Sample records for digester grid interconnections

  1. A Guidebook on Grid Interconnection and Islanded Operation of Mini-Grid Power Systems Up to 200 kW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greacen, Chris; Engel, Richard; Quetchenbach, Thomas

    A Guidebook on Grid Interconnection and Islanded Operation of Mini-Grid Power Systems Up to 200 kW is intended to help meet the widespread need for guidance, standards, and procedures for interconnecting mini-grids with the central electric grid as rural electrification advances in developing countries, bringing these once separate power systems together. The guidebook aims to help owners and operators of renewable energy mini-grids understand the technical options available, safety and reliability issues, and engineering and administrative costs of different choices for grid interconnection. The guidebook is intentionally brief but includes a number of appendices that point the reader to additionalmore » resources for indepth information. Not included in the scope of the guidebook are policy concerns about “who pays for what,” how tariffs should be set, or other financial issues that are also paramount when “the little grid connects to the big grid.”« less

  2. National Offshore Wind Energy Grid Interconnection Study Full Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel, John P.; Liu, Shu; Ibanez, Eduardo

    2014-07-30

    The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States.

  3. Comparative Assessment of Tactics to Improve Primary Frequency Response Without Curtailing Solar Output in High Photovoltaic Interconnection Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Jin; Zhang, Yingchen; You, Shutang

    Power grid primary frequency response will be significantly impaired by Photovoltaic (PV) penetration increase because of the decrease in inertia and governor response. PV inertia and governor emulation requires reserving PV output and leads to solar energy waste. This paper exploits current grid resources and explores energy storage for primary frequency response under high PV penetration at the interconnection level. Based on the actual models of the U.S. Eastern Interconnection grid and the Texas grid, effects of multiple factors associated with primary frequency response, including the governor ratio, governor deadband, droop rate, fast load response. are assessed under high PVmore » penetration scenarios. In addition, performance of batteries and supercapacitors using different control strategies is studied in the two interconnections. The paper quantifies the potential of various resources to improve interconnection-level primary frequency response under high PV penetration without curtailing solar output.« less

  4. Advanced Platform for Development and Evaluation of Grid Interconnection Systems Using Hardware-in-the-Loop: Part III -- Grid Interconnection System Evaluator: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lundstrom, B.; Shirazi, M.; Coddington, M.

    2013-01-01

    This paper, presented at the IEEE Green Technologies Conference 2013, describes a Grid Interconnection System Evaluator (GISE) that leverages hardware-in-the-loop (HIL) simulation techniques to rapidly evaluate the grid interconnection standard conformance of an ICS according to the procedures in IEEE Std 1547.1 (TM). The architecture and test sequencing of this evaluation tool, along with a set of representative ICS test results from three different photovoltaic (PV) inverters, are presented. The GISE adds to the National Renewable Energy Laboratory's (NREL) evaluation platform that now allows for rapid development of ICS control algorithms using controller HIL (CHIL) techniques, the ability to testmore » the dc input characteristics of PV-based ICSs through the use of a PV simulator capable of simulating real-world dynamics using power HIL (PHIL), and evaluation of ICS grid interconnection conformance.« less

  5. Advanced Platform for Development and Evaluation of Grid Interconnection Systems Using Hardware-in-the-Loop: Part III - Grid Interconnection System Evaluator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lundstrom, B.; Shirazi, M.; Coddington, M.

    2013-01-01

    This paper describes a Grid Interconnection System Evaluator (GISE) that leverages hardware-in-the-loop (HIL) simulation techniques to rapidly evaluate the grid interconnection standard conformance of an ICS according to the procedures in IEEE Std 1547.1. The architecture and test sequencing of this evaluation tool, along with a set of representative ICS test results from three different photovoltaic (PV) inverters, are presented. The GISE adds to the National Renewable Energy Laboratory's (NREL) evaluation platform that now allows for rapid development of ICS control algorithms using controller HIL (CHIL) techniques, the ability to test the dc input characteristics of PV-based ICSs through themore » use of a PV simulator capable of simulating real-world dynamics using power HIL (PHIL), and evaluation of ICS grid interconnection conformance.« less

  6. Comparative Analysis and Considerations for PV Interconnection Standards in the United States and China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, David Wenzhong; Muljadi, Eduard; Tian, Tian

    The main objectives of this report are to evaluate China's photovoltaic (PV) interconnection standards and the U.S. counterparts and to propose recommendations for future revisions to these standards. This report references the 2013 report Comparative Study of Standards for Grid-Connected PV System in China, the U.S. and European Countries, which compares U.S., European, and China's PV grid interconnection standards; reviews various metrics for the characterization of distribution network with PV; and suggests modifications to China's PV interconnection standards and requirements. The recommendations are accompanied by assessments of four high-penetration PV grid interconnection cases in the United States to illustrate solutionsmore » implemented to resolve issues encountered at different sites. PV penetration in China and in the United States has significantly increased during the past several years, presenting comparable challenges depending on the conditions of the grid at the point of interconnection; solutions are generally unique to each interconnected PV installation or PV plant.« less

  7. Advanced Platform for Development and Evaluation of Grid Interconnection Systems Using Hardware-in-the-Loop (Poster)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lundstrom, B.; Shirazi, M.; Coddington, M.

    2013-02-01

    This poster describes a Grid Interconnection System Evaluator (GISE) that leverages hardware-in-the-loop (HIL) simulation techniques to rapidly evaluate the grid interconnection standard conformance of an ICS according to the procedures in IEEE Std 1547.1TM. The architecture and test sequencing of this evaluation tool, along with a set of representative ICS test results from three different photovoltaic (PV) inverters, are presented. The GISE adds to the National Renewable Energy Laboratory's (NREL) evaluation platform that now allows for rapid development of ICS control algorithms using controller HIL (CHIL) techniques, the ability to test the dc input characteristics of PV-based ICSs through themore » use of a PV simulator capable of simulating real-world dynamics using power HIL (PHIL), and evaluation of ICS grid interconnection conformance.« less

  8. Distributed Optimal Power Flow of AC/DC Interconnected Power Grid Using Synchronous ADMM

    NASA Astrophysics Data System (ADS)

    Liang, Zijun; Lin, Shunjiang; Liu, Mingbo

    2017-05-01

    Distributed optimal power flow (OPF) is of great importance and challenge to AC/DC interconnected power grid with different dispatching centres, considering the security and privacy of information transmission. In this paper, a fully distributed algorithm for OPF problem of AC/DC interconnected power grid called synchronous ADMM is proposed, and it requires no form of central controller. The algorithm is based on the fundamental alternating direction multiplier method (ADMM), by using the average value of boundary variables of adjacent regions obtained from current iteration as the reference values of both regions for next iteration, which realizes the parallel computation among different regions. The algorithm is tested with the IEEE 11-bus AC/DC interconnected power grid, and by comparing the results with centralized algorithm, we find it nearly no differences, and its correctness and effectiveness can be validated.

  9. Interconnection, Integration, and Interactive Impact Analysis of Microgrids and Distribution Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Ning; Wang, Jianhui; Singh, Ravindra

    2017-01-01

    Distribution management systems (DMSs) are increasingly used by distribution system operators (DSOs) to manage the distribution grid and to monitor the status of both power imported from the transmission grid and power generated locally by a distributed energy resource (DER), to ensure that power flows and voltages along the feeders are maintained within designed limits and that appropriate measures are taken to guarantee service continuity and energy security. When microgrids are deployed and interconnected to the distribution grids, they will have an impact on the operation of the distribution grid. The challenge is to design this interconnection in such amore » way that it enhances the reliability and security of the distribution grid and the loads embedded in the microgrid, while providing economic benefits to all stakeholders, including the microgrid owner and operator and the distribution system operator.« less

  10. Interconnection Guidelines

    EPA Pesticide Factsheets

    The Interconnection Guidelines provide general guidance on the steps involved with connecting biogas recovery systems to the utility electrical power grid. Interconnection best practices including time and cost estimates are discussed.

  11. IEEE Smart Grid Series of Standards IEEE 2030 (Interoperability) and IEEE 1547 (Interconnection) Status: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basso, T.; DeBlasio, R.

    The IEEE American National Standards smart grid publications and standards development projects IEEE 2030, which addresses smart grid interoperability, and IEEE 1547TM, which addresses distributed resources interconnection with the grid, have made substantial progress since 2009. The IEEE 2030TM and 1547 standards series focus on systems-level aspects and cover many of the technical integration issues involved in a mature smart grid. The status and highlights of these two IEEE series of standards, which are sponsored by IEEE Standards Coordinating Committee 21 (SCC21), are provided in this paper.

  12. 76 FR 29771 - National Institute of Diabetes and Digestive and Kidney Diseases; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-23

    ... Diabetes and Digestive and Kidney Diseases; Notice of Closed Meetings Pursuant to section 10(d) of the... Diabetes and Digestive and Kidney Diseases Special Emphasis Panel, NIDDK Interconnectivity Network. Date... and Digestive and Kidney Diseases Special Emphasis Panel, Digestive Diseases Program Projects. Date...

  13. U.S. Laws and Regulations for Renewable Energy Grid Interconnections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chernyakhovskiy, Ilya; Tian, Tian; McLaren, Joyce

    Rapidly declining costs of wind and solar energy technologies, increasing concerns about the environmental and climate change impacts of fossil fuels, and sustained investment in renewable energy projects all point to a not-so-distant future in which renewable energy plays a pivotal role in the electric power system of the 21st century. In light of public pressures and market factors that hasten the transition towards a low-carbon system, power system planners and regulators are preparing to integrate higher levels of variable renewable generation into the grid. Updating the regulations that govern generator interconnections and operations is crucial to ensure system reliabilitymore » while creating an enabling environment for renewable energy development. This report presents a chronological review of energy laws and regulations concerning grid interconnection procedures in the United States, highlighting the consequences of policies for renewable energy interconnections. Where appropriate, this report places interconnection policies and their impacts on renewable energy within the broader context of power market reform.« less

  14. Active power control of solar PV generation for large interconnection frequency regulation and oscillation damping

    DOE PAGES

    Liu, Yong; Zhu, Lin; Zhan, Lingwei; ...

    2015-06-23

    Because of zero greenhouse gas emission and decreased manufacture cost, solar photovoltaic (PV) generation is expected to account for a significant portion of future power grid generation portfolio. Because it is indirectly connected to the power grid via power electronic devices, solar PV generation system is fully decoupled from the power grid, which will influence the interconnected power grid dynamic characteristics as a result. In this study, the impact of solar PV penetration on large interconnected power system frequency response and inter-area oscillation is evaluated, taking the United States Eastern Interconnection (EI) as an example. Furthermore, based on the constructedmore » solar PV electrical control model with additional active power control loops, the potential contributions of solar PV generation to power system frequency regulation and oscillation damping are examined. The advantages of solar PV frequency support over that of wind generator are also discussed. Finally, simulation results demonstrate that solar PV generations can effectively work as ‘actuators’ in alleviating the negative impacts they bring about.« less

  15. IEEE 1547 Standards Advancing Grid Modernization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basso, Thomas; Chakraborty, Sudipta; Hoke, Andy

    Technology advances including development of advanced distributed energy resources (DER) and grid-integrated operations and controls functionalities have surpassed the requirements in current standards and codes for DER interconnection with the distribution grid. The full revision of IEEE Standards 1547 (requirements for DER-grid interconnection and interoperability) and 1547.1 (test procedures for conformance to 1547) are establishing requirements and best practices for state-of-the-art DER including variable renewable energy sources. The revised standards will also address challenges associated with interoperability and transmission-level effects, in addition to strictly addressing the distribution grid needs. This paper provides the status and future direction of the ongoingmore » development focus for the 1547 standards.« less

  16. California | Midmarket Solar Policies in the United States | Solar Research

    Science.gov Websites

    interconnection fee ($75-$150), pay all "non-bypassable" charges for all electricity consumed from the distribution grid, non-export facilities connecting to an IOU's transmission grid and all net-metered systems Interconnection All non-exporting systems or net metering facility Fast track Exporting facility ≤3MW on a 12 kV

  17. Effect of particle size distribution of maize and soybean meal on the precaecal amino acid digestibility in broiler chickens.

    PubMed

    Siegert, W; Ganzer, C; Kluth, H; Rodehutscord, M

    2018-02-01

    1. Herein, it was investigated whether different particle size distributions of feed ingredients achieved by grinding through a 2- or 3-mm grid would have an effect on precaecal (pc) amino acid (AA) digestibility. Maize and soybean meal were used as the test ingredients. 2. Maize and soybean meal was ground with grid sizes of 2 or 3 mm. Nine diets were prepared. The basal diet contained 500 g/kg of maize starch. The other experimental diets contained maize or soybean meal samples at concentrations of 250 and 500, and 150 and 300 g/kg, respectively, instead of maize starch. Each diet was tested using 6 replicate groups of 10 birds each. The regression approach was applied to calculate the pc AA digestibility of the test ingredients. 3. The reduction of the grid size from 3 to 2 mm reduced the average particle size of both maize and soybean meal, mainly by reducing the proportion of coarse particles. Reducing the grid size significantly (P < 0.050) increased the pc digestibility of all AA in the soybean meal. In maize, reducing the grid size decreased the pc digestibility of all AA numerically, but not significantly (P > 0.050). The mean numerical differences in pc AA digestibility between the grid sizes were 0.045 and 0.055 in maize and soybean meal, respectively. 4. Future studies investigating the pc AA digestibility should specify the particle size distribution and should investigate the test ingredients ground similarly for practical applications.

  18. Multiplex Superconducting Transmission Line for green power consolidation on a Smart Grid

    NASA Astrophysics Data System (ADS)

    McIntyre, P.; Gerity, J.; Kellams, J.; Sattarov, A.

    2017-12-01

    A multiplex superconducting transmission line (MSTL) is being developed for applications requiring interconnection of multi-MW electric power generation among a number of locations. MSTL consists of a cluster of many 2- or 3-conductor transmission lines within a coaxial cryostat envelope. Each line operates autonomously, so that the interconnection of multiple power loads can be done in a failure-tolerant network. Specifics of the electrical, mechanical, and cryogenic design are presented. The consolidation of transformation and conditioning and the failure-tolerant interconnects have the potential to offer important benefit for the green energy components of a Smart Grid.

  19. Analysis of the prospective energy interconnections in Northeast Asia and development of the data portal

    NASA Astrophysics Data System (ADS)

    Churkin, Andrey; Bialek, Janusz

    2018-01-01

    Development of power interconnections in Northeast Asia becomes not only engineering but also a political issue. More research institutes are involved in the Asian Super Grid initiative discussion, as well as more politicians mention power interconnection opportunities. UNESCAP started providing a platform for intragovernmental discussion of the issue. However, there are still a lack of comprehensive modern research of the Asian Super Grid. Moreover, there is no unified data base and no unified power routes concept. Therefore, this article discusses a tool for optimal power routes selection and suggest a concept of the unified data portal.

  20. Utility interface issues for grid-connected photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Chu, D.; Key, T.; Fitzer, J.

    Photovoltaic (PV) balance-of-system research and development has focused on interconnection with the utility grid as the most promising future application for photovoltaic energy production. These sysems must be compatible with the existing utility grid to be accepted. Compatibility encompasses many technical, economic and institutional issues, from lineman safety to revenue metering and power quality. This paper reviews DOE/PV sponsored research for two of the technical interconnection issues: harmonic injection, and power factor control. Explanations and rationale behind these two issues will be reviewed, and the status of current research and plans for required future work will be presented.

  1. NREL: International Activities - Country Programs

    Science.gov Websites

    for use of mini-grid quality assurance and design standards and advising on mini-grid business models communities of practice and technical collaboration across countries on mini-grid development, modeling and interconnection standards and procedures, and with strengthening mini-grids and energy access programs. NREL is

  2. Self-similar grid patterns in free-space shuffle-exchange networks

    NASA Astrophysics Data System (ADS)

    Haney, Michael W.

    1993-12-01

    Self-similar grid patterns are proposed as an alternative to rectangular grid, array optoelectronic sources, and detectors of smart pixels. For shuffle based multistage interconnection networks, it is suggested that smart pixel should not be arrayed on a rectangular grid and that smart pixel unit cell should be the kernel of a self-similar grid pattern.

  3. Jennie Jorgenson | NREL

    Science.gov Websites

    Quantitative and statistical analysis Power grid topology of the Western Interconnection Energy storage for grid applications Research Interests Understanding the implications of high penetrations of renewable

  4. Smart Grid, Smart Inverters for a Smart Energy Future | State, Local, and

    Science.gov Websites

    , legislation which defines the state's interconnection standards and permits the interconnection of smart the cost and benefits of advanced inverter enabling legislation. Expect conversations concerning

  5. Inverter for Interchangeable Use as Current Source Inverter and Voltage Source Inverter for Interconnecting to Grid

    NASA Astrophysics Data System (ADS)

    Teruya, Daisuke; Masukawa, Shigeo; Iida, Shoji

    We propose a novel inverter that can be operated either as a Current Source Inverter (CSI) or as a Voltage Source Inverter (VSI) by changing only the control signals. It is proper to apply it to the interconnecting system with renewal energy, such as photovoltaic cells or wind generation systems, to a grid. This inverter is usually operated as the CSI connected to the grid. Even if the energy source has a lower voltage than the grid, the energy can be supplied to the grid through the proposed inverter. The power factor can be briefly maintained at almost unity. When power supply from the grid is interrupted, the proposed circuit should be operated as the VSI in the stand-alone operation mode. In this way, the circuit can maintain a constant output voltage to the loads. In this paper, the proposed circuit configuration and the control schemes for both the CSI and the VSI are described. Further, the circuit characteristics for both are discussed experimentally.

  6. Where is the ideal location for a US East Coast offshore grid?

    NASA Astrophysics Data System (ADS)

    Dvorak, Michael J.; Stoutenburg, Eric D.; Archer, Cristina L.; Kempton, Willett; Jacobson, Mark Z.

    2012-03-01

    This paper identifies the location of an “ideal” offshore wind energy (OWE) grid on the U.S. East Coast that would (1) provide the highest overall and peak-time summer capacity factor, (2) use bottom-mounted turbine foundations (depth ≤50 m), (3) connect regional transmissions grids from New England to the Mid-Atlantic, and (4) have a smoothed power output, reduced hourly ramp rates and hours of zero power. Hourly, high-resolution mesoscale weather model data from 2006-2010 were used to approximate wind farm output. The offshore grid was located in the waters from Long Island, New York to the Georges Bank, ≈450 km east. Twelve candidate 500 MW wind farms were located randomly throughout that region. Four wind farms (2000 MW total capacity) were selected for their synergistic meteorological characteristics that reduced offshore grid variability. Sites likely to have sea breezes helped increase the grid capacity factor during peak time in the spring and summer months. Sites far offshore, dominated by powerful synoptic-scale storms, were included for their generally higher but more variable power output. By interconnecting all 4 farms via an offshore grid versus 4 individual interconnections, power was smoothed, the no-power events were reduced from 9% to 4%, and the combined capacity factor was 48% (gross). By interconnecting offshore wind energy farms ≈450 km apart, in regions with offshore wind energy resources driven by both synoptic-scale storms and mesoscale sea breezes, substantial reductions in low/no-power hours and hourly ramp rates can be made.

  7. National Offshore Wind Energy Grid Interconnection Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel, John P.; Liu, Shu; Ibanez, Eduardo

    2014-07-30

    The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States. A total of 54GW of offshore wind was assumed to be the target for the analyses conducted. A variety of issues are considered including: the anticipated staging of offshore wind; the offshore wind resource availability; offshore wind energy power production profiles; offshore wind variability; present and potential technologies for collection and delivery of offshore wind energy to the onshore grid; potential impacts to existing utility systemsmore » most likely to receive large amounts of offshore wind; and regulatory influences on offshore wind development. The technologies considered the reliability of various high-voltage ac (HVAC) and high-voltage dc (HVDC) technology options and configurations. The utility system impacts of GW-scale integration of offshore wind are considered from an operational steady-state perspective and from a regional and national production cost perspective.« less

  8. Anti-islanding protection using a twin-peak band-pass filter in interconnected PV systems, and substantiating evaluations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishida, T.; Hagihara, R.; Yugo, M.

    1994-12-31

    The authors have successfully developed and industrialized a new frequency-shift anti-islanding protection method using a twin-peak band-pass filter (BPF) for grid-interconnected photovoltaic (PV) systems. In this method, the power conditioner has a twin-peak BPF in a current feed back loop in place of the normal BPF. The new method works perfectly for various kinds of loads such as resistance, inductive and capacitive loads connected to the PV system. Furthermore, because there are no mis-detections, the system enables the most effective generation of electric energy from solar cells. A power conditioner equipped with this protection was officially certified as suitable formore » grid-interconnection.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tweedie, A.; Doris, E.

    Establishing interconnection to the grid is a recognized barrier to the deployment of distributed energy generation. This report compares interconnection processes for photovoltaic projects in California and Germany. This report summarizes the steps of the interconnection process for developers and utilities, the average length of time utilities take to process applications, and paperwork required of project developers. Based on a review of the available literature, this report finds that while the interconnection procedures and timelines are similar in California and Germany, differences in the legal and regulatory frameworks are substantial.

  10. Systems Integration Fact Sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-06-01

    This fact sheet is an overview of the Systems Integration subprogram at the U.S. Department of Energy SunShot Initiative. The Systems Integration subprogram enables the widespread deployment of safe, reliable, and cost-effective solar energy technologies by addressing the associated technical and non-technical challenges. These include timely and cost-effective interconnection procedures, optimal system planning, accurate prediction of solar resources, monitoring and control of solar power, maintaining grid reliability and stability, and many more. To address the challenges associated with interconnecting and integrating hundreds of gigawatts of solar power onto the electricity grid, the Systems Integration program funds research, development, and demonstrationmore » projects in four broad, interrelated focus areas: grid performance and reliability, dispatchability, power electronics, and communications.« less

  11. Power Hardware-in-the-Loop Evaluation of PV Inverter Grid Support on Hawaiian Electric Feeders: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Austin; Prabakar, Kumaraguru; Nagarajan, Adarsh

    As more grid-connected photovoltaic (PV) inverters become compliant with evolving interconnections requirements, there is increased interest from utilities in understanding how to best deploy advanced grid-support functions (GSF) in the field. One efficient and cost-effective method to examine such deployment options is to leverage power hardware-in-the-loop (PHIL) testing methods. Two Hawaiian Electric feeder models were converted to real-time models in the OPAL-RT real-time digital testing platform, and integrated with models of GSF capable PV inverters that were modeled from characterization test data. The integrated model was subsequently used in PHIL testing to evaluate the effects of different fixed power factormore » and volt-watt control settings on voltage regulation of the selected feeders. The results of this study were provided as inputs for field deployment and technical interconnection requirements for grid-connected PV inverters on the Hawaiian Islands.« less

  12. Impedance-Based Stability Analysis in Grid Interconnection Impact Study Owing to the Increased Adoption of Converter-Interfaced Generators

    DOE PAGES

    Cho, Youngho; Hur, Kyeon; Kang, Yong; ...

    2017-09-08

    This study investigates the emerging harmonic stability concerns to be addressed by grid planners in generation interconnection studies, owing to the increased adoption of renewable energy resources connected to the grid via power electronic converters. The wideband and high-frequency electromagnetic transient (EMT) characteristics of these converter-interfaced generators (CIGs) and their interaction with the grid impedance are not accurately captured in the typical dynamic studies conducted by grid planners. This paper thus identifies the desired components to be studied and subsequently develops a practical process for integrating a new CIG into a grid with the existing CIGs. The steps of thismore » process are as follows: the impedance equation of a CIG using its control dynamics and an interface filter to the grid, for example, an LCL filter (inductor-capacitor-inductor type), is developed; an equivalent impedance model including the existing CIGs nearby and the grid observed from the point of common coupling are derived; the system stability for credible operating scenarios is assessed. Detailed EMT simulations validate the accuracy of the impedance models and stability assessment for various connection scenarios. Here, by complementing the conventional EMT simulation studies, the proposed analytical approach enables grid planners to identify critical design parameters for seamlessly integrating a new CIG and ensuring the reliability of the grid.« less

  13. Mitigating Interconnection Challenges of the High Penetration Utility-Interconnected Photovoltaic (PV) in the Electrical Distribution Systems: Cooperative Research and Development Final Report, CRADA Number CRD-14-563

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Sudipta

    Various interconnection challenges exist when connecting distributed PV into the electrical distribution grid in terms of safety, reliability, and stability of the electric power systems. Some of the urgent areas for research, as identified by inverter manufacturers, installers and utilities, are potential for transient overvoltage from PV inverters, multi-inverter anti-islanding, impact of smart inverters on volt-VAR support, impact of bidirectional power flow, and potential for distributed generation curtailment solutions to mitigate grid stability challenges. Under this project, NREL worked with SolarCity to address these challenges through research, testing and analysis at the Energy System Integration Facility (ESIF). Inverters from differentmore » manufacturers were tested at ESIF and NREL's unique power hardware-in-the-loop (PHIL) capability was utilized to evaluate various system-level impacts. Through the modeling, simulation, and testing, this project eliminated critical barriers on high PV penetration and directly supported the Department of Energy's SunShot goal of increasing the solar PV on the electrical grid.« less

  14. Advanced batteries for load-leveling - The utility perspective on system integration

    NASA Astrophysics Data System (ADS)

    Delmonaco, J. L.; Lewis, P. A.; Roman, H. T.; Zemkoski, J.

    1982-09-01

    Rechargeable battery systems for applications as utility load-leveling units, particularly in urban areas, are discussed. Particular attention is given to advanced lead-acid, zinc-halogen, sodium-sulfer, and lithium-iron sulfide battery systems, noting that battery charging can proceed at light load hours and requires no fuel on-site. Each battery site will have a master site controller and related subsystems necessary for ensuring grid-quality power output from the batteries and charging when feasible. The actual interconnection with the grid is envisioned as similar to transmission, subtransmission, or distribution systems similar to cogeneration or wind-derived energy interconnections. Analyses are presented of factors influencing the planning economics, impacts on existing grids through solid-state converters, and operational and maintenance considerations. Finally, research directions towards large scale battery implementation are outlined.

  15. Data processing of high-rate low-voltage distribution grid recordings for smart grid monitoring and analysis

    NASA Astrophysics Data System (ADS)

    Maaß, Heiko; Cakmak, Hüseyin Kemal; Bach, Felix; Mikut, Ralf; Harrabi, Aymen; Süß, Wolfgang; Jakob, Wilfried; Stucky, Karl-Uwe; Kühnapfel, Uwe G.; Hagenmeyer, Veit

    2015-12-01

    Power networks will change from a rigid hierarchic architecture to dynamic interconnected smart grids. In traditional power grids, the frequency is the controlled quantity to maintain supply and load power balance. Thereby, high rotating mass inertia ensures for stability. In the future, system stability will have to rely more on real-time measurements and sophisticated control, especially when integrating fluctuating renewable power sources or high-load consumers like electrical vehicles to the low-voltage distribution grid.

  16. Multi-Dimensional Damage Detection

    NASA Technical Reports Server (NTRS)

    Gibson, Tracy L. (Inventor); Williams, Martha K. (Inventor); Roberson, Luke B. (Inventor); Lewis, Mark E. (Inventor); Snyder, Sarah J. (Inventor); Medelius, Pedro J. (Inventor)

    2016-01-01

    Methods and systems may provide for a structure having a plurality of interconnected panels, wherein each panel has a plurality of detection layers separated from one another by one or more non-detection layers. The plurality of detection layers may form a grid of conductive traces. Additionally, a monitor may be coupled to each grid of conductive traces, wherein the monitor is configured to detect damage to the plurality of interconnected panels in response to an electrical property change with respect to one or more of the conductive traces. In one example, the structure is part of an inflatable space platform such as a spacecraft or habitat.

  17. NREL Smart Grid Projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hambrick, J.

    2012-01-01

    Although implementing Smart Grid projects at the distribution level provides many advantages and opportunities for advanced operation and control, a number of significant challenges must be overcome to maintain the high level of safety and reliability that the modern grid must provide. For example, while distributed generation (DG) promises to provide opportunities to increase reliability and efficiency and may provide grid support services such as volt/var control, the presence of DG can impact distribution operation and protection schemes. Additionally, the intermittent nature of many DG energy sources such as photovoltaics (PV) can present a number of challenges to voltage regulation,more » etc. This presentation provides an overview a number of Smart Grid projects being performed by the National Renewable Energy Laboratory (NREL) along with utility, industry, and academic partners. These projects include modeling and analysis of high penetration PV scenarios (with and without energy storage), development and testing of interconnection and microgrid equipment, as well as the development and implementation of advanced instrumentation and data acquisition used to analyze the impacts of intermittent renewable resources. Additionally, standards development associated with DG interconnection and analysis as well as Smart Grid interoperability will be discussed.« less

  18. Taxonomy for Modeling Demand Response Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olsen, Daniel; Kiliccote, Sila; Sohn, Michael

    2014-08-01

    Demand response resources are an important component of modern grid management strategies. Accurate characterizations of DR resources are needed to develop systems of optimally managed grid operations and to plan future investments in generation, transmission, and distribution. The DOE Demand Response and Energy Storage Integration Study (DRESIS) project researched the degree to which demand response (DR) and energy storage can provide grid flexibility and stability in the Western Interconnection. In this work, DR resources were integrated with traditional generators in grid forecasting tools, specifically a production cost model of the Western Interconnection. As part of this study, LBNL developed amore » modeling framework for characterizing resource availability and response attributes of DR resources consistent with the governing architecture of the simulation modeling platform. In this report, we identify and describe the following response attributes required to accurately characterize DR resources: allowable response frequency, maximum response duration, minimum time needed to achieve load changes, necessary pre- or re-charging of integrated energy storage, costs of enablement, magnitude of controlled resources, and alignment of availability. We describe a framework for modeling these response attributes, and apply this framework to characterize 13 DR resources including residential, commercial, and industrial end-uses. We group these end-uses into three broad categories based on their response capabilities, and define a taxonomy for classifying DR resources within these categories. The three categories of resources exhibit different capabilities and differ in value to the grid. Results from the production cost model of the Western Interconnection illustrate that minor differences in resource attributes can have significant impact on grid utilization of DR resources. The implications of these findings will be explored in future DR valuation studies.« less

  19. Support grid for fuel elements in a nuclear reactor

    DOEpatents

    Finch, Lester M.

    1977-01-01

    A support grid is provided for holding nuclear fuel rods in a rectangular array. Intersecting sheet metal strips are interconnected using opposing slots in the strips to form a rectangular cellular grid structure for engaging the sides of a multiplicity of fuel rods. Spring and dimple supports for engaging fuel and guide rods extending through each cell in the support grid are formed in the metal strips with the springs thus formed being characterized by nonlinear spring rates.

  20. Fast, Massively Parallel Data Processors

    NASA Technical Reports Server (NTRS)

    Heaton, Robert A.; Blevins, Donald W.; Davis, ED

    1994-01-01

    Proposed fast, massively parallel data processor contains 8x16 array of processing elements with efficient interconnection scheme and options for flexible local control. Processing elements communicate with each other on "X" interconnection grid with external memory via high-capacity input/output bus. This approach to conditional operation nearly doubles speed of various arithmetic operations.

  1. The power grid AGC frequency bias coefficient online identification method based on wide area information

    NASA Astrophysics Data System (ADS)

    Wang, Zian; Li, Shiguang; Yu, Ting

    2015-12-01

    This paper propose online identification method of regional frequency deviation coefficient based on the analysis of interconnected grid AGC adjustment response mechanism of regional frequency deviation coefficient and the generator online real-time operation state by measured data through PMU, analyze the optimization method of regional frequency deviation coefficient in case of the actual operation state of the power system and achieve a more accurate and efficient automatic generation control in power system. Verify the validity of the online identification method of regional frequency deviation coefficient by establishing the long-term frequency control simulation model of two-regional interconnected power system.

  2. Energy Systems Integration News - September 2016 | Energy Systems

    Science.gov Websites

    , Smarter Grid Solutions demonstrated a new distributed energy resources (DER) software control platform utility interconnections require distributed generation (DG) devices to disconnect from the grid during OpenFMB distributed applications on the microgrid test site to locally optimize renewable energy resources

  3. Enabling Resiliency Operations across Multiple Microgrids with Grid Friendly Appliance Controllers

    DOE PAGES

    Schneider, Kevin P.; Tuffner, Frank K.; Elizondo, Marcelo A.; ...

    2017-02-16

    Changes in economic, technological, and environmental policies are resulting in a re-evaluation of the dependence on large central generation facilities and their associated transmission networks. Emerging concepts of smart communities/cities are examining the potential to leverage cleaner sources of generation, as well as integrating electricity generation with other municipal functions. When grid connected, these generation assets can supplement the existing interconnections with the bulk transmission system, and in the event of an extreme event, they can provide power via a collection of microgrids. To achieve the highest level of resiliency, it may be necessary to conduct switching operations to interconnectmore » individual microgrids. While the interconnection of multiple microgrids can increase the resiliency of the system, the associated switching operations can cause large transients in low inertia microgrids. The combination of low system inertia and IEEE 1547 and 1547a-compliant inverters can prevent multiple microgrids from being interconnected during extreme weather events. This study will present a method of using end-use loads equipped with Grid Friendly™ Appliance controllers to facilitate the switching operations between multiple microgrids; operations that are necessary for optimal operations when islanded for resiliency.« less

  4. Enabling Resiliency Operations across Multiple Microgrids with Grid Friendly Appliance Controllers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, Kevin P.; Tuffner, Frank K.; Elizondo, Marcelo A.

    Changes in economic, technological, and environmental policies are resulting in a re-evaluation of the dependence on large central generation facilities and their associated transmission networks. Emerging concepts of smart communities/cities are examining the potential to leverage cleaner sources of generation, as well as integrating electricity generation with other municipal functions. When grid connected, these generation assets can supplement the existing interconnections with the bulk transmission system, and in the event of an extreme event, they can provide power via a collection of microgrids. To achieve the highest level of resiliency, it may be necessary to conduct switching operations to interconnectmore » individual microgrids. While the interconnection of multiple microgrids can increase the resiliency of the system, the associated switching operations can cause large transients in low inertia microgrids. The combination of low system inertia and IEEE 1547 and 1547a-compliant inverters can prevent multiple microgrids from being interconnected during extreme weather events. This study will present a method of using end-use loads equipped with Grid Friendly™ Appliance controllers to facilitate the switching operations between multiple microgrids; operations that are necessary for optimal operations when islanded for resiliency.« less

  5. Transient and Dynamic Stability Analysis | Grid Modernization | NREL

    Science.gov Websites

    are investigating the impact of high penetrations of wind and solar power on the frequency response ) Transient Stability and Frequency Response of the US Western Interconnection under Conditions of High Wind Subcontract Report (2013) Frequency Response of the US Eastern Interconnection under Condition of High Wind

  6. 78 FR 19149 - Small Generator Interconnection Agreements and Procedures; Supplemental Notice of Workshop

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-29

    ..., National Grid (Edison Electric Institute) [rtarr8] Michael Sheehan, P.E., Keyes, Fox & Wiedman L.L.P... Association of Regulatory Utility Commissioners [rtarr8] Sky Stanfield, Attorney, Keyes, Fox & Wiedman L.L.P... Policy, National Grid (Edison Electric Institute) [rtarr8] Michael Sheehan, P.E., Keyes, Fox & Wiedman L...

  7. Grid Integration Webinars | Energy Systems Integration Facility | NREL

    Science.gov Websites

    Vision Future. The study used detailed nodal simulations of the Western Interconnection system with greater than 35% wind energy, based on scenarios from the DOE Wind Vision study to assess the operability Renewable Energy Integration in California April 14, 2016 Greg Brinkman discussed the Low Carbon Grid Study

  8. Parallel high-performance grid computing: capabilities and opportunities of a novel demanding service and business class allowing highest resource efficiency.

    PubMed

    Kepper, Nick; Ettig, Ramona; Dickmann, Frank; Stehr, Rene; Grosveld, Frank G; Wedemann, Gero; Knoch, Tobias A

    2010-01-01

    Especially in the life-science and the health-care sectors the huge IT requirements are imminent due to the large and complex systems to be analysed and simulated. Grid infrastructures play here a rapidly increasing role for research, diagnostics, and treatment, since they provide the necessary large-scale resources efficiently. Whereas grids were first used for huge number crunching of trivially parallelizable problems, increasingly parallel high-performance computing is required. Here, we show for the prime example of molecular dynamic simulations how the presence of large grid clusters including very fast network interconnects within grid infrastructures allows now parallel high-performance grid computing efficiently and thus combines the benefits of dedicated super-computing centres and grid infrastructures. The demands for this service class are the highest since the user group has very heterogeneous requirements: i) two to many thousands of CPUs, ii) different memory architectures, iii) huge storage capabilities, and iv) fast communication via network interconnects, are all needed in different combinations and must be considered in a highly dedicated manner to reach highest performance efficiency. Beyond, advanced and dedicated i) interaction with users, ii) the management of jobs, iii) accounting, and iv) billing, not only combines classic with parallel high-performance grid usage, but more importantly is also able to increase the efficiency of IT resource providers. Consequently, the mere "yes-we-can" becomes a huge opportunity like e.g. the life-science and health-care sectors as well as grid infrastructures by reaching higher level of resource efficiency.

  9. Power Hardware-in-the-Loop Evaluation of PV Inverter Grid Support on Hawaiian Electric Feeders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Austin A; Prabakar, Kumaraguru; Nagarajan, Adarsh

    As more grid-connected photovoltaic (PV) inverters become compliant with evolving interconnections requirements, there is increased interest from utilities in understanding how to best deploy advanced grid-support functions (GSF) in the field. One efficient and cost-effective method to examine such deployment options is to leverage power hardware-in-the-loop (PHIL) testing methods, which combine the fidelity of hardware tests with the flexibility of computer simulation. This paper summarizes a study wherein two Hawaiian Electric feeder models were converted to real-time models using an OPAL-RT real-time digital testing platform, and integrated with models of GSF capable PV inverters based on characterization test data. Themore » integrated model was subsequently used in PHIL testing to evaluate the effects of different fixed power factor and volt-watt control settings on voltage regulation of the selected feeders using physical inverters. Selected results are presented in this paper, and complete results of this study were provided as inputs for field deployment and technical interconnection requirements for grid-connected PV inverters on the Hawaiian Islands.« less

  10. Making a Computer Model of the Most Complex System Ever Built - Continuum

    Science.gov Websites

    Eastern Interconnection, all as a function of time. All told, that's about 1,000 gigabytes of data the modeling software steps forward in time, those decisions affect how the grid operates under Interconnection at five-minute intervals for one year would have required more than 400 days of computing time

  11. Grid Computing in K-12 Schools. Soapbox Digest. Volume 3, Number 2, Fall 2004

    ERIC Educational Resources Information Center

    AEL, 2004

    2004-01-01

    Grid computing allows large groups of computers (either in a lab, or remote and connected only by the Internet) to extend extra processing power to each individual computer to work on components of a complex request. Grid middleware, recognizing priorities set by systems administrators, allows the grid to identify and use this power without…

  12. A Distribution Level Wide Area Monitoring System for the Electric Power Grid–FNET/GridEye

    DOE PAGES

    Liu, Yong; You, Shutang; Yao, Wenxuan; ...

    2017-02-09

    The wide area monitoring system (WAMS) is considered a pivotal component of future electric power grids. As a pilot WAMS that has been operated for more than a decade, the frequency monitoring network FNET/GridEye makes use of hundreds of global positioning system-synchronized phasor measurement sensors to capture the increasingly complicated grid behaviors across the interconnected power systems. In this paper, the FNET/GridEye system is overviewed and its operation experiences in electric power grid wide area monitoring are presented. Particularly, the implementation of a number of data analytics applications will be discussed in details. FNET/GridEye lays a firm foundation for themore » later WAMS operation in the electric power industry.« less

  13. High-Penetration Photovoltaic Planning Methodologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, David Wenzhong; Muljadi, Eduard; Tian, Tian

    The main objective of this report is to provide an overview of select U.S. utility methodologies for performing high-penetration photovoltaic (HPPV) system planning and impact studies. This report covers the Federal Energy Regulatory Commission's orders related to photovoltaic (PV) power system interconnection, particularly the interconnection processes for the Large Generation Interconnection Procedures and Small Generation Interconnection Procedures. In addition, it includes U.S. state interconnection standards and procedures. The procedures used by these regulatory bodies consider the impacts of HPPV power plants on the networks. Technical interconnection requirements for HPPV voltage regulation include aspects of power monitoring, grounding, synchronization, connection tomore » the overall distribution system, back-feeds, disconnecting means, abnormal operating conditions, and power quality. This report provides a summary of mitigation strategies to minimize the impact of HPPV. Recommendations and revisions to the standards may take place as the penetration level of renewables on the grid increases and new technologies develop in future years.« less

  14. Biography of a technology: North America's power grid through the twentieth century

    NASA Astrophysics Data System (ADS)

    Cohn, Julie A.

    North Americans are among the world's most intense consumers of electricity. The vast majority in the United States and Canada access power from a network of transmission lines that stretch from the East Coast to the West Coast and from Canada to the Mexican Baja. This network, known as the largest interconnected machine in the world, evolved during the first two thirds of the twentieth century. With the very first link-ups occurring at the end of the 1890s, a wide variety of public and private utilities extended power lines to reach markets, access and manage energy resources, balance loads, realize economies of scale, provide backup power, and achieve economic stability. In 1967, utility managers and the Bureau of Reclamation connected the expansive eastern and western power pools to create the North American grid. Unlike other power grids around the world, built by single, centrally controlled entities, this large technological system emerged as the result of multiple decisions across eighty-five years of development, and negotiations for control at the economic, political, and technological levels. This dissertation describes the process of building the North American grid and the paradoxes the resulting system represents. While the grid functions as a single machine moving electricity across the continent, it is owned by many independent entities. Smooth operations suggest that the grid is a unified system; however, it operates under shared management and divided authority. In addition, although a single power network seems the logical outcome of electrification, in fact it was assembled through aggregation, not planning. Interconnections intentionally increase the robustness of individual sub-networks, yet the system itself is fragile, as demonstrated by major cascading power outages. Finally, the transmission network facilitates increased use of energy resources and consumption of power, but at certain points in the past, it also served as a technology of conservation. While this project explores the history of how and why North America has a huge interconnected power system, it also offers insights into the challenges the grid poses for our energy future.

  15. IEEE 1547 and 2030 Standards for Distributed Energy Resources Interconnection and Interoperability with the Electricity Grid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basso, T.

    Public-private partnerships have been a mainstay of the U.S. Department of Energy and the National Renewable Energy Laboratory (DOE/NREL) approach to research and development. These partnerships also include technology development that enables grid modernization and distributed energy resources (DER) advancement, especially renewable energy systems integration with the grid. Through DOE/NREL and industry support of Institute of Electrical and Electronics Engineers (IEEE) standards development, the IEEE 1547 series of standards has helped shape the way utilities and other businesses have worked together to realize increasing amounts of DER interconnected with the distribution grid. And more recently, the IEEE 2030 series ofmore » standards is helping to further realize greater implementation of communications and information technologies that provide interoperability solutions for enhanced integration of DER and loads with the grid. For these standards development partnerships, for approximately $1 of federal funding, industry partnering has contributed $5. In this report, the status update is presented for the American National Standards IEEE 1547 and IEEE 2030 series of standards. A short synopsis of the history of the 1547 standards is first presented, then the current status and future direction of the ongoing standards development activities are discussed.« less

  16. Network integration of distributed power generation

    NASA Astrophysics Data System (ADS)

    Dondi, Peter; Bayoumi, Deia; Haederli, Christoph; Julian, Danny; Suter, Marco

    The world-wide move to deregulation of the electricity and other energy markets, concerns about the environment, and advances in renewable and high efficiency technologies has led to major emphasis being placed on the use of small power generation units in a variety of forms. The paper reviews the position of distributed generation (DG, as these small units are called in comparison with central power plants) with respect to the installation and interconnection of such units with the classical grid infrastructure. In particular, the status of technical standards both in Europe and USA, possible ways to improve the interconnection situation, and also the need for decisions that provide a satisfactory position for the network operator (who remains responsible for the grid, its operation, maintenance and investment plans) are addressed.

  17. Dynamic of small photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Mehrmann, A.; Kleinkauf, W.; Pigorsch, W.; Steeb, H.

    The results of 1.5 yr of field-testing of two photovoltaic (PV) power plants, one equipped with an electrolyzer and H2 storage, are reported. Both systems were interconnected with the grid and featured the PV module, a power conditioning unit, ac and dc load connections, and control units. The rated power of both units was 100 Wp. The system with electrolysis was governed by control laws which maximized the electrolyzer current. The tests underscored the preference for a power conditioning unit, rather than direct output to load connections. A 1 kWp system was developed in a follow-up program and will be tested in concert with electrolysis and interconnection with several grid customers. The program is geared to eventual development of larger units for utility-size applications.

  18. Co-optimizing Generation and Transmission Expansion with Wind Power in Large-Scale Power Grids Implementation in the US Eastern Interconnection

    DOE PAGES

    You, Shutang; Hadley, Stanton W.; Shankar, Mallikarjun; ...

    2016-01-12

    This paper studies the generation and transmission expansion co-optimization problem with a high wind power penetration rate in the US Eastern Interconnection (EI) power grid. In this paper, the generation and transmission expansion problem for the EI system is modeled as a mixed-integer programming (MIP) problem. Our paper also analyzed a time series generation method to capture the variation and correlation of both load and wind power across regions. The obtained series can be easily introduced into the expansion planning problem and then solved through existing MIP solvers. Simulation results show that the proposed planning model and series generation methodmore » can improve the expansion result significantly through modeling more detailed information of wind and load variation among regions in the US EI system. Moreover, the improved expansion plan that combines generation and transmission will aid system planners and policy makers to maximize the social welfare in large-scale power grids.« less

  19. Optimal Operation Method of Smart House by Controllable Loads based on Smart Grid Topology

    NASA Astrophysics Data System (ADS)

    Yoza, Akihiro; Uchida, Kosuke; Yona, Atsushi; Senju, Tomonobu

    2013-08-01

    From the perspective of global warming suppression and depletion of energy resources, renewable energy such as wind generation (WG) and photovoltaic generation (PV) are getting attention in distribution systems. Additionally, all electrification apartment house or residence such as DC smart house have increased in recent years. However, due to fluctuating power from renewable energy sources and loads, supply-demand balancing fluctuations of power system become problematic. Therefore, "smart grid" has become very popular in the worldwide. This article presents a methodology for optimal operation of a smart grid to minimize the interconnection point power flow fluctuations. To achieve the proposed optimal operation, we use distributed controllable loads such as battery and heat pump. By minimizing the interconnection point power flow fluctuations, it is possible to reduce the maximum electric power consumption and the electric cost. This system consists of photovoltaics generator, heat pump, battery, solar collector, and load. In order to verify the effectiveness of the proposed system, MATLAB is used in simulations.

  20. Influence of the gas-liquid flow configuration in the absorption column on photosynthetic biogas upgrading in algal-bacterial photobioreactors.

    PubMed

    Toledo-Cervantes, Alma; Madrid-Chirinos, Cindy; Cantera, Sara; Lebrero, Raquel; Muñoz, Raúl

    2017-02-01

    The potential of an algal-bacterial system consisting of a high rate algal pond (HRAP) interconnected to an absorption column (AC) via recirculation of the cultivation broth for the upgrading of biogas and digestate was investigated. The influence of the gas-liquid flow configuration in the AC on the photosynthetic biogas upgrading process was assessed. AC operation in a co-current configuration enabled to maintain a biomass productivity of 15gm -2 d -1 , while during counter-current operation biomass productivity decreased to 8.7±0.5gm -2 d -1 as a result of trace metal limitation. A bio-methane composition complying with most international regulatory limits for injection into natural gas grids was obtained regardless of the gas-liquid flow configuration. Furthermore, the influence of the recycling liquid to biogas flowrate (L/G) ratio on bio-methane quality was assessed under both operational configurations obtaining the best composition at an L/G ratio of 0.5 and co-current flow operation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Renewable Electricity Futures. Operational Analysis of the Western Interconnection at Very High Renewable Penetrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brinkman, Gregory

    2015-09-01

    The Renewable Electricity Futures Study (RE Futures)--an analysis of the costs and grid impacts of integrating large amounts of renewable electricity generation into the U.S. power system--examined renewable energy resources, technical issues regarding the integration of these resources into the grid, and the costs associated with high renewable penetration scenarios. These scenarios included up to 90% of annual generation from renewable sources, although most of the analysis was focused on 80% penetration scenarios. Hourly production cost modeling was performed to understand the operational impacts of high penetrations. One of the conclusions of RE Futures was that further work was necessarymore » to understand whether the operation of the system was possible at sub-hourly time scales and during transient events. This study aimed to address part of this by modeling the operation of the power system at sub-hourly time scales using newer methodologies and updated data sets for transmission and generation infrastructure. The goal of this work was to perform a detailed, sub-hourly analysis of very high penetration scenarios for a single interconnection (the Western Interconnection). It focused on operational impacts, and it helps verify that the operational results from the capacity expansion models are useful. The primary conclusion of this study is that sub-hourly operation of the grid is possible with renewable generation levels between 80% and 90%.« less

  2. Elastic all-optical multi-hop interconnection in data centers with adaptive spectrum allocation

    NASA Astrophysics Data System (ADS)

    Hong, Yuanyuan; Hong, Xuezhi; Chen, Jiajia; He, Sailing

    2017-01-01

    In this paper, a novel flex-grid all-optical interconnect scheme that supports transparent multi-hop connections in data centers is proposed. An inter-rack all-optical multi-hop connection is realized with an optical loop employed at flex-grid wavelength selective switches (WSSs) in an intermediate rack rather than by relaying through optical-electric-optical (O-E-O) conversions. Compared with the conventional O-E-O based approach, the proposed all-optical scheme is able to off-load the traffic at intermediate racks, leading to a reduction of the power consumption and cost. The transmission performance of the proposed flex-grid multi-hop all-optical interconnect scheme with various modulation formats, including both coherently detected and directly detected approaches, are investigated by Monte-Carlo simulations. To enhance the spectrum efficiency (SE), number-of-hop adaptive bandwidth allocation is introduced. Numerical results show that the SE can be improved by up to 33.3% at 40 Gbps, and by up to 25% at 100 Gbps. The impact of parameters, such as targeted bit error rate (BER) level and insertion loss of components, on the transmission performance of the proposed approach are also explored. The results show that the maximum SE improvement of the adaptive approach over the non-adaptive one is enhanced with the decrease of the targeted BER levels and the component insertion loss.

  3. Matthew O'Connell | NREL

    Science.gov Websites

    operation, especially in the WECC interconnection (Western US) Data analysis and analysis code development Research Interests Impact of increased renewables on electric grid operation and architechture Optimizing

  4. Cayuga County Regional Digester: Vision Becomes Reality. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamyar V. Zadeh; Jim Young

    2013-03-12

    With an average herd size of 113 mature cows, Cayuga County is home to 280 dairy farms and 31,500 dairy milking cows producing approximately 855 million gallons of milk per year. The Cayuga Dairy industry is a major contributor to the countys economy, employing nearly 1200 people, while generating $140,000,000 of revenue from sale of milk alone. At the same time, the Cayuga County dairy industry also produces 5.7 million gallons of manure daily: (a) Nearly 34% of this manure is produced on smaller farms. (b) Digesters are expensive pieces of equipment and require attention and care. ( c) Themore » on-farm digester systems have fairly long payback (>10 years) even for larger CAFO farms (>1000 milking cows). In 2005, Cayuga County Soil and Water Conservation District (The District), a Public Agency under Cayuga County, decided to undertake a centralized community digester project. The primary goal of the project was to develop an economically sustainable model, under the auspices of The District to address manure management issues facing the smaller dairies, improve the water quality and improve the quality of life for Cayuga County residents. It is believed that the District has accomplished this goal by completing construction of Cayuga County Regional Digester on a parcel of land behind the Cayuga County Natural Resource Center located at 7413 County House Road in the Town of Sennett in Cayuga County, New York. The digester facility consists of the following major components. 1. Transfer Station: This an indoor truck bay, where 35,000 gallons of manure from three local farms, 8,500 gallons of liquid organic food-processor waste, and 1,200 gallons of brown grease are unloaded from tanker trucks and the digested slurry is loaded onto the tanker trucks for delivery back to the participating farms. 2. Anaerobic Digester: The project utilizes a hydraulic mix anaerobic digester, a unique design that has no internal moving parts for mixing. The digester, which operates at mesophilic temperatures, is designed to process the daily feedstock and produce 220,000 SCF2 of biogas per day. The digester also produces 44,000 gallons of digested slurry per day. 3. Biogas Conditioning System: The plant employs a biological biogas conditioning system to remove the H2S and moisture contents of the biogas and prepare it to be used by the plant generation system. 4. Combined Heat and Power System (CHP): This is a 633kW high efficiency biogas-fired GE-Jenbacher model JMS-312 GS-NL reciprocating engine cogeneration system. The heat recovery system incorporated into the package is designed to capture the waste heat from the engine exhaust, the jacket cooling water and the engine oil circuit. 5. Electrical Substation and Power Distribution Systems: An electrical distribution system has been constructed on-site that aggregates the electrical service of the different county buildings on the District campus into a county owned electric distribution system that is interconnected with the CHP and the local electric grid. The electrical system is designed, in accordance with the utility guidelines, to allow grid-parallel operation of CHP and provide for import and export of electric power. 6. Thermal Energy Distribution System: The heat recovery system has been integrated into a high temperature water distribution system that distributes the heat to the thermal circuits for the anaerobic digester facility. Additional piping has also been installed to transfer the remaining thermal energy to other county buildings on the campus. On a daily basis, the plant will co-process 35,000 gallons of manure from local dairy farms, 8,500 gallons of food-processor waste and 1,200 gallons of brown grease to produce 200,000 ft3/d of biogas and 44,000 gallons of pathogen-free nutrient-rich digested slurry for agricultural use by farms and in the local area.The biogas fueled CHP produces 5,157,000 kWh of electricity and 19,506 dekatherms of thermal energy per year. Electrical power generated by the cogeneration system powers all the buildings on the Cayuga County campus and any surplus power is exported to the grid under a power purchase agreement. Heat recovered from the cogeneration system will be used to maintain the temperature of the process equipment and the excess will be transported to the Cayuga County Public Safety Building to offset purchase of fossil fuel to fuel the boilers. The majority of plant operations are unmanned and automated. However, the plant will have a small staff of well-trained personnel to coordinate the feedstock deliveries and shipments, supervise the day-to-day operation, monitor the systems and perform maintenance, maintain a safe and reliable operation and to respond to emergencies.« less

  5. Landfill Gas Electricity Project Interconnection Webinar

    EPA Pesticide Factsheets

    This page contains information about a webinar LMOP offered to LMOP Partners to address questions associated with connecting electricity generating systems to the grid during LFG energy project planning and implementation.

  6. Energy Systems Integration Newsletter - January 2017 | Energy Systems

    Science.gov Websites

    ) project with PV manufacturer First Solar and NREL, First Solar designed an advanced plant-level controller relatively long history of interconnecting solar photovoltaic (PV) systems to its electric grid, with state Photo of a solar array. Tests Show Large Solar Plants Can Balance a Low-Carbon Grid In recent years

  7. Vahan Gevorgian | NREL

    Science.gov Websites

    currently working with Transmission and Grid Integration group focused on renewable energy impacts on transmission and interconnection issues and dynamic modeling of variable generation systems. He is involved in

  8. Opportunities and Benefits for Increasing Transmission Capacity between the US Eastern and Western Interconnections

    NASA Astrophysics Data System (ADS)

    Figueroa-Acevedo, Armando L.

    Historically, the primary justification for building wide-area transmission lines in the US and around the world has been based on reliability and economic criteria. Today, the influence of renewable portfolio standards (RPS), Environmental Protection Agency (EPA) regulations, transmission needs, load diversity, and grid flexibility requirements drives interest in high capacity wide-area transmission. By making use of an optimization model to perform long-term (15 years) co-optimized generation and transmission expansion planning, this work explored the benefits of increasing transmission capacity between the US Eastern and Western Interconnections under different policy and futures assumptions. The model assessed tradeoffs between investments in cross-interconnection HVDC transmission, AC transmission needs within each interconnection, generation investment costs, and operational costs, while satisfying different policy compliance constraints. Operational costs were broken down into the following market products: energy, up-/down regulation reserve, and contingency reserve. In addition, the system operating flexibility requirements were modeled as a function of net-load variability so that the flexibility of the non-wind/non-solar resources increases with increased wind and solar investment. In addition, planning reserve constraints are imposed under the condition that they be deliverable to the load. Thus, the model allows existing and candidate generation resources for both operating reserves and deliverable planning reserves to be shared throughout the interconnections, a feature which significantly drives identification of least-cost investments. This model is used with a 169-bus representation of the North American power grid to design four different high-capacity wide-area transmission infrastructures. Results from this analysis suggest that, under policy that imposes a high-renewable future, the benefits of high capacity transmission between the Eastern and Western Interconnections outweigh its cost. A sensitivity analysis is included to test the robustness of each design under different future assumptions and approximate upper and lower bounds for cross-seam transmission between the Eastern and Western Interconnections.

  9. Enhancing synchronization stability in a multi-area power grid

    PubMed Central

    Wang, Bing; Suzuki, Hideyuki; Aihara, Kazuyuki

    2016-01-01

    Maintaining a synchronous state of generators is of central importance to the normal operation of power grids, in which many networks are generally interconnected. In order to understand the condition under which the stability can be optimized, it is important to relate network stability with feedback control strategies as well as network structure. Here, we present a stability analysis on a multi-area power grid by relating it with several control strategies and topological design of network structure. We clarify the minimal feedback gain in the self-feedback control, and build the optimal communication network for the local and global control strategies. Finally, we consider relationship between the interconnection pattern and the synchronization stability; by optimizing the network interlinks, the obtained network shows better synchronization stability than the original network does, in particular, at a high power demand. Our analysis shows that interlinks between spatially distant nodes will improve the synchronization stability. The results seem unfeasible to be implemented in real systems but provide a potential guide for the design of stable power systems. PMID:27225708

  10. Artificial intelligence approach to planning the robotic assembly of large tetrahedral truss structures

    NASA Technical Reports Server (NTRS)

    Homemdemello, Luiz S.

    1992-01-01

    An assembly planner for tetrahedral truss structures is presented. To overcome the difficulties due to the large number of parts, the planner exploits the simplicity and uniformity of the shapes of the parts and the regularity of their interconnection. The planning automation is based on the computational formalism known as production system. The global data base consists of a hexagonal grid representation of the truss structure. This representation captures the regularity of tetrahedral truss structures and their multiple hierarchies. It maps into quadratic grids and can be implemented in a computer by using a two-dimensional array data structure. By maintaining the multiple hierarchies explicitly in the model, the choice of a particular hierarchy is only made when needed, thus allowing a more informed decision. Furthermore, testing the preconditions of the production rules is simple because the patterned way in which the struts are interconnected is incorporated into the topology of the hexagonal grid. A directed graph representation of assembly sequences allows the use of both graph search and backtracking control strategies.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alderfer, B.; Eldridge, M.; Starrs, T.

    Distributed power is modular electric generation or storage located close to the point of use. Based on interviews of distributed generation project proponents, this report reviews the barriers that distributed generators of electricity are encountering when attempting to interconnect to the electrical grid. Descriptions of 26 of 65 case studies are included in the report. The survey found and the report describes a wide range of technical, business-practice, and regulatory barriers to interconnection. An action plan for reducing the impact of these barriers is also included.

  12. On- and off-grid operation of hybrid renewable power plants: When are the economics favorable?

    NASA Astrophysics Data System (ADS)

    Petrakopoulou, F.; Santana, D.

    2016-12-01

    Hybrid renewable energy conversion systems offer a good alternative to conventional systems in locations where the extension of the electrical grid is difficult or not economical or where the cost of electricity is high. However, stand-alone operation implies net energy output restrictions (limited to exclusively serve the energy demand of a region), capacity oversizing and large storage facilities. In interconnected areas, on the other hand, the operational restrictions of the power stations change significantly and the efficiencies and costs of renewable technologies become more favorable. In this paper, the operation of three main renewable technologies (CSP, PV and wind) is studied assuming both hybrid and individual operation for both autonomous and inter-connected operation. The case study used is a Mediterranean island of ca. 3,000 inhabitants. Each system is optimized to fully cover the energy demand of the community. In addition, in the on-grid operation cases, it is required that the annual energy generated from the renewable sources is net positive (i.e., the island generates at least as much energy as it uses). It is found that when connected to the grid, hybridization of more than one technology is not required to satisfy the energy demand, as expected. Each of the renewable technologies investigated can satisfy the annual energy demand individually, without significant complications. In addition, the cost of electricity generated with the three studied technologies drops significantly for on-grid applications, when compared to off-grid operation. However, when compared to business-as-usual scenarios in both the on- and off-grid cases, both investigated hybrid and single-technology renewable scenarios are found to be economically viable. A sensitivity analysis reveals the limits of the acceptable costs that make the technologies favorable when compared to conventional alternatives.

  13. LLMapReduce: Multi-Level Map-Reduce for High Performance Data Analysis

    DTIC Science & Technology

    2016-05-23

    LLMapReduce works with several schedulers such as SLURM, Grid Engine and LSF. Keywords—LLMapReduce; map-reduce; performance; scheduler; Grid Engine ...SLURM; LSF I. INTRODUCTION Large scale computing is currently dominated by four ecosystems: supercomputing, database, enterprise , and big data [1...interconnects [6]), High performance math libraries (e.g., BLAS [7, 8], LAPACK [9], ScaLAPACK [10]) designed to exploit special processing hardware, High

  14. Latency Hiding in Dynamic Partitioning and Load Balancing of Grid Computing Applications

    NASA Technical Reports Server (NTRS)

    Das, Sajal K.; Harvey, Daniel J.; Biswas, Rupak

    2001-01-01

    The Information Power Grid (IPG) concept developed by NASA is aimed to provide a metacomputing platform for large-scale distributed computations, by hiding the intricacies of highly heterogeneous environment and yet maintaining adequate security. In this paper, we propose a latency-tolerant partitioning scheme that dynamically balances processor workloads on the.IPG, and minimizes data movement and runtime communication. By simulating an unsteady adaptive mesh application on a wide area network, we study the performance of our load balancer under the Globus environment. The number of IPG nodes, the number of processors per node, and the interconnected speeds are parameterized to derive conditions under which the IPG would be suitable for parallel distributed processing of such applications. Experimental results demonstrate that effective solution are achieved when the IPG nodes are connected by a high-speed asynchronous interconnection network.

  15. National Assessment of Energy Storage for Grid Balancing and Arbitrage: Phase 1, WECC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kintner-Meyer, Michael CW; Balducci, Patrick J.; Colella, Whitney G.

    2012-06-01

    To examine the role that energy storage could play in mitigating the impacts of the stochastic variability of wind generation on regional grid operation, the Pacific Northwest National Laboratory (PNNL) examined a hypothetical 2020 grid scenario in which additional wind generation capacity is built to meet renewable portfolio standard targets in the Western Interconnection. PNNL developed a stochastic model for estimating the balancing requirements using historical wind statistics and forecasting error, a detailed engineering model to analyze the dispatch of energy storage and fast-ramping generation devices for estimating size requirements of energy storage and generation systems for meeting new balancingmore » requirements, and financial models for estimating the life-cycle cost of storage and generation systems in addressing the future balancing requirements for sub-regions in the Western Interconnection. Evaluated technologies include combustion turbines, sodium sulfur (Na-S) batteries, lithium ion batteries, pumped-hydro energy storage, compressed air energy storage, flywheels, redox flow batteries, and demand response. Distinct power and energy capacity requirements were estimated for each technology option, and battery size was optimized to minimize costs. Modeling results indicate that in a future power grid with high-penetration of renewables, the most cost competitive technologies for meeting balancing requirements include Na-S batteries and flywheels.« less

  16. Accelerated Thermal Cycling and Failure Mechanisms

    NASA Technical Reports Server (NTRS)

    Ghaffarian, R.

    1999-01-01

    This paper reviews the accelerated thermal cycling test methods that are currently used by industry to characterize the interconnect reliability of commercial-off-the-shelf (COTS) ball grid array (BGA) and chip scale package (CSP) assemblies.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liss, W.; Dybel, M.; West, R.

    This report covers the first year's work performed by the Gas Technology Institute and Encorp Inc. under subcontract to the National Renewable Energy Laboratory. The objective of this three-year contract is to develop innovative grid interconnection and control systems. This supports the advancement of distributed generation in the marketplace by making installations more cost-effective and compatible across the electric power and energy management systems. Specifically, the goals are: (1) To develop and demonstrate cost-effective distributed power grid interconnection products and software and communication solutions applicable to improving the economics of a broad range of distributed power systems, including existing, emerging,more » and other power generation technologies. (2) To enhance the features and capabilities of distributed power products to integrate, interact, and provide operational benefits to the electric power and advanced energy management systems. This includes features and capabilities for participating in resource planning, the provision of ancillary services, and energy management. Specific topics of this report include the development of an advanced controller, a power sensing board, expanded communication capabilities, a revenue-grade meter interface, and a case study of an interconnection distributed power system application that is a model for demonstrating the functionalities of the design of the advanced controller.« less

  18. Hawaiian Electric Advanced Inverter Grid Support Function Laboratory Validation and Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Austin; Nagarajan, Adarsh; Prabakar, Kumar

    The objective for this test plan was to better understand how to utilize the performance capabilities of advanced inverter functions to allow the interconnection of distributed energy resource (DER) systems to support the new Customer Self-Supply, Customer Grid-Supply, and other future DER programs. The purpose of this project was: 1) to characterize how the tested grid supportive inverters performed the functions of interest, 2) to evaluate the grid supportive inverters in an environment that emulates the dynamics of O'ahu's electrical distribution system, and 3) to gain insight into the benefits of the grid support functions on selected O'ahu island distributionmore » feeders. These goals were achieved through laboratory testing of photovoltaic inverters, including power hardware-in-the-loop testing.« less

  19. Modal Analysis for Grid Operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MANGO software is to provide a solution for improving small signal stability of power systems through adjusting operator-controllable variables using PMU measurement. System oscillation problems are one of the major threats to the grid stability and reliability in California and the Western Interconnection. These problems result in power fluctuations, lower grid operation efficiency, and may even lead to large-scale grid breakup and outages. This MANGO software aims to solve this problem by automatically generating recommended operation procedures termed Modal Analysis for Grid Operation (MANGO) to improve damping of inter-area oscillation modes. The MANGO procedure includes three steps: recognizing small signalmore » stability problems, implementing operating point adjustment using modal sensitivity, and evaluating the effectiveness of the adjustment. The MANGO software package is designed to help implement the MANGO procedure.« less

  20. Novel WRM-based architecture of hybrid PON featuring online access and full-fiber-fault protection for smart grid

    NASA Astrophysics Data System (ADS)

    Li, Xingfeng; Gan, Chaoqin; Liu, Zongkang; Yan, Yuqi; Qiao, HuBao

    2018-01-01

    In this paper, a novel architecture of hybrid PON for smart grid is proposed by introducing a wavelength-routing module (WRM). By using conventional optical passive components, a WRM with M ports is designed. The symmetry and passivity of the WRM makes it be easily integrated and very cheap in practice. Via the WRM, two types of network based on different ONU-interconnected manner can realize online access. Depending on optical switches and interconnecting fibers, full-fiber-fault protection and dynamic bandwidth allocation are realized in these networks. With the help of amplitude modulation, DPSK modulation and RSOA technology, wavelength triple-reuse is achieved. By means of injecting signals into left and right branches in access ring simultaneously, the transmission delay is decreased. Finally, the performance analysis and simulation of the network verifies the feasibility of the proposed architecture.

  1. Protein oxidation and proteolysis during roasting and in vitro digestion of fish (Acipenser gueldenstaedtii).

    PubMed

    Hu, Lyulin; Ren, Sijie; Shen, Qing; Ye, Xingqian; Chen, Jianchu; Ling, Jiangang

    2018-04-15

    Roasted fish enjoys great popularity in Asia, but how roasting and subsequent digestion influence the oxidation and proteolysis of fish meat is unknown. This paper is aimed to investigate the effect of roasting time on lipid and protein oxidation and their evolution and consequence on proteolysis during simulated digestion of fish fillets. Several oxidation markers (TBARS, free thiols, total carbonyls and Schiff bases) were employed to assess the oxidation of fish. SDS-PAGE and TBNS assay for free amino groups were used to study the proteolysis during gastrointestinal digestion. The results showed that significant lipid and protein oxidative changes occurring in roasted fish fillets were reinforced after gastric digestion and were much more intense after intestinal digestion. Throughout the roasting and digestion, close interconnection between lipid and protein was also manifested as the levels of total carbonyls and Schiff bases rose while TBARS fell. Furthermore, free amino groups decreased with prolonged roasting time, signifying protein oxidation before digestion resulted in impaired proteolysis during digestion. This paper indicated the lipid and protein oxidation of fish fillets could be dependent on time of roasting, and the oxidation continued to develop and have an impact on proteolysis during in vitro digestion. This article is protected by copyright. All rights reserved.

  2. Designing for Wide-Area Situation Awareness in Future Power Grid Operations

    NASA Astrophysics Data System (ADS)

    Tran, Fiona F.

    Power grid operation uncertainty and complexity continue to increase with the rise of electricity market deregulation, renewable generation, and interconnectedness between multiple jurisdictions. Human operators need appropriate wide-area visualizations to help them monitor system status to ensure reliable operation of the interconnected power grid. We observed transmission operations at a control centre, conducted critical incident interviews, and led focus group sessions with operators. The results informed a Work Domain Analysis of power grid operations, which in turn informed an Ecological Interface Design concept for wide-area monitoring. I validated design concepts through tabletop discussions and a usability evaluation with operators, earning a mean System Usability Scale score of 77 out of 90. The design concepts aim to support an operator's complete and accurate understanding of the power grid state, which operators increasingly require due to the critical nature of power grid infrastructure and growing sources of system uncertainty.

  3. Comparison of Standards and Technical Requirements of Grid-Connected Wind Power Plants in China and the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, David Wenzhong; Muljadi, Eduard; Tian, Tian

    The rapid deployment of wind power has made grid integration and operational issues focal points in industry discussions and research. Compliance with grid connection standards for wind power plants (WPPs) is crucial to ensuring the reliable and stable operation of the electric power grid. This report compares the standards for grid-connected WPPs in China to those in the United States to facilitate further improvements in wind power standards and enhance the development of wind power equipment. Detailed analyses of power quality, low-voltage ride-through capability, active power control, reactive power control, voltage control, and wind power forecasting are provided to enhancemore » the understanding of grid codes in the two largest markets of wind power. This study compares WPP interconnection standards and technical requirements in China to those in the United States.« less

  4. Developing infrastructure for interconnecting transportation network and electric grid.

    DOT National Transportation Integrated Search

    2011-09-01

    This report is primarily focused on the development of mathematical models that can be used to : support decisions regarding a charging station location and installation problem. The major parts : of developing the models included identification of t...

  5. Hardware-in-the-loop grid simulator system and method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, John Curtiss; Collins, Edward Randolph; Rigas, Nikolaos

    A hardware-in-the-loop (HIL) electrical grid simulation system and method that combines a reactive divider with a variable frequency converter to better mimic and control expected and unexpected parameters in an electrical grid. The invention provides grid simulation in a manner to allow improved testing of variable power generators, such as wind turbines, and their operation once interconnected with an electrical grid in multiple countries. The system further comprises an improved variable fault reactance (reactive divider) capable of providing a variable fault reactance power output to control a voltage profile, therein creating an arbitrary recovery voltage. The system further comprises anmore » improved isolation transformer designed to isolate zero-sequence current from either a primary or secondary winding in a transformer or pass the zero-sequence current from a primary to a secondary winding.« less

  6. Assessing the Impacts of Wind Integration in the Western Provinces

    NASA Astrophysics Data System (ADS)

    Sopinka, Amy

    Increasing carbon dioxide levels and the fear of irreversible climate change has prompted policy makers to implement renewable portfolio standards. These renewable portfolio standards are meant to encourage the adoption of renewable energy technologies thereby reducing carbon emissions associated with fossil fuel-fired electricity generation. The ability to efficiently adopt and utilize high levels of renewable energy technology, such as wind power, depends upon the composition of the extant generation within the grid. Western Canadian electric grids are poised to integrate high levels of wind and although Alberta has sufficient and, at times, an excess supply of electricity, it does not have the inherent generator flexibility required to mirror the variability of its wind generation. British Columbia, with its large reservoir storage capacities and rapid ramping hydroelectric generation could easily provide the firming services required by Alberta; however, the two grids are connected only by a small, constrained intertie. We use a simulation model to assess the economic impacts of high wind penetrations in the Alberta grid under various balancing protocols. We find that adding wind capacity to the system impacts grid reliability, increasing the frequency of system imbalances and unscheduled intertie flow. In order for British Columbia to be viable firming resource, it must have sufficient generation capability to meet and exceed the province's electricity self-sufficiency requirements. We use a linear programming model to evaluate the province's ability to meet domestic load under various water and trade conditions. We then examine the effects of drought and wind penetration on the interconnected Alberta -- British Columbia system given differing interconnection sizes.

  7. Advanced Grid Simulator for Multi-Megawatt Power Converter Testing and Certification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koralewicz, Przemyslaw; Gevorgian, Vahan; Wallen, Robb

    2017-02-16

    Grid integration testing of inverter-coupled renewable energy technologies is an essential step in the qualification of renewable energy and energy storage systems to ensure the stability of the power system. New types of devices must be thoroughly tested and validated for compliance with relevant grid codes and interconnection requirements. For this purpose, highly specialized custom-made testing equipment is needed to emulate various types of realistic grid conditions that are required by certification bodies or for research purposes. For testing multi-megawatt converters, a high power grid simulator capable of creating controlled grid conditions and meeting both power quality and dynamic characteristicsmore » is needed. This paper describes the new grid simulator concept based on ABB's medium voltage ACS6000 drive technology that utilizes advanced modulation and control techniques to create an unique testing platform for various multi-megawatt power converter systems. Its performance is demonstrated utilizing the test results obtained during commissioning activities at the National Renewable Energy Laboratory in Colorado, USA.« less

  8. Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shayya, Walid

    2007-03-20

    The state of New York through the New York State Energy Research and Development Authority (NYSERDA) has developed a suite of digester projects throughout the state to assess the potential for anaerobic digestion systems to improve manure management and concurrently produce energy through the production of heat and electrical power using the biogas produced from the digesters. Dairies comprise a significant part of the agribusiness and economy of the state of New York. Improving the energy efficiency and environmental footprint of dairies is a goal of NYSERDA. SUNY Morrisville State College (MSC) is part of a collection of state universities,more » dairy farms, cooperatives, and municipalities examining anaerobic digestion systems to achieve the goals of NYSERDA, the improvement of manure management, and reducing emissions to local dairy animal sites. The process for siting a digester system at the MSC’s free-stall Dairy Complex was initiated in 2002. The project involved the construction of an anaerobic digester that can accommodate the organic waste generated at Dairy complex located about a mile southeast of the main campus. Support for the project was provided through funding from the New York State Energy Research and Development Authority (NYSERDA) and the New York State Department of Agriculture and Markets. The DOE contribution to the project provided additional resources to construct an expanded facility to handle waste generated from the existing free-stall dairy and the newly-constructed barns. Construction on the project was completed in 2006 and the production of biogas started soon after the tanks were filled with the effluent generated at the Dairy Complex. The system has been in operation since December 17, 2006. The generated biogas was consistently flared starting from December 20, 2006, and until the operation of the internal combustion engine/generator set were first tested on the 9th of January, 2007. Flaring the biogas continued until the interconnect with the power grid was approved by NYSEG (the electrical power provider) and the combined heat and power generation (CHP) system was authorized to start on February 27, 2007. The system has been in operation since February 28, 2007, and is generating 45 to 50 kW of electrical power on continuous basis. The completed project will ultimately allow for investigating the facility of utilizing organic waste from a dairy operation in a hard-top plug-flow methane digester with the ultimate goal of reducing environmental risk, increasing economic benefits, and demonstrating the viability of an anaerobic methane digestion system. Many benefits are expected as a result of the completed project including our better understanding of the anaerobic digestion process and its management as well as the facility to utilize the methane digester as a demonstration site for dairy producers, farmers, and organic waste producers in New York State and the Northeast. Additional benefits include helping current and future students in dairy science and technology, agricultural business, environmental sciences, agricultural engineering, and other disciplines develop better understanding of underutilized biomass alternative energy technologies, environmental conservation, environmental stewardship, and sustainable agriculture.« less

  9. 76 FR 53434 - Free Flow Power Corporation, Northland Power Mississippi River LLC; Notice of Competing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-26

    ...) Up to 160 TREK generating units installed in a matrix on the bottom of the river; (2) the total... each matrix power to a substation; and (4) a transmission line would interconnect with the power grid...

  10. A Control of a Mono and Multi Scale Measurement of a Grid

    NASA Astrophysics Data System (ADS)

    Elloumi, Imene; Ravelomanana, Sahobimaholy; Jelliti, Manel; Sibilla, Michelle; Desprats, Thierry

    The capacity to ensure the seamless mobility with the end-to-end Quality of Service (QoS) represents a vital criterion of success in the grid use. In this paper we hence posit a method of monitoring interconnection network of the grid (cluster, local grid and aggregate grids) in order to control its QoS. Such monitoring can guarantee a persistent control of the system state of health, a diagnostic and an optimization pertinent enough for better real time exploitation. A better exploitation is synonymous with identifying networking problems that affect the application domain. This can be carried out by control measurements as well as mono and multi scale for such metrics as: the bandwidth, CPU speed and load. The solution proposed, which is a management generic solution independently from the technologies, aims to automate human expertise and thereby more autonomy.

  11. Reliability of Ceramic Column Grid Array Interconnect Packages Under Extreme Temperatures

    NASA Technical Reports Server (NTRS)

    Ramesham, Rajeshuni

    2011-01-01

    A paper describes advanced ceramic column grid array (CCGA) packaging interconnects technology test objects that were subjected to extreme temperature thermal cycles. CCGA interconnect electronic package printed wiring boards (PWBs) of polyimide were assembled, inspected nondestructively, and, subsequently, subjected to ex - treme-temperature thermal cycling to assess reliability for future deep-space, short- and long-term, extreme-temperature missions. The test hardware consisted of two CCGA717 packages with each package divided into four daisy-chained sections, for a total of eight daisy chains to be monitored. The package is 33 33 mm with a 27 27 array of 80%/20% Pb/Sn columns on a 1.27-mm pitch. The change in resistance of the daisy-chained CCGA interconnects was measured as a function of the increasing number of thermal cycles. Several catastrophic failures were observed after 137 extreme-temperature thermal cycles, as per electrical resistance measurements, and then the tests were continued through 1,058 thermal cycles to corroborate and understand the test results. X-ray and optical inspection have been made after thermal cycling. Optical inspections were also conducted on the CCGA vs. thermal cycles. The optical inspections were conclusive; the x-ray images were not. Process qualification and assembly is required to optimize the CCGA assembly, which is very clear from the x-rays. Six daisy chains were open out of seven daisy chains, as per experimental test data reported. The daisy chains are open during the cold cycle, and then recover during the hot cycle, though some of them also opened during the hot thermal cycle..

  12. 78 FR 62350 - City of Guttenberg; Notice of Successive Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-18

    ...-up transformer; (4) a new 300- foot-long, 69-kilovolt (kV) transmission line extending from the local transformer to the local grid (the point of interconnection) which is owned and operated by the City of...

  13. 76 FR 53432 - Free Flow Power Corporation; Northland Power Mississippi River LLC; Notice of Competing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-26

    ...: (1) Up to 1,053 TREK generating units installed in a matrix on the bottom of the river; (2) the total... each matrix power to a substation; and (4) a transmission line would interconnect with the power grid...

  14. Emissions and Cost Implications of Controlled Electric Vehicle Charging in the U.S. PJM Interconnection.

    PubMed

    Weis, Allison; Michalek, Jeremy J; Jaramillo, Paulina; Lueken, Roger

    2015-05-05

    We develop a unit commitment and economic dispatch model to estimate the operation costs and the air emissions externality costs attributable to new electric vehicle electricity demand under controlled vs uncontrolled charging schemes. We focus our analysis on the PJM Interconnection and use scenarios that characterize (1) the most recent power plant fleet for which sufficient data are available, (2) a hypothetical 2018 power plant fleet that reflects upcoming plant retirements, and (3) the 2018 fleet with increased wind capacity. We find that controlled electric vehicle charging can reduce associated generation costs by 23%-34% in part by shifting loads to lower-cost, higher-emitting coal plants. This shift results in increased externality costs of health and environmental damages from increased air pollution. On balance, we find that controlled charging of electric vehicles produces negative net social benefits in the recent PJM grid but could have positive net social benefits in a future grid with sufficient coal retirements and wind penetration.

  15. Cascades in interdependent flow networks

    NASA Astrophysics Data System (ADS)

    Scala, Antonio; De Sanctis Lucentini, Pier Giorgio; Caldarelli, Guido; D'Agostino, Gregorio

    2016-06-01

    In this manuscript, we investigate the abrupt breakdown behavior of coupled distribution grids under load growth. This scenario mimics the ever-increasing customer demand and the foreseen introduction of energy hubs interconnecting the different energy vectors. We extend an analytical model of cascading behavior due to line overloads to the case of interdependent networks and find evidence of first order transitions due to the long-range nature of the flows. Our results indicate that the foreseen increase in the couplings between the grids has two competing effects: on the one hand, it increases the safety region where grids can operate without withstanding systemic failures; on the other hand, it increases the possibility of a joint systems' failure.

  16. On the Interconnection of Incompatible Solid Finite Element Meshes Using Multipoint Constraints

    NASA Technical Reports Server (NTRS)

    Fox, G. L.

    1985-01-01

    Incompatible meshes, i.e., meshes that physically must have a common boundary, but do not necessarily have coincident grid points, can arise in the course of a finite element analysis. For example, two substructures may have been developed at different times for different purposes and it becomes necessary to interconnect the two models. A technique that uses only multipoint constraints, i.e., MPC cards (or MPCS cards in substructuring), is presented. Since the method uses only MPC's, the procedure may apply at any stage in an analysis; no prior planning or special data is necessary.

  17. 77 FR 24646 - Open Access and Priority Rights on Interconnection Facilities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-25

    ... multiple generation facilities to transmit power from the generation facility to the integrated... power flows toward the network grid, with no electrical loads between the generation facilities and the... generator expansion plans with milestones for construction of generation facilities and can demonstrate that...

  18. 76 FR 53449 - Northland Power Mississippi River LLC; Notice of Preliminary Permit Application Accepted for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-26

    ...) Up to 320 TREK generating units installed in a matrix on the bottom of the river; (2) the total... each matrix's power to a substation; and (4) a transmission line would interconnect with the power grid. The proposed [[Page 53450

  19. Method for producing solar energy panels by automation

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr. (Inventor)

    1978-01-01

    A solar cell panel was fabricated by photoetching a pattern of collector grid systems with appropriate interconnections and bus bar tabs into a glass or plastic sheet. These regions were then filled with a first, thin conductive metal film followed by a layer of a mixed metal oxide, such as InAsO or InSnO. The multiplicity of solar cells were bonded between the protective sheet at the sites of the collector grid systems and a back electrode substrate by conductive metal filled epoxy to complete the fabrication of an integrated solar panel.

  20. Aircraft Fiber-Optic Interconnect Systems Project.

    DTIC Science & Technology

    1980-08-15

    W1 • 2 Grid Grid Figure 3-2. Receiver Schematic Diagram 3-5 .. .." - ": :- ’".. ..1 -n 13-P 430.... .... 1 II ..... .l3l I..... III .... .. . 3.1.3...the bus during conflicts caused by simultaneous requests. This in turn requires that the terminals using this protocol be " smart " to avoid a "central... UART RAM 2114 1Kx4l deoder decade? 8251 Data 4 buffeer zoo B Date bus -69 z S Control bus Peripheral decocler 5100 buffer I Kxr4 to SOL;, 5 se..onds PI

  1. Optimal system sizing in grid-connected photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Simoens, H. M.; Baert, D. H.; de Mey, G.

    A costs/benefits analysis for optimizing the combination of photovoltaic (PV) panels, batteries and an inverter for grid interconnected systems at a 500 W/day Belgian residence is presented. It is assumed that some power purchases from the grid will always be necessary, and that excess PV power can be fed into the grid. A minimal value for the cost divided by the performance is defined for economic optimization. Shortages and excesses are calculated for PV panels of 0.5-10 kWp output, with consideration given to the advantages of a battery back-up. The minimal economic value is found to increase with the magnitude of PV output, and an inverter should never be rated at more than half the array maximum output. A maximum panel size for the Belgian residence is projected to be 6 kWp.

  2. Impact of Isothermal Aging and Testing Temperature on Large Flip-Chip BGA Interconnect Mechanical Shock Performance

    NASA Astrophysics Data System (ADS)

    Lee, Tae-Kyu; Chen, Zhiqiang; Guirguis, Cherif; Akinade, Kola

    2017-10-01

    The stability of solder interconnects in a mechanical shock environment is crucial for large body size flip-chip ball grid array (FCBGA) electronic packages. Additionally, the junction temperature increases with higher electric power condition, which brings the component into an elevated temperature environment, thus introducing another consideration factor for mechanical stability of interconnection joints. Since most of the shock performance data available were produced at room temperature, the effect of elevated temperature is of interest to ensure the reliability of the device in a mechanical shock environment. To achieve a stable␣interconnect in a dynamic shock environment, the interconnections must tolerate mechanical strain, which is induced by the shock wave input and reaches the particular component interconnect joint. In this study, large body size (52.5 × 52.5 mm2) FCBGA components assembled on 2.4-mm-thick boards were tested with various isothermal pre-conditions and testing conditions. With a heating element embedded in the test board, a test temperature range from room temperature to 100°C was established. The effects of elevated temperature on mechanical shock performance were investigated. Failure and degradation mechanisms are identified and discussed based on the microstructure evolution and grain structure transformations.

  3. IEEE Honors DeBlasio with Steinmetz Award | News | NREL

    Science.gov Websites

    for the Interconnection of Distributed Resources with the Electric Power System) removed many of the grid utilizing distributed generation, including renewable electric systems," DeBalsio said. " sustained dedication to the growth and development of the Photovoltaic Testing and Reliability, Distributed

  4. Technology Solutions | Distributed Generation Interconnection Collaborative

    Science.gov Websites

    technologies, both hardware and software, can support the wider adoption of distributed generation on the grid . As the penetration of distributed-generation photovoltaics (DGPV) has risen rapidly in recent years posed by high penetrations of distributed PV. Other promising technologies include new utility software

  5. Solar Energy Grid Integration Systems (SEGIS): adding functionality while maintaining reliability and economics

    NASA Astrophysics Data System (ADS)

    Bower, Ward

    2011-09-01

    An overview of the activities and progress made during the US DOE Solar Energy Grid Integration Systems (SEGIS) solicitation, while maintaining reliability and economics is provided. The SEGIS R&D opened pathways for interconnecting PV systems to intelligent utility grids and micro-grids of the future. In addition to new capabilities are "value added" features. The new hardware designs resulted in smaller, less material-intensive products that are being viewed by utilities as enabling dispatchable generation and not just unpredictable negative loads. The technical solutions enable "advanced integrated system" concepts and "smart grid" processes to move forward in a faster and focused manner. The advanced integrated inverters/controllers can now incorporate energy management functionality, intelligent electrical grid support features and a multiplicity of communication technologies. Portals for energy flow and two-way communications have been implemented. SEGIS hardware was developed for the utility grid of today, which was designed for one-way power flow, for intermediate grid scenarios, AND for the grid of tomorrow, which will seamlessly accommodate managed two-way power flows as required by large-scale deployment of solar and other distributed generation. The SEGIS hardware and control developed for today meets existing standards and codes AND provides for future connections to a "smart grid" mode that enables utility control and optimized performance.

  6. Direct Replacement of Arbitrary Grid-Overlapping by Non-Structured Grid

    NASA Technical Reports Server (NTRS)

    Kao, Kai-Hsiung; Liou, Meng-Sing

    1994-01-01

    A new approach that uses nonstructured mesh to replace the arbitrarily overlapped structured regions of embedded grids is presented. The present methodology uses the Chimera composite overlapping mesh system so that the physical domain of the flowfield is subdivided into regions which can accommodate easily-generated grid for complex configuration. In addition, a Delaunay triangulation technique generates nonstructured triangular mesh which wraps over the interconnecting region of embedded grids. It is designed that the present approach, termed DRAGON grid, has three important advantages: eliminating some difficulties of the Chimera scheme, such as the orphan points and/or bad quality of interpolation stencils; making grid communication in a fully conservative way; and implementation into three dimensions is straightforward. A computer code based on a time accurate, finite volume, high resolution scheme for solving the compressible Navier-Stokes equations has been further developed to include both the Chimera overset grid and the nonstructured mesh schemes. For steady state problems, the local time stepping accelerates convergence based on a Courant - Friedrichs - Leury (CFL) number near the local stability limit. Numerical tests on representative steady and unsteady supersonic inviscid flows with strong shock waves are demonstrated.

  7. Frequency Response Assessment and Enhancement of the U.S. Power Grids towards Extra-High Photovoltaic Generation Penetrations – an Industry Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yong; You, Shutang; Tan, Jin

    Nonsynchronous generations such as photovoltaics (PVs) are expected to undermine bulk power systems (BPSs)' frequency response at high penetration levels. Though the underlying mechanism has been relatively well understood, the accurate assessment and effective enhancement of the U.S. interconnections, frequency response under extra-high PV penetration conditions remains an issue. In this paper, the industry-provided full-detail interconnection models were further validated by synchrophasor frequency measurements and realistically-projected PV geographic distribution information were used to develop extra-high PV penetration scenarios and dynamic models for the three main U.S. interconnections, including Eastern Interconnection (EI), Western Electricity Coordinating Council (WECC), and Electric Reliability Councilmore » of Texas (ERCOT). Up to 65% instantaneous PV and 15% wind penetration were simulated and the frequency response change trend of each U.S. interconnection due to the increasing PV penetration level were examined. Most importantly, the practical solutions to address the declining frequency response were discussed. This paper will provide valuable guidance for policy makers, utility operators and academic researchers not only in the U.S. but also other countries in the world.« less

  8. Frequency Response Assessment and Enhancement of the U.S. Power Grids towards Extra-High Photovoltaic Generation Penetrations – an Industry Perspective

    DOE PAGES

    Liu, Yong; You, Shutang; Tan, Jin; ...

    2018-01-30

    Nonsynchronous generations such as photovoltaics (PVs) are expected to undermine bulk power systems (BPSs)' frequency response at high penetration levels. Though the underlying mechanism has been relatively well understood, the accurate assessment and effective enhancement of the U.S. interconnections, frequency response under extra-high PV penetration conditions remains an issue. In this paper, the industry-provided full-detail interconnection models were further validated by synchrophasor frequency measurements and realistically-projected PV geographic distribution information were used to develop extra-high PV penetration scenarios and dynamic models for the three main U.S. interconnections, including Eastern Interconnection (EI), Western Electricity Coordinating Council (WECC), and Electric Reliability Councilmore » of Texas (ERCOT). Up to 65% instantaneous PV and 15% wind penetration were simulated and the frequency response change trend of each U.S. interconnection due to the increasing PV penetration level were examined. Most importantly, the practical solutions to address the declining frequency response were discussed. This paper will provide valuable guidance for policy makers, utility operators and academic researchers not only in the U.S. but also other countries in the world.« less

  9. A Preliminary Study of Building a Transmission Overlay for Regional US Power Grid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lei, Yin; Li, Yalong; Liu, Yilu

    2015-01-01

    Many European countries have taken steps toward a Supergrid in order to transmit large amount of intermittent and remote renewable energy over long distance to load centers. In the US, as the expected increase in renewable generation and electricity demand, similar problem arises. A potential solution is to upgrade the transmission system at a higher voltage by constructing a new overlay grid. This paper will first address basic requirements for such an overlay grid. Potential transmission technologies will also be discussed. A multi-terminal VSC HVDC model is developed in DSATools to implement the overlay grid and a test case onmore » a regional NPCC system will be simulated. Another test system of entire US power grid, with three different interconnections tied together using back-to-back HVDC, is also introduced in this paper. Building an overlay system on top of this test case is ongoing, and will be discussed in future work.« less

  10. Design of a nonlinear backstepping control strategy of grid interconnected wind power system based PMSG

    NASA Astrophysics Data System (ADS)

    Errami, Y.; Obbadi, A.; Sahnoun, S.; Benhmida, M.; Ouassaid, M.; Maaroufi, M.

    2016-07-01

    This paper presents nonlinear backstepping control for Wind Power Generation System (WPGS) based Permanent Magnet Synchronous Generator (PMSG) and connected to utility grid. The block diagram of the WPGS with PMSG and the grid side back-to-back converter is established with the dq frame of axes. This control scheme emphasises the regulation of the dc-link voltage and the control of the power factor at changing wind speed. Besides, in the proposed control strategy of WPGS, Maximum Power Point Tracking (MPPT) technique and pitch control are provided. The stability of the regulators is assured by employing Lyapunov analysis. The proposed control strategy for the system has been validated by MATLAB simulations under varying wind velocity and the grid fault condition. In addition, a comparison of simulation results based on the proposed Backstepping strategy and conventional Vector Control is provided.

  11. A Sensemaking Perspective on Situation Awareness in Power Grid Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greitzer, Frank L.; Schur, Anne; Paget, Mia L.

    2008-07-21

    With increasing complexity and interconnectivity of the electric power grid, the scope and complexity of grid operations continues to grow. New paradigms are needed to guide research to improve operations by enhancing situation awareness of operators. Research on human factors/situation awareness is described within a taxonomy of tools and approaches that address different levels of cognitive processing. While user interface features and visualization approaches represent the predominant focus of human factors studies of situation awareness, this paper argues that a complementary level, sensemaking, deserves further consideration by designers of decision support systems for power grid operations. A sensemaking perspective onmore » situation aware-ness may reveal new insights that complement ongoing human factors research, where the focus of the investigation of errors is to understand why the decision makers experienced the situation the way they did, or why what they saw made sense to them at the time.« less

  12. Experimental Evaluation of Grid Support Enabled PV Inverter Response to Abnormal Grid Conditions: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Austin; Martin, Gregory; Hurtt, James

    As revised interconnection standards for grid-tied photovoltaic (PV) inverters address new advanced grid support functions (GSFs), there is increasing interest in inverter performance in the case of abnormal grid conditions. The growth of GSF-enabled inverters has outpaced the industry standards that define their operation, although recently published updates to UL1741 with Supplement SA define test conditions for GSFs such as volt-var control, frequency-watt control, and volt-age/frequency ride-through, among others. A comparative experimental evaluation has been completed on four commercially available, three-phase PV inverters in the 24.0-39.8 kVA power range on their GSF capability and the effect on abnormal grid conditionmore » response. This study examines the impact particular GSF implementations have on run-on times during islanding conditions, peak voltages in load rejection overvoltage scenarios, and peak currents during single-phase and three-phase fault events for individual inverters. This report reviews comparative test data, which shows that GSFs have little impact on the metrics of interest in most tests cases.« less

  13. Experimental Evaluation of Grid Support Enabled PV Inverter Response to Abnormal Grid Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Austin A; Martin, Gregory D; Hurtt, James

    As revised interconnection standards for grid-tied photovoltaic (PV) inverters address new advanced grid support functions (GSFs), there is increasing interest in inverter performance in the case of abnormal grid conditions. The growth of GSF-enabled inverters has outpaced the industry standards that define their operation, although recently published updates to UL1741 Supplement SA define test conditions for GSFs such as volt-var control, frequency-watt control, and voltage/frequency ride-through, among others. This paper describes the results of a comparative experimental evaluation on four commercially available, three-phase PV inverters in the 24.0-39.8 kVA power range on their GSF capability and its effect on abnormalmore » grid condition response. The evaluation examined the impact particular GSF implementations have on run-on times during islanding conditions, peak voltages in load rejection overvoltage scenarios, and peak currents during single-phase and three-phase fault events for individual inverters. Testing results indicated a wide variance in the performance of GSF enabled inverters to various test cases.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Youngho; Hur, Kyeon; Kang, Yong

    This study investigates the emerging harmonic stability concerns to be addressed by grid planners in generation interconnection studies, owing to the increased adoption of renewable energy resources connected to the grid via power electronic converters. The wideband and high-frequency electromagnetic transient (EMT) characteristics of these converter-interfaced generators (CIGs) and their interaction with the grid impedance are not accurately captured in the typical dynamic studies conducted by grid planners. This paper thus identifies the desired components to be studied and subsequently develops a practical process for integrating a new CIG into a grid with the existing CIGs. The steps of thismore » process are as follows: the impedance equation of a CIG using its control dynamics and an interface filter to the grid, for example, an LCL filter (inductor-capacitor-inductor type), is developed; an equivalent impedance model including the existing CIGs nearby and the grid observed from the point of common coupling are derived; the system stability for credible operating scenarios is assessed. Detailed EMT simulations validate the accuracy of the impedance models and stability assessment for various connection scenarios. Here, by complementing the conventional EMT simulation studies, the proposed analytical approach enables grid planners to identify critical design parameters for seamlessly integrating a new CIG and ensuring the reliability of the grid.« less

  15. 76 FR 25685 - Pacific Gas and Electric Company; Notice of Application Tendered for Filing With the Commission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-05

    ... of Project: Rollins Transmission Line Project. f. Location: The Rollins Transmission Line Project is... Greene, (202) 502-8865 or [email protected] . j. Status: This application is not ready for... mile from NID's Rollins powerhouse switchyard to PG&E's interconnected transmission grid. The project...

  16. Wide-Area Situational Awareness of Power Grids with Limited Phasor Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Ning; Huang, Zhenyu; Nieplocha, Jarek

    Lack of situational awareness has been identified as one of root causes for the August 14, 2003 Northeast Blackout in North America. To improve situational awareness, the Department of Energy (DOE) launched several projects to deploy Wide Area Measurement Systems (WAMS) in different interconnections. Compared to the tens of thousands of buses, the number of Phasor Measurement Units (PMUs) is quite limited and not enough to achieve the observability for the whole interconnections. To utilize the limited number of PMU measurements to improve situational awareness, this paper proposes to combine PMU measurement data and power flow equations to form amore » hybrid power flow model. Technically, a model which combines the concept of observable islands and modeling of power flow conditions, is proposed. The model is called a Hybrid Power Flow Model as it has both PMU measurements and simulation assumptions, which describes prior knowledge available about whole power systems. By solving the hybrid power flow equations, the proposed method can be used to derive power system states to improve the situational awareness of a power grid.« less

  17. Microcoil Spring Interconnects for Ceramic Grid Array Integrated Circuits

    NASA Technical Reports Server (NTRS)

    Strickland, S. M.; Hester, J. D.; Gowan, A. K.; Montgomery, R. K.; Geist, D. L.; Blanche, J. F.; McGuire, G. D.; Nash, T. S.

    2011-01-01

    As integrated circuit miniaturization trends continue, they drive the need for smaller higher input/output (I/O) packages. Hermetically sealed ceramic area array parts are the package of choice by the space community for high reliability space flight electronic hardware. Unfortunately, the coefficient of thermal expansion mismatch between the ceramic area array package and the epoxy glass printed wiring board limits the life of the interconnecting solder joint. This work presents the results of an investigation by Marshall Space Flight Center into a method to increase the life of this second level interconnection by the use of compliant microcoil springs. The design of the spring and its attachment process are presented along with thermal cycling results of microcoil springs (MCS) compared with state-of-the-art ball and column interconnections. Vibration testing has been conducted on MCS and high lead column parts. Radio frequency simulation and measurements have been made and the MCS has been modeled and a stress analysis performed. Thermal cycling and vibration testing have shown MCS interconnects to be significantly more reliable than solder columns. Also, MCS interconnects are less prone to handling damage than solder columns. Future work that includes shock testing, incorporation into a digital signal processor board, and process evaluation of expansion from a 400 I/O device to a device with over 1,100 I/O is identified.

  18. 75 FR 11104 - Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-10

    ... energy produced (wind, solar, and manure/methane digester), installation cost, year installed, if any energy was sold onto a power grid, and the average payment received per kilowatt hour or total amount of...

  19. Ethanol production in a simultaneous saccharification and fermentation process with interconnected reactors employing hydrodynamic cavitation-pretreated sugarcane bagasse as raw material.

    PubMed

    Terán Hilares, Ruly; Ienny, João Vitor; Marcelino, Paulo Franco; Ahmed, Muhammad Ajaz; Antunes, Felipe A F; da Silva, Silvio Silvério; Santos, Júlio César Dos

    2017-11-01

    In this study, sugarcane bagasse (SCB) pretreated with alkali assisted hydrodynamic cavitation (HC) was investigated for simultaneous saccharification and fermentation (SSF) process for bioethanol production in interconnected column reactors using immobilized Scheffersomyces stipitis NRRL-Y7124. Initially, HC was employed for the evaluation of the reagent used in alkaline pretreatment. Alkalis (NaOH, KOH, Na 2 CO 3 , Ca(OH) 2 ) and NaOH recycled black liquor (successive batches) were used and their pretreatment effectiveness was assessed considering the solid composition and its enzymatic digestibility. In SSF process using NaOH-HC pretreatment SCB, 62.33% of total carbohydrate fractions were hydrolyzed and 17.26g/L of ethanol production (0.48g of ethanol/g of glucose and xylose consumed) was achieved. This proposed scheme of HC-assisted NaOH pretreatment together with our interconnected column reactors showed to be an interesting new approach for biorefineries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Fatigue failure kinetics and structural changes in lead-free interconnects due to mechanical and thermal cycling

    NASA Astrophysics Data System (ADS)

    Fiedler, Brent Alan

    Environmental and human health concerns drove European parliament to mandate the Reduction of Hazardous Substances (RoHS) for electronics. This was enacted in July 2006 and has practically eliminated lead in solder interconnects. There is concern in the electronics packaging community because modern lead-free solder is rich in tin. Presently, near-eutectic tin-silver-copper solders are favored by industry. These solders are stiffer than the lead-tin near-eutectic alloys, have a higher melting temperature, fewer slip systems, and form intermetallic compounds (IMC) with Cu, Ni and Ag, each of which tend to have a negative effect on lifetime. In order to design more reliable interconnects, the experimental observation of cracking mechanisms is necessary for the correct application of existing theories. The goal of this research is to observe the failure modes resulting from mode II strain and to determine the damage mechanisms which describe fatigue failures in 95.5 Sn- 4.0 Ag - 0.5 Cu wt% (SAC405) lead-free solder interconnects. In this work the initiation sites and crack paths were characterized for SAC405 ball-grid array (BGA) interconnects with electroless-nickel immersion-gold (ENIG) pad-finish. The interconnects were arranged in a perimeter array and tested in fully assembled packages. Evaluation methods included monotonic and displacement controlled mechanical shear fatigue tests, and temperature cycling. The specimens were characterized using metallogaphy, including optical and electron microscopy as well as energy dispersive spectroscopy (EDS) and precise real-time electrical resistance structural health monitoring (SHM). In mechanical shear fatigue tests, strain was applied by the substrates, simulating dissimilar coefficients of thermal expansion (CTE) between the board and chip-carrier. This type of strain caused cracks to initiate in the soft Sn-rich solder and grow near the interface between the solder and intermetallic compounds (IMC). The growth near the interface was found to be caused by dislocation pile-ups at the IMC when the plastic zone ahead of the crack tip reached this interface. In temperature cycling testing, strains arose within the interconnect due to CTE mismatch between the solder and IMC. The substrates had matched CTE for all specimens in this research. Because of this, all the temperature cycling cracks were observed at interfaces, generally between the solder and IMC. Additionally, real-time electrical resistance may be a useful non-destructive evaluation (NDE) tool for the empirical observation of fatigue cracking in ball-grid arrays (BGA) during both mechanical and temperature cycling tests.

  1. Evaluating the Impact of the 2017 Solar Eclipse on U.S. Western Interconnection Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veda, Santosh; Zhang, Yingchen; Tan, Jin

    With support from the U.S. Department of Energy (DOE) Solar Energy Technologies Office (SETO), the National Renewable Energy Laboratory (NREL) partnered with Peak Reliability to evaluate the impact of the August 21, 2017 total solar eclipse on the reliability and grid operations in the Western Electricity Coordinating Council (WECC) territory.

  2. 75 FR 26743 - Pacific Gas and Electric Company; Notice of Environmental Site Review and Technical Meetings To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-12

    ... Ocean, 2.5 to 3.0 nautical miles west of Manila on Samoa Peninsula of Humboldt Bay, near Eureka... Conversion devises (WEC), including multi-point catenary moorings and anchors; (2) marker buoys, navigation... interconnection to the electrical grid; and (6) appurtenant facilities. WEC types that may be installed may...

  3. Strategic siting and regional grid interconnections key to low-carbon futures in African countries

    PubMed Central

    Deshmukh, Ranjit; Ndhlukula, Kudakwashe; Radojicic, Tijana; Reilly-Moman, Jessica; Phadke, Amol; Kammen, Daniel M.; Callaway, Duncan S.

    2017-01-01

    Recent forecasts suggest that African countries must triple their current electricity generation by 2030. Our multicriteria assessment of wind and solar potential for large regions of Africa shows how economically competitive and low-environmental–impact renewable resources can significantly contribute to meeting this demand. We created the Multicriteria Analysis for Planning Renewable Energy (MapRE) framework to map and characterize solar and wind energy zones in 21 countries in the Southern African Power Pool (SAPP) and the Eastern Africa Power Pool (EAPP) and find that potential is several times greater than demand in many countries. Significant fractions of demand can be quickly served with “no-regrets” options—or zones that are low-cost, low-environmental impact, and highly accessible. Because no-regrets options are spatially heterogeneous, international interconnections are necessary to help achieve low-carbon development for the region as a whole, and interconnections that support the best renewable options may differ from those planned for hydropower expansion. Additionally, interconnections and selecting wind sites to match demand reduce the need for SAPP-wide conventional generation capacity by 9.5% in a high-wind scenario, resulting in a 6–20% cost savings, depending on the avoided conventional technology. Strategic selection of low-impact and accessible zones is more cost effective with interconnections compared with solutions without interconnections. Overall results are robust to multiple load growth scenarios. Together, results show that multicriteria site selection and deliberate planning of interconnections may significantly increase the economic and environmental competitiveness of renewable alternatives relative to conventional generation. PMID:28348209

  4. Strategic siting and regional grid interconnections key to low-carbon futures in African countries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Grace C.; Deshmukh, Ranjit; Ndhlukula, Kudakwashe

    2017-03-27

    Recent forecasts suggest that African countries must triple their current electricity generation by 2030. Our multicriteria assessment of wind and solar potential for large regions of Africa shows how economically competitive and low-environmental– impact renewable resources can significantly contribute to meeting this demand. We created the Multicriteria Analysis for Planning Renewable Energy (MapRE) framework to map and characterize solar and wind energy zones in 21 countries in the Southern African Power Pool (SAPP) and the Eastern Africa Power Pool (EAPP) and find that potential is several times greater than demand in many countries. Significant fractions of demand can be quicklymore » served with “no-regrets” options—or zones that are low-cost, low-environmental impact, and highly accessible. Because no-regrets options are spatially heterogeneous, international interconnections are necessary to help achieve low-carbon development for the region as a whole, and interconnections that support the best renewable options may differ from those planned for hydropower expansion. Additionally, interconnections and selecting wind sites to match demand reduce the need for SAPP-wide conventional generation capacity by 9.5% in a high-wind scenario, resulting in a 6–20% cost savings, depending on the avoided conventional technology. Strategic selection of low-impact and accessible zones is more cost effective with interconnections compared with solutions without interconnections. In conclusion, the overall results are robust to multiple load growth scenarios. Together, results show that multicriteria site selection and deliberate planning of interconnections may significantly increase the economic and environmental competitiveness of renewable alternatives relative to conventional generation.« less

  5. Strategic siting and regional grid interconnections key to low-carbon futures in African countries.

    PubMed

    Wu, Grace C; Deshmukh, Ranjit; Ndhlukula, Kudakwashe; Radojicic, Tijana; Reilly-Moman, Jessica; Phadke, Amol; Kammen, Daniel M; Callaway, Duncan S

    2017-04-11

    Recent forecasts suggest that African countries must triple their current electricity generation by 2030. Our multicriteria assessment of wind and solar potential for large regions of Africa shows how economically competitive and low-environmental-impact renewable resources can significantly contribute to meeting this demand. We created the Multicriteria Analysis for Planning Renewable Energy (MapRE) framework to map and characterize solar and wind energy zones in 21 countries in the Southern African Power Pool (SAPP) and the Eastern Africa Power Pool (EAPP) and find that potential is several times greater than demand in many countries. Significant fractions of demand can be quickly served with "no-regrets" options-or zones that are low-cost, low-environmental impact, and highly accessible. Because no-regrets options are spatially heterogeneous, international interconnections are necessary to help achieve low-carbon development for the region as a whole, and interconnections that support the best renewable options may differ from those planned for hydropower expansion. Additionally, interconnections and selecting wind sites to match demand reduce the need for SAPP-wide conventional generation capacity by 9.5% in a high-wind scenario, resulting in a 6-20% cost savings, depending on the avoided conventional technology. Strategic selection of low-impact and accessible zones is more cost effective with interconnections compared with solutions without interconnections. Overall results are robust to multiple load growth scenarios. Together, results show that multicriteria site selection and deliberate planning of interconnections may significantly increase the economic and environmental competitiveness of renewable alternatives relative to conventional generation.

  6. Autonomous Energy Grids: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroposki, Benjamin D; Dall-Anese, Emiliano; Bernstein, Andrey

    With much higher levels of distributed energy resources - variable generation, energy storage, and controllable loads just to mention a few - being deployed into power systems, the data deluge from pervasive metering of energy grids, and the shaping of multi-level ancillary-service markets, current frameworks to monitoring, controlling, and optimizing large-scale energy systems are becoming increasingly inadequate. This position paper outlines the concept of 'Autonomous Energy Grids' (AEGs) - systems that are supported by a scalable, reconfigurable, and self-organizing information and control infrastructure, can be extremely secure and resilient (self-healing), and self-optimize themselves in real-time for economic and reliable performancemore » while systematically integrating energy in all forms. AEGs rely on scalable, self-configuring cellular building blocks that ensure that each 'cell' can self-optimize when isolated from a larger grid as well as partaking in the optimal operation of a larger grid when interconnected. To realize this vision, this paper describes the concepts and key research directions in the broad domains of optimization theory, control theory, big-data analytics, and complex system modeling that will be necessary to realize the AEG vision.« less

  7. Grid Application Meta-Repository System: Repository Interconnectivity and Cross-domain Application Usage in Distributed Computing Environments

    NASA Astrophysics Data System (ADS)

    Tudose, Alexandru; Terstyansky, Gabor; Kacsuk, Peter; Winter, Stephen

    Grid Application Repositories vary greatly in terms of access interface, security system, implementation technology, communication protocols and repository model. This diversity has become a significant limitation in terms of interoperability and inter-repository access. This paper presents the Grid Application Meta-Repository System (GAMRS) as a solution that offers better options for the management of Grid applications. GAMRS proposes a generic repository architecture, which allows any Grid Application Repository (GAR) to be connected to the system independent of their underlying technology. It also presents applications in a uniform manner and makes applications from all connected repositories visible to web search engines, OGSI/WSRF Grid Services and other OAI (Open Archive Initiative)-compliant repositories. GAMRS can also function as a repository in its own right and can store applications under a new repository model. With the help of this model, applications can be presented as embedded in virtual machines (VM) and therefore they can be run in their native environments and can easily be deployed on virtualized infrastructures allowing interoperability with new generation technologies such as cloud computing, application-on-demand, automatic service/application deployments and automatic VM generation.

  8. Assessing the environmental burdens of anaerobic digestion in comparison to alternative options for managing the biodegradable fraction of municipal solid wastes.

    PubMed

    Haight, M

    2005-01-01

    Biological treatment processes including anaerobic digestion (biogasification) and composting are increasingly being considered by waste management officials and planners as alternatives for managing the mainly organic residues of municipal solid wastes (MSW). The integrated waste management model which is based upon the application of life-cycle analysis was employed to compare the environmental burdens of landfilling, composting and anaerobic digestion of MSW at a mid-sized Canadian community. Energy consumption (or recovery), residue recoveries and emissions to air and water were quantified. Scenario comparisons were analyzed to demonstrate that the environmental burdens associated with anaerobic digestion are reduced in comparison with the alternative options. The major benefit occurs as a result of the electricity produced from burning the biogas and then supplying the 'green power' to the local electrical grid.

  9. Pressurized security barrier and alarm system

    DOEpatents

    Carver, Don W.

    1995-01-01

    A security barrier for placement across a passageway is made up of interconnected pressurized tubing made up in a grid pattern with openings too small to allow passage. The tubing is connected to a pressure switch, located away from the barrier site, which activates an alarm upon occurrence of a pressure drop. A reinforcing bar is located inside and along the length of the tubing so as to cause the tubing to rupture and set off the alarm upon an intruder's making an attempt to crimp and seal off a portion of the tubing by application of a hydraulic tool. Radial and rectangular grid patterns are disclosed.

  10. Allocating application to group of consecutive processors in fault-tolerant deadlock-free routing path defined by routers obeying same rules for path selection

    DOEpatents

    Leung, Vitus J [Albuquerque, NM; Phillips, Cynthia A [Albuquerque, NM; Bender, Michael A [East Northport, NY; Bunde, David P [Urbana, IL

    2009-07-21

    In a multiple processor computing apparatus, directional routing restrictions and a logical channel construct permit fault tolerant, deadlock-free routing. Processor allocation can be performed by creating a linear ordering of the processors based on routing rules used for routing communications between the processors. The linear ordering can assume a loop configuration, and bin-packing is applied to this loop configuration. The interconnection of the processors can be conceptualized as a generally rectangular 3-dimensional grid, and the MC allocation algorithm is applied with respect to the 3-dimensional grid.

  11. Pressurized security barrier and alarm system

    DOEpatents

    Carver, D.W.

    1995-04-11

    A security barrier for placement across a passageway is made up of interconnected pressurized tubing made up in a grid pattern with openings too small to allow passage. The tubing is connected to a pressure switch, located away from the barrier site, which activates an alarm upon occurrence of a pressure drop. A reinforcing bar is located inside and along the length of the tubing so as to cause the tubing to rupture and set off the alarm upon an intruder`s making an attempt to crimp and seal off a portion of the tubing by application of a hydraulic tool. Radial and rectangular grid patterns are disclosed. 7 figures.

  12. Indicator of reliability of power grids and networks for environmental monitoring

    NASA Astrophysics Data System (ADS)

    Shaptsev, V. A.

    2017-10-01

    The energy supply of the mining enterprises includes power networks in particular. Environmental monitoring relies on the data network between the observers and the facilitators. Weather and conditions of their work change over time randomly. Temperature, humidity, wind strength and other stochastic processes are interconnecting in different segments of the power grid. The article presents analytical expressions for the probability of failure of the power grid as a whole or its particular segment. These expressions can contain one or more parameters of the operating conditions, simulated by Monte Carlo. In some cases, one can get the ultimate mathematical formula for calculation on the computer. In conclusion, the expression, including the probability characteristic function of one random parameter, for example, wind, temperature or humidity, is given. The parameters of this characteristic function can be given by retrospective or special observations (measurements).

  13. Resilient Core Networks for Energy Distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuntze, Nicolai; Rudolph, Carsten; Leivesley, Sally

    2014-07-28

    Abstract—Substations and their control are crucial for the availability of electricity in today’s energy distribution. Ad- vanced energy grids with Distributed Energy Resources require higher complexity in substations, distributed functionality and communication between devices inside substations and between substations. Also, substations include more and more intelligent devices and ICT based systems. All these devices are connected to other systems by different types of communication links or are situated in uncontrolled environments. Therefore, the risk of ICT based attacks on energy grids is growing. Consequently, security measures to counter these risks need to be an intrinsic part of energy grids. Thismore » paper introduces the concept of a Resilient Core Network to interconnected substations. This core network provides essen- tial security features, enables fast detection of attacks and allows for a distributed and autonomous mitigation of ICT based risks.« less

  14. Smart signal processing for an evolving electric grid

    NASA Astrophysics Data System (ADS)

    Silva, Leandro Rodrigues Manso; Duque, Calos Augusto; Ribeiro, Paulo F.

    2015-12-01

    Electric grids are interconnected complex systems consisting of generation, transmission, distribution, and active loads, recently called prosumers as they produce and consume electric energy. Additionally, these encompass a vast array of equipment such as machines, power transformers, capacitor banks, power electronic devices, motors, etc. that are continuously evolving in their demand characteristics. Given these conditions, signal processing is becoming an essential assessment tool to enable the engineer and researcher to understand, plan, design, and operate the complex and smart electronic grid of the future. This paper focuses on recent developments associated with signal processing applied to power system analysis in terms of characterization and diagnostics. The following techniques are reviewed and their characteristics and applications discussed: active power system monitoring, sparse representation of power system signal, real-time resampling, and time-frequency (i.e., wavelets) applied to power fluctuations.

  15. The Study on the Communication Network of Wide Area Measurement System in Electricity Grid

    NASA Astrophysics Data System (ADS)

    Xiaorong, Cheng; Ying, Wang; Yangdan, Ni

    Wide area measurement system(WAMS) is a fundamental part of security defense in Smart Grid, and the communication system of WAMS is an important part of Electric power communication network. For a large regional network is concerned, the real-time data which is transferred in the communication network of WAMS will affect the safe operation of the power grid directly. Therefore, WAMS raised higher requirements for real-time, reliability and security to its communication network. In this paper, the architecture of WASM communication network was studied according to the seven layers model of the open systems interconnection(OSI), and the network architecture was researched from all levels. We explored the media of WAMS communication network, the network communication protocol and network technology. Finally, the delay of the network were analyzed.

  16. Cyber-Physical System Security of Smart Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dagle, Jeffery E.

    2012-01-31

    Abstract—This panel presentation will provide perspectives of cyber-physical system security of smart grids. As smart grid technologies are deployed, the interconnected nature of these systems is becoming more prevalent and more complex, and the cyber component of this cyber-physical system is increasing in importance. Studying system behavior in the face of failures (e.g., cyber attacks) allows a characterization of the systems’ response to failure scenarios, loss of communications, and other changes in system environment (such as the need for emergent updates and rapid reconfiguration). The impact of such failures on the availability of the system can be assessed and mitigationmore » strategies considered. Scenarios associated with confidentiality, integrity, and availability are considered. The cyber security implications associated with the American Recovery and Reinvestment Act of 2009 in the United States are discussed.« less

  17. Knowledge Discovery for Smart Grid Operation, Control, and Situation Awareness -- A Big Data Visualization Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Yi; Jiang, Huaiguang; Zhang, Yingchen

    In this paper, a big data visualization platform is designed to discover the hidden useful knowledge for smart grid (SG) operation, control and situation awareness. The spawn of smart sensors at both grid side and customer side can provide large volume of heterogeneous data that collect information in all time spectrums. Extracting useful knowledge from this big-data poll is still challenging. In this paper, the Apache Spark, an open source cluster computing framework, is used to process the big-data to effectively discover the hidden knowledge. A high-speed communication architecture utilizing the Open System Interconnection (OSI) model is designed to transmitmore » the data to a visualization platform. This visualization platform uses Google Earth, a global geographic information system (GIS) to link the geological information with the SG knowledge and visualize the information in user defined fashion. The University of Denver's campus grid is used as a SG test bench and several demonstrations are presented for the proposed platform.« less

  18. Air Quality Improvements of Increased Integration of Renewables: Solar Photovoltaics Penetration Scenarios

    NASA Astrophysics Data System (ADS)

    Duran, P.; Holloway, T.; Brinkman, G.; Denholm, P.; Littlefield, C. M.

    2011-12-01

    Solar photovoltaics (PV) are an attractive technology because they can be locally deployed and tend to yield high production during periods of peak electric demand. These characteristics can reduce the need for conventional large-scale electricity generation, thereby reducing emissions of criteria air pollutants (CAPs) and improving ambient air quality with regard to such pollutants as nitrogen oxides, sulfur oxides and fine particulates. Such effects depend on the local climate, time-of-day emissions, available solar resources, the structure of the electric grid, and existing electricity production among other factors. This study examines the air quality impacts of distributed PV across the United States Eastern Interconnection. In order to accurately model the air quality impact of distributed PV in space and time, we used the National Renewable Energy Lab's (NREL) Regional Energy Deployment System (ReEDS) model to form three unique PV penetration scenarios in which new PV construction is distributed spatially based upon economic drivers and natural solar resources. Those scenarios are 2006 Eastern Interconnection business as usual, 10% PV penetration, and 20% PV penetration. With the GridView (ABB, Inc) dispatch model, we used historical load data from 2006 to model electricity production and distribution for each of the three scenarios. Solar PV electric output was estimated using historical weather data from 2006. To bridge the gap between dispatch and air quality modeling, we will create emission profiles for electricity generating units (EGUs) in the Eastern Interconnection from historical Continuous Emissions Monitoring System (CEMS) data. Via those emissions profiles, we will create hourly emission data for EGUs in the Eastern Interconnect for each scenario during 2006. Those data will be incorporated in the Community Multi-scale Air Quality (CMAQ) model using the Sparse Matrix Operator Kernel Emissions (SMOKE) model. Initial results indicate that PV penetration significantly reduces conventional peak electricity production and that, due to reduced emissions during periods of extremely active photochemistry, air quality could see benefits.

  19. Power System Study for Renewable Energy Interconnection in Malaysia

    NASA Astrophysics Data System (ADS)

    Askar, O. F.; Ramachandaramurthy, V. K.

    2013-06-01

    The renewable energy (RE) sector has grown exponentially in Malaysia with the introduction of the Feed-In-Tariff (FIT) by the Ministry of Energy, Green Technology and Water. Photovoltaic, biogas, biomass and mini hydro are among the renewable energy sources which offer a lucrative tariff to incite developers in taking the green technology route. In order to receive the FIT, a developer is required by the utility company to perform a power system analysis which will determine the technical feasibility of an RE interconnection to the utility company's existing grid system. There are a number of aspects which the analysis looks at, the most important being the load flow and fault levels in the network after the introduction of an RE source. The analysis is done by modelling the utility company's existing network and simulating the network with the interconnection of an RE source. The results are then compared to the values before an interconnection is made as well as ensuring the voltage rise or the increase in fault levels do not violate any pre-existing regulations set by the utility company. This paper will delve into the mechanics of performing a load flow analysis and examining the results obtained.

  20. Coolidge solar powered irrigation pumping project

    NASA Technical Reports Server (NTRS)

    Larson, D. L.

    1980-01-01

    A 150 kW solar thermal electric power plant which includes over 2100 square meters of parabolic trough type collectors and an organic Rankine cycle turbine engine was constructed on an irrigated farm. The plant is interconnected with the electrical utility grid. Operation is providing an evaluation of equipment performance and operating and maintenance requirements as well as the desirability of an on farm location.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Posch, J.

    Systems and philosophies perceived on a grand scale, encompassing new ideas, are often characterized as a dream. But in fact, such dreams often lead to the first step to fruitful development. This article is based on a preliminary study of the existing electrical high-tension networks of Western Europe, Eastern Europe and the Soviet Union - which, as explained herein, may be merged into a multinational energy supply system. Such a system would constitute a completely interconnected Eurasian Power Grid. The idea of a Eurasian super grid, spanning from the Atlantic to the Ural and Siberia, is not new. Various studiesmore » have been conducted by both western Europe and the Soviet Union on this topic. Our world is currently in an era of extra high voltage (EHV) and ultra high voltage (UHV) electrical systems. This translates into existing UHV lines of 1150 kV which have already been proven in successful operation. Such UHV systems are capable of transmitting thousands of megawatts over a distance of a 1000 miles. Furthermore, national boundaries are not more a hindrance than the challenge of interconnecting complete networks into an overall synchronized working system with load exchange capabilities in all directions.« less

  2. Large-scale optimal control of interconnected natural gas and electrical transmission systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiang, Nai-Yuan; Zavala, Victor M.

    2016-04-01

    We present a detailed optimal control model that captures spatiotemporal interactions between gas and electric transmission networks. We use the model to study flexibility and economic opportunities provided by coordination. A large-scale case study in the Illinois system reveals that coordination can enable the delivery of significantly larger amounts of natural gas to the power grid. In particular, under a coordinated setting, gas-fired generators act as distributed demand response resources that can be controlled by the gas pipeline operator. This enables more efficient control of pressures and flows in space and time and overcomes delivery bottlenecks. We demonstrate that themore » additional flexibility not only can benefit the gas operator but can also lead to more efficient power grid operations and results in increased revenue for gas-fired power plants. We also use the optimal control model to analyze computational issues arising in these complex models. We demonstrate that the interconnected Illinois system with full physical resolution gives rise to a highly nonlinear optimal control problem with 4400 differential and algebraic equations and 1040 controls that can be solved with a state-of-the-art sparse optimization solver. (C) 2016 Elsevier Ltd. All rights reserved.« less

  3. Thermal Cycling Life Prediction of Sn-3.0Ag-0.5Cu Solder Joint Using Type-I Censored Data

    PubMed Central

    Mi, Jinhua; Yang, Yuan-Jian; Huang, Hong-Zhong

    2014-01-01

    Because solder joint interconnections are the weaknesses of microelectronic packaging, their reliability has great influence on the reliability of the entire packaging structure. Based on an accelerated life test the reliability assessment and life prediction of lead-free solder joints using Weibull distribution are investigated. The type-I interval censored lifetime data were collected from a thermal cycling test, which was implemented on microelectronic packaging with lead-free ball grid array (BGA) and fine-pitch ball grid array (FBGA) interconnection structures. The number of cycles to failure of lead-free solder joints is predicted by using a modified Engelmaier fatigue life model and a type-I censored data processing method. Then, the Pan model is employed to calculate the acceleration factor of this test. A comparison of life predictions between the proposed method and the ones calculated directly by Matlab and Minitab is conducted to demonstrate the practicability and effectiveness of the proposed method. At last, failure analysis and microstructure evolution of lead-free solders are carried out to provide useful guidance for the regular maintenance, replacement of substructure, and subsequent processing of electronic products. PMID:25121138

  4. A Vision of China-Arab Interconnection Transmission Network Planning with UHVDC Technology

    NASA Astrophysics Data System (ADS)

    Wu, Dan; Liu, Yujun; Yin, Hongyuan; Xu, Qingshan; Xu, Xiaohui; Ding, Maosheng

    2017-05-01

    Developments in ultra-high-voltage (UHV) power systems and clean energy technologies are paving the way towards unprecedented energy market globalization. In accordance with the international community’s enthusiasm for building up the Global Energy Internet, this paper focuses on the feasibility of transmitting large-size electricity from northwest China to Arab world through a long-distance transnational power interconnection. The complete investigations on the grids of both the sending-end and receiving-end is firstly presented. Then system configuration of the transmission scheme and corridor route planning is proposed with UHVDC technology. Based on transmission costs’ investigation about similar transmission projects worldwide, the costs of the proposed transmission scheme are estimated through adjustment factors which represent differences in latitude, topography and economy. The proposed China-Arab transmission line sheds light on the prospects of power cooperation and resource sharing between China and Arab states, and appeals for more emphasis on green energy concentrated power interconnections from a global perspective.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Jay Tillay

    For three years, Sandia National Laboratories, Georgia Institute of Technology, and University of Illinois at Urbana-Champaign investigated a smart grid vision in which renewable-centric Virtual Power Plants (VPPs) provided ancillary services with interoperable distributed energy resources (DER). This team researched, designed, built, and evaluated real-time VPP designs incorporating DER forecasting, stochastic optimization, controls, and cyber security to construct a system capable of delivering reliable ancillary services, which have been traditionally provided by large power plants or other dedicated equipment. VPPs have become possible through an evolving landscape of state and national interconnection standards, which now require DER to include grid-supportmore » functionality and communications capabilities. This makes it possible for third party aggregators to provide a range of critical grid services such as voltage regulation, frequency regulation, and contingency reserves to grid operators. This paradigm (a) enables renewable energy, demand response, and energy storage to participate in grid operations and provide grid services, (b) improves grid reliability by providing additional operating reserves for utilities, independent system operators (ISOs), and regional transmission organization (RTOs), and (c) removes renewable energy high-penetration barriers by providing services with photovoltaics and wind resources that traditionally were the jobs of thermal generators. Therefore, it is believed VPP deployment will have far-reaching positive consequences for grid operations and may provide a robust pathway to high penetrations of renewables on US power systems. In this report, we design VPPs to provide a range of grid-support services and demonstrate one VPP which simultaneously provides bulk-system energy and ancillary reserves.« less

  6. Converter topologies for common mode voltage reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, Fernando

    An inverter includes a three-winding transformer, a DC-AC inverter electrically coupled to the first winding of the transformer, a cycloconverter electrically coupled to the second winding of the transformer, and an active filter electrically coupled to the third winding of the transformer. The DC-AC inverter is adapted to convert the input DC waveform to an AC waveform delivered to the transformer at the first winding. The cycloconverter is adapted to convert an AC waveform received at the second winding of the transformer to the output AC waveform having a grid frequency of the AC grid. The active filter is adaptedmore » to sink and source power with one or more energy storage devices based on a mismatch in power between the DC source and the AC grid. At least two of the DC-AC inverter, the cycloconverter, or the active filter are electrically coupled via a common reference electrical interconnect.« less

  7. The equal load-sharing model of cascade failures in power grids

    NASA Astrophysics Data System (ADS)

    Scala, Antonio; De Sanctis Lucentini, Pier Giorgio

    2016-11-01

    Electric power-systems are one of the most important critical infrastructures. In recent years, they have been exposed to extreme stress due to the increasing power demand, the introduction of distributed renewable energy sources, and the development of extensive interconnections. We investigate the phenomenon of abrupt breakdown of an electric power-system under two scenarios: load growth (mimicking the ever-increasing customer demand) and power fluctuations (mimicking the effects of renewable sources). Our results indicate that increasing the system size causes breakdowns to become more abrupt; in fact, mapping the system to a solvable statistical-physics model indicates the occurrence of a first order transition in the large size limit. Such an enhancement for the systemic risk failures (black-outs) with increasing network size is an effect that should be considered in the current projects aiming to integrate national power-grids into ;super-grids;.

  8. Abruptness of Cascade Failures in Power Grids

    NASA Astrophysics Data System (ADS)

    Pahwa, Sakshi; Scoglio, Caterina; Scala, Antonio

    2014-01-01

    Electric power-systems are one of the most important critical infrastructures. In recent years, they have been exposed to extreme stress due to the increasing demand, the introduction of distributed renewable energy sources, and the development of extensive interconnections. We investigate the phenomenon of abrupt breakdown of an electric power-system under two scenarios: load growth (mimicking the ever-increasing customer demand) and power fluctuations (mimicking the effects of renewable sources). Our results on real, realistic and synthetic networks indicate that increasing the system size causes breakdowns to become more abrupt; in fact, mapping the system to a solvable statistical-physics model indicates the occurrence of a first order transition in the large size limit. Such an enhancement for the systemic risk failures (black-outs) with increasing network size is an effect that should be considered in the current projects aiming to integrate national power-grids into ``super-grids''.

  9. Abruptness of cascade failures in power grids.

    PubMed

    Pahwa, Sakshi; Scoglio, Caterina; Scala, Antonio

    2014-01-15

    Electric power-systems are one of the most important critical infrastructures. In recent years, they have been exposed to extreme stress due to the increasing demand, the introduction of distributed renewable energy sources, and the development of extensive interconnections. We investigate the phenomenon of abrupt breakdown of an electric power-system under two scenarios: load growth (mimicking the ever-increasing customer demand) and power fluctuations (mimicking the effects of renewable sources). Our results on real, realistic and synthetic networks indicate that increasing the system size causes breakdowns to become more abrupt; in fact, mapping the system to a solvable statistical-physics model indicates the occurrence of a first order transition in the large size limit. Such an enhancement for the systemic risk failures (black-outs) with increasing network size is an effect that should be considered in the current projects aiming to integrate national power-grids into "super-grids".

  10. An easily regenerable enzyme reactor prepared from polymerized high internal phase emulsions.

    PubMed

    Ruan, Guihua; Wu, Zhenwei; Huang, Yipeng; Wei, Meiping; Su, Rihui; Du, Fuyou

    2016-04-22

    A large-scale high-efficient enzyme reactor based on polymerized high internal phase emulsion monolith (polyHIPE) was prepared. First, a porous cross-linked polyHIPE monolith was prepared by in-situ thermal polymerization of a high internal phase emulsion containing styrene, divinylbenzene and polyglutaraldehyde. The enzyme of TPCK-Trypsin was then immobilized on the monolithic polyHIPE. The performance of the resultant enzyme reactor was assessed according to the conversion ability of Nα-benzoyl-l-arginine ethyl ester to Nα-benzoyl-l-arginine, and the protein digestibility of bovine serum albumin (BSA) and cytochrome (Cyt-C). The results showed that the prepared enzyme reactor exhibited high enzyme immobilization efficiency and fast and easy-control protein digestibility. BSA and Cyt-C could be digested in 10 min with sequence coverage of 59% and 78%, respectively. The peptides and residual protein could be easily rinsed out from reactor and the reactor could be regenerated easily with 4 M HCl without any structure destruction. Properties of multiple interconnected chambers with good permeability, fast digestion facility and easily reproducibility indicated that the polyHIPE enzyme reactor was a good selector potentially applied in proteomics and catalysis areas. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Intrusion detection system using Online Sequence Extreme Learning Machine (OS-ELM) in advanced metering infrastructure of smart grid.

    PubMed

    Li, Yuancheng; Qiu, Rixuan; Jing, Sitong

    2018-01-01

    Advanced Metering Infrastructure (AMI) realizes a two-way communication of electricity data through by interconnecting with a computer network as the core component of the smart grid. Meanwhile, it brings many new security threats and the traditional intrusion detection method can't satisfy the security requirements of AMI. In this paper, an intrusion detection system based on Online Sequence Extreme Learning Machine (OS-ELM) is established, which is used to detecting the attack in AMI and carrying out the comparative analysis with other algorithms. Simulation results show that, compared with other intrusion detection methods, intrusion detection method based on OS-ELM is more superior in detection speed and accuracy.

  12. 78 FR 62348 - Erie Boulevard Hydropower L.P.; Notice of Application Tendered for Filing With the Commission and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-18

    ... 100 feet; and (7) 2.4-kilovolt (kV) generator leads extending about 25 feet to an adjacent electrical substation containing a 2.4/4.8-kV, 600-kilovolt-amperes, step-up transformer bank. A transmission line owned... project interconnects with the electrical grid at the substation. At the time the Commission issued the...

  13. Microgrid Modeling and Simulation Study

    DTIC Science & Technology

    2016-09-01

    will be used to guide DOD M&S strategy and planning, as well as develop a comprehensive microgrid M&S capability and prioritize future efforts...contingencies and sequencing (Short term investment) Peer-to-peer Rapid send- listen techniques M&S is needed to determine an approach for handling...tactical microgrid network with interconnected grids. ○ Rapid Send- Listen Techniques is a specific enabler necessary for communications in a

  14. Model Predictive Control of A Matrix-Converter Based Solid State Transformer for Utility Grid Interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Yaosuo

    The matrix converter solid state transformer (MC-SST), formed from the back-to-back connection of two three-to-single-phase matrix converters, is studied for use in the interconnection of two ac grids. The matrix converter topology provides a light weight and low volume single-stage bidirectional ac-ac power conversion without the need for a dc link. Thus, the lifetime limitations of dc-bus storage capacitors are avoided. However, space vector modulation of this type of MC-SST requires to compute vectors for each of the two MCs, which must be carefully coordinated to avoid commutation failure. An additional controller is also required to control power exchange betweenmore » the two ac grids. In this paper, model predictive control (MPC) is proposed for an MC-SST connecting two different ac power grids. The proposed MPC predicts the circuit variables based on the discrete model of MC-SST system and the cost function is formulated so that the optimal switch vector for the next sample period is selected, thereby generating the required grid currents for the SST. Simulation and experimental studies are carried out to demonstrate the effectiveness and simplicity of the proposed MPC for such MC-SST-based grid interfacing systems.« less

  15. An easily regenerable enzyme reactor prepared from polymerized high internal phase emulsions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruan, Guihua, E-mail: guihuaruan@hotmail.com; Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004; Wu, Zhenwei

    A large-scale high-efficient enzyme reactor based on polymerized high internal phase emulsion monolith (polyHIPE) was prepared. First, a porous cross-linked polyHIPE monolith was prepared by in-situ thermal polymerization of a high internal phase emulsion containing styrene, divinylbenzene and polyglutaraldehyde. The enzyme of TPCK-Trypsin was then immobilized on the monolithic polyHIPE. The performance of the resultant enzyme reactor was assessed according to the conversion ability of N{sub α}-benzoyl-L-arginine ethyl ester to N{sub α}-benzoyl-L-arginine, and the protein digestibility of bovine serum albumin (BSA) and cytochrome (Cyt-C). The results showed that the prepared enzyme reactor exhibited high enzyme immobilization efficiency and fast andmore » easy-control protein digestibility. BSA and Cyt-C could be digested in 10 min with sequence coverage of 59% and 78%, respectively. The peptides and residual protein could be easily rinsed out from reactor and the reactor could be regenerated easily with 4 M HCl without any structure destruction. Properties of multiple interconnected chambers with good permeability, fast digestion facility and easily reproducibility indicated that the polyHIPE enzyme reactor was a good selector potentially applied in proteomics and catalysis areas. - Graphical abstract: Schematic illustration of preparation of hypercrosslinking polyHIPE immobilized enzyme reactor for on-column protein digestion. - Highlights: • A reactor was prepared and used for enzyme immobilization and continuous on-column protein digestion. • The new polyHIPE IMER was quite suit for protein digestion with good properties. • On-column digestion revealed that the IMER was easy regenerated by HCl without any structure destruction.« less

  16. Interconnecting PV on New York City's Secondary Network Distribution System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, K; Coddington, M; Burman, K

    2009-11-01

    The U.S. Department of Energy (DOE) has teamed with cities across the country through the Solar America Cities (SAC) partnership program to help reduce barriers and accelerate implementation of solar energy. The New York City SAC team is a partnership between the City University of New York (CUNY), the New York City Mayor s Office of Long-term Planning and Sustainability, and the New York City Economic Development Corporation (NYCEDC).The New York City SAC team is working with DOE s National Renewable Energy Laboratory (NREL) and Con Edison, the local utility, to develop a roadmap for photovoltaic (PV) installations in themore » five boroughs. The city set a goal to increase its installed PV capacity from1.1 MW in 2005 to 8.1 MW by 2015 (the maximum allowed in 2005). A key barrier to reaching this goal, however, is the complexity of the interconnection process with the local utility. Unique challenges are associated with connecting distributed PV systems to secondary network distribution systems (simplified to networks in this report). Although most areas of the country use simpler radial distribution systems to distribute electricity, larger metropolitan areas like New York City typically use networks to increase reliability in large load centers. Unlike the radial distribution system, where each customer receives power through a single line, a network uses a grid of interconnected lines to deliver power to each customer through several parallel circuits and sources. This redundancy improves reliability, but it also requires more complicated coordination and protection schemes that can be disrupted by energy exported from distributed PV systems. Currently, Con Edison studies each potential PV system in New York City to evaluate the system s impact on the network, but this is time consuming for utility engineers and may delay the customer s project or add cost for larger installations. City leaders would like to streamline this process to facilitate faster, simpler, and less expensive distributed PV system interconnections. To assess ways to improve the interconnection process, NREL conducted a four-part study with support from DOE. The NREL team then compiled the final reports from each study into this report. In Section 1PV Deployment Analysis for New York City we analyze the technical potential for rooftop PV systems in the city. This analysis evaluates potential PV power production in ten Con Edison networks of various locations and building densities (ranging from high density apartments to lower density single family homes). Next, we compare the potential power production to network loads to determine where and when PV generation is most likely to exceed network load and disrupt network protection schemes. The results of this analysis may assist Con Edison in evaluating future PV interconnection applications and in planning future network protection system upgrades. This analysis may also assist other utilities interconnecting PV systems to networks by defining a method for assessing the technical potential of PV in the network and its impact on network loads. Section 2. A Briefing for Policy Makers on Connecting PV to a Network Grid presents an overview intended for nontechnical stakeholders. This section describes the issues associated with interconnecting PV systems to networks, along with possible solutions. Section 3. Technical Review of Concerns and Solutions to PV Interconnection in New York City summarizes common concerns of utility engineers and network experts about interconnecting PV systems to secondary networks. This section also contains detailed descriptions of nine solutions, including advantages and disadvantages, potential impacts, and road maps for deployment. Section 4. Utility Application Process Reviewlooks at utility interconnection application processes across the country and identifies administrative best practices for efficient PV interconnection.« less

  17. Index-based reactive power compensation scheme for voltage regulation

    NASA Astrophysics Data System (ADS)

    Dike, Damian Obioma

    2008-10-01

    Increasing demand for electrical power arising from deregulation and the restrictions posed to the construction of new transmission lines by environment, socioeconomic, and political issues had led to higher grid loading. Consequently, voltage instability has become a major concern, and reactive power support is vital to enhance transmission grid performance. Improved reactive power support to distressed grid is possible through the application of relatively unfamiliar emerging technologies of "Flexible AC Transmission Systems (FACTS)" devices and "Distributed Energy Resources (DERS)." In addition to these infrastructure issues, a lack of situational awareness by system operators can cause major power outages as evidenced by the August 14, 2003 widespread North American blackout. This and many other recent major outages have highlighted the inadequacies of existing power system indexes. In this work, a novel "Index-based reactive compensation scheme" appropriate for both on-line and off-line computation of grid status has been developed. A new voltage stability index (Ls-index) suitable for long transmission lines was developed, simulated, and compared to the existing two-machine modeled L-index. This showed the effect of long distance power wheeling amongst regional transmission organizations. The dissertation further provided models for index modulated voltage source converters (VSC) and index-based load flow analysis of both FACTS and microgrid interconnected power systems using the Newton-Raphson's load flow model incorporated with multi-FACTS devices. The developed package has been made user-friendly through the embodiment of interactive graphical user interface and implemented on the IEEE 14, 30, and 300 bus systems. The results showed reactive compensation has system wide-effect, provided readily accessible system status indicators, ensured seamless DERs interconnection through new islanding modes and enhanced VSC utilization. These outcomes may contribute to optimal utilization of compensation devices and available transfer capability as well as reduce system outages through better regulation of power operating voltages.

  18. Development of a Thin Film Solar Cell Interconnect for the Powersphere Concept

    NASA Technical Reports Server (NTRS)

    Simburger, Edward J.; Matsumoto, James H.; Giants, Thomas W.; Garcia, Alexander, III; Liu, Simon; Rawal, Suraj P.; Perry, Alan R.; Marshall, Craig H.; Lin, John K.; Scarborough, Stephen

    2003-01-01

    Progressive development of microsatellite technologies has resulted in increased demand for lightweight electrical power subsystems including solar arrays. The use of thin film photovoltaics has been recognized as a key solution to meet the power needs. The lightweight cells can generate sufficient power and still meet critical mass requirements. Commercially available solar cells produced on lightweight substrates are being studied as an option to fulfill the power needs. The commercially available solar cells are relatively inexpensive and have a high payoff potential. Commercially available thin film solar cells are primarily being produced for terrestrial applications. The need to convert the solar cell from a terrestrial to a space compatible application is the primary challenge. Solar cell contacts, grids and interconnects need to be designed to be atomic oxygen resistant and withstand rapid thermal cycling environments. A mechanically robust solar cell interconnect is also required in order to withstand handling during fabrication and survive during launch. The need to produce the solar cell interconnects has been identified as a primary goal of the Powersphere program and is the topic of this paper. Details of the trade study leading to the final design involving the solar cell wrap around contact, flex blanket, welding process, and frame will be presented at the conference.

  19. Impact of High PV Penetration on the Inter-Area Oscillations in the U.S. Eastern Interconnection

    DOE PAGES

    You, Shutang; Kou, Gefei; Liu, Yong; ...

    2017-03-31

    Our study explores the impact of high-photovoltaic (PV) penetration on the inter-area oscillation modes of large-scale power grids. A series of dynamic models with various PV penetration levels are developed based on a detailed model representing the U.S. Eastern Interconnection (EI). Transient simulations are performed to investigate the change of inter-area oscillation modes with PV penetration. The impact of PV control strategies and parameter settings on inter-area oscillations is studied. This paper finds that as PV increases, the damping of the dominant oscillation mode decreases monotonically. We also observed that the mode shape varies with the PV control strategy andmore » new oscillation modes may emerge under inappropriate parameter settings in PV plant controls.« less

  20. Research on frequency control strategy of interconnected region based on fuzzy PID

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Li, Chunlan

    2018-05-01

    In order to improve the frequency control performance of the interconnected power grid, overcome the problems of poor robustness and slow adjustment of traditional regulation, the paper puts forward a frequency control method based on fuzzy PID. The method takes the frequency deviation and tie-line deviation of each area as the control objective, takes the regional frequency deviation and its deviation as input, and uses fuzzy mathematics theory, adjusts PID control parameters online. By establishing the regional frequency control model of water-fire complementary power generation in MATLAB, the regional frequency control strategy is given, and three control modes (TBC-FTC, FTC-FTC, FFC-FTC) are simulated and analyzed. The simulation and experimental results show that, this method has better control performance compared with the traditional regional frequency regulation.

  1. A Transparent Framework for Evaluating the Effects of DGPV on Distribution System Costs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horowitz, Kelsey A; Mather, Barry A; Ding, Fei

    Assessing the costs and benefits of distributed photovoltaic generators (DGPV) to the power system and electricity consumers is key to determining appropriate policies, tariff designs, and power system upgrades for the modern grid. We advance understanding of this topic by providing a transparent framework, terminology, and data set for evaluating distribution system upgrade costs, line losses, and interconnection costs as a function of DGPV penetration level.

  2. Impact of Isothermal Aging on Long-Term Reliability of Fine-Pitch Ball Grid Array Packages with Sn-Ag-Cu Solder Interconnects: Surface Finish Effects

    NASA Astrophysics Data System (ADS)

    Lee, Tae-Kyu; Ma, Hongtao; Liu, Kuo-Chuan; Xue, Jie

    2010-12-01

    The interaction between isothermal aging and the long-term reliability of fine-pitch ball grid array (BGA) packages with Sn-3.0Ag-0.5Cu (wt.%) solder ball interconnects was investigated. In this study, 0.4-mm fine-pitch packages with 300- μm-diameter Sn-Ag-Cu solder balls were used. Two different package substrate surface finishes were selected to compare their effects on the final solder composition, especially the effect of Ni, during thermal cycling. To study the impact on thermal performance and long-term reliability, samples were isothermally aged and thermally cycled from 0°C to 100°C with 10 min dwell time. Based on Weibull plots for each aging condition, package lifetime was reduced by approximately 44% by aging at 150°C. Aging at 100°C showed a smaller impact but similar trend. The microstructure evolution was observed during thermal aging and thermal cycling with different phase microstructure transformations between electrolytic Ni/Au and organic solderability preservative (OSP) surface finishes, focusing on the microstructure evolution near the package-side interface. Different mechanisms after aging at various conditions were observed, and their impacts on the fatigue lifetime of solder joints are discussed.

  3. Additional EIPC Study Analysis: Interim Report on Medium Priority Topics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadley, Stanton W.; Gotham, Douglas J.

    Between 2010 and 2012 the Eastern Interconnection Planning Collaborative (EIPC) conducted a major long-term resource and transmission study of the Eastern Interconnection (EI). With guidance from a stakeholder steering committee (SSC) that included representatives from the Eastern Interconnection States’ Planning Council (EISPC) among others, the project was conducted in two phases. The first was a 2015–2040 analysis that looked at a broad array of possible future scenarios, while the second focused on a more detailed examination of the grid in 2030. The studies provided a wealth of information on possible future generation, demand, and transmission alternatives. However, at the conclusionmore » there were still unresolved questions and issues. The US Department of Energy, which had sponsored the study, asked Oak Ridge National Laboratory researchers and others who worked on the project to conduct an additional study of the data to provide further insights for stakeholders and the industry. This report documents the second part of that follow-on study [an earlier report (Hadley 2013) covered the first part, and a subsequent report will address the last part].« less

  4. Development of an Electrostatically Clean Solar Array Panel

    NASA Technical Reports Server (NTRS)

    Stern, Theodore G.; Krumweide, Duane; Gaddy, Edward; Katz, Ira

    2000-01-01

    The results of design, analysis, and qualification of an Electrostatically Clean Solar Array (ECSA) panel are described. The objective of the ECSA design is to provide an electrostatic environment that does not interfere with sensitive instruments on scientific spacecraft. The ECSA design uses large, ITO-coated coverglasses that cover multiple solar cells, an aperture grid that covers the intercell areas, stress-relieved interconnects for connecting the aperture grid to the coverglasses, and edge clips to provides an electromagnetically shielded enclosure for the solar array active circuitry. Qualification coupons were fabricated and tested for photovoltaic response, conductivity, and survivability to launch acoustic and thermal cycling environments simulating LEO and GEO missions. The benefits of reducing solar panel interaction with the space environment are also discussed.

  5. The smoothing effect for renewable resources in an Afro-Eurasian power grid

    NASA Astrophysics Data System (ADS)

    Krutova, Maria; Kies, Alexander; Schyska, Bruno U.; von Bremen, Lueder

    2017-07-01

    Renewable power systems have to cope with highly variable generation. Increasing the spatial extent of an interconnected power transmission grid smooths the feed-in by exchange of excess energy over long distances and therefore supports renewable power integration. In this work, we investigate and quantify the balancing potential of a supergrid covering Europe, Africa and Asia. We use ten years of historical weather data to model the interplay of renewable generation and consumption and show that a pan-continental Afro-Eurasian supergrid can smooth renewable generation to a large extent and reduce the need for backup energy by around 50 %. In addition, we show that results for different weather years vary by up to approximately 50 %.

  6. Intrusion detection system using Online Sequence Extreme Learning Machine (OS-ELM) in advanced metering infrastructure of smart grid

    PubMed Central

    Li, Yuancheng; Jing, Sitong

    2018-01-01

    Advanced Metering Infrastructure (AMI) realizes a two-way communication of electricity data through by interconnecting with a computer network as the core component of the smart grid. Meanwhile, it brings many new security threats and the traditional intrusion detection method can’t satisfy the security requirements of AMI. In this paper, an intrusion detection system based on Online Sequence Extreme Learning Machine (OS-ELM) is established, which is used to detecting the attack in AMI and carrying out the comparative analysis with other algorithms. Simulation results show that, compared with other intrusion detection methods, intrusion detection method based on OS-ELM is more superior in detection speed and accuracy. PMID:29485990

  7. Visual Analytics for Power Grid Contingency Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Pak C.; Huang, Zhenyu; Chen, Yousu

    2014-01-20

    Contingency analysis is the process of employing different measures to model scenarios, analyze them, and then derive the best response to remove the threats. This application paper focuses on a class of contingency analysis problems found in the power grid management system. A power grid is a geographically distributed interconnected transmission network that transmits and delivers electricity from generators to end users. The power grid contingency analysis problem is increasingly important because of both the growing size of the underlying raw data that need to be analyzed and the urgency to deliver working solutions in an aggressive timeframe. Failure tomore » do so may bring significant financial, economic, and security impacts to all parties involved and the society at large. The paper presents a scalable visual analytics pipeline that transforms about 100 million contingency scenarios to a manageable size and form for grid operators to examine different scenarios and come up with preventive or mitigation strategies to address the problems in a predictive and timely manner. Great attention is given to the computational scalability, information scalability, visual scalability, and display scalability issues surrounding the data analytics pipeline. Most of the large-scale computation requirements of our work are conducted on a Cray XMT multi-threaded parallel computer. The paper demonstrates a number of examples using western North American power grid models and data.« less

  8. Comparative analysis of existing models for power-grid synchronization

    NASA Astrophysics Data System (ADS)

    Nishikawa, Takashi; Motter, Adilson E.

    2015-01-01

    The dynamics of power-grid networks is becoming an increasingly active area of research within the physics and network science communities. The results from such studies are typically insightful and illustrative, but are often based on simplifying assumptions that can be either difficult to assess or not fully justified for realistic applications. Here we perform a comprehensive comparative analysis of three leading models recently used to study synchronization dynamics in power-grid networks—a fundamental problem of practical significance given that frequency synchronization of all power generators in the same interconnection is a necessary condition for a power grid to operate. We show that each of these models can be derived from first principles within a common framework based on the classical model of a generator, thereby clarifying all assumptions involved. This framework allows us to view power grids as complex networks of coupled second-order phase oscillators with both forcing and damping terms. Using simple illustrative examples, test systems, and real power-grid datasets, we study the inherent frequencies of the oscillators as well as their coupling structure, comparing across the different models. We demonstrate, in particular, that if the network structure is not homogeneous, generators with identical parameters need to be modeled as non-identical oscillators in general. We also discuss an approach to estimate the required (dynamical) system parameters that are unavailable in typical power-grid datasets, their use for computing the constants of each of the three models, and an open-source MATLAB toolbox that we provide for these computations.

  9. Topical Meeting on Photonic Switching Held in Incline Village, Nevada on 18-20 March 1987. Technical Digest Series. Volume 13.

    DTIC Science & Technology

    1988-03-31

    pp. 77-9. 2. R.A. Spanke , "Architectures for Large Nonblocking Optical Space Switches," !EEE Journal of Quantum Electronics, Vol. QE-22, No. 6, June...Interconnection Network * Using Directional Couplers", IEEE Global Telecommunications Conference, Nov. 1984. (3) R. A. Spanke , "Architectures for Large...Nordin and M. T. Ratajack for project motivation and system expertise; R. Spanke for design of the architecture, and F. T. Stone and W. A. Payne for

  10. Electric Vehicle Charging and the California Power Sector: Evaluating the Effect of Location and Time on Greenhouse Gas Emissions

    NASA Astrophysics Data System (ADS)

    Sohnen, Julia Meagher

    This thesis explores the implications of the increased adoption of plug-in electric vehicles in California through its effect on the operation of the state's electric grid. The well-to-wheels emissions associated with driving an electric vehicle depend on the resource mix of the electricity grid used to charge the battery. We present a new least-cost dispatch model, EDGE-NET, for the California electricity grid consisting of interconnected sub-regions that encompass the six largest state utilities that can be used to evaluate the impact of growing electric vehicle demand on existing power grid infrastructure system and energy resources. This model considers spatiality and temporal dynamics of energy demand and supply when determining the regional impacts of additional charging profiles on the current electricity network. Model simulation runs for one year show generation and transmission congestion to be reasonable similar to historical data. Model simulation results show that average emissions and system costs associated with electricity generation vary significantly by time of day, season, and location. Marginal cost and emissions also exhibit seasonal and diurnal differences, but show less spatial variation. Sensitivity of demand analysis shows that the relative changes to average emissions and system costs respond asymmetrically to increases and decreases in electricity demand. These results depend on grid mix at the time and the marginal power plant type. In minimizing total system cost, the model will choose to dispatch the lowest-cost resource to meet additional vehicle demand, regardless of location, as long as transmission capacity is available. Location of electric vehicle charging has a small effect on the marginal greenhouse gas emissions associated with additional generation, due to electricity losses in the transmission grid. We use a geographically explicit, charging assessment model for California to develop and compare the effects of two charging profiles. Comparison of these two basic scenarios points to savings in greenhouse gas emissions savings and operational costs from delayed charging of electric vehicles. Vehicle charging simulations confirm that plug-in electric vehicles alone are unlikely to require additional generation or transmission infrastructure. EDGE-NET was successfully benchmarked against historical data for the present grid but additional work is required to expand the model for future scenario evaluation. We discuss how the model might be adapted for high penetrations of variable renewable energy resources, and the use of grid storage. Renewable resources such as wind and solar vary in California vary significantly by time-of-day, season, and location. However, combination of multiple resources from different geographic regions through transmission grid interconnection is expected to help mitigate the impacts of variability. EDGE-NET can evaluate interaction of supply and demand through the existing transmission infrastructure and can identify any critical network bottlenecks or areas for expansion. For this reason, EDGE-NET will be an important tool to evaluate energy policy scenarios.

  11. Advanced Photovoltaic Inverter Control Development and Validation in a Controller-Hardware-in-the-Loop Test Bed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prabakar, Kumaraguru; Shirazi, Mariko; Singh, Akanksha

    Penetration levels of solar photovoltaic (PV) generation on the electric grid have increased in recent years. In the past, most PV installations have not included grid-support functionalities. But today, standards such as the upcoming revisions to IEEE 1547 recommend grid support and anti-islanding functions-including volt-var, frequency-watt, volt-watt, frequency/voltage ride-through, and other inverter functions. These functions allow for the standardized interconnection of distributed energy resources into the grid. This paper develops and tests low-level inverter current control and high-level grid support functions. The controller was developed to integrate advanced inverter functions in a systematic approach, thus avoiding conflict among the differentmore » control objectives. The algorithms were then programmed on an off-the-shelf, embedded controller with a dual-core computer processing unit and field-programmable gate array (FPGA). This programmed controller was tested using a controller-hardware-in-the-loop (CHIL) test bed setup using an FPGA-based real-time simulator. The CHIL was run at a time step of 500 ns to accommodate the 20-kHz switching frequency of the developed controller. The details of the advanced control function and CHIL test bed provided here will aide future researchers when designing, implementing, and testing advanced functions of PV inverters.« less

  12. Correlations and Functional Connections in a Population of Grid Cells

    PubMed Central

    Roudi, Yasser

    2015-01-01

    We study the statistics of spike trains of simultaneously recorded grid cells in freely behaving rats. We evaluate pairwise correlations between these cells and, using a maximum entropy kinetic pairwise model (kinetic Ising model), study their functional connectivity. Even when we account for the covariations in firing rates due to overlapping fields, both the pairwise correlations and functional connections decay as a function of the shortest distance between the vertices of the spatial firing pattern of pairs of grid cells, i.e. their phase difference. They take positive values between cells with nearby phases and approach zero or negative values for larger phase differences. We find similar results also when, in addition to correlations due to overlapping fields, we account for correlations due to theta oscillations and head directional inputs. The inferred connections between neurons in the same module and those from different modules can be both negative and positive, with a mean close to zero, but with the strongest inferred connections found between cells of the same module. Taken together, our results suggest that grid cells in the same module do indeed form a local network of interconnected neurons with a functional connectivity that supports a role for attractor dynamics in the generation of grid pattern. PMID:25714908

  13. Development of the Mathematics of Learning Curve Models for Evaluating Small Modular Reactor Economics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, Thomas J.

    2014-03-01

    This report documents the efforts to perform dynamic model validation on the Eastern Interconnection (EI) by modeling governor deadband. An on-peak EI dynamic model is modified to represent governor deadband characteristics. Simulation results are compared with synchrophasor measurements collected by the Frequency Monitoring Network (FNET/GridEye). The comparison shows that by modeling governor deadband the simulated frequency response can closely align with the actual system response.

  14. Structures and Techniques For Implementing and Packaging Complex, Large Scale Microelectromechanical Systems Using Foundry Fabrication Processes.

    DTIC Science & Technology

    1996-06-01

    switches 5-43 Figure 5-27. Mechanical interference between ’Pull Spring’ devices 5-45 Figure 5-28. Array of LIGA mechanical relay switches 5-49...like coating DM Direct metal interconnect technique DMD ™ Digital Micromirror Device EDP Ethylene, diamine, pyrocatechol and water; silicon anisotropic...mechanical systems MOSIS MOS Implementation Service PGA Pin grid array, an electronic die package PZT Lead-zirconate-titanate LIGA Lithographie

  15. Development of Low Cost, High Energy-Per-Unit-Area Solar Cell Modules

    NASA Technical Reports Server (NTRS)

    Jones, G. T.; Chitre, S.

    1977-01-01

    Work on the development of low cost, high energy per unit area solar cell modules was conducted. Hexagonal solar cell and module efficiencies, module packing ratio, and solar cell design calculations were made. The cell grid structure and interconnection pattern was designed and the module substrates were fabricated for the three modules to be used. It was demonstrated that surface macrostructures significantly improve cell power output and photovoltaic energy conversion efficiency.

  16. NEMS (Nanoelectromechanicsl Systems) Networks: A Novel Validation Platform for Controlling Interconnected Dynamical Networks

    DTIC Science & Technology

    2015-08-01

    power   power  grids  to...both  an   ultralow  intrinsic  dissipation   (high  Q)  and  a  low  threshold  onset  of  nonlinear  dynamics.  Q...of   nodes,   we  will   have   in   effect   a   powerful   simulator   for   large-­‐scale   real   world  

  17. Data processing and optimization system to study prospective interstate power interconnections

    NASA Astrophysics Data System (ADS)

    Podkovalnikov, Sergei; Trofimov, Ivan; Trofimov, Leonid

    2018-01-01

    The paper presents Data processing and optimization system for studying and making rational decisions on the formation of interstate electric power interconnections, with aim to increasing effectiveness of their functioning and expansion. The technologies for building and integrating a Data processing and optimization system including an object-oriented database and a predictive mathematical model for optimizing the expansion of electric power systems ORIRES, are described. The technology of collection and pre-processing of non-structured data collected from various sources and its loading to the object-oriented database, as well as processing and presentation of information in the GIS system are described. One of the approaches of graphical visualization of the results of optimization model is considered on the example of calculating the option for expansion of the South Korean electric power grid.

  18. Some advanced parametric methods for assessing waveform distortion in a smart grid with renewable generation

    NASA Astrophysics Data System (ADS)

    Alfieri, Luisa

    2015-12-01

    Power quality (PQ) disturbances are becoming an important issue in smart grids (SGs) due to the significant economic consequences that they can generate on sensible loads. However, SGs include several distributed energy resources (DERs) that can be interconnected to the grid with static converters, which lead to a reduction of the PQ levels. Among DERs, wind turbines and photovoltaic systems are expected to be used extensively due to the forecasted reduction in investment costs and other economic incentives. These systems can introduce significant time-varying voltage and current waveform distortions that require advanced spectral analysis methods to be used. This paper provides an application of advanced parametric methods for assessing waveform distortions in SGs with dispersed generation. In particular, the Standard International Electrotechnical Committee (IEC) method, some parametric methods (such as Prony and Estimation of Signal Parameters by Rotational Invariance Technique (ESPRIT)), and some hybrid methods are critically compared on the basis of their accuracy and the computational effort required.

  19. North-East Asian Super Grid: Renewable energy mix and economics

    NASA Astrophysics Data System (ADS)

    Breyer, Christian; Bogdanov, Dmitrii; Komoto, Keiichi; Ehara, Tomoki; Song, Jinsoo; Enebish, Namjil

    2015-08-01

    Further development of the North-East Asian energy system is at a crossroads due to severe limitations of the current conventional energy based system. For North-East Asia it is proposed that the excellent solar and wind resources of the Gobi desert could enable the transformation towards a 100% renewable energy system. An hourly resolved model describes an energy system for North-East Asia, subdivided into 14 regions interconnected by high voltage direct current (HVDC) transmission grids. Simulations are made for highly centralized, decentralized and country-wide grids scenarios. The results for total system levelized cost of electricity (LCOE) are 0.065 and 0.081 €/(kW·h) for the centralized and decentralized approaches for 2030 assumptions. The presented results for 100% renewable resources-based energy systems are lower in LCOE by about 30-40% than recent findings in Europe for conventional alternatives. This research clearly indicates that a 100% renewable resources-based energy system is THE real policy option.

  20. Electric network interconnection of Mashreq Arab Countries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Amin, I.M.; Al-Shehri, A.M.; Opoku, G.

    1994-12-01

    Power system interconnection is a well established practice for a variety of technical and economical reasons. Several interconnected networks exist worldwide for a number of factors. Some of these networks cross international boundaries. This presentation discusses the future developments of the power systems of Mashreq Arab Countries (MAC). MAC consists of Bahrain, Egypt, Iraq, Jordan, Kuwait, Lebanon, Oman, Qatar, Saudi Arabia, United Arab Emirates (UAE), and Yemen. Mac power systems are operated by government or semigovernment bodies. Many of these countries have national or regional electric grids but are generally isolated from each other. With the exception of Saudi Arabiamore » power systems, which employ 60 Hz, all other MAC utilities use 50 Hz frequency. Each country is served by one utility, except Saudi Arabia, which is served by four major utilities and some smaller utilities serving remote towns and small load centers. The major utilities are the Saudi Consolidated electric Company in the Eastern Province (SCECO East), SCECO Center, SCECO West, and SCECO South. These are the ones considered in this study. The energy resources in MAC are varied. Countries such as Egypt, Iraq, and Syria have significant hydro resources.The gulf countries and Iraq have abundant fossil fuel, The variation in energy resources as well as the characteristics of the electric load make it essential to look into interconnections beyond the national boundaries. Most of the existing or planned interconnections involve few power systems. A study involving 12 countries and over 20 utilities with different characteristics represents a very large scale undertaking.« less

  1. Metrics required for Power System Resilient Operations and Protection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eshghi, K.; Johnson, B. K.; Rieger, C. G.

    Today’s complex grid involves many interdependent systems. Various layers of hierarchical control and communication systems are coordinated, both spatially and temporally to achieve gird reliability. As new communication network based control system technologies are being deployed, the interconnected nature of these systems is becoming more complex. Deployment of smart grid concepts promises effective integration of renewable resources, especially if combined with energy storage. However, without a philosophical focus on resilience, a smart grid will potentially lead to higher magnitude and/or duration of disruptive events. The effectiveness of a resilient infrastructure depends upon its ability to anticipate, absorb, adapt to, and/ormore » rapidly recover from a potentially catastrophic event. Future system operations can be enhanced with a resilient philosophy through architecting the complexity with state awareness metrics that recognize changing system conditions and provide for an agile and adaptive response. The starting point for metrics lies in first understanding the attributes of performance that will be qualified. In this paper, we will overview those attributes and describe how they will be characterized by designing a distributed agent that can be applied to the power grid.« less

  2. Integrated assessment of water-power grid systems under changing climate

    NASA Astrophysics Data System (ADS)

    Yan, E.; Zhou, Z.; Betrie, G.

    2017-12-01

    Energy and water systems are intrinsically interconnected. Due to an increase in climate variability and extreme weather events, interdependency between these two systems has been recently intensified resulting significant impacts on both systems and energy output. To address this challenge, an Integrated Water-Energy Systems Assessment Framework (IWESAF) is being developed to integrate multiple existing or developed models from various sectors. In this presentation, we are focusing on recent improvement in model development of thermoelectric power plant water use simulator, power grid operation and cost optimization model, and model integration that facilitate interaction among water and electricity generation under extreme climate events. A process based thermoelectric power water use simulator includes heat-balance, climate, and cooling system modules that account for power plant characteristics, fuel types, and cooling technology. The model is validated with more than 800 power plants of fossil-fired, nuclear and gas-turbine power plants with different cooling systems. The power grid operation and cost optimization model was implemented for a selected regional in the Midwest. The case study will be demonstrated to evaluate the sensitivity and resilience of thermoelectricity generation and power grid under various climate and hydrologic extremes and potential economic consequences.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    When the last really big solar storm hit in 1921, Earth’s magnetic field funneled a wave of electrically charged particles toward the ground, where they induced a current along telegraph lines and railroad tracks, setting to telegraph offices and train stations—and the fledgling electric grid went dark. Almost a century later, today’s grid is bigger, more interconnected, and even more susceptible to a solar storm disaster. Los Alamos National Laboratory is developing a scientific analysis about how frequently a major geomagnetic storm might strike, which regions of the country are most vulnerable, and how bad it might be. This analysismore » is part of a plan to support electric utility companies and government regulators in taking the necessary steps to spare us all from the nightmare of days, weeks, or even months without power.« less

  4. Separate Poles Mode for Large-Capacity HVDC System

    NASA Astrophysics Data System (ADS)

    Zhu, Lin; Gao, Qin

    2017-05-01

    This paper proposes a novel connection mode, separate poles mode (SPM), for large-capacity HVDC systems. The proposed mode focuses on the core issues of HVDC connection in interconnected power grids and principally aims at increasing effective electric distance between poles, which helps to mitigate the interaction problems between AC system and DC system. Receiving end of bipolar HVDC has been divided into different inverter stations under the mode, and thus significantly alleviates difficulties in power transmission and consumption of receiving-end AC grids. By investigating the changes of multi-feed short-circuit ratio (MISCR), finding that HVDC with SPM shows critical impacts upon itself and other HVDC systems with conventional connection mode, which demonstrates that SPM can make balance between MISCR increase and short-circuit current limit.

  5. Western Wind and Solar Integration Study Phase 3A: Low Levels of Synchronous Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Nicholas W.; Leonardi, Bruno; D'Aquila, Robert

    The stability of the North American electric power grids under conditions of high penetrations of wind and solar is a significant concern and possible impediment to reaching renewable energy goals. The 33% wind and solar annual energy penetration considered in this study results in substantial changes to the characteristics of the bulk power system. This includes different power flow patterns, different commitment and dispatch of existing synchronous generation, and different dynamic behavior from wind and solar generation. The Western Wind and Solar Integration Study (WWSIS), sponsored by the U.S. Department of Energy, is one of the largest regional solar andmore » wind integration studies to date. In multiple phases, it has explored different aspects of the question: Can we integrate large amounts of wind and solar energy into the electric power system of the West? The work reported here focused on the impact of low levels of synchronous generation on the transient stability performance in one part of the region in which wind generation has displaced synchronous thermal generation under highly stressed, weak system conditions. It is essentially an extension of WWSIS-3. Transient stability, the ability of the power system to maintain synchronism among all elements following disturbances, is a major constraint on operations in many grids, including the western U.S. and Texas systems. These constraints primarily concern the performance of the large-scale bulk power system. But grid-wide stability concerns with high penetrations of wind and solar are still not thoroughly understood. This work focuses on 'traditional' fundamental frequency stability issues, such as maintaining synchronism, frequency, and voltage. The objectives of this study are to better understand the implications of low levels of synchronous generation and a weak grid on overall system performance by: 1) Investigating the Western Interconnection under conditions of both high renewable generation (e.g., wind and solar) and low synchronous generation (e.g., significant coal power plant decommitment or retirement); and 2) Analyzing both the large-scale stability of the Western Interconnection and regional stability issues driven by more geographically dispersed renewable generation interacting with a transmission grid that evolved with large, central station plants at key nodes. As noted above, the work reported here is an extension of the research performed in WWSIS-3.« less

  6. DISTINCT: Diversity in Solar Talent Through INnovative Curriculum and Training: An Integrated Research and Education Approach towards Creating Diversity and Advancing Utility-Scale Solar Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnaswami, Hariharan

    The DISTINCT project research objective is to develop an innovative N-port power converter for a utility-scale PV system that is modular, compact and cost-effective and that will enable the integration of a high-frequency, high-voltage solid-state transformer. The novelty of the proposed research is the electrical power conversion architecture using an N-port converter system that replaces the output 60Hz transformer with an integrated high-frequency low-weight solid-state transformer reducing power electronics and BOS costs to meet SunShot goals through modularity and direct high-voltage interconnection. A challenge in direct integration with a 13.8kV line is the high voltage handling capacity of the convertersmore » combined with high efficiency operation. The front-end converter for each port is a Neutral-Point Clamped (NPC) Multi-Level dc-dc Dual-Active Bridge (ML-DAB) which allows Maximum Power Point Tracking (MPPT). The integrated high frequency transformer provides the galvanic isolation between the PV and grid side and also steps up the low dc voltage from PV source. Following the ML-DAB stage, in each port, is an inverter with H-bridge configuration or NPC configuration. N number of NPC inverters’ outputs are cascaded to attain the per-phase line-to-neutral voltage to connect directly to the distribution grid (i.e. 13.8 kV). The cascaded inverters have the inherent advantage of using lower rated devices, smaller filters and low Total Harmonic Distortion (THD) required for PV grid interconnection. Our analysis and simulation results show improved performance on cost, efficiency, service life with zero downtime and THD. A comprehensive control scheme is presented to ensure the maximum power from each port and each phase are sent to the grid. A functional prototype of a 2-port converter with ML-DAB and cascaded H-bridges has been designed, built, and tested in a laboratory setup to verify the target technical metrics. The N-port converter system due to its modular structure with individual control per port can be easily adapted to integrate functionalities that go well beyond the conventional grid support functions and mitigates impacts of forecasted fast ramp downs or ramp ups and single-fault conditions by automatic reconfiguration of the output.« less

  7. The Future of Mobile Information and Communication Technology in Austere Environments: A Command and Control Technology Integration Perspective

    DTIC Science & Technology

    2013-03-01

    within the Global information Grid ( GiG ) (AFDD6-0, 2011). JP 1-02 describes the GiG : 10 The GIG is the globally interconnected, end-to-end set of...to warfighters, policy makers, and support personnel. The GIG includes all owned and leased communications and computing systems and services...software (including applications), data, security services, and other 19 associated services necessary to achieve information superiority. The GIG

  8. Aerodynamic Shape Sensitivity Analysis and Design Optimization of Complex Configurations Using Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Taylor, Arthur C., III; Newman, James C., III; Barnwell, Richard W.

    1997-01-01

    A three-dimensional unstructured grid approach to aerodynamic shape sensitivity analysis and design optimization has been developed and is extended to model geometrically complex configurations. The advantage of unstructured grids (when compared with a structured-grid approach) is their inherent ability to discretize irregularly shaped domains with greater efficiency and less effort. Hence, this approach is ideally suited for geometrically complex configurations of practical interest. In this work the nonlinear Euler equations are solved using an upwind, cell-centered, finite-volume scheme. The discrete, linearized systems which result from this scheme are solved iteratively by a preconditioned conjugate-gradient-like algorithm known as GMRES for the two-dimensional geometry and a Gauss-Seidel algorithm for the three-dimensional; similar procedures are used to solve the accompanying linear aerodynamic sensitivity equations in incremental iterative form. As shown, this particular form of the sensitivity equation makes large-scale gradient-based aerodynamic optimization possible by taking advantage of memory efficient methods to construct exact Jacobian matrix-vector products. Simple parameterization techniques are utilized for demonstrative purposes. Once the surface has been deformed, the unstructured grid is adapted by considering the mesh as a system of interconnected springs. Grid sensitivities are obtained by differentiating the surface parameterization and the grid adaptation algorithms with ADIFOR (which is an advanced automatic-differentiation software tool). To demonstrate the ability of this procedure to analyze and design complex configurations of practical interest, the sensitivity analysis and shape optimization has been performed for a two-dimensional high-lift multielement airfoil and for a three-dimensional Boeing 747-200 aircraft.

  9. Climate and Water Vulnerability of the US Electricity Grid Under High Penetrations of Renewable Energy

    NASA Astrophysics Data System (ADS)

    Macknick, J.; Miara, A.; O'Connell, M.; Vorosmarty, C. J.; Newmark, R. L.

    2017-12-01

    The US power sector is highly dependent upon water resources for reliable operations, primarily for thermoelectric cooling and hydropower technologies. Changes in the availability and temperature of water resources can limit electricity generation and cause outages at power plants, which substantially affect grid-level operational decisions. While the effects of water variability and climate changes on individual power plants are well documented, prior studies have not identified the significance of these impacts at the regional systems-level at which the grid operates, including whether there are risks for large-scale blackouts, brownouts, or increases in production costs. Adequately assessing electric grid system-level impacts requires detailed power sector modeling tools that can incorporate electric transmission infrastructure, capacity reserves, and other grid characteristics. Here, we present for the first time, a study of how climate and water variability affect operations of the power sector, considering different electricity sector configurations (low vs. high renewable) and environmental regulations. We use a case study of the US Eastern Interconnection, building off the Eastern Renewable Generation Integration Study (ERGIS) that explored operational challenges of high penetrations of renewable energy on the grid. We evaluate climate-water constraints on individual power plants, using the Thermoelectric Power and Thermal Pollution (TP2M) model coupled with the PLEXOS electricity production cost model, in the context of broader electricity grid operations. Using a five minute time step for future years, we analyze scenarios of 10% to 30% renewable energy penetration along with considerations of river temperature regulations to compare the cost, performance, and reliability tradeoffs of water-dependent thermoelectric generation and variable renewable energy technologies under climate stresses. This work provides novel insights into the resilience and reliability of different configurations of the US electric grid subject to changing climate conditions.

  10. Non-Pilot Protection of the HVDC Grid

    NASA Astrophysics Data System (ADS)

    Badrkhani Ajaei, Firouz

    This thesis develops a non-pilot protection system for the next generation power transmission system, the High-Voltage Direct Current (HVDC) grid. The HVDC grid protection system is required to be (i) adequately fast to prevent damages and/or converter blocking and (ii) reliable to minimize the impacts of faults. This study is mainly focused on the Modular Multilevel Converter (MMC) -based HVDC grid since the MMC is considered as the building block of the future HVDC systems. The studies reported in this thesis include (i) developing an enhanced equivalent model of the MMC to enable accurate representation of its DC-side fault response, (ii) developing a realistic HVDC-AC test system that includes a five-terminal MMC-based HVDC grid embedded in a large interconnected AC network, (iii) investigating the transient response of the developed test system to AC-side and DC-side disturbances in order to determine the HVDC grid protection requirements, (iv) investigating the fault surge propagation in the HVDC grid to determine the impacts of the DC-side fault location on the measured signals at each relay location, (v) designing a protection algorithm that detects and locates DC-side faults reliably and sufficiently fast to prevent relay malfunction and unnecessary blocking of the converters, and (vi) performing hardware-in-the-loop tests on the designed relay to verify its potential to be implemented in hardware. The results of the off-line time domain transients studies in the PSCAD software platform and the real-time hardware-in-the-loop tests using an enhanced version of the RTDS platform indicate that the developed HVDC grid relay meets all technical requirements including speed, dependability, security, selectivity, and robustness. Moreover, the developed protection algorithm does not impose considerable computational burden on the hardware.

  11. Lifecycle Greenhouse Gas Analysis of an Anaerobic Codigestion Facility Processing Dairy Manure and Industrial Food Waste.

    PubMed

    Ebner, Jacqueline H; Labatut, Rodrigo A; Rankin, Matthew J; Pronto, Jennifer L; Gooch, Curt A; Williamson, Anahita A; Trabold, Thomas A

    2015-09-15

    Anaerobic codigestion (AcoD) can address food waste disposal and manure management issues while delivering clean, renewable energy. Quantifying greenhouse gas (GHG) emissions due to implementation of AcoD is important to achieve this goal. A lifecycle analysis was performed on the basis of data from an on-farm AcoD in New York, resulting in a 71% reduction in GHG, or net reduction of 37.5 kg CO2e/t influent relative to conventional treatment of manure and food waste. Displacement of grid electricity provided the largest reduction, followed by avoidance of alternative food waste disposal options and reduced impacts associated with storage of digestate vs undigested manure. These reductions offset digester emissions and the net increase in emissions associated with land application in the AcoD case relative to the reference case. Sensitivity analysis showed that using feedstock diverted from high impact disposal pathways, control of digester emissions, and managing digestate storage emissions were opportunities to improve the AcoD GHG benefits. Regional and parametrized emissions factors for the storage emissions and land application phases would reduce uncertainty.

  12. Hiilangaay Hydroelectric Project – Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Twitchell, Sara; Stimac, Michael; Lang, Lisa

    2016-06-01

    The Hiilangaay Hydroelectric Project (“Hiilangaay” or the “Project”) is a 5-megawatt hydroelectric resource currently under construction on Prince of Wales Island (POW), Alaska, approximately ten miles east of Hydaburg. The objective of the Project is to interconnect with the existing transmission grid on Prince of Wales Island, increasing the hydroelectric generation capability by 5 MW, eliminating the need for diesel generation, increasing the reliability of the electrical system, and allowing the interconnected portion of the island to have 100 percent renewable energy generation. Pre-construction activities including construction planning, permit coordination and compliance, and final design have made it possible tomore » move forward with construction of the Hiilangaay Project. Despite repeated delays to the schedule, persistence and long-term planning will culminate in the construction of the Project, and make Prince of Wales Island independent of diesel-fueled energy« less

  13. Frequency Regulation and Oscillation Damping Contributions of Variable-Speed Wind Generators in the U.S. Eastern Interconnection (EI)

    DOE PAGES

    Liu, Yong; Gracia, Jose R,; King, Jr, Thomas J.; ...

    2014-05-16

    The U.S. Eastern Interconnection (EI) is one of the largest electric power grids in the world and is expected to have difficulties in dealing with frequency regulation and oscillation damping issues caused by the increasing wind power. On the other side, variable-speed wind generators can actively engage in frequency regulation or oscillation damping with supplementary control loops. This paper creates a 5% wind power penetration simulation scenario based on the 16 000-bus EI system dynamic model and developed the user-defined wind electrical control model in PSS (R) E that incorporates additional frequency regulation and oscillation damping control loops. We evaluatedmore » the potential contributions of variable-speed wind generations to the EI system frequency regulation and oscillation damping, and simulation results demonstrate that current and future penetrations of wind power are promising in the EI system frequency regulation and oscillation damping.« less

  14. Modeling the Rate-Dependent Durability of Reduced-Ag SAC Interconnects for Area Array Packages Under Torsion Loads

    NASA Astrophysics Data System (ADS)

    Srinivas, Vikram; Menon, Sandeep; Osterman, Michael; Pecht, Michael G.

    2013-08-01

    Solder durability models frequently focus on the applied strain range; however, the rate of applied loading, or strain rate, is also important. In this study, an approach to incorporate strain rate dependency into durability estimation for solder interconnects is examined. Failure data were collected for SAC105 solder ball grid arrays assembled with SAC305 solder that were subjected to displacement-controlled torsion loads. Strain-rate-dependent (Johnson-Cook model) and strain-rate-independent elastic-plastic properties were used to model the solders in finite-element simulation. Test data were then used to extract damage model constants for the reduced-Ag SAC solder. A generalized Coffin-Manson damage model was used to estimate the durability. The mechanical fatigue durability curve for reduced-silver SAC solder was generated and compared with durability curves for SAC305 and Sn-Pb from the literature.

  15. NASA-DoD Lead-Free Electronics Project

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt

    2009-01-01

    In response to concerns about risks from lead-free induced faults to high reliability products, NASA has initiated a multi-year project to provide manufacturers and users with data to clarify the risks of lead-free materials in their products. The project will also be of interest to component manufacturers supplying to high reliability markets. The project was launched in November 2006. The primary technical objective of the project is to undertake comprehensive testing to generate information on failure modes/criteria to better understand the reliability of: (1) Packages (e.g., Thin Small Outline Package [TSOP], Ball Grid Array [BGA], Plastic Dual In-line Package [PDIP]) assembled and reworked with solder interconnects consisting of lead-free alloys (2) Packages (e.g., TSOP, BGA, PDIP) assembled and reworked with solder interconnects consisting of mixed alloys, lead component finish/lead-free solder and lead-free component finish/SnPb solder

  16. Models and methods for assessing the value of HVDC and MVDC technologies in modern power grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makarov, Yuri V.; Elizondo, Marcelo A.; O'Brien, James G.

    This report reflects the results of U.S. Department of Energy’s (DOE) Grid Modernization project 0074 “Models and methods for assessing the value of HVDC [high-voltage direct current] and MTDC [multi-terminal direct current] technologies in modern power grids.” The work was done by the Pacific Northwest National Laboratory (PNNL) and Oak Ridge National Laboratory (ORNL) in cooperation with Mid-Continent Independent System Operator (MISO) and Siemens. The main motivation of this study was to show the benefit of using direct current (DC) systems larger than those in existence today as they overlap with the alternating current (AC) systems. Proper use of theirmore » flexibility in terms of active/reactive power control and fast response can provide much-needed services to the grid at the same time as moving large blocks of energy to take advantage of cost diversity. Ultimately, the project’s success will enable decision-makers and investors to make well-informed decisions regarding this use of DC systems. This project showed the technical feasibility of HVDC macrogrid for frequency control and congestion relief in addition to bulk power transfers. Industry-established models for commonly used technologies were employed, along with high-fidelity models for recently developed HVDC converter technologies; like the modular multilevel converters (MMCs), a voltage source converters (VSC). Models for General Electric Positive Sequence Load Flow (GE PSLF) and Siemens Power System Simulator (PSS/E), widely used analysis programs, were for the first time adapted to include at the same time both Western Electricity Coordinating Council (WECC) and Eastern Interconnection (EI), the two largest North American interconnections. The high-fidelity models and their control were developed in detail for MMC system and extended to HVDC systems in point-to-point and in three-node multi-terminal configurations. Using a continental-level mixed AC-DC grid model, and using a HVDC macrogrid power flow and transient stability model, the results showed that the HVDC macrogrid relieved congestion and mitigated loop flows in AC networks, and provided up to 24% improvement in frequency responses. These are realistic studies, based on the 2025 heavy summer and EI multi-regional modeling working group (MMWG) 2026 summer peak cases. This work developed high-fidelity models and simulation algorithms to understand the dynamics of MMC. The developed models and simulation algorithms are up to 25 times faster than the existing algorithms. Models and control algorithms for high-fidelity models were designed and tested for point-to-point and multi-terminal configurations. The multi-terminal configuration was tested connecting simplified models of EI, WI, and Electric Reliability Council of Texas (ERCOT). The developed models showed up to 45% improvement in frequency response with the connection of all the three asynchronous interconnections in the United States using fast and advanced DC technologies like the multi-terminal MMC-DC system. Future work will look into developing high-fidelity models of other advanced DC technologies, combining high-fidelity models with the continental-level model, incorporating additional services. More scenarios involving large-scale HVDC and MTDC will be evaluated.« less

  17. 15 MW HArdware-in-the-loop Grid Simulation Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rigas, Nikolaos; Fox, John Curtiss; Collins, Randy

    2014-10-31

    The 15MW Hardware-in-the-loop (HIL) Grid Simulator project was to (1) design, (2) construct and (3) commission a state-of-the-art grid integration testing facility for testing of multi-megawatt devices through a ‘shared facility’ model open to all innovators to promote the rapid introduction of new technology in the energy market to lower the cost of energy delivered. The 15 MW HIL Grid Simulator project now serves as the cornerstone of the Duke Energy Electric Grid Research, Innovation and Development (eGRID) Center. This project leveraged the 24 kV utility interconnection and electrical infrastructure of the US DOE EERE funded WTDTF project at themore » Clemson University Restoration Institute in North Charleston, SC. Additionally, the project has spurred interest from other technology sectors, including large PV inverter and energy storage testing and several leading edge research proposals dealing with smart grid technologies, grid modernization and grid cyber security. The key components of the project are the power amplifier units capable of providing up to 20MW of defined power to the research grid. The project has also developed a one of a kind solution to performing fault ride-through testing by combining a reactive divider network and a large power converter into a hybrid method. This unique hybrid method of performing fault ride-through analysis will allow for the research team at the eGRID Center to investigate the complex differences between the alternative methods of performing fault ride-through evaluations and will ultimately further the science behind this testing. With the final goal of being able to perform HIL experiments and demonstration projects, the eGRID team undertook a significant challenge with respect to developing a control system that is capable of communicating with several different pieces of equipment with different communication protocols in real-time. The eGRID team developed a custom fiber optical network that is based upon FPGA hardware that allows for communication between the key real-time interfaces and reduces the latency between these interfaces to acceptable levels for HIL experiments.« less

  18. A Modular Multilevel Converter with Power Mismatch Control for Grid-Connected Photovoltaic Systems

    DOE PAGES

    Duman, Turgay; Marti, Shilpa; Moonem, M. A.; ...

    2017-05-17

    A modular multilevel power converter configuration for grid connected photovoltaic (PV) systems is proposed. The converter configuration replaces the conventional bulky line frequency transformer with several high frequency transformers, potentially reducing the balance of systems cost of PV systems. The front-end converter for each port is a neutral-point diode clamped (NPC) multi-level dc-dc dual-active bridge (ML-DAB) which allows maximum power point tracking (MPPT). The integrated high frequency transformer provides the galvanic isolation between the PV and grid side and also steps up the low dc voltage from PV source. Following the ML-DAB stage, in each port, is a NPC inverter.more » N number of NPC inverters’ outputs are cascaded to attain the per-phase line-to-neutral voltage to connect directly to the distribution grid (i.e., 13.8 kV). The cascaded NPC (CNPC) inverters have the inherent advantage of using lower rated devices, smaller filters and low total harmonic distortion required for PV grid interconnection. The proposed converter system is modular, scalable, and serviceable with zero downtime with lower foot print and lower overall cost. A novel voltage balance control at each module based on power mismatch among N-ports, have been presented and verified in simulation. Analysis and simulation results are presented for the N-port converter. The converter performance has also been verified on a hardware prototype.« less

  19. A Modular Multilevel Converter with Power Mismatch Control for Grid-Connected Photovoltaic Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duman, Turgay; Marti, Shilpa; Moonem, M. A.

    A modular multilevel power converter configuration for grid connected photovoltaic (PV) systems is proposed. The converter configuration replaces the conventional bulky line frequency transformer with several high frequency transformers, potentially reducing the balance of systems cost of PV systems. The front-end converter for each port is a neutral-point diode clamped (NPC) multi-level dc-dc dual-active bridge (ML-DAB) which allows maximum power point tracking (MPPT). The integrated high frequency transformer provides the galvanic isolation between the PV and grid side and also steps up the low dc voltage from PV source. Following the ML-DAB stage, in each port, is a NPC inverter.more » N number of NPC inverters’ outputs are cascaded to attain the per-phase line-to-neutral voltage to connect directly to the distribution grid (i.e., 13.8 kV). The cascaded NPC (CNPC) inverters have the inherent advantage of using lower rated devices, smaller filters and low total harmonic distortion required for PV grid interconnection. The proposed converter system is modular, scalable, and serviceable with zero downtime with lower foot print and lower overall cost. A novel voltage balance control at each module based on power mismatch among N-ports, have been presented and verified in simulation. Analysis and simulation results are presented for the N-port converter. The converter performance has also been verified on a hardware prototype.« less

  20. Computation for Electromigration in Interconnects of Microelectronic Devices

    NASA Astrophysics Data System (ADS)

    Averbuch, Amir; Israeli, Moshe; Ravve, Igor; Yavneh, Irad

    2001-03-01

    Reliability and performance of microelectronic devices depend to a large extent on the resistance of interconnect lines. Voids and cracks may occur in the interconnects, causing a severe increase in the total resistance and even open circuits. In this work we analyze void motion and evolution due to surface diffusion effects and applied external voltage. The interconnects under consideration are three-dimensional (sandwich) constructs made of a very thin metal film of possibly variable thickness attached to a substrate of nonvanishing conductance. A two-dimensional level set approach was applied to study the dynamics of the moving (assumed one-dimensional) boundary of a void in the metal film. The level set formulation of an electromigration and diffusion model results in a fourth-order nonlinear (two-dimensional) time-dependent PDE. This equation was discretized by finite differences on a regular grid in space and a Runge-Kutta integration scheme in time, and solved simultaneously with a second-order static elliptic PDE describing the electric potential distribution throughout the interconnect line. The well-posed three-dimensional problem for the potential was approximated via singular perturbations, in the limit of small aspect ratio, by a two-dimensional elliptic equation with variable coefficients describing the combined local conductivity of metal and substrate (which is allowed to vary in time and space). The difference scheme for the elliptic PDE was solved by a multigrid technique at each time step. Motion of voids in both weak and strong electric fields was examined, and different initial void configurations were considered, including circles, ellipses, polygons with rounded corners, a butterfly, and long grooves. Analysis of the void behavior and its influence on the resistance gives the circuit designer a tool for choosing the proper parameters of an interconnect (width-to-length ratio, properties of the line material, conductivity of the underlayer, etc.).

  1. A Tale of Two Cities: Greensburg Resurrected as a National Model for Green Communities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shelley Gonzales

    This fact sheet provides a summary of how NREL's technical assistance in Greensburg, Kansas, helped the town rebuild green after recovering from a tornado in May 2007. To help local distributed system owners get the most value for electricity sent back to the grid, NREL drafted safety and reliability ordinances, an interconnection agreement, and net-metering policies for the city to consider. NREL and the Energy Department also assisted with wind energy resource analysis, feasibility studies, and business plans.

  2. Energy Systems Integration: Data Call -- Become a Data Partner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2017-01-01

    This project aims to advance the understanding of costs associated with integrating PV onto the electric power distribution system while maintaining reliable grid operations. We have developed a bottom-up framework for calculating these costs as a function of PV penetration levels on specific feeders. This framework will used to inform and improve utility planning decisions, increase the transparency and speed associated with the interconnection process, and provide policymakers with more information on the total cost of energy from PV.

  3. SPIDERS Bi-Directional Charging Station Interconnection Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, M.

    2013-09-01

    The Smart Power Infrastructure Demonstration for Energy Reliability and Security (SPIDERS) program is a multi-year Department of Defense-Department of Energy (DOE) collaborative effort that will demonstrate integration of renewables into island-able microgrids using on-site generation control, demand response, and energy storage with robust security features at multiple installations. Fort Carson, Colorado, will be the initial development and demonstration site for use of plug-in electric vehicles as energy storage (also known as vehicle-to-grid or V2G).

  4. Fracture Behaviors of Sn-Cu Intermetallic Compound Layer in Ball Grid Array Induced by Thermal Shock

    NASA Astrophysics Data System (ADS)

    Shen, Jun; Zhai, Dajun; Cao, Zhongming; Zhao, Mali; Pu, Yayun

    2014-02-01

    In this work, thermal shock reliability testing and finite-element analysis (FEA) of solder joints between ball grid array components and printed circuit boards with Cu pads were used to investigate the failure mechanism of solder interconnections. The morphologies, composition, and thickness of Sn-Cu intermetallic compounds (IMC) at the interface of Sn-3.0Ag-0.5Cu lead-free solder alloy and Cu substrates were investigated by scanning electron microscopy and transmission electron microscopy. Based on the experimental observations and FEA results, it can be recognized that the origin and propagation of cracks are caused primarily by the difference between the coefficient of thermal expansion of different parts of the packaged products, the growth behaviors and roughness of the IMC layer, and the grain size of the solder balls.

  5. Experimental Evaluation of Load Rejection Over-Voltage from Grid-Tied Solar Inverters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Austin; Hoke, Andy, Chakraborty, Sudipta; Ropp, Michael

    This paper investigates the impact of load rejection over-voltage (LRO) from commercially available grid-tied photovoltaic (PV) solar inverters. LRO can occur when a local feeder or breaker opens and the power output from a distributed energy resource exceeds the load power. Simplified models of current controlled inverters can over-predict over-voltage magnitudes, thus it is useful to quantify testing. The load rejection event was replicated using a hardware testbed at the National Renewable Energy Laboratory (NREL), and a set of commercially available PV inverters was tested to quantify the impact of LRO for a range of generation-to-load ratios. The magnitude andmore » duration of the over-voltage events are reported in this paper along with a discussion of characteristic inverter output behavior. The results for the inverters under test showed that maximum over-voltage magnitudes were less than 200 percent of nominal voltage, and much lower in many test cases. These research results are important because utilities that interconnect inverter-based DER need to understand their characteristics under abnormal grid conditions.« less

  6. Controllable Grid Interface for Testing Ancillary Service Controls and Fault Performance of Utility-Scale Wind Power Generation: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gevorgian, Vahan; Koralewicz, Przemyslaw; Wallen, Robb

    The rapid expansion of wind power has led many transmission system operators to demand modern wind power plants to comply with strict interconnection requirements. Such requirements involve various aspects of wind power plant operation, including fault ride-through and power quality performance as well as the provision of ancillary services to enhance grid reliability. During recent years, the National Renewable Energy Laboratory (NREL) of the U.S. Department of Energy has developed a new, groundbreaking testing apparatus and methodology to test and demonstrate many existing and future advanced controls for wind generation (and other renewable generation technologies) on the multimegawatt scale andmore » medium-voltage levels. This paper describes the capabilities and control features of NREL's 7-MVA power electronic grid simulator (also called a controllable grid interface, or CGI) that enables testing many active and reactive power control features of modern wind turbine generators -- including inertial response, primary and secondary frequency responses, and voltage regulation -- under a controlled, medium-voltage grid environment. In particular, this paper focuses on the specifics of testing the balanced and unbalanced fault ride-through characteristics of wind turbine generators under simulated strong and weak medium-voltage grid conditions. In addition, this paper provides insights on the power hardware-in-the-loop feature implemented in the CGI to emulate (in real time) the conditions that might exist in various types of electric power systems under normal operations and/or contingency scenarios. Using actual test examples and simulation results, this paper describes the value of CGI as an ultimate modeling validation tool for all types of 'grid-friendly' controls by wind generation.« less

  7. Hybrid AC-High Voltage DC Grid Stability and Controls

    NASA Astrophysics Data System (ADS)

    Yu, Jicheng

    The growth of energy demands in recent years has been increasing faster than the expansion of transmission facility construction. This tendency cooperating with the continuous investing on the renewable energy resources drives the research, development, and construction of HVDC projects to create a more reliable, affordable, and environmentally friendly power grid. Constructing the hybrid AC-HVDC grid is a significant move in the development of the HVDC techniques; the form of dc system is evolving from the point-to-point stand-alone dc links to the embedded HVDC system and the multi-terminal HVDC (MTDC) system. The MTDC is a solution for the renewable energy interconnections, and the MTDC grids can improve the power system reliability, flexibility in economic dispatches, and converter/cable utilizing efficiencies. The dissertation reviews the HVDC technologies, discusses the stability issues regarding the ac and HVDC connections, proposes a novel power oscillation control strategy to improve system stability, and develops a nonlinear voltage droop control strategy for the MTDC grid. To verify the effectiveness the proposed power oscillation control strategy, a long distance paralleled AC-HVDC transmission test system is employed. Based on the PSCAD/EMTDC platform simulation results, the proposed power oscillation control strategy can improve the system dynamic performance and attenuate the power oscillations effectively. To validate the nonlinear voltage droop control strategy, three droop controls schemes are designed according to the proposed nonlinear voltage droop control design procedures. These control schemes are tested in a hybrid AC-MTDC system. The hybrid AC-MTDC system, which is first proposed in this dissertation, consists of two ac grids, two wind farms and a five-terminal HVDC grid connecting them. Simulation studies are performed in the PSCAD/EMTDC platform. According to the simulation results, all the three design schemes have their unique salient features.

  8. Vascularized networks with two optimized channel sizes

    NASA Astrophysics Data System (ADS)

    Wang, K.-M.; Lorente, S.; Bejan, A.

    2006-07-01

    This paper reports the development of optimal vascularization for supplying self-healing smart materials with liquid that fills and seals the cracks that may occur throughout their volume. The vascularization consists of two-dimensional grids of interconnected orthogonal channels with two hydraulic diameters (D1, D2). The smallest square loop is designed to match the size (d) of the smallest crack. The network is sealed with respect to the outside and is filled with pressurized liquid. In this work, the crack site is modelled as a small spherical volume of diameter d. When a crack is formed, fluid flows from neighbouring channels to the crack site. This volume-to-point flow is optimized using two formulations: (1) incompressible liquid from steady constant-strength sources located in every node of the grid and from sources located equidistantly on the perimeter of the vascularized body of length scale L and (2) slightly compressible liquid from an initially pressurized grid discharging in time-dependent fashion into one crack site. The flow in every channel is laminar and fully developed. The objectives are (a) to minimize the global resistance to the flow from the grid to the crack site and (b) to minimize the time of discharge from the pressurized grid to the crack site. It is shown that methods (a) and (b) yield similar results. There is an optimal ratio of channel diameters D2/D1 < 1, and it decreases as the grid fineness (L/d) increases. The global flow resistance of the grid with optimized ratio of diameters is approximately half of the resistance of the corresponding grid with one channel size (D1 = D2). The optimized ratio of diameters and the minimized global resistance depend on how the grid intersects the crack site: this effect is minor and stresses the robustness of the vascularized design.

  9. Method and apparatus for jetting, manufacturing and attaching uniform solder balls

    DOEpatents

    Yost, F.G.; Frear, D.R.; Schmale, D.T.

    1999-01-05

    An apparatus and process are disclosed for jetting molten solder in the form of balls directly onto all the metallized interconnects lands for a ball grid array package in one step with no solder paste required. Molten solder is jetted out of a grid of holes using a piston attached to a piezoelectric crystal. When voltage is applied to the crystal it expands forcing the piston to extrude a desired volume of solder through holes in the aperture plate. When the voltage is decreased the piston reverses motion creating an instability in the molten solder at the aperture plate surface and thereby forming spherical solder balls that fall onto a metallized substrate. The molten solder balls land on the substrate and form a metallurgical bond with the metallized lands. The size of the solder balls is determined by a combination of the size of the holes in the aperture plate, the duration of the piston pulse, and the displacement of the piston. The layout of the balls is dictated by the location of the hooks in the grid. Changes in ball size and layout can be easily accomplished by changing the grid plate. This invention also allows simple preparation of uniform balls for subsequent supply to BGA users. 7 figs.

  10. Telemedical applications and grid technology

    NASA Astrophysics Data System (ADS)

    Graschew, Georgi; Roelofs, Theo A.; Rakowsky, Stefan; Schlag, Peter M.; Kaiser, Silvan; Albayrak, Sahin

    2005-11-01

    Due to the experience in the exploitation of previous European telemedicine projects an open Euro-Mediterranean consortium proposes the Virtual Euro-Mediterranean Hospital (VEMH) initiative. The provision of the same advanced technologies to the European and Mediterranean Countries should contribute to their better dialogue for integration. VEMH aims to facilitate the interconnection of various services through real integration which must take into account the social, human and cultural dimensions. VEMH will provide a platform consisting of a satellite and terrestrial link for the application of medical e-learning, real-time telemedicine and medical assistance. The methodologies for the VEMH are medical-needs-driven instead of technology-driven. They supply new management tools for virtual medical communities and allow management of clinical outcomes for implementation of evidence-based medicine. Due to the distributed character of the VEMH Grid technology becomes inevitable for successful deployment of the services. Existing Grid Engines provide basic computing power needed by today's medical analysis tasks but lack other capabilities needed for communication and knowledge sharing services envisioned. When it comes to heterogeneous systems to be shared by different institutions especially the high level system management areas are still unsupported. Therefore a Metagrid Engine is needed that provides a superset of functionalities across different Grid Engines and manages strong privacy and Quality of Service constraints at this comprehensive level.

  11. Method and apparatus for jetting, manufacturing and attaching uniform solder balls

    DOEpatents

    Yost, Frederick G.; Frear, Darrel R.; Schmale, David T.

    1999-01-01

    An apparatus and process for jetting molten solder in the form of balls directly onto all the metallized interconnects lands for a ball grid array package in one step with no solder paste required. Molten solder is jetted out of a grid of holes using a piston attached to a piezoelectric crystal. When voltage is applied to the crystal it expands forcing the piston to extrude a desired volume of solder through holes in the aperture plate. When the voltage is decreased the piston reverses motion creating an instability in the molten solder at the aperture plate surface and thereby forming spherical solder balls that fall onto a metallized substrate. The molten solder balls land on the substrate and form a metallurgical bond with the metallized lands. The size of the solder balls is determined by a combination of the size of the holes in the aperture plate, the duration of the piston pulse, and the displacement of the piston. The layout of the balls is dictated by the location of the hooks in the grid. Changes in ball size and layout can be easily accomplished by changing the grid plate. This invention also allows simple preparation of uniform balls for subsequent supply to BGA users.

  12. Reliability assessment of ceramic column grid array (CCGA717) interconnect packages under extreme temperatures for space applications (-185°C to +125°C)

    NASA Astrophysics Data System (ADS)

    Ramesham, Rajeshuni

    2010-02-01

    Ceramic Column Grid Array packages have been increasing in use based on their advantages such as high interconnect density, very good thermal and electrical performance, compatibility with standard surface-mount packaging assembly processes, etc. CCGA packages are used in space applications such as in logics and microprocessor functions, telecommunications, flight avionics, payload electronics, etc. As these packages tend to have less solder joint strain relief than leaded packages, the reliability of CCGA packages is very important for short and long-term space missions. CCGA interconnect electronic package printed wiring boards (PWBs) of polyimide have been assembled, inspected non-destructively and subsequently subjected to extreme temperature thermal cycling to assess the reliability for future deep space, short and long-term, extreme temperature missions. In this investigation, the employed temperature range covers from -185°C to +125°C extreme thermal environments. The test hardware consists of two CCGA717 packages with each package divided into four daisy-chained sections, for a total of eight daisy chains to be monitored. The CCGA717 package is 33 mm × 33 mm with a 27×27 array of 80%/20% Pb/Sn columns on a 1.27 mm pitch. The resistance of daisy-chained, CCGA interconnects were continuously monitored as a function of thermal cycling. Electrical resistance measurements as a function of thermal cycling are reported and the tests to date have shown significant change in daisy chain resistance as a function of thermal cycling. The change in interconnect resistance becomes more noticeable with increasing number of thermal cycles. This paper will describe the experimental test results of CCGA testing under wide extreme temperatures. Standard Weibull analysis tools were used to extract the Weibull parameters to understand the CCGA failures. Optical inspection results clearly indicate that the solder joints of columns with the board and the ceramic package have failed as a function of thermal cycling. The first failure was observed at 137th thermal cycle and 63.2% failures of daisy chains have occurred at about 664 thermal cycles. The shape parameter extracted from Weibull plot was about 1.47 which indicates the failures were related to failures occurred during the flat region or useful life region of standard bath tub curve. Based on this experimental test data one can use the CCGAs for the temperature range studied for ~100 thermal cycles (ΔT = 310°C, 5oC/minute, and 15 minutes dwell) with high degree of confidence for high reliability space and other applications.

  13. Techno-Economic Analysis of Biofuel Production from Macroalgae (Seaweed)

    PubMed Central

    Soleymani, Mohsen

    2017-01-01

    A techno-economic evaluation of bioenergy production from macroalgae was carried out in this study. Six different scenarios were examined for the production of different energy products and by-products. Seaweed was produced either via the longline method or the grid method. Final products of these scenarios were either ethanol from fermentation, or electricity from anaerobic digestion (AD). By-products were digestate for AD, and animal feed, or electricity and digestate, for the fermentation pathway. Bioenergy breakeven selling prices were investigated according to the cost components and the feedstock supply chain, while suggestions for potential optimization of costs were provided. The lowest production level of dry seaweed to meet 0.93 ($/L) for ethanol fuel and 0.07 $/kW-h for electricity was found to be 0.68 and 3.7 million tonnes (dry basis), respectively. At the moment, biofuel production from seaweed has been determined not to be economically feasible, but achieving economic production may be possible by lowering production costs and increasing the area under cultivation. PMID:29186857

  14. Public release of optimization of metallization scheme for thin emitter wrap-through solar cells for higher efficiency, reduced precious metal costs, and reduced stress.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruby, Douglas Scott; Murphy, Brian; Meakin, David

    2008-08-01

    Back-contact crystalline-silicon photovoltaic solar cells and modules offer a number of advantages, including the elimination of grid shadowing losses, reduced cost through use of thinner silicon substrates, simpler module assembly, and improved aesthetics. While the existing edge tab method for interconnecting and stringing edge-connected back contact cells is acceptably straightforward and reliable, there are further gains to be exploited when you have both contact polarities on one side of the cell. In this work, we produce 'busbarless' emitter wrap-through solar cells that use 41% of the gridline silver (Ag) metallization mass compared to the edge tab design. Further, series resistancemore » power losses are reduced by extraction of current from more places on the cell rear, leading to a fill factor improvement of about 6% (relative) on the module level. Series resistance and current-generation losses associated with large rear bondpads and busbars are eliminated. Use of thin silicon (Si) wafers is enabled because of the reduced Ag metallization mass and by interconnection with conductive adhesives leading to reduced bow. The busbarless cell design interconnected with conductive adhesives passes typical International Electrotechnical Commission damp heat and thermal cycling test.« less

  15. Comparative hybrid and digital simulation studies of the behaviour of a wind generator equipped with a static frequency converter

    NASA Astrophysics Data System (ADS)

    Dube, B.; Lefebvre, S.; Perocheau, A.; Nakra, H. L.

    1988-01-01

    This paper describes the comparative results obtained from digital and hybrid simulation studies on a variable speed wind generator interconnected to the utility grid. The wind generator is a vertical-axis Darrieus type coupled to a synchronous machine by a gear-box; the synchronous machine is connected to the AC utility grid through a static frequency converter. Digital simulation results have been obtained using CSMP software; these results are compared with those obtained from a real-time hybrid simulator that in turn uses a part of the IREQ HVDC simulator. The agreement between hybrid and digital simulation results is generally good. The results demonstrate that the digital simulation reproduces the dynamic behavior of the system in a satisfactory manner and thus constitutes a valid tool for the design of the control systems of the wind generator.

  16. Multi-Megawatt-Scale Power-Hardware-in-the-Loop Interface for Testing Ancillary Grid Services by Converter-Coupled Generation: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koralewicz, Przemyslaw J; Gevorgian, Vahan; Wallen, Robert B

    Power-hardware-in-the-loop (PHIL) is a simulation tool that can support electrical systems engineers in the development and experimental validation of novel, advanced control schemes that ensure the robustness and resiliency of electrical grids that have high penetrations of low-inertia variable renewable resources. With PHIL, the impact of the device under test on a generation or distribution system can be analyzed using a real-time simulator (RTS). PHIL allows for the interconnection of the RTS with a 7 megavolt ampere (MVA) power amplifier to test multi-megawatt renewable assets available at the National Wind Technology Center (NWTC). This paper addresses issues related to themore » development of a PHIL interface that allows testing hardware devices at actual scale. In particular, the novel PHIL interface algorithm and high-speed digital interface, which minimize the critical loop delay, are discussed.« less

  17. Multi-Megawatt-Scale Power-Hardware-in-the-Loop Interface for Testing Ancillary Grid Services by Converter-Coupled Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koralewicz, Przemyslaw J; Gevorgian, Vahan; Wallen, Robert B

    Power-hardware-in-the-loop (PHIL) is a simulation tool that can support electrical systems engineers in the development and experimental validation of novel, advanced control schemes that ensure the robustness and resiliency of electrical grids that have high penetrations of low-inertia variable renewable resources. With PHIL, the impact of the device under test on a generation or distribution system can be analyzed using a real-time simulator (RTS). PHIL allows for the interconnection of the RTS with a 7 megavolt ampere (MVA) power amplifier to test multi-megawatt renewable assets available at the National Wind Technology Center (NWTC). This paper addresses issues related to themore » development of a PHIL interface that allows testing hardware devices at actual scale. In particular, the novel PHIL interface algorithm and high-speed digital interface, which minimize the critical loop delay, are discussed.« less

  18. Resilient off-grid microgrids: Capacity planning and N-1 security

    DOE PAGES

    Madathil, Sreenath Chalil; Yamangil, Emre; Nagarajan, Harsha; ...

    2017-06-13

    Over the past century the electric power industry has evolved to support the delivery of power over long distances with highly interconnected transmission systems. Despite this evolution, some remote communities are not connected to these systems. These communities rely on small, disconnected distribution systems, i.e., microgrids to deliver power. However, as microgrids often are not held to the same reliability standards as transmission grids, remote communities can be at risk for extended blackouts. To address this issue, we develop an optimization model and an algorithm for capacity planning and operations of microgrids that include N-1 security and other practical modelingmore » features like AC power flow physics, component efficiencies and thermal limits. Lastly, we demonstrate the computational effectiveness of our approach on two test systems; a modified version of the IEEE 13 node test feeder and a model of a distribution system in a remote community in Alaska.« less

  19. Resilient off-grid microgrids: Capacity planning and N-1 security

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madathil, Sreenath Chalil; Yamangil, Emre; Nagarajan, Harsha

    Over the past century the electric power industry has evolved to support the delivery of power over long distances with highly interconnected transmission systems. Despite this evolution, some remote communities are not connected to these systems. These communities rely on small, disconnected distribution systems, i.e., microgrids to deliver power. However, as microgrids often are not held to the same reliability standards as transmission grids, remote communities can be at risk for extended blackouts. To address this issue, we develop an optimization model and an algorithm for capacity planning and operations of microgrids that include N-1 security and other practical modelingmore » features like AC power flow physics, component efficiencies and thermal limits. Lastly, we demonstrate the computational effectiveness of our approach on two test systems; a modified version of the IEEE 13 node test feeder and a model of a distribution system in a remote community in Alaska.« less

  20. Abruptness of Cascade Failures in Power Grids

    PubMed Central

    Pahwa, Sakshi; Scoglio, Caterina; Scala, Antonio

    2014-01-01

    Electric power-systems are one of the most important critical infrastructures. In recent years, they have been exposed to extreme stress due to the increasing demand, the introduction of distributed renewable energy sources, and the development of extensive interconnections. We investigate the phenomenon of abrupt breakdown of an electric power-system under two scenarios: load growth (mimicking the ever-increasing customer demand) and power fluctuations (mimicking the effects of renewable sources). Our results on real, realistic and synthetic networks indicate that increasing the system size causes breakdowns to become more abrupt; in fact, mapping the system to a solvable statistical-physics model indicates the occurrence of a first order transition in the large size limit. Such an enhancement for the systemic risk failures (black-outs) with increasing network size is an effect that should be considered in the current projects aiming to integrate national power-grids into “super-grids”. PMID:24424239

  1. Power conditioning unit for photovoltaic power systems

    NASA Astrophysics Data System (ADS)

    Beghin, G.; Nguyen Phuoc, V. T.

    Operational features and components of a power conditioning unit for interconnecting solar cell module powers with a utility grid are outlined. The two-stage unit first modifies the voltage to desired levels on an internal dc link, then inverts the current in 2 power transformers connected to a vector summation control to neutralize harmonic distortion up to the 11th harmonic. The system operates in parallel with the grid with extra inductors to absorb line-to-line voltage and phase differences, and permits peak power use from the PV array. Reactive power is gained internally, and a power system controller monitors voltages, frequencies, and currents. A booster preregulator adjusts the input voltage from the array to provide voltage regulation for the inverter, and can commutate 450 amps. A total harmonic distortion of less than 5 percent is claimed, with a rating of 5 kVA, 50/60 Hz, 3-phase, and 4-wire.

  2. A Latency-Tolerant Partitioner for Distributed Computing on the Information Power Grid

    NASA Technical Reports Server (NTRS)

    Das, Sajal K.; Harvey, Daniel J.; Biwas, Rupak; Kwak, Dochan (Technical Monitor)

    2001-01-01

    NASA's Information Power Grid (IPG) is an infrastructure designed to harness the power of graphically distributed computers, databases, and human expertise, in order to solve large-scale realistic computational problems. This type of a meta-computing environment is necessary to present a unified virtual machine to application developers that hides the intricacies of a highly heterogeneous environment and yet maintains adequate security. In this paper, we present a novel partitioning scheme. called MinEX, that dynamically balances processor workloads while minimizing data movement and runtime communication, for applications that are executed in a parallel distributed fashion on the IPG. We also analyze the conditions that are required for the IPG to be an effective tool for such distributed computations. Our results show that MinEX is a viable load balancer provided the nodes of the IPG are connected by a high-speed asynchronous interconnection network.

  3. Linear Look-Ahead in Conjunctive Cells: An Entorhinal Mechanism for Vector-Based Navigation

    PubMed Central

    Kubie, John L.; Fenton, André A.

    2012-01-01

    The crisp organization of the “firing bumps” of entorhinal grid cells and conjunctive cells leads to the notion that the entorhinal cortex may compute linear navigation routes. Specifically, we propose a process, termed “linear look-ahead,” by which a stationary animal could compute a series of locations in the direction it is facing. We speculate that this computation could be achieved through learned patterns of connection strengths among entorhinal neurons. This paper has three sections. First, we describe the minimal grid cell properties that will be built into our network. Specifically, the network relies on “rigid modules” of neurons, where all members have identical grid scale and orientation, but differ in spatial phase. Additionally, these neurons must be densely interconnected with synapses that are modifiable early in the animal’s life. Second, we investigate whether plasticity during short bouts of locomotion could induce patterns of connections amongst grid cells or conjunctive cells. Finally, we run a simulation to test whether the learned connection patterns can exhibit linear look-ahead. Our results are straightforward. A simulated 30-min walk produces weak strengthening of synapses between grid cells that do not support linear look-ahead. Similar training in a conjunctive cell module produces a small subset of very strong connections between cells. These strong pairs have three properties: the pre- and post-synaptic cells have similar heading direction. The cell pairs have neighboring grid bumps. Finally, the spatial offset of firing bumps of the cell pair is in the direction of the common heading preference. Such a module can produce strong and accurate linear look-ahead starting in any location and extending in any direction. We speculate that this process may: (1) compute linear paths to goals; (2) update grid cell firing during navigation; and (3) stabilize the rigid modules of grid cells and conjunctive cells. PMID:22557948

  4. The NASTRAN user's manual (level 17.0)

    NASA Technical Reports Server (NTRS)

    1979-01-01

    NASTRAN embodies a lumped element approach, wherein the distributed physical properties of a structure are represented by a model consisting of a finite number of idealized substructures or elements that are interconnected at a finite of grid points, to which loads are applied. All input and output data pertain to the idealized structural model. The general procedures for defining structural models are described and instructions are given for each of the bulk data cards and case control cards. Additional information on the case control cards and use of parameters is included for each rigid format.

  5. Institutional Issues of International Power Grid Development in Northeast Asia

    NASA Astrophysics Data System (ADS)

    Korneev, Konstantin; Maksakova, Darya; Popov, Sergei

    2018-01-01

    With regard to the initiative of "International power interconnections in northeast Asia" here examines the challenges which may hinder the establishment of a common energy system in region. The analysis is based on the APERC methodology for international energy cooperation in the APEC region, and on historical approach to the development of pricing mechanisms and policy in the European common market of electricity trade and system services. Mechanisms for the prevention and overcoming of the revealed problems of regional cooperation in the power sector are proposed.

  6. Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon.

    PubMed

    Shi, Wei; Yun, Han; Lin, Charlie; Greenberg, Mark; Wang, Xu; Wang, Yun; Fard, Sahba Talebi; Flueckiger, Jonas; Jaeger, Nicolas A F; Chrostowski, Lukas

    2013-03-25

    Wavelength-division-multiplexing (WDM) networks with wide channel grids and bandwidths are promising for low-cost, low-power optical interconnects. Wide-bandwidth, single-band (i.e., no free-spectral range) add-drop filters have been developed on silicon using anti-reflection contra-directional couplers with out-of-phase Bragg gratings. Using such filter components, we demonstrate a 4-channel, coarse-WDM demultiplexer with flat passbands of up to 13 nm and an ultra-compact size of 1.2 × 10(-3) mm(2).

  7. Integrated thin film cadmium sulfide solar cell module

    NASA Technical Reports Server (NTRS)

    Mickelsen, R. A.; Abbott, D. D.

    1971-01-01

    The design, development, fabrication and tests of flexible integrated thin-film cadmium sulfide solar cells and modules are discussed. The development of low cost and high production rate methods for interconnecting cells into large solar arrays is described. Chromium thin films were applied extensively in the deposited cell structures as a means to: (1) achieve high adherence between the cadmium sulfide films and the vacuum-metallized copper substrates, (2) obtain an ohmic contact to the cadmium sulfide films, and (3) improve the adherence of gold films as grids or contact areas.

  8. Analysis of PV Advanced Inverter Functions and Setpoints under Time Series Simulation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seuss, John; Reno, Matthew J.; Broderick, Robert Joseph

    Utilities are increasingly concerned about the potential negative impacts distributed PV may have on the operational integrity of their distribution feeders. Some have proposed novel methods for controlling a PV system's grid - tie inverter to mitigate poten tial PV - induced problems. This report investigates the effectiveness of several of these PV advanced inverter controls on improving distribution feeder operational metrics. The controls are simulated on a large PV system interconnected at several locations within two realistic distribution feeder models. Due to the time - domain nature of the advanced inverter controls, quasi - static time series simulations aremore » performed under one week of representative variable irradiance and load data for each feeder. A para metric study is performed on each control type to determine how well certain measurable network metrics improve as a function of the control parameters. This methodology is used to determine appropriate advanced inverter settings for each location on the f eeder and overall for any interconnection location on the feeder.« less

  9. Limitations and tradeoffs in synchronization of large-scale networks with uncertain links

    PubMed Central

    Diwadkar, Amit; Vaidya, Umesh

    2016-01-01

    The synchronization of nonlinear systems connected over large-scale networks has gained popularity in a variety of applications, such as power grids, sensor networks, and biology. Stochastic uncertainty in the interconnections is a ubiquitous phenomenon observed in these physical and biological networks. We provide a size-independent network sufficient condition for the synchronization of scalar nonlinear systems with stochastic linear interactions over large-scale networks. This sufficient condition, expressed in terms of nonlinear dynamics, the Laplacian eigenvalues of the nominal interconnections, and the variance and location of the stochastic uncertainty, allows us to define a synchronization margin. We provide an analytical characterization of important trade-offs between the internal nonlinear dynamics, network topology, and uncertainty in synchronization. For nearest neighbour networks, the existence of an optimal number of neighbours with a maximum synchronization margin is demonstrated. An analytical formula for the optimal gain that produces the maximum synchronization margin allows us to compare the synchronization properties of various complex network topologies. PMID:27067994

  10. Distributed behavior model orchestration in cognitive internet of things solution

    NASA Astrophysics Data System (ADS)

    Li, Chung-Sheng; Darema, Frederica; Chang, Victor

    2018-04-01

    The introduction of pervasive and ubiquitous instrumentation within Internet of Things (IoT) leads to unprecedented real-time visibility (instrumentation), optimization and fault-tolerance of the power grid, traffic, transportation, water, oil & gas, to give some examples. Interconnecting those distinct physical, people, and business worlds through ubiquitous instrumentation, even though still in its embryonic stage, has the potential to create intelligent IoT solutions that are much greener, more efficient, comfortable, and safer. An essential new direction to materialize this potential is to develop comprehensive models of such systems dynamically interacting with the instrumentation in a feed-back control loop. We describe here opportunities in applying cognitive computing on interconnected and instrumented worlds (Cognitive Internet of Things-CIoT) and call out the system-of-systems trend among distinct but interdependent worlds, and Dynamic Data-Driven Application System (DDDAS)-based methods for advanced understanding, analysis, and real-time decision support capabilities with the accuracy of full-scale models.

  11. Environmental & economic life cycle assessment of current & future sewage sludge to energy technologies.

    PubMed

    Mills, N; Pearce, P; Farrow, J; Thorpe, R B; Kirkby, N F

    2014-01-01

    The UK Water Industry currently generates approximately 800GWh pa of electrical energy from sewage sludge. Traditionally energy recovery from sewage sludge features Anaerobic Digestion (AD) with biogas utilisation in combined heat and power (CHP) systems. However, the industry is evolving and a number of developments that extract more energy from sludge are either being implemented or are nearing full scale demonstration. This study compared five technology configurations: 1 - conventional AD with CHP, 2 - Thermal Hydrolysis Process (THP) AD with CHP, 3 - THP AD with bio-methane grid injection, 4 - THP AD with CHP followed by drying of digested sludge for solid fuel production, 5 - THP AD followed by drying, pyrolysis of the digested sludge and use of the both the biogas and the pyrolysis gas in a CHP. The economic and environmental Life Cycle Assessment (LCA) found that both the post AD drying options performed well but the option used to create a solid fuel to displace coal (configuration 4) was the most sustainable solution economically and environmentally, closely followed by the pyrolysis configuration (5). Application of THP improves the financial and environmental performance compared with conventional AD. Producing bio-methane for grid injection (configuration 3) is attractive financially but has the worst environmental impact of all the scenarios, suggesting that the current UK financial incentive policy for bio-methane is not driving best environmental practice. It is clear that new and improving processes and technologies are enabling significant opportunities for further energy recovery from sludge; LCA provides tools for determining the best overall options for particular situations and allows innovation resources and investment to be focused accordingly. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Distributed Energy Systems Integration and Demand Optimization for Autonomous Operations and Electric Grid Transactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghatikar, Girish; Mashayekh, Salman; Stadler, Michael

    Distributed power systems in the U.S. and globally are evolving to provide reliable and clean energy to consumers. In California, existing regulations require significant increases in renewable generation, as well as identification of customer-side distributed energy resources (DER) controls, communication technologies, and standards for interconnection with the electric grid systems. As DER deployment expands, customer-side DER control and optimization will be critical for system flexibility and demand response (DR) participation, which improves the economic viability of DER systems. Current DER systems integration and communication challenges include leveraging the existing DER and DR technology and systems infrastructure, and enabling optimized cost,more » energy and carbon choices for customers to deploy interoperable grid transactions and renewable energy systems at scale. Our paper presents a cost-effective solution to these challenges by exploring communication technologies and information models for DER system integration and interoperability. This system uses open standards and optimization models for resource planning based on dynamic-pricing notifications and autonomous operations within various domains of the smart grid energy system. It identifies architectures and customer engagement strategies in dynamic DR pricing transactions to generate feedback information models for load flexibility, load profiles, and participation schedules. The models are tested at a real site in California—Fort Hunter Liggett (FHL). Furthermore, our results for FHL show that the model fits within the existing and new DR business models and networked systems for transactive energy concepts. Integrated energy systems, communication networks, and modeling tools that coordinate supply-side networks and DER will enable electric grid system operators to use DER for grid transactions in an integrated system.« less

  13. Maturity Model for Advancing Smart Grid Interoperability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knight, Mark; Widergren, Steven E.; Mater, J.

    2013-10-28

    Abstract—Interoperability is about the properties of devices and systems to connect and work properly. Advancing interoperability eases integration and maintenance of the resulting interconnection. This leads to faster integration, lower labor and component costs, predictability of projects and the resulting performance, and evolutionary paths for upgrade. When specifications are shared and standardized, competition and novel solutions can bring new value streams to the community of stakeholders involved. Advancing interoperability involves reaching agreement for how things join at their interfaces. The quality of the agreements and the alignment of parties involved in the agreement present challenges that are best met withmore » process improvement techniques. The GridWise® Architecture Council (GWAC) sponsored by the United States Department of Energy is supporting an effort to use concepts from capability maturity models used in the software industry to advance interoperability of smart grid technology. An interoperability maturity model has been drafted and experience is being gained through trials on various types of projects and community efforts. This paper describes the value and objectives of maturity models, the nature of the interoperability maturity model and how it compares with other maturity models, and experiences gained with its use.« less

  14. Techno-economic evaluation of stillage treatment with anaerobic digestion in a softwood-to-ethanol process.

    PubMed

    Barta, Zsolt; Reczey, Kati; Zacchi, Guido

    2010-09-15

    Replacing the energy-intensive evaporation of stillage by anaerobic digestion is one way of decreasing the energy demand of the lignocellulosic biomass to the ethanol process. The biogas can be upgraded and sold as transportation fuel, injected directly into the gas grid or be incinerated on-site for combined heat and power generation. A techno-economic evaluation of the spruce-to-ethanol process, based on SO2-catalysed steam pretreatment followed by simultaneous saccharification and fermentation, has been performed using the commercial flow-sheeting program Aspen Plus™. Various process configurations of anaerobic digestion of the stillage, with different combinations of co-products, have been evaluated in terms of energy efficiency and ethanol production cost versus the reference case of evaporation. Anaerobic digestion of the stillage showed a significantly higher overall energy efficiency (87-92%), based on the lower heating values, than the reference case (81%). Although the amount of ethanol produced was the same in all scenarios, the production cost varied between 4.00 and 5.27 Swedish kronor per litre (0.38-0.50 euro/L), including the reference case. Higher energy efficiency options did not necessarily result in lower ethanol production costs. Anaerobic digestion of the stillage with biogas upgrading was demonstrated to be a favourable option for both energy efficiency and ethanol production cost. The difference in the production cost of ethanol between using the whole stillage or only the liquid fraction in anaerobic digestion was negligible for the combination of co-products including upgraded biogas, electricity and district heat.

  15. Techno-economic evaluation of stillage treatment with anaerobic digestion in a softwood-to-ethanol process

    PubMed Central

    2010-01-01

    Background Replacing the energy-intensive evaporation of stillage by anaerobic digestion is one way of decreasing the energy demand of the lignocellulosic biomass to the ethanol process. The biogas can be upgraded and sold as transportation fuel, injected directly into the gas grid or be incinerated on-site for combined heat and power generation. A techno-economic evaluation of the spruce-to-ethanol process, based on SO2-catalysed steam pretreatment followed by simultaneous saccharification and fermentation, has been performed using the commercial flow-sheeting program Aspen Plus™. Various process configurations of anaerobic digestion of the stillage, with different combinations of co-products, have been evaluated in terms of energy efficiency and ethanol production cost versus the reference case of evaporation. Results Anaerobic digestion of the stillage showed a significantly higher overall energy efficiency (87-92%), based on the lower heating values, than the reference case (81%). Although the amount of ethanol produced was the same in all scenarios, the production cost varied between 4.00 and 5.27 Swedish kronor per litre (0.38-0.50 euro/L), including the reference case. Conclusions Higher energy efficiency options did not necessarily result in lower ethanol production costs. Anaerobic digestion of the stillage with biogas upgrading was demonstrated to be a favourable option for both energy efficiency and ethanol production cost. The difference in the production cost of ethanol between using the whole stillage or only the liquid fraction in anaerobic digestion was negligible for the combination of co-products including upgraded biogas, electricity and district heat. PMID:20843330

  16. Identifiability of large-scale non-linear dynamic network models applied to the ADM1-case study.

    PubMed

    Nimmegeers, Philippe; Lauwers, Joost; Telen, Dries; Logist, Filip; Impe, Jan Van

    2017-06-01

    In this work, both the structural and practical identifiability of the Anaerobic Digestion Model no. 1 (ADM1) is investigated, which serves as a relevant case study of large non-linear dynamic network models. The structural identifiability is investigated using the probabilistic algorithm, adapted to deal with the specifics of the case study (i.e., a large-scale non-linear dynamic system of differential and algebraic equations). The practical identifiability is analyzed using a Monte Carlo parameter estimation procedure for a 'non-informative' and 'informative' experiment, which are heuristically designed. The model structure of ADM1 has been modified by replacing parameters by parameter combinations, to provide a generally locally structurally identifiable version of ADM1. This means that in an idealized theoretical situation, the parameters can be estimated accurately. Furthermore, the generally positive structural identifiability results can be explained from the large number of interconnections between the states in the network structure. This interconnectivity, however, is also observed in the parameter estimates, making uncorrelated parameter estimations in practice difficult. Copyright © 2017. Published by Elsevier Inc.

  17. Drones in Automation - Secured Unmanned Aerial Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morales Rodriguez, Marissa E.; Rooke, Sterling; Fuhr, Peter L.

    Factories, refineries, utilities (water/wastewater, electric) and related industrial sites are complex systems and structures with inspection and maintenance procedures required for optimal operation and regulatory compliance. As a specific example, consider just the bulk electric power system which is comprised of more than 200,000 miles of highvoltage transmission lines, thousands of generation plants and millions of digital controls. More than 1,800 entities own and operate portions of the grid system, with thousands more involved in the operation of distribution networks across North America. The interconnected and interdependent nature of the bulk power system requires a consistent and systematic application ofmore » risk mitigation across the entire grid system to be truly effective. Similar situations are found throughout automation where frequently an aging infrastructure is in place too. Consider, for example, the situation present in a refinery or chemical processing setting with the requirement for leak detection inspection of pipes, interconnects and systems stretching across the plant. The current practices and challenges relating just to this task - leak detection and repair (LDAR) – of detecting any fugitive emissions present and documenting all measurements thereby meeting air compliance regulations are typically “handled” by a small army of individuals with handheld or backpack-sized detectors who crawl through piping racks conducting measurements at each flange. Such work is performed in difficult conditions (temperature, humidity, physically challenging) with frequently a high level of employee turnover. Finaly, enter low cost sensors and mobile platforms – in other words unmanned aerial systems (UASs, or drones) with enhanced sensing capabilities.« less

  18. Drones in Automation - Secured Unmanned Aerial Systems

    DOE PAGES

    Morales Rodriguez, Marissa E.; Rooke, Sterling; Fuhr, Peter L.; ...

    2017-05-01

    Factories, refineries, utilities (water/wastewater, electric) and related industrial sites are complex systems and structures with inspection and maintenance procedures required for optimal operation and regulatory compliance. As a specific example, consider just the bulk electric power system which is comprised of more than 200,000 miles of highvoltage transmission lines, thousands of generation plants and millions of digital controls. More than 1,800 entities own and operate portions of the grid system, with thousands more involved in the operation of distribution networks across North America. The interconnected and interdependent nature of the bulk power system requires a consistent and systematic application ofmore » risk mitigation across the entire grid system to be truly effective. Similar situations are found throughout automation where frequently an aging infrastructure is in place too. Consider, for example, the situation present in a refinery or chemical processing setting with the requirement for leak detection inspection of pipes, interconnects and systems stretching across the plant. The current practices and challenges relating just to this task - leak detection and repair (LDAR) – of detecting any fugitive emissions present and documenting all measurements thereby meeting air compliance regulations are typically “handled” by a small army of individuals with handheld or backpack-sized detectors who crawl through piping racks conducting measurements at each flange. Such work is performed in difficult conditions (temperature, humidity, physically challenging) with frequently a high level of employee turnover. Finaly, enter low cost sensors and mobile platforms – in other words unmanned aerial systems (UASs, or drones) with enhanced sensing capabilities.« less

  19. Miocene stratigraphy and structure of Sabine Pass, West Cameron, and East Cameron outer continental shelf areas, Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, S.Y.; Watkins, J.S.

    Mapping of Miocene stratigraphy and structure of the Sabine Pass, West Cameron, and East Cameron areas of the western Louisiana outer continental shelf - based on over 1300 mi of seismic data on a 4-mi grid, paleotops from 60 wells, and logs from 35 wells - resulted in time-structure and isochron maps at six intervals from the upper Pliocene to lower Miocene. The most pronounced structural features are the fault systems, which trend east-northeast to east along the Miocene stratigraphic trend. Isolated normal faults with small displacements characterize the inner inner shelf, whereas interconnected faults with greater displacements characterize themore » outer inner shelf. The inner inner shelf faults exhibit little growth, but expansion across the interconnected outer inner shelf fault ranges up to 1 sec two-way traveltime. The interconnected faults belong to two structurally independent fault families. The innermost shelf faults appear to root in the sediment column. A third set of faults located in the Sabine Pass area trends north-south. This fault set is thought to be related to basement movement and/or basement structure. Very little salt is evident in the area. A single diapir is located in West Cameron Block 110 and vicinity. There is little evidence of deep salt. Overall sediment thickness probably exceeds 20,000 ft, with the middle Miocene accounting for 8000 ft.« less

  20. Reliability of high I/O high density CCGA interconnect electronic packages under extreme thermal environments

    NASA Astrophysics Data System (ADS)

    Ramesham, Rajeshuni

    2012-03-01

    Ceramic column grid array (CCGA) packages have been increasing in use based on their advantages such as high interconnect density, very good thermal and electrical performances, compatibility with standard surfacemount packaging assembly processes, and so on. CCGA packages are used in space applications such as in logic and microprocessor functions, telecommunications, payload electronics, and flight avionics. As these packages tend to have less solder joint strain relief than leaded packages or more strain relief over lead-less chip carrier packages, the reliability of CCGA packages is very important for short-term and long-term deep space missions. We have employed high density CCGA 1152 and 1272 daisy chained electronic packages in this preliminary reliability study. Each package is divided into several daisy-chained sections. The physical dimensions of CCGA1152 package is 35 mm x 35 mm with a 34 x 34 array of columns with a 1 mm pitch. The dimension of the CCGA1272 package is 37.5 mm x 37.5 mm with a 36 x 36 array with a 1 mm pitch. The columns are made up of 80% Pb/20%Sn material. CCGA interconnect electronic package printed wiring polyimide boards have been assembled and inspected using non-destructive x-ray imaging techniques. The assembled CCGA boards were subjected to extreme temperature thermal atmospheric cycling to assess their reliability for future deep space missions. The resistance of daisy-chained interconnect sections were monitored continuously during thermal cycling. This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non-destructive inspection tools were used to assess the reliability of high density CCGA packages for deep space extreme temperature missions.

  1. Griffith Energy Project Final Environmental Impact Statement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N /A

    1999-04-02

    Griffith Energy Limited Liability Corporation (Griffith) proposes to construct and operate the Griffith Energy Project (Project), a natural gas-fuel, combined cycle power plant, on private lands south of Kingman, Ariz. The Project would be a ''merchant plant'' which means that it is not owned by a utility and there is currently no long-term commitment or obligation by any utility to purchase the capacity and energy generated by the power plant. Griffith applied to interconnect its proposed power plant with the Western Area Power Administration's (Western) Pacific Northwest-Pacific Southwest Intertie and Parker-Davis transmission systems. Western, as a major transmission system owner,more » needs to provide access to its transmission system when it is requested by an eligible organization per existing policies, regulations and laws. The proposed interconnection would integrate the power generated by the Project into the regional transmission grid and would allow Griffith to supply its power to the competitive electric wholesale market. Based on the application, Western's proposed action is to enter into an interconnection and construction agreement with Griffith for the requested interconnections. The proposed action includes the power plant, water wells and transmission line, natural gas pipelines, new electrical transmission lines and a substation, upgrade of an existing transmission line, and access road to the power plant. Construction of segments of the transmission lines and a proposed natural gas pipeline also require a grant of right-of-way across Federal lands administered by the Bureau of Land Management. Public comments on the Draft EIS are addressed in the Final EIS, including addenda and modifications made as a result of the comments and/or new information.« less

  2. Dynamic stability analysis of fractional order leaky integrator echo state neural networks

    NASA Astrophysics Data System (ADS)

    Pahnehkolaei, Seyed Mehdi Abedi; Alfi, Alireza; Tenreiro Machado, J. A.

    2017-06-01

    The Leaky integrator echo state neural network (Leaky-ESN) is an improved model of the recurrent neural network (RNN) and adopts an interconnected recurrent grid of processing neurons. This paper presents a new proof for the convergence of a Lyapunov candidate function to zero when time tends to infinity by means of the Caputo fractional derivative with order lying in the range (0, 1). The stability of Fractional-Order Leaky-ESN (FO Leaky-ESN) is then analyzed, and the existence, uniqueness and stability of the equilibrium point are provided. A numerical example demonstrates the feasibility of the proposed method.

  3. Duke Engineering explores huge African Power Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newman, P.

    1994-10-14

    Duke Engineering & Services and the African Republic of Uganda have entered into a memorandum of understanding to explore the feasibility of installing one or more hydropower plants along the Nile River and building a 2,000 mile transmission line through southern Africa. The project`s participants say they envision a southern African electricity grid connecting all countries in the region. A team comprised of officials from DE&S, Edlow and SAD-ELEC will conduct a six-month, two-part study on the feasibility of linking the existing grid system in the region. The first part of the study will look at the feasibility of installingmore » one or more independent hydropower plants along the Nile and other rivers in Uganda. The second part will explore the design, construction and operation of a transmission system to interconnect Uganda, through neighboring countries to the south and east, to the Republic of South Africa. The site for the proposed hydroelectric plant will determine the route of the transmission line.« less

  4. Seasonal variation of biogas upgrading coupled with digestate treatment in an outdoors pilot scale algal-bacterial photobioreactor.

    PubMed

    Marín, David; Posadas, Esther; Cano, Patricia; Pérez, Victor; Blanco, Saúl; Lebrero, Raquel; Muñoz, Raúl

    2018-04-30

    The yearly variations of the quality of the upgraded biogas and the efficiency of digestate treatment were evaluated in an outdoors pilot scale high rate algal pond (HRAP) interconnected to an external absorption column (AC) via a conical settler. CO 2 concentrations in the upgraded biogas ranged from 0.7% in August to 11.9% in December, while a complete H 2 S removal was achieved regardless of the operational month. CH 4 concentrations ranged from 85.2% in December to 97.9% in June, with a limited O 2 and N 2 stripping in the upgraded biogas mediated by the low recycling liquid/biogas ratio in the AC. Biomass productivity ranged from 0.0 g m -2  d -1 in winter to 22.5 g m -2  d -1 in summer. Finally, microalgae diversity was severely reduced throughout the year likely due to the increasing salinity in the cultivation broth of the HRAP induced by process operation in the absence of effluent. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Impact of Converter Interfaced Generation and Load on Grid Performance

    NASA Astrophysics Data System (ADS)

    Ramasubramanian, Deepak

    Alternate sources of energy such as wind, solar photovoltaic and fuel cells are coupled to the power grid with the help of solid state converters. Continued deregulation of the power sector coupled with favorable government incentives has resulted in the rapid growth of renewable energy sources connected to the distribution system at a voltage level of 34.5kV or below. Of late, many utilities are also investing in these alternate sources of energy with the point of interconnection with the power grid being at the transmission level. These converter interfaced generation along with their associated control have the ability to provide the advantage of fast control of frequency, voltage, active, and reactive power. However, their ability to provide stability in a large system is yet to be investigated in detail. This is the primary objective of this research. In the future, along with an increase in the percentage of converter interfaced renewable energy sources connected to the transmission network, there exists a possibility of even connecting synchronous machines to the grid through converters. Thus, all sources of energy can be expected to be coupled to the grid through converters. The control and operation of such a grid will be unlike anything that has been encountered till now. In this dissertation, the operation and behavior of such a grid will be investigated. The first step in such an analysis will be to build an accurate and simple mathematical model to represent the corresponding components in commercial software. Once this bridge has been crossed, conventional machines will be replaced with their solid state interfaced counterparts in a phased manner. At each stage, attention will be devoted to the control of these sources and also on the stability performance of the large power system. This dissertation addresses various concerns regarding the control and operation of a futuristic power grid. In addition, this dissertation also aims to address the issue of whether a requirement may arise to redefine operational reliability criteria based on the results obtained.

  6. Model of brain activation predicts the neural collective influence map of the brain

    PubMed Central

    Morone, Flaviano; Roth, Kevin; Min, Byungjoon; Makse, Hernán A.

    2017-01-01

    Efficient complex systems have a modular structure, but modularity does not guarantee robustness, because efficiency also requires an ingenious interplay of the interacting modular components. The human brain is the elemental paradigm of an efficient robust modular system interconnected as a network of networks (NoN). Understanding the emergence of robustness in such modular architectures from the interconnections of its parts is a longstanding challenge that has concerned many scientists. Current models of dependencies in NoN inspired by the power grid express interactions among modules with fragile couplings that amplify even small shocks, thus preventing functionality. Therefore, we introduce a model of NoN to shape the pattern of brain activations to form a modular environment that is robust. The model predicts the map of neural collective influencers (NCIs) in the brain, through the optimization of the influence of the minimal set of essential nodes responsible for broadcasting information to the whole-brain NoN. Our results suggest intervention protocols to control brain activity by targeting influential neural nodes predicted by network theory. PMID:28351973

  7. High Resolution Aerospace Applications using the NASA Columbia Supercomputer

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri J.; Aftosmis, Michael J.; Berger, Marsha

    2005-01-01

    This paper focuses on the parallel performance of two high-performance aerodynamic simulation packages on the newly installed NASA Columbia supercomputer. These packages include both a high-fidelity, unstructured, Reynolds-averaged Navier-Stokes solver, and a fully-automated inviscid flow package for cut-cell Cartesian grids. The complementary combination of these two simulation codes enables high-fidelity characterization of aerospace vehicle design performance over the entire flight envelope through extensive parametric analysis and detailed simulation of critical regions of the flight envelope. Both packages. are industrial-level codes designed for complex geometry and incorpor.ats. CuStomized multigrid solution algorithms. The performance of these codes on Columbia is examined using both MPI and OpenMP and using both the NUMAlink and InfiniBand interconnect fabrics. Numerical results demonstrate good scalability on up to 2016 CPUs using the NUMAIink4 interconnect, with measured computational rates in the vicinity of 3 TFLOP/s, while InfiniBand showed some performance degradation at high CPU counts, particularly with multigrid. Nonetheless, the results are encouraging enough to indicate that larger test cases using combined MPI/OpenMP communication should scale well on even more processors.

  8. Tehachapi Wind Energy Storage Project - Technology Performance Report #3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinsky, Naum; O'Neill, Lori

    The TSP is located at SCE’s Monolith Substation in Tehachapi, California. The 8 MW, 4 hours (32 MWh) BESS is housed in a 6,300 square foot facility and 2 x 4 MW/4.5 MVA smart inverters are on a concrete pad adjacent to the BESS facility. The project will evaluate the capabilities of the BESS to improve grid performance and assist in the integration of large-scale intermittent generation, e.g., wind. Project performance was measured by 13 specific operational uses: providing voltage support and grid stabilization, decreasing transmission losses, diminishing congestion, increasing system reliability, deferring transmission investment, optimizing renewable-related transmission, providing systemmore » capacity and resources adequacy, integrating renewable energy (smoothing), shifting wind generation output, frequency regulation, spin/non-spin replacement reserves, ramp management, and energy price arbitrage. Most of the operations either shift other generation resources to meet peak load and other electricity system needs with stored electricity, or resolve grid stability and capacity concerns that result from the interconnection of intermittent generation. SCE also demonstrated the ability of lithium ion battery storage to provide nearly instantaneous maximum capacity for supply-side ramp rate control to minimize the need for fossil fuel-powered back-up generation. The project began in October, 2010 and will continue through December, 2016.« less

  9. Hierarchical Control Scheme for Improving Transient Voltage Recovery of a DFIG-Based WPP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jinho; Muljadi, Eduard; Kang, Yong Cheol

    Modern grid codes require that wind power plants (WPPs) inject reactive power according to the voltage dip at a point of interconnection (POI). This requirement helps to support a POI voltage during a fault. However, if a fault is cleared, the POI and wind turbine generator (WTG) voltages are likely to exceed acceptable levels unless the WPP reduces the injected reactive power quickly. This might deteriorate the stability of a grid by allowing the disconnection of WTGs to avoid any damage. This paper proposes a hierarchical control scheme of a doubly-fed induction generator (DFIG)-based WPP. The proposed scheme aims tomore » improve the reactive power injecting capability during the fault and suppress the overvoltage after the fault clearance. To achieve the former, an adaptive reactive power-to-voltage scheme is implemented in each DFIG controller so that a DFIG with a larger reactive power capability will inject more reactive power. To achieve the latter, a washout filter is used to capture a high frequency component contained in the WPP voltage, which is used to remove the accumulated values in the proportional-integral controllers. Test results indicate that the scheme successfully supports the grid voltage during the fault, and recovers WPP voltages without exceeding the limit after the fault clearance.« less

  10. Integrating Renewable Generation into Grid Operations: Four International Experiences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weimar, Mark R.; Mylrea, Michael E.; Levin, Todd

    International experiences with power sector restructuring and the resultant impacts on bulk power grid operations and planning may provide insight into policy questions for the evolving United States power grid as resource mixes are changing in response to fuel prices, an aging generation fleet and to meet climate goals. Australia, Germany, Japan and the UK were selected to represent a range in the level and attributes of electricity industry liberalization in order to draw comparisons across a variety of regions in the United States such as California, ERCOT, the Southwest Power Pool and the Southeast Reliability Region. The study drawsmore » conclusions through a literature review of the four case study countries with regards to the changing resource mix and the electricity industry sector structure and their impact on grid operations and planning. This paper derives lessons learned and synthesizes implications for the United States based on answers to the above questions and the challenges faced by the four selected countries. Each country was examined to determine the challenges to their bulk power sector based on their changing resource mix, market structure, policies driving the changing resource mix, and policies driving restructuring. Each countries’ approach to solving those changes was examined, as well as how each country’s market structure either exacerbated or mitigated the approaches to solving the challenges to their bulk power grid operations and planning. All countries’ policies encourage renewable energy generation. One significant finding included the low- to zero-marginal cost of intermittent renewables and its potential negative impact on long-term resource adequacy. No dominant solution has emerged although a capacity market was introduced in the UK and is being contemplated in Japan. Germany has proposed the Energy Market 2.0 to encourage flexible generation investment. The grid operator in Australia proposed several approaches to maintaining synchronous generation. Interconnections to other regions provides added opportunities for balancing that would not be available otherwise, and at this point, has allowed for integration of renewables.« less

  11. Reliability of CCGA 1152 and CCGA 1272 Interconnect Packages for Extreme Thermal Environments

    NASA Technical Reports Server (NTRS)

    Ramesham, Rajeshuni

    2013-01-01

    Ceramic column grid array (CCGA) packages have been increasing in use based on their advantages of high interconnect density, very good thermal and electrical performance, and compatibility with standard surface-mount packaging assembly processes. CCGA packages are used in space applications such as in logics and microprocessor functions, telecommunications, flight avionics, and payload electronics. As these packages tend to have less solder joint strain relief than leaded packages, the reliability of CCGA packages is very important for short- and long-term space missions. Certain planetary satellites require operations of thermally uncontrolled hardware under extremely cold and hot temperatures with large diurnal temperature change from day to night. The planetary protection requires the hardware to be baked at +125 C for 72 hours to kill microbugs to avoid any biological contamination, especially for sample return missions. Therefore, the present CCGA package reliability research study has encompassed the temperature range of 185 to +125 C to cover various NASA deep space missions. Advanced 1152 and 1272 CCGA packaging interconnects technology test hardware objects have been subjected to ex treme temperature thermal cycles from 185 to +125 C. X-ray inspections of CCGA packages have been made before thermal cycling. No anomalous behavior and process problems were observed in the x-ray images. The change in resistance of the daisy-chained CCGA interconnects was measured as a function of increasing number of thermal cycles. Electrical continuity measurements of daisy chains have shown no anomalies, even until 596 thermal cycles. Optical inspections of hardware have shown a significant fatigue for CCGA 1152 packages over CCGA 1272 packages. No catastrophic failures have been observed yet in the results. Process qualification and assembly are required to optimize the CCGA assembly processes. Optical inspections of CCGA boards have been made after 258 and 596 thermal cycles. Corner columns have started showing significant fatigue per optical inspection results.

  12. The Array Automated Assembly Task for the Low Cost Solar Array Project, Phase 2

    NASA Technical Reports Server (NTRS)

    Campbell, R. B. (Editor); Farukhi, S. (Editor)

    1978-01-01

    During the program a process sequence was proposed and tested for the fabrication of dendritic welb silicon into solar modules. This sequence was analyzed as to yield and cost and these data suggest that the price goals of 1986 are attainable. Specifically, it was shown that a low cost POCL3 is a suitable replacement for the semiconductor grade, and that a suitable CVD oxide can be deposited from a silane/air mixture using a Silox reactor. A dip coating method was developed for depositing an antireflection coating from a metalorganic precursor. Application of photoresist to define contact grids was made cost effective through use of a dip coating technique. Electroplating of both Ag and Cu was shown feasible and cost effective for producing the conductive metal grids on the solar cells. Laser scribing was used to separate the cells from the dendrites without degradation. Ultrasonic welding methods were shown to be feasible for interconnecting the cells. A study of suitable low cost materials for encapsulation suggest that soda lime glass and phenolic filled board are preferred.

  13. Life Cycle Environmental Impacts of Electricity from Biogas Produced by Anaerobic Digestion.

    PubMed

    Fusi, Alessandra; Bacenetti, Jacopo; Fiala, Marco; Azapagic, Adisa

    2016-01-01

    The aim of this study was to evaluate life cycle environmental impacts associated with the generation of electricity from biogas produced by the anaerobic digestion (AD) of agricultural products and waste. Five real plants in Italy were considered, using maize silage, slurry, and tomato waste as feedstocks and cogenerating electricity and heat; the latter is not utilized. The results suggest that maize silage and the operation of anaerobic digesters, including open storage of digestate, are the main contributors to the impacts of biogas electricity. The system that uses animal slurry is the best option, except for the marine and terrestrial ecotoxicity. The results also suggest that it is environmentally better to have smaller plants using slurry and waste rather than bigger installations, which require maize silage to operate efficiently. Electricity from biogas is environmentally more sustainable than grid electricity for seven out of 11 impacts considered. However, in comparison with natural gas, biogas electricity is worse for seven out of 11 impacts. It also has mostly higher impacts than other renewables, with a few exceptions, notably solar photovoltaics. Thus, for the AD systems and mesophilic operating conditions considered in this study, biogas electricity can help reduce greenhouse gas (GHG) emissions relative to a fossil-intensive electricity mix; however, some other impacts increase. If mitigation of climate change is the main aim, other renewables have a greater potential to reduce GHG emissions. If, in addition to this, other impacts are considered, then hydro, wind, and geothermal power are better alternatives to biogas electricity. However, utilization of heat would improve significantly its environmental sustainability, particularly global warming potential, summer smog, and the depletion of abiotic resources and the ozone layer. Further improvements can be achieved by banning open digestate storage to prevent methane emissions and regulating digestate spreading onto land to minimize emissions of ammonia and related environmental impacts.

  14. Life Cycle Environmental Impacts of Electricity from Biogas Produced by Anaerobic Digestion

    PubMed Central

    Fusi, Alessandra; Bacenetti, Jacopo; Fiala, Marco; Azapagic, Adisa

    2016-01-01

    The aim of this study was to evaluate life cycle environmental impacts associated with the generation of electricity from biogas produced by the anaerobic digestion (AD) of agricultural products and waste. Five real plants in Italy were considered, using maize silage, slurry, and tomato waste as feedstocks and cogenerating electricity and heat; the latter is not utilized. The results suggest that maize silage and the operation of anaerobic digesters, including open storage of digestate, are the main contributors to the impacts of biogas electricity. The system that uses animal slurry is the best option, except for the marine and terrestrial ecotoxicity. The results also suggest that it is environmentally better to have smaller plants using slurry and waste rather than bigger installations, which require maize silage to operate efficiently. Electricity from biogas is environmentally more sustainable than grid electricity for seven out of 11 impacts considered. However, in comparison with natural gas, biogas electricity is worse for seven out of 11 impacts. It also has mostly higher impacts than other renewables, with a few exceptions, notably solar photovoltaics. Thus, for the AD systems and mesophilic operating conditions considered in this study, biogas electricity can help reduce greenhouse gas (GHG) emissions relative to a fossil-intensive electricity mix; however, some other impacts increase. If mitigation of climate change is the main aim, other renewables have a greater potential to reduce GHG emissions. If, in addition to this, other impacts are considered, then hydro, wind, and geothermal power are better alternatives to biogas electricity. However, utilization of heat would improve significantly its environmental sustainability, particularly global warming potential, summer smog, and the depletion of abiotic resources and the ozone layer. Further improvements can be achieved by banning open digestate storage to prevent methane emissions and regulating digestate spreading onto land to minimize emissions of ammonia and related environmental impacts. PMID:27014689

  15. Ultrastructural networks in growth cones and neurites of cultured central nervous system neurons.

    PubMed

    Tsui, H C; Ris, H; Klein, W L

    1983-09-01

    We have examined growth cones and neurites of cultured central nervous system neurons by high-voltage electron microscopy. Embryonic chicken retina cells were cultured on polylysine-treated and Formvar-coated gold grids for 2-6 days, fixed, and critical point dried. Growth cones and neurites were examined as unembedded whole mounts. Three-dimensional images from stereo-pair electron micrographs of these regions showed a high degree of ultrastructural articulation, with distinct, non-tapering filaments (5-9 nm in diameter) joining both cytoskeletal and membranous components. In the central regions of growth cones, interconnected structures included microtubules, large membranous sacs (up to 400 nm), and irregular vesicles (25-75 nm). A denser filamentous network was prevalent at the edges of growth cones. This network, which frequently adjoined the surface membrane, linked vesicles of uniform size (35-40 nm). Such vesicles often were seen densely packed in growth cone protrusions that were about the size of small synaptic boutons. Prevalent structural interconnections within growth cones conceivably could play a logistic role in specific membrane assembly, intracellular transport, endocytosis, and secretion. Because such processes are not unique to growth cones, the extensive linkages we have observed may have implications for cytoplasmic structure in general.

  16. Reducing Cascading Failure Risk by Increasing Infrastructure Network Interdependence.

    PubMed

    Korkali, Mert; Veneman, Jason G; Tivnan, Brian F; Bagrow, James P; Hines, Paul D H

    2017-03-20

    Increased interconnection between critical infrastructure networks, such as electric power and communications systems, has important implications for infrastructure reliability and security. Others have shown that increased coupling between networks that are vulnerable to internetwork cascading failures can increase vulnerability. However, the mechanisms of cascading in these models differ from those in real systems and such models disregard new functions enabled by coupling, such as intelligent control during a cascade. This paper compares the robustness of simple topological network models to models that more accurately reflect the dynamics of cascading in a particular case of coupled infrastructures. First, we compare a topological contagion model to a power grid model. Second, we compare a percolation model of internetwork cascading to three models of interdependent power-communication systems. In both comparisons, the more detailed models suggest substantially different conclusions, relative to the simpler topological models. In all but the most extreme case, our model of a "smart" power network coupled to a communication system suggests that increased power-communication coupling decreases vulnerability, in contrast to the percolation model. Together, these results suggest that robustness can be enhanced by interconnecting networks with complementary capabilities if modes of internetwork failure propagation are constrained.

  17. Reducing Cascading Failure Risk by Increasing Infrastructure Network Interdependence

    NASA Astrophysics Data System (ADS)

    Korkali, Mert; Veneman, Jason G.; Tivnan, Brian F.; Bagrow, James P.; Hines, Paul D. H.

    2017-03-01

    Increased interconnection between critical infrastructure networks, such as electric power and communications systems, has important implications for infrastructure reliability and security. Others have shown that increased coupling between networks that are vulnerable to internetwork cascading failures can increase vulnerability. However, the mechanisms of cascading in these models differ from those in real systems and such models disregard new functions enabled by coupling, such as intelligent control during a cascade. This paper compares the robustness of simple topological network models to models that more accurately reflect the dynamics of cascading in a particular case of coupled infrastructures. First, we compare a topological contagion model to a power grid model. Second, we compare a percolation model of internetwork cascading to three models of interdependent power-communication systems. In both comparisons, the more detailed models suggest substantially different conclusions, relative to the simpler topological models. In all but the most extreme case, our model of a “smart” power network coupled to a communication system suggests that increased power-communication coupling decreases vulnerability, in contrast to the percolation model. Together, these results suggest that robustness can be enhanced by interconnecting networks with complementary capabilities if modes of internetwork failure propagation are constrained.

  18. Reducing Cascading Failure Risk by Increasing Infrastructure Network Interdependence

    PubMed Central

    Korkali, Mert; Veneman, Jason G.; Tivnan, Brian F.; Bagrow, James P.; Hines, Paul D. H.

    2017-01-01

    Increased interconnection between critical infrastructure networks, such as electric power and communications systems, has important implications for infrastructure reliability and security. Others have shown that increased coupling between networks that are vulnerable to internetwork cascading failures can increase vulnerability. However, the mechanisms of cascading in these models differ from those in real systems and such models disregard new functions enabled by coupling, such as intelligent control during a cascade. This paper compares the robustness of simple topological network models to models that more accurately reflect the dynamics of cascading in a particular case of coupled infrastructures. First, we compare a topological contagion model to a power grid model. Second, we compare a percolation model of internetwork cascading to three models of interdependent power-communication systems. In both comparisons, the more detailed models suggest substantially different conclusions, relative to the simpler topological models. In all but the most extreme case, our model of a “smart” power network coupled to a communication system suggests that increased power-communication coupling decreases vulnerability, in contrast to the percolation model. Together, these results suggest that robustness can be enhanced by interconnecting networks with complementary capabilities if modes of internetwork failure propagation are constrained. PMID:28317835

  19. Tidal dynamics in the inter-connected Mediterranean, Marmara, Black and Azov seas

    NASA Astrophysics Data System (ADS)

    Ferrarin, Christian; Bellafiore, Debora; Sannino, Gianmaria; Bajo, Marco; Umgiesser, Georg

    2018-02-01

    In this study we investigated the tidal dynamics in a system of inter-connected land-locked basins formed by the Mediterranean, the Marmara, the Black and the Azov seas (MMBA system). Through the application of an unstructured grid hydrodynamic model to a unique domain representing the whole MMBA system, we simulated the tidal propagation and transformation inside each basin and in the straits connecting them. The model performance was evaluated against amplitudes and phases of major tidal constituents from 77 tidal gauges. The numerical results provided a description of the characteristics of the principal semi-diurnal, diurnal and long-term tides over the entire system. Even if the narrow straits act as a barrier for the tidal sea surface oscillations, our numerical results demonstrated that the along-strait interface slope produces water fluxes between the adjacent basins of the same order of magnitude of the climatological transports estimated by several authors. The long-term tidal modulations of the water exchange between the Mediterranean and the Black seas resulted to be non negligible and may partially explain the monthly and fortnightly flow variability observed in the Dardanelles and Bosphorus straits.

  20. Nuclear-renewable hybrid energy systems: Opportunities, interconnections, and needs

    DOE PAGES

    Ruth, Mark F.; Zinaman, Owen R.; Antkowiak, Mark; ...

    2013-12-20

    As the U.S. energy system evolves, the amount of electricity from variable-generation sources is likely to increase, which could result in additional times when electricity demand is lower than available production. Therefore, purveyors of technologies that traditionally have provided base-load electricity—such as nuclear power plants—can explore new operating procedures to deal with the associated market signals. Concurrently, innovations in nuclear reactor design coupled with sophisticated control systems now allow for more complex apportionment of heat within an integrated system such as one linked to energy-intensive chemical processes. Our paper explores one opportunity – nuclear-renewable hybrid energy systems. These are definedmore » as integrated facilities comprised of nuclear reactors, renewable energy generation, and industrial processes that can simultaneously address the need for grid flexibility, greenhouse gas emission reductions, and optimal use of investment capital. Six aspects of interaction (interconnections) between elements of nuclear-renewable hybrid energy systems are identified: Thermal, electrical, chemical, hydrogen, mechanical, and information. In addition, system-level aspects affect selection, design, and operation of this hybrid system type. Throughout the paper, gaps and research needs are identified to promote further exploration of the topic.« less

  1. Characterizing wind power resource reliability in southern Africa

    DOE PAGES

    Fant, Charles; Gunturu, Bhaskar; Schlosser, Adam

    2015-08-29

    Producing electricity from wind is attractive because it provides a clean, low-maintenance power supply. However, wind resource is intermittent on various timescales, thus occasionally introducing large and sudden changes in power supply. A better understanding of this variability can greatly benefit power grid planning. In the following study, wind resource is characterized using metrics that highlight these intermittency issues; therefore identifying areas of high and low wind power reliability in southern Africa and Kenya at different time-scales. After developing a wind speed profile, these metrics are applied at various heights in order to assess the added benefit of raising themore » wind turbine hub. Furthermore, since the interconnection of wind farms can aid in reducing the overall intermittency, the value of interconnecting near-by sites is mapped using two distinct methods. Of the countries in this region, the Republic of South Africa has shown the most interest in wind power investment. For this reason, we focus parts of the study on wind reliability in the country. The study finds that, although mean Wind Power Density is high in South Africa compared to its neighboring countries, wind power resource tends to be less reliable than in other parts of southern Africa—namely central Tanzania. We also find that South Africa’s potential varies over different timescales, with higher reliability in the summer than winter, and higher reliability during the day than at night. This study is concluded by introducing two methods and measures to characterize the value of interconnection, including the use of principal component analysis to identify areas with a common signal.« less

  2. Optimal Operation and Management for Smart Grid Subsumed High Penetration of Renewable Energy, Electric Vehicle, and Battery Energy Storage System

    NASA Astrophysics Data System (ADS)

    Shigenobu, Ryuto; Noorzad, Ahmad Samim; Muarapaz, Cirio; Yona, Atsushi; Senjyu, Tomonobu

    2016-04-01

    Distributed generators (DG) and renewable energy sources have been attracting special attention in distribution systems in all over the world. Renewable energies, such as photovoltaic (PV) and wind turbine generators are considered as green energy. However, a large amount of DG penetration causes voltage deviation beyond the statutory range and reverse power flow at interconnection points in the distribution system. If excessive voltage deviation occurs, consumer's electric devices might break and reverse power flow will also has a negative impact on the transmission system. Thus, mass interconnections of DGs has an adverse effect on both of the utility and the customer. Therefore, reactive power control method is proposed previous research by using inverters attached DGs for prevent voltage deviations. Moreover, battery energy storage system (BESS) is also proposed for resolve reverse power flow. In addition, it is possible to supply high quality power for managing DGs and BESSs. Therefore, this paper proposes a method to maintain voltage, active power, and reactive power flow at interconnection points by using cooperative controlled of PVs, house BESSs, EVs, large BESSs, and existing voltage control devices. This paper not only protect distribution system, but also attain distribution loss reduction and effectivity management of control devices. Therefore mentioned control objectives are formulated as an optimization problem that is solved by using the Particle Swarm Optimization (PSO) algorithm. Modified scheduling method is proposed in order to improve convergence probability of scheduling scheme. The effectiveness of the proposed method is verified by case studies results and by using numerical simulations in MATLAB®.

  3. Characterizing wind power resource reliability in southern Africa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fant, Charles; Gunturu, Bhaskar; Schlosser, Adam

    Producing electricity from wind is attractive because it provides a clean, low-maintenance power supply. However, wind resource is intermittent on various timescales, thus occasionally introducing large and sudden changes in power supply. A better understanding of this variability can greatly benefit power grid planning. In the following study, wind resource is characterized using metrics that highlight these intermittency issues; therefore identifying areas of high and low wind power reliability in southern Africa and Kenya at different time-scales. After developing a wind speed profile, these metrics are applied at various heights in order to assess the added benefit of raising themore » wind turbine hub. Furthermore, since the interconnection of wind farms can aid in reducing the overall intermittency, the value of interconnecting near-by sites is mapped using two distinct methods. Of the countries in this region, the Republic of South Africa has shown the most interest in wind power investment. For this reason, we focus parts of the study on wind reliability in the country. The study finds that, although mean Wind Power Density is high in South Africa compared to its neighboring countries, wind power resource tends to be less reliable than in other parts of southern Africa—namely central Tanzania. We also find that South Africa’s potential varies over different timescales, with higher reliability in the summer than winter, and higher reliability during the day than at night. This study is concluded by introducing two methods and measures to characterize the value of interconnection, including the use of principal component analysis to identify areas with a common signal.« less

  4. Microgrids and distributed generation systems: Control, operation, coordination and planning

    NASA Astrophysics Data System (ADS)

    Che, Liang

    Distributed Energy Resources (DERs) which include distributed generations (DGs), distributed energy storage systems, and adjustable loads are key components in microgrid operations. A microgrid is a small electric power system integrated with on-site DERs to serve all or some portion of the local load and connected to the utility grid through the point of common coupling (PCC). Microgrids can operate in both grid-connected mode and island mode. The structure and components of hierarchical control for a microgrid at Illinois Institute of Technology (IIT) are discussed and analyzed. Case studies would address the reliable and economic operation of IIT microgrid. The simulation results of IIT microgrid operation demonstrate that the hierarchical control and the coordination strategy of distributed energy resources (DERs) is an effective way of optimizing the economic operation and the reliability of microgrids. The benefits and challenges of DC microgrids are addressed with a DC model for the IIT microgrid. We presented the hierarchical control strategy including the primary, secondary, and tertiary controls for economic operation and the resilience of a DC microgrid. The simulation results verify that the proposed coordinated strategy is an effective way of ensuring the resilient response of DC microgrids to emergencies and optimizing their economic operation at steady state. The concept and prototype of a community microgrid that interconnecting multiple microgrids in a community are proposed. Two works are conducted. For the coordination, novel three-level hierarchical coordination strategy to coordinate the optimal power exchanges among neighboring microgrids is proposed. For the planning, a multi-microgrid interconnection planning framework using probabilistic minimal cut-set (MCS) based iterative methodology is proposed for enhancing the economic, resilience, and reliability signals in multi-microgrid operations. The implementation of high-reliability microgrids requires proper protection schemes that effectively function in both grid-connected and island modes. This chapter presents a communication-assisted four-level hierarchical protection strategy for high-reliability microgrids, and tests the proposed protection strategy based on a loop structured microgrid. The simulation results demonstrate the proposed strategy to be an effective and efficient option for microgrid protection. Additionally, microgrid topology ought to be optimally planned. To address the microgrid topology planning, a graph-partitioning and integer-programming integrated methodology is proposed. This work is not included in the dissertation. Interested readers can refer to our related publication.

  5. Maximum power point tracker for photovoltaic power plants

    NASA Astrophysics Data System (ADS)

    Arcidiacono, V.; Corsi, S.; Lambri, L.

    The paper describes two different closed-loop control criteria for the maximum power point tracking of the voltage-current characteristic of a photovoltaic generator. The two criteria are discussed and compared, inter alia, with regard to the setting-up problems that they pose. Although a detailed analysis is not embarked upon, the paper also provides some quantitative information on the energy advantages obtained by using electronic maximum power point tracking systems, as compared with the situation in which the point of operation of the photovoltaic generator is not controlled at all. Lastly, the paper presents two high-efficiency MPPT converters for experimental photovoltaic plants of the stand-alone and the grid-interconnected type.

  6. Formation of interconnections between carbon nanotubes and copper using tin solder

    NASA Astrophysics Data System (ADS)

    Mittal, Jagjiwan; Lina, Kwang-Lung

    2013-06-01

    A process is developed for connecting Multiwalled carbon nanotubes (MWCNTs) between Cu terminals using tin solder. Connections were made on the Cu grid after heating the Sn coated nanotubes above the melting point of tin. High resolution transmission electron microscopy (HRTEM) micrographs demonstrated the joining by CNTs either as straight between two sides or on the one side after bending in the middle. The connections were found to be stable in air and electron beam under TEM observations. Energy dispersive X-ray (EDX) study showed that the formation of intermetallic compound η-C6Sn5 was responsible for the formation and stability of joints between Cu and MWCNT.

  7. Transmission system protection screening for integration of offshore wind power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sajadi, A.; Strezoski, L.; Clark, K.

    This paper develops an efficient methodology for protection screening of large-scale transmission systems as part of the planning studies for the integration of offshore wind power plants into the power grid. This methodology avails to determine whether any upgrades are required to the protection system. The uncertainty is considered in form of variability of the power generation by offshore wind power plant. This paper uses the integration of a 1000 MW offshore wind power plant operating in Lake Erie into the FirstEnergy/PJM service territory as a case study. This study uses a realistic model of a 63,000-bus test system thatmore » represents the U.S. Eastern Interconnection.« less

  8. Transmission system protection screening for integration of offshore wind power plants

    DOE PAGES

    Sajadi, A.; Strezoski, L.; Clark, K.; ...

    2018-02-21

    This paper develops an efficient methodology for protection screening of large-scale transmission systems as part of the planning studies for the integration of offshore wind power plants into the power grid. This methodology avails to determine whether any upgrades are required to the protection system. The uncertainty is considered in form of variability of the power generation by offshore wind power plant. This paper uses the integration of a 1000 MW offshore wind power plant operating in Lake Erie into the FirstEnergy/PJM service territory as a case study. This study uses a realistic model of a 63,000-bus test system thatmore » represents the U.S. Eastern Interconnection.« less

  9. VisIVO: A Tool for the Virtual Observatory and Grid Environment

    NASA Astrophysics Data System (ADS)

    Becciani, U.; Comparato, M.; Costa, A.; Larsson, B.; Gheller, C.; Pasian, F.; Smareglia, R.

    2007-10-01

    We present the new features of VisIVO, software for the visualization and analysis of astrophysical data which can be retrieved from the Virtual Observatory framework and used for cosmological simulations running both on Windows and GNU/Linux platforms. VisIVO is VO standards compliant and supports the most important astronomical data formats such as FITS, HDF5 and VOTables. It is free software and can be downloaded from the web site http://visivo.cineca.it. VisIVO can interoperate with other astronomical VO compliant tools through PLASTIC (PLatform for AStronomical Tool InterConnection). This feature allows VisIVO to share data with many other astronomical packages to further analyze the loaded data.

  10. An Objective Measure of Interconnection Usage for High Levels of Wind Integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yasuda, Yoh; Gomez-Lazaro, Emilio; Holttinen, Hannele

    2014-11-13

    This paper analyzes selected interconnectors in Europe using several evaluation factors; capacity factor, congested time, and congestion ratio. In a quantitative and objective evaluation, the authors propose to use publically available data on maximum net transmission capacity (NTC) levels during a single year to study congestion rates, realizing that the capacity factor depends upon the chosen capacity of the selected interconnector. This value will be referred to as 'the annual maximum transmission capacity (AMTC)', which gives a transparent and objective evaluation of interconnector usage based on the published grid data. While the method is general, its initial application is motivatedmore » by transfer of renewable energy.« less

  11. The NASTRAN user's manual

    NASA Technical Reports Server (NTRS)

    1983-01-01

    All information directly associated with problem solving using the NASTRAN program is presented. This structural analysis program uses the finite element approach to structural modeling wherein the distributed finite properties of a structure are represented by a finite element of structural elements which are interconnected at a finite number of grid points, to which loads are applied and for which displacements are calculated. Procedures are described for defining and loading a structural model. Functional references for every card used for structural modeling, the NASTRAN data deck and control cards, problem solution sequences (rigid formats), using the plotting capability, writing a direct matrix abstraction program, and diagnostic messages are explained. A dictionary of mnemonics, acronyms, phrases, and other commonly used NASTRAN terms is included.

  12. Grid and Cloud for Developing Countries

    NASA Astrophysics Data System (ADS)

    Petitdidier, Monique

    2014-05-01

    The European Grid e-infrastructure has shown the capacity to connect geographically distributed heterogeneous compute resources in a secure way taking advantages of a robust and fast REN (Research and Education Network). In many countries like in Africa the first step has been to implement a REN and regional organizations like Ubuntunet, WACREN or ASREN to coordinate the development, improvement of the network and its interconnection. The Internet connections are still exploding in those countries. The second step has been to fill up compute needs of the scientists. Even if many of them have their own multi-core or not laptops for more and more applications it is not enough because they have to face intensive computing due to the large amount of data to be processed and/or complex codes. So far one solution has been to go abroad in Europe or in America to run large applications or not to participate to international communities. The Grid is very attractive to connect geographically-distributed heterogeneous resources, aggregate new ones and create new sites on the REN with a secure access. All the users have the same servicers even if they have no resources in their institute. With faster and more robust internet they will be able to take advantage of the European Grid. There are different initiatives to provide resources and training like UNESCO/HP Brain Gain initiative, EUMEDGrid, ..Nowadays Cloud becomes very attractive and they start to be developed in some countries. In this talk challenges for those countries to implement such e-infrastructures, to develop in parallel scientific and technical research and education in the new technologies will be presented illustrated by examples.

  13. Plug-in hybrid electric vehicles as a source of distributed frequency regulation

    NASA Astrophysics Data System (ADS)

    Mullen, Sara Kathryn

    The movement to transform the North American power grid into a smart grid may be accomplished by expanding integrated sensing, communications, and control technologies to include every part of the grid to the point of end-use. Plug-in hybrid electric vehicles (PHEV) provide an opportunity for small-scale distributed storage while they are plugged-in. With large numbers of PHEV and the communications and sensing associated with the smart grid, PHEV could provide ancillary services for the grid. Frequency regulation is an ideal service for PHEV because the duration of supply is short (order of minutes) and it is the highest priced ancillary service on the market offering greater financial returns for vehicle owners. Using Simulink a power system simulator modeling the IEEE 14 Bus System was combined with a model of PHEV charging and the controllers which facilitate vehicle-to-grid (V2G) regulation supply. The system includes a V2G controller for each vehicle which makes regulation supply decisions based on battery state, user preferences, and the recommended level of supply. A PHEV coordinator controller located higher in the system has access to reliable frequency measurements and can determine a suitable local automatic generation control (AGC) raise/lower signal for participating vehicles. A first step implementation of the V2G supply system where battery charging is modulated to provide regulation was developed. The system was simulated following a step change in loading using three scenarios: (1) Central generating units provide frequency regulation, (2) PHEV contribute to primary regulation analogous to generator speed governor control, and (3) PHEV contribute to primary and secondary regulation using an additional integral term in the PHEV control signal. In both cases the additional regulation provided by PHEV reduced the area control error (ACE) compared to the base case. Unique contributions resulting from this work include: (1) Studied PHEV energy systems and limitations on battery charging/discharging, (2) Reviewed standards for interconnection of distributed resources and electric vehicle charging [1], [2], (3) Explored strategies for distributed control of PHEV charging, (4) Developed controllers to accommodate PHEV regulation, and (5) Developed a simulator combining a power system model and PHEV/V2G components.

  14. Energy efficiency design strategies for buildings with grid-connected photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Yimprayoon, Chanikarn

    The building sector in the United States represents more than 40% of the nation's energy consumption. Energy efficiency design strategies and renewable energy are keys to reduce building energy demand. Grid-connected photovoltaic (PV) systems installed on buildings have been the fastest growing market in the PV industry. This growth poses challenges for buildings qualified to serve in this market sector. Electricity produced from solar energy is intermittent. Matching building electricity demand with PV output can increase PV system efficiency. Through experimental methods and case studies, computer simulations were used to investigate the priorities of energy efficiency design strategies that decreased electricity demand while producing load profiles matching with unique output profiles from PV. Three building types (residential, commercial, and industrial) of varying sizes and use patterns located in 16 climate zones were modeled according to ASHRAE 90.1 requirements. Buildings were analyzed individually and as a group. Complying with ASHRAE energy standards can reduce annual electricity consumption at least 13%. With energy efficiency design strategies, the reduction could reach up to 65%, making it possible for PV systems to meet reduced demands in residential and industrial buildings. The peak electricity demand reduction could be up to 71% with integration of strategies and PV. Reducing lighting power density was the best single strategy with high overall performances. Combined strategies such as zero energy building are also recommended. Electricity consumption reductions are the sum of the reductions from strategies and PV output. However, peak electricity reductions were less than their sum because they reduced peak at different times. The potential of grid stress reduction is significant. Investment incentives from government and utilities are necessary. The PV system sizes on net metering interconnection should not be limited by legislation existing in some states. Data from this study provides insight of impacts from applying energy efficiency design strategies in buildings with grid-connected PV systems. With the current transition from traditional electric grids to future smart grids, this information plus large database of various building conditions allow possible investigations needed by governments or utilities in large scale communities for implementing various measures and policies.

  15. Life cycle assessment of flexibly fed biogas processes for an improved demand-oriented biogas supply.

    PubMed

    Ertem, Funda Cansu; Martínez-Blanco, Julia; Finkbeiner, Matthias; Neubauer, Peter; Junne, Stefan

    2016-11-01

    This paper analyses concepts to facilitate a demand oriented biogas supply at an agricultural biogas plant of a capacity of 500kWhel, operated with the co-digestion of maize, grass, rye silage and chicken manure. In contrast to previous studies, environmental impacts of flexible and the traditional baseload operation are compared. Life Cycle Assessment (LCA) was performed to detect the environmental impacts of: (i) variety of feedstock co-digestion scenarios by substitution of maize and (ii) loading rate scenarios with a focus on flexible feedstock utilization. Demand-driven biogas production is critical for an overall balanced power supply to the electrical grid. It results in lower amounts of emissions; feedstock loading rate scenarios resulted in 48%, 20%, 11% lower global warming (GWP), acidification (AP) and eutrophication potentials, and a 16% higher cumulative energy demand. Substitution of maize with biogenic-waste regarding to feedstock substitution scenarios could create 10% lower GWP and AP. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. High-pressure anaerobic digestion up to 100 bar: influence of initial pressure on production kinetics and specific methane yields.

    PubMed

    Merkle, Wolfgang; Baer, Katharina; Haag, Nicola Leonard; Zielonka, Simon; Ortloff, Felix; Graf, Frank; Lemmer, Andreas

    2017-02-01

    To ensure an efficient use of biogas produced by anaerobic digestion, in some cases it would be advisable to upgrade the biogenic gases and inject them into the transnational gas grids. To investigate biogas production under high-pressure conditions up to 100 bar, new pressure batch methane reactors were developed for preliminary lab-scale experiments with a mixture of grass and maize silage hydrolysate. During this investigation, the effects of different initial pressures (1, 50 and 100 bar) on pressure increase, gas production and the specific methane yield using nitrogen as inert gas were determined. Based on the experimental findings increasing initial pressures alter neither significantly, further pressure increases nor pressure increase rates. All supplied organic acids were degraded and no measurable inhibition of the microorganisms was observed. The results show that methane reactors can be operated at operating pressures up to 100 bar without any negative effects on methane production.

  17. Formation of 2D and 3D superlattices of silver nanoparticles inside an emulsion droplet

    NASA Astrophysics Data System (ADS)

    Hussain Shaik, Aabid; Srinivasa Reddy, D.

    2017-03-01

    This work is aimed at the formation of 2D and 3D superlattices (SL) of silver nanoparticles inside an emulsion droplet. The monodisperse nanoparticles required for SL formation were prepared by a digestive ripening technique. Digestive ripening is a post processing technique where polydisperse colloids are refluxed with excess surface-active ligands to prepare a monodisperse colloid. More uniform silver nanoparticles (~3.6  ±  0.5 nm) were formed by slow evaporation of organosols on a carbon-coated copper grid. The best 3D silver superlattices have been formed using an oil in water (o/w) emulsion method by aging the monodisperse particles in a confined environment like o/w emulsion at different temperatures ranging from 5 °C-4 °C. The kinetics of the formation of superlattices inside an emulsion droplet were investigated by controlling various parameters. The kinetics were found to be dependent on the emulsion aging period (30 d) and storage temperature of the emulsion (-4 °C).

  18. Modeling and control of fuel cell based distributed generation systems

    NASA Astrophysics Data System (ADS)

    Jung, Jin Woo

    This dissertation presents circuit models and control algorithms of fuel cell based distributed generation systems (DGS) for two DGS topologies. In the first topology, each DGS unit utilizes a battery in parallel to the fuel cell in a standalone AC power plant and a grid-interconnection. In the second topology, a Z-source converter, which employs both the L and C passive components and shoot-through zero vectors instead of the conventional DC/DC boost power converter in order to step up the DC-link voltage, is adopted for a standalone AC power supply. In Topology 1, two applications are studied: a standalone power generation (Single DGS Unit and Two DGS Units) and a grid-interconnection. First, dynamic model of the fuel cell is given based on electrochemical process. Second, two full-bridge DC to DC converters are adopted and their controllers are designed: an unidirectional full-bridge DC to DC boost converter for the fuel cell and a bidirectional full-bridge DC to DC buck/boost converter for the battery. Third, for a three-phase DC to AC inverter without or with a Delta/Y transformer, a discrete-time state space circuit model is given and two discrete-time feedback controllers are designed: voltage controller in the outer loop and current controller in the inner loop. And last, for load sharing of two DGS units and power flow control of two DGS units or the DGS connected to the grid, real and reactive power controllers are proposed. Particularly, for the grid-connected DGS application, a synchronization issue between an islanding mode and a paralleling mode to the grid is investigated, and two case studies are performed. To demonstrate the proposed circuit models and control strategies, simulation test-beds using Matlab/Simulink are constructed for each configuration of the fuel cell based DGS with a three-phase AC 120 V (L-N)/60 Hz/50 kVA and various simulation results are presented. In Topology 2, this dissertation presents system modeling, modified space vector PWM implementation (MSVPWM) and design of a closed-loop controller of the Z-source converter which utilizes L and C components and shoot-through zero vectors for the standalone AC power generation. The fuel cell system is modeled by an electrical R-C circuit in order to include slow dynamics of the fuel cells and a voltage-current characteristic of a cell is also considered. A discrete-time state space model is derived to implement digital control and a space vector pulse-width modulation (SVPWM) technique is modified to realize the shoot-through zero vectors that boost the DC-link voltage. Also, three discrete-time feedback controllers are designed: a discrete-time optimal voltage controller, a discrete-time sliding mode current controller, and a discrete-time PI DC-link voltage controller. Furthermore, an asymptotic observer is used to reduce the number of sensors and enhance the reliability of the system. To demonstrate the analyzed circuit model and proposed control strategy, various simulation results using Matlab/Simulink are presented under both light/heavy loads and linear/nonlinear loads for a three-phase AC 208 V (L-L)/60 Hz/10 kVA.

  19. Contingency Analysis Post-Processing With Advanced Computing and Visualization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yousu; Glaesemann, Kurt; Fitzhenry, Erin

    Contingency analysis is a critical function widely used in energy management systems to assess the impact of power system component failures. Its outputs are important for power system operation for improved situational awareness, power system planning studies, and power market operations. With the increased complexity of power system modeling and simulation caused by increased energy production and demand, the penetration of renewable energy and fast deployment of smart grid devices, and the trend of operating grids closer to their capacity for better efficiency, more and more contingencies must be executed and analyzed quickly in order to ensure grid reliability andmore » accuracy for the power market. Currently, many researchers have proposed different techniques to accelerate the computational speed of contingency analysis, but not much work has been published on how to post-process the large amount of contingency outputs quickly. This paper proposes a parallel post-processing function that can analyze contingency analysis outputs faster and display them in a web-based visualization tool to help power engineers improve their work efficiency by fast information digestion. Case studies using an ESCA-60 bus system and a WECC planning system are presented to demonstrate the functionality of the parallel post-processing technique and the web-based visualization tool.« less

  20. Fluid Structure Interaction in a Turbine Blade

    NASA Technical Reports Server (NTRS)

    Gorla, Rama S. R.

    2004-01-01

    An unsteady, three dimensional Navier-Stokes solution in rotating frame formulation for turbomachinery applications is presented. Casting the governing equations in a rotating frame enabled the freezing of grid motion and resulted in substantial savings in computer time. The turbine blade was computationally simulated and probabilistically evaluated in view of several uncertainties in the aerodynamic, structural, material and thermal variables that govern the turbine blade. The interconnection between the computational fluid dynamics code and finite element structural analysis code was necessary to couple the thermal profiles with the structural design. The stresses and their variations were evaluated at critical points on the Turbine blade. Cumulative distribution functions and sensitivity factors were computed for stress responses due to aerodynamic, geometric, mechanical and thermal random variables.

  1. Integrated solar energy system optimization

    NASA Astrophysics Data System (ADS)

    Young, S. K.

    1982-11-01

    The computer program SYSOPT, intended as a tool for optimizing the subsystem sizing, performance, and economics of integrated wind and solar energy systems, is presented. The modular structure of the methodology additionally allows simulations when the solar subsystems are combined with conventional technologies, e.g., a utility grid. Hourly energy/mass flow balances are computed for interconnection points, yielding optimized sizing and time-dependent operation of various subsystems. The program requires meteorological data, such as insolation, diurnal and seasonal variations, and wind speed at the hub height of a wind turbine, all of which can be taken from simulations like the TRNSYS program. Examples are provided for optimization of a solar-powered (wind turbine and parabolic trough-Rankine generator) desalinization plant, and a design analysis for a solar powered greenhouse.

  2. The Design of Power System Stability Controller Based on the PCH Theory and Improved Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Liu, Zhijian; Yin, Donghui; Yan, Jun

    2017-05-01

    Low frequency oscillation is still frequently happened in the power system and it affects the safety and stability of power system directly. With the continuously expending of the interconnection scale of power grid, the risk of low frequency oscillation becomes more and more noticeable. Firstly, the basic theory of port-controlled Hamilton (PCH) and its application is analyzed. Secondly, based on the PCH theory and the dynamic model of system, from the viewpoint of energy, the nonlinear stability controller of power system is designed. By the improved genetic algorithm, the parameters of the PCH model are optimized. Finally, a simulation model with PCH is built to vary the effectiveness of the method proposed in this paper.

  3. Application of multigrid methods to the solution of liquid crystal equations on a SIMD computer

    NASA Technical Reports Server (NTRS)

    Farrell, Paul A.; Ruttan, Arden; Zeller, Reinhardt R.

    1993-01-01

    We will describe a finite difference code for computing the equilibrium configurations of the order-parameter tensor field for nematic liquid crystals in rectangular regions by minimization of the Landau-de Gennes Free Energy functional. The implementation of the free energy functional described here includes magnetic fields, quadratic gradient terms, and scalar bulk terms through the fourth order. Boundary conditions include the effects of strong surface anchoring. The target architectures for our implementation are SIMD machines, with interconnection networks which can be configured as 2 or 3 dimensional grids, such as the Wavetracer DTC. We also discuss the relative efficiency of a number of iterative methods for the solution of the linear systems arising from this discretization on such architectures.

  4. Genome-centric resolution of microbial diversity, metabolism and interactions in anaerobic digestion.

    PubMed

    Vanwonterghem, Inka; Jensen, Paul D; Rabaey, Korneel; Tyson, Gene W

    2016-09-01

    Our understanding of the complex interconnected processes performed by microbial communities is hindered by our inability to culture the vast majority of microorganisms. Metagenomics provides a way to bypass this cultivation bottleneck and recent advances in this field now allow us to recover a growing number of genomes representing previously uncultured populations from increasingly complex environments. In this study, a temporal genome-centric metagenomic analysis was performed of lab-scale anaerobic digesters that host complex microbial communities fulfilling a series of interlinked metabolic processes to enable the conversion of cellulose to methane. In total, 101 population genomes that were moderate to near-complete were recovered based primarily on differential coverage binning. These populations span 19 phyla, represent mostly novel species and expand the genomic coverage of several rare phyla. Classification into functional guilds based on their metabolic potential revealed metabolic networks with a high level of functional redundancy as well as niche specialization, and allowed us to identify potential roles such as hydrolytic specialists for several rare, uncultured populations. Genome-centric analyses of complex microbial communities across diverse environments provide the key to understanding the phylogenetic and metabolic diversity of these interactive communities. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. Performance degradation of grid-tied photovoltaic modules in a hot-dry climatic condition

    NASA Astrophysics Data System (ADS)

    Suleske, Adam; Singh, Jaspreet; Kuitche, Joseph; Tamizh-Mani, Govindasamy

    2011-09-01

    The crystalline silicon photovoltaic (PV) modules under open circuit conditions typically degrade at a rate of about 0.5% per year. However, it is suspected that the modules in an array level may degrade, depending on equipment/frame grounding and array grounding, at higher rates because of higher string voltage and increased module mismatch over the years of operation in the field. This paper compares and analyzes the degradation rates of grid-tied photovoltaic modules operating over 10-17 years in a desert climatic condition of Arizona. The nameplate open-circuit voltages of the arrays ranged between 400 and 450 V. Six different types/models of crystalline silicon modules with glass/glass and glass/polymer constructions were evaluated. About 1865 modules were inspected using an extended visual inspection checklist and infrared (IR) scanning. The visual inspection checklist included encapsulant discoloration, cell/interconnect cracks, delamination and corrosion. Based on the visual inspection and IR studies, a large fraction of these modules were identified as allegedly healthy and unhealthy modules and they were electrically isolated from the system for currentvoltage (I-V) measurements of individual modules. The annual degradation rate for each module type is determined based on the I-V measurements.

  6. Ultrastructural networks in growth cones and neurites of cultured central nervous system neurons.

    PubMed Central

    Tsui, H C; Ris, H; Klein, W L

    1983-01-01

    We have examined growth cones and neurites of cultured central nervous system neurons by high-voltage electron microscopy. Embryonic chicken retina cells were cultured on polylysine-treated and Formvar-coated gold grids for 2-6 days, fixed, and critical point dried. Growth cones and neurites were examined as unembedded whole mounts. Three-dimensional images from stereo-pair electron micrographs of these regions showed a high degree of ultrastructural articulation, with distinct, non-tapering filaments (5-9 nm in diameter) joining both cytoskeletal and membranous components. In the central regions of growth cones, interconnected structures included microtubules, large membranous sacs (up to 400 nm), and irregular vesicles (25-75 nm). A denser filamentous network was prevalent at the edges of growth cones. This network, which frequently adjoined the surface membrane, linked vesicles of uniform size (35-40 nm). Such vesicles often were seen densely packed in growth cone protrusions that were about the size of small synaptic boutons. Prevalent structural interconnections within growth cones conceivably could play a logistic role in specific membrane assembly, intracellular transport, endocytosis, and secretion. Because such processes are not unique to growth cones, the extensive linkages we have observed may have implications for cytoplasmic structure in general. Images PMID:6577454

  7. Reliability of High I/O High Density CCGA Interconnect Electronic Packages under Extreme Thermal Environment

    NASA Technical Reports Server (NTRS)

    Ramesham, Rajeshuni

    2012-01-01

    This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non-destructive inspection tools were used to assess the reliability of high density CCGA packages for deep space extreme temperature missions. Ceramic column grid array (CCGA) packages have been increasing in use based on their advantages such as high interconnect density, very good thermal and electrical performances, compatibility with standard surface-mount packaging assembly processes, and so on. CCGA packages are used in space applications such as in logic and microprocessor functions, telecommunications, payload electronics, and flight avionics. As these packages tend to have less solder joint strain relief than leaded packages or more strain relief over lead-less chip carrier packages, the reliability of CCGA packages is very important for short-term and long-term deep space missions. We have employed high density CCGA 1152 and 1272 daisy chained electronic packages in this preliminary reliability study. Each package is divided into several daisy-chained sections. The physical dimensions of CCGA1152 package is 35 mm x 35 mm with a 34 x 34 array of columns with a 1 mm pitch. The dimension of the CCGA1272 package is 37.5 mm x 37.5 mm with a 36 x 36 array with a 1 mm pitch. The columns are made up of 80% Pb/20%Sn material. CCGA interconnect electronic package printed wiring polyimide boards have been assembled and inspected using non-destructive x-ray imaging techniques. The assembled CCGA boards were subjected to extreme temperature thermal atmospheric cycling to assess their reliability for future deep space missions. The resistance of daisy-chained interconnect sections were monitored continuously during thermal cycling. This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non-destructive inspection tools were used to assess the reliability of high density CCGA packages for deep space extreme temperature missions. Keywords: Extreme temperatures, High density CCGA qualification, CCGA reliability, solder joint failures, optical inspection, and x-ray inspection.

  8. Life cycle environmental impacts of substituting food wastes for traditional anaerobic digestion feedstocks.

    PubMed

    Pérez-Camacho, María Natividad; Curry, Robin; Cromie, Thomas

    2018-03-01

    In this study, life cycle assessment has been used to evaluate life cycle environmental impacts of substituting traditional anaerobic digestion (AD) feedstocks with food wastes. The results have demonstrated the avoided GHG emissions from substituting traditional AD feedstocks with food waste (avoided GHG-eq emissions of 163.33 CO 2 -eq). Additionally, the analysis has included environmental benefits of avoided landfilling of food wastes and digestate use as a substitute for synthetic fertilisers. The analysis of the GHG mitigation benefits of resource management/circular economy policies, namely, the mandating of a ban on the landfilling of food wastes, has demonstrated the very substantial GHG emission reduction that can be achieved by these policy options - 2151.04 kg CO 2 eq per MWh relative to UK Grid. In addition to the reduction in GHG emission, the utilization of food waste for AD instead of landfilling can manage the leakage of nutrients to water resources and eliminate eutrophication impacts which occur, typically as the result of field application. The results emphasise the benefits of using life-cycle thinking to underpin policy development and the implications for this are discussed with a particular focus on the analysis of policy development across the climate, renewable energy, resource management and bioeconomy nexus and recommendations made for future research priorities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. A review on optimization production and upgrading biogas through CO2 removal using various techniques.

    PubMed

    Andriani, Dian; Wresta, Arini; Atmaja, Tinton Dwi; Saepudin, Aep

    2014-02-01

    Biogas from anaerobic digestion of organic materials is a renewable energy resource that consists mainly of CH4 and CO2. Trace components that are often present in biogas are water vapor, hydrogen sulfide, siloxanes, hydrocarbons, ammonia, oxygen, carbon monoxide, and nitrogen. Considering the biogas is a clean and renewable form of energy that could well substitute the conventional source of energy (fossil fuels), the optimization of this type of energy becomes substantial. Various optimization techniques in biogas production process had been developed, including pretreatment, biotechnological approaches, co-digestion as well as the use of serial digester. For some application, the certain purity degree of biogas is needed. The presence of CO2 and other trace components in biogas could affect engine performance adversely. Reducing CO2 content will significantly upgrade the quality of biogas and enhancing the calorific value. Upgrading is generally performed in order to meet the standards for use as vehicle fuel or for injection in the natural gas grid. Different methods for biogas upgrading are used. They differ in functioning, the necessary quality conditions of the incoming gas, and the efficiency. Biogas can be purified from CO2 using pressure swing adsorption, membrane separation, physical or chemical CO2 absorption. This paper reviews the various techniques, which could be used to optimize the biogas production as well as to upgrade the biogas quality.

  10. Using Conventional Hydropower to Help Alleviate Variable Resource Grid Integration Challenges in the Western U.S

    NASA Astrophysics Data System (ADS)

    Veselka, T. D.; Poch, L.

    2011-12-01

    Integrating high penetration levels of wind and solar energy resources into the power grid is a formidable challenge in virtually all interconnected systems due to the fact that supply and demand must remain in balance at all times. Since large scale electricity storage is currently not economically viable, generation must exactly match electricity demand plus energy losses in the system as time unfolds. Therefore, as generation from variable resources such as wind and solar fluctuate, production from generating resources that are easier to control and dispatch need to compensate for these fluctuations while at the same time respond to both instantaneous change in load and follow daily load profiles. The grid in the Western U.S. is not exempt to grid integration challenges associated with variable resources. However, one advantage that the power system in the Western U.S. has over many other regional power systems is that its footprint contains an abundance of hydropower resources. Hydropower plants, especially those that have reservoir water storage, can physically change electricity production levels very quickly both via a dispatcher and through automatic generation control. Since hydropower response time is typically much faster than other dispatchable resources such as steam or gas turbines, it is well suited to alleviate variable resource grid integration issues. However, despite an abundance of hydropower resources and the current low penetration of variable resources in the Western U.S., problems have already surfaced. This spring in the Pacific Northwest, wetter than normal hydropower conditions in combination with transmission constraints resulted in controversial wind resource shedding. This action was taken since water spilling would have increased dissolved oxygen levels downstream of dams thereby significantly degrading fish habitats. The extent to which hydropower resources will be able to contribute toward a stable and reliable Western grid is currently being studied. Typically these studies consider the inherent flexibility of hydropower technologies, but tend to fall short on details regarding grid operations, institutional arrangements, and hydropower environmental regulations. This presentation will focus on an analysis that Argonne National Laboratory is conducting in collaboration with the Western Area Power Administration (Western). The analysis evaluates the extent to which Western's hydropower resources may help with grid integration challenges via a proposed Energy Imbalance Market. This market encompasses most of the Western Electricity Coordinating Council footprint. It changes grid operations such that the real-time dispatch would be, in part, based on a 5-minute electricity market. The analysis includes many factors such as site-specific environmental considerations at each of its hydropower facilities, long-term firm purchase agreements, and hydropower operating objectives and goals. Results of the analysis indicate that site-specific details significantly affect the ability of hydropower plant to respond to grid needs in a future which will have a high penetration of variable resources.

  11. Linking pyrolysis and anaerobic digestion (Py-AD) for the conversion of lignocellulosic biomass.

    PubMed

    Fabbri, Daniele; Torri, Cristian

    2016-04-01

    Biogas is a mixture of CO2 and CH4 produced by a consortia of Bacteria and Archeae operating in anaerobic digestion (AD) plants. Biogas can be burnt as such in engines to produce electricity and heat or upgraded into biomethane. Biomethane is a drop-in fuel that can be injected in the natural gas grid or utilised as a transport fuel. While a wide array of biomass feedstock can be degraded into biogas, unconverted lignin, hemicellulose and cellulose end up in the co-product digestate leaving a large portion of chemical energy unutilised. Pyrolysis (Py) transforms in a single step and without chemical reagents the lignocellulose matrix into gaseous (syngas), liquid (bio-oil, pyrolysis oil) and solid (biochar) fractions for the development of renewable fuels and materials. The Py route applied downstream to AD is actively investigated in order to valorise the solid digestate presently destined only for soil applications. Coupling Py upstream to AD is an emerging field of research aimed at expanding the feedstock towards biologically recalcitrant substrates (wood, paper, sludge). The biomethanation potential was demonstrated for gaseous (H2/CO) and water soluble pyrolysis products, while the influence of insoluble pyrolytic lignin remains fairly unexplored. Biochar can promote the production of biomethane by acting as a support for microorganism colonisation, conductor for direct interspecies electron transfer, sorbent for hydrophobic inhibitors, and reactant for in situ biogas upgrading. Enhancing the advantages (carbon source) over the side effects (toxicity) of Py fractions represents the main challenge of Py-AD. This can be addressed by increasing the selectivity of the thermochemical process or improving the ecological flexibility of mixed bacterial consortia towards chemically complex environments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. SEE-GRID eInfrastructure for Regional eScience

    NASA Astrophysics Data System (ADS)

    Prnjat, Ognjen; Balaz, Antun; Vudragovic, Dusan; Liabotis, Ioannis; Sener, Cevat; Marovic, Branko; Kozlovszky, Miklos; Neagu, Gabriel

    In the past 6 years, a number of targeted initiatives, funded by the European Commission via its information society and RTD programmes and Greek infrastructure development actions, have articulated a successful regional development actions in South East Europe that can be used as a role model for other international developments. The SEEREN (South-East European Research and Education Networking initiative) project, through its two phases, established the SEE segment of the pan-European G ´EANT network and successfully connected the research and scientific communities in the region. Currently, the SEE-LIGHT project is working towards establishing a dark-fiber backbone that will interconnect most national Research and Education networks in the region. On the distributed computing and storage provisioning i.e. Grid plane, the SEE-GRID (South-East European GRID e-Infrastructure Development) project, similarly through its two phases, has established a strong human network in the area of scientific computing and has set up a powerful regional Grid infrastructure, and attracted a number of applications from different fields from countries throughout the South-East Europe. The current SEEGRID-SCI project, ending in April 2010, empowers the regional user communities from fields of meteorology, seismology and environmental protection in common use and sharing of the regional e-Infrastructure. Current technical initiatives in formulation are focusing on a set of coordinated actions in the area of HPC and application fields making use of HPC initiatives. Finally, the current SEERA-EI project brings together policy makers - programme managers from 10 countries in the region. The project aims to establish a communication platform between programme managers, pave the way towards common e-Infrastructure strategy and vision, and implement concrete actions for common funding of electronic infrastructures on the regional level. The regional vision on establishing an e-Infrastructure compatible with European developments, and empowering the scientists in the region in equal participation in the use of pan- European infrastructures, is materializing through the above initiatives. This model has a number of concrete operational and organizational guidelines which can be adapted to help e-Infrastructure developments in other world regions. In this paper we review the most important developments and contributions by the SEEGRID- SCI project.

  13. Variability of interconnected wind plants: correlation length and its dependence on variability time scale

    DOE PAGES

    St. Martin, Clara M.; Lundquist, Julie K.; Handschy, Mark A.

    2015-04-02

    The variability in wind-generated electricity complicates the integration of this electricity into the electrical grid. This challenge steepens as the percentage of renewably-generated electricity on the grid grows, but variability can be reduced by exploiting geographic diversity: correlations between wind farms decrease as the separation between wind farms increases. However, how far is far enough to reduce variability? Grid management requires balancing production on various timescales, and so consideration of correlations reflective of those timescales can guide the appropriate spatial scales of geographic diversity grid integration. To answer 'how far is far enough,' we investigate the universal behavior of geographic diversity by exploring wind-speed correlations using three extensive datasets spanning continents, durations and time resolution. First, one year of five-minute wind power generation data from 29 wind farms span 1270 km across Southeastern Australia (Australian Energy Market Operator). Second, 45 years of hourly 10 m wind-speeds from 117 stations span 5000 km across Canada (National Climate Data Archive of Environment Canada). Finally, four years of five-minute wind-speeds from 14 meteorological towers span 350 km of the Northwestern US (Bonneville Power Administration). After removing diurnal cycles and seasonal trends from all datasets, we investigate dependence of correlation length on time scale by digitally high-pass filtering the data on 0.25–2000 h timescales and calculating correlations between sites for each high-pass filter cut-off. Correlations fall to zero with increasing station separation distance, but the characteristic correlation length varies with the high-pass filter applied: the higher the cut-off frequency, the smaller the station separation required to achieve de-correlation. Remarkable similarities between these three datasets reveal behavior that, if universal, could be particularly useful for grid management. For high-pass filter time constants shorter than about τ = 38 h, all datasets exhibit a correlation lengthmore » $$\\xi $$ that falls at least as fast as $${{\\tau }^{-1}}$$ . Since the inter-site separation needed for statistical independence falls for shorter time scales, higher-rate fluctuations can be effectively smoothed by aggregating wind plants over areas smaller than otherwise estimated.« less

  14. Variability of interconnected wind plants: correlation length and its dependence on variability time scale

    NASA Astrophysics Data System (ADS)

    St. Martin, Clara M.; Lundquist, Julie K.; Handschy, Mark A.

    2015-04-01

    The variability in wind-generated electricity complicates the integration of this electricity into the electrical grid. This challenge steepens as the percentage of renewably-generated electricity on the grid grows, but variability can be reduced by exploiting geographic diversity: correlations between wind farms decrease as the separation between wind farms increases. But how far is far enough to reduce variability? Grid management requires balancing production on various timescales, and so consideration of correlations reflective of those timescales can guide the appropriate spatial scales of geographic diversity grid integration. To answer ‘how far is far enough,’ we investigate the universal behavior of geographic diversity by exploring wind-speed correlations using three extensive datasets spanning continents, durations and time resolution. First, one year of five-minute wind power generation data from 29 wind farms span 1270 km across Southeastern Australia (Australian Energy Market Operator). Second, 45 years of hourly 10 m wind-speeds from 117 stations span 5000 km across Canada (National Climate Data Archive of Environment Canada). Finally, four years of five-minute wind-speeds from 14 meteorological towers span 350 km of the Northwestern US (Bonneville Power Administration). After removing diurnal cycles and seasonal trends from all datasets, we investigate dependence of correlation length on time scale by digitally high-pass filtering the data on 0.25-2000 h timescales and calculating correlations between sites for each high-pass filter cut-off. Correlations fall to zero with increasing station separation distance, but the characteristic correlation length varies with the high-pass filter applied: the higher the cut-off frequency, the smaller the station separation required to achieve de-correlation. Remarkable similarities between these three datasets reveal behavior that, if universal, could be particularly useful for grid management. For high-pass filter time constants shorter than about τ = 38 h, all datasets exhibit a correlation length ξ that falls at least as fast as {{τ }-1} . Since the inter-site separation needed for statistical independence falls for shorter time scales, higher-rate fluctuations can be effectively smoothed by aggregating wind plants over areas smaller than otherwise estimated.

  15. Power system voltage stability and agent based distribution automation in smart grid

    NASA Astrophysics Data System (ADS)

    Nguyen, Cuong Phuc

    2011-12-01

    Our interconnected electric power system is presently facing many challenges that it was not originally designed and engineered to handle. The increased inter-area power transfers, aging infrastructure, and old technologies, have caused many problems including voltage instability, widespread blackouts, slow control response, among others. These problems have created an urgent need to transform the present electric power system to a highly stable, reliable, efficient, and self-healing electric power system of the future, which has been termed "smart grid". This dissertation begins with an investigation of voltage stability in bulk transmission networks. A new continuation power flow tool for studying the impacts of generator merit order based dispatch on inter-area transfer capability and static voltage stability is presented. The load demands are represented by lumped load models on the transmission system. While this representation is acceptable in traditional power system analysis, it may not be valid in the future smart grid where the distribution system will be integrated with intelligent and quick control capabilities to mitigate voltage problems before they propagate into the entire system. Therefore, before analyzing the operation of the whole smart grid, it is important to understand the distribution system first. The second part of this dissertation presents a new platform for studying and testing emerging technologies in advanced Distribution Automation (DA) within smart grids. Due to the key benefits over the traditional centralized approach, namely flexible deployment, scalability, and avoidance of single-point-of-failure, a new distributed approach is employed to design and develop all elements of the platform. A multi-agent system (MAS), which has the three key characteristics of autonomy, local view, and decentralization, is selected to implement the advanced DA functions. The intelligent agents utilize a communication network for cooperation and negotiation. Communication latency is modeled using a user-defined probability density function. Failure-tolerant communication strategies are developed for agent communications. Major elements of advanced DA are developed in a completely distributed way and successfully tested for several IEEE standard systems, including: Fault Detection, Location, Isolation, and Service Restoration (FLISR); Coordination of Distributed Energy Storage Systems (DES); Distributed Power Flow (DPF); Volt-VAR Control (VVC); and Loss Reduction (LR).

  16. Forecasting of Hourly Photovoltaic Energy in Canarian Electrical System

    NASA Astrophysics Data System (ADS)

    Henriquez, D.; Castaño, C.; Nebot, R.; Piernavieja, G.; Rodriguez, A.

    2010-09-01

    The Canarian Archipelago face similar problems as most insular region lacking of endogenous conventional energy resources and not connected to continental electrical grids. A consequence of the "insular fact" is the existence of isolated electrical systems that are very difficult to interconnect due to the considerable sea depths between the islands. Currently, the Canary Islands have six isolated electrical systems, only one utility generating most of the electricity (burning fuel), a recently arrived TSO (REE) and still a low implementation of Renewable Energy Resources (RES). The low level of RES deployment is a consequence of two main facts: the weakness of the stand-alone grids (from 12 MW in El Hierro up to only 1 GW in Gran Canaria) and the lack of space to install RES systems (more than 50% of the land protected due to environmental reasons). To increase the penetration of renewable energy generation, like solar or wind energy, is necessary to develop tools to manage them. The penetration of non manageable sources into weak grids like the Canarian ones causes a big problem to the grid operator. There are currently 104 MW of PV connected to the islands grids (Dec. 2009) and additional 150 MW under licensing. This power presents a serious challenge for the operation and stability of the electrical system. ITC, together with the local TSO (Red Eléctrica de España, REE) started in 2008 and R&D project to develop a PV energy prediction tool for the six Canarian Insular electrical systems. The objective is to supply reliable information for hourly forecast of the generation dispatch programme and to predict daily solar radiation patterns, in order to help program spinning reserves. ITC has approached the task of weather forecasting using different numerical model (MM5 and WRF) in combination with MSG (Meteosat Second Generation) images. From the online data recorded at several monitored PV plants and meteorological stations, PV nominal power and energy produced by every plant in Canary Islands are estimated using a series of theoretical and statistical energy models.

  17. NOTE: MCDE: a new Monte Carlo dose engine for IMRT

    NASA Astrophysics Data System (ADS)

    Reynaert, N.; DeSmedt, B.; Coghe, M.; Paelinck, L.; Van Duyse, B.; DeGersem, W.; DeWagter, C.; DeNeve, W.; Thierens, H.

    2004-07-01

    A new accurate Monte Carlo code for IMRT dose computations, MCDE (Monte Carlo dose engine), is introduced. MCDE is based on BEAMnrc/DOSXYZnrc and consequently the accurate EGSnrc electron transport. DOSXYZnrc is reprogrammed as a component module for BEAMnrc. In this way both codes are interconnected elegantly, while maintaining the BEAM structure and only minimal changes to BEAMnrc.mortran are necessary. The treatment head of the Elekta SLiplus linear accelerator is modelled in detail. CT grids consisting of up to 200 slices of 512 × 512 voxels can be introduced and up to 100 beams can be handled simultaneously. The beams and CT data are imported from the treatment planning system GRATIS via a DICOM interface. To enable the handling of up to 50 × 106 voxels the system was programmed in Fortran95 to enable dynamic memory management. All region-dependent arrays (dose, statistics, transport arrays) were redefined. A scoring grid was introduced and superimposed on the geometry grid, to be able to limit the number of scoring voxels. The whole system uses approximately 200 MB of RAM and runs on a PC cluster consisting of 38 1.0 GHz processors. A set of in-house made scripts handle the parallellization and the centralization of the Monte Carlo calculations on a server. As an illustration of MCDE, a clinical example is discussed and compared with collapsed cone convolution calculations. At present, the system is still rather slow and is intended to be a tool for reliable verification of IMRT treatment planning in the case of the presence of tissue inhomogeneities such as air cavities.

  18. Grid-wide subdaily hydrologic alteration under massive wind power penetration in Chile.

    PubMed

    Haas, J; Olivares, M A; Palma-Behnke, R

    2015-05-01

    Hydropeaking operations can severely degrade ecosystems. As variable renewable sources (e.g. wind power) are integrated into a power grid, fluctuations in the generation-demand balance are expected to increase. In this context, compensating technologies, notably hydropower reservoir plants, could operate in a stronger peaking scheme. This issue calls for an integrated modeling of the entire power system, including not only hydropower reservoirs, but also all other plants. A novel methodology to study the link between the short-term variability of renewable energies and the subdaily hydrologic alteration, due to hydropower reservoir operations is presented. Grid operations under selected wind power portfolios are simulated using a short-term hydro-thermal coordination tool. The resulting turbined flows by relevant reservoir plants are then compared in terms of the Richard-Baker flashiness index to both the baseline and the natural flow regime. Those are then analyzed in order to: i) detect if there is a significant change in the degree of subdaily hydrologic alteration (SDHA) due to a larger wind penetration, and ii) identify which rivers are most affected. The proposed scheme is applied to Chile's Central Interconnect System (SIC) for scenarios up to 15% of wind energy penetration. Results show a major degree of SDHA under the baseline as compared to the natural regime. As wind power increases, so does the SDHA in two important rivers. This suggests a need for further ecological studies in those rivers, along with an analysis of operational constraints to limit the SDHA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. A fast 1-D detector for imaging and time resolved SAXS experiments

    NASA Astrophysics Data System (ADS)

    Menk, R. H.; Arfelli, F.; Bernstorff, S.; Pontoni, D.; Sarvestani, A.; Besch, H. J.; Walenta, A. H.

    1999-02-01

    A one-dimensional test detector on the principle of a highly segmented ionization chamber with shielding grid (Frisch grid) was developed to evaluate if this kind of detector is suitable for advanced small-angle X-ray scattering (SAXS) experiments. At present it consists of 128 pixels which can be read out within 0.2 ms with a noise floor of 2000 e-ENC. A quantum efficiency of 80% for a photon energy of 8 keV was achieved. This leads to DQE values of 80% for photon fluxes above 1000 photons/pixel and integration time. The shielding grid is based on the principles of the recently invented MCAT structure and the GEM structure which also allows electron amplification in the gas. In the case of the MCAT structure, an energy resolution of 20% at 5.9 keV was observed. The gas amplification mode enables imaging with this integrating detector on a subphoton noise level with respect to the integration time. Preliminary experiments of saturation behavior show that this kind of detector digests a photon flux density up to 10 12 photons/mm 2 s and operates linearly. A spatial resolution of at least three line pairs/mm was obtained. All these features show that this type of detector is well suited for time-resolved SAXS experiments as well as high flux imaging applications.

  20. Automatic Data Distribution for CFD Applications on Structured Grids

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael; Yan, Jerry

    2000-01-01

    Data distribution is an important step in implementation of any parallel algorithm. The data distribution determines data traffic, utilization of the interconnection network and affects the overall code efficiency. In recent years a number data distribution methods have been developed and used in real programs for improving data traffic. We use some of the methods for translating data dependence and affinity relations into data distribution directives. We describe an automatic data alignment and placement tool (ADAFT) which implements these methods and show it results for some CFD codes (NPB and ARC3D). Algorithms for program analysis and derivation of data distribution implemented in ADAFT are efficient three pass algorithms. Most algorithms have linear complexity with the exception of some graph algorithms having complexity O(n(sup 4)) in the worst case.

  1. Integrating Renewable Energy into the Transmission and Distribution System of the U. S. Virgin Islands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burman, K.; Olis, D.; Gevorgian, V.

    2011-09-01

    This report focuses on the economic and technical feasibility of integrating renewable energy technologies into the U.S. Virgin Islands transmission and distribution systems. The report includes three main areas of analysis: 1) the economics of deploying utility-scale renewable energy technologies on St. Thomas/St. John and St. Croix; 2) potential sites for installing roof- and ground-mount PV systems and wind turbines and the impact renewable generation will have on the electrical subtransmission and distribution infrastructure, and 3) the feasibility of a 100- to 200-megawatt power interconnection of the Puerto Rico Electric Power Authority (PREPA), Virgin Islands Water and Power Authority (WAPA),more » and British Virgin Islands (BVI) grids via a submarine cable system.« less

  2. Experimental demonstration of software defined data center optical networks with Tbps end-to-end tunability

    NASA Astrophysics Data System (ADS)

    Zhao, Yongli; Zhang, Jie; Ji, Yuefeng; Li, Hui; Wang, Huitao; Ge, Chao

    2015-10-01

    The end-to-end tunability is important to provision elastic channel for the burst traffic of data center optical networks. Then, how to complete the end-to-end tunability based on elastic optical networks? Software defined networking (SDN) based end-to-end tunability solution is proposed for software defined data center optical networks, and the protocol extension and implementation procedure are designed accordingly. For the first time, the flexible grid all optical networks with Tbps end-to-end tunable transport and switch system have been online demonstrated for data center interconnection, which are controlled by OpenDayLight (ODL) based controller. The performance of the end-to-end tunable transport and switch system has been evaluated with wavelength number tuning, bit rate tuning, and transmit power tuning procedure.

  3. Representation of memories in the cortical-hippocampal system: Results from the application of population similarity analyses

    PubMed Central

    McKenzie, Sam; Keene, Chris; Farovik, Anja; Blandon, John; Place, Ryan; Komorowski, Robert; Eichenbaum, Howard

    2016-01-01

    Here we consider the value of neural population analysis as an approach to understanding how information is represented in the hippocampus and cortical areas and how these areas might interact as a brain system to support memory. We argue that models based on sparse coding of different individual features by single neurons in these areas (e.g., place cells, grid cells) are inadequate to capture the complexity of experience represented within this system. By contrast, population analyses of neurons with denser coding and mixed selectivity reveal new and important insights into the organization of memories. Furthermore, comparisons of the organization of information in interconnected areas suggest a model of hippocampal-cortical interactions that mediates the fundamental features of memory. PMID:26748022

  4. High resolution, low cost solar cell contact development

    NASA Technical Reports Server (NTRS)

    Mardesich, N.

    1979-01-01

    The experimental work demonstrating the feasibility of the MIDFILM process as a low cost means of applying solar cell collector metallization as reported. Cell efficiencies of above 14% (AMl, 28 C) were achieved with fritted silver metallization. Environmental tests suggest that the metallization is slightly humidity sensitive and degradation is observed on cells with high series resistance. The major yield loss in the fabrication of cells was due to discontinuous grid lines, resulting in high series resitance. Standard lead-tin solder plated interconnections do not appear compatible with the MIDFILM contact. Copper, nickel and molybdemun base powder were investigated as low cost metallization systems. The copper based powder degraded the cell response. The nickel and molybdenum base powders oxidized when sintered in the oxidizing atmosphere necessary to ash the photoresin.

  5. Automatic Data Distribution for CFD Applications on Structured Grids

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael; Yan, Jerry

    1999-01-01

    Data distribution is an important step in implementation of any parallel algorithm. The data distribution determines data traffic, utilization of the interconnection network and affects the overall code efficiency. In recent years a number data distribution methods have been developed and used in real programs for improving data traffic. We use some of the methods for translating data dependence and affinity relations into data distribution directives. We describe an automatic data alignment and placement tool (ADAPT) which implements these methods and show it results for some CFD codes (NPB and ARC3D). Algorithms for program analysis and derivation of data distribution implemented in ADAPT are efficient three pass algorithms. Most algorithms have linear complexity with the exception of some graph algorithms having complexity O(n(sup 4)) in the worst case.

  6. A dynamical classification of the cosmic web

    NASA Astrophysics Data System (ADS)

    Forero-Romero, J. E.; Hoffman, Y.; Gottlöber, S.; Klypin, A.; Yepes, G.

    2009-07-01

    In this paper, we propose a new dynamical classification of the cosmic web. Each point in space is classified in one of four possible web types: voids, sheets, filaments and knots. The classification is based on the evaluation of the deformation tensor (i.e. the Hessian of the gravitational potential) on a grid. The classification is based on counting the number of eigenvalues above a certain threshold, λth, at each grid point, where the case of zero, one, two or three such eigenvalues corresponds to void, sheet, filament or a knot grid point. The collection of neighbouring grid points, friends of friends, of the same web type constitutes voids, sheets, filaments and knots as extended web objects. A simple dynamical consideration of the emergence of the web suggests that the threshold should not be null, as in previous implementations of the algorithm. A detailed dynamical analysis would have found different threshold values for the collapse of sheets, filaments and knots. Short of such an analysis a phenomenological approach has been opted for, looking for a single threshold to be determined by analysing numerical simulations. Our cosmic web classification has been applied and tested against a suite of large (dark matter only) cosmological N-body simulations. In particular, the dependence of the volume and mass filling fractions on λth and on the resolution has been calculated for the four web types. We also study the percolation properties of voids and filaments. Our main findings are as follows. (i) Already at λth = 0.1 the resulting web classification reproduces the visual impression of the cosmic web. (ii) Between 0.2 <~ λth <~ 0.4, a system of percolated voids coexists with a net of interconnected filaments. This suggests a reasonable choice for λth as the parameter that defines the cosmic web. (iii) The dynamical nature of the suggested classification provides a robust framework for incorporating environmental information into galaxy formation models, and in particular to semi-analytical models.

  7. A Probabilistic Approach to Predict Thermal Fatigue Life for Ball Grid Array Solder Joints

    NASA Astrophysics Data System (ADS)

    Wei, Helin; Wang, Kuisheng

    2011-11-01

    Numerous studies of the reliability of solder joints have been performed. Most life prediction models are limited to a deterministic approach. However, manufacturing induces uncertainty in the geometry parameters of solder joints, and the environmental temperature varies widely due to end-user diversity, creating uncertainties in the reliability of solder joints. In this study, a methodology for accounting for variation in the lifetime prediction for lead-free solder joints of ball grid array packages (PBGA) is demonstrated. The key aspects of the solder joint parameters and the cyclic temperature range related to reliability are involved. Probabilistic solutions of the inelastic strain range and thermal fatigue life based on the Engelmaier model are developed to determine the probability of solder joint failure. The results indicate that the standard deviation increases significantly when more random variations are involved. Using the probabilistic method, the influence of each variable on the thermal fatigue life is quantified. This information can be used to optimize product design and process validation acceptance criteria. The probabilistic approach creates the opportunity to identify the root causes of failed samples from product fatigue tests and field returns. The method can be applied to better understand how variation affects parameters of interest in an electronic package design with area array interconnections.

  8. HydroGrid: Technologies for Global Water Quality and Sustainability

    NASA Astrophysics Data System (ADS)

    Yeghiazarian, L.

    2017-12-01

    Humans have been transforming planet Earth for millennia. We have recently come to understand that the collective impact of our decisions and actions has brought about severe water quality problems, which are likely to worsen in the light of rapid population growth to the projected nine billion by 2050. To sustainably manage our global water resources and possibly reverse these effects requires efforts in real-time monitoring of water contamination, analysis of monitoring data, and control of the state of water contamination. We develop technologies to address all three areas: monitoring, analysis and control. These efforts are carried out in the conceptual framework of the HydroGrid, an interconnected water system, which is (1) firmly rooted in the fundamental understanding of processes that govern microbial dynamics on multiple scales; and (2) used to develop watershed-specific management strategies. In the area of monitoring we are developing mobile autonomous sensors to detect surface water contamination, an effort supported by extensive materials research to provide multifunctional materials. We analyze environmental data within a stochastic modeling paradigm that bridges microscopic particle interactions to macroscopic manifestation of microbial population behavior in time and space in entire watersheds. These models are supported with laboratory and field experiments. Finally, we combine control and graph theories to derive controllability metrics of natural watersheds.

  9. Low-Dimensional Models for Physiological Systems: Nonlinear Coupling of Gas and Liquid Flows

    NASA Astrophysics Data System (ADS)

    Staples, A. E.; Oran, E. S.; Boris, J. P.; Kailasanath, K.

    2006-11-01

    Current computational models of biological organisms focus on the details of a specific component of the organism. For example, very detailed models of the human heart, an aorta, a vein, or part of the respiratory or digestive system, are considered either independently from the rest of the body, or as interacting simply with other systems and components in the body. In actual biological organisms, these components and systems are strongly coupled and interact in complex, nonlinear ways leading to complicated global behavior. Here we describe a low-order computational model of two physiological systems, based loosely on a circulatory and respiratory system. Each system is represented as a one-dimensional fluid system with an interconnected series of mass sources, pumps, valves, and other network components, as appropriate, representing different physical organs and system components. Preliminary results from a first version of this model system are presented.

  10. Experimental Evaluation of PV Inverter Anti-Islanding with Grid Support Functions in Multi-Inverter Island Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoke, Anderson; Nelson, Austin; Miller, Brian

    As PV and other DER systems are connected to the grid at increased penetration levels, island detection may become more challenging for two reasons: 1.) In islands containing many DERs, active inverter-based anti-islanding methods may have more difficulty detecting islands because each individual inverter's efforts to detect the island may be interfered with by the other inverters in the island. 2.) The increasing numbers of DERs are leading to new requirements that DERs ride through grid disturbances and even actively try to regulate grid voltage and frequency back towards nominal operating conditions. These new grid support requirements may directly ormore » indirectly interfere with anti-islanding controls. This report describes a series of tests designed to examine the impacts of both grid support functions and multi-inverter islands on anti-islanding effectiveness. Crucially, the multi-inverter anti-islanding tests described in this report examine scenarios with multiple inverters connected to multiple different points on the grid. While this so-called 'solar subdivision' scenario has been examined to some extent through simulation, this is the first known work to test it using hardware inverters. This was accomplished through the use of power hardware-in-the-loop (PHIL) simulation, which allows the hardware inverters to be connected to a real-time transient simulation of an electric power system that can be easily reconfigured to test various distribution circuit scenarios. The anti-islanding test design was a modified version of the unintentional islanding test in IEEE Standard 1547.1, which creates a balanced, resonant island with the intent of creating a highly challenging condition for island detection. Three common, commercially available single-phase PV inverters from three different manufacturers were tested. The first part of this work examined each inverter individually using a series of pure hardware resistive-inductive-capacitive (RLC) resonant load based anti-islanding tests to determine the worst-case configuration of grid support functions for each inverter. A grid support function is a function an inverter performs to help stabilize the grid or drive the grid back towards its nominal operating point. The four grid support functions examined here were voltage ride-through, frequency ride-through, Volt-VAr control, and frequency-Watt control. The worst-case grid support configuration was defined as the configuration that led to the maximum island duration (or run-on time, ROT) out of 50 tests of each inverter. For each of the three inverters, it was observed that maximum ROT increased when voltage and frequency ride-through were activated. No conclusive evidence was found that Volt-VAr control or frequency-Watt control increased maximum ROT. Over all single-inverter test cases, the maximum ROT was 711 ms, well below the two-second limit currently imposed by IEEE Standard 1547-2003. A subsequent series of 244 experiments tested all three inverters simultaneously in the same island. These tests again used a procedure based on the IEEE 1547.1 unintentional islanding test to create a difficult-to-detect island condition. For these tests, which used the two worst-case grid support function configurations from the single-inverter tests, the inverters were connected to a variety of island circuit topologies designed to represent the variety of multiple-inverter islands that may occur on real distribution circuits. The interconnecting circuits and the resonant island load itself were represented in the real-time PHIL model. PHIL techniques similar to those employed here have been previously used and validated for anti-islanding tests, and the PHIL resonant load model used in this test was successfully validated by comparing single-inverter PHIL tests to conventional tests using an RLC load bank.« less

  11. Power Smoothing and MPPT for Grid-connected Wind Power Generation with Doubly Fed Induction Generator

    NASA Astrophysics Data System (ADS)

    Kai, Takaaki; Tanaka, Yuji; Kaneda, Hirotoshi; Kobayashi, Daichi; Tanaka, Akio

    Recently, doubly fed induction generator (DFIG) and synchronous generator are mostly applied for wind power generation, and variable speed control and power factor control are executed for high efficiently for wind energy capture and high quality for power system voltage. In variable speed control, a wind speed or a generator speed is used for maximum power point tracking. However, performances of a wind generation power fluctuation due to wind speed variation have not yet investigated for those controls. The authors discuss power smoothing by those controls for the DFIG inter-connected to 6.6kV distribution line. The performances are verified using power system simulation software PSCAD/EMTDC for actual wind speed data and are examined from an approximate equation of wind generation power fluctuation for wind speed variation.

  12. Use of Synchronized Phasor Measurements for Model Validation in ERCOT

    NASA Astrophysics Data System (ADS)

    Nuthalapati, Sarma; Chen, Jian; Shrestha, Prakash; Huang, Shun-Hsien; Adams, John; Obadina, Diran; Mortensen, Tim; Blevins, Bill

    2013-05-01

    This paper discusses experiences in the use of synchronized phasor measurement technology in Electric Reliability Council of Texas (ERCOT) interconnection, USA. Implementation of synchronized phasor measurement technology in the region is a collaborative effort involving ERCOT, ONCOR, AEP, SHARYLAND, EPG, CCET, and UT-Arlington. As several phasor measurement units (PMU) have been installed in ERCOT grid in recent years, phasor data with the resolution of 30 samples per second is being used to monitor power system status and record system events. Post-event analyses using recorded phasor data have successfully verified ERCOT dynamic stability simulation studies. Real time monitoring software "RTDMS"® enables ERCOT to analyze small signal stability conditions by monitoring the phase angles and oscillations. The recorded phasor data enables ERCOT to validate the existing dynamic models of conventional and/or wind generator.

  13. Grid-connected distributed solar power systems

    NASA Astrophysics Data System (ADS)

    Moyle, R.; Chernoff, H.; Schweizer, T.

    This paper discusses some important, though often ignored, technical and economic issues of distributed solar power systems: protection of the utility system and nonsolar customers requires suitable interfaced equipment. Purchase criteria must mirror reality; most analyses use life-cycle costing with low discount rates - most buyers use short payback periods. Distributing, installing, and marketing small, distributed solar systems is more costly than most analyses estimate. Results show that certain local conditions and uncommon purchase considerations can combine to make small, distributed solar power attractive, but lower interconnect costs (per kW), lower marketing and product distribution costs, and more favorable purchase criteria make large, centralized solar energy more attractive. Specifically, the value of dispersed solar systems to investors and utilities can be higher than $2000/kw. However, typical residential owners place a value of well under $1000 on the installed system.

  14. Structures with three dimensional nanofences comprising single crystal segments

    DOEpatents

    Goyal, Amit; Wee, Sung-Hun

    2013-08-27

    An article includes a substrate having a surface and a nanofence supported by the surface. The nanofence includes a multiplicity of primary nanorods and branch nanorods, each of the primary nanorods being attached to said substrate, and each of the branch nanorods being attached to a primary nanorods and/or another branch nanorod. The primary and branch nanorods are arranged in a three-dimensional, interconnected, interpenetrating, grid-like network defining interstices within the nanofence. The article further includes an enveloping layer supported by the nanofence, disposed in the interstices, and forming a coating on the primary and branch nanorods. The enveloping layer has a different composition from that of the nanofence and includes a radial p-n single junction solar cell photovoltaic material and/or a radial p-n multiple junction solar cell photovoltaic material.

  15. High-Penetration Photovoltaics Standards and Codes Workshop, Denver, Colorado, May 20, 2010: Workshop Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coddington, M.; Kroposki, B.; Basso, T.

    Effectively interconnecting high-level penetration of photovoltaic (PV) systems requires careful technical attention to ensuring compatibility with electric power systems. Standards, codes, and implementation have been cited as major impediments to widespread use of PV within electric power systems. On May 20, 2010, in Denver, Colorado, the National Renewable Energy Laboratory, in conjunction with the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE), held a workshop to examine the key technical issues and barriers associated with high PV penetration levels with an emphasis on codes and standards. This workshop included building upon results of the Highmore » Penetration of Photovoltaic (PV) Systems into the Distribution Grid workshop held in Ontario California on February 24-25, 2009, and upon the stimulating presentations of the diverse stakeholder presentations.« less

  16. Preliminary Feasibility Study of a Hybrid Solar and Modular Pumped Storage Hydro System at Biosphere 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lansey, Kevin; Hortsman, Chris

    2016-10-01

    In this study, the preliminary feasibility of a hybrid solar and modular pumped storage system designed for high energy independence at Biosphere 2 is assessed. The system consists of an array of solar PV panels that generate electricity during the day to power both Biosphere 2 and a pump that sends water through a pipe to a tank at a high elevation. When solar power is not available, the water is released back down the pipe towards a tank at a lower elevation, where it passes through a hydraulic water turbine to generate hydroelectricity to power Biosphere 2. The hybridmore » system is sized to generate and store enough energy to enable Biosphere 2 to operate without a grid interconnection on an average day.« less

  17. Development and Evaluation of Control System for Microgrid Supplying Heat and Electricity

    NASA Astrophysics Data System (ADS)

    Kojima, Yasuhiro; Koshio, Masanobu; Nakamura, Shizuka

    Photovoltaic (PV) and Wind Turbine (WT) generation systems are expected to offer solutions to reduce green house gases and become more widely used in the future. However, the chief technical drawback of using these kinds of weather-dependent generators is the difficulty of forecasting their output, which can have negative impacts on commercial grids if a large number of them are introduced. Thus, this problem may hinder the wider application of PV and WT generation systems. The Regional Power Grid with Renewable Energy Resources Project was launched to seek a solution to this problem. The scope of the project is to develop, operate, and evaluate a Dispersed Renewable Energy Supply System with the ability to adapt the total energy output in response to changes in weather and demand. Such a system would reduce the impact that PV and WT generation systems have on commercial grids and allow the interconnection of more Dispersed Energy Resources (DER). In other words, the main objective of this project is to demonstrate an integrated energy management system, or a type of microgrid [1], as a new way of introducing DERs. The system has been in operation since October 2005 and will continue operation until March 2008. Through the project period, the data on power quality, system efficiency, operation cost, and environmental burden will be gathered and a cost-benefit analysis of the system will be undertaken. In this paper, firstly we introduce the concept of microgrid for reducing negative impact of natural energy, and secondly illustrate the structure of electric and thermal supply control system for Microgrid, especially for the Hachinohe demonstration project. The control system consists of four stages; weekly operation planning, economic dispatching control, tie-line control and local frequency control. And finally demonstration results and evaluation results are shown.

  18. Reliability of CGA/LGA/HDI Package Board/Assembly (Final Report)

    NASA Technical Reports Server (NTRS)

    Ghaffaroam. Reza

    2014-01-01

    Package manufacturers are now offering commercial-off-the-shelf column grid array (COTS CGA) packaging technologies in high-reliability versions. Understanding the process and quality assurance (QA) indicators for reliability are important for low-risk insertion of these advanced electronics packages. The previous reports, released in January of 2012 and January of 2013, presented package test data, assembly information, and reliability evaluation by thermal cycling for CGA packages with 1752, 1517, 1509, and 1272 inputs/outputs (I/Os) and 1-mm pitch. It presented the thermal cycling (-55C either 100C or 125C) test results for up to 200 cycles. This report presents up to 500 thermal cycles with quality assurance and failure analysis evaluation represented by optical photomicrographs, 2D real time X-ray images, dye-and-pry photomicrographs, and optical/scanning electron Microscopy (SEM) cross-sectional images. The report also presents assembly challenge using reflowing by either vapor phase or rework station of CGA and land grid array (LGA) versions of three high I/O packages both ceramic and plastic configuration. A new test vehicle was designed having high density interconnect (HDI) printed circuit board (PCB) with microvia-in-pad to accommodate both LGA packages as well as a large number of fine pitch ball grid arrays (BGAs). The LGAs either were assembled onto HDI PCB as an LGA or were solder paste print and reflow first to form solder dome on pads before assembly. Both plastic BGAs with 1156 I/O and ceramic LGAs were assembled. It also presented the X-ray inspection results as well as failures due to 200 thermal cycles. Lessons learned on assembly of ceramic LGAs are also presented.

  19. Transforming the U.S. Market with a New Application of Ternary-Type Pumped-Storage Hydropower Technology: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corbus, David A; Jacobson, Mark D; Tan, Jin

    As the deployment of wind and solar technologies increases at an unprecedented rate across the United States and in many world markets, the variability of power output from these technologies expands the need for increased power system flexibility. Energy storage can play an important role in the transition to a more flexible power system that can accommodate high penetrations of variable renewable technologies. This project focuses on how ternary pumped storage hydropower (T-PSH) coupled with dynamic transmission can help this transition by defining the system-wide benefits of deploying this technology in specific U.S. markets. T-PSH technology is the fastest respondingmore » pumped hydro technology equipment available today for grid services. T-PSH efficiencies are competitive with lithium-ion (Li-ion) batteries, and T-PSH can provide increased storage capacity with minimal degradation during a 50-year lifetime. This project evaluates T-PSH for grid services ranging from fast frequency response (FFR) for power system contingency events and enhanced power system stability to longer time periods for power system flexibility to accommodate ramping from wind and solar variability and energy arbitrage. In summary, this project: Compares power grid services and costs, including ancillary services and essential reliability services, for T-PSH and conventional pumped storage hydropower (PSH) - Evaluates the dynamic response of T-PSH and PSH technologies and their contribution to essential reliability services for grid stability by developing new power system model representations for T-PSH and performing simulations in the Western Interconnection - Evaluates production costs, operational impacts, and energy storage revenue streams for future power system scenarios with T-PSH focusing on time frames of 5 minutes and more - Assesses the electricity market-transforming capabilities of T-PSH technology coupled with transmission monitoring and dynamic control. This paper presents an overview of the methodology and initial, first-year preliminary findings of a 2-year in-depth study into how advanced PSH and dynamic transmission contribute to the transformation and modernization of the U.S. electric grid. This project is part of the HydroNEXT Initiative funded by the U.S. Department of Energy (DOE) that is focused on the development of innovative technologies to advance nonpowered dams and PSH. The project team consists of the National Renewable Energy Laboratory (project lead), Absaroka Energy, LLC (Montana-based PSH project developer), GE Renewable Energy (PSH pump/turbine equipment supplier), Grid Dynamics, and Auburn University (lead for NREL/Auburn dynamic modeling team).« less

  20. Environmental balance of the UK biogas sector: An evaluation by consequential life cycle assessment.

    PubMed

    Styles, David; Dominguez, Eduardo Mesa; Chadwick, Dave

    2016-08-01

    Anaerobic digestion (AD) is expanding rapidly in the UK. Previous life cycle assessment (LCA) studies have highlighted the sensitivity of environmental outcomes to feedstock type, fugitive emissions, biomethane use, energy conversion efficiency and digestate management. We combined statistics on current and planned AD deployment with operational data from a survey of biogas plant operators to evaluate the environmental balance of the UK biogas sector for the years 2014 and 2017. Consequential LCA was applied to account for all major environmental credits and burdens incurred, including: (i) substitution of composting, incineration, sewer disposal, field decomposition and animal feeding of wastes; (ii) indirect land use change (ILUC) incurred by the cultivation of crops used for biogas production and to compensate for bakery and brewery wastes diverted from animal feed. In 2014, the UK biogas sector reduced greenhouse gas (GHG) emissions by 551-755Gg CO2e excluding ILUC, or 238-755Gg CO2e including ILUC uncertainty. Fossil energy depletion was reduced by 8.9-10.8PJe, but eutrophication and acidification burdens were increased by 1.8-3.4Gg PO4e and 8.1-14.6Gg SO2e, respectively. Food waste and manure feedstocks dominate GHG abatement, largely through substitution of in-vessel composting and manure storage, whilst food waste and crop feedstocks dominate fossil energy credit, primarily through substitution of natural gas power generation. Biogas expansion is projected to increase environmental credits and loadings by a factor of 2.4 by 2017. If all AD bioelectricity replaced coal generation, or if 90% of biomethane replaced transport diesel or grid natural gas, GHG abatement would increase by 131%, 38% and 20%, respectively. Policies to encourage digestion of food waste and manures could maximize GHG abatement, avoiding the risk of carbon leakage associated with use of crops and wastes otherwise used to feed livestock. Covering digestate stores could largely mitigate net eutrophication and acidification burdens. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. The marginalization of "small is beautiful": Micro-hydroelectricity, common property, and the politics of rural electricity provision in Thailand

    NASA Astrophysics Data System (ADS)

    Greacen, Christopher Edmund

    This study analyzes forces that constrain sustainable deployment of cost-effective renewable energy in a developing country. By many economic and social measures, community micro-hydro is a superior electrification option for remote mountainous communities in Thailand. Yet despite a 20 year government program, only 59 projects were built and of these less than half remain operating. By comparison, the national grid has extended to over 69,000 villages. Based on microeconomic, engineering, social barriers, common pool resource, and political economic theories, this study investigates first, why so few micro-hydro projects were built, and second, why so few remain operating. Drawing on historical information, site visits, interviews, surveys, and data logging, this study shows that the marginal status of micro-hydro arises from multiple linked factors spanning from village experiences to geopolitical concerns. The dominance of the parastatal rural electrification utility, the PEA, and its singular focus on grid extension are crucial in explaining why so few projects were built. Buffered from financial consequences by domestic and international subsidies, grid expansion proceeded without consideration of alternatives. High costs borne by villagers for micro-hydro discouraged village choice. PEA remains catalytic in explaining why few systems remain operating: grid expansion plans favor villages with existing loads and most villages abandon micro-hydro generators when the grid arrives. Village experiences are fundamental: most projects suffer blackouts, brownouts, and equipment failures due to poor equipment and collective over-consumption. Over-consumption is linked to mismatch between tariffs and generator technical characteristics. Opportunities to resolve problems languished as limited state support focused on building projects and immediate repairs rather than fundamentals. Despite frustrations, many remain proud of "their power plant". Interconnecting and selling electricity to PEA offers a mutually beneficial opportunity for the Thai public and for villagers, but one thus far thwarted by bureaucratic challenges. Explanations of renewable energy dissemination in countries with strong state involvement in rural electrification should borrow approaches from political economy concerning the ways in which politics and constellations of other factors eclipse rational economic behavior. At the village level, common pool resource theory reveals causal linkages between appliance use, equipment limitations, power quality, and equipment failures.

  2. CO2 abatement costs of greenhouse gas (GHG) mitigation by different biogas conversion pathways.

    PubMed

    Rehl, T; Müller, J

    2013-01-15

    Biogas will be of increasing importance in the future as a factor in reducing greenhouse gas emissions cost-efficiently by the optimal use of available resources and technologies. The goal of this study was to identify the most ecological and economical use of a given resource (organic waste from residential, commercial and industry sectors) using one specific treatment technology (anaerobic digestion) but applying different energy conversion technologies. Average and marginal abatement costs were calculated based on Life Cycle Cost (LCC) and Life Cycle Assessment (LCA) methodologies. Eight new biogas systems producing electricity, heat, gas or automotive fuel were analyzed in order to identify the most cost-efficient way of reducing GHG emissions. A system using a combined heat and power station (which is connected to waste treatment and digestion operation facilities and located nearby potential residential, commercial or industrial heat users) was found to be the most cost-efficient biogas technology for reducing GHG emissions. Up to € 198 per tonne of CO(2) equivalents can be saved by replacing the "business as usual" systems based on fossil resources with ones based on biogas. Limited gas injection (desulfurized and dried biogas, without compression and upgrading) into the gas grid can also be a viable option with an abatement cost saving of € 72 per tonne of CO(2) equivalents, while a heating plant with a district heating grid or a system based on biogas results in higher abatement costs (€ 267 and € 270 per tonne CO(2) eq). Results from all systems are significantly influenced by whether average or marginal data are used as a reference. Beside that energy efficiency, the reference system that was replaced and the by-products as well as feedstock and investment costs were identified to be parameters with major impacts on abatement costs. The quantitative analysis was completed by a discussion of the role that abatement cost methodology can play in decision-making. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Interconnect assembly for an electronic assembly and assembly method therefor

    DOEpatents

    Gerbsch, Erich William

    2003-06-10

    An interconnect assembly and method for a semiconductor device, in which the interconnect assembly can be used in lieu of wirebond connections to form an electronic assembly. The interconnect assembly includes first and second interconnect members. The first interconnect member has a first surface with a first contact and a second surface with a second contact electrically connected to the first contact, while the second interconnect member has a flexible finger contacting the second contact of the first interconnect member. The first interconnect member is adapted to be aligned and registered with a semiconductor device having a contact on a first surface thereof, so that the first contact of the first interconnect member electrically contacts the contact of the semiconductor device. Consequently, the assembly method does not require any wirebonds, but instead merely entails aligning and registering the first interconnect member with the semiconductor device so that the contacts of the first interconnect member and the semiconductor device make electrically contact, and then contacting the second contact of the first interconnect member with the flexible finger of the second interconnect member.

  4. Optimizing the U.S. Electric System with a High Penetration of Renewables

    NASA Astrophysics Data System (ADS)

    Corcoran, B. A.; Jacobson, M. Z.

    2013-12-01

    As renewable energy generators are increasingly being installed throughout the U.S., there is growing interest in interconnecting diverse renewable generators (primarily wind and solar) across large geographic areas through an enhanced transmission system. This reduces variability in the aggregate power output, increases system reliability, and allows for the development of the best overall group of renewable technologies and sites to meet the load. Studies are therefore needed to determine the most efficient and economical plan to achieve large area interconnections in a future electric system with a high penetration of renewables. This research quantifies the effects of aggregating electric load together with diverse renewable generation throughout the ten Federal Energy Regulatory Commission (FERC) regions in the contiguous U.S. A deterministic linear program has been built in AMPL (A Mathematical Programming Language) to solve for the least-cost organizational structure and system (generators, transmission, and storage) for a highly renewable electric grid. The analysis will 1) examine a highly renewable 2006 electric system, including various sensitivity cases and additional system components such as additional load from electric vehicles, and 2) create a 'roadmap' from the existing 2006 system to a highly renewable system in 2030, accounting for projected price and demand changes and generator retirements based on age and environmental regulations. Ideally, results from this study will offer insight for a federal renewable energy policy (such as a renewable portfolio standard) and how to best organize U.S. regions for transmission planning.

  5. Baselining PMU Data to Find Patterns and Anomalies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amidan, Brett G.; Follum, James D.; Freeman, Kimberly A.

    This paper looks at the application of situational awareness methodologies with respect to power grid data. These methodologies establish baselines that look for typical patterns and atypical behavior in the data. The objectives of the baselining analyses are to provide: real-time analytics, the capability to look at historical trends and events, and reliable predictions of the near future state of the grid. Multivariate algorithms were created to establish normal baseline behavior and then score each moment in time according to its variance from the baseline. Detailed multivariate analytical techniques are described in this paper that produced ways to identify typicalmore » patterns and atypical behavior. In this case, atypical behavior is behavior that is unenvisioned. Visualizations were also produced to help explain the behavior that was identified mathematically. Examples are shown to help describe how to read and interpret the analyses and visualizations. Preliminary work has been performed on PMU data sets from BPA (Bonneville Power Administration) and EI (Eastern Interconnect). Actual results are not fully shown here because of confidentiality issues. Comparisons between atypical events found mathematically and actual events showed that many of the actual events are also atypical events; however there are many atypical events that do not correlate to any actual events. Additional work needs to be done to help classify the atypical events into actual events, so that the importance of the events can be better understood.« less

  6. Evaluating options for balancing the water-electricity nexus in California: Part 2--greenhouse gas and renewable energy utilization impacts.

    PubMed

    Tarroja, Brian; AghaKouchak, Amir; Sobhani, Reza; Feldman, David; Jiang, Sunny; Samuelsen, Scott

    2014-11-01

    A study was conducted to compare the technical potential and effectiveness of different water supply options for securing water availability in a large-scale, interconnected water supply system under historical and climate-change augmented inflow and demand conditions. Part 2 of the study focused on determining the greenhouse gas and renewable energy utilization impacts of different pathways to stabilize major surface reservoir levels. Using a detailed electric grid model and taking into account impacts on the operation of the water supply infrastructure, the greenhouse gas emissions and effect on overall grid renewable penetration level was calculated for each water supply option portfolio that successfully secured water availability from Part 1. The effects on the energy signature of water supply infrastructure were found to be just as important as that of the fundamental processes for each option. Under historical (baseline) conditions, many option portfolios were capable of securing surface reservoir levels with a net neutral or negative effect on emissions and a benefit for renewable energy utilization. Under climate change augmented conditions, however, careful selection of the water supply option portfolio was required to prevent imposing major emissions increases for the system. Overall, this analysis provided quantitative insight into the tradeoffs associated with choosing different pathways for securing California's water supply. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Why do electricity policy and competitive markets fail to use advanced PV systems to improve distribution power quality?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McHenry, Mark P.; Johnson, Jay; Hightower, Mike

    The increasing pressure for network operators to meet distribution network power quality standards with increasing peak loads, renewable energy targets, and advances in automated distributed power electronics and communications is forcing policy-makers to understand new means to distribute costs and benefits within electricity markets. Discussions surrounding how distributed generation (DG) exhibits active voltage regulation and power factor/reactive power control and other power quality capabilities are complicated by uncertainties of baseline local distribution network power quality and to whom and how costs and benefits of improved electricity infrastructure will be allocated. DG providing ancillary services that dynamically respond to the networkmore » characteristics could lead to major network improvements. With proper market structures renewable energy systems could greatly improve power quality on distribution systems with nearly no additional cost to the grid operators. Renewable DG does have variability challenges, though this issue can be overcome with energy storage, forecasting, and advanced inverter functionality. This paper presents real data from a large-scale grid-connected PV array with large-scale storage and explores effective mitigation measures for PV system variability. As a result, we discuss useful inverter technical knowledge for policy-makers to mitigate ongoing inflation of electricity network tariff components by new DG interconnection requirements or electricity markets which value power quality and control.« less

  8. Why do electricity policy and competitive markets fail to use advanced PV systems to improve distribution power quality?

    DOE PAGES

    McHenry, Mark P.; Johnson, Jay; Hightower, Mike

    2016-01-01

    The increasing pressure for network operators to meet distribution network power quality standards with increasing peak loads, renewable energy targets, and advances in automated distributed power electronics and communications is forcing policy-makers to understand new means to distribute costs and benefits within electricity markets. Discussions surrounding how distributed generation (DG) exhibits active voltage regulation and power factor/reactive power control and other power quality capabilities are complicated by uncertainties of baseline local distribution network power quality and to whom and how costs and benefits of improved electricity infrastructure will be allocated. DG providing ancillary services that dynamically respond to the networkmore » characteristics could lead to major network improvements. With proper market structures renewable energy systems could greatly improve power quality on distribution systems with nearly no additional cost to the grid operators. Renewable DG does have variability challenges, though this issue can be overcome with energy storage, forecasting, and advanced inverter functionality. This paper presents real data from a large-scale grid-connected PV array with large-scale storage and explores effective mitigation measures for PV system variability. As a result, we discuss useful inverter technical knowledge for policy-makers to mitigate ongoing inflation of electricity network tariff components by new DG interconnection requirements or electricity markets which value power quality and control.« less

  9. A framework to analyze the stochastic harmonics and resonance of wind energy grid interconnection

    DOE PAGES

    Cho, Youngho; Lee, Choongman; Hur, Kyeon; ...

    2016-08-31

    This study addresses a modeling and analysis methodology for investigating the stochastic harmonics and resonance concerns of wind power plants (WPPs). Wideband harmonics from modern wind turbines are observed to be stochastic, associated with real power production, and they may adversely interact with the grid impedance and cause unexpected harmonic resonance if not comprehensively addressed in the planning and commissioning of the WPPs. These issues should become more critical as wind penetration levels increase. We thus propose a planning study framework comprising the following functional steps: First, the best-fitted probability density functions (PDFs) of the harmonic components of interest inmore » the frequency domain are determined. In operations planning, maximum likelihood estimations followed by a chi-square test are used once field measurements or manufacturers' data are available. Second, harmonic currents from the WPP are represented by randomly-generating harmonic components based on their PDFs (frequency spectrum) and then synthesized for time-domain simulations via inverse Fourier transform. Finally, we conduct a comprehensive assessment by including the impacts of feeder configurations, harmonic filters, and the variability of parameters. We demonstrate the efficacy of the proposed study approach for a 100-MW offshore WPP consisting of 20 units of 5-MW full-converter turbines, a realistic benchmark system adapted from a WPP under development in Korea, and discuss lessons learned through this research.« less

  10. Cellular computational generalized neuron network for frequency situational intelligence in a multi-machine power system.

    PubMed

    Wei, Yawei; Venayagamoorthy, Ganesh Kumar

    2017-09-01

    To prevent large interconnected power system from a cascading failure, brownout or even blackout, grid operators require access to faster than real-time information to make appropriate just-in-time control decisions. However, the communication and computational system limitations of currently used supervisory control and data acquisition (SCADA) system can only deliver delayed information. However, the deployment of synchrophasor measurement devices makes it possible to capture and visualize, in near-real-time, grid operational data with extra granularity. In this paper, a cellular computational network (CCN) approach for frequency situational intelligence (FSI) in a power system is presented. The distributed and scalable computing unit of the CCN framework makes it particularly flexible for customization for a particular set of prediction requirements. Two soft-computing algorithms have been implemented in the CCN framework: a cellular generalized neuron network (CCGNN) and a cellular multi-layer perceptron network (CCMLPN), for purposes of providing multi-timescale frequency predictions, ranging from 16.67 ms to 2 s. These two developed CCGNN and CCMLPN systems were then implemented on two different scales of power systems, one of which installed a large photovoltaic plant. A real-time power system simulator at weather station within the Real-Time Power and Intelligent Systems (RTPIS) laboratory at Clemson, SC, was then used to derive typical FSI results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. CMS Centres Worldwide - a New Collaborative Infrastructure

    NASA Astrophysics Data System (ADS)

    Taylor, Lucas

    2011-12-01

    The CMS Experiment at the LHC has established a network of more than fifty inter-connected "CMS Centres" at CERN and in institutes in the Americas, Asia, Australasia, and Europe. These facilities are used by people doing CMS detector and computing grid operations, remote shifts, data quality monitoring and analysis, as well as education and outreach. We present the computing, software, and collaborative tools and videoconferencing systems. These include permanently running "telepresence" video links (hardware-based H.323, EVO and Vidyo), Webcasts, and generic Web tools such as CMS-TV for broadcasting live monitoring and outreach information. Being Web-based and experiment-independent, these systems could easily be extended to other organizations. We describe the experiences of using CMS Centres Worldwide in the CMS data-taking operations as well as for major media events with several hundred TV channels, radio stations, and many more press journalists simultaneously around the world.

  12. Medicine Bow wind project

    NASA Astrophysics Data System (ADS)

    Nelson, L. L.

    1982-05-01

    The Bureau of Reclamation (Bureau) conducted studies for a wind turbine field of 100 MW at a site near Medicine Bow, WY, one of the windiest areas in the United States. The wind turbine system would be electrically interconnected to the existing Federal power grid through the substation at Medicine Bow. Power output from the wind turbines would thus be integrated with the existing hydroelectric system, which serves as the energy storage system. An analysis based on 'willingness to pay' was developed. Based on information from the Department of Energy's Western Area Power Administration (Western), it was assumed that 90 mills per kWh would represent the 'willingness to pay' for onpeak power, and 45 mills per kWh for offpeak power. The report concludes that a 100-MW wind field at Medicine Bow has economic and financial feasibility. The Bureau's construction of the Medicine Bow wind field could demonstrate to the industry the feasibility of wind energy.

  13. Accelerated Thermal Cycling and Failure Mechanisms for BGA and CSP Assemblies

    NASA Technical Reports Server (NTRS)

    Ghaffarian, Reza

    2000-01-01

    This paper reviews the accelerated thermal cycling test methods that are currently used by industry to characterize the interconnect reliability of commercial-off-the-shelf (COTS) ball grid array (BGA) and chip scale package (CSP) assemblies. Acceleration induced failure mechanisms varied from conventional surface mount (SM) failures for CSPs. Examples of unrealistic life projections for other CSPs are also presented. The cumulative cycles to failure for ceramic BGA assemblies performed under different conditions, including plots of their two Weibull parameters, are presented. The results are for cycles in the range of -30 C to 100 C, -55 C to 100 C, and -55 C to 125 C. Failure mechanisms as well as cycles to failure for thermal shock and thermal cycling conditions in the range of -55 C to 125 C were compared. Projection to other temperature cycling ranges using a modified Coffin-Manson relationship is also presented.

  14. Thin-film filament-based solar cells and modules

    NASA Astrophysics Data System (ADS)

    Tuttle, J. R.; Cole, E. D.; Berens, T. A.; Alleman, J.; Keane, J.

    1997-04-01

    This concept paper describes a patented, novel photovoltaic (PV) technology that is capable of achieving near-term commercialization and profitability based upon design features that maximize product performance while minimizing initial and future manufacturing costs. DayStar Technologies plans to exploit these features and introduce a product to the market based upon these differential positions. The technology combines the demonstrated performance and reliability of existing thin-film PV product with a cell and module geometry that cuts material usage by a factor of 5, and enhances performance and manufacturability relative to standard flat-plate designs. The target product introduction price is 1.50/Watt-peak (Wp). This is approximately one-half the cost of the presently available PV product. Additional features include: increased efficiency through low-level concentration, no scribe or grid loss, simple series interconnect, high voltage, light weight, high-throughput manufacturing, large area immediate demonstration, flexibility, modularity.

  15. Possible Improvements of the ACE Diversity Interchange Methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Etingov, Pavel V.; Zhou, Ning; Makarov, Yuri V.

    2010-07-26

    North American Electric Reliability Corporation (NERC) grid is operated by about 131 balancing authorities (BA). Within each BA, operators are responsible for managing the unbalance (caused by both load and wind). As wind penetration levels increase, the challenges of managing power variation increases. Working independently, balancing area with limited regulating/load following generation and high wind power penetration faces significant challenges. The benefits of BA cooperation and consolidation increase when there is a significant wind energy penetration. To explore the benefits of BA cooperation, this paper investigates ACE sharing approach. A technology called ACE diversity interchange (ADI) is already in usemore » in the western interconnection. A new methodology extending ADI is proposed in the paper. The proposed advanced ADI overcoming some limitations existing in conventional ADI. Simulations using real statistical data of CAISO and BPA have shown high performance of the proposed advanced ADI methodology.« less

  16. Budgeting for Solar PV Plant Operations & Maintenance: Practices and Pricing.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enbar, Nadav; Weng, Dean; Klise, Geoffrey Taylor

    2016-01-01

    With rising grid interconnections of solar photovoltaic (PV) systems, greater attention is being trained on lifecycle performance, reliability, and project economics. Expected to meet production thresholds over a 20-30 year timeframe, PV plants require a steady diet of operations and maintenance (O&M) oversight to meet contractual terms. However, industry best practices are only just beginning to emerge, and O&M budgets—given the arrangement of the solar project value chain—appear to vary widely. Based on insights from in-depth interviews and survey research, this paper presents an overview of the utility-scale PV O&M budgeting process along with guiding rationales, before detailing perspectives onmore » current plant upkeep activities and price points largely in the U.S. It concludes by pondering potential opportunities for improving upon existing O&M budgeting approaches in ways that can benefit the industry at-large.« less

  17. Budgeting for Solar PV Plant Operations & Maintenance: Practices and Pricing.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enbar, Nadav; Weng, Dean; Klise, Geoffrey Taylor

    2015-12-01

    With rising grid interconnections of solar photovoltaic (PV) systems, greater attention is being trained on lifecycle performance, reliability, and project economics. Expected to meet production thresholds over a 20-30 year timeframe, PV plants require a steady diet of operations and maintenance (O&M) oversight to meet contractual terms. However, industry best practices are only just beginning to emerge, and O&M budgets—given the arrangement of the solar project value chain—appear to vary widely. Based on insights from in-depth interviews and survey research, this paper presents an overview of the utility-scale PV O&M budgeting process along with guiding rationales, before detailing perspectives onmore » current plant upkeep activities and price points largely in the U.S. It concludes by pondering potential opportunities for improving upon existing O&M budgeting approaches in ways that can benefi t the industry at-large.« less

  18. Comparison of Solar and Wind Power Output and Correlation with Real-Time Pricing

    NASA Astrophysics Data System (ADS)

    Hoepfl, Kathryn E.; Compaan, Alvin D.; Solocha, Andrew

    2011-03-01

    This study presents a method that can be used to determine the least volatile power output of a wind and solar hybrid energy system in which wind and solar systems have the same peak power. Hourly data for wind and PV systems in Northwest Ohio are used to show that a combination of both types of sustainable energy sources produces a more stable power output and would be more valuable to the grid than either individually. This method could be used to determine the ideal ratio in any part of the country and should help convince electric utility companies to bring more renewable generation online. This study also looks at real-time market pricing and how each system (solar, wind, and hybrid) correlates with 2009 hourly pricing from the Midwest Interconnect. KEH acknowledges support from the NSF-REU grant PHY-1004649 to the Univ. of Toledo and Garland Energy Systems/Ohio Department of Development.

  19. Modeling Physarum space exploration using memristors

    NASA Astrophysics Data System (ADS)

    Ntinas, V.; Vourkas, I.; Sirakoulis, G. Ch; Adamatzky, A. I.

    2017-05-01

    Slime mold Physarum polycephalum optimizes its foraging behaviour by minimizing the distances between the sources of nutrients it spans. When two sources of nutrients are present, the slime mold connects the sources, with its protoplasmic tubes, along the shortest path. We present a two-dimensional mesh grid memristor based model as an approach to emulate Physarum’s foraging strategy, which includes space exploration and reinforcement of the optimally formed interconnection network in the presence of multiple aliment sources. The proposed algorithmic approach utilizes memristors and LC contours and is tested in two of the most popular computational challenges for Physarum, namely maze and transportation networks. Furthermore, the presented model is enriched with the notion of noise presence, which positively contributes to a collective behavior and enables us to move from deterministic to robust results. Consequently, the corresponding simulation results manage to reproduce, in a much better qualitative way, the expected transportation networks.

  20. A Parallel Multigrid Solver for Viscous Flows on Anisotropic Structured Grids

    NASA Technical Reports Server (NTRS)

    Prieto, Manuel; Montero, Ruben S.; Llorente, Ignacio M.; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    This paper presents an efficient parallel multigrid solver for speeding up the computation of a 3-D model that treats the flow of a viscous fluid over a flat plate. The main interest of this simulation lies in exhibiting some basic difficulties that prevent optimal multigrid efficiencies from being achieved. As the computing platform, we have used Coral, a Beowulf-class system based on Intel Pentium processors and equipped with GigaNet cLAN and switched Fast Ethernet networks. Our study not only examines the scalability of the solver but also includes a performance evaluation of Coral where the investigated solver has been used to compare several of its design choices, namely, the interconnection network (GigaNet versus switched Fast-Ethernet) and the node configuration (dual nodes versus single nodes). As a reference, the performance results have been compared with those obtained with the NAS-MG benchmark.

  1. Direct heuristic dynamic programming for damping oscillations in a large power system.

    PubMed

    Lu, Chao; Si, Jennie; Xie, Xiaorong

    2008-08-01

    This paper applies a neural-network-based approximate dynamic programming method, namely, the direct heuristic dynamic programming (direct HDP), to a large power system stability control problem. The direct HDP is a learning- and approximation-based approach to addressing nonlinear coordinated control under uncertainty. One of the major design parameters, the controller learning objective function, is formulated to directly account for network-wide low-frequency oscillation with the presence of nonlinearity, uncertainty, and coupling effect among system components. Results include a novel learning control structure based on the direct HDP with applications to two power system problems. The first case involves static var compensator supplementary damping control, which is used to provide a comprehensive evaluation of the learning control performance. The second case aims at addressing a difficult complex system challenge by providing a new solution to a large interconnected power network oscillation damping control problem that frequently occurs in the China Southern Power Grid.

  2. Economic impact of V2G technology in a smart microgrid

    NASA Astrophysics Data System (ADS)

    Anastasiadis, Anestis G.; Polyzakis, Apostolos; Vokas, Georgios A.

    2018-05-01

    With serious concerns on global warming and energy crisis, there are plenty of motivations for developing and commercializing plug-in Electric Vehicles (EVs). It is believed that substitution of EVs for conventional fuel vehicles can help reduce the greenhouse gases emission, increase the energy efficiency, enhance the integration of renewable energy, and so forth. These advantages originate from the double role of the electrical vehicle's battery. Thus, it may constitute firstly a controllable load that we are able to optimally control at convenient time frames and secondly, it may store and inject energy, acting as a storage device. Nowadays, a number of EVs use power grids around the world to charge and discharge their batteries. Smart Microgrids (SMs) seem to be the best solution for the management of modern Low Voltage (LV) grids with Distributed Energy Resources (DER) and EVs. Among these technologies, EVs pose both a risk by increasing the peak load as well as an opportunity for the existing energy management systems by charging and discharging electricity with the help of Vehicle-to-Grid (V2G) technology. The key to the implementation of V2G is how to effectively integrate information into energy conversion, transmission and distribution. V2G should be carried out within the framework of SM, so that the status information of power grid can be perceived. In this paper, a Low Voltage (LV) SM derived from an interconnection bus is considered which is characterized by the presence of DERs units and EVs. Firstly, an overview of plug in EV technologies is examined and then the main purpose of the paper is to investigate the effects of V2G charging and discharging strategies in a SM. With EVs and absence of DERs is considered as the base case. For each scenario, two different charging technologies are examined (Dump Charging and V2G) in terms of operational cost. All data are taken from Hellenic Distribution/Transmission System Operators and Hellenic Operator of Electricity Market. Matlab software is used for all cases of studies.

  3. Interconnections Seam Study | Energy Analysis | NREL

    Science.gov Websites

    Interconnections Seam Study Interconnections Seam Study Through the Interconnections Seam Study between the interconnections. This study will quantify the value of strengthening the connections (or Peer Review - Interconnections Seam Study to learn more. Our Approach To quantify the value of

  4. Performance of a Dynamically Controlled Inverter in a Photovoltaic System Interconnected with a Secondary Network Distribution System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coddington, M. H.; Kroposki, B. D.; Basso, T.

    In 2008, a 300 kW{sub peak} photovoltaic (PV) system was installed on the rooftop of the Colorado Convention Center (CCC). The installation was unique for the electric utility, Xcel Energy, as it had not previously permitted a PV system to be interconnected on a building served by the local secondary network distribution system (network). The PV system was installed with several provisions; one to prevent reverse power flow, another called a dynamically controlled inverter (DCI), that curtails the output of the PV inverters to maintain an amount of load supplied by Xcel Energy at the CCC. The DCI system utilizesmore » current transformers (CTs) to sense power flow to insure that a minimum threshold is maintained from Xcel Energy through the network transformers. The inverters are set to track the load on each of the three phases and curtail power from the PV system when the generated PV system current reaches 95% of the current on any phase. This is achieved by the DCI, which gathers inputs from current transformers measuring the current from the PV array, Xcel, and the spot network load. Preventing reverse power flow is a critical technical requirement for the spot network which serve this part of the CCC. The PV system was designed with the expectation that the DCI system would not curtail the PV system, as the expected minimum load consumption was historically higher than the designed PV system size. However, the DCI system has operated many days during the course of a year, and the performance has been excellent. The DCI system at the CCC was installed as a secondary measure to insure that a minimum level of power flows to the CCC from the Xcel Energy network. While this DCI system was intended for localized control, the system could also reduce output percent if an external smart grid control signal was employed. This paper specifically focuses on the performance of the innovative design at this installation; however, the DCI system could also be used for new s- art grid-enabled distribution systems where renewables power contributions at certain conditions or times may need to be curtailed.« less

  5. Integrated multidisciplinary design optimization using discrete sensitivity analysis for geometrically complex aeroelastic configurations

    NASA Astrophysics Data System (ADS)

    Newman, James Charles, III

    1997-10-01

    The first two steps in the development of an integrated multidisciplinary design optimization procedure capable of analyzing the nonlinear fluid flow about geometrically complex aeroelastic configurations have been accomplished in the present work. For the first step, a three-dimensional unstructured grid approach to aerodynamic shape sensitivity analysis and design optimization has been developed. The advantage of unstructured grids, when compared with a structured-grid approach, is their inherent ability to discretize irregularly shaped domains with greater efficiency and less effort. Hence, this approach is ideally suited for geometrically complex configurations of practical interest. In this work the time-dependent, nonlinear Euler equations are solved using an upwind, cell-centered, finite-volume scheme. The discrete, linearized systems which result from this scheme are solved iteratively by a preconditioned conjugate-gradient-like algorithm known as GMRES for the two-dimensional cases and a Gauss-Seidel algorithm for the three-dimensional; at steady-state, similar procedures are used to solve the accompanying linear aerodynamic sensitivity equations in incremental iterative form. As shown, this particular form of the sensitivity equation makes large-scale gradient-based aerodynamic optimization possible by taking advantage of memory efficient methods to construct exact Jacobian matrix-vector products. Various surface parameterization techniques have been employed in the current study to control the shape of the design surface. Once this surface has been deformed, the interior volume of the unstructured grid is adapted by considering the mesh as a system of interconnected tension springs. Grid sensitivities are obtained by differentiating the surface parameterization and the grid adaptation algorithms with ADIFOR, an advanced automatic-differentiation software tool. To demonstrate the ability of this procedure to analyze and design complex configurations of practical interest, the sensitivity analysis and shape optimization has been performed for several two- and three-dimensional cases. In twodimensions, an initially symmetric NACA-0012 airfoil and a high-lift multielement airfoil were examined. For the three-dimensional configurations, an initially rectangular wing with uniform NACA-0012 cross-sections was optimized; in addition, a complete Boeing 747-200 aircraft was studied. Furthermore, the current study also examines the effect of inconsistency in the order of spatial accuracy between the nonlinear fluid and linear shape sensitivity equations. The second step was to develop a computationally efficient, high-fidelity, integrated static aeroelastic analysis procedure. To accomplish this, a structural analysis code was coupled with the aforementioned unstructured grid aerodynamic analysis solver. The use of an unstructured grid scheme for the aerodynamic analysis enhances the interaction compatibility with the wing structure. The structural analysis utilizes finite elements to model the wing so that accurate structural deflections may be obtained. In the current work, parameters have been introduced to control the interaction of the computational fluid dynamics and structural analyses; these control parameters permit extremely efficient static aeroelastic computations. To demonstrate and evaluate this procedure, static aeroelastic analysis results for a flexible wing in low subsonic, high subsonic (subcritical), transonic (supercritical), and supersonic flow conditions are presented.

  6. Human Factors for Situation Assessment in Grid Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guttromson, Ross T.; Schur, Anne; Greitzer, Frank L.

    2007-08-08

    Executive Summary Despite advances in technology, power system operators must assimilate overwhelming amounts of data to keep the grid operating. Analyses of recent blackouts have clearly demonstrated the need to enhance the operator’s situation awareness (SA). The long-term objective of this research is to integrate valuable technologies into the grid operator environment that support decision making under normal and abnormal operating conditions and remove non-technical barriers to enable the optimum use of these technologies by individuals working alone and as a team. More specifically, the research aims to identify methods and principles to increase SA of grid operators in themore » context of system conditions that are representative or common across many operating entities and develop operationally relevant experimental methods for studying technologies and operational practices which contribute to SA. With increasing complexity and interconnectivity of the grid, the scope and complexity of situation awareness have grown. New paradigms are needed to guide research and tool development aimed to enhance and improve operations. In reviewing related research, operating practices, systems, and tools, the present study established a taxonomy that provides a perspective on research and development surrounding power grid situation awareness and clarifies the field of human factors/SA for grid operations. Information sources that we used to identify critical factors underlying SA included interviews with experienced operational personnel, available historical summaries and transcripts of abnormal conditions and outages (e.g., the August 14, 2003 blackout), scientific literature, and operational policies/procedures and other documentation. Our analysis of August 2003 blackout transcripts and interviews adopted a different perspective than previous analyses of this material, and we complemented this analysis with additional interviews. Based on our analysis and a broad literature review, we advocate a new perspective on SA in terms of sensemaking, also called situated or ecological decision making, where the focus of the investigation is to understand why the decision maker(s) experienced the situation the way they did, or why what they saw made sense to them at the time. This perspective is distinct from the traditional branch of human factors research in the field which focuses more on ergonomics and the transactional relationship between the human operator and the systems. Consistent with our findings from the literature review, we recognized an over-arching need to focus SA research on issues surrounding the concept of shared knowledge; e.g., awareness of what is happening in adjacent areas as well as one’s own area of responsibility. Major findings were: a) Inadequate communication/information sharing is pervasive, b) Information is available, but not used. Many tools and mechanisms exist for operators to build awareness of the physical grid system, yet the transcripts reveal that they still need to call and exchange information with operators of neighboring areas to improve or validate their SA. The specific types of information that they request are quite predictable and, in most cases, cover information that could be available to both operators and reliability coordinators through readily available displays or other data sources, c) Shared Knowledge is Required on Operations/Actions as Well as Physical Status. In an ideal, technologically and organizationally perfect world, every control room and every reliability coordinator may have access to complete data across all regional control areas and yet, there would still be reason for the operators to call each other to gain and improve their SA of power grid operations, and d) Situation Awareness as sensemaking and shared knowledge.« less

  7. Experimental comparison of MCFC performance using three different biogas types and methane

    NASA Astrophysics Data System (ADS)

    Bove, Roberto; Lunghi, Piero

    Biogas recovery is an environmentally friendly and cost-effective practice that is getting consensus in both the scientific and industrial community, as the growing number of projects demonstrate. The use of fuel cells as energy conversion systems increases the conversion efficiency, as well as the environmental benefits. Molten carbonate fuel cells (MCFC) operate at a temperature of about 650 °C, thus presenting a high fuel flexibility, compared to low temperature fuel cells. Aim of the present study is to compare the performance of an MCFC single cell, fuelled with different biogas types as well as methane. The biogases considered are derived from the following processes: (1) steam gasification in an entrained flow gasifier; (2) steam gasification in a duel interconnect fluidized bed gasifier; (3) biogas from an anaerobic digestion process. The performances are evaluated for different fuel utilization and current densities. The results are an essential starting point for a complete system design and demonstration.

  8. "Rinse and trickle": a protocol for TEM preparation and investigation of inorganic fibers from biological material.

    PubMed

    Vigliaturo, Ruggero; Capella, Silvana; Rinaudo, Caterina; Belluso, Elena

    2016-07-01

    The purpose of this work is to define a sample preparation protocol that allows inorganic fibers and particulate matter extracted from different biological samples to be characterized morphologically, crystallographically and chemically by transmission electron microscopy-energy dispersive spectroscopy (TEM-EDS). The method does not damage or create artifacts through chemical attacks of the target material. A fairly rapid specimen preparation is applied with the aim of performing as few steps as possible to transfer the withdrawn inorganic matter onto the TEM grid. The biological sample is previously digested chemically by NaClO. The salt is then removed through a series of centrifugation and rinse cycles in deionized water, thus drastically reducing the digestive power of the NaClO and concentrating the fibers for TEM analysis. The concept of equivalent hydrodynamic diameter is introduced to calculate the settling velocity during the centrifugation cycles. This technique is applicable to lung tissues and can be extended to a wide range of organic materials. The procedure does not appear to cause morphological damage to the fibers or modify their chemistry or degree of crystallinity. The extrapolated data can be used in interdisciplinary studies to understand the pathological effects caused by inorganic materials.

  9. Optimisation of a green gas supply chain--a review.

    PubMed

    Bekkering, J; Broekhuis, A A; van Gemert, W J T

    2010-01-01

    In this review the knowledge status of and future research options on a green gas supply based on biogas production by co-digestion is explored. Applications and developments of the (bio)gas supply in The Netherlands have been considered, whereafter literature research has been done into the several stages from production of dairy cattle manure and biomass to green gas injection into the gas grid. An overview of a green gas supply chain has not been made before. In this study it is concluded that on installation level (micro-level) much practical knowledge is available and on macro-level knowledge about availability of biomass. But on meso-level (operations level of a green gas supply) very little research has been done until now. Future research should include the modeling of a green gas supply chain on an operations level, i.e. questions must be answered as where to build digesters based on availability of biomass. Such a model should also advise on technology of upgrading depending on scale factors. Future research might also give insight in the usability of mixing (partly upgraded) biogas with natural gas. The preconditions for mixing would depend on composition of the gas, the ratio of gases to be mixed and the requirements on the mixture.

  10. Modeling the Value of Integrated Canadian and U.S. Power Sector Expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, Wesley, Beiter, Philipp; Steinberg, Daniel

    2016-09-08

    The United States and Canada power systems are not isolated. Cross-border transmission and coordination of system operation create an interconnected power system, which results in combined imports and exports of electricity of greater than 70 TWh per year [1]. Currently, over 5 GW of new international transmission lines are in various stages of permitting and development. These lines may enable greater integration and coordination of the U.S. and Canada systems, which can in turn reduce challenges associated with integration of high penetrations of variable renewables. Furthermore, low-cost Canadian resources, such as wind and hydro, could contribute to compliance with themore » EPA's recently released Clean Power Plan. Improving integration and coordination internationally will reduce the costs of accessing these resources. This analysis work build on previous work by Ibanez and Zinaman [2]. In this work we seek to better understand the value of additional interconnection between the U.S. and Canadian power systems. Specifically, we quantify the value of additional interconnection and coordination within the Canadian-US integrated power system under scenarios in which large reductions (>80%) in power sector CO2 emissions are achieved. We explore how the ability to add additional cross-border transmission impacts capacity investment, the generation mix, system costs, and the ability of the system to integrate variable renewable energy into the power system. This analysis uses the Regional Energy Deployment System (ReEDS) capacity expansion model [3], [4] to quantify the value of the integrated power system expansion of the United States and Canada. ReEDS is an optimization model that assesses the deployment and operation (including transmission) of the electricity sector of the contiguous United States and Canadian provinces from 2016 through 2050. It has the ability to model the integration of renewable energy technologies into the grid. ReEDS captures renewable energy resources through the use of 356 individual resource regions and 134 balancing areas across the U.S. and is able to handle renewable energy issues such as variability in wind and solar output, transmission costs and constraints, and ancillary services requirements.« less

  11. Wireless Interconnects for Intra-chip & Inter-chip Transmission

    NASA Astrophysics Data System (ADS)

    Narde, Rounak Singh

    With the emergence of Internet of Things and information revolution, the demand of high performance computing systems is increasing. The copper interconnects inside the computing chips have evolved into a sophisticated network of interconnects known as Network on Chip (NoC) comprising of routers, switches, repeaters, just like computer networks. When network on chip is implemented on a large scale like in Multicore Multichip (MCMC) systems for High Performance Computing (HPC) systems, length of interconnects increases and so are the problems like power dissipation, interconnect delays, clock synchronization and electrical noise. In this thesis, wireless interconnects are chosen as the substitute for wired copper interconnects. Wireless interconnects offer easy integration with CMOS fabrication and chip packaging. Using wireless interconnects working at unlicensed mm-wave band (57-64GHz), high data rate of Gbps can be achieved. This thesis presents study of transmission between zigzag antennas as wireless interconnects for Multichip multicores (MCMC) systems and 3D IC. For MCMC systems, a four-chips 16-cores model is analyzed with only four wireless interconnects in three configurations with different antenna orientations and locations. Return loss and transmission coefficients are simulated in ANSYS HFSS. Moreover, wireless interconnects are designed, fabricated and tested on a 6'' silicon wafer with resistivity of 55O-cm using a basic standard CMOS process. Wireless interconnect are designed to work at 30GHz using ANSYS HFSS. The fabricated antennas are resonating around 20GHz with a return loss of less than -10dB. The transmission coefficients between antenna pair within a 20mm x 20mm silicon die is found to be varying between -45dB to -55dB. Furthermore, wireless interconnect approach is extended for 3D IC. Wireless interconnects are implemented as zigzag antenna. This thesis extends the work of analyzing the wireless interconnects in 3D IC with different configurations of antenna orientations and coolants. The return loss and transmission coefficients are simulated using ANSYS HFSS.

  12. GSHR-Tree: a spatial index tree based on dynamic spatial slot and hash table in grid environments

    NASA Astrophysics Data System (ADS)

    Chen, Zhanlong; Wu, Xin-cai; Wu, Liang

    2008-12-01

    Computation Grids enable the coordinated sharing of large-scale distributed heterogeneous computing resources that can be used to solve computationally intensive problems in science, engineering, and commerce. Grid spatial applications are made possible by high-speed networks and a new generation of Grid middleware that resides between networks and traditional GIS applications. The integration of the multi-sources and heterogeneous spatial information and the management of the distributed spatial resources and the sharing and cooperative of the spatial data and Grid services are the key problems to resolve in the development of the Grid GIS. The performance of the spatial index mechanism is the key technology of the Grid GIS and spatial database affects the holistic performance of the GIS in Grid Environments. In order to improve the efficiency of parallel processing of a spatial mass data under the distributed parallel computing grid environment, this paper presents a new grid slot hash parallel spatial index GSHR-Tree structure established in the parallel spatial indexing mechanism. Based on the hash table and dynamic spatial slot, this paper has improved the structure of the classical parallel R tree index. The GSHR-Tree index makes full use of the good qualities of R-Tree and hash data structure. This paper has constructed a new parallel spatial index that can meet the needs of parallel grid computing about the magnanimous spatial data in the distributed network. This arithmetic splits space in to multi-slots by multiplying and reverting and maps these slots to sites in distributed and parallel system. Each sites constructs the spatial objects in its spatial slot into an R tree. On the basis of this tree structure, the index data was distributed among multiple nodes in the grid networks by using large node R-tree method. The unbalance during process can be quickly adjusted by means of a dynamical adjusting algorithm. This tree structure has considered the distributed operation, reduplication operation transfer operation of spatial index in the grid environment. The design of GSHR-Tree has ensured the performance of the load balance in the parallel computation. This tree structure is fit for the parallel process of the spatial information in the distributed network environments. Instead of spatial object's recursive comparison where original R tree has been used, the algorithm builds the spatial index by applying binary code operation in which computer runs more efficiently, and extended dynamic hash code for bit comparison. In GSHR-Tree, a new server is assigned to the network whenever a split of a full node is required. We describe a more flexible allocation protocol which copes with a temporary shortage of storage resources. It uses a distributed balanced binary spatial tree that scales with insertions to potentially any number of storage servers through splits of the overloaded ones. The application manipulates the GSHR-Tree structure from a node in the grid environment. The node addresses the tree through its image that the splits can make outdated. This may generate addressing errors, solved by the forwarding among the servers. In this paper, a spatial index data distribution algorithm that limits the number of servers has been proposed. We improve the storage utilization at the cost of additional messages. The structure of GSHR-Tree is believed that the scheme of this grid spatial index should fit the needs of new applications using endlessly larger sets of spatial data. Our proposal constitutes a flexible storage allocation method for a distributed spatial index. The insertion policy can be tuned dynamically to cope with periods of storage shortage. In such cases storage balancing should be favored for better space utilization, at the price of extra message exchanges between servers. This structure makes a compromise in the updating of the duplicated index and the transformation of the spatial index data. Meeting the needs of the grid computing, GSHRTree has a flexible structure in order to satisfy new needs in the future. The GSHR-Tree provides the R-tree capabilities for large spatial datasets stored over interconnected servers. The analysis, including the experiments, confirmed the efficiency of our design choices. The scheme should fit the needs of new applications of spatial data, using endlessly larger datasets. Using the system response time of the parallel processing of spatial scope query algorithm as the performance evaluation factor, According to the result of the simulated the experiments, GSHR-Tree is performed to prove the reasonable design and the high performance of the indexing structure that the paper presented.

  13. Voltage control for a wind power plant based on the available reactive current of a DFIG and its impacts on the point of interconnection

    DOE PAGES

    Usman, Yasir; Kim, Jinho; Muljadi, Eduard; ...

    2016-01-01

    Wake effects cause wind turbine generators (WTGs) within a wind power plant (WPP) to produce different levels of active power and subsequent reactive power capabilities. Further, the impedance between a WTG and the point of interconnection (POI)-which depends on the distance between them-impacts the WPP's reactive power injection capability at the POI. This paper proposes a voltage control scheme for a WPP based on the available reactive current of the doubly-fed induction generators (DFIGs) and its impacts on the POI to improve the reactive power injection capability of the WPP. In this paper, a design strategy for modifying the gainmore » of DFIG controller is suggested and the comprehensive properties of these control gains are investigated. In the proposed scheme, the WPP controller, which operates in a voltage control mode, sends the command signal to the DFIGs based on the voltage difference at the POI. The DFIG controllers, which operate in a voltage control mode, employ a proportional controller with a limiter. The gain of the proportional controller is adjusted depending on the available reactive current of the DFIG and the series impedance between the DFIG and the POI. The performance of the proposed scheme is validated for various disturbances such as a reactive load connection and grid fault using an EMTP-RV simulator. Furthermore, simulation results demonstrate that the proposed scheme promptly recovers the POI voltage by injecting more reactive power after a disturbance than the conventional scheme.« less

  14. Big Data over a 100G network at Fermilab

    DOE PAGES

    Garzoglio, Gabriele; Mhashilkar, Parag; Kim, Hyunwoo; ...

    2014-06-11

    As the need for Big Data in science becomes ever more relevant, networks around the world are upgrading their infrastructure to support high-speed interconnections. To support its mission, the high-energy physics community as a pioneer in Big Data has always been relying on the Fermi National Accelerator Laboratory to be at the forefront of storage and data movement. This need was reiterated in recent years with the data-taking rate of the major LHC experiments reaching tens of petabytes per year. At Fermilab, this resulted regularly in peaks of data movement on the Wide area network (WAN) in and out ofmore » the laboratory of about 30 Gbit/s and on the Local are network (LAN) between storage and computational farms of 160 Gbit/s. To address these ever increasing needs, as of this year Fermilab is connected to the Energy Sciences Network (ESnet) through a 100 Gb/s link. To understand the optimal system-and application-level configuration to interface computational systems with the new highspeed interconnect, Fermilab has deployed a Network Research & Development facility connected to the ESnet 100G Testbed. For the past two years, the High Throughput Data Program (HTDP) has been using the Testbed to identify gaps in data movement middleware [5] when transferring data at these high-speeds. The program has published evaluations of technologies typically used in High Energy Physics, such as GridFTP [4], XrootD [9], and Squid [8]. Furthermore, this work presents the new R&D facility and the continuation of the evaluation program.« less

  15. Big Data over a 100G network at Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garzoglio, Gabriele; Mhashilkar, Parag; Kim, Hyunwoo

    As the need for Big Data in science becomes ever more relevant, networks around the world are upgrading their infrastructure to support high-speed interconnections. To support its mission, the high-energy physics community as a pioneer in Big Data has always been relying on the Fermi National Accelerator Laboratory to be at the forefront of storage and data movement. This need was reiterated in recent years with the data-taking rate of the major LHC experiments reaching tens of petabytes per year. At Fermilab, this resulted regularly in peaks of data movement on the Wide area network (WAN) in and out ofmore » the laboratory of about 30 Gbit/s and on the Local are network (LAN) between storage and computational farms of 160 Gbit/s. To address these ever increasing needs, as of this year Fermilab is connected to the Energy Sciences Network (ESnet) through a 100 Gb/s link. To understand the optimal system-and application-level configuration to interface computational systems with the new highspeed interconnect, Fermilab has deployed a Network Research & Development facility connected to the ESnet 100G Testbed. For the past two years, the High Throughput Data Program (HTDP) has been using the Testbed to identify gaps in data movement middleware [5] when transferring data at these high-speeds. The program has published evaluations of technologies typically used in High Energy Physics, such as GridFTP [4], XrootD [9], and Squid [8]. Furthermore, this work presents the new R&D facility and the continuation of the evaluation program.« less

  16. Christmas Valley Renewable Energy Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Del Mar, Robert

    In partnership with the Oregon Military Department, the Department of Energy used the award to assess and evaluate renewable resources in a 2,622-acre location in Lake County, central Oregon, leading to future development of up to 200 MW of solar electricity. In partnership with the Oregon Military Department, the Department of Energy used the award to assess and evaluate renewable resources in a 2,622-acre location in Lake County, central Oregon, leading to future development of up to 200 MW of solar electricity. The Oregon Military Department (Military) acquired a large parcel of land located in south central Oregon. The landmore » was previously owned by the US Air Force and developed for an Over-the-Horizon Backscatter Radar Transmitter Facility, located about 10 miles east of the town of Christmas Valley. The Military is investigating a number of uses for the site, including Research and Development (R&D) laboratory, emergency response, military operations, developing renewable energy and related educational programs. One of the key potential uses would be for a large scale solar photovoltaic power plant. This is an attractive use because the site has excellent solar exposure; an existing strong electrical interconnection to the power grid; and a secure location at a moderate cost per acre. The project objectives include: 1. Site evaluation 2. Research and Development (R&D) facility analysis 3. Utility interconnection studies and agreements 4. Additional on-site renewable energy resources analysis 5. Community education, outreach and mitigation 6. Renewable energy and emergency readiness training program for veterans« less

  17. The Assurance Challenges of Advanced Packaging Technologies for Electronics

    NASA Technical Reports Server (NTRS)

    Sampson, Michael J.

    2010-01-01

    Advances in microelectronic parts performance are driving towards finer feature sizes, three-dimensional geometries and ever-increasing number of transistor equivalents that are resulting in increased die sizes and interconnection (I/O) counts. The resultant packaging necessary to provide assemble-ability, environmental protection, testability and interconnection to the circuit board for the active die creates major challenges, particularly for space applications, Traditionally, NASA has used hermetically packaged microcircuits whenever available but the new demands make hermetic packaging less and less practical at the same time as more and more expensive, Some part types of great interest to NASA designers are currently only available in non-hermetic packaging. It is a far more complex quality and reliability assurance challenge to gain confidence in the long-term survivability and effectiveness of nonhermetic packages than for hermetic ones. Although they may provide more rugged environmental protection than the familiar Plastic Encapsulated Microcircuits (PEMs), the non-hermetic Ceramic Column Grid Array (CCGA) packages that are the focus of this presentation present a unique combination of challenges to assessing their suitability for spaceflight use. The presentation will discuss the bases for these challenges, some examples of the techniques proposed to mitigate them and a proposed approach to a US MIL specification Class for non-hermetic microcircuits suitable for space application, Class Y, to be incorporated into M. IL-PRF-38535. It has recently emerged that some major packaging suppliers are offering hermetic area array packages that may offer alternatives to the nonhermetic CCGA styles but have also got their own inspectability and testability issues which will be briefly discussed in the presentation,

  18. Comprehensive evaluation of global energy interconnection development index

    NASA Astrophysics Data System (ADS)

    Liu, Lin; Zhang, Yi

    2018-04-01

    Under the background of building global energy interconnection and realizing green and low-carbon development, this article constructed the global energy interconnection development index system which based on the current situation of global energy interconnection development. Through using the entropy method for the weight analysis of global energy interconnection development index, and then using gray correlation method to analyze the selected countries, this article got the global energy interconnection development index ranking and level classification.

  19. Cascading biomethane energy systems for sustainable green gas production in a circular economy.

    PubMed

    Wall, David M; McDonagh, Shane; Murphy, Jerry D

    2017-11-01

    Biomethane is a flexible energy vector that can be used as a renewable fuel for both the heat and transport sectors. Recent EU legislation encourages the production and use of advanced, third generation biofuels with improved sustainability for future energy systems. The integration of technologies such as anaerobic digestion, gasification, and power to gas, along with advanced feedstocks such as algae will be at the forefront in meeting future sustainability criteria and achieving a green gas supply for the gas grid. This paper explores the relevant pathways in which an integrated biomethane industry could potentially materialise and identifies and discusses the latest biotechnological advances in the production of renewable gas. Three scenarios of cascading biomethane systems are developed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Review of Interconnection Practices and Costs in the Western States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bird, Lori A; Flores-Espino, Francisco; Volpi, Christina M

    The objective of this report is to evaluate the nature of barriers to interconnecting distributed PV, assess costs of interconnection, and compare interconnection practices across various states in the Western Interconnection. The report addresses practices for interconnecting both residential and commercial-scale PV systems to the distribution system. This study is part of a larger, joint project between the Western Interstate Energy Board (WIEB) and the National Renewable Energy Laboratory (NREL), funded by the U.S. Department of Energy, to examine barriers to distributed PV in the 11 states wholly within the Western Interconnection.

  1. Power interconnection projects in the ASEAN region: Definitional-mission report No. 1. Export trade information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-06-01

    In response to a request from the Association of Southeast Asian Nations (ASEAN), the U.S. Trade and Development Program (TDP) conducted a definitional mission to evaluate the prospects of TDP funding for five Power Interconnection Projects in the ASEAN region. These projects included: Batam-Singapore Interconnection; Sumatera-Peninsular Malaysia Interconnection; Sarawak-West Kalimantan Interconnection; Sarawak-Brunei-Sabah Interconnection; and Java-Sumatera Interconnection. Based on a review of the proposed scopes of work for the projects and the discussions in the field, the report summarizes the technical details and the costs of implementation for the projects.

  2. Asbestos in commercial cosmetic talcum powder as a cause of mesothelioma in women

    PubMed Central

    Gordon, Ronald E; Fitzgerald, Sean; Millette, James

    2014-01-01

    Background: Cosmetic talcum powder products have been used for decades. The inhalation of talc may cause lung fibrosis in the form of granulomatose nodules called talcosis. Exposure to talc has also been suggested as a causative factor in the development of ovarian carcinomas, gynecological tumors, and mesothelioma. Purpose: To investigate one historic brand of cosmetic talcum powder associated with mesothelioma in women. Methods: Transmission electron microscope (TEM) formvar-coated grids were prepared with concentrations of one brand of talcum powder directly, on filters, from air collections on filters in glovebox and simulated bathroom exposures and human fiber burden analyses. The grids were analyzed on an analytic TEM using energy-dispersive spectrometer (EDS) and selected-area electron diffraction (SAED) to determine asbestos fiber number and type. Results: This brand of talcum powder contained asbestos and the application of talcum powder released inhalable asbestos fibers. Lung and lymph node tissues removed at autopsy revealed pleural mesothelioma. Digestions of the tissues were found to contain anthophyllite and tremolite asbestos. Discussion: Through many applications of this particular brand of talcum powder, the deceased inhaled asbestos fibers, which then accumulated in her lungs and likely caused or contributed to her mesothelioma as well as other women with the same scenario. PMID:25185462

  3. TidGen Power System Commercialization Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sauer, Christopher R.; McEntee, Jarlath

    2013-12-30

    ORPC Maine, LLC, a wholly-owned subsidiary of Ocean Renewable Power Company, LLC (collectively ORPC), submits this Final Technical Report for the TidGen® Power System Commercialization Project (Project), partially funded by the U.S. Department of Energy (DE-EE0003647). The Project was built and operated in compliance with the Federal Energy Regulatory Commission (FERC) pilot project license (P-12711) and other permits and approvals needed for the Project. This report documents the methodologies, activities and results of the various phases of the Project, including design, engineering, procurement, assembly, installation, operation, licensing, environmental monitoring, retrieval, maintenance and repair. The Project represents a significant achievement formore » the renewable energy portfolio of the U.S. in general, and for the U.S. marine hydrokinetic (MHK) industry in particular. The stated Project goal was to advance, demonstrate and accelerate deployment and commercialization of ORPC’s tidal-current based hydrokinetic power generation system, including the energy extraction and conversion technology, associated power electronics, and interconnection equipment capable of reliably delivering electricity to the domestic power grid. ORPC achieved this goal by designing, building and operating the TidGen® Power System in 2012 and becoming the first federally licensed hydrokinetic tidal energy project to deliver electricity to a power grid under a power purchase agreement in North America. Located in Cobscook Bay between Eastport and Lubec, Maine, the TidGen® Power System was connected to the Bangor Hydro Electric utility grid at an on-shore station in North Lubec on September 13, 2012. ORPC obtained a FERC pilot project license for the Project on February 12, 2012 and the first Maine Department of Environmental Protection General Permit issued for a tidal energy project on January 31, 2012. In addition, ORPC entered into a 20-year agreement with Bangor Hydro Electric Company on January 1, 2013 for up to 5 megawatts at a price of $215/MWh, escalating at 2.0% per year.« less

  4. A novel approach to optimize workflow in grid-based teleradiology applications.

    PubMed

    Yılmaz, Ayhan Ozan; Baykal, Nazife

    2016-01-01

    This study proposes an infrastructure with a reporting workflow optimization algorithm (RWOA) in order to interconnect facilities, reporting units and radiologists on a single access interface, to increase the efficiency of the reporting process by decreasing the medical report turnaround time and to increase the quality of medical reports by determining the optimum match between the inspection and radiologist in terms of subspecialty, workload and response time. Workflow centric network architecture with an enhanced caching, querying and retrieving mechanism is implemented by seamlessly integrating Grid Agent and Grid Manager to conventional digital radiology systems. The inspection and radiologist attributes are modelled using a hierarchical ontology structure. Attribute preferences rated by radiologists and technical experts are formed into reciprocal matrixes and weights for entities are calculated utilizing Analytic Hierarchy Process (AHP). The assignment alternatives are processed by relation-based semantic matching (RBSM) and Integer Linear Programming (ILP). The results are evaluated based on both real case applications and simulated process data in terms of subspecialty, response time and workload success rates. Results obtained using simulated data are compared with the outcomes obtained by applying Round Robin, Shortest Queue and Random distribution policies. The proposed algorithm is also applied to a real case teleradiology application process data where medical reporting workflow was performed based on manual assignments by the chief radiologist for 6225 inspections. RBSM gives the highest subspecialty success rate and integrating ILP with RBSM ratings as RWOA provides a better response time and workload distribution success rate. RWOA based image delivery also prevents bandwidth, storage or hardware related stuck and latencies. When compared with a real case teleradiology application where inspection assignments were performed manually, the proposed solution was found to increase the experience success rate by 13.25%, workload success rate by 63.76% and response time success rate by 120%. The total response time in the real case application data was improved by 22.39%. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. An investigation of the maximum penetration level of a photovoltaic (PV) system into a traditional distribution grid

    NASA Astrophysics Data System (ADS)

    Chalise, Santosh

    Although solar photovoltaic (PV) systems have remained the fastest growing renewable power generating technology, variability as well as uncertainty in the output of PV plants is a significant issue. This rapid increase in PV grid-connected generation presents not only progress in clean energy but also challenges in integration with traditional electric power grids which were designed for transmission and distribution of power from central stations. Unlike conventional electric generators, PV panels do not have rotating parts and thus have no inertia. This potentially causes a problem when the solar irradiance incident upon a PV plant changes suddenly, for example, when scattered clouds pass quickly overhead. The output power of the PV plant may fluctuate nearly as rapidly as the incident irradiance. These rapid power output fluctuations may then cause voltage fluctuations, frequency fluctuations, and power quality issues. These power quality issues are more severe with increasing PV plant power output. This limits the maximum power output allowed from interconnected PV plants. Voltage regulation of a distribution system, a focus of this research, is a prime limiting factor in PV penetration levels. The IEEE 13-node test feeder, modeled and tested in the MATLAB/Simulink environment, was used as an example distribution feeder to analyze the maximum acceptable penetration of a PV plant. The effect of the PV plant's location was investigated, along with the addition of a VAR compensating device (a D-STATCOM in this case). The results were used to develop simple guidelines for determining an initial estimate of the maximum PV penetration level on a distribution feeder. For example, when no compensating devices are added to the system, a higher level of PV penetration is generally achieved by installing the PV plant close to the substation. The opposite is true when a VAR compensator is installed with the PV plant. In these cases, PV penetration levels over 50% may be safely achieved.

  6. Inverter Load Rejection Over-Voltage Testing: SolarCity CRADA Task 1a Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, A.; Hoke, A.; Chakraborty, S.

    Various interconnection challenges exist when connecting distributed PV into the electrical distribution grid in terms of safety, reliability, and stability of electric power systems. One of the urgent areas for additional research - as identified by inverter manufacturers, installers, and utilities - is the potential for transient over-voltage from PV inverters. In one stage of a cooperative tests were repeated a total of seven times. The maximum over-voltage measured in any test did not exceed 200% of nominal, and typical over-voltage levels were significantly lower. The total voltage duration and the maximum continuous time above each threshold are presented here,more » as well as the time to disconnect for each test. Finally, we present a brief investigation into the effect of DC input voltage as well as a series of no-load tests. This report describes testing conducted at NREL to determine the duration and magnitude of transient over-voltages created by several commercial PV inverters during load-rejection conditions. For this work, a test plan that is currently under development by the Forum on Inverter Grid Integration Issues (FIGII) has been implemented in a custom test setup at NREL. Through a cooperative research and development agreement, NREL is working with SolarCity to address two specific types of transient overvoltage: load rejection overvoltage (LRO) and ground fault overvoltage (GFO). Additional partners in this effort include the Hawaiian Electric Companies, Northern Plains Power Technologies, and the Electric Power Research Institute.« less

  7. Comparative study of superconducting fault current limiter both for LCC-HVDC and VSC-HVDC systems

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Geon; Khan, Umer Amir; Lim, Sung-Woo; Shin, Woo-ju; Seo, In-Jin; Lee, Bang-Wook

    2015-11-01

    High Voltage Direct Current (HVDC) system has been evaluated as the optimum solution for the renewable energy transmission and long-distance power grid connections. In spite of the various advantages of HVDC system, it still has been regarded as an unreliable system compared to AC system due to its vulnerable characteristics on the power system fault. Furthermore, unlike AC system, optimum protection and switching device has not been fully developed yet. Therefore, in order to enhance the reliability of the HVDC systems mitigation of power system fault and reliable fault current limiting and switching devices should be developed. In this paper, in order to mitigate HVDC fault, both for Line Commutated Converter HVDC (LCC-HVDC) and Voltage Source Converter HVDC (VSC-HVDC) system, an application of resistive superconducting fault current limiter which has been known as optimum solution to cope with the power system fault was considered. Firstly, simulation models for two types of LCC-HVDC and VSC-HVDC system which has point to point connection model were developed. From the designed model, fault current characteristics of faulty condition were analyzed. Second, application of SFCL on each types of HVDC system and comparative study of modified fault current characteristics were analyzed. Consequently, it was deduced that an application of AC-SFCL on LCC-HVDC system with point to point connection was desirable solution to mitigate the fault current stresses and to prevent commutation failure in HVDC electric power system interconnected with AC grid.

  8. River salinity on a mega-delta, an unstructured grid model approach.

    NASA Astrophysics Data System (ADS)

    Bricheno, Lucy; Saiful Islam, Akm; Wolf, Judith

    2014-05-01

    With an average freshwater discharge of around 40,000 m3/s the BGM (Brahmaputra Ganges and Meghna) river system has the third largest discharge worldwide. The BGM river delta is a low-lying fertile area covering over 100,000 km2 mainly in India and Bangladesh. Approximately two-thirds of the Bangladesh people work in agriculture and these local livelihoods depend on freshwater sources directly linked to river salinity. The finite volume coastal ocean model (FVCOM) has been applied to the BGM delta in order to simulate river salinity under present and future climate conditions. Forced by a combination of regional climate model predictions, and a basin-wide river catchment model, the 3D baroclinic delta model can determine river salinity under the current climate, and make predictions for future wet and dry years. The river salinity demonstrates a strong seasonal and tidal cycle, making it important for the model to be able to capture a wide range of timescales. The unstructured mesh approach used in FVCOM is required to properly represent the delta's structure; a complex network of interconnected river channels. The model extends 250 km inland in order to capture the full extent of the tidal influence and grid resolutions of 10s of metres are required to represent narrow inland river channels. The use of FVCOM to simulate flows so far inland is a novel challenge, which also requires knowledge of the shape and cross-section of the river channels.

  9. Dynamic Management of NOx and SO2 Emissions in the Texas and Mid-Atlantic Electric Power Systems and Implications for Air Quality.

    PubMed

    McDonald-Buller, Elena; Kimura, Yosuke; Craig, Michael; McGaughey, Gary; Allen, David; Webster, Mort

    2016-02-02

    Cap and trade programs have historically been designed to achieve annual or seasonal reductions in emissions of nitrogen oxides and sulfur dioxide from power plants. Emissions reductions may not be temporally coincident with meteorological conditions conducive to the formation of peak ozone and fine particulate matter concentrations. Integrated power system and air quality modeling methods were developed to evaluate time-differentiated emissions price signals on high ozone days in the Mid-Atlantic portion of the Pennsylvania-New Jersey-Maryland (PJM) Interconnection and Electric Reliability Council of Texas (ERCOT) grids. Sufficient flexibility exists in the two grids with marked differences in demand and fuel generation mix to accommodate time-differentiated emissions pricing alone or in combination with a season-wide program. System-wide emissions reductions and production costs from time-differentiated pricing are shown to be competitive with those of a season-wide program on high ozone days and would be more cost-effective if the primary policy goal was to target emissions reductions on these days. Time-differentiated pricing layered as a complement to the Cross-State Air Pollution Rule had particularly pronounced benefits for the Mid-Atlantic PJM system that relies heavily on coal-fired generation. Time-differentiated pricing aimed at reducing ozone concentrations had particulate matter reduction co-benefits, but if particulate matter reductions are the primary objective, other approaches to time-differentiated pricing may lead to greater benefits.

  10. x509-free access to WLCG resources

    NASA Astrophysics Data System (ADS)

    Short, H.; Manzi, A.; De Notaris, V.; Keeble, O.; Kiryanov, A.; Mikkonen, H.; Tedesco, P.; Wartel, R.

    2017-10-01

    Access to WLCG resources is authenticated using an x509 and PKI infrastructure. Even though HEP users have always been exposed to certificates directly, the development of modern Web Applications by the LHC experiments calls for simplified authentication processes keeping the underlying software unmodified. In this work we will show a solution with the goal of providing access to WLCG resources using the user’s home organisations credentials, without the need for user-acquired x509 certificates. In particular, we focus on identity providers within eduGAIN, which interconnects research and education organisations worldwide, and enables the trustworthy exchange of identity-related information. eduGAIN has been integrated at CERN in the SSO infrastructure so that users can authenticate without the need of a CERN account. This solution achieves x509-free access to Grid resources with the help of two services: STS and an online CA. The STS (Security Token Service) allows credential translation from the SAML2 format used by Identity Federations to the VOMS-enabled x509 used by most of the Grid. The IOTA CA (Identifier-Only Trust Assurance Certification Authority) is responsible for the automatic issuing of short-lived x509 certificates. The IOTA CA deployed at CERN has been accepted by EUGridPMA as the CERN LCG IOTA CA, included in the IGTF trust anchor distribution and installed by the sites in WLCG. We will also describe the first pilot projects which are integrating the solution.

  11. 3D Printing of Ball Grid Arrays

    NASA Astrophysics Data System (ADS)

    Sinha, Shayandev; Hines, Daniel; Dasgupta, Abhijit; Das, Siddhartha

    Ball grid arrays (BGA) are interconnects between an integrated circuit (IC) and a printed circuit board (PCB), that are used for surface mounting electronic components. Typically, lead free alloys are used to make solder balls which, after a reflow process, establish a mechanical and electrical connection between the IC and the PCB. High temperature processing is required for most of these alloys leading to thermal shock causing damage to ICs. For producing flexible circuits on a polymer substrate, there is a requirement for low temperature processing capabilities (around 150 C) and for reducing strain from mechanical stresses. Additive manufacturing techniques can provide an alternative methodology for fabricating BGAs as a direct replacement for standard solder bumped BGAs. We have developed aerosol jet (AJ) printing methods to fabricate a polymer bumped BGA. As a demonstration of the process developed, a daisy chain test chip was polymer bumped using an AJ printed ultra violet (UV) curable polymer ink that was then coated with an AJ printed silver nanoparticle laden ink as a conducting layer printed over the polymer bump. The structure for the balls were achieved by printing the polymer ink using a specific toolpath coupled with in-situ UV curing of the polymer which provided good control over the shape, resulting in well-formed spherical bumps on the order of 200 um wide by 200 um tall for this initial demonstration. A detailed discussion of the AJ printing method and results from accelerated life-time testing will be presented

  12. Solid state laser applications in photovoltaics manufacturing

    NASA Astrophysics Data System (ADS)

    Dunsky, Corey; Colville, Finlay

    2008-02-01

    Photovoltaic energy conversion devices are on a rapidly accelerating growth path driven by increasing government and societal pressure to use renewable energy as part of an overall strategy to address global warming attributed to greenhouse gas emissions. Initially supported in several countries by generous tax subsidies, solar cell manufacturers are relentlessly pushing the performance/cost ratio of these devices in a quest to reach true cost parity with grid electricity. Clearly this eventual goal will result in further acceleration in the overall market growth. Silicon wafer based solar cells are currently the mainstay of solar end-user installations with a cost up to three times grid electricity. But next-generation technology in the form of thin-film devices promises streamlined, high-volume manufacturing and greatly reduced silicon consumption, resulting in dramatically lower per unit fabrication costs. Notwithstanding the modest conversion efficiency of thin-film devices compared to wafered silicon products (around 6-10% versus 15-20%), this cost reduction is driving existing and start-up solar manufacturers to switch to thin-film production. A key aspect of these devices is patterning large panels to create a monolithic array of series-interconnected cells to form a low current, high voltage module. This patterning is accomplished in three critical scribing processes called P1, P2, and P3. Lasers are the technology of choice for these processes, delivering the desired combination of high throughput and narrow, clean scribes. This paper examines these processes and discusses the optimization of industrial lasers to meet their specific needs.

  13. Reconfigurable optical interconnections via dynamic computer-generated holograms

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang (Inventor); Zhou, Shaomin (Inventor)

    1994-01-01

    A system is proposed for optically providing one-to-many irregular interconnections, and strength-adjustable many-to-many irregular interconnections which may be provided with strengths (weights) w(sub ij) using multiple laser beams which address multiple holograms and means for combining the beams modified by the holograms to form multiple interconnections, such as a cross-bar switching network. The optical means for interconnection is based on entering a series of complex computer-generated holograms on an electrically addressed spatial light modulator for real-time reconfigurations, thus providing flexibility for interconnection networks for largescale practical use. By employing multiple sources and holograms, the number of interconnection patterns achieved is increased greatly.

  14. Flexible interconnects for fuel cell stacks

    DOEpatents

    Lenz, David J.; Chung, Brandon W.; Pham, Ai Quoc

    2004-11-09

    An interconnect that facilitates electrical connection and mechanical support with minimal mechanical stress for fuel cell stacks. The interconnects are flexible and provide mechanically robust fuel cell stacks with higher stack performance at lower cost. The flexible interconnects replace the prior rigid rib interconnects with flexible "fingers" or contact pads which will accommodate the imperfect flatness of the ceramic fuel cells. Also, the mechanical stress of stacked fuel cells will be smaller due to the flexibility of the fingers. The interconnects can be one-sided or double-sided.

  15. Solar Interconnection Standards & Policies

    EPA Pesticide Factsheets

    The Toolbox for Renewable Energy Project Development's Solar Interconnection Standards and Policies page provides an overview of the interconnection policy and standards, as well as, resources to help you understand the interconnection policy landscape.

  16. Electrode and interconnect for miniature fuel cells using direct methanol feed

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram R. (Inventor); Valdez, Thomas I. (Inventor); Clara, Filiberto (Inventor)

    2004-01-01

    An improved system for interconnects in a fuel cell. In one embodiment, the membranes are located in parallel with one another, and current flow between them is facilitated by interconnects. In another embodiment, all of the current flow is through the interconnects which are located on the membranes. The interconnects are located between two electrodes.

  17. Local interconnection neural networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Jiajun; Zhang Li; Yan Dapen

    1993-06-01

    The idea of a local interconnection neural network (LINN) is presentd and compared with the globally interconnected Hopfield model. Under the storage limit requirement, LINN is shown to offer the same associative memory capability as the global interconnection neural network while having a much smaller interconnection matrix. LINN can be readily implemented optically using the currently available spatial light modulators. 15 refs.

  18. 76 FR 16405 - Notice of Attendance at PJM INterconnection, L.L.C., Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-23

    ... INterconnection, L.L.C., Meetings The Federal Energy Regulatory Commission (Commission) hereby gives notice that members of the Commission and Commission staff may attend upcoming PJM Interconnection, L.L.C., (PJM...: Docket No. EL05-121, PJM Interconnection, L.L.C. Docket No. ER06-456, PJM Interconnection, L.L.C. Docket...

  19. Printed interconnects for photovoltaic modules

    DOE PAGES

    Fields, J. D.; Pach, G.; Horowitz, K. A. W.; ...

    2016-10-21

    Film-based photovoltaic modules employ monolithic interconnects to minimize resistance loss and enhance module voltage via series connection. Conventional interconnect construction occurs sequentially, with a scribing step following deposition of the bottom electrode, a second scribe after deposition of absorber and intermediate layers, and a third following deposition of the top electrode. This method produces interconnect widths of about 300 µm, and the area comprised by interconnects within a module (generally about 3%) does not contribute to power generation. The present work reports on an increasingly popular strategy capable of reducing the interconnect width to less than 100 µm: printing interconnects.more » Cost modeling projects a savings of about $0.02/watt for CdTe module production through the use of printed interconnects, with savings coming from both reduced capital expense and increased module power output. Printed interconnect demonstrations with copper-indium-gallium-diselenide and cadmium-telluride solar cells show successful voltage addition and miniaturization down to 250 µm. As a result, material selection guidelines and considerations for commercialization are discussed.« less

  20. Reconfigurable Optical Interconnections Via Dynamic Computer-Generated Holograms

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang (Inventor); Zhou, Shao-Min (Inventor)

    1996-01-01

    A system is presented for optically providing one-to-many irregular interconnections, and strength-adjustable many-to-many irregular interconnections which may be provided with strengths (weights) w(sub ij) using multiple laser beams which address multiple holograms and means for combining the beams modified by the holograms to form multiple interconnections, such as a cross-bar switching network. The optical means for interconnection is based on entering a series of complex computer-generated holograms on an electrically addressed spatial light modulator for real-time reconfigurations, thus providing flexibility for interconnection networks for large-scale practical use. By employing multiple sources and holograms, the number of interconnection patterns achieved is increased greatly.

  1. 76 FR 46793 - PJM Interconnection, L.L.C.; PJM Power Providers Group v. PJM Interconnection, L.L.C.; Notice...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-03

    ...-002; Docket No. EL11-20-001] PJM Interconnection, L.L.C.; PJM Power Providers Group v. PJM Interconnection, L.L.C.; Notice Establishing Post-Technical Comment Period As indicated in the June 29, 2011... issues related to PJM Interconnection, L.L.C. (PJM)'s Minimum Offer Price Rule (MOPR) and resources...

  2. Planar high density sodium battery

    DOEpatents

    Lemmon, John P.; Meinhardt, Kerry D.

    2016-03-01

    A method of making a molten sodium battery is disclosed. A first metallic interconnect frame having a first interconnect vent hole is provided. A second metallic interconnect frame having a second interconnect vent hole is also provided. An electrolyte plate having a cathode vent hole and an anode vent hole is interposed between the metallic interconnect frames. The metallic interconnect frames and the electrolyte plate are sealed thereby forming gaseous communication between an anode chamber through the anode vent hole and gaseous communication between a cathode chamber through the cathode vent hole.

  3. Interconnection of Distributed Energy Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiter, Emerson

    2017-04-19

    This is a presentation on interconnection of distributed energy resources, including the relationships between different aspects of interconnection, best practices and lessons learned from different areas of the U.S., and an update on technical advances and standards for interconnection.

  4. In-memory interconnect protocol configuration registers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Kevin Y.; Roberts, David A.

    Systems, apparatuses, and methods for moving the interconnect protocol configuration registers into the main memory space of a node. The region of memory used for storing the interconnect protocol configuration registers may also be made cacheable to reduce the latency of accesses to the interconnect protocol configuration registers. Interconnect protocol configuration registers which are used during a startup routine may be prefetched into the host's cache to make the startup routine more efficient. The interconnect protocol configuration registers for various interconnect protocols may include one or more of device capability tables, memory-side statistics (e.g., to support two-level memory data mappingmore » decisions), advanced memory and interconnect features such as repair resources and routing tables, prefetching hints, error correcting code (ECC) bits, lists of device capabilities, set and store base address, capability, device ID, status, configuration, capabilities, and other settings.« less

  5. Electronic interconnects and devices with topological surface states and methods for fabricating same

    DOEpatents

    Yazdani, Ali; Ong, N. Phuan; Cava, Robert J.

    2017-04-04

    An interconnect is disclosed with enhanced immunity of electrical conductivity to defects. The interconnect includes a material with charge carriers having topological surface states. Also disclosed is a method for fabricating such interconnects. Also disclosed is an integrated circuit including such interconnects. Also disclosed is a gated electronic device including a material with charge carriers having topological surface states.

  6. Electronic interconnects and devices with topological surface states and methods for fabricating same

    DOEpatents

    Yazdani, Ali; Ong, N. Phuan; Cava, Robert J.

    2016-05-03

    An interconnect is disclosed with enhanced immunity of electrical conductivity to defects. The interconnect includes a material with charge carriers having topological surface states. Also disclosed is a method for fabricating such interconnects. Also disclosed is an integrated circuit including such interconnects. Also disclosed is a gated electronic device including a material with charge carriers having topological surface states.

  7. Grid tied PV/battery system architecture and power management for fast electric vehicle charging

    NASA Astrophysics Data System (ADS)

    Badawy, Mohamed O.

    The prospective spread of Electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) arises the need for fast charging rates. Higher charging rates requirements lead to high power demands, which cant be always supported by the grid. Thus, the use of on-site sources alongside the electrical grid for EVs charging is a rising area of interest. In this dissertation, a photovoltaic (PV) source is used to support the high power EVs charging. However, the PV output power has an intermittent nature that is dependable on the weather conditions. Thus, battery storage are combined with the PV in a grid tied system, providing a steady source for on-site EVs use in a renewable energy based fast charging station. Verily, renewable energy based fast charging stations should be cost effective, efficient, and reliable to increase the penetration of EVs in the automotive market. Thus, this Dissertation proposes a novel power flow management topology that aims on decreasing the running cost along with innovative hardware solutions and control structures for the developed architecture. The developed power flow management topology operates the hybrid system at the minimum operating cost while extending the battery lifetime. An optimization problem is formulated and two stages of optimization, i.e online and offline stages, are adopted to optimize the batteries state of charge (SOC) scheduling and continuously compensate for the forecasting errors. The proposed power flow management topology is validated and tested with two metering systems, i.e unified and dual metering systems. The results suggested that minimal power flow is anticipated from the battery storage to the grid in the dual metering system. Thus, the power electronic interfacing system is designed accordingly. Interconnecting bi-directional DC/DC converters are analyzed, and a cascaded buck boost (CBB) converter is chosen and tested under 80 kW power flow rates. The need to perform power factor correction (PFC) on the grid power while supplying the battery storage and the DC loads inspired a novel dual switch control structure for the CBB AC/DC converter used in this dissertation. Thus, The CBB operates at a discontinuous capacitor voltage mode (DCVM) and the control structure enables for a non-distorted input current at overlapping output voltage levels. The PFC concept is validated and tested for a single phase rectifier and a 3 phase extension of the proposed concept is presented. Lastly, the PV source used in this study is required to supply power to both, the grid system, and to the DC loads, i.e the battery storage and the EVs. Thus, the PV panels used are connected in series to reach a desirable high voltage on the DC bus output of the PV system. Consequently, a novel differential power processing architecture is proposed in this dissertation. The proposed architecture enables each PV element to operate at its local maximum power point (MPP) while processing only a small portion of its total generated power through the distributed integrated converters. This leads to higher energy capture at an increased conversion efficiency while overcoming the difficulties associated with unmatched MPPs of the PV elements.

  8. Final Scientific/ Technical Report. Playas Grid Reliability and Distributed Energy Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romero, Van; Weinkauf, Don; Khan, Mushtaq

    2012-06-30

    The future looks bright for solar and renewable energies in the United States. Recent studies claim that by 2050, solar power could supply a third of all electricity demand in the country’s western states. Technology advances, soft policy changes, and increased energy consciousness will all have to happen to achieve this goal. But the larger question is, what would it take to do more throughout the United States? The studies tie future solar and renewable growth in the United States to programs that aim to lower the soft costs of solar adoption, streamline utility interconnections, and increase technology advances throughmore » research and development. At the state and local levels, the most important steps are; Net metering: Net metering policies lets customers offset their electric bills with onsite solar and receive reliable and fair compensation for the excess electricity they provide to the grid. Not surprisingly, what utilities consider fair is not necessarily a rate that’s favorable to solar customers; Renewable portfolio standards (RPS): RPS policies require utilities to provide a certain amount of their power from renewable sources; some set specific targets for solar and other renewables. California’s aggressive RPS of 33% renewable energy by 2020 is not bankrupting the state, or its residents; Strong statewide interconnection policies: Solar projects can experience significant delays and hassles just to get connected to the grid. Streamlined feasibility and impact analysis are needed. Good interconnection policies are crucial to the success of solar or renewable energy development; Financing options: Financing is often the biggest obstacle to solar adoption. Those obstacles can be surmounted with policies that support creative financing options like third-party ownership (TPO) and property assessed clean energy (PACE). Attesting to the significance of TPO is the fact that in Arizona, it accounted for 86% of all residential photovoltaic (PV) installations in Q1 2013. Policies beyond those at the state level are also important for solar. The federal government must play a role including continuation of the federal Investment tax credit, responsible development of solar resources on public lands, and support for research and development (R&D) to reduce the cost of solar and help incorporate large amounts of solar into the grid. The local level can’t be ignored. Local governments should support: solar rights laws, feed-in tariffs (FITs), and solar-friendly zoning rules. A great example of how effective local policies can be is a city like Gainesville, Florida , whose FIT policy has put it on the map as a solar leader. This is particularly noteworthy because the Sunshine State does not appear anywhere on the list of top solar states, despite its abundant solar resource. Lancaster, California, began by streamlining the solar permitting process and now requires solar on every new home. Cities like these point to the power of local policies, and the ability of local governments to get things done. A conspicuously absent policy is Community Choice energy, also called community choice aggregation (CCA). This model allows local governments to pool residential, business, and municipal electricity loads and to purchase or generate on their behalf. It provides rate stability and savings and allows more consumer choice and local control. The model need not be focused on clean energy, but it has been in California, where Marin Clean Energy, the first CCA in California, was enabled by a state law -- highlighting the interplay of state and local action. Basic net metering8 has been getting a lot of attention. Utilities are attacking it in a number of states, claiming it’s unfair to ratepayers who don’t go solar. On the other hand, proponents of net metering say utilities’ fighting stance is driven by worries about their bottom line, not concern for their customers. Studies in California, Vermont , New York and Texas have found that the benefits of net metering (like savings on investments in infrastructure and on meeting state renewables requirements) outweigh the costs (like the lowered revenue to cover utility infrastructure costs). Many are eagerly awaiting a California Public Utilities Commission study due later this year, in the hopes that it will provide a relatively unbiased look at the issue. Meanwhile, some states continue to pursue virtual net metering policies. Under Colorado’s Solar Gardens Act, for example, utility customers can subscribe to power generated somewhere other than their own homes. The program allowed by that bill sold out in 30 minutes, evidence of the pent-up demand for this kind of arrangement. And California solar advocates are hoping for passage of a “shared renewables” bill in that state, which would provide for similar solar are significant in bringing solar power to the estimated 75% (likely a conservative number) of can’t put solar on our own roof. As great a resource as the sun is, when it comes to actually implementing solar or other renewables, technology advances, policy changes, bureaucratic practices, and increased energy consciousness will all have to happen to achieve a 30% by 2050 national goal. This project incorporated research activities focused on addressing each of these challenges. First, the project researchers evaluated several leading edge solar technologies by actually implementing these technologies at Playas, New Mexico, a remote town built in the 1970s by Phelps Dodge Mining Company for the company’s employees. This town was purchased by the New Mexico Institute of Mining and Technology in 2005 and converted to a training and research center. Playas is an all-electric town served by a substation about seven miles away. The town is the last user on a 240 kV utility transmission line owned by the Columbus Electric Cooperative (CEC) making it easy to isolate for experiment purposes. The New Mexico Institute of Mining and Technology (NMT) and the Department of Homeland Security (DHS) perform various training and research activities at this site. Given its unique nature, Playas was chosen to test Micro-Grids and other examples of renewable distributed energy resources (DER). Several proposed distributed energy sources (DERs) were not implemented as planned including the Micro-Grid. However, Micro-Grid design and computer modeling were completed and these results are included in this report. As part of this research, four PV (solar) generating systems were installed with remote Internet based communication and control capabilities. These systems have been integrated into and can interact with the local grid So that (for example) excess power produced by the solar arrays can be exported to the utility grid. Energy efficient LED lighting was installed in several buildings to further reduce consumption of utility-supplied power. By combining reduced lighting costs; lowering HVAC loads; and installing smart PV generating equipment with energy storage (battery banks) these systems can greatly reduce electrical usage drawn from an older rural electrical cooperative (Co-Op) while providing clean dependable power. Several additional tasks under this project involved conducting research to develop methods of producing electricity from organic materials (i.e. biofuels, biomass. etc.), the most successful being the biodiesel reactor. Improvements with Proton Exchange Membranes (PEM) for fuels cells were demonstrated and advances in Dye Sensitized Solar Cells (DSSC) were also shown. The specific goals of the project include; Instrumentation of the power distribution system with distributed energy resources, demand-side control and intelligent homes within the town of Playas, NM; Creation of models (power flow and dynamic) of the Playas power distribution system; Validation of the models through comparison of predicted behavior to data collected from instrumentation; and Utilization of the models and test grid to characterize the impact of new devices and approaches (e.g., distributed generation and load management) on the local distribution system as well as the grid at large. In addition to the above stated objectives, the research also focused on three critical challenges facing renewable distributed energy platforms: 1) hydrogen from biomass, 2) improved catalyst support systems for electrolysis membranes and fuel cell systems, and 3) improved manufacturing methodologies of low cost photovoltaics. The following sections describe activities performed during this project. The various tasks were focused on establishing Playas as a “…theoretical and experimental test bed…” through which components of a modern/smart grid could be characterized. On a broader scale, project efforts were aimed at development of tools and gathering of experience/expertise that would accelerate progress toward implementation of a modern grid.« less

  9. Advanced Grid Support Functionality Testing for Florida Power and Light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Austin; Martin, Gregory; Hurtt, James

    This report describes the results of laboratory testing of advanced photovoltaic (PV) inverter testing undertaken by the National Renewable Energy Laboratory (NREL) on behalf of the Florida Power and Light Company (FPL). FPL recently commissioned a 1.1 MW-AC PV installation on a solar carport at the Daytona International Speedway in Daytona Beach, Florida. In addition to providing a source of clean energy production, the site serves as a live test bed with 36 different PV inverters from eight different manufacturers. Each inverter type has varied support for advanced grid support functions (GSFs) that are becoming increasingly commonplace, and are beingmore » required through revised interconnection standards such as UL1741, IEEE1547, and California (CA) Rule 21. FPL is interested in evaluating the trade-offs between different GSFs, their compliance to emerging standards, and their effects on efficiency and reliability. NREL has provided a controlled laboratory environment to undertake such a study. This work covered nine different classes of tests to compare inverter capabilities and performance for four different inverters that were selected by FPL. The test inverters were all three-phase models rated between 24-36 kW, and containing multiple PV input power point trackers. Advanced grid support functions were tested for functional behavior, and included fixed power factor operation, voltage-ride through, frequency ride-through, volt-var control, and frequency-Watt control. Response to abnormal grid conditions with GSFs enabled was studied through anti-islanding, fault, and load rejection overvoltage tests. Finally, efficiency was evaluated across a range of operating conditions that included power factor, output power, and input voltage variations. Test procedures were derived from requirements of a draft revision of UL741, CA Rule 21, and/or previous studies at NREL. This reports summarizes the results of each test case, providing a comparative performance analysis between the four test inverters. Inverters were mostly able to meet the requirements of their stated GSF capabilities, with deviations from expected results discussed throughout the report. There were mixed results across the range of abnormal tests, and results were often dependent on the capability of each test inverter to deploy the GSFs of interest. Detailed test data has been provided to FPL to support future decision making with respect to inverter selection and GSF deployment in the field.« less

  10. Integrated modeling for assessment of energy-water system resilience under changing climate

    NASA Astrophysics Data System (ADS)

    Yan, E.; Veselka, T.; Zhou, Z.; Koritarov, V.; Mahalik, M.; Qiu, F.; Mahat, V.; Betrie, G.; Clark, C.

    2016-12-01

    Energy and water systems are intrinsically interconnected. Due to an increase in climate variability and extreme weather events, interdependency between these two systems has been recently intensified resulting significant impacts on both systems and energy output. To address this challenge, an Integrated Water-Energy Systems Assessment Framework (IWESAF) is being developed to integrate multiple existing or developed models from various sectors. The IWESAF currently includes an extreme climate event generator to predict future extreme weather events, hydrologic and reservoir models, riverine temperature model, power plant water use simulator, and power grid operation and cost optimization model. The IWESAF can facilitate the interaction among the modeling systems and provide insights of the sustainability and resilience of the energy-water system under extreme climate events and economic consequence. The regional case demonstration in the Midwest region will be presented. The detailed information on some of individual modeling components will also be presented in several other abstracts submitted to AGU this year.

  11. The reliability of wind power systems in the UK

    NASA Astrophysics Data System (ADS)

    Newton, K.

    A methodology has been developed to evaluate the performance of geographically distributed wind power systems. Results are presented for three widely separated sites based on measured meteorological data obtained over a 17-yr period. The effects of including energy storage were investigated and 150-hr storage found to be a good compromise between store capacity and system performance. When used to provide space heating, the system could have reduced the 17-yr peak demand from conventional sources (smoothed by the storage and geographical separation of sites) by an amount comparable to the mean output of the wind-system, whether or not turbines at the three sites were interconnected by the National Grid. In contrast, the fuel saving capability of the system was found to be comparatively insensitive either to storage period or geographical separation of sites; the system would have been capable of providing up to 90 percent of the total requirement. Results are also given for individual sites to indicate the possible performance of district heating schemes or domestic systems.

  12. Photovoltaic performance and reliability workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroposki, B

    1996-10-01

    This proceedings is the compilation of papers presented at the ninth PV Performance and Reliability Workshop held at the Sheraton Denver West Hotel on September 4--6, 1996. This years workshop included presentations from 25 speakers and had over 100 attendees. All of the presentations that were given are included in this proceedings. Topics of the papers included: defining service lifetime and developing models for PV module lifetime; examining and determining failure and degradation mechanisms in PV modules; combining IEEE/IEC/UL testing procedures; AC module performance and reliability testing; inverter reliability/qualification testing; standardization of utility interconnect requirements for PV systems; need activitiesmore » to separate variables by testing individual components of PV systems (e.g. cells, modules, batteries, inverters,charge controllers) for individual reliability and then test them in actual system configurations; more results reported from field experience on modules, inverters, batteries, and charge controllers from field deployed PV systems; and system certification and standardized testing for stand-alone and grid-tied systems.« less

  13. Solar cells and modules from dentritic web silicon

    NASA Technical Reports Server (NTRS)

    Campbell, R. B.; Rohatgi, A.; Seman, E. J.; Davis, J. R.; Rai-Choudhury, P.; Gallagher, B. D.

    1980-01-01

    Some of the noteworthy features of the processes developed in the fabrication of solar cell modules are the handling of long lengths of web, the use of cost effective dip coating of photoresist and antireflection coatings, selective electroplating of the grid pattern and ultrasonic bonding of the cell interconnect. Data on the cells is obtained by means of dark I-V analysis and deep level transient spectroscopy. A histogram of over 100 dentritic web solar cells fabricated in a number of runs using different web crystals shows an average efficiency of over 13%, with some efficiencies running above 15%. Lower cell efficiency is generally associated with low minority carrier time due to recombination centers sometimes present in the bulk silicon. A cost analysis of the process sequence using a 25 MW production line indicates a selling price of $0.75/peak watt in 1986. It is concluded that the efficiency of dentritic web cells approaches that of float zone silicon cells, reduced somewhat by the lower bulk lifetime of the former.

  14. 78 FR 29672 - Small Generator Interconnection Agreements and Procedures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-21

    ...] Small Generator Interconnection Agreements and Procedures AGENCY: Federal Energy Regulatory Commission... 7524). The regulations revised the pro forma Small Generator Interconnection Procedures (SGIP) and pro forma Small Generator Interconnection Agreement (SGIA) originally set forth in Order No. 2006. DATES...

  15. Photovoltaic sub-cell interconnects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Hest, Marinus Franciscus Antonius Maria; Swinger Platt, Heather Anne

    2017-05-09

    Photovoltaic sub-cell interconnect systems and methods are provided. In one embodiment, a photovoltaic device comprises a thin film stack of layers deposited upon a substrate, wherein the thin film stack layers are subdivided into a plurality of sub-cells interconnected in series by a plurality of electrical interconnection structures; and wherein the plurality of electrical interconnection structures each comprise no more than two scribes that penetrate into the thin film stack layers.

  16. Pore Interconnectivity Influences Growth Factor-Mediated Vascularization in Sphere-Templated Hydrogels

    PubMed Central

    Somo, Sami I.; Akar, Banu; Bayrak, Elif S.; Larson, Jeffery C.; Appel, Alyssa A.; Mehdizadeh, Hamidreza; Cinar, Ali

    2015-01-01

    Rapid and controlled vascularization within biomaterials is essential for many applications in regenerative medicine. The extent of vascularization is influenced by a number of factors, including scaffold architecture. While properties such as pore size and total porosity have been studied extensively, the importance of controlling the interconnectivity of pores has received less attention. A sintering method was used to generate hydrogel scaffolds with controlled pore interconnectivity. Poly(methyl methacrylate) microspheres were used as a sacrificial agent to generate porous poly(ethylene glycol) diacrylate hydrogels with interconnectivity varying based on microsphere sintering conditions. Interconnectivity levels increased with sintering time and temperature with resultant hydrogel structure showing agreement with template structure. Porous hydrogels with a narrow pore size distribution (130–150 μm) and varying interconnectivity were investigated for their ability to influence vascularization in response to gradients of platelet-derived growth factor-BB (PDGF-BB). A rodent subcutaneous model was used to evaluate vascularized tissue formation in the hydrogels in vivo. Vascularized tissue invasion varied with interconnectivity. At week 3, higher interconnectivity hydrogels had completely vascularized with twice as much invasion. Interconnectivity also influenced PDGF-BB transport within the scaffolds. An agent-based model was used to explore the relative roles of steric and transport effects on the observed results. In conclusion, a technique for the preparation of hydrogels with controlled pore interconnectivity has been developed and evaluated. This method has been used to show that pore interconnectivity can independently influence vascularization of biomaterials. PMID:25603533

  17. 47 CFR 64.1600 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... using a telecommunications service or interconnected VoIP service. (d) Caller identification service..., a call made using a telecommunications service or interconnected VoIP service. (e) Calling party.... (h) Interconnected VoIP service. The term “interconnected VoIP service” has the same meaning given...

  18. Variational Integrators for Interconnected Lagrange-Dirac Systems

    NASA Astrophysics Data System (ADS)

    Parks, Helen; Leok, Melvin

    2017-10-01

    Interconnected systems are an important class of mathematical models, as they allow for the construction of complex, hierarchical, multiphysics, and multiscale models by the interconnection of simpler subsystems. Lagrange-Dirac mechanical systems provide a broad category of mathematical models that are closed under interconnection, and in this paper, we develop a framework for the interconnection of discrete Lagrange-Dirac mechanical systems, with a view toward constructing geometric structure-preserving discretizations of interconnected systems. This work builds on previous work on the interconnection of continuous Lagrange-Dirac systems (Jacobs and Yoshimura in J Geom Mech 6(1):67-98, 2014) and discrete Dirac variational integrators (Leok and Ohsawa in Found Comput Math 11(5), 529-562, 2011). We test our results by simulating some of the continuous examples given in Jacobs and Yoshimura (2014).

  19. Skylab observations of X-ray loops connecting separate active regions. [solar activity

    NASA Technical Reports Server (NTRS)

    Chase, R. C.; Krieger, A. S.; Svestka, Z.; Vaiana, G. S.

    1976-01-01

    One hundred loops interconnecting 94 separate active solar regions detectable in soft X-rays were identified during the Skylab mission. While close active regions are commonly interconnected with loops, the number of such interconnections decreases steeply for longer distances; the longest interconnecting loop observed in the Skylab data connected regions separated by 37 deg. Several arguments are presented which support the point of view that this is the actual limit of the size of magnetic interconnections between active regions. No sympathetic flares could be found in the interconnected regions. These results cast doubt on the hypothesis that accelerated particles can be guided in interconnecting loops from one active region to another over distances of 100 deg or more and eventually produce sympathetic flares in them.

  20. Formation of interconnections to microfluidic devices

    DOEpatents

    Matzke, Carolyn M [Los Lunas, NM; Ashby, Carol I. H. [Edgewood, NM; Griego, Leonardo [Tijeras, NM

    2003-07-29

    A method is disclosed to form external interconnections to a microfluidic device for coupling of a fluid or light or both into a microchannel of the device. This method can be used to form optical or fluidic interconnections to microchannels previously formed on a substrate, or to form both the interconnections and microchannels during the same process steps. The optical and fluidic interconnections are formed parallel to the plane of the substrate, and are fluid tight.

  1. Electrical contacts between cathodes and metallic interconnects in solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Yang, Zhenguo; Xia, Guanguang; Singh, Prabhakar; Stevenson, Jeffry W.

    In this work, simulated cathode/interconnect structures were used to investigate the effects of different contact materials on the contact resistance between a strontium doped lanthanum ferrite cathode and a Crofer22 APU interconnect. Among the materials studied, Pt, which has a prohibitive cost for the application, demonstrated the best performance as a contact paste. For the relatively cost-effective perovskites, the contact ASR was found to depend on their electrical conductivity, scale growth on the metallic interconnect, and interactions between the contact material and the metallic interconnect or particularly the scale grown on the interconnect. Manganites appeared to promote manganese-containing spinel interlayer formation that helped minimize the increase of contact ASR. Chromium from the interconnects reacted with strontium in the perovskites to form SrCrO 4. An improved performance was achieved by application of a thermally grown (Mn,Co) 3O 4 spinel protection layer on Crofer22 APU that dramatically minimized the contact resistance between the cathodes and interconnects.

  2. Sense and nonsense of logic-level optical interconnect: reflections on an experiment

    NASA Astrophysics Data System (ADS)

    Van Campenhout, Jan M.; Brunfaut, Marnik; Meeus, Wim; Dambre, Joni; De Wilde, Michiel

    2001-12-01

    Centimeter-range high-density optical interconnect between chips is coming into reach with current optical interconnect technology. Many theoretical studies have identified several good reasons why to use such types of interconnect as a replacement of various layers of the traditional electronic interconnect hierarchy. However, the true feasibility and usefulness of optical interconnects can only be established by actually building and evaluating them in a real system setting. This contribution reports on our experience in using short-range high-density optical inter-chip interconnects. It is based on the design and construction of a fully functional optoelectronic demonstrator system. We discuss the rationale for building the demonstrator in the first place, the implications of using many low-level optical interconnections in electronic systems, and the degree to which our expectations have been fulfilled by the demonstrator. The detailed description of the architecture, design and implementation of the demonstrator is not presented here, but can be found elsewhere in this issue.

  3. A big data geospatial analytics platform - Physical Analytics Integrated Repository and Services (PAIRS)

    NASA Astrophysics Data System (ADS)

    Hamann, H.; Jimenez Marianno, F.; Klein, L.; Albrecht, C.; Freitag, M.; Hinds, N.; Lu, S.

    2015-12-01

    A big data geospatial analytics platform:Physical Analytics Information Repository and Services (PAIRS)Fernando Marianno, Levente Klein, Siyuan Lu, Conrad Albrecht, Marcus Freitag, Nigel Hinds, Hendrik HamannIBM TJ Watson Research Center, Yorktown Heights, NY 10598A major challenge in leveraging big geospatial data sets is the ability to quickly integrate multiple data sources into physical and statistical models and be run these models in real time. A geospatial data platform called Physical Analytics Information and Services (PAIRS) is developed on top of open source hardware and software stack to manage Terabyte of data. A new data interpolation and re gridding is implemented where any geospatial data layers can be associated with a set of global grid where the grid resolutions is doubling for consecutive layers. Each pixel on the PAIRS grid have an index that is a combination of locations and time stamp. The indexing allow quick access to data sets that are part of a global data layers and allowing to retrieve only the data of interest. PAIRS takes advantages of parallel processing framework (Hadoop) in a cloud environment to digest, curate, and analyze the data sets while being very robust and stable. The data is stored on a distributed no-SQL database (Hbase) across multiple server, data upload and retrieval is parallelized where the original analytics task is broken up is smaller areas/volume, analyzed independently, and then reassembled for the original geographical area. The differentiating aspect of PAIRS is the ability to accelerate model development across large geographical regions and spatial resolution ranging from 0.1 m up to hundreds of kilometer. System performance is benchmarked on real time automated data ingestion and retrieval of Modis and Landsat data layers. The data layers are curated for sensor error, verified for correctness, and analyzed statistically to detect local anomalies. Multi-layer query enable PAIRS to filter different data layers based on specific conditions (e.g analyze flooding risk of a property based on topography, soil ability to hold water, and forecasted precipitation) or retrieve information about locations that share similar weather and vegetation patterns during extreme weather events like heat wave.

  4. Power inverter with optical isolation

    DOEpatents

    Duncan, Paul G.; Schroeder, John Alan

    2005-12-06

    An optically isolated power electronic power conversion circuit that includes an input electrical power source, a heat pipe, a power electronic switch or plurality of interconnected power electronic switches, a mechanism for connecting the switch to the input power source, a mechanism for connecting comprising an interconnecting cable and/or bus bar or plurality of interconnecting cables and/or input bus bars, an optically isolated drive circuit connected to the switch, a heat sink assembly upon which the power electronic switch or switches is mounted, an output load, a mechanism for connecting the switch to the output load, the mechanism for connecting including an interconnecting cable and/or bus bar or plurality of interconnecting cables and/or output bus bars, at least one a fiber optic temperature sensor mounted on the heat sink assembly, at least one fiber optic current sensor mounted on the load interconnection cable and/or output bus bar, at least one fiber optic voltage sensor mounted on the load interconnection cable and/or output bus bar, at least one fiber optic current sensor mounted on the input power interconnection cable and/or input bus bar, and at least one fiber optic voltage sensor mounted on the input power interconnection cable and/or input bus bar.

  5. DGIC Interconnection Insights | Distributed Generation Interconnection

    Science.gov Websites

    Collaborative | NREL The State of Pre-Application Reports June 2017 by Zachary Peterson opportunities for improving DER interconnection processes. Some state regulators have sought the use of pre -application reports to improve interconnection data availability and application processing. A pre-application

  6. Microwave interconnection

    NASA Astrophysics Data System (ADS)

    Fry, P. E.

    1993-06-01

    A limited evaluation was made of two commonly found microwave interconnections: microstrip-to-microstrip and coaxial-to-microstrip. The evaluation attempted to select the interconnection technique which worked best for the particular interface type. Short ribbon wires worked best for the microstrip-to-microstrip interconnection. A published method of compensating the microstrip conductor had the best performance for the coaxial-to-microstrip interconnection. The work was conducted under the Microwave Technology Process Capability Assurance Program at Allied-Signal Inc., Kansas City Division.

  7. The promotion of angiogenesis induced by three-dimensional porous beta-tricalcium phosphate scaffold with different interconnection sizes via activation of PI3K/Akt pathways

    NASA Astrophysics Data System (ADS)

    Xiao, Xin; Wang, Wei; Liu, Dong; Zhang, Haoqiang; Gao, Peng; Geng, Lei; Yuan, Yulin; Lu, Jianxi; Wang, Zhen

    2015-03-01

    The porous architectural characteristics of biomaterials play an important role in scaffold revascularization. However, no consensus exists regarding optimal interconnection sizes for vascularization and its scaffold bioperformance with different interconnection sizes. Therefore, a series of disk-type beta-tricalcium phosphates with the same pore sizes and variable interconnections were produced to evaluate how the interconnection size influenced biomaterial vascularization in vitro and in vivo. We incubated human umbilical vein endothelial cells on scaffolds with interconnections of various sizes. Results showed that scaffolds with a 150 μm interconnection size ameliorated endothelial cell function evidenced by promoting cell adhesion and migration, increasing cell proliferation and enhancing expression of platelet-endothelial cell adhesion molecules and vascular endothelial growth factor. In vivo study was performed on rabbit implanted with scaffolds into the bone defect on femoral condyles. Implantation with scaffolds with 150 μm interconnection size significantly improved neovascularization as shown by micro-CT as compared to scaffolds with 100 and 120 μm interconnection sizes. Moreover, the aforementioned positive effects were abolished by blocking PI3K/Akt/eNOS pathway with LY-294002. Our study explicitly demonstrates that the scaffold with 150 μm interconnection size improves neovascularization via the PI3K/Akt pathway and provides a target for biomaterial inner structure modification to attain improved clinical performance in implant vascularization.

  8. Fabrication method to create high-aspect ratio pillars for photonic coupling of board level interconnects

    NASA Astrophysics Data System (ADS)

    Debaes, C.; Van Erps, J.; Karppinen, M.; Hiltunen, J.; Suyal, H.; Last, A.; Lee, M. G.; Karioja, P.; Taghizadeh, M.; Mohr, J.; Thienpont, H.; Glebov, A. L.

    2008-04-01

    An important challenge that remains to date in board level optical interconnects is the coupling between the optical waveguides on printed wiring boards and the packaged optoelectronics chips, which are preferably surface mountable on the boards. One possible solution is the use of Ball Grid Array (BGA) packages. This approach offers a reliable attachment despite the large CTE mismatch between the organic FR4 board and the semiconductor materials. Collimation via micro-lenses is here typically deployed to couple the light vertically from the waveguide substrate to the optoelectronics while allowing for a small misalignment between board and package. In this work, we explore the fabrication issues of an alternative approach in which the vertical photonic connection between board and package is governed by a micro-optical pillar which is attached both to the board substrate and to the optoelectronic chips. Such an approach allows for high density connections and small, high-speed detector footprints while maintaining an acceptable tolerance between board and package. The pillar should exhibit some flexibility and thus a high-aspect ratio is preferred. This work presents and compares different fabrication methods and applies different materials for such high-aspect ratio pillars. The different fabrication methods are: photolithography, direct laser writing and deep proton writing. The selection of optical materials that was investigated is: SU8, Ormocers, PU and a multifunctional acrylate polymer. The resulting optical pillars have diameters ranging from 20um up to 80um, with total heights ranging between 30um and 100um (symbol for micron). The aspect-ratio of the fabricated structures ranges from 1.5 to 5.

  9. Polycrystalline PLZT/ITO Ceramic Electro-Optic Phase Gratings: Electro- Optically Reconfigurable Diffractive Devices for Free-Space and In-Wafer Interconnects

    DTIC Science & Technology

    1994-09-01

    free-space and waveguide interconnects is investigated through the fabrication, testing and modeling of polycrystalline PLZT/ITO ceramic electro - optic phase...only gratings. PLZT Diffraction grating, Electro - optic diffraction grating, Optical switching, Optical interconnects, Reconfigurable interconnect

  10. 76 FR 53672 - Combined Notice of Filings #2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-29

    .... Applicants: PJM Interconnection, L.L.C. Description: PJM Interconnection, L.L.C. submits tariff filing per 35... Time on Monday, September 12, 2011. Docket Numbers: ER11-4343-000. Applicants: PJM Interconnection, L.L.C. Description: PJM Interconnection, L.L.C. submits tariff filing per 35.13(a)(2)(iii: Certificate...

  11. Imaging the complex geometry of a magma reservoir using FEM-based linear inverse modeling of InSAR data: application to Rabaul Caldera, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Ronchin, Erika; Masterlark, Timothy; Dawson, John; Saunders, Steve; Martì Molist, Joan

    2017-06-01

    We test an innovative inversion scheme using Green's functions from an array of pressure sources embedded in finite-element method (FEM) models to image, without assuming an a-priori geometry, the composite and complex shape of a volcano deformation source. We invert interferometric synthetic aperture radar (InSAR) data to estimate the pressurization and shape of the magma reservoir of Rabaul caldera, Papua New Guinea. The results image the extended shallow magmatic system responsible for a broad and long-term subsidence of the caldera between 2007 February and 2010 December. Elastic FEM solutions are integrated into the regularized linear inversion of InSAR data of volcano surface displacements in order to obtain a 3-D image of the source of deformation. The Green's function matrix is constructed from a library of forward line-of-sight displacement solutions for a grid of cubic elementary deformation sources. Each source is sequentially generated by removing the corresponding cubic elements from a common meshed domain and simulating the injection of a fluid mass flux into the cavity, which results in a pressurization and volumetric change of the fluid-filled cavity. The use of a single mesh for the generation of all FEM models avoids the computationally expensive process of non-linear inversion and remeshing a variable geometry domain. Without assuming an a-priori source geometry other than the configuration of the 3-D grid that generates the library of Green's functions, the geodetic data dictate the geometry of the magma reservoir as a 3-D distribution of pressure (or flux of magma) within the source array. The inversion of InSAR data of Rabaul caldera shows a distribution of interconnected sources forming an amorphous, shallow magmatic system elongated under two opposite sides of the caldera. The marginal areas at the sides of the imaged magmatic system are the possible feeding reservoirs of the ongoing Tavurvur volcano eruption of andesitic products on the east side and of the past Vulcan volcano eruptions of more evolved materials on the west side. The interconnection and spatial distributions of sources correspond to the petrography of the volcanic products described in the literature and to the dynamics of the single and twin eruptions that characterize the caldera. The ability to image the complex geometry of deformation sources in both space and time can improve our ability to monitor active volcanoes, widen our understanding of the dynamics of active volcanic systems and improve the predictions of eruptions.

  12. Resistant starch in food: a review.

    PubMed

    Raigond, Pinky; Ezekiel, Rajarathnam; Raigond, Baswaraj

    2015-08-15

    The nutritional property of starch is related to its rate and extent of digestion and absorption in the small intestine. For nutritional purposes, starch is classified as rapidly available, slowly available and resistant starch (RS). The exact underlying mechanism of relative resistance of starch granules is complicated because those factors are often interconnected. The content of RS in food is highly influenced by food preparation manner and processing techniques. Physical or chemical treatments also alter the level of RS in a food. Commercial preparations of RS are now available and can be added to foods as an ingredient for lowering the calorific value and improving textural and organoleptic characteristics along with increasing the amount of dietary fiber. RS has assumed great importance owing to its unique functional properties and health benefits. The beneficial effects of RS include glycemic control and control of fasting plasma triglyceride and cholesterol levels and absorption of minerals. This review attempts to analyze the information published, especially in the recent past, on classification, structure, properties, applications and health benefits of RS. © 2014 Society of Chemical Industry.

  13. The mucosal immune system: From dentistry to vaccine development

    PubMed Central

    KIYONO, Hiroshi; AZEGAMI, Tatsuhiko

    2015-01-01

    The oral cavity is the beginning of the aero-digestive tract, which is covered by mucosal epithelium continuously under the threat of invasion of pathogens, it is thus protected by the mucosal immune system. In the early phase of our scientific efforts for the demonstration of mucosal immune system, dental science was one of major driving forces due to their foreseeability to use oral immunity for the control of oral diseases. The mucosal immune system is divided functionally into, but interconnected inductive and effector sites. Intestinal Peyer’s patches (PPs) are an inductive site containing antigen-sampling M cells and immunocompetent cells required to initiate antigen-specific immune responses. At effector sites, PP-originated antigen-specific IgA B cells become plasma cells to produce polymeric IgA and form secretory IgA by binding to poly-Ig receptor expressed on epithelial cells for protective immunity. The development of new-generation mucosal vaccines, including the rice-based oral vaccine MucoRice, on the basis of the coordinated mucosal immune system is a promising strategy for the control of mucosal infectious diseases. PMID:26460320

  14. Different patterns of collagen-proteoglycan interaction: a scanning electron microscopy and atomic force microscopy study.

    PubMed

    Raspanti, M; Congiu, T; Alessandrini, A; Gobbi, P; Ruggeri, A

    2000-01-01

    The extracellular matrix of unfixed, unstained rat corneal stroma, visualized with high-resolution scanning electron microscopy and atomic force microscopy after minimal preliminary treatment, appears composed of straight, parallel, uniform collagen fibrils regularly spaced by a three-dimensional, irregular network of thin, delicate proteoglycan filaments. Rat tail tendon, observed under identical conditions, appears instead made of heterogeneous, closely packed fibrils interwoven with orthogonal proteoglycan filaments. Pre-treatment with cupromeronic blue just thickens the filaments without affecting their spatial layout. Digestion with chondroitinase ABC rids the tendon matrix of all its interconnecting filaments while the corneal stroma architecture remains virtually unaffected, its fibrils always being separated by an evident interfibrillar spacing which is never observed in tendon. Our observations indicate that matrix proteoglycans are responsible for both the highly regular interfibrillar spacing which is distinctive of corneal stroma, and the strong interfibrillar binding observed in tendon. These opposite interaction patterns appear to be distinctive of different proteoglycan species. The molecular details of proteoglycan interactions are still incompletely understood and are the subject of ongoing research.

  15. Oscillations in interconnected complex networks under intentional attack

    NASA Astrophysics Data System (ADS)

    Zhang, Wen-Ping; Xia, Yongxiang; Tan, Fei

    2016-01-01

    Many real-world networks are interconnected with each other. In this paper, we study the traffic dynamics in interconnected complex networks under an intentional attack. We find that with the shortest time delay routing strategy, the traffic dynamics can show the stable state, periodic, quasi-periodic and chaotic oscillations, when the capacity redundancy parameter changes. Moreover, compared with isolated complex networks, oscillations always take place in interconnected networks more easily. Thirdly, in interconnected networks, oscillations are affected strongly by the coupling probability and coupling preference.

  16. Solar-cell interconnect design for terrestrial photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Mon, G. R.; Moore, D. M.; Ross, R. G., Jr.

    1984-01-01

    Useful solar cell interconnect reliability design and life prediction algorithms are presented, together with experimental data indicating that the classical strain cycle (fatigue) curve for the interconnect material does not account for the statistical scatter that is required in reliability predictions. This shortcoming is presently addressed by fitting a functional form to experimental cumulative interconnect failure rate data, which thereby yields statistical fatigue curves enabling not only the prediction of cumulative interconnect failures during the design life of an array field, but also the quantitative interpretation of data from accelerated thermal cycling tests. Optimal interconnect cost reliability design algorithms are also derived which may allow the minimization of energy cost over the design life of the array field.

  17. Solar cell array interconnects

    DOEpatents

    Carey, P.G.; Thompson, J.B.; Colella, N.J.; Williams, K.A.

    1995-11-14

    Electrical interconnects are disclosed for solar cells or other electronic components using a silver-silicone paste or a lead-tin (Pb-Sn) no-clean fluxless solder cream, whereby the high breakage of thin (<6 mil thick) solar cells using conventional solder interconnect is eliminated. The interconnects of this invention employs copper strips which are secured to the solar cells by a silver-silicone conductive paste which can be used at room temperature, or by a Pb-Sn solder cream which eliminates undesired residue on the active surfaces of the solar cells. Electrical testing using the interconnects of this invention has shown that no degradation of the interconnects developed under high current testing, while providing a very low contact resistance value. 4 figs.

  18. Solar cell array interconnects

    DOEpatents

    Carey, Paul G.; Thompson, Jesse B.; Colella, Nicolas J.; Williams, Kenneth A.

    1995-01-01

    Electrical interconnects for solar cells or other electronic components using a silver-silicone paste or a lead-tin (Pb-Sn) no-clean fluxless solder cream, whereby the high breakage of thin (<6 mil thick) solar cells using conventional solder interconnect is eliminated. The interconnects of this invention employs copper strips which are secured to the solar cells by a silver-silicone conductive paste which can be used at room temperature, or by a Pb-Sn solder cream which eliminates undesired residue on the active surfaces of the solar cells. Electrical testing using the interconnects of this invention has shown that no degradation of the interconnects developed under high current testing, while providing a very low contact resistance value.

  19. Process for electrically interconnecting electrodes

    DOEpatents

    Carey, Paul G.; Thompson, Jesse B.; Colella, Nicolas J.; Williams, Kenneth A.

    2002-01-01

    Electrical interconnects for solar cells or other electronic components using a silver-silicone paste or a lead-tin (Pb--Sn) no-clean fluxless solder cream, whereby the high breakage of thin (<6 mil thick) solar cells using conventional solder interconnect is eliminated. The interconnects of this invention employs copper strips which are secured to the solar cells by a silver-silicone conductive paste which can be used at room temperature, or by a Pb--Sn solder cream which eliminates undesired residue on the active surfaces of the solar cells. Electrical testing using the interconnects of this invention has shown that no degradation of the interconnects developed under high current testing, while providing a very low contact resistance value.

  20. Optical backplane interconnect switch for data processors and computers

    NASA Technical Reports Server (NTRS)

    Hendricks, Herbert D.; Benz, Harry F.; Hammer, Jacob M.

    1989-01-01

    An optoelectronic integrated device design is reported which can be used to implement an all-optical backplane interconnect switch. The switch is sized to accommodate an array of processors and memories suitable for direct replacement into the basic avionic multiprocessor backplane. The optical backplane interconnect switch is also suitable for direct replacement of the PI bus traffic switch and at the same time, suitable for supporting pipelining of the processor and memory. The 32 bidirectional switchable interconnects are configured with broadcast capability for controls, reconfiguration, and messages. The approach described here can handle a serial interconnection of data processors or a line-to-link interconnection of data processors. An optical fiber demonstration of this approach is presented.

  1. Solar-cell interconnect design for terrestrial photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Mon, G. R.; Moore, D. M.; Ross, R. G., Jr.

    1984-11-01

    Useful solar cell interconnect reliability design and life prediction algorithms are presented, together with experimental data indicating that the classical strain cycle (fatigue) curve for the interconnect material does not account for the statistical scatter that is required in reliability predictions. This shortcoming is presently addressed by fitting a functional form to experimental cumulative interconnect failure rate data, which thereby yields statistical fatigue curves enabling not only the prediction of cumulative interconnect failures during the design life of an array field, but also the quantitative interpretation of data from accelerated thermal cycling tests. Optimal interconnect cost reliability design algorithms are also derived which may allow the minimization of energy cost over the design life of the array field.

  2. Interconnect fatigue design for terrestrial photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Mon, G. R.; Moore, D. M.; Ross, R. G., Jr.

    1982-01-01

    The results of comprehensive investigation of interconnect fatigue that has led to the definition of useful reliability-design and life-prediction algorithms are presented. Experimental data indicate that the classical strain-cycle (fatigue) curve for the interconnect material is a good model of mean interconnect fatigue performance, but it fails to account for the broad statistical scatter, which is critical to reliability prediction. To fill this shortcoming the classical fatigue curve is combined with experimental cumulative interconnect failure rate data to yield statistical fatigue curves (having failure probability as a parameter) which enable (1) the prediction of cumulative interconnect failures during the design life of an array field, and (2) the unambiguous--ie., quantitative--interpretation of data from field-service qualification (accelerated thermal cycling) tests. Optimal interconnect cost-reliability design algorithms are derived based on minimizing the cost of energy over the design life of the array field.

  3. Interconnect fatigue design for terrestrial photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Mon, G. R.; Moore, D. M.; Ross, R. G., Jr.

    1982-03-01

    The results of comprehensive investigation of interconnect fatigue that has led to the definition of useful reliability-design and life-prediction algorithms are presented. Experimental data indicate that the classical strain-cycle (fatigue) curve for the interconnect material is a good model of mean interconnect fatigue performance, but it fails to account for the broad statistical scatter, which is critical to reliability prediction. To fill this shortcoming the classical fatigue curve is combined with experimental cumulative interconnect failure rate data to yield statistical fatigue curves (having failure probability as a parameter) which enable (1) the prediction of cumulative interconnect failures during the design life of an array field, and (2) the unambiguous--ie., quantitative--interpretation of data from field-service qualification (accelerated thermal cycling) tests. Optimal interconnect cost-reliability design algorithms are derived based on minimizing the cost of energy over the design life of the array field.

  4. Fast process flow, on-wafer interconnection and singulation for MEPV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okandan, Murat; Nielson, Gregory N.; Cruz-Campa, Jose Luis

    2017-01-31

    A method including providing a substrate comprising a device layer on which a plurality of device cells are defined; depositing a first dielectric layer on the device layer and metal interconnect such that the deposited interconnect is electrically connected to at least two of the device cells; depositing a second dielectric layer over the interconnect; and exposing at least one contact point on the interconnect through the second dielectric layer. An apparatus including a substrate having defined thereon a device layer including a plurality of device cells; a first dielectric layer disposed directly on the device layer; a plurality ofmore » metal interconnects, each of which is electrically connected to at least two of the device cells; and a second dielectric layer disposed over the first dielectric layer and over the interconnects, wherein the second dielectric layer is patterned in a positive or negative planar spring pattern.« less

  5. Fast process flow, on-wafer interconnection and singulation for MEPV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okandan, Murat; Nielson, Gregory N.; Cruz-Campa, Jose Luis

    2017-08-29

    A method including providing a substrate comprising a device layer on which a plurality of device cells are defined; depositing a first dielectric layer on the device layer and metal interconnect such that the deposited interconnect is electrically connected to at least two of the device cells; depositing a second dielectric layer over the interconnect; and exposing at least one contact point on the interconnect through the second dielectric layer. An apparatus including a substrate having defined thereon a device layer including a plurality of device cells; a first dielectric layer disposed directly on the device layer; a plurality ofmore » metal interconnects, each of which is electrically connected to at least two of the device cells; and a second dielectric layer disposed over the first dielectric layer and over the interconnects, wherein the second dielectric layer is patterned in a positive or negative planar spring pattern.« less

  6. 77 FR 25088 - Extension of the Commission's Rules Regarding Outage Reporting to Interconnected Voice Over...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-27

    ... Commission's rules to interconnected Voice over Internet Protocol (VoIP) service providers and defers action... to outages resulting from complete loss of service and only to interconnected VoIP services... obligations of interconnected VoIP service providers. DATES: The rules in this document contain information...

  7. Formed photovoltaic module busbars

    DOEpatents

    Rose, Douglas; Daroczi, Shan; Phu, Thomas

    2015-11-10

    A cell connection piece for a photovoltaic module is disclosed herein. The cell connection piece includes an interconnect bus, a plurality of bus tabs unitarily formed with the interconnect bus, and a terminal bus coupled with the interconnect bus. The plurality of bus tabs extend from the interconnect bus. The terminal bus includes a non-linear portion.

  8. Optical Interconnections for VLSI Computational Systems Using Computer-Generated Holography.

    NASA Astrophysics Data System (ADS)

    Feldman, Michael Robert

    Optical interconnects for VLSI computational systems using computer generated holograms are evaluated in theory and experiment. It is shown that by replacing particular electronic connections with free-space optical communication paths, connection of devices on a single chip or wafer and between chips or modules can be improved. Optical and electrical interconnects are compared in terms of power dissipation, communication bandwidth, and connection density. Conditions are determined for which optical interconnects are advantageous. Based on this analysis, it is shown that by applying computer generated holographic optical interconnects to wafer scale fine grain parallel processing systems, dramatic increases in system performance can be expected. Some new interconnection networks, designed to take full advantage of optical interconnect technology, have been developed. Experimental Computer Generated Holograms (CGH's) have been designed, fabricated and subsequently tested in prototype optical interconnected computational systems. Several new CGH encoding methods have been developed to provide efficient high performance CGH's. One CGH was used to decrease the access time of a 1 kilobit CMOS RAM chip. Another was produced to implement the inter-processor communication paths in a shared memory SIMD parallel processor array.

  9. Bringing the CMS distributed computing system into scalable operations

    NASA Astrophysics Data System (ADS)

    Belforte, S.; Fanfani, A.; Fisk, I.; Flix, J.; Hernández, J. M.; Kress, T.; Letts, J.; Magini, N.; Miccio, V.; Sciabà, A.

    2010-04-01

    Establishing efficient and scalable operations of the CMS distributed computing system critically relies on the proper integration, commissioning and scale testing of the data and workload management tools, the various computing workflows and the underlying computing infrastructure, located at more than 50 computing centres worldwide and interconnected by the Worldwide LHC Computing Grid. Computing challenges periodically undertaken by CMS in the past years with increasing scale and complexity have revealed the need for a sustained effort on computing integration and commissioning activities. The Processing and Data Access (PADA) Task Force was established at the beginning of 2008 within the CMS Computing Program with the mandate of validating the infrastructure for organized processing and user analysis including the sites and the workload and data management tools, validating the distributed production system by performing functionality, reliability and scale tests, helping sites to commission, configure and optimize the networking and storage through scale testing data transfers and data processing, and improving the efficiency of accessing data across the CMS computing system from global transfers to local access. This contribution reports on the tools and procedures developed by CMS for computing commissioning and scale testing as well as the improvements accomplished towards efficient, reliable and scalable computing operations. The activities include the development and operation of load generators for job submission and data transfers with the aim of stressing the experiment and Grid data management and workload management systems, site commissioning procedures and tools to monitor and improve site availability and reliability, as well as activities targeted to the commissioning of the distributed production, user analysis and monitoring systems.

  10. Individual pore and interconnection size analysis of macroporous ceramic scaffolds using high-resolution X-ray tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jerban, Saeed, E-mail: saeed.jerban@usherbrooke.ca

    2016-08-15

    The pore interconnection size of β-tricalcium phosphate scaffolds plays an essential role in the bone repair process. Although, the μCT technique is widely used in the biomaterial community, it is rarely used to measure the interconnection size because of the lack of algorithms. In addition, discrete nature of the μCT introduces large systematic errors due to the convex geometry of interconnections. We proposed, verified and validated a novel pore-level algorithm to accurately characterize the individual pores and interconnections. Specifically, pores and interconnections were isolated, labeled, and individually analyzed with high accuracy. The technique was verified thoroughly by visually inspecting andmore » verifying over 3474 properties of randomly selected pores. This extensive verification process has passed a one-percent accuracy criterion. Scanning errors inherent in the discretization, which lead to both dummy and significantly overestimated interconnections, have been examined using computer-based simulations and additional high-resolution scanning. Then accurate correction charts were developed and used to reduce the scanning errors. Only after the corrections, both the μCT and SEM-based results converged, and the novel algorithm was validated. Material scientists with access to all geometrical properties of individual pores and interconnections, using the novel algorithm, will have a more-detailed and accurate description of the substitute architecture and a potentially deeper understanding of the link between the geometric and biological interaction. - Highlights: •An algorithm is developed to analyze individually all pores and interconnections. •After pore isolating, the discretization errors in interconnections were corrected. •Dummy interconnections and overestimated sizes were due to thin material walls. •The isolating algorithm was verified through visual inspection (99% accurate). •After correcting for the systematic errors, algorithm was validated successfully.« less

  11. Interconnected semiconductor devices

    DOEpatents

    Grimmer, Derrick P.; Paulson, Kenneth R.; Gilbert, James R.

    1990-10-23

    Semiconductor layer and conductive layer formed on a flexible substrate, divided into individual devices and interconnected with one another in series by interconnection layers and penetrating terminals.

  12. Effect of the interconnected network structure on the epidemic threshold.

    PubMed

    Wang, Huijuan; Li, Qian; D'Agostino, Gregorio; Havlin, Shlomo; Stanley, H Eugene; Van Mieghem, Piet

    2013-08-01

    Most real-world networks are not isolated. In order to function fully, they are interconnected with other networks, and this interconnection influences their dynamic processes. For example, when the spread of a disease involves two species, the dynamics of the spread within each species (the contact network) differs from that of the spread between the two species (the interconnected network). We model two generic interconnected networks using two adjacency matrices, A and B, in which A is a 2N×2N matrix that depicts the connectivity within each of two networks of size N, and B a 2N×2N matrix that depicts the interconnections between the two. Using an N-intertwined mean-field approximation, we determine that a critical susceptible-infected-susceptible (SIS) epidemic threshold in two interconnected networks is 1/λ(1)(A+αB), where the infection rate is β within each of the two individual networks and αβ in the interconnected links between the two networks and λ(1)(A+αB) is the largest eigenvalue of the matrix A+αB. In order to determine how the epidemic threshold is dependent upon the structure of interconnected networks, we analytically derive λ(1)(A+αB) using a perturbation approximation for small and large α, the lower and upper bound for any α as a function of the adjacency matrix of the two individual networks, and the interconnections between the two and their largest eigenvalues and eigenvectors. We verify these approximation and boundary values for λ(1)(A+αB) using numerical simulations, and determine how component network features affect λ(1)(A+αB). We note that, given two isolated networks G(1) and G(2) with principal eigenvectors x and y, respectively, λ(1)(A+αB) tends to be higher when nodes i and j with a higher eigenvector component product x(i)y(j) are interconnected. This finding suggests essential insights into ways of designing interconnected networks to be robust against epidemics.

  13. Effect of the interconnected network structure on the epidemic threshold

    NASA Astrophysics Data System (ADS)

    Wang, Huijuan; Li, Qian; D'Agostino, Gregorio; Havlin, Shlomo; Stanley, H. Eugene; Van Mieghem, Piet

    2013-08-01

    Most real-world networks are not isolated. In order to function fully, they are interconnected with other networks, and this interconnection influences their dynamic processes. For example, when the spread of a disease involves two species, the dynamics of the spread within each species (the contact network) differs from that of the spread between the two species (the interconnected network). We model two generic interconnected networks using two adjacency matrices, A and B, in which A is a 2N×2N matrix that depicts the connectivity within each of two networks of size N, and B a 2N×2N matrix that depicts the interconnections between the two. Using an N-intertwined mean-field approximation, we determine that a critical susceptible-infected-susceptible (SIS) epidemic threshold in two interconnected networks is 1/λ1(A+αB), where the infection rate is β within each of the two individual networks and αβ in the interconnected links between the two networks and λ1(A+αB) is the largest eigenvalue of the matrix A+αB. In order to determine how the epidemic threshold is dependent upon the structure of interconnected networks, we analytically derive λ1(A+αB) using a perturbation approximation for small and large α, the lower and upper bound for any α as a function of the adjacency matrix of the two individual networks, and the interconnections between the two and their largest eigenvalues and eigenvectors. We verify these approximation and boundary values for λ1(A+αB) using numerical simulations, and determine how component network features affect λ1(A+αB). We note that, given two isolated networks G1 and G2 with principal eigenvectors x and y, respectively, λ1(A+αB) tends to be higher when nodes i and j with a higher eigenvector component product xiyj are interconnected. This finding suggests essential insights into ways of designing interconnected networks to be robust against epidemics.

  14. Scaling induced performance challenges/limitations of on-chip metal interconnects and comparisons with optical interconnects

    NASA Astrophysics Data System (ADS)

    Kapur, Pawan

    The miniaturization paradigm for silicon integrated circuits has resulted in a tremendous cost and performance advantage. Aggressive shrinking of devices provides faster transistors and a greater functionality for circuit design. However, scaling induced smaller wire cross-sections coupled with longer lengths owing to larger chip areas, result in a steady deterioration of interconnects. This degradation in interconnect trends threatens to slow down the rapid growth along Moore's law. This work predicts that the situation is worse than anticipated. It shows that in the light of technology and reliability constraints, scaling induced increase in electron surface scattering, fractional cross section area occupied by the highly resistive barrier, and realistic interconnect operation temperature will lead to a significant rise in effective resistivity of modern copper based interconnects. We start by discussing various technology factors affecting copper resistivity. We, next, develop simulation tools to model these effects. Using these tools, we quantify the increase in realistic copper resistivity as a function of future technology nodes, under various technology assumptions. Subsequently, we evaluate the impact of these technology effects on delay and power dissipation of global signaling interconnects. Modern long on-chip wires use repeaters, which dramatically improves their delay and bandwidth. We quantify the repeated wire delays and power dissipation using realistic resistance trends at future nodes. With the motivation of reducing power, we formalize a methodology, which trades power with delay very efficiently for repeated wires. Using this method, we find that although the repeater power comes down, the total power dissipation due to wires is still found to be very large at future nodes. Finally, we explore optical interconnects as a possible substitute, for specific interconnect applications. We model an optical receiver and waveguides. Using this we assess future optical system performance. Finally, we compare the delay and power of future metal interconnects with that of optical interconnects for global signaling application. We also compare the power dissipation of the two approaches for an upper level clock distribution application. We find that for long on-chip communication links, optical interconnects have lower latencies than future metal interconnects at comparable levels of power dissipation.

  15. Chip-package nano-structured copper and nickel interconnections with metallic and polymeric bonding interfaces

    NASA Astrophysics Data System (ADS)

    Aggarwal, Ankur

    With the semiconductor industry racing toward a historic transition, nano chips with less than 45 nm features demand I/Os in excess of 20,000 that support computing speed in terabits per second, with multi-core processors aggregately providing highest bandwidth at lowest power. On the other hand, emerging mixed signal systems are driving the need for 3D packaging with embedded active components and ultra-short interconnections. Decreasing I/O pitch together with low cost, high electrical performance and high reliability are the key technological challenges identified by the 2005 International Technology Roadmap for Semiconductors (ITRS). Being able to provide several fold increase in the chip-to-package vertical interconnect density is essential for garnering the true benefits of nanotechnology that will utilize nano-scale devices. Electrical interconnections are multi-functional materials that must also be able to withstand complex, sustained and cyclic thermo-mechanical loads. In addition, the materials must be environmentally-friendly, corrosion resistant, thermally stable over a long time, and resistant to electro-migration. A major challenge is also to develop economic processes that can be integrated into back end of the wafer foundry, i.e. with wafer level packaging. Device-to-system board interconnections are typically accomplished today with either wire bonding or solders. Both of these are incremental and run into either electrical or mechanical barriers as they are extended to higher density of interconnections. Downscaling traditional solder bump interconnect will not satisfy the thermo-mechanical reliability requirements at very fine pitches of the order of 30 microns and less. Alternate interconnection approaches such as compliant interconnects typically require lengthy connections and are therefore limited in terms of electrical properties, although expected to meet the mechanical requirements. A novel chip-package interconnection technology is developed to address the IC packaging requirements beyond the ITRS projections and to introduce innovative design and fabrication concepts that will further advance the performance of the chip, the package, and the system board. The nano-structured interconnect technology simultaneously packages all the ICs intact in wafer form with quantum jump in the number of interconnections with the lowest electrical parasitics. The intrinsic properties of nano materials also enable several orders of magnitude higher interconnect densities with the best mechanical properties for the highest reliability and yet provide higher current and heat transfer densities. Nano-structured interconnects provides the ability to assemble the packaged parts on the system board without the use of underfill materials and to enable advanced analog/digital testing, reliability testing, and burn-in at wafer level. This thesis investigates the electrical and mechanical performance of nanostructured interconnections through modeling and test vehicle fabrication. The analytical models evaluate the performance improvements over solder and compliant interconnections. Test vehicles with nano-interconnections were fabricated using low cost electro-deposition techniques and assembled with various bonding interfaces. Interconnections were fabricated at 200 micron pitch to compare with the existing solder joints and at 50 micron pitch to demonstrate fabrication processes at fine pitches. Experimental and modeling results show that the proposed nano-interconnections could enhance the reliability and potentially meet all the system performance requirements for the emerging micro/nano-systems.

  16. 76 FR 20655 - American Electric Power Service Corporation v. PJM Interconnection, L.L.C.; Notice of Complaint

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    ... Electric Power Service Corporation v. PJM Interconnection, L.L.C.; Notice of Complaint Take notice that on... complaint against PJM Interconnection, L.L.C. (Respondent), alleging that Schedule 8.1, section D.8 to the PJM Interconnection, L.L.C. Reliability Assurance Agreement is unjust, unreasonable, and unduly...

  17. 76 FR 39129 - Tensolite, LLC D/B/A Carlisle Interconnect Assemblies Including On-Site Leased Workers From Volt...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-05

    ... Carlisle Interconnect Assemblies Including On-Site Leased Workers From Volt Services Group and Adecco..., applicable to workers of Tensolite, LLC, d/b/a Carlisle Interconnect Assemblies, including on-site leased... interconnect assemblies. The notice was published in the Federal Register on September 2, 2009 (74 FR 45476...

  18. 47 CFR 9.7 - Access to 911 and E911 service capabilities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... service shall make that capability available to a requesting interconnected VoIP provider as set forth in... interconnected VoIP provider. An owner or controller makes a capability available to a CMRS provider if the owner... interconnected VoIP provider only if that capability is necessary to enable the interconnected VoIP provider to...

  19. 47 CFR 9.7 - Access to 911 and E911 service capabilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... service shall make that capability available to a requesting interconnected VoIP provider as set forth in... interconnected VoIP provider. An owner or controller makes a capability available to a CMRS provider if the owner... interconnected VoIP provider only if that capability is necessary to enable the interconnected VoIP provider to...

  20. System Interconnections. A Survey of Technical Requirements for Broadband Cable Teleservices; Volume Five.

    ERIC Educational Resources Information Center

    McManamon, Peter M.

    Several aspects of system interconnections are treated in this report. The interconnection of existing and future cable television (CATV) systems for two-way transfer of audio/video and digital data signals is surveyed. The concept of interconnection is explored relative to existing and proposed CATV systems and broadband teleservice networks,…

  1. 78 FR 19259 - Notice of Attendance at PJM Interconnection, L.L.C. Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-29

    ... Interconnection, L.L.C. Meetings The Federal Energy Regulatory Commission (Commission) hereby gives notice that members of the Commission and Commission staff may attend upcoming PJM Interconnection, L.L.C. (PJM... proceedings: Docket No. EL05-121, PJM Interconnection, L.L.C. Docket No. EL08-14, Black Oak Energy LLC, et al...

  2. 75 FR 40815 - PJM Interconnection, L.L.C.; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-14

    ... Interconnection, L.L.C.; Notice of Filing July 7, 2010. Take notice that on July 1, 2010, PJM Interconnection, L.L.C. (PJM) filed revised sheets to Schedule 1 of the Amended and Restated Operating Agreement of PJM Interconnection, L.L.C. (Operating Agreement) and the parallel provisions of Attachment K--Appendix of the PJM...

  3. 75 FR 22773 - PJM Interconnection, L.L.C.; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-30

    ... Interconnection, L.L.C.; Notice of Filing April 23, 2010. Take notice that on April 22, 2010, PJM Interconnection, L.L.C. (PJM) filed revised tariff sheets to its Schedule 1 of the Amended and Restated Operating... (Commission) March 23, 2010 Order on Compliance Filing, PJM Interconnection, L.L.C., 130 FERC ] 61,230 (2010...

  4. 76 FR 45248 - PJM Interconnection, L.L.C., PJM Power Providers Group v. PJM Interconnection, L.L.C...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-28

    ...-002; Docket No. EL11-20-001] PJM Interconnection, L.L.C., PJM Power Providers Group v. PJM Interconnection, L.L.C.; Supplemental Notice of Staff Technical Conference On June 13, 2011, the Commission issued... Resources Services, Inc., Maryland Public Service Commission, Monitoring Analytics, L.L.C., National Rural...

  5. 77 FR 34378 - PJM Interconnection, L.L.C.; Notice of Complaint

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-11

    ... Interconnection, L.L.C.; Notice of Complaint Take notice that on June 1, 2012, pursuant to section 206 of the Federal Power Act (FPA), 16 U.S.C. 824(e), PJM Interconnection, L.L.C. (PJM) filed proposed revisions to the Amended and Restated Operating Agreement of PJM Interconnection L.L.C. (Operating Agreement) to...

  6. Ultra-precision fabrication of high density micro-optical backbone interconnections for data center and mobile application

    NASA Astrophysics Data System (ADS)

    Lohmann, U.; Jahns, J.; Wagner, T.; Werner, C.

    2012-10-01

    A microoptical 3D interconnection scheme and fabricated samples of this fiberoptical multi-channel interconnec- tion with an actual capacity of 144 channels were shown. Additionally the aspects of micrometer-fabrication of such microoptical interconnection modules in the view of alignment-tolerances were considered. For the realiza- tion of the interconnection schemes, the approach of planar-integrated free space optics (PIFSO) is used with its well known advantages. This approach offers the potential for complex interconnectivity, and yet compact size.

  7. Solid-state energy storage module employing integrated interconnect board

    DOEpatents

    Rouillard, Jean; Comte, Christophe; Daigle, Dominik; Hagen, Ronald A.; Knudson, Orlin B.; Morin, Andre; Ranger, Michel; Ross, Guy; Rouillard, Roger; St-Germain, Philippe; Sudano, Anthony; Turgeon, Thomas A.

    2004-09-28

    An electrochemical energy storage device includes a number of solid-state thin-film electrochemical cells which are selectively interconnected in series or parallel through use of an integrated interconnect board. The interconnect board is typically disposed within a sealed housing which also houses the electrochemical cells, and includes a first contact and a second contact respectively coupled to first and second power terminals of the energy storage device. The interconnect board advantageously provides for selective series or parallel connectivity with the electrochemical cells, irrespective of electrochemical cell position within the housing. Fuses and various electrical and electro-mechanical devices, such as bypass, equalization, and communication devices for example, may also be mounted to the interconnect board and selectively connected to the electrochemical cells.

  8. Optimizing the U.S. Electric System with a High Penetration of Renewables

    NASA Astrophysics Data System (ADS)

    Corcoran, B. A.; Jacobson, M. Z.

    2012-12-01

    As renewable energy generators are increasingly being installed throughout the U.S., there is growing interest in interconnecting diverse renewable generators (primarily wind and solar) across large geographic areas through an enhanced transmission system. This reduces variability in the aggregate power output, increases system reliability, and allows for the development of the best overall group of renewable technologies and sites to meet the load. Studies are therefore needed to determine the most efficient and economical plan to achieve large area interconnections in a future electric system with a high penetration of renewables. This research quantifies the effects of aggregating electric load and, separately, electric load together with diverse renewable generation throughout the ten Federal Energy Regulatory Commission (FERC) regions in the contiguous U.S. The effects of aggregating electric load alone -- including generator capacity capital cost savings, load energy shift operating cost savings, reserve requirement cost savings, and transmission costs -- were calculated for various groupings of FERC regions using 2006 data. Transmission costs outweighed cost savings due to aggregation in nearly all cases. East-west transmission layouts had the highest overall cost, and interconnecting ERCOT to adjacent FERC regions resulted in increased costs, both due to limited existing transmission capacity. Scenarios consisting of smaller aggregation groupings had the lowest overall cost. This analysis found no economic case for further aggregation of load alone within the U.S., except possibly in the West and Northwest. If aggregation of electric load is desired, then small, regional consolidations yield the lowest overall system cost. Next, the effects of aggregating electric load together with renewable electricity generation are being quantified through the development and use of an optimization tool in AMPL (A Mathematical Programming Language). This deterministic linear program solves for the least-cost organizational structure and system (generator, transmission, storage, and reserve requirements) for a highly renewable U.S. electric grid. The analysis will 1) examine a highly renewable 2006 electric system, and 2) create a "roadmap" from the existing 2006 system to a highly renewable system in 2030, accounting for projected price and demand changes and generator retirements based on age and environmental regulations. Ideally, results from this study will offer insight for a federal renewable energy policy (such as a renewable portfolio standard) and how to best organize regions for transmission planning.

  9. Demonstration of a Novel Synchrophasor-based Situational Awareness System: Wide Area Power System Visualization, On-line Event Replay and Early Warning of Grid Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosso, A.

    Since the large North Eastern power system blackout on August 14, 2003, U.S. electric utilities have spent lot of effort on preventing power system cascading outages. Two of the main causes of the August 14, 2003 blackout were inadequate situational awareness and inadequate operator training In addition to the enhancements of the infrastructure of the interconnected power systems, more research and development of advanced power system applications are required for improving the wide-area security monitoring, operation and planning in order to prevent large- scale cascading outages of interconnected power systems. It is critically important for improving the wide-area situation awarenessmore » of the operators or operational engineers and regional reliability coordinators of large interconnected systems. With the installation of large number of phasor measurement units (PMU) and the related communication infrastructure, it will be possible to improve the operators’ situation awareness and to quickly identify the sequence of events during a large system disturbance for the post-event analysis using the real-time or historical synchrophasor data. The purpose of this project was to develop and demonstrate a novel synchrophasor-based comprehensive situational awareness system for control centers of power transmission systems. The developed system named WASA (Wide Area Situation Awareness) is intended to improve situational awareness at control centers of the power system operators and regional reliability coordinators. It consists of following main software modules: • Wide-area visualizations of real-time frequency, voltage, and phase angle measurements and their contour displays for security monitoring. • Online detection and location of a major event (location, time, size, and type, such as generator or line outage). • Near-real-time event replay (in seconds) after a major event occurs. • Early warning of potential wide-area stability problems. The system has been deployed and demonstrated at the Tennessee Valley Authority (TVA) and ISO New England system using real-time synchrophasor data from openPDC. Apart from the software product, the outcome of this project consists of a set of technical reports and papers describing the mathematical foundations and computational approaches of different tools and modules, implementation issues and considerations, lessons learned, and the results of lidation processes.« less

  10. 47 CFR 52.34 - Obligations regarding local number porting to and from interconnected VoIP or Internet-based TRS...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... and from interconnected VoIP or Internet-based TRS providers. 52.34 Section 52.34 Telecommunication... Portability § 52.34 Obligations regarding local number porting to and from interconnected VoIP or Internet-based TRS providers. (a) An interconnected VoIP or VRS or IP Relay provider must facilitate an end-user...

  11. 47 CFR 52.34 - Obligations regarding local number porting to and from interconnected VoIP or Internet-based TRS...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... and from interconnected VoIP or Internet-based TRS providers. 52.34 Section 52.34 Telecommunication... Portability § 52.34 Obligations regarding local number porting to and from interconnected VoIP or Internet-based TRS providers. (a) An interconnected VoIP or VRS or IP Relay provider must facilitate an end-user...

  12. Cascade solar cell having conductive interconnects

    DOEpatents

    Borden, Peter G.; Saxena, Ram R.

    1982-10-26

    Direct ohmic contact between the cells in an epitaxially grown cascade solar cell is obtained by means of conductive interconnects formed through grooves etched intermittently in the upper cell. The base of the upper cell is directly connected by the conductive interconnects to the emitter of the bottom cell. The conductive interconnects preferably terminate on a ledge formed in the base of the upper cell.

  13. Integration of a waveguide self-electrooptic effect device and a vertically coupled interconnect waveguide

    DOEpatents

    Vawter, G Allen [Corrales, NM

    2008-02-26

    A self-electrooptic effect device ("SEED") is integrated with waveguide interconnects through the use of vertical directional couplers. Light initially propagating in the interconnect waveguide is vertically coupled to the active waveguide layer of the SEED and, if the SEED is in the transparent state, the light is coupled back to the interconnect waveguide.

  14. 77 FR 3766 - PJM Interconnection, L.L.C.; Notice of Staff Technical Conference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-25

    ... Interconnection, L.L.C.; Notice of Staff Technical Conference On December 14, 2011, the Commission issued an order... Interconnection, L.L.C.'s (PJM) filing.\\1\\ Take notice that the technical conference will be held on February 14...\\ PJM Interconnection, L.L.C., 137 FERC ] 61,204 (2011) (December 14 Order). All interested parties are...

  15. 77 FR 10505 - Notice of Attendance at PJM Interconnection, L.L.C. Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-22

    ... Interconnection, L.L.C. Meetings The Federal Energy Regulatory Commission (Commission) hereby gives notice that members of the Commission and Commission staff may attend upcoming PJM Interconnection, L.L.C. (PJM..., PJM Interconnection, L.L.C. Docket Nos. ER06-456, ER06-880, ER06-954, ER06-1271, EL07-57, ER07-424...

  16. Stress redistribution and damage in interconnects caused by electromigration

    NASA Astrophysics Data System (ADS)

    Chiras, Stefanie Ruth

    Electromigration has long been recognized as a phenomenon that induces mass redistribution in metals which, when constrained, can lead to the creation of stress. Since the development of the integrated circuit, electromigration. in interconnects, (the metal lines which carry current between devices in integrated circuits), has become a reliability concern. The primary failure mechanism in the interconnects is usually voiding, which causes electrical resistance increases in the circuit. In some cases, however, another failure mode occurs, fracture of the surrounding dielectric driven by electromigration induced compressive stresses within the interconnect. It is this failure mechanism that is the focus of this thesis. To study dielectric fracture, both residual processing stresses and the development of electromigration induced stress in isolated, constrained interconnects was measured. The high-resolution measurements were made using two types of piezospectroscopy, complemented by finite element analysis (FEA). Both procedures directly measured stress in the underlying or neighboring substrate and used FEA to determine interconnect stresses. These interconnect stresses were related to the effected circuit failure mode through post-test scanning electron microscopy and resistance measurements taken during electromigration testing. The results provide qualitative evidence of electromigration driven passivation fracture, and quantitative analysis of the theoretical model of the failure, the "immortal" interconnect concept.

  17. Cascading failures in interconnected networks with dynamical redistribution of loads

    NASA Astrophysics Data System (ADS)

    Zhao, Zhuang; Zhang, Peng; Yang, Hujiang

    2015-09-01

    Cascading failures of loads in isolated networks and coupled networks have been studied in the past few years. In most of the corresponding results, the topologies of the networks are destroyed. Here, we present an interconnected network model considering cascading failures based on the dynamic redistribution of flow in the networks. Compared with the results of single scale-free networks, we find that interconnected scale-free networks have higher vulnerability. Additionally, the network heterogeneity plays an important role in the robustness of interconnected networks under intentional attacks. Considering the effects of various coupling preferences, the results show that there are almost no differences. Finally, the application of our model to the Beijing interconnected traffic network, which consists of a subway network and a bus network, shows that the subway network suffers more damage under the attack. Moreover, the interconnected traffic network may be more exposed to damage after initial attacks on the bus network. These discussions are important for the design and optimization of interconnected networks.

  18. Evaluation of electricity generation from lignin residue and biogas in cellulosic ethanol production.

    PubMed

    Liu, Gang; Bao, Jie

    2017-11-01

    This study takes the first insight on the rigorous evaluation of electricity generation based on the experimentally measured higher heating value (HHV) of lignin residue, as well as the chemical oxygen demand (COD) and biological oxygen demand (BOD 5 ) of wastewater. For producing one metric ton of ethanol fuel from five typical lignocellulose substrates, including corn stover, wheat straw, rice straw, sugarcane bagasse and poplar sawdust, 1.26-1.85tons of dry lignin residue is generated from biorefining process and 0.19-0.27tons of biogas is generated from anaerobic digestion of wastewater, equivalent to 4335-5981kWh and 1946-2795kWh of electricity by combustion of the generated lignin residue and biogas, respectively. The electricity generation not only sufficiently meets the electricity needs of process requirement, but also generates more than half of electricity surplus selling to the grid. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Method for fabricating an interconnected array of semiconductor devices

    DOEpatents

    Grimmer, Derrick P.; Paulson, Kenneth R.; Gilbert, James R.

    1989-10-10

    Semiconductor layer and conductive layer formed on a flexible substrate, divided into individual devices and interconnected with one another in series by interconnection layers and penetrating terminals.

  20. Solid-state energy storage module employing integrated interconnect board

    DOEpatents

    Rouillard, Jean; Comte, Christophe; Daigle, Dominik; Hagen, Ronald A.; Knudson, Orlin B.; Morin, Andre; Ranger, Michel; Ross, Guy; Rouillard, Roger; St-Germain, Philippe; Sudano, Anthony; Turgeon, Thomas A.

    2003-11-04

    The present invention is directed to an improved electrochemical energy storage device. The electrochemical energy storage device includes a number of solid-state, thin-film electrochemical cells which are selectively interconnected in series or parallel through use of an integrated interconnect board. The interconnect board is typically disposed within a sealed housing which also houses the electrochemical cells, and includes a first contact and a second contact respectively coupled to first and second power terminals of the energy storage device. The interconnect board advantageously provides for selective series or parallel connectivity with the electrochemical cells, irrespective of electrochemical cell position within the housing. Fuses and various electrical and electromechanical devices, such as bypass, equalization, and communication devices for example, may also be mounted to the interconnect board and selectively connected to the electrochemical cells.

  1. Performance of Topological Insulator Interconnects

    NASA Astrophysics Data System (ADS)

    Philip, Timothy M.; Hirsbrunner, Mark R.; Park, Moon Jip; Gilbert, Matthew J.

    2017-01-01

    The poor performance of copper interconnects at the nanometer scale calls for new material solutions for continued scaling of integrated circuits. We propose the use of three dimensional time-reversal-invariant topological insulators (TIs), which host backscattering-protected surface states, for this purpose. Using semiclassical methods, we demonstrate that nanoscale TI interconnects have a resistance 1-3 orders of magnitude lower than copper interconnects and graphene nanoribbons at the nanometer scale. We use the nonequilibrium Green function (NEGF) formalism to measure the change in conductance of nanoscale TI and metal interconnects caused by the presence of impurity disorder. We show that metal interconnects suffer a resistance increase, relative to the clean limit, in excess of 500% due to disorder while the TI's surface states increase less than 35% in the same regime.

  2. Optical interconnections and networks; Proceedings of the Meeting, The Hague, Netherlands, Mar. 14, 15, 1990

    NASA Technical Reports Server (NTRS)

    Bartelt, Hartmut (Editor)

    1990-01-01

    The conference presents papers on interconnections, clock distribution, neural networks, and components and materials. Particular attention is given to a comparison of optical and electrical data interconnections at the board and backplane levels, a wafer-level optical interconnection network layout, an analysis and simulation of photonic switch networks, and the integration of picosecond GaAs photoconductive devices with silicon circuits for optical clocking and interconnects. Consideration is also given to the optical implementation of neural networks, invariance in an optoelectronic implementation of neural networks, and the recording of reversible patterns in polymer lightguides.

  3. Perforation patterned electrical interconnects

    DOEpatents

    Frey, Jonathan

    2014-01-28

    This disclosure describes systems and methods for increasing the usable surface area of electrical contacts within a device, such as a thin film solid state device, through the implementation of electrically conductive interconnects. Embodiments described herein include the use of a plurality of electrically conductive interconnects that penetrate through a top contact layer, through one or more multiple layers, and into a bottom contact layer. The plurality of conductive interconnects may form horizontal and vertical cross-sectional patterns. The use of lasers to form the plurality of electrically conductive interconnects from reflowed layer material further aids in the manufacturing process of a device.

  4. Computer-Aided Design/Manufacturing (CAD/M) for High-Speed Interconnect.

    DTIC Science & Technology

    1981-10-01

    are frequency sensitive and hence lend themselves to frequency domain ananlysis . Most of the classical microwave analysis is handled in the frequency ...capability integrated into a time-domain analysis program. This approach allows determination of frequency -dependent transmission line (interconnect...the items to consider in any interconnect study is that of the frequency range of interest. This determines whether the interconnections must be treated

  5. Policy issues in interconnecting networks

    NASA Technical Reports Server (NTRS)

    Leiner, Barry M.

    1989-01-01

    To support the activities of the Federal Research Coordinating Committee (FRICC) in creating an interconnected set of networks to serve the research community, two workshops were held to address the technical support of policy issues that arise when interconnecting such networks. The workshops addressed the required and feasible technologies and architectures that could be used to satisfy the desired policies for interconnection. The results of the workshop are documented.

  6. Novel Three-Dimensional Vertical Interconnect Technology for Microwave and RF Applications

    NASA Technical Reports Server (NTRS)

    Goverdhanam, Kavita; Simons, Rainee N.; Katehi, Linda P. B.

    1999-01-01

    In this paper, novel 3D interconnects suitable for applications in microwave and RF integrated circuit technology have been presented. The interconnect fabrication process and design details are presented. In addition, measured and numerically modeled results of the performance of the interconnects have been shown. The results indicate that the proposed technology has tremendous potential applications in integrated circuit technology. C,

  7. 77 FR 9225 - Allegheny Electric Cooperative, Inc., et al. v. PJM Interconnection, L.L.C.; Organization of PJM...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-16

    ...-58-010] Allegheny Electric Cooperative, Inc., et al. v. PJM Interconnection, L.L.C.; Organization of PJM States, Inc., et al. v. PJM Interconnection, L.L.C.; Notice of Filing Take notice that on February... by section 18.17.4 of the Amended and Restated Operating Agreement of PJM Interconnection, L.L.C. and...

  8. 47 CFR 90.477 - Interconnected systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... part and medical emergency systems in the 450-470 MHz band, interconnection will be permitted only... operating on frequencies in the bands below 800 MHz are not subject to the interconnection provisions of...

  9. A new mix of power for the ESO installations in Chile: greener, more reliable, cheaper

    NASA Astrophysics Data System (ADS)

    Filippi, G.; Tamai, R.; Kalaitzoglou, D.; Wild, W.; Delorme, A.; Rioseco, D.

    2016-07-01

    The highest sky quality demands for astronomical research impose to locate observatories often in areas not easily reached by the existing power infrastructures. At the same time, availability and cost of power is a primary factor for sustainable operations. Power may also be a potential source for CO2 pollution. As part of its green initiatives, ESO is in the process of replacing the power sources for its own, La Silla and Paranal-Armazones, and shared, ALMA, installations in Chile in order to provide them with more reliable, affordable, and smaller CO2 footprint power solutions. The connectivity to the Chilean interconnected power systems (grid) which is to extensively use Non-Conventional Renewable Energy (NCRE) as well as the use of less polluting fuels wherever self-generation cannot be avoided are key building blocks for the solutions selected for every site. In addition, considerations such as the environmental impact and - if required - the partnership with other entities have also to be taken into account. After years of preparatory work to which the Chilean Authorities provided great help and support, ESO has now launched an articulated program to upgrade the existing agreements/facilities in i) the La Silla Observatory, from free to regulated grid client status due to an agreement with a Solar Farm private initiative, in ii) the Paranal-Armazones Observatory, from local generation using liquefied petroleum gas (LPG) to connection to the grid which is to extensively use NCRE, and last but not least, in iii) the ALMA Observatory where ESO participates together with North American and East Asian partners, from replacing the LPG as fuel for the turbine local generation system with the use of less polluting natural gas (NG) supplied by a pipe connection to eliminate the pollution caused by the LPG trucks (currently 1 LPG truck from the VIII region, Bio Bio, to the II region, ALMA and back every day, for a total of 3000km). The technologies used and the status of completion of the different projects, as well as the expected benefits are discussed in this paper.

  10. High temperature solid electrolyte fuel cell configurations and interconnections

    DOEpatents

    Isenberg, Arnold O.

    1984-01-01

    High temperature fuel cell configurations and interconnections are made including annular cells having a solid electrolyte sandwiched between thin film electrodes. The cells are electrically interconnected along an elongated axial outer surface.

  11. DGIC Interconnection Insights | Distributed Generation Interconnection

    Science.gov Websites

    reading. The State of Pre-Application Reports June 2017 by Zachary Peterson, National Renewable Energy DER interconnection processes. Some state regulators have sought the use of pre-application reports to

  12. Next generation space interconnect research and development in space communications

    NASA Astrophysics Data System (ADS)

    Collier, Charles Patrick

    2017-11-01

    Interconnect or "bus" is one of the critical technologies in design of spacecraft avionics systems that dictates its architecture and complexity. MIL-STD-1553B has long been used as the avionics backbone technology. As avionics systems become more and more capable and complex, however, limitations of MIL-STD-1553B such as insufficient 1 Mbps bandwidth and separability have forced current avionics architects and designers to use combination of different interconnect technologies in order to meet various requirements: CompactPCI is used for backplane interconnect; LVDS or RS422 is used for low and high-speed direct point-to-point interconnect; and some proprietary interconnect standards are designed for custom interfaces. This results in a very complicated system that consumes significant spacecraft mass and power and requires extensive resources in design, integration and testing of spacecraft systems.

  13. Satellite Interconnection and Distance Delivery in Alaska: Toward the 21st Century. Summary and Recommendations of the Satellite Interconnection Project under the Direction of the Telecommunications Information Council.

    ERIC Educational Resources Information Center

    Alaska Public Broadcasting Commission, Juneau.

    The Satellite Interconnection Project was created for the purpose of investigating the interest and need for improved interconnection, faster and of greater capacity than the capability of present systems, especially among Alaska state-supported users of video and audio transmissions. The intent was to explore the cost-benefit and the potential…

  14. Design of a highly parallel board-level-interconnection with 320 Gbps capacity

    NASA Astrophysics Data System (ADS)

    Lohmann, U.; Jahns, J.; Limmer, S.; Fey, D.; Bauer, H.

    2012-01-01

    A parallel board-level interconnection design is presented consisting of 32 channels, each operating at 10 Gbps. The hardware uses available optoelectronic components (VCSEL, TIA, pin-diodes) and a combination of planarintegrated free-space optics, fiber-bundles and available MEMS-components, like the DMD™ from Texas Instruments. As a specific feature, we present a new modular inter-board interconnect, realized by 3D fiber-matrix connectors. The performance of the interconnect is evaluated with regard to optical properties and power consumption. Finally, we discuss the application of the interconnect for strongly distributed system architectures, as, for example, in high performance embedded computing systems and data centers.

  15. Solid-state energy storage module employing integrated interconnect board

    DOEpatents

    Rouillard, Jean; Comte, Christophe; Daigle, Dominik; Hagen, Ronald A.; Knudson, Orlin B.; Morin, Andre; Ranger, Michel; Ross, Guy; Rouillard, Roger; St-Germain, Philippe; Sudano, Anthony; Turgeon, Thomas A.

    2000-01-01

    The present invention is directed to an improved electrochemical energy storage device. The electrochemical energy storage device includes a number of solid-state, thin-film electrochemical cells which are selectively interconnected in series or parallel through use of an integrated interconnect board. The interconnect board is typically disposed within a sealed housing which also houses the electrochemical cells, and includes a first contact and a second contact respectively coupled to first and second power terminals of the energy storage device. The interconnect board advantageously provides for selective series or parallel connectivity with the electrochemical cells, irrespective of electrochemical cell position within the housing. In one embodiment, a sheet of conductive material is processed by employing a known milling, stamping, or chemical etching technique to include a connection pattern which provides for flexible and selective interconnecting of individual electrochemical cells within the housing, which may be a hermetically sealed housing. Fuses and various electrical and electro-mechanical devices, such as bypass, equalization, and communication devices for example, may also be mounted to the interconnect board and selectively connected to the electrochemical cells.

  16. Cantilever testing of sintered-silver interconnects

    DOE PAGES

    Wereszczak, Andrew A.; Chen, Branndon R.; Jadaan, Osama M.; ...

    2017-10-19

    Cantilever testing is an underutilized test method from which results and interpretations promote greater understanding of the tensile and shear failure responses of interconnects, metallizations, or bonded joints. The use and analysis of this method were pursued through the mechanical testing of sintered-silver interconnects that joined Ni/Au-plated copper pillars or Ti/Ni/Ag-plated silicon pillars to Ag-plated direct bonded copper substrates. Sintered-silver was chosen as the interconnect test medium because of its high electrical and thermal conductivities and high-temperature capability—attractive characteristics for a candidate interconnect in power electronic components and other devices. Deep beam theory was used to improve upon the estimationsmore » of the tensile and shear stresses calculated from classical beam theory. The failure stresses of the sintered-silver interconnects were observed to be dependent on test-condition and test-material-system. In conclusion, the experimental simplicity of cantilever testing, and the ability to analytically calculate tensile and shear stresses at failure, result in it being an attractive mechanical test method to evaluate the failure response of interconnects.« less

  17. Cantilever testing of sintered-silver interconnects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wereszczak, Andrew A.; Chen, Branndon R.; Jadaan, Osama M.

    Cantilever testing is an underutilized test method from which results and interpretations promote greater understanding of the tensile and shear failure responses of interconnects, metallizations, or bonded joints. The use and analysis of this method were pursued through the mechanical testing of sintered-silver interconnects that joined Ni/Au-plated copper pillars or Ti/Ni/Ag-plated silicon pillars to Ag-plated direct bonded copper substrates. Sintered-silver was chosen as the interconnect test medium because of its high electrical and thermal conductivities and high-temperature capability—attractive characteristics for a candidate interconnect in power electronic components and other devices. Deep beam theory was used to improve upon the estimationsmore » of the tensile and shear stresses calculated from classical beam theory. The failure stresses of the sintered-silver interconnects were observed to be dependent on test-condition and test-material-system. In conclusion, the experimental simplicity of cantilever testing, and the ability to analytically calculate tensile and shear stresses at failure, result in it being an attractive mechanical test method to evaluate the failure response of interconnects.« less

  18. Quasi-static time-series simulation using OpenDSS in IEEE distribution feeder model with high PV penetration and its impact on solar forecasting

    NASA Astrophysics Data System (ADS)

    Mohammed, Touseef Ahmed Faisal

    Since 2000, renewable electricity installations in the United States (excluding hydropower) have more than tripled. Renewable electricity has grown at a compounded annual average of nearly 14% per year from 2000-2010. Wind, Concentrated Solar Power (CSP) and solar Photo Voltaic (PV) are the fastest growing renewable energy sectors. In 2010 in the U.S., solar PV grew over 71% and CSP grew by 18% from the previous year. Globally renewable electricity installations have more than quadrupled from 2000-2010. Solar PV generation grew by a factor of more than 28 between 2000 and 2010. The amount of CSP and solar PV installations are increasing on the distribution grid. These PV installations transmit electrical current from the load centers to the generating stations. But the transmission and distribution grid have been designed for uni-directional flow of electrical energy from generating stations to load centers. This causes imbalances in voltage and switchgear of the electrical circuitry. With the continuous rise in PV installations, analysis of voltage profile and penetration levels remain an active area of research. Standard distributed photovoltaic (PV) generators represented in simulation studies do not reflect the exact location and variability properties such as distance between interconnection points to substations, voltage regulators, solar irradiance and other environmental factors. Quasi-Static simulations assist in peak load planning hour and day ahead as it gives a time sequence analysis to help in generation allocation. Simulation models can be daily, hourly or yearly depending on duty cycle and dynamics of the system. High penetration of PV into the power grid changes the voltage profile and power flow dynamically in the distribution circuits due to the inherent variability of PV. There are a number of modeling and simulations tools available for the study of such high penetration PV scenarios. This thesis will specifically utilize OpenDSS, a open source Distribution System Simulator developed by Electric Power Research Institute, to simulate grid voltage profile with a large scale PV system under quasi-static time series considering variations of PV output in seconds, minutes, and the average daily load variations. A 13 bus IEEE distribution feeder model is utilized with distributed residential and commercial scale PV at different buses for simulation studies. Time series simulations are discussed for various modes of operation considering dynamic PV penetration at different time periods in a day. In addition, this thesis demonstrates simulations taking into account the presence of moving cloud for solar forecasting studies.

  19. Stem Inc. SunShot Incubator Program Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butterfield, Karen

    In this Energy Storage Control Algorithms project, Stem sought to develop tools and control algorithms to increase the value and reduce balance-of-system and grid integration costs associated with adding distributed solar generation to the grid. These advances fell under the headings SolarScope and SolarController. Stem sought to create initial market traction with a fully commercialized product for the solar industry to size storage systems (SolarScope) as well as a solar intermittency-mitigation framework for utilities (SolarController) in the course of the project. The company sought to align strategic growth plans and enable the rollout of the products to broader audiences inmore » multiple geographic regions by leveraging the major solar companies in the national market as partners. Both final products were both intended to be commercialized. They are: SolarScope: Analysis tool to identify viable PV + storage projects and thereby expedite the sales and interconnection processes. SolarScope combines customer load data, PV production estimates, utility rate tariff, and simulated storage into a simple user interface for PV developers. Developers can easily identify viable solar + storage sites without the need for complex and time consuming, site-by-site spreadsheet modeling. SolarContoller: Tool to autonomously dispatch distributed storage in order to mitigate voltage fluctuation and reduce curtailment. SolarController co-optimizes, in real time, storage dispatch for circuit stability and curtailment reduction, enabling higher penetrations of PV. SolarController is automated, not requiring utility dispatch or management, as Stem hardware senses grid voltage, frequency, customer load, PV production, and power factor. In the end the two products met with different outcomes. SolarScope was tested by potential users, and continues to be used as a foundational platform for partnership with key solar industry partners. SolarController, on the other hand, was successful in lab testing but was not commercialized due to a lack of marketability and lack of interested customer base. Together the development of these two products marked a material step forward for Stem; and a new milestone along the pathway of integration for the solar and storage industries. SolarScope is leading to real, out-of-the-lab project development in storage + solar for the commercial customer sector. Meanwhile SolarController has opened the eyes of regulators and utility executives alike to the potential of distributed solar and by doing so, has moved the conversation forward for the integration of distributed energy resources more broadly on the grid.« less

  20. Operational Benefits of Meeting California's Energy Storage Targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eichman, Josh; Denholm, Paul; Jorgenson, Jennie

    In October 2013, the California Public Utilities Commission (CPUC) finalized procurement targets and other requirements to its jurisdictional utilities for a minimum of 1,325 MW of 'viable and cost-effective' energy storage systems by 2020. The goal of this study is to explore several aspects of grid operations in California and the Western Interconnection resulting from meeting the CPUC storage targets. We perform this analysis using a set of databases and grid simulation tools developed and implemented by the CPUC, the California Independent System Operator (CAISO), and the California Energy Commission (CEC) for the CPUC's Long-term Procurement Plan (LTPP). The 2014more » version of this database contains information about generators, storage, transmission, and electrical demand, for California in the year 2024 for both 33% and 40% renewable energy portfolios. We examine the value of various services provided by energy storage in these scenarios. Sensitivities were performed relating to the services energy storage can provide, the capacity and duration of storage devices, export limitations, and negative price floor variations. Results show that a storage portfolio, as outlined by the CPUC, can reduce curtailment and system-wide production costs for 33% and 40% renewable scenarios. A storage device that can participate in energy and ancillary service markets provides the grid with the greatest benefit; the mandated storage requirement of 1,325 MW was estimated to reduce the total cost of production by about 78 million per year in the 33% scenario and 144 million per year in the 40% scenario. Much of this value is derived from the avoided start and stop costs of thermal generators and provision of ancillary services. A device on the 2024 California grid and participating in only ancillary service markets can provide the system with over 90% of the value as the energy and ancillary service device. The analysis points to the challenge of new storage providing regulation reserve, as the added storage could provide about 75% of the regulation up requirement for all of California, which would likely greatly reduce regulation prices and potential revenue. The addition of storage in California decreases renewable curtailment, particularly in the 40% RPS case. Following previous analysis, storage has a mixed impact on emissions, generally reducing emissions, but also creating additional incentives for increased emissions from out-of-state coal generations. Overall, storage shows significant system cost savings, but analysis also points to additional challenges associated with full valuation of energy storage, including capturing the operational benefits calculated here, but also recovering additional benefits associated avoided generation, transmission, and distribution capacity, and avoided losses.« less

  1. Using bioprocess stoichiometry to build a plant-wide mass balance based steady-state WWTP model.

    PubMed

    Ekama, G A

    2009-05-01

    Steady-state models are useful for design of wastewater treatment plants (WWTPs) because they allow reactor sizes and interconnecting flows to be simply determined from explicit equations in terms of unit operation performance criteria. Once the overall WWTP scheme is established and the main system defining parameters of the individual unit operations estimated, dynamic models can be applied to the connected unit operations to refine their design and evaluate their performance under dynamic flow and load conditions. To model anaerobic digestion (AD) within plant-wide WWTP models, not only COD and nitrogen (N) but also carbon (C) fluxes entering the AD need to be defined. Current plant-wide models, like benchmark simulation model No 2 (BSM2), impose a C flux at the AD influent. In this paper, the COD and N mass balance steady-state models of activated sludge (AS) organics degradation, nitrification and denitrification (ND) and anaerobic (AD) and aerobic (AerD) digestion of wastewater sludge are extended and linked with bioprocess transformation stoichiometry to form C, H, O, N, chemical oxygen demand (COD) and charge mass balance based models so that also C (and H and O) can be tracked through the whole WWTP. By assigning a stoichiometric composition (x, y, z and a in C(x)H(y)O(z)N(a)) to each of the five main influent wastewater organic fractions and ammonia, these, and the products generated from them via the biological processes, are tracked through the WWTP. The model is applied to two theoretical case study WWTPs treating the same raw wastewater (WW) to the same final sludge residual biodegradable COD. It is demonstrated that much useful information can be generated with the relatively simple steady-state models to aid WWTP layout design and track the different products exiting the WWTP via the solid, liquid and gas streams, such as aerobic versus anaerobic digestion of waste activated sludge, N loads in recycle streams, methane production for energy recovery and green house gas (CO(2), CH(4)) generation. To reduce trial and error usage of WWTP simulation software, it is recommended that they are extended to include pre-processors based on mass balance steady-state models to assist with WWTP layout design, unit operation selection, reactor sizing, option evaluation and comparison and wastewater characterization before dynamic simulation.

  2. Hot Topics: Solar Interconnection Policy | State, Local, and Tribal

    Science.gov Websites

    Governments | NREL Blog » Hot Topics: Solar Interconnection Policy Hot Topics: Solar Renewable Energy Laboratory, discussing the PV interconnection process as part of our Hot Topics series

  3. Synthesis and Characterization of Three Dimensional Nanostructures Based on Interconnected Carbon Nanomaterials

    NASA Astrophysics Data System (ADS)

    Koizumi, Ryota

    This thesis addresses various types of synthetic methods for novel three dimensional nanomaterials and nanostructures based on interconnected carbon nanomaterials using solution chemistry and chemical vapor deposition (CVD) methods. Carbon nanotube (CNT) spheres with porous and scaffold structures consisting of interconnected CNTs were synthesized by solution chemistry followed by freeze-drying, which have high elasticity under nano-indentation tests. This allows the CNT spheres to be potentially applied to mechanical dampers. CNTs were also grown on two dimensional materials--such as reduced graphene oxide (rGO) and hexagonal boron nitride (h-BN)--by CVD methods, which are chemically interconnected. CNTs on rGO and h-BN interconnected structures performed well as electrodes for supercapacitors. Furthermore, unique interconnected flake structures of alpha-phase molybdenum carbide were developed by a CVD method. The molybdenum carbide can be used for a catalyst of hydrogen evolution reaction activity as well as an electrode for supercapacitors.

  4. Fuel cell electrode interconnect contact material encapsulation and method

    DOEpatents

    Derose, Anthony J.; Haltiner, Jr., Karl J.; Gudyka, Russell A.; Bonadies, Joseph V.; Silvis, Thomas W.

    2016-05-31

    A fuel cell stack includes a plurality of fuel cell cassettes each including a fuel cell with an anode and a cathode. Each fuel cell cassette also includes an electrode interconnect adjacent to the anode or the cathode for providing electrical communication between an adjacent fuel cell cassette and the anode or the cathode. The interconnect includes a plurality of electrode interconnect protrusions defining a flow passage along the anode or the cathode for communicating oxidant or fuel to the anode or the cathode. An electrically conductive material is disposed between at least one of the electrode interconnect protrusions and the anode or the cathode in order to provide a stable electrical contact between the electrode interconnect and the anode or cathode. An encapsulating arrangement segregates the electrically conductive material from the flow passage thereby, preventing volatilization of the electrically conductive material in use of the fuel cell stack.

  5. Clad metals, roll bonding and their applications for SOFC interconnects

    NASA Astrophysics Data System (ADS)

    Chen, Lichun; Yang, Zhenguo; Jha, Bijendra; Xia, Guanguang; Stevenson, Jeffry W.

    Metallic interconnects have been becoming an increasingly interesting topic in the development in intermediate temperature solid oxide fuel cells (SOFC). High temperature oxidation resistant alloys are currently considered as candidate materials. Among these alloys however, different groups of alloys demonstrate different advantages and disadvantages, and few if any can completely satisfy the stringent requirements for the application. To integrate the advantages and avoid the disadvantages of different groups of alloys, clad metal has been proposed for SOFC interconnect applications and interconnect structures. This paper gives a brief overview of the cladding approach and its applications, and discuss the viability of this technology to fabricate the metallic layered-structure interconnects. To examine the feasibility of this approach, the austenitic Ni-base alloy Haynes 230 and the ferritic stainless steel AL 453 were selected as examples and manufactured into a clad metal. Its suitability as an interconnect construction material was investigated.

  6. Flexible, FEP-Teflon covered solar cell module development

    NASA Technical Reports Server (NTRS)

    Rauschenbach, H. S.; Cannady, M. D.

    1976-01-01

    Techniques and equipment were developed for the large scale, low-cost fabrication of lightweight, roll-up and fold-up, FEP-Teflon encapsulated solar cell modules. Modules were fabricated by interconnecting solderless single-crystal silicon solar cells and heat laminating them at approximately 300 C between layers of optically clear FEP and to a loadbearing Kapton substrate sheet. Modules were fabricated from both conventional and wraparound contact solar cells. A heat seal technique was developed for mechanically interconnecting modules into an array. The electrical interconnections for both roll-up and fold-up arrays were also developed. The use of parallel-gap resistance welding, ultrasonic bonding, and thermocompression bonding processes for attaching interconnects to solar cells were investigated. Parallel-gap welding was found to be best suited for interconnecting the solderless solar cells into modules. Details of the fabrication equipment, fabrication processes, module and interconnect designs, environmental test equipment, and test results are presented.

  7. Life testing of reflowed and reworked advanced CCGA surface mount packages in harsh thermal environments

    NASA Astrophysics Data System (ADS)

    Ramesham, Rajeshuni

    2013-03-01

    Life testing/qualification of reflowed (1st reflow) and reworked (1st reflow, 1st removal, and then 1st rework) advanced ceramic column grid array (CCGA) surface mount interconnect electronic packaging technologies for future flight projects has been studied to enhance the mission assurance of JPL-NASA projects. The reliability of reworked/reflowed surface mount technology (SMT) packages is very important for short-duration and long-duration deep space harsh extreme thermal environmental missions. The life testing of CCGA electronic packages under extreme thermal environments (for example: -185°C to +125°C) has been performed with reference to various JPL/NASA project requirements which encompass the temperature range studied. The test boards of reflowed and reworked CCGA packages (717 Xilinx package, 624, 1152, and 1272 column Actel Packages) were selected for the study to survive three times the total number of expected temperature cycles resulting from all environmental and operational exposures occurring over the life of the flight hardware including all relevant manufacturing, ground operations, and mission phases or cycles to failure to assess the life of the hardware. Qualification/life testing was performed by subjecting test boards to the environmental harsh temperature extremes and assessing any structural failures, mechanical failures or degradation in electrical performance solder-joint failures due to either overstress or thermal cycle fatigue. The large, high density, high input/output (I/O) electronic interconnect SMT packages such as CCGA have increased usage in avionics hardware of NASA projects during the last two decades. The test boards built with CCGA packages are expensive and often require a rework to replace a reflowed, reprogrammed, failed, redesigned, etc., CCGA packages. Theoretically speaking, a good rework process should have similar temperature-time profile as that used for the original manufacturing process of solder reflow. A multiple rework processes may be implemented with CCGA packaging technology to understand the effect of number of reworks on the reliability of this technology for harsh thermal environments. In general, reliability of the assembled electronic packages reduces as a function of number of reworks and the extent is not known yet. A CCGA rework process has been tried and implemented to design a daisy-chain test board consists of 624 and 717 packages. Reworked CCGA interconnect electronic packages of printed wiring polyimide boards have been assembled and inspected using non-destructive x-ray imaging and optical microscope techniques. The assembled boards after 1st rework and 1st reflow were subjected to extreme temperature thermal atmospheric cycling to assess their reliability for future deep space JPL/NASA for moderate to harsh thermal mission environments. The resistance of daisy-chained interconnect sections were monitored continuously during thermal cycling to determine intermittent failures. This paper provides the experimental reliability test results to failure of assemblies for the first time of reflowed and reworked CCGA packages under extreme harsh thermal environments.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbose, Galen L.; Darghouth, Naïm R.; Millstein, Dev

    Now in its eighth edition, Lawrence Berkeley National Laboratory (LBNL)’s Tracking the Sun report series is dedicated to summarizing trends in the installed price of grid-connected solar photovoltaic (PV) systems in the United States. The present report focuses on residential and nonresidential systems installed through year-end 2014, with preliminary trends for the first half of 2015. As noted in the text box below, this year’s report incorporates a number of important changes and enhancements. Among those changes, this year's report focuses solely on residential and nonresidential PV systems; data on utility-scale PV are reported in LBNL’s companion Utility-Scale Solar reportmore » series. Installed pricing trends presented within this report derive primarily from project-level data reported to state agencies and utilities that administer PV incentive programs, solar renewable energy credit (SREC) registration systems, or interconnection processes. In total, data were collected for roughly 400,000 individual PV systems, representing 81% of all U.S. residential and non-residential PV capacity installed through 2014 and 62% of capacity installed in 2014, though a smaller subset of this data were used in analysis.« less

  9. Interarea Oscillation Damping Control Using High Voltage DC Transmission: a Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elizondo, Marcelo Anibal; Fan, Rui; Kirkham, Harold

    High-voltage, direct current (HVDC) transmission lines are increasingly being installed in power systems around the world, and this trend is expected to continue with advancements in power electronics technology. These advancements are also bringing multi-terminal direct current (MTDC) systems closer to practical application. In addition, the continued deployment of phasor measurement units (PMUs) makes dynamic information about a large power system readily available for highly controllable components, such as HVDC lines. All these trends have increased the appeal of modulating HVDC lines and MTDC systems to provide grid services in addition to bulk power transfers. This paper provides a literaturemore » survey of HVDC and MTDC damping controllers for interarea oscillations in large interconnected power systems. The literature shows a progression from theoretical research to practical applications. Finally, there are already practical implementations of HVDC modulation for lines in point-to-point configuration, although the modulation of MTDC systems is still in the research stage. As a conclusion, this paper identifies and summarizes open questions that remain to be tackled by researchers and engineers.« less

  10. Interarea Oscillation Damping Control Using High Voltage DC Transmission: a Survey

    DOE PAGES

    Elizondo, Marcelo Anibal; Fan, Rui; Kirkham, Harold; ...

    2018-05-02

    High-voltage, direct current (HVDC) transmission lines are increasingly being installed in power systems around the world, and this trend is expected to continue with advancements in power electronics technology. These advancements are also bringing multi-terminal direct current (MTDC) systems closer to practical application. In addition, the continued deployment of phasor measurement units (PMUs) makes dynamic information about a large power system readily available for highly controllable components, such as HVDC lines. All these trends have increased the appeal of modulating HVDC lines and MTDC systems to provide grid services in addition to bulk power transfers. This paper provides a literaturemore » survey of HVDC and MTDC damping controllers for interarea oscillations in large interconnected power systems. The literature shows a progression from theoretical research to practical applications. Finally, there are already practical implementations of HVDC modulation for lines in point-to-point configuration, although the modulation of MTDC systems is still in the research stage. As a conclusion, this paper identifies and summarizes open questions that remain to be tackled by researchers and engineers.« less

  11. Development of Laser Beam Transmission Strategies for Future Ground-to-Space Optical Communications

    NASA Technical Reports Server (NTRS)

    Wilson, Keith E.; Kovalik, Joseph M.; Biswas, Abhijit; Roberts, William T.

    2007-01-01

    Optical communications is a key technology to meet the bandwidth expansion required in the global information grid. High bandwidth bi-directional links between sub-orbital platforms and ground and space terminals can provide a seamless interconnectivity for rapid return of critical data to analysts. The JPL Optical Communications Telescope Laboratory (OCTL) is located in Wrightwood California at an altitude of 2.2.km. This 200 sq-m facility houses a state-of- the-art 1-m telescope and is used to develop operational strategies for ground-to-space laser beam propagation that include safe beam transmission through navigable air space, adaptive optics correction and multi-beam scintillation mitigation, and line of sight optical attenuation monitoring. JPL has received authorization from international satellite owners to transmit laser beams to more than twenty retro-reflecting satellites. This paper presents recent progress in the development of these operational strategies tested by narrow laser beam transmissions from the OCTL to retro-reflecting satellites. We present experimental results and compare our measurements with predicted performance for a variety of atmospheric conditions.

  12. Thermal Characterization for a Modular 3-D Multichip Module

    NASA Technical Reports Server (NTRS)

    Fan, Mark S.; Plante, Jeannette; Shaw, Harry

    2000-01-01

    NASA Goddard Space Flight Center has designed a high-density modular 3-D multichip module (MCM) for future spaceflight use. This MCM features a complete modular structure, i.e., each stack can be removed from the package without damaging the structure. The interconnection to the PCB is through the Column Grid Array (CGA) technology. Because of its high-density nature, large power dissipation from multiple layers of circuitry is anticipated and CVD diamond films are used in the assembly for heat conduction enhancement. Since each stacked layer dissipates certain amount of heat, designing effective heat conduction paths through each stack and balancing the heat dissipation within each stack for optimal thermal performance become a challenging task. To effectively remove the dissipated heat from the package, extensive thermal analysis has been performed with finite element methods. Through these analyses, we are able to improve the thermal design and increase the total wattage of the package for maximum electrical performance. This paper provides details on the design-oriented thermal analysis and performance enhancement. It also addresses issues relating to contact thermal resistance between the diamond film and the metallic heat conduction paths.

  13. High-speed real-time OFDM transmission based on FPGA

    NASA Astrophysics Data System (ADS)

    Xiao, Xin; Li, Fan; Yu, Jianjun

    2016-02-01

    In this paper, we review our recent research progresses on real-time orthogonal frequency division multiplexing (OFDM) transmission based on FPGA. We successfully demonstrated four-channel wavelength-division multiplexing (WDM) 256.51Gb/s 16-ary quadrature amplitude modulation (16QAM)-OFDM signal transmission system for short-reach optical amplifier free inter-connection with real-time reception. Four optical carriers are modulated by four different 16QAM-OFDM signals via 10G-class direct modulation lasers (DMLs). We achieved highest capacity real-time reception optical OFDM signal transmission over 2.4-km SMF with the bit-error ratio (BER) under soft-decision forward error correction (SD-FEC) limitation of 2.4×10-2. In order to achieve higher spectrum efficiency (SE), we demonstrate 4-channel high level QAM-OFDM transmission over 20-km SMF-28 with real-time reception. 58.72-Gb/s 256QAM-OFDM and 56.4-Gb/s 128QAM-OFDM signal transmission within 25-GHz grid is achieved with the BER under 2.4×10-2 and real-time reception.

  14. More homogeneous wind conditions under strong climate change decrease the potential for inter-state balancing of electricity in Europe

    NASA Astrophysics Data System (ADS)

    Wohland, Jan; Reyers, Mark; Weber, Juliane; Witthaut, Dirk

    2017-11-01

    Limiting anthropogenic climate change requires the fast decarbonization of the electricity system. Renewable electricity generation is determined by the weather and is hence subject to climate change. We simulate the operation of a coarse-scale fully renewable European electricity system based on downscaled high-resolution climate data from EURO-CORDEX. Following a high-emission pathway (RCP8.5), we find a robust but modest increase (up to 7 %) of backup energy in Europe through the end of the 21st century. The absolute increase in the backup energy is almost independent of potential grid expansion, leading to the paradoxical effect that relative impacts of climate change increase in a highly interconnected European system. The increase is rooted in more homogeneous wind conditions over Europe resulting in intensified simultaneous generation shortfalls. Individual country contributions to European generation shortfall increase by up to 9 TWh yr-1, reflecting an increase of up to 4 %. Our results are strengthened by comparison with a large CMIP5 ensemble using an approach based on circulation weather types.

  15. Phasor Domain Steady-State Modeling and Design of the DC–DC Modular Multilevel Converter

    DOE PAGES

    Yang, Heng; Qin, Jiangchao; Debnath, Suman; ...

    2016-01-06

    The DC-DC Modular Multilevel Converter (MMC), which originated from the AC-DC MMC, is an attractive converter topology for interconnection of medium-/high-voltage DC grids. This paper presents design considerations for the DC-DC MMC to achieve high efficiency and reduced component sizes. A steady-state mathematical model of the DC-DC MMC in the phasor-domain is developed. Based on the developed model, a design approach is proposed to size the components and to select the operating frequency of the converter to satisfy a set of design constraints while achieving high efficiency. The design approach includes sizing of the arm inductor, Sub-Module (SM) capacitor, andmore » phase filtering inductor along with the selection of AC operating frequency of the converter. The accuracy of the developed model and the effectiveness of the design approach are validated based on the simulation studies in the PSCAD/EMTDC software environment. The analysis and developments of this paper can be used as a guideline for design of the DC-DC MMC.« less

  16. 10 CFR 205.373 - Application procedures.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... interconnection: (i) Proposed location; (ii) Required thermal capacity or power transfer capability of the... interconnection: (i) Location; (ii) Thermal capacity of power transfer capability of interconnection facilities... DEPARTMENT OF ENERGY OIL ADMINISTRATIVE PROCEDURES AND SANCTIONS Electric Power System Permits and Reports...

  17. 10 CFR 205.373 - Application procedures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... interconnection: (i) Proposed location; (ii) Required thermal capacity or power transfer capability of the... interconnection: (i) Location; (ii) Thermal capacity of power transfer capability of interconnection facilities... DEPARTMENT OF ENERGY OIL ADMINISTRATIVE PROCEDURES AND SANCTIONS Electric Power System Permits and Reports...

  18. 10 CFR 205.373 - Application procedures.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... interconnection: (i) Proposed location; (ii) Required thermal capacity or power transfer capability of the... interconnection: (i) Location; (ii) Thermal capacity of power transfer capability of interconnection facilities... DEPARTMENT OF ENERGY OIL ADMINISTRATIVE PROCEDURES AND SANCTIONS Electric Power System Permits and Reports...

  19. 10 CFR 205.373 - Application procedures.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... interconnection: (i) Proposed location; (ii) Required thermal capacity or power transfer capability of the... interconnection: (i) Location; (ii) Thermal capacity of power transfer capability of interconnection facilities... DEPARTMENT OF ENERGY OIL ADMINISTRATIVE PROCEDURES AND SANCTIONS Electric Power System Permits and Reports...

  20. 47 CFR 64.1401 - Expanded interconnection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... such equipment to connect interconnectors' fiber optic systems or microwave radio transmission... interconnectors' fiber optic systems or microwave radio transmission facilities (where reasonably feasible) with... interconnection of fiber optic facilities, local exchange carriers shall provide: (1) An interconnection point or...

Top