NASA Astrophysics Data System (ADS)
Gladen, R. W.; Chirayath, V. A.; McDonald, A. D.; Fairchild, A. J.; Chrysler, M. D.; Imam, S. K.; Koymen, A. R.; Weiss, A. H.
We describe herein a digital data acquisition system for a time-of-flight Positron annihilation-induced Auger Electron Spectrometer. This data acquisition system consists of a high-speed digitizer collecting signals induced by Auger electrons and annihilation gammas in a multi-channel plate electron detector and a BaF2 gamma detector, respectively. The time intervals between these two signals is used to determine the times of flight of the Auger electrons, which are analyzed by algorithms based on traditional nuclear electronics methods. Ultimately, this digital data acquisition system will be expanded to incorporate the first coincidence measurements of Auger electron and annihilation gamma energies.
The Digital Data Acquisition System for the Russian VLBI Network of New Generation
NASA Technical Reports Server (NTRS)
Fedotov, Leonid; Nosov, Eugeny; Grenkov, Sergey; Marshalov, Dmitry
2010-01-01
The system consists of several identical channels of 1024 MHz bandwidth each. In each channel, the RF band is frequency-translated to the intermediate frequency range 1 - 2 GHz. Each channel consists of two parts: the digitizer and Mark 5C recorder. The digitizer is placed on the antenna close to the corresponding Low-Noise Amplifier output and consists of the analog frequency converter, ADC, and a device for digital processing of the signals using FPGA. In the digitizer the subdigitization on frequency of 2048 MHz is used. For producing narrow-band channels and to interface with existing data acquisition systems, the polyphase filtering with FPGA can be used. Digital signals are re-quantized to 2-bits in the FPGA and are transferred to an input of Mark 5C through a fiber line. The breadboard model of the digitizer is being tested, and the data acquisition system is being designed.
21 CFR 892.1715 - Full-field digital mammography system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... planar digital x-ray images of the entire breast. This generic type of device may include digital mammography acquisition software, full-field digital image receptor, acquisition workstation, automatic exposure control, image processing and reconstruction programs, patient and equipment supports, component...
21 CFR 892.1715 - Full-field digital mammography system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... planar digital x-ray images of the entire breast. This generic type of device may include digital mammography acquisition software, full-field digital image receptor, acquisition workstation, automatic exposure control, image processing and reconstruction programs, patient and equipment supports, component...
21 CFR 892.1715 - Full-field digital mammography system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... planar digital x-ray images of the entire breast. This generic type of device may include digital mammography acquisition software, full-field digital image receptor, acquisition workstation, automatic exposure control, image processing and reconstruction programs, patient and equipment supports, component...
21 CFR 892.1715 - Full-field digital mammography system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... planar digital x-ray images of the entire breast. This generic type of device may include digital mammography acquisition software, full-field digital image receptor, acquisition workstation, automatic exposure control, image processing and reconstruction programs, patient and equipment supports, component...
A Four Channel Beam Current Monitor Data Acquisition System Using Embedded Processors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wheat, Jr., Robert Mitchell; Dalmas, Dale A.; Dale, Gregory E.
2015-08-11
Data acquisition from multiple beam current monitors is required for electron accelerator production of Mo-99. A two channel system capable of recording data from two beam current monitors has been developed, is currently in use, and is discussed below. The development of a cost-effective method of extending this system to more than two channels and integrating of these measurements into an accelerator control system is the main focus of this report. Data from these current monitors is digitized, processed, and stored by a digital data acquisition system. Limitations and drawbacks with the currently deployed digital data acquisition system have beenmore » identified as have been potential solutions, or at least improvements, to these problems. This report will discuss and document the efforts we've made in improving the flexibility and lowering the cost of the data acquisition system while maintaining the minimum requirements.« less
Naivar, Mark A.; Wilder, Mark E.; Habbersett, Robert C.; Woods, Travis A.; Sebba, David S.; Nolan, John P.; Graves, Steven W.
2014-01-01
Fully digital data acquisition systems for use in flow cytometry provide excellent flexibility and precision. Here, we demonstrate the development of a low cost, small, and low power digital flow cytometry data acquisition system using a single microcontroller chip with an integrated analog to digital converter (ADC). Our demonstration system uses a commercially available evaluation board making the system simple to integrate into a flow cytometer. We have evaluated this system using calibration microspheres analyzed on commercial, slow-flow, and CCD based flow cytometers. In our evaluations, our demonstration data system clearly resolves all eight peaks of a Rainbow microsphere set on both a slow-flow flow cytometer and a retrofitted BD FACScalibur, which indicates it has the sensitivity and resolution required for most flow cytometry applications. It is also capable of millisecond time resolution, full waveform collection, and selective triggering of data collection from a CCD camera. The capability of our demonstration system suggests that the use of microcontrollers for flow cytometry digital data-acquisition will be increasingly valuable for extending the life of older cytometers and provides a compelling data-system design approach for low-cost, portable flow cytometers. PMID:19852060
Naivar, Mark A; Wilder, Mark E; Habbersett, Robert C; Woods, Travis A; Sebba, David S; Nolan, John P; Graves, Steven W
2009-12-01
Fully digital data acquisition systems for use in flow cytometry provide excellent flexibility and precision. Here, we demonstrate the development of a low cost, small, and low power digital flow cytometry data acquisition system using a single microcontroller chip with an integrated analog to digital converter (ADC). Our demonstration system uses a commercially available evaluation board making the system simple to integrate into a flow cytometer. We have evaluated this system using calibration microspheres analyzed on commercial, slow-flow, and CCD-based flow cytometers. In our evaluations, our demonstration data system clearly resolves all eight peaks of a Rainbow microsphere set on both a slow-flow flow cytometer and a retrofitted BD FACScalibur, which indicates it has the sensitivity and resolution required for most flow cytometry applications. It is also capable of millisecond time resolution, full waveform collection, and selective triggering of data collection from a CCD camera. The capability of our demonstration system suggests that the use of microcontrollers for flow cytometry digital data-acquisition will be increasingly valuable for extending the life of older cytometers and provides a compelling data-system design approach for low-cost, portable flow cytometers.
Enhanced Data-Acquisition System
NASA Technical Reports Server (NTRS)
Mustain, Roy W.
1990-01-01
Time-consuming, costly digitization of analog signals on magnetic tape eliminated. Proposed data-acquisition system provides nearly immediate access to data in incoming signals by digitizing and recording them both on magnetic tape and on optical disk. Tape and/or disk later played back to reconstruct signals in analog or digital form for analysis. Of interest in industrial and scientific applications in which necessary to digitize, store, and/or process large quantities of experimental data.
Stand-alone digital data storage control system including user control interface
NASA Technical Reports Server (NTRS)
Wright, Kenneth D. (Inventor); Gray, David L. (Inventor)
1994-01-01
A storage control system includes an apparatus and method for user control of a storage interface to operate a storage medium to store data obtained by a real-time data acquisition system. Digital data received in serial format from the data acquisition system is first converted to a parallel format and then provided to the storage interface. The operation of the storage interface is controlled in accordance with instructions based on user control input from a user. Also, a user status output is displayed in accordance with storage data obtained from the storage interface. By allowing the user to control and monitor the operation of the storage interface, a stand-alone, user-controllable data storage system is provided for storing the digital data obtained by a real-time data acquisition system.
NASA Astrophysics Data System (ADS)
Ikeda, Hirokazu; Ikeda, Mitsuo; Inaba, Susumu; Tanaka, Manobu
1993-06-01
We describe a prototype data acquisition system for a silicon strip detector, which has been developed in terms of a digital readout scheme. The system consists of a master timing generator, readout controller, and a detector emulator card on which we use custom VLSI shift registers with operating clock frequency of 30 MHz.
Microcomputer data acquisition and control.
East, T D
1986-01-01
In medicine and biology there are many tasks that involve routine well defined procedures. These tasks are ideal candidates for computerized data acquisition and control. As the performance of microcomputers rapidly increases and cost continues to go down the temptation to automate the laboratory becomes great. To the novice computer user the choices of hardware and software are overwhelming and sadly most of the computer sales persons are not at all familiar with real-time applications. If you want to bill your patients you have hundreds of packaged systems to choose from; however, if you want to do real-time data acquisition the choices are very limited and confusing. The purpose of this chapter is to provide the novice computer user with the basics needed to set up a real-time data acquisition system with the common microcomputers. This chapter will cover the following issues necessary to establish a real time data acquisition and control system: Analysis of the research problem: Definition of the problem; Description of data and sampling requirements; Cost/benefit analysis. Choice of Microcomputer hardware and software: Choice of microprocessor and bus structure; Choice of operating system; Choice of layered software. Digital Data Acquisition: Parallel Data Transmission; Serial Data Transmission; Hardware and software available. Analog Data Acquisition: Description of amplitude and frequency characteristics of the input signals; Sampling theorem; Specification of the analog to digital converter; Hardware and software available; Interface to the microcomputer. Microcomputer Control: Analog output; Digital output; Closed-Loop Control. Microcomputer data acquisition and control in the 21st Century--What is in the future? High speed digital medical equipment networks; Medical decision making and artificial intelligence.
Full-field wrist pulse signal acquisition and analysis by 3D Digital Image Correlation
NASA Astrophysics Data System (ADS)
Xue, Yuan; Su, Yong; Zhang, Chi; Xu, Xiaohai; Gao, Zeren; Wu, Shangquan; Zhang, Qingchuan; Wu, Xiaoping
2017-11-01
Pulse diagnosis is an essential part in four basic diagnostic methods (inspection, listening, inquiring and palpation) in traditional Chinese medicine, which depends on longtime training and rich experience, so computerized pulse acquisition has been proposed and studied to ensure the objectivity. To imitate the process that doctors using three fingertips with different pressures to feel fluctuations in certain areas containing three acupoints, we established a five dimensional pulse signal acquisition system adopting a non-contacting optical metrology method, 3D digital image correlation, to record the full-field displacements of skin fluctuations under different pressures. The system realizes real-time full-field vibration mode observation with 10 FPS. The maximum sample frequency is 472 Hz for detailed post-processing. After acquisition, the signals are analyzed according to the amplitude, pressure, and pulse wave velocity. The proposed system provides a novel optical approach for digitalizing pulse diagnosis and massive pulse signal data acquisition for various types of patients.
A digital acquisition and elaboration system for nuclear fast pulse detection
NASA Astrophysics Data System (ADS)
Esposito, B.; Riva, M.; Marocco, D.; Kaschuck, Y.
2007-03-01
A new digital acquisition and elaboration system has been developed and assembled in ENEA-Frascati for the direct sampling of fast pulses from nuclear detectors such as scintillators and diamond detectors. The system is capable of performing the digital sampling of the pulses (200 MSamples/s, 14-bit) and the simultaneous (compressed) data transfer for further storage and software elaboration. The design (FPGA-based) is oriented to real-time applications and has been developed in order to allow acquisition with no loss of pulses and data storage for long-time intervals (tens of s at MHz pulse count rates) without the need of large on-board memory. A dedicated pulse analysis software, written in LabVIEWTM, performs the treatment of the acquired pulses, including pulse recognition, pile-up rejection, baseline removal, pulse shape particle separation and pulse height spectra analysis. The acquisition and pre-elaboration programs have been fully integrated with the analysis software.
Construct mine environment monitoring system based on wireless mesh network
NASA Astrophysics Data System (ADS)
Chen, Xin; Ge, Gengyu; Liu, Yinmei; Cheng, Aimin; Wu, Jun; Fu, Jun
2018-04-01
The system uses wireless Mesh network as a network transmission medium, and strive to establish an effective and reliable underground environment monitoring system. The system combines wireless network technology and embedded technology to monitor the internal data collected in the mine and send it to the processing center for analysis and environmental assessment. The system can be divided into two parts: the main control network module and the data acquisition terminal, and the SPI bus technology is used for mutual communication between them. Multi-channel acquisition and control interface design Data acquisition and control terminal in the analog signal acquisition module, digital signal acquisition module, and digital signal output module. The main control network module running Linux operating system, in which the transplant SPI driver, USB card driver and AODV routing protocol. As a result, the internal data collection and reporting of the mine are realized.
Goldstone R/D High Speed Data Acquisition System
NASA Technical Reports Server (NTRS)
Deutsch, L. J.; Jurgens, R. F.; Brokl, S. S.
1984-01-01
A digital data acquisition system that meets the requirements of several users (initially the planetary radar program) is planned for general use at Deep Space Station 14 (DSS 14). The system, now partially complete, is controlled by VAX 11/780 computer that is programmed in high level languages. A DEC Data Controller is included for moderate-speed data acquisition, low speed data display, and for a digital interface to special user-provided devices. The high-speed data acquisition is performed in devices that are being designed and built at JPL. Analog IF signals are converted to a digitized 50 MHz real signal. This signal is filtered and mixed digitally to baseband after which its phase code (a PN sequence in the case of planetary radar) is removed. It may then be accumulated (or averaged) and fed into the VAX through an FPS 5210 array processor. Further data processing before entering the VAX is thus possible (computation and accumulation of the power spectra, for example). The system is to be located in the research and development pedestal at DSS 14 for easy access by researchers in radio astronomy as well as telemetry processing and antenna arraying.
Giacomelli, L; Zimbal, A; Reginatto, M; Tittelmeier, K
2011-01-01
A compact NE213 liquid scintillation neutron spectrometer with a new digital data acquisition (DAQ) system is now in operation at the Physikalisch-Technische Bundesanstalt (PTB). With the DAQ system, developed by ENEA Frascati, neutron spectrometry with high count rates in the order of 5×10(5) s(-1) is possible, roughly an order of magnitude higher than with an analog acquisition system. To validate the DAQ system, a new data analysis code was developed and tests were done using measurements with 14-MeV neutrons made at the PTB accelerator. Additional analysis was carried out to optimize the two-gate method used for neutron and gamma (n-γ) discrimination. The best results were obtained with gates of 35 ns and 80 ns. This indicates that the fast and medium decay time components of the NE213 light emission are the ones that are relevant for n-γ discrimination with the digital acquisition system. This differs from what is normally implemented in the analog pulse shape discrimination modules, namely, the fast and long decay emissions of the scintillating light.
All-digital GPS receiver mechanization
NASA Astrophysics Data System (ADS)
Ould, P. C.; van Wechel, R. J.
The paper describes the all-digital baseband correlation processing of GPS signals, which is characterized by (1) a potential for improved antijamming performance, (2) fast acquisition by a digital matched filter, (3) reduction of adjustment, (4) increased system reliability, and (5) provision of a basis for the realization of a high degree of VLSI potential for the development of small economical GPS sets. The basic technical approach consists of a broadband fix-tuned RF converter followed by a digitizer; digital-matched-filter acquisition section; phase- and delay-lock tracking via baseband digital correlation; software acquisition logic and loop filter implementation; and all-digital implementation of the feedback numerical controlled oscillators and code generator. Broadband in-phase and quadrature tracking is performed by an arctangent angle detector followed by a phase-unwrapping algorithm that eliminates false locks induced by sampling and data bit transitions, and yields a wide pull-in frequency range approaching one-fourth of the loop iteration frequency.
An automated system for whole microscopic image acquisition and analysis.
Bueno, Gloria; Déniz, Oscar; Fernández-Carrobles, María Del Milagro; Vállez, Noelia; Salido, Jesús
2014-09-01
The field of anatomic pathology has experienced major changes over the last decade. Virtual microscopy (VM) systems have allowed experts in pathology and other biomedical areas to work in a safer and more collaborative way. VMs are automated systems capable of digitizing microscopic samples that were traditionally examined one by one. The possibility of having digital copies reduces the risk of damaging original samples, and also makes it easier to distribute copies among other pathologists. This article describes the development of an automated high-resolution whole slide imaging (WSI) system tailored to the needs and problems encountered in digital imaging for pathology, from hardware control to the full digitization of samples. The system has been built with an additional digital monochromatic camera together with the color camera by default and LED transmitted illumination (RGB). Monochrome cameras are the preferred method of acquisition for fluorescence microscopy. The system is able to digitize correctly and form large high resolution microscope images for both brightfield and fluorescence. The quality of the digital images has been quantified using three metrics based on sharpness, contrast and focus. It has been proved on 150 tissue samples of brain autopsies, prostate biopsies and lung cytologies, at five magnifications: 2.5×, 10×, 20×, 40×, and 63×. The article is focused on the hardware set-up and the acquisition software, although results of the implemented image processing techniques included in the software and applied to the different tissue samples are also presented. © 2014 Wiley Periodicals, Inc.
Parallel pulse processing and data acquisition for high speed, low error flow cytometry
van den Engh, Gerrit J.; Stokdijk, Willem
1992-01-01
A digitally synchronized parallel pulse processing and data acquisition system for a flow cytometer has multiple parallel input channels with independent pulse digitization and FIFO storage buffer. A trigger circuit controls the pulse digitization on all channels. After an event has been stored in each FIFO, a bus controller moves the oldest entry from each FIFO buffer onto a common data bus. The trigger circuit generates an ID number for each FIFO entry, which is checked by an error detection circuit. The system has high speed and low error rate.
Registration of 3D and Multispectral Data for the Study of Cultural Heritage Surfaces
Chane, Camille Simon; Schütze, Rainer; Boochs, Frank; Marzani, Franck S.
2013-01-01
We present a technique for the multi-sensor registration of featureless datasets based on the photogrammetric tracking of the acquisition systems in use. This method is developed for the in situ study of cultural heritage objects and is tested by digitizing a small canvas successively with a 3D digitization system and a multispectral camera while simultaneously tracking the acquisition systems with four cameras and using a cubic target frame with a side length of 500 mm. The achieved tracking accuracy is better than 0.03 mm spatially and 0.150 mrad angularly. This allows us to seamlessly register the 3D acquisitions and to project the multispectral acquisitions on the 3D model. PMID:23322103
Gigabit Digital Filter Bank: Digital Backend Subsystem in the VERA Data-Acquisition System
NASA Astrophysics Data System (ADS)
Iguchi, Satoru; Kkurayama, Tomoharu; Kawaguchi, Noriyuki; Kawakami, Kazuyuki
2005-02-01
The VERA terminal is a new data-acquisition system developed for the VERA project, which is a project to construct a new Japanese VLBI array dedicated to make a 3-D map of our Milky Way Galaxy in terms of high-precision astrometry. New technology, a gigabit digital filter, was introduced in the development. The importance and advantages of a digital filter for radio astronomy have been studied as follows: (1) the digital filter can realize a variety of observation modes and maintain compatibility with different data-acquisition systems (Kiuchi et al. 1997 and Iguchi et al. 2000a), (2) the folding noise occurring in the sampling process can be reduced by combination with a higher-order sampling technique (Iguchi, Kawaguchi 2002), (3) and an ideal sharp cut-off bandedge and a flat amplitude/phase responses are approached by using a large number of taps available to use LSI of a large number of logic cells (Iguchi et al. 2000a). We developed the custom Finite Impulse Response filter chips and manufactured the Gigabit Digital Filter Banks (GDFBs) as a digital backend subsystem in the VERA terminal. In this paper, the design and development of the GDFB are presented in detail, and the performances and demonstrations of the developed GDFB are shown.
NASA Technical Reports Server (NTRS)
Clukey, Steven J.
1988-01-01
The high speed Dynamic Data Acquisition System (DDAS) is described which provides the capability for the simultaneous measurement of velocity, density, and total temperature fluctuations. The system of hardware and software is described in context of the wind tunnel environment. The DDAS replaces both a recording mechanism and a separate data processing system. The data acquisition and data reduction process has been combined within DDAS. DDAS receives input from hot wires and anemometers, amplifies and filters the signals with computer controlled modules, and converts the analog signals to digital with real-time simultaneous digitization followed by digital recording on disk or tape. Automatic acquisition (either from a computer link to an existing wind tunnel acquisition system, or from data acquisition facilities within DDAS) collects necessary calibration and environment data. The generation of hot wire sensitivities is done in DDAS, as is the application of sensitivities to the hot wire data to generate turbulence quantities. The presentation of the raw and processed data, in terms of root mean square values of velocity, density and temperature, and the processing of the spectral data is accomplished on demand in near-real-time- with DDAS. A comprehensive description of the interface to the DDAS and of the internal mechanisms will be prosented. A summary of operations relevant to the use of the DDAS will be provided.
Fast Low-Cost Multiple Sensor Readout System
Carter-Lewis, David; Krennich, Frank; Le Bohec, Stephane; Petry, Dirk; Sleege, Gary
2004-04-06
A low resolution data acquisition system is presented. The data acquisition system has a plurality of readout modules serially connected to a controller. Each readout module has a FPGA in communication with analog to digital (A/D) converters, which are connected to sensors. The A/D converter has eight bit or lower resolution. The FPGA detects when a command is addressed to it and commands the A/D converters to convert analog sensor data into digital data. The digital data is sent on a high speed serial communication bus to the controller. A graphical display is used in one embodiment to indicate if a sensor reading is outside of a predetermined range.
NASA Astrophysics Data System (ADS)
Starosta, K.; Vaman, C.; Miller, D.; Voss, P.; Bazin, D.; Glasmacher, T.; Crawford, H.; Mantica, P.; Tan, H.; Hennig, W.; Walby, M.; Fallu-Labruyere, A.; Harris, J.; Breus, D.; Grudberg, P.; Warburton, W. K.
2009-11-01
A 624-channel Digital Data Acquisition System capable of instrumenting the Segmented Germanium Array at National Superconducting Cyclotron Laboratory has been implemented using Pixie-16 Digital Gamma Finder modules by XIA LLC. The system opens an opportunity for determination of the first interaction position of a γ ray in a SeGA detector from implementation of γ-ray tracking. This will translate into a significantly improved determination of angle of emission, and in consequence much better Doppler corrections for experiments with fast beams. For stopped-beam experiments the system provides means for zero dead time measurements of rare decays, which occur on time scales of microseconds.
Software Acquisition Manager’s Workstation (SAM/WS) System Design.
1984-04-30
3. Tactical Digital System Requirements ..................... 31General...pspc t14 3. Tactical Digital System Requirements pspc-tiS 3.1 General pspc-t16 3.2 Program Description pspc-t17 3.2.1 General...pspc-t22 3.3.2 Digital Processor Input/Output Utilization Table pspc t23 3.3.3 Digital Processor Interface Block Diagram pspc-t24 3.3.4 Program
42 CFR 37.44 - Approval of radiographic facilities that use digital radiography systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... image acquisition, digitization, processing, compression, transmission, display, archiving, and... quality digital chest radiographs by submitting to NIOSH digital radiographic image files of a test object... digital radiographic image files from six or more sample chest radiographs that are of acceptable quality...
42 CFR 37.44 - Approval of radiographic facilities that use digital radiography systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... image acquisition, digitization, processing, compression, transmission, display, archiving, and... quality digital chest radiographs by submitting to NIOSH digital radiographic image files of a test object... digital radiographic image files from six or more sample chest radiographs that are of acceptable quality...
Parallel pulse processing and data acquisition for high speed, low error flow cytometry
Engh, G.J. van den; Stokdijk, W.
1992-09-22
A digitally synchronized parallel pulse processing and data acquisition system for a flow cytometer has multiple parallel input channels with independent pulse digitization and FIFO storage buffer. A trigger circuit controls the pulse digitization on all channels. After an event has been stored in each FIFO, a bus controller moves the oldest entry from each FIFO buffer onto a common data bus. The trigger circuit generates an ID number for each FIFO entry, which is checked by an error detection circuit. The system has high speed and low error rate. 17 figs.
NASA Astrophysics Data System (ADS)
Joshi, Ramesh; Singh, Manoj; Jadav, H. M.; Misra, Kishor; Kulkarni, S. V.; ICRH-RF Group
2010-02-01
Ion Cyclotron Resonance Heating (ICRH) is a promising heating method for a fusion device due to its localized power deposition profile, a direct ion heating at high density, and established technology for high RF power generation and transmission at low cost. Multiple analog pulse with different duty cycle in master of digital pulse for Data acquisition and Control system for steady state RF ICRH System(RF ICRH DAC) to be used for operating of RF Generator in Aditya to produce pre ionization and second analog pulse will produce heating. The control system software is based upon single digital pulse operation for RF source. It is planned to integrate multiple analog pulses with different duty cycle in master of digital pulse for Data acquisition and Control system for RF ICRH System(RF ICRH DAC) to be used for operating of RF Generator in Aditya tokamak. The task of RF ICRH DAC is to control and acquisition of all ICRH system operation with all control loop and acquisition for post analysis of data with java based tool. For pre ionization startup as well as heating experiments using multiple RF Power of different powers and duration. The experiment based upon the idea of using single RF generator to energize antenna inside the tokamak to radiate power twise, out of which first analog pulse will produce pre ionization and second analog pulse will produce heating. The whole system is based on standard client server technology using tcp/ip protocol. DAC Software is based on linux operating system for highly reliable, secure and stable system operation in failsafe manner. Client system is based on tcl/tk like toolkit for user interface with c/c++ like environment which is reliable programming languages widely used on stand alone system operation with server as vxWorks real time operating system like environment. The paper is focused on the Data acquisition and monitoring system software on Aditya RF ICRH System with analog pulses in slave mode with digital pulse in master mode for control acquisition and monitoring and interlocking.
2010-11-05
The Food and Drug Administration (FDA) is announcing the reclassification of the full-field digital mammography (FFDM) system from class III (premarket approval) to class II (special controls). The device type is intended to produce planar digital x-ray images of the entire breast; this generic type of device may include digital mammography acquisition software, full-field digital image receptor, acquisition workstation, automatic exposure control, image processing and reconstruction programs, patient and equipment supports, component parts, and accessories. The special control that will apply to the device is the guidance document entitled "Class II Special Controls Guidance Document: Full-Field Digital Mammography System." FDA is reclassifying the device into class II (special controls) because general controls along with special controls will provide a reasonable assurance of safety and effectiveness of the device. Elsewhere in this issue of the Federal Register, FDA is announcing the availability of the guidance document that will serve as the special control for this device.
Comparison of detectability in step-and-shoot mode and continuous mode digital tomosynthesis systems
NASA Astrophysics Data System (ADS)
Lee, Changwoo; Han, Minah; Baek, Jongduk
2017-03-01
Digital tomosynthesis system has been widely used in chest, dental, and breast imaging. Since the digital tomosynthesis system provides volumetric images from multiple projection data, structural noise inherent in X-ray radiograph can be reduced, and thus signal detection performance is improved. Currently, tomosynthesis system uses two data acquisition modes: step-and-shoot mode and continuous mode. Several studies have been conducted to compare the system performance of two acquisition modes with respect to spatial resolution and contrast. In this work, we focus on signal detectability in step-and-shoot mode and continuous mode. For evaluation, uniform background is considered, and eight spherical objects with diameters of 0.5, 0.8, 1, 2, 3, 5, 8, 10 mm are used as signals. Projection data with and without spherical objects are acquired in step-and-shoot mode and continuous mode, respectively, and quantum noise are added. Then, noisy projection data are reconstructed by FDK algorithm. To compare the detection performance of two acquisition modes, we calculate task signal-to-noise ratio (SNR) of channelized Hotelling observer with Laguerre-Gauss channels for each spherical object. While the task-SNR values of two acquisition modes are similar for spherical objects larger than 1 mm diameter, step-and-shoot mode yields higher detectability for small signal sizes. The main reason of this behavior is that small signal is more affected by X-ray tube motion blur than large signal. Our results indicate that it is beneficial to use step-and-shoot data acquisition mode to improve the detectability of small signals (i.e., less than 1 mm diameter) in digital tomosynthesis systems.
The AD and ELENA orbit, trajectory and intensity measurement systems
NASA Astrophysics Data System (ADS)
Marco-Hernández, R.; Alves, D.; Angoletta, M. E.; Marqversen, O.; Molendijk, J.; Oponowicz, E.; Ruffieux, R.; Sánchez-Quesada, J.; SØby, L.
2017-07-01
This paper describes the new Antiproton Decelerator (AD) orbit measurement system and the Extra Low ENergy Antiproton ring (ELENA) orbit, trajectory and intensity measurement system. The AD machine at European Organization for Nuclear Research (CERN) is presently being used to decelerate antiprotons from 3.57 GeV/c to 100 MeV/c for matter vs anti-matter comparative studies. The ELENA machine, presently under commissioning, has been designed to provide an extra deceleration stage down to 13.7 MeV/c. The AD orbit system is based on 32 horizontal and 27 vertical electrostatic Beam Position Monitor (BPM) fitted with existing low noise front-end amplifiers while the ELENA system consists of 24 \\gls{BPM}s equipped with new low-noise head amplifiers. In both systems the front-end amplifiers generate a difference (delta) and a sum (sigma) signal which are sent to the digital acquisition system, placed tens of meters away from the AD or ELENA rings, where they are digitized and further processed. The beam position is calculated by dividing the difference signal by the sum signal either using directly the raw digitized data for measuring the turn-by-turn trajectory in the ELENA system or after down-mixing the signals to baseband for the orbit measurement in both machines. The digitized sigma signal will be used in the ELENA system to calculate the bunched beam intensity and the Schottky parameters with coasting beam after passing through different signal processing chain. The digital acquisition arrangement for both systems is based on the same hardware, also used in the ELENA Low Level Radio Frequency (LLRF) system, which follows the VME Switched Serial (VXS) enhancement of the Versa Module Eurocard 64x extension (VME64x) standard and includes VITA 57 standard Field Programmable Gate Array Mezzanine Card (FMC). The digital acquisition Field Programmable Gate Array (FPGA) and Digital Signal Processor (DSP) firmware shares many common functionalities with the LLRF system but has been tailored for this measurement application in particular. Specific control and acquisition software has been developed for these systems. Both systems are installed in AD and ELENA. The AD orbit system currently measures the orbit in AD while the ELENA system is being used in the commissioning of the ELENA ring.
Cartographic services contract...for everything geographic
,
2003-01-01
The U.S. Geological Survey's (USGS) Cartographic Services Contract (CSC) is used to award work for photogrammetric and mapping services under the umbrella of Architect-Engineer (A&E) contracting. The A&E contract is broad in scope and can accommodate any activity related to standard, nonstandard, graphic, and digital cartographic products. Services provided may include, but are not limited to, photogrammetric mapping and aerotriangulation; orthophotography; thematic mapping (for example, land characterization); analog and digital imagery applications; geographic information systems development; surveying and control acquisition, including ground-based and airborne Global Positioning System; analog and digital image manipulation, analysis, and interpretation; raster and vector map digitizing; data manipulations (for example, transformations, conversions, generalization, integration, and conflation); primary and ancillary data acquisition (for example, aerial photography, satellite imagery, multispectral, multitemporal, and hyperspectral data); image scanning and processing; metadata production, revision, and creation; and production or revision of standard USGS products defined by formal and informal specification and standards, such as those for digital line graphs, digital elevation models, digital orthophoto quadrangles, and digital raster graphics.
Applications Of Digital Image Acquisition In Anthropometry
NASA Astrophysics Data System (ADS)
Woolford, Barbara; Lewis, James L.
1981-10-01
Anthropometric data on reach and mobility have traditionally been collected by time consuming and relatively inaccurate manual methods. Three dimensional digital image acquisition promises to radically increase the speed and ease of data collection and analysis. A three-camera video anthropometric system for collecting position, velocity, and force data in real time is under development for the Anthropometric Measurement Laboratory at NASA's Johnson Space Center. The use of a prototype of this system for collecting data on reach capabilities and on lateral stability is described. Two extensions of this system are planned.
NASA Technical Reports Server (NTRS)
Watts, Michael E.
1991-01-01
The Acoustic Laboratory Data Acquisition System (ALDAS) is an inexpensive, transportable means to digitize and analyze data. The system is based on the Macintosh 2 family of computers, with internal analog-to-digital boards providing four channels of simultaneous data acquisition at rates up to 50,000 samples/sec. The ALDAS software package, written for use with rotorcraft acoustics, performs automatic acoustic calibration of channels, data display, two types of cycle averaging, and spectral amplitude analysis. The program can use data obtained from internal analog-to-digital conversion, or discrete external data imported in ASCII format. All aspects of ALDAS can be improved as new hardware becomes available and new features are introduced into the code.
NASA Technical Reports Server (NTRS)
Hazra, Rajeeb; Viles, Charles L.; Park, Stephen K.; Reichenbach, Stephen E.; Sieracki, Michael E.
1992-01-01
Consideration is given to a model-based method for estimating the spatial frequency response of a digital-imaging system (e.g., a CCD camera) that is modeled as a linear, shift-invariant image acquisition subsystem that is cascaded with a linear, shift-variant sampling subsystem. The method characterizes the 2D frequency response of the image acquisition subsystem to beyond the Nyquist frequency by accounting explicitly for insufficient sampling and the sample-scene phase. Results for simulated systems and a real CCD-based epifluorescence microscopy system are presented to demonstrate the accuracy of the method.
NASA Technical Reports Server (NTRS)
Peri, Frank, Jr.
1992-01-01
A flight digital data acquisition system that uses the MIL-STD-1553B bus for transmission of data to a host computer for control law processing is described. The instrument, the Remote Interface Unit (RIU), can accommodate up to 16 input channels and eight output channels. The RIU employs a digital signal processor to perform local digital filtering before sending data to the host. The system allows flexible sensor and actuator data organization to facilitate quick control law computations on the host computer. The instrument can also run simple control laws autonomously without host intervention. The RIU and host computer together have replaced a similar larger, ground minicomputer system with favorable results.
Fast Data Acquisition For Mass Spectrometer
NASA Technical Reports Server (NTRS)
Lincoln, K. A.; Bechtel, R. D.
1988-01-01
New equipment has speed and capacity to process time-of-flight data. System relies on fast, compact waveform digitizer with 32-k memory coupled to personal computer. With digitizer, system captures all mass peaks on each 25- to 35-microseconds cycle of spectrometer.
42 CFR 37.44 - Approval of radiographic facilities that use digital radiography systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... effective management, safety, and proper performance of chest image acquisition, digitization, processing... digital chest radiographs by submitting to NIOSH digital radiographic image files of a test object (e.g... radiographic image files from six or more sample chest radiographs that are of acceptable quality to one or...
An operations manual for the digital data system
NASA Technical Reports Server (NTRS)
Jones, Michael G.
1988-01-01
The Digital Data System (DDS) was designed to incorporate the analog-to-digital conversion process into the initial data acquisition stage and to store the data in a digital format. This conversion is done as part of the acquisition process. Consequently, the data are ready to be analyzed as soon as the test is completed. This capability permits the researcher to alter test parameters during the course of the experiment based on the information acquired in a prior portion of the test. The DDS is currently able to simultaneously acquire up to 10 channels of data. The purpose of this document is fourfold: (1) to describe the capabilities of the hardware in sufficient detail to allow the reader to determine whether the DDS is the optimum system for a particular experiment; (2) to present some of the more significant software developed to provide analyses within a short time of the completion of data acquisition; (3) to provide the reader with sample runs of major software routines to demonstrate their convenience and simple usage; and (4) a portion of the document is used to describe software which uses an FFT-box to provide a means of comparison against which the DDS can be checked.
Low frequency noise elimination technique for 24-bit Σ-Δ data acquisition systems.
Qu, Shao-Bo; Robert, Olivier; Lognonné, Philippe; Zhou, Ze-Bing; Yang, Shan-Qing
2015-03-01
Low frequency 1/f noise is one of the key limiting factors of high precision measurement instruments. In this paper, digital correlated double sampling is implemented to reduce the offset and low frequency 1/f noise of a data acquisition system with 24-bit sigma delta (Σ-Δ) analog to digital converter (ADC). The input voltage is modulated by cross-coupled switches, which are synchronized to the sampling clock, and converted into digital signal by ADC. By using a proper switch frequency, the unwanted parasitic signal frequencies generated by the switches are avoided. The noise elimination processing is made through the principle of digital correlated double sampling, which is equivalent to a time shifted subtraction for the sampled voltage. The low frequency 1/f noise spectrum density of the data acquisition system is reduced to be flat down to the measurement frequency lower limit, which is about 0.0001 Hz in this paper. The noise spectrum density is eliminated by more than 60 dB at 0.0001 Hz, with a residual noise floor of (9 ± 2) nV/Hz(1/2) which is limited by the intrinsic white noise floor of the ADC above its corner frequency.
Low-power triggered data acquisition system and method
NASA Technical Reports Server (NTRS)
Champaigne, Kevin (Inventor); Sumners, Jonathan (Inventor)
2012-01-01
A low-power triggered data acquisition system and method utilizes low-powered circuitry, comparators, and digital logic incorporated into a miniaturized device interfaced with self-generating transducer sensor inputs to detect, identify and assess impact and damage to surfaces and structures wherein, upon the occurrence of a triggering event that produces a signal greater than a set threshold changes the comparator output and causes the system to acquire and store digital data representative of the incoming waveform on at least one triggered channel. The sensors may be disposed in an array to provide triangulation and location of the impact.
The LUX experiment - trigger and data acquisition systems
NASA Astrophysics Data System (ADS)
Druszkiewicz, Eryk
2013-04-01
The Large Underground Xenon (LUX) detector is a two-phase xenon time projection chamber designed to detect interactions of dark matter particles with the xenon nuclei. Signals from the detector PMTs are processed by custom-built analog electronics which provide properly shaped signals for the trigger and data acquisition (DAQ) systems. During calibrations, both systems must be able to handle high rates and have large dynamic ranges; during dark matter searches, maximum sensitivity requires low thresholds. The trigger system uses eight-channel 64-MHz digitizers (DDC-8) connected to a Trigger Builder (TB). The FPGA cores on the digitizers perform real-time pulse identification (discriminating between S1 and S2-like signals) and event localization. The TB uses hit patterns, hit maps, and maximum response detection to make trigger decisions, which are reached within few microseconds after the occurrence of an event of interest. The DAQ system is comprised of commercial digitizers with customized firmware. Its real-time baseline suppression allows for a maximum event acquisition rate in excess of 1.5 kHz, which results in virtually no deadtime. The performance of the trigger and DAQ systems during the commissioning runs of LUX will be discussed.
NASA Astrophysics Data System (ADS)
Cusma, Jack T.; Spero, Laurence A.; Groshong, Bennett R.; Cho, Teddy; Bashore, Thomas M.
1993-09-01
An economical and practical digital solution for the replacement of 35 mm cine film as the archive media in the cardiac x-ray imaging environment has remained lacking to date due to the demanding requirements of high capacity, high acquisition rate, high transfer rate, and a need for application in a distributed environment. A clinical digital image library and network based on the D2 digital video format has been installed in the Duke University Cardiac Catheterization Laboratory. The system architecture includes a central image library with digital video recorders and robotic tape retrieval, three acquisition stations, and remote review stations connected via a serial image network. The library has a capacity for over 20,000 Gigabytes of uncompressed image data, equivalent to records for approximately 20,000 patients. Image acquisition in the clinical laboratories is via a real-time digital interface between the digital angiography system and a local digital recorder. Images are transferred to the library over the serial network at a rate of 14.3 Mbytes/sec and permanently stored for later review. The image library and network are currently undergoing a clinical comparison with cine film for visual and quantitative assessment of coronary artery disease. At the conclusion of the evaluation, the configuration will be expanded to include four additional catheterization laboratories and remote review stations throughout the hospital.
Zhang, Jian; Niu, Xin; Yang, Xue-zhi; Zhu, Qing-wen; Li, Hai-yan; Wang, Xuan; Zhang, Zhi-guo; Sha, Hong
2014-09-01
To design the pulse information which includes the parameter of pulse-position, pulse-number, pulse-shape and pulse-force acquisition and analysis system with function of dynamic recognition, and research the digitalization and visualization of some common cardiovascular mechanism of single pulse. To use some flexible sensors to catch the radial artery pressure pulse wave and utilize the high frequency B mode ultrasound scanning technology to synchronously obtain the information of radial extension and axial movement, by the way of dynamic images, then the gathered information was analyzed and processed together with ECG. Finally, the pulse information acquisition and analysis system was established which has the features of visualization and dynamic recognition, and it was applied to serve for ten healthy adults. The new system overcome the disadvantage of one-dimensional pulse information acquisition and process method which was common used in current research area of pulse diagnosis in traditional Chinese Medicine, initiated a new way of pulse diagnosis which has the new features of dynamic recognition, two-dimensional information acquisition, multiplex signals combination and deep data mining. The newly developed system could translate the pulse signals into digital, visual and measurable motion information of vessel.
Use of a new high-speed digital data acquisition system in airborne ice-sounding
Wright, David L.; Bradley, Jerry A.; Hodge, Steven M.
1989-01-01
A high-speed digital data acquisition and signal averaging system for borehole, surface, and airborne radio-frequency geophysical measurements was designed and built by the US Geological Survey. The system permits signal averaging at rates high enough to achieve significant signal-to-noise enhancement in profiling, even in airborne applications. The first field use of the system took place in Greenland in 1987 for recording data on a 150 by 150-km grid centered on the summit of the Greenland ice sheet. About 6000-line km were flown and recorded using the new system. The data can be used to aid in siting a proposed scientific corehole through the ice sheet.
GET: A generic electronics system for TPCs and nuclear physics instrumentation
NASA Astrophysics Data System (ADS)
Pollacco, E. C.; Grinyer, G. F.; Abu-Nimeh, F.; Ahn, T.; Anvar, S.; Arokiaraj, A.; Ayyad, Y.; Baba, H.; Babo, M.; Baron, P.; Bazin, D.; Beceiro-Novo, S.; Belkhiria, C.; Blaizot, M.; Blank, B.; Bradt, J.; Cardella, G.; Carpenter, L.; Ceruti, S.; De Filippo, E.; Delagnes, E.; De Luca, S.; De Witte, H.; Druillole, F.; Duclos, B.; Favela, F.; Fritsch, A.; Giovinazzo, J.; Gueye, C.; Isobe, T.; Hellmuth, P.; Huss, C.; Lachacinski, B.; Laffoley, A. T.; Lebertre, G.; Legeard, L.; Lynch, W. G.; Marchi, T.; Martina, L.; Maugeais, C.; Mittig, W.; Nalpas, L.; Pagano, E. V.; Pancin, J.; Poleshchuk, O.; Pedroza, J. L.; Pibernat, J.; Primault, S.; Raabe, R.; Raine, B.; Rebii, A.; Renaud, M.; Roger, T.; Roussel-Chomaz, P.; Russotto, P.; Saccà, G.; Saillant, F.; Sizun, P.; Suzuki, D.; Swartz, J. A.; Tizon, A.; Usher, N.; Wittwer, G.; Yang, J. C.
2018-04-01
General Electronics for TPCs (GET) is a generic, reconfigurable and comprehensive electronics and data-acquisition system for nuclear physics instrumentation of up to 33792 channels. The system consists of a custom-designed ASIC for signal processing, front-end cards that each house 4 ASIC chips and digitize the data in parallel through 12-bit ADCs, concentration boards to read and process the digital data from up to 16 ASICs, a 3-level trigger and master clock module to trigger the system and synchronize the data, as well as all of the associated firmware, communication and data-acquisition software. An overview of the system including its specifications and measured performances are presented.
Image Acquisition and Quality in Digital Radiography.
Alexander, Shannon
2016-09-01
Medical imaging has undergone dramatic changes and technological breakthroughs since the introduction of digital radiography. This article presents information on the development of digital radiography and types of digital radiography systems. Aspects of image quality and radiation exposure control are highlighted as well. In addition, the article includes related workplace changes and medicolegal considerations in the digital radiography environment. ©2016 American Society of Radiologic Technologists.
MIRAGE: The data acquisition, analysis, and display system
NASA Technical Reports Server (NTRS)
Rosser, Robert S.; Rahman, Hasan H.
1993-01-01
Developed for the NASA Johnson Space Center and Life Sciences Directorate by GE Government Services, the Microcomputer Integrated Real-time Acquisition Ground Equipment (MIRAGE) system is a portable ground support system for Spacelab life sciences experiments. The MIRAGE system can acquire digital or analog data. Digital data may be NRZ-formatted telemetry packets of packets from a network interface. Analog signal are digitized and stored in experimental packet format. Data packets from any acquisition source are archived to a disk as they are received. Meta-parameters are generated from the data packet parameters by applying mathematical and logical operators. Parameters are displayed in text and graphical form or output to analog devices. Experiment data packets may be retransmitted through the network interface. Data stream definition, experiment parameter format, parameter displays, and other variables are configured using spreadsheet database. A database can be developed to support virtually any data packet format. The user interface provides menu- and icon-driven program control. The MIRAGE system can be integrated with other workstations to perform a variety of functions. The generic capabilities, adaptability and ease of use make the MIRAGE a cost-effective solution to many experimental data processing requirements.
Axial Tomography from Digitized Real Time Radiography
DOE R&D Accomplishments Database
Zolnay, A. S.; McDonald, W. M.; Doupont, P. A.; McKinney, R. L.; Lee, M. M.
1985-01-18
Axial tomography from digitized real time radiographs provides a useful tool for industrial radiography and tomography. The components of this system are: x-ray source, image intensifier, video camera, video line extractor and digitizer, data storage and reconstruction computers. With this system it is possible to view a two dimensional x-ray image in real time at each angle of rotation and select the tomography plane of interest by choosing which video line to digitize. The digitization of a video line requires less than a second making data acquisition relatively short. Further improvements on this system are planned and initial results are reported.
Code of Federal Regulations, 2013 CFR
2013-10-01
... radiography (CR) is the term for digital X-ray image acquisition systems that detect X-ray signals using a... stimulating laser beam to convert the latent radiographic image to electronic signals which are then processed... image acquisition systems in which the X-ray signals received by the image detector are converted nearly...
A research of a high precision multichannel data acquisition system
NASA Astrophysics Data System (ADS)
Zhong, Ling-na; Tang, Xiao-ping; Yan, Wei
2013-08-01
The output signals of the focusing system in lithography are analog. To convert the analog signals into digital ones which are more flexible and stable to process, a desirable data acquisition system is required. The resolution of data acquisition, to some extent, affects the accuracy of focusing. In this article, we first compared performance between the various kinds of analog-to-digital converters (ADC) available on the market at the moment. Combined with the specific requirements (sampling frequency, converting accuracy, numbers of channels etc) and the characteristics (polarization, amplitude range etc) of the analog signals, the model of the ADC to be used as the core chip in our hardware design was determined. On this basis, we chose other chips needed in the hardware circuit that would well match with ADC, then the overall hardware design was obtained. Validation of our data acquisition system was verified through experiments and it can be demonstrated that the system can effectively realize the high resolution conversion of the multi-channel analog signals and give the accurate focusing information in lithography.
NASA Technical Reports Server (NTRS)
Clukey, Steven J.
1991-01-01
The real time Dynamic Data Acquisition and Processing System (DDAPS) is described which provides the capability for the simultaneous measurement of velocity, density, and total temperature fluctuations. The system of hardware and software is described in context of the wind tunnel environment. The DDAPS replaces both a recording mechanism and a separate data processing system. DDAPS receives input from hot wire anemometers. Amplifiers and filters condition the signals with computer controlled modules. The analog signals are simultaneously digitized and digitally recorded on disk. Automatic acquisition collects necessary calibration and environment data. Hot wire sensitivities are generated and applied to the hot wire data to compute fluctuations. The presentation of the raw and processed data is accomplished on demand. The interface to DDAPS is described along with the internal mechanisms of DDAPS. A summary of operations relevant to the use of the DDAPS is also provided.
An Undergraduate Experiment in Alarm System Design.
ERIC Educational Resources Information Center
Martini, R. A.; And Others
1988-01-01
Describes an experiment involving data acquisition by a computer, digital signal transmission from the computer to a digital logic circuit and signal interpretation by this circuit. The system is being used at the Illinois Institute of Technology. Discusses the fundamental concepts involved. Demonstrates the alarm experiment as it is used in…
NASA Technical Reports Server (NTRS)
Meredith, R. W.; Zuckerwar, A. J.
1984-01-01
A low-cost digital system based on an 8-bit Apple II microcomputer has been designed to provide on-line control, data acquisition, and evaluation of sound absorption measurements in gases. The measurements are conducted in a resonant tube, in which an acoustical standing wave is excited, the excitation removed, and the sound absorption evaluated from the free decay envelope. The free decay is initiated from the computer keyboard after the standing wave is established, and the microphone response signal is the source of the analog signal for the A/D converter. The acquisition software is written in ASSEMBLY language and the evaluation software in BASIC. This paper describes the acoustical measurement, hardware, software, and system performance and presents measurements of sound absorption in air as an example.
Low-power wireless ECG acquisition and classification system for body sensor networks.
Lee, Shuenn-Yuh; Hong, Jia-Hua; Hsieh, Cheng-Han; Liang, Ming-Chun; Chang Chien, Shih-Yu; Lin, Kuang-Hao
2015-01-01
A low-power biosignal acquisition and classification system for body sensor networks is proposed. The proposed system consists of three main parts: 1) a high-pass sigma delta modulator-based biosignal processor (BSP) for signal acquisition and digitization, 2) a low-power, super-regenerative on-off keying transceiver for short-range wireless transmission, and 3) a digital signal processor (DSP) for electrocardiogram (ECG) classification. The BSP and transmitter circuits, which are the body-end circuits, can be operated for over 80 days using two 605 mAH zinc-air batteries as the power supply; the power consumption is 586.5 μW. As for the radio frequency receiver and DSP, which are the receiving-end circuits that can be integrated in smartphones or personal computers, power consumption is less than 1 mW. With a wavelet transform-based digital signal processing circuit and a diagnosis control by cardiologists, the accuracy of beat detection and ECG classification are close to 99.44% and 97.25%, respectively. All chips are fabricated in TSMC 0.18-μm standard CMOS process.
An Infrared Data Acquisition and Processing System
1977-09-01
Display Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Terminai High Speed Printer/Plotter . . . . Digital Tape Unit...In addition to the recently procured Honeywell Model 96 analog re- corder, a High Density digital tape unit is planned. This unit will increase the...diagram of Figure 1 we see that a Digital Equipment Corp. (DEC) PDP-11/15 minicomputer with 28K of core memory drives the digital section of IRDAPS
NASA Technical Reports Server (NTRS)
Beyon, J. Y.; Koch, G. J.; Kavaya, M. J.
2010-01-01
A data acquisition and signal processing system is being developed for a 2-micron airborne wind profiling coherent Doppler lidar system. This lidar, called the Doppler Aerosol Wind Lidar (DAWN), is based on a Ho:Tm:LuLiF laser transmitter and 15-cm diameter telescope. It is being packaged for flights onboard the NASA DC-8, with the first flights in the summer of 2010 in support of the NASA Genesis and Rapid Intensification Processes (GRIP) campaign for the study of hurricanes. The data acquisition and processing system is housed in a compact PCI chassis and consists of four components such as a digitizer, a digital signal processing (DSP) module, a video controller, and a serial port controller. The data acquisition and processing software (DAPS) is also being developed to control the system including real-time data analysis and display. The system detects an external 10 Hz trigger pulse and initiates the data acquisition and processing process, and displays selected wind profile parameters such as Doppler shift, power distribution, wind directions and velocities. Doppler shift created by aircraft motion is measured by an inertial navigation/GPS sensor and fed to the signal processing system for real-time removal of aircraft effects from wind measurements. A general overview of the system and the DAPS as well as the coherent Doppler lidar system is presented in this paper.
MICROPROCESSOR-BASED DATA-ACQUISITION SYSTEM FOR A BOREHOLE RADAR.
Bradley, Jerry A.; Wright, David L.
1987-01-01
An efficient microprocessor-based system is described that permits real-time acquisition, stacking, and digital recording of data generated by a borehole radar system. Although the system digitizes, stacks, and records independently of a computer, it is interfaced to a desktop computer for program control over system parameters such as sampling interval, number of samples, number of times the data are stacked prior to recording on nine-track tape, and for graphics display of the digitized data. The data can be transferred to the desktop computer during recording, or it can be played back from a tape at a latter time. Using the desktop computer, the operator observes results while recording data and generates hard-copy graphics in the field. Thus, the radar operator can immediately evaluate the quality of data being obtained, modify system parameters, study the radar logs before leaving the field, and rerun borehole logs if necessary. The system has proven to be reliable in the field and has increased productivity both in the field and in the laboratory.
Digital Avionics Information System (DAIS): Mid-1980's Maintenance Task Analysis. Final Report.
ERIC Educational Resources Information Center
Czuchry, Andrew J.; And Others
The fundamental objective of the Digital Avionics Information System (DAIS) Life Cycle Cost (LCC) Study is to provide the Air Force with an enhanced in-house capability to incorporate LCC considerations during all stages of the system acquisition process. The purpose of this report is to describe the technical approach, results, and conclusions…
Development of Data Acquisition Card Driver for ICRH System on EAST
NASA Astrophysics Data System (ADS)
Liu, Daming; Luo, Jiarong; Zhao, Yanping; Qin, Chengming
2008-04-01
Presented in this paper is the development of the driver for the data acquisition card with a peripheral component interconnection (PCI) local bus on the ion cyclotron range of frequency heating (ICRH) system. The driver is mainly aimed at the embedded VxWorks system (real-time operating system) which is widely used in various fields of real-time systems. An efficient way is employed to develop this driver, which will advance the real-time control of the ICRH system on the experimental advanced superconductor tokamak (EAST). The driver is designed using the TORNADO integrated development environment (IDE), and implemented in C plus language. The details include the hardware configuration, analogue/digital (A/D) and digital/analogue (D/A) conversion, input and output (I/O) operation of the driver to support over five cards. The data acquisition card can be manipulated in a low-level program and meet the requirements of A/D conversion and D/A outputs.
Development of a digital method for neutron/gamma-ray discrimination based on matched filtering
NASA Astrophysics Data System (ADS)
Korolczuk, S.; Linczuk, M.; Romaniuk, R.; Zychor, I.
2016-09-01
Neutron/gamma-ray discrimination is crucial for measurements with detectors sensitive to both neutron and gamma-ray radiation. Different techniques to discriminate between neutrons and gamma-rays based on pulse shape analysis are widely used in many applications, e.g., homeland security, radiation dosimetry, environmental monitoring, fusion experiments, nuclear spectroscopy. A common requirement is to improve a radiation detection level with a high detection reliability. Modern electronic components, such as high speed analog to digital converters and powerful programmable digital circuits for signal processing, allow us to develop a fully digital measurement system. With this solution it is possible to optimize digital signal processing algorithms without changing any electronic components in an acquisition signal path. We report on results obtained with a digital acquisition system DNG@NCBJ designed at the National Centre for Nuclear Research. A 2'' × 2'' EJ309 liquid scintillator was used to register mixed neutron and gamma-ray radiation from PuBe sources. A dedicated algorithm for pulse shape discrimination, based on real-time filtering, was developed and implemented in hardware.
The Challenge of Acquisitions in the Digital Age
ERIC Educational Resources Information Center
Whittaker, Martha
2008-01-01
People are now beginning to appreciate that acquisitions in the digital world is different. In addition to business acumen and accounting knowledge, a digital-age acquisitions librarian needs to understand scholarly communication and the emerging business models of digital publishing. In this article, the author discusses the challenges and the…
Real-Time Capabilities of a Digital Analyzer for Mixed-Field Assay Using Scintillation Detectors
NASA Astrophysics Data System (ADS)
Aspinall, M. D.; Joyce, M. J.; Lavietes, A.; Plenteda, R.; Cave, F. D.; Parker, H.; Jones, A.; Astromskas, V.
2017-03-01
Scintillation detectors offer a single-step detection method for fast neutrons and necessitate real-time acquisition, whereas this is redundant in two-stage thermal detection systems using helium-3 and lithium-6, where the fast neutrons need to be thermalized prior to detection. The relative affordability of scintillation detectors and the associated fast digital acquisition systems have enabled entirely new measurement setups that can consist of sizeable detector arrays. These detectors in most cases rely on photomultiplier tubes, which have significant tolerances and result in variations in detector response functions. The detector tolerances and other environmental instabilities must be accounted for in measurements that depend on matched detector performance. This paper presents recent advances made to a high-speed FPGA-based digitizer. The technology described offers a complete solution for fast-neutron scintillation detectors by integrating multichannel high-speed data acquisition technology with dedicated detector high-voltage supplies. This configuration has significant advantages for large detector arrays that require uniform detector responses. We report on bespoke control software and firmware techniques that exploit real-time functionality to reduce setup and acquisition time, increase repeatability, and reduce statistical uncertainties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bouaichaoui, Youcef; Berrahal, Abderezak; Halbaoui, Khaled
This paper describes the design of data acquisition system (DAQ) that is connected to a PC and development of a feedback control system that maintains the coolant temperature of the process at a desired set point using a digital controller system based on the graphical programming language. The paper will provide details about the data acquisition unit, shows the implementation of the controller, and present test results. (authors)
Hardware/Software Issues for Video Guidance Systems: The Coreco Frame Grabber
NASA Technical Reports Server (NTRS)
Bales, John W.
1996-01-01
The F64 frame grabber is a high performance video image acquisition and processing board utilizing the TMS320C40 and TMS34020 processors. The hardware is designed for the ISA 16 bit bus and supports multiple digital or analog cameras. It has an acquisition rate of 40 million pixels per second, with a variable sampling frequency of 510 kHz to MO MHz. The board has a 4MB frame buffer memory expandable to 32 MB, and has a simultaneous acquisition and processing capability. It supports both VGA and RGB displays, and accepts all analog and digital video input standards.
Knowledge-Acquisition Tool For Expert System
NASA Technical Reports Server (NTRS)
Disbrow, James D.; Duke, Eugene L.; Regenie, Victoria A.
1988-01-01
Digital flight-control systems monitored by computer program that evaluates and recommends. Flight-systems engineers for advanced, high-performance aircraft use knowlege-acquisition tool for expert-system flight-status monitor suppling interpretative data. Interpretative function especially important in time-critical, high-stress situations because it facilitates problem identification and corrective strategy. Conditions evaluated and recommendations made by ground-based engineers having essential knowledge for analysis and monitoring of performances of advanced aircraft systems.
Towards the use of computationally inserted lesions for mammographic CAD assessment
NASA Astrophysics Data System (ADS)
Ghanian, Zahra; Pezeshk, Aria; Petrick, Nicholas; Sahiner, Berkman
2018-03-01
Computer-aided detection (CADe) devices used for breast cancer detection on mammograms are typically first developed and assessed for a specific "original" acquisition system, e.g., a specific image detector. When CADe developers are ready to apply their CADe device to a new mammographic acquisition system, they typically assess the CADe device with images acquired using the new system. Collecting large repositories of clinical images containing verified cancer locations and acquired by the new image acquisition system is costly and time consuming. Our goal is to develop a methodology to reduce the clinical data burden in the assessment of a CADe device for use with a different image acquisition system. We are developing an image blending technique that allows users to seamlessly insert lesions imaged using an original acquisition system into normal images or regions acquired with a new system. In this study, we investigated the insertion of microcalcification clusters imaged using an original acquisition system into normal images acquired with that same system utilizing our previously-developed image blending technique. We first performed a reader study to assess whether experienced observers could distinguish between computationally inserted and native clusters. For this purpose, we applied our insertion technique to clinical cases taken from the University of South Florida Digital Database for Screening Mammography (DDSM) and the Breast Cancer Digital Repository (BCDR). Regions of interest containing microcalcification clusters from one breast of a patient were inserted into the contralateral breast of the same patient. The reader study included 55 native clusters and their 55 inserted counterparts. Analysis of the reader ratings using receiver operating characteristic (ROC) methodology indicated that inserted clusters cannot be reliably distinguished from native clusters (area under the ROC curve, AUC=0.58±0.04). Furthermore, CADe sensitivity was evaluated on mammograms with native and inserted microcalcification clusters using a commercial CADe system. For this purpose, we used full field digital mammograms (FFDMs) from 68 clinical cases, acquired at the University of Michigan Health System. The average sensitivities for native and inserted clusters were equal, 85.3% (58/68). These results demonstrate the feasibility of using the inserted microcalcification clusters for assessing mammographic CAD devices.
Low cost method for manufacturing a data acquisition system with USB connectivity
NASA Astrophysics Data System (ADS)
Niculescu, V.; Dobre, R. A.; Popovici, E.
2016-06-01
In the process of designing and manufacturing an electronic system the digital oscilloscope plays an essential role but it also represents one of the most expensive equipment present on the typical workbench. In order to make electronic design more accessible to students and hobbyists, an affordable data acquisition system was imagined. The paper extensively presents the development and testing of a low cost, medium speed, data acquisition system which can be used in a wide range of electronic measurement and debugging applications, assuring also great portability due to the small physical dimensions. Each hardware functional block and is thoroughly described, highlighting the challenges that occurred as well as the solutions to overcome them. The entire system was successfully manufactured using high quality components to assure increased reliability, and high frequency PCB materials and techniques were preferred. The measured values determined based on test signals were compared to the ones obtained using a digital oscilloscope available on the market and differences less than 1% were observed.
An RFID tag system-on-chip with wireless ECG monitoring for intelligent healthcare systems.
Wang, Cheng-Pin; Lee, Shuenn-Yuh; Lai, Wei-Chih
2013-01-01
This paper presents a low-power wireless ECG acquisition system-on-chip (SoC), including an RF front-end circuit, a power unit, an analog front-end circuit, and a digital circuitry. The proposed RF front-end circuit can provide the amplitude shift keying demodulation and distance to digital conversion to accurately receive the data from the reader. The received data will wake up the power unit to provide the required supply voltages of analog front-end (AFE) and digital circuitry. The AFE, including a pre-amplifier, an analog filter, a post-amplifier, and an analog-to-digital converter, is used for the ECG acquisition. Moreover, the EPC Class I Gen 2 UHF standard is employed in the digital circuitry for the handshaking of communication and the control of the system. The proposed SoC has been implemented in 0.18-µm standard CMOS process and the measured results reveal the communication is compatible to the RFID protocol. The average power consumption for the operating chip is 12 µW. Using a Sony PR44 battery to the supply power (605mAh@1.4V), the RFID tag SoC operates continuously for about 50,000 hours (>5 years), which is appropriate for wireless wearable ECG monitoring systems.
Sharma, Renuka; Kapoor, Raj
2016-01-01
Objectives: Blood pressure estimation is a key skill for medical practitioners. It is routinely taught to undergraduate medical students using an aneroid sphygmomanometer. However, the conceptual understanding in the practical remains limited. We conducted the following study to evaluate the efficacy of digital data acquisition systems as an adjunct to the sphygmomanometer to teach blood pressure. Methods: Fifty-seven first-year medical students participated in the study. An MCQ test of 15 questions, consisting of 10 conceptual and five factual questions, was administered twice – pre- and post-demonstration of blood pressure measurement using a digital data acquisition system. In addition, qualitative feedback was also obtained. Results: Median scores were 7 (6 - 8) and 3 (1.5 - 4) in pre-test sessions for conceptual and factual questions, respectively. Post-test scores showed a significant improvement in both categories (10 (9 - 10) and 4 (4 - 4.5), respectively, Mann-Whitney U test, p < 0.0001). Student feedback also indicated that the digital system enhanced learning and student participation. Conclusions: Student feedback regarding the demonstrations was uniformly positive, which was also reflected in significantly improved post-test scores. We conclude that parallel demonstration on digital systems and the sphygmomanometer will enhance student engagement and understanding of blood pressure measurement. PMID:27660735
User`s manual for the CDC-1 digitizer controller
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferron, J.R.
1994-09-01
A detailed description of how to use the CDC-1 digitizer controller is given. The CDC-1 is used with the CAMAC format digitizer models in the TRAQ series (manufactured by DSP Technology Inc.), the DAD-1 data acquisition daughter board, and the Intel i860-based SuperCard-2 (manufactured, by CSP Inc.) to form a high speed data acquisition and real time analysis system. Data can be transferred to the memory on the SuperCard-2 at a rate as high as 40 million 14-bit samples per second. Depending on the model of TRAQ digitizer in use, digitizing rates up to 3.33 MHz are supported (with eightmore » data channels), or, for instance, at a sample rate of 100 kHz, 384 data channels can be acquired.« less
A data acquisition system for marine and ecological research.
NASA Technical Reports Server (NTRS)
Johnson, R. A.
1971-01-01
Description of a self-contained portable data acquisition system for use in marine and ecological research. The compact lightweight data acquisition system is capable of recording 14 variables in its present configuration and is suitable for use in either a boat, pickup truck, or light aircraft. This system will provide the acquisition of reliable data on the structure of the environment and the effect of man-made and natural activities on the observed phenomenon. Utilizing both self-contained analog recording and a telemetry transmitter for real-time digital readout and recording, the prototype system has undergone extensive testing. Currently undergoing component performance upgrading, the prototype system has been utilized in several environmental science investigations associated with air pollution investigations and weather modification and is currently being used for marine data acquisition.
Combined Acquisition/Processing For Data Reduction
NASA Astrophysics Data System (ADS)
Kruger, Robert A.
1982-01-01
Digital image processing systems necessarily consist of three components: acquisition, storage/retrieval and processing. The acquisition component requires the greatest data handling rates. By coupling together the acquisition witn some online hardwired processing, data rates and capacities for short term storage can be reduced. Furthermore, long term storage requirements can be reduced further by appropriate processing and editing of image data contained in short term memory. The net result could be reduced performance requirements for mass storage, processing and communication systems. Reduced amounts of data also snouid speed later data analysis and diagnostic decision making.
Field-Deployable Acoustic Digital Systems for Noise Measurement
NASA Technical Reports Server (NTRS)
Shams, Qamar A.; Wright, Kenneth D.; Lunsford, Charles B.; Smith, Charlie D.
2000-01-01
Langley Research Center (LaRC) has for years been a leader in field acoustic array measurement technique. Two field-deployable digital measurement systems have been developed to support acoustic research programs at LaRC. For several years, LaRC has used the Digital Acoustic Measurement System (DAMS) for measuring the acoustic noise levels from rotorcraft and tiltrotor aircraft. Recently, a second system called Remote Acquisition and Storage System (RASS) was developed and deployed for the first time in the field along with DAMS system for the Community Noise Flight Test using the NASA LaRC-757 aircraft during April, 2000. The test was performed at Airborne Airport in Wilmington, OH to validate predicted noise reduction benefits from alternative operational procedures. The test matrix was composed of various combinations of altitude, cutback power, and aircraft weight. The DAMS digitizes the acoustic inputs at the microphone site and can be located up to 2000 feet from the van which houses the acquisition, storage and analysis equipment. Digitized data from up to 10 microphones is recorded on a Jaz disk and is analyzed post-test by microcomputer system. The RASS digitizes and stores acoustic inputs at the microphone site that can be located up to three miles from the base station and can compose a 3 mile by 3 mile array of microphones. 16-bit digitized data from the microphones is stored on removable Jaz disk and is transferred through a high speed array to a very large high speed permanent storage device. Up to 30 microphones can be utilized in the array. System control and monitoring is accomplished via Radio Frequency (RF) link. This paper will present a detailed description of both systems, along with acoustic data analysis from both systems.
NASA Technical Reports Server (NTRS)
1989-01-01
Technology developed during a joint research program with Langley and Kinetic Systems Corporation led to Kinetic Systems' production of a high speed Computer Automated Measurement and Control (CAMAC) data acquisition system. The study, which involved the use of CAMAC equipment applied to flight simulation, significantly improved the company's technical capability and produced new applications. With Digital Equipment Corporation, Kinetic Systems is marketing the system to government and private companies for flight simulation, fusion research, turbine testing, steelmaking, etc.
Thomson Scattering Diagnostic Data Acquisition Systems for Modern Fusion Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanenko, S.V.; Khilchenko, A.D.; Ovchar, V.K.
2015-07-01
Uniquely designed complex data acquisition system for Thomson scattering diagnostic was developed. It allows recording short duration (3-5 ns) scattered pulses with 2 GHz sampling rate and 10-bit total resolution in oscilloscope mode. The system consists up to 48 photo detector modules with 0- 200 MHz bandwidth, 1-48 simultaneously sampling ADC modules and synchronization subsystem. The photo detector modules are based on avalanche photodiodes (APD) and ultra-low noise trans-impedance amplifiers. ADC modules include fast analog to digital converters and digital units based on the FPGA (Field- Programmable Gate Array) for data processing and storage. The synchronization subsystem is used tomore » form triggering pulses and to organize the simultaneously mode of ADC modules operation. (authors)« less
Data Acquisition with GPUs: The DAQ for the Muon $g$-$2$ Experiment at Fermilab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gohn, W.
Graphical Processing Units (GPUs) have recently become a valuable computing tool for the acquisition of data at high rates and for a relatively low cost. The devices work by parallelizing the code into thousands of threads, each executing a simple process, such as identifying pulses from a waveform digitizer. The CUDA programming library can be used to effectively write code to parallelize such tasks on Nvidia GPUs, providing a significant upgrade in performance over CPU based acquisition systems. The muonmore » $g$-$2$ experiment at Fermilab is heavily relying on GPUs to process its data. The data acquisition system for this experiment must have the ability to create deadtime-free records from 700 $$\\mu$$s muon spills at a raw data rate 18 GB per second. Data will be collected using 1296 channels of $$\\mu$$TCA-based 800 MSPS, 12 bit waveform digitizers and processed in a layered array of networked commodity processors with 24 GPUs working in parallel to perform a fast recording of the muon decays during the spill. The described data acquisition system is currently being constructed, and will be fully operational before the start of the experiment in 2017.« less
DOT National Transportation Integrated Search
1978-01-01
A digital data acquisition system has been designed to meet the need for a long duration noise analysis capability. By sampling the DC outputs from sound level meters, it has been possible to make twenty-four hour or longer recordings, in contrast to...
NASA Astrophysics Data System (ADS)
Elfman, Mikael; Ros, Linus; Kristiansson, Per; Nilsson, E. J. Charlotta; Pallon, Jan
2016-03-01
With the recent advances towards modern Ion Beam Analysis (IBA), going from one- or few-parameter detector systems to multi-parameter systems, it has been necessary to expand and replace the more than twenty years old CAMAC based system. A new VME multi-parameter (presently up to 200 channels) data acquisition and control system has been developed and implemented at the Lund Ion Beam Analysis Facility (LIBAF). The system is based on the VX-511 Single Board Computer (SBC), acting as master with arbiter functionality and consists of standard VME modules like Analog to Digital Converters (ADC's), Charge to Digital Converters (QDC's), Time to Digital Converters (TDC's), scaler's, IO-cards, high voltage and waveform units. The modules have been specially selected to support all of the present detector systems in the laboratory, with the option of future expansion. Typically, the detector systems consist of silicon strip detectors, silicon drift detectors and scintillator detectors, for detection of charged particles, X-rays and γ-rays. The data flow of the raw data buffers out from the VME bus to the final storage place on a 16 terabyte network attached storage disc (NAS-disc) is described. The acquisition process, remotely controlled over one of the SBCs ethernet channels, is also discussed. The user interface is written in the Kmax software package, and is used to control the acquisition process as well as for advanced online and offline data analysis through a user-friendly graphical user interface (GUI). In this work the system implementation, layout and performance are presented. The user interface and possibilities for advanced offline analysis are also discussed and illustrated.
Living in a digital world: features and applications of FPGA in photon detection
NASA Astrophysics Data System (ADS)
Arnesano, Cosimo
Optical spectroscopy and imaging outcomes rely upon many factors; one of the most critical is the photon acquisition and processing method employed. For some types of measurements it may be crucial to acquire every single photon quickly with temporal resolution, but in other cases it is important to acquire as many photons as possible, regardless of the time information about each of them. Fluorescence Lifetime Imaging Microscopy belongs to the first case, where the information of the time of arrival of every single photon in every single pixel is fundamental in obtaining the desired information. Spectral tissue imaging belongs to the second case, where high photon density is needed in order to calculate the optical parameters necessary to build the spectral image. In both cases, the current instrumentation suffers from limitations in terms of acquisition time, duty cycle, cost, and radio-frequency interference and emission. We developed the Digital Frequency-Domain approach for photon acquisition and processing purpose using new digital technology. This approach is based on the use of photon detectors in photon counting mode, and the digital heterodyning method to acquire data which is analyzed in the frequency domain to provide the information of the time of arrival of the photons . In conjunction with the use of pulsed laser sources, this method allows the determination of the time of arrival of the photons using the harmonic content of the frequency domain analysis. The parallel digital FD design is a powerful approach that others the possibility to implement a variety of different applications in fluorescence spectroscopy and microscopy. It can be applied to fluorometry, Fluorescence Lifetime Imaging (FLIM), and Fluorescence Correlation Spectroscopy (FCS), as well as multi frequency and multi wavelength tissue imaging in compact portable medical devices. It dramatically reduces the acquisition time from the several minutes scale to the seconds scale, performs signal processing in a digital fashion avoiding RF emission and it is extremely inexpensive. This development is the result of a systematic study carried on a previous design known as the FLIMBox developed as part of a thesis of another graduate student. The extensive work done in maximizing the performance of the original FLIMBox led us to develop a new hardware solution with exciting and promising results and potential that were not possible in the previous hardware realization, where the signal harmonic content was limited by the FPGA technology. The new design permits acquisition of a much larger harmonic content of the sample response when it is excited with a pulsed light source in one single measurement using the digital mixing principle that was developed in the original design. Furthermore, we used the parallel digital FD principle to perform tissue imaging through Diffuse Optical Spectroscopy (DOS) measurements. We integrated the FLIMBox in a new system that uses a supercontinuum white laser with high brightness as a single light source and photomultipliers with large detection area, both allowing a high penetration depth with extremely low power at the sample. The parallel acquisition, achieved by using the FlimBox, decreases the time required for standard serial systems that scan through all modulation frequencies. Furthermore, the all-digital acquisition avoids analog noise, removes the analog mixer of the conventional frequency domain approach, and it does not generate radio-frequencies, normally present in current analog systems. We are able to obtain a very sensitive acquisition due to the high signal to noise ratio (S/N). The successful results obtained by utilizing digital technology in photon acquisition and processing, prompted us to extend the use of FPGA to other applications, such as phosphorescence detection. Using the FPGA concept we proposed possible solutions to outstanding problems with the current technology. In this thesis I discuss new possible scenarios where new FPGA chips are applied to spectral tissue imaging.
Electronics of the data acquisition system of the DANSS detector based on silicon photomultipliers
NASA Astrophysics Data System (ADS)
Svirida, D.
2018-01-01
The electronics of the data acquisition system based on silicon photomultipliers is briefly described. The elements and modules of the system were designed and constructed at ITEP especially for the DANSS detector. Examples of digitized signals obtained with the presented electronic modules and selected results on processing of the DANSS engineering data-taking run in spring 2016 are given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merchant, Bion J.
The Seismo-Hydroacoustic Data Acquisition System (SHDAS) is undergoing evaluation in preparation for its engineering, development, and deployment by the U.S Navy as an ocean bottom seismic monitoring system. At the current stage of development, the production digitizers are being evaluated to confirm their performance prior to packaging and assembly for deployment. The testing of the digitizers is being conducted at Delta Group Electronics, the digitizer fabricator, in San Diego, California, performed by Sandia National Laboratories with the assistance of Leidos and Delta Group Electronics.
DOT National Transportation Integrated Search
2006-02-01
Problem: State-of-the-art airborne mapping is in major : transition, which affects both the data acquisition and : data processing technologies. The IT age has brought : powerful sensors and revolutionary new techniques to : acquire spatial data in l...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agnes, P.; Albuquerque, I. F. M.; Alexander, T.
The DarkSide-50 experiment at the Laboratori Nazionali del Gran Sasso is a search for dark matter using a dual phase time projection chamber with 50 kg of low radioactivity argon as target. Light signals from interactions in the argon are detected by a system of 38 photo-multiplier tubes (PMTs), 19 above and 19 below the TPC volume inside the argon cryostat. We describe the electronics which processes the signals from the photo-multipliers, the trigger system which identifies events of interest, and the data-acquisition system which records the data for further analysis. The electronics include resistive voltage dividers on the PMTs,more » custom pre-amplifiers mounted directly on the PMT voltage dividers in the liquid argon, and custom amplifier/discriminators (at room temperature). After amplification, the PMT signals are digitized in CAEN waveform digitizers, and CAEN logic modules are used to construct the trigger, the data acquisition system for the TPC is based on the Fermilab "artdaq" software. The system has been in operation since early 2014.« less
NASA Astrophysics Data System (ADS)
Agnes, P.; Albuquerque, I. F. M.; Alexander, T.; Alton, A. K.; Arisaka, K.; Asner, D. M.; Ave, M.; Back, H. O.; Baldin, B.; Biery, K.; Bocci, V.; Bonfini, G.; Bonivento, W.; Bossa, M.; Bottino, B.; Brigatti, A.; Brodsky, J.; Budano, F.; Bussino, S.; Cadeddu, M.; Cadoni, M.; Calaprice, F.; Canci, N.; Candela, A.; Cao, H.; Caravati, M.; Cariello, M.; Carlini, M.; Catalanotti, S.; Cataudella, V.; Cavalcante, P.; Chepurnov, A.; Cicaló, C.; Cocco, A. G.; Covone, G.; Crippa, L.; D'Angelo, D.; D'Incecco, M.; Davini, S.; de Candia, A.; De Cecco, S.; De Deo, M.; De Filippis, G.; De Rosa, G.; De Vincenzi, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Dionisi, C.; Di Pietro, G.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Forster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Giagu, S.; Giganti, C.; Giovanetti, G. K.; Goretti, A. M.; Granato, F.; Grandi, L.; Gromov, M.; Guan, M.; Guardincerri, Y.; Hackett, B. R.; Herner, K. R.; Hughes, D.; Humble, P.; Hungerford, E. V.; Ianni, A.; Ianni, A.; James, I.; Johnson, T. N.; Keeter, K.; Kendziora, C. L.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Li, X.; Lissia, M.; Loer, B.; Lombardi, P.; Longo, G.; Luitz, S.; Ma, Y.; Machado, A.; Machulin, I. N.; Mandarano, A.; Mari, S. M.; Maricic, J.; Marini, L.; Martoff, C. J.; Meyers, P. D.; Miletic, T.; Milincic, R.; Montanari, D.; Monte, A.; Montuschi, M.; Monzani, M. E.; Mosteiro, P.; Mount, B. J.; Muratova, V. N.; Musico, P.; Navrer Agasson, A.; Nelson, A.; Odrowski, S.; Oleinik, A.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Pelczar, K.; Pelliccia, N.; Pocar, A.; Pordes, S.; Pugachev, D. A.; Qian, H.; Randle, K.; Ranucci, G.; Razeti, M.; Razeto, A.; Reinhold, B.; Renshaw, A. L.; Rescigno, M.; Riffard, Q.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, S. D.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Sangiorgio, S.; Savarese, C.; Schlitzer, B.; Segreto, E.; Semenov, D. A.; Shields, E.; Singh, P. N.; Skorokhvatov, M. D.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Trinchese, P.; Unzhakov, E. V.; Verducci, M.; Vishneva, A.; Vogelaar, R. B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A. W.; Westerdale, S.; Wojcik, M. M.; Xiang, X.; Xiao, X.; Xu, J.; Yang, C.; Yoo, J.; Zavatarelli, S.; Zec, A.; Zhong, W.; Zhu, C.; Zuzel, G.
2017-12-01
The DarkSide-50 experiment at the Laboratori Nazionali del Gran Sasso is a search for dark matter using a dual phase time projection chamber with 50 kg of low radioactivity argon as target. Light signals from interactions in the argon are detected by a system of 38 photo-multiplier tubes (PMTs), 19 above and 19 below the TPC volume inside the argon cryostat. We describe the electronics which processes the signals from the photo-multipliers, the trigger system which identifies events of interest, and the data-acquisition system which records the data for further analysis. The electronics include resistive voltage dividers on the PMTs, custom pre-amplifiers mounted directly on the PMT voltage dividers in the liquid argon, and custom amplifier/discriminators (at room temperature). After amplification, the PMT signals are digitized in CAEN waveform digitizers, and CAEN logic modules are used to construct the trigger; the data acquisition system for the TPC is based on the Fermilab artdaq software. The system has been in operation since early 2014.
Agnes, P.; Albuquerque, I. F. M.; Alexander, T.; ...
2017-12-01
The DarkSide-50 experiment at the Laboratori Nazionali del Gran Sasso is a search for dark matter using a dual phase time projection chamber with 50 kg of low radioactivity argon as target. Light signals from interactions in the argon are detected by a system of 38 photo-multiplier tubes (PMTs), 19 above and 19 below the TPC volume inside the argon cryostat. We describe the electronics which processes the signals from the photo-multipliers, the trigger system which identifies events of interest, and the data-acquisition system which records the data for further analysis. The electronics include resistive voltage dividers on the PMTs,more » custom pre-amplifiers mounted directly on the PMT voltage dividers in the liquid argon, and custom amplifier/discriminators (at room temperature). After amplification, the PMT signals are digitized in CAEN waveform digitizers, and CAEN logic modules are used to construct the trigger, the data acquisition system for the TPC is based on the Fermilab "artdaq" software. The system has been in operation since early 2014.« less
ERIC Educational Resources Information Center
Mitchell, Eugene E., Ed.
In context of an instrumentation course, four ocean engineering students set out to design and construct a micro-computer based data acquisition system that would be compatible with the University's CYBER host computer. The project included hardware design in the area of sampling, analog-to-digital conversion and timing coordination. It also…
Developments of a new data acquisition system at ANNRI
NASA Astrophysics Data System (ADS)
Nakao, T.; Terada, K.; Kimura, A.; Nakamura, S.; Iwamoto, O.; Harada, H.; Katabuchi, T.; Igashira, M.; Hori, J.
2017-09-01
A new data acquisition system (DAQ system) has been developed at the Accurate Neutron-Nucleus Reaction Measurement Instrument (ANNRI) facility in the Japan Proton Accelerator Research Complex, Materials and Life Science Experimental Facility (J-PARC/MLF). DAQ systems for both the Ge detector system and the Li-glass detector system were tested by using a gold sample. The applicability of the time-of-flight method was checked. System performance was evaluated on the basis of digital conversion nonlinearity, energy resolution, multi-channel coincidence and dead time.
A Data Acquisition System (DAS) for marine and ecological research from aerospace technology
NASA Technical Reports Server (NTRS)
Johnson, R. A.
1972-01-01
The efforts of researchers at Mississippi State University to utilize space-age technology in the development of a self-contained, portable data acquisition system for use in marine and ecological research are presented. The compact, lightweight data acquisition system is capable of recording 14 variables in its present configuration and is suitable for use in either a boat, pickup truck, or light aircraft. This system will provide the acquisition of reliable data on the structure of the environment and the effect of man-made and natural activities on the observed phenomenon. Utilizing both self-contained analog recording and a telemetry transmitter for real-time digital readout and recording, the prototype system has undergone extensive testing.
ERIC Educational Resources Information Center
Czuchry, Andrew J.; And Others
This report provides a complete guide to the stand alone mode operation of the reliability and maintenance (R&M) model, which was developed to facilitate the performance of design versus cost trade-offs within the digital avionics information system (DAIS) acquisition process. The features and structure of the model, its input data…
C-130 Automated Digital Data System (CADDS)
NASA Technical Reports Server (NTRS)
Scofield, C. P.; Nguyen, Chien
1991-01-01
Real time airborne data acquisition, archiving and distribution on the NASA/Ames Research Center (ARC) C-130 has been improved over the past three years due to the implementation of the C-130 Automated Digital Data System (CADDS). CADDS is a real time, multitasking, multiprocessing ROM-based system. CADDS acquires data from both avionics and environmental sensors inflight for all C-130 data lines. The system also displays the data on video monitors throughout the aircraft.
NASA Astrophysics Data System (ADS)
Epstein, A.; Briquet-Laugier, F.; Sheldon, S.; Boulin, C.
2000-04-01
Most of the X-ray multi-wire gas detectors used at the EMBL Hamburg outstation for time-resolved studies of biological samples are readout, using the delay line method. The main disadvantage of such readout systems is their event rate limitation introduced by the delay line and the required time to digital conversion step. They also lack the possibility to deal with multiple events. To overcome these limitations, a new approach for the complete readout system was introduced. The new linear detection system is based on the wire per wire approach where each individual wire is associated to preamplifier/discriminator/counter electronics channel. High-density, front-end electronics were designed around a fast current sensitive preamplifier. An eight-channel board was designed to include the preamplifiers-discriminators and the differential ECL drivers output stages. The detector front-end consists of 25 boards directly mounted inside the detector assembly. To achieve a time framing resolution as short as 10 /spl mu/s, very fast histogramming is required. The only way to implement this for a high number of channels (200 in our case) is by using a distributed system. The digital part of the system consists of a crate controller, up to 16 acquisition boards (capable of handling fast histogramming for up to 32-channels each) and an optical-link board (based on the Cypress "Hot-Link" chip set). Both the crate controller and the acquisition boards are based on a standard RISC microcontroller (IDT R3081) plug-in board. At present, a dedicated CAMAC module which we developed is used to interface the digital front-end acquisition crate to the host via the optical link.
A Sub-Sampling Approach for Data Acquisition in Gamma Ray Emission Tomography
NASA Astrophysics Data System (ADS)
Fysikopoulos, Eleftherios; Kopsinis, Yannis; Georgiou, Maria; Loudos, George
2016-06-01
State of the art data acquisition systems for small animal imaging gamma ray detectors often rely on free running Analog to Digital Converters (ADCs) and high density Field Programmable Gate Arrays (FPGA) devices for digital signal processing. In this work, a sub-sampling acquisition approach, which exploits a priori information regarding the shape of the obtained detector pulses is proposed. Output pulses shape depends on the response of the scintillation crystal, photodetector's properties and amplifier/shaper operation. Using these known characteristics of the detector pulses prior to digitization, one can model the voltage pulse derived from the shaper (a low-pass filter, last in the front-end electronics chain), in order to reduce the desirable sampling rate of ADCs. Fitting with a small number of measurements, pulse shape estimation is then feasible. In particular, the proposed sub-sampling acquisition approach relies on a bi-exponential modeling of the pulse shape. We show that the properties of the pulse that are relevant for Single Photon Emission Computed Tomography (SPECT) event detection (i.e., position and energy) can be calculated by collecting just a small fraction of the number of samples usually collected in data acquisition systems used so far. Compared to the standard digitization process, the proposed sub-sampling approach allows the use of free running ADCs with sampling rate reduced by a factor of 5. Two small detectors consisting of Cerium doped Gadolinium Aluminum Gallium Garnet (Gd3Al2Ga3O12 : Ce or GAGG:Ce) pixelated arrays (array elements: 2 × 2 × 5 mm3 and 1 × 1 × 10 mm3 respectively) coupled to a Position Sensitive Photomultiplier Tube (PSPMT) were used for experimental evaluation. The two detectors were used to obtain raw images and energy histograms under 140 keV and 661.7 keV irradiation respectively. The sub-sampling acquisition technique (10 MHz sampling rate) was compared with a standard acquisition method (52 MHz sampling rate), in terms of energy resolution and image signal to noise ratio for both gamma ray energies. The Levenberg-Marquardt (LM) non-linear least-squares algorithm was used, in post processing, in order to fit the acquired data with the proposed model. The results showed that analog pulses prior to digitization are being estimated with high accuracy after fitting with the bi-exponential model.
A digital receiver module with direct data acquisition for magnetic resonance imaging systems.
Tang, Weinan; Sun, Hongyu; Wang, Weimin
2012-10-01
A digital receiver module for magnetic resonance imaging (MRI) with detailed hardware implementations is presented. The module is based on a direct sampling scheme using the latest mixed-signal circuit design techniques. A single field-programmable gate array chip is employed to perform software-based digital down conversion for radio frequency signals. The modular architecture of the receiver allows multiple acquisition channels to be implemented on a highly integrated printed circuit board. To maintain the phase coherence of the receiver and the exciter in the context of direct sampling, an effective phase synchronization method was proposed to achieve a phase deviation as small as 0.09°. The performance of the described receiver module was verified in the experiments for both low- and high-field (0.5 T and 1.5 T) MRI scanners and was compared to a modern commercial MRI receiver system.
Digital Storage Oscilloscopes in the Undergraduate Laboratory
ERIC Educational Resources Information Center
Kraftmakher, Yaakov
2012-01-01
Digital storage oscilloscopes (DSOs) are now easily available to undergraduate laboratories. In many cases, a DSO can replace a data-acquisition system. Seven such experiments/demonstrations are considered: (i) families of "I-V" characteristics of electronic devices (bipolar junction transistor), (ii) the "V-I" curve of a high-temperature…
Digital Signal Processing in Acoustics--Part 2.
ERIC Educational Resources Information Center
Davies, H.; McNeill, D. J.
1986-01-01
Reviews the potential of a data acquisition system for illustrating the nature and significance of ideas in digital signal processing. Focuses on the fast Fourier transform and the utility of its two-channel format, emphasizing cross-correlation and its two-microphone technique of acoustic intensity measurement. Includes programing format. (ML)
The IceCube data acquisition system: Signal capture, digitization, and timestamping
NASA Astrophysics Data System (ADS)
Abbasi, R.; Ackermann, M.; Adams, J.; Ahlers, M.; Ahrens, J.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Becka, T.; Becker, J. K.; Becker, K.-H.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bingham, B.; Blaufuss, E.; Boersma, D. J.; Bohm, C.; Bolmont, J.; Böser, S.; Botner, O.; Braun, J.; Breeder, D.; Burgess, T.; Carithers, W.; Castermans, T.; Chen, H.; Chirkin, D.; Christy, B.; Clem, J.; Cowen, D. F.; D'Agostino, M. V.; Danninger, M.; Davour, A.; Day, C. T.; Depaepe, O.; De Clercq, C.; Demirörs, L.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; DeYoung, T.; Diaz-Velez, J. C.; Dreyer, J.; Dumm, J. P.; Duvoort, M. R.; Edwards, W. R.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Feusels, T.; Filimonov, K.; Finley, C.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Ganugapati, R.; Gerhardt, L.; Gladstone, L.; Glowacki, D.; Goldschmidt, A.; Goodman, J. A.; Gozzini, R.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gunasingha, R. M.; Gurtner, M.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Hardtke, R.; Hasegawa, Y.; Haugen, J.; Hays, D.; Heise, J.; Helbing, K.; Hellwig, M.; Herquet, P.; Hickford, S.; Hill, G. C.; Hodges, J.; Hoffman, K. D.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Hughey, B.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Imlay, R. L.; Inaba, M.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Jones, A.; Joseph, J. M.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kawai, H.; Kelley, J. L.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Kleinfelder, S.; Klepser, S.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Kuehn, K.; Kujawski, E.; Kuwabara, T.; Labare, M.; Laihem, K.; Landsman, H.; Lauer, R.; Laundrie, A.; Leich, H.; Leier, D.; Lewis, C.; Lucke, A.; Ludvig, J.; Lundberg, J.; Lünemann, J.; Madsen, J.; Maruyama, R.; Mase, K.; Matis, H. S.; McParland, C. P.; Meagher, K.; Meli, A.; Merck, M.; Messarius, T.; Mészáros, P.; Minor, R. H.; Miyamoto, H.; Mohr, A.; Mokhtarani, A.; Montaruli, T.; Morse, R.; Movit, S. M.; Münich, K.; Muratas, A.; Nahnhauer, R.; Nam, J. W.; Nießen, P.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; Ono, M.; Panknin, S.; Patton, S.; Pérez de los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Pohl, A. C.; Porrata, R.; Potthoff, N.; Pretz, J.; Price, P. B.; Przybylski, G. T.; Rawlins, K.; Razzaque, S.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Robbins, W. J.; Rodrigues, J. P.; Roth, P.; Rothmaier, F.; Rott, C.; Roucelle, C.; Rutledge, D.; Ryckbosch, D.; Sander, H.-G.; Sarkar, S.; Satalecka, K.; Sandstrom, P.; Schlenstedt, S.; Schmidt, T.; Schneider, D.; Schulz, O.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Smith, A. J.; Song, C.; Sopher, J. E.; Spiczak, G. M.; Spiering, C.; Stanev, T.; Stezelberger, T.; Stokstad, R. G.; Stoufer, M. C.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Sulanke, K.-H.; Sullivan, G. W.; Swillens, Q.; Taboada, I.; Tarasova, O.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Tluczykont, M.; Toale, P. A.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; Van Overloop, A.; Viscomi, V.; Vogt, C.; Voigt, B.; Vu, C. Q.; Wahl, D.; Walck, C.; Waldenmaier, T.; Waldmann, H.; Walter, M.; Wendt, C.; Westerhof, S.; Whitehorn, N.; Wharton, D.; Wiebusch, C. H.; Wiedemann, C.; Wikström, G.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Woschnagg, K.; Xu, X. W.; Yodh, G.; Yoshida, S.; IceCube Collaboration
2009-04-01
IceCube is a km-scale neutrino observatory under construction at the South Pole with sensors both in the deep ice (InIce) and on the surface (IceTop). The sensors, called Digital Optical Modules (DOMs), detect, digitize and timestamp the signals from optical Cherenkov-radiation photons. The DOM Main Board (MB) data acquisition subsystem is connected to the central DAQ in the IceCube Laboratory (ICL) by a single twisted copper wire-pair and transmits packetized data on demand. Time calibration is maintained throughout the array by regular transmission to the DOMs of precisely timed analog signals, synchronized to a central GPS-disciplined clock. The design goals and consequent features, functional capabilities, and initial performance of the DOM MB, and the operation of a combined array of DOMs as a system, are described here. Experience with the first InIce strings and the IceTop stations indicates that the system design and performance goals have been achieved.
NASA Astrophysics Data System (ADS)
Martinez, J. D.; Benlloch, J. M.; Cerda, J.; Lerche, Ch. W.; Pavon, N.; Sebastia, A.
2004-06-01
This paper is framed into the Positron Emission Mammography (PEM) project, whose aim is to develop an innovative gamma ray sensor for early breast cancer diagnosis. Currently, breast cancer is detected using low-energy X-ray screening. However, functional imaging techniques such as PET/FDG could be employed to detect breast cancer and track disease changes with greater sensitivity. Furthermore, a small and less expensive PET camera can be utilized minimizing main problems of whole body PET. To accomplish these objectives, we are developing a new gamma ray sensor based on a newly released photodetector. However, a dedicated PEM detector requires an adequate data acquisition (DAQ) and processing system. The characterization of gamma events needs a free-running analog-to-digital converter (ADC) with sampling rates of more than 50 Ms/s and must achieve event count rates up to 10 MHz. Moreover, comprehensive data processing must be carried out to obtain event parameters necessary for performing the image reconstruction. A new generation digital signal processor (DSP) has been used to comply with these requirements. This device enables us to manage the DAQ system at up to 80 Ms/s and to execute intensive calculi over the detector signals. This paper describes our designed DAQ and processing architecture whose main features are: very high-speed data conversion, multichannel synchronized acquisition with zero dead time, a digital triggering scheme, and high throughput of data with an extensive optimization of the signal processing algorithms.
ERIC Educational Resources Information Center
Selby, Les; Russell, David
2005-01-01
Purpose: To report on the progress of Digital Media U, a tailor-made portal, learning environment and management system. Design/methodology/approach: Discusses the design of the learning content domains, acquisition of the content and the systems for managing the curriculum in the future, including the application of a new model of accreditation.…
NASA Astrophysics Data System (ADS)
Tolle, F.; Friedt, J. M.; Bernard, É.; Prokop, A.; Griselin, M.
2014-12-01
Digital Elevation Model (DEM) is a key tool for analyzing spatially dependent processes including snow accumulation on slopes or glacier mass balance. Acquiring DEM within short time intervals provides new opportunities to evaluate such phenomena at the daily to seasonal rates.DEMs are usually generated from satellite imagery, aerial photography, airborne and ground-based LiDAR, and GPS surveys. In addition to these classical methods, we consider another alternative for periodic DEM acquisition with lower logistics requirements: digital processing of ground based, oblique view digital photography. Such a dataset, acquired using commercial off the shelf cameras, provides the source for generating elevation models using Structure from Motion (SfM) algorithms. Sets of pictures of a same structure but taken from various points of view are acquired. Selected features are identified on the images and allow for the reconstruction of the three-dimensional (3D) point cloud after computing the camera positions and optical properties. This cloud point, generated in an arbitrary coordinate system, is converted to an absolute coordinate system either by adding constraints of Ground Control Points (GCP), or including the (GPS) position of the cameras in the processing chain. We selected the opensource digital signal processing library provided by the French Geographic Institute (IGN) called Micmac for its fine processing granularity and the ability to assess the quality of each processing step.Although operating in snow covered environments appears challenging due to the lack of relevant features, we observed that enough reference points could be identified for 3D reconstruction. Despite poor climatic environment of the Arctic region considered (Ny Alesund area, 79oN) is not a problem for SfM, the low lying spring sun and the cast shadows appear as a limitation because of the lack of color dynamics in the digital cameras we used. A detailed understanding of the processing steps is mandatory during the image acquisition phase: compliance with acquisition rules reducing digital processing errors helps minimizing the uncertainty on the point cloud absolute position in its coordinate system. 3D models from SfM are compared with terrestrial LiDAR acquisitions for resolution assesment.
The Wireless Data Acquisition System for the Vibration Table
NASA Astrophysics Data System (ADS)
Teng, Y. T.; Hu, X.
2014-12-01
The vibration table is a large-scaled tool used for inspecting the performance of seismometers. The output from a seismometer on the table can be directly monitored when the vibration table moves in certain pattern. Compared with other inspection methods, inspecting seismometers' performance indicators (frequency response, degree of linearity, sensitivity, lateral inhibition and dynamic range etc). using vibration tables is more intuitive. Therefore, the vibration tables are an essential testing part in developing new seismometers and seismometer quality control. Whereas, in practice, a cable is needed to connect the seismometer to the ground equipments for its signal outputs and power supply, that means adding a time-varying nonlinear spring between the vibration table and ground. The cable adds nonlinear feature to the table, distorts the table-board movement and bring extra errors to the inspecting work and affected the testing accuracy and precision. In face of this problem, we developed a wireless acquiring system for the vibration table. The system is consisted of a three-channel analog-to-digital conversion, an acquisition control part, local data storage, network interface, wireless router and power management, etc. The analog-to-digital conversion part uses a 24-digit high-precision converter, which has a programmable amplifier at the front end of its artificial circuit, with the function of matching outputs with different amplifier from the vibration table. The acquisition control part uses a 32 bit ARM processor, with low-power dissipation, minute extension and high performance. The application software platform is written in Linux to make the system convenient for multitasking work. Large volume local digital storage is achieved by a 32G SD card, which is used for saving real time acquired data. Data transmission is achieved by network interface and wireless router, which can simplify the application software by the supported TCP/IP protocol. Besides, the acquisition system uses built-in power supply, which provides power to the system with Li-On rechargeable battery with high capacity, then all the cable link between the vibration table and the ground equipment have been removed. With all these changes, the whole system is immobilized on board of the vibration table after being packaged.
A direct-to-drive neural data acquisition system.
Kinney, Justin P; Bernstein, Jacob G; Meyer, Andrew J; Barber, Jessica B; Bolivar, Marti; Newbold, Bryan; Scholvin, Jorg; Moore-Kochlacs, Caroline; Wentz, Christian T; Kopell, Nancy J; Boyden, Edward S
2015-01-01
Driven by the increasing channel count of neural probes, there is much effort being directed to creating increasingly scalable electrophysiology data acquisition (DAQ) systems. However, all such systems still rely on personal computers for data storage, and thus are limited by the bandwidth and cost of the computers, especially as the scale of recording increases. Here we present a novel architecture in which a digital processor receives data from an analog-to-digital converter, and writes that data directly to hard drives, without the need for a personal computer to serve as an intermediary in the DAQ process. This minimalist architecture may support exceptionally high data throughput, without incurring costs to support unnecessary hardware and overhead associated with personal computers, thus facilitating scaling of electrophysiological recording in the future.
A direct-to-drive neural data acquisition system
Kinney, Justin P.; Bernstein, Jacob G.; Meyer, Andrew J.; Barber, Jessica B.; Bolivar, Marti; Newbold, Bryan; Scholvin, Jorg; Moore-Kochlacs, Caroline; Wentz, Christian T.; Kopell, Nancy J.; Boyden, Edward S.
2015-01-01
Driven by the increasing channel count of neural probes, there is much effort being directed to creating increasingly scalable electrophysiology data acquisition (DAQ) systems. However, all such systems still rely on personal computers for data storage, and thus are limited by the bandwidth and cost of the computers, especially as the scale of recording increases. Here we present a novel architecture in which a digital processor receives data from an analog-to-digital converter, and writes that data directly to hard drives, without the need for a personal computer to serve as an intermediary in the DAQ process. This minimalist architecture may support exceptionally high data throughput, without incurring costs to support unnecessary hardware and overhead associated with personal computers, thus facilitating scaling of electrophysiological recording in the future. PMID:26388740
Laser-induced photo emission detection: data acquisition based on light intensity counting
NASA Astrophysics Data System (ADS)
Yulianto, N.; Yudasari, N.; Putri, K. Y.
2017-04-01
Laser Induced Breakdown Detection (LIBD) is one of the quantification techniques for colloids. There are two ways of detection in LIBD: optical detection and acoustic detection. LIBD is based on the detection of plasma emission due to the interaction between particle and laser beam. In this research, the changing of light intensity during plasma formations was detected by a photodiode sensor. A photo emission data acquisition system was built to collect and transform them into digital counts. The real-time system used data acquisition device National Instrument DAQ 6009 and LABVIEW software. The system has been tested on distilled water and tap water samples. The result showed 99.8% accuracy by using counting technique in comparison to the acoustic detection with sample rate of 10 Hz, thus the acquisition system can be applied as an alternative method to the existing LIBD acquisition system.
Use of small stand-alone Internet nodes as a distributed control system
NASA Astrophysics Data System (ADS)
Goodwin, Robert W.; Kucera, Michael J.; Shea, Michael F.
1994-12-01
For several years, the standard model for accelerator control systems has been workstation consoles connected to VME local stations by a Local Area Network with analog and digital data being accessed via a field bus to custom I/O interface electronics. Commercially available hardware has now made it possible to implement a small stand-alone data acquisition station that combines the LAN connection, the computer, and the analog and digital I/O interface on a single board. This eliminates the complexity of a field bus and the associated proprietary I/O hardware. A minimum control system is one data acquisition station and a Macintosh or workstation console, both connected to the network; larger systems have more consoles and nodes. An implementation of this architecture is described along with performance and operational experience.
A high-efficiency real-time digital signal averager for time-of-flight mass spectrometry.
Wang, Yinan; Xu, Hui; Li, Qingjiang; Li, Nan; Huang, Zhengxu; Zhou, Zhen; Liu, Husheng; Sun, Zhaolin; Xu, Xin; Yu, Hongqi; Liu, Haijun; Li, David D-U; Wang, Xi; Dong, Xiuzhen; Gao, Wei
2013-05-30
Analog-to-digital converter (ADC)-based acquisition systems are widely applied in time-of-flight mass spectrometers (TOFMS) due to their ability to record the signal intensity of all ions within the same pulse. However, the acquisition system raises the requirement for data throughput, along with increasing the conversion rate and resolution of the ADC. It is therefore of considerable interest to develop a high-performance real-time acquisition system, which can relieve the limitation of data throughput. We present in this work a high-efficiency real-time digital signal averager, consisting of a signal conditioner, a data conversion module and a signal processing module. Two optimization strategies are implemented using field programmable gate arrays (FPGAs) to enhance the efficiency of the real-time processing. A pipeline procedure is used to reduce the time consumption of the accumulation strategy. To realize continuous data transfer, a high-efficiency transmission strategy is developed, based on a ping-pong procedure. The digital signal averager features good responsiveness, analog bandwidth and dynamic performance. The optimal effective number of bits reaches 6.7 bits. For a 32 µs record length, the averager can realize 100% efficiency with an extraction frequency below 31.23 kHz by modifying the number of accumulation steps. In unit time, the averager yields superior signal-to-noise ratio (SNR) compared with data accumulation in a computer. The digital signal averager is combined with a vacuum ultraviolet single-photon ionization time-of-flight mass spectrometer (VUV-SPI-TOFMS). The efficiency of the real-time processing is tested by analyzing the volatile organic compounds (VOCs) from ordinary printed materials. In these experiments, 22 kinds of compounds are detected, and the dynamic range exceeds 3 orders of magnitude. Copyright © 2013 John Wiley & Sons, Ltd.
Characterization and Design of Digital Pointing Subsystem for Optical Communication Demonstrator
NASA Technical Reports Server (NTRS)
Racho, C.; Portillo, A.
1998-01-01
The Optical Communications Demonstrator (OCD) is a laboratory-based lasercom demonstration terminal designed to validate several key technologies, including beacon acquisition, high bandwidth tracking, precision bearn pointing, and point-ahead compensation functions. It has been under active development over the past few years. The instrument uses a CCD array detector for both spatial acquisition and high-bandwidth tracking, and a fiber coupled laser transmitter. The array detector tracking concept provides wide field-of-view acquisition and permits effective platform jitter compensation and point-ahead control using only one steering mirror. This paper describes the detailed design and characterization of the digital control loop system which includes the Fast Steering Mirror (FSM), the CCD image tracker, and the associated electronics. The objective is to improve the overall system performance using laboratory measured data. The. design of the digital control loop is based on a linear time invariant open loop model. The closed loop performance is predicted using the theoretical model. With the digital filter programmed into the OCD control software, data is collected to verify the predictions. This paper presents the results of the, system modeling and performance analysis. It has been shown that measurement data closely matches theoretical predictions. An important part of the laser communication experiment is the ability of FSM to track the laser beacon within the. required tolerances. The pointing must be maintained to an accuracy that is much smaller than the transmit signal beamwidth. For an earth orbit distance, the system must be able to track the receiving station to within a few microradians. The failure. to do so will result in a severely degraded system performance.
Levine, Betty A; Ingeholm, Mary Lou; Prior, Fred; Mun, Seong K; Freedman, Matthew; Weissman, David; Attfield, Michael; Wolfe, Anita; Petsonk, Edward
2009-01-01
To protect the health of active U.S. underground coal miners, the National Institute for Occupational Safety and Health (NIOSH) has a mandate to carry out surveillance for coal workers' pneumoconiosis, commonly known as Black Lung (PHS 2001). This is accomplished by reviewing chest x-ray films obtained from miners at approximately 5-year intervals in approved x-ray acquisition facilities around the country. Currently, digital chest images are not accepted. Because most chest x-rays are now obtained in digital format, NIOSH is redesigning the surveillance program to accept and manage digital x-rays. This paper highlights the functional and security requirements for a digital image management system for a surveillance program. It also identifies the operational differences between a digital imaging surveillance network and a clinical Picture Archiving Communication Systems (PACS) or teleradiology system.
Superconductor Digital-RF Receiver Systems
NASA Astrophysics Data System (ADS)
Mukhanov, Oleg A.; Kirichenko, Dmitri; Vernik, Igor V.; Filippov, Timur V.; Kirichenko, Alexander; Webber, Robert; Dotsenko, Vladimir; Talalaevskii, Andrei; Tang, Jia Cao; Sahu, Anubhav; Shevchenko, Pavel; Miller, Robert; Kaplan, Steven B.; Sarwana, Saad; Gupta, Deepnarayan
Digital superconductor electronics has been experiencing rapid maturation with the emergence of smaller-scale, lower-cost communications applications which became the major technology drivers. These applications are primarily in the area of wireless communications, radar, and surveillance as well as in imaging and sensor systems. In these areas, the fundamental advantages of superconductivity translate into system benefits through novel Digital-RF architectures with direct digitization of wide band, high frequency radio frequency (RF) signals. At the same time the availability of relatively small 4K cryocoolers has lowered the foremost market barrier for cryogenically-cooled digital electronic systems. Recently, we have achieved a major breakthrough in the development, demonstration, and successful delivery of the cryocooled superconductor digital-RF receivers directly digitizing signals in a broad range from kilohertz to gigahertz. These essentially hybrid-technology systems combine a variety of superconductor and semiconductor technologies packaged with two-stage commercial cryocoolers: cryogenic Nb mixed-signal and digital circuits based on Rapid Single Flux Quantum (RSFQ) technology, room-temperature amplifiers, FPGA processing and control circuitry. The demonstrated cryocooled digital-RF systems are the world's first and fastest directly digitizing receivers operating with live satellite signals in X-band and performing signal acquisition in HF to L-band at ˜30GHz clock frequencies.
Uokawa, Y; Yonezawa, Y; Caldwell, W M; Hahn, A W
2000-01-01
A data acquisition system employing a low power 8 bit microcomputer has been developed for heart rate variability monitoring before, during and after bathing. The system consists of three integral chest electrodes, two temperature sensors, an instrumentation amplifier, a low power 8-bit single chip microcomputer (SMC) and a 4 MB compact flash memory (CFM). The ECG from the electrodes is converted to an 8-bit digital format at a 1 ms rate by an A/D converter in the SMC. Both signals from the body and ambient temperature sensors are converted to an 8-bit digital format every 1 second. These data are stored by the CFM. The system is powered by a rechargeable 3.6 V lithium battery. The 4 x 11 x 1 cm system is encapsulated in epoxy and silicone, yielding a total volume of 44 cc. The weight is 100 g.
Design of Control Software for a High-Speed Coherent Doppler Lidar System for CO2 Measurement
NASA Technical Reports Server (NTRS)
Vanvalkenburg, Randal L.; Beyon, Jeffrey Y.; Koch, Grady J.; Yu, Jirong; Singh, Upendra N.; Kavaya, Michael J.
2010-01-01
The design of the software for a 2-micron coherent high-speed Doppler lidar system for CO2 measurement at NASA Langley Research Center is discussed in this paper. The specific strategy and design topology to meet the requirements of the system are reviewed. In order to attain the high-speed digitization of the different types of signals to be sampled on multiple channels, a carefully planned design of the control software is imperative. Samples of digitized data from each channel and their roles in data analysis post processing are also presented. Several challenges of extremely-fast, high volume data acquisition are discussed. The software must check the validity of each lidar return as well as other monitoring channel data in real-time. For such high-speed data acquisition systems, the software is a key component that enables the entire scope of CO2 measurement studies using commercially available system components.
LOFT data acquisition and visual display system (DAVDS) presentation program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bullock, M.G.; Miyasaki, F.S.
1976-03-01
The Data Acquisition and Visual Display System (DAVDS) at the Loss-of-Fluid Test Facility (LOFT) has 742 data channel recording capability of which 576 are recorded digitally. The purpose of this computer program is to graphically present the data acquired and/or processed by the LOFT DAVDS. This program takes specially created plot data buffers of up to 1024 words and generates time history plots on the system electrostatic printer-plotter. The data can be extracted from two system input devices: Magnetic disk or digital magnetic tape. Versatility has been designed in the program by providing the user three methods of scaling plots:more » Automatic, control record, and manual. Time required to produce a plot on the system electrostatic printer-plotter varies from 30 to 90 seconds depending on the options selected. The basic computer and program details are described.« less
The Combined Enterprise Regional Information Exchange System -- The Way Ahead
2007-09-01
the more complex, difficult functions have been centralized to areas under less stress that are staffed with support personnel with a higher level of...ABBREVIATIONS AND ACRONYMS AAP Accelerated Acquisition Plan ACAT Acquisition Category ADNS Automated Digital Network System ALT Actual Learning...a half, while we worked on this project was invaluable. We would especially like to thank LtCol Karl Pfeiffer and Mr. Buddy Barreto for their
Video and LAN solutions for a digital OR: the Varese experience
NASA Astrophysics Data System (ADS)
Nocco, Umberto; Cocozza, Eugenio; Sivo, Monica; Peta, Giancarlo
2007-03-01
Purpose: build 20 ORs equipped with independent video acquisition and broadcasting systems and a powerful LAN connectivity. Methods: a digital PC controlled video matrix has been installed in each OR. The LAN connectivity has been developed to grant data entering the OR and high speed connectivity to a server and to broadcasting devices. Video signals are broadcasted within the OR. Fixed inputs and five additional video inputs have been placed in the OR. Images can be stored locally on a high capacity HDD and a DVD recorder. Images can be also stored in a central archive for future acquisition and reference. Ethernet plugs have been placed within the OR to acquire images and data from the Hospital LAN; the OR is connected to the server/archive using a dedicated optical fiber. Results: 20 independent digital ORs have been built. Each OR is "self contained" and images can be digitally managed and broadcasted. Security issues concerning both image visualization and electrical safety have been fulfilled and each OR is fully integrated in the Hospital LAN. Conclusions: Digital ORs were fully implemented, they fulfill surgeons needs in terms of video acquisition and distribution and grant high quality video for each kind of surgery in a major hospital.
A microcomputer interface for a digital audio processor-based data recording system.
Croxton, T L; Stump, S J; Armstrong, W M
1987-10-01
An inexpensive interface is described that performs direct transfer of digitized data from the digital audio processor and video cassette recorder based data acquisition system designed by Bezanilla (1985, Biophys. J., 47:437-441) to an IBM PC/XT microcomputer. The FORTRAN callable software that drives this interface is capable of controlling the video cassette recorder and starting data collection immediately after recognition of a segment of previously collected data. This permits piecewise analysis of long intervals of data that would otherwise exceed the memory capability of the microcomputer.
Digital holographic tomography based on spectral interferometry.
Yu, Lingfeng; Chen, Zhongping
2007-10-15
A digital holographic tomography system has been developed with the use of an inexpensive broadband light source and a fiber-based spectral interferometer. Multiple synthesized holograms (or object wave fields) of different wavelengths are obtained by transversely scanning a probe beam. The acquisition speed is improved compared with conventional wavelength-scanning digital holographic systems. The optical field of a volume around the object location is calculated by numerical diffraction from each synthesized hologram, and all such field volumes are numerically superposed to create the three-dimensional tomographic image. Experiments were performed to demonstrate the idea.
A microcomputer interface for a digital audio processor-based data recording system.
Croxton, T L; Stump, S J; Armstrong, W M
1987-01-01
An inexpensive interface is described that performs direct transfer of digitized data from the digital audio processor and video cassette recorder based data acquisition system designed by Bezanilla (1985, Biophys. J., 47:437-441) to an IBM PC/XT microcomputer. The FORTRAN callable software that drives this interface is capable of controlling the video cassette recorder and starting data collection immediately after recognition of a segment of previously collected data. This permits piecewise analysis of long intervals of data that would otherwise exceed the memory capability of the microcomputer. PMID:3676444
A Compton suppressed detector multiplicity trigger based digital DAQ for gamma-ray spectroscopy
NASA Astrophysics Data System (ADS)
Das, S.; Samanta, S.; Banik, R.; Bhattacharjee, R.; Basu, K.; Raut, R.; Ghugre, S. S.; Sinha, A. K.; Bhattacharya, S.; Imran, S.; Mukherjee, G.; Bhattacharyya, S.; Goswami, A.; Palit, R.; Tan, H.
2018-06-01
The development of a digitizer based pulse processing and data acquisition system for γ-ray spectroscopy with large detector arrays is presented. The system is based on 250 MHz 12-bit digitizers, and is triggered by a user chosen multiplicity of Compton suppressed detectors. The logic for trigger generation is similar to the one practised for analog (NIM/CAMAC) pulse processing electronics, while retaining the fast processing merits of the digitizer system. Codes for reduction of data acquired from the system have also been developed. The system has been tested with offline studies using radioactive sources as well as in the in-beam experiments with an array of Compton suppressed Clover detectors. The results obtained therefrom validate its use in spectroscopic efforts for nuclear structure investigations.
Digital gamma-gamma coincidence HPGe system for environmental analysis.
Marković, Nikola; Roos, Per; Nielsen, Sven Poul
2017-08-01
The performance of a new gamma-gamma coincidence spectrometer system for environmental samples analysis at the Center for Nuclear Technologies of the Technical University of Denmark (DTU) is reported. Nutech Coincidence Low Energy Germanium Sandwich (NUCLeGeS) system consists of two HPGe detectors in a surface laboratory with a digital acquisition system used to collect the data in time-stamped list mode with 10ns time resolution. The spectrometer is used in both anticoincidence and coincidence modes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Acquisition and replay systems for direct-to-digital holography and holovision
Thomas, Clarence E.; Hanson, Gregory R.
2003-02-25
Improvements to the acquisition and replay systems for direct-to-digital holography and holovision are described. A method of recording an off-axis hologram includes: splitting a laser beam into an object beam and a reference beam; reflecting the reference beam from a reference beam mirror; reflecting the object beam from an illumination beamsplitter; passing the object beam through an objective lens; reflecting the object beam from an object; focusing the reference beam and the object beam at a focal plane of a digital recorder to form an off-axis hologram; digitally recording the off-axis hologram; and transforming the off-axis hologram in accordance with a Fourier transform to obtain a set of results. A method of writing an off-axis hologram includes: passing a laser beam through a spatial light modulator; and focusing the laser beam at a focal plane of a photorefractive crystal to impose a holographic diffraction grating pattern on the photorefractive crystal. A method of replaying an off-axis hologram includes: illuminating a photorefractive crystal having a holographic diffraction grating with a replay beam.
Milde, Moritz B.; Blum, Hermann; Dietmüller, Alexander; Sumislawska, Dora; Conradt, Jörg; Indiveri, Giacomo; Sandamirskaya, Yulia
2017-01-01
Neuromorphic hardware emulates dynamics of biological neural networks in electronic circuits offering an alternative to the von Neumann computing architecture that is low-power, inherently parallel, and event-driven. This hardware allows to implement neural-network based robotic controllers in an energy-efficient way with low latency, but requires solving the problem of device variability, characteristic for analog electronic circuits. In this work, we interfaced a mixed-signal analog-digital neuromorphic processor ROLLS to a neuromorphic dynamic vision sensor (DVS) mounted on a robotic vehicle and developed an autonomous neuromorphic agent that is able to perform neurally inspired obstacle-avoidance and target acquisition. We developed a neural network architecture that can cope with device variability and verified its robustness in different environmental situations, e.g., moving obstacles, moving target, clutter, and poor light conditions. We demonstrate how this network, combined with the properties of the DVS, allows the robot to avoid obstacles using a simple biologically-inspired dynamics. We also show how a Dynamic Neural Field for target acquisition can be implemented in spiking neuromorphic hardware. This work demonstrates an implementation of working obstacle avoidance and target acquisition using mixed signal analog/digital neuromorphic hardware. PMID:28747883
A flexible microcontroller-based data acquisition device.
Hercog, Darko; Gergič, Bojan
2014-06-02
This paper presents a low-cost microcontroller-based data acquisition device. The key component of the presented solution is a configurable microcontroller-based device with an integrated USB transceiver and a 12-bit analogue-to-digital converter (ADC). The presented embedded DAQ device contains a preloaded program (firmware) that enables easy acquisition and generation of analogue and digital signals and data transfer between the device and the application running on a PC via USB bus. This device has been developed as a USB human interface device (HID). This USB class is natively supported by most of the operating systems and therefore any installation of additional USB drivers is unnecessary. The input/output peripheral of the presented device is not static but rather flexible, and could be easily configured to customised needs without changing the firmware. When using the developed configuration utility, a majority of chip pins can be configured as analogue input, digital input/output, PWM output or one of the SPI lines. In addition, LabVIEW drivers have been developed for this device. When using the developed drivers, data acquisition and signal processing algorithms as well as graphical user interface (GUI), can easily be developed using a well-known, industry proven, block oriented LabVIEW programming environment.
Milde, Moritz B; Blum, Hermann; Dietmüller, Alexander; Sumislawska, Dora; Conradt, Jörg; Indiveri, Giacomo; Sandamirskaya, Yulia
2017-01-01
Neuromorphic hardware emulates dynamics of biological neural networks in electronic circuits offering an alternative to the von Neumann computing architecture that is low-power, inherently parallel, and event-driven. This hardware allows to implement neural-network based robotic controllers in an energy-efficient way with low latency, but requires solving the problem of device variability, characteristic for analog electronic circuits. In this work, we interfaced a mixed-signal analog-digital neuromorphic processor ROLLS to a neuromorphic dynamic vision sensor (DVS) mounted on a robotic vehicle and developed an autonomous neuromorphic agent that is able to perform neurally inspired obstacle-avoidance and target acquisition. We developed a neural network architecture that can cope with device variability and verified its robustness in different environmental situations, e.g., moving obstacles, moving target, clutter, and poor light conditions. We demonstrate how this network, combined with the properties of the DVS, allows the robot to avoid obstacles using a simple biologically-inspired dynamics. We also show how a Dynamic Neural Field for target acquisition can be implemented in spiking neuromorphic hardware. This work demonstrates an implementation of working obstacle avoidance and target acquisition using mixed signal analog/digital neuromorphic hardware.
High Density Digital Data Storage System
NASA Technical Reports Server (NTRS)
Wright, Kenneth D., II; Gray, David L.; Rowland, Wayne D.
1991-01-01
The High Density Digital Data Storage System was designed to provide a cost effective means for storing real-time data from the field-deployable digital acoustic measurement system. However, the high density data storage system is a standalone system that could provide a storage solution for many other real time data acquisition applications. The storage system has inputs for up to 20 channels of 16-bit digital data. The high density tape recorders presently being used in the storage system are capable of storing over 5 gigabytes of data at overall transfer rates of 500 kilobytes per second. However, through the use of data compression techniques the system storage capacity and transfer rate can be doubled. Two tape recorders have been incorporated into the storage system to produce a backup tape of data in real-time. An analog output is provided for each data channel as a means of monitoring the data as it is being recorded.
ARCHAEO-SCAN: Portable 3D shape measurement system for archaeological field work
NASA Astrophysics Data System (ADS)
Knopf, George K.; Nelson, Andrew J.
2004-10-01
Accurate measurement and thorough documentation of excavated artifacts are the essential tasks of archaeological fieldwork. The on-site recording and long-term preservation of fragile evidence can be improved using 3D spatial data acquisition and computer-aided modeling technologies. Once the artifact is digitized and geometry created in a virtual environment, the scientist can manipulate the pieces in a virtual reality environment to develop a "realistic" reconstruction of the object without physically handling or gluing the fragments. The ARCHAEO-SCAN system is a flexible, affordable 3D coordinate data acquisition and geometric modeling system for acquiring surface and shape information of small to medium sized artifacts and bone fragments. The shape measurement system is being developed to enable the field archaeologist to manually sweep the non-contact sensor head across the relic or artifact surface. A series of unique data acquisition, processing, registration and surface reconstruction algorithms are then used to integrate 3D coordinate information from multiple views into a single reference frame. A novel technique for automatically creating a hexahedral mesh of the recovered fragments is presented. The 3D model acquisition system is designed to operate from a standard laptop with minimal additional hardware and proprietary software support. The captured shape data can be pre-processed and displayed on site, stored digitally on a CD, or transmitted via the Internet to the researcher's home institution.
High speed television camera system processes photographic film data for digital computer analysis
NASA Technical Reports Server (NTRS)
Habbal, N. A.
1970-01-01
Data acquisition system translates and processes graphical information recorded on high speed photographic film. It automatically scans the film and stores the information with a minimal use of the computer memory.
Measures of Reliability in Behavioral Observation: The Advantage of "Real Time" Data Acquisition.
ERIC Educational Resources Information Center
Hollenbeck, Albert R.; Slaby, Ronald G.
Two observers who were using an electronic digital data acquisition system were spot checked for reliability at random times over a four month period. Between-and within-observer reliability was assessed for frequency, duration, and duration-per-event measures of four infant behaviors. The results confirmed the problem of observer drift--the…
Design of PH sensor signal acquisition and display system
NASA Astrophysics Data System (ADS)
Qian, Huifa; Zhang, Quanzhu; Deng, Yonghong
2017-06-01
With the continuous development of sensor manufacturing technology, how to better deal with the signal is particularly important. PH value of the sensor voltage generated by the signal as a signal, through the MCU acquisition A / D conversion, and ultimately through the digital display of its PH value. The system uses hardware and software to achieve the results obtained with the high-precision PH meter to strive to improve the accuracy and reduce error.
Clegg, G; Roebuck, S; Steedman, D
2001-01-01
Objectives—To develop a computer based storage system for clinical images—radiographs, photographs, ECGs, text—for use in teaching, training, reference and research within an accident and emergency (A&E) department. Exploration of methods to access and utilise the data stored in the archive. Methods—Implementation of a digital image archive using flatbed scanner and digital camera as capture devices. A sophisticated coding system based on ICD 10. Storage via an "intelligent" custom interface. Results—A practical solution to the problems of clinical image storage for teaching purposes. Conclusions—We have successfully developed a digital image capture and storage system, which provides an excellent teaching facility for a busy A&E department. We have revolutionised the practice of the "hand-over meeting". PMID:11435357
A new scalable modular data acquisition system for SPECT (PET)
NASA Astrophysics Data System (ADS)
Stenstrom, P.; Rillbert, A.; Bergquist, M.; Habte, F.; Bohm, C.; Larsson, S. A.
1998-06-01
Describes a modular decentralized data acquisition system that continuously samples shaped PMT pulses from a SPECT detector. The pulse waveform data are used by signal processors to accurately reconstruct amplitude and time for each scintillation event. Data acquisition for a PMT channel is triggered in two alternative ways, either when its own signal exceeds a selected digital threshold, or when it receives a trigger pulse from one of its neighboring PMTs. The triggered region is restricted to seven, thirteen or nineteen neighboring PMT channels. Each acquisition module supports three PMT channels and connects to all other modules and a reconstruction computer via Firewire to cover the 72 channels in the Stockholm University/Karolinska Hospital cylindrical SPECT camera.
Display integration for ground combat vehicles
NASA Astrophysics Data System (ADS)
Busse, David J.
1998-09-01
The United States Army's requirement to employ high resolution target acquisition sensors and information warfare to increase its dominance over enemy forces has led to the need to integrate advanced display devices into ground combat vehicle crew stations. The Army's force structure require the integration of advanced displays on both existing and emerging ground combat vehicle systems. The fielding of second generation target acquisition sensors, color digital terrain maps and high volume digital command and control information networks on these platforms define display performance requirements. The greatest challenge facing the system integrator is the development and integration of advanced displays that meet operational, vehicle and human computer interface performance requirements for the ground combat vehicle fleet. The subject of this paper is to address those challenges: operational and vehicle performance, non-soldier centric crew station configurations, display performance limitations related to human computer interfaces and vehicle physical environments, display technology limitations and the Department of Defense (DOD) acquisition reform initiatives. How the ground combat vehicle Program Manager and system integrator are addressing these challenges are discussed through the integration of displays on fielded, current and future close combat vehicle applications.
Performance of a segmented HPGe detector at KRISS.
Han, Jubong; Lee, K B; Lee, Jong-Man; Lee, S H; Park, Tae Soon; Oh, J S
2018-04-01
A 24 segmented HPGe coaxial detector was set up with a digitized data acquisition system (DAQ). The DAQ was composed of a digitizer (5 × 10 7 sampling/s), a Field-Programmable Gate Array (FPGA), and a real time operating system. The Full Width Half Maximum (FWHM), rise time, signal characteristics, and spectra of a 137 Cs source were evaluated. The data were processed using an in-house developed gamma-ray tracking system. Copyright © 2017 Elsevier Ltd. All rights reserved.
Can Commercial Digital Cameras Be Used as Multispectral Sensors? A Crop Monitoring Test.
Lebourgeois, Valentine; Bégué, Agnès; Labbé, Sylvain; Mallavan, Benjamin; Prévot, Laurent; Roux, Bruno
2008-11-17
The use of consumer digital cameras or webcams to characterize and monitor different features has become prevalent in various domains, especially in environmental applications. Despite some promising results, such digital camera systems generally suffer from signal aberrations due to the on-board image processing systems and thus offer limited quantitative data acquisition capability. The objective of this study was to test a series of radiometric corrections having the potential to reduce radiometric distortions linked to camera optics and environmental conditions, and to quantify the effects of these corrections on our ability to monitor crop variables. In 2007, we conducted a five-month experiment on sugarcane trial plots using original RGB and modified RGB (Red-Edge and NIR) cameras fitted onto a light aircraft. The camera settings were kept unchanged throughout the acquisition period and the images were recorded in JPEG and RAW formats. These images were corrected to eliminate the vignetting effect, and normalized between acquisition dates. Our results suggest that 1) the use of unprocessed image data did not improve the results of image analyses; 2) vignetting had a significant effect, especially for the modified camera, and 3) normalized vegetation indices calculated with vignetting-corrected images were sufficient to correct for scene illumination conditions. These results are discussed in the light of the experimental protocol and recommendations are made for the use of these versatile systems for quantitative remote sensing of terrestrial surfaces.
Acquisition and analysis of accelerometer data
NASA Astrophysics Data System (ADS)
Verges, Keith R.
1990-08-01
Acceleration data reduction must be undertaken with a complete understanding of the physical process, the means by which the data are acquired, and finally, the calculations necessary to put the data into a meaningful format. Discussed here are the acceleration sensor requirements dictated by the measurements desired. Sensor noise, dynamic range, and linearity will be determined from the physical parameters of the experiment. The digitizer requirements are discussed. Here the system from sensor to digital storage medium will be integrated, and rules of thumb for experiment duration, filter response, and number of bits are explained. Data reduction techniques after storage are also discussed. Time domain operations including decimating, digital filtering, and averaging are covered, as well as frequency domain methods, including windowing and the difference between power and amplitude spectra, and simple noise determination via coherence analysis. Finally, an example experiment using the Teledyne Geotech Model 44000 Seismometer to measure from 1 Hz to 10(exp -6) Hz is discussed. The sensor, data acquisition system, and example spectra are presented.
Acquisition and analysis of accelerometer data
NASA Technical Reports Server (NTRS)
Verges, Keith R.
1990-01-01
Acceleration data reduction must be undertaken with a complete understanding of the physical process, the means by which the data are acquired, and finally, the calculations necessary to put the data into a meaningful format. Discussed here are the acceleration sensor requirements dictated by the measurements desired. Sensor noise, dynamic range, and linearity will be determined from the physical parameters of the experiment. The digitizer requirements are discussed. Here the system from sensor to digital storage medium will be integrated, and rules of thumb for experiment duration, filter response, and number of bits are explained. Data reduction techniques after storage are also discussed. Time domain operations including decimating, digital filtering, and averaging are covered, as well as frequency domain methods, including windowing and the difference between power and amplitude spectra, and simple noise determination via coherence analysis. Finally, an example experiment using the Teledyne Geotech Model 44000 Seismometer to measure from 1 Hz to 10(exp -6) Hz is discussed. The sensor, data acquisition system, and example spectra are presented.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-12
...; Information Collection; Use of Data Universal Numbering System (DUNS) as Primary Contractor Identification... Numbering System (DUNS) as primary contractor identification. The DUNS number is the nine-digit... System (DUNS) as Primary Contractor Identification, by any of the following methods: Regulations.gov...
On-board multicarrier demodulator for mobile applications using DSP implementation
NASA Astrophysics Data System (ADS)
Yim, W. H.; Kwan, C. C. D.; Coakley, F. P.; Evans, B. G.
1990-11-01
This paper describes the design and implementation of an on-board multicarrier demodulator using commercial digital signal processors. This is for use in a mobile satellite communication system employing an up-link SCPC/FDMA scheme. Channels are separated by a flexible multistage digital filter bank followed by a channel multiplexed digital demodulator array. The cross/dot product design approach of error detector leads to a new QPSK frequency control algorithm that allows fast acquisition without special preamble pattern. Timing correction is performed digitally using an extended stack of polyphase sub-filters.
New Focal Plane Array Controller for the Instruments of the Subaru Telescope
NASA Astrophysics Data System (ADS)
Nakaya, Hidehiko; Komiyama, Yutaka; Miyazaki, Satoshi; Yamashita, Takuya; Yagi, Masafumi; Sekiguchi, Maki
2006-03-01
We have developed a next-generation data acquisition system, MESSIA5 (Modularized Extensible System for Image Acquisition), which comprises the digital part of a focal plane array controller. The new data acquisition system was constructed based on a 64 bit, 66 MHz PCI (peripheral component interconnect) bus architecture and runs on an x86 CPU computer with (non-real-time) Linux. The system, including the CPU board, is placed at the telescope focus, and standard gigabit Ethernet is adopted for the data transfer, as opposed to a dedicated fiber link. During the summer of 2002, we installed the new system for the first time on the Subaru prime-focus camera Suprime-Cam and successfully improved the observing performance.
DOT National Transportation Integrated Search
2006-01-01
This pamphlet gives a brief introduction to the National Intelligent Transportation Systems (ITS) architecture and regional ITS architectures. It gives an overview of architecture, project, and standards requirements, and describes the availability o...
Advanced Data Acquisition Systems
NASA Technical Reports Server (NTRS)
Perotti, J.
2003-01-01
Current and future requirements of the aerospace sensors and transducers field make it necessary for the design and development of new data acquisition devices and instrumentation systems. New designs are sought to incorporate self-health, self-calibrating, self-repair capabilities, allowing greater measurement reliability and extended calibration cycles. With the addition of power management schemes, state-of-the-art data acquisition systems allow data to be processed and presented to the users with increased efficiency and accuracy. The design architecture presented in this paper displays an innovative approach to data acquisition systems. The design incorporates: electronic health self-check, device/system self-calibration, electronics and function self-repair, failure detection and prediction, and power management (reduced power consumption). These requirements are driven by the aerospace industry need to reduce operations and maintenance costs, to accelerate processing time and to provide reliable hardware with minimum costs. The project's design architecture incorporates some commercially available components identified during the market research investigation like: Field Programmable Gate Arrays (FPGA) Programmable Analog Integrated Circuits (PAC IC) and Field Programmable Analog Arrays (FPAA); Digital Signal Processing (DSP) electronic/system control and investigation of specific characteristics found in technologies like: Electronic Component Mean Time Between Failure (MTBF); and Radiation Hardened Component Availability. There are three main sections discussed in the design architecture presented in this document. They are the following: (a) Analog Signal Module Section, (b) Digital Signal/Control Module Section and (c) Power Management Module Section. These sections are discussed in detail in the following pages. This approach to data acquisition systems has resulted in the assignment of patent rights to Kennedy Space Center under U.S. patent # 6,462,684. Furthermore, NASA KSC commercialization office has issued licensing rights to Circuit Avenue Netrepreneurs, LLC , a minority-owned business founded in 1999 located in Camden, NJ.
Comparison of digital intraoral scanners by single-image capture system and full-color movie system.
Yamamoto, Meguru; Kataoka, Yu; Manabe, Atsufumi
2017-01-01
The use of dental computer-aided design/computer-aided manufacturing (CAD/CAM) restoration is rapidly increasing. This study was performed to evaluate the marginal and internal cement thickness and the adhesive gap of internal cavities comprising CAD/CAM materials using two digital impression acquisition methods and micro-computed tomography. Images obtained by a single-image acquisition system (Bluecam Ver. 4.0) and a full-color video acquisition system (Omnicam Ver. 4.2) were divided into the BL and OM groups, respectively. Silicone impressions were prepared from an ISO-standard metal mold, and CEREC Stone BC and New Fuji Rock IMP were used to create working models (n=20) in the BL and OM groups (n=10 per group), respectively. Individual inlays were designed in a conventional manner using designated software, and all restorations were prepared using CEREC inLab MC XL. These were assembled with the corresponding working models used for measurement, and the level of fit was examined by three-dimensional analysis based on micro-computed tomography. Significant differences in the marginal and internal cement thickness and adhesive gap spacing were found between the OM and BL groups. The full-color movie capture system appears to be a more optimal restoration system than the single-image capture system.
MSTB 2 x 6-Inch Low Speed Tunnel Turbulence Generator Grid/Honeycomb PIV Measurements and Analysis
NASA Technical Reports Server (NTRS)
Blackshire, James L.
1997-01-01
An assessment of the turbulence levels present in the Measurement Science and Technology (MSTB) branch's 2 x 6-inch low speed wind tunnel was made using Particle Image Velocimetry (PIV), and a turbulence generator consisting of a grid/honeycomb structure. Approximately 3000 digital PIV images were captured and analyzed covering an approximate 2 x 6-inch area along the centerline of the tunnel just beyond the turbulence generator system. Custom software for analysis and acquisition was developed for semi-automated digital PIV image acquisition and analysis. Comparisons between previously obtained LTA and LV turbulence measurements taken in the tunnel are presented.
Digital video system for on-line portal verification
NASA Astrophysics Data System (ADS)
Leszczynski, Konrad W.; Shalev, Shlomo; Cosby, N. Scott
1990-07-01
A digital system has been developed for on-line acquisition, processing and display of portal images during radiation therapy treatment. A metal/phosphor screen combination is the primary detector, where the conversion from high-energy photons to visible light takes place. A mirror angled at 45 degrees reflects the primary image to a low-light-level camera, which is removed from the direct radiation beam. The image registered by the camera is digitized, processed and displayed on a CRT monitor. Advanced digital techniques for processing of on-line images have been developed and implemented to enhance image contrast and suppress the noise. Some elements of automated radiotherapy treatment verification have been introduced.
Infrared spectrometry studies: Spectral digital data acquisition system (1971 version)
NASA Technical Reports Server (NTRS)
Lu, L.; Lyon, R. J. P.
1971-01-01
The construction of the Stanford Spectral Digital Data Acquisition System is described. The objective of the system is to record both the spectral distribution of incoming radiation from the rock samples measured by the spectroradiometer (Exotech Model 10-34 Circular Variable Filter Infrared Spectroradiometer) together with other weather information. This system is designed for both laboratory and field measurement programs. The multichannel inputs (8 channels) of the system are as follows: Ch 1 the Spectro-radiometer, Ch 2 the radiometer (PRT-5), and Ch 3 to Ch 8 for the weather information. The system records data from channel 1 and channel 2 alternately for 48 times, before a fast sweep across the six weather channels, to form a single scan in the scan counter. The operation is illustrated in a block diagram, and the theory of operation is described. The outputs are written on a 7-track magnetic tape with IBM compatible form. The format of the tape and the playback computer programs are included. The micro-pac digital modules and a CIPHER model 70 tape recorder (Cipher Data Products) are used. One of the major characteristics of this system is that it is externally clocked by the spectroradiometer instead of taking data at intervals of various wavelengths by using internal-clocking.
Digital stethoscope system: the feasibility of cardiac auscultation
NASA Astrophysics Data System (ADS)
Pariaszewska, Katarzyna; Młyńczak, Marcel; Niewiadomski, Wiktor; Cybulski, Gerard
2013-10-01
The application of the digital stethoscope system is a new tendency in methods of cardiac auscultation. Heart sounds, generated by the fluctuations of blood velocity and vibrations of muscle structure, are an important signal in the primary diagnosis of heart diseases. Since the XIXs century for physical examination an analog stethoscope was used, but the development of microelectronics enable the construction of digital stethoscopes which started modern phonocardiography. The typical hardware of the system could be divided into analog and digital parts, respectively. The first one consists of microphone and pre-amplifier. The second one contains a microcontroller with peripherals for data saving and transmission. Usually the specialized software is applied for the signal acquisition and digital signal processing (filtering, spectral analysis and others). This paper presents an overview of methods used in cardiac auscultation and expected developing path in the future. It also contains the description of our digital stethoscope system, which is planned to be used in poliphysiographical studies.
Compton suppression and event triggering in a commercial data acquisition system
NASA Astrophysics Data System (ADS)
Tabor, Samuel; Caussyn, D. D.; Tripathi, Vandana; Vonmoss, J.; Liddick, S. N.
2012-10-01
A number of groups are starting to use flash digitizer systems to directly convert the preamplifier signals of high-resolution Ge detectors to a stream of digital data. Some digitizers are also equipped with software constant fraction discriminator algorithms capable of operating on the resulting digital data stream to provide timing information. Because of the dropping cost per channel of these systems, it should now be possible to also connect outputs of the Bismuth Germanate (BGO) scintillators used for Compton suppression to other digitizer inputs so that BGO logic signals can also be available in the same system. This provides the possibility to perform all the Compton suppression and multiplicity trigger logic within the digital system, thus eliminating the need for separate timing filter amplifiers (TFA), constant fraction discriminators (CFD), logic units, and lots of cables. This talk will describe the performance of such a system based on Pixie16 modules from XIA LLC with custom field programmable gate array (FPGA) programming for an array of Compton suppressed single Ge crystal and 4-crystal ``Clover'' detector array along with optional particle detectors. Initial tests of the system have produced results comparable with the current traditional system of individual electronics and peak sensing analog to digital converters. The advantages of the all digital system will be discussed.
Data acquisition and readout system for the LUX dark matter experiment
Akerib, D. S.; Bai, X.; Bedikian, S.; ...
2011-11-28
LUX is a two-phase (liquid/gas) xenon time projection chamber designed to detect nuclear recoils from interactions with dark matter particles. Signals from the LUX detector are processed by custom-built analog electronics which provide properly shaped signals for the trigger and data acquisition (DAQ) systems. The DAQ is comprised of commercial digitizers with firmware customized for the LUX experiment. Data acquisition systems in rare-event searches must accommodate high rate and large dynamic range during precision calibrations involving radioactive sources, while also delivering low threshold for maximum sensitivity. The LUX DAQ meets these challenges using real-time baseline sup- pression that allows formore » a maximum event acquisition rate in excess of 1.5 kHz with virtually no deadtime. This work describes the LUX DAQ and the novel acquisition techniques employed in the LUX experiment.« less
NASA Astrophysics Data System (ADS)
Yu, Haijun; Li, Guofu; Duo, Liping; Jin, Yuqi; Wang, Jian; Sang, Fengting; Kang, Yuanfu; Li, Liucheng; Wang, Yuanhu; Tang, Shukai; Yu, Hongliang
2015-02-01
A user-friendly data acquisition and control system (DACS) for a pulsed chemical oxygen -iodine laser (PCOIL) has been developed. It is implemented by an industrial control computer,a PLC, and a distributed input/output (I/O) module, as well as the valve and transmitter. The system is capable of handling 200 analogue/digital channels for performing various operations such as on-line acquisition, display, safety measures and control of various valves. These operations are controlled either by control switches configured on a PC while not running or by a pre-determined sequence or timings during the run. The system is capable of real-time acquisition and on-line estimation of important diagnostic parameters for optimization of a PCOIL. The DACS system has been programmed using software programmable logic controller (PLC). Using this DACS, more than 200 runs were given performed successfully.
Non Contacting Evaluation of Strains and Cracking Using Optical and Infrared Imaging Techniques
1988-08-22
Compatible Zenith Z-386 microcomputer with plotter II. 3-D Motion Measurinq System 1. Complete OPTOTRAK three dimensional digitizing system. System includes...acquisition unit - 16 single ended analog input channels 3. Data Analysis Package software (KINEPLOT) 4. Extra OPTOTRAK Camera (max 224 per system
Digital Map Requirements For Automatic Vehicle Location
DOT National Transportation Integrated Search
1998-12-01
New Jersey Transit (NJT) is currently investigating acquisition of an automated vehicle locator (AVL) system. The purpose of the AVL system is to monitor the location of buses. Knowing the location of a bus enables the agency to manage the bus fleet ...
High frequency signal acquisition and control system based on DSP+FPGA
NASA Astrophysics Data System (ADS)
Liu, Xiao-qi; Zhang, Da-zhi; Yin, Ya-dong
2017-10-01
This paper introduces a design and implementation of high frequency signal acquisition and control system based on DSP + FPGA. The system supports internal/external clock and internal/external trigger sampling. It has a maximum sampling rate of 400MBPS and has a 1.4GHz input bandwidth for the ADC. Data can be collected continuously or periodically in systems and they are stored in DDR2. At the same time, the system also supports real-time acquisition, the collected data after digital frequency conversion and Cascaded Integrator-Comb (CIC) filtering, which then be sent to the CPCI bus through the high-speed DSP, can be assigned to the fiber board for subsequent processing. The system integrates signal acquisition and pre-processing functions, which uses high-speed A/D, high-speed DSP and FPGA mixed technology and has a wide range of uses in data acquisition and recording. In the signal processing, the system can be seamlessly connected to the dedicated processor board. The system has the advantages of multi-selectivity, good scalability and so on, which satisfies the different requirements of different signals in different projects.
Satellite freeze forecast system
NASA Technical Reports Server (NTRS)
Martsolf, J. D. (Principal Investigator)
1983-01-01
Provisions for back-up operations for the satellite freeze forecast system are discussed including software and hardware maintenance and DS/1000-1V linkage; troubleshooting; and digitized radar usage. The documentation developed; dissemination of data products via television and the IFAS computer network; data base management; predictive models; the installation of and progress towards the operational status of key stations; and digital data acquisition are also considered. The d addition of dew point temperature into the P-model is outlined.
Real-time data acquisition and control system for the measurement of motor and neural data
Bryant, Christopher L.; Gandhi, Neeraj J.
2013-01-01
This paper outlines a powerful, yet flexible real-time data acquisition and control system for use in the triggering and measurement of both analog and digital events. Built using the LabVIEW development architecture (version 7.1) and freely available, this system provides precisely timed auditory and visual stimuli to a subject while recording analog data and timestamps of neural activity retrieved from a window discriminator. The system utilizes the most recent real-time (RT) technology in order to provide not only a guaranteed data acquisition rate of 1 kHz, but a much more difficult to achieve guaranteed system response time of 1 ms. The system interface is windows-based and easy to use, providing a host of configurable options for end-user customization. PMID:15698659
A system for the automated data-acquisition of fast transient signals in excitable membranes.
Bustamante, J O
1988-01-01
This paper provides a description of a system for the acquisition of fast transient currents flowing across excitable membranes. The front end of the system consists of a CAMAC crate with plug-in modules. The modules provide control of CAMAC operations, analog to digital conversion, electronic memory storage and timing of events. The signals are transferred under direct memory access to an IBM PC microcomputer through a special-purpose interface. Voltage levels from a digital to analog board in the microcomputer are passed through multiplexers to produce the desired voltage pulse patterns to elicit the transmembrane currents. The dead time between consecutive excitatory voltage pulses is limited only by the computer data bus and the software characteristics. The dead time between data transfers can be reduced to the order of milliseconds, which is sufficient for most experiments with transmembrane ionic currents.
The Dornier 328 Acoustic Test Cell (ATC) for interior noise tests and selected test results
NASA Technical Reports Server (NTRS)
Hackstein, H. Josef; Borchers, Ingo U.; Renger, Klaus; Vogt, Konrad
1992-01-01
To perform acoustic studies for achieving low noise levels for the Dornier 328, an acoustic test cell (ATC) of the Dornier 328 has been built. The ATC consists of a fuselage section, a realistic fuselage suspension system, and three exterior noise simulation rings. A complex digital 60 channel computer/amplifier noise generation system as well as multichannel digital data acquisition and evaluation system have been used. The noise control tests started with vibration measurements for supporting acoustic data interpretation. In addition, experiments have been carried out on dynamic vibration absorbers, the most important passive noise reduction measure for low frequency propeller noise. The design and arrangement of the current ATC are presented. Furthermore, exterior noise simulation as well as data acquisition are explained. The most promising results show noise reduction due to synchrophasing and dynamic vibration absorbers.
Flight evaluation of a digital electronic engine control system in an F-15 airplane
NASA Technical Reports Server (NTRS)
Myers, L. P.; Mackall, K. G.; Burcham, F. W., Jr.; Walter, W. A.
1982-01-01
Benefits provided by a full-authority digital engine control are related to improvements in engine efficiency, performance, and operations. An additional benefit is the capability of detecting and accommodating failures in real time and providing engine-health diagnostics. The digital electronic engine control (DEEC), is a full-authority digital engine control developed for the F100-PW-100 turbofan engine. The DEEC has been flight tested on an F-15 aircraft. The flight tests had the objective to evaluate the DEEC hardware and software over the F-15 flight envelope. A description is presented of the results of the flight tests, which consisted of nonaugmented and augmented throttle transients, airstarts, and backup control operations. The aircraft, engine, DEEC system, and data acquisition and reduction system are discussed.
Signal processing and electronic noise in LZ
NASA Astrophysics Data System (ADS)
Khaitan, D.
2016-03-01
The electronics of the LUX-ZEPLIN (LZ) experiment, the 10-tonne dark matter detector to be installed at the Sanford Underground Research Facility (SURF), consists of low-noise dual-gain amplifiers and a 100-MHz, 14-bit data acquisition system for the TPC PMTs. Pre-prototypes of the analog amplifiers and the 32-channel digitizers were tested extensively with simulated pulses that are similar to the prompt scintillation light and the electroluminescence signals expected in LZ. These studies are used to characterize the noise and to measure the linearity of the system. By increasing the amplitude of the test signals, the effect of saturating the amplifier and the digitizers was studied. The RMS ADC noise of the digitizer channels was measured to be 1.19± 0.01 ADCC. When a high-energy channel of the amplifier is connected to the digitizer, the measured noise remained virtually unchanged, while the noise added by a low-energy channel was estimated to be 0.38 ± 0.02 ADCC (46 ± 2 μV). A test facility is under construction to study saturation, mitigate noise and measure the performance of the LZ electronics and data acquisition chain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rembold, Randy Kai; Hart, Darren M.
Sandia National Laboratories has tested and evaluated Geotech SMART24BH borehole data acquisition system with active Fortezza crypto card data signing and authentication. The test results included in this report were in response to static and tonal-dynamic input signals. Most test methodologies used were based on IEEE Standards 1057 for Digitizing Waveform Recorders and 1241 for Analog to Digital Converters; others were designed by Sandia specifically for infrasound application evaluation and for supplementary criteria not addressed in the IEEE standards. The objective of this work was to evaluate the overall technical performance of two Geotech SMART24BH digitizers with a Fortezza PCMCIAmore » crypto card actively implementing the signing of data packets. The results of this evaluation were compared to relevant specifications provided within manufacturer's documentation notes. The tests performed were chosen to demonstrate different performance aspects of the digitizer under test. The performance aspects tested include determining noise floor, least significant bit (LSB), dynamic range, cross-talk, relative channel-to-channel timing, time-tag accuracy/statistics/drift, analog bandwidth.« less
A FADC-Based Data Acquisition System for the KASCADE-Grande Experiment
NASA Astrophysics Data System (ADS)
Walkowiak, W.; Antoni, T.; Apel, W. D.; Badea, F.; Bekk, K.; Bercuci, A.; Bertaina, M.; Blumer, H.; Bozdog, H.; Brancus, I. M.; Bruggemann, M.; Buchholz, P.; Buttner, C.; Chiavassa, A.; Daumiller, K.; Dipierro, F.; Doll, P.; Engel, R.; Engler, J.; Febler, F.; Ghia, P. L.; Gils, H. J.; Glasstetter, R.; Haungs, A.; Heck, D.; Horandel, J. R.; Kampert, K.-H.; Klages, H. O.; Kolotaev, Y.; Maier, G.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Muller, M.; Navarra, G.; Obenland, R.; Oehlschlager, J.; Ostapchenko, S.; Over, S.; Petcu, M.; Plewnia, S.; Rebel, H.; Risse, A.; Roth, M.; Schieler, H.; Scholz, J.; Stumpert, M.; Thouw, T.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Valchierotti, S.; Vanburen, J.; Weindl, A.; Wochele, J.; Zabierowski, J.; Zagromski, S.; Zimmermann, D.
2006-02-01
We present the design and first test results of a new FADC-based data acquisition (DAQ) system for the Grande array of the KASCADE-Grande experiment. The original KASCADE experiment at the Forschungszentrum Karlsruhe, Germany, has been extended by 37 detector stations of the former EAS-TOP experiment (Grande array)to provide sensitivity to energies of primary particles from the cosmos of up to $10^{18}$ eV. The new FADC-based DAQ system will improve the quality of the data taken by the Grande array by digitizing the scintillator signals with a 250 MHz sampling rate. events per second. Two Grande stations have been equipped with the FADC-based data acquisition system and first data are shown.
Controller and interface module for the High-Speed Data Acquisition System correlator/accumulator
NASA Technical Reports Server (NTRS)
Brokl, S. S.
1985-01-01
One complex channel of the High-Speed Data Acquisition System (a subsystem used in the Goldstone solar system radar), consisting of two correlator modules and one accumulator module, is operated by the controller and interface module interfaces are provided to the VAX UNIBUS for computer control, monitor, and test of the controller and correlator/accumulator. The correlator and accumulator modules controlled by this module are the key digital signal processing elements of the Goldstone High-Speed Data Acquisition System. This fully programmable unit provides for a wide variety of correlation and filtering functions operating on a three megaword/second data flow. Data flow is to the VAX by way of the I/O port of a FPS 5210 array processor.
Converting the Active Digital Controller for Use in Two Tests
NASA Technical Reports Server (NTRS)
Wright, Robert G.
1995-01-01
The Active Digital Controller is a system used to control the various functions of wind tunnel models. It has the capability of digitizing and saving of up to sixty-four channels of analog data. It can output up to 16 channels of analog command signals. In addition to its use as a general controller, it can run up to two distinct control laws. All of this is done at a regulated speed of two hundred hertz. The Active Digital Controller (ADC) was modified for use in the Actively Controlled Response of Buffet Affected Tails (ACROBAT) tests and for side-wall pressure data acquisition. The changes included general maintenance and updating of the controller as well as setting up special modes of operation. The ACROBAT tests required that two sets of output signals be available. The pressure data acquisition needed a sampling rate of four hundred hertz, twice the standard ADC rate. These modifications were carried out and the ADC was used during the ACROBAT wind tunnel entry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agnes, P.; Albuquerque, I. F. M.; Alexander, T.
The DarkSide-50 experiment at the Laboratori Nazionali del Gran Sasso is a search for dark matter using a dual phase time projection chamber with 50 kg of low radioactivity argon as target. Light signals from interactions in the argon are detected by a system of 38 photo-multiplier tubes (PMTs), 19 above and 19 below the TPC volume inside the argon cryostat. We describe the electronics which processes the signals from the photo-multipliers, the trigger system which identifies events of interest, and the data-acquisition system which records the data for further analysis. The electronics include resistive voltage dividers on the PMTs,more » custom pre-amplifiers mounted directly on the PMT voltage dividers in the liquid argon, and custom amplifier/discriminators (at room temperature). After amplification, the PMT signals are digitized in CAEN waveform digitizers, and CAEN logic modules are used to construct the trigger, the data acquisition system for the TPC is based on the Fermilab "artdaq" software. The system has been in operation since early 2014.« less
Navigating the Digital Shift: Mapping the Acquisition of Digital Instructional Materials
ERIC Educational Resources Information Center
Fox, Christine; Jones, Rachel; Neugent, Lan
2015-01-01
In 2015, the State Educational Technology Directors Association (SETDA) administered the Digital Instructional Materials Survey regarding state policies and guidelines for the acquisition, vetting, and funding of instructional resources for all 50 states, Guam, and the Commonwealth of Northern Mariana Islands (CNMI). Based upon this survey,…
NASA Astrophysics Data System (ADS)
Hashimoto, Atsushi; Suehara, Ken-Ichiro; Kameoka, Takaharu
To measure the quantitative surface color information of agricultural products with the ambient information during cultivation, a color calibration method for digital camera images and a remote monitoring system of color imaging using the Web were developed. Single-lens reflex and web digital cameras were used for the image acquisitions. The tomato images through the post-ripening process were taken by the digital camera in both the standard image acquisition system and in the field conditions from the morning to evening. Several kinds of images were acquired with the standard RGB color chart set up just behind the tomato fruit on a black matte, and a color calibration was carried out. The influence of the sunlight could be experimentally eliminated, and the calibrated color information consistently agreed with the standard ones acquired in the system through the post-ripening process. Furthermore, the surface color change of the tomato on the tree in a greenhouse was remotely monitored during maturation using the digital cameras equipped with the Field Server. The acquired digital color images were sent from the Farm Station to the BIFE Laboratory of Mie University via VPN. The time behavior of the tomato surface color change during the maturing process could be measured using the color parameter calculated based on the obtained and calibrated color images along with the ambient atmospheric record. This study is a very important step in developing the surface color analysis for both the simple and rapid evaluation of the crop vigor in the field and to construct an ambient and networked remote monitoring system for food security, precision agriculture, and agricultural research.
DPLL implementation in carrier acquisition and tracking for burst DS-CDMA receivers.
Guan, Yun-feng; Zhang, Zhao-yang; Lai, Li-feng
2003-01-01
This paper presents the architectures, algorithms, and implementation considerations of the digital phase locked loop (DPLL) used for burst-mode packet DS-CDMA receivers. As we know, carrier offset is a rather challenging problem in CDMA system. According to different applications, different DPLL forms should be adopted to correct different maximum carrier offset in CDMA systems. One classical DPLL and two novel DPLL forms are discussed in the paper. The acquisition range of carrier offset can be widened by using the two novel DPLL forms without any performance degradation such as longer acquisition time or larger variance of the phase error. The maximum acquisition range is 1/(4T), where T is the symbol period. The design can be implemented by FPGA directly.
A Flexible Microcontroller-Based Data Acquisition Device
Hercog, Darko; Gergič, Bojan
2014-01-01
This paper presents a low-cost microcontroller-based data acquisition device. The key component of the presented solution is a configurable microcontroller-based device with an integrated USB transceiver and a 12-bit analogue-to-digital converter (ADC). The presented embedded DAQ device contains a preloaded program (firmware) that enables easy acquisition and generation of analogue and digital signals and data transfer between the device and the application running on a PC via USB bus. This device has been developed as a USB human interface device (HID). This USB class is natively supported by most of the operating systems and therefore any installation of additional USB drivers is unnecessary. The input/output peripheral of the presented device is not static but rather flexible, and could be easily configured to customised needs without changing the firmware. When using the developed configuration utility, a majority of chip pins can be configured as analogue input, digital input/output, PWM output or one of the SPI lines. In addition, LabVIEW drivers have been developed for this device. When using the developed drivers, data acquisition and signal processing algorithms as well as graphical user interface (GUI), can easily be developed using a well-known, industry proven, block oriented LabVIEW programming environment. PMID:24892494
An Experimental Investigation of Acoustic Cavitation in Gaseous Liquids
1990-11-08
a time-to-amplitude converter and an analog-to- digital data acquisition system based on a microcomputer. IL B. Acoustic Levitation Apparatus L...reading the RMS -ioltage from a Fluke 8600A digital multimeter to which the pill transducer was connected. This voltage was read via a GPIB interface by...micrometer microscope model M110A was used. The rise-time was measured with a digital timer which was activated by the same push-button switch used to turn
NASA Technical Reports Server (NTRS)
Ostowari, Cyrus
1992-01-01
Preliminary studies have shown that maintenance of laminar flow through active boundary-layer control is viable. Current research activity at NASA Langley and NASA Dryden is utilizing the F-16XL-1 research vehicle fitted with a laminar-flow suction glove that is connected to a vacuum manifold in order to create and control laminar flow at supersonic flight speeds. This experimental program has been designed to establish the feasibility of obtaining laminar flow at supersonic speeds with highly swept wing and to provide data for computational fluid dynamics (CFD) code calibration. Flight experiments conducted as supersonic speeds have indicated that it is possible to achieve laminar flow under controlled suction at flight Mach numbers greater than 1. Currently this glove is fitted with a series of pressure belts and flush mounted hot film sensors for the purpose of determining the pressure distributions and the extent of laminar flow region past the stagnation point. The present mode of data acquisition relies on out-dated on board multi-channel FM analogue tape recorder system. At the end of each flight, the analogue data is digitized through a long laborious process and then analyzed. It is proposed to replace this outdated system with an on board state-of-the-art digital data acquisition system capable of a through put rate of up to 1 MegaHertz. The purpose of this study was three-fold: (1) to develop a simple algorithm for acquiring data via 2 analogue-to-digital convertor boards simultaneously (total of 32 channels); (2) to interface hot-film/wire anemometry instrumentation with a PCAT type computer; and (3) to characterize the frequency response of a flush mounted film sensor. A brief description of each of the above tasks along with recommendations are given.
Contour Detector and Data Acquisition System for the Left Ventricular Outline
NASA Technical Reports Server (NTRS)
Reiber, J. H. C. (Inventor)
1978-01-01
A real-time contour detector and data acquisition system is described for an angiographic apparatus having a video scanner for converting an X-ray image of a structure characterized by a change in brightness level compared with its surrounding into video format and displaying the X-ray image in recurring video fields. The real-time contour detector and data acqusition system includes track and hold circuits; a reference level analog computer circuit; an analog compartor; a digital processor; a field memory; and a computer interface.
NASA Technical Reports Server (NTRS)
Low, M. D.; Baker, M.; Ferguson, R.; Frost, J. D., Jr.
1972-01-01
This paper describes a complete electroencephalographic acquisition and transmission system, designed to meet the needs of a large hospital with multiple critical care patient monitoring units. The system provides rapid and prolonged access to a centralized recording and computing area from remote locations within the hospital complex, and from locations in other hospitals and other cities. The system includes quick-on electrode caps, amplifier units and cable transmission for access from within the hospital, and EEG digitization and telephone transmission for access from other hospitals or cities.
One GigaSample Per Second Data Acquisition using Available Gate Array Technology
NASA Technical Reports Server (NTRS)
Wagner, K.W.
1999-01-01
A new National Aeronautics and Space Administration instrument forced demanding requirements upon its altimeter digitizer system. Eight-bit data would be generated at a rate of one billion samples per second. NASA had never before attempted to capture such high-speed data in the radiation, low-power, no-convective-cooling, limited-board-area environment of space. This presentation describes how the gate array technology available at the time of the design was used to implement this one gigasample per second data acquisition system
Data acquisition system for the socal plane detector of the mass separator MASHA
NASA Astrophysics Data System (ADS)
Novoselov, A. S.; Rodin, A. M.; Motycak, S.; Podshibyakin, A. V.; Krupa, L.; Belozerov, A. V.; Vedeneyev, V. Yu.; Gulyaev, A. V.; Gulyaeva, A. V.; Kliman, J.; Salamatin, V. S.; Stepantsov, S. V.; Chernysheva, E. V.; Yukhimchuk, S. A.; Komarov, A. B.; Kamas, D.
2016-09-01
The results of the development and the general information about the data acquisition system which was recently created at the MASHA setup (Flerov laboratory of nuclear reactions at Joint institute for nuclear research) are presented. The main difference from the previous system is that we use a new modern platform, National Instruments PXI with XIA multichannel high-speed digitizers (250 MHz 12 bit 16 channels). At this moment system has 448 spectrometric channels. The software and its features for the data acquisition and analysis are also described. The new DAQ system expands precision measuring capabilities of alpha decays and spontaneous fission at the focal plane position-sensitive silicon strip detector which, in turn, increases the capabilities of the setup in such a field as low-yield registration of elements.
A system for beach video-monitoring: Beachkeeper plus
NASA Astrophysics Data System (ADS)
Brignone, Massimo; Schiaffino, Chiara F.; Isla, Federico I.; Ferrari, Marco
2012-12-01
A suitable knowledge of coastal systems, of their morphodynamic characteristics and their response to storm events and man-made structures is essential for littoral conservation and management. Nowadays webcams represent a useful device to obtain information from beaches. Video-monitoring techniques are generally site specific and softwares working with any image acquisition system are rare. Therefore, this work aims at submitting theory and applications of an experimental video monitoring software: Beachkeeper plus, a freeware non-profit software, can be employed and redistributed without modifications. A license file is provided inside software package and in the user guide. Beachkeeper plus is based on Matlab® and it can be used for the analysis of images and photos coming from any kind of acquisition system (webcams, digital cameras or images downloaded from internet), without any a-priori information or laboratory study of the acquisition system itself. Therefore, it could become a useful tool for beach planning. Through a simple guided interface, images can be analyzed by performing georeferentiation, rectification, averaging and variance. This software was initially operated in Pietra Ligure (Italy), using images from a tourist webcam, and in Mar del Plata (Argentina) using images from a digital camera. In both cases the reliability in different geomorphologic and morphodynamic conditions was confirmed by the good quality of obtained images after georeferentiation, rectification and averaging.
ERIC Educational Resources Information Center
LeFevre, Jo-Anne; Berrigan, Lindsay; Vendetti, Corrie; Kamawar, Deepthi; Bisanz, Jeffrey; Skwarchuk, Sheri-Lynn; Smith-Chant, Brenda L.
2013-01-01
We examined the role of executive attention, which encompasses the common aspects of executive function and executive working memory, in children's acquisition of two aspects of mathematical skill: (a) knowledge of the number system (e.g., place value) and of arithmetic procedures (e.g., multi-digit addition) and (b) arithmetic fluency (i.e.,…
Hybrid Ion-Detector/Data-Acquisition System for a TOF-MS
NASA Technical Reports Server (NTRS)
Burton, William D., Jr.; Schultz, J. Albert; Vaughn, Valentine; McCully, Michael; Ulrich, Steven; Egan, Thomas F.
2006-01-01
A modified ion-detector/data-acquisition system has been devised to increase the dynamic range of a time-of-flight mass spectrometer (TOF-MS) that, previously, included a microchannel-plate detector and a data-acquisition system based on counting pulses and time-tagging them by use of a time-to-digital converter (TDC). The dynamic range of the TOF-MS was limited by saturation of the microchannel plate detector, which can handle no more than a few million counts per second. The modified system includes (1) a combined microchannel plate/discrete ion multiplier and (2) a hybrid data-acquisition system that simultaneously performs analog current or voltage measurements and multianode single-ion-pulse-counting time-of-flight measurements to extend the dynamic range of a TDC into the regime in which a mass peak comprises multiple ions arriving simultaneously at the detector. The multianode data are used to determine, in real time, whether the detector is saturated. When saturation is detected, the data-acquisition system selectively enables circuitry that simultaneously determines the ion-peak intensity by measuring the time profile of the analog current or voltage detector-output signal.
For operation of the Computer Software Management and Information Center (COSMIC)
NASA Technical Reports Server (NTRS)
Carmon, J. L.
1983-01-01
Computer programs for degaussing, magnetic field calculation, low speed wing flap systems aerodynamics, structural panel analysis, dynamic stress/strain data acquisition, allocation and network scheduling, and digital filters are discussed.
Operation of the Uinta Basin Seismological Observatory.
The report describes the operations of the Uinta Basin Seismological Observatory (UBSO) from 1 April 1969 through 30 June 1969. Also discussed is the maintenance of the UBSO digital data acquisition system. (Author)
Operation of the Uinta Basin Seismological Observatory.
The report describes the operations of the Uinta Basin Seismological Observatory (UBSO) from 1 January through 31 March 1969. Also discussed are the maintenance and testing of the UBSO digital data acquisition system. (Author)
Research of Fast DAQ system in KSTAR Thomson scattering diagnostic
NASA Astrophysics Data System (ADS)
Lee, J. H.; Kim, H. J.; Yamada, I.; Funaba, H.; Kim, Y. G.; Kim, D. Y.
2017-12-01
The Thomson scattering diagnostic is one of the most important diagnostic systems in fusion plasma research. It provides reliable electron temperature and density profiles in magnetically confined plasma. A Q-switched Nd:YAG Thomson system was installed several years ago in KSTAR tokamak to measure the electron temperature and density profiles. For the KSTAR Thomson scattering system, a Charge-to-Digital Conversion (QDC) type data acquisition system was used to measure a pulse type Thomson signal. Recently, however, an error was found during the Te, ne calculation, because the QDC system had integrated the pulse Thomson signal that included a signal similar to stray light. To overcome such errors, we introduce a fast data acquisition (F-DAQ) system. To test this, we use CAEN V1742 5 GS/s, a Versa Module Eurocard Bus (VMEbus) type 12-bit switched capacitor digitizer with 32 channels. In this experiment, we compare the calculated Te results of Thomson scattering data measured simultaneously using QDC and F-DAQ. In the F-DAQ system, the shape of the pulse was restored by fitting.
Can Commercial Digital Cameras Be Used as Multispectral Sensors? A Crop Monitoring Test
Lebourgeois, Valentine; Bégué, Agnès; Labbé, Sylvain; Mallavan, Benjamin; Prévot, Laurent; Roux, Bruno
2008-01-01
The use of consumer digital cameras or webcams to characterize and monitor different features has become prevalent in various domains, especially in environmental applications. Despite some promising results, such digital camera systems generally suffer from signal aberrations due to the on-board image processing systems and thus offer limited quantitative data acquisition capability. The objective of this study was to test a series of radiometric corrections having the potential to reduce radiometric distortions linked to camera optics and environmental conditions, and to quantify the effects of these corrections on our ability to monitor crop variables. In 2007, we conducted a five-month experiment on sugarcane trial plots using original RGB and modified RGB (Red-Edge and NIR) cameras fitted onto a light aircraft. The camera settings were kept unchanged throughout the acquisition period and the images were recorded in JPEG and RAW formats. These images were corrected to eliminate the vignetting effect, and normalized between acquisition dates. Our results suggest that 1) the use of unprocessed image data did not improve the results of image analyses; 2) vignetting had a significant effect, especially for the modified camera, and 3) normalized vegetation indices calculated with vignetting-corrected images were sufficient to correct for scene illumination conditions. These results are discussed in the light of the experimental protocol and recommendations are made for the use of these versatile systems for quantitative remote sensing of terrestrial surfaces. PMID:27873930
A microcomputer based data acquisition system and experiment controller
NASA Technical Reports Server (NTRS)
Ganz, M. W.
1981-01-01
A data acquisition system is described. The system monitors and records the signal strength of a radio beacon sent to Earth from a geosynchronous satellite. It acquires data from several devices such as a radar, a radiometer, and a rain gauge which monitor the meteorological conditions along the Earth space propagation path. The acquired data are stored in digital format on magnetic tape for analysis at the computer center. A detailed description of the design and operation of the system's various hardware components is given. Schematic diagrams, the theory of operation, and normal operating procedures are presented.
A simple second-order digital phase-locked loop.
NASA Technical Reports Server (NTRS)
Tegnelia, C. R.
1972-01-01
A simple second-order digital phase-locked loop has been designed for the Viking Orbiter 1975 command system. Excluding analog-to-digital conversion, implementation of the loop requires only an adder/subtractor, two registers, and a correctable counter with control logic. The loop considers only the polarity of phase error and corrects system clocks according to a filtered sequence of this polarity. The loop is insensitive to input gain variation, and therefore offers the advantage of stable performance over long life. Predictable performance is guaranteed by extreme reliability of acquisition, yet in the steady state the loop produces only a slight degradation with respect to analog loop performance.
Smart Sensors for Launch Vehicles
NASA Astrophysics Data System (ADS)
Ray, Sabooj; Mathews, Sheeja; Abraham, Sheena; Pradeep, N.; Vinod, P.
2017-12-01
Smart Sensors bring a paradigm shift in the data acquisition mechanism adopted for launch vehicle telemetry system. The sensors integrate signal conditioners, digitizers and communication systems to give digital output from the measurement location. Multiple sensors communicate with a centralized node over a common digital data bus. An in-built microcontroller gives the sensor embedded intelligence to carry out corrective action for sensor inaccuracies. A smart pressure sensor has been realized and flight-proven to increase the reliability as well as simplicity in integration so as to obtain improved data output. Miniaturization is achieved by innovative packaging. This work discusses the construction, working and flight performance of such a sensor.
ERIC Educational Resources Information Center
Basitere, Moses; Ndeto Ivala, Eunice
2017-01-01
Today's 21st century students are regarded as "digital natives," who are influenced by digital environments for acquisition of information, communication and interaction. With the emergence of new technologies, educators are encouraged to find meaningful ways of incorporating these technologies into their classrooms. The practice…
Chen, Lin; Ray, Shonket; Keller, Brad M; Pertuz, Said; McDonald, Elizabeth S; Conant, Emily F; Kontos, Despina
2016-09-01
Purpose To investigate the impact of radiation dose on breast density estimation in digital mammography. Materials and Methods With institutional review board approval and Health Insurance Portability and Accountability Act compliance under waiver of consent, a cohort of women from the American College of Radiology Imaging Network Pennsylvania 4006 trial was retrospectively analyzed. All patients underwent breast screening with a combination of dose protocols, including standard full-field digital mammography, low-dose digital mammography, and digital breast tomosynthesis. A total of 5832 images from 486 women were analyzed with previously validated, fully automated software for quantitative estimation of density. Clinical Breast Imaging Reporting and Data System (BI-RADS) density assessment results were also available from the trial reports. The influence of image acquisition radiation dose on quantitative breast density estimation was investigated with analysis of variance and linear regression. Pairwise comparisons of density estimations at different dose levels were performed with Student t test. Agreement of estimation was evaluated with quartile-weighted Cohen kappa values and Bland-Altman limits of agreement. Results Radiation dose of image acquisition did not significantly affect quantitative density measurements (analysis of variance, P = .37 to P = .75), with percent density demonstrating a high overall correlation between protocols (r = 0.88-0.95; weighted κ = 0.83-0.90). However, differences in breast percent density (1.04% and 3.84%, P < .05) were observed within high BI-RADS density categories, although they were significantly correlated across the different acquisition dose levels (r = 0.76-0.92, P < .05). Conclusion Precision and reproducibility of automated breast density measurements with digital mammography are not substantially affected by variations in radiation dose; thus, the use of low-dose techniques for the purpose of density estimation may be feasible. (©) RSNA, 2016 Online supplemental material is available for this article.
Chen, Lin; Ray, Shonket; Keller, Brad M.; Pertuz, Said; McDonald, Elizabeth S.; Conant, Emily F.
2016-01-01
Purpose To investigate the impact of radiation dose on breast density estimation in digital mammography. Materials and Methods With institutional review board approval and Health Insurance Portability and Accountability Act compliance under waiver of consent, a cohort of women from the American College of Radiology Imaging Network Pennsylvania 4006 trial was retrospectively analyzed. All patients underwent breast screening with a combination of dose protocols, including standard full-field digital mammography, low-dose digital mammography, and digital breast tomosynthesis. A total of 5832 images from 486 women were analyzed with previously validated, fully automated software for quantitative estimation of density. Clinical Breast Imaging Reporting and Data System (BI-RADS) density assessment results were also available from the trial reports. The influence of image acquisition radiation dose on quantitative breast density estimation was investigated with analysis of variance and linear regression. Pairwise comparisons of density estimations at different dose levels were performed with Student t test. Agreement of estimation was evaluated with quartile-weighted Cohen kappa values and Bland-Altman limits of agreement. Results Radiation dose of image acquisition did not significantly affect quantitative density measurements (analysis of variance, P = .37 to P = .75), with percent density demonstrating a high overall correlation between protocols (r = 0.88–0.95; weighted κ = 0.83–0.90). However, differences in breast percent density (1.04% and 3.84%, P < .05) were observed within high BI-RADS density categories, although they were significantly correlated across the different acquisition dose levels (r = 0.76–0.92, P < .05). Conclusion Precision and reproducibility of automated breast density measurements with digital mammography are not substantially affected by variations in radiation dose; thus, the use of low-dose techniques for the purpose of density estimation may be feasible. © RSNA, 2016 Online supplemental material is available for this article. PMID:27002418
Automated site characterization for robotic sample acquisition systems
NASA Astrophysics Data System (ADS)
Scholl, Marija S.; Eberlein, Susan J.
1993-04-01
A mobile, semiautonomous vehicle with multiple sensors and on-board intelligence is proposed for performing preliminary scientific investigations on extraterrestrial bodies prior to human exploration. Two technologies, a hybrid optical-digital computer system based on optical correlator technology and an image and instrument data analysis system, provide complementary capabilities that might be part of an instrument package for an intelligent robotic vehicle. The hybrid digital-optical vision system could perform real-time image classification tasks using an optical correlator with programmable matched filters under control of a digital microcomputer. The data analysis system would analyze visible and multiband imagery to extract mineral composition and textural information for geologic characterization. Together these technologies would support the site characterization needs of a robotic vehicle for both navigational and scientific purposes.
DECUS Proceedings; Fall 1971, Papers and Presentations.
ERIC Educational Resources Information Center
1971
Papers and presentations at the 1971 symposium of the Digital Equipment Computer Users Society (DECUS) are presented. The papers deal with medical and physiological applications, computer graphics, simulation education, small computer executive systems, management information tools, data acquisition systems, and high level languages. Although many…
Neutron Detection With Ultra-Fast Digitizer and Pulse Identification Techniques on DIII-D
NASA Astrophysics Data System (ADS)
Zhu, Y. B.; Heidbrink, W. W.; Piglowski, D. A.
2013-10-01
A prototype system for neutron detection with an ultra-fast digitizer and pulse identification techniques has been implemented on the DIII-D tokamak. The system consists of a cylindrical neutron fission chamber, a charge sensitive amplifier, and a GaGe Octopus 12-bit CompuScope digitizer card installed in a Linux computer. Digital pulse identification techniques have been successfully performed at maximum data acquisition rate of 50 MSPS with on-board memory of 2 GS. Compared to the traditional approach with fast nuclear electronics for pulse counting, this straightforward digital solution has many advantages, including reduced expense, improved accuracy, higher counting rate, and easier maintenance. The system also provides the capability of neutron-gamma pulse shape discrimination and pulse height analysis. Plans for the upgrade of the old DIII-D neutron counting system with these techniques will be presented. Work supported by the US Department of Energy under SC-G903402, and DE-FC02-04ER54698.
Isothermal thermogravimetric data acquisition analysis system
NASA Technical Reports Server (NTRS)
Cooper, Kenneth, Jr.
1991-01-01
The description of an Isothermal Thermogravimetric Analysis (TGA) Data Acquisition System is presented. The system consists of software and hardware to perform a wide variety of TGA experiments. The software is written in ANSI C using Borland's Turbo C++. The hardware consists of a 486/25 MHz machine with a Capital Equipment Corp. IEEE488 interface card. The interface is to a Hewlett Packard 3497A data acquisition system using two analog input cards and a digital actuator card. The system provides for 16 TGA rigs with weight and temperature measurements from each rig. Data collection is conducted in three phases. Acquisition is done at a rapid rate during initial startup, at a slower rate during extended data collection periods, and finally at a fast rate during shutdown. Parameters controlling the rate and duration of each phase are user programmable. Furnace control (raising and lowering) is also programmable. Provision is made for automatic restart in the event of power failure or other abnormal terminations. Initial trial runs were conducted to show system stability.
DDS-Suite - A Dynamic Data Acquisition, Processing, and Analysis System for Wind Tunnel Testing
NASA Technical Reports Server (NTRS)
Burnside, Jathan J.
2012-01-01
Wind Tunnels have optimized their steady-state data systems for acquisition and analysis and even implemented large dynamic-data acquisition systems, however development of near real-time processing and analysis tools for dynamic-data have lagged. DDS-Suite is a set of tools used to acquire, process, and analyze large amounts of dynamic data. Each phase of the testing process: acquisition, processing, and analysis are handled by separate components so that bottlenecks in one phase of the process do not affect the other, leading to a robust system. DDS-Suite is capable of acquiring 672 channels of dynamic data at rate of 275 MB / s. More than 300 channels of the system use 24-bit analog-to-digital cards and are capable of producing data with less than 0.01 of phase difference at 1 kHz. System architecture, design philosophy, and examples of use during NASA Constellation and Fundamental Aerodynamic tests are discussed.
Ahamed, Nizam U; Sundaraj, Kenneth; Poo, Tarn S
2013-03-01
This article describes the design of a robust, inexpensive, easy-to-use, small, and portable online electromyography acquisition system for monitoring electromyography signals during rehabilitation. This single-channel (one-muscle) system was connected via the universal serial bus port to a programmable Windows operating system handheld tablet personal computer for storage and analysis of the data by the end user. The raw electromyography signals were amplified in order to convert them to an observable scale. The inherent noise of 50 Hz (Malaysia) from power lines electromagnetic interference was then eliminated using a single-hybrid IC notch filter. These signals were sampled by a signal processing module and converted into 24-bit digital data. An algorithm was developed and programmed to transmit the digital data to the computer, where it was reassembled and displayed in the computer using software. Finally, the following device was furnished with the graphical user interface to display the online muscle strength streaming signal in a handheld tablet personal computer. This battery-operated system was tested on the biceps brachii muscles of 20 healthy subjects, and the results were compared to those obtained with a commercial single-channel (one-muscle) electromyography acquisition system. The results obtained using the developed device when compared to those obtained from a commercially available physiological signal monitoring system for activities involving muscle contractions were found to be comparable (the comparison of various statistical parameters) between male and female subjects. In addition, the key advantage of this developed system over the conventional desktop personal computer-based acquisition systems is its portability due to the use of a tablet personal computer in which the results are accessible graphically as well as stored in text (comma-separated value) form.
Low-cost data acquisition systems for photovoltaic system monitoring and usage statistics
NASA Astrophysics Data System (ADS)
Fanourakis, S.; Wang, K.; McCarthy, P.; Jiao, L.
2017-11-01
This paper presents the design of a low-cost data acquisition system for monitoring a photovoltaic system’s electrical quantities, battery temperatures, and state of charge of the battery. The electrical quantities are the voltages and currents of the solar panels, the battery, and the system loads. The system uses an Atmega328p microcontroller to acquire data from the photovoltaic system’s charge controller. It also records individual load information using current sensing resistors along with a voltage amplification circuit and an analog to digital converter. The system is used in conjunction with a wall power data acquisition system for the recording of regional power outages. Both data acquisition systems record data in micro SD cards. The data has been successfully acquired from both systems and has been used to monitor the status of the PV system and the local power grid. As more data is gathered it can be used for the maintenance and improvement of the photovoltaic system through analysis of the photovoltaic system’s parameters and usage statistics.
Digital pathology: DICOM-conform draft, testbed, and first results.
Zwönitzer, Ralf; Kalinski, Thomas; Hofmann, Harald; Roessner, Albert; Bernarding, Johannes
2007-09-01
Hospital information systems are state of the art nowadays. Therefore, Digital Pathology, also labelled as Virtual Microscopy, has gained increased attention. Triggered by radiology, standardized information models and workflows were world-wide defined based on DICOM. However, DICOM-conform integration of Digital Pathology into existing clinical information systems imposes new problems requiring specific solutions concerning the huge amount of data as well as the special structure of the data to be managed, transferred, and stored. We implemented a testbed to realize and evaluate the workflow of digitized slides from acquisition to archiving. The experiences led to the draft of a DICOM-conform information model that accounted for extensions, definitions, and technical requirements necessary to integrate digital pathology in a hospital-wide DICOM environment. Slides were digitized, compressed, and could be viewed remotely. Real-time transfer of the huge amount of data was optimized using streaming techniques. Compared to a recent discussion in the DICOM Working Group for Digital Pathology (WG26) our experiences led to a preference of a JPEG2000/JPIP-based streaming of the whole slide image. The results showed that digital pathology is feasible but strong efforts by users and vendors are still necessary to integrate Digital Pathology into existing information systems.
Hanna, Matthew G; Monaco, Sara E; Cuda, Jacqueline; Xing, Juan; Ahmed, Ishtiaque; Pantanowitz, Liron
2017-09-01
Whole-slide imaging in cytology is limited when glass slides are digitized without z-stacks for focusing. Different vendors have started to provide z-stacking solutions to overcome this limitation. The Panoptiq imaging system allows users to create digital files combining low-magnification panoramic images with regions of interest (ROIs) that are imaged with high-magnification z-stacks. The aim of this study was to compare such panoramic images with conventional whole-slide images and glass slides for the tasks of screening and interpretation in cytopathology. Thirty glass slides, including 10 ThinPrep Papanicolaou tests and 20 nongynecologic cytology cases, were digitized with an Olympus BX45 integrated microscope with an attached Prosilica GT camera. ViewsIQ software was used for image acquisition and viewing. These glass slides were also scanned on an Aperio ScanScope XT at ×40 (0.25 μm/pixel) with 1 z-plane and were viewed with ImageScope software. Digital and glass sides were screened and dotted/annotated by a cytotechnologist and were subsequently reviewed by 3 cytopathologists. For panoramic images, the cytotechnologist manually created digital maps and selected representative ROIs to generate z-stacks at a higher magnification. After 3-week washout periods, panoramic images were compared with Aperio digital slides and glass slides. The Panoptiq system permitted fine focusing of thick smears and cell clusters. In comparison with glass slides, the average screening times were 5.5 and 1.8 times longer with Panoptiq and Aperio images, respectively, but this improved with user experience. There was no statistical difference in diagnostic concordance between all 3 modalities. Users' diagnostic confidence was also similar for all modalities. The Aperio whole-slide scanner with 1 z-plane scanning and the Panoptiq imaging system with z-stacking are both suitable for cytopathology screening and interpretation. However, ROI z-stacks do offer a superior mechanism for overcoming focusing problems commonly encountered with digital cytology slides. Unlike whole-slide imaging, the acquisition of representative z-stack images with the Panoptiq system requires a trained cytologist to create digital files. Cancer Cytopathol 2017;125:701-9. © 2017 American Cancer Society. © 2017 American Cancer Society.
A Limited-Vocabulary, Multi-Speaker Automatic Isolated Word Recognition System.
ERIC Educational Resources Information Center
Paul, James E., Jr.
Techniques for automatic recognition of isolated words are investigated, and a computer simulation of a word recognition system is effected. Considered in detail are data acquisition and digitizing, word detection, amplitude and time normalization, short-time spectral estimation including spectral windowing, spectral envelope approximation,…
Air Force Tech Order Management System (AFTOMS). Automation Plan-Final Report. Version 1.0
DOT National Transportation Integrated Search
1988-02-01
Computer aided Acquisition and Logistics Support (CALS) is a Department of Defense (DoD) program designed to improve weapon systems support through digital automation. In June 1985, the joint industry/DoD Task Force on CALS issued a five volume repor...
Architecture of a mixed-mode electrophysiological signal acquisition interface.
Shen, Ding-Lan; Chen, Jyun-Min
2012-01-01
This paper proposes mixed-mode architecture for the acquisition interface of electrophysiological signals. The architecture advances the analog-to-digital converter (ADC) from the second chopper signal in the conventional approach and performs the second chopper operation in the digital domain. The demanded low-pass filter (LPF) is realized with a digital type. The analog LPF in feedback path is substituted with a digital one accompanying with a digital-to-analog converter (DAC). The analog variation is decreased due to the digitization of these operations. The entire architecture is simulated with the ECG input in a behavior model of Simulink.
Multiple-function multi-input/multi-output digital control and on-line analysis
NASA Technical Reports Server (NTRS)
Hoadley, Sherwood T.; Wieseman, Carol D.; Mcgraw, Sandra M.
1992-01-01
The design and capabilities of two digital controller systems for aeroelastic wind-tunnel models are described. The first allowed control of flutter while performing roll maneuvers with wing load control as well as coordinating the acquisition, storage, and transfer of data for on-line analysis. This system, which employs several digital signal multi-processor (DSP) boards programmed in high-level software languages, is housed in a SUN Workstation environment. A second DCS provides a measure of wind-tunnel safety by functioning as a trip system during testing in the case of high model dynamic response or in case the first DCS fails. The second DCS uses National Instruments LabVIEW Software and Hardware within a Macintosh environment.
Digital Analysis and Sorting of Fluorescence Lifetime by Flow Cytometry
Houston, Jessica P.; Naivar, Mark A.; Freyer, James P.
2010-01-01
Frequency-domain flow cytometry techniques are combined with modifications to the digital signal processing capabilities of the Open Reconfigurable Cytometric Acquisition System (ORCAS) to analyze fluorescence decay lifetimes and control sorting. Real-time fluorescence lifetime analysis is accomplished by rapidly digitizing correlated, radiofrequency modulated detector signals, implementing Fourier analysis programming with ORCAS’ digital signal processor (DSP) and converting the processed data into standard cytometric list mode data. To systematically test the capabilities of the ORCAS 50 MS/sec analog-to-digital converter (ADC) and our DSP programming, an error analysis was performed using simulated light scatter and fluorescence waveforms (0.5–25 ns simulated lifetime), pulse widths ranging from 2 to 15 µs, and modulation frequencies from 2.5 to 16.667 MHz. The standard deviations of digitally acquired lifetime values ranged from 0.112 to >2 ns, corresponding to errors in actual phase shifts from 0.0142° to 1.6°. The lowest coefficients of variation (<1%) were found for 10-MHz modulated waveforms having pulse widths of 6 µs and simulated lifetimes of 4 ns. Direct comparison of the digital analysis system to a previous analog phase-sensitive flow cytometer demonstrated similar precision and accuracy on measurements of a range of fluorescent microspheres, unstained cells and cells stained with three common fluorophores. Sorting based on fluorescence lifetime was accomplished by adding analog outputs to ORCAS and interfacing with a commercial cell sorter with a radiofrequency modulated solid-state laser. Two populations of fluorescent microspheres with overlapping fluorescence intensities but different lifetimes (2 and 7 ns) were separated to ~98% purity. Overall, the digital signal acquisition and processing methods we introduce present a simple yet robust approach to phase-sensitive measurements in flow cytometry. The ability to simply and inexpensively implement this system on a commercial flow sorter will both allow better dissemination of this technology and better exploit the traditionally underutilized parameter of fluorescence lifetime. PMID:20662090
Deep Cryogenic Low Power 24 Bits Analog to Digital Converter with Active Reverse Cryostat
NASA Astrophysics Data System (ADS)
Turqueti, Marcos; Prestemon, Soren; Albright, Robert
LBNL is developing an innovative data acquisition module for superconductive magnets where the front-end electronics and digitizer resides inside the cryostat. This electronic package allows conventional electronic technologies such as enhanced metal-oxide-semiconductor to work inside cryostats at temperatures as low as 4.2 K. This is achieved by careful management of heat inside the module that keeps the electronic envelop at approximately 85 K. This approach avoids all the difficulties that arise from changes in carrier mobility that occur in semiconductors at deep cryogenic temperatures. There are several advantages in utilizing this system. A significant reduction in electrical noise from signals captured inside the cryostat occurs due to the low temperature that the electronics is immersed in, reducing the thermal noise. The shorter distance that signals are transmitted before digitalization reduces pickup and cross-talk between channels. This improved performance in signal-to-noise rate by itself is a significant advantage. Another important advantage is the simplification of the feedthrough interface on the cryostat head. Data coming out of the cryostat is digital and serial, dramatically reducing the number of lines going through the cryostat feedthrough interface. It is important to notice that all lines coming out of the cryostat are digital and low voltage, reducing the possibility of electric breakdown inside the cryostat. This paper will explain in details the architecture and inner workings of this data acquisition system. It will also provide the performance of the analog to digital converter when the system is immersed in liquid helium, and in liquid nitrogen. Parameters such as power dissipation, integral non-linearity, effective number of bits, signal-to-noise and distortion, will be presented for both temperatures.
Deep Cryogenic Low Power 24 Bits Analog to Digital Converter with Active Reverse Cryostat
Turqueti, Marcos; Prestemon, Soren; Albright, Robert
2015-07-15
LBNL is developing an innovative data acquisition module for superconductive magnets where the front-end electronics and digitizer resides inside the cryostat. This electronic package allows conventional electronic technologies such as enhanced metal–oxide–semiconductor to work inside cryostats at temperatures as low as 4.2 K. This is achieved by careful management of heat inside the module that keeps the electronic envelop at approximately 85 K. This approach avoids all the difficulties that arise from changes in carrier mobility that occur in semiconductors at deep cryogenic temperatures. There are several advantages in utilizing this system. A significant reduction in electrical noise from signalsmore » captured inside the cryostat occurs due to the low temperature that the electronics is immersed in, reducing the thermal noise. The shorter distance that signals are transmitted before digitalization reduces pickup and cross-talk between channels. This improved performance in signal-to-noise rate by itself is a significant advantage. Another important advantage is the simplification of the feedthrough interface on the cryostat head. Data coming out of the cryostat is digital and serial, dramatically reducing the number of lines going through the cryostat feedthrough interface. It is important to notice that all lines coming out of the cryostat are digital and low voltage, reducing the possibility of electric breakdown inside the cryostat. This paper will explain in details the architecture and inner workings of this data acquisition system. It will also provide the performance of the analog to digital converter when the system is immersed in liquid helium, and in liquid nitrogen. Parameters such as power dissipation, integral non-linearity, effective number of bits, signal-to-noise and distortion, will be presented for both temperatures.« less
NASA Astrophysics Data System (ADS)
Gao, Z.; Song, Y.; Li, C.; Zeng, F.; Wang, F.
2017-08-01
Rapid acquisition and processing method of large scale topographic map data, which relies on the Unmanned Aerial Vehicle (UAV) low-altitude aerial photogrammetry system, is studied in this paper, elaborating the main work flow. Key technologies of UAV photograph mapping is also studied, developing a rapid mapping system based on electronic plate mapping system, thus changing the traditional mapping mode and greatly improving the efficiency of the mapping. Production test and achievement precision evaluation of Digital Orth photo Map (DOM), Digital Line Graphic (DLG) and other digital production were carried out combined with the city basic topographic map update project, which provides a new techniques for large scale rapid surveying and has obvious technical advantage and good application prospect.
NASA Technical Reports Server (NTRS)
Wilhite, Larry D.; Lee, S. C.; Lollar, Louis F.
1989-01-01
The design and implementation of the real-time data acquisition and processing system employed in the AMPERES project is described, including effective data structures for efficient storage and flexible manipulation of the data by the knowledge-based system (KBS), the interprocess communication mechanism required between the data acquisition system and the KBS, and the appropriate data acquisition protocols for collecting data from the sensors. Sensor data are categorized as critical or noncritical data on the basis of the inherent frequencies of the signals and the diagnostic requirements reflected in their values. The critical data set contains 30 analog values and 42 digital values and is collected every 10 ms. The noncritical data set contains 240 analog values and is collected every second. The collected critical and noncritical data are stored in separate circular buffers. Buffers are created in shared memory to enable other processes, i.e., the fault monitoring and diagnosis process and the user interface process, to freely access the data sets.
Information management system breadboard data acquisition and control system.
NASA Technical Reports Server (NTRS)
Mallary, W. E.
1972-01-01
Description of a breadboard configuration of an advanced information management system based on requirements for high data rates and local and centralized computation for subsystems and experiments to be housed on a space station. The system is to contain a 10-megabit-per-second digital data bus, remote terminals with preprocessor capabilities, and a central multiprocessor. A concept definition is presented for the data acquisition and control system breadboard, and a detailed account is given of the operation of the bus control unit, the bus itself, and the remote acquisition and control unit. The data bus control unit is capable of operating under control of both its own test panel and the test processor. In either mode it is capable of both single- and multiple-message operation in that it can accept a block of data requests or update commands for transmission to the remote acquisition and control unit, which in turn is capable of three levels of data-handling complexity.
A filter circuit board for the Earthworm Seismic Data Acquisition System
Jensen, Edward Gray
2000-01-01
The Earthworm system is a seismic network data acquisition and processing system used by the Northern California Seismic Network as well as many other seismic networks. The input to the system is comprised of many realtime electronic waveforms fed to a multi-channel digitizer on a PC platform. The digitizer consists of one or more National Instruments Corp. AMUX–64T multiplexer boards attached to an A/D converter board located in the computer. Originally, passive filters were installed on the multiplexers to eliminate electronic noise picked up in cabling. It was later discovered that a small amount of crosstalk occurred between successive channels in the digitizing sequence. Though small, this crosstalk will cause what appear to be small earthquake arrivals at the wrong time on some channels. This can result in erroneous calculation of earthquake arrival times, particularly by automated algorithms. To deal with this problem, an Earthworm filter board was developed to provide the needed filtering while eliminating crosstalk. This report describes the tests performed to find a suitable solution, and the design of the circuit board. Also included are all the details needed to build and install this board in an Earthworm system or any other system using the AMUX–64T board. Available below is the report in PDF format as well as an archive file containing the circuit board manufacturing information.
Comparative Study Of Image Enhancement Algorithms For Digital And Film Mammography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delgado-Gonzalez, A.; Sanmiguel, R. E.
2008-08-11
Here we discuss the application of edge enhancement algorithms on images obtained with a Mammography System which has a Selenium Detector and on the other hand, on images obtained from digitized film mammography. Comparative analysis of such images includes the study of technical aspects of image acquisition, storage, compression and display. A protocol for a local database has been created as a result of this study.
Comparison study of image quality and effective dose in dual energy chest digital tomosynthesis
NASA Astrophysics Data System (ADS)
Lee, Donghoon; Choi, Sunghoon; Lee, Haenghwa; Kim, Dohyeon; Choi, Seungyeon; Kim, Hee-Joung
2018-07-01
The present study aimed to introduce a recently developed digital tomosynthesis system for the chest and describe the procedure for acquiring dual energy bone decomposed tomosynthesis images. Various beam quality and reconstruction algorithms were evaluated for acquiring dual energy chest digital tomosynthesis (CDT) images and the effective dose was calculated with ion chamber and Monte Carlo simulations. The results demonstrated that dual energy CDT improved visualization of the lung field by eliminating the bony structures. In addition, qualitative and quantitative image quality of dual energy CDT using iterative reconstruction was better than that with filtered backprojection (FBP) algorithm. The contrast-to-noise ratio and figure of merit values of dual energy CDT acquired with iterative reconstruction were three times better than those acquired with FBP reconstruction. The difference in the image quality according to the acquisition conditions was not noticeable, but the effective dose was significantly affected by the acquisition condition. The high energy acquisition condition using 130 kVp recorded a relatively high effective dose. We conclude that dual energy CDT has the potential to compensate for major problems in CDT due to decomposed bony structures, which induce significant artifacts. Although there are many variables in the clinical practice, our results regarding reconstruction algorithms and acquisition conditions may be used as the basis for clinical use of dual energy CDT imaging.
Cutting Edge Books: The Impact of Digital Books on Public Library Acquisitions
ERIC Educational Resources Information Center
Taylor, Lisa
2008-01-01
The book has made the transition to the digital age; that much is certain. However, the jury is still out on what form or forms the book of the future will take and how libraries will adapt. This article is a look at the impact of digital books on public library acquisitions, including available formats, purchasing considerations, functional…
The electronics readout and data acquisition system of the KM3NeT neutrino telescope node
DOE Office of Scientific and Technical Information (OSTI.GOV)
Real, Diego; Collaboration: KM3NeT Collaboration
2014-11-18
The KM3NeT neutrino telescope will be composed by tens of thousands of glass spheres, called Digital Optical Module (DOM), each of them containing 31 PMTs of small photocathode area (3'). The readout and data acquisition system of KM3NeT have to collect, treat and send to shore, in an economic way, the enormous amount of data produced by the photomultipliers and at the same time to provide time synchronization between each DOM at the level of 1 ns. It is described in the present article the Central Logic Board, that integrates the Time to Digital Converters and the White Rabbit protocolmore » used for the DOM synchronization in a transparent way, the Power Board used in the DOM, the PMT base to readout the photomultipliers and the respective collecting boards, the so called Octopus Board.« less
NASA Astrophysics Data System (ADS)
Gao, Shanghua; Xue, Bing
2017-04-01
The dynamic range of the currently most widely used 24-bit seismic data acquisition devices is 10-20 dB lower than that of broadband seismometers, and this can affect the completeness of seismic waveform recordings under certain conditions. However, this problem is not easy to solve because of the lack of analog to digital converter (ADC) chips with more than 24 bits in the market. So the key difficulties for higher-resolution data acquisition devices lie in achieving more than 24-bit ADC circuit. In the paper, we propose a method in which an adder, an integrator, a digital to analog converter chip, a field-programmable gate array, and an existing low-resolution ADC chip are used to build a third-order 16-bit oversampling delta-sigma modulator. This modulator is equipped with a digital decimation filter, thus forming a complete analog to digital converting circuit. Experimental results show that, within the 0.1-40 Hz frequency range, the circuit board's dynamic range reaches 158.2 dB, its resolution reaches 25.99 dB, and its linearity error is below 2.5 ppm, which is better than what is achieved by the commercial 24-bit ADC chips ADS1281 and CS5371. This demonstrates that the proposed method may alleviate or even solve the amplitude-limitation problem that broadband observation systems so commonly have to face during strong earthquakes.
Digital Electronics for Nuclear Physics Experiments
NASA Astrophysics Data System (ADS)
Skulski, Wojtek; Hunter, David; Druszkiewicz, Eryk; Khaitan, Dev Ashish; Yin, Jun; Wolfs, Frank; SkuTek Instrumentation Team; Department of Physics; Astronomy, University of Rochester Team
2015-10-01
Future detectors in nuclear physics will use signal sampling as one of primary techniques of data acquisition. Using the digitized waveforms, the electronics can select events based on pulse shape, total energy, multiplicity, and the hit pattern. The DAQ for the LZ Dark Matter detector, now under development in Rochester, is a good example of the power of digital signal processing. This system, designed around 32-channel, FPGA-based, digital signal processors collects data from more than one thousand channels. The solutions developed for this DAQ can be applied to nuclear physics experiments. Supported by the Department of Energy Office of Science under Grant DE-SC0009543.
Price, Jeffery R.; Bingham, Philip R.
2005-11-08
Systems and methods are described for rapid acquisition of fused off-axis illumination direct-to-digital holography. A method of recording a plurality of off-axis object illuminated spatially heterodyne holograms, each of the off-axis object illuminated spatially heterodyne holograms including spatially heterodyne fringes for Fourier analysis, includes digitally recording, with a first illumination source of an interferometer, a first off-axis object illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis; and digitally recording, with a second illumination source of the interferometer, a second off-axis object illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis.
Constructing an Affective Tutoring System for Designing Course Learning and Evaluation
ERIC Educational Resources Information Center
Wang, Cheng-Hung; Lin, Hao-Chiang Koong
2018-01-01
Computers and the Internet are indispensable in modern life. Increasingly useful digital environments and technological developments have reshaped models of knowledge acquisition. Studies on the development of online learning have yielded valuable insights. In the design of online teaching systems that can replicate face-to-face teaching,…
Real-World Physics: A Portable MBL for Field Measurements.
ERIC Educational Resources Information Center
Albergotti, Clifton
1994-01-01
Uses a moderately priced digital multimeter that has output and software compatible with personal computers to make a portable, computer-based data-acquisition system. The system can measure voltage, current, frequency, capacitance, transistor hFE, and temperature. Describes field measures of velocity, acceleration, and temperature as function of…
NASA Technical Reports Server (NTRS)
Pedings, Marc
2007-01-01
RT-Display is a MATLAB-based data acquisition environment designed to use a variety of commercial off-the-shelf (COTS) hardware to digitize analog signals to a standard data format usable by other post-acquisition data analysis tools. This software presents the acquired data in real time using a variety of signal-processing algorithms. The acquired data is stored in a standard Operator Interactive Signal Processing Software (OISPS) data-formatted file. RT-Display is primarily configured to use the Agilent VXI (or equivalent) data acquisition boards used in such systems as MIDDAS (Multi-channel Integrated Dynamic Data Acquisition System). The software is generalized and deployable in almost any testing environment, without limitations or proprietary configuration for a specific test program or project. With the Agilent hardware configured and in place, users can start the program and, in one step, immediately begin digitizing multiple channels of data. Once the acquisition is completed, data is converted into a common binary format that also can be translated to specific formats used by external analysis software, such as OISPS and PC-Signal (product of AI Signal Research Inc.). RT-Display at the time of this reporting was certified on Agilent hardware capable of acquisition up to 196,608 samples per second. Data signals are presented to the user on-screen simultaneously for 16 channels. Each channel can be viewed individually, with a maximum capability of 160 signal channels (depending on hardware configuration). Current signal presentations include: time data, fast Fourier transforms (FFT), and power spectral density plots (PSD). Additional processing algorithms can be easily incorporated into this environment.
A digital signal processing system for coherent laser radar
NASA Technical Reports Server (NTRS)
Hampton, Diana M.; Jones, William D.; Rothermel, Jeffry
1991-01-01
A data processing system for use with continuous-wave lidar is described in terms of its configuration and performance during the second survey mission of NASA'a Global Backscatter Experiment. The system is designed to estimate a complete lidar spectrum in real time, record the data from two lidars, and monitor variables related to the lidar operating environment. The PC-based system includes a transient capture board, a digital-signal processing (DSP) board, and a low-speed data-acquisition board. Both unprocessed and processed lidar spectrum data are monitored in real time, and the results are compared to those of a previous non-DSP-based system. Because the DSP-based system is digital it is slower than the surface-acoustic-wave signal processor and collects 2500 spectra/s. However, the DSP-based system provides complete data sets at two wavelengths from the continuous-wave lidars.
Digital tanlock loop architecture with no delay
NASA Astrophysics Data System (ADS)
Al-Kharji AL-Ali, Omar; Anani, Nader; Al-Araji, Saleh; Al-Qutayri, Mahmoud; Ponnapalli, Prasad
2012-02-01
This article proposes a new architecture for a digital tanlock loop which eliminates the time-delay block. The ? (rad) phase shift relationship between the two channels, which is generated by the delay block in the conventional time-delay digital tanlock loop (TDTL), is preserved using two quadrature sampling signals for the loop channels. The proposed system outperformed the original TDTL architecture, when both systems were tested with frequency shift keying input signal. The new system demonstrated better linearity and acquisition speed as well as improved noise performance compared with the original TDTL architecture. Furthermore, the removal of the time-delay block enables all processing to be digitally performed, which reduces the implementation complexity. Both the original TDTL and the new architecture without the delay block were modelled and simulated using MATLAB/Simulink. Implementation issues, including complexity and relation to simulation of both architectures, are also addressed.
Design and testing of a 750MHz CW-EPR digital console for small animal imaging.
Sato-Akaba, Hideo; Emoto, Miho C; Hirata, Hiroshi; Fujii, Hirotada G
2017-11-01
This paper describes the development of a digital console for three-dimensional (3D) continuous wave electron paramagnetic resonance (CW-EPR) imaging of a small animal to improve the signal-to-noise ratio and lower the cost of the EPR imaging system. A RF generation board, an RF acquisition board and a digital signal processing (DSP) & control board were built for the digital EPR detection. Direct sampling of the reflected RF signal from a resonator (approximately 750MHz), which contains the EPR signal, was carried out using a band-pass subsampling method. A direct automatic control system to reduce the reflection from the resonator was proposed and implemented in the digital EPR detection scheme. All DSP tasks were carried out in field programmable gate array ICs. In vivo 3D imaging of nitroxyl radicals in a mouse's head was successfully performed. Copyright © 2017 Elsevier Inc. All rights reserved.
Design and testing of a 750 MHz CW-EPR digital console for small animal imaging
NASA Astrophysics Data System (ADS)
Sato-Akaba, Hideo; Emoto, Miho C.; Hirata, Hiroshi; Fujii, Hirotada G.
2017-11-01
This paper describes the development of a digital console for three-dimensional (3D) continuous wave electron paramagnetic resonance (CW-EPR) imaging of a small animal to improve the signal-to-noise ratio and lower the cost of the EPR imaging system. A RF generation board, an RF acquisition board and a digital signal processing (DSP) & control board were built for the digital EPR detection. Direct sampling of the reflected RF signal from a resonator (approximately 750 MHz), which contains the EPR signal, was carried out using a band-pass subsampling method. A direct automatic control system to reduce the reflection from the resonator was proposed and implemented in the digital EPR detection scheme. All DSP tasks were carried out in field programmable gate array ICs. In vivo 3D imaging of nitroxyl radicals in a mouse's head was successfully performed.
Real-time data acquisition and telemetry based irrigation control system
Slater, John M.; Svoboda, John M.
2005-12-13
A data acquisition and telemetry based control system for use in facilitating substantially real time management of an agricultural irrigation system. The soil moisture sensor includes a reader and a plurality of probes. The probes each include an electronic circuit having a moisture sensing capacitor in operative communication with the soil whose moisture is to be measured. Each probe also includes a receive/transmit antenna and the reader includes a transmit/receive antenna, so that as the reader passes near the probe, the reader transmits a digital excitation signal to the electronic circuit of the biodegradable probe via an inductive couple formed between the transmit/receive antenna of the reader and the receive/transmit coil of the probe. The electronic circuit uses an energy component of the excitation signal to generate a digital data signal which indicates the moisture content of the soil adjacent to the moisture sensing capacitor. The probe sends the data signal to the reader which then uses the data signal to develop a corresponding set of watering instructions which are then transmitted to a control module in communication with the irrigation system. The control module sends corresponding control signals to nozzles of the irrigation system causing the irrigation system to disperse water in a manner consistent with the moisture content data transmitted by the probes to the reader. Because the irrigation system moves continuously through the field to be irrigated, the moisture content data acquisition and resultant water dispersal by the irrigation system occur substantially in real time.
NASA Astrophysics Data System (ADS)
Hay, D. Robert; Brassard, Michel; Matthews, James R.; Garneau, Stephane; Morchat, Richard
1995-06-01
The convergence of a number of contemporary technologies with increasing demands for improvements in inspection capabilities in maritime applications has created new opportunities for ultrasonic inspection. An automated ultrasonic inspection and data collection system APHIUS (automated pressure hull intelligent ultrasonic system), incorporates hardware and software developments to meet specific requirements for the maritime vessels, in particular, submarines in the Canadian Navy. Housed within a hardened portable computer chassis, instrumentation for digital ultrasonic data acquisition and transducer position measurement provide new capabilities that meet more demanding requirements for inspection of the aging submarine fleet. Digital data acquisition enables a number of new important capabilites including archiving of the complete inspection session, interpretation assistance through imaging, and automated interpretation using artificial intelligence methods. With this new reliable inspection system, in conjunction with a complementary study of the significance of real defect type and location, comprehensive new criteria can be generated which will eliminate unnecessary defect removal. As a consequence, cost savings will be realized through shortened submarine refit schedules.
Design and development progress of a LLRF control system for a 500 MHz superconducting cavity
NASA Astrophysics Data System (ADS)
Lee, Y. S.; Kim, H. W.; Song, H. S.; Lee, J. H.; Park, K. H.; Yu, I. H.; Chai, J. S.
2012-07-01
The LLRF (low-level radio-frequency) control system which regulates the amplitude and the phase of the accelerating voltage inside a RF cavity is essential to ensure the stable operation of charged particle accelerators. Recent advances in digital signal processors and data acquisition systems have allowed the LLRF control system to be implemented in digitally and have made it possible to meet the higher demands associated with the performance of LLRF control systems, such as stability, accuracy, etc. For this reason, many accelerator laboratories have completed or are completing the developments of digital LLRF control systems. The digital LLRF control system has advantages related with flexibility and fast reconfiguration. This paper describes the design of the FPGA (field programmable gate array) based LLRF control system and the status of development for this system. The proposed LLRF control system includes an analog front-end, a digital board (ADC (analog to digital converter), DAC (digital to analog converter), FPGA, etc.) and a RF & clock generation system. The control algorithms will be implemented by using the VHDL (VHSIC (very high speed integrated circuits) hardware description language), and the EPICS (experiment physics and industrial control system) will be ported to the host computer for the communication. In addition, the purpose of this system is to control a 500 MHz RF cavity, so the system will be applied to the superconducting cavity to be installed in the PLS storage ring, and its performance will be tested.
NASA Astrophysics Data System (ADS)
Vericat, Damià; Narciso, Efrén; Béjar, Maria; Tena, Álvaro; Brasington, James; Gibbins, Chris; Batalla, Ramon J.
2014-05-01
Digital Terrain Models are fundamental to characterise landscapes, to support numerical modelling and to monitor topographic changes. Recent advances in topography, remote sensing and geomatics are providing new opportunities to obtain high density/quality and rapid topographic data. In this paper we present an integrated methodology to rapidly obtain reach scale topographic models of fluvial systems. This methodology has been tested and is being applied to develop event-scale terrain models of a 11-km river reach in the highly dynamic Upper Cinca (NE Iberian Peninsula). This research is conducted in the background of the project MorphSed. The methodology integrates (a) the acquisition of dense point clouds of the exposed floodplain (aerial photography and digital photogrammetry); (b) the registration of all observations to the same coordinate system (using RTK-GPS surveyed GCPs); (c) the acquisition of bathymetric data (using aDcp measurements integrated with RTK-GPS); (d) the intelligent decimation of survey observations (using the open source TopCat toolkit) and, finally, (e) data fusion (elaborating Digital Elevation Models). In this paper special emphasis is given to the acquisition and registration of point clouds. 3D point clouds are obtained from aerial photography and by means of automated digital photogrammetry. Aerial photographs are taken at 275 meters above the ground by means of a SLR digital camera manually operated from an autogyro. Four flight paths are defined in order to cover the 11 km long and 500 meters wide river reach. A total of 45 minutes are required to fly along these paths. Camera has been previously calibrated with the objective to ensure image resolution at around 5 cm. A total of 220 GCPs are deployed and RTK-GPS surveyed before the flight is conducted. Two people and one full workday are necessary to deploy and survey the full set of GCPs. Field data acquisition may be finalised in less than 2 days. Structure-from-Motion is subsequently applied in the lab using Agisoft PhotoScan, photographs are aligned and a 3d point cloud is generated. GCPs are used to geo-register all point clouds. This task may be time consuming since GCPs need to be identified in at least two of the pictures. A first automatic identification of GCPs positions is performed in the rest of the photos, although user supervision is necessary. Preliminary results show as geo-registration errors between 0.08 and and 0.10 meters can be obtained. The number of GCPs is being degraded and the quality of the point cloud assessed based on check points (the extracted GCPs). A critical analysis of GCPs density and scene locations is being performed (results in preparation). The results show that automated digital photogrammetry may provide new opportunities in the acquisition of topographic data at multiple temporal and spatial scales, being competitive with other more expensive techniques that, in turn, may require much more time to acquire field observations. SfM offers new opportunities to develop event-scale terrain models of fluvial systems suitable for hydraulic modelling and to study topographic change in highly dynamic environments.
NASA Astrophysics Data System (ADS)
Koubaa, Zied
The communication network and the detection mechanisms are two critical systems in a plane. Their performance has a direct impact on aircrafts. This is of particular interest for avionics designers, who have increasingly invested more and more in the development of these elements. As a part of a project in this domain, we introduce the design and the development of a smart interface for position sensors dedicated to flights (Smart Sensor Interface - SSI). This interface will serve to connect sensors of different technologies (electromagnetic, optical and MEMS) to the new communication network, AFDX. The role of this interface is to generate an appropriate excitation signal for certain types of sensors (R/LVDT), and to treat, demodulate, and digitize their output signals. The proposed interface is thus composed of a Signal Acquisition Path (SAP) and an Excitation Signal Generation (ESG). By adopting the Integrated Modular Avionics architecture (IMA), we can minimize the size of the classic interface, reduce its energy consumption and improve its reliability and its performance. The focus of our design is particularly on the Data Acquisition Path (DAP). An Architecture characterized by a high resolution (14 bits) and a low latency (1.2 ms) of this module is introduced and developed in this prestigious work. This architecture was developed after a wellconducted study of existing solutions found in literature work and a detailed analysis of the problems arise in the design and implementation of this system (DAP). The conversion of the sensor signal into a digital signal is the most important step in acquiring data, as it sets the resolution of the acquired information and generates the majority of its latency. This module can also affect the reliability and stability of the system. Among different models and architectures, the Delta-Sigma analog-to-digital converter (ADC) is preferred for this application (for better resolution). This converter is formed by an analog circuit (modulator) followed by digital filters. The complexity of the implementation, the processing delay and the output resolution are all susceptible to change depending on the architecture of these filters. Thus, the main problem while designing such a system arises in the opposing evolution of the resolution and latency parameters; the improvement or evolution of one, results in the destruction of the other. Therefore, our work aims to provide one or more method to optimize the latency caused by the CAN while maintaining the same resolution of the desired data (14 bits). This optimization takes into account the objective of integrating the DAP in modules of small size and low power consumption. This proposed solution was implemented in order to validate the design of the conception of the interface. We are also interested to achieve the proposed solution and validate our design. The obtained results will be evaluated after following the manufacturing strategy. The data acquisition unit is made up of two electronic components. The first component is an integrated circuit, which uses CMOS 0.13mum IBM technology and contains the analog part of CAN (SigmaDelta modulator). The second component is a Virtex-6 FPGA, which allows one to acquire the necessary digital processing required for the acquisition and conversion of the sensor signal. In the final version of the interface, our analog portion will be integrated with the analog portion of GSE in the same chip. The integrated digital logic in the (FPGA) role will thus provide digital data to the ESG module in order to generate the excitation signal.
Acquisition of gamma camera and physiological data by computer.
Hack, S N; Chang, M; Line, B R; Cooper, J A; Robeson, G H
1986-11-01
We have designed, implemented, and tested a new Research Data Acquisition System (RDAS) that permits a general purpose digital computer to acquire signals from both gamma camera sources and physiological signal sources concurrently. This system overcomes the limited multi-source, high speed data acquisition capabilities found in most clinically oriented nuclear medicine computers. The RDAS can simultaneously input signals from up to four gamma camera sources with a throughput of 200 kHz per source and from up to eight physiological signal sources with an aggregate throughput of 50 kHz. Rigorous testing has found the RDAS to exhibit acceptable linearity and timing characteristics. In addition, flood images obtained by this system were compared with flood images acquired by a commercial nuclear medicine computer system. National Electrical Manufacturers Association performance standards of the flood images were found to be comparable.
A Markov chain technique for determining the acquisition behavior of a digital tracking loop
NASA Technical Reports Server (NTRS)
Chadwick, H. D.
1972-01-01
An iterative procedure is presented for determining the acquisition behavior of discrete or digital implementations of a tracking loop. The technique is based on the theory of Markov chains and provides the cumulative probability of acquisition in the loop as a function of time in the presence of noise and a given set of initial condition probabilities. A digital second-order tracking loop to be used in the Viking command receiver for continuous tracking of the command subcarrier phase was analyzed using this technique, and the results agree closely with experimental data.
Implementation of a wireless ECG acquisition SoC for IEEE 802.15.4 (ZigBee) applications.
Wang, Liang-Hung; Chen, Tsung-Yen; Lin, Kuang-Hao; Fang, Qiang; Lee, Shuenn-Yuh
2015-01-01
This paper presents a wireless biosignal acquisition system-on-a-chip (WBSA-SoC) specialized for electrocardiogram (ECG) monitoring. The proposed system consists of three subsystems, namely, 1) the ECG acquisition node, 2) the protocol for standard IEEE 802.15.4 ZigBee system, and 3) the RF transmitter circuits. The ZigBee protocol is adopted for wireless communication to achieve high integration, applicability, and portability. A fully integrated CMOS RF front end containing a quadrature voltage-controlled oscillator and a 2.4-GHz low-IF (i.e., zero-IF) transmitter is employed to transmit ECG signals through wireless communication. The low-power WBSA-SoC is implemented by the TSMC 0.18-μm standard CMOS process. An ARM-based displayer with FPGA demodulation and an RF receiver with analog-to-digital mixed-mode circuits are constructed as verification platform to demonstrate the wireless ECG acquisition system. Measurement results on the human body show that the proposed SoC can effectively acquire ECG signals.
A performance evaluation of various coatings, substrate materials, and solar collector systems
NASA Technical Reports Server (NTRS)
Dolan, F. J.
1976-01-01
An experimental apparatus was constructed and utilized in conjunction with both a solar simulator and actual sunlight to test and evaluate various solar panel coatings, panel designs, and scaled-down collector subsystems. Data were taken by an automatic digital data acquisition system and reduced and printed by a computer system. The solar collector test setup, data acquisition system, and data reduction and printout systems were considered to have operated very satisfactorily. Test data indicated that there is a practical or useful limit in scaling down beyond which scaled-down testing cannot produce results comparable to results of larger scale tests. Test data are presented as are schematics and pictures of test equipment and test hardware.
NASA Astrophysics Data System (ADS)
Esbrand, C.; Royle, G.; Griffiths, J.; Speller, R.
2009-07-01
The integration of technology with healthcare has undoubtedly propelled the medical imaging sector well into the twenty first century. The concept of digital imaging introduced during the 1970s has since paved the way for established imaging techniques where digital mammography, phase contrast imaging and CT imaging are just a few examples. This paper presents a prototype intelligent digital mammography system designed and developed by a European consortium. The final system, the I-ImaS system, utilises CMOS monolithic active pixel sensor (MAPS) technology promoting on-chip data processing, enabling the acts of data processing and image acquisition to be achieved simultaneously; consequently, statistical analysis of tissue is achievable in real-time for the purpose of x-ray beam modulation via a feedback mechanism during the image acquisition procedure. The imager implements a dual array of twenty 520 pixel × 40 pixel CMOS MAPS sensing devices with a 32μm pixel size, each individually coupled to a 100μm thick thallium doped structured CsI scintillator. This paper presents the first intelligent images of real breast tissue obtained from the prototype system of real excised breast tissue where the x-ray exposure was modulated via the statistical information extracted from the breast tissue itself. Conventional images were experimentally acquired where the statistical analysis of the data was done off-line, resulting in the production of simulated real-time intelligently optimised images. The results obtained indicate real-time image optimisation using the statistical information extracted from the breast as a means of a feedback mechanisms is beneficial and foreseeable in the near future.
A digital-signal-processor-based optical tomographic system for dynamic imaging of joint diseases
NASA Astrophysics Data System (ADS)
Lasker, Joseph M.
Over the last decade, optical tomography (OT) has emerged as viable biomedical imaging modality. Various imaging systems have been developed that are employed in preclinical as well as clinical studies, mostly targeting breast imaging, brain imaging, and cancer related studies. Of particular interest are so-called dynamic imaging studies where one attempts to image changes in optical properties and/or physiological parameters as they occur during a system perturbation. To successfully perform dynamic imaging studies, great effort is put towards system development that offers increasingly enhanced signal-to-noise performance at ever shorter data acquisition times, thus capturing high fidelity tomographic data within narrower time periods. Towards this goal, I have developed in this thesis a dynamic optical tomography system that is, unlike currently available analog instrumentation, based on digital data acquisition and filtering techniques. At the core of this instrument is a digital signal processor (DSP) that collects, collates, and processes the digitized data set. Complementary protocols between the DSP and a complex programmable logic device synchronizes the sampling process and organizes data flow. Instrument control is implemented through a comprehensive graphical user interface which integrates automated calibration, data acquisition, and signal post-processing. Real-time data is generated at frame rates as high as 140 Hz. An extensive dynamic range (˜190 dB) accommodates a wide scope of measurement geometries and tissue types. Performance analysis demonstrates very low system noise (˜1 pW rms noise equivalent power), excellent signal precision (˜0.04%--0.2%) and long term system stability (˜1% over 40 min). Experiments on tissue phantoms validate spatial and temporal accuracy of the system. As a potential new application of dynamic optical imaging I present the first application of this method to use vascular hemodynamics as a means of characterizing joint diseases, especially effects of rheumatoid arthritis (RA) in the proximal interphalangeal finger joints. Using a dual-wavelength tomographic imaging system and previously implemented reconstruction scheme, I have performed initial dynamic imaging case studies on healthy volunteers and patients diagnosed with RA. These studies support our hypothesis that differences in the vascular and metabolic reactivity exist between affected and unaffected joints and can be used for diagnostic purposes.
NASA Astrophysics Data System (ADS)
Edwards, A. W.; Blackler, K.; Gill, R. D.; van der Goot, E.; Holm, J.
1990-10-01
Based upon the experience gained with the present soft x-ray data acquisition system, new techniques are being developed which make extensive use of digital signal processors (DSPs). Digital filters make 13 further frequencies available in real time from the input sampling frequency of 200 kHz. In parallel, various algorithms running on further DSPs generate triggers in response to a range of events in the plasma. The sawtooth crash can be detected, for example, with a delay of only 50 μs from the onset of the collapse. The trigger processor interacts with the digital filter boards to ensure data of the appropriate frequency is recorded throughout a plasma discharge. An independent link is used to pass 780 and 24 Hz filtered data to a network of transputers. A full tomographic inversion and display of the 24 Hz data is carried out in real time using this 15 transputer array. The 780 Hz data are stored for immediate detailed playback following the pulse. Such a system could considerably improve the quality of present plasma diagnostic data which is, in general, sampled at one fixed frequency throughout a discharge. Further, it should provide valuable information towards designing diagnostic data acquisition systems for future long pulse operation machines when a high degree of real-time processing will be required, while retaining the ability to detect, record, and analyze events of interest within such long plasma discharges.
Capture of Fluorescence Decay Times by Flow Cytometry
Naivar, Mark A.; Jenkins, Patrick; Freyer, James P.
2012-01-01
In flow cytometry, the fluorescence decay time of an excitable species has been largely underutilized and is not likely found as a standard parameter on any imaging cytometer, sorting, or analyzing system. Most cytometers lack fluorescence lifetime hardware mainly owing to two central issues. Foremost, research and development with lifetime techniques has lacked proper exploitation of modern laser systems, data acquisition boards, and signal processing techniques. Secondly, a lack of enthusiasm for fluorescence lifetime applications in cells and with bead-based assays has persisted among the greater cytometry community. In this unit, we describe new approaches that address these issues and demonstrate the simplicity of digitally acquiring fluorescence relaxation rates in flow. The unit is divided into protocol and commentary sections in order to provide a most comprehensive discourse on acquiring the fluorescence lifetime with frequency-domain methods. The unit covers (i) standard fluorescence lifetime acquisition (protocol-based) with frequency-modulated laser excitation, (ii) digital frequency-domain cytometry analyses, and (iii) interfacing fluorescence lifetime measurements onto sorting systems. Within the unit is also a discussion on how digital methods are used for aliasing in order to harness higher frequency ranges. Also, a final discussion is provided on heterodyning and processing of waveforms for multi-exponential decay extraction. PMID:25419263
An online ID identification system for liquefied-gas cylinder plant
NASA Astrophysics Data System (ADS)
He, Jin; Ding, Zhenwen; Han, Lei; Zhang, Hao
2017-11-01
An automatic ID identification system for gas cylinders' online production was developed based on the production conditions and requirements of the Technical Committee for Standardization of Gas Cylinders. A cylinder ID image acquisition system was designed to improve the image contrast of ID regions on gas cylinders against the background. Then the ID digits region was located by the CNN template matching algorithm. Following that, an adaptive threshold method based on the analysis of local average grey value and standard deviation was proposed to overcome defects of non-uniform background in the segmentation results. To improve the single digit identification accuracy, two BP neural networks were trained respectively for the identification of all digits and the easily confusable digits. If the single digit was classified as one of confusable digits by the former BP neural network, it was further tested by the later one, and the later result was taken as the final identification result of this single digit. At last, the majority voting was adopted to decide the final identification result for the 6-digit cylinder ID. The developed system was installed on a production line of a liquefied-petroleum-gas cylinder plant and worked in parallel with the existing weighing step on the line. Through the field test, the correct identification rate for single ID digit was 94.73%, and none of the tested 2000 cylinder ID was misclassified through the majority voting.
Instrumentation and data acquisition for full-scale aircraft crash testing
NASA Technical Reports Server (NTRS)
Jones, Lisa E.; Fasanella, Edwin L.
1993-01-01
The Landing and Impact Dynamics Branch of the NASA Langley Research Center has been conducting full-scale aircraft crash tests since the 1970s. Using a pendulum method, aircraft are suspended by cables from a 240-ft high gantry and swung into the impact surface at various attitudes and velocities. Instrumentation for these tests include on-board high-speed cameras, strain gages, load cells, displacement transducers, and accelerometers. Transducers in the aircraft are hard-wired through a long umbilical cable to the data acquisition room. Up to 96 channels of data can be collected at a typical rate of 4000 samples per second. Data acquisition using an FM multiplexed analog system and a high-speed personal computer based digital system is described.
NASA Astrophysics Data System (ADS)
Oliveira, Henrique; Rodrigues, Marco; Radius, Andrea
2012-01-01
Airport Obstruction Charts (AOCs) are graphical representations of natural or man-made obstructions (its locations and heights) around airfields, according to International Civil Aviation Organization (ICAO) Annexes 4, 14 and 15. One of the most important types of data used in AOCs production/update tasks is a Digital Surface Model (first reflective surface) of the surveyed area. The development of advanced remote sensing technologies provide the available tools for obstruction data acquisition, while Geographic Information Systems (GIS) present the perfect platform for storing and analyzing this type of data, enabling the production of digital ACOs, greatly contributing to the increase of the situational awareness of pilots and enhancing the air navigation safety level [1]. Data acquisition corresponding to the first reflective surface can be obtained through the use of Airborne Laser-Scanning and Light Detection and Ranging (ALS/LIDAR) or Spaceborne SAR Systems. The need of surveying broad areas, like the entire territory of a state, shows that Spaceborne SAR systems are the most adequate in economic and feasibility terms of the process, to perform the monitoring and producing a high resolution Digital Surface Model (DSM). The high resolution DSM generation depends on many factors: the available data set, the used technique and the setting parameters. To increase the precision and obtain high resolution products, two techniques are available using a stack of data: the PS (Permanent Scatterers) technique [2], that uses large stack of data to identify many stable and coherent targets through multi- temporal analysis, removing the atmospheric contribution and to minimize the estimation errors, and the Small Baseline Subset (SBAS) technique ([3],[4]), that relies on the use of small baseline SAR interferograms and on the application of the so called singular value decomposition (SVD) method, in order to link independent SAR acquisition data sets, separated by large baselines, thus increasing the number of data used for the analysis.
2008-04-01
5 Fluxgate magnetometer ... magnetometer into digital format, and transmitted as a single serial data string to log the Cs and fluxgate magnetometer data. After procurement...Hardware The system hardware comprises an EMI sensor, Cs vapor magnetometer , fluxgate magnetometer , hand-held data acquisition computer, integrated
ERIC Educational Resources Information Center
Smith, Eugene T.; Hill, Marc
2011-01-01
In this laboratory exercise, students develop a LabVIEW-controlled high-performance liquid chromatography system utilizing a data acquisition device, two pumps, a detector, and fraction collector. The programming experience involves a variety of methods for interface communication, including serial control, analog-to-digital conversion, and…
Mark 3 wideband digital recorder in perspective
NASA Technical Reports Server (NTRS)
Hinteregger, H. F.
1980-01-01
The tape recorder used for the Mark 3 data acquisition and processing system is compared with earlier very long baseline interferometry recorders. Wideband 33-1/3 kbpi digital channel characteristics of instrumentation recorders and of a modern video cassette recorder are illustrated. Factors which influenced selection of the three major commercial components (transport, heads, and tape) are discussed. A brief functional description and the reasons for development of efficient signal electronics and necessary auxiliary control electronics are given. The design and operation of a digital bit synchronizer is illustrated as an example of the high degree of simplicity achieved.
Space Shuttle Orbiter Digital Outer Mold Line Scanning
NASA Technical Reports Server (NTRS)
Campbell, Charles H.; Wilson, Brad; Pavek, Mike; Berger, Karen
2012-01-01
The Space Shuttle Orbiters Discovery and Endeavor have been digitally scanned to produce post-flight configuration outer mold line surfaces. Very detailed scans of the windward side of these vehicles provide resolution of the detailed tile step and gap geometry, as well as the reinforced carbon carbon nose cap and leading edges. Lower resolution scans of the upper surface provide definition of the crew cabin windows, wing upper surfaces, payload bay doors, orbital maneuvering system pods and the vertical tail. The process for acquisition of these digital scans as well as post-processing of the very large data set will be described.
NASA Astrophysics Data System (ADS)
Czermak, A.; Zalewska, A.; Dulny, B.; Sowicki, B.; Jastrząb, M.; Nowak, L.
2004-07-01
The needs for real time monitoring of the hadrontherapy beam intensity and profile as well as requirements for the fast dosimetry using Monolithic Active Pixel Sensors (MAPS) forced the SUCIMA collaboration to the design of the unique Data Acquisition System (DAQ SUCIMA Imager). The DAQ system has been developed on one of the most advanced XILINX Field Programmable Gate Array chip - VERTEX II. The dedicated multifunctional electronic board for the detector's analogue signals capture, their parallel digital processing and final data compression as well as transmission through the high speed USB 2.0 port has been prototyped and tested.
The Air Force Geophysics Laboratory Standalone Data Acquisition System: A Functional Description.
1980-10-09
the board are a buffer for the RUN/HALT front panel switch and a retriggerable oneshot multivibrator. This latter circuit senses the SRUN pulse train...recording on the data tapes, and providing the master timing source for data acquisition. An Electronic Research Company (ERC) model 2446 digital...the computer is fed to a retriggerable oneshot multivibrator on the board. (SRUN consists of a pulse train that is present when the computer is running
Optomechanical System Development of the AWARE Gigapixel Scale Camera
NASA Astrophysics Data System (ADS)
Son, Hui S.
Electronic focal plane arrays (FPA) such as CMOS and CCD sensors have dramatically improved to the point that digital cameras have essentially phased out film (except in very niche applications such as hobby photography and cinema). However, the traditional method of mating a single lens assembly to a single detector plane, as required for film cameras, is still the dominant design used in cameras today. The use of electronic sensors and their ability to capture digital signals that can be processed and manipulated post acquisition offers much more freedom of design at system levels and opens up many interesting possibilities for the next generation of computational imaging systems. The AWARE gigapixel scale camera is one such computational imaging system. By utilizing a multiscale optical design, in which a large aperture objective lens is mated with an array of smaller, well corrected relay lenses, we are able to build an optically simple system that is capable of capturing gigapixel scale images via post acquisition stitching of the individual pictures from the array. Properly shaping the array of digital cameras allows us to form an effectively continuous focal surface using off the shelf (OTS) flat sensor technology. This dissertation details developments and physical implementations of the AWARE system architecture. It illustrates the optomechanical design principles and system integration strategies we have developed through the course of the project by summarizing the results of the two design phases for AWARE: AWARE-2 and AWARE-10. These systems represent significant advancements in the pursuit of scalable, commercially viable snapshot gigapixel imaging systems and should serve as a foundation for future development of such systems.
Mennito, Anthony S; Evans, Zachary P; Lauer, Abigail W; Patel, Ravi B; Ludlow, Mark E; Renne, Walter G
2018-03-01
Clinicians have been slow to adopt digital impression technologies due possibly to perceived technique sensitivities involved in data acquisition. This research has two aims: determine whether scan pattern and sequence affects the accuracy of the three-dimensional (3D) model created from this digital impression and to compare the 5 imaging systems with regards to their scanning accuracy for sextant impressions. Six digital intraoral impression systems were used to scan a typodont sextant with optical properties similar to natural teeth. The impressions were taken using five different scan patterns and the resulting digital models were overlayed on a master digital model to determine the accuracy of each scanner performing each scan pattern. Furthermore, regardless of scan pattern, each digital impression system was evaluated for accuracy to the other systems in this same manner. No differences of significance were noted in the accuracy of 3D models created using six distinct scan patterns with one exception involving the CEREC Omnicam. Planmeca Planscan was determined to be the truest scanner while 3Shape Trios was determined to be the most precise for sextant impression making. Scan pattern does not significantly affect the accuracy of the resulting digital model for sextant scanning. Companies who make digital impression systems often recommend a scan pattern specific for their system. However, every clinical scanning scenario is different and may require a different approach. Knowing how important scan pattern is with regards to accuracy would be helpful for guiding a growing number of practitioners who are utilizing this technology. © 2018 Wiley Periodicals, Inc.
Measurement of sound absorption in the air. [data procesing
NASA Technical Reports Server (NTRS)
Meredith, R.; Badavi, F.; Becher, J.
1981-01-01
The large temperature gradient in each section of the resonance tube resulting from the liquid nitrogen coolant necessitated a design modification to the cooling system. A timer and four solenoid valves were installed so that the coolant flow can be reversed periodically. The hardware and software for controlling the analog to digital converter and conversion rate were completed, and the system is operational. A duty cycle control circit was implemented so that on the sixteenth conversion a relay shuts off the vibration exciter used to generate the sound wave. Thus the starting point of each decay curve is exactly known. This information is necessary for evaluating the g digital decay information. The data acquisition and digital decay evaluation programs are described.
A computerized aircraft battery servicing facility
NASA Technical Reports Server (NTRS)
Glover, Richard D.
1992-01-01
The latest upgrade to the Aerospace Energy Systems Laboratory (AESL) is described. The AESL is a distributed digital system consisting of a central system and battery servicing stations connected by a high-speed serial data bus. The entire system is located in two adjoining rooms; the bus length is approximately 100 ft. Each battery station contains a digital processor, data acquisition, floppy diskette data storage, and operator interfaces. The operator initiates a servicing task and thereafter the battery station monitors the progress of the task and terminates it at the appropriate time. The central system provides data archives, manages the data bus, and provides a timeshare interface for multiple users. The system also hosts software production tools for the battery stations and the central system.
V/STOL AND digital avionics system for UH-1H
NASA Technical Reports Server (NTRS)
Liden, S.
1978-01-01
A hardware and software system for the Bell UH-1H helicopter was developed that provides sophisticated navigation, guidance, control, display, and data acquisition capabilities for performing terminal area navigation, guidance and control research. Two Sperry 1819B general purpose digital computers were used. One contains the development software that performs all the specified system flight computations. The second computer is available to NASA for experimental programs that run simultaneously with the other computer programs and which may, at the push of a button, replace selected computer computations. Other features that provide research flexibility include keyboard selectable gains and parameters and software generated alphanumeric and CRT displays.
A portable system for acquiring and removing motion artefact from ECG signals
NASA Astrophysics Data System (ADS)
Griffiths, A.; Das, A.; Fernandes, B.; Gaydecki, P.
2007-07-01
A novel electrocardiograph (ECG) signal acquisition and display system is under development. It is designed for patients ranging from the elderly to athletes. The signals are obtained from electrodes integrated into a vest, amplified, digitally processed and transmitted via Bluetooth to a PC with a Labview ® interface. Digital signal processing is performed to remove movement artefact and electromyographic (EMG) noise, which severely distorts signal morphology and complicates clinical diagnosis. Independent component analysis (ICA) is also used to improve the signal quality. The complete system will integrate the electronics into a single module which will be embedded in the vest.
Design of area array CCD image acquisition and display system based on FPGA
NASA Astrophysics Data System (ADS)
Li, Lei; Zhang, Ning; Li, Tianting; Pan, Yue; Dai, Yuming
2014-09-01
With the development of science and technology, CCD(Charge-coupled Device) has been widely applied in various fields and plays an important role in the modern sensing system, therefore researching a real-time image acquisition and display plan based on CCD device has great significance. This paper introduces an image data acquisition and display system of area array CCD based on FPGA. Several key technical challenges and problems of the system have also been analyzed and followed solutions put forward .The FPGA works as the core processing unit in the system that controls the integral time sequence .The ICX285AL area array CCD image sensor produced by SONY Corporation has been used in the system. The FPGA works to complete the driver of the area array CCD, then analog front end (AFE) processes the signal of the CCD image, including amplification, filtering, noise elimination, CDS correlation double sampling, etc. AD9945 produced by ADI Corporation to convert analog signal to digital signal. Developed Camera Link high-speed data transmission circuit, and completed the PC-end software design of the image acquisition, and realized the real-time display of images. The result through practical testing indicates that the system in the image acquisition and control is stable and reliable, and the indicators meet the actual project requirements.
NASA Astrophysics Data System (ADS)
Barros Marin, M.; Boccardi, A.; Donat Godichal, C.; Gonzalez, J. L.; Lefevre, T.; Levens, T.; Szuk, B.
2016-02-01
The Giga Bit Transceiver based Expandable Front-End (GEFE) is a multi-purpose FPGA-based radiation tolerant card. It is foreseen to be the new standard FMC carrier for digital front-end applications in the CERN BE-BI group. Its intended use ranges from fast data acquisition systems to slow control installed close to the beamlines, in a radioactive environment exposed to total ionizing doses of up to 750 Gy. This paper introduces the architecture of the GEFE, its features as well as examples of its application in different setups.
Radiation-hardened fast acquisition/weak signal tracking system and method
NASA Technical Reports Server (NTRS)
Winternitz, Luke (Inventor); Boegner, Gregory J. (Inventor); Sirotzky, Steve (Inventor)
2009-01-01
A global positioning system (GPS) receiver and method of acquiring and tracking GPS signals comprises an antenna adapted to receive GPS signals; an analog radio frequency device operatively connected to the antenna and adapted to convert the GPS signals from an analog format to a digital format; a plurality of GPS signal tracking correlators operatively connected to the analog RF device; a GPS signal acquisition component operatively connected to the analog RF device and the plurality of GPS signal tracking correlators, wherein the GPS signal acquisition component is adapted to calculate a maximum vector on a databit correlation grid; and a microprocessor operatively connected to the plurality of GPS signal tracking correlators and the GPS signal acquisition component, wherein the microprocessor is adapted to compare the maximum vector with a predetermined correlation threshold to allow the GPS signal to be fully acquired and tracked.
A PC-based single-ADC multi-parameter data acquisition system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodring, M.; Kegel, G.H.R.; Egan, J.J.
1995-10-01
A personal computer (PC) based mult parameter data acquisition system using the Microsoft Window operating environment has been designed and constructed. An IBI AT compatible personal computer with an Intel 486DX5 microprocessor was combined with a National Instruments ATIDIO 32 digital I/O card, a single Canberra 8713 ADC with 13-bit resolution and a modified Canberra 8223 8-input analog multiplexer to acquil data from experiments carried out at the UML Van de Graa accelerator. The accelerator data acquisition (ADAC) computer environment was programmed in Microsoft Visual BASIC for use i Windows. ADAC allows event-mode data acquisition with up to eight parametersmore » (modifiable to 64) and the simultaneous display parameters during acquisition. Additional features of ADAC include replay of event-mode data and graphical analysis/display of data. TV ADAC environment is easy to upgrade or expand, inexpensive 1 implement, and is specifically designed to meet the needs of nuclei spectroscopy.« less
SFM Technique and Focus Stacking for Digital Documentation of Archaeological Artifacts
NASA Astrophysics Data System (ADS)
Clini, P.; Frapiccini, N.; Mengoni, M.; Nespeca, R.; Ruggeri, L.
2016-06-01
Digital documentation and high-quality 3D representation are always more requested in many disciplines and areas due to the large amount of technologies and data available for fast, detailed and quick documentation. This work aims to investigate the area of medium and small sized artefacts and presents a fast and low cost acquisition system that guarantees the creation of 3D models with an high level of detail, making the digitalization of cultural heritage a simply and fast procedure. The 3D models of the artefacts are created with the photogrammetric technique Structure From Motion that makes it possible to obtain, in addition to three-dimensional models, high-definition images for a deepened study and understanding of the artefacts. For the survey of small objects (only few centimetres) it is used a macro lens and the focus stacking, a photographic technique that consists in capturing a stack of images at different focus planes for each camera pose so that is possible to obtain a final image with a higher depth of field. The acquisition with focus stacking technique has been finally validated with an acquisition with laser triangulation scanner Minolta that demonstrates the validity compatible with the allowable error in relation to the expected precision.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-05
... exposure control, image processing and reconstruction programs, patient and equipment supports, component..., acquisition workstation, automatic exposure control, image processing and reconstruction programs, patient and... may include was revised by adding automatic exposure control, image processing and reconstruction...
Geo-referenced digital data acquisition and processing system using LiDAR technology.
DOT National Transportation Integrated Search
2006-02-01
LiDAR technology, introduced in the late 90s, has received wide acceptance in airborne surveying as a leading : tool for obtaining high-quality surface data at decimeter-level vertical accuracy in an unprecedentedly short : turnaround time. State-of-...
Surface electrical properties experiment, part 1. [flown on Apollo 17
NASA Technical Reports Server (NTRS)
Strangway, D. W.; Annan, A. P.; Redman, J. D.; Rossiter, J. R.; Rylaarsdam, J. A.; Watts, R. D.
1974-01-01
The work is reported which was performed on the Surface Electrical Properties Experiment Data Acquisition System. Areas discussed include: data handling and processing, installation and external signal application, operation of the equipment, and digital output. Detailed circuit descriptions are included.
Automated system for acquisition and image processing for the control and monitoring boned nopal
NASA Astrophysics Data System (ADS)
Luevano, E.; de Posada, E.; Arronte, M.; Ponce, L.; Flores, T.
2013-11-01
This paper describes the design and fabrication of a system for acquisition and image processing to control the removal of thorns nopal vegetable (Opuntia ficus indica) in an automated machine that uses pulses of a laser of Nd: YAG. The areolas, areas where thorns grow on the bark of the Nopal, are located applying segmentation algorithms to the images obtained by a CCD. Once the position of the areolas is known, coordinates are sent to a motors system that controls the laser to interact with all areolas and remove the thorns of the nopal. The electronic system comprises a video decoder, memory for image and software storage, and digital signal processor for system control. The firmware programmed tasks on acquisition, preprocessing, segmentation, recognition and interpretation of the areolas. This system achievement identifying areolas and generating table of coordinates of them, which will be send the motor galvo system that controls the laser for removal
The Acquisition and Management of Electronic Resources: Can Use Justify Cost?
ERIC Educational Resources Information Center
Koehn, Shona L.; Hawamdeh, Suliman
2010-01-01
As library collections increasingly become digital, libraries are faced with many challenges regarding the acquisition and management of electronic resources. Some of these challenges include copyright and fair use, the first-sale doctrine, licensing versus ownership, digital preservation, long-term archiving, and, most important, the issue of…
NASA Technical Reports Server (NTRS)
1979-01-01
Detectors of various types are discussed, taking into account drift chambers, calorimetry, multiwire proportional chambers, signal processing, the use of semiconductors, and photo/optical applications. Circuits are considered along with instrumentation for space, nuclear medicine instrumentation, data acquisition and systems, environmental instrumentation, reactor instrumentation, and nuclear power systems. Attention is given to a new approach to high accuracy gaseous detectors, the current status of electron mobility and free-ion yield in high mobility liquids, a digital drift chamber digitizer system, the stability of oxides in high purity germanium, the quadrant photomultiplier, and the theory of imaging with a very limited number of projections.
NASA Technical Reports Server (NTRS)
Hayden, W. L.; Robinson, L. H.
1972-01-01
Spectral analyses of angle-modulated communication systems is studied by: (1) performing a literature survey of candidate power spectrum computational techniques, determining the computational requirements, and formulating a mathematical model satisfying these requirements; (2) implementing the model on UNIVAC 1230 digital computer as the Spectral Analysis Program (SAP); and (3) developing the hardware specifications for a data acquisition system which will acquire an input modulating signal for SAP. The SAP computational technique uses extended fast Fourier transform and represents a generalized approach for simple and complex modulating signals.
A free-piston Stirling engine/linear alternator controls and load interaction test facility
NASA Technical Reports Server (NTRS)
Rauch, Jeffrey S.; Kankam, M. David; Santiago, Walter; Madi, Frank J.
1992-01-01
A test facility at LeRC was assembled for evaluating free-piston Stirling engine/linear alternator control options, and interaction with various electrical loads. This facility is based on a 'SPIKE' engine/alternator. The engine/alternator, a multi-purpose load system, a digital computer based load and facility control, and a data acquisition system with both steady-periodic and transient capability are described. Preliminary steady-periodic results are included for several operating modes of a digital AC parasitic load control. Preliminary results on the transient response to switching a resistive AC user load are discussed.
Goddard Space Flight Center's Structural Dynamics Data Acquisition System
NASA Technical Reports Server (NTRS)
McLeod, Christopher
2004-01-01
Turnkey Commercial Off The Shelf (COTS) data acquisition systems typically perform well and meet most of the objectives of the manufacturer. The problem is that they seldom meet most of the objectives of the end user. The analysis software, if any, is unlikely to be tailored to the end users specific application; and there is seldom the chance of incorporating preferred algorithms to solve unique problems. Purchasing a customized system allows the end user to get a system tailored to the actual application, but the cost can be prohibitive. Once the system has been accepted, future changes come with a cost and response time that's often not workable. When it came time to replace the primary digital data acquisition system used in the Goddard Space Flight Center's Structural Dynamics Test Section, the decision was made to use a combination of COTS hardware and in-house developed software. The COTS hardware used is the DataMAX II Instrumentation Recorder built by R.C. Electronics Inc. and a desktop Pentium 4 computer system. The in-house software was developed using MATLAB from The MathWorks. This paper will describe the design and development of the new data acquisition and analysis system.
Goddard Space Flight Center's Structural Dynamics Data Acquisition System
NASA Technical Reports Server (NTRS)
McLeod, Christopher
2004-01-01
Turnkey Commercial Off The Shelf (COTS) data acquisition systems typically perform well and meet most of the objectives of the manufacturer. The problem is that they seldom meet most of the objectives of the end user. The analysis software, if any, is unlikely to be tailored to the end users specific application; and there is seldom the chance of incorporating preferred algorithms to solve unique problems. Purchasing a customized system allows the end user to get a system tailored to the actual application, but the cost can be prohibitive. Once the system has been accepted, future changes come with a cost and response time that's often not workable. When it came time to replace the primary digital data acquisition system used in the Goddard Space Flight Center's Structural Dynamics Test Section, the decision was made to use a combination of COTS hardware and in-house developed software. The COTS hardware used is the DataMAX II Instrumentation Recorder built by R.C. Electronics Inc. and a desktop Pentium 4 computer system. The in-house software was developed using MATLAF3 from The Mathworks. This paper will describe the design and development of the new data acquisition and analysis system.
NASA Astrophysics Data System (ADS)
Ying, Jia-ju; Chen, Yu-dan; Liu, Jie; Wu, Dong-sheng; Lu, Jun
2016-10-01
The maladjustment of photoelectric instrument binocular optical axis parallelism will affect the observe effect directly. A binocular optical axis parallelism digital calibration system is designed. On the basis of the principle of optical axis binocular photoelectric instrument calibration, the scheme of system is designed, and the binocular optical axis parallelism digital calibration system is realized, which include four modules: multiband parallel light tube, optical axis translation, image acquisition system and software system. According to the different characteristics of thermal infrared imager and low-light-level night viewer, different algorithms is used to localize the center of the cross reticle. And the binocular optical axis parallelism calibration is realized for calibrating low-light-level night viewer and thermal infrared imager.
Bidgood, W. Dean; Bray, Bruce; Brown, Nicolas; Mori, Angelo Rossi; Spackman, Kent A.; Golichowski, Alan; Jones, Robert H.; Korman, Louis; Dove, Brent; Hildebrand, Lloyd; Berg, Michael
1999-01-01
Objective: To support clinically relevant indexing of biomedical images and image-related information based on the attributes of image acquisition procedures and the judgments (observations) expressed by observers in the process of image interpretation. Design: The authors introduce the notion of “image acquisition context,” the set of attributes that describe image acquisition procedures, and present a standards-based strategy for utilizing the attributes of image acquisition context as indexing and retrieval keys for digital image libraries. Methods: The authors' indexing strategy is based on an interdependent message/terminology architecture that combines the Digital Imaging and Communication in Medicine (DICOM) standard, the SNOMED (Systematized Nomenclature of Human and Veterinary Medicine) vocabulary, and the SNOMED DICOM microglossary. The SNOMED DICOM microglossary provides context-dependent mapping of terminology to DICOM data elements. Results: The capability of embedding standard coded descriptors in DICOM image headers and image-interpretation reports improves the potential for selective retrieval of image-related information. This favorably affects information management in digital libraries. PMID:9925229
Bidgood, W D; Bray, B; Brown, N; Mori, A R; Spackman, K A; Golichowski, A; Jones, R H; Korman, L; Dove, B; Hildebrand, L; Berg, M
1999-01-01
To support clinically relevant indexing of biomedical images and image-related information based on the attributes of image acquisition procedures and the judgments (observations) expressed by observers in the process of image interpretation. The authors introduce the notion of "image acquisition context," the set of attributes that describe image acquisition procedures, and present a standards-based strategy for utilizing the attributes of image acquisition context as indexing and retrieval keys for digital image libraries. The authors' indexing strategy is based on an interdependent message/terminology architecture that combines the Digital Imaging and Communication in Medicine (DICOM) standard, the SNOMED (Systematized Nomenclature of Human and Veterinary Medicine) vocabulary, and the SNOMED DICOM microglossary. The SNOMED DICOM microglossary provides context-dependent mapping of terminology to DICOM data elements. The capability of embedding standard coded descriptors in DICOM image headers and image-interpretation reports improves the potential for selective retrieval of image-related information. This favorably affects information management in digital libraries.
Rowland, Mark S [Alamo, CA; Snyderman, Neal J [Berkeley, CA
2012-04-10
A neutron detector system for discriminating fissile material from non-fissile material wherein a digital data acquisition unit collects data at high rate, and in real-time processes large volumes of data directly into information that a first responder can use to discriminate materials. The system comprises counting neutrons from the unknown source and detecting excess grouped neutrons to identify fission in the unknown source.
A Pipeline for 3D Digital Optical Phenotyping Plant Root System Architecture
NASA Astrophysics Data System (ADS)
Davis, T. W.; Shaw, N. M.; Schneider, D. J.; Shaff, J. E.; Larson, B. G.; Craft, E. J.; Liu, Z.; Kochian, L. V.; Piñeros, M. A.
2017-12-01
This work presents a new pipeline for digital optical phenotyping the root system architecture of agricultural crops. The pipeline begins with a 3D root-system imaging apparatus for hydroponically grown crop lines of interest. The apparatus acts as a self-containing dark room, which includes an imaging tank, motorized rotating bearing and digital camera. The pipeline continues with the Plant Root Imaging and Data Acquisition (PRIDA) software, which is responsible for image capturing and storage. Once root images have been captured, image post-processing is performed using the Plant Root Imaging Analysis (PRIA) command-line tool, which extracts root pixels from color images. Following the pre-processing binarization of digital root images, 3D trait characterization is performed using the next-generation RootReader3D software. RootReader3D measures global root system architecture traits, such as total root system volume and length, total number of roots, and maximum rooting depth and width. While designed to work together, the four stages of the phenotyping pipeline are modular and stand-alone, which provides flexibility and adaptability for various research endeavors.
Mehl, Albert; Bosch, Gabriel; Fischer, Carolin; Ender, Andreas
Three-dimensional (3D) intraoral scanning systems allow for the simultaneous acquisition of 3D information about tooth surfaces and a photorealistic view of the patient's tooth colors. The goal of this study was the in vivo comparison of a new 3D scanner with a color acquisition mode and conventional visual and digital color measurements. The colors of 40 teeth of 20 patients were evaluated in seven ways: 1) By dentists using the Vita 3D-Master; 2) By dental technicians using the Vita 3D-Master; 3) With the 3Shape Trios device; 4) With the Vita Easyshade device; 5) With the Vita Easyshade Advance device; 6) With the SpectroShade device; and 7) With the SpectroShade Micro device. Digital measurements of Groups 3 to 7 were repeated three times for each tooth. For all groups, both the CIE Lab values and the Vita 3D-Master values were recorded. The repeatability and relative accuracy of the Vita 3D-Master values were analyzed statistically using Pearson's chi-squared test (α < 0.05). ΔE values were calculated from the CIE Lab values, which served as a basis for performing multidimensional scaling (MDS) and evaluating differences between the groups using the one-way ANOVA with post hoc Tamhane's test (α < 0.05). The results of the ΔE values showed that clinically relevant differences between the evaluation by dentists, dental technicians, and the intraoral scanning device (3Shape) are negligible. The intraoral 3D scanning device (Group 3) and the digital systems (Groups 4 to 7) did not differ significantly in the repeatability of color shade management. The SpectroShade Micro (Group 7) had significantly better relative accuracy than the other devices. The results demonstrate that intraoral scanning systems can be used to measure both tooth color and tooth surface in 3D. Intraoral optical scanning devices allow for the acquisition of accurate 3D surface data. Tooth color can be evaluated simultaneously and can be used to determine the color of restorations without requiring additional conventional color-measurement methods.
Forensic characterization of camcorded movies: digital cinema vs. celluloid film prints
NASA Astrophysics Data System (ADS)
Rolland-Nevière, Xavier; Chupeau, Bertrand; Do"rr, Gwena"l.; Blondé, Laurent
2012-03-01
Digital camcording in the premises of cinema theaters is the main source of pirate copies of newly released movies. To trace such recordings, watermarking systems are exploited in order for each projection to be unique and thus identifiable. The forensic analysis to recover these marks is different for digital and legacy cinemas. To avoid running both detectors, a reliable oracle discriminating between cams originating from analog or digital projections is required. This article details a classification framework relying on three complementary features : the spatial uniformity of the screen illumination, the vertical (in)stability of the projected image, and the luminance artifacts due to the interplay between the display and acquisition devices. The system has been tuned with cams captured in a controlled environment and benchmarked against a medium-sized dataset (61 samples) composed of real-life pirate cams. Reported experimental results demonstrate that such a framework yields over 80% classification accuracy.
2016-05-05
SECURITY CLASSIFICATION OF: The goal of this proposal is to purchase the GWC Technologies, Inc. Horizontal Surface Plasmon Resonance Imaging (SPRi...Unlimited UU UU UU UU 05-05-2016 1-Feb-2014 31-Jan-2016 Final Report: Acquisition of a Surface Plasmon Resonance Imager, Digital Microscope, and...S) AND ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Surface Plasmon Resonance Imager, Digital
Fast data transmission in dynamic data acquisition system for plasma diagnostics
NASA Astrophysics Data System (ADS)
Byszuk, Adrian; Poźniak, Krzysztof; Zabołotny, Wojciech M.; Kasprowicz, Grzegorz; Wojeński, Andrzej; Cieszewski, Radosław; Juszczyk, Bartłomiej; Kolasiński, Piotr; Zienkiewicz, Paweł; Chernyshova, Maryna; Czarski, Tomasz
2014-11-01
This paper describes architecture of a new data acquisition system (DAQ) targeted mainly at plasma diagnostic experiments. Modular architecture, in combination with selected hardware components, allows for straightforward reconfiguration of the whole system, both offline and online. Main emphasis will be put into the implementation of data transmission subsystem in said system. One of the biggest advantages of described system is modular architecture with well defined boundaries between main components: analog frontend (AFE), digital backplane and acquisition/control software. Usage of a FPGA chips allows for a high flexibility in design of analog frontends, including ADC <--> FPGA interface. Data transmission between backplane boards and user software was accomplished with the use of industry-standard PCI Express (PCIe) technology. PCIe implementation includes both FPGA firmware and Linux device driver. High flexibility of PCIe connections was accomplished due to use of configurable PCIe switch. Whenever it's possible, described DAQ system tries to make use of standard off-the-shelf (OTF) components, including typical x86 CPU & motherboard (acting as PCIe controller) and cabling.
Comparison of beam position calculation methods for application in digital acquisition systems
NASA Astrophysics Data System (ADS)
Reiter, A.; Singh, R.
2018-05-01
Different approaches to the data analysis of beam position monitors in hadron accelerators are compared adopting the perspective of an analog-to-digital converter in a sampling acquisition system. Special emphasis is given to position uncertainty and robustness against bias and interference that may be encountered in an accelerator environment. In a time-domain analysis of data in the presence of statistical noise, the position calculation based on the difference-over-sum method with algorithms like signal integral or power can be interpreted as a least-squares analysis of a corresponding fit function. This link to the least-squares method is exploited in the evaluation of analysis properties and in the calculation of position uncertainty. In an analytical model and experimental evaluations the positions derived from a straight line fit or equivalently the standard deviation are found to be the most robust and to offer the least variance. The measured position uncertainty is consistent with the model prediction in our experiment, and the results of tune measurements improve significantly.
NASA Astrophysics Data System (ADS)
Lage, E.; Tapias, G.; Villena, J.; Desco, M.; Vaquero, J. J.
2010-08-01
We present a new high-performance and low-cost approach for implementing radiation detection acquisition systems. The basic elements used are charge-integrating ADCs and a set of components encapsulated in an HDL (hardware definition language) library which makes it possible to implement several acquisition tasks such as time pickoff and coincidence detection using a new and simple trigger technique that we name WMLET (width-modulated leading-edge timing). As proof of concept, a 32-channel hybrid PET/SPECT acquisition system based on these elements was developed and tested. This demonstrator consists of a master module responsible for the generation and distribution of trigger signals, 2 × 16-channel ADC cards (12-bit resolution) for data digitization and a 32-bit digital I/O PCI card for handling data transmission to a personal computer. System characteristics such as linearity, maximum transmission rates or timing resolution in coincidence mode were evaluated with test and real detector signals. Imaging capabilities of the prototype were also evaluated using different detector configurations. The performance tests showed that this implementation is able to handle data rates in excess of 600k events s-1 when acquiring simultaneously 32 channels (96-byte events). ADC channel linearity is >98.5% in energy quantification. Time resolution in PET mode for the tested configurations ranges from 3.64 ns FWHM to 7.88 ns FWHM when signals from LYSO-based detectors are used. The measured energy resolution matched the expected values for the detectors evaluated and single elements of crystal matrices can be neatly separated in the acquired flood histograms.
Lage, E; Tapias, G; Villena, J; Desco, M; Vaquero, J J
2010-08-07
We present a new high-performance and low-cost approach for implementing radiation detection acquisition systems. The basic elements used are charge-integrating ADCs and a set of components encapsulated in an HDL (hardware definition language) library which makes it possible to implement several acquisition tasks such as time pickoff and coincidence detection using a new and simple trigger technique that we name WMLET (width-modulated leading-edge timing). As proof of concept, a 32-channel hybrid PET/SPECT acquisition system based on these elements was developed and tested. This demonstrator consists of a master module responsible for the generation and distribution of trigger signals, 2 x 16-channel ADC cards (12-bit resolution) for data digitization and a 32-bit digital I/O PCI card for handling data transmission to a personal computer. System characteristics such as linearity, maximum transmission rates or timing resolution in coincidence mode were evaluated with test and real detector signals. Imaging capabilities of the prototype were also evaluated using different detector configurations. The performance tests showed that this implementation is able to handle data rates in excess of 600k events s(-1) when acquiring simultaneously 32 channels (96-byte events). ADC channel linearity is >98.5% in energy quantification. Time resolution in PET mode for the tested configurations ranges from 3.64 ns FWHM to 7.88 ns FWHM when signals from LYSO-based detectors are used. The measured energy resolution matched the expected values for the detectors evaluated and single elements of crystal matrices can be neatly separated in the acquired flood histograms.
Data acquisition system for segmented reactor antineutrino detector
NASA Astrophysics Data System (ADS)
Hons, Z.; Vlášek, J.
2017-01-01
This paper describes the data acquisition system used for data readout from the PMT channels of a segmented detector of reactor antineutrinos with active shielding. Theoretical approach to the data acquisition is described and two possible solutions using QDCs and digitizers are discussed. Also described are the results of the DAQ performance during routine data taking operation of DANSS. DANSS (Detector of the reactor AntiNeutrino based on Solid Scintillator) is a project aiming to measure a spectrum of reactor antineutrinos using inverse beta decay (IBD) in a plastic scintillator. The detector is located close to an industrial nuclear reactor core and is covered by passive and active shielding. It is expected to have about 15000 IBD interactions per day. Light from the detector is sensed by PMT and SiPM.
Clunie, David; Hosseinzadeh, Dan; Wintell, Mikael; De Mena, David; Lajara, Nieves; Garcia-Rojo, Marcial; Bueno, Gloria; Saligrama, Kiran; Stearrett, Aaron; Toomey, David; Abels, Esther; Apeldoorn, Frank Van; Langevin, Stephane; Nichols, Sean; Schmid, Joachim; Horchner, Uwe; Beckwith, Bruce; Parwani, Anil; Pantanowitz, Liron
2018-01-01
As digital pathology systems for clinical diagnostic work applications become mainstream, interoperability between these systems from different vendors becomes critical. For the first time, multiple digital pathology vendors have publicly revealed the use of the digital imaging and communications in medicine (DICOM) standard file format and network protocol to communicate between separate whole slide acquisition, storage, and viewing components. Note the use of DICOM for clinical diagnostic applications is still to be validated in the United States. The successful demonstration shows that the DICOM standard is fundamentally sound, though many lessons were learned. These lessons will be incorporated as incremental improvements in the standard, provide more detailed profiles to constrain variation for specific use cases, and offer educational material for implementers. Future Connectathon events will expand the scope to include more devices and vendors, as well as more ambitious use cases including laboratory information system integration and annotation for image analysis, as well as more geographic diversity. Users should request DICOM features in all purchases and contracts. It is anticipated that the growth of DICOM-compliant manufacturers will likely also ease DICOM for pathology becoming a recognized standard and as such the regulatory pathway for digital pathology products.
High-Rate Digital Receiver Board
NASA Technical Reports Server (NTRS)
Ghuman, Parminder; Bialas, Thomas; Brambora, Clifford; Fisher, David
2004-01-01
A high-rate digital receiver (HRDR) implemented as a peripheral component interface (PCI) board has been developed as a prototype of compact, general-purpose, inexpensive, potentially mass-producible data-acquisition interfaces between telemetry systems and personal computers. The installation of this board in a personal computer together with an analog preprocessor enables the computer to function as a versatile, highrate telemetry-data-acquisition and demodulator system. The prototype HRDR PCI board can handle data at rates as high as 600 megabits per second, in a variety of telemetry formats, transmitted by diverse phase-modulation schemes that include binary phase-shift keying and various forms of quadrature phaseshift keying. Costing less than $25,000 (as of year 2003), the prototype HRDR PCI board supplants multiple racks of older equipment that, when new, cost over $500,000. Just as the development of standard network-interface chips has contributed to the proliferation of networked computers, it is anticipated that the development of standard chips based on the HRDR could contribute to reductions in size and cost and increases in performance of telemetry systems.
Electrophoresis gel image processing and analysis using the KODAK 1D software.
Pizzonia, J
2001-06-01
The present article reports on the performance of the KODAK 1D Image Analysis Software for the acquisition of information from electrophoresis experiments and highlights the utility of several mathematical functions for subsequent image processing, analysis, and presentation. Digital images of Coomassie-stained polyacrylamide protein gels containing molecular weight standards and ethidium bromide stained agarose gels containing DNA mass standards are acquired using the KODAK Electrophoresis Documentation and Analysis System 290 (EDAS 290). The KODAK 1D software is used to optimize lane and band identification using features such as isomolecular weight lines. Mathematical functions for mass standard representation are presented, and two methods for estimation of unknown band mass are compared. Given the progressive transition of electrophoresis data acquisition and daily reporting in peer-reviewed journals to digital formats ranging from 8-bit systems such as EDAS 290 to more expensive 16-bit systems, the utility of algorithms such as Gaussian modeling, which can correct geometric aberrations such as clipping due to signal saturation common at lower bit depth levels, is discussed. Finally, image-processing tools that can facilitate image preparation for presentation are demonstrated.
Multiple channel data acquisition system
Crawley, H. Bert; Rosenberg, Eli I.; Meyer, W. Thomas; Gorbics, Mark S.; Thomas, William D.; McKay, Roy L.; Homer, Jr., John F.
1990-05-22
A multiple channel data acquisition system for the transfer of large amounts of data from a multiplicity of data channels has a plurality of modules which operate in parallel to convert analog signals to digital data and transfer that data to a communications host via a FASTBUS. Each module has a plurality of submodules which include a front end buffer (FEB) connected to input circuitry having an analog to digital converter with cache memory for each of a plurality of channels. The submodules are interfaced with the FASTBUS via a FASTBUS coupler which controls a module bus and a module memory. The system is triggered to effect rapid parallel data samplings which are stored to the cache memories. The cache memories are uploaded to the FEBs during which zero suppression occurs. The data in the FEBs is reformatted and compressed by a local processor during transfer to the module memory. The FASTBUS coupler is used by the communications host to upload the compressed and formatted data from the module memory. The local processor executes programs which are downloaded to the module memory through the FASTBUS coupler.
Multiple channel data acquisition system
Crawley, H.B.; Rosenberg, E.I.; Meyer, W.T.; Gorbics, M.S.; Thomas, W.D.; McKay, R.L.; Homer, J.F. Jr.
1990-05-22
A multiple channel data acquisition system for the transfer of large amounts of data from a multiplicity of data channels has a plurality of modules which operate in parallel to convert analog signals to digital data and transfer that data to a communications host via a FASTBUS. Each module has a plurality of submodules which include a front end buffer (FEB) connected to input circuitry having an analog to digital converter with cache memory for each of a plurality of channels. The submodules are interfaced with the FASTBUS via a FASTBUS coupler which controls a module bus and a module memory. The system is triggered to effect rapid parallel data samplings which are stored to the cache memories. The cache memories are uploaded to the FEBs during which zero suppression occurs. The data in the FEBs is reformatted and compressed by a local processor during transfer to the module memory. The FASTBUS coupler is used by the communications host to upload the compressed and formatted data from the module memory. The local processor executes programs which are downloaded to the module memory through the FASTBUS coupler. 25 figs.
2013-04-01
from the University of Rochester. Marchetti has worked in digital image processing at Eastman Kodak and in digital control systems at Contraves USA...which was based on a weighted sum of the gain for self and the perceived gain of other stakeholder programs. o A more recent perception of gains weighs...handled with a weighted formula. To the extent that understanding is incomplete (i.e., knowledge of other’s gain is less than 1), a stakeholder program
An NMR Experiment Based on Off-the-Shelf Digital Data-Acquisition Equipment
ERIC Educational Resources Information Center
Hilty, Christian; Bowen, Sean
2010-01-01
Nuclear magnetic resonance (NMR) poses significant challenges for teaching in the context of an undergraduate laboratory, foremost because of high equipment cost. Current off-the-shelf data-acquisition hardware, however, is sufficiently powerful to constitute the core of a fully digital NMR spectrometer operating at the earth's field. We present…
The potential for neurovascular intravenous angiography using K-edge digital subtraction angiography
NASA Astrophysics Data System (ADS)
Schültke, E.; Fiedler, S.; Kelly, M.; Griebel, R.; Juurlink, B.; LeDuc, G.; Estève, F.; Le Bas, J.-F.; Renier, M.; Nemoz, C.; Meguro, K.
2005-08-01
Background: Catheterization of small-caliber blood vessels in the central nervous system can be extremely challenging. Alternatively, intravenous (i.v.) administration of contrast agent is minimally invasive and therefore carries a much lower risk for the patient. With conventional X-ray equipment, volumes of contrast agent that could be safely administered to the patient do not allow acquisition of high-quality images after i.v. injection, because the contrast bolus is extremely diluted by passage through the heart. However, synchrotron-based digital K-edge subtraction angiography does allow acquisition of high-quality images after i.v. administration of relatively small doses of contrast agent. Materials and methods: Eight adult male New Zealand rabbits were used for our experiments. Animals were submitted to both angiography with conventional X-ray equipment and synchrotron-based digital subtraction angiography. Results: With conventional X-ray equipment, no contrast was seen in either cerebral or spinal blood vessels after i.v. injection of iodinated contrast agent. However, using K-edge digital subtraction angiography, as little as 1 ml iodinated contrast agent, when administered as i.v. bolus, yielded images of small-caliber blood vessels in the central nervous system (both brain and spinal cord). Conclusions: If it would be possible to image blood vessels of the same diameter in the central nervous system of human patients, the synchrotron-based technique could yield high-quality images at a significantly lower risk for the patient than conventional X-ray imaging. Images could be acquired where catheterization of feeding blood vessels has proven impossible.
Validation of a highly integrated SiPM readout system with a TOF-PET demonstrator
NASA Astrophysics Data System (ADS)
Niknejad, T.; Setayeshi, S.; Tavernier, S.; Bugalho, R.; Ferramacho, L.; Di Francesco, A.; Leong, C.; Rolo, M. D.; Shamshirsaz, M.; Silva, J. C.; Silva, R.; Silveira, M.; Zorraquino, C.; Varela, J.
2016-12-01
We have developed a highly integrated, fast and compact readout electronics for Silicon Photomultiplier (SiPM) based Time of Flight Positron Emission Tomography (TOF-PET) scanners. The readout is based on the use of TOP-PET Application Specific Integrated Circuit (PETsys TOFPET1 ASIC) with 64 channels, each with its amplifier, discriminator, Time to Digital Converter (TDC) and amplitude determination using Time Over Threshold (TOT). The ASIC has 25 ps r.m.s. intrinsic time resolution and fully digital output. The system is optimised for high rates, good timing, low power consumption and low cost. For validating the readout electronics, we have built a technical PET scanner, hereafter called ``demonstrator'', with 2'048 SiPM channels. The PET demonstrator has 16 compact Detector Modules (DM). Each DM has two ASICs reading 128 SiPM pixels in one-to-one coupling to 128 Lutetium Yttrium Orthosilicate (LYSO) crystals measuring 3.1 × 3.1 × 15 mm3 each. The data acquisition system for the demonstrator has two Front End Boards type D (FEB/D), each collecting the data of 1'024 channels (8 DMs), and transmitting assembled data frames through a serial link (4.8 Gbps), to a single Data Acquisition (DAQ) board plugged into the Peripheral Component Interconnect Express (PCIe) bus of the data acquisition PC. Results obtained with this PET demonstrator are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitschkowetz, N.; Vickers, D.L.
This report provides a summary of the Computer-aided Acquisition and Logistic Support (CALS) Test Network (CTN) Laboratory Acceptance Test (LAT) and User Application Test (UAT) activities undertaken to evaluate the CALS capabilities being implemented as part of the Department of Defense (DOD) engineering repositories. Although the individual testing activities provided detailed reports for each repository, a synthesis of the results, conclusions, and recommendations is offered to provide a more concise presentation of the issues and the strategies, as viewed from the CTN perspective.
A generic readout system for astrophysical detectors
NASA Astrophysics Data System (ADS)
Doumayrou, E.; Lortholary, M.
2012-09-01
We have developed a generic digital platform to fulfill the needs for the development of new detectors in astrophysics, which is used in lab, for ground-based telescopes instruments and also in prototype versions for space instruments development. This system is based on hardware FPGA electronic board (called MISE) together with software on a PC computer (called BEAR). The MISE board generates the fast clocking which reads the detectors thanks to a programmable digital sequencer and performs data acquisition, buffering of digitalized pixels outputs and interfaces with others boards. The data are then sent to the PC via a SpaceWire or Usb link. The BEAR software sets the MISE board up, makes data acquisition and enables the visualization, processing and the storage of data in line. These software tools are made of C++ and Labview (NI) on a Linux OS. MISE and BEAR make a generic acquisition architecture, on which dedicated analog boards are plugged, so that to accommodate with detectors specificity: number of pixels, the readout channels and frequency, analog bias and clock interfaces. We have used this concept to build a camera for the P-ARTEMIS project including a 256 pixels sub-millimeter bolometer detector at 10Kpixel/s (SPIE 7741-12 (2010)). For the EUCLID project, a lab camera is now working for the test of CCDs 4Mpixels at 4*200Kpixel/s. Another is working for the testing of new near infrared detectors (NIR LFSA for the ESA TRP program) 110Kpixels at 2*100Kpixels/s. Other projects are in progress for the space missions PLATO and SPICA.
Suppressing Transients In Digital Phase-Locked Loops
NASA Technical Reports Server (NTRS)
Thomas, J. B.
1993-01-01
Loop of arbitrary order starts in steady-state lock. Method for initializing variables of digital phase-locked loop reduces or eliminates transients in phase and frequency typically occurring during acquisition of lock on signal or when changes made in values of loop-filter parameters called "loop constants". Enables direct acquisition by third-order loop without prior acquisition by second-order loop of greater bandwidth, and eliminates those perturbations in phase and frequency lock occurring when loop constants changed by arbitrarily large amounts.
A multichannel EEG acquisition scheme based on single ended amplifiers and digital DRL.
Haberman, Marcelo Alejandro; Spinelli, Enrique Mario
2012-12-01
Single ended (SE) amplifiers allow implementing biopotential front-ends with a reduced number of parts, being well suited for preamplified electrodes or compact EEG headboxes. On the other hand, given that each channel has independent gain; mismatching between these gains results in poor common-mode rejection ratios (CMRRs) (about 30 dB considering 1% tolerance components). This work proposes a scheme for multichannel EEG acquisition systems based on SE amplifiers and a novel digital driven right leg (DDRL) circuit, which overcome the poor CMRR of the front-end stage providing a high common mode reduction at power line frequency (up to 80 dB). A functional prototype was built and tested showing the feasibility of the proposed technique. It provided EEG records with negligible power line interference, even in very aggressive EMI environments.
Creation of a virtual cutaneous tissue bank
NASA Astrophysics Data System (ADS)
LaFramboise, William A.; Shah, Sujal; Hoy, R. W.; Letbetter, D.; Petrosko, P.; Vennare, R.; Johnson, Peter C.
2000-04-01
Cellular and non-cellular constituents of skin contain fundamental morphometric features and structural patterns that correlate with tissue function. High resolution digital image acquisitions performed using an automated system and proprietary software to assemble adjacent images and create a contiguous, lossless, digital representation of individual microscope slide specimens. Serial extraction, evaluation and statistical analysis of cutaneous feature is performed utilizing an automated analysis system, to derive normal cutaneous parameters comprising essential structural skin components. Automated digital cutaneous analysis allows for fast extraction of microanatomic dat with accuracy approximating manual measurement. The process provides rapid assessment of feature both within individual specimens and across sample populations. The images, component data, and statistical analysis comprise a bioinformatics database to serve as an architectural blueprint for skin tissue engineering and as a diagnostic standard of comparison for pathologic specimens.
First results from gamma ray diagnostics in EAST Tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, R. J.; Hu, L. Q.; Zhong, G. Q., E-mail: gqzhong@ipp.ac.cn
2016-11-15
Gamma ray diagnostics has been developed in the EAST tokamak recently. Six BGO scintillator detectors are arranged on the down-half cross-section and pointed at the up-half cross-section of plasma, with space resolution about 15 cm and energy range from 0.3 MeV to 6 MeV. Three main gamma ray peaks in the energy spectra have been observed and are identified as the results of nuclear reactions {sup 207}Pb(n, n′){sup 207m}Pb, H(n, γ) D, and D(p, γ){sup 3}He, respectively. Upgrading of the system is in progress by using LaBr3(Ce) scintillator, fast photo-multiplier tubes, and a fully digital data acquisition system based onmore » high sample frequency digitizers with digital pulse processing algorithms.« less
Digital filter polychromator for Thomson scattering applications
NASA Astrophysics Data System (ADS)
Solokha, V.; Kurskiev, G.; Mukhin, E.; Tolstyakov, S.; Babinov, N.; Bazhenov, A.; Bukreev, I.; Dmitriev, A.; Kochergin, M.; Koval, A.; Litvinov, A.; Masyukevich, S.; Razdobarin, A.; Samsonov, D.; Semenov, V.; Solovey, V.; Chernakov, P.; Chernakov, Al; Chernakov, An
2018-02-01
Incoherent Thomson scattering diagnostics (TS) is a proven technique capable of reliable and robust instantaneous measurement of electron temperature (T e) and density (n e) local values in wide area of plasma physics experiments: from hall-effect thrusters to tokamaks and stellarators. The TS cross section is very low (˜ 6.7 × 10-30 m2), and the corresponding TS signals, measured in fusion experiments, are usually of ˜10-15 of incident power. This paper represents 6 (7) channel filter polychromator equipped with avalanche photodiodes and low-noise preamplifiers. The incorporated ADC system (5 GS/s, 12 bit) provides digital optical output preventing acquisition system from electromagnetic interferences. The calibration techniques and T e, n e with corresponding errors measured in Globus-M plasma are given for the digital polychromator test-bench.
Despont-Gros, Christelle; Bœuf, Christophe; Geissbuhler, Antoine; Lovis, Christian
2005-01-01
Evaluation of the technical feasibility of tight integration of the digital pen and paper technology in an existing computerized patient record.Technology: The digital pen is a normal pen able to record all actions of the user and to analyze a micro pattern printed on the paper. The digital paper is a normal paper printed with an almost invisible micro pattern of small dots encoding information such as position and identifiers. We report our experience in the implementation and the use of this technology in an existing large clinical information system for acquiring clinical information. It is possible to print uniquely identified forms using the digital paper technology. These forms can be pre-filled with clinical readable information about the patient. When care providers complete these forms using the digital pen, it is possible to acquire the data in a structured computerized patient record. The technology is easy to integrate in a component-based architecture based on Web Services. The digital pen and paper is a cost-effective technology that can be integrated in an existing clinical information system and allows fast and easy bedside clinical information acquisition without the need for an expensive infrastructure based on traditional portable devices or wireless devices.
Authentic Game-Based Learning and Teachers' Dilemmas in Reconstructing Professional Practice
ERIC Educational Resources Information Center
Chee, Yam San; Mehrotra, Swati; Ong, Jing Chuan
2015-01-01
Teachers who attempt pedagogical innovation with authentic digital games face significant challenges because such games instantiate open systems of learner activity, inviting enquiry learning rather than knowledge acquisition. However, school environments are normatively sanctioned cultural spaces where direct instruction and high-stakes tests are…
Continued Data Acquisition Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwellenbach, David
This task focused on improving techniques for integrating data acquisition of secondary particles correlated in time with detected cosmic-ray muons. Scintillation detectors with Pulse Shape Discrimination (PSD) capability show the most promise as a detector technology based on work in FY13. Typically PSD parameters are determined prior to an experiment and the results are based on these parameters. By saving data in list mode, including the fully digitized waveform, any experiment can effectively be replayed to adjust PSD and other parameters for the best data capture. List mode requires time synchronization of two independent data acquisitions (DAQ) systems: the muonmore » tracker and the particle detector system. Techniques to synchronize these systems were studied. Two basic techniques were identified: real time mode and sequential mode. Real time mode is the preferred system but has proven to be a significant challenge since two FPGA systems with different clocking parameters must be synchronized. Sequential processing is expected to work with virtually any DAQ but requires more post processing to extract the data.« less
High-speed large angle mammography tomosynthesis system
NASA Astrophysics Data System (ADS)
Eberhard, Jeffrey W.; Staudinger, Paul; Smolenski, Joe; Ding, Jason; Schmitz, Andrea; McCoy, Julie; Rumsey, Michael; Al-Khalidy, Abdulrahman; Ross, William; Landberg, Cynthia E.; Claus, Bernhard E. H.; Carson, Paul; Goodsitt, Mitchell; Chan, Heang-Ping; Roubidoux, Marilyn; Thomas, Jerry A.; Osland, Jacqueline
2006-03-01
A new mammography tomosynthesis prototype system that acquires 21 projection images over a 60 degree angular range in approximately 8 seconds has been developed and characterized. Fast imaging sequences are facilitated by a high power tube and generator for faster delivery of the x-ray exposure and a high speed detector read-out. An enhanced a-Si/CsI flat panel digital detector provides greater DQE at low exposure, enabling tomo image sequence acquisitions at total patient dose levels between 150% and 200% of the dose of a standard mammographic view. For clinical scenarios where a single MLO tomographic acquisition per breast may replace the standard CC and MLO views, total tomosynthesis breast dose is comparable to or below the dose in standard mammography. The system supports co-registered acquisition of x-ray tomosynthesis and 3-D ultrasound data sets by incorporating an ultrasound transducer scanning system that flips into position above the compression paddle for the ultrasound exam. Initial images acquired with the system are presented.
Erdenebat, Munkh-Uchral; Kim, Byeong-Jun; Piao, Yan-Ling; Park, Seo-Yeon; Kwon, Ki-Chul; Piao, Mei-Lan; Yoo, Kwan-Hee; Kim, Nam
2017-10-01
A mobile three-dimensional image acquisition and reconstruction system using a computer-generated integral imaging technique is proposed. A depth camera connected to the mobile device acquires the color and depth data of a real object simultaneously, and an elemental image array is generated based on the original three-dimensional information for the object, with lens array specifications input into the mobile device. The three-dimensional visualization of the real object is reconstructed on the mobile display through optical or digital reconstruction methods. The proposed system is implemented successfully and the experimental results certify that the system is an effective and interesting method of displaying real three-dimensional content on a mobile device.
Bochmann, Monika; Ludewig, E; Pees, M
2011-01-01
A conventional high-resolution screen-film system (Film Kodak MIN-R S, Kodak MIN-R 2000) was compared with an indirect digital detector system (Varian PaxScan 4030E) for use in radiography of lizards. A total of 20 bearded dragons (Pogona vitticeps ) with body masses between 123 g and 487 g were investigated by using conventional and digital image acquisition techniques. The digital image was taken with the same dose as well as half the dose of the conventional radiograph. The study was conducted semi-blinded as the x-ray images were encoded and randomised. Five veterinarians with clinical experience in reptile medicine served as observers. Exactly defined structures in three anatomical regions were assessed using a three-step scale. Furthermore, the overall quality of the respective region was evaluated using a five-step scale. Evaluation of the data was done by visual grading analysis. None of the structures examined was assessed to be of significantly inferior quality on the digital images in comparison to the conventional radiographs. The majority of the results demonstrated an equal quality of both systems. For assessment of the lung tissue and the pulmonary vessels as well as the overall assessment of the lung, the digital radiographs with full dose were rated to be significantly superior in comparison to the film-screen system. Furthermore, the joint contours of the shoulder and cubital joints and the overall assessments of the humerus and the caudal coelomic cavity were rated significantly better on digital images with full dose compared to those with reduced dose. The digital flat panel detector technique examined in this study is equal or superior to the conventional high-resolution screen-film system used. Nevertheless, the practicability of a dose reduction is limited in bearded dragons. Digital imaging systems are progressively being used in veterinary practice. The results of the study demonstrate the useful application of the digital detector systems in lizards.
Self-interference digital holography with a geometric-phase hologram lens.
Choi, KiHong; Yim, Junkyu; Yoo, Seunghwi; Min, Sung-Wook
2017-10-01
Self-interference digital holography (SIDH) is actively studied because the hologram acquisition under the incoherent illumination condition is available. The key component in this system is wavefront modulating optics, which modulates an incoming object wave into two different wavefront curvatures. In this Letter, the geometric-phase hologram lens is introduced in the SIDH system to perform as a polarization-sensitive wavefront modulator and a single-path beam splitter. This special optics has several features, such as high transparency, a modulation efficiency up to 99%, a thinness of a few millimeters, and a flat structure. The demonstration system is devised, and the numerical reconstruction results from an acquired complex hologram are presented.
NASA Technical Reports Server (NTRS)
1995-01-01
Intelligent Vision Systems, Inc. (InVision) needed image acquisition technology that was reliable in bad weather for its TDS-200 Traffic Detection System. InVision researchers used information from NASA Tech Briefs and assistance from Johnson Space Center to finish the system. The NASA technology used was developed for Earth-observing imaging satellites: charge coupled devices, in which silicon chips convert light directly into electronic or digital images. The TDS-200 consists of sensors mounted above traffic on poles or span wires, enabling two sensors to view an intersection; a "swing and sway" feature to compensate for movement of the sensors; a combination of electronic shutter and gain control; and sensor output to an image digital signal processor, still frame video and optionally live video.
Data simulation for the Lightning Imaging Sensor (LIS)
NASA Technical Reports Server (NTRS)
Boeck, William L.
1991-01-01
This project aims to build a data analysis system that will utilize existing video tape scenes of lightning as viewed from space. The resultant data will be used for the design and development of the Lightning Imaging Sensor (LIS) software and algorithm analysis. The desire for statistically significant metrics implies that a large data set needs to be analyzed. Before 1990 the quality and quantity of video was insufficient to build a usable data set. At this point in time, there is usable data from missions STS-34, STS-32, STS-31, STS-41, STS-37, and STS-39. During the summer of 1990, a manual analysis system was developed to demonstrate that the video analysis is feasible and to identify techniques to deduce information that was not directly available. Because the closed circuit television system used on the space shuttle was intended for documentary TV, the current value of the camera focal length and pointing orientation, which are needed for photoanalysis, are not included in the system data. A large effort was needed to discover ancillary data sources as well as develop indirect methods to estimate the necessary parameters. Any data system coping with full motion video faces an enormous bottleneck produced by the large data production rate and the need to move and store the digitized images. The manual system bypassed the video digitizing bottleneck by using a genlock to superimpose pixel coordinates on full motion video. Because the data set had to be obtained point by point by a human operating a computer mouse, the data output rate was small. The loan and subsequent acquisition of a Abekas digital frame store with a real time digitizer moved the bottleneck from data acquisition to a problem of data transfer and storage. The semi-automated analysis procedure was developed using existing equipment and is described. A fully automated system is described in the hope that the components may come on the market at reasonable prices in the next few years.
Signal processing and general purpose data acquisition system for on-line tomographic measurements
NASA Astrophysics Data System (ADS)
Murari, A.; Martin, P.; Hemming, O.; Manduchi, G.; Marrelli, L.; Taliercio, C.; Hoffmann, A.
1997-01-01
New analog signal conditioning electronics and data acquisition systems have been developed for the soft x-ray and bolometric tomography diagnostic in the reverse field pinch experiment (RFX). For the soft x-ray detectors the analog signal processing includes a fully differential current to voltage conversion, with up to a 200 kHz bandwidth. For the bolometers, a 50 kHz carrier frequency amplifier allows a maximum bandwidth of 10 kHz. In both cases the analog signals are digitized with a 1 MHz sampling rate close to the diagnostic and are transmitted via a transparent asynchronous xmitter/receiver interface (TAXI) link to purpose built Versa Module Europa (VME) modules which perform data acquisition. A software library has been developed for data preprocessing and tomographic reconstruction. It has been written in C language and is self-contained, i.e., no additional mathematical library is required. The package is therefore platform-free: in particular it can perform online analysis in a real-time application, such as continuous display and feedback, and is portable for long duration fusion or other physical experiments. Due to the modular organization of the library, new preprocessing and analysis modules can be easily integrated in the environment. This software is implemented in RFX over three different platforms: open VMS, digital Unix, and VME 68040 CPU.
Characterization of a 16-Bit Digitizer for Lidar Data Acquisition
NASA Technical Reports Server (NTRS)
Williamson, Cynthia K.; DeYoung, Russell J.
2000-01-01
A 6-MHz 16-bit waveform digitizer was evaluated for use in atmospheric differential absorption lidar (DIAL) measurements of ozone. The digitizer noise characteristics were evaluated, and actual ozone DIAL atmospheric returns were digitized. This digitizer could replace computer-automated measurement and control (CAMAC)-based commercial digitizers and improve voltage accuracy.
Design and application of BIM based digital sand table for construction management
NASA Astrophysics Data System (ADS)
Fuquan, JI; Jianqiang, LI; Weijia, LIU
2018-05-01
This paper explores the design and application of BIM based digital sand table for construction management. Aiming at the demands and features of construction management plan for bridge and tunnel engineering, the key functional features of digital sand table should include three-dimensional GIS, model navigation, virtual simulation, information layers, and data exchange, etc. That involving the technology of 3D visualization and 4D virtual simulation of BIM, breakdown structure of BIM model and project data, multi-dimensional information layers, and multi-source data acquisition and interaction. Totally, the digital sand table is a visual and virtual engineering information integrated terminal, under the unified data standard system. Also, the applications shall contain visual constructing scheme, virtual constructing schedule, and monitoring of construction, etc. Finally, the applicability of several basic software to the digital sand table is analyzed.
The New Generation Russian VLBI Network
NASA Technical Reports Server (NTRS)
Finkelstein, Andrey; Ipatov, Alexander; Smolentsev, Sergey; Mardyshkin, Vyacheslav; Fedotov, Leonid; Surkis, Igor; Ivanov, Dmitrij; Gayazov, Iskander
2010-01-01
This paper deals with a new project of the Russian VLBI Network dedicated for Universal Time determinations in quasi on-line mode. The basic principles of the network design and location of antennas are explained. Variants of constructing receiving devices, digital data acquisition system, and phase calibration system are specially considered. The frequency ranges and expected values of noise temperature are given.
Learning the manifold of quality ultrasound acquisition.
El-Zehiry, Noha; Yan, Michelle; Good, Sara; Fang, Tong; Zhou, S Kevin; Grady, Leo
2013-01-01
Ultrasound acquisition is a challenging task that requires simultaneous adjustment of several acquisition parameters (the depth, the focus, the frequency and its operation mode). If the acquisition parameters are not properly chosen, the resulting image will have a poor quality and will degrade the patient diagnosis and treatment workflow. Several hardware-based systems for autotuning the acquisition parameters have been previously proposed, but these solutions were largely abandoned because they failed to properly account for tissue inhomogeneity and other patient-specific characteristics. Consequently, in routine practice the clinician either uses population-based parameter presets or manually adjusts the acquisition parameters for each patient during the scan. In this paper, we revisit the problem of autotuning the acquisition parameters by taking a completely novel approach and producing a solution based on image analytics. Our solution is inspired by the autofocus capability of conventional digital cameras, but is significantly more challenging because the number of acquisition parameters is large and the determination of "good quality" images is more difficult to assess. Surprisingly, we show that the set of acquisition parameters which produce images that are favored by clinicians comprise a 1D manifold, allowing for a real-time optimization to maximize image quality. We demonstrate our method for acquisition parameter autotuning on several live patients, showing that our system can start with a poor initial set of parameters and automatically optimize the parameters to produce high quality images.
NASA Astrophysics Data System (ADS)
The present conference on the development status of communications systems in the context of electronic warfare gives attention to topics in spread spectrum code acquisition, digital speech technology, fiber-optics communications, free space optical communications, the networking of HF systems, and applications and evaluation methods for digital speech. Also treated are issues in local area network system design, coding techniques and applications, technology applications for HF systems, receiver technologies, software development status, channel simultion/prediction methods, C3 networking spread spectrum networks, the improvement of communication efficiency and reliability through technical control methods, mobile radio systems, and adaptive antenna arrays. Finally, communications system cost analyses, spread spectrum performance, voice and image coding, switched networks, and microwave GaAs ICs, are considered.
ERIC Educational Resources Information Center
Reynolds, Barry Lee
2017-01-01
This article reports on an investigation of the suitability of mobile vocabulary games for inducing a state of incidental vocabulary acquisition. Draw Something, a social digital drawing game in which players draw and guess words, was selected as a focus for this investigation. Results from an exploratory factor analysis of the questionnaire data…
Readers, Players, and Watchers: EFL Students' Vocabulary Acquisition through Digital Video Games
ERIC Educational Resources Information Center
Ebrahimzadeh, Mohsen
2017-01-01
The present study investigated vocabulary acquisition through a commercial digital video game compared to a traditional pencil-and-paper treatment. Chosen through cluster sampling, 241 male high school students (age 12-18) participated in the study. They were randomly assigned to one of the following groups. The first group, called Readers,…
Monitoring of electric-cardio signals based on DSP
NASA Astrophysics Data System (ADS)
Yan, Yi-xin; Sun, Hui-nan; Lv, Shuang
2008-10-01
Monitoring of electric-cardio signals is the most direct method of discovering heart diseases. This article presents an electric-cardio signal acquisition and processing system based on DSP. According to the features of electric-cardio signals, the proposed system uses the AgCl electrode as electric-cardio signals sensor, and acquires analog signals with AD620 as the prepositional amplifier, and the digital system equipped is with TMS320LF2407A DSP. The design of digital filter and the analysis of heart rate variation are realized by programming in the DSP. Finally the ECG is obtained with P and T waves along with obvious QRS multi-wave characteristics. The system has low power dissipation, low cost and high precision, which meets the requirements for medical instruments.
NASA Astrophysics Data System (ADS)
Zhang, Hongtao; Yang, Shangming; Fan, Lingling; Wang, Pengfei; Zhao, Xilin; Wang, Zhenhua; Cui, Hong-Liang
2010-04-01
In this paper we report a scheme of low-cost, small-size differential electrical converter to change analog trigger signals into digital trigger signals. This converter successfully resolves the incompatibility between the digital trigger mode of NI (National Instruments) data acquisition card PCI 5105 in Measurement Studio development environment for a demodulator and the requirement from instability of spectra of fiber Bragg grating (FBG) sensors. The instability is caused by intrinsic drifts of FFP-TF inside this high speed demodulator. The obtained results of frequency response about the converter have clearly demonstrated that this method is effective when the frequency of trigger signal is less than 3,000 Hz. This converter can satisfy the current requirements of demodulator based on FFP-TF, since mostly actual working scanning frequency of FFP-TF is less than 1,000 Hz. This method may be recommended to resolve similar problems for other NI customers who have developed their data acquisition system based on Measurement Studio.
Full range line-field parallel swept source imaging utilizing digital refocusing
NASA Astrophysics Data System (ADS)
Fechtig, Daniel J.; Kumar, Abhishek; Drexler, Wolfgang; Leitgeb, Rainer A.
2015-12-01
We present geometric optics-based refocusing applied to a novel off-axis line-field parallel swept source imaging (LPSI) system. LPSI is an imaging modality based on line-field swept source optical coherence tomography, which permits 3-D imaging at acquisition speeds of up to 1 MHz. The digital refocusing algorithm applies a defocus-correcting phase term to the Fourier representation of complex-valued interferometric image data, which is based on the geometrical optics information of the LPSI system. We introduce the off-axis LPSI system configuration, the digital refocusing algorithm and demonstrate the effectiveness of our method for refocusing volumetric images of technical and biological samples. An increase of effective in-focus depth range from 255 μm to 4.7 mm is achieved. The recovery of the full in-focus depth range might be especially valuable for future high-speed and high-resolution diagnostic applications of LPSI in ophthalmology.
Dekiff, Markus; Berssenbrügge, Philipp; Kemper, Björn; Denz, Cornelia; Dirksen, Dieter
2015-12-01
A metrology system combining three laser speckle measurement techniques for simultaneous determination of 3D shape and micro- and macroscopic deformations is presented. While microscopic deformations are determined by a combination of Digital Holographic Interferometry (DHI) and Digital Speckle Photography (DSP), macroscopic 3D shape, position and deformation are retrieved by photogrammetry based on digital image correlation of a projected laser speckle pattern. The photogrammetrically obtained data extend the measurement range of the DHI-DSP system and also increase the accuracy of the calculation of the sensitivity vector. Furthermore, a precise assignment of microscopic displacements to the object's macroscopic shape for enhanced visualization is achieved. The approach allows for fast measurements with a simple setup. Key parameters of the system are optimized, and its precision and measurement range are demonstrated. As application examples, the deformation of a mandible model and the shrinkage of dental impression material are measured.
Computer analysis of digital well logs
Scott, James H.
1984-01-01
A comprehensive system of computer programs has been developed by the U.S. Geological Survey for analyzing digital well logs. The programs are operational on a minicomputer in a research well-logging truck, making it possible to analyze and replot the logs while at the field site. The minicomputer also serves as a controller of digitizers, counters, and recorders during acquisition of well logs. The analytical programs are coordinated with the data acquisition programs in a flexible system that allows the operator to make changes quickly and easily in program variables such as calibration coefficients, measurement units, and plotting scales. The programs are designed to analyze the following well-logging measurements: natural gamma-ray, neutron-neutron, dual-detector density with caliper, magnetic susceptibility, single-point resistance, self potential, resistivity (normal and Wenner configurations), induced polarization, temperature, sonic delta-t, and sonic amplitude. The computer programs are designed to make basic corrections for depth displacements, tool response characteristics, hole diameter, and borehole fluid effects (when applicable). Corrected well-log measurements are output to magnetic tape or plotter with measurement units transformed to petrophysical and chemical units of interest, such as grade of uranium mineralization in percent eU3O8, neutron porosity index in percent, and sonic velocity in kilometers per second.
Transitioning to digital radiography.
Drost, Wm Tod
2011-04-01
To describe the different forms of digital radiography (DR), image file formats, supporting equipment and services required for DR, storage of digital images, and teleradiology. Purchasing a DR system is a major investment for a veterinary practice. Types of DR systems include computed radiography, charge coupled devices, and direct or indirect DR. Comparison of workflow for analog and DR is presented. On the surface, switching to DR involves the purchase of DR acquisition hardware. The X-ray machine, table and grids used in analog radiography are the same for DR. Realistically, a considerable infrastructure supports the image acquisition hardware. This infrastructure includes monitors, computer workstations, a robust computer network and internet connection, a plan for storage and back up of images, and service contracts. Advantages of DR compared with analog radiography include improved image quality (when used properly), ease of use (more forgiving to the errors of radiographic technique), speed of making a complete study (important for critically ill patients), fewer repeat radiographs, less time looking for imaging studies, less physical storage space, and the ability to easily send images for consultation. With an understanding of the infrastructure requirements, capabilities and limitations of DR, an informed veterinary practice should be better able to make a sound decision about transitioning to DR. © Veterinary Emergency and Critical Care Society 2011.
Superconductor Digital Electronics: -- Current Status, Future Prospects
NASA Astrophysics Data System (ADS)
Mukhanov, Oleg
2011-03-01
Two major applications of superconductor electronics: communications and supercomputing will be presented. These areas hold a significant promise of a large impact on electronics state-of-the-art for the defense and commercial markets stemming from the fundamental advantages of superconductivity: simultaneous high speed and low power, lossless interconnect, natural quantization, and high sensitivity. The availability of relatively small cryocoolers lowered the foremost market barrier for cryogenically-cooled superconductor electronic systems. These fundamental advantages enabled a novel Digital-RF architecture - a disruptive technological approach changing wireless communications, radar, and surveillance system architectures dramatically. Practical results were achieved for Digital-RF systems in which wide-band, multi-band radio frequency signals are directly digitized and digital domain is expanded throughout the entire system. Digital-RF systems combine digital and mixed signal integrated circuits based on Rapid Single Flux Quantum (RSFQ) technology, superconductor analog filter circuits, and semiconductor post-processing circuits. The demonstrated cryocooled Digital-RF systems are the world's first and fastest directly digitizing receivers operating with live satellite signals, enabling multi-net data links, and performing signal acquisition from HF to L-band with 30 GHz clock frequencies. In supercomputing, superconductivity leads to the highest energy efficiencies per operation. Superconductor technology based on manipulation and ballistic transfer of magnetic flux quanta provides a superior low-power alternative to CMOS and other charge-transfer based device technologies. The fundamental energy consumption in SFQ circuits defined by flux quanta energy 2 x 10-19 J. Recently, a novel energy-efficient zero-static-power SFQ technology, eSFQ/ERSFQ was invented, which retains all advantages of standard RSFQ circuits: high-speed, dc power, internal memory. The voltage bias regulation, determined by SFQ clock, enables the zero-power at zero-activity regimes, indispensable for sensor and quantum bit readout.
Fermilab Recycler Ring BPM Upgrade Based on Digital Receiver Technology
NASA Astrophysics Data System (ADS)
Webber, R.; Crisp, J.; Prieto, P.; Voy, D.; Briegel, C.; McClure, C.; West, R.; Pordes, S.; Mengel, M.
2004-11-01
Electronics for the 237 BPMs in the Fermilab Recycler Ring have been upgraded from a log-amplifier based system to a commercially produced digitizer-digital down converter based system. The hardware consists of a pre-amplifier connected to a split-plate BPM, an analog differential receiver-filter module and an 8-channel 80-MHz digital down converter VME board. The system produces position and intensity with a dynamic range of 30 dB and a resolution of ±10 microns. The position measurements are made on 2.5-MHz bunched beam and barrier buckets of the un-bunched beam. The digital receiver system operates in one of six different signal processing modes that include 2.5-MHz average, 2.5-MHz bunch-by-bunch, 2.5-MHz narrow band, unbunched average, un-bunched head/tail and 89-kHz narrow band. Receiver data is acquired on any of up to sixteen clock events related to Recycler beam transfers and other machine activities. Data from the digital receiver board are transferred to the front-end CPU for position and intensity computation on an on-demand basis through the VME bus. Data buffers are maintained for each of the acquisition events and support flash, closed orbit and turn-by-turn measurements. A calibration system provides evaluation of the BPM signal path and application programs.
Real-time digital signal recovery for a multi-pole low-pass transfer function system.
Lee, Jhinhwan
2017-08-01
In order to solve the problems of waveform distortion and signal delay by many physical and electrical systems with multi-pole linear low-pass transfer characteristics, a simple digital-signal-processing (DSP)-based method of real-time recovery of the original source waveform from the distorted output waveform is proposed. A mathematical analysis on the convolution kernel representation of the single-pole low-pass transfer function shows that the original source waveform can be accurately recovered in real time using a particular moving average algorithm applied on the input stream of the distorted waveform, which can also significantly reduce the overall delay time constant. This method is generalized for multi-pole low-pass systems and has noise characteristics of the inverse of the low-pass filter characteristics. This method can be applied to most sensors and amplifiers operating close to their frequency response limits to improve the overall performance of data acquisition systems and digital feedback control systems.
Silva, A I V; Brasil, D M; Vasconcelos, K F; Haiter Neto, F; Boscolo, F N
2015-01-01
Objectives: To assess the efficacy of lead foils in reducing the radiation dose received by different anatomical sites of the head and neck during periapical intraoral examinations performed with digital systems. Methods: Images were acquired through four different manners: phosphor plate (PSP; VistaScan® system; Dürr Dental GmbH, Bissingen, Germany) alone, PSP plus lead foil, complementary metal oxide semiconductor (CMOS; DIGORA® Toto, Soredex®, Tuusula, Finland) alone and CMOS plus lead foil. Radiation dose was measured after a full-mouth periapical series (14 radiographs) using the long-cone paralleling technique. Lithium fluoride (LiF 100) thermoluminescent dosemeters were placed in an anthropomorphic phantom at points corresponding to the tongue, thyroid, crystalline lenses, parotid glands and maxillary sinuses. Results: Dosemeter readings demonstrated the efficacy of the addition of lead foil in the intraoral digital X-ray systems provided in reducing organ doses in the selected structures, approximately 32% in the PSP system and 59% in the CMOS system. Conclusions: The use of lead foils associated with digital X-ray sensors is an effective alternative for the protection of different anatomical sites of the head and neck during full-mouth periapical series acquisition. PMID:26084474
Initial clinical evaluation of stationary digital chest tomosynthesis
NASA Astrophysics Data System (ADS)
Hartman, Allison E.; Shan, Jing; Wu, Gongting; Lee, Yueh Z.; Zhou, Otto; Lu, Jianping; Heath, Michael; Wang, Xiaohui; Foos, David
2016-03-01
Computed Tomography (CT) is the gold standard for image evaluation of lung disease, including lung cancer and cystic fibrosis. It provides detailed information of the lung anatomy and lesions, but at a relatively high cost and high dose of radiation. Chest radiography is a low dose imaging modality but it has low sensitivity. Digital chest tomosynthesis (DCT) is an imaging modality that produces 3D images by collecting x-ray projection images over a limited angle. DCT is less expensive than CT and requires about 1/10th the dose of radiation. Commercial DCT systems acquire the projection images by mechanically scanning an x-ray tube. The movement of the tube head limits acquisition speed. We recently demonstrated the feasibility of stationary digital chest tomosynthesis (s-DCT) using a carbon nanotube (CNT) x-ray source array in benchtop phantom studies. The stationary x-ray source allows for fast image acquisition. The objective of this study is to demonstrate the feasibility of s-DCT for patient imaging. We have successfully imaged 31 patients. Preliminary evaluation by board certified radiologists suggests good depiction of thoracic anatomy and pathology.
General-purpose interface bus for multiuser, multitasking computer system
NASA Technical Reports Server (NTRS)
Generazio, Edward R.; Roth, Don J.; Stang, David B.
1990-01-01
The architecture of a multiuser, multitasking, virtual-memory computer system intended for the use by a medium-size research group is described. There are three central processing units (CPU) in the configuration, each with 16 MB memory, and two 474 MB hard disks attached. CPU 1 is designed for data analysis and contains an array processor for fast-Fourier transformations. In addition, CPU 1 shares display images viewed with the image processor. CPU 2 is designed for image analysis and display. CPU 3 is designed for data acquisition and contains 8 GPIB channels and an analog-to-digital conversion input/output interface with 16 channels. Up to 9 users can access the third CPU simultaneously for data acquisition. Focus is placed on the optimization of hardware interfaces and software, facilitating instrument control, data acquisition, and processing.
Fast energy spectrum and transverse beam profile monitoring and feedback systems for the SLC linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soderstrom, E.J.; Abrams, G.S.; Weinstein, A.J.
Fast energy spectrum and transverse beam profile monitoring systems have been tested at the SLC. The signals for each system are derived from digitizations of images on phosphor screens. Individual beam bunch images are digitized in the case of the transverse profile system and synchrotron radiation images produced by wiggler magnets for the energy spectrum. Measurements are taken at two-second intervals. Feedback elements have been installed for future use and consist of rf phase shifters to control energy spectrum and dipole correctors to control the beam launch into the linac affecting the transverse beam profile. Details of these systems, includingmore » hardware, timing, data acquisition, data reduction, measurement accuracy, and operational experience will be presented. 9 refs.« less
Development and implementation of ultrasound picture archiving and communication system
NASA Astrophysics Data System (ADS)
Weinberg, Wolfram S.; Tessler, Franklin N.; Grant, Edward G.; Kangarloo, Hooshang; Huang, H. K.
1990-08-01
The Department of Radiological Sciences at the UCLA School of Medicine is developing an archiving and communication system (PACS) for digitized ultrasound images. In its final stage the system will involve the acquisition and archiving of ultrasound studies from four different locations including the Center for Health Sciences, the Department for Mental Health and the Outpatient Radiology and Endoscopy Departments with a total of 200-250 patient studies per week. The concept comprises two stages of image manipulation for each ultrasound work area. The first station is located close to the examination site and accomodates the acquisition of digital images from up to five ultrasound devices and provides for instantaneous display and primary viewing and image selection. Completed patient studies are transferred to a main workstation for secondary review, further analysis and comparison studies. The review station has an on-line storage capacity of 10,000 images with a resolution of 512x512 8 bit data to allow for immediate retrieval of active patient studies of up to two weeks. The main work stations are connected through the general network and use one central archive for long term storage and a film printer for hardcopy output. First phase development efforts concentrate on the implementation and testing of a system at one location consisting of a number of ultrasound units with video digitizer and network interfaces and a microcomputer workstation as host for the display station with two color monitors, each allowing simultaneous display of four 512x512 images. The discussion emphasizes functionality, performance and acceptance of the system in the clinical environment.
NASA Technical Reports Server (NTRS)
Hinrichs, C. A.
1974-01-01
A digital simulation is presented for a candidate modem in a modeled atmospheric scintillation environment with Doppler, Doppler rate, and signal attenuation typical of the radio link conditions for an outer planets atmospheric entry probe. The results indicate that the signal acquisition characteristics and the channel error rate are acceptable for the system requirements of the radio link. The simulation also outputs data for calculating other error statistics and a quantized symbol stream from which error correction decoding can be analyzed.
The contributions of digital technologies in the teaching of nursing skills: an integrative review.
Silveira, Maurício de Souza; Cogo, Ana Luísa Petersen
2017-07-13
To analyze the contributions of digital educational technologies used in teaching nursing skills. Integrative literature review, search in five databases, from 2006 to 2015 combining the descriptors 'education, nursing', 'educational technology', 'computer-assisted instruction' or related terms in English. Sample of 30 articles grouped in the thematic categories 'technology in the simulation with manikin', 'incentive to learning' and 'teaching of nursing skills'. It was identified different formats of digital educational technologies used in teaching Nursing skills such as videos, learning management system, applications, hypertext, games, virtual reality simulators. These digital materials collaborated in the acquisition of theoretical references that subsidize the practices, enhancing the teaching and enable the use of active learning methods, breaking with the traditional teaching of demonstrating and repeating procedures.
High speed digital holography for density and fluctuation measurements (invited).
Thomas, C E; Baylor, L R; Combs, S K; Meitner, S J; Rasmussen, D A; Granstedt, E M; Majeski, R P; Kaita, R
2010-10-01
The state of the art in electro-optics has advanced to the point where digital holographic acquisition of wavefronts is now possible. Holographic wavefront acquisition provides the phase of the wavefront at every measurement point. This can be done with accuracy on the order of a thousandth of a wavelength, given that there is sufficient care in the design of the system. At wave frequencies which are much greater than the plasma frequency, the plasma index of refraction is linearly proportional to the electron density and wavelength, and the measurement of the phase of a wavefront passing through the plasma gives the chord-integrated density directly for all points measured on the wavefront. High-speed infrared cameras (up to ∼40,000 fps at ∼64×4 pixels) with resolutions up to 640×512 pixels suitable for use with a CO(2) laser are readily available, if expensive.
NASA Astrophysics Data System (ADS)
Nakanishi, Hideya; Imazu, Setsuo; Ohsuna, Masaki; Kojima, Mamoru; Nonomura, Miki; Shoji, Mamoru; Emoto, Masahiko; Yoshida, Masanobu; Iwata, Chie; Miyake, Hitoshi; Nagayama, Yoshio; Kawahata, Kazuo
To deal with endless data streams acquired in LHD steady-state experiments, the LHD data acquisition system was designed with a simple concept that divides a long pulse into a consecutive series of 10-s “subshots”. Latest digitizers applying high-speed PCI-Express technology, however, output nonstop gigabyte per second data streams whose subshot intervals would be extremely long if 10-s rule was applied. These digitizers need shorter subshot intervals, less than 10-s long. In contrast, steady-state fusion plants need uninterrupted monitoring of the environment and device soundness. They adopt longer subshot lengths of either 10 min or 1 day. To cope with both uninterrupted monitoring and ultra-fast diagnostics, the ability to vary the subshot length according to the type of operation is required. In this study, a design modification that enables variable subshot lengths was implemented and its practical effectiveness in LHD was verified.
Noise Source Visualization Using a Digital Voice Recorder and Low-Cost Sensors
Cho, Yong Thung
2018-01-01
Accurate sound visualization of noise sources is required for optimal noise control. Typically, noise measurement systems require microphones, an analog-digital converter, cables, a data acquisition system, etc., which may not be affordable for potential users. Also, many such systems are not highly portable and may not be convenient for travel. Handheld personal electronic devices such as smartphones and digital voice recorders with relatively lower costs and higher performance have become widely available recently. Even though such devices are highly portable, directly implementing them for noise measurement may lead to erroneous results since such equipment was originally designed for voice recording. In this study, external microphones were connected to a digital voice recorder to conduct measurements and the input received was processed for noise visualization. In this way, a low cost, compact sound visualization system was designed and introduced to visualize two actual noise sources for verification with different characteristics: an enclosed loud speaker and a small air compressor. Reasonable accuracy of noise visualization for these two sources was shown over a relatively wide frequency range. This very affordable and compact sound visualization system can be used for many actual noise visualization applications in addition to educational purposes. PMID:29614038
NASA Technical Reports Server (NTRS)
Hoadley, Sherwood T.; Mcgraw, Sandra M.
1992-01-01
A real time multiple-function digital controller system was developed for the Active Flexible Wing (AFW) Program. The digital controller system (DCS) allowed simultaneous execution of two control laws: flutter suppression and either roll trim or a rolling maneuver load control. The DCS operated within, but independently of, a slower host operating system environment, at regulated speeds up to 200 Hz. It also coordinated the acquisition, storage, and transfer of data for near real time controller performance evaluation and both open- and closed-loop plant estimation. It synchronized the operation of four different processing units, allowing flexibility in the number, form, functionality, and order of control laws, and variability in the selection of the sensors and actuators employed. Most importantly, the DCS allowed for the successful demonstration of active flutter suppression to conditions approximately 26 percent (in dynamic pressure) above the open-loop boundary in cases when the model was fixed in roll and up to 23 percent when it was free to roll. Aggressive roll maneuvers with load control were achieved above the flutter boundary. The purpose here is to present the development, validation, and wind tunnel testing of this multiple-function digital controller system.
Clunie, David; Hosseinzadeh, Dan; Wintell, Mikael; De Mena, David; Lajara, Nieves; Garcia-Rojo, Marcial; Bueno, Gloria; Saligrama, Kiran; Stearrett, Aaron; Toomey, David; Abels, Esther; Apeldoorn, Frank Van; Langevin, Stephane; Nichols, Sean; Schmid, Joachim; Horchner, Uwe; Beckwith, Bruce; Parwani, Anil; Pantanowitz, Liron
2018-01-01
As digital pathology systems for clinical diagnostic work applications become mainstream, interoperability between these systems from different vendors becomes critical. For the first time, multiple digital pathology vendors have publicly revealed the use of the digital imaging and communications in medicine (DICOM) standard file format and network protocol to communicate between separate whole slide acquisition, storage, and viewing components. Note the use of DICOM for clinical diagnostic applications is still to be validated in the United States. The successful demonstration shows that the DICOM standard is fundamentally sound, though many lessons were learned. These lessons will be incorporated as incremental improvements in the standard, provide more detailed profiles to constrain variation for specific use cases, and offer educational material for implementers. Future Connectathon events will expand the scope to include more devices and vendors, as well as more ambitious use cases including laboratory information system integration and annotation for image analysis, as well as more geographic diversity. Users should request DICOM features in all purchases and contracts. It is anticipated that the growth of DICOM-compliant manufacturers will likely also ease DICOM for pathology becoming a recognized standard and as such the regulatory pathway for digital pathology products. PMID:29619278
1985-02-28
psychophysiological function in question. For example, for most measurements of the cardiovascular system, data are available only at each heart beat ...function of the duration of the charging period, *i . and hence will be proportional to the inter- beat interval (and inversely °°. • .*~* 14 information (0... beat interval. Thus, the output will lag the input. 2.3 Computer Access to Voltage x Time Functions 2.3.1 Digital Input and Analog-to-Digital Conversion
Digital phase demodulation for low-coherence interferometry-based fiber-optic sensors
NASA Astrophysics Data System (ADS)
Liu, Y.; Strum, R.; Stiles, D.; Long, C.; Rakhman, A.; Blokland, W.; Winder, D.; Riemer, B.; Wendel, M.
2018-03-01
We describe a digital phase demodulation scheme for low-coherence interferometry-based fiber-optic sensors by employing a simple generation of phase-shifted signals at the interrogation interferometer. The scheme allows a real-time calibration process and offers capability of measuring large variations (up to the coherence of the light source) at the bandwidth that is only limited by the data acquisition system. The proposed phase demodulation method is analytically derived and its validity and performance are experimentally verified using fiber-optic Fabry-Perot sensors for measurement of strains and vibrations.
Movement measurement of isolated skeletal muscle using imaging microscopy
NASA Astrophysics Data System (ADS)
Elias, David; Zepeda, Hugo; Leija, Lorenzo S.; Sossa, Humberto; de la Rosa, Jose I.
1997-05-01
An imaging-microscopy methodology to measure contraction movement in chemically stimulated crustacean skeletal muscle, whose movement speed is about 0.02 mm/s is presented. For this, a CCD camera coupled to a microscope and a high speed digital image acquisition system, allowing us to capture 960 images per second are used. The images are digitally processed in a PC and displayed in a video monitor. A maximal field of 0.198 X 0.198 mm2 and a spatial resolution of 3.5 micrometers are obtained.
Digital Documentation: Using Computers to Create Multimedia Reports.
ERIC Educational Resources Information Center
Speitel, Tom; And Others
1996-01-01
Describes methods for creating integrated multimedia documents using recent advances in print, audio, and video digitization that bring added usefulness to computers as data acquisition, processing, and presentation tools. Discusses advantages of digital documentation. (JRH)
Beacon data acquisition and display system
Skogmo, D.G.; Black, B.D.
1991-12-17
A system for transmitting aircraft beacon information received by a secondary surveillance radar through telephone lines to a remote display includes a digitizer connected to the radar for preparing a serial file of data records containing position and identification information of the beacons detected by each sweep of the radar. This information is transmitted through the telephone lines to a remote computer where it is displayed. 6 figures.
Beacon data acquisition and display system
Skogmo, David G.; Black, Billy D.
1991-01-01
A system for transmitting aircraft beacon information received by a secondary surveillance radar through telephone lines to a remote display includes a digitizer connected to the radar for preparing a serial file of data records containing position and identification information of the beacons detected by each sweep of the radar. This information is transmitted through the telephone lines to a remote computer where it is displayed.
Guermandi, Marco; Bigucci, Alessandro; Franchi Scarselli, Eleonora; Guerrieri, Roberto
2015-01-01
We present a system for the acquisition of EEG signals based on active electrodes and implementing a Driving Right Leg circuit (DgRL). DgRL allows for single-ended amplification and analog-to-digital conversion, still guaranteeing a common mode rejection in excess of 110 dB. This allows the system to acquire high-quality EEG signals essentially removing network interference for both wet and dry-contact electrodes. The front-end amplification stage is integrated on the electrode, minimizing the system's sensitivity to electrode contact quality, cable movement and common mode interference. The A/D conversion stage can be either integrated in the remote back-end or placed on the head as well, allowing for an all-digital communication to the back-end. Noise integrated in the band from 0.5 to 100 Hz is comprised between 0.62 and 1.3 μV, depending on the configuration. Current consumption for the amplification and A/D conversion of one channel is 390 μA. Thanks to its low noise, the high level of interference suppression and its quick setup capabilities, the system is particularly suitable for use outside clinical environments, such as in home care, brain-computer interfaces or consumer-oriented applications.
Harrison, Arnell S.; Dadisman, Shawn V.; McBride, W. Scott; Flocks, James G.; Wiese, Dana S.
2009-01-01
In May of 2008, the U.S. Geological Survey (USGS) conducted geophysical surveys in Lake Panasoffkee, located in central Florida, as part of the USGS Lakes and Coastal Aquifers (LCA) study. This report serves as an archive of unprocessed digital boomer and Compressed High Intensity Radar Pulse (CHIRP)* seismic reflection data, trackline maps, navigation files, Field Activity Collection System (FACS) logs, Geographic Information System (GIS) files, and formal Federal Geographic Data Committee (FGDC) metadata. Filtered and gained (a relative increase in signal amplitude) digital images of the seismic profiles and geospatially corrected interactive profiles are also provided. Refer to the Acronyms page for expansions of acronyms and abbreviations used in this report. *Due to poor data acquisition conditions associated with the lake bottom sediments, only two CHIRP tracklines were collected during this field activity. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG-Y format (Barry and others, 1975) and may be downloaded and processed with commercial or public domain software such as Seismic Unix (SU). Example SU processing scripts and USGS software for viewing the SEG-Y files (Zihlman, 1992) are provided. The USGS Florida Integrated Science Center (FISC) - St. Petersburg assigns a unique identifier to each cruise or field activity. For example, 08LCA03 tells us the data were collected in 2008 for the Lakes and Coastal Aquifers (LCA) study and the data were collected during the third field activity for that study in that calendar year. Refer to http://walrus.wr.usgs.gov/infobank/programs/html/definition/activity.html for a detailed description of the method used to assign the field activity ID. The naming convention used for each seismic line is as follows: yye##a, where 'yy' are the last two digits of the year in which the data were collected, 'e' is a 1-letter abbreviation for the equipment type (for example, b for boomer and c for CHIRP), '##' is a 2-digit number representing a specific track, and 'a' is a letter representing the section of a line if recording was prematurely terminated or rerun for quality or acquisition problems. The boomer plate is an acoustic energy source that consists of capacitors charged to a high voltage and discharged through a transducer in the water. The transducer is towed on a sled floating on the water surface and, when discharged, emits a short acoustic pulse, or shot, which propagates through the water, sediment column, or rock beneath. The acoustic energy is reflected at density boundaries (such as the seafloor, sediment, or rock layers beneath the seafloor), detected by the receiver, and recorded by a PC-based seismic acquisition system. This process is repeated at timed intervals (for example, 0.5 s) and recorded for specific intervals of time (for example, 100 ms). In this way, a two-dimensional (2-D) vertical profile of the shallow geologic structure beneath the ship track is produced. Figure 1 displays the boomer acquisition geometry. The EdgeTech SB-424 CHIRP system used for this survey has a vertical resolution of 4 - 8 cm, a penetration depth that is usually less than 2 m beneath the seafloor, and uses a signal of continuously varying frequency. The towfish is a sound source and receiver, which is typically towed 2 - 5 m above the seafloor. The acoustic energy is reflected at density boundaries (such as the seafloor or sediment layers beneath the seafloor), detected by a receiver, and recorded by a PC-based seismic acquisition system. This process is repeated at timed intervals (for example, 0.125 s) and recorded for specific intervals of time (for example, 50 ms); the resulting profile is a two-dimensional vertical image of the shallow geologic structure beneath the ship track. Figure 2 displays the acquisition geometry for the CHIRP system. Refer to table 1 for a summary of acquisition parameters and table 2 for trackline statistics.
NASA Astrophysics Data System (ADS)
Sandoz, J.-P.; Steenaart, W.
1984-12-01
The nonuniform sampling digital phase-locked loop (DPLL) with sequential loop filter, in which the correction sizes are controlled by the accumulated differences of two additional phase comparators, is graphically analyzed. In the absence of noise and frequency drift, the analysis gives some physical insight into the acquisition and tracking behavior. Taking noise into account, a mathematical model is derived and a random walk technique is applied to evaluate the rms phase error and the mean acquisition time. Experimental results confirm the appropriate simplifying hypotheses used in the numerical analysis. Two related performance measures defined in terms of the rms phase error and the acquisition time for a given SNR are used. These measures provide a common basis for comparing different digital loops and, to a limited extent, also with a first-order linear loop. Finally, the behavior of a modified DPLL under frequency deviation in the presence of Gaussian noise is tested experimentally and by computer simulation.
A novel PMT test system based on waveform sampling
NASA Astrophysics Data System (ADS)
Yin, S.; Ma, L.; Ning, Z.; Qian, S.; Wang, Y.; Jiang, X.; Wang, Z.; Yu, B.; Gao, F.; Zhu, Y.; Wang, Z.
2018-01-01
Comparing with the traditional test system based on a QDC and TDC and scaler, a test system based on waveform sampling is constructed for signal sampling of the 8"R5912 and the 20"R12860 Hamamatsu PMT in different energy states from single to multiple photoelectrons. In order to achieve high throughput and to reduce the dead time in data processing, the data acquisition software based on LabVIEW is developed and runs with a parallel mechanism. The analysis algorithm is realized in LabVIEW and the spectra of charge, amplitude, signal width and rising time are analyzed offline. The results from Charge-to-Digital Converter, Time-to-Digital Converter and waveform sampling are discussed in detailed comparison.
Commercial Digital/ADP Equipment in the Ocean Environment. Volume 2. User Appendices
1978-12-15
is that the LINDA system uses a mini computer with a time sharing system software which allows several terminals to be operated at the same time...Acquisition System (ODAS) consists of sensors, computer hardware and computer software . Certain sensors are interfaced to the computers for real time...on USNS KANE, USNS BENT, and USKS WILKES. Commercial automatic data processing equipment used in ODAS includes: Item Model Computer PDP-9 Tape
NASA Technical Reports Server (NTRS)
Kriegler, F. J.
1974-01-01
The MIDAS System is described as a third-generation fast multispectral recognition system able to keep pace with the large quantity and high rates of data acquisition from present and projected sensors. A principal objective of the MIDAS program is to provide a system well interfaced with the human operator and thus to obtain large overall reductions in turnaround time and significant gains in throughput. The hardware and software are described. The system contains a mini-computer to control the various high-speed processing elements in the data path, and a classifier which implements an all-digital prototype multivariate-Gaussian maximum likelihood decision algorithm operating at 200,000 pixels/sec. Sufficient hardware was developed to perform signature extraction from computer-compatible tapes, compute classifier coefficients, control the classifier operation, and diagnose operation.
High-Speed Noninvasive Eye-Tracking System
NASA Technical Reports Server (NTRS)
Talukder, Ashit; LaBaw, Clayton; Michael-Morookian, John; Monacos, Steve; Serviss, Orin
2007-01-01
The figure schematically depicts a system of electronic hardware and software that noninvasively tracks the direction of a person s gaze in real time. Like prior commercial noninvasive eye-tracking systems, this system is based on (1) illumination of an eye by a low-power infrared light-emitting diode (LED); (2) acquisition of video images of the pupil, iris, and cornea in the reflected infrared light; (3) digitization of the images; and (4) processing the digital image data to determine the direction of gaze from the centroids of the pupil and cornea in the images. Relative to the prior commercial systems, the present system operates at much higher speed and thereby offers enhanced capability for applications that involve human-computer interactions, including typing and computer command and control by handicapped individuals,and eye-based diagnosis of physiological disorders that affect gaze responses.
Design of extensible meteorological data acquisition system based on FPGA
NASA Astrophysics Data System (ADS)
Zhang, Wen; Liu, Yin-hua; Zhang, Hui-jun; Li, Xiao-hui
2015-02-01
In order to compensate the tropospheric refraction error generated in the process of satellite navigation and positioning. Temperature, humidity and air pressure had to be used in concerned models to calculate the value of this error. While FPGA XC6SLX16 was used as the core processor, the integrated silicon pressure sensor MPX4115A and digital temperature-humidity sensor SHT75 are used as the basic meteorological parameter detection devices. The core processer was used to control the real-time sampling of ADC AD7608 and to acquire the serial output data of SHT75. The data was stored in the BRAM of XC6SLX16 and used to generate standard meteorological parameters in NEMA format. The whole design was based on Altium hardware platform and ISE software platform. The system was described in the VHDL language and schematic diagram to realize the correct detection of temperature, humidity, air pressure. The 8-channel synchronous sampling characteristics of AD7608 and programmable external resources of FPGA laid the foundation for the increasing of analog or digital meteorological element signal. The designed meteorological data acquisition system featured low cost, high performance, multiple expansions.
NASA Astrophysics Data System (ADS)
Buckman, S. M.; Ius, D.
1996-02-01
This paper reports on the development of a digital coincidence-counting system which comprises a custom-built data acquisition card and associated PC software. The system has been designed to digitise the pulse-trains from two radiation detectors at a rate of 20 MSamples/s with 12-bit resolution. Through hardware compression of the data, the system can continuously record both individual pulse-shapes and the time intervals between pulses. Software-based circuits are used to process the stored pulse trains. These circuits are constructed simply by linking together icons representing various components such as coincidence mixers, time delays, single-channel analysers, deadtimes and scalers. This system enables a pair of pulse trains to be processed repeatedly using any number of different methods. Some preliminary results are presented in order to demonstrate the versatility and efficiency of this new method.
Chen, Chih-Yuan; Chang, Chia-Lin; Chang, Chih-Wei; Lai, Shin-Chi; Chien, Tsung-Fu; Huang, Hong-Yi; Chiou, Jin-Chern; Luo, Ching-Hsing
2013-03-04
This work describes a bio-potential acquisition system for portable ubiquitous healthcare applications using flexible polydimethylsiloxane dry electrodes (FPDEs) and a low-power recording circuit. This novel FPDE used Au as the skin contact layer, which was made using a CO2 laser and replica method technology. The FPDE was revised from a commercial bio-potential electrode with a conductive snap using dry electrodes rather than wet electrodes that proposed reliable and robust attachment for the purpose of measurement, and attaching velcro made it wearable on the forearm for bio-potential applications. Furthermore, this study proposes a recording device to store bio-potential signal data and provides portability and low-power consumption for the proposed acquisition system. To acquire differential bio-potentials, such as electrocardiogram (ECG) signals, the proposed recording device includes a low-power front-end acquisition chip fabricated using a complementary metal-oxide-semiconductor (CMOS) process, a commercial microcontroller (MSP430F149), and a secure digital (SD) card for portable healthcare applications. The proposed system can obtain ECG signals efficiently and are comfortable to the skin. The power consumption of the system is about 85 mW for continuous working over a 3 day period with two AA batteries. It can also be used as a compact Holter ECG system.
Low-power analog integrated circuits for wireless ECG acquisition systems.
Tsai, Tsung-Heng; Hong, Jia-Hua; Wang, Liang-Hung; Lee, Shuenn-Yuh
2012-09-01
This paper presents low-power analog ICs for wireless ECG acquisition systems. Considering the power-efficient communication in the body sensor network, the required low-power analog ICs are developed for a healthcare system through miniaturization and system integration. To acquire the ECG signal, a low-power analog front-end system, including an ECG signal acquisition board, an on-chip low-pass filter, and an on-chip successive-approximation analog-to-digital converter for portable ECG detection devices is presented. A quadrature CMOS voltage-controlled oscillator and a 2.4 GHz direct-conversion transmitter with a power amplifier and upconversion mixer are also developed to transmit the ECG signal through wireless communication. In the receiver, a 2.4 GHz fully integrated CMOS RF front end with a low-noise amplifier, differential power splitter, and quadrature mixer based on current-reused folded architecture is proposed. The circuits have been implemented to meet the specifications of the IEEE 802.15.4 2.4 GHz standard. The low-power ICs of the wireless ECG acquisition systems have been fabricated using a 0.18 μm Taiwan Semiconductor Manufacturing Company (TSMC) CMOS standard process. The measured results on the human body reveal that ECG signals can be acquired effectively by the proposed low-power analog front-end ICs.
Intelligent FPGA Data Acquisition Framework
NASA Astrophysics Data System (ADS)
Bai, Yunpeng; Gaisbauer, Dominic; Huber, Stefan; Konorov, Igor; Levit, Dmytro; Steffen, Dominik; Paul, Stephan
2017-06-01
In this paper, we present the field programmable gate arrays (FPGA)-based framework intelligent FPGA data acquisition (IFDAQ), which is used for the development of DAQ systems for detectors in high-energy physics. The framework supports Xilinx FPGA and provides a collection of IP cores written in very high speed integrated circuit hardware description language, which use the common interconnect interface. The IP core library offers functionality required for the development of the full DAQ chain. The library consists of Serializer/Deserializer (SERDES)-based time-to-digital conversion channels, an interface to a multichannel 80-MS/s 10-b analog-digital conversion, data transmission, and synchronization protocol between FPGAs, event builder, and slow control. The functionality is distributed among FPGA modules built in the AMC form factor: front end and data concentrator. This modular design also helps to scale and adapt the DAQ system to the needs of the particular experiment. The first application of the IFDAQ framework is the upgrade of the read-out electronics for the drift chambers and the electromagnetic calorimeters (ECALs) of the COMPASS experiment at CERN. The framework will be presented and discussed in the context of this paper.
NASA Astrophysics Data System (ADS)
Podesto, B.; Lapointe, A.; Larose, G.; Robichaud, Y.; Vaillancourt, C.
1981-03-01
The design and construction of a Real-Time Digital Data Acquisition System (RTDDAS) to be used in substations for on-site recording and preprocessing load response data were included. The gathered data can be partially processed on site to compute the apparent, active and reactive powers, voltage and current rms values, and instantaneous values of phase voltages and currents. On-site processing capability is provided for rapid monitoring of the field data to ensure that the test setup is suitable. Production analysis of field data is accomplished off-line on a central computer from data recorded on a dual-density (800/1600) magnetic tape which is IBM-compatible. Parallel channels of data can be recorded at a variable rate from 480 to 9000 samples per second per channel. The RTDDAS is housed in a 9.1 m (30-ft) trailer which is shielded from electromagnetic interference and protected by isolators from switching surges. The test must sometimes be performed. Information pertaining to the installation, software operation, and maintenance is presented.
Kover, Allan N.; Jones, John Edwin; ,
1985-01-01
The US Geological Survey (USGS) instituted a program in 1980 to acquire side-looking airbore radar (SLAR) data and make these data readily available to the public in a mosaic format comparable to the USGS 1:250,000-scale topographic map series. The SLAR data are also available as strip images at an acquisition scale of 1:250,000 or 1:400,000 (depending on the acquisition system), as a variety of print products and indexes, and in a limited amount in digital form on computer compatible tapes. Three different commercial X-band (3-cm) systems were used to acquire the imagery for producing the mosaics.
Image sequence analysis workstation for multipoint motion analysis
NASA Astrophysics Data System (ADS)
Mostafavi, Hassan
1990-08-01
This paper describes an application-specific engineering workstation designed and developed to analyze motion of objects from video sequences. The system combines the software and hardware environment of a modem graphic-oriented workstation with the digital image acquisition, processing and display techniques. In addition to automation and Increase In throughput of data reduction tasks, the objective of the system Is to provide less invasive methods of measurement by offering the ability to track objects that are more complex than reflective markers. Grey level Image processing and spatial/temporal adaptation of the processing parameters is used for location and tracking of more complex features of objects under uncontrolled lighting and background conditions. The applications of such an automated and noninvasive measurement tool include analysis of the trajectory and attitude of rigid bodies such as human limbs, robots, aircraft in flight, etc. The system's key features are: 1) Acquisition and storage of Image sequences by digitizing and storing real-time video; 2) computer-controlled movie loop playback, freeze frame display, and digital Image enhancement; 3) multiple leading edge tracking in addition to object centroids at up to 60 fields per second from both live input video or a stored Image sequence; 4) model-based estimation and tracking of the six degrees of freedom of a rigid body: 5) field-of-view and spatial calibration: 6) Image sequence and measurement data base management; and 7) offline analysis software for trajectory plotting and statistical analysis.
Kim, Hyungseup; Park, Yunjong; Ko, Youngwoon; Mun, Yeongjin; Lee, Sangmin; Ko, Hyoungho
2018-01-01
Wearable healthcare systems require measurements from electrocardiograms (ECGs) and photoplethysmograms (PPGs), and the blood pressure of the user. The pulse transit time (PTT) can be calculated by measuring the ECG and PPG simultaneously. Continuous-time blood pressure without using an air cuff can be estimated by using the PTT. This paper presents a biosignal acquisition integrated circuit (IC) that can simultaneously measure the ECG and PPG for wearable healthcare applications. Included in this biosignal acquisition circuit are a voltage mode instrumentation amplifier (IA) for ECG acquisition and a current mode transimpedance amplifier for PPG acquisition. The analog outputs from the ECG and PPG channels are muxed and converted to digital signals using 12-bit successive approximation register (SAR) analog-to-digital converter (ADC). The proposed IC is fabricated by using a standard 0.18 μm CMOS process with an active area of 14.44 mm2. The total current consumption for the multichannel IC is 327 μA with a 3.3 V supply. The measured input referred noise of ECG readout channel is 1.3 μVRMS with a bandwidth of 0.5 Hz to 100 Hz. And the measured input referred current noise of the PPG readout channel is 0.122 nA/√Hz with a bandwidth of 0.5 Hz to 100 Hz. The proposed IC, which is implemented using various circuit techniques, can measure ECG and PPG signals simultaneously to calculate the PTT for wearable healthcare applications.
NASA Astrophysics Data System (ADS)
Torjesen, Alyssa; Istfan, Raeef; Roblyer, Darren
2017-03-01
Frequency-domain diffuse optical spectroscopy (FD-DOS) utilizes intensity-modulated light to characterize optical scattering and absorption in thick tissue. Previous FD-DOS systems have been limited by large device footprints, complex electronics, high costs, and limited acquisition speeds, all of which complicate access to patients in the clinical setting. We have developed a new digital DOS (dDOS) system, which is relatively compact and inexpensive, allowing for simplified clinical use, while providing unprecedented measurement speeds. The dDOS system utilizes hardware-integrated custom board-level direct digital synthesizers and an analog-to-digital converter to generate frequency sweeps and directly measure signals utilizing undersampling at six wavelengths modulated at discrete frequencies from 50 to 400 MHz. Wavelength multiplexing is utilized to achieve broadband frequency sweep measurements acquired at over 97 Hz. When compared to a gold-standard DOS system, the accuracy of optical properties recovered with the dDOS system was within 5.3% and 5.5% for absorption and reduced scattering coefficient extractions, respectively. When tested in vivo, the dDOS system was able to detect physiological changes throughout the cardiac cycle. The new FD-dDOS system is fast, inexpensive, and compact without compromising measurement quality.
NASA Astrophysics Data System (ADS)
Detrick, R. S.; Clark, D.; Gaylord, A.; Goldsmith, R.; Helly, J.; Lemmond, P.; Lerner, S.; Maffei, A.; Miller, S. P.; Norton, C.; Walden, B.
2005-12-01
The Scripps Institution of Oceanography (SIO) and the Woods Hole Oceanographic Institution (WHOI) have joined forces with the San Diego Supercomputer Center to build a testbed for multi-institutional archiving of shipboard and deep submergence vehicle data. Support has been provided by the Digital Archiving and Preservation program funded by NSF/CISE and the Library of Congress. In addition to the more than 92,000 objects stored in the SIOExplorer Digital Library, the testbed will provide access to data, photographs, video images and documents from WHOI ships, Alvin submersible and Jason ROV dives, and deep-towed vehicle surveys. An interactive digital library interface will allow combinations of distributed collections to be browsed, metadata inspected, and objects displayed or selected for download. The digital library architecture, and the search and display tools of the SIOExplorer project, are being combined with WHOI tools, such as the Alvin Framegrabber and the Jason Virtual Control Van, that have been designed using WHOI's GeoBrowser to handle the vast volumes of digital video and camera data generated by Alvin, Jason and other deep submergence vehicles. Notions of scalability will be tested, as data volumes range from 3 CDs per cruise to 200 DVDs per cruise. Much of the scalability of this proposal comes from an ability to attach digital library data and metadata acquisition processes to diverse sensor systems. We are able to run an entire digital library from a laptop computer as well as from supercomputer-center-size resources. It can be used, in the field, laboratory or classroom, covering data from acquisition-to-archive using a single coherent methodology. The design is an open architecture, supporting applications through well-defined external interfaces maintained as an open-source effort for community inclusion and enhancement.
Results from the RF BPM Upgrade Prototype at the Advanced Photon Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pietryla, Anthony; Lill, Robert; Norum, Eric
2006-11-20
The Advanced Photon Source (APS), a third-generation synchrotron light source, has been in operation for 10 years. The monopulse radio frequency (RF) beam position monitor (BPM) is one of three BPM types now employed in the storage ring at the APS. It is a broadband (10 MHz) system designed to measure single-turn and multi-turn beam positions, but it suffers from an aging data acquisition system. The replacement BPM system retains the existing monopulse receivers and replaces the data acquisition system with high-speed analog-to-digital converters (ADCs) and a field programmable gate array (FPGA) that performs the signal processing. A prototype systemmore » was constructed and is currently being evaluated. This paper presents the results obtained from laboratory and field tests of the prototype system.« less
Results from the RF BPM upgrade prototype at the Advanced Photon Source.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pietryla, A.; Lill, R.; Norum, E.
2006-01-01
The Advanced Photon Source (APS), a third-generation synchrotron light source, has been in operation for 10 years. The monopulse radio frequency (RF) beam position monitor (BPM) is one of three BPM types now employed in the storage ring at the APS. It is a broadband (10 MHz) system designed to measure single-turn and multi-turn beam positions, but it suffers from an aging data acquisition system. The replacement BPM system retains the existing monopulse receivers and replaces the data acquisition system with high-speed analog-to-digital converters (ADCs) and a field programmable gate array (FPGA) that performs the signal processing. A prototype systemmore » was constructed and is currently being evaluated. This paper presents the results obtained from laboratory and field tests of the prototype system.« less
NASA Astrophysics Data System (ADS)
Passmore, P. R.; Jackson, M.; Zimakov, L. G.; Raczka, J.; Davidson, P.
2014-12-01
The key requirements for Earthquake Early Warning and other Rapid Event Notification Systems are: Quick delivery of digital data from a field station to the acquisition and processing center; Data integrity for real-time earthquake notification in order to provide warning prior to significant ground shaking in the given target area. These two requirements are met in the recently developed Trimble SG160-09 SeismoGeodetic System, which integrates both GNSS and acceleration measurements using the Kalman filter algorithm to create a new high-rate (200 sps), real-time displacement with sufficient accuracy and very low latency for rapid delivery of the acquired data to a processing center. The data acquisition algorithm in the SG160-09 System provides output of both acceleration and displacement digital data with 0.2 sec delay. This is a significant reduction in the time interval required for real-time transmission compared to data delivery algorithms available in digitizers currently used in other Earthquake Early Warning networks. Both acceleration and displacement data are recorded and transmitted to the processing site in a specially developed Multiplexed Recording Format (MRF) that minimizes the bandwidth required for real-time data transmission. In addition, a built in algorithm calculates the τc and Pd once the event is declared. The SG160-09 System keeps track of what data has not been acknowledged and re-transmits the data giving priority to current data. Modified REF TEK Protocol Daemon (RTPD) receives the digital data and acknowledges data received without error. It forwards this "good" data to processing clients of various real-time data processing software including Earthworm and SeisComP3. The processing clients cache packets when a data gap occurs due to a dropped packet or network outage. The cache packet time is settable, but should not exceed 0.5 sec in the Earthquake Early Warning network configuration. The rapid data transmission algorithm was tested with different communication media, including Internet, DSL, Wi-Fi, GPRS, etc. The test results show that the data latency via most communication media do not exceed 0.5 sec nominal from a first sample in the data packet. Detailed acquisition algorithm and results of data transmission via different communication media are presented.
The Statistical Loop Analyzer (SLA)
NASA Technical Reports Server (NTRS)
Lindsey, W. C.
1985-01-01
The statistical loop analyzer (SLA) is designed to automatically measure the acquisition, tracking and frequency stability performance characteristics of symbol synchronizers, code synchronizers, carrier tracking loops, and coherent transponders. Automated phase lock and system level tests can also be made using the SLA. Standard baseband, carrier and spread spectrum modulation techniques can be accomodated. Through the SLA's phase error jitter and cycle slip measurements the acquisition and tracking thresholds of the unit under test are determined; any false phase and frequency lock events are statistically analyzed and reported in the SLA output in probabilistic terms. Automated signal drop out tests can be performed in order to trouble shoot algorithms and evaluate the reacquisition statistics of the unit under test. Cycle slip rates and cycle slip probabilities can be measured using the SLA. These measurements, combined with bit error probability measurements, are all that are needed to fully characterize the acquisition and tracking performance of a digital communication system.
NASA Astrophysics Data System (ADS)
Fitzgerald, Ryan; Karanassios, Vassili
2017-05-01
There are many applications requiring chemical analysis in the field and analytical results in (near) real-time. For example, when accidental spills occur. In others, collecting samples in the field followed by analysis in a lab increases costs and introduces time-delays. In such cases, "bring part of the lab to the sample" would be ideal. Toward this ideal (and to further reduce size and weight), we developed a relatively inexpensive, battery-operated, wireless data acquisition hardware system around an Arduino nano micro-controller and a 16-bit ADC (Analog-to- Digital Converter) with a max sampling rate of 860 samples/s. The hardware communicates the acquired data using low-power Bluetooth. Software for data acquisition and data display was written in Python. Potential ways of making the hardware-software approach described here a part of the Internet-of-Things (IoT) are presented.
CytometryML and other data formats
NASA Astrophysics Data System (ADS)
Leif, Robert C.
2006-02-01
Cytology automation and research will be enhanced by the creation of a common data format. This data format would provide the pathology and research communities with a uniform way for annotating and exchanging images, flow cytometry, and associated data. This specification and/or standard will include descriptions of the acquisition device, staining, the binary representations of the image and list-mode data, the measurements derived from the image and/or the list-mode data, and descriptors for clinical/pathology and research. An international, vendor-supported, non-proprietary specification will allow pathologists, researchers, and companies to develop and use image capture/analysis software, as well as list-mode analysis software, without worrying about incompatibilities between proprietary vendor formats. Presently, efforts to create specifications and/or descriptions of these formats include the Laboratory Digital Imaging Project (LDIP) Data Exchange Specification; extensions to the Digital Imaging and Communications in Medicine (DICOM); Open Microscopy Environment (OME); Flowcyt, an extension to the present Flow Cytometry Standard (FCS); and CytometryML. The feasibility of creating a common data specification for digital microscopy and flow cytometry in a manner consistent with its use for medical devices and interoperability with both hospital information and picture archiving systems has been demonstrated by the creation of the CytometryML schemas. The feasibility of creating a software system for digital microscopy has been demonstrated by the OME. CytometryML consists of schemas that describe instruments and their measurements. These instruments include digital microscopes and flow cytometers. Optical components including the instruments' excitation and emission parts are described. The description of the measurements made by these instruments includes the tagged molecule, data acquisition subsystem, and the format of the list-mode and/or image data. Many of the CytometryML data-types are based on the Digital Imaging and Communications in Medicine (DICOM). Binary files for images and list-mode data have been created and read.
Cooper, Virgil N; Oshiro, Thomas; Cagnon, Christopher H; Bassett, Lawrence W; McLeod-Stockmann, Tyler M; Bezrukiy, Nikita V
2003-10-01
Digital detectors in mammography have wide dynamic range in addition to the benefit of decoupled acquisition and display. How wide the dynamic range is and how it compares to film-screen systems in the clinical x-ray exposure domain are unclear. In this work, we compare the effective dynamic ranges of film-screen and flat panel mammography systems, along with the dynamic ranges of their component image receptors in the clinical x-ray exposure domain. An ACR mammography phantom was imaged using variable mAs (exposure) values for both systems. The dynamic range of the contrast-limited film-screen system was defined as that ratio of mAs (exposure) values for a 26 kVp Mo/Mo (HVL=0.34 mm Al) beam that yielded passing phantom scores. The same approach was done for the noise-limited digital system. Data from three independent observers delineated a useful phantom background optical density range of 1.27 to 2.63, which corresponded to a dynamic range of 2.3 +/- 0.53. The digital system had a dynamic range of 9.9 +/- 1.8, which was wider than the film-screen system (p<0.02). The dynamic range of the film-screen system was limited by the dynamic range of the film. The digital detector, on the other hand, had an estimated dynamic range of 42, which was wider than the dynamic range of the digital system in its entirety by a factor of 4. The generator/tube combination was the limiting factor in determining the digital system's dynamic range.
Method and apparatus for reading meters from a video image
Lewis, Trevor J.; Ferguson, Jeffrey J.
1997-01-01
A method and system to enable acquisition of data about an environment from one or more meters using video images. One or more meters are imaged by a video camera and the video signal is digitized. Then, each region of the digital image which corresponds to the indicator of the meter is calibrated and the video signal is analyzed to determine the value indicated by each meter indicator. Finally, from the value indicated by each meter indicator in the calibrated region, a meter reading is generated. The method and system offer the advantages of automatic data collection in a relatively non-intrusive manner without making any complicated or expensive electronic connections, and without requiring intensive manpower.
Study on data acquisition system based on reconfigurable cache technology
NASA Astrophysics Data System (ADS)
Zhang, Qinchuan; Li, Min; Jiang, Jun
2018-03-01
Waveform capture rate is one of the key features of digital acquisition systems, which represents the waveform processing capability of the system in a unit time. The higher the waveform capture rate is, the larger the chance to capture elusive events is and the more reliable the test result is. First, this paper analyzes the impact of several factors on the waveform capture rate of the system, then the novel technology based on reconfigurable cache is further proposed to optimize system architecture, and the simulation results show that the signal-to-noise ratio of signal, capacity, and structure of cache have significant effects on the waveform capture rate. Finally, the technology is demonstrated by the engineering practice, and the results show that the waveform capture rate of the system is improved substantially without significant increase of system's cost, and the technology proposed has a broad application prospect.
NASA Astrophysics Data System (ADS)
Jo, Y. H.; Kim, J. Y.
2017-08-01
Three-dimensional digital documentation is an important technique for the maintenance and monitoring of cultural heritage sites. This study focuses on the three-dimensional digital documentation of the Magoksa Temple, Republic of Korea, using a combination of terrestrial laser scanning and unmanned aerial vehicle (UAV) photogrammetry. Terrestrial laser scanning mostly acquired the vertical geometry of the buildings. In addition, the digital orthoimage produced by UAV photogrammetry had higher horizontal data acquisition rate than that produced by terrestrial laser scanning. Thus, the scanning and UAV photogrammetry were merged by matching 20 corresponding points and an absolute coordinate system was established using seven ground control points. The final, complete threedimensional shape had perfect horizontal and vertical geometries. This study demonstrates the potential of integrating terrestrial laser scanning and UAV photogrammetry for three-dimensional digital documentation. This new technique is expected to contribute to the three-dimensional digital documentation and spatial analysis of cultural heritage sites.
NASA Astrophysics Data System (ADS)
Hayes, J.; Fai, S.; Kretz, S.; Ouimet, C.; White, P.
2015-08-01
The emerging field of digital fabrication is a process where three-dimensional datasets can be directly transferred to fabrication equipment to create models or even 1:1 building elements. In this paper, we will discuss the results of a collaboration between the Carleton Immersive Media Studio (CIMS), the Dominion Sculptor of Canada, and the Heritage Conservation Directorate (HCD) of Public Works and Government Services Canada (PWGSC), that utilizes digital fabrication technologies in the development of a digitally-assisted stone carving process. The collaboration couples the distinguished skill of the Dominion Sculptor with the latest digital acquisition and digital fabrication technologies for the reconstruction of a deteriorated stone bas-relief on the façade of the East Block building of the Parliament Buildings National Historic Site of Canada. The intention of the research is to establish a workflow of hybrid digital/analogue methodologies from acquisition through rehabilitation and ultimately to the fabrication of stone elements.
Model-based quantification of image quality
NASA Technical Reports Server (NTRS)
Hazra, Rajeeb; Miller, Keith W.; Park, Stephen K.
1989-01-01
In 1982, Park and Schowengerdt published an end-to-end analysis of a digital imaging system quantifying three principal degradation components: (1) image blur - blurring caused by the acquisition system, (2) aliasing - caused by insufficient sampling, and (3) reconstruction blur - blurring caused by the imperfect interpolative reconstruction. This analysis, which measures degradation as the square of the radiometric error, includes the sample-scene phase as an explicit random parameter and characterizes the image degradation caused by imperfect acquisition and reconstruction together with the effects of undersampling and random sample-scene phases. In a recent paper Mitchell and Netravelli displayed the visual effects of the above mentioned degradations and presented subjective analysis about their relative importance in determining image quality. The primary aim of the research is to use the analysis of Park and Schowengerdt to correlate their mathematical criteria for measuring image degradations with subjective visual criteria. Insight gained from this research can be exploited in the end-to-end design of optical systems, so that system parameters (transfer functions of the acquisition and display systems) can be designed relative to each other, to obtain the best possible results using quantitative measurements.
Imaging system design and image interpolation based on CMOS image sensor
NASA Astrophysics Data System (ADS)
Li, Yu-feng; Liang, Fei; Guo, Rui
2009-11-01
An image acquisition system is introduced, which consists of a color CMOS image sensor (OV9620), SRAM (CY62148), CPLD (EPM7128AE) and DSP (TMS320VC5509A). The CPLD implements the logic and timing control to the system. SRAM stores the image data, and DSP controls the image acquisition system through the SCCB (Omni Vision Serial Camera Control Bus). The timing sequence of the CMOS image sensor OV9620 is analyzed. The imaging part and the high speed image data memory unit are designed. The hardware and software design of the image acquisition and processing system is given. CMOS digital cameras use color filter arrays to sample different spectral components, such as red, green, and blue. At the location of each pixel only one color sample is taken, and the other colors must be interpolated from neighboring samples. We use the edge-oriented adaptive interpolation algorithm for the edge pixels and bilinear interpolation algorithm for the non-edge pixels to improve the visual quality of the interpolated images. This method can get high processing speed, decrease the computational complexity, and effectively preserve the image edges.
Bischoff, Guido; Böröcz, Zoltan; Proll, Christian; Kleinheinz, Johannes; von Bally, Gert; Dirksen, Dieter
2007-08-01
Optical topometric 3D sensors such as laser scanners and fringe projection systems allow detailed digital acquisition of human body surfaces. For many medical applications, however, not only the current shape is important, but also its changes, e.g., in the course of surgical treatment. In such cases, time delays of several months between subsequent measurements frequently occur. A modular 3D coordinate measuring system based on the fringe projection technique is presented that allows 3D coordinate acquisition including calibrated color information, as well as the detection and visualization of deviations between subsequent measurements. In addition, parameters describing the symmetry of body structures are determined. The quantitative results of the analysis may be used as a basis for objective documentation of surgical therapy. The system is designed in a modular way, and thus, depending on the object of investigation, two or three cameras with different capabilities in terms of resolution and color reproduction can be utilized to optimize the set-up.
A home-built digital optical MRI console using high-speed serial links.
Tang, Weinan; Wang, Weimin; Liu, Wentao; Ma, Yajun; Tang, Xin; Xiao, Liang; Gao, Jia-Hong
2015-08-01
To develop a high performance, cost-effective digital optical console for scalable multichannel MRI. The console system was implemented with flexibility and efficiency based on a modular architecture with distributed pulse sequencers. High-speed serial links were optimally utilized to interconnect the system, providing fast digital communication with a multi-gigabit data rate. The conventional analog radio frequency (RF) chain was replaced with a digital RF manipulation. The acquisition electronics were designed in close proximity to RF coils and preamplifiers, using a digital optical link to transmit the MR signal. A prototype of the console was constructed with a broad frequency range from direct current to 100 MHz. A temporal resolution of 1 μs was achieved for both the RF and gradient operations. The MR signal was digitized in the scanner room with an overall dynamic range between 16 and 24 bits and was transmitted to a master controller over a duplex optic fiber with a high data rate of 3.125 gigabits per second. High-quality phantom and human images were obtained using the prototype on both 0.36T and 1.5T clinical MRI scanners. A homemade digital optical MRI console with high-speed serial interconnection has been developed to better serve imaging research and clinical applications. © 2014 Wiley Periodicals, Inc.
X-Ray Computed Tomography Monitors Damage in Composites
NASA Technical Reports Server (NTRS)
Baaklini, George Y.
1997-01-01
The NASA Lewis Research Center recently codeveloped a state-of-the-art x-ray CT facility (designated SMS SMARTSCAN model 100-112 CITA by Scientific Measurement Systems, Inc., Austin, Texas). This multipurpose, modularized, digital x-ray facility includes an imaging system for digital radiography, CT, and computed laminography. The system consists of a 160-kV microfocus x-ray source, a solid-state charge-coupled device (CCD) area detector, a five-axis object-positioning subassembly, and a Sun SPARCstation-based computer system that controls data acquisition and image processing. The x-ray source provides a beam spot size down to 3 microns. The area detector system consists of a 50- by 50- by 3-mm-thick terbium-doped glass fiber-optic scintillation screen, a right-angle mirror, and a scientific-grade, digital CCD camera with a resolution of 1000 by 1018 pixels and 10-bit digitization at ambient cooling. The digital output is recorded with a high-speed, 16-bit frame grabber that allows data to be binned. The detector can be configured to provide a small field-of-view, approximately 45 by 45 mm in cross section, or a larger field-of-view, approximately 60 by 60 mm in cross section. Whenever the highest spatial resolution is desired, the small field-of-view is used, and for larger samples with some reduction in spatial resolution, the larger field-of-view is used.
Van Rinsveld, Amandine; Schiltz, Christine; Landerl, Karin; Brunner, Martin; Ugen, Sonja
2016-08-01
Differences between languages in terms of number naming systems may lead to performance differences in number processing. The current study focused on differences concerning the order of decades and units in two-digit number words (i.e., unit-decade order in German but decade-unit order in French) and how they affect number magnitude judgments. Participants performed basic numerical tasks, namely two-digit number magnitude judgments, and we used the compatibility effect (Nuerk et al. in Cognition 82(1):B25-B33, 2001) as a hallmark of language influence on numbers. In the first part we aimed to understand the influence of language on compatibility effects in adults coming from German or French monolingual and German-French bilingual groups (Experiment 1). The second part examined how this language influence develops at different stages of language acquisition in individuals with increasing bilingual proficiency (Experiment 2). Language systematically influenced magnitude judgments such that: (a) The spoken language(s) modulated magnitude judgments presented as Arabic digits, and (b) bilinguals' progressive language mastery impacted magnitude judgments presented as number words. Taken together, the current results suggest that the order of decades and units in verbal numbers may qualitatively influence magnitude judgments in bilinguals and monolinguals, providing new insights into how number processing can be influenced by language(s).
From Marginal Adjustments to Meaningful Change: Rethinking Weapon System Acquisition
2010-01-01
phones, digital cameras, Blackberries , GPS navigation systems, Bluetooth headsets, et cetera. To achieve these breakthroughs, businesses accept a greater...informing the detailed design phase—is less valid. For instance, even with advances in computational fl uid dynamics, wind tunnel testing and live fl ight...of Federal Procurement Pol- icy, 2007. Antón, Philip S., Eugene C. Gritton, Richard Mesic, and Paul Steinberg, Wind Tunnel and Propulsion Test
Automatic Data Processing Equipment (ADPE) acquisition plan for the medical sciences
NASA Technical Reports Server (NTRS)
1979-01-01
An effective mechanism for meeting the SLSD/MSD data handling/processing requirements for Shuttle is discussed. The ability to meet these requirements depends upon the availability of a general purpose high speed digital computer system. This system is expected to implement those data base management and processing functions required across all SLSD/MSD programs during training, laboratory operations/analysis, simulations, mission operations, and post mission analysis/reporting.
Data acquisition system for chemical kinetic studies
Zhu, Yu-zhen; Zhou, Xin; Zang, Xiang-sheng
1989-01-01
A microcomputer-interfaced data acquisition system for chemical kinetics (interfacing with laboratory analogue instruments) has been developed. Analogue signals from instruments used in kinetics experiments are amplifed by a wide-range adjustable high-gain operational amplifier and smoothed by an op-based filter, and then digitized at rates of up to 104 samples per channel by an ADC 0816 digitizer. The ADC data transfer and manipulation routine was written in Assembler code and in high-level language; the graphics package and data treatment package is in Basic. For the various sampling speeds, all of the program can be written using Basic-Assembler or completely in Assembler if a high sampling rate is needed. Several numerical treatment methods for chemical kinetics have been utilized to smooth the data from experiments. The computer-interfaced system for second-order chemical kinetic studies was applied to the determination of the rate constant of the saponification of ethyl acetate at 35°C. For this specific problem, an averaging treatment was used which can be called an interval method. The use of this method avoids the diffcully of measuring the starting time of the reaction. Two groups of experimental data and results were used to evaluate the systems performance. All of the results obtained are in agreement with the reference value. PMID:18925219
NASA Technical Reports Server (NTRS)
Hammond, P. L.
1979-01-01
This manual describes the use of the primary ultrasonics task (PUT) and the transducer characterization system (XC) for the collection, processing, and recording of data received from a pulse-echo ultrasonic system. Both PUT and XC include five primary functions common to many real-time data acquisition systems. Some of these functions are implemented using the same code in both systems. The solicitation and acceptance of operator control input is emphasized. Those operations not under user control are explained.
Enterprise digital assistants: the progression of wireless clinical computing.
Bergeron, Bryan P
2002-01-01
By virtue of increasingly pervasive wireless connectivity, the proliferation of wireless handheld devices in clinical care is rapidly transforming the concept of the personal digital assistant (PDA) to the enterprise digital assistant (EDA). Wireless handheld devices are becoming extensions of the central hospital information system, in which it's understood that the health care enterprise, not the clinician carrying the information-dispensing device, owns the data. The practical implication for clinicians is that, despite the potential long-term benefits of seamless, just-in-time clinical data access, this paradigm shift portends decreased efficiency in the short term, as clinicians duplicate clinical data collection on private devices. Assuming eventual clinician acceptance, EDAs can form the basis of a national real-time clinical data acquisition system that ensures uniform prescribing, decision support, and diagnosis, and the means for tracking unusual disease presentation patterns that could be indicative of bioterrorism or natural disease outbreaks.
Status of the RF BPM upgrade at the Advanced Photon Source.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pietryla, A.; Bui, H.; Decker, G.
2008-01-01
The Advanced Photon Source (APS),a third-generation synchrotron light source, has been in operation for eleven years. The monopulse radio frequency (rf) beam position monitor (BPM) is one of three BPM types now employed in the storage ring at the APS. It is a broadband (10 MHz) system designed to measure single-turn and multi-turn beam positions, but it suffers from an aging data acquisition system. The replacement BPM system retains the existing monopulse receivers and replaces the data acquisition system with high-speed analog-to-digital converters (ADCs) and a field-programmable gate array (FPGA) that performs the signal processing. A first-article system has beenmore » constructed and is currently being evaluated. This paper presents the results of testing of the first-article system as well as the progress made in other areas of this upgrade effort.« less
Forecasting of construction and demolition waste in Brazil.
Paz, Diogo Hf; Lafayette, Kalinny Pv
2016-08-01
The objective of this article is to develop a computerised tool (software) that facilitates the analysis of strategies for waste management on construction sites through the use of indicators of construction and demolition waste generation. The development involved the following steps: knowledge acquisition, structuring the system, coding and system evaluation. The step of knowledge acquisition aims to provide subsidies for the representation of them through models. In the step of structuring the system, it was presented the structuring and formalisation of knowledge for the development of the system, and has two stages: the construction of the conceptual model and the subsequent instantiation of the model. The coding system aims to implement (code) the conceptual model developed in a model played by computer (digital). The results showed that the system is very useful and applicable in construction sites, helping to improve the quality of waste management, and creating a database that will support new research. © The Author(s) 2016.
NASA Astrophysics Data System (ADS)
Braun, Walter; Eglin, Peter; Abello, Ricard
1993-02-01
Spread Spectrum Code Division Multiplex is an attractive scheme for the transmission of multiple signals over a satellite transponder. By using orthogonal or quasi-orthogonal spreading codes the interference between the users can be virtually eliminated. However, the acquisition and tracking of the spreading code phase can not take advantage of the code orthogonality since sequential acquisition and Delay-Locked loop tracking depend on correlation with code phases other than the optimal despreading phase. Hence, synchronization is a critical issue in such a system. A demonstration hardware for the verification of the orthogonal CDM synchronization and data transmission concept is being designed and implemented. The system concept, the synchronization scheme, and the implementation are described. The performance of the system is discussed based on computer simulations.
The data acquisition and reduction challenge at the Large Hadron Collider.
Cittolin, Sergio
2012-02-28
The Large Hadron Collider detectors are technological marvels-which resemble, in functionality, three-dimensional digital cameras with 100 Mpixels-capable of observing proton-proton (pp) collisions at the crossing rate of 40 MHz. Data handling limitations at the recording end imply the selection of only one pp event out of each 10(5). The readout and processing of this huge amount of information, along with the selection of the best approximately 200 events every second, is carried out by a trigger and data acquisition system, supplemented by a sophisticated control and monitor system. This paper presents an overview of the challenges that the development of these systems has presented over the past 15 years. It concludes with a short historical perspective, some lessons learnt and a few thoughts on the future.
Bravo-Zanoguera, Miguel E; Laris, Casey A; Nguyen, Lam K; Oliva, Mike; Price, Jeffrey H
2007-01-01
Efficient image cytometry of a conventional microscope slide means rapid acquisition and analysis of 20 gigapixels of image data (at 0.3-microm sampling). The voluminous data motivate increased acquisition speed to enable many biomedical applications. Continuous-motion time-delay-and-integrate (TDI) scanning has the potential to speed image acquisition while retaining sensitivity, but the challenge of implementing high-resolution autofocus operating simultaneously with acquisition has limited its adoption. We develop a dynamic autofocus system for this need using: 1. a "volume camera," consisting of nine fiber optic imaging conduits to charge-coupled device (CCD) sensors, that acquires images in parallel from different focal planes, 2. an array of mixed analog-digital processing circuits that measure the high spatial frequencies of the multiple image streams to create focus indices, and 3. a software system that reads and analyzes the focus data streams and calculates best focus for closed feedback loop control. Our system updates autofocus at 56 Hz (or once every 21 microm of stage travel) to collect sharply focused images sampled at 0.3x0.3 microm(2)/pixel at a stage speed of 2.3 mms. The system, tested by focusing in phase contrast and imaging long fluorescence strips, achieves high-performance closed-loop image-content-based autofocus in continuous scanning for the first time.
Using a Digital Game as an Advance Organizer
ERIC Educational Resources Information Center
Denham, André R.
2018-01-01
The use of digital games as an instructional tool has garnered increasing attention in the education community. Empirical work supported by theory on the learning affordances of digital games allowed the game-based learning community to arrive at the consensus that digital games provide an excellent medium for the acquisition of skills and the…
Target recognition and phase acquisition by using incoherent digital holographic imaging
NASA Astrophysics Data System (ADS)
Lee, Munseob; Lee, Byung-Tak
2017-05-01
In this study, we proposed the Incoherent Digital Holographic Imaging (IDHI) for recognition and phase information of dedicated target. Although recent development of a number of target recognition techniques such as LIDAR, there have limited success in target discrimination, in part due to low-resolution, low scanning speed, and computation power. In the paper, the proposed system consists of the incoherent light source, such as LED, Michelson interferometer, and digital CCD for acquisition of four phase shifting image. First of all, to compare with relative coherence, we used a source as laser and LED, respectively. Through numerical reconstruction by using the four phase shifting method and Fresnel diffraction method, we recovered the intensity and phase image of USAF resolution target apart from about 1.0m distance. In this experiment, we show 1.2 times improvement in resolution compared to conventional imaging. Finally, to confirm the recognition result of camouflaged targets with the same color from background, we carry out to test holographic imaging in incoherent light. In this result, we showed the possibility of a target detection and recognition that used three dimensional shape and size signatures, numerical distance from phase information of obtained holographic image.
Vo, T D; Dwyer, G; Szeto, H H
1986-04-01
A relatively powerful and inexpensive microcomputer-based system for the spectral analysis of the EEG is presented. High resolution and speed is achieved with the use of recently available large-scale integrated circuit technology with enhanced functionality (INTEL Math co-processors 8087) which can perform transcendental functions rapidly. The versatility of the system is achieved with a hardware organization that has distributed data acquisition capability performed by the use of a microprocessor-based analog to digital converter with large resident memory (Cyborg ISAAC-2000). Compiled BASIC programs and assembly language subroutines perform on-line or off-line the fast Fourier transform and spectral analysis of the EEG which is stored as soft as well as hard copy. Some results obtained from test application of the entire system in animal studies are presented.
Development of an MRI-compatible digital SiPM detector stack for simultaneous PET/MRI.
Düppenbecker, Peter M; Weissler, Bjoern; Gebhardt, Pierre; Schug, David; Wehner, Jakob; Marsden, Paul K; Schulz, Volkmar
2016-02-01
Advances in solid-state photon detectors paved the way to combine positron emission tomography (PET) and magnetic resonance imaging (MRI) into highly integrated, truly simultaneous, hybrid imaging systems. Based on the most recent digital SiPM technology, we developed an MRI-compatible PET detector stack, intended as a building block for next generation simultaneous PET/MRI systems. Our detector stack comprises an array of 8 × 8 digital SiPM channels with 4 mm pitch using Philips Digital Photon Counting DPC 3200-22 devices, an FPGA for data acquisition, a supply voltage control system and a cooling infrastructure. This is the first detector design that allows the operation of digital SiPMs simultaneously inside an MRI system. We tested and optimized the MRI-compatibility of our detector stack on a laboratory test bench as well as in combination with a Philips Achieva 3 T MRI system. Our design clearly reduces distortions of the static magnetic field compared to a conventional design. The MRI static magnetic field causes weak and directional drift effects on voltage regulators, but has no direct impact on detector performance. MRI gradient switching initially degraded energy and timing resolution. Both distortions could be ascribed to voltage variations induced on the bias and the FPGA core voltage supply respectively. Based on these findings, we improved our detector design and our final design shows virtually no energy or timing degradations, even during heavy and continuous MRI gradient switching. In particular, we found no evidence that the performance of the DPC 3200-22 digital SiPM itself is degraded by the MRI system.
NASA Astrophysics Data System (ADS)
Creasy, N.; Gardner, J.; Spritzer, J. M.; Keneally, I.; Glen, J. M.; McPhee, D.; Klemperer, S. L.
2013-12-01
Since 2006, Stanford University, USGS, and UC Berkeley collaboratively maintain five permanent stations, to measure electric and magnetic data from 0.01 to 40Hz. Each station consists of three orthogonal coil magnetometers and two orthogonal 100m electrodes. The acquisition of ULFEM data helps study possible correlations between electromagnetic fields and seismic events related to the San Andreas Fault system. The current data acquisition system uses a Quanterra Q330 analog-to-digital converter. In 2010, we began development of a new 24-bit digitizing system known as the ULFEM 2010 digitizer in order to replace the Q330. The design of the new recorder was to be more economical and better tailored to the ULFEM network by providing power, calibration, and improved protection from lightning. However, the prototype had many problems, including a daily phase shift, amplifying error, and a time delay of 15 seconds (Bowden, et al., AGU, 2010). Currently, comparative testing of an improved prototype, ULFEM 2013, and the Q330 is taking place at the Jasper Ridge ULFEM station. The ULFEM 2013 contains eight channels that record input from three coil magnetometers, four electrodes, and temperature. Testing is ongoing and involves comparing the coil magnetometer and electrode signals processed by the Q330 and ULFEM 2013 digitizer. Data from the two systems will be compared in the time and frequency domains, and analyses will include calculating error and cross correlations. The ULFEM 2013 digitizer provides power to the magnetometer sensors as well as a calibration coil system (CCS). Every 24 hours, the CCS sends a calibration signal to calibration induction coils fitted to each of the three orthogonal magnetometers with the aim of testing the sensors' sensitivity and accuracy. The CCS produces a frequency sweep of 0.08, 0.51, 5, and 10Hz, creating a field nearly ten times greater than the Earth's field. The CCS consists of open source hardware and an amplifying frequency generator. Another ongoing effort to calibrate the ULFEM stations uses ground motion produced by distant earthquakes. Because of our stations' relatively close proximity (approximately 70km apart), teleseismic earthquakes at epicentral distances produce near-identical long-period seismic arrivals at each ULFEM station. The ground motion generated by the surface waves of distant earthquakes causes displacement of the induction coils, inducing magnetic anomalies in the recorded data. Because the ground motion has nearly the same characteristics at each station, the magnetic anomalies observed should have similar amplitudes regardless of the station (though modulated by the local conductivity structure at each site). To identify these coseismic signals, magnetic data were compared against seismic data from each station. Magnetic signals are clearly visible due to passage of Love and Rayleigh waves from teleseismic earthquakes of magnitude >7.4 and their relative amplitudes provide additional confirmation of the stability of our coils and recording system prior to the installation of the CCS.
LabVIEW: a software system for data acquisition, data analysis, and instrument control.
Kalkman, C J
1995-01-01
Computer-based data acquisition systems play an important role in clinical monitoring and in the development of new monitoring tools. LabVIEW (National Instruments, Austin, TX) is a data acquisition and programming environment that allows flexible acquisition and processing of analog and digital data. The main feature that distinguishes LabVIEW from other data acquisition programs is its highly modular graphical programming language, "G," and a large library of mathematical and statistical functions. The advantage of graphical programming is that the code is flexible, reusable, and self-documenting. Subroutines can be saved in a library and reused without modification in other programs. This dramatically reduces development time and enables researchers to develop or modify their own programs. LabVIEW uses a large amount of processing power and computer memory, thus requiring a powerful computer. A large-screen monitor is desirable when developing larger applications. LabVIEW is excellently suited for testing new monitoring paradigms, analysis algorithms, or user interfaces. The typical LabVIEW user is the researcher who wants to develop a new monitoring technique, a set of new (derived) variables by integrating signals from several existing patient monitors, closed-loop control of a physiological variable, or a physiological simulator.
Data Visualization and Animation Lab (DVAL) overview
NASA Technical Reports Server (NTRS)
Stacy, Kathy; Vonofenheim, Bill
1994-01-01
The general capabilities of the Langley Research Center Data Visualization and Animation Laboratory is described. These capabilities include digital image processing, 3-D interactive computer graphics, data visualization and analysis, video-rate acquisition and processing of video images, photo-realistic modeling and animation, video report generation, and color hardcopies. A specialized video image processing system is also discussed.
NASA Technical Reports Server (NTRS)
Kriegler, F. J.; Christenson, D.; Gordon, M.; Kistler, R.; Lampert, S.; Marshall, R.; Mclaughlin, R.
1974-01-01
The MIDAS System is a third-generation, fast, multispectral recognition system able to keep pace with the large quantity and high rates of data acquisition from present and projected sensors. A principal objective of the MIDAS Program is to provide a system well interfaced with the human operator and thus to obtain large overall reductions in turn-around time and significant gains in throughout. The hardware and software generated in Phase I of the over-all program are described. The system contains a mini-computer to control the various high-speed processing elements in the data path and a classifier which implements an all-digital prototype multivariate-Gaussian maximum likelihood decision algorithm operating 2 x 105 pixels/sec. Sufficient hardware was developed to perform signature extraction from computer-compatible tapes, compute classifier coefficients, control the classifier operation, and diagnose operation. Diagnostic programs used to test MIDAS' operations are presented.
NASA Technical Reports Server (NTRS)
Sills, Joel W., Jr.; Griffin, Thomas J. (Technical Monitor)
2001-01-01
The Hubble Space Telescope (HST) Disturbance Verification Test (DVT) was conducted to characterize responses of the Observatory's new set of rigid solar array's (SA3) to thermally induced 'creak' or stiction releases. The data acquired in the DVT were used in verification of the HST Pointing Control System on-orbit performance, post-Servicing Mission 3B (SM3B). The test simulated the on-orbit environment on a deployed SA3 flight wing. Instrumentation for this test required pretest simulations in order to select the correct sensitivities. Vacuum compatible, highly accurate accelerometers and force gages were used for this test. The complexity of the test, as well as a short planning schedule, required a data acquisition system that was easy to configure, highly flexible, and extremely robust. A PC Windows oriented data acquisition system meets these requirements, allowing the test engineers to minimize the time required to plan and perform complex environmental test. The SA3 DVT provided a direct practical and complex demonstration of the versatility that PC based data acquisition systems provide. Two PC based data acquisition systems were assembled to acquire, process, distribute, and provide real time processing for several types of transducers used in the SA3 DVT. A high sample rate digital tape recorder was used to archive the sensor signals. The two systems provided multi-channel hardware and software architecture and were selected based on the test requirements. How these systems acquire and processes multiple data rates from different transducer types is discussed, along with the system hardware and software architecture.
NASA Astrophysics Data System (ADS)
Petravick, D.; Berman, E.; Nicinski, T.; Rechenmacher, R.; Oleynik, G.; Pordes, R.; Stoughton, C.
1991-06-01
As part of its expanding Astrophysics program, Fermilab is participating in the Digital Sky Survey (DSS). Fermilab is part of a collaboration involving University of Chicago, Princeton University, and the Institute of Advanced Studies (at Princeton). The DSS main results will be a photometric imaging survey and a redshift survey of galaxies and color-selected quasars over pi steradians of the Northern Galactic Cap. This paper focuses on our use of Computer Aided Software Engineering (CASE) in specifying the data system for DSS. Extensions to standard methodologies were necessary to compensate for tool shortcomings and to improve communication amongst the collaboration members. One such important extension was the incorporation of CASE information into the specification document.
NASA Astrophysics Data System (ADS)
Pape, Dennis R.
1990-09-01
The present conference discusses topics in optical image processing, optical signal processing, acoustooptic spectrum analyzer systems and components, and optical computing. Attention is given to tradeoffs in nonlinearly recorded matched filters, miniature spatial light modulators, detection and classification using higher-order statistics of optical matched filters, rapid traversal of an image data base using binary synthetic discriminant filters, wideband signal processing for emitter location, an acoustooptic processor for autonomous SAR guidance, and sampling of Fresnel transforms. Also discussed are an acoustooptic RF signal-acquisition system, scanning acoustooptic spectrum analyzers, the effects of aberrations on acoustooptic systems, fast optical digital arithmetic processors, information utilization in analog and digital processing, optical processors for smart structures, and a self-organizing neural network for unsupervised learning.
A seamless acquisition digital storage oscilloscope with three-dimensional waveform display
NASA Astrophysics Data System (ADS)
Yang, Kuojun; Tian, Shulin; Zeng, Hao; Qiu, Lei; Guo, Lianping
2014-04-01
In traditional digital storage oscilloscope (DSO), sampled data need to be processed after each acquisition. During data processing, the acquisition is stopped and oscilloscope is blind to the input signal. Thus, this duration is called dead time. With the rapid development of modern electronic systems, the effect of infrequent events becomes significant. To capture these occasional events in shorter time, dead time in traditional DSO that causes the loss of measured signal needs to be reduced or even eliminated. In this paper, a seamless acquisition oscilloscope without dead time is proposed. In this oscilloscope, three-dimensional waveform mapping (TWM) technique, which converts sampled data to displayed waveform, is proposed. With this technique, not only the process speed is improved, but also the probability information of waveform is displayed with different brightness. Thus, a three-dimensional waveform is shown to the user. To reduce processing time further, parallel TWM which processes several sampled points simultaneously, and dual-port random access memory based pipelining technique which can process one sampling point in one clock period are proposed. Furthermore, two DDR3 (Double-Data-Rate Three Synchronous Dynamic Random Access Memory) are used for storing sampled data alternately, thus the acquisition can continue during data processing. Therefore, the dead time of DSO is eliminated. In addition, a double-pulse test method is adopted to test the waveform capturing rate (WCR) of the oscilloscope and a combined pulse test method is employed to evaluate the oscilloscope's capture ability comprehensively. The experiment results show that the WCR of the designed oscilloscope is 6 250 000 wfms/s (waveforms per second), the highest value in all existing oscilloscopes. The testing results also prove that there is no dead time in our oscilloscope, thus realizing the seamless acquisition.
A seamless acquisition digital storage oscilloscope with three-dimensional waveform display
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Kuojun, E-mail: kuojunyang@gmail.com; Guo, Lianping; School of Electrical and Electronic Engineering, Nanyang Technological University
In traditional digital storage oscilloscope (DSO), sampled data need to be processed after each acquisition. During data processing, the acquisition is stopped and oscilloscope is blind to the input signal. Thus, this duration is called dead time. With the rapid development of modern electronic systems, the effect of infrequent events becomes significant. To capture these occasional events in shorter time, dead time in traditional DSO that causes the loss of measured signal needs to be reduced or even eliminated. In this paper, a seamless acquisition oscilloscope without dead time is proposed. In this oscilloscope, three-dimensional waveform mapping (TWM) technique, whichmore » converts sampled data to displayed waveform, is proposed. With this technique, not only the process speed is improved, but also the probability information of waveform is displayed with different brightness. Thus, a three-dimensional waveform is shown to the user. To reduce processing time further, parallel TWM which processes several sampled points simultaneously, and dual-port random access memory based pipelining technique which can process one sampling point in one clock period are proposed. Furthermore, two DDR3 (Double-Data-Rate Three Synchronous Dynamic Random Access Memory) are used for storing sampled data alternately, thus the acquisition can continue during data processing. Therefore, the dead time of DSO is eliminated. In addition, a double-pulse test method is adopted to test the waveform capturing rate (WCR) of the oscilloscope and a combined pulse test method is employed to evaluate the oscilloscope's capture ability comprehensively. The experiment results show that the WCR of the designed oscilloscope is 6 250 000 wfms/s (waveforms per second), the highest value in all existing oscilloscopes. The testing results also prove that there is no dead time in our oscilloscope, thus realizing the seamless acquisition.« less
Neuronal Morphology goes Digital: A Research Hub for Cellular and System Neuroscience
Parekh, Ruchi; Ascoli, Giorgio A.
2013-01-01
Summary The importance of neuronal morphology in brain function has been recognized for over a century. The broad applicability of “digital reconstructions” of neuron morphology across neuroscience sub-disciplines has stimulated the rapid development of numerous synergistic tools for data acquisition, anatomical analysis, three-dimensional rendering, electrophysiological simulation, growth models, and data sharing. Here we discuss the processes of histological labeling, microscopic imaging, and semi-automated tracing. Moreover, we provide an annotated compilation of currently available resources in this rich research “ecosystem” as a central reference for experimental and computational neuroscience. PMID:23522039
Digital phase demodulation for low-coherence interferometry-based fiber-optic sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Y.; Strum, R.; Stiles, D.
In this paper, we describe a digital phase demodulation scheme for low-coherence interferometry-based fiber-optic sensors by employing a simple generation of phase-shifted signals at the interrogation interferometer. The scheme allows a real-time calibration process and offers capability of measuring large variations (up to the coherence of the light source) at the bandwidth that is only limited by the data acquisition system. Finally, the proposed phase demodulation method is analytically derived and its validity and performance are experimentally verified using fiber-optic Fabry–Perot sensors for measurement of strains and vibrations.
Digital phase demodulation for low-coherence interferometry-based fiber-optic sensors
Liu, Y.; Strum, R.; Stiles, D.; ...
2017-11-20
In this paper, we describe a digital phase demodulation scheme for low-coherence interferometry-based fiber-optic sensors by employing a simple generation of phase-shifted signals at the interrogation interferometer. The scheme allows a real-time calibration process and offers capability of measuring large variations (up to the coherence of the light source) at the bandwidth that is only limited by the data acquisition system. Finally, the proposed phase demodulation method is analytically derived and its validity and performance are experimentally verified using fiber-optic Fabry–Perot sensors for measurement of strains and vibrations.
Data acquisition for the new muon g-2 experiment at Fermilab
Gohn, Wesley
2015-12-23
A new measurement of the anomalous magnetic moment of the muon, a μ ≡ (g - 2)/2, will be performed at the Fermi National Accelerator Laboratory. The most recent measurement, performed at Brookhaven National Laboratory and completed in 2001, shows a 3.3-3.6 standard deviation discrepancy with the Standard Model predictions for a μ. The new measurement will accumulate 21 times those statistics, measuring a μ to 140 ppb and reducing the uncertainty by a factor of 4. The data acquisition system for this experiment must have the ability to record deadtime-free records from 700 μs muon spills at a rawmore » data rate of 18 GB per second. Data will be collected using 1296 channels of μTCA-based 800 MSPS, 12 bit waveform digitizers and processed in a layered array of networked commodity processors with 24 GPUs working in parallel to perform a fast recording and processing of detector signals during the spill. The system will be controlled using the MIDAS data acquisition software package. Lastly, the described data acquisition system is currently being constructed, and will be fully operational before the start of the experiment in 2017.« less
NASA Technical Reports Server (NTRS)
Clark, D. L.; Cosgrove, M.; Vanvranken, R.; Park, H.; Fitzmaurice, M.
1989-01-01
Functions of acquisition, tracking, and point-ahead in space optical communications are being combined into a single system utilizing an area array detector. An analysis is presented of the feasibility concept. The key parameters are: optical power less than 1 pW at 0.86 micrometer, acquisition in less than 30 seconds in an acquisition field of view (FOV) of 1 mrad, tracking with 0.5 microrad rms noise at 1000 Hz update rate, and point ahead transfer function precision of 0.25 microrad over a region of 150 microrad. Currently available array detectors were examined. The most demanding specifications are low output noise, a high detection efficiency, a large number of pixels, and frame rates over 1kHz. A proof of concept (POC) demonstration system is currently being built utilizing the Kodak HS-40 detector (a 128 x 128 photodiode array with a 64 channel CCD readout architecture which can be operated at frame rates as high as 40,000/sec). The POC system implements a windowing scheme and special purpose digital signal processing electronic for matched filter acquisition and tracking algorithms.
Data Acquisition for the New Muon g-2 Experiment at Fermilab
NASA Astrophysics Data System (ADS)
Gohn, Wesley
2015-12-01
A new measurement of the anomalous magnetic moment of the muon,aμ≡ (g - 2)/2, will be performed at the Fermi National Accelerator Laboratory. The most recent measurement, performed at Brookhaven National Laboratory and completed in 2001, shows a 3.3-3.6 standard deviation discrepancy with the Standard Model predictions for aμ. The new measurement will accumulate 21 times those statistics, measuring aμ to 140 ppb and reducing the uncertainty by a factor of 4. The data acquisition system for this experiment must have the ability to record deadtime-free records from 700 μs muon spills at a raw data rate of 18 GB per second. Data will be collected using 1296 channels of μTCA-based 800 MHz, 12 bit waveform digitizers and processed in a layered array of networked commodity processors with 24 GPUs working in parallel to perform a fast recording and processing of detector signals during the spill. The system will be controlled using the MIDAS data acquisition software package. The described data acquisition system is currently being constructed, and will be fully operational before the start of the experiment in 2017.
A Satellite Frost Forecasting System for Florida
NASA Technical Reports Server (NTRS)
Martsolf, J. D.
1981-01-01
Since the first of two minicomputers that are the main components of the satellite frost forecast system was delivered in 1977, the system has evolved appreciably. A geostationary operational environmental satellite (GOES) system provides the satellite data. The freeze of January 12-14, 1981, was documented with increasing interest in potential of such systems. Satellite data is now acquired digitally rather than by redigitizing the GOES-Tap transmissions. Data acquisition is now automated, i.e., the computers are programmed to operate the system with little, if any, operation intervention.
NASA Astrophysics Data System (ADS)
Zhao, Shuangle; Zhang, Xueyi; Sun, Shengli; Wang, Xudong
2017-08-01
TI C2000 series digital signal process (DSP) chip has been widely used in electrical engineering, measurement and control, communications and other professional fields, DSP TMS320F28035 is one of the most representative of a kind. When using the DSP program, need data acquisition and data processing, and if the use of common mode C or assembly language programming, the program sequence, analogue-to-digital (AD) converter cannot be real-time acquisition, often missing a lot of data. The control low accelerator (CLA) processor can run in parallel with the main central processing unit (CPU), and the frequency is consistent with the main CPU, and has the function of floating point operations. Therefore, the CLA coprocessor is used in the program, and the CLA kernel is responsible for data processing. The main CPU is responsible for the AD conversion. The advantage of this method is to reduce the time of data processing and realize the real-time performance of data acquisition.
NASA Astrophysics Data System (ADS)
Mun, Seong K.; Freedman, Matthew T.; Gelish, Anthony; de Treville, Robert E.; Sheehy, Monet R.; Hansen, Mark; Hill, Mac; Zacharia, Elisabeth; Sullivan, Michael J.; Sebera, C. Wayne
1993-01-01
Image management and communications (IMAC) network, also known as picture archiving and communication system (PACS) consists of (1) digital image acquisition, (2) image review station (3) image storage device(s), image reading workstation, and (4) communication capability. When these subsystems are integrated over a high speed communication technology, possibilities are numerous in improving the timeliness and quality of diagnostic services within a hospital or at remote clinical sites. Teleradiology system uses basically the same hardware configuration together with a long distance communication capability. Functional characteristics of components are highlighted. Many medical imaging systems are already in digital form. These digital images constitute approximately 30% of the total volume of images produced in a radiology department. The remaining 70% of images include conventional x-ray films of the chest, skeleton, abdomen, and GI tract. Unless one develops a method of handling these conventional film images, global improvement in productivity in image management and radiology service throughout a hospital cannot be achieved. Currently, there are two method of producing digital information representing these conventional analog images for IMAC: film digitizers that scan the conventional films, and computed radiography (CR) that captures x-ray images using storage phosphor plate that is subsequently scanned by a laser beam.
NASA Astrophysics Data System (ADS)
Chi, Yuxi; Yu, Liping; Pan, Bing
2018-05-01
A low-cost, portable, robust and high-resolution single-camera stereo-digital image correlation (stereo-DIC) system for accurate surface three-dimensional (3D) shape and deformation measurements is described. This system adopts a single consumer-grade high-resolution digital Single Lens Reflex (SLR) camera and a four-mirror adaptor, rather than two synchronized industrial digital cameras, for stereo image acquisition. In addition, monochromatic blue light illumination and coupled bandpass filter imaging are integrated to ensure the robustness of the system against ambient light variations. In contrast to conventional binocular stereo-DIC systems, the developed pseudo-stereo-DIC system offers the advantages of low cost, portability, robustness against ambient light variations, and high resolution. The accuracy and precision of the developed single SLR camera-based stereo-DIC system were validated by measuring the 3D shape of a stationary sphere along with in-plane and out-of-plane displacements of a translated planar plate. Application of the established system to thermal deformation measurement of an alumina ceramic plate and a stainless-steel plate subjected to radiation heating was also demonstrated.
ERIC Educational Resources Information Center
Emesini, Nnenna Orieoma
2015-01-01
The study examined the pattern of acquisition of ICT-based skills by student-teachers and its implications for teacher education in Nigeria in this era of digitalization. The study was a survey research type with two research questions guiding it. The population for the study was 1,570, made up of 3rd and 4th year Faculty of Education students of…
Data-acquisition system for environmental monitoring aboard a twin-engined aircraft
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tichler, J.; Bernstein, H.; Brown, R.M.
A number of experimental platforms have been used in support of the Multistate Atmospheric Power Production Study (MAP3S) and the Coastal Meteorology programs at Brookhaven National Laboratory. These platforms include a twin-engine Britten Norman Islander aircraft, a motorized van, a variety of boats and temporary enclosures set up in the field. Each platform carried a data logger consisting of a multiplexer, an analog to digital (A/D) converter and a four track endless loop magnetic tape for data storage. In recent years it has become increasingly evident that the data loggers in use were no longer adequate. Since the aircraft providedmore » the most constraints on the data acquisition system as well as being the most important research platform, a data system was designed for that platform with the secondary goal that the system would serve as a prototype for systems to be used on other platforms.« less
Digital Beamforming Scatterometer
NASA Technical Reports Server (NTRS)
Rincon, Rafael F.; Vega, Manuel; Kman, Luko; Buenfil, Manuel; Geist, Alessandro; Hillard, Larry; Racette, Paul
2009-01-01
This paper discusses scatterometer measurements collected with multi-mode Digital Beamforming Synthetic Aperture Radar (DBSAR) during the SMAP-VEX 2008 campaign. The 2008 SMAP Validation Experiment was conducted to address a number of specific questions related to the soil moisture retrieval algorithms. SMAP-VEX 2008 consisted on a series of aircraft-based.flights conducted on the Eastern Shore of Maryland and Delaware in the fall of 2008. Several other instruments participated in the campaign including the Passive Active L-Band System (PALS), the Marshall Airborne Polarimetric Imaging Radiometer (MAPIR), and the Global Positioning System Reflectometer (GPSR). This campaign was the first SMAP Validation Experiment. DBSAR is a multimode radar system developed at NASA/Goddard Space Flight Center that combines state-of-the-art radar technologies, on-board processing, and advances in signal processing techniques in order to enable new remote sensing capabilities applicable to Earth science and planetary applications [l]. The instrument can be configured to operate in scatterometer, Synthetic Aperture Radar (SAR), or altimeter mode. The system builds upon the L-band Imaging Scatterometer (LIS) developed as part of the RadSTAR program. The radar is a phased array system designed to fly on the NASA P3 aircraft. The instrument consists of a programmable waveform generator, eight transmit/receive (T/R) channels, a microstrip antenna, and a reconfigurable data acquisition and processor system. Each transmit channel incorporates a digital attenuator, and digital phase shifter that enables amplitude and phase modulation on transmit. The attenuators, phase shifters, and calibration switches are digitally controlled by the radar control card (RCC) on a pulse by pulse basis. The antenna is a corporate fed microstrip patch-array centered at 1.26 GHz with a 20 MHz bandwidth. Although only one feed is used with the present configuration, a provision was made for separate corporate feeds for vertical and horizontal polarization. System upgrades to dual polarization are currently under way. The DBSAR processor is a reconfigurable data acquisition and processor system capable of real-time, high-speed data processing. DBSAR uses an FPGA-based architecture to implement digitally down-conversion, in-phase and quadrature (I/Q) demodulation, and subsequent radar specific algorithms. The core of the processor board consists of an analog-to-digital (AID) section, three Altera Stratix field programmable gate arrays (FPGAs), an ARM microcontroller, several memory devices, and an Ethernet interface. The processor also interfaces with a navigation board consisting of a GPS and a MEMS gyro. The processor has been configured to operate in scatterometer, Synthetic Aperture Radar (SAR), and altimeter modes. All the modes are based on digital beamforming which is a digital process that generates the far-field beam patterns at various scan angles from voltages sampled in the antenna array. This technique allows steering the received beam and controlling its beam-width and side-lobe. Several beamforming techniques can be implemented each characterized by unique strengths and weaknesses, and each applicable to different measurement scenarios. In Scatterometer mode, the radar is capable to.generate a wide beam or scan a narrow beam on transmit, and to steer the received beam on processing while controlling its beamwidth and side-lobe level. Table I lists some important radar characteristics
Analysis and optimisation of the convergence behaviour of the single channel digital tanlock loop
NASA Astrophysics Data System (ADS)
Al-Kharji Al-Ali, Omar; Anani, Nader; Al-Araji, Saleh; Al-Qutayri, Mahmoud
2013-09-01
The mathematical analysis of the convergence behaviour of the first-order single channel digital tanlock loop (SC-DTL) is presented. This article also describes a novel technique that allows controlling the convergence speed of the loop, i.e. the time taken by the phase-error to reach its steady-state value, by using a specialised controller unit. The controller is used to adjust the convergence speed so as to selectively optimise a given performance parameter of the loop. For instance, the controller may be used to speed up the convergence in order to increase the lock range and improve the acquisition speed. However, since increasing the lock range can degrade the noise immunity of the system, in a noisy environment the controller can slow down the convergence speed until locking is achieved. Once the system is in lock, the convergence speed can be increased to improve the acquisition speed. The performance of the SC-DTL system was assessed against similar arctan-based loops and the results demonstrate the success of the controller in optimising the performance of the SC-DTL loop. The results of the system testing using MATLAB/Simulink simulation are presented. A prototype of the proposed system was implemented using a field programmable gate array module and the practical results are in good agreement with those obtained by simulation.
A low-noise low-power EEG acquisition node for scalable brain-machine interfaces
NASA Astrophysics Data System (ADS)
Sullivan, Thomas J.; Deiss, Stephen R.; Cauwenberghs, Gert; Jung, Tzyy-Ping
2007-05-01
Electroencephalograph (EEG) recording systems offer a versatile, noninvasive window on the brain's spatio-temporal activity for many neuroscience and clinical applications. Our research aims at improving the spatial resolution and mobility of EEG recording by reducing the form factor, power drain and signal fanout of the EEG acquisition node in a scalable sensor array architecture. We present such a node integrated onto a dimesized circuit board that contains a sensor's complete signal processing front-end, including amplifier, filters, and analog-to-digital conversion. A daisy-chain configuration between boards with bit-serial output reduces the wiring needed. The circuit's low power consumption of 423 μW supports EEG systems with hundreds of electrodes to operate from small batteries for many hours. Coupling between the bit-serial output and the highly sensitive analog input due to dense integration of analog and digital functions on the circuit board results in a deterministic noise component in the output, larger than the intrinsic sensor and circuit noise. With software correction of this noise contribution, the system achieves an input-referred noise of 0.277 μVrms in the signal band of 1 to 100 Hz, comparable to the best medical-grade systems in use. A chain of seven nodes using EEG dry electrodes created in micro-electrical-mechanical system (MEMS) technology is demonstrated in a real-world setting.
Pursley, Randall H.; Salem, Ghadi; Devasahayam, Nallathamby; Subramanian, Sankaran; Koscielniak, Janusz; Krishna, Murali C.; Pohida, Thomas J.
2006-01-01
The integration of modern data acquisition and digital signal processing (DSP) technologies with Fourier transform electron paramagnetic resonance (FT-EPR) imaging at radiofrequencies (RF) is described. The FT-EPR system operates at a Larmor frequency (Lf) of 300 MHz to facilitate in vivo studies. This relatively low frequency Lf, in conjunction with our ~10 MHz signal bandwidth, enables the use of direct free induction decay time-locked subsampling (TLSS). This particular technique provides advantages by eliminating the traditional analog intermediate frequency downconversion stage along with the corresponding noise sources. TLSS also results in manageable sample rates that facilitate the design of DSP-based data acquisition and image processing platforms. More specifically, we utilize a high-speed field programmable gate array (FPGA) and a DSP processor to perform advanced real-time signal and image processing. The migration to a DSP-based configuration offers the benefits of improved EPR system performance, as well as increased adaptability to various EPR system configurations (i.e., software configurable systems instead of hardware reconfigurations). The required modifications to the FT-EPR system design are described, with focus on the addition of DSP technologies including the application-specific hardware, software, and firmware developed for the FPGA and DSP processor. The first results of using real-time DSP technologies in conjunction with direct detection bandpass sampling to implement EPR imaging at RF frequencies are presented. PMID:16243552
Cardiopulmonary data-acquisition system
NASA Technical Reports Server (NTRS)
Crosier, W. G.; Reed, R. A.
1981-01-01
Computerized system controls and monitors bicycle and treadmill cardiovascular stress tests. It acquires and reduces stress data and displays heart rate, blood pressure, workload, respiratory rate, exhaled-gas composition, and other variables. Data are printed on hard-copy terminal every 30 seconds for quick operator response to patient. Ergometer workload is controlled in real time according to experimental protocol. Collected data are stored directly on tape in analog form and on floppy disks in digital form for later processing.
International Instrumentation Symposium, 34th, Albuquerque, NM, May 2-6, 1988, Proceedings
NASA Astrophysics Data System (ADS)
Various papers on aerospace instrumentation are presented. The general topics addressed include: blast and shock, wind tunnel instrumentations and controls, digital/optical sensors, software design/development, special test facilities, fiber optic techniques, electro/fiber optical measurement systems, measurement uncertainty, real time systems, pressure. Also discussed are: flight test and avionics instrumentation, data acquisition techniques, computer applications, thermal force and displacement, science and government, modeling techniques, reentry vehicle testing, strain and pressure.
Software system design for the non-null digital Moiré interferometer
NASA Astrophysics Data System (ADS)
Chen, Meng; Hao, Qun; Hu, Yao; Wang, Shaopu; Li, Tengfei; Li, Lin
2016-11-01
Aspheric optical components are an indispensable part of modern optics systems. With the development of aspheric optical elements fabrication technique, high-precision figure error test method of aspheric surfaces is a quite urgent issue now. We proposed a digital Moiré interferometer technique (DMIT) based on partial compensation principle for aspheric and freeform surface measurement. Different from traditional interferometer, DMIT consists of a real and a virtual interferometer. The virtual interferometer is simulated with Zemax software to perform phase-shifting and alignment. We can get the results by a series of calculation with the real interferogram and virtual interferograms generated by computer. DMIT requires a specific, reliable software system to ensure its normal work. Image acquisition and data processing are two important parts in this system. And it is also a challenge to realize the connection between the real and virtual interferometer. In this paper, we present a software system design for DMIT with friendly user interface and robust data processing features, enabling us to acquire the figure error of the measured asphere. We choose Visual C++ as the software development platform and control the ideal interferometer by using hybrid programming with Zemax. After image acquisition and data transmission, the system calls image processing algorithms written with Matlab to calculate the figure error of the measured asphere. We test the software system experimentally. In the experiment, we realize the measurement of an aspheric surface and prove the feasibility of the software system.
Free-running ADC- and FPGA-based signal processing method for brain PET using GAPD arrays
NASA Astrophysics Data System (ADS)
Hu, Wei; Choi, Yong; Hong, Key Jo; Kang, Jihoon; Jung, Jin Ho; Huh, Youn Suk; Lim, Hyun Keong; Kim, Sang Su; Kim, Byung-Tae; Chung, Yonghyun
2012-02-01
Currently, for most photomultiplier tube (PMT)-based PET systems, constant fraction discriminators (CFD) and time to digital converters (TDC) have been employed to detect gamma ray signal arrival time, whereas anger logic circuits and peak detection analog-to-digital converters (ADCs) have been implemented to acquire position and energy information of detected events. As compared to PMT the Geiger-mode avalanche photodiodes (GAPDs) have a variety of advantages, such as compactness, low bias voltage requirement and MRI compatibility. Furthermore, the individual read-out method using a GAPD array coupled 1:1 with an array scintillator can provide better image uniformity than can be achieved using PMT and anger logic circuits. Recently, a brain PET using 72 GAPD arrays (4×4 array, pixel size: 3 mm×3 mm) coupled 1:1 with LYSO scintillators (4×4 array, pixel size: 3 mm×3 mm×20 mm) has been developed for simultaneous PET/MRI imaging in our laboratory. Eighteen 64:1 position decoder circuits (PDCs) were used to reduce GAPD channel number and three off-the-shelf free-running ADC and field programmable gate array (FPGA) combined data acquisition (DAQ) cards were used for data acquisition and processing. In this study, a free-running ADC- and FPGA-based signal processing method was developed for the detection of gamma ray signal arrival time, energy and position information all together for each GAPD channel. For the method developed herein, three DAQ cards continuously acquired 18 channels of pre-amplified analog gamma ray signals and 108-bit digital addresses from 18 PDCs. In the FPGA, the digitized gamma ray pulses and digital addresses were processed to generate data packages containing pulse arrival time, baseline value, energy value and GAPD channel ID. Finally, these data packages were saved to a 128 Mbyte on-board synchronous dynamic random access memory (SDRAM) and then transferred to a host computer for coincidence sorting and image reconstruction. In order to evaluate the functionality of the developed signal processing method, energy and timing resolutions for brain PET were measured via the placement of a 6 μCi 22Na point source at the center of the PET scanner. Furthermore the PET image of the hot rod phantom (rod diameter: from 2.5 mm to 6.5 mm) with activity of 1 mCi was simulated, and then image acquisition experiment was performed using the brain PET. Measured average energy resolution for 1152 GAPD channels and system timing resolution were 19.5% (FWHM%) and 2.7 ns (FWHM), respectively. With regard to the acquisition of the hot rod phantom image, rods could be resolved down to a diameter of 2.5 mm, which was similar to simulated results. The experimental results demonstrated that the signal processing method developed herein was successfully implemented for brain PET. This reduced the complexity, cost and developing duration for PET system relative to normal PET electronics, and it will obviously be useful for the development of high-performance investigational PET systems.
Development of Data Acquisition Set-up for Steady-state Experiments
NASA Astrophysics Data System (ADS)
Srivastava, Amit K.; Gupta, Arnab D.; Sunil, S.; Khan, Ziauddin
2017-04-01
For short duration experiments, generally digitized data is transferred for processing and storage after the experiment whereas in case of steady-state experiment the data is acquired, processed, displayed and stored continuously in pipelined manner. This requires acquiring data through special techniques for storage and on-the-go viewing data to display the current data trends for various physical parameters. A small data acquisition set-up is developed for continuously acquiring signals from various physical parameters at different sampling rate for long duration experiment. This includes the hardware set-up for signal digitization, Field Programmable Gate Arrays (FPGA) based timing system for clock synchronization and event/trigger distribution, time slicing of data streams for storage of data chunks to enable viewing of data during acquisition and channel profile display through down sampling etc. In order to store a long data stream of indefinite/long time duration, the data stream is divided into data slices/chunks of user defined time duration. Data chunks avoid the problem of non-access of server data until the channel data file is closed at the end of the long duration experiment. A graphical user interface has been developed in Lab VIEW application development environment for configuring the data acquisition hardware and storing data chunks on local machine as well as at remote data server through Python for further data access. The data plotting and analysis utilities have been developed with Python software, which provides tools for further data processing. This paper describes the development and implementation of data acquisition for steady-state experiment.
Bussandri, S; Prina, I; Acosta, R H; Buljubasich, L
2018-04-01
We demonstrate that the relative phases in the refocusing pulses of multipulse sequences can compensate for pulse errors and off-resonant effects, which are commonly encountered in J-spectroscopy when CPMG is used for acquisition. The use of supercycles has been considered many times in the past, but always from the view point of time-domain NMR, that is, in an effort to lengthen the decay of the magnetization. Here we use simple spin-coupled systems, in which the quantum evolution of the system can be simulated and contrasted to experimental results. In order to explore fine details, we resort to partial J-spectroscopy, that is, to the acquisition of J-spectra of a defined multiplet, which is acquired with a suitable digital filter. We unambiguously show that when finite radiofrequency pulses are considered, the off-resonance effects on nearby multiplets affects the dynamics of the spins within the spectral window under acquisition. Moreover, the most robust phase cycling scheme for our setup consists of a 4-pulse cycle, with phases yyyy‾ or xxxx‾ for an excitation pulse with phase x. We show simulated and experimental results in both thermally polarized and PHIP hyperpolarized systems. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Bussandri, S.; Prina, I.; Acosta, R. H.; Buljubasich, L.
2018-04-01
We demonstrate that the relative phases in the refocusing pulses of multipulse sequences can compensate for pulse errors and off-resonant effects, which are commonly encountered in J-spectroscopy when CPMG is used for acquisition. The use of supercycles has been considered many times in the past, but always from the view point of time-domain NMR, that is, in an effort to lengthen the decay of the magnetization. Here we use simple spin-coupled systems, in which the quantum evolution of the system can be simulated and contrasted to experimental results. In order to explore fine details, we resort to partial J-spectroscopy, that is, to the acquisition of J-spectra of a defined multiplet, which is acquired with a suitable digital filter. We unambiguously show that when finite radiofrequency pulses are considered, the off-resonance effects on nearby multiplets affects the dynamics of the spins within the spectral window under acquisition. Moreover, the most robust phase cycling scheme for our setup consists of a 4-pulse cycle, with phases yy yy ‾ or xx xx ‾ for an excitation pulse with phase x. We show simulated and experimental results in both thermally polarized and PHIP hyperpolarized systems.
NASA Astrophysics Data System (ADS)
Dimiduk, D.; Caylor, M.; Williamson, D.; Larson, L.
1995-01-01
The High Altitude Balloon Experiment demonstration of Acquisition, Tracking, and Pointing (HABE-ATP) is a system built around balloon-borne payload which is carried to a nominal 26-km altitude. The goal is laser tracking thrusting theater and strategic missiles, and then pointing a surrogate laser weapon beam, with performance levels end a timeline traceable to operational laser weapon system requirements. This goal leads to an experiment system design which combines hardware from many technology areas: an optical telescope and IR sensors; an advanced angular inertial reference; a flexible multi-level of actuation digital control system; digital tracking processors which incorporate real-time image analysis and a pulsed, diode-pumped solid state tracking laser. The system components have been selected to meet the overall experiment goals of tracking unmodified boosters at 50- 200 km range. The ATP system on HABE must stabilize and control a relative line of sight between the platform and the unmodified target booster to a 1 microrad accuracy. The angular pointing reference system supports both open loop and closed loop track modes; GPS provides absolute position reference. The control system which positions the line of sight for the ATP system must sequence through accepting a state vector handoff, closed-loop passive IR acquisition, passive IR intermediate fine track, active fine track, and then finally aimpoint determination and maintenance modes. Line of sight stabilization to fine accuracy levels is accomplished by actuating wide bandwidth fast steering mirrors (FSM's). These control loops off-load large-amplitude errors to the outer gimbal in order to remain within the limited angular throw of the FSM's. The SWIR acquisition and MWIR intermediate fine track sensors (both PtSi focal planes) image the signature of the rocket plume. After Hard Body Handover (HBHO), active fine tracking is conducted with a visible focal plane viewing the laser-illuminated target rocket body. The track and fire control performance must be developed to the point that an aimpoint can be selected, maintained, and then track performance scored with a low-power 'surrogate' weapon beam. Extensive instrumentation monitors not only the optical sensors and the video data, but all aspects of each of the experiment subsystems such as the control system, the experiment flight vehicle, and the tracker. Because the system is balloon-borne and recoverable, it is expected to fly many times during its development program.
Reinforced Concrete Beams under Combined Axial and Lateral Loading.
1982-01-01
NUMBER(s) Golden E. Lane, Jr. F29601-76-C-015 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT . PROJECT, TASK AREA 4 WORK UNIT NUMBERS New...acquisition system. The voltage output from the system’s digital multimeter was recorded on a floppy disk. The sampling rate was approximately two... samples per second for every channel. The same system was used to reduce and plot the data. TEST APPARATUS Figure 9 shows a schematic drawing of the load
Chen, Chih-Yuan; Chang, Chia-Lin; Chang, Chih-Wei; Lai, Shin-Chi; Chien, Tsung-Fu; Huang, Hong-Yi; Chiou, Jin-Chern; Luo, Ching-Hsing
2013-01-01
This work describes a bio-potential acquisition system for portable ubiquitous healthcare applications using flexible polydimethylsiloxane dry electrodes (FPDEs) and a low-power recording circuit. This novel FPDE used Au as the skin contact layer, which was made using a CO2 laser and replica method technology. The FPDE was revised from a commercial bio-potential electrode with a conductive snap using dry electrodes rather than wet electrodes that proposed reliable and robust attachment for the purpose of measurement, and attaching velcro made it wearable on the forearm for bio-potential applications. Furthermore, this study proposes a recording device to store bio-potential signal data and provides portability and low-power consumption for the proposed acquisition system. To acquire differential bio-potentials, such as electrocardiogram (ECG) signals, the proposed recording device includes a low-power front-end acquisition chip fabricated using a complementary metal-oxide-semiconductor (CMOS) process, a commercial microcontroller (MSP430F149), and a secure digital (SD) card for portable healthcare applications. The proposed system can obtain ECG signals efficiently and are comfortable to the skin. The power consumption of the system is about 85 mW for continuous working over a 3 day period with two AA batteries. It can also be used as a compact Holter ECG system. PMID:23459390
Performance evaluation of the time delay digital tanlock loop architectures
NASA Astrophysics Data System (ADS)
Al-Kharji Al-Ali, Omar; Anani, Nader; Al-Qutayri, Mahmoud; Al-Araji, Saleh; Ponnapalli, Prasad
2016-01-01
This article presents the architectures, theoretical analyses and testing results of modified time delay digital tanlock loop (TDTLs) system. The modifications to the original TDTL architecture were introduced to overcome some of the limitations of the original TDTL and to enhance the overall performance of the particular systems. The limitations addressed in this article include the non-linearity of the phase detector, the restricted width of the locking range and the overall system acquisition speed. Each of the modified architectures was tested by subjecting the system to sudden positive and negative frequency steps and comparing its response with that of the original TDTL. In addition, the performance of all the architectures was evaluated under noise-free as well as noisy environments. The extensive simulation results using MATLAB/SIMULINK demonstrate that the new architectures overcome the limitations they addressed and the overall results confirmed significant improvements in performance compared to the conventional TDTL system.
NASA Technical Reports Server (NTRS)
Kriegler, F. J.; Christenson, D.; Gordon, M.; Kistler, R.; Lampert, S.; Marshall, R.; Mclaughlin, R.
1974-01-01
The Midas System is a third-generation, fast, multispectral recognition system able to keep pace with the large quantity and high rates of data acquisition from present and projected sensors. A principal objective of the MIDAS Program is to provide a system well interfaced with the human operator and thus to obtain large overall reductions in turn-around time and significant gains in throughput. The hardware and software generated in Phase I of the overall program are described. The system contains a mini-computer to control the various high-speed processing elements in the data path and a classifier which implements an all-digital prototype multivariate-Gaussian maximum likelihood decision algorithm operating at 2 x 100,000 pixels/sec. Sufficient hardware was developed to perform signature extraction from computer-compatible tapes, compute classifier coefficients, control the classifier operation, and diagnose operation. The MIDAS construction and wiring diagrams are given.
The development of an airborne information management system for flight test
NASA Technical Reports Server (NTRS)
Bever, Glenn A.
1992-01-01
An airborne information management system is being developed at the NASA Dryden Flight Research Facility. This system will improve the state of the art in management data acquisition on-board research aircraft. The design centers around highly distributable, high-speed microprocessors that allow data compression, digital filtering, and real-time analysis. This paper describes the areas of applicability, approach to developing the system, potential for trouble areas, and reasons for this development activity. System architecture (including the salient points of what makes it unique), design philosophy, and tradeoff issues are also discussed.
Wu, Chung-Yu; Cheng, Cheng-Hsiang; Chen, Zhi-Xin
2018-06-01
In this paper, a 16-channel analog front-end (AFE) electrocorticography signal acquisition circuit for a closed-loop seizure control system is presented. It is composed of 16 input protection circuits, 16 auto-reset chopper-stabilized capacitive-coupled instrumentation amplifiers (AR-CSCCIA) with bandpass filters, 16 programmable transconductance gain amplifiers, a multiplexer, a transimpedance amplifier, and a 128-kS/s 10-bit delta-modulated successive-approximation-register analog-to-digital converter (SAR ADC). In closed-loop seizure control system applications, the stimulator shares the same electrode with the AFE amplifier for effective suppression of epileptic seizures. To prevent from overstress in MOS devices caused by high stimulation voltage, an input protection circuit with a high-voltage-tolerant switch is proposed for the AFE amplifier. Moreover, low input-referred noise is achieved by using the chopper modulation technique in the AR-CSCCIA. To reduce the undesired effects of chopper modulation, an improved offset reduction loop is proposed to reduce the output offset generated by input chopper mismatches. The digital ripple reduction loop is also used to reduce the chopper ripple. The fabricated AFE amplifier has 49.1-/59.4-/67.9-dB programmable gain and 2.02-μVrms input referred noise in a bandwidth of 0.59-117 Hz. The measured power consumption of the AFE amplifier is 3.26 μW per channel, and the noise efficiency factor is 3.36. The in vivo animal test has been successfully performed to verify the functions. It is shown that the proposed AFE acquisition circuit is suitable for implantable closed-loop seizure control systems.
An Imaging And Graphics Workstation For Image Sequence Analysis
NASA Astrophysics Data System (ADS)
Mostafavi, Hassan
1990-01-01
This paper describes an application-specific engineering workstation designed and developed to analyze imagery sequences from a variety of sources. The system combines the software and hardware environment of the modern graphic-oriented workstations with the digital image acquisition, processing and display techniques. The objective is to achieve automation and high throughput for many data reduction tasks involving metric studies of image sequences. The applications of such an automated data reduction tool include analysis of the trajectory and attitude of aircraft, missile, stores and other flying objects in various flight regimes including launch and separation as well as regular flight maneuvers. The workstation can also be used in an on-line or off-line mode to study three-dimensional motion of aircraft models in simulated flight conditions such as wind tunnels. The system's key features are: 1) Acquisition and storage of image sequences by digitizing real-time video or frames from a film strip; 2) computer-controlled movie loop playback, slow motion and freeze frame display combined with digital image sharpening, noise reduction, contrast enhancement and interactive image magnification; 3) multiple leading edge tracking in addition to object centroids at up to 60 fields per second from both live input video or a stored image sequence; 4) automatic and manual field-of-view and spatial calibration; 5) image sequence data base generation and management, including the measurement data products; 6) off-line analysis software for trajectory plotting and statistical analysis; 7) model-based estimation and tracking of object attitude angles; and 8) interface to a variety of video players and film transport sub-systems.
Method and apparatus for reading meters from a video image
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, T.J.; Ferguson, J.J.
1995-12-31
A method and system enable acquisition of data about an environment from one or more meters using video images. One or more meters are imaged by a video camera and the video signal is digitized. Then, each region of the digital image which corresponds to the indicator of the meter is calibrated and the video signal is analyzed to determine the value indicated by each meter indicator. Finally, from the value indicated by each meter indicator in the calibrated region, a meter reading is generated. The method and system offer the advantages of automatic data collection in a relatively non-intrusivemore » manner without making any complicated or expensive electronic connections, and without requiring intensive manpower.« less
Method and apparatus for reading meters from a video image
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, T.J.; Ferguson, J.J.
1997-09-30
A method and system to enable acquisition of data about an environment from one or more meters using video images. One or more meters are imaged by a video camera and the video signal is digitized. Then, each region of the digital image which corresponds to the indicator of the meter is calibrated and the video signal is analyzed to determine the value indicated by each meter indicator. Finally, from the value indicated by each meter indicator in the calibrated region, a meter reading is generated. The method and system offer the advantages of automatic data collection in a relativelymore » non-intrusive manner without making any complicated or expensive electronic connections, and without requiring intensive manpower. 1 fig.« less
Geometric aspects in digital analysis of Multi-Spectral Scanner (MSS) data
NASA Technical Reports Server (NTRS)
Mikhail, E. M.; Baker, J. R.
1973-01-01
Present automated systems of interpretation which apply pattern recognition techniques on MSS data do not fully consider the geometry of the acquisition system. In an effort to improve the usefulness of the MSS data when digitally treated, geometric aspects are analyzed and discussed. Attempts to correct for scanner instabilities in position and orientation by affine and polynomial transformations, as well as by modified collinearity equations are described. Methods of accounting for panoramic and relief effects are also discussed. It is anticipated that reliable area as well as position determinations can be accomplished during the process of automatic interpretation. A concept for a unified approach to the treatment of remote sensing data, both metric and nonmetric is presented.
NASA Astrophysics Data System (ADS)
Nazihah Mat Daud, Anis; Jaafar, Rosly; Kadri Ayop, Shahrul; Supar Rohani, Md
2018-04-01
This paper discusses the development of a computerized acoustic characterization system of non-porous solid tissue mimicking materials. This system employs an alternative pulse echo immersion technique and consists of a pulser/receiver generator, a transducer used as both a transmitter and a receiver, a digital oscilloscope, and a personal computer with a custom-developed program installed. The program was developed on the LabVIEW 2012 platform and comprises two main components, a user interface and a block diagram. The user interface consists of three panels: a signal acquisition and selection panel, a display panel, and a calculation panel. The block diagram comprises four blocks: a signal acquisition block, a peak signal analysis block, an acoustic properties calculation and display block, and an additional block. Interestingly, the system can be operated in both online and offline modes. For the online mode, the measurements are performed by connecting the system with a Rigol DS2000 Series digital oscilloscope. In contrast, the measurements are carried out by processing the saved data on the computer for the offline mode. The accuracy and consistency of the developed system was validated by a KB-Aerotech Alpha Series transducer with 5 MHz center frequency and a Rigol DS2202 two-channel 200 MHz 2 GSa s-1 digital oscilloscope, based on the measurement of the acoustic properties of three poly(methyl methacrylate) samples immersed in a medium at a temperature of (24.0 ± 0.1) °C. The findings indicated that the accuracy and consistency of the developed system was exceptionally high, within a 1.04% margin of error compared to the reference values. As such, this computerized system can be efficiently used for the acoustic characterization of non-porous solid tissues, given its spontaneous display of results, user-friendly interface, and convenient hardware connection.
48 CFR 304.7001 - Numbering acquisitions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... numeric identification code assigned by ASFR/OGAPA/DA to the contracting office within the servicing... following: (1) The three-digit identification code (HHS) of the Department. (2) A one-digit numeric...: P SAMHSA: S (3) The three-digit numeric identification code assigned by ASFR/OGAPA/DA to the...
48 CFR 304.7001 - Numbering acquisitions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... numeric identification code assigned by ASFR/OGAPA/DA to the contracting office within the servicing... following: (1) The three-digit identification code (HHS) of the Department. (2) A one-digit numeric...: P SAMHSA: S (3) The three-digit numeric identification code assigned by ASFR/OGAPA/DA to the...
48 CFR 304.7001 - Numbering acquisitions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... numeric identification code assigned by ASFR/OGAPA/DA to the contracting office within the servicing... following: (1) The three-digit identification code (HHS) of the Department. (2) A one-digit numeric...: P SAMHSA: S (3) The three-digit numeric identification code assigned by ASFR/OGAPA/DA to the...
Digital control and data acquisition for high-value GTA welding
NASA Astrophysics Data System (ADS)
George, T. G.; Franco-Ferreira, E. A.
Electric power for the Cassini space probe will be provided by radioisotope thermoelectric generators (RTG's) thermally driven by General-Purpose Heat Source (GPHS) modules. Each GPHS module contains four, 150-g, pellets of Pu-238O2, and each of the four pellets is encapsulated within a thin-wall iridium-alloy shell. GTA girth welding of these capsules is performed at Los Alamos National Laboratory (LANL) on an automated, digitally-controlled welding system. Baseline design considerations for system automation and strategies employed to maximize process yield, improve process consistency, and generate required quality assurance information are discussed. Design of the automated girth welding system was driven by a number of factors which militated for precise parametric control and data acquisition. Foremost among these factors was the extraordinary value of the capsule components. In addition, DOE order 5700.6B, which took effect on 23 Sep. 1986, required that all operations adhere to strict levels of process quality assurance. A detailed technical specification for the GPHS welding system was developed on the basis of a joint LANL/Westinghouse Savannah River Company (WSRC) design effort. After a competitive bidding process, Jetline Engineering, Inc., of Irvine, California, was selected as the system manufacturer. During the period over which four identical welding systems were fabricated, very close liason was maintained between the LANL/WSRC technical representatives and the vendor. The level of rapport was outstanding, and the end result was the 1990 delivery of four systems that met or exceeded all specification requirements.
NASA Astrophysics Data System (ADS)
Druszkiewicz, Eryk Filip
With a wealth of astrophysical evidence that confirms that the baryonic matter we understand accounts for only 5% of the matter and energy in the universe, the search is on for the mysterious dark matter, that is said to account for 25% of the universe composition. The leading candidate for dark matter is the Weakly Interacting Massive Particle (WIMP). Large Underground Xenon (LUX), a 370 kg two-phase (liquid/gas) xenon time projection chamber operating at 4850 feet underground at the Sanford Underground Research Facility (SURF), has recently completed its operation, setting the world's best limit on the WIMP-nucleon cross section. This thesis presents the author's research and development of a novel, FPGA-based, triggering system. This system has operated at SURF since 2011 and through digital signal processing techniques identified events of interest in real-time. The system processes the incoming data at its filter stages with a rate of 5,100 MB/s and does so consuming a total of only 15 W. The firmware and software were entirely developed by the author, while the custom-built hardware was developed in close collaboration with the author. The system offers great flexibility through the reconfigurability feature of FPGAs, which was exercised often during the course of the experiment. The system allows for fully remote operation, minimizing the personnel needs one mile underground. For this type of detectors, this triggering system has shown to offer the highest efficiency in detecting signals as small as few liquid electrons. An FIR digital filter implementation is presented, that has been tailored for this application and offers an up to 99% and 97% savings in scalars and summers utilization, respectively. LUX-Zepplin (LZ) is a next-generation dark matter detector, that is scheduled to start probing the remainder of the uncharted WIMP-nucleon cross section in 2020. It is a significantly larger successor of LUX, with a total xenon mass of 10 tonne. It will be instrumented with 745 photomultipliers, totaling 1,359 digitizing channels. The author is developing the LZ Data Acquisition and Data Sparsification system. This system is going to handle a continuous input rate of over 200 GB/s and its key elements have already been shown to meet and exceed the LZ requirements. Techniques are presented for allowing data volume footprint reduction, such as efficient digitized pulse storage, offering up to 45% reduction in the effective pulse storage size.
2007-05-25
of-the-art optical filters. Specifically, a FF01 -510/84 Semrock green band-pass filter (transmission >95% with 1% standard deviation between 467nm...used to reject the UV laser light (-390nm) exciting the CH radicals, and a NF0I-532U Semrock notch filter (transmission ə 04 % at 527nm, and >95
NASA Technical Reports Server (NTRS)
Kadrmas, K. A.
1973-01-01
A very high speed switching circuit, part of a laser radar data acquisition system, has been designed and tested. The primary function of this circuit was to provide computer controlled switching of photodiode detector preamplifier power supply voltages, typically less than plus or minus 20 volts, in approximately 10 nanoseconds. Thus, in actual use, detector and/or detector preamplifier damage can be avoided as a result of sudden extremely large values of backscattered radiation being detected, such as might be due to short range, very thin atmospheric dust layers. Switching of the power supply voltages was chosen over direct switching the photodiode detector input to the preamplifier, based on system noise considerations. Also, the circuit provides a synchronized trigger pulse output for triggering devices such as the Biomation Model 8100 100 MHz analog to digital converter.
NASA's next generation all-digital deep space network breadboard receiver
NASA Technical Reports Server (NTRS)
Hinedi, Sami
1993-01-01
This paper describes the breadboard advanced receiver (ARX) that is currently being built for future use in NASA's deep space network (DSN). This receiver has unique requirements in having to operate with very weak signals from deep space probes and provide high quality telemetry and tracking data. The hybrid analog/digital receiver performs multiple functions including carrier, subcarrier and symbol synchronization. Tracking can be achieved for either residual, suppressed or hybrid carriers and for both sinusoidal and square wave subcarriers. System requirements are specified and a functional description of the ARX is presented. The various digital signal processing algorithms used are also discussed and illustrated with block diagrams. Other functions such as time tagged Doppler extraction and monitor/control are also discussed including acquisition algorithms and lock detection schemes.
Policy Route Map for Academic Libraries' Digital Content
ERIC Educational Resources Information Center
Koulouris, Alexandros; Kapidakis, Sarantos
2012-01-01
This paper presents a policy decision tree for digital information management in academic libraries. The decision tree is a policy guide, which offers alternative access and reproduction policy solutions according to the prevailing circumstances (for example acquisition method, copyright ownership). It refers to the digital information life cycle,…
Wireless photoplethysmographic device for heart rate variability signal acquisition and analysis.
Reyes, Ivan; Nazeran, Homer; Franco, Mario; Haltiwanger, Emily
2012-01-01
The photoplethysmographic (PPG) signal has the potential to aid in the acquisition and analysis of heart rate variability (HRV) signal: a non-invasive quantitative marker of the autonomic nervous system that could be used to assess cardiac health and other physiologic conditions. A low-power wireless PPG device was custom-developed to monitor, acquire and analyze the arterial pulse in the finger. The system consisted of an optical sensor to detect arterial pulse as variations in reflected light intensity, signal conditioning circuitry to process the reflected light signal, a microcontroller to control PPG signal acquisition, digitization and wireless transmission, a receiver to collect the transmitted digital data and convert them back to their analog representations. A personal computer was used to further process the captured PPG signals and display them. A MATLAB program was then developed to capture the PPG data, detect the RR peaks, perform spectral analysis of the PPG data, and extract the HRV signal. A user-friendly graphical user interface (GUI) was developed in LabView to display the PPG data and their spectra. The performance of each module (sensing unit, signal conditioning, wireless transmission/reception units, and graphical user interface) was assessed individually and the device was then tested as a whole. Consequently, PPG data were obtained from five healthy individuals to test the utility of the wireless system. The device was able to reliably acquire the PPG signals from the volunteers. To validate the accuracy of the MATLAB codes, RR peak information from each subject was fed into Kubios software as a text file. Kubios was able to generate a report sheet with the time domain and frequency domain parameters of the acquired data. These features were then compared against those calculated by MATLAB. The preliminary results demonstrate that the prototype wireless device could be used to perform HRV signal acquisition and analysis.
Development of an MRI-compatible digital SiPM detector stack for simultaneous PET/MRI
Düppenbecker, Peter M; Weissler, Bjoern; Gebhardt, Pierre; Schug, David; Wehner, Jakob; Marsden, Paul K; Schulz, Volkmar
2016-01-01
Abstract Advances in solid-state photon detectors paved the way to combine positron emission tomography (PET) and magnetic resonance imaging (MRI) into highly integrated, truly simultaneous, hybrid imaging systems. Based on the most recent digital SiPM technology, we developed an MRI-compatible PET detector stack, intended as a building block for next generation simultaneous PET/MRI systems. Our detector stack comprises an array of 8 × 8 digital SiPM channels with 4 mm pitch using Philips Digital Photon Counting DPC 3200-22 devices, an FPGA for data acquisition, a supply voltage control system and a cooling infrastructure. This is the first detector design that allows the operation of digital SiPMs simultaneously inside an MRI system. We tested and optimized the MRI-compatibility of our detector stack on a laboratory test bench as well as in combination with a Philips Achieva 3 T MRI system. Our design clearly reduces distortions of the static magnetic field compared to a conventional design. The MRI static magnetic field causes weak and directional drift effects on voltage regulators, but has no direct impact on detector performance. MRI gradient switching initially degraded energy and timing resolution. Both distortions could be ascribed to voltage variations induced on the bias and the FPGA core voltage supply respectively. Based on these findings, we improved our detector design and our final design shows virtually no energy or timing degradations, even during heavy and continuous MRI gradient switching. In particular, we found no evidence that the performance of the DPC 3200-22 digital SiPM itself is degraded by the MRI system. PMID:28458919
Distributed digital music archives and libraries
NASA Astrophysics Data System (ADS)
Fujinaga, Ichiro
2005-09-01
The main goal of this research program is to develop and evaluate practices, frameworks, and tools for the design and construction of worldwide distributed digital music archives and libraries. Over the last few millennia, humans have amassed an enormous amount of musical information that is scattered around the world. It is becoming abundantly clear that the optimal path for acquisition is to distribute the task of digitizing the wealth of historical and cultural heritage material that exists in analogue formats, which may include books and manuscripts related to music, music scores, photographs, videos, audio tapes, and phonograph records. In order to achieve this goal, libraries, museums, and archives throughout the world, large or small, need well-researched policies, proper guidance, and efficient tools to digitize their collections and to make them available economically. The research conducted within the program addresses unique and imminent challenges posed by the digitization and dissemination of music media. The are four major research projects in progress: development and evaluation of digitization methods for preservation of analogue recordings; optical music recognition using microfilms; design of workflow management system with automatic metadata extraction; and formulation of interlibrary communication strategies.
Single shot laser speckle based 3D acquisition system for medical applications
NASA Astrophysics Data System (ADS)
Khan, Danish; Shirazi, Muhammad Ayaz; Kim, Min Young
2018-06-01
The state of the art techniques used by medical practitioners to extract the three-dimensional (3D) geometry of different body parts requires a series of images/frames such as laser line profiling or structured light scanning. Movement of the patients during scanning process often leads to inaccurate measurements due to sequential image acquisition. Single shot structured techniques are robust to motion but the prevalent challenges in single shot structured light methods are the low density and algorithm complexity. In this research, a single shot 3D measurement system is presented that extracts the 3D point cloud of human skin by projecting a laser speckle pattern using a single pair of images captured by two synchronized cameras. In contrast to conventional laser speckle 3D measurement systems that realize stereo correspondence by digital correlation of projected speckle patterns, the proposed system employs KLT tracking method to locate the corresponding points. The 3D point cloud contains no outliers and sufficient quality of 3D reconstruction is achieved. The 3D shape acquisition of human body parts validates the potential application of the proposed system in the medical industry.
Pisano, Etta D.; Acharyya, Suddhasatta; Cole, Elodia B.; Marques, Helga S.; Yaffe, Martin J.; Blevins, Meredith; Conant, Emily F.; Hendrick, R. Edward; Baum, Janet K.; Fajardo, Laurie L.; Jong, Roberta A.; Koomen, Marcia A.; Kuzmiak, Cherie M.; Lee, Yeonhee; Pavic, Dag; Yoon, Sora C.; Padungchaichote, Wittaya; Gatsonis, Constantine
2009-01-01
Purpose: To determine which factors contributed to the Digital Mammographic Imaging Screening Trial (DMIST) cancer detection results. Materials and Methods: This project was HIPAA compliant and institutional review board approved. Seven radiologist readers reviewed the film hard-copy (screen-film) and digital mammograms in DMIST cancer cases and assessed the factors that contributed to lesion visibility on both types of images. Two multinomial logistic regression models were used to analyze the combined and condensed visibility ratings assigned by the readers to the paired digital and screen-film images. Results: Readers most frequently attributed differences in DMIST cancer visibility to variations in image contrast—not differences in positioning or compression—between digital and screen-film mammography. The odds of a cancer being more visible on a digital mammogram—rather than being equally visible on digital and screen-film mammograms—were significantly greater for women with dense breasts than for women with nondense breasts, even with the data adjusted for patient age, lesion type, and mammography system (odds ratio, 2.28; P < .0001). The odds of a cancer being more visible at digital mammography—rather than being equally visible at digital and screen-film mammography—were significantly greater for lesions imaged with the General Electric digital mammography system than for lesions imaged with the Fischer (P = .0070) and Fuji (P = .0070) devices. Conclusion: The significantly better diagnostic accuracy of digital mammography, as compared with screen-film mammography, in women with dense breasts demonstrated in the DMIST was most likely attributable to differences in image contrast, which were most likely due to the inherent system performance improvements that are available with digital mammography. The authors conclude that the DMIST results were attributable primarily to differences in the display and acquisition characteristics of the mammography devices rather than to reader variability. PMID:19703878
Real-time digital signal processing for live electro-optic imaging.
Sasagawa, Kiyotaka; Kanno, Atsushi; Tsuchiya, Masahiro
2009-08-31
We present an imaging system that enables real-time magnitude and phase detection of modulated signals and its application to a Live Electro-optic Imaging (LEI) system, which realizes instantaneous visualization of RF electric fields. The real-time acquisition of magnitude and phase images of a modulated optical signal at 5 kHz is demonstrated by imaging with a Si-based high-speed CMOS image sensor and real-time signal processing with a digital signal processor. In the LEI system, RF electric fields are probed with light via an electro-optic crystal plate and downconverted to an intermediate frequency by parallel optical heterodyning, which can be detected with the image sensor. The artifacts caused by the optics and the image sensor characteristics are corrected by image processing. As examples, we demonstrate real-time visualization of electric fields from RF circuits.
A rocket-borne pulse-height analyzer for energetic particle measurements
NASA Technical Reports Server (NTRS)
Leung, W.; Smith, L. G.; Voss, H. D.
1979-01-01
The pulse-height analyzer basically resembles a time-sharing multiplexing data-acquisition system which acquires analog data (from energetic particle spectrometers) and converts them into digital code. The PHA simultaneously acquires pulse-height information from the analog signals of the four input channels and sequentially multiplexes the digitized data to a microprocessor. The PHA together with the microprocessor form an on-board real-time data-manipulation system. The system processes data obtained during the rocket flight and reduces the amount of data to be sent back to the ground station. Consequently the data-reduction process for the rocket experiments is speeded up. By using a time-sharing technique, the throughput rate of the microprocessor is increased. Moreover, data from several particle spectrometers are manipulated to share one information channel; consequently, the TM capacity is increased.
A System for Interactive Computer Control of Experiments.
1986-08-25
for which the entire wave form is desired, requiring a transient digitizer for each channel . Pulse lengths vary between I and 30 microseconds, so the...to ensure that the computer knows which channel of the data acquisition system corresponds to each parameter. This manual is designed to be used in...are two types of voltage data to be recorded. First are the channels for which the entire wave form is to be recorded, such as the cathode voltage or
[Temperature Measurement with Bluetooth under Android Platform].
Wang, Shuai; Shen, Hao; Luo, Changze
2015-03-01
To realize the real-time transmission of temperature data and display using the platform of intelligent mobile phone and bluetooth. Application of Arduino Uno R3 in temperature data acquisition of digital temperature sensor DS18B20 acquisition, through the HC-05 bluetooth transmits the data to the intelligent smart phone Android system, realizes transmission of temperature data. Using Java language to write applications program under Android development environment, can achieve real-time temperature data display, storage and drawing temperature fluctuations drawn graphics. Temperature sensor is experimentally tested to meet the body temperature measurement precision and accuracy. This paper can provide a reference for other smart phone mobile medical product development.
Flight control systems development and flight test experience with the HiMAT research vehicles
NASA Technical Reports Server (NTRS)
Kempel, Robert W.; Earls, Michael R.
1988-01-01
Two highly maneuverable aircraft technology (HiMAT) remotely piloted vehicles were flown a total of 26 flights. These subscale vehicles were of advanced aerodynamic configuration with advanced technology concepts such as composite and metallic structures, digital integrated propulsion control, and ground (primary) and airborne (backup) relaxed static stability, digital fly-by-wire control systems. Extensive systems development, checkout, and flight qualification were required to conduct the flight test program. The design maneuver goal was to achieve a sustained 8-g turn at Mach 0.9 at an altitude of 25,000 feet. This goal was achieved, along with the acquisition of high-quality flight data at subsonic and supersonic Mach numbers. Control systems were modified in a variety of ways using the flight-determined aerodynamic characteristics. The HiMAT program was successfully completed with approximately 11 hours of total flight time.
Cost benefit analysis of the transfer of NASA remote sensing technology to the state of Georgia
NASA Technical Reports Server (NTRS)
Zimmer, R. P. (Principal Investigator); Wilkins, R. D.; Kelly, D. L.; Brown, D. M.
1977-01-01
The author has identified the following significant results. First order benefits can generally be quantified, thus allowing quantitative comparisons of candidate land cover data systems. A meaningful dollar evaluation of LANDSAT can be made by a cost comparison with equally effective data systems. Users of LANDSAT data can be usefully categorized as performing three general functions: planning, permitting, and enforcing. The value of LANDSAT data to the State of Georgia is most sensitive to the parameters: discount rate, digitization cost, and photo acquisition cost. Under a constrained budget, LANDSAT could provide digitized land cover information roughly seven times more frequently than could otherwise be obtained. Thus on one hand, while the services derived from LANDSAT data in comparison to the baseline system has a positive net present value, on the other hand if the budget were constrained, more frequent information could be provided using the LANDSAT system than otherwise be obtained.
Three-dimensional digitizer for the footwear industry
NASA Astrophysics Data System (ADS)
Gonzalez, Francisco; Campoy, Pascual; Aracil, Rafael; Penafiel, Francisco; Sebastian, Jose M.
1993-12-01
This paper presents a developed system for digitizing 3D objects in the footwear industry (e.g. mould, soles, heels) and their introduction in a CAD system for further manipulation and production of rapid prototypes. The system is based on the acquisition of the sequence of images of the projection of a laser line onto the 3D object when this is moving in front of the laser beam and the camera. This beam projection lights a 3D curve on the surface of the object, whose image is processed in order to obtain the 3D coordinates of every point of mentioned curve according to a previous calibration of the system. These coordinates of points in all the curves are analyzed and combined in order to make up a 3D wire-frame model of the object, which is introduced in a CAD station for further design and connection to the machinery for rapid prototyping.
V/STOLAND digital avionics system for XV-15 tilt rotor
NASA Technical Reports Server (NTRS)
Liden, S.
1980-01-01
A digital flight control system for the tilt rotor research aircraft provides sophisticated navigation, guidance, control, display and data acquisition capabilities for performing terminal area navigation, guidance and control research. All functions of the XV-15 V/STOLAND system were demonstrated on the NASA-ARC S-19 simulation facility under a comprehensive dynamic acceptance test. The most noteworthy accomplishments of the system are: (1) automatic configuration control of a tilt-rotor aircraft over the total operating range; (2) total hands-off landing to touchdown on various selectable straight-in glide slopes and on a flight path that includes a two-revolution helix; (3) automatic guidance along a programmed three-dimensional reference flight path; (4) navigation data for the automatic guidance computed on board, based on VOR/DME, TACAN, or MLS navid data; and (5) integration of a large set of functions in a single computer, utilizing 16k words of storage for programs and data.
[Wireless digital radiography detectors in the emergency area: an efficacious solution].
Garrido Blázquez, M; Agulla Otero, M; Rodríguez Recio, F J; Torres Cabrera, R; Hernando González, I
2013-01-01
To evaluate the implementation of a flat panel digital radiolography (DR) system with WiFi technology in an emergency radiology area in which a computed radiography (CR) system was previously used. We analyzed aspects related to image quality, radiation dose, workflow, and ergonomics. We analyzed the results obtained with the CR and WiFi DR systems related with the quality of images analyzed in images obtained using a phantom and after radiologists' evaluation of radiological images obtained in real patients. We also analyzed the time required for image acquisition and the workflow with the two technological systems. Finally, we analyzed the data related to the dose of radiation in patients before and after the implementation of the new equipment. Image quality improved in both the tests carried out with a phantom and in radiological images obtained in patients, which increased from 3 to 4.5 on a 5-point scale. The average time required for image acquisition decreased by 25 seconds per image. The flat panel required less radiation to be delivered in practically all the techniques carried out using automatic dosimetry, although statistically significant differences were found in only some of the techniques (chest, thoracic spine, and lumbar spine). Implementing the WiFi DR system has brought benefits. Image quality has improved and the dose of radiation to patients has decreased. The new system also has advantages in terms of functionality, ergonomics, and performance. Copyright © 2011 SERAM. Published by Elsevier Espana. All rights reserved.
Censier, B; Bobin, C; Bouchard, J; Aubineau-Lanièce, I
2010-01-01
The LNE-LNHB is engaged in a development program on digital instrumentation, the first step being the instrumentation of a NaI well-type detector set-up. The prototype acquisition card and its technical specifications are presented together with the first comparison with the classical NIM-based acquisition chain, for counting rates up to 100 kcps. The digital instrumentation is shown to be counting-loss free in this range. This validates the main option adopted in this project, namely the implementation of an extending dead time with live-time measurement already successfully used in the MTR2 NIM module developed at LNE-LNHB. Copyright 2010. Published by Elsevier Ltd.
A digitally implemented preambleless demodulator for maritime and mobile data communications
NASA Astrophysics Data System (ADS)
Chalmers, Harvey; Shenoy, Ajit; Verahrami, Farhad B.
The hardware design and software algorithms for a low-bit-rate, low-cost, all-digital preambleless demodulator are described. The demodulator operates under severe high-noise conditions, fast Doppler frequency shifts, large frequency offsets, and multipath fading. Sophisticated algorithms, including a fast Fourier transform (FFT)-based burst acquisition algorithm, a cycle-slip resistant carrier phase tracker, an innovative Doppler tracker, and a fast acquisition symbol synchronizer, were developed and extensively simulated for reliable burst reception. The compact digital signal processor (DSP)-based demodulator hardware uses a unique personal computer test interface for downloading test data files. The demodulator test results demonstrate a near-ideal performance within 0.2 dB of theory.
The Need and Keys for a New Generation Network Adjustment Software
NASA Astrophysics Data System (ADS)
Colomina, I.; Blázquez, M.; Navarro, J. A.; Sastre, J.
2012-07-01
Orientation and calibration of photogrammetric and remote sensing instruments is a fundamental capacity of current mapping systems and a fundamental research topic. Neither digital remote sensing acquisition systems nor direct orientation gear, like INS and GNSS technologies, made block adjustment obsolete. On the contrary, the continuous flow of new primary data acquisition systems has challenged the capacity of the legacy block adjustment systems - in general network adjustment systems - in many aspects: extensibility, genericity, portability, large data sets capacity, metadata support and many others. In this article, we concentrate on the extensibility and genericity challenges that current and future network systems shall face. For this purpose we propose a number of software design strategies with emphasis on rigorous abstract modeling that help in achieving simplicity, genericity and extensibility together with the protection of intellectual proper rights in a flexible manner. We illustrate our suggestions with the general design approach of GENA, the generic extensible network adjustment system of GeoNumerics.
Kawada, Y; Yamada, T; Unno, Y; Yunoki, A; Sato, Y; Hino, Y
2012-09-01
A simple but versatile data acquisition system for software coincidence experiments is described, in which any time stamping and live time controller are not provided. Signals from β- and γ-channels are fed to separately two fast ADCs (16 bits, 25 MHz clock maximum) via variable delay circuits and pulse-height stretchers, and also to pulse-height discriminators. The discriminating level was set to just above the electronic noise. Two ADCs were controlled with a common clock signal, and triggered simultaneously by the logic OR pulses from both discriminators. Paired digital signals for each sampling were sent to buffer memories connected to main PC with a FIFO (First-In, First-Out) pipe via USB. After data acquisition in list mode, various processing including pulse-height analyses was performed using MS-Excel (version 2007 and later). The usefulness of this system was demonstrated for 4πβ(PS)-4πγ coincidence measurements of (60)Co, (134)Cs and (152)Eu. Possibilities of other extended applications will be touched upon. Copyright © 2012 Elsevier Ltd. All rights reserved.
Astrometric and Photometric Analysis of the September 2008 ATV-1 Re-Entry Event
NASA Technical Reports Server (NTRS)
Mulrooney, Mark K.; Barker, Edwin S.; Maley, Paul D.; Beaulieu, Kevin R.; Stokely, Christopher L.
2008-01-01
NASA utilized Image Intensified Video Cameras for ATV data acquisition from a jet flying at 12.8 km. Afterwards the video was digitized and then analyzed with a modified commercial software package, Image Systems Trackeye. Astrometric results were limited by saturation, plate scale, and imposed linear plate solution based on field reference stars. Time-dependent fragment angular trajectories, velocities, accelerations, and luminosities were derived in each video segment. It was evident that individual fragments behave differently. Photometric accuracy was insufficient to confidently assess correlations between luminosity and fragment spatial behavior (velocity, deceleration). Use of high resolution digital video cameras in future should remedy this shortcoming.
Operational Use of Remote Sensing within USDA
NASA Technical Reports Server (NTRS)
Bethel, Glenn R.
2007-01-01
A viewgraph presentation of remote sensing imagery within the USDA is shown. USDA Aerial Photography, Digital Sensors, Hurricane imagery, Remote Sensing Sources, Satellites used by Foreign Agricultural Service, Landsat Acquisitions, and Aerial Acquisitions are also shown.
Martial, Franck P.; Hartell, Nicholas A.
2012-01-01
Confocal microscopy is routinely used for high-resolution fluorescence imaging of biological specimens. Most standard confocal systems scan a laser across a specimen and collect emitted light passing through a single pinhole to produce an optical section of the sample. Sequential scanning on a point-by-point basis limits the speed of image acquisition and even the fastest commercial instruments struggle to resolve the temporal dynamics of rapid cellular events such as calcium signals. Various approaches have been introduced that increase the speed of confocal imaging. Nipkov disk microscopes, for example, use arrays of pinholes or slits on a spinning disk to achieve parallel scanning which significantly increases the speed of acquisition. Here we report the development of a microscope module that utilises a digital micromirror device as a spatial light modulator to provide programmable confocal optical sectioning with a single camera, at high spatial and axial resolution at speeds limited by the frame rate of the camera. The digital micromirror acts as a solid state Nipkov disk but with the added ability to change the pinholes size and separation and to control the light intensity on a mirror-by-mirror basis. The use of an arrangement of concave and convex mirrors in the emission pathway instead of lenses overcomes the astigmatism inherent with DMD devices, increases light collection efficiency and ensures image collection is achromatic so that images are perfectly aligned at different wavelengths. Combined with non-laser light sources, this allows low cost, high-speed, multi-wavelength image acquisition without the need for complex wavelength-dependent image alignment. The micromirror can also be used for programmable illumination allowing spatially defined photoactivation of fluorescent proteins. We demonstrate the use of this system for high-speed calcium imaging using both a single wavelength calcium indicator and a genetically encoded, ratiometric, calcium sensor. PMID:22937130
Martial, Franck P; Hartell, Nicholas A
2012-01-01
Confocal microscopy is routinely used for high-resolution fluorescence imaging of biological specimens. Most standard confocal systems scan a laser across a specimen and collect emitted light passing through a single pinhole to produce an optical section of the sample. Sequential scanning on a point-by-point basis limits the speed of image acquisition and even the fastest commercial instruments struggle to resolve the temporal dynamics of rapid cellular events such as calcium signals. Various approaches have been introduced that increase the speed of confocal imaging. Nipkov disk microscopes, for example, use arrays of pinholes or slits on a spinning disk to achieve parallel scanning which significantly increases the speed of acquisition. Here we report the development of a microscope module that utilises a digital micromirror device as a spatial light modulator to provide programmable confocal optical sectioning with a single camera, at high spatial and axial resolution at speeds limited by the frame rate of the camera. The digital micromirror acts as a solid state Nipkov disk but with the added ability to change the pinholes size and separation and to control the light intensity on a mirror-by-mirror basis. The use of an arrangement of concave and convex mirrors in the emission pathway instead of lenses overcomes the astigmatism inherent with DMD devices, increases light collection efficiency and ensures image collection is achromatic so that images are perfectly aligned at different wavelengths. Combined with non-laser light sources, this allows low cost, high-speed, multi-wavelength image acquisition without the need for complex wavelength-dependent image alignment. The micromirror can also be used for programmable illumination allowing spatially defined photoactivation of fluorescent proteins. We demonstrate the use of this system for high-speed calcium imaging using both a single wavelength calcium indicator and a genetically encoded, ratiometric, calcium sensor.
Simultaneous Red - Blue Lidar and Airborne Impactor Measurements
NASA Technical Reports Server (NTRS)
McCormick, M. P.; Blifford, I. H.; Fuller, W. H.; Grams, G. W.
1973-01-01
Simultaneous two-color (0.6943 micrometers and 0.3472 micrometers) LIDAR measurements were made in the troposphere and lower stratosphere over Boulder, Colorado during March 1973. In addition, on the evening of March 26, airborne single-stage impactor measurements were made at four altitudes-- 10,500, 25,000, 33,000 and 43,000 feet MSL. These data were integrated at constant altitude for 15,45, 45, and 60 minutes respectively. The LIDAR data were taken with Langley's 48" LIDAR using a dichroic beamsplitter to separate the return at 0.6943 micrometers and 0.3472 micrometers. The analog waveforms for both colors were digitized simultaneously; one on an NCAR data acquisition system and the other on the 48" Langley data acquisition system. A discussion of the preliminary results from these measurements will be presented.
Design of an anti-Rician-fading modem for mobile satellite communication systems
NASA Technical Reports Server (NTRS)
Kojima, Toshiharu; Ishizu, Fumio; Miyake, Makoto; Murakami, Keishi; Fujino, Tadashi
1995-01-01
To design a demodulator applicable to mobile satellite communication systems using differential phase shift keying modulation, we have developed key technologies including an anti-Rician-fading demodulation scheme, an initial acquisition scheme, automatic gain control (AGC), automatic frequency control (AFC), and bit timing recovery (BTR). Using these technologies, we have developed one-chip digital signal processor (DSP) modem for mobile terminal, which is compact, of light weight, and of low power consumption. Results of performance test show that the developed DSP modem achieves good performance in terms of bit error ratio in mobile satellite communication environment, i.e., Rician fading channel. It is also shown that the initial acquisition scheme acquires received signal rapidly even if the carrier-to-noise power ratio (CNR) of the received signal is considerably low.
Calderon, Karynna; Forde, Arnell S.; Dadisman, Shawn V.; Wiese, Dana S.; Phelps, Daniel C.
2012-01-01
In September and October of 2003, the U.S. Geological Survey (USGS), in cooperation with the Florida Geological Survey, conducted geophysical surveys of the Atlantic Ocean offshore northeast Florida from St. Augustine, Florida, to the Florida-Georgia border. This report serves as an archive of unprocessed digital boomer subbottom profile data, trackline maps, navigation files, Geographic Information System (GIS) files, Field Activity Collection System (FACS) logs, and formal Federal Geographic Data Committee (FGDC) metadata. Filtered and gained (a relative increase in signal amplitude) digital images of the seismic profiles are also provided. Refer to the Acronyms page for expansions of all acronyms and abbreviations used in this report. The USGS St. Petersburg Coastal and Marine Science Center (SPCMSC) assigns a unique identifier to each cruise or field activity. For example, 03FGS01 tells us the data were collected in 2003 as part of cooperative work with the Florida Geological Survey (FGS) and that the data were collected during the first field activity for that project in that calendar year. Refer to http://walrus.wr.usgs.gov/infobank/programs/html/definition/activity.html for a detailed description of the method used to assign the field activity identification (ID). The naming convention used for each seismic line is as follows: yye##a, where 'yy' are the last two digits of the year in which the data were collected, 'e' is a 1-letter abbreviation for the equipment type (for example, b for boomer), '##' is a 2-digit number representing a specific track, and 'a' is a letter representing the section of a line if recording was prematurely terminated or rerun for quality or acquisition problems. The boomer plate is an acoustic energy source that consists of capacitors charged to a high voltage and discharged through a transducer in the water. The transducer is towed on a sled floating on the water surface and when discharged emits a short acoustic pulse, or shot, which propagates through the water, sediment column, or rock beneath. The acoustic energy is reflected at density boundaries (such as the seafloor, sediment, or rock layers beneath the seafloor), detected by hydrophone receivers, and recorded by a PC-based seismic acquisition system. This process is repeated at timed intervals (for example, 0.5 seconds) and recorded for specific intervals of time (for example, 100 milliseconds). In this way, a two-dimensional (2-D) vertical profile of the shallow geologic structure beneath the ship track is produced. Refer to the handwritten FACS operation log (PDF, 442 KB) for diagrams and descriptions of acquisition geometry, which varied throughout the cruises. Table 1 displays a summary of acquisition parameters. See the digital FACS equipment logs (PDF, 9-13 KB each) for details about the acquisition equipment used. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG Y (Barry and others, 1975) format (rev. 0), except for the first 3,200 bytes of the card image header, which are stored in ASCII format instead of the standard EBCDIC format. The SEG Y files may be downloaded and processed with commercial or public domain software such as Seismic Unix (SU) (Cohen and Stockwell, 2005). See the How To Download SEG Y Data page for download instructions. The printable profiles provided here are Graphics Interchange Format (GIF) images that were filtered and gained using SU software. Refer to the Software page for details about the processing and links to example SU processing scripts and USGS software for viewing the SEG Y files (Zihlman, 1992).
A Waveform Archiving System for the GE Solar 8000i Bedside Monitor.
Fanelli, Andrea; Jaishankar, Rohan; Filippidis, Aristotelis; Holsapple, James; Heldt, Thomas
2018-01-01
Our objective was to develop, deploy, and test a data-acquisition system for the reliable and robust archiving of high-resolution physiological waveform data from a variety of bedside monitoring devices, including the GE Solar 8000i patient monitor, and for the logging of ancillary clinical and demographic information. The data-acquisition system consists of a computer-based archiving unit and a GE Tram Rac 4A that connects to the GE Solar 8000i monitor. Standard physiological front-end sensors connect directly to the Tram Rac, which serves as a port replicator for the GE monitor and provides access to these waveform signals through an analog data interface. Together with the GE monitoring data streams, we simultaneously collect the cerebral blood flow velocity envelope from a transcranial Doppler ultrasound system and a non-invasive arterial blood pressure waveform along a common time axis. All waveform signals are digitized and archived through a LabView-controlled interface that also allows for the logging of relevant meta-data such as clinical and patient demographic information. The acquisition system was certified for hospital use by the clinical engineering team at Boston Medical Center, Boston, MA, USA. Over a 12-month period, we collected 57 datasets from 11 neuro-ICU patients. The system provided reliable and failure-free waveform archiving. We measured an average temporal drift between waveforms from different monitoring devices of 1 ms every 66 min of recorded data. The waveform acquisition system allows for robust real-time data acquisition, processing, and archiving of waveforms. The temporal drift between waveforms archived from different devices is entirely negligible, even for long-term recording.
The Value of Digital Tutoring and Accelerated Expertise for Military Veterans
ERIC Educational Resources Information Center
Fletcher, J. D.
2017-01-01
This report concerns use of a digital tutor to accelerate veterans' acquisition of expertise and improve their preparation for the civilian workforce. As background, it briefly discusses the need to improve veterans' employability, the technology of digital tutoring, its ability to produce advanced levels of technical expertise, and the design,…
ERIC Educational Resources Information Center
Southern Regional Education Board (SREB), 2005
2005-01-01
The Educational Technology Cooperative of the Southern Regional Education Board (SREB) established the Digital Learning Content initiative to identify guidelines and develop recommendations to assist those who develop, evaluate, select, acquire and use digital learning content to create products that are easy to access and use in order to ensure…
The Role of IT Literacy in Defining Digital Divide Policy Needs
ERIC Educational Resources Information Center
Ferro, Enrico; Helbig, Natalie C.; Gil-Garcia, J. Ramon
2011-01-01
This article expands our current understanding of the digital divide by examining differences in individuals' IT skills acquisition. In the last two decades scholars have gradually refined the conceptualization of the digital divide, moving from a dichotomous model mainly based on access, to a multidimensional model accounting for differences in…
NASA Astrophysics Data System (ADS)
Bertin, Stephane; Friedrich, Heide; Delmas, Patrice; Chan, Edwin; Gimel'farb, Georgy
2015-03-01
Grain-scale monitoring of fluvial morphology is important for the evaluation of river system dynamics. Significant progress in remote sensing and computer performance allows rapid high-resolution data acquisition, however, applications in fluvial environments remain challenging. Even in a controlled environment, such as a laboratory, the extensive acquisition workflow is prone to the propagation of errors in digital elevation models (DEMs). This is valid for both of the common surface recording techniques: digital stereo photogrammetry and terrestrial laser scanning (TLS). The optimisation of the acquisition process, an effective way to reduce the occurrence of errors, is generally limited by the use of commercial software. Therefore, the removal of evident blunders during post processing is regarded as standard practice, although this may introduce new errors. This paper presents a detailed evaluation of a digital stereo-photogrammetric workflow developed for fluvial hydraulic applications. The introduced workflow is user-friendly and can be adapted to various close-range measurements: imagery is acquired with two Nikon D5100 cameras and processed using non-proprietary "on-the-job" calibration and dense scanline-based stereo matching algorithms. Novel ground truth evaluation studies were designed to identify the DEM errors, which resulted from a combination of calibration errors, inaccurate image rectifications and stereo-matching errors. To ensure optimum DEM quality, we show that systematic DEM errors must be minimised by ensuring a good distribution of control points throughout the image format during calibration. DEM quality is then largely dependent on the imagery utilised. We evaluated the open access multi-scale Retinex algorithm to facilitate the stereo matching, and quantified its influence on DEM quality. Occlusions, inherent to any roughness element, are still a major limiting factor to DEM accuracy. We show that a careful selection of the camera-to-object and baseline distance reduces errors in occluded areas and that realistic ground truths help to quantify those errors.
Real-time plasma control based on the ISTTOK tomography diagnostica)
NASA Astrophysics Data System (ADS)
Carvalho, P. J.; Carvalho, B. B.; Neto, A.; Coelho, R.; Fernandes, H.; Sousa, J.; Varandas, C.; Chávez-Alarcón, E.; Herrera-Velázquez, J. J. E.
2008-10-01
The presently available processing power in generic processing units (GPUs) combined with state-of-the-art programmable logic devices benefits the implementation of complex, real-time driven, data processing algorithms for plasma diagnostics. A tomographic reconstruction diagnostic has been developed for the ISTTOK tokamak, based on three linear pinhole cameras each with ten lines of sight. The plasma emissivity in a poloidal cross section is computed locally on a submillisecond time scale, using a Fourier-Bessel algorithm, allowing the use of the output signals for active plasma position control. The data acquisition and reconstruction (DAR) system is based on ATCA technology and consists of one acquisition board with integrated field programmable gate array (FPGA) capabilities and a dual-core Pentium module running real-time application interface (RTAI) Linux. In this paper, the DAR real-time firmware/software implementation is presented, based on (i) front-end digital processing in the FPGA; (ii) a device driver specially developed for the board which enables streaming data acquisition to the host GPU; and (iii) a fast reconstruction algorithm running in Linux RTAI. This system behaves as a module of the central ISTTOK control and data acquisition system (FIRESIGNAL). Preliminary results of the above experimental setup are presented and a performance benchmarking against the magnetic coil diagnostic is shown.
In Pursuit of Agile Acquisition: Are We There Yet?
2013-03-01
digital mapping capabilities like Google , 71Microsoft,72 and Wikimapia,73 are readily obtainable in the commercial marketplace. This knowledge...Fox. Defense Acquisition Reform, 14. 69 Ibid., 8. 70 XBRADTC, “Army Acquisition Woes,” Bring the Heat Bring the Stupid , entry posted May 1, 2011...https://xbradtc.wordpress.com/2011/05/01/Army-acquisition-woes/ (accessed on December 5, 2012). 71 Google Maps, http://maps.google.com/maps (accessed
The electronics and data acquisition system for the DarkSide-50 veto detectors
NASA Astrophysics Data System (ADS)
Agnes, P.; Agostino, L.; Albuquerque, I. F. M.; Alexander, T.; Alton, A. K.; Arisaka, K.; Back, H. O.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; Bottino, B.; Brigatti, A.; Brodsky, J.; Budano, F.; Bussino, S.; Cadeddu, M.; Cadoni, M.; Calaprice, F.; Canci, N.; Candela, A.; Cao, H.; Cariello, M.; Carlini, M.; Catalanotti, S.; Cavalcante, P.; Chepurnov, A.; Cocco, A. G.; Covone, G.; Crippa, L.; D'Angelo, D.; D'Incecco, M.; Davini, S.; De Cecco, S.; De Deo, M.; De Vincenzi, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Foster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Giganti, C.; Goretti, A. M.; Granato, F.; Grandi, L.; Gromov, M.; Guan, M.; Guardincerri, Y.; Hackett, B. R.; Herner, K. R.; Hungerford, E. V.; Ianni, Aldo; Ianni, Andrea; James, I.; Jollet, C.; Keeter, K.; Kendziora, C. L.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Li, X.; Lissia, M.; Lombardi, P.; Luitz, S.; Ma, Y.; Machulin, I. N.; Mandarano, A.; Mari, S. M.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meyers, P. D.; Miletic, T.; Milincic, R.; Montanari, D.; Monte, A.; Montuschi, M.; Monzani, M. E.; Mosteiro, P.; Mount, B. J.; Muratova, V. N.; Musico, P.; Napolitano, J.; Nelson, A.; Odrowski, S.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Pelczar, K.; Pelliccia, N.; Pocar, A.; Pordes, S.; Pugachev, D. A.; Qian, H.; Randle, K.; Ranucci, G.; Razeto, A.; Reinhold, B.; Renshaw, A. L.; Riffard, Q.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, S. D.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Sangiorgio, S.; Savarese, C.; Segreto, E.; Semenov, D. A.; Shields, E.; Singh, P. N.; Skorokhvatov, M. D.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Trinchese, P.; Unzhakov, E. V.; Vishneva, A.; Vogelaar, R. B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A. W.; Westerdale, S.; Wilhelmi, J.; Wojcik, M. M.; Xiang, X.; Xu, J.; Yang, C.; Yoo, J.; Zavatarelli, S.; Zec, A.; Zhong, W.; Zhu, C.; Zuzel, G.
2016-12-01
DarkSide-50 is a detector for dark matter candidates in the form of weakly interacting massive particles. It utilizes a liquid argon time projection chamber for the inner main detector, surrounded by a liquid scintillator veto (LSV) and a water Cherenkov veto detector (WCV). The LSV and WCV act as the neutron and cosmogenic muon veto detectors for DarkSide-50. This paper describes the electronics and data acquisition system used for these two detectors. The system is made of a custom built front end electronics and commercial National Instruments high speed digitizers. The front end electronics, the DAQ, and the trigger system have been used to acquire data in the form of zero-suppressed waveform samples from the 110 PMTs of the LSV and the 80 PMTs of the WCV. The veto DAQ system has proven its performance and reliability. This electronics and DAQ system can be scaled and used as it is for the veto of the next generation DarkSide-20k detector.
NASA Astrophysics Data System (ADS)
Smith, Edward M.; Wright, Jeffrey; Fontaine, Marc T.; Robinson, Arvin E.
1998-07-01
The Medical Information, Communication and Archive System (MICAS) is a multi-vendor incremental approach to PACS. MICAS is a multi-modality integrated image management system that incorporates the radiology information system (RIS) and radiology image database (RID) with future 'hooks' to other hospital databases. Even though this approach to PACS is more risky than a single-vendor turn-key approach, it offers significant advantages. The vendors involved in the initial phase of MICAS are IDX Corp., ImageLabs, Inc. and Digital Equipment Corp (DEC). The network architecture operates at 100 MBits per sec except between the modalities and the stackable intelligent switch which is used to segment MICAS by modality. Each modality segment contains the acquisition engine for the modality, a temporary archive and one or more diagnostic workstations. All archived studies are available at all workstations, but there is no permanent archive at this time. At present, the RIS vendor is responsible for study acquisition and workflow as well as maintenance of the temporary archive. Management of study acquisition, workflow and the permanent archive will become the responsibility of the archive vendor when the archive is installed in the second quarter of 1998. The modalities currently interfaced to MICAS are MRI, CT and a Howtek film digitizer with Nuclear Medicine and computed radiography (CR) to be added when the permanent archive is installed. There are six dual-monitor diagnostic workstations which use ImageLabs Shared Vision viewer software located in MRI, CT, Nuclear Medicine, musculoskeletal reading areas and two in Radiology's main reading area. One of the major lessons learned to date is that the permanent archive should have been part of the initial MICAS installation and the archive vendor should have been responsible for image acquisition rather than the RIS vendor. Currently an archive vendor is being selected who will be responsible for the management of the archive plus the HIS/RIS interface, image acquisition, modality work list manager and interfacing to the current DICOM viewer software. The next phase of MICAS will include interfacing ultrasound, locating servers outside of the Radiology LAN to support the distribution of images and reports to the clinical floors and physician offices both within and outside of the University of Rochester Medical Center (URMC) campus and the teaching archive.
NASA Astrophysics Data System (ADS)
Sepulveda, F.; Thangraj, J. S.; Quiros, D.; Pulliam, J.; Queen, J. H.; Queen, M.; Iovenitti, J. L.
2017-12-01
Seismic interferometry that makes use of ambient noise requires that cross-correlations of data recorded at two or more stations be stacked over a "long enough" time interval that off-axis sources cancel and the estimated inter-station Green's function converges to the actual function. However, the optimal length of the recording period depends on the characteristics of ambient noise at the site, which vary over time and are therefore not known before data acquisition. Data acquisition parameters cannot be planned in ways that will ensure success while minimizing cost and effort. Experiment durations are typically either too long or too short. Automated, in-field processing can provide inter-station Green's functions in near-real-time, allowing for the immediate evaluation of results and enabling operators to alter data acquisition parameters before demobilizing. We report on the design, system integration, and testing of a strategy for the automation of data acquisition, distribution, and processing of ambient noise using industry-standard, widely-available instrumentation (Reftek 130-01 digitizers and 4.5 Hz geophones). Our solution utilizes an inexpensive embedded system (Raspberry Pi 3), which is configured to acquire data from the Reftek and insert it into a big data store called Apache Cassandra. Cassandra distributes and maintains up-to-date copies of the data, through a WiFi network, as defined by tunable consistency levels and replication factors thus allowing for efficient multi-station computations. At regular intervals, data is extracted from Cassandra and is used to compute Green's functions for all receiver pairs. Results are reviewed and progress toward convergence can be assessed. We successfully tested a 20-node prototype of what we call the "Raspberry Pi-Enhanced Reftek" (RaPiER) array at the Soda Lake Geothermal Field in Nevada in June 2017. While intermittent problems with the WiFi network interfered with the real-time data delivery from some stations, the system performed robustly overall and produced hourly sets of steadily improving virtual source gathers. Most importantly, the effects of data shortfalls on results can be assessed immediately, in the field, so the array's acquisition parameters can be modified and the deployment duration extended as necessary.
Data acquisition and analysis in the DOE/NASA Wind Energy Program
NASA Technical Reports Server (NTRS)
Neustadter, H. E.
1980-01-01
Four categories of data systems, each responding to a distinct information need are presented. The categories are: control, technology, engineering and performance. The focus is on the technology data system which consists of the following elements: sensors which measure critical parameters such as wind speed and direction, output power, blade loads and strains, and tower vibrations; remote multiplexing units (RMU) mounted on each wind turbine which frequency modulate, multiplex and transmit sensor outputs; the instrumentation available to record, process and display these signals; and centralized computer analysis of data. The RMU characteristics and multiplexing techniques are presented. Data processing is illustrated by following a typical signal through instruments such as the analog tape recorder, analog to digital converter, data compressor, digital tape recorder, video (CRT) display, and strip chart recorder.
Space Tug Avionics Definition Study. Volume 5: Cost and Programmatics
NASA Technical Reports Server (NTRS)
1975-01-01
The baseline avionics system features a central digital computer that integrates the functions of all the space tug subsystems by means of a redundant digital data bus. The central computer consists of dual central processor units, dual input/output processors, and a fault tolerant memory, utilizing internal redundancy and error checking. Three electronically steerable phased arrays provide downlink transmission from any tug attitude directly to ground or via TDRS. Six laser gyros and six accelerometers in a dodecahedron configuration make up the inertial measurement unit. Both a scanning laser radar and a TV system, employing strobe lamps, are required as acquisition and docking sensors. Primary dc power at a nominal 28 volts is supplied from dual lightweight, thermally integrated fuel cells which operate from propellant grade reactants out of the main tanks.
NASA Astrophysics Data System (ADS)
Lee, Seokhee; Lee, Kiyoung; Kim, Man Bae; Kim, JongWon
2005-11-01
In this paper, we propose a design of multi-view stereoscopic HD video transmission system based on MPEG-21 Digital Item Adaptation (DIA). It focuses on the compatibility and scalability to meet various user preferences and terminal capabilities. There exist a large variety of multi-view 3D HD video types according to the methods for acquisition, display, and processing. By following the MPEG-21 DIA framework, the multi-view stereoscopic HD video is adapted according to user feedback. A user can be served multi-view stereoscopic video which corresponds with his or her preferences and terminal capabilities. In our preliminary prototype, we verify that the proposed design can support two deferent types of display device (stereoscopic and auto-stereoscopic) and switching viewpoints between two available viewpoints.
Landsat analysis of lake quality
NASA Technical Reports Server (NTRS)
Scarpace, F. L.; Fisher, L. T.; Holmquist, K. W.
1979-01-01
The trophic status of a number of inland lakes in Wisconsin has been assessed. The feasibility of using both photographic and digital representations of Landsat imagery was investigated during the lake classification project. The result of the investigation has been a semi-automatic data acquisition and handling system which, in conjunction with an analytical categorization scheme, can be used to classify all the significant lakes in the state.
Wright Research and Development Center Test Facilities Handbook
1990-01-01
Variable Temperature (2-400K) and Field (0-5 Tesla) Squid Susceptometer Variable Temperature (10-80K) and Field (0-10 Tesla) Transport Current...determine products of combustion using extraction type probes INSTRUMENTATION: Mini computer/data acquisiton system Networking provides access to larger...data recorder, Masscomp MC-500 computer with acquisition digitizer, laser and ink -jet printers,lo-pass filters, pulse code modulation AVAILABILITY
NASA Astrophysics Data System (ADS)
Bareth, G.; Bolten, A.; Gnyp, M. L.; Reusch, S.; Jasper, J.
2016-06-01
The development of UAV-based sensing systems for agronomic applications serves the improvement of crop management. The latter is in the focus of precision agriculture which intends to optimize yield, fertilizer input, and crop protection. Besides, in some cropping systems vehicle-based sensing devices are less suitable because fields cannot be entered from certain growing stages onwards. This is true for rice, maize, sorghum, and many more crops. Consequently, UAV-based sensing approaches fill a niche of very high resolution data acquisition on the field scale in space and time. While mounting RGB digital compact cameras to low-weight UAVs (< 5 kg) is well established, the miniaturization of sensors in the last years also enables hyperspectral data acquisition from those platforms. From both, RGB and hyperspectral data, vegetation indices (VIs) are computed to estimate crop growth parameters. In this contribution, we compare two different sensing approaches from a low-weight UAV platform (< 5 kg) for monitoring a nitrogen field experiment of winter wheat and a corresponding farmers' field in Western Germany. (i) A standard digital compact camera was flown to acquire RGB images which are used to compute the RGBVI and (ii) NDVI is computed from a newly modified version of the Yara N-Sensor. The latter is a well-established tractor-based hyperspectral sensor for crop management and is available on the market since a decade. It was modified for this study to fit the requirements of UAV-based data acquisition. Consequently, we focus on three objectives in this contribution: (1) to evaluate the potential of the uncalibrated RGBVI for monitoring nitrogen status in winter wheat, (2) investigate the UAV-based performance of the modified Yara N-Sensor, and (3) compare the results of the two different UAV-based sensing approaches for winter wheat.
Miraglia, Roberto; Maruzzelli, Luigi; Cortis, Kelvin; Tafaro, Corrado; Gerasia, Roberta; Parisi, Carmelo; Luca, Angelo
2015-08-01
To determine whether the use of a low-dose acquisition protocol (LDP) in digital subtraction angiography during transjugular intrahepatic portosystemic shunt (TIPS) creation/revision results in significant reduction of patient radiation exposure and adequate image quality, as compared to a default reference standard-dose acquisition protocol (SDP). Two angiographic runs were performed during TIPS creation/revision: the first following catheterization of the portal venous system and the second after stent deployment/angioplasty. Constant field of view, object to image-detector distance, and source to image-receptor distance were maintained in each patient during the two angiographic runs. 17 consecutive adult patients who underwent TIPS creation (n = 11) or TIPS revision (n = 6) from December 2013 to March 2014 were considered eligible for this single centre prospective study. In each patient, the LDP and the SDP were used in a random order for the two runs, with each patient serving as his/her own control. The dose-area product (DAP) was calculated for each image and compared. Image quality was graded by two interventional radiologists other than the operator. In all runs acquired with the LDP, image quality was considered adequate for a successful procedural outcome. The DAP per image of the LDP was numerically inferior as compared to the DAP per image of the SDP in all patients. The mean reduction in DAP per image was 75.24% ± 5.7% (p < 0. 001). Radiation exposure during TIPS creation/revision was significantly reduced by selecting a LDP in our flat-panel detector-based system, while maintaining adequate image quality.
Data Acquisition System for Multi-Frequency Radar Flight Operations Preparation
NASA Technical Reports Server (NTRS)
Leachman, Jonathan
2010-01-01
A three-channel data acquisition system was developed for the NASA Multi-Frequency Radar (MFR) system. The system is based on a commercial-off-the-shelf (COTS) industrial PC (personal computer) and two dual-channel 14-bit digital receiver cards. The decimated complex envelope representations of the three radar signals are passed to the host PC via the PCI bus, and then processed in parallel by multiple cores of the PC CPU (central processing unit). The innovation is this parallelization of the radar data processing using multiple cores of a standard COTS multi-core CPU. The data processing portion of the data acquisition software was built using autonomous program modules or threads, which can run simultaneously on different cores. A master program module calculates the optimal number of processing threads, launches them, and continually supplies each with data. The benefit of this new parallel software architecture is that COTS PCs can be used to implement increasingly complex processing algorithms on an increasing number of radar range gates and data rates. As new PCs become available with higher numbers of CPU cores, the software will automatically utilize the additional computational capacity.
Data acquisition instrument for EEG based on embedded system
NASA Astrophysics Data System (ADS)
Toresano, La Ode Husein Z.; Wijaya, Sastra Kusuma; Prawito, Sudarmaji, Arief; Syakura, Abdan; Badri, Cholid
2017-02-01
An electroencephalogram (EEG) is a device for measuring and recording the electrical activity of brain. The EEG data of signal can be used as a source of analysis for human brain function. The purpose of this study was to design a portable multichannel EEG based on embedded system and ADS1299. The ADS1299 is an analog front-end to be used as an Analog to Digital Converter (ADC) to convert analog signal of electrical activity of brain, a filter of electrical signal to reduce the noise on low-frequency band and a data communication to the microcontroller. The system has been tested to capture brain signal within a range of 1-20 Hz using the NETECH EEG simulator 330. The developed system was relatively high accuracy of more than 82.5%. The EEG Instrument has been successfully implemented to acquire the brain signal activity using a PC (Personal Computer) connection for displaying the recorded data. The final result of data acquisition has been processed using OpenBCI GUI (Graphical User Interface) based through real-time process for 8-channel signal acquisition, brain-mapping and power spectral decomposition signal using the standard FFT (Fast Fourier Transform) algorithm.
A Spacecraft Housekeeping System-on-Chip in a Radiation Hardened Structured ASIC
NASA Technical Reports Server (NTRS)
Suarez, George; DuMonthier, Jeffrey J.; Sheikh, Salman S.; Powell, Wesley A.; King, Robyn L.
2012-01-01
Housekeeping systems are essential to health monitoring of spacecraft and instruments. Typically, sensors are distributed across various sub-systems and data is collected using components such as analog-to-digital converters, analog multiplexers and amplifiers. In most cases programmable devices are used to implement the data acquisition control and storage, and the interface to higher level systems. Such discrete implementations require additional size, weight, power and interconnect complexity versus an integrated circuit solution, as well as the qualification of multiple parts. Although commercial devices are readily available, they are not suitable for space applications due the radiation tolerance and qualification requirements. The Housekeeping System-o n-A-Chip (HKSOC) is a low power, radiation hardened integrated solution suitable for spacecraft and instrument control and data collection. A prototype has been designed and includes a wide variety of functions including a 16-channel analog front-end for driving and reading sensors, analog-to-digital and digital-to-analog converters, on-chip temperature sensor, power supply current sense circuits, general purpose comparators and amplifiers, a 32-bit processor, digital I/O, pulse-width modulation (PWM) generators, timers and I2C master and slave serial interfaces. In addition, the device can operate in a bypass mode where the processor is disabled and external logic is used to control the analog and mixed signal functions. The device is suitable for stand-alone or distributed systems where multiple chips can be deployed across different sub-systems as intelligent nodes with computing and processing capabilities.
NASA Astrophysics Data System (ADS)
Kuehl, C. Stephen
2003-08-01
Completing its final development and early deployment on the Navy's multi-role aircraft, the F/A-18 E/F Super Hornet, the SHAred Reconnaissance Pod (SHARP) provides the war fighter with the latest digital tactical reconnaissance (TAC Recce) Electro-Optical/Infrared (EO/IR) sensor system. The SHARP program is an evolutionary acquisition that used a spiral development process across a prototype development phase tightly coupled into overlapping Engineering and Manufacturing Development (EMD) and Low Rate Initial Production (LRIP) phases. Under a tight budget environment with a highly compressed schedule, SHARP challenged traditional acquisition strategies and systems engineering (SE) processes. Adopting tailored state-of-the-art systems engineering process models allowd the SHARP program to overcome the technical knowledge transition challenges imposed by a compressed program schedule. The program's original goal was the deployment of digital TAC Recce mission capabilities to the fleet customer by summer of 2003. Hardware and software integration technical challenges resulted from requirements definition and analysis activities performed across a government-industry led Integrated Product Team (IPT) involving Navy engineering and test sites, Boeing, and RTSC-EPS (with its subcontracted hardware and government furnished equipment vendors). Requirements development from a bottoms-up approach was adopted using an electronic requirements capture environment to clarify and establish the SHARP EMD product baseline specifications as relevant technical data became available. Applying Earned-Value Management (EVM) against an Integrated Master Schedule (IMS) resulted in efficiently managing SE task assignments and product deliveries in a dynamically evolving customer requirements environment. Application of Six Sigma improvement methodologies resulted in the uncovering of root causes of errors in wiring interconnectivity drawings, pod manufacturing processes, and avionics requirements specifications. Utilizing the draft NAVAIR SE guideline handbook and the ANSI/EIA-632 standard: Processes for Engineering a System, a systems engineering tailored process approach was adopted for the accelerated SHARP EMD prgram. Tailoring SE processes in this accelerated product delivery environment provided unique opportunities to be technically creative in the establishment of a product performance baseline. This paper provides an historical overview of the systems engineering activities spanning the prototype phase through the EMD SHARP program phase, the performance requirement capture activities and refinement process challenges, and what SE process improvements can be applied to future SHARP-like programs adopting a compressed, evolutionary spiral development acquisition paradigm.
Implementation of High Speed Distributed Data Acquisition System
NASA Astrophysics Data System (ADS)
Raju, Anju P.; Sekhar, Ambika
2012-09-01
This paper introduces a high speed distributed data acquisition system based on a field programmable gate array (FPGA). The aim is to develop a "distributed" data acquisition interface. The development of instruments such as personal computers and engineering workstations based on "standard" platforms is the motivation behind this effort. Using standard platforms as the controlling unit allows independence in hardware from a particular vendor and hardware platform. The distributed approach also has advantages from a functional point of view: acquisition resources become available to multiple instruments; the acquisition front-end can be physically remote from the rest of the instrument. High speed data acquisition system transmits data faster to a remote computer system through Ethernet interface. The data is acquired through 16 analog input channels. The input data commands are multiplexed and digitized and then the data is stored in 1K buffer for each input channel. The main control unit in this design is the 16 bit processor implemented in the FPGA. This 16 bit processor is used to set up and initialize the data source and the Ethernet controller, as well as control the flow of data from the memory element to the NIC. Using this processor we can initialize and control the different configuration registers in the Ethernet controller in a easy manner. Then these data packets are sending to the remote PC through the Ethernet interface. The main advantages of the using FPGA as standard platform are its flexibility, low power consumption, short design duration, fast time to market, programmability and high density. The main advantages of using Ethernet controller AX88796 over others are its non PCI interface, the presence of embedded SRAM where transmit and reception buffers are located and high-performance SRAM-like interface. The paper introduces the implementation of the distributed data acquisition using FPGA by VHDL. The main advantages of this system are high accuracy, high speed, real time monitoring.
Coded spread spectrum digital transmission system design study
NASA Technical Reports Server (NTRS)
Heller, J. A.; Odenwalder, J. P.; Viterbi, A. J.
1974-01-01
Results are presented of a comprehensive study of the performance of Viterbi-decoded convolutional codes in the presence of nonideal carrier tracking and bit synchronization. A constraint length 7, rate 1/3 convolutional code and parameters suitable for the space shuttle coded communications links are used. Mathematical models are developed and theoretical and simulation results are obtained to determine the tracking and acquisition performance of the system. Pseudorandom sequence spread spectrum techniques are also considered to minimize potential degradation caused by multipath.
Thermal imaging measurement of lateral diffusivity and non-invasive material defect detection
Sun, Jiangang; Deemer, Chris
2003-01-01
A system and method for determining lateral thermal diffusivity of a material sample using a heat pulse; a sample oriented within an orthogonal coordinate system; an infrared camera; and a computer that has a digital frame grabber, and data acquisition and processing software. The mathematical model used within the data processing software is capable of determining the lateral thermal diffusivity of a sample of finite boundaries. The system and method may also be used as a nondestructive method for detecting and locating cracks within the material sample.
Criteria for Side-Force Control in Air-to-Ground Target Acquisition and Tracking
NASA Technical Reports Server (NTRS)
Sammonds, Robert I.; McNeill, Walter E.; Bunnell, John W.
1982-01-01
A moving-base simulator experiment conducted at Ames Research Center demonstrated that a wings-level-turn control mode improved flying qualities for air-to-ground weapons delivery compared with those of a conventional aircraft. Evaluations of criteria for dynamic response for this system have shown that pilot ratings correlate well with equivalent time constant of the initial response and with system bandwidth. Ranges of this time constant, as well as digital-system transport delays and lateral-acceleration control authorities that encompassed level 1 through level 3 handling qualities, were determined.
Design of Advanced Atmospheric Water Vapor Differential Absorption Lidar (DIAL) Detection System
NASA Technical Reports Server (NTRS)
Refaat, Tamer F.; Luck, William S., Jr.; DeYoung, Russell J.
1999-01-01
The measurement of atmospheric water vapor is very important for understanding the Earth's climate and water cycle. The lidar atmospheric sensing experiment (LASE) is an instrument designed and operated by the Langley Research Center for high precision water vapor measurements. The design details of a new water vapor lidar detection system that improves the measurement sensitivity of the LASE instrument by a factor of 10 are discussed. The new system consists of an advanced, very low noise, avalanche photodiode (APD) and a state-of-the-art signal processing circuit. The new low-power system is also compact and lightweight so that it would be suitable for space flight and unpiloted atmospheric vehicles (UAV) applications. The whole system is contained on one small printed circuit board (9 x 15 sq cm). The detection system is mounted at the focal plane of a lidar receiver telescope, and the digital output is read by a personal computer with a digital data acquisition card.
Optical image acquisition system for colony analysis
NASA Astrophysics Data System (ADS)
Wang, Weixing; Jin, Wenbiao
2006-02-01
For counting of both colonies and plaques, there is a large number of applications including food, dairy, beverages, hygiene, environmental monitoring, water, toxicology, sterility testing, AMES testing, pharmaceuticals, paints, sterile fluids and fungal contamination. Recently, many researchers and developers have made efforts for this kind of systems. By investigation, some existing systems have some problems since they belong to a new technology product. One of the main problems is image acquisition. In order to acquire colony images with good quality, an illumination box was constructed as: the box includes front lightning and back lightning, which can be selected by users based on properties of colony dishes. With the illumination box, lightning can be uniform; colony dish can be put in the same place every time, which make image processing easy. A digital camera in the top of the box connected to a PC computer with a USB cable, all the camera functions are controlled by the computer.
Innovative Video Diagnostic Equipment for Material Science
NASA Technical Reports Server (NTRS)
Capuano, G.; Titomanlio, D.; Soellner, W.; Seidel, A.
2012-01-01
Materials science experiments under microgravity increasingly rely on advanced optical systems to determine the physical properties of the samples under investigation. This includes video systems with high spatial and temporal resolution. The acquisition, handling, storage and transmission to ground of the resulting video data are very challenging. Since the available downlink data rate is limited, the capability to compress the video data significantly without compromising the data quality is essential. We report on the development of a Digital Video System (DVS) for EML (Electro Magnetic Levitator) which provides real-time video acquisition, high compression using advanced Wavelet algorithms, storage and transmission of a continuous flow of video with different characteristics in terms of image dimensions and frame rates. The DVS is able to operate with the latest generation of high-performance cameras acquiring high resolution video images up to 4Mpixels@60 fps or high frame rate video images up to about 1000 fps@512x512pixels.
Life Testing and Diagnostics of a Planar Out-of-Core Thermionic Converter
NASA Astrophysics Data System (ADS)
Thayer, Kevin L.; Ramalingam, Mysore L.; Young, Timothy J.; Lamp, Thomas R.
1994-07-01
This paper details the design and performance of an automated computer data acquisition system for a planar, out-of-core thermionic converter with CVD rhenium electrodes. The output characteristics of this converter have been mapped for emitter temperatures ranging from approximately 1700K to 2000K, and life testing of the converter is presently being performed at the design point of operation. An automated data acquisition system has been constructed to facilitate the collection of current density versus output voltage (J-V) and temperature data from the converter throughout the life test. This system minimizes the amount of human interaction necessary during the lifetest to measure and archive the data and present it in a usable form. The task was accomplished using a Macintosh Ilcx computer, two multiple-purpose interface boards, a digital oscilloscope, a sweep generator, and National Instrument's LabVIEW application software package.
Akkaynak, Derya; Treibitz, Tali; Xiao, Bei; Gürkan, Umut A.; Allen, Justine J.; Demirci, Utkan; Hanlon, Roger T.
2014-01-01
Commercial off-the-shelf digital cameras are inexpensive and easy-to-use instruments that can be used for quantitative scientific data acquisition if images are captured in raw format and processed so that they maintain a linear relationship with scene radiance. Here we describe the image-processing steps required for consistent data acquisition with color cameras. In addition, we present a method for scene-specific color calibration that increases the accuracy of color capture when a scene contains colors that are not well represented in the gamut of a standard color-calibration target. We demonstrate applications of the proposed methodology in the fields of biomedical engineering, artwork photography, perception science, marine biology, and underwater imaging. PMID:24562030
DOE Office of Scientific and Technical Information (OSTI.GOV)
Damato, Antonio L., E-mail: adamato@lroc.harvard.edu; Viswanathan, Akila N.; Don, Sarah M.
2014-10-15
Purpose: To investigate the use of a system using electromagnetic tracking (EMT), post-processing and an error-detection algorithm for detecting errors and resolving uncertainties in high-dose-rate brachytherapy catheter digitization for treatment planning. Methods: EMT was used to localize 15 catheters inserted into a phantom using a stepwise acquisition technique. Five distinct acquisition experiments were performed. Noise associated with the acquisition was calculated. The dwell location configuration was extracted from the EMT data. A CT scan of the phantom was performed, and five distinct catheter digitization sessions were performed. No a priori registration of the CT scan coordinate system with the EMTmore » coordinate system was performed. CT-based digitization was automatically extracted from the brachytherapy plan DICOM files (CT), and rigid registration was performed between EMT and CT dwell positions. EMT registration error was characterized in terms of the mean and maximum distance between corresponding EMT and CT dwell positions per catheter. An algorithm for error detection and identification was presented. Three types of errors were systematically simulated: swap of two catheter numbers, partial swap of catheter number identification for parts of the catheters (mix), and catheter-tip shift. Error-detection sensitivity (number of simulated scenarios correctly identified as containing an error/number of simulated scenarios containing an error) and specificity (number of scenarios correctly identified as not containing errors/number of correct scenarios) were calculated. Catheter identification sensitivity (number of catheters correctly identified as erroneous across all scenarios/number of erroneous catheters across all scenarios) and specificity (number of catheters correctly identified as correct across all scenarios/number of correct catheters across all scenarios) were calculated. The mean detected and identified shift was calculated. Results: The maximum noise ±1 standard deviation associated with the EMT acquisitions was 1.0 ± 0.1 mm, and the mean noise was 0.6 ± 0.1 mm. Registration of all the EMT and CT dwell positions was associated with a mean catheter error of 0.6 ± 0.2 mm, a maximum catheter error of 0.9 ± 0.4 mm, a mean dwell error of 1.0 ± 0.3 mm, and a maximum dwell error of 1.3 ± 0.7 mm. Error detection and catheter identification sensitivity and specificity of 100% were observed for swap, mix and shift (≥2.6 mm for error detection; ≥2.7 mm for catheter identification) errors. A mean detected shift of 1.8 ± 0.4 mm and a mean identified shift of 1.9 ± 0.4 mm were observed. Conclusions: Registration of the EMT dwell positions to the CT dwell positions was possible with a residual mean error per catheter of 0.6 ± 0.2 mm and a maximum error for any dwell of 1.3 ± 0.7 mm. These low residual registration errors show that quality assurance of the general characteristics of the catheters and of possible errors affecting one specific dwell position is possible. The sensitivity and specificity of the catheter digitization verification algorithm was 100% for swap and mix errors and for shifts ≥2.6 mm. On average, shifts ≥1.8 mm were detected, and shifts ≥1.9 mm were detected and identified.« less
Altani, Angeliki; Georgiou, George K; Deng, Ciping; Cho, Jeung-Ryeul; Katopodi, Katerina; Wei, Wei; Protopapas, Athanassios
2017-12-01
We examined cross-linguistic effects in the relationship between serial and discrete versions of digit naming and word reading. In total, 113 Mandarin-speaking Chinese children, 100 Korean children, 112 English-speaking Canadian children, and 108 Greek children in Grade 3 were administered tasks of serial and discrete naming of words and digits. Interrelations among tasks indicated that the link between rapid naming and reading is largely determined by the format of the tasks across orthographies. Multigroup path analyses with discrete and serial word reading as dependent variables revealed commonalities as well as significant differences between writing systems. The path coefficient from discrete digits to discrete words was greater for the more transparent orthographies, consistent with more efficient sight-word processing. The effect of discrete word reading on serial word reading was stronger in alphabetic languages, where there was also a suppressive effect of discrete digit naming. However, the effect of serial digit naming on serial word reading did not differ among the four language groups. This pattern of relationships challenges a universal account of reading fluency acquisition while upholding a universal role of rapid serial naming, further distinguishing between multi-element interword and intraword processing. Copyright © 2017 Elsevier Inc. All rights reserved.
An open source digital servo for atomic, molecular, and optical physics experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leibrandt, D. R., E-mail: david.leibrandt@nist.gov; Heidecker, J.
2015-12-15
We describe a general purpose digital servo optimized for feedback control of lasers in atomic, molecular, and optical physics experiments. The servo is capable of feedback bandwidths up to roughly 1 MHz (limited by the 320 ns total latency); loop filter shapes up to fifth order; multiple-input, multiple-output control; and automatic lock acquisition. The configuration of the servo is controlled via a graphical user interface, which also provides a rudimentary software oscilloscope and tools for measurement of system transfer functions. We illustrate the functionality of the digital servo by describing its use in two example scenarios: frequency control of themore » laser used to probe the narrow clock transition of {sup 27}Al{sup +} in an optical atomic clock, and length control of a cavity used for resonant frequency doubling of a laser.« less
An open source digital servo for atomic, molecular, and optical physics experiments.
Leibrandt, D R; Heidecker, J
2015-12-01
We describe a general purpose digital servo optimized for feedback control of lasers in atomic, molecular, and optical physics experiments. The servo is capable of feedback bandwidths up to roughly 1 MHz (limited by the 320 ns total latency); loop filter shapes up to fifth order; multiple-input, multiple-output control; and automatic lock acquisition. The configuration of the servo is controlled via a graphical user interface, which also provides a rudimentary software oscilloscope and tools for measurement of system transfer functions. We illustrate the functionality of the digital servo by describing its use in two example scenarios: frequency control of the laser used to probe the narrow clock transition of (27)Al(+) in an optical atomic clock, and length control of a cavity used for resonant frequency doubling of a laser.