the diet (SC) increased (P < 0.05) apparent total tract digestibility of dietary DM, OM and N. Digestibility of fiber fractions, NDF and ADF, was lower (P < 0.01 and P < 0.05, respectively) for SC compared with AS. The heavy particles had higher (P < 0.01) indigestible NDF and lower (P < 0.01) N concentration than LP. Particles from the HP pool passed from the rumen more rapidly (P < 0.01) than particles from LP (0.044 and 0.019 h(-1), respectively). Diet had no effect on particle rate of disappearance or pool size in the rumen. Across diets, pool size of LP was consistently larger (P < 0.05) than that of HP. Diet had no effect on total tract mean retention time (MRT) of LP or HP. Total tract MRT of LP was greater (P < 0.05) than MRT of HP (59.6 vs. 49.0 h, respectively). Results from this study support the hypothesis that functional specific gravity is an important factor determining the rate of outflow and residence time of feed particles within the reticulo-rumen and total digestive tract. Our data indicate that digesta particles with functional specific gravity greater or less than 1.02 have different composition and flow characteristics. Heavier particles contain more indigestible fiber and less N and are likely depleted of substrate available for microbial fermentation, are smaller in size, and have a higher passage rate/shorter retention time in the digestive tract than lighter particles.

  9. Determination of level of antibodies to bovine virus diarrhoea virus (BVDV) in bulk tank milk as a tool in the diagnosis and prophylaxis of BVDV infections in dairy herds.

    PubMed

    Niskanen, R; Alenius, S; Larsson, B; Jacobsson, S O

    1991-01-01

    An indirect ELISA has been evaluated for determination of the level of antibodies to BVDV in individual milk samples and recently in bulk tank milk from dairy herds. As part of an epidemiological study, bulk milk and individual milk samples from all cows in 15 dairy herds were analysed for antibodies to BVDV two times one year apart. There was an excellent correlation between the level of antibodies in the bulk tank milk and the prevalence of BVDV antibody positive cows. The mean prevalence of BVDV antibody positive cows in the 15 dairy herds was 45.5% (188/413) at the first sampling and 46.2% (191/413) one year later. Seven of the herds had no, or only a low number of antibody positive cows. In contrast, between 52 to 100% of the cows in seven other herds were antibody positive to BVDV. In the 15th herd all cows without antibodies at the first sampling were antibody positive to BVDV one year later, indicating a recently introduced BVDV infection in this herd. Analysis of bulk milk samples for BVDV antibodies is now routinely used in Sweden as a tool in diagnosis and prophylaxis of BVDV infections in dairy herds. The importance and advantages of this diagnostic technique, that has made it possible to establish BVDV-free dairy herds, is discussed.

  10. Preference and behavior of lactating dairy cows given free access to pasture at two herbage masses and two distances.

    PubMed

    Motupalli, P R; Sinclair, L A; Charlton, G L; Bleach, E C; Rutter, S M

    2014-11-01

    A number of factors influence dairy cow preference to be indoors or at pasture. The study reported here investigated whether herbage mass and distance affects preference and if continuously housed cows exhibited behavioral and production differences compared to cows that had free access to pasture. Dairy cows (n = 16) were offered a free choice of being in cubicle housing (1.5 cubicles/cow) or at pasture with a high (3,000 ± 200 kg DM/ha) vs. low (1,800 ± 200 kg DM/ha) herbage mass. A control group (n = 16) was confined to cubicle housing for the duration of the study. Each herbage mass was offered at either a near (38 m) or far (254 m) distance in a 2 × 2 factorial crossover design to determine motivation to access pasture. Overall, dairy cows expressed a partial preference to be at pasture, spending 68.7% of their time at pasture. This was not affected (P > 0.05) by herbage mass. Both grass intake (P = 0.001) and grazing time (P = 0.039) was greater when cows were offered the high herbage mass. Neither total mixed ration intake (P > 0.05) nor milk yield (P > 0.05) was affected by herbage mass or distance. Additionally, no interaction existed between herbage mass and distance (P > 0.05). Distance affected preference: overall time on pasture was greater at the near distance (P = 0.002); however, nighttime use was not affected by distance (P = 0.184). Housed cows produced less milk than free-choice cows and this was potentially due to a combination of decreased lying time in housed cows (P < 0.001) and grass intake (1.22 kg/d) in free-choice cows. This study shows that herbage mass is not a major factor driving dairy cow preference for pasture, but distance does affect preference for pasture during the day. Additionally, there are clear production and welfare benefits for providing cows with a choice to be at pasture or cubicle housing over being continuously housed. Further research is necessary to quantify the effect of lying time on milk yields.

  11. Periparturient dairy cows do not exhibit hepatic insulin resistance, yet adipose-specific insulin resistance occurs in cows prone to high weight loss.

    PubMed

    Zachut, M; Honig, H; Striem, S; Zick, Y; Boura-Halfon, S; Moallem, U

    2013-09-01

    The periparturient period in dairy cows is associated with alterations in insulin action in peripheral tissues; however, the molecular mechanism underlying this process is not completely understood. The objective was to examine the response to a glucose tolerance test (GTT) and to analyze insulin signaling in liver and adipose tissues in pre- and postpartum dairy cows. Liver and adipose tissue biopsies were taken before and after GTT, at 17d prepartum and again at 3 to 5d postpartum from 8 high-yielding Israeli Holstein dairy cows. Glucose clearance rate after GTT was similar pre- and postpartum. Basal insulin concentrations and the insulin response to GTT were approximately 4-fold higher prepartum than postpartum. In accordance, phosphorylation of the hepatic insulin receptor after GTT was higher prepartum than postpartum. Across periods, a positive correlation was observed between the basal and peak plasma insulin and phosphorylated insulin receptor after GTT in the liver. Hepatic phosphorylation of protein kinase B after GTT was elevated pre- and postpartum. Conversely, in adipose tissue, phosphorylation of protein kinase B after GTT pre- and postpartum was increased only in 4 out of 8 cows that lost less body weight postpartum. Our results demonstrate that hepatic insulin signaling is regulated by plasma insulin concentrations as part of the homeorhetic adjustments toward calving, and do not support a model of hepatic insulin resistance in periparturient cows. Nevertheless, we suggest that specific insulin resistance in adipose tissue occurs pre- and postpartum only in cows prone to high weight loss. The different responses among these cows imply that genetic background may affect insulin responsiveness in adipose tissue pre- and postpartum. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Effects of long-term dietary supplementation with clinoptilolite on incidence of parturient paresis and serum concentrations of total calcium, phosphate, magnesium, potassium, and sodium in dairy cows.

    PubMed

    Katsoulos, Panagiotis-Dimitrios; Roubies, Nikolaos; Panousis, Nikolaos; Arsenos, Georgios; Christaki, Efterpi; Karatzias, Harilaos

    2005-12-01

    To determine whether dietary supplementation with clinoptilolite affects the incidence of parturient paresis and serum concentrations of total calcium (tCa), inorganic phosphorus (PO(4) (2)), magnesium (Mg2+), potassium (K+), and sodium (Na+) in dairy cattle. 52 dairy cows. Procedure-Cows were placed into 3 groups. The first 2 groups (group A [n = 17] and group B [17]) were offered a concentrate supplemented with 1.25% and 2.5% clinoptilolite, respectively. The third (group C [n = 18]) served as a control and was offered the concentrate alone. The experiment started 1 month before parturition and lasted until the beginning of the next nonlactating period. Around the time of calving, all cows were monitored for the development of parturient paresis. Blood samples were taken at the commencement of the experiment, on the day of calving, and thereafter at monthly intervals to measure serum tCa, PO(4) (2), Mg2+, K+, and Na+ concentrations. Results-The incidence of parturient paresis in group B cows was significantly lower, compared with group C cows. However, serum concentrations of tCa, P(O4) (2), Mg2+, K+, and Na+ were not significantly affected by long-term supplementation with clinoptilolite. In the context of this experiment, clinoptilolite supplementation at 2.5% appeared to have reduced the incidence of parturient paresis in dairy cows, suggesting that its effectiveness depends on the amount incorporated in the ration of cows. Addition of clinoptilolite in the concentrate of dairy cows during the nonlactating period could be used as a cost-effective preventive treatment for parturient paresis.

  13. Variability, stability, and resilience of fecal microbiota in dairy cows fed whole crop corn silage.

    PubMed

    Tang, Minh Thuy; Han, Hongyan; Yu, Zhu; Tsuruta, Takeshi; Nishino, Naoki

    2017-08-01

    The microbiota of whole crop corn silage and feces of silage-fed dairy cows were examined. A total of 18 dairy cow feces were collected from six farms in Japan and China, and high-throughput Illumina sequencing of the V4 hypervariable region of 16S rRNA genes was performed. Lactobacillaceae were dominant in all silages, followed by Acetobacteraceae, Bacillaceae, and Enterobacteriaceae. In feces, the predominant families were Ruminococcaceae, Bacteroidaceae, Clostridiaceae, Lachnospiraceae, Rikenellaceae, and Paraprevotellaceae. Therefore, Lactobacillaceae of corn silage appeared to be eliminated in the gastrointestinal tract. Although fecal microbiota composition was similar in most samples, relative abundances of several families, such as Ruminococcaceae, Christensenellaceae, Turicibacteraceae, and Succinivibrionaceae, varied between farms and countries. In addition to the geographical location, differences in feeding management between total mixed ration feeding and separate feeding appeared to be involved in the variations. Moreover, a cow-to-cow variation for concentrate-associated families was demonstrated at the same farm; two cows showed high abundance of Succinivibrionaceae and Prevotellaceae, whereas another had a high abundance of Porphyromonadaceae. There was a negative correlation between forage-associated Ruminococcaceae and concentrate-associated Succinivibrionaceae and Prevotellaceae in 18 feces samples. Succinivibrionaceae, Prevotellaceae, p-2534-18B5, and Spirochaetaceae were regarded as highly variable taxa in this study. These findings help to improve our understanding of variation and similarity of the fecal microbiota of dairy cows with regard to individuals, farms, and countries. Microbiota of naturally fermented corn silage had no influence on the fecal microbiota of dairy cows.

  14. Modelling the Effect of Diet Composition on Enteric Methane Emissions across Sheep, Beef Cattle and Dairy Cows

    PubMed Central

    Bell, Matt; Eckard, Richard; Moate, Peter J.; Yan, Tianhai

    2016-01-01

    Simple Summary Enteric methane emissions produced by ruminant livestock has gained global interest due to methane being a potent greenhouse gas and ruminants being a significant source of emissions. In the absence of measurements, prediction models can facilitate the estimation of enteric methane emissions from ruminant livestock and aid investigation of mitigation options. This study developed a practical method using feed analysis information for predicting enteric methane emissions from sheep, beef cattle and dairy cows fed diets encompassing a wide range of nutrient concentrations. Abstract Enteric methane (CH4) is a by-product from fermentation of feed consumed by ruminants, which represents a nutritional loss and is also considered a contributor to climate change. The aim of this research was to use individual animal data from 17 published experiments that included sheep (n = 288), beef cattle (n = 71) and dairy cows (n = 284) to develop an empirical model to describe enteric CH4 emissions from both cattle and sheep, and then evaluate the model alongside equations from the literature. Data were obtained from studies in the United Kingdom (UK) and Australia, which measured enteric CH4 emissions from individual animals in calorimeters. Animals were either fed solely forage or a mixed ration of forage with a compound feed. The feed intake of sheep was restricted to a maintenance amount of 875 g of DM per day (maintenance level), whereas beef cattle and dairy cows were fed to meet their metabolizable energy (ME) requirement (i.e., production level). A linear mixed model approach was used to develop a multiple linear regression model to predict an individual animal’s CH4 yield (g CH4/kg dry matter intake) from the composition of its diet. The diet components that had significant effects on CH4 yield were digestible organic matter (DOMD), ether extract (EE) (both g/kg DM) and feeding level above maintenance intake: CH4 (g/kg DM intake) = 0.046 (±0.001) × DOMD − 0.113 (±0.023) × EE − 2.47 (±0.29) × (feeding level − 1), with concordance correlation coefficient (CCC) = 0.655 and RMSPE = 14.0%. The predictive ability of the model developed was as reliable as other models assessed from the literature. These components can be used to predict effects of diet composition on enteric CH4 yield from sheep, beef and dairy cattle from feed analysis information. PMID:27618107

  15. Sweating Rates of Dairy and Feedlot Cows in Stressful Thermal Environments

    USDA-ARS?s Scientific Manuscript database

    Sweating rates from heat-stressed dairy and feedlot cows were measured using a portable calorimeter. Measurements were made when cows were in shade and exposed to direct sunlight (120 to 1100 W/m2) under different air velocities (0.1 to 1.8 m/s). The effect of color of hair coat (black and white) on...

  16. Sweating rates of dairy and feedlot cows under stressful thermal environments

    USDA-ARS?s Scientific Manuscript database

    Sweating rates from heat-stressed dairy and feedlot cows were measured using a portable calorimeter. Measurements were made when cows were in shade and exposed to direct sunlight (120 to 1100 W/m2) under different air velocities (0.1 to 1.8 m/s). The effect of color of hair coat (black and white) on...

  17. Milk drop due to leptospirosis in dairy cows.

    PubMed

    2015-03-07

    Leptospiral milk drop in dairy cows. Pseudomonas aeruginosa mastitis in a cow. Systemic pasteurellosis in lambs. Encephalopathy due to water deprivation/salt poisoning suspected in weaned lambs. Biliary cystadenoma in a red deer hind. These are among matters discussed in the disease surveillance report for November 2014 from SAC Consulting: Veterinary Services (SAC C VS). British Veterinary Association.

  18. Evaluation of the association between fecal excretion of Mycobacterium avium subsp paratuberculosis and detection in colostrum and on teat skin surfaces of dairy cows

    USDA-ARS?s Scientific Manuscript database

    Objective—To evaluate the association between fecal excretion of Mycobacterium avium subsp paratuberculosis (MAP) by dairy cows in the periparturient period and detection of MAP DNA in colostrum specimens and on teat skin surfaces. Design—Cross-sectional study. Animals—112 Holstein cows. Procedures—...

  19. Impact of dietary starch concentration formulated with two types corn silage on the performance of dairy cows

    USDA-ARS?s Scientific Manuscript database

    This study explored the effect of feeding different starch concentrations and conventional or brown midrib corn silage on the performance of lactating dairy cows. Forty-eight Holstein cows were assigned to 1 of 4 diets using a randomized complete block design with a 2-wk covariate period followed by...

  20. Exploration of the genetic and biological basis of feed efficiency in mid-lactation Holstein dairy cows

    USDA-ARS?s Scientific Manuscript database

    The purpose of this study was to characterize the genetic basis underlying variation in feed efficiency in mid-lactation Holstein dairy cows. A genome-wide association study was performed for residual feed intake (RFI) and related traits using a large data set, consisting of nearly 5,000 cows. It wa...

  1. 77 FR 24671 - Compliance Guide for Residue Prevention and Agency Testing Policy for Residues

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-25

    ... cows and bob veal, that account for 90 percent of the residues found in animals presented for slaughter, pointing to the need for the Agency to continue to focus compliance efforts on cull dairy cows and bob veal. This Compliance Guide emphasizes that establishments, especially those that slaughter dairy cows and...

  2. Effect of short- and long-term heat stress on the conception risk of dairy cows under natural service and artificial insemination breeding programs.

    PubMed

    Schüller, L-K; Burfeind, O; Heuwieser, W

    2016-04-01

    The objectives of this retrospective study were to examine the effect of heat stress on natural service and artificial insemination (AI) breeding methods. We investigated the influence of short- and long-term heat stress on the conception risk (CR) of dairy cows bred by natural service or by AI with frozen-thawed or fresh semen. In addition, the relationship between breeding method and parity was determined. Cows bred by AI with frozen-thawed semen exposed to long-term heat stress (mean temperature-humidity index ≥73 in the period 21d before breeding) were 63% less likely to get pregnant compared with cows not exposed to heat stress. Cows bred by AI with fresh semen were 80% less likely to get pregnant during periods of short-term heat stress than during periods without heat stress. Furthermore, multiparous cows bred by AI with frozen-thawed or fresh semen were 22 and 67% less likely to get pregnant, respectively, than primiparous cows. No influence of heat stress or parity was noted on the CR of cows bred by natural service. The present study indicates that the likelihood of dairy cows becoming pregnant is reduced by short- and long-term heat stress depending on the type of semen employed. In particular, CR of cows inseminated with fresh semen is negatively affected by short-term heat stress and CR of cows inseminated with frozen-thawed semen is negatively affected by long-term heat stress. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Effect of a nutritional reconditioning program for thin dairy cattle on body weight, carcass quality, and fecal pathogen shedding.

    PubMed

    Maier, Gabriele U; Hoar, Bruce R; Stull, Carolyn L; Kass, Philip H; Villanueva, Veronica; Maas, John

    2011-12-15

    To assess changes in body weight, carcass quality, and fecal pathogen shedding in cull dairy cows fed a high-energy ration for 28 or 56 days prior to slaughter. Randomized clinical trial. 31 adult Holstein dairy cows. Cows were randomly assigned to a control (immediate slaughter) group or a 28-day or 56-day feeding group. Cows in the feeding groups received a high-energy feed and were weighed every 7 days. Carcasses were evaluated by USDA employees. Fecal and blood samples were collected at the start and end of the feeding periods. Body condition score and adjusted preliminary yield grade were significantly increased in both feeding groups, compared with values for the control group; body weight, hot carcass weight, dressing percentage, and ribeye area were significantly increased after 56 days, but not after 28 days, compared with values for the control group. Average daily gain and marbling score were significantly lower after feeding for 28 days versus after 56 days. Prevalence of Escherichia coli O157:H7 shedding in feces decreased from 14% to 5.6%, but this difference was not significant. Cows seropositive for antibodies against bovine leukemia virus that had signs of lymphoma and lame cows had a low average daily gain. Net loss was $71.32/cow and $112.80/cow for the 28-day and 56-day feeding groups, respectively. Feeding market dairy cows improved body condition and carcass quality. Cows seropositive for antibodies against bovine leukemia virus that have signs of lymphoma and lame cows might be poor candidates for reconditioning.

  4. Invited review: Learning from the future-A vision for dairy farms and cows in 2067.

    PubMed

    Britt, J H; Cushman, R A; Dechow, C D; Dobson, H; Humblot, P; Hutjens, M F; Jones, G A; Ruegg, P S; Sheldon, I M; Stevenson, J S

    2018-05-01

    The world's population will reach 10.4 billion in 2067, with 81% residing in Africa or Asia. Arable land available for food production will decrease to 0.15 ha per person. Temperature will increase in tropical and temperate zones, especially in the Northern Hemisphere, and this will push growing seasons and dairy farming away from arid areas and into more northern latitudes. Dairy consumption will increase because it provides essential nutrients more efficiently than many other agricultural systems. Dairy farming will become modernized in developing countries and milk production per cow will increase, doubling in countries with advanced dairying systems. Profitability of dairy farms will be the key to their sustainability. Genetic improvements will include emphasis on the coding genome and associated noncoding epigenome of cattle, and on microbiomes of dairy cattle and farmsteads. Farm sizes will increase and there will be greater lateral integration of housing and management of dairy cattle of different ages and production stages. Integrated sensors, robotics, and automation will replace much of the manual labor on farms. Managing the epigenome and microbiome will become part of routine herd management. Innovations in dairy facilities will improve the health of cows and permit expression of natural behaviors. Herds will be viewed as superorganisms, and studies of herds as observational units will lead to improvements in productivity, health, and well-being of dairy cattle, and improve the agroecology and sustainability of dairy farms. Dairy farmers in 2067 will meet the world's needs for essential nutrients by adopting technologies and practices that provide improved cow health and longevity, profitable dairy farms, and sustainable agriculture. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. The effects of adding fat to diets of lactating dairy cows on total-tract neutral detergent fiber digestibility: A meta-analysis.

    PubMed

    Weld, K A; Armentano, L E

    2017-03-01

    The objective of this meta-analysis was to determine the effects of supplemental fat on fiber digestibility in lactating dairy cattle. Published papers that evaluated the effects of adding fat to the diets of lactating dairy cattle on total-tract neutral detergent fiber digestibility (ttNDFd) and dry matter intake (DMI) were compiled. The final data set included 108 fat-supplemented treatment means, not including low-fat controls, from 38 publications. The fat-supplemented treatment means exhibited a wide range of ttNDFd (49.4% ± 9.3, mean ± standard deviation) and DMI (21.3 kg/d ± 3.5). Observations were summarized as the difference between the treatment means for fat-supplemented diets minus their respective low-fat control means. Additionally, those differences were divided by the difference in diet fatty acid (FA) concentration between the treatment and control diets. Treatment means were categorized by the type of fat supplement. Supplementing 3% FA in the diet as medium-chain fats (containing predominately 12- and 14-carbon saturated FA) or unsaturated vegetable oil decreased ttNDFd by 8.0 and 1.2 percentage units, respectively. Adding 3% calcium salts of long-chain FA or saturated fats increased ttNDFd by 3.2 and 1.3 percentage units, respectively. No other fat supplement type affected ttNDFd. Except for saturated fats and animal-vegetable fats, supplementing dietary fat decreased DMI. When the values for changes in ttNDFd are regressed on changes in DMI there was a positive relationship, though the coefficient of determination is only 0.20. When changes in ttNDFd were regressed on changes in DMI, within individual fat supplement types, there was no relationship within calcium salt supplements. There was a positive relationship between changes in ttNDFd and changes in DMI for saturated fats. Neither relationship suggested that the increased ttNDFd with calcium salts or saturated FA was due to decreased DMI for these fat sources. A subset of the means included measured ruminal neutral detergent fiber digestion. Analysis of this smaller data set did not suggest that ruminal neutral detergent fiber digestibility is depressed by fat supplementation more than ttNDFd. Adding fats, other than those with medium-chain FA, consistently increased digestible energy density of the diet. However, due to reduced DMI, this increased energy density may not result in increased digestible nutrient intake. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Effect of ground corn cobs as a fiber source in total mixed ration on feed intake, milk yield and milk composition in tropical lactating crossbred Holstein cows.

    PubMed

    Wachirapakorn, Chalong; Pilachai, Krung; Wanapat, Metha; Pakdee, Pawadee; Cherdthong, Anusorn

    2016-12-01

    The aim of this study was to evaluate the effect of ground corn cobs (GCC) as a sole fiber source in total mixed ration (TMR) on feed intake, milk yield and milk composition in tropical lactating crossbred Holstein cows. Four multiparous crossbreds Holstein Friesian dairy cows with an initial body weight (BW) of 415.5 ± 26.20 kg were used in a 4 × 4 Latin square design. The dietary treatments of TMR contained a roughage-to-concentrate ratio of 40:60. The roughage source was used at different ratios of GCC to rice straw (RS) at 100:0, 82.5:17.5, 67.5:32.5, and 50:50 for TMR1 to TMR4, respectively. The results revealed significant improvements in intake of dry matter, protein, neutral detergent fiber (NDF) and metabolizable energy (ME) for TMR1 and TMR2 ( P  < 0.05), while the digestibility of nutrients was not altered by the treatments ( P  ≥ 0.05). Ground corn cobs was used for up to 100% of the total roughage without affecting milk production. Moreover, ruminal pH, temperature, ammonia-nitrogen (NH 3 -N) and volatile fatty acid (VFA) concentrations were not impacted by the treatments ( P  > 0.05). However, milk yield was significantly different among the GCC:RS ratios ( P  < 0.05) and was the highest in TMR1 and TMR2 (13.1 kg/d), while the milk compositions were not changed ( P  > 0.05). The results imply that using GCC as a whole roughage source significantly improved nutrients intake and milk yield in dairy cows raised in tropical areas.

  7. Dairy farmers with larger herd sizes adopt more precision dairy technologies.

    PubMed

    Gargiulo, J I; Eastwood, C R; Garcia, S C; Lyons, N A

    2018-06-01

    An increase in the average herd size on Australian dairy farms has also increased the labor and animal management pressure on farmers, thus potentially encouraging the adoption of precision technologies for enhanced management control. A survey was undertaken in 2015 in Australia to identify the relationship between herd size, current precision technology adoption, and perception of the future of precision technologies. Additionally, differences between farmers and service providers in relation to perception of future precision technology adoption were also investigated. Responses from 199 dairy farmers, and 102 service providers, were collected between May and August 2015 via an anonymous Internet-based questionnaire. Of the 199 dairy farmer responses, 10.4% corresponded to farms that had fewer than 150 cows, 37.7% had 151 to 300 cows, 35.5% had 301 to 500 cows; 6.0% had 501 to 700 cows, and 10.4% had more than 701 cows. The results showed that farmers with more than 500 cows adopted between 2 and 5 times more specific precision technologies, such as automatic cup removers, automatic milk plant wash systems, electronic cow identification systems and herd management software, when compared with smaller farms. Only minor differences were detected in perception of the future of precision technologies between either herd size or farmers and service providers. In particular, service providers expected a higher adoption of automatic milking and walk over weighing systems than farmers. Currently, the adoption of precision technology has mostly been of the type that reduces labor needs; however, respondents indicated that by 2025 adoption of data capturing technology for monitoring farm system parameters would be increased. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Considering choline as methionine precursor, lipoproteins transporter, hepatic promoter and antioxidant agent in dairy cows.

    PubMed

    Abbasi, Imtiaz Hussain Raja; Abbasi, Farzana; Soomro, Rab N; Abd El-Hack, Mohamed E; Abdel-Latif, Mervat A; Li, Wen; Hao, Ren; Sun, Feifei; Bodinga, Bello M; Hayat, Khawar; Yao, Junhu; Cao, Yangchun

    2017-11-25

    During the transition period, fatty liver syndrome may be caused in cows undergo negative energy balance, ketosis or hypocalcemia, retained placenta or mastitis problems. During the transition stage, movement of non-esterified fatty acids (NEFA) increases into blood which declines the hepatic metabolism or reproduction and consequently, lactation performance of dairy cows deteriorates. Most of studies documented that, choline is an essential nutrient which plays a key role to decrease fatty liver, NEFA proportion, improve synthesis of phosphatidylcholine, maintain lactation or physiological function and work as anti-oxidant in the transition period of dairy cows. Also, it has a role in the regulation of homocysteine absorption through betaine metabolite which significantly improves plasma α-tocopherol and interaction among choline, methionine and vitamin E. Many studies reported that, supplementation of rumen protected form of choline during transition time is a sustainable method as rumen protected choline (RPC) perform diverse functions like, increase glucose level or energy balance, fertility or milk production, methyl group metabolism, or signaling of cell methionine expansion or methylation reactions, neurotransmitter synthesis or betaine methylation, increase transport of lipids or lipoproteins efficiency and reduce NEFA or triacylglycerol, clinical or sub clinical mastitis and general morbidity in the transition dairy cows. The purpose of this review is that to elucidate the choline importance and functions in the transition period of dairy cows and deal all morbidity during transition or lactation period. Furthermore, further work is needed to conduct more studies on RPC requirements in dairy cows ration under different feeding conditions and also to elucidate the genetic and molecular mechanisms of choline in ruminants industry.

  9. Salmonella diversity and burden in cows on and culled from dairy farms in the Texas High Plains

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to further characterize the epidemiology of Salmonella carried by dairy cows culled from herds in the Texas High Plains and marketed for human consumption. Feces were collected from 706 animals culled from a convenience sample of 9 dairies. In addition, individually...

  10. Remember the basics when evaluating milk quality on a dairy farm

    USDA-ARS?s Scientific Manuscript database

    The number one goal on a dairy farm should always be to minimize bacterial numbers, regardless of pathogen. This should happen all day in all areas where the cows are housed (not just at milking time and not just the lactating cows). An overall goal for dairy farmers is to have the highest-quality ...

  11. The Effect of Seasonal Thermal Stress on Lipid Mobilisation, Antioxidant Status and Reproductive Performance in Dairy Cows.

    PubMed

    Turk, R; Podpečan, O; Mrkun, J; Flegar-Meštrić, Z; Perkov, S; Zrimšek, P

    2015-08-01

    Heat stress is a major factor contributing to low fertility of dairy cows with a great economic impact in dairy industry. Heat-stressed dairy cows usually have reduced nutrient intake, resulting in a higher degree of negative energy balance (NEB). The aim of this study was to investigate the seasonal thermal effect on lipid metabolism, antioxidant activity and reproductive performance in dairy cows. Thirty-two healthy dairy heifers were included in the study. According to the ambient temperature, animals were divided into two groups: winter (N = 14) and summer season (N = 18). Metabolic parameters, paraoxonase-1 (PON1) activity and total antioxidant status (TAS) were monitored at the time of insemination (basal values) and from 1 week before until 8 weeks after calving. Number of services per conception and calving-to-conception (CC) interval were calculated from the farm recording data. Serum triglyceride, non-esterified fatty acids (NEFA) and beta-hydroxybutyrate (BHB) concentrations were significantly increased after calving in summer compared to winter, indicating higher degree of NEB in cows during summer. PON1 activity was significantly decreased after calving in both summer and winter group. TAS concentration was significantly lower in summer than that in winter. A significantly higher number of services were needed for conception in summer compared to winter, and CC interval was significantly longer in summer than that in winter as well. Additionally, reproductive performance significantly correlated with the severity of NEB, suggesting that lipid mobilization and lower antioxidant status contributed to poor reproduction ability in dairy cows during hot months. © 2015 Blackwell Verlag GmbH.

  12. Evaluation of the National Research Council (2001) dairy model and derivation of new prediction equations. 1. Digestibility of fiber, fat, protein, and nonfiber carbohydrate.

    PubMed

    White, R R; Roman-Garcia, Y; Firkins, J L; VandeHaar, M J; Armentano, L E; Weiss, W P; McGill, T; Garnett, R; Hanigan, M D

    2017-05-01

    Evaluation of ration balancing systems such as the National Research Council (NRC) Nutrient Requirements series is important for improving predictions of animal nutrient requirements and advancing feeding strategies. This work used a literature data set (n = 550) to evaluate predictions of total-tract digested neutral detergent fiber (NDF), fatty acid (FA), crude protein (CP), and nonfiber carbohydrate (NFC) estimated by the NRC (2001) dairy model. Mean biases suggested that the NRC (2001) lactating cow model overestimated true FA and CP digestibility by 26 and 7%, respectively, and under-predicted NDF digestibility by 16%. All NRC (2001) estimates had notable mean and slope biases and large root mean squared prediction error (RMSPE), and concordance (CCC) ranged from poor to good. Predicting NDF digestibility with independent equations for legumes, corn silage, other forages, and nonforage feeds improved CCC (0.85 vs. 0.76) compared with the re-derived NRC (2001) equation form (NRC equation with parameter estimates re-derived against this data set). Separate FA digestion coefficients were derived for different fat supplements (animal fats, oils, and other fat types) and for the basal diet. This equation returned improved (from 0.76 to 0.94) CCC compared with the re-derived NRC (2001) equation form. Unique CP digestibility equations were derived for forages, animal protein feeds, plant protein feeds, and other feeds, which improved CCC compared with the re-derived NRC (2001) equation form (0.74 to 0.85). New NFC digestibility coefficients were derived for grain-specific starch digestibilities, with residual organic matter assumed to be 98% digestible. A Monte Carlo cross-validation was performed to evaluate repeatability of model fit. In this procedure, data were randomly subsetted 500 times into derivation (60%) and evaluation (40%) data sets, and equations were derived using the derivation data and then evaluated against the independent evaluation data. Models derived with random study effects demonstrated poor repeatability of fit in independent evaluation. Similar equations derived without random study effects showed improved fit against independent data and little evidence of biased parameter estimates associated with failure to include study effects. The equations derived in this analysis provide interesting insight into how NDF, starch, FA, and CP digestibilities are affected by intake, feed type, and diet composition. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

  13. Clinical ketosis and standing behavior in transition cows.

    PubMed

    Itle, A J; Huzzey, J M; Weary, D M; von Keyserlingk, M A G

    2015-01-01

    Ketosis is a common disease in dairy cattle, especially in the days after calving, and it is often undiagnosed. The objective of this study was to compare the standing behavior of dairy cows with and without ketosis during the days around calving to determine if changes in this behavior could be useful in the early identification of sick cows. Serum β-hydroxybutyrate (BHBA) was measured in 184 cows on a commercial dairy farm twice weekly from 2 to 21d after calving. Standing behavior was measured from 7d before calving to 21d after calving using data loggers. Retrospectively, 15 cows with clinical ketosis (3 consecutive BHBA samples >1.2mmol/L and at least one sample of BHBA >2.9mmol/L) were matched with 15 nonketotic cows (BHBA <1.2mmol/L). Five periods were defined for the statistical analyses: wk -1 (d -7 to -1), d 0 (day of calving), wk +1 (d 1 to 7), wk +2 (d 8 to 14), and wk +3 (d 15 to 21). The first signs of clinical ketosis occurred 4.5±2.1d after calving. Total daily standing time was longer for clinically ketotic cows compared with nonketotic cows during wk -1 (14.3±0.6 vs. 12.0±0.7h/d) and on d 0 (17.2±0.9 vs. 12.7±0.9h/d) but did not differ during the other periods. Clinically ketotic cows exhibited fewer standing bouts compared with nonketotic cows on d 0 only (14.6±1.9 vs. 20.9±1.8bouts/d). Average standing bout duration was also longer for clinically ketotic cows on d 0 compared with nonketotic cows [71.3min/bout (CI: 59.3 to 85.5) vs. 35.8min/bout (CI: 29.8 to 42.9)] but was not different during the other periods. Differences in standing behavior in the week before and on the day of calving may be useful for the early detection of clinical ketosis in dairy cows. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Effect of Heat Stress on Concentrations of Faecal Cortisol Metabolites in Dairy Cows.

    PubMed

    Rees, A; Fischer-Tenhagen, C; Heuwieser, W

    2016-06-01

    The negative impact of heat stress on health and productivity of dairy cows is well known. Heat stress can be quantified with the temperature-humidity index (THI) and is defined as a THI ≥ 72. Additionally, animal welfare is affected in cows living under heat stress conditions. Finding a way to quantify heat stress in dairy cows has been of increasing interest over the past decades. Therefore, the objective of this study was to evaluate concentrations of faecal glucocorticoid metabolites [i.e. 11,17-dioxoandrostanes (11,17-DOA)] as an indirect stress parameter in dairy cows without heat stress (DOA 0), with heat stress on a single day (acute heat stress, DOA 1) or with more than a single day of heat stress (chronic heat stress, DOA 2). Cows were housed in five farms under moderate European climates. Two statistical approaches (approach 1 and approach 2) were assessed. Using approach 1, concentrations of faecal 11,17-DOA were compared among DOA 0, DOA 1 and DOA 2 samples regardless of their origin (i.e. cow, unpaired comparison with a one-way anova). Using approach 2, a cow was considered as its own control; that is 11,17-DOA was treated as a cow-specific factor and only paired samples were included in the analysis for this approach (paired comparison with t-tests). In approach 1 (p = 0.006) and approach 2 (p = 0.038), 11,17-DOA values of cows under acute heat stress were higher compared to those of cows without heat stress. Our results also indicate that acute heat stress has to be considered as a confounder in studies measuring faecal glucocorticoid metabolites in cows to evaluate other stressful situations. © 2016 Blackwell Verlag GmbH.

  15. Differences in the Fecal Concentrations and Genetic Diversities of Campylobacter jejuni Populations among Individual Cows in Two Dairy Herds

    PubMed Central

    Ross, Colleen M.; Pleydell, Eve J.; Muirhead, Richard W.

    2012-01-01

    Dairy cows have been identified as common carriers of Campylobacter jejuni, which causes many of the human gastroenteritis cases reported worldwide. To design on-farm management practices that control the human infection sourced from dairy cows, the first step is to acquire an understanding of the excretion patterns of the cow reservoir. We monitored the same 35 cows from two dairy farms for C. jejuni excretion fortnightly for up to 12 months. The objective was to examine the concentration of C. jejuni and assess the genetic relationship of the C. jejuni populations excreted by individual cows. Significant differences (P < 0.01) in C. jejuni fecal concentration were observed among the 35 cows, with median concentrations that varied by up to 3.6 log10 · g−1 feces. A total of 36 different genotypes were identified from the 514 positive samples by using enterobacterial repetitive intergenic consensus (ERIC)-PCR. Although 22 of these genotypes were excreted by more than one cow, the analysis of frequencies and distribution of the genotypes by model-based statistics revealed a high degree of individuality in the C. jejuni population in each cow. The observed variation in the frequency of excretion of a genotype among cows and the analysis by multilocus sequence typing (MLST) of these genotypes suggest that excretion of C. jejuni in high numbers is due to a successful adaptation of a particular genotype to a particular cow's gut environment, but that animal-related factors render some individual cows resistant to colonization by particular genotypes. The reasons for differences in C. jejuni colonization of animals warrant further investigation. PMID:22904055

  16. Factors affecting reproductive performance of dairy cows.

    PubMed

    Coleman, D A; Thayne, W V; Dailey, R A

    1985-07-01

    We conducted two studies to determine how herd management practices and traits of individual cows affect performance of the herd and of the cow within a herd. Management practices, reproductive performance of the herd, and relationships between management and reproductive performance were characterized on 83 dairy farms with 7596 cows. Data included 21 management variables (e.g., facilities, herd health program, estrous detection program) and 8 performance variables obtained from Dairy Herd Improvement or unofficial records (e.g., size of herd, production, days open). Although varying among herds, annual average herd incidences of reproductive disorders and reproductive performance were similar to those reported. Managerial practices influenced incidences of retained placenta and uterine infection, days open of cows not bred and of all cows, services per conception, and percentages of herd open more than 100 days and culled for low production. Veterinarian was the most consistent variable influencing herd reproductive performance. Data also were collected from production and lifetime records of 2532 cows in 19 herds. Reproductive performance was affected by season of calving, production, maturity, and reproductive disorders. Several cows with extremely poor reproductive records were maintained.

  17. Concentrations of sodium, potassium, magnesium, and iron in the serum of dairy cows with subclinical ketosis.

    PubMed

    Zhang, Zhigang; Li, Xiaobing; Wang, Hongbin; Guo, Changming; Gao, Li; Liu, Lei; Gao, Ruifeng; Zhang, Yi; Li, Peng; Wang, Zhe; Li, Yanfei; Liu, Guowen

    2011-12-01

    Serum concentrations of sodium, potassium, magnesium, and iron were measured in dairy cows with subclinical ketosis. Compared with healthy cows, the subclinically ketotic cows had significantly higher levels of non-esterified fatty acids and β-hydroxybutirate in serum and significantly lower levels of blood glucose (p < 0.01). No significant differences were observed, suggesting that the mineral elements measured are not involved in the pathogenesis of subclinical ketosis.

  18. A decision-tree model to detect post-calving diseases based on rumination, activity, milk yield, BW and voluntary visits to the milking robot.

    PubMed

    Steensels, M; Antler, A; Bahr, C; Berckmans, D; Maltz, E; Halachmi, I

    2016-09-01

    Early detection of post-calving health problems is critical for dairy operations. Separating sick cows from the herd is important, especially in robotic-milking dairy farms, where searching for a sick cow can disturb the other cows' routine. The objectives of this study were to develop and apply a behaviour- and performance-based health-detection model to post-calving cows in a robotic-milking dairy farm, with the aim of detecting sick cows based on available commercial sensors. The study was conducted in an Israeli robotic-milking dairy farm with 250 Israeli-Holstein cows. All cows were equipped with rumination- and neck-activity sensors. Milk yield, visits to the milking robot and BW were recorded in the milking robot. A decision-tree model was developed on a calibration data set (historical data of the 10 months before the study) and was validated on the new data set. The decision model generated a probability of being sick for each cow. The model was applied once a week just before the veterinarian performed the weekly routine post-calving health check. The veterinarian's diagnosis served as a binary reference for the model (healthy-sick). The overall accuracy of the model was 78%, with a specificity of 87% and a sensitivity of 69%, suggesting its practical value.

  19. Effects of corn silage hybrids and dietary nonforage fiber sources on feed intake, digestibility, ruminal fermentation, and productive performance of lactating Holstein dairy cows.

    PubMed

    Holt, M S; Williams, C M; Dschaak, C M; Eun, J-S; Young, A J

    2010-11-01

    This experiment was conducted to determine the effects of corn silage hybrids and nonforage fiber sources (NFFS) in high forage diets formulated with high dietary proportions of alfalfa hay (AH) and corn silage (CS) on ruminal fermentation and productive performance by early lactating dairy cows. Eight multiparous Holstein cows (4 ruminally fistulated) averaging 36±6.2 d in milk were used in a duplicated 4 × 4 Latin square design experiment with a 2 × 2 factorial arrangement of treatments. Cows were fed 1 of 4 dietary treatments during each of the four 21-d replicates. Treatments were (1) conventional CS (CCS)-based diet without NFFS, (2) CCS-based diet with NFFS, (3) brown midrib CS (BMRCS)-based diet without NFFS, and (4) BMRCS-based diet with NFFS. Diets were isonitrogenous and isocaloric. Sources of NFFS consisted of ground soyhulls and pelleted beet pulp to replace a portion of AH and CS in the diets. In vitro 30-h neutral detergent fiber (NDF) degradability was greater for BMRCS than for CCS (42.3 vs. 31.2%). Neither CS hybrids nor NFFS affected intake of dry matter (DM) and nutrients. Digestibility of N, NDF, and acid detergent fiber tended to be greater for cows consuming CCS-based diets. Milk yield was not influenced by CS hybrids and NFFS. However, a tendency for an interaction between CS hybrids and NFFS occurred, with increased milk yield due to feeding NFFS with the BMRCS-based diet. Yields of milk fat and 3.5% fat-corrected milk decreased when feeding the BMRCS-based diet, and a tendency existed for an interaction between CS hybrids and NFFS because milk fat concentration further decreased by feeding NFFS with BMRCS-based diet. Although feed efficiency (milk/DM intake) was not affected by CS hybrids and NFFS, an interaction was found between CS hybrids and NFFS because feed efficiency increased when NFFS was fed only with BMRCS-based diet. Total volatile fatty acid production and individual molar proportions were not affected by diets. Dietary treatments did not influence ruminal pH profiles, except that duration (h/d) of pH <5.8 decreased when NFFS was fed in a CCS-based diet but not in a BMRCS-based diet, causing a tendency for an interaction between CS hybrids and NFFS. Overall measurements in our study reveal that high forage NDF concentration (20% DM on average) may eliminate potentially positive effects of BMRCS. In the high forage diets, NFFS exerted limited effects on productive performance when they replaced AH and CS. Although the high quality AH provided adequate NDF (38.3% DM) for optimal rumen fermentative function, the low NDF concentration of the AH and the overall forage particle size reduced physically effective fiber and milk fat concentration. Copyright © 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. High-quality care improves outcome in recumbent dairy cattle.

    PubMed

    Poulton, P J; Vizard, A L; Anderson, G A; Pyman, M F

    2016-06-01

    To investigate the influence of the quality of care on outcome and occurrence of secondary damage in recumbent dairy cows. Recumbent dairy cows were monitored during their recumbency under field conditions in South Gippsland, Victoria, Australia. The cause of the original recumbency of 218 downer cows was determined and any secondary damage, day 7 status, final outcome and the nursing conditions of the cows were recorded. A four-tiered grading system describing nursing quality was developed to allow analysis of its influence on outcome and on the occurrence of secondary damage. Day 7 outcome, final outcome and occurrence of important secondary damage were very strongly associated with the level of overall care provided to the recumbent cows. There was a decrease in the percentage of cows recovering by day 7 from 33% to 0%, a decrease from 45% to 0% of cows eventually recovering and an increase from 68% to 100% of cows with clinically important secondary damage as overall care decreased. Management of recumbent cattle is potentially a significant animal welfare issue for the dairy industry and their care is a very important but often under-appreciated aspect of their management. Recovery is positively influenced by high-quality care by improving the chances of recovery from the initial cause of recumbency and by reducing the occurrence of secondary damage. Recumbent cows must either be nursed at a high level of care or euthanased promptly. © 2016 Australian Veterinary Association.

Top