Science.gov

Sample records for digital camera technology

  1. High Speed Digital Camera Technology Review

    NASA Technical Reports Server (NTRS)

    Clements, Sandra D.

    2009-01-01

    A High Speed Digital Camera Technology Review (HSD Review) is being conducted to evaluate the state-of-the-shelf in this rapidly progressing industry. Five HSD cameras supplied by four camera manufacturers participated in a Field Test during the Space Shuttle Discovery STS-128 launch. Each camera was also subjected to Bench Tests in the ASRC Imaging Development Laboratory. Evaluation of the data from the Field and Bench Tests is underway. Representatives from the imaging communities at NASA / KSC and the Optical Systems Group are participating as reviewers. A High Speed Digital Video Camera Draft Specification was updated to address Shuttle engineering imagery requirements based on findings from this HSD Review. This draft specification will serve as the template for a High Speed Digital Video Camera Specification to be developed for the wider OSG imaging community under OSG Task OS-33.

  2. Digital Pinhole Camera

    ERIC Educational Resources Information Center

    Lancor, Rachael; Lancor, Brian

    2014-01-01

    In this article we describe how the classic pinhole camera demonstration can be adapted for use with digital cameras. Students can easily explore the effects of the size of the pinhole and its distance from the sensor on exposure time, magnification, and image quality. Instructions for constructing a digital pinhole camera and our method for…

  3. 2010 A Digital Odyssey: Exploring Document Camera Technology and Computer Self-Efficacy in a Digital Era

    ERIC Educational Resources Information Center

    Hoge, Robert Joaquin

    2010-01-01

    Within the sphere of education, navigating throughout a digital world has become a matter of necessity for the developing professional, as with the advent of Document Camera Technology (DCT). This study explores the pedagogical implications of implementing DCT; to see if there is a relationship between teachers' comfort with DCT and to the…

  4. Recent advances in digital camera optics

    NASA Astrophysics Data System (ADS)

    Ishiguro, Keizo

    2012-10-01

    The digital camera market has extremely expanded in the last ten years. The zoom lens for digital camera is especially the key determining factor of the camera body size and image quality. Its technologies have been based on several analog technological progresses including the method of aspherical lens manufacturing and the mechanism of image stabilization. Panasonic is one of the pioneers of both technologies. I will introduce the previous trend in optics of zoom lens as well as original optical technologies of Panasonic digital camera "LUMIX", and in addition optics in 3D camera system. Besides, I would like to suppose the future trend in digital cameras.

  5. MEMS digital camera

    NASA Astrophysics Data System (ADS)

    Gutierrez, R. C.; Tang, T. K.; Calvet, R.; Fossum, E. R.

    2007-02-01

    MEMS technology uses photolithography and etching of silicon wafers to enable mechanical structures with less than 1 μm tolerance, important for the miniaturization of imaging systems. In this paper, we present the first silicon MEMS digital auto-focus camera for use in cell phones with a focus range of 10 cm to infinity. At the heart of the new silicon MEMS digital camera, a simple and low-cost electromagnetic actuator impels a silicon MEMS motion control stage on which a lens is mounted. The silicon stage ensures precise alignment of the lens with respect to the imager, and enables precision motion of the lens over a range of 300 μm with < 5 μm hysteresis and < 2 μm repeatability. Settling time is < 15 ms for 200 μm step, and < 5ms for 20 μm step enabling AF within 0.36 sec at 30 fps. The precise motion allows COTS optics to maintain MTF > 0.8 at 20 cy/mm up to 80% field over the full range of motion. Accelerated lifetime testing has shown that the alignment and precision of motion is maintained after 8,000 g shocks, thermal cycling from - 40 C to 85 C, and operation over 20 million cycles.

  6. Digital Elevation Model from Non-Metric Camera in Uas Compared with LIDAR Technology

    NASA Astrophysics Data System (ADS)

    Dayamit, O. M.; Pedro, M. F.; Ernesto, R. R.; Fernando, B. L.

    2015-08-01

    Digital Elevation Model (DEM) data as a representation of surface topography is highly demanded for use in spatial analysis and modelling. Aimed to that issue many methods of acquisition data and process it are developed, from traditional surveying until modern technology like LIDAR. On the other hands, in a past four year the development of Unamend Aerial System (UAS) aimed to Geomatic bring us the possibility to acquire data about surface by non-metric digital camera on board in a short time with good quality for some analysis. Data collectors have attracted tremendous attention on UAS due to possibility of the determination of volume changes over time, monitoring of the breakwaters, hydrological modelling including flood simulation, drainage networks, among others whose support in DEM for proper analysis. The DEM quality is considered as a combination of DEM accuracy and DEM suitability so; this paper is aimed to analyse the quality of the DEM from non-metric digital camera on UAS compared with a DEM from LIDAR corresponding to same geographic space covering 4 km2 in Artemisa province, Cuba. This area is in a frame of urban planning whose need to know the topographic characteristics in order to analyse hydrology behaviour and decide the best place for make roads, building and so on. Base on LIDAR technology is still more accurate method, it offer us a pattern for test DEM from non-metric digital camera on UAS, whose are much more flexible and bring a solution for many applications whose needs DEM of detail.

  7. Image Sensors Enhance Camera Technologies

    NASA Technical Reports Server (NTRS)

    2010-01-01

    In the 1990s, a Jet Propulsion Laboratory team led by Eric Fossum researched ways of improving complementary metal-oxide semiconductor (CMOS) image sensors in order to miniaturize cameras on spacecraft while maintaining scientific image quality. Fossum s team founded a company to commercialize the resulting CMOS active pixel sensor. Now called the Aptina Imaging Corporation, based in San Jose, California, the company has shipped over 1 billion sensors for use in applications such as digital cameras, camera phones, Web cameras, and automotive cameras. Today, one of every three cell phone cameras on the planet feature Aptina s sensor technology.

  8. A Novel Multi-Digital Camera System Based on Tilt-Shift Photography Technology

    PubMed Central

    Sun, Tao; Fang, Jun-yong; Zhao, Dong; Liu, Xue; Tong, Qing-xi

    2015-01-01

    Multi-digital camera systems (MDCS) are constantly being improved to meet the increasing requirement of high-resolution spatial data. This study identifies the insufficiencies of traditional MDCSs and proposes a new category MDCS based on tilt-shift photography to improve ability of the MDCS to acquire high-accuracy spatial data. A prototype system, including two or four tilt-shift cameras (TSC, camera model: Nikon D90), is developed to validate the feasibility and correctness of proposed MDCS. Similar to the cameras of traditional MDCSs, calibration is also essential for TSC of new MDCS. The study constructs indoor control fields and proposes appropriate calibration methods for TSC, including digital distortion model (DDM) approach and two-step calibrated strategy. The characteristics of TSC are analyzed in detail via a calibration experiment; for example, the edge distortion of TSC. Finally, the ability of the new MDCS to acquire high-accuracy spatial data is verified through flight experiments. The results of flight experiments illustrate that geo-position accuracy of prototype system achieves 0.3 m at a flight height of 800 m, and spatial resolution of 0.15 m. In addition, results of the comparison between the traditional (MADC II) and proposed MDCS demonstrate that the latter (0.3 m) provides spatial data with higher accuracy than the former (only 0.6 m) under the same conditions. We also take the attitude that using higher accuracy TSC in the new MDCS should further improve the accuracy of the photogrammetry senior product. PMID:25835187

  9. Measuring Distances Using Digital Cameras

    ERIC Educational Resources Information Center

    Kendal, Dave

    2007-01-01

    This paper presents a generic method of calculating accurate horizontal and vertical object distances from digital images taken with any digital camera and lens combination, where the object plane is parallel to the image plane or tilted in the vertical plane. This method was developed for a project investigating the size, density and spatial…

  10. Digital Camera Project Fosters Communication Skills

    ERIC Educational Resources Information Center

    Fisher, Ashley; Lazaros, Edward J.

    2009-01-01

    This article details the many benefits of educators' use of digital camera technology and provides an activity in which students practice taking portrait shots of classmates, manipulate the resulting images, and add language arts practice by interviewing their subjects to produce a photo-illustrated Word document. This activity gives…

  11. Teaching with Technology: Step Back and Hand over the Cameras! Using Digital Cameras to Facilitate Mathematics Learning with Young Children in K-2 Classrooms

    ERIC Educational Resources Information Center

    Northcote, Maria

    2011-01-01

    Digital cameras are now commonplace in many classrooms and in the lives of many children in early childhood centres and primary schools. They are regularly used by adults and teachers for "saving special moments and documenting experiences." The use of previously expensive photographic and recording equipment has often remained in the domain of…

  12. Digital security technology simplified.

    PubMed

    Scaglione, Bernard J

    2007-01-01

    Digital security technology is making great strides in replacing analog and other traditional security systems including CCTV card access, personal identification and alarm monitoring applications. Like any new technology, the author says, it is important to understand its benefits and limitations before purchasing and installing, to ensure its proper operation and effectiveness. This article is a primer for security directors on how digital technology works. It provides an understanding of the key components which make up the foundation for digital security systems, focusing on three key aspects of the digital security world: the security network, IP cameras and IP recorders.

  13. Digital Cameras in the K-12 Classroom.

    ERIC Educational Resources Information Center

    Clark, Kenneth; Hosticka, Alice; Bedell, Jacqueline

    This paper discusses the use of digital cameras in K-12 education. Examples are provided of the integration of the digital camera and visual images into: reading and writing; science, social studies, and mathematics; projects; scientific experiments; desktop publishing; visual arts; data analysis; computer literacy; classroom atmosphere; and…

  14. Smart Camera Technology Increases Quality

    NASA Technical Reports Server (NTRS)

    2004-01-01

    When it comes to real-time image processing, everyone is an expert. People begin processing images at birth and rapidly learn to control their responses through the real-time processing of the human visual system. The human eye captures an enormous amount of information in the form of light images. In order to keep the brain from becoming overloaded with all the data, portions of an image are processed at a higher resolution than others, such as a traffic light changing colors. changing colors. In the same manner, image processing products strive to extract the information stored in light in the most efficient way possible. Digital cameras available today capture millions of pixels worth of information from incident light. However, at frame rates more than a few per second, existing digital interfaces are overwhelmed. All the user can do is store several frames to memory until that memory is full and then subsequent information is lost. New technology pairs existing digital interface technology with an off-the-shelf complementary metal oxide semiconductor (CMOS) imager to provide more than 500 frames per second of specialty image processing. The result is a cost-effective detection system unlike any other.

  15. Choosing the Best Digital Camera for Your Program

    ERIC Educational Resources Information Center

    Mikat, Richard P.; Anderson, Mandi

    2005-01-01

    Many educators in physical education, recreation, dance, and related fields have begun using digital images to enhance their teaching (e.g., Ryan, Marzilla, & Martindale, 2001). Many other educators would like to begin using this technology, but find the task of choosing an appropriate digital camera to be overwhelming. This article is designed to…

  16. An Inexpensive Digital Infrared Camera

    ERIC Educational Resources Information Center

    Mills, Allan

    2012-01-01

    Details are given for the conversion of an inexpensive webcam to a camera specifically sensitive to the near infrared (700-1000 nm). Some experiments and practical applications are suggested and illustrated. (Contains 9 figures.)

  17. Camera! Action! Collaborate with Digital Moviemaking

    ERIC Educational Resources Information Center

    Swan, Kathleen Owings; Hofer, Mark; Levstik, Linda S.

    2007-01-01

    Broadly defined, digital moviemaking integrates a variety of media (images, sound, text, video, narration) to communicate with an audience. There is near-ubiquitous access to the necessary software (MovieMaker and iMovie are bundled free with their respective operating systems) and hardware (computers with Internet access, digital cameras, etc.).…

  18. A stereoscopic lens for digital cinema cameras

    NASA Astrophysics Data System (ADS)

    Lipton, Lenny; Rupkalvis, John

    2015-03-01

    Live-action stereoscopic feature films are, for the most part, produced using a costly post-production process to convert planar cinematography into stereo-pair images and are only occasionally shot stereoscopically using bulky dual-cameras that are adaptations of the Ramsdell rig. The stereoscopic lens design described here might very well encourage more live-action image capture because it uses standard digital cinema cameras and workflow to save time and money.

  19. National Guidelines for Digital Camera Systems Certification

    NASA Astrophysics Data System (ADS)

    Yaron, Yaron; Keinan, Eran; Benhamu, Moshe; Regev, Ronen; Zalmanzon, Garry

    2016-06-01

    Digital camera systems are a key component in the production of reliable, geometrically accurate, high-resolution geospatial products. These systems have replaced film imaging in photogrammetric data capturing. Today, we see a proliferation of imaging sensors collecting photographs in different ground resolutions, spectral bands, swath sizes, radiometric characteristics, accuracies and carried on different mobile platforms. In addition, these imaging sensors are combined with navigational tools (such as GPS and IMU), active sensors such as laser scanning and powerful processing tools to obtain high quality geospatial products. The quality (accuracy, completeness, consistency, etc.) of these geospatial products is based on the use of calibrated, high-quality digital camera systems. The new survey regulations of the state of Israel specify the quality requirements for each geospatial product including: maps at different scales and for different purposes, elevation models, orthophotographs, three-dimensional models at different levels of details (LOD) and more. In addition, the regulations require that digital camera systems used for mapping purposes should be certified using a rigorous mapping systems certification and validation process which is specified in the Director General Instructions. The Director General Instructions for digital camera systems certification specify a two-step process as follows: 1. Theoretical analysis of system components that includes: study of the accuracy of each component and an integrative error propagation evaluation, examination of the radiometric and spectral response curves for the imaging sensors, the calibration requirements, and the working procedures. 2. Empirical study of the digital mapping system that examines a typical project (product scale, flight height, number and configuration of ground control points and process). The study examine all the aspects of the final product including; its accuracy, the product pixels size

  20. Toward a digital camera to rival the human eye

    NASA Astrophysics Data System (ADS)

    Skorka, Orit; Joseph, Dileepan

    2011-07-01

    All things considered, electronic imaging systems do not rival the human visual system despite notable progress over 40 years since the invention of the CCD. This work presents a method that allows design engineers to evaluate the performance gap between a digital camera and the human eye. The method identifies limiting factors of the electronic systems by benchmarking against the human system. It considers power consumption, visual field, spatial resolution, temporal resolution, and properties related to signal and noise power. A figure of merit is defined as the performance gap of the weakest parameter. Experimental work done with observers and cadavers is reviewed to assess the parameters of the human eye, and assessment techniques are also covered for digital cameras. The method is applied to 24 modern image sensors of various types, where an ideal lens is assumed to complete a digital camera. Results indicate that dynamic range and dark limit are the most limiting factors. The substantial functional gap, from 1.6 to 4.5 orders of magnitude, between the human eye and digital cameras may arise from architectural differences between the human retina, arranged in a multiple-layer structure, and image sensors, mostly fabricated in planar technologies. Functionality of image sensors may be significantly improved by exploiting technologies that allow vertical stacking of active tiers.

  1. Digital Earth Watch: Investigating the World with Digital Cameras

    NASA Astrophysics Data System (ADS)

    Gould, A. D.; Schloss, A. L.; Beaudry, J.; Pickle, J.

    2015-12-01

    Every digital camera including the smart phone camera can be a scientific tool. Pictures contain millions of color intensity measurements organized spatially allowing us to measure properties of objects in the images. This presentation will demonstrate how digital pictures can be used for a variety of studies with a special emphasis on using repeat digital photographs to study change-over-time in outdoor settings with a Picture Post. Demonstrations will include using inexpensive color filters to take pictures that enhance features in images such as unhealthy leaves on plants, or clouds in the sky. Software available at no cost from the Digital Earth Watch (DEW) website that lets students explore light, color and pixels, manipulate color in images and make measurements, will be demonstrated. DEW and Picture Post were developed with support from NASA. Please visit our websites: DEW: http://dew.globalsystemsscience.orgPicture Post: http://picturepost.unh.edu

  2. X-ray imaging using digital cameras

    NASA Astrophysics Data System (ADS)

    Winch, Nicola M.; Edgar, Andrew

    2012-03-01

    The possibility of using the combination of a computed radiography (storage phosphor) cassette and a semiprofessional grade digital camera for medical or dental radiography is investigated. We compare the performance of (i) a Canon 5D Mk II single lens reflex camera with f1.4 lens and full-frame CMOS array sensor and (ii) a cooled CCD-based camera with a 1/3 frame sensor and the same lens system. Both systems are tested with 240 x 180 mm cassettes which are based on either powdered europium-doped barium fluoride bromide or needle structure europium-doped cesium bromide. The modulation transfer function for both systems has been determined and falls to a value of 0.2 at around 2 lp/mm, and is limited by light scattering of the emitted light from the storage phosphor rather than the optics or sensor pixelation. The modulation transfer function for the CsBr:Eu2+ plate is bimodal, with a high frequency wing which is attributed to the light-guiding behaviour of the needle structure. The detective quantum efficiency has been determined using a radioisotope source and is comparatively low at 0.017 for the CMOS camera and 0.006 for the CCD camera, attributed to the poor light harvesting by the lens. The primary advantages of the method are portability, robustness, digital imaging and low cost; the limitations are the low detective quantum efficiency and hence signal-to-noise ratio for medical doses, and restricted range of plate sizes. Representative images taken with medical doses are shown and illustrate the potential use for portable basic radiography.

  3. The Sloan Digital Sky Survey Photometric Camera

    SciTech Connect

    Gunn, J.E.; Carr, M.; Rockosi, C.; Sekiguchi, M.; Berry, K.; Elms, B.; de Haas, E.; Ivezic, Z.; Knapp, G.; Lupton, R.; Pauls, G.; Simcoe, R.; Hirsch, R.; Sanford, D.; Wang, S.; York, D.; Harris, F.; Annis, J.; Bartozek, L.; Boroski, W.; Bakken, J.; Haldeman, M.; Kent, S.; Holm, S.; Holmgren, D.; Petravick, D.; Prosapio, A.; Rechenmacher, R.; Doi, M.; Fukugita, M.; Shimasaku, K.; Okada, N.; Hull, C.; Siegmund, W.; Mannery, E.; Blouke, M.; Heidtman, D.; Schneider, D.; Lucinio, R.; and others

    1998-12-01

    We have constructed a large-format mosaic CCD camera for the Sloan Digital Sky Survey. The camera consists of two arrays, a photometric array that uses 30 2048 {times} 2048 SITe/Tektronix CCDs (24 {mu}m pixels) with an effective imaging area of 720 cm{sup 2} and an astrometric array that uses 24 400 {times} 2048 CCDs with the same pixel size, which will allow us to tie bright astrometric standard stars to the objects imaged in the photometric camera. The instrument will be used to carry out photometry essentially simultaneously in five color bands spanning the range accessible to silicon detectors on the ground in the time-delay{endash}and{endash}integrate (TDI) scanning mode. The photometric detectors are arrayed in the focal plane in six columns of five chips each such that two scans cover a filled stripe 2&arcdeg;5 wide. This paper presents engineering and technical details of the camera. {copyright} {ital {copyright} 1998.} {ital The American Astronomical Society}

  4. Digital Camera Control for Faster Inspection

    NASA Technical Reports Server (NTRS)

    Brown, Katharine; Siekierski, James D.; Mangieri, Mark L.; Dekome, Kent; Cobarruvias, John; Piplani, Perry J.; Busa, Joel

    2009-01-01

    Digital Camera Control Software (DCCS) is a computer program for controlling a boom and a boom-mounted camera used to inspect the external surface of a space shuttle in orbit around the Earth. Running in a laptop computer in the space-shuttle crew cabin, DCCS commands integrated displays and controls. By means of a simple one-button command, a crewmember can view low- resolution images to quickly spot problem areas and can then cause a rapid transition to high- resolution images. The crewmember can command that camera settings apply to a specific small area of interest within the field of view of the camera so as to maximize image quality within that area. DCCS also provides critical high-resolution images to a ground screening team, which analyzes the images to assess damage (if any); in so doing, DCCS enables the team to clear initially suspect areas more quickly than would otherwise be possible and further saves time by minimizing the probability of re-imaging of areas already inspected. On the basis of experience with a previous version (2.0) of the software, the present version (3.0) incorporates a number of advanced imaging features that optimize crewmember capability and efficiency.

  5. Use of a computerized digital camera in podiatric medical practice.

    PubMed

    Stacpoole-Shea, S; Shea, G

    1999-03-01

    Multimedia technology was once rarely found outside the realm of commercial production studios or in elaborate computer games. However, with the addition of only a few simple accessories, recent advances have made this technology readily available to the podiatric medical practitioner on a desktop office computer. The role that the application of multimedia technology using a computerized digital camera can play in a podiatric medical practice--including in such areas as record keeping, outcome measurement, patient education, interdisciplinary communications, and practice-management tools--is discussed.

  6. Optimum color filters for CCD digital cameras.

    PubMed

    Engelhardt, K; Seitz, P

    1993-06-01

    A procedure for the definition of optimum spectral transmission curves for any solid-state (especially silicon-based CCD) color camera is presented. The design of the target curves is based on computer simulation of the camera system and on the use of test colors with known spectral reflectances. Color errors are measured in a uniform color space (CIELUV) and by application of the Commission Internationale de l'Eclairage color difference formula. Dielectric filter stacks were designed by simulated thermal annealing, and a stripe filter pattern was fabricated with transmission properties close to the specifications. Optimization of the color transformation minimizes the residual average color error and an average color error of ~1 just noticeable difference should be feasible. This means that color differences on a side-to-side comparison of original and reproduced color are practically imperceptible. In addition, electrical cross talk within the solid-state imager can be compensated by adapting the color matrixing coefficients. The theoretical findings of this work were employed for the design and fabrication of a high-resolution digital CCD color camera with high calorimetric accuracy. PMID:20829908

  7. Digital Sensor Technology

    SciTech Connect

    Ted Quinn; Jerry Mauck; Richard Bockhorst; Ken Thomas

    2013-07-01

    The nuclear industry has been slow to incorporate digital sensor technology into nuclear plant designs due to concerns with digital qualification issues. However, the benefits of digital sensor technology for nuclear plant instrumentation are substantial in terms of accuracy, reliability, availability, and maintainability. This report demonstrates these benefits in direct comparisons of digital and analog sensor applications. It also addresses the qualification issues that must be addressed in the application of digital sensor technology.

  8. Picture Perfect: Using Digital Cameras for Teaching Mathematics.

    ERIC Educational Resources Information Center

    Teahan, John; Sharp, Brian

    2002-01-01

    Discusses positive effects of digital photography on the teaching of mathematics and cost-effectiveness for schools. Discusses appropriate digital camera resolution, storage, printers, and handheld options for classroom use. (KHR)

  9. A Comparative Study of Microscopic Images Captured by a Box Type Digital Camera Versus a Standard Microscopic Photography Camera Unit

    PubMed Central

    Desai, Nandini J.; Gupta, B. D.; Patel, Pratik Narendrabhai

    2014-01-01

    Introduction: Obtaining images of slides viewed by a microscope can be invaluable for both diagnosis and teaching.They can be transferred among technologically-advanced hospitals for further consultation and evaluation. But a standard microscopic photography camera unit (MPCU)(MIPS-Microscopic Image projection System) is costly and not available in resource poor settings. The aim of our endeavour was to find a comparable and cheaper alternative method for photomicrography. Materials and Methods: We used a NIKON Coolpix S6150 camera (box type digital camera) with Olympus CH20i microscope and a fluorescent microscope for the purpose of this study. Results: We got comparable results for capturing images of light microscopy, but the results were not as satisfactory for fluorescent microscopy. Conclusion: A box type digital camera is a comparable, less expensive and convenient alternative to microscopic photography camera unit. PMID:25478350

  10. Measurement of solar extinction in tower plants with digital cameras

    NASA Astrophysics Data System (ADS)

    Ballestrín, J.; Monterreal, R.; Carra, M. E.; Fernandez-Reche, J.; Barbero, J.; Marzo, A.

    2016-05-01

    Atmospheric extinction of solar radiation between the heliostat field and the receiver is accepted as a non-negligible source of energy loss in the increasingly large central receiver plants. However, the reality is that there is currently no reliable measurement method for this quantity and at present these plants are designed, built and operated without knowing this local parameter. Nowadays digital cameras are used in many scientific applications for their ability to convert available light into digital images. Its broad spectral range, high resolution and high signal to noise ratio, make them an interesting device in solar technology. In this work a method for atmospheric extinction measurement based on digital images is presented. The possibility of defining a measurement setup in circumstances similar to those of a tower plant increases the credibility of the method. This procedure is currently being implemented at Plataforma Solar de Almería.

  11. Quality criterion for digital still camera

    NASA Astrophysics Data System (ADS)

    Bezryadin, Sergey

    2007-02-01

    The main quality requirements for a digital still camera are color capturing accuracy, low noise level, and quantum efficiency. Different consumers assign different priorities to the listed parameters, and camera designers need clearly formulated methods for their evaluation. While there are procedures providing noise level and quantum efficiency estimation, there are no effective means for color capturing accuracy estimation. Introduced in this paper criterion allows to fill this gap. Luther-Ives condition for correct color reproduction system became known in the beginning of the last century. However, since no detector system satisfies Luther-Ives condition, there are always stimuli that are distinctly different for an observer, but which detectors are unable to distinguish. To estimate conformity of a detector set with Luther-Ives condition and calculate a measure of discrepancy, an angle between detector sensor sensitivity and Cohen's Fundamental Color Space may be used. In this paper, the divergence angle is calculated for some typical CCD sensors and a demonstration provided on how this angle might be reduced with a corrective filter. In addition, it is shown that with a specific corrective filter Foveon sensors turn into a detector system with a good Luther-Ives condition compliance.

  12. Camera Ready: Capturing a Digital History of Chester

    ERIC Educational Resources Information Center

    Lehman, Kathy

    2008-01-01

    Armed with digital cameras, voice recorders, and movie cameras, students from Thomas Dale High School in Chester, Virginia, have been exploring neighborhoods, interviewing residents, and collecting memories of their hometown. In this article, the author describes "Digital History of Chester", a project for creating a commemorative DVD. This…

  13. Range camera self-calibration based on integrated bundle adjustment via joint setup with a 2D digital camera.

    PubMed

    Shahbazi, Mozhdeh; Homayouni, Saeid; Saadatseresht, Mohammad; Sattari, Mehran

    2011-01-01

    Time-of-flight cameras, based on photonic mixer device (PMD) technology, are capable of measuring distances to objects at high frame rates, however, the measured ranges and the intensity data contain systematic errors that need to be corrected. In this paper, a new integrated range camera self-calibration method via joint setup with a digital (RGB) camera is presented. This method can simultaneously estimate the systematic range error parameters as well as the interior and external orientation parameters of the camera. The calibration approach is based on photogrammetric bundle adjustment of observation equations originating from collinearity condition and a range errors model. Addition of a digital camera to the calibration process overcomes the limitations of small field of view and low pixel resolution of the range camera. The tests are performed on a dataset captured by a PMD[vision]-O3 camera from a multi-resolution test field of high contrast targets. An average improvement of 83% in RMS of range error and 72% in RMS of coordinate residual, over that achieved with basic calibration, was realized in an independent accuracy assessment. Our proposed calibration method also achieved 25% and 36% improvement on RMS of range error and coordinate residual, respectively, over that obtained by integrated calibration of the single PMD camera. PMID:22164102

  14. Range camera self-calibration based on integrated bundle adjustment via joint setup with a 2D digital camera.

    PubMed

    Shahbazi, Mozhdeh; Homayouni, Saeid; Saadatseresht, Mohammad; Sattari, Mehran

    2011-01-01

    Time-of-flight cameras, based on photonic mixer device (PMD) technology, are capable of measuring distances to objects at high frame rates, however, the measured ranges and the intensity data contain systematic errors that need to be corrected. In this paper, a new integrated range camera self-calibration method via joint setup with a digital (RGB) camera is presented. This method can simultaneously estimate the systematic range error parameters as well as the interior and external orientation parameters of the camera. The calibration approach is based on photogrammetric bundle adjustment of observation equations originating from collinearity condition and a range errors model. Addition of a digital camera to the calibration process overcomes the limitations of small field of view and low pixel resolution of the range camera. The tests are performed on a dataset captured by a PMD[vision]-O3 camera from a multi-resolution test field of high contrast targets. An average improvement of 83% in RMS of range error and 72% in RMS of coordinate residual, over that achieved with basic calibration, was realized in an independent accuracy assessment. Our proposed calibration method also achieved 25% and 36% improvement on RMS of range error and coordinate residual, respectively, over that obtained by integrated calibration of the single PMD camera.

  15. Range Camera Self-Calibration Based on Integrated Bundle Adjustment via Joint Setup with a 2D Digital Camera

    PubMed Central

    Shahbazi, Mozhdeh; Homayouni, Saeid; Saadatseresht, Mohammad; Sattari, Mehran

    2011-01-01

    Time-of-flight cameras, based on Photonic Mixer Device (PMD) technology, are capable of measuring distances to objects at high frame rates, however, the measured ranges and the intensity data contain systematic errors that need to be corrected. In this paper, a new integrated range camera self-calibration method via joint setup with a digital (RGB) camera is presented. This method can simultaneously estimate the systematic range error parameters as well as the interior and external orientation parameters of the camera. The calibration approach is based on photogrammetric bundle adjustment of observation equations originating from collinearity condition and a range errors model. Addition of a digital camera to the calibration process overcomes the limitations of small field of view and low pixel resolution of the range camera. The tests are performed on a dataset captured by a PMD[vision]-O3 camera from a multi-resolution test field of high contrast targets. An average improvement of 83% in RMS of range error and 72% in RMS of coordinate residual, over that achieved with basic calibration, was realized in an independent accuracy assessment. Our proposed calibration method also achieved 25% and 36% improvement on RMS of range error and coordinate residual, respectively, over that obtained by integrated calibration of the single PMD camera. PMID:22164102

  16. Methods for identification of images acquired with digital cameras

    NASA Astrophysics Data System (ADS)

    Geradts, Zeno J.; Bijhold, Jurrien; Kieft, Martijn; Kurosawa, Kenji; Kuroki, Kenro; Saitoh, Naoki

    2001-02-01

    From the court we were asked whether it is possible to determine if an image has been made with a specific digital camera. This question has to be answered in child pornography cases, where evidence is needed that a certain picture has been made with a specific camera. We have looked into different methods of examining the cameras to determine if a specific image has been made with a camera: defects in CCDs, file formats that are used, noise introduced by the pixel arrays and watermarking in images used by the camera manufacturer.

  17. A Simple Spectrophotometer Using Common Materials and a Digital Camera

    ERIC Educational Resources Information Center

    Widiatmoko, Eko; Widayani; Budiman, Maman; Abdullah, Mikrajuddin; Khairurrijal

    2011-01-01

    A simple spectrophotometer was designed using cardboard, a DVD, a pocket digital camera, a tripod and a computer. The DVD was used as a diffraction grating and the camera as a light sensor. The spectrophotometer was calibrated using a reference light prior to use. The spectrophotometer was capable of measuring optical wavelengths with a…

  18. Next-generation digital camera integration and software development issues

    NASA Astrophysics Data System (ADS)

    Venkataraman, Shyam; Peters, Ken; Hecht, Richard

    1998-04-01

    This paper investigates the complexities associated with the development of next generation digital cameras due to requirements in connectivity and interoperability. Each successive generation of digital camera improves drastically in cost, performance, resolution, image quality and interoperability features. This is being accomplished by advancements in a number of areas: research, silicon, standards, etc. As the capabilities of these cameras increase, so do the requirements for both hardware and software. Today, there are two single chip camera solutions in the market including the Motorola MPC 823 and LSI DCAM- 101. Real time constraints for a digital camera may be defined by the maximum time allowable between capture of images. Constraints in the design of an embedded digital camera include processor architecture, memory, processing speed and the real-time operating systems. This paper will present the LSI DCAM-101, a single-chip digital camera solution. It will present an overview of the architecture and the challenges in hardware and software for supporting streaming video in such a complex device. Issues presented include the development of the data flow software architecture, testing and integration on this complex silicon device. The strategy for optimizing performance on the architecture will also be presented.

  19. Digital cameras with designs inspired by the arthropod eye.

    PubMed

    Song, Young Min; Xie, Yizhu; Malyarchuk, Viktor; Xiao, Jianliang; Jung, Inhwa; Choi, Ki-Joong; Liu, Zhuangjian; Park, Hyunsung; Lu, Chaofeng; Kim, Rak-Hwan; Li, Rui; Crozier, Kenneth B; Huang, Yonggang; Rogers, John A

    2013-05-01

    In arthropods, evolution has created a remarkably sophisticated class of imaging systems, with a wide-angle field of view, low aberrations, high acuity to motion and an infinite depth of field. A challenge in building digital cameras with the hemispherical, compound apposition layouts of arthropod eyes is that essential design requirements cannot be met with existing planar sensor technologies or conventional optics. Here we present materials, mechanics and integration schemes that afford scalable pathways to working, arthropod-inspired cameras with nearly full hemispherical shapes (about 160 degrees). Their surfaces are densely populated by imaging elements (artificial ommatidia), which are comparable in number (180) to those of the eyes of fire ants (Solenopsis fugax) and bark beetles (Hylastes nigrinus). The devices combine elastomeric compound optical elements with deformable arrays of thin silicon photodetectors into integrated sheets that can be elastically transformed from the planar geometries in which they are fabricated to hemispherical shapes for integration into apposition cameras. Our imaging results and quantitative ray-tracing-based simulations illustrate key features of operation. These general strategies seem to be applicable to other compound eye devices, such as those inspired by moths and lacewings (refracting superposition eyes), lobster and shrimp (reflecting superposition eyes), and houseflies (neural superposition eyes). PMID:23636401

  20. Characterizing Digital Camera Systems: A Prelude to Data Standards

    NASA Technical Reports Server (NTRS)

    Ryan, Robert

    2002-01-01

    This viewgraph presentation profiles: 1) Digital imaging systems; 2) Specifying a digital imagery product; and 3) Characterization of data acquisition systems. Advanced large array digital imaging systems are routinely being used. Digital imagery guidelines are being developed by ASPRS and ISPRS. Guidelines and standards are of little use without standardized characterization methods. Characterization of digital camera systems is important for supporting digital imagery guidelines. Specifications are characterized in the lab and/or the field. Laboratory characterization is critical for optimizing and defining performance. In-flight characterization is necessary for an end-to-end system test.

  1. Low light performance of digital cameras

    NASA Astrophysics Data System (ADS)

    Hultgren, Bror; Hertel, Dirk

    2009-01-01

    Photospace data previously measured on large image sets have shown that a high percentage of camera phone pictures are taken under low-light conditions. Corresponding image quality measurements linked the lowest quality to these conditions, and subjective analysis of image quality failure modes identified image blur as the most important contributor to image quality degradation. Camera phones without flash have to manage a trade-off when adjusting shutter time to low-light conditions. The shutter time has to be long enough to avoid extreme underexposures, but not short enough that hand-held picture taking is still possible without excessive motion blur. There is still a lack of quantitative data on motion blur. Camera phones often do not record basic operating parameters such as shutter speed in their image metadata, and when recorded, the data are often inaccurate. We introduce a device and process for tracking camera motion and measuring its Point Spread Function (PSF). Vision-based metrics are introduced to assess the impact of camera motion on image quality so that the low-light performance of different cameras can be compared. Statistical distributions of user variability will be discussed.

  2. Digital voltmeter technology acquisition

    NASA Astrophysics Data System (ADS)

    Chen, Qilin; Cui, Jianping

    1985-09-01

    China began its development of digital voltmeter at a fairly early stage. In 1965, the Beijing Radio Technology Research Bureau had already built a 5 digit voltmeter whose technical performance was comparable to the international standards at that time. However, at the present time, of the more than 50 models of 5 digit voltmeters produced by State designated factories, only 2 or 3 use the international standard interface and microcomputer technology; furthermore, due to the limited capability in processing, equipment and testing, they cannot be mass produced. As a result, the gap between the Chinese standard and international standard in digital voltmeter is further widened. The Beijing Radio Technology Institute prepared a plan to import the manufacturing technology of the 8520A digital system multimeters from the U.S. FLUKE Co., by using foreign exchange funds designated for mechanical and electrical instruments under the joint technology and trade program. In September 1981, an official contract and an agreement for technology cooperation were signed. The items imported to the 8520A technology and trade program can be divided into several stages: (1) import automated test and standard systems which are built using advanced technologies of the 1980's; (2) train personnel and begin production; (3) import key production equipment to coordinate with China's existing facilities; (4) modify the production lines based on FLUKE's advanced technology and begin CKD production; and (5) use the results of imported technologies in other research projects to stimulate development in related technologies.

  3. CMOS Imaging Sensor Technology for Aerial Mapping Cameras

    NASA Astrophysics Data System (ADS)

    Neumann, Klaus; Welzenbach, Martin; Timm, Martin

    2016-06-01

    In June 2015 Leica Geosystems launched the first large format aerial mapping camera using CMOS sensor technology, the Leica DMC III. This paper describes the motivation to change from CCD sensor technology to CMOS for the development of this new aerial mapping camera. In 2002 the DMC first generation was developed by Z/I Imaging. It was the first large format digital frame sensor designed for mapping applications. In 2009 Z/I Imaging designed the DMC II which was the first digital aerial mapping camera using a single ultra large CCD sensor to avoid stitching of smaller CCDs. The DMC III is now the third generation of large format frame sensor developed by Z/I Imaging and Leica Geosystems for the DMC camera family. It is an evolution of the DMC II using the same system design with one large monolithic PAN sensor and four multi spectral camera heads for R,G, B and NIR. For the first time a 391 Megapixel large CMOS sensor had been used as PAN chromatic sensor, which is an industry record. Along with CMOS technology goes a range of technical benefits. The dynamic range of the CMOS sensor is approx. twice the range of a comparable CCD sensor and the signal to noise ratio is significantly better than with CCDs. Finally results from the first DMC III customer installations and test flights will be presented and compared with other CCD based aerial sensors.

  4. Digital Sensor Technology

    SciTech Connect

    Thomas, Ken D.; Quinn, Edward L.; Mauck, Jerry L.; Bockhorst, Richard M.

    2015-02-01

    The nuclear industry has been slow to incorporate digital sensor technology into nuclear plant designs due to concerns with digital qualification issues. However, the benefits of digital sensor technology for nuclear plant instrumentation are substantial in terms of accuracy and reliability. This paper, which refers to a final report issued in 2013, demonstrates these benefits in direct comparisons of digital and analog sensor applications. Improved accuracy results from the superior operating characteristics of digital sensors. These include improvements in sensor accuracy and drift and other related parameters which reduce total loop uncertainty and thereby increase safety and operating margins. An example instrument loop uncertainty calculation for a pressure sensor application is presented to illustrate these improvements. This is a side-by-side comparison of the instrument loop uncertainty for both an analog and a digital sensor in the same pressure measurement application. Similarly, improved sensor reliability is illustrated with a sample calculation for determining the probability of failure on demand, an industry standard reliability measure. This looks at equivalent analog and digital temperature sensors to draw the comparison. The results confirm substantial reliability improvement with the digital sensor, due in large part to ability to continuously monitor the health of a digital sensor such that problems can be immediately identified and corrected. This greatly reduces the likelihood of a latent failure condition of the sensor at the time of a design basis event. Notwithstanding the benefits of digital sensors, there are certain qualification issues that are inherent with digital technology and these are described in the report. One major qualification impediment for digital sensor implementation is software common cause failure (SCCF).

  5. Digital Actuator Technology

    SciTech Connect

    Ken Thomas; Ted Quinn; Jerry Mauck; Richard Bockhorst

    2014-09-01

    There are significant developments underway in new types of actuators for power plant active components. Many of these make use of digital technology to provide a wide array of benefits in performance of the actuators and in reduced burden to maintain them. These new product offerings have gained considerable acceptance in use in process plants. In addition, they have been used in conventional power generation very successfully. This technology has been proven to deliver the benefits promised and substantiate the claims of improved performance. The nuclear industry has been reluctant to incorporate digital actuator technology into nuclear plant designs due to concerns due to a number of concerns. These could be summarized as cost, regulatory uncertainty, and a certain comfort factor with legacy analog technology. The replacement opportunity for these types of components represents a decision point for whether to invest in more modern technology that would provide superior operational and maintenance benefits. Yet, the application of digital technology has been problematic for the nuclear industry, due to qualification and regulatory issues. With some notable exceptions, the result has been a continuing reluctance to undertake the risks and uncertainties of implementing digital actuator technology when replacement opportunities present themselves. Rather, utilities would typically prefer to accept the performance limitations of the legacy analog actuator technologies to avoid impacts to project costs and schedules. The purpose of this report is to demonstrate that the benefits of digital actuator technology can be significant in terms of plant performance and that it is worthwhile to address the barriers currently holding back the widespread development and use of this technology. It addresses two important objectives in pursuit of the beneficial use of digital actuator technology for nuclear power plants: 1. To demonstrate the benefits of digital actuator

  6. Acquisition and evaluation of radiography images by digital camera.

    PubMed

    Cone, Stephen W; Carucci, Laura R; Yu, Jinxing; Rafiq, Azhar; Doarn, Charles R; Merrell, Ronald C

    2005-04-01

    To determine applicability of low-cost digital imaging for different radiographic modalities used in consultations from remote areas of the Ecuadorian rainforest with limited resources, both medical and financial. Low-cost digital imaging, consisting of hand-held digital cameras, was used for image capture at a remote location. Diagnostic radiographic images were captured in Ecuador by digital camera and transmitted to a password-protected File Transfer Protocol (FTP) server at VCU Medical Center in Richmond, Virginia, using standard Internet connectivity with standard security. After capture and subsequent transfer of images via low-bandwidth Internet connections, attending radiologists in the United States compared diagnoses to those from Ecuador to evaluate quality of image transfer. Corroborative diagnoses were obtained with the digital camera images for greater than 90% of the plain film and computed tomography studies. Ultrasound (U/S) studies demonstrated only 56% corroboration. Images of radiographs captured utilizing commercially available digital cameras can provide quality sufficient for expert consultation for many plain film studies for remote, underserved areas without access to advanced modalities.

  7. Review of up-to date digital cameras interfaces

    NASA Astrophysics Data System (ADS)

    Linkemann, Joachim

    2013-04-01

    Over the past 15 years, various interfaces on digital industrial cameras have been available on the market. This tutorial will give an overview of interfaces such as LVDS (RS644), Channel Link and Camera Link. In addition, other interfaces such as FireWire, Gigabit Ethernet, and now USB 3.0 have become more popular. Owing to their ease of use, these interfaces cover most of the market. Nevertheless, for certain applications and especially for higher bandwidths, Camera Link and CoaXPress are very useful. This tutorial will give a description of the advantages and disadvantages, comment on bandwidths, and provide recommendations on when to use which interface.

  8. Quantifying biodiversity using digital cameras and automated image analysis.

    NASA Astrophysics Data System (ADS)

    Roadknight, C. M.; Rose, R. J.; Barber, M. L.; Price, M. C.; Marshall, I. W.

    2009-04-01

    Monitoring the effects on biodiversity of extensive grazing in complex semi-natural habitats is labour intensive. There are also concerns about the standardization of semi-quantitative data collection. We have chosen to focus initially on automating the most time consuming aspect - the image analysis. The advent of cheaper and more sophisticated digital camera technology has lead to a sudden increase in the number of habitat monitoring images and information that is being collected. We report on the use of automated trail cameras (designed for the game hunting market) to continuously capture images of grazer activity in a variety of habitats at Moor House National Nature Reserve, which is situated in the North of England at an average altitude of over 600m. Rainfall is high, and in most areas the soil consists of deep peat (1m to 3m), populated by a mix of heather, mosses and sedges. The cameras have been continuously in operation over a 6 month period, daylight images are in full colour and night images (IR flash) are black and white. We have developed artificial intelligence based methods to assist in the analysis of the large number of images collected, generating alert states for new or unusual image conditions. This paper describes the data collection techniques, outlines the quantitative and qualitative data collected and proposes online and offline systems that can reduce the manpower overheads and increase focus on important subsets in the collected data. By converting digital image data into statistical composite data it can be handled in a similar way to other biodiversity statistics thus improving the scalability of monitoring experiments. Unsupervised feature detection methods and supervised neural methods were tested and offered solutions to simplifying the process. Accurate (85 to 95%) categorization of faunal content can be obtained, requiring human intervention for only those images containing rare animals or unusual (undecidable) conditions, and

  9. Reflectance and illuminant estimation for digital cameras

    NASA Astrophysics Data System (ADS)

    Dicarlo, Jeffrey Michael

    Several important problems in color imaging can be traced to differences in how cameras and humans sample the spectral properties of light. Color processing within the imaging pipeline, loosely referred to as color correction, transforms the sampled camera responses to a form that matches the human responses. The accuracy of the color correction transformation is limited for two reasons. First, the human visual system and most color acquisition devices critically undersample the spectral information, making the differences in their sampling functions quite significant. Second, the human visual system derives a relatively constant surface color appearance despite variations in the illuminant, complicating color correction with the need to estimate the illuminant. Assuming complete knowledge of the illuminant, we formulate color correction as an input-referred estimation problem. In particular, we analyze how a small number of camera measurements can be used to estimate a complete spectral surface reflectance function. We introduce conventional linear color transformations, and then extend these transformations using forms of local linear regression that we refer to as submanifold estimation methods. These methods are based on the observation that for many data sets the deviations between the signal and the linear estimate is systematic; submanifold methods incorporate knowledge of these systematic deviations to improve upon linear estimation methods. We describe the geometric intuition of these methods and evaluate the submanifold method on printed material data and hyperspectral image data. Next, we discard the assumption of complete knowledge of the illuminant and analyze a technique to estimate the illuminant. Conventional algorithms rely on statistical assumptions about the scene properties (surface reflectance functions and geometry) to estimate the ambient illuminant. We introduce a new illuminant estimation paradigm that uses an active imaging method to

  10. Bringing the Digital Camera to the Physics Lab

    ERIC Educational Resources Information Center

    Rossi, M.; Gratton, L. M.; Oss, S.

    2013-01-01

    We discuss how compressed images created by modern digital cameras can lead to even severe problems in the quantitative analysis of experiments based on such images. Difficulties result from the nonlinear treatment of lighting intensity values stored in compressed files. To overcome such troubles, one has to adopt noncompressed, native formats, as…

  11. Using a Digital Video Camera to Study Motion

    ERIC Educational Resources Information Center

    Abisdris, Gil; Phaneuf, Alain

    2007-01-01

    To illustrate how a digital video camera can be used to analyze various types of motion, this simple activity analyzes the motion and measures the acceleration due to gravity of a basketball in free fall. Although many excellent commercially available data loggers and software can accomplish this task, this activity requires almost no financial…

  12. Small Orbital Stereo Tracking Camera Technology Development

    NASA Technical Reports Server (NTRS)

    Bryan, Tom; MacLeod, Todd; Gagliano, Larry

    2016-01-01

    On-Orbit Small Debris Tracking and Characterization is a technical gap in the current National Space Situational Awareness necessary to safeguard orbital assets and crew. This poses a major risk of MOD damage to ISS and Exploration vehicles. In 2015 this technology was added to NASA's Office of Chief Technologist roadmap. For missions flying in or assembled in or staging from LEO, the physical threat to vehicle and crew is needed in order to properly design the proper level of MOD impact shielding and proper mission design restrictions. Need to verify debris flux and size population versus ground RADAR tracking. Use of ISS for In-Situ Orbital Debris Tracking development provides attitude, power, data and orbital access without a dedicated spacecraft or restricted operations on-board a host vehicle as a secondary payload. Sensor Applicable to in-situ measuring orbital debris in flux and population in other orbits or on other vehicles. Could enhance safety on and around ISS. Some technologies extensible to monitoring of extraterrestrial debris as well To help accomplish this, new technologies must be developed quickly. The Small Orbital Stereo Tracking Camera is one such up and coming technology. It consists of flying a pair of intensified megapixel telephoto cameras to evaluate Orbital Debris (OD) monitoring in proximity of International Space Station. It will demonstrate on-orbit optical tracking (in situ) of various sized objects versus ground RADAR tracking and small OD models. The cameras are based on Flight Proven Advanced Video Guidance Sensor pixel to spot algorithms (Orbital Express) and military targeting cameras. And by using twin cameras we can provide Stereo images for ranging & mission redundancy. When pointed into the orbital velocity vector (RAM), objects approaching or near the stereo camera set can be differentiated from the stars moving upward in background.

  13. Small Orbital Stereo Tracking Camera Technology Development

    NASA Technical Reports Server (NTRS)

    Bryan, Tom; Macleod, Todd; Gagliano, Larry

    2015-01-01

    On-Orbit Small Debris Tracking and Characterization is a technical gap in the current National Space Situational Awareness necessary to safeguard orbital assets and crew. This poses a major risk of MOD damage to ISS and Exploration vehicles. In 2015 this technology was added to NASA's Office of Chief Technologist roadmap. For missions flying in or assembled in or staging from LEO, the physical threat to vehicle and crew is needed in order to properly design the proper level of MOD impact shielding and proper mission design restrictions. Need to verify debris flux and size population versus ground RADAR tracking. Use of ISS for In-Situ Orbital Debris Tracking development provides attitude, power, data and orbital access without a dedicated spacecraft or restricted operations on-board a host vehicle as a secondary payload. Sensor Applicable to in-situ measuring orbital debris in flux and population in other orbits or on other vehicles. Could enhance safety on and around ISS. Some technologies extensible to monitoring of extraterrestrial debris as well to help accomplish this, new technologies must be developed quickly. The Small Orbital Stereo Tracking Camera is one such up and coming technology. It consists of flying a pair of intensified megapixel telephoto cameras to evaluate Orbital Debris (OD) monitoring in proximity of International Space Station. It will demonstrate on-orbit optical tracking (in situ) of various sized objects versus ground RADAR tracking and small OD models. The cameras are based on Flight Proven Advanced Video Guidance Sensor pixel to spot algorithms (Orbital Express) and military targeting cameras. And by using twin cameras we can provide Stereo images for ranging & mission redundancy. When pointed into the orbital velocity vector (RAM), objects approaching or near the stereo camera set can be differentiated from the stars moving upward in background.

  14. Demosaicing images from colour cameras for digital image correlation

    NASA Astrophysics Data System (ADS)

    Forsey, A.; Gungor, S.

    2016-11-01

    Digital image correlation is not the intended use for consumer colour cameras, but with care they can be successfully employed in such a role. The main obstacle is the sparsely sampled colour data caused by the use of a colour filter array (CFA) to separate the colour channels. It is shown that the method used to convert consumer camera raw files into a monochrome image suitable for digital image correlation (DIC) can have a significant effect on the DIC output. A number of widely available software packages and two in-house methods are evaluated in terms of their performance when used with DIC. Using an in-plane rotating disc to produce a highly constrained displacement field, it was found that the bicubic spline based in-house demosaicing method outperformed the other methods in terms of accuracy and aliasing suppression.

  15. Observation of Planetary Motion Using a Digital Camera

    ERIC Educational Resources Information Center

    Meyn, Jan-Peter

    2008-01-01

    A digital SLR camera with a standard lens (50 mm focal length, f/1.4) on a fixed tripod is used to obtain photographs of the sky which contain stars up to 8[superscript m] apparent magnitude. The angle of view is large enough to ensure visual identification of the photograph with a large sky region in a stellar map. The resolution is sufficient to…

  16. Night sky photometry with amateur-grade digital cameras

    NASA Astrophysics Data System (ADS)

    Mrozek, Tomasz; Gronkiewicz, Dominik; Kolomanski, Sylwester; Steslicki, Marek

    2015-08-01

    Measurements of night sky brightness can give us valuable information on light pollution. The more the measurements we have the better is our knowledge on the spatial distribution of the pollution on local and global scale.High accuracy professional photometry of night sky can be performed with dedicated instruments. The main drawbacks of this method are high price and low mobility. This limits an amount of observers and therefore amount of photometric data that can be collected. In order to overcome the problem of limited amount of data we can involve amateur astronomers in photometry of night sky. However, to achieve this goal we need a method that utilizes equipment which is usually used by amateur astronomers, e.g digital cameras.We propose a method that enables good accuracy photometry of night sky with a use of digital compact or DSLR cameras. In the method reduction of observations and standarization to Johnson UBV system are performed. We tested several cameras and compared results to Sky Quality Meter (SQM) measurements. The overall consistency for results is within 0.2 mag.

  17. Establishing imaging sensor specifications for digital still cameras

    NASA Astrophysics Data System (ADS)

    Kriss, Michael A.

    2007-02-01

    Digital Still Cameras, DSCs, have now displaced conventional still cameras in most markets. The heart of a DSC is thought to be the imaging sensor, be it Full Frame CCD, and Interline CCD, a CMOS sensor or the newer Foveon buried photodiode sensors. There is a strong tendency by consumers to consider only the number of mega-pixels in a camera and not to consider the overall performance of the imaging system, including sharpness, artifact control, noise, color reproduction, exposure latitude and dynamic range. This paper will provide a systematic method to characterize the physical requirements of an imaging sensor and supporting system components based on the desired usage. The analysis is based on two software programs that determine the "sharpness", potential for artifacts, sensor "photographic speed", dynamic range and exposure latitude based on the physical nature of the imaging optics, sensor characteristics (including size of pixels, sensor architecture, noise characteristics, surface states that cause dark current, quantum efficiency, effective MTF, and the intrinsic full well capacity in terms of electrons per square centimeter). Examples will be given for consumer, pro-consumer, and professional camera systems. Where possible, these results will be compared to imaging system currently on the market.

  18. A large distributed digital camera system for accelerator beam diagnostics

    NASA Astrophysics Data System (ADS)

    Catani, L.; Cianchi, A.; Di Pirro, G.; Honkavaara, K.

    2005-07-01

    Optical diagnostics, providing images of accelerated particle beams using radiation emitted by particles impinging a radiator, typically a fluorescent screen, has been extensively used, especially on electron linacs, since the 1970's. Higher intensity beams available in the last decade allow extending the use of beam imaging techniques to perform precise measurements of important beam parameters such as emittance, energy, and energy spread using optical transition radiation (OTR). OTR-based diagnostics systems are extensively used on the superconducting TESLA Test Facility (TTF) linac driving the vacuum ultraviolet free electron laser (VUV-FEL) at the Deutsches Elektronen-Synchrotron facility. Up to 30 optical diagnostic stations have been installed at various positions along the 250-m-long linac, each equipped with a high-performance digital camera. This paper describes the new approach to the design of the hardware and software setups required by the complex topology of such a distributed camera system.

  19. Self-calibration of digital aerial camera using combined orthogonal models

    NASA Astrophysics Data System (ADS)

    Babapour, Hadi; Mokhtarzade, Mehdi; Valadan Zoej, Mohamad Javad

    2016-07-01

    The emergence of new digital aerial cameras and the diverse design and technology used in this type of cameras require in-situ calibration. Self-calibration methods, e.g. the Fourier model, are primarily used; however, additional parameters employed in such methods have not yet met the expectations to desirably model the complex multiple distortions existing in the digital aerial cameras. The present study proposes the Chebyshev-Fourier (CHF) and Jacobi-Fourier (JF) combined orthogonal models. The models are evaluated for the multiple distortions using both simulated and real data, the latter being derived from an UltraCam digital camera. The results indicate that the JF model is superior to the other methods where, e.g., in the UltraCam scenario, it improves the planimetric and vertical accuracy over the Fourier model by 18% and 22%, respectively. Furthermore, a 30% and 16% of reduction in external and internal correlation is obtained via this approach which is very promising.

  20. Fast measurement of temporal noise of digital camera's photosensors

    NASA Astrophysics Data System (ADS)

    Cheremkhin, Pavel A.; Evtikhiev, Nikolay N.; Krasnov, Vitaly V.; Rodin, Vladislav G.; Starikov, Rostislav S.; Starikov, Sergey N.

    2015-10-01

    Currently photo- and videocameras are widespread parts of both scientific experimental setups and consumer applications. They are used in optics, radiophysics, astrophotography, chemistry, and other various fields of science and technology such as control systems and video-surveillance monitoring. One of the main information limitations of photoand videocameras are noises of photosensor pixels. Camera's photosensor noise can be divided into random and pattern components. Temporal noise includes random noise component while spatial noise includes pattern noise component. Spatial part usually several times lower in magnitude than temporal. At first approximation spatial noises might be neglected. Earlier we proposed modification of the automatic segmentation of non-uniform targets (ASNT) method for measurement of temporal noise of photo- and videocameras. Only two frames are sufficient for noise measurement with the modified method. In result, proposed ASNT modification should allow fast and accurate measurement of temporal noise. In this paper, we estimated light and dark temporal noises of four cameras of different types using the modified ASNT method with only several frames. These cameras are: consumer photocamera Canon EOS 400D (CMOS, 10.1 MP, 12 bit ADC), scientific camera MegaPlus II ES11000 (CCD, 10.7 MP, 12 bit ADC), industrial camera PixeLink PLB781F (CMOS, 6.6 MP, 10 bit ADC) and video-surveillance camera Watec LCL-902C (CCD, 0.47 MP, external 8 bit ADC). Experimental dependencies of temporal noise on signal value are in good agreement with fitted curves based on a Poisson distribution excluding areas near saturation. We measured elapsed time for processing of shots used for temporal noise estimation. The results demonstrate the possibility of fast obtaining of dependency of camera full temporal noise on signal value with the proposed ASNT modification.

  1. Investigating thin film interference with a digital camera

    NASA Astrophysics Data System (ADS)

    Atkins, Leslie J.; Elliott, Richard C.

    2010-12-01

    Thin film interference is discussed in most introductory physics courses as an intriguing example of wave interference. Although students may understand the interference mechanism that determines the colors of a film, they are likely to have difficulty understanding why soap bubbles and oil slicks have a distinctive set of colors—colors that are strikingly different from those present in the rainbow. This article describes a way to model these colors and a simple method for investigating them using a digital camera and a computer.

  2. Digital SPC switching technology: Foreign technology assessment

    NASA Astrophysics Data System (ADS)

    Fischman, Kurt; Jorstad, Norman D.

    1990-12-01

    This paper provides a foreign technology assessment of digital switching technology. Leading suppliers of digital switching technology are identified; although the United States holds a large part of the market, major companies in France, Sweden, Japan, the U.K., and Germany are also important. These countries, along with Belgium and Canada, are the most innovative and technically advanced. A listing is provided of transfers of digital switching technology to non-COCOM countries through licensing and joint ventures which reflects the widespread dissemination of this technology. Detailed technical specifications are provided for selected digital switching systems worldwide. The report concludes that considering the degree to which the technology is in place, that control of digital switching technology may not be feasible.

  3. Social Justice through Literacy: Integrating Digital Video Cameras in Reading Summaries and Responses

    ERIC Educational Resources Information Center

    Liu, Rong; Unger, John A.; Scullion, Vicki A.

    2014-01-01

    Drawing data from an action-oriented research project for integrating digital video cameras into the reading process in pre-college courses, this study proposes using digital video cameras in reading summaries and responses to promote critical thinking and to teach social justice concepts. The digital video research project is founded on…

  4. Off-axis digital holographic camera for quantitative phase microscopy.

    PubMed

    Monemhaghdoust, Zahra; Montfort, Frédéric; Emery, Yves; Depeursinge, Christian; Moser, Christophe

    2014-06-01

    We propose and experimentally demonstrate a digital holographic camera which can be attached to the camera port of a conventional microscope for obtaining digital holograms in a self-reference configuration, under short coherence illumination and in a single shot. A thick holographic grating filters the beam containing the sample information in two dimensions through diffraction. The filtered beam creates the reference arm of the interferometer. The spatial filtering method, based on the high angular selectivity of the thick grating, reduces the alignment sensitivity to angular displacements compared with pinhole based Fourier filtering. The addition of a thin holographic grating alters the coherence plane tilt introduced by the thick grating so as to create high-visibility interference over the entire field of view. The acquired full-field off-axis holograms are processed to retrieve the amplitude and phase information of the sample. The system produces phase images of cheek cells qualitatively similar to phase images extracted with a standard commercial DHM.

  5. Verification of Potency of Aerial Digital Oblique Cameras for Aerial Photogrammetry in Japan

    NASA Astrophysics Data System (ADS)

    Nakada, Ryuji; Takigawa, Masanori; Ohga, Tomowo; Fujii, Noritsuna

    2016-06-01

    Digital oblique aerial camera (hereinafter called "oblique cameras") is an assembly of medium format digital cameras capable of shooting digital aerial photographs in five directions i.e. nadir view and oblique views (forward and backward, left and right views) simultaneously and it is used for shooting digital aerial photographs efficiently for generating 3D models in a wide area. For aerial photogrammetry of public survey in Japan, it is required to use large format cameras, like DMC and UltraCam series, to ensure aerial photogrammetric accuracy. Although oblique cameras are intended to generate 3D models, digital aerial photographs in 5 directions taken with them should not be limited to 3D model production but they may also be allowed for digital mapping and photomaps of required public survey accuracy in Japan. In order to verify the potency of using oblique cameras for aerial photogrammetry (simultaneous adjustment, digital mapping and photomaps), (1) a viewer was developed to interpret digital aerial photographs taken with oblique cameras, (2) digital aerial photographs were shot with an oblique camera owned by us, a Penta DigiCAM of IGI mbH, and (3) accuracy of 3D measurements was verified.

  6. Encrypting Digital Camera with Automatic Encryption Key Deletion

    NASA Technical Reports Server (NTRS)

    Oakley, Ernest C. (Inventor)

    2007-01-01

    A digital video camera includes an image sensor capable of producing a frame of video data representing an image viewed by the sensor, an image memory for storing video data such as previously recorded frame data in a video frame location of the image memory, a read circuit for fetching the previously recorded frame data, an encryption circuit having an encryption key input connected to receive the previously recorded frame data from the read circuit as an encryption key, an un-encrypted data input connected to receive the frame of video data from the image sensor and an encrypted data output port, and a write circuit for writing a frame of encrypted video data received from the encrypted data output port of the encryption circuit to the memory and overwriting the video frame location storing the previously recorded frame data.

  7. Thin-filament pyrometry with a digital still camera.

    PubMed

    Maun, Jignesh D; Sunderland, Peter B; Urban, David L

    2007-02-01

    A novel thin-filament pyrometer is presented. It involves a consumer-grade color digital still camera with 6 megapixels and 12 bits per color plane. SiC fibers were used and scanning-electron microscopy found them to be uniform with diameters of 13.9 micro m. Measurements were performed in a methane-air coflowing laminar jet diffusion flame with a luminosity length of 72 mm. Calibration of the pyrometer was accomplished with B-type thermocouples. The pyrometry measurements yielded gas temperatures in the range of 1400-2200 K with an estimated uncertainty of +/-60 K, a relative temperature resolution of +/-0.215 K, a spatial resolution of 42 mum, and a temporal resolution of 0.66 ms. Fiber aging for 10 min had no effect on the results. Soot deposition was less problematic for the pyrometer than for the thermocouple. PMID:17230239

  8. Camera system resolution and its influence on digital image correlation

    DOE PAGESBeta

    Reu, Phillip L.; Sweatt, William; Miller, Timothy; Fleming, Darryn

    2014-09-21

    Digital image correlation (DIC) uses images from a camera and lens system to make quantitative measurements of the shape, displacement, and strain of test objects. This increasingly popular method has had little research on the influence of the imaging system resolution on the DIC results. This paper investigates the entire imaging system and studies how both the camera and lens resolution influence the DIC results as a function of the system Modulation Transfer Function (MTF). It will show that when making spatial resolution decisions (including speckle size) the resolution limiting component should be considered. A consequence of the loss ofmore » spatial resolution is that the DIC uncertainties will be increased. This is demonstrated using both synthetic and experimental images with varying resolution. The loss of image resolution and DIC accuracy can be compensated for by increasing the subset size, or better, by increasing the speckle size. The speckle-size and spatial resolution are now a function of the lens resolution rather than the more typical assumption of the pixel size. The study will demonstrate the tradeoffs associated with limited lens resolution.« less

  9. Camera system resolution and its influence on digital image correlation

    SciTech Connect

    Reu, Phillip L.; Sweatt, William; Miller, Timothy; Fleming, Darryn

    2014-09-21

    Digital image correlation (DIC) uses images from a camera and lens system to make quantitative measurements of the shape, displacement, and strain of test objects. This increasingly popular method has had little research on the influence of the imaging system resolution on the DIC results. This paper investigates the entire imaging system and studies how both the camera and lens resolution influence the DIC results as a function of the system Modulation Transfer Function (MTF). It will show that when making spatial resolution decisions (including speckle size) the resolution limiting component should be considered. A consequence of the loss of spatial resolution is that the DIC uncertainties will be increased. This is demonstrated using both synthetic and experimental images with varying resolution. The loss of image resolution and DIC accuracy can be compensated for by increasing the subset size, or better, by increasing the speckle size. The speckle-size and spatial resolution are now a function of the lens resolution rather than the more typical assumption of the pixel size. The study will demonstrate the tradeoffs associated with limited lens resolution.

  10. Art Education Technology: Digital Storytelling

    ERIC Educational Resources Information Center

    Chung, Sheng Kuan

    2007-01-01

    The application of digital storytelling to art education is an interdisciplinary, inquiry-based, hands-on project that integrates the arts, education, local communities, technology, and storytelling. Through digital storytelling, students develop and apply multiliteracy skills, aesthetic sensitivities, and critical faculties to address greater…

  11. Digital Intelligence Fostered by Technology

    ERIC Educational Resources Information Center

    Adams, Nan B.

    2004-01-01

    Through interaction with digital technologies for work, play, and communication, the pattern for intellectual development is being altered. The multiple intelligences theoretical framework developed by Gardner (1983) is easily employed to provide evidence that yet another intelligence, digital intelligence, has emerged. In a postmodern pluralistic…

  12. Use of a Digital Camera To Document Student Observations in a Microbiology Laboratory Class.

    ERIC Educational Resources Information Center

    Mills, David A.; Kelley, Kevin; Jones, Michael

    2001-01-01

    Points out the lack of microscopic images of wine-related microbes. Uses a digital camera during a wine microbiology laboratory to capture student-generated microscope images. Discusses the advantages of using a digital camera in a teaching lab. (YDS)

  13. Comparison of the effectiveness of three retinal camera technologies for malarial retinopathy detection in Malawi

    NASA Astrophysics Data System (ADS)

    Soliz, Peter; Nemeth, Sheila C.; Barriga, E. Simon; Harding, Simon P.; Lewallen, Susan; Taylor, Terrie E.; MacCormick, Ian J.; Joshi, Vinayak S.

    2016-03-01

    The purpose of this study was to test the suitability of three available camera technologies (desktop, portable, and iphone based) for imaging comatose children who presented with clinical symptoms of malaria. Ultimately, the results of the project would form the basis for a design of a future camera to screen for malaria retinopathy (MR) in a resource challenged environment. The desktop, portable, and i-phone based cameras were represented by the Topcon, Pictor Plus, and Peek cameras, respectively. These cameras were tested on N=23 children presenting with symptoms of cerebral malaria (CM) at a malaria clinic, Queen Elizabeth Teaching Hospital in Malawi, Africa. Each patient was dilated for binocular indirect ophthalmoscopy (BIO) exam by an ophthalmologist followed by imaging with all three cameras. Each of the cases was graded according to an internationally established protocol and compared to the BIO as the clinical ground truth. The reader used three principal retinal lesions as markers for MR: hemorrhages, retinal whitening, and vessel discoloration. The study found that the mid-priced Pictor Plus hand-held camera performed considerably better than the lower price mobile phone-based camera, and slightly the higher priced table top camera. When comparing the readings of digital images against the clinical reference standard (BIO), the Pictor Plus camera had sensitivity and specificity for MR of 100% and 87%, respectively. This compares to a sensitivity and specificity of 87% and 75% for the i-phone based camera and 100% and 75% for the desktop camera. The drawback of all the cameras were their limited field of view which did not allow complete view of the periphery where vessel discoloration occurs most frequently. The consequence was that vessel discoloration was not addressed in this study. None of the cameras offered real-time image quality assessment to ensure high quality images to afford the best possible opportunity for reading by a remotely located

  14. Digital camera with apparatus for authentication of images produced from an image file

    NASA Technical Reports Server (NTRS)

    Friedman, Gary L. (Inventor)

    1993-01-01

    A digital camera equipped with a processor for authentication of images produced from an image file taken by the digital camera is provided. The digital camera processor has embedded therein a private key unique to it, and the camera housing has a public key that is so uniquely based upon the private key that digital data encrypted with the private key by the processor may be decrypted using the public key. The digital camera processor comprises means for calculating a hash of the image file using a predetermined algorithm, and second means for encrypting the image hash with the private key, thereby producing a digital signature. The image file and the digital signature are stored in suitable recording means so they will be available together. Apparatus for authenticating at any time the image file as being free of any alteration uses the public key for decrypting the digital signature, thereby deriving a secure image hash identical to the image hash produced by the digital camera and used to produce the digital signature. The apparatus calculates from the image file an image hash using the same algorithm as before. By comparing this last image hash with the secure image hash, authenticity of the image file is determined if they match, since even one bit change in the image hash will cause the image hash to be totally different from the secure hash.

  15. Digital Camera with Apparatus for Authentication of Images Produced from an Image File

    NASA Technical Reports Server (NTRS)

    Friedman, Gary L. (Inventor)

    1996-01-01

    A digital camera equipped with a processor for authentication of images produced from an image file taken by the digital camera is provided. The digital camera processor has embedded therein a private key unique to it, and the camera housing has a public key that is so uniquely related to the private key that digital data encrypted with the private key may be decrypted using the public key. The digital camera processor comprises means for calculating a hash of the image file using a predetermined algorithm, and second means for encrypting the image hash with the private key, thereby producing a digital signature. The image file and the digital signature are stored in suitable recording means so they will be available together. Apparatus for authenticating the image file as being free of any alteration uses the public key for decrypting the digital signature, thereby deriving a secure image hash identical to the image hash produced by the digital camera and used to produce the digital signature. The authenticating apparatus calculates from the image file an image hash using the same algorithm as before. By comparing this last image hash with the secure image hash, authenticity of the image file is determined if they match. Other techniques to address time-honored methods of deception, such as attaching false captions or inducing forced perspectives, are included.

  16. The Challenge of Digital Imaging Technologies: A Practical View of the Future.

    ERIC Educational Resources Information Center

    Hamber, Anthony

    1994-01-01

    Discusses digital imaging technologies. Topics include information technology; reprographics; scientific imaging processing; political considerations of telecommunications and the information superhighway; digital cameras; slide and transparency scanners; desktop prepress processing; digital proofing devices; direct-to-plate and direct-to-press…

  17. Development of High Speed Digital Camera: EXILIM EX-F1

    NASA Astrophysics Data System (ADS)

    Nojima, Osamu

    The EX-F1 is a high speed digital camera featuring a revolutionary improvement in burst shooting speed that is expected to create entirely new markets. This model incorporates a high speed CMOS sensor and a high speed LSI processor. With this model, CASIO has achieved an ultra-high speed 60 frames per second (fps) burst rate for still images, together with 1,200 fps high speed movie that captures movements which cannot even be seen by human eyes. Moreover, this model can record movies at full High-Definition. After launching it into the market, it was able to get a lot of high appraisals as an innovation camera. We will introduce the concept, features and technologies about the EX-F1.

  18. Aerosol retrieval from twilight photographs taken by a digital camera

    NASA Astrophysics Data System (ADS)

    Saito, M.; Iwabuchi, H.

    2014-12-01

    Twilight sky, one of the most beautiful sights seen in our daily life, varies day by day, because atmospheric components such as ozone and aerosols also varies day by day. Recent studies have revealed the effects of tropospheric aerosols on twilight sky. In this study, we develop a new algorithm for aerosol retrievals from twilight photographs taken by a digital single reflex-lens camera in solar zenith angle of 90-96˚ with interval of 1˚. A radiative transfer model taking spherical-shell atmosphere, multiple scattering and refraction into account is used as a forward model, and the optimal estimation is used as an inversion calculation to infer the aerosol optical and radiative properties. The sensitivity tests show that tropospheric (stratospheric) aerosol optical thickness is responsible to the distribution of twilight sky color and brightness near the horizon (in viewing angles of 10˚ to 20˚) and aerosol size distribution is responsible to the angular distribution of brightness near the solar direction. The AOTs are inferred with small uncertainties and agree very well with that from the Skyradiometer. In this conference, several case studies using the algorithm will be shown.

  19. Digital Downsides: Exploring University Students' Negative Engagements with Digital Technology

    ERIC Educational Resources Information Center

    Selwyn, Neil

    2016-01-01

    Digital technologies are now an integral feature of university study. As such, academic research has tended to concentrate on the potential of digital technologies to support, extend and even "enhance" student learning. This paper, in contrast, explores the rather more messy realities of students' engagements with digital technology. In…

  20. Advanced digital image archival system using MPEG technologies

    NASA Astrophysics Data System (ADS)

    Chang, Wo

    2009-08-01

    Digital information and records are vital to the human race regardless of the nationalities and eras in which they were produced. Digital image contents are produced at a rapid pace from cultural heritages via digitalization, scientific and experimental data via high speed imaging sensors, national defense satellite images from governments, medical and healthcare imaging records from hospitals, personal collection of photos from digital cameras. With these mass amounts of precious and irreplaceable data and knowledge, what standards technologies can be applied to preserve and yet provide an interoperable framework for accessing the data across varieties of systems and devices? This paper presents an advanced digital image archival system by applying the international standard of MPEG technologies to preserve digital image content.

  1. Real-time object tracking for moving target auto-focus in digital camera

    NASA Astrophysics Data System (ADS)

    Guan, Haike; Niinami, Norikatsu; Liu, Tong

    2015-02-01

    Focusing at a moving object accurately is difficult and important to take photo of the target successfully in a digital camera. Because the object often moves randomly and changes its shape frequently, position and distance of the target should be estimated at real-time so as to focus at the objet precisely. We propose a new method of real-time object tracking to do auto-focus for moving target in digital camera. Video stream in the camera is used for the moving target tracking. Particle filter is used to deal with problem of the target object's random movement and shape change. Color and edge features are used as measurement of the object's states. Parallel processing algorithm is developed to realize real-time particle filter object tracking easily in hardware environment of the digital camera. Movement prediction algorithm is also proposed to remove focus error caused by difference between tracking result and target object's real position when the photo is taken. Simulation and experiment results in digital camera demonstrate effectiveness of the proposed method. We embedded real-time object tracking algorithm in the digital camera. Position and distance of the moving target is obtained accurately by object tracking from the video stream. SIMD processor is applied to enforce parallel real-time processing. Processing time less than 60ms for each frame is obtained in the digital camera with its CPU of only 162MHz.

  2. Digital Natives and Digital Immigrants: Teaching with Technology

    ERIC Educational Resources Information Center

    Martin, Ellen Marie Peterson

    2011-01-01

    Education is witnessing an increasing demand for technology use in the classroom. At the same time, new teachers are entering the profession in high numbers, some being labeled as "Digital Natives" while others are labeled "Digital Immigrants". This qualitative case study investigated the technology practices of Digital Native and Digital…

  3. Arthropod eye-inspired digital camera with unique imaging characteristics

    NASA Astrophysics Data System (ADS)

    Xiao, Jianliang; Song, Young Min; Xie, Yizhu; Malyarchuk, Viktor; Jung, Inhwa; Choi, Ki-Joong; Liu, Zhuangjian; Park, Hyunsung; Lu, Chaofeng; Kim, Rak-Hwan; Li, Rui; Crozier, Kenneth B.; Huang, Yonggang; Rogers, John A.

    2014-06-01

    In nature, arthropods have a remarkably sophisticated class of imaging systems, with a hemispherical geometry, a wideangle field of view, low aberrations, high acuity to motion and an infinite depth of field. There are great interests in building systems with similar geometries and properties due to numerous potential applications. However, the established semiconductor sensor technologies and optics are essentially planar, which experience great challenges in building such systems with hemispherical, compound apposition layouts. With the recent advancement of stretchable optoelectronics, we have successfully developed strategies to build a fully functional artificial apposition compound eye camera by combining optics, materials and mechanics principles. The strategies start with fabricating stretchable arrays of thin silicon photodetectors and elastomeric optical elements in planar geometries, which are then precisely aligned and integrated, and elastically transformed to hemispherical shapes. This imaging device demonstrates nearly full hemispherical shape (about 160 degrees), with densely packed artificial ommatidia. The number of ommatidia (180) is comparable to those of the eyes of fire ants and bark beetles. We have illustrated key features of operation of compound eyes through experimental imaging results and quantitative ray-tracing-based simulations. The general strategies shown in this development could be applicable to other compound eye devices, such as those inspired by moths and lacewings (refracting superposition eyes), lobster and shrimp (reflecting superposition eyes), and houseflies (neural superposition eyes).

  4. Issues in implementing services for a wireless web-enabled digital camera

    NASA Astrophysics Data System (ADS)

    Venkataraman, Shyam; Sampat, Nitin; Fisher, Yoram; Canosa, John; Noel, Nicholas

    2001-05-01

    The competition in the exploding digital photography market has caused vendors to explore new ways to increase their return on investment. A common view among industry analysts is that increasingly it will be services provided by these cameras, and not the cameras themselves, that will provide the revenue stream. These services will be coupled to e- Appliance based Communities. In addition, the rapidly increasing need to upload images to the Internet for photo- finishing services as well as the need to download software upgrades to the camera is driving many camera OEMs to evaluate the benefits of using the wireless web to extend their enterprise systems. Currently, creating a viable e- appliance such as a digital camera coupled with a wireless web service requires more than just a competency in product development. This paper will evaluate the system implications in the deployment of recurring revenue services and enterprise connectivity of a wireless, web-enabled digital camera. These include, among other things, an architectural design approach for services such as device management, synchronization, billing, connectivity, security, etc. Such an evaluation will assist, we hope, anyone designing or connecting a digital camera to the enterprise systems.

  5. Works starts on building world's largest digital camera

    NASA Astrophysics Data System (ADS)

    Kruesi, Liz

    2015-10-01

    The $473m Large Synoptic Survey Telescope (LSST) has moved one step closer to completion after the US Department of Energy (DOE) approved the start of construction for the telescope's $168m 3.2-gigapixel camera.

  6. Impact of New Camera Technologies on Discoveries in Cell Biology.

    PubMed

    Stuurman, Nico; Vale, Ronald D

    2016-08-01

    New technologies can make previously invisible phenomena visible. Nowhere is this more obvious than in the field of light microscopy. Beginning with the observation of "animalcules" by Antonie van Leeuwenhoek, when he figured out how to achieve high magnification by shaping lenses, microscopy has advanced to this day by a continued march of discoveries driven by technical innovations. Recent advances in single-molecule-based technologies have achieved unprecedented resolution, and were the basis of the Nobel prize in Chemistry in 2014. In this article, we focus on developments in camera technologies and associated image processing that have been a major driver of technical innovations in light microscopy. We describe five types of developments in camera technology: video-based analog contrast enhancement, charge-coupled devices (CCDs), intensified sensors, electron multiplying gain, and scientific complementary metal-oxide-semiconductor cameras, which, together, have had major impacts in light microscopy.

  7. Impact of New Camera Technologies on Discoveries in Cell Biology.

    PubMed

    Stuurman, Nico; Vale, Ronald D

    2016-08-01

    New technologies can make previously invisible phenomena visible. Nowhere is this more obvious than in the field of light microscopy. Beginning with the observation of "animalcules" by Antonie van Leeuwenhoek, when he figured out how to achieve high magnification by shaping lenses, microscopy has advanced to this day by a continued march of discoveries driven by technical innovations. Recent advances in single-molecule-based technologies have achieved unprecedented resolution, and were the basis of the Nobel prize in Chemistry in 2014. In this article, we focus on developments in camera technologies and associated image processing that have been a major driver of technical innovations in light microscopy. We describe five types of developments in camera technology: video-based analog contrast enhancement, charge-coupled devices (CCDs), intensified sensors, electron multiplying gain, and scientific complementary metal-oxide-semiconductor cameras, which, together, have had major impacts in light microscopy. PMID:27638691

  8. Investigation of a consumer-grade digital stereo camera

    NASA Astrophysics Data System (ADS)

    Menna, Fabio; Nocerino, Erica; Remondino, Fabio; Shortis, Mark

    2013-04-01

    The paper presents a metric investigation of the Fuji FinePix Real 3D W1 stereo photo-camera. The stereo-camera uses a synchronized Twin Lens-CCD System to acquire simultaneously two images using two Fujinon 3x optical zoom lenses arranged in an aluminum die-cast frame integrated in a very compact body. The nominal baseline is 77 mm and the resolution of the each CCD is 10 megapixels. Given the short baseline and the presence of two optical paths, the investigation aims to evaluate the accuracy of the 3D data that can be produced and the stability of the camera. From a photogrammetric point of view, the interest in this camera is its capability to acquire synchronized image pairs that contain important 3D metric information for many close-range applications (human body parts measurement, rapid prototyping, surveying of archeological artifacts, etc.). Calibration values - for the left and right cameras - at different focal lengths, derived with an in-house software application, are reported together with accuracy analyses. The object coordinates obtained from the bundle adjustment computation for each focal length were compared to reference coordinates of a test range by means of a similarity transformation. Additionally, the article reports on the investigation of the asymmetrical relative orientation between the left and right camera.

  9. Two Methods for Self Calibration of Digital Camera

    NASA Astrophysics Data System (ADS)

    Sampath, A.; Moe, D.; Christopherson, J.

    2012-07-01

    Photogrammetric mapping using Commercial of the Shelf (COTS) cameras is becoming more popular. Their popularity is augmented by the increasing use of Unmanned Aerial Vehicles (UAV) as a platform for mapping. The mapping precision of these methods can be increased by using a calibrated camera. The USGS/EROS has developed an inexpensive, easy to use method, particularly for calibrating short focal length cameras. The method builds on a self-calibration procedure developed for the USGS EROS Data Center by Pictometry (and augmented by Dr. C.S Fraser), that uses a series of coded targets. These coded targets form different patterns that are imaged from nine different locations with differing camera orientations. A free network solution using collinearity equations is used to determine the calibration parameters. For the smaller focal length COTS cameras, the USGS has developed a procedure that uses a small prototype box that contains these coded targets. The design of the box is discussed, along with best practices for calibration procedure. Results of calibration parameters obtained using the box are compared with the parameters obtained using more established standard procedures.

  10. Digital holographic PTV for complicated flow in a water by two cameras and refractive index-matching method

    NASA Astrophysics Data System (ADS)

    Kuniyasu, Masataka; Aoyagi, Yusuke; Unno, Noriyuki; Satake, Shin-ichi; Yuki, Kazuhisa; Seki, Yohji

    2016-06-01

    A basic heat transfer promoter such as packed beds of spheres is one of the technologies of the promotion of heat transfer using the turbulent mixture. We carried out 3-D visualization of digital holographic PTV to understand the complicated flow in a sphere-packed pipe (SPP) using a refractive index-matching method with a water used as a working fluid, the spheres was made of MEXFLON, whose refractive index is the same as that of a water. To visualize the detail flow structure around the spheres in water, we performed three-dimensional simultaneous measurements of velocity field in a water flow in the SPP are performed by our proposed holography technique with two cameras. The velocity field by two cameras could obtain finer flow structures than that by one camera.

  11. Direct digital conversion detector technology

    NASA Astrophysics Data System (ADS)

    Mandl, William J.; Fedors, Richard

    1995-06-01

    Future imaging sensors for the aerospace and commercial video markets will depend on low cost, high speed analog-to-digital (A/D) conversion to efficiently process optical detector signals. Current A/D methods place a heavy burden on system resources, increase noise, and limit the throughput. This paper describes a unique method for incorporating A/D conversion right on the focal plane array. This concept is based on Sigma-Delta sampling, and makes optimum use of the active detector real estate. Combined with modern digital signal processors, such devices will significantly increase data rates off the focal plane. Early conversion to digital format will also decrease the signal susceptibility to noise, lowering the communications bit error rate. Computer modeling of this concept is described, along with results from several simulation runs. A potential application for direct digital conversion is also reviewed. Future uses for this technology could range from scientific instruments to remote sensors, telecommunications gear, medical diagnostic tools, and consumer products.

  12. DigiCam: fully digital compact camera for SST-1M telescope

    NASA Astrophysics Data System (ADS)

    Aguilar, J. A.; Bilnik, W.; Bogacz, L.; Bulik, T.; Christov, A.; della Volpe, D.; Dyrda, M.; Frankowski, A.; Grudzinska, M.; Grygorczuk, J.; Heller, M.; Idźkowski, B.; Janiak, M.; Jamrozy, M.; Karczewski, M.; Kasperek, J.; Lyard, E.; Marszałek, A.; Michałowski, J.; Moderski, R.; Montaruli, T.; Neronov, A.; Nicolau-Kukliński, J.; Niemiec, J.; Ostrowski, M.; Paśko, P.; Płatos, Ł.; Prandini, E.; Pruchniewicz, R.; Rafalski, J.; Rajda, P. J.; Rameez, M.; Rataj, M.; Rupiński, M.; Rutkowski, K.; Seweryn, K.; Sidz, M.; Stawarz, Ł.; Stodulska, M.; Stodulski, M.; Tokarz, M.; Toscano, S.; Troyano Pujadas, I.; Walter, R.; Wawer, P.; Wawrzaszek, R.; Wiśniewski, L.; Zietara, K.; Ziółkowski, P.; Żychowski, P.

    2014-08-01

    The single mirror Small Size Telescopes (SST-1M), being built by a sub-consortium of Polish and Swiss Institutions of the CTA Consortium, will be equipped with a fully digital camera with a compact photodetector plane based on silicon photomultipliers. The internal trigger signal transmission overhead will be kept at low level by introducing a high level of integration. It will be achieved by massively deploying state-of-the-art multi-gigabit transceivers, beginning from the ADC flash converters, through the internal data and trigger signals transmission over backplanes and cables, to the camera's server 10Gb/s Ethernet links. Such approach will allow fitting the size and weight of the camera exactly to the SST-1M needs, still retaining the flexibility of a fully digital design. Such solution has low power consumption, high reliability and long lifetime. The concept of the camera will be described, along with some construction details and performance results.

  13. Photogrammetry of a 5m Inflatable Space Antenna With Consumer Digital Cameras

    NASA Technical Reports Server (NTRS)

    Pappa, Richard S.; Giersch, Louis R.; Quagliaroli, Jessica M.

    2000-01-01

    This paper discusses photogrammetric measurements of a 5m-diameter inflatable space antenna using four Kodak DC290 (2.1 megapixel) digital cameras. The study had two objectives: 1) Determine the photogrammetric measurement precision obtained using multiple consumer-grade digital cameras and 2) Gain experience with new commercial photogrammetry software packages, specifically PhotoModeler Pro from Eos Systems, Inc. The paper covers the eight steps required using this hardware/software combination. The baseline data set contained four images of the structure taken from various viewing directions. Each image came from a separate camera. This approach simulated the situation of using multiple time-synchronized cameras, which will be required in future tests of vibrating or deploying ultra-lightweight space structures. With four images, the average measurement precision for more than 500 points on the antenna surface was less than 0.020 inches in-plane and approximately 0.050 inches out-of-plane.

  14. Perspective Intensity Images for Co-Registration of Terrestrial Laser Scanner and Digital Camera

    NASA Astrophysics Data System (ADS)

    Liang, Yubin; Qiu, Yan; Cui, Tiejun

    2016-06-01

    Co-registration of terrestrial laser scanner and digital camera has been an important topic of research, since reconstruction of visually appealing and measurable models of the scanned objects can be achieved by using both point clouds and digital images. This paper presents an approach for co-registration of terrestrial laser scanner and digital camera. A perspective intensity image of the point cloud is firstly generated by using the collinearity equation. Then corner points are extracted from the generated perspective intensity image and the camera image. The fundamental matrix F is then estimated using several interactively selected tie points and used to obtain more matches with RANSAC. The 3D coordinates of all the matched tie points are directly obtained or estimated using the least squares method. The robustness and effectiveness of the presented methodology is demonstrated by the experimental results. Methods presented in this work may also be used for automatic registration of terrestrial laser scanning point clouds.

  15. Optimization of precision localization microscopy using CMOS camera technology

    NASA Astrophysics Data System (ADS)

    Fullerton, Stephanie; Bennett, Keith; Toda, Eiji; Takahashi, Teruo

    2012-02-01

    Light microscopy imaging is being transformed by the application of computational methods that permit the detection of spatial features below the optical diffraction limit. Successful localization microscopy (STORM, dSTORM, PALM, PhILM, etc.) relies on the precise position detection of fluorescence emitted by single molecules using highly sensitive cameras with rapid acquisition speeds. Electron multiplying CCD (EM-CCD) cameras are the current standard detector for these applications. Here, we challenge the notion that EM-CCD cameras are the best choice for precision localization microscopy and demonstrate, through simulated and experimental data, that certain CMOS detector technology achieves better localization precision of single molecule fluorophores. It is well-established that localization precision is limited by system noise. Our findings show that the two overlooked noise sources relevant for precision localization microscopy are the shot noise of the background light in the sample and the excess noise from electron multiplication in EM-CCD cameras. At low light conditions (< 200 photons/fluorophore) with no optical background, EM-CCD cameras are the preferred detector. However, in practical applications, optical background noise is significant, creating conditions where CMOS performs better than EM-CCD. Furthermore, the excess noise of EM-CCD is equivalent to reducing the information content of each photon detected which, in localization microscopy, reduces the precision of the localization. Thus, new CMOS technology with 100fps, <1.3 e- read noise and high QE is the best detector choice for super resolution precision localization microscopy.

  16. Technological Effects on Aesthetic Evaluation: Vermeer and the Camera Obscura

    ERIC Educational Resources Information Center

    Hantula, Donald A.; Sudduth, Mary Margaret; Clabaugh, Alison

    2009-01-01

    The question of whether an artist's use of technology to create art results in a detectable aesthetic difference was investigated in the case of Dutch realist painter Johannes Vermeer and his use of the camera obscura. In Experiment 1, participants evaluated 20 Vermeer paintings on 6 aesthetic dimensions and preferred paintings created with the…

  17. Applications of the Lambert W function to analyze digital camera sensors

    NASA Astrophysics Data System (ADS)

    Villegas, Daniel

    2014-05-01

    The Lambert W function is applied via Maple to analyze the operation of the modern digital camera sensors. The Lambert W function had been applied previously to understand the functioning of diodes and solar cells. The parallelism between the physics of solar cells and digital camera sensors will be exploited. Digital camera sensors use p-n photodiodes and such photodiodes can be studied using the Lambert W function. At general, the bulk transformation of light into photocurrent is described by an equivalent circuit which determines a dynamical equation to be solved using the Lambert W function. Specifically, in a camera senor, the precise measurement of light intensity by filtering through color filters is able to create a measurable photocurrent that is proportional to image point intensity; and such photocurrent is given in terms of the Lambert W function. It is claimed that the drift between neighboring photocells at long wavelengths affects the ability to resolve an image and such drift can be represented effectively using the Lambert W function. Also is conjectured that the recombination of charge carries in the digital sensors is connected to the notion of "noise" in photography and such "noise" could be described by certain combinations of Lambert W functions. Finally, it is suggested that the notion of bias, and varying the width of the depletion zone, has a relationship to the ISO "sped· of the camera sensor; and such relationship could be described using Lambert W functions.

  18. Digital synchroballistic schlieren camera for high-speed photography of bullets and rocket sleds

    NASA Astrophysics Data System (ADS)

    Buckner, Benjamin D.; L'Esperance, Drew

    2013-08-01

    A high-speed digital streak camera designed for simultaneous high-resolution color photography and focusing schlieren imaging is described. The camera uses a computer-controlled galvanometer scanner to achieve synchroballistic imaging through a narrow slit. Full color 20 megapixel images of a rocket sled moving at 480 m/s and of projectiles fired at around 400 m/s were captured, with high-resolution schlieren imaging in the latter cases, using conventional photographic flash illumination. The streak camera can achieve a line rate for streak imaging of up to 2.4 million lines/s.

  19. Digital video technology, today and tomorrow

    NASA Astrophysics Data System (ADS)

    Liberman, J.

    1994-10-01

    Digital video is probably computing's fastest moving technology today. Just three years ago, the zenith of digital video technology on the PC was the successful marriage of digital text and graphics with analog audio and video by means of expensive analog laser disc players and video overlay boards. The state of the art involves two different approaches to fully digital video on computers: hardware-assisted and software-only solutions.

  20. Estimation of spectral distribution of sky radiance using a commercial digital camera.

    PubMed

    Saito, Masanori; Iwabuchi, Hironobu; Murata, Isao

    2016-01-10

    Methods for estimating spectral distribution of sky radiance from images captured by a digital camera and for accurately estimating spectral responses of the camera are proposed. Spectral distribution of sky radiance is represented as a polynomial of the wavelength, with coefficients obtained from digital RGB counts by linear transformation. The spectral distribution of radiance as measured is consistent with that obtained by spectrometer and radiative transfer simulation for wavelengths of 430-680 nm, with standard deviation below 1%. Preliminary applications suggest this method is useful for detecting clouds and studying the relation between irradiance at the ground and cloud distribution.

  1. Accurate measurement of spatial noise portraits of photosensors of digital cameras

    NASA Astrophysics Data System (ADS)

    Cheremkhin, P. A.; Evtikhiev, N. N.; Krasnov, V. V.; Kulakov, M. N.; Starikov, R. S.

    2016-08-01

    Method of measurement of accurate portraits of light and dark spatial noise of photosensors is described. The method consists of four steps: creation of spatially homogeneous illumination; shooting light and dark frames; digital processing and filtering. Unlike standard technique, this method uses iterative creation of spatially homogeneous illumination by display, compensation of photosensor dark spatial noise portrait and improved procedure of elimination of dark temporal noise. Portraits of light and dark spatial noise of photosensors of a scientific digital camera were found. Characteristics of the measured portraits were compared with values of photo response and dark signal non-uniformities of camera's photosensor.

  2. Estimation of spectral distribution of sky radiance using a commercial digital camera.

    PubMed

    Saito, Masanori; Iwabuchi, Hironobu; Murata, Isao

    2016-01-10

    Methods for estimating spectral distribution of sky radiance from images captured by a digital camera and for accurately estimating spectral responses of the camera are proposed. Spectral distribution of sky radiance is represented as a polynomial of the wavelength, with coefficients obtained from digital RGB counts by linear transformation. The spectral distribution of radiance as measured is consistent with that obtained by spectrometer and radiative transfer simulation for wavelengths of 430-680 nm, with standard deviation below 1%. Preliminary applications suggest this method is useful for detecting clouds and studying the relation between irradiance at the ground and cloud distribution. PMID:26835780

  3. In-plane displacement and strain measurements using a camera phone and digital image correlation

    NASA Astrophysics Data System (ADS)

    Yu, Liping; Pan, Bing

    2014-05-01

    In-plane displacement and strain measurements of planar objects by processing the digital images captured by a camera phone using digital image correlation (DIC) are performed in this paper. As a convenient communication tool for everyday use, the principal advantages of a camera phone are its low cost, easy accessibility, and compactness. However, when used as a two-dimensional DIC system for mechanical metrology, the assumed imaging model of a camera phone may be slightly altered during the measurement process due to camera misalignment, imperfect loading, sample deformation, and temperature variations of the camera phone, which can produce appreciable errors in the measured displacements. In order to obtain accurate DIC measurements using a camera phone, the virtual displacements caused by these issues are first identified using an unstrained compensating specimen and then corrected by means of a parametric model. The proposed technique is first verified using in-plane translation and out-of-plane translation tests. Then, it is validated through a determination of the tensile strains and elastic properties of an aluminum specimen. Results of the present study show that accurate DIC measurements can be conducted using a common camera phone provided that an adequate correction is employed.

  4. Lights, Camera, Reflection! Digital Movies: A Tool for Reflective Learning

    ERIC Educational Resources Information Center

    Genereux, Annie Prud'homme; Thompson, William A.

    2008-01-01

    At the end of a biology course entitled Ecology, Evolution, and Genetics, students were asked to consider how their learning experience had changed their perception of either ecology or genetics. Students were asked to express their thoughts in the form of a "digital story" using readily available software to create movies for the purpose of…

  5. The trustworthy digital camera: Restoring credibility to the photographic image

    NASA Astrophysics Data System (ADS)

    Friedman, Gary L.

    1994-02-01

    The increasing sophistication of computers has made digital manipulation of photographic images, as well as other digitally-recorded artifacts such as audio and video, incredibly easy to perform and increasingly difficult to detect. Today, every picture appearing in newspapers and magazines has been digitally altered to some degree, with the severity varying from the trivial (cleaning up 'noise' and removing distracting backgrounds) to the point of deception (articles of clothing removed, heads attached to other people's bodies, and the complete rearrangement of city skylines). As the power, flexibility, and ubiquity of image-altering computers continues to increase, the well-known adage that 'the photography doesn't lie' will continue to become an anachronism. A solution to this problem comes from a concept called digital signatures, which incorporates modern cryptographic techniques to authenticate electronic mail messages. 'Authenticate' in this case means one can be sure that the message has not been altered, and that the sender's identity has not been forged. The technique can serve not only to authenticate images, but also to help the photographer retain and enforce copyright protection when the concept of 'electronic original' is no longer meaningful.

  6. The trustworthy digital camera: Restoring credibility to the photographic image

    NASA Technical Reports Server (NTRS)

    Friedman, Gary L.

    1994-01-01

    The increasing sophistication of computers has made digital manipulation of photographic images, as well as other digitally-recorded artifacts such as audio and video, incredibly easy to perform and increasingly difficult to detect. Today, every picture appearing in newspapers and magazines has been digitally altered to some degree, with the severity varying from the trivial (cleaning up 'noise' and removing distracting backgrounds) to the point of deception (articles of clothing removed, heads attached to other people's bodies, and the complete rearrangement of city skylines). As the power, flexibility, and ubiquity of image-altering computers continues to increase, the well-known adage that 'the photography doesn't lie' will continue to become an anachronism. A solution to this problem comes from a concept called digital signatures, which incorporates modern cryptographic techniques to authenticate electronic mail messages. 'Authenticate' in this case means one can be sure that the message has not been altered, and that the sender's identity has not been forged. The technique can serve not only to authenticate images, but also to help the photographer retain and enforce copyright protection when the concept of 'electronic original' is no longer meaningful.

  7. Technical assessment of low light color camera technology

    NASA Astrophysics Data System (ADS)

    Ramsey, Scott A.; Peak, Joseph; Setlik, Brian

    2010-04-01

    In nighttime overcast conditions with a new moon (near-total darkness), typical light levels may only reach 10-2-10-4 lux. As such, standard CCD/CMOS video cameras have insufficient sensitivity to capture useful images. Third generation night vision cameras (Gen III NV) are the state-of-the-art in terms of imaging clarity and resolution at this light level, but rely on green or green/yellow phosphors to produce monochromatic images while true color information is lost. More recently, low-light color video cameras have become commercially available which are purportedly able to produce truecolor images at rates of 15-30 frames per second (fps) in near-total darkness without loss in clarity. This study determined if the sensitivities of two low-light color video cameras, Toshiba's IK-1000 EMCCD and Opto-Knowledge System's (OKSI) True Color Night Vision (TCNV) cameras are comparable to current Gen II/III NV technology. NRL, in a joint effort with NSWC Carderock Division, quantified the effectiveness of these cameras in terms of objective laboratory characterization and subjective field testing. Laboratory tests included signal-to-noise (S/N), spectral response, and imaging quality at 2, 15, and 30 frames per second (fps). Field tests were performed at 8, 15, and 30 fps to determine clarity and color composition of camouflaged human subjects and stationary objects from a set number of standoff distances under near-total darkness (measured at 10-8-10-10 W/cm2 sr @ 650nm). Low-light camera video was qualitatively compared to imagery taken by Stanford Photonics Mega-10 Gen III Night Vision Scientific and Tactical Imagers under identical conditions.

  8. Digital Technology and Student Cognitive Development

    ERIC Educational Resources Information Center

    Cavanaugh, J. Michael; Giapponi, Catherine C.; Golden, Timothy D.

    2016-01-01

    Digital technology has proven a beguiling, some even venture addictive, presence in the lives of our 21st century (millennial) students. And while screen technology may offer select cognitive benefits, there is mounting evidence in the cognitive neuroscience literature that digital technology is restructuring the way our students read and think,…

  9. A powerful ethernet interface module for digital camera control

    NASA Astrophysics Data System (ADS)

    Amato, Stephen M.; Geary, John C.

    2012-09-01

    We have found a commercially-available ethernet interface module with sufficient on-board resources to largely handle all timing generation tasks required by digital imaging systems found in astronomy. In addition to providing a high-bandwidth ethernet interface to the controller, it can largely replace the need for special-purpose timing circuitry. Examples for use with both CCD and CMOS imagers are provided.

  10. Film cameras or digital sensors? The challenge ahead for aerial imaging

    USGS Publications Warehouse

    Light, D.L.

    1996-01-01

    Cartographic aerial cameras continue to play the key role in producing quality products for the aerial photography business, and specifically for the National Aerial Photography Program (NAPP). One NAPP photograph taken with cameras capable of 39 lp/mm system resolution can contain the equivalent of 432 million pixels at 11 ??m spot size, and the cost is less than $75 per photograph to scan and output the pixels on a magnetic storage medium. On the digital side, solid state charge coupled device linear and area arrays can yield quality resolution (7 to 12 ??m detector size) and a broader dynamic range. If linear arrays are to compete with film cameras, they will require precise attitude and positioning of the aircraft so that the lines of pixels can be unscrambled and put into a suitable homogeneous scene that is acceptable to an interpreter. Area arrays need to be much larger than currently available to image scenes competitive in size with film cameras. Analysis of the relative advantages and disadvantages of the two systems show that the analog approach is more economical at present. However, as arrays become larger, attitude sensors become more refined, global positioning system coordinate readouts become commonplace, and storage capacity becomes more affordable, the digital camera may emerge as the imaging system for the future. Several technical challenges must be overcome if digital sensors are to advance to where they can support mapping, charting, and geographic information system applications.

  11. 75 FR 7519 - In the Matter of Certain Digital Cameras; Notice of Commission Determination Not To Review an...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-19

    ... ] on February 27, 2009 and March 11, 2009. 74 FR 12377-78 (Mar. 24, 2009). The complaint, as... COMMISSION In the Matter of Certain Digital Cameras; Notice of Commission Determination Not To Review an... importation, or the sale within the United States after importation of certain digital cameras by reason...

  12. Can Commercial Digital Cameras Be Used as Multispectral Sensors? A Crop Monitoring Test

    PubMed Central

    Lebourgeois, Valentine; Bégué, Agnès; Labbé, Sylvain; Mallavan, Benjamin; Prévot, Laurent; Roux, Bruno

    2008-01-01

    The use of consumer digital cameras or webcams to characterize and monitor different features has become prevalent in various domains, especially in environmental applications. Despite some promising results, such digital camera systems generally suffer from signal aberrations due to the on-board image processing systems and thus offer limited quantitative data acquisition capability. The objective of this study was to test a series of radiometric corrections having the potential to reduce radiometric distortions linked to camera optics and environmental conditions, and to quantify the effects of these corrections on our ability to monitor crop variables. In 2007, we conducted a five-month experiment on sugarcane trial plots using original RGB and modified RGB (Red-Edge and NIR) cameras fitted onto a light aircraft. The camera settings were kept unchanged throughout the acquisition period and the images were recorded in JPEG and RAW formats. These images were corrected to eliminate the vignetting effect, and normalized between acquisition dates. Our results suggest that 1) the use of unprocessed image data did not improve the results of image analyses; 2) vignetting had a significant effect, especially for the modified camera, and 3) normalized vegetation indices calculated with vignetting-corrected images were sufficient to correct for scene illumination conditions. These results are discussed in the light of the experimental protocol and recommendations are made for the use of these versatile systems for quantitative remote sensing of terrestrial surfaces.

  13. 77 FR 43858 - Certain Mobile Telephones and Wireless Communication Devices Featuring Digital Cameras, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-26

    ... COMMISSION Certain Mobile Telephones and Wireless Communication Devices Featuring Digital Cameras, and... 4, 2010. 75 FR 8112. The complaint alleged violations of section 337 of the Tariff Act of 1930 in... States after importation of certain mobile telephones and wireless communication devices...

  14. Estimating the infrared radiation wavelength emitted by a remote control device using a digital camera

    NASA Astrophysics Data System (ADS)

    Catelli, Francisco; Giovannini, Odilon; Dall Agnol Bolzan, Vicente

    2011-03-01

    The interference fringes produced by a diffraction grating illuminated with radiation from a TV remote control and a red laser beam are, simultaneously, captured by a digital camera. Based on an image with two interference patterns, an estimate of the infrared radiation wavelength emitted by a TV remote control is made.

  15. Developing Mental Imagery Using a Digital Camera: A Study of Adult Vocational Training

    ERIC Educational Resources Information Center

    Ryba, Ken; Selby, Linda; Brown, Roy

    2004-01-01

    This study was undertaken to explore the use of a digital camera for mental imagery training of a vocational task with two young adult men with Down syndrome. The results indicate that these particular men benefited from the use of a collaborative training process that involved mental imagery for learning a series of photocopying operations. An…

  16. Digital Video Cameras for Brainstorming and Outlining: The Process and Potential

    ERIC Educational Resources Information Center

    Unger, John A.; Scullion, Vicki A.

    2013-01-01

    This "Voices from the Field" paper presents methods and participant-exemplar data for integrating digital video cameras into the writing process across postsecondary literacy contexts. The methods and participant data are part of an ongoing action-based research project systematically designed to bring research and theory into practice…

  17. Multipoint laser Doppler vibrometry using holographic optical elements and a CMOS digital camera.

    PubMed

    Connelly, Michael J; Szecówka, Przemyslaw M; Jallapuram, Raghavendra; Martin, Suzanne; Toal, Vincent; Whelan, Maurice P

    2008-02-15

    A laser Doppler vibrometer (LDV) is described in which holographic optical elements are used to provide the interferometer reference and object illumination beams. A complementary metal-oxide semiconductor camera, incorporating a digital signal processor, is used to carry out real-time signal processing of the interferometer output to allow multipoint LDV to be implemented.

  18. On the Complexity of Digital Video Cameras in/as Research: Perspectives and Agencements

    ERIC Educational Resources Information Center

    Bangou, Francis

    2014-01-01

    The goal of this article is to consider the potential for digital video cameras to produce as part of a research agencement. Our reflection will be guided by the current literature on the use of video recordings in research, as well as by the rhizoanalysis of two vignettes. The first of these vignettes is associated with a short video clip shot by…

  19. Estimating the Infrared Radiation Wavelength Emitted by a Remote Control Device Using a Digital Camera

    ERIC Educational Resources Information Center

    Catelli, Francisco; Giovannini, Odilon; Bolzan, Vicente Dall Agnol

    2011-01-01

    The interference fringes produced by a diffraction grating illuminated with radiation from a TV remote control and a red laser beam are, simultaneously, captured by a digital camera. Based on an image with two interference patterns, an estimate of the infrared radiation wavelength emitted by a TV remote control is made. (Contains 4 figures.)

  20. Color calibration of a CMOS digital camera for mobile imaging

    NASA Astrophysics Data System (ADS)

    Eliasson, Henrik

    2010-01-01

    As white balance algorithms employed in mobile phone cameras become increasingly sophisticated by using, e.g., elaborate white-point estimation methods, a proper color calibration is necessary. Without such a calibration, the estimation of the light source for a given situation may go wrong, giving rise to large color errors. At the same time, the demands for efficiency in the production environment require the calibration to be as simple as possible. Thus it is important to find the correct balance between image quality and production efficiency requirements. The purpose of this work is to investigate camera color variations using a simple model where the sensor and IR filter are specified in detail. As input to the model, spectral data of the 24-color Macbeth Colorchecker was used. This data was combined with the spectral irradiance of mainly three different light sources: CIE A, D65 and F11. The sensor variations were determined from a very large population from which 6 corner samples were picked out for further analysis. Furthermore, a set of 100 IR filters were picked out and measured. The resulting images generated by the model were then analyzed in the CIELAB space and color errors were calculated using the ΔE94 metric. The results of the analysis show that the maximum deviations from the typical values are small enough to suggest that a white balance calibration is sufficient. Furthermore, it is also demonstrated that the color temperature dependence is small enough to justify the use of only one light source in a production environment.

  1. Development of an XYZ Digital Camera with Embedded Color Calibration System for Accurate Color Acquisition

    NASA Astrophysics Data System (ADS)

    Kretkowski, Maciej; Jablonski, Ryszard; Shimodaira, Yoshifumi

    Acquisition of accurate colors is important in the modern era of widespread exchange of electronic multimedia. The variety of device-dependent color spaces causes troubles with accurate color reproduction. In this paper we present the outlines of accomplished digital camera system with device-independent output formed from tristimulus XYZ values. The outstanding accuracy and fidelity of acquired color is achieved in our system by employing an embedded color calibration system based on emissive device generating reference calibration colors with user-defined spectral distribution and chromaticity coordinates. The system was tested by calibrating the camera using 24 reference colors spectrally reproduced from 24 color patches of the Macbeth Chart. The average color difference (CIEDE2000) has been found to be ΔE =0.83, which is an outstanding result compared to commercially available digital cameras.

  2. Digital image processing for the rectification of television camera distortions.

    NASA Technical Reports Server (NTRS)

    Rindfleisch, T. C.

    1971-01-01

    All television systems introduce distortions into the imagery they record which influence the results of quantitative photometric and geometric measurements. Digital computer techniques provide a powerful approach to the calibration and rectification of these systematic effects. Nonlinear as well as linear problems can be attacked with flexibility and precision. Methods which have been developed and applied for the removal of structured system noises and the correction of photometric, geometric, and resolution distortions in vidicon systems are briefly described. Examples are given of results derived primarily from the Mariner Mars 1969 television experiment.

  3. Comparison of Digital Surface Models for Snow Depth Mapping with Uav and Aerial Cameras

    NASA Astrophysics Data System (ADS)

    Boesch, R.; Bühler, Y.; Marty, M.; Ginzler, C.

    2016-06-01

    Photogrammetric workflows for aerial images have improved over the last years in a typically black-box fashion. Most parameters for building dense point cloud are either excessive or not explained and often the progress between software releases is poorly documented. On the other hand, development of better camera sensors and positional accuracy of image acquisition is significant by comparing product specifications. This study shows, that hardware evolutions over the last years have a much stronger impact on height measurements than photogrammetric software releases. Snow height measurements with airborne sensors like the ADS100 and UAV-based DSLR cameras can achieve accuracies close to GSD * 2 in comparison with ground-based GNSS reference measurements. Using a custom notch filter on the UAV camera sensor during image acquisition does not yield better height accuracies. UAV based digital surface models are very robust. Different workflow parameter variations for ADS100 and UAV camera workflows seem to have only random effects.

  4. Metric Potential of a 3D Measurement System Based on Digital Compact Cameras

    PubMed Central

    Sanz-Ablanedo, Enoc; Rodríguez-Pérez, José Ramón; Arias-Sánchez, Pedro; Armesto, Julia

    2009-01-01

    This paper presents an optical measuring system based on low cost, high resolution digital cameras. Once the cameras are synchronised, the portable and adjustable system can be used to observe living beings, bodies in motion, or deformations of very different sizes. Each of the cameras has been modelled individually and studied with regard to the photogrammetric potential of the system. We have investigated the photogrammetric precision obtained from the crossing of rays, the repeatability of results, and the accuracy of the coordinates obtained. Systematic and random errors are identified in validity assessment of the definition of the precision of the system from crossing of rays or from marking residuals in images. The results have clearly demonstrated the capability of a low-cost multiple-camera system to measure with sub-millimetre precision. PMID:22408520

  5. Submersible digital holographic cameras and their application to marine science

    NASA Astrophysics Data System (ADS)

    Watson, John

    2011-09-01

    Digital holography has been growing in importance for application to environmental studies in the oceans and lakes of the world. With an imaging resolution using ``classical'' photoholography of a few micro-meters and recording volumes up to a cubic meter, several ``holocameras'' were developed and deployed for underwater imaging of plankton and other marine particles. For in-water deployment, however, the weight and size of these instruments restricted their use on advanced observation platforms such as remotely operated vehicles, and limited operational depth to a few hundred meters. Advances made in digital recording on electronic sensors, coupled with numerical reconstruction, led to the development of smaller, rugged holocameras. This freed holography from many of its constraints and allowed rapid capture and storage of images and holographic video recording of moving objects. Although holography is not the only optical method applicable underwater, its ability to record full-field, high-resolution, distortion free images in situ from which particle dimensions, distribution and dynamics can be extracted is hard to match. The current state-of-the-art in underwater holography is discussed, with an outline of some submersible holocameras. We describe one such system, eHoloCam, in more depth and present results from its deployment in the North Sea.

  6. Comparison of Kodak Professional Digital Camera System images to conventional film, still video, and freeze-frame images

    NASA Astrophysics Data System (ADS)

    Kent, Richard A.; McGlone, John T.; Zoltowski, Norbert W.

    1991-06-01

    Electronic cameras provide near real time image evaluation with the benefits of digital storage methods for rapid transmission or computer processing and enhancement of images. But how does the image quality of their images compare to that of conventional film? A standard Nikon F-3TM 35 mm SLR camera was transformed into an electro-optical camera by replacing the film back with Kodak's KAF-1400V (or KAF-1300L) megapixel CCD array detector back and a processing accessory. Images taken with these Kodak electronic cameras were compared to those using conventional films and to several still video cameras. Quantitative and qualitative methods were used to compare images from these camera systems. Images captured on conventional video analog systems provide a maximum of 450 - 500 TV lines of resolution depending upon the camera resolution, storage method, and viewing system resolution. The Kodak Professional Digital Camera SystemTM exceeded this resolution and more closely approached that of film.

  7. Fundamentals of in situ digital camera methodology for water quality monitoring of coast and ocean.

    PubMed

    Goddijn-Murphy, Lonneke; Dailloux, Damien; White, Martin; Bowers, Dave

    2009-01-01

    Conventional digital cameras, the Nikon Coolpix885(®) and the SeaLife ECOshot(®), were used as in situ optical instruments for water quality monitoring. Measured response spectra showed that these digital cameras are basically three-band radiometers. The response values in the red, green and blue bands, quantified by RGB values of digital images of the water surface, were comparable to measurements of irradiance levels at red, green and cyan/blue wavelengths of water leaving light. Different systems were deployed to capture upwelling light from below the surface, while eliminating direct surface reflection. Relationships between RGB ratios of water surface images, and water quality parameters were found to be consistent with previous measurements using more traditional narrow-band radiometers. This current paper focuses on the method that was used to acquire digital images, derive RGB values and relate measurements to water quality parameters. Field measurements were obtained in Galway Bay, Ireland, and in the Southern Rockall Trough in the North Atlantic, where both yellow substance and chlorophyll concentrations were successfully assessed using the digital camera method.

  8. Effect of camera temperature variations on stereo-digital image correlation measurements.

    PubMed

    Pan, Bing; Shi, Wentao; Lubineau, Gilles

    2015-12-01

    In laboratory and especially non-laboratory stereo-digital image correlation (stereo-DIC) applications, the extrinsic and intrinsic parameters of the cameras used in the system may change slightly due to the camera warm-up effect and possible variations in ambient temperature. Because these camera parameters are generally calibrated once prior to measurements and considered to be unaltered during the whole measurement period, the changes in these parameters unavoidably induce displacement/strain errors. In this study, the effect of temperature variations on stereo-DIC measurements is investigated experimentally. To quantify the errors associated with camera or ambient temperature changes, surface displacements and strains of a stationary optical quartz glass plate with near-zero thermal expansion were continuously measured using a regular stereo-DIC system. The results confirm that (1) temperature variations in the cameras and ambient environment have a considerable influence on the displacements and strains measured by stereo-DIC due to the slightly altered extrinsic and intrinsic camera parameters; and (2) the corresponding displacement and strain errors correlate with temperature changes. For the specific stereo-DIC configuration used in this work, the temperature-induced strain errors were estimated to be approximately 30-50 με/°C. To minimize the adverse effect of camera temperature variations on stereo-DIC measurements, two simple but effective solutions are suggested.

  9. Digital Photography and Journals in a Kindergarten-First-Grade Classroom: Toward Meaningful Technology Integration in Early Childhood Education

    ERIC Educational Resources Information Center

    Ching, Cynthia Carter; Wang, X. Christine; Shih, Mei-Li; Kedem, Yore

    2006-01-01

    To explore meaningful and effective technology integration in early childhood education, we investigated how kindergarten-first-grade students created and employed digital photography journals to support social and cognitive reflection. These students used a digital camera to document their daily school activities and created digital photo…

  10. Integrating Digital Video Technology in the Classroom

    ERIC Educational Resources Information Center

    Lim, Jon; Pellett, Heidi Henschel; Pellett, Tracy

    2009-01-01

    Digital video technology can be a powerful tool for teaching and learning. It enables students to develop a variety of skills including research, communication, decision-making, problem-solving, and other higher-order critical-thinking skills. In addition, digital video technology has the potential to enrich university classroom curricula, enhance…

  11. Illuminant spectrum estimation using a digital color camera and a color chart

    NASA Astrophysics Data System (ADS)

    Shi, Junsheng; Yu, Hongfei; Huang, Xiaoqiao; Chen, Zaiqing; Tai, Yonghang

    2014-10-01

    Illumination estimation is the main step in color constancy processing, also an important prerequisite for digital color image reproduction and many computer vision applications. In this paper, a method for estimating illuminant spectrum is investigated using a digital color camera and a color chart under the situation when the spectral reflectance of the chart is known. The method is based on measuring CIEXYZ of the chart using the camera. The first step of the method is to gain camera's color correction matrix and gamma values by taking a photo of the chart under a standard illuminant. The second step is to take a photo of the chart under an estimated illuminant, and the camera's inherent RGB values are converted to the standard sRGB values and further converted to CIEXYZ of the chart. Based on measured CIEXYZ and known spectral reflectance of the chart, the spectral power distribution (SPD) of the illuminant is estimated using the Wiener estimation and smoothing estimation. To evaluate the performance of the method quantitatively, the goodnessfitting coefficient (GFC) was used to measure the spectral match and the CIELAB color difference metric was used to evaluate the color match between color patches under the estimated and actual SPDs. The simulated experiment was carried to estimate CIE standard illuminant D50 and C using X-rite ColorChecker 24-color chart, the actual experiment was carried to estimate daylight and illuminant A using two consumergrade cameras and the chart, and the experiment results verified feasible of the investigated method.

  12. Reading Out Single-Molecule Digital RNA and DNA Isothermal Amplification in Nanoliter Volumes with Unmodified Camera Phones.

    PubMed

    Rodriguez-Manzano, Jesus; Karymov, Mikhail A; Begolo, Stefano; Selck, David A; Zhukov, Dmitriy V; Jue, Erik; Ismagilov, Rustem F

    2016-03-22

    Digital single-molecule technologies are expanding diagnostic capabilities, enabling the ultrasensitive quantification of targets, such as viral load in HIV and hepatitis C infections, by directly counting single molecules. Replacing fluorescent readout with a robust visual readout that can be captured by any unmodified cell phone camera will facilitate the global distribution of diagnostic tests, including in limited-resource settings where the need is greatest. This paper describes a methodology for developing a visual readout system for digital single-molecule amplification of RNA and DNA by (i) selecting colorimetric amplification-indicator dyes that are compatible with the spectral sensitivity of standard mobile phones, and (ii) identifying an optimal ratiometric image-process for a selected dye to achieve a readout that is robust to lighting conditions and camera hardware and provides unambiguous quantitative results, even for colorblind users. We also include an analysis of the limitations of this methodology, and provide a microfluidic approach that can be applied to expand dynamic range and improve reaction performance, allowing ultrasensitive, quantitative measurements at volumes as low as 5 nL. We validate this methodology using SlipChip-based digital single-molecule isothermal amplification with λDNA as a model and hepatitis C viral RNA as a clinically relevant target. The innovative combination of isothermal amplification chemistry in the presence of a judiciously chosen indicator dye and ratiometric image processing with SlipChip technology allowed the sequence-specific visual readout of single nucleic acid molecules in nanoliter volumes with an unmodified cell phone camera. When paired with devices that integrate sample preparation and nucleic acid amplification, this hardware-agnostic approach will increase the affordability and the distribution of quantitative diagnostic and environmental tests.

  13. Reading Out Single-Molecule Digital RNA and DNA Isothermal Amplification in Nanoliter Volumes with Unmodified Camera Phones.

    PubMed

    Rodriguez-Manzano, Jesus; Karymov, Mikhail A; Begolo, Stefano; Selck, David A; Zhukov, Dmitriy V; Jue, Erik; Ismagilov, Rustem F

    2016-03-22

    Digital single-molecule technologies are expanding diagnostic capabilities, enabling the ultrasensitive quantification of targets, such as viral load in HIV and hepatitis C infections, by directly counting single molecules. Replacing fluorescent readout with a robust visual readout that can be captured by any unmodified cell phone camera will facilitate the global distribution of diagnostic tests, including in limited-resource settings where the need is greatest. This paper describes a methodology for developing a visual readout system for digital single-molecule amplification of RNA and DNA by (i) selecting colorimetric amplification-indicator dyes that are compatible with the spectral sensitivity of standard mobile phones, and (ii) identifying an optimal ratiometric image-process for a selected dye to achieve a readout that is robust to lighting conditions and camera hardware and provides unambiguous quantitative results, even for colorblind users. We also include an analysis of the limitations of this methodology, and provide a microfluidic approach that can be applied to expand dynamic range and improve reaction performance, allowing ultrasensitive, quantitative measurements at volumes as low as 5 nL. We validate this methodology using SlipChip-based digital single-molecule isothermal amplification with λDNA as a model and hepatitis C viral RNA as a clinically relevant target. The innovative combination of isothermal amplification chemistry in the presence of a judiciously chosen indicator dye and ratiometric image processing with SlipChip technology allowed the sequence-specific visual readout of single nucleic acid molecules in nanoliter volumes with an unmodified cell phone camera. When paired with devices that integrate sample preparation and nucleic acid amplification, this hardware-agnostic approach will increase the affordability and the distribution of quantitative diagnostic and environmental tests. PMID:26900709

  14. On-chip digital noise reduction for integrated CMOS Cameras

    NASA Astrophysics Data System (ADS)

    Rullmann, Markus; Schluessler, Jens-Uwe; Schueffny, Rene

    2003-06-01

    We propose an on-line noise reduction system especially designed for noisy CMOS image sensors. Image sequences from CMOS sensors in general are corrupted by two types of noise, temporal noise and fixed pattern noise (FPN). It is shown how the FPN component can be estimated from a sequence. We studied the theoretical performance of two different approaches called direct and indirect FPN estimation. We show that indirect estimation gives superior performance, both theoretically and by simulations. The FPN estimates can be used to improve the image quality by compensating it. We assess the quality of the estimates by the achievable SNR gains. Using those results a dedicated filtering scheme has been designed to accomplish both temporal noise reduction and FPN correction by applying a single noise filter. It allows signal gains of up to 12dB and provides a high visual quality of the results. We further analyzed and optimized the memory size and bandwidth requirements of our scheme and conclude that it is possible to implement it in hardware. The required memory size is 288kByte and the memory access rate is 70MHz. Our algorithm allows the integration of noisy CMOS sensors with digital noise reduction and other circuitry on a system-on-chip solution.

  15. Temporal monitoring of groundcover change using digital cameras

    NASA Astrophysics Data System (ADS)

    Zerger, A.; Gobbett, D.; Crossman, C.; Valencia, P.; Wark, T.; Davies, M.; Handcock, R. N.; Stol, J.

    2012-10-01

    This paper describes the development and testing of an automated method for detecting change in groundcover vegetation in response to kangaroo grazing using visible wavelength digital photography. The research is seen as a precursor to the future deployment of autonomous vegetation monitoring systems (environmental sensor networks). The study was conducted over six months with imagery captured every 90 min and post-processed using supervised image processing techniques. Synchronous manual assessments of groundcover change were also conducted to evaluate the effectiveness of the automated procedures. Results show that for particular cover classes such as Live Vegetation and Bare Ground, there is excellent temporal concordance between automated and manual methods. However, litter classes were difficult to consistently differentiate. A limitation of the method is the inability to effectively deal with change in the vertical profile of groundcover. This indicates that the three dimensional structure related to species composition and plant traits play an important role in driving future experimental designs. The paper concludes by providing lessons for conducting future groundcover monitoring experiments.

  16. Combining laser scan and photogrammetry for 3D object modeling using a single digital camera

    NASA Astrophysics Data System (ADS)

    Xiong, Hanwei; Zhang, Hong; Zhang, Xiangwei

    2009-07-01

    In the fields of industrial design, artistic design and heritage conservation, physical objects are usually digitalized by reverse engineering through some 3D scanning methods. Laser scan and photogrammetry are two main methods to be used. For laser scan, a video camera and a laser source are necessary, and for photogrammetry, a digital still camera with high resolution pixels is indispensable. In some 3D modeling tasks, two methods are often integrated to get satisfactory results. Although many research works have been done on how to combine the results of the two methods, no work has been reported to design an integrated device at low cost. In this paper, a new 3D scan system combining laser scan and photogrammetry using a single consumer digital camera is proposed. Nowadays there are many consumer digital cameras, such as Canon EOS 5D Mark II, they usually have features of more than 10M pixels still photo recording and full 1080p HD movie recording, so a integrated scan system can be designed using such a camera. A square plate glued with coded marks is used to place the 3d objects, and two straight wood rulers also glued with coded marks can be laid on the plate freely. In the photogrammetry module, the coded marks on the plate make up a world coordinate and can be used as control network to calibrate the camera, and the planes of two rulers can also be determined. The feature points of the object and the rough volume representation from the silhouettes can be obtained in this module. In the laser scan module, a hand-held line laser is used to scan the object, and the two straight rulers are used as reference planes to determine the position of the laser. The laser scan results in dense points cloud which can be aligned together automatically through calibrated camera parameters. The final complete digital model is obtained through a new a patchwise energy functional method by fusion of the feature points, rough volume and the dense points cloud. The design

  17. CMOS image sensor noise reduction method for image signal processor in digital cameras and camera phones

    NASA Astrophysics Data System (ADS)

    Yoo, Youngjin; Lee, SeongDeok; Choe, Wonhee; Kim, Chang-Yong

    2007-02-01

    Digital images captured from CMOS image sensors suffer Gaussian noise and impulsive noise. To efficiently reduce the noise in Image Signal Processor (ISP), we analyze noise feature for imaging pipeline of ISP where noise reduction algorithm is performed. The Gaussian noise reduction and impulsive noise reduction method are proposed for proper ISP implementation in Bayer domain. The proposed method takes advantage of the analyzed noise feature to calculate noise reduction filter coefficients. Thus, noise is adaptively reduced according to the scene environment. Since noise is amplified and characteristic of noise varies while the image sensor signal undergoes several image processing steps, it is better to remove noise in earlier stage on imaging pipeline of ISP. Thus, noise reduction is carried out in Bayer domain on imaging pipeline of ISP. The method is tested on imaging pipeline of ISP and images captured from Samsung 2M CMOS image sensor test module. The experimental results show that the proposed method removes noise while effectively preserves edges.

  18. Quantitative Evaluation of Surface Color of Tomato Fruits Cultivated in Remote Farm Using Digital Camera Images

    NASA Astrophysics Data System (ADS)

    Hashimoto, Atsushi; Suehara, Ken-Ichiro; Kameoka, Takaharu

    To measure the quantitative surface color information of agricultural products with the ambient information during cultivation, a color calibration method for digital camera images and a remote monitoring system of color imaging using the Web were developed. Single-lens reflex and web digital cameras were used for the image acquisitions. The tomato images through the post-ripening process were taken by the digital camera in both the standard image acquisition system and in the field conditions from the morning to evening. Several kinds of images were acquired with the standard RGB color chart set up just behind the tomato fruit on a black matte, and a color calibration was carried out. The influence of the sunlight could be experimentally eliminated, and the calibrated color information consistently agreed with the standard ones acquired in the system through the post-ripening process. Furthermore, the surface color change of the tomato on the tree in a greenhouse was remotely monitored during maturation using the digital cameras equipped with the Field Server. The acquired digital color images were sent from the Farm Station to the BIFE Laboratory of Mie University via VPN. The time behavior of the tomato surface color change during the maturing process could be measured using the color parameter calculated based on the obtained and calibrated color images along with the ambient atmospheric record. This study is a very important step in developing the surface color analysis for both the simple and rapid evaluation of the crop vigor in the field and to construct an ambient and networked remote monitoring system for food security, precision agriculture, and agricultural research.

  19. Integrating an RGB - CIR Digital Camera With an Airborne Laser Swath Mapping System

    NASA Astrophysics Data System (ADS)

    Lee, M.; Carter, W.; Shrestha, R.

    2003-12-01

    The National Science Foundation supported Center for Airborne Laser Mapping (NCALM) utilizes the airborne laser swath mapping (ALSM) system jointly owned by the University of Florida (UF) and Florida International University (FIU). The UF/FIU ALSM system is comprised of an Optech Inc. Model 1233 ALTM unit, with supporting GPS receiver and real-time navigation display, mounted in a twin-inline-engine Cessna 337 aircraft. Shortly after taking delivery of the ALSM system, UF researchers, in collaboration with a commercial partner, added a small format digital camera (Kodak 420) to the system, rigidly mounting it to the ALSM sensor head. Software was developed to use the GPS position and orientation parameters from the IMU unit in the ALSM sensor to rectify and mosaic the digital images. The ALSM height and intensity values were combined pixel by pixel with the RGB digital images, to classify surface materials. Based on our experience with the initial camera, and recommendations received at the NCALM workshop, UF researchers decided to upgrade the system to a Redlake MASD Inc. model MS4100 RGB/CIR camera. The MS4100 contains three CCD arrays, which simultaneously capture full spatial resolution images in red and near IR band bands, and a factor of two lower spatial resolution images in the blue and green bands (the blue and green bands share a single CCD array and the color bands are separated with a Bayer filter). The CCD arrays are rectangular with 1920 x 1080 elements, each element being 7.4 x 7.4 micrometers. With a 28 mm focal length lens, and at a flying height of 550 meters, the effective groundel is approximately 15 x 15 cm. The new digital camera should be particularly useful for studies of vegetation, including agricultural and forestry applications, and for computer automated classification of surface materials. Examples of early results using the improved ALSM-digital imaging capabilities will be presented.

  20. Recording of essential ballistic data with a new generation of digital ballistic range camera

    NASA Astrophysics Data System (ADS)

    Haddleton, Graham P.; Honour, Jo

    2007-01-01

    Scientists and Engineers still require to record essential parameters during the design and testing of new (or refined) munitions. This essential data, such as velocities, spin, pitch and yaw angles, sabot discards, impact angles, target penetrations, behind target effects and post impact delays, need to be recorded during dynamic, high velocity, and dangerous firings. Traditionally these parameters have been recorded on high-speed film cameras. With the demise of film as a recording media a new generation of electronic digital recording cameras has come to be accepted method of allowing these parameters to be recorded and analysed. Their obvious advantage over film is their instant access to records and their ability for almost instant analysis of records. This paper will detail results obtained using a new specially designed Ballistic Range Camera manufactured by Specialised Imaging Ltd.

  1. Digital image georeferencing from a multiple camera system by GPS/INS

    NASA Astrophysics Data System (ADS)

    Mostafa, Mohamed M. R.; Schwarz, Klaus-Peter

    In this paper, the development and testing of an airborne fully digital multi-sensor system for digital mapping data acquisition is presented. The system acquires two streams of data, namely, navigation (georeferencing) data and imaging data. The navigation data are obtained by integrating an accurate strapdown inertial navigation system with a differential GPS system (DGPS). The imaging data are acquired by two low-cost digital cameras, configured in such a way so as to reduce their geometric limitations. The two cameras capture strips of overlapping nadir and oblique images. The GPS/INS-derived trajectory contains the full translational and rotational motion of the carrier aircraft. Thus, image exterior orientation information is extracted from the trajectory, during post-processing. This approach eliminates the need for ground control (GCP) when computing 3D positions of objects that appear in the field of view of the system imaging component. Two approaches for calibrating the system are presented, namely, terrestrial calibration and in-flight calibration. Test flights were conducted over the campus of The University of Calgary. Testing the system showed that best ground point positioning accuracy at 1:12,000 average image scale is 0.2 m (RMS) in easting and northing and 0.3 m (RMS) in height. Preliminary results indicate that major applications of such a system in the future are in the field of digital mapping, at scales of 1:5000 and smaller, and in the generation of digital elevation models for engineering applications.

  2. A digital underwater video camera system for aquatic research in regulated rivers

    USGS Publications Warehouse

    Martin, Benjamin M.; Irwin, Elise R.

    2010-01-01

    We designed a digital underwater video camera system to monitor nesting centrarchid behavior in the Tallapoosa River, Alabama, 20 km below a peaking hydropower dam with a highly variable flow regime. Major components of the system included a digital video recorder, multiple underwater cameras, and specially fabricated substrate stakes. The innovative design of the substrate stakes allowed us to effectively observe nesting redbreast sunfish Lepomis auritus in a highly regulated river. Substrate stakes, which were constructed for the specific substratum complex (i.e., sand, gravel, and cobble) identified at our study site, were able to withstand a discharge level of approximately 300 m3/s and allowed us to simultaneously record 10 active nests before and during water releases from the dam. We believe our technique will be valuable for other researchers that work in regulated rivers to quantify behavior of aquatic fauna in response to a discharge disturbance.

  3. Measuring the Orbital Period of the Moon Using a Digital Camera

    ERIC Educational Resources Information Center

    Hughes, Stephen W.

    2006-01-01

    A method of measuring the orbital velocity of the Moon around the Earth using a digital camera is described. Separate images of the Moon and stars taken 24 hours apart were loaded into Microsoft PowerPoint and the centre of the Moon marked on each image. Four stars common to both images were connected together to form a "home-made" constellation.…

  4. High Speed and Slow Motion: The Technology of Modern High Speed Cameras

    ERIC Educational Resources Information Center

    Vollmer, Michael; Mollmann, Klaus-Peter

    2011-01-01

    The enormous progress in the fields of microsystem technology, microelectronics and computer science has led to the development of powerful high speed cameras. Recently a number of such cameras became available as low cost consumer products which can also be used for the teaching of physics. The technology of high speed cameras is discussed,…

  5. Extension of the possibilities of a commercial digital camera in detecting spatial intensity distribution of laser radiation

    SciTech Connect

    Konnik, M V; Manykin, Eduard A; Starikov, S N

    2010-06-23

    Performance capabilities of commercial digital cameras are demonstrated by the example of a Canon EOS 400D camera in measuring and detecting spatial distributions of laser radiation intensity. It is shown that software extraction of linear data expands the linear dynamic range of the camera by a factor greater than 10, up to 58 dB. Basic measurement characteristics of the camera are obtained in the regime of linear data extraction: the radiometric function, deviation from linearity, dynamic range, temporal and spatial noises (both dark and those depending on the signal value). The parameters obtained correspond to those of technical measuring cameras. (measurement of laser radiation parameters)

  6. Digital camera and smartphone as detectors in paper-based chemiluminometric genotyping of single nucleotide polymorphisms.

    PubMed

    Spyrou, Elena M; Kalogianni, Despina P; Tragoulias, Sotirios S; Ioannou, Penelope C; Christopoulos, Theodore K

    2016-10-01

    Chemi(bio)luminometric assays have contributed greatly to various areas of nucleic acid analysis due to their simplicity and detectability. In this work, we present the development of chemiluminometric genotyping methods in which (a) detection is performed by using either a conventional digital camera (at ambient temperature) or a smartphone and (b) a lateral flow assay configuration is employed for even higher simplicity and suitability for point of care or field testing. The genotyping of the C677T single nucleotide polymorphism (SNP) of methylenetetrahydropholate reductase (MTHFR) gene is chosen as a model. The interrogated DNA sequence is amplified by polymerase chain reaction (PCR) followed by a primer extension reaction. The reaction products are captured through hybridization on the sensing areas (spots) of the strip. Streptavidin-horseradish peroxidase conjugate is used as a reporter along with a chemiluminogenic substrate. Detection of the emerging chemiluminescence from the sensing areas of the strip is achieved by digital camera or smartphone. For this purpose, we constructed a 3D-printed smartphone attachment that houses inexpensive lenses and converts the smartphone into a portable chemiluminescence imager. The device enables spatial discrimination of the two alleles of a SNP in a single shot by imaging of the strip, thus avoiding the need of dual labeling. The method was applied successfully to genotyping of real clinical samples. Graphical abstract Paper-based genotyping assays using digital camera and smartphone as detectors.

  7. Monitoring of phenological control on ecosystem fluxes using digital cameras and eddy covariance data

    NASA Astrophysics Data System (ADS)

    Toomey, M. P.; Friedl, M. A.; Hufkens, K.; Sonnentag, O.; Milliman, T. E.; Frolking, S.; Richardson, A. D.

    2012-12-01

    Digital repeat photography is an emerging platform for monitoring land surface phenology. Despite the great potential of digital repeat photography to yield insights into phenological cycles, relatively few studies have compared digital repeat photography to in situ measures of ecosystem fluxes. We used 60 site years of concurrent camera and eddy covariance data at 13 sites, representing five distinct ecosystem types - temperate deciduous forest, temperate coniferous forest, boreal forest, grasslands and crops - to measure and model phenological controls on carbon and water exchange with the atmosphere. Camera-derived relative greenness was strongly correlated with estimated gross primary productivity among the five ecosystem types and was moderately correlated with water fluxes. Camera-derived canopy development was also compared with phenological phase as predicted by a generalized, bioclimatic phenology model and Moderate Resolution Imaging Spectrometer (MODIS) imagery to assess the potential for cross-biome phenological monitoring. This study demonstrates the potential of webcam networks such as Phenocam (phenocam.unh.edu) to conduct long-term, continental monitoring and modeling of ecosystem response to climate change.

  8. Simulation of film media in motion picture production using a digital still camera

    NASA Astrophysics Data System (ADS)

    Bakke, Arne M.; Hardeberg, Jon Y.; Paul, Steffen

    2009-01-01

    The introduction of digital intermediate workflow in movie production has made visualization of the final image on the film set increasingly important. Images that have been color corrected on the set can also serve as a basis for color grading in the laboratory. In this paper we suggest and evaluate an approach that has been used to simulate the appearance of different film stocks. The GretagMacbeth Digital ColorChecker was captured using both a Canon EOS 20D camera as well as an analog camera. The film was scanned using an Arri film scanner. The images of the color chart were then used to perform a colorimetric characterization of these devices using models based on polynomial regression. By using the reverse model of the digital camera and the forward model of the analog film chain, the output of the film scanner was simulated. We also constructed a direct transformation using regression on the RGB values of the two devices. A different color chart was then used as a test set to evaluate the accuracy of the transformations, where the indirect model was found to provide the required performance for our purpose without compromising the flexibility of having an independent profile for each device.

  9. Digital Literacy and New Technological Perspectives

    ERIC Educational Resources Information Center

    Feola, Elvia Ilaria

    2016-01-01

    This paper aims to reflect on the implications and challenges that experts in the field have to deal with when you want to evaluate the performance in the use of digital technologies in teaching. The argument stems from a contextual and social assessment, and then proceeds to an application and methodological connotation of digital literacy…

  10. Digital microscopy. Bringing new technology into focus.

    PubMed

    2010-06-01

    Digital microscopy enables the scanning of microscope slides so that they can be viewed, analyzed, and archived on a computer. While the technology is not yet widely accepted by pathologists, a switch to digital microscopy systems seems to be inevitable in the near future.

  11. Digital microscopy. Bringing new technology into focus.

    PubMed

    2010-06-01

    Digital microscopy enables the scanning of microscope slides so that they can be viewed, analyzed, and archived on a computer. While the technology is not yet widely accepted by pathologists, a switch to digital microscopy systems seems to be inevitable in the near future. PMID:21309285

  12. Digitizing Technologies for Preservation. SPEC Kit 214.

    ERIC Educational Resources Information Center

    Kellerman, L. Suzanne, Comp.; Wilson, Rebecca, Comp.

    The Association of Research Libraries distributed a survey to its 119 member libraries to assess the use of state-of-the-art digital technologies as a preservation method. Libraries were asked to report detailed data on all projects designed specifically to: (1) enhance images of faded or brittle originals, (2) provide access to digital images…

  13. Use of a Digital Camera to Monitor the Growth and Nitrogen Status of Cotton

    PubMed Central

    Jia, Biao; He, Haibing; Ma, Fuyu; Diao, Ming; Jiang, Guiying; Zheng, Zhong; Cui, Jin; Fan, Hua

    2014-01-01

    The main objective of this study was to develop a nondestructive method for monitoring cotton growth and N status using a digital camera. Digital images were taken of the cotton canopies between emergence and full bloom. The green and red values were extracted from the digital images and then used to calculate canopy cover. The values of canopy cover were closely correlated with the normalized difference vegetation index and the ratio vegetation index and were measured using a GreenSeeker handheld sensor. Models were calibrated to describe the relationship between canopy cover and three growth properties of the cotton crop (i.e., aboveground total N content, LAI, and aboveground biomass). There were close, exponential relationships between canopy cover and three growth properties. And the relationships for estimating cotton aboveground total N content were most precise, the coefficients of determination (R2) value was 0.978, and the root mean square error (RMSE) value was 1.479 g m−2. Moreover, the models were validated in three fields of high-yield cotton. The result indicated that the best relationship between canopy cover and aboveground total N content had an R2 value of 0.926 and an RMSE value of 1.631 g m−2. In conclusion, as a near-ground remote assessment tool, digital cameras have good potential for monitoring cotton growth and N status. PMID:24723817

  14. Greenness indices from digital cameras predict the timing and seasonal dynamics of canopy-scale photosynthesis.

    PubMed

    Toomey, Michael; Friedl, Mark A; Frolking, Steve; Hufkens, Koen; Klosterman, Stephen; Sonnentag, Oliver; Baldocchi, Dennis D; Bernacchi, Carl J; Biraud, Sebastien C; Bohrer, Gil; Brzostek, Edward; Burns, Sean P; Coursolle, Carole; Hollinger, David Y; Margolis, Hank A; Mccaughey, Harry; Monson, Russell K; Munger, J William; Pallardy, Stephen; Phillips, Richard P; Torn, Margaret S; Wharton, Sonia; Zeri, Marcelo; And, Andrew D; Richardson, Andrew D

    2015-01-01

    The proliferation of digital cameras co-located with eddy covariance instrumentation provides new opportunities to better understand the relationship between canopy phenology and the seasonality of canopy photosynthesis. In this paper we analyze the abilities and limitations of canopy color metrics measured by digital repeat photography to track seasonal canopy development and photosynthesis, determine phenological transition dates, and estimate intra-annual and interannual variability in canopy photosynthesis. We used 59 site-years of camera imagery and net ecosystem exchange measurements from 17 towers spanning three plant functional types (deciduous broadleaf forest, evergreen needleleaf forest, and grassland/crops) to derive color indices and estimate gross primary productivity (GPP). GPP was strongly correlated with greenness derived from camera imagery in all three plant functional types. Specifically, the beginning of the photosynthetic period in deciduous broadleaf forest and grassland/crops and the end of the photosynthetic period in grassland/crops were both correlated with changes in greenness; changes in redness were correlated with the end of the photosynthetic period in deciduous broadleaf forest. However, it was not possible to accurately identify the beginning or ending of the photosynthetic period using camera greenness in evergreen needleleaf forest. At deciduous broadleaf sites, anomalies in integrated greenness and total GPP were significantly correlated up to 60 days after the mean onset date for the start of spring. More generally, results from this work demonstrate that digital repeat photography can be used to quantify both the duration of the photosynthetically active period as well as total GPP in deciduous broadleaf forest and grassland/crops, but that new and different approaches are required before comparable results can be achieved in evergreen needleleaf forest. PMID:26255360

  15. High-speed radiometric imaging with a gated, intensified, digitally controlled camera

    NASA Astrophysics Data System (ADS)

    Ross, Charles C.; Sturz, Richard A.

    1997-05-01

    The development of an advanced instrument for real-time radiometric imaging of high-speed events is described. The Intensified Digitally-Controlled Gated (IDG) camera is a microprocessor-controlled instrument based on an intensified CCD that is specifically designed to provide radiometric optical data. The IDG supports a variety of camera- synchronous and camera-asynchronous imaging tasks in both passive imaging and active laser range-gated applications. It features both automatic and manual modes of operation, digital precision and repeatability, and ease of use. The IDG produces radiometric imagery by digitally controlling the instrument's optical gain and exposure duration, and by encoding and annotating the parameters necessary for radiometric analysis onto the resultant video signal. Additional inputs, such as date, time, GPS, IRIG-B timing, and other data can also be encoded and annotated. The IDG optical sensitivity can be readily calibrated, with calibration data tables stored in the camera's nonvolatile flash memory. The microprocessor then uses this data to provide a linear, calibrated output. The IDG possesses both synchronous and asynchronous imaging modes in order to allow internal or external control of exposure, timing, and direct interface to external equipment such as event triggers and frame grabbers. Support for laser range-gating is implemented by providing precise asynchronous CCD operation and nanosecond resolution of the intensifier photocathode gate duration and timing. Innovative methods used to control the CCD for asynchronous image capture, as well as other sensor and system considerations relevant to high-speed imaging are discussed in this paper.

  16. Greenness indices from digital cameras predict the timing and seasonal dynamics of canopy-scale photosynthesis.

    PubMed

    Toomey, Michael; Friedl, Mark A; Frolking, Steve; Hufkens, Koen; Klosterman, Stephen; Sonnentag, Oliver; Baldocchi, Dennis D; Bernacchi, Carl J; Biraud, Sebastien C; Bohrer, Gil; Brzostek, Edward; Burns, Sean P; Coursolle, Carole; Hollinger, David Y; Margolis, Hank A; Mccaughey, Harry; Monson, Russell K; Munger, J William; Pallardy, Stephen; Phillips, Richard P; Torn, Margaret S; Wharton, Sonia; Zeri, Marcelo; And, Andrew D; Richardson, Andrew D

    2015-01-01

    The proliferation of digital cameras co-located with eddy covariance instrumentation provides new opportunities to better understand the relationship between canopy phenology and the seasonality of canopy photosynthesis. In this paper we analyze the abilities and limitations of canopy color metrics measured by digital repeat photography to track seasonal canopy development and photosynthesis, determine phenological transition dates, and estimate intra-annual and interannual variability in canopy photosynthesis. We used 59 site-years of camera imagery and net ecosystem exchange measurements from 17 towers spanning three plant functional types (deciduous broadleaf forest, evergreen needleleaf forest, and grassland/crops) to derive color indices and estimate gross primary productivity (GPP). GPP was strongly correlated with greenness derived from camera imagery in all three plant functional types. Specifically, the beginning of the photosynthetic period in deciduous broadleaf forest and grassland/crops and the end of the photosynthetic period in grassland/crops were both correlated with changes in greenness; changes in redness were correlated with the end of the photosynthetic period in deciduous broadleaf forest. However, it was not possible to accurately identify the beginning or ending of the photosynthetic period using camera greenness in evergreen needleleaf forest. At deciduous broadleaf sites, anomalies in integrated greenness and total GPP were significantly correlated up to 60 days after the mean onset date for the start of spring. More generally, results from this work demonstrate that digital repeat photography can be used to quantify both the duration of the photosynthetically active period as well as total GPP in deciduous broadleaf forest and grassland/crops, but that new and different approaches are required before comparable results can be achieved in evergreen needleleaf forest.

  17. A simple method for vignette correction of airborne digital camera data

    SciTech Connect

    Nguyen, A.T.; Stow, D.A.; Hope, A.S.

    1996-11-01

    Airborne digital camera systems have gained popularity in recent years due to their flexibility, high geometric fidelity and spatial resolution, and fast data turn-around time. However, a common problem that plagues these types of framing systems is vignetting which causes falloff in image brightness away from principle nadir point. This paper presents a simple method for vignetting correction by utilizing laboratory images of a uniform illumination source. Multiple lab images are averaged and inverted to create digital correction templates which then are applied to actual airborne data. The vignette correction was effective in removing the systematic falloff in spectral values. We have shown that the vignette correction is a necessary part of the preprocessing of raw digital airborne remote sensing data. The consequences of not correcting for these effects are demonstrated in the context of monitoring of salt marsh habitat. 4 refs.

  18. Full-field dynamic deformation and strain measurements using high-speed digital cameras

    NASA Astrophysics Data System (ADS)

    Schmidt, Timothy E.; Tyson, John; Galanulis, Konstantin; Revilock, Duane M.; Melis, Matthew E.

    2005-03-01

    Digital cameras are rapidly supplanting film, even for very high speed and ultra high-speed applications. The benefits of these cameras, particularly CMOS versions, are well appreciated. This paper describes how a pair of synchronized digital high-speed cameras can provide full-field dynamic deformation, shape and strain information, through a process known as 3D image correlation photogrammetry. The data is equivalent to thousands of non-contact x-y-z extensometers and strain rosettes, as well as instant non-contact CMM shape measurement. A typical data acquisition rate is 27,000 frames per second, with displacement accuracy on the order of 25-50 microns, and strain accuracy of 250-500 microstrain. High-speed 3D image correlation is being used extensively at the NASA Glenn Ballistic Impact Research Lab, in support of Return to Flight activities. This leading edge work is playing an important role in validating and iterating LS-DYNA models of foam impact on reinforced carbon-carbon, including orbiter wing panel tests. The technique has also been applied to air blast effect studies and Kevlar ballistic impact testing. In these cases, full-field and time history analysis revealed the complexity of the dynamic buckling, including multiple lobes of out-of-plane and in-plane displacements, strain maxima shifts, and damping over time.

  19. Tweens' Characterization of Digital Technologies

    ERIC Educational Resources Information Center

    Brito, Pedro Quelhas

    2012-01-01

    The tweens are a transitional age group undergoing deep physical and psychological transformations. Based on a thirteen-focus group research design involving 103 students, and applying a tweens-centered approach, the characteristics of SMS, IM, Internet, digital photos, electronic games, and email were analyzed. Categories such as moral issues,…

  20. Improvements in remote cardiopulmonary measurement using a five band digital camera.

    PubMed

    McDuff, Daniel; Gontarek, Sarah; Picard, Rosalind W

    2014-10-01

    Remote measurement of the blood volume pulse via photoplethysmography (PPG) using digital cameras and ambient light has great potential for healthcare and affective computing. However, traditional RGB cameras have limited frequency resolution. We present results of PPG measurements from a novel five band camera and show that alternate frequency bands, in particular an orange band, allowed physiological measurements much more highly correlated with an FDA approved contact PPG sensor. In a study with participants (n = 10) at rest and under stress, correlations of over 0.92 (p 0.01) were obtained for heart rate, breathing rate, and heart rate variability measurements. In addition, the remotely measured heart rate variability spectrograms closely matched those from the contact approach. The best results were obtained using a combination of cyan, green, and orange (CGO) bands; incorporating red and blue channel observations did not improve performance. In short, RGB is not optimal for this problem: CGO is better. Incorporating alternative color channel sensors should not increase the cost of such cameras dramatically.

  1. Technology Counts 2007: A Digital Decade

    ERIC Educational Resources Information Center

    Education Week, 2007

    2007-01-01

    "Technology Counts 2007" looks back, and ahead, after a decade of enormous upheaval in the educational technology landscape. This special issue of "Education Week" includes the following articles: (1) A Digital Decade; (2) Getting Up to Speed (Andrew Trotter); (3) E-Rate's Imprint Seen in Schools (Andrew Trotter); (4) Teaching Assistants (Rhea R.…

  2. Quantification of atmospheric visibility with dual digital cameras during daytime and nighttime

    NASA Astrophysics Data System (ADS)

    Du, K.; Wang, K.; Shi, P.; Wang, Y.

    2013-08-01

    A digital optical method "DOM-Vis" was developed to measure atmospheric visibility. In this method, two digital pictures were taken of the same target at two different distances along the same straight line. The pictures were analyzed to determine the optical contrasts between the target and its sky background and, subsequently, visibility is calculated. A light transfer scheme for DOM-Vis was delineated, based upon which algorithms were developed for both daytime and nighttime scenarios. A series of field tests were carried out under different weather and meteorological conditions to study the impacts of such operational parameters as exposure, optical zoom, distance between the two camera locations, and distance of the target. This method was validated by comparing the DOM-Vis results with those measured using a co-located Vaisala® visibility meter. The visibility under which this study was carried out ranged from 1 to 20 km. This digital-photography-based method possesses a number of advantages compared with traditional methods. Pre-calibration of the detector with a visibility meter is not required. In addition, the application of DOM-Vis is independent of several factors like the exact distance of the target and several camera setting parameters. These features make DOM-Vis more adaptive under a variety of field conditions.

  3. Quantification of atmospheric visibility with dual digital cameras during daytime and nighttime

    NASA Astrophysics Data System (ADS)

    Du, K.; Wang, K.; Shi, P.; Wang, Y.

    2013-01-01

    A digital optical method "DOM-Vis" was developed to measure atmospheric visibility. In this method, two digital pictures were taken of the same target at two different distances along the same straight line. The pictures were analyzed to determine the optical contrasts between the target and its sky background, and subsequently, visibility is calculated. A light transfer scheme for DOM-Vis was delineated, based upon which, algorithms were developed for both daytime and nighttime scenarios. A series of field tests were carried out under different weather and meteorological conditions to study the impacts of such operational parameters as exposure, optical zoom, distance between the two camera locations, and distance of the target. This method was validated by comparing the DOM-Vis results with those measured using a co-located Vaisala® visibility meter. The visibility under which this study was carried out ranged from to 1 km to 20 km. This digital photography based method possesses a number of advantages compared with traditional methods. Pre-calibration of the detector with a visibility meter is not required. In addition, the application of DOM-Vis is independent of several factors like the exact distance of the target and several camera setting parameters. These features make DOM-Vis more adaptive under a variety of field conditions.

  4. Technique for improving the quality of images from digital cameras using ink-jet printers and smoothed RGB transfer curves

    NASA Astrophysics Data System (ADS)

    Sampat, Nitin; Grim, John F.; O'Hara, James E.

    1998-04-01

    The digital camera market is growing at an explosive rate. At the same time, the quality of photographs printed on ink- jet printers continues to improve. Most of the consumer cameras are designed with the monitor as the target output device and ont the printer. When a user is printing his images from a camera, he/she needs to optimize the camera and printer combination in order to maximize image quality. We describe the details of one such method for improving image quality using a AGFA digital camera and an ink jet printer combination. Using Adobe PhotoShop, we generated optimum red, green and blue transfer curves that match the scene content to the printers output capabilities. Application of these curves to the original digital image resulted in a print with more shadow detail, no loss of highlight detail, a smoother tone scale, and more saturated colors. The image also exhibited an improved tonal scale and visually more pleasing images than those captured and printed without any 'correction'. While we report the results for one camera-printer combination we tested this technique on numbers digital cameras and printer combinations and in each case produced a better looking image. We also discuss the problems we encountered in implementing this technique.

  5. CMOS digital pixel sensors: technology and applications

    NASA Astrophysics Data System (ADS)

    Skorka, Orit; Joseph, Dileepan

    2014-04-01

    CMOS active pixel sensor technology, which is widely used these days for digital imaging, is based on analog pixels. Transition to digital pixel sensors can boost signal-to-noise ratios and enhance image quality, but can increase pixel area to dimensions that are impractical for the high-volume market of consumer electronic devices. There are two main approaches to digital pixel design. The first uses digitization methods that largely rely on photodetector properties and so are unique to imaging. The second is based on adaptation of a classical analog-to-digital converter (ADC) for in-pixel data conversion. Imaging systems for medical, industrial, and security applications are emerging lower-volume markets that can benefit from these in-pixel ADCs. With these applications, larger pixels are typically acceptable, and imaging may be done in invisible spectral bands.

  6. Digital technology and the conservation of nature.

    PubMed

    Arts, Koen; van der Wal, René; Adams, William M

    2015-11-01

    Digital technology is changing nature conservation in increasingly profound ways. We describe this impact and its significance through the concept of 'digital conservation', which we found to comprise five pivotal dimensions: data on nature, data on people, data integration and analysis, communication and experience, and participatory governance. Examining digital innovation in nature conservation and addressing how its development, implementation and diffusion may be steered, we warn against hypes, techno-fix thinking, good news narratives and unverified assumptions. We identify a need for rigorous evaluation, more comprehensive consideration of social exclusion, frameworks for regulation and increased multi-sector as well as multi-discipline awareness and cooperation. Along the way, digital technology may best be reconceptualised by conservationists from something that is either good or bad, to a dual-faced force in need of guidance.

  7. Digital technology and the conservation of nature.

    PubMed

    Arts, Koen; van der Wal, René; Adams, William M

    2015-11-01

    Digital technology is changing nature conservation in increasingly profound ways. We describe this impact and its significance through the concept of 'digital conservation', which we found to comprise five pivotal dimensions: data on nature, data on people, data integration and analysis, communication and experience, and participatory governance. Examining digital innovation in nature conservation and addressing how its development, implementation and diffusion may be steered, we warn against hypes, techno-fix thinking, good news narratives and unverified assumptions. We identify a need for rigorous evaluation, more comprehensive consideration of social exclusion, frameworks for regulation and increased multi-sector as well as multi-discipline awareness and cooperation. Along the way, digital technology may best be reconceptualised by conservationists from something that is either good or bad, to a dual-faced force in need of guidance. PMID:26508352

  8. Assessment of digital camera-derived vegetation indices in quantitative monitoring of seasonal rice growth

    NASA Astrophysics Data System (ADS)

    Sakamoto, Toshihiro; Shibayama, Michio; Kimura, Akihiko; Takada, Eiji

    2011-11-01

    A commercially available digital camera can be used in a low-cost automatic observation system for monitoring crop growth change in open-air fields. We developed a prototype Crop Phenology Recording System (CPRS) for monitoring rice growth, but the ready-made waterproof cases that we used produced shadows on the images. After modifying the waterproof cases, we repeated the fixed-point camera observations to clarify questions regarding digital camera-derived vegetation indices (VIs), namely, the visible atmospherically resistant index (VARI) based on daytime normal color images (RGB image) and the nighttime relative brightness index (NRBI NIR) based on nighttime near infrared (NIR) images. We also took frequent measurements of agronomic data such as plant length, leaf area index (LAI), and aboveground dry matter weight to gain a detailed understanding of the temporal relationship between the VIs and the biophysical parameters of rice. In addition, we conducted another nighttime outdoor experiment to establish the link between NRBI NIR and camera-to-object distance. The study produced the following findings. (1) The customized waterproof cases succeeded in preventing large shadows from being cast, especially on nighttime images, and it was confirmed that the brightness of the nighttime NIR images had spatial heterogeneity when a point light source (flashlight) was used, in contrast to the daytime RGB images. (2) The additional experiment using a forklift showed that both the ISO sensitivity and the calibrated digital number of the NIR (cDN NIR) had significant effects on the sensitivity of NRBI NIR to the camera-to-object distance. (3) Detailed measurements of a reproductive stem were collected to investigate the connection between the morphological feature change caused by the panicle sagging process and the downtrend in NRBI NIR during the reproductive stages. However, these agronomic data were not completely in accord with NRBI NIR in terms of the temporal pattern

  9. Digital optical tape: Technology and standardization issues

    NASA Technical Reports Server (NTRS)

    Podio, Fernando L.

    1996-01-01

    During the coming years, digital data storage technologies will continue an aggressive growth to satisfy the user's need for higher storage capacities, higher data transfer rates and long-term archival media properties. Digital optical tape is a promising technology to satisfy these user's needs. As any emerging data storage technology, the industry faces many technological and standardization challenges. The technological challenges are great, but feasible to overcome. Although it is too early to consider formal industry standards, the optical tape industry has decided to work together by initiating prestandardization efforts that may lead in the future to formal voluntary industry standards. This paper will discuss current industry optical tape drive developments and the types of standards that will be required for the technology. The status of current industry prestandardization efforts will also be discussed.

  10. "I Know How Much This Child Has Learned. I Have Proof!": Employing Digital Technologies for Documentation Processes in Kindergarten

    ERIC Educational Resources Information Center

    Boardman, Margot

    2007-01-01

    This study set out to investigate the use of digital cameras and voice recorders to accurately capture essential components of early learners' achievements. The project was undertaken by 29 early childhood educators within kindergarten settings in Tasmania and the Australian Capital Territory. Data collected indicated that digital technologies,…

  11. Cataract screening by minimally trained remote observer with non-mydriatic digital fundus camera

    NASA Astrophysics Data System (ADS)

    Choi, Ann; Hjelmstad, David; Taibl, Jessica N.; Sayegh, Samir I.

    2013-03-01

    We propose a method that allows an inexperienced observer, through the examination of the digital fundus image of a retina on a computer screen, to simply determine the presence of a cataract and the necessity to refer the patient for further evaluation. To do so, fundus photos obtained with a non-mydriatic camera were presented to an inexperienced observer that was briefly instructed on fundus imaging, nature of cataracts and their probable effect on the image of the retina and the use of a computer program presenting fundus image pairs. Preliminary results of pair testing indicate the method is very effective.

  12. Determination of the diffusion coefficient between corn syrup and distilled water using a digital camera

    NASA Astrophysics Data System (ADS)

    Ray, E.; Bunton, P.; Pojman, J. A.

    2007-10-01

    A simple technique for determining the diffusion coefficient between two miscible liquids is presented based on observing concentration-dependent ultraviolet-excited fluorescence using a digital camera. The ultraviolet-excited visible fluorescence of corn syrup is proportional to the concentration of the syrup. The variation of fluorescence with distance from the transition zone between the fluids is fit by the Fick's law solution to the diffusion equation. By monitoring the concentration at successive times, the diffusion coefficient can be determined in otherwise transparent materials. The technique is quantitative and makes measurement of diffusion accessible in the advanced undergraduate physics laboratory.

  13. Digital imaging technology assessment: Digital document storage project

    NASA Technical Reports Server (NTRS)

    1989-01-01

    An ongoing technical assessment and requirements definition project is examining the potential role of digital imaging technology at NASA's STI facility. The focus is on the basic components of imaging technology in today's marketplace as well as the components anticipated in the near future. Presented is a requirement specification for a prototype project, an initial examination of current image processing at the STI facility, and an initial summary of image processing projects at other sites. Operational imaging systems incorporate scanners, optical storage, high resolution monitors, processing nodes, magnetic storage, jukeboxes, specialized boards, optical character recognition gear, pixel addressable printers, communications, and complex software processes.

  14. High-resolution image digitizing through 12x3-bit RGB-filtered CCD camera

    NASA Astrophysics Data System (ADS)

    Cheng, Andrew Y. S.; Pau, Michael C. Y.

    1996-09-01

    A high resolution computer-controlled CCD image capturing system is developed by using a 12 bits 1024 by 1024 pixels CCD camera and motorized RGB filters to grasp an image with color depth up to 36 bits. The filters distinguish the major components of color and collect them separately while the CCD camera maintains the spatial resolution and detector filling factor. The color separation can be done optically rather than electronically. The operation is simply by placing the capturing objects like color photos, slides and even x-ray transparencies under the camera system, the necessary parameters such as integration time, mixing level and light intensity are automatically adjusted by an on-line expert system. This greatly reduces the restrictions of the capturing species. This unique approach can save considerable time for adjusting the quality of image, give much more flexibility of manipulating captured object even if it is a 3D object with minimal setup fixers. In addition, cross sectional dimension of a 3D capturing object can be analyzed by adapting a fiber optic ring light source. It is particularly useful in non-contact metrology of a 3D structure. The digitized information can be stored in an easily transferable format. Users can also perform a special LUT mapping automatically or manually. Applications of the system include medical images archiving, printing quality control, 3D machine vision, and etc.

  15. Application Of A 1024X1024 Pixel Digital Image Store, With Pulsed Progressive Readout Camera, For Gastro-Intestinal Radiology

    NASA Astrophysics Data System (ADS)

    Edmonds, E. W.; Rowlands, J. A.; Hynes, D. M.; Toth, B. D.; Porter, A. J.

    1986-06-01

    We discuss the applicability of intensified x-ray television systems for general digital radiography and the requirements necessary for physician acceptance. Television systems for videofluorography when limited to conventional fluoroscopic exposure rates (25uR/s to x-ray intensifier), with particular application to the gastro-intestinal system, all suffer from three problems which tend to degrade the image: (a) lack of resolution, (b) noise, and (c) patient movement. The system to be described in this paper addresses each of these problems. Resolution is that provided by the use of a 1024 x 1024 pixel frame store combined with a 1024 line video camera and a 10"/6" x-ray image intensifier. Problems of noise and sensitivity to patient movement are overcome by using a short but intense burst of radiation to produce the latent image, which is then read off the video camera in a progressive fashion and placed in the digital store. Hard copy is produced from a high resolution multiformat camera, or a high resolution digital laser camera. It is intended that this PPR system will replace the 100mm spot film camera in present use, and will provide information in digital form for further processing and eventual digital archiving.

  16. Cloud Height Estimation with a Single Digital Camera and Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Carretas, Filipe; Janeiro, Fernando M.

    2014-05-01

    Clouds influence the local weather, the global climate and are an important parameter in the weather prediction models. Clouds are also an essential component of airplane safety when visual flight rules (VFR) are enforced, such as in most small aerodromes where it is not economically viable to install instruments for assisted flying. Therefore it is important to develop low cost and robust systems that can be easily deployed in the field, enabling large scale acquisition of cloud parameters. Recently, the authors developed a low-cost system for the measurement of cloud base height using stereo-vision and digital photography. However, due to the stereo nature of the system, some challenges were presented. In particular, the relative camera orientation requires calibration and the two cameras need to be synchronized so that the photos from both cameras are acquired simultaneously. In this work we present a new system that estimates the cloud height between 1000 and 5000 meters. This prototype is composed by one digital camera controlled by a Raspberry Pi and is installed at Centro de Geofísica de Évora (CGE) in Évora, Portugal. The camera is periodically triggered to acquire images of the overhead sky and the photos are downloaded to the Raspberry Pi which forwards them to a central computer that processes the images and estimates the cloud height in real time. To estimate the cloud height using just one image requires a computer model that is able to learn from previous experiences and execute pattern recognition. The model proposed in this work is an Artificial Neural Network (ANN) that was previously trained with cloud features at different heights. The chosen Artificial Neural Network is a three-layer network, with six parameters in the input layer, 12 neurons in the hidden intermediate layer, and an output layer with only one output. The six input parameters are the average intensity values and the intensity standard deviation of each RGB channel. The output

  17. Portable retinal imaging for eye disease screening using a consumer-grade digital camera

    NASA Astrophysics Data System (ADS)

    Barriga, Simon; Larichev, Andrey; Zamora, Gilberto; Soliz, Peter

    2012-03-01

    The development of affordable means to image the retina is an important step toward the implementation of eye disease screening programs. In this paper we present the i-RxCam, a low-cost, hand-held, retinal camera for widespread applications such as tele-retinal screening for eye diseases like diabetic retinopathy (DR), glaucoma, and age-related ocular diseases. Existing portable retinal imagers do not meet the requirements of a low-cost camera with sufficient technical capabilities (field of view, image quality, portability, battery power, and ease-of-use) to be distributed widely to low volume clinics, such as the offices of single primary care physicians serving rural communities. The i-RxCam uses a Nikon D3100 digital camera body. The camera has a CMOS sensor with 14.8 million pixels. We use a 50mm focal lens that gives a retinal field of view of 45 degrees. The internal autofocus can compensate for about 2D (diopters) of focusing error. The light source is an LED produced by Philips with a linear emitting area that is transformed using a light pipe to the optimal shape at the eye pupil, an annulus. To eliminate corneal reflex we use a polarization technique in which the light passes through a nano-wire polarizer plate. This is a novel type of polarizer featuring high polarization separation (contrast ratio of more than 1000) and very large acceptance angle (>45 degrees). The i-RxCam approach will yield a significantly more economical retinal imaging device that would allow mass screening of the at-risk population.

  18. Mobile technology and the digitization of healthcare.

    PubMed

    Bhavnani, Sanjeev P; Narula, Jagat; Sengupta, Partho P

    2016-05-01

    The convergence of science and technology in our dynamic digital era has resulted in the development of innovative digital health devices that allow easy and accurate characterization in health and disease. Technological advancements and the miniaturization of diagnostic instruments to modern smartphone-connected and mobile health (mHealth) devices such as the iECG, handheld ultrasound, and lab-on-a-chip technologies have led to increasing enthusiasm for patient care with promises to decrease healthcare costs and to improve outcomes. This 'hype' for mHealth has recently intersected with the 'real world' and is providing important insights into how patients and practitioners are utilizing digital health technologies. It is also raising important questions regarding the evidence supporting widespread device use. In this state-of-the-art review, we assess the current literature of mHealth and aim to provide a framework for the advances in mHealth by understanding the various device, patient, and clinical factors as they relate to digital health from device designs and patient engagement, to clinical workflow and device regulation. We also outline new strategies for generation and analysis of mHealth data at the individual and population-based levels. PMID:26873093

  19. The feasibility of photo-based 3D modeling for the structures by using a common digital camera

    NASA Astrophysics Data System (ADS)

    Li, Ping; Zhang, Jin-quan; Li, Wan-heng; Lv, Jian-ming; Wang, Xin-zheng

    2011-12-01

    This article explored the method of photo-based 3D modeling for the arc bridge structures by ordinary digital camera. Firstly, a series of processes had been studied by using ordinary digital camera that included the camera calibration, data acquisition, data management, and 3D orientation, setting scale and textures, etc., then the 3D model from photos can be built. The model can be measured, edited and close to the real structures. Take an interior masonry arch bridge as an example, build 3D model through the processes above by using camera HP CB350. The 3D model can be integrated with the loading conditions and material properties, to provide the detailed data for analyzing the structure. This paper has accumulated the experience in data acquisition and modeling methods. The methods can be applied to other structural analysis, and other conditions of 3D modeling with fast and economic advantages.

  20. Estimating the spatial position of marine mammals based on digital camera recordings.

    PubMed

    Hoekendijk, Jeroen P A; de Vries, Jurre; van der Bolt, Krissy; Greinert, Jens; Brasseur, Sophie; Camphuysen, Kees C J; Aarts, Geert

    2015-02-01

    Estimating the spatial position of organisms is essential to quantify interactions between the organism and the characteristics of its surroundings, for example, predator-prey interactions, habitat selection, and social associations. Because marine mammals spend most of their time under water and may appear at the surface only briefly, determining their exact geographic location can be challenging. Here, we developed a photogrammetric method to accurately estimate the spatial position of marine mammals or birds at the sea surface. Digital recordings containing landscape features with known geographic coordinates can be used to estimate the distance and bearing of each sighting relative to the observation point. The method can correct for frame rotation, estimates pixel size based on the reference points, and can be applied to scenarios with and without a visible horizon. A set of R functions was written to process the images and obtain accurate geographic coordinates for each sighting. The method is applied to estimate the spatiotemporal fine-scale distribution of harbour porpoises in a tidal inlet. Video recordings of harbour porpoises were made from land, using a standard digital single-lens reflex (DSLR) camera, positioned at a height of 9.59 m above mean sea level. Porpoises were detected up to a distance of ∽3136 m (mean 596 m), with a mean location error of 12 m. The method presented here allows for multiple detections of different individuals within a single video frame and for tracking movements of individuals based on repeated sightings. In comparison with traditional methods, this method only requires a digital camera to provide accurate location estimates. It especially has great potential in regions with ample data on local (a)biotic conditions, to help resolve functional mechanisms underlying habitat selection and other behaviors in marine mammals in coastal areas. PMID:25691982

  1. Estimating the spatial position of marine mammals based on digital camera recordings

    PubMed Central

    Hoekendijk, Jeroen P A; de Vries, Jurre; van der Bolt, Krissy; Greinert, Jens; Brasseur, Sophie; Camphuysen, Kees C J; Aarts, Geert

    2015-01-01

    Estimating the spatial position of organisms is essential to quantify interactions between the organism and the characteristics of its surroundings, for example, predator–prey interactions, habitat selection, and social associations. Because marine mammals spend most of their time under water and may appear at the surface only briefly, determining their exact geographic location can be challenging. Here, we developed a photogrammetric method to accurately estimate the spatial position of marine mammals or birds at the sea surface. Digital recordings containing landscape features with known geographic coordinates can be used to estimate the distance and bearing of each sighting relative to the observation point. The method can correct for frame rotation, estimates pixel size based on the reference points, and can be applied to scenarios with and without a visible horizon. A set of R functions was written to process the images and obtain accurate geographic coordinates for each sighting. The method is applied to estimate the spatiotemporal fine-scale distribution of harbour porpoises in a tidal inlet. Video recordings of harbour porpoises were made from land, using a standard digital single-lens reflex (DSLR) camera, positioned at a height of 9.59 m above mean sea level. Porpoises were detected up to a distance of ∽3136 m (mean 596 m), with a mean location error of 12 m. The method presented here allows for multiple detections of different individuals within a single video frame and for tracking movements of individuals based on repeated sightings. In comparison with traditional methods, this method only requires a digital camera to provide accurate location estimates. It especially has great potential in regions with ample data on local (a)biotic conditions, to help resolve functional mechanisms underlying habitat selection and other behaviors in marine mammals in coastal areas. PMID:25691982

  2. Payette National Forest aerial survey project using the Kodak digital color infrared camera

    NASA Astrophysics Data System (ADS)

    Greer, Jerry D.

    1997-11-01

    Staff of the Payette National Forest located in central Idaho used the Kodak Digital Infrared Camera to collect digital photographic images over a wide variety of selected areas. The objective of this aerial survey project is to collect airborne digital camera imagery and to evaluate it for potential use in forest assessment and management. The data collected from this remote sensing system is being compared with existing resource information and with personal knowledge of the areas surveyed. Resource specialists are evaluating the imagery to determine if it may be useful for; identifying cultural sites (pre-European settlement tribal villages and camps); recognizing ecosystem landscape pattern; mapping recreation areas; evaluating the South Fork Salmon River road reconstruction project; designing the Elk Summit Road; assessing the impact of sediment on anadramous fish in the South Fork Salmon River; assessing any contribution of sediment to the South Fork from the reconstructed road; determining post-wildfire stress development in conifer timber; in assessing the development of insect populations in areas initially determined to be within low intensity wildfire burn polygons; and to search for Idaho Ground Squirrel habitat. Project sites include approximately 60 linear miles of the South Fork of the Salmon River; a parallel road over about half that distance; 3 archaeological sites; two transects of about 6 miles each for landscape patterns; 3 recreation areas; 5 miles of the Payette River; 4 miles of the Elk Summit Road; a pair of transects 4.5 miles long for stress assessment in timber; a triplet of transects about 3 miles long for the assessment of the identification of species; and an area of about 640 acres to evaluate habitat for the endangered Idaho Ground Squirrel. Preliminary results indicate that the imagery is an economically viable way to collect site specific resource information that is of value in the management of a national forest.

  3. Design of high speed camera based on CMOS technology

    NASA Astrophysics Data System (ADS)

    Park, Sei-Hun; An, Jun-Sick; Oh, Tae-Seok; Kim, Il-Hwan

    2007-12-01

    The capacity of a high speed camera in taking high speed images has been evaluated using CMOS image sensors. There are 2 types of image sensors, namely, CCD and CMOS sensors. CMOS sensor consumes less power than CCD sensor and can take images more rapidly. High speed camera with built-in CMOS sensor is widely used in vehicle crash tests and airbag controls, golf training aids, and in bullet direction measurement in the military. The High Speed Camera System made in this study has the following components: CMOS image sensor that can take about 500 frames per second at a resolution of 1280*1024; FPGA and DDR2 memory that control the image sensor and save images; Camera Link Module that transmits saved data to PC; and RS-422 communication function that enables control of the camera from a PC.

  4. Realization of the FPGA based TDI algorithm in digital domain for CMOS cameras

    NASA Astrophysics Data System (ADS)

    Tao, Shuping; Jin, Guang; Zhang, Xuyan; Qu, Hongsong

    2012-10-01

    In order to make the CMOS image sensors suitable for space high resolution imaging applications, a new method realizing TDI in digital domain by FPGA is proposed in this paper, which improves the imaging mode for area array CMOS sensors. The TDI algorithm accumulates the corresponding pixels of adjoining frames in digital domain, so the gray values increase by M times, where M is for the integration number, and the image's quality in signal-to-noise ratio can be improved. In addition, the TDI optimization algorithm is discussed. Firstly, the signal storage is optimized by 2 slices of external RAM, where memory depth expanding and the table tennis operation mechanism are used. Secondly, the FIFO operation mechanism reduces the reading and writing operation on memory by M×(M-1) times, It saves so much signal transfer time as is proportional to the square of integration number M2, that the frame frequency is able to increase greatly. At last, the CMOS camera based on TDI in digital domain is developed, and the algorithm is validated by experiments on it.

  5. Combining multi-spectral proximal sensors and digital cameras for monitoring grazed tropical pastures

    NASA Astrophysics Data System (ADS)

    Handcock, R. N.; Gobbett, D. L.; González, L. A.; Bishop-Hurley, G. J.; McGavin, S. L.

    2015-11-01

    Timely and accurate monitoring of pasture biomass and ground-cover is necessary in livestock production systems to ensure productive and sustainable management of forage for livestock. Interest in the use of proximal sensors for monitoring pasture status in grazing systems has increased, since such sensors can return data in near real-time, and have the potential to be deployed on large properties where remote sensing may not be suitable due to issues such as spatial scale or cloud cover. However, there are unresolved challenges in developing calibrations to convert raw sensor data to quantitative biophysical values, such as pasture biomass or vegetation ground-cover, to allow meaningful interpretation of sensor data by livestock producers. We assessed the use of multiple proximal sensors for monitoring tropical pastures with a pilot deployment of sensors at two sites on Lansdown Research Station near Townsville, Australia. Each site was monitored by a Skye SKR-four-band multi-spectral sensor (every 1 min), a digital camera (every 30 min), and a soil moisture sensor (every 1 min), each operated over 18 months. Raw data from each sensor were processed to calculate a number of multispectral vegetation indices. Visual observations of pasture characteristics, including above-ground standing biomass and ground cover, were made every 2 weeks. A methodology was developed to manage the sensor deployment and the quality control of the data collected. The data capture from the digital cameras was more reliable than the multi-spectral sensors, which had up to 63 % of data discarded after data cleaning and quality control. We found a strong relationship between sensor and pasture measurements during the wet season period of maximum pasture growth (January to April), especially when data from the multi-spectral sensors were combined with weather data. RatioNS34 (a simple band ratio between the near infrared (NIR) and lower shortwave infrared (SWIR) bands) and rainfall since 1

  6. Digital video technology and production 101: lights, camera, action.

    PubMed

    Elliot, Diane L; Goldberg, Linn; Goldberg, Michael J

    2014-01-01

    Videos are powerful tools for enhancing the reach and effectiveness of health promotion programs. They can be used for program promotion and recruitment, for training program implementation staff/volunteers, and as elements of an intervention. Although certain brief videos may be produced without technical assistance, others often require collaboration and contracting with professional videographers. To get practitioners started and to facilitate interactions with professional videographers, this Tool includes a guide to the jargon of video production and suggestions for how to integrate videos into health education and promotion work. For each type of video, production principles and issues to consider when working with a professional videographer are provided. The Tool also includes links to examples in each category of video applications to health promotion.

  7. Colorimetric characterization of digital cameras with unrestricted capture settings applicable for different illumination circumstances

    NASA Astrophysics Data System (ADS)

    Fang, Jingyu; Xu, Haisong; Wang, Zhehong; Wu, Xiaomin

    2016-05-01

    With colorimetric characterization, digital cameras can be used as image-based tristimulus colorimeters for color communication. In order to overcome the restriction of fixed capture settings adopted in the conventional colorimetric characterization procedures, a novel method was proposed considering capture settings. The method calculating colorimetric value of the measured image contains five main steps, including conversion from RGB values to equivalent ones of training settings through factors based on imaging system model so as to build the bridge between different settings, scaling factors involved in preparation steps for transformation mapping to avoid errors resulted from nonlinearity of polynomial mapping for different ranges of illumination levels. The experiment results indicate that the prediction error of the proposed method, which was measured by CIELAB color difference formula, reaches less than 2 CIELAB units under different illumination levels and different correlated color temperatures. This prediction accuracy for different capture settings remains the same level as the conventional method for particular lighting condition.

  8. Color segmentation as an aid to white balancing for digital still cameras

    NASA Astrophysics Data System (ADS)

    Cooper, Ted J.

    2000-12-01

    Digital Still Cameras employ automatic white balance techniques to adjust sensor amplifier gains so that white imaged objects appear white. A color cast detection algorithm is presented that uses histogram and segmentation techniques to select near-neutral objects in the image. Once identified and classified, these objects permit determination of the scene illuminant and implicitly the respective amplifier gains. Under certain circumstances, a scene may contain no near-neutral objects. By using the segmentation operations on non-neutral image objects, memory colors, from skin, sky, and foliage objects, may be identified. If identified, these memory colors provide enough chromatic information to predict the scene illuminant. By combining the approaches from near-neutral objects with those of memory color objects, a reasonable automatic white balance over a wide range of scenes is possible.

  9. Noctilucent clouds: modern ground-based photographic observations by a digital camera network.

    PubMed

    Dubietis, Audrius; Dalin, Peter; Balčiūnas, Ričardas; Černis, Kazimieras; Pertsev, Nikolay; Sukhodoev, Vladimir; Perminov, Vladimir; Zalcik, Mark; Zadorozhny, Alexander; Connors, Martin; Schofield, Ian; McEwan, Tom; McEachran, Iain; Frandsen, Soeren; Hansen, Ole; Andersen, Holger; Grønne, Jesper; Melnikov, Dmitry; Manevich, Alexander; Romejko, Vitaly

    2011-10-01

    Noctilucent, or "night-shining," clouds (NLCs) are a spectacular optical nighttime phenomenon that is very often neglected in the context of atmospheric optics. This paper gives a brief overview of current understanding of NLCs by providing a simple physical picture of their formation, relevant observational characteristics, and scientific challenges of NLC research. Modern ground-based photographic NLC observations, carried out in the framework of automated digital camera networks around the globe, are outlined. In particular, the obtained results refer to studies of single quasi-stationary waves in the NLC field. These waves exhibit specific propagation properties--high localization, robustness, and long lifetime--that are the essential requisites of solitary waves.

  10. Measuring the kinetic parameters of saltating sand grains using a high-speed digital camera

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Wang, Yuan; Jia, Pan

    2014-06-01

    A high-speed digital camera is used to record the saltation of three sand samples (diameter range: 300-500, 200-300 and 100-125 μm). This is followed by an overlapping particle tracking algorithm to reconstruct the saltating trajectory and the differential scheme to abstract the kinetic parameters of saltating grains. The velocity results confirm the propagating feature of saltation in maintaining near-face aeolian sand transport. Moreover, the acceleration of saltating sand grains was obtained directly from the reconstructed trajectory, and the results reveal that the climbing stage of the saltating trajectory represents an critical process of energy transfer while the sand grains travel through air.

  11. Estimating information from image colors: an application to digital cameras and natural scenes.

    PubMed

    Marín-Franch, Iván; Foster, David H

    2013-01-01

    The colors present in an image of a scene provide information about its constituent elements. But the amount of information depends on the imaging conditions and on how information is calculated. This work had two aims. The first was to derive explicitly estimators of the information available and the information retrieved from the color values at each point in images of a scene under different illuminations. The second was to apply these estimators to simulations of images obtained with five sets of sensors used in digital cameras and with the cone photoreceptors of the human eye. Estimates were obtained for 50 hyperspectral images of natural scenes under daylight illuminants with correlated color temperatures 4,000, 6,500, and 25,000 K. Depending on the sensor set, the mean estimated information available across images with the largest illumination difference varied from 15.5 to 18.0 bits and the mean estimated information retrieved after optimal linear processing varied from 13.2 to 15.5 bits (each about 85 percent of the corresponding information available). With the best sensor set, 390 percent more points could be identified per scene than with the worst. Capturing scene information from image colors depends crucially on the choice of camera sensors.

  12. Estimating information from image colors: an application to digital cameras and natural scenes.

    PubMed

    Marín-Franch, Iván; Foster, David H

    2013-01-01

    The colors present in an image of a scene provide information about its constituent elements. But the amount of information depends on the imaging conditions and on how information is calculated. This work had two aims. The first was to derive explicitly estimators of the information available and the information retrieved from the color values at each point in images of a scene under different illuminations. The second was to apply these estimators to simulations of images obtained with five sets of sensors used in digital cameras and with the cone photoreceptors of the human eye. Estimates were obtained for 50 hyperspectral images of natural scenes under daylight illuminants with correlated color temperatures 4,000, 6,500, and 25,000 K. Depending on the sensor set, the mean estimated information available across images with the largest illumination difference varied from 15.5 to 18.0 bits and the mean estimated information retrieved after optimal linear processing varied from 13.2 to 15.5 bits (each about 85 percent of the corresponding information available). With the best sensor set, 390 percent more points could be identified per scene than with the worst. Capturing scene information from image colors depends crucially on the choice of camera sensors. PMID:22450817

  13. Interactive Digital Technologies' Use in Southwest Nigerian Universities

    ERIC Educational Resources Information Center

    Agbatogun, Alaba Olaoluwakotansibe

    2013-01-01

    The interactive digital technologies in education is an effective means used to widen educational opportunities. However, many faculty members do not use or adopt digital technologies as instructional tools. The purpose of this study was to predict faculty members' use of digital technologies in Nigerian Universities. 492 university lecturers from…

  14. A simple method for evaluating image quality of screen-film system using a high-performance digital camera

    NASA Astrophysics Data System (ADS)

    Fujita, Naotoshi; Yamazaki, Asumi; Ichikawa, Katsuhiro; Kodera, Yoshie

    2009-02-01

    Screen-film systems are used in mammography even now. Therefore, it is important to measure their physical properties such as modulation transfer function (MTF) or noise power spectrum (NPS). The MTF and NPS of screen-film systems are mostly measured by using a microdensitometer. However, since microdensitometers are not commonly used in general hospitals, it is difficult to carry out these measurements regularly. In the past, Ichikawa et al. have measured and evaluated the physical properties of medical liquid crystal displays by using a high-performance digital camera. By this method, the physical properties of screen-film systems can be measured easily without using a microdensitometer. Therefore, we have proposed a simple method for measuring the MTF and NPS of screen-film systems by using a high-performance digital camera. The proposed method is based on the edge method (for evaluating MTF) and the one-dimensional fast Fourier transform (FFT) method (for evaluating NPS), respectively. As a result, the MTF and NPS evaluated by using the high-performance digital camera approximately corresponded with those evaluated by using a microdensitometer. It is possible to substitute the calculation of MTF and NPS by using a high-performance digital camera for that by using a microdensitometer. Further, this method also simplifies the evaluation of the physical properties of screen-film systems.

  15. Real-time increase in depth of field of an uncooled thermal camera using several phase-mask technologies.

    PubMed

    Diaz, Frédéric; Lee, Mane-Si Laure; Rejeaunier, Xavier; Lehoucq, Gaelle; Goudail, François; Loiseaux, Brigitte; Bansropun, Shailendra; Rollin, Joel; Debes, Eric; Mils, Philippe

    2011-02-01

    Imaging systems that combine a phase mask in the pupil and digital postprocessing may have better performance than conventional ones. We have built such a system to enhance the depth of field of an uncooled thermal camera. The phase masks are binary, their structures are optimized thanks to an image quality criterion, and they have been realized with three different technologies that give equivalent results. The deconvolution postprocessing is performed in real time with a graphics processing unit. A significant increase of the depth of field of a factor 3 has been obtained.

  16. New Stereo Vision Digital Camera System for Simultaneous Measurement of Cloud Base Height and Atmospheric Visibility

    NASA Astrophysics Data System (ADS)

    Janeiro, F. M.; Carretas, F.; Palma, N.; Ramos, P. M.; Wagner, F.

    2013-12-01

    Clouds play an important role in many aspects of everyday life. They affect both the local weather as well as the global climate and are an important parameter on climate change studies. Cloud parameters are also important for weather prediction models which make use of actual measurements. It is thus important to have low-cost instrumentation that can be deployed in the field to measure those parameters. This kind of instruments should also be automated and robust since they may be deployed in remote places and be subject to adverse weather conditions. Although clouds are very important in environmental systems, they are also an essential component of airplane safety when visual flight rules (VFR) are enforced, such as in most small aerodromes where it is not economically viable to install instruments for assisted flying. Under VFR there are strict limits on the height of the cloud base, cloud cover and atmospheric visibility that ensure the safety of the pilots and planes. Although there are instruments, available in the market, to measure those parameters, their relatively high cost makes them unavailable in many local aerodromes. In this work we present a new prototype which has been recently developed and deployed in a local aerodrome as proof of concept. It is composed by two digital cameras that capture photographs of the sky and allow the measurement of the cloud height from the parallax effect. The new developments consist on having a new geometry which allows the simultaneous measurement of cloud base height, wind speed at cloud base height and atmospheric visibility, which was not previously possible with only two cameras. The new orientation of the cameras comes at the cost of a more complex geometry to measure the cloud base height. The atmospheric visibility is calculated from the Lambert-Beer law after the measurement of the contrast between a set of dark objects and the background sky. The prototype includes the latest hardware developments that

  17. Using digital time-lapse cameras to monitor species-specific understorey and overstorey phenology in support of wildlife habitat assessment.

    PubMed

    Bater, Christopher W; Coops, Nicholas C; Wulder, Michael A; Hilker, Thomas; Nielsen, Scott E; McDermid, Greg; Stenhouse, Gordon B

    2011-09-01

    Critical to habitat management is the understanding of not only the location of animal food resources, but also the timing of their availability. Grizzly bear (Ursus arctos) diets, for example, shift seasonally as different vegetation species enter key phenological phases. In this paper, we describe the use of a network of seven ground-based digital camera systems to monitor understorey and overstorey vegetation within species-specific regions of interest. Established across an elevation gradient in western Alberta, Canada, the cameras collected true-colour (RGB) images daily from 13 April 2009 to 27 October 2009. Fourth-order polynomials were fit to an RGB-derived index, which was then compared to field-based observations of phenological phases. Using linear regression to statistically relate the camera and field data, results indicated that 61% (r (2) = 0.61, df = 1, F = 14.3, p = 0.0043) of the variance observed in the field phenological phase data is captured by the cameras for the start of the growing season and 72% (r (2) = 0.72, df = 1, F = 23.09, p = 0.0009) of the variance in length of growing season. Based on the linear regression models, the mean absolute differences in residuals between predicted and observed start of growing season and length of growing season were 4 and 6 days, respectively. This work extends upon previous research by demonstrating that specific understorey and overstorey species can be targeted for phenological monitoring in a forested environment, using readily available digital camera technology and RGB-based vegetation indices. PMID:21082343

  18. Counterfeit deterrence and digital imaging technology

    NASA Astrophysics Data System (ADS)

    Church, Sara E.; Fuller, Reese H.; Jaffe, Annette B.; Pagano, Lorelei W.

    2000-04-01

    The US government recognizes the growing problem of counterfeiting currency using digital imaging technology, as desktop systems become more sophisticated, less expensive and more prevalent. As the rate of counterfeiting with this type of equipment has grown, the need for specific prevention methods has become apparent to the banknote authorities. As a result, the Treasury Department and Federal Reserve have begun to address issues related specifically to this type of counterfeiting. The technical representatives of these agencies are taking a comprehensive approach to minimize counterfeiting using digital technology. This approach includes identification of current technology solutions for banknote recognition, data stream intervention and output marking, outreach to the hardware and software industries and enhancement of public education efforts. Other aspects include strong support and cooperation with existing international efforts to prevent counterfeiting, review and amendment of existing anti- counterfeiting legislation and investigation of currency design techniques to make faithful reproduction more difficult. Implementation of these steps and others are to lead to establishment of a formal, permanent policy to address and prevent the use of emerging technologies to counterfeit currency.

  19. Differentiating Digital Writing Instruction: The Intersection of Technology, Writing Instruction, and Digital Genre Knowledge

    ERIC Educational Resources Information Center

    Martin, Nicole M.; Lambert, Claire

    2015-01-01

    U.S. adolescents' prior technology experiences and exposure to digital genres vary, but they will often write digital texts as they enter college and adulthood. We explored middle school students' digital writing instructional experience in the context of a university-based summer digital writing camp. The sixth- through eighth-grade adolescents…

  20. How to optimize radiological images captured from digital cameras, using the Adobe Photoshop 6.0 program.

    PubMed

    Chalazonitis, A N; Koumarianos, D; Tzovara, J; Chronopoulos, P

    2003-06-01

    Over the past decade, the technology that permits images to be digitized and the reduction in the cost of digital equipment allows quick digital transfer of any conventional radiological film. Images then can be transferred to a personal computer, and several software programs are available that can manipulate their digital appearance. In this article, the fundamentals of digital imaging are discussed, as well as the wide variety of optional adjustments that the Adobe Photoshop 6.0 (Adobe Systems, San Jose, CA) program can offer to present radiological images with satisfactory digital imaging quality.

  1. UCXp camera imaging principle and key technologies of data post-processing

    NASA Astrophysics Data System (ADS)

    Yuan, Fangyan; Li, Guoqing; Zuo, Zhengli; Liu, Jianmin; Wu, Liang; Yu, Xiaoping; Zhao, Haitao

    2014-03-01

    The large format digital aerial camera product UCXp was introduced into the Chinese market in 2008, the image consists of 17310 columns and 11310 rows with a pixel size of 6 mm. The UCXp camera has many advantages compared with the same generation camera, with multiple lenses exposed almost at the same time and no oblique lens. The camera has a complex imaging process whose principle will be detailed in this paper. On the other hand, the UCXp image post-processing method, including data pre-processing and orthophoto production, will be emphasized in this article. Based on the data of new Beichuan County, this paper will describe the data processing and effects.

  2. Deconstructing Digital Natives: Young People, Technology, and the New Literacies

    ERIC Educational Resources Information Center

    Thomas, Michael, Ed.

    2011-01-01

    There have been many attempts to define the generation of students who emerged with the Web and new digital technologies in the early 1990s. The term "digital native" refers to the generation born after 1980, which has grown up in a world where digital technologies and the internet are a normal part of everyday life. Young people belonging to this…

  3. Measuring visual opacity using digital imaging technology.

    PubMed

    McFarland, Michael J; Terry, Spencer H; Calidonna, Michael J; Stone, Daniel A; Kerch, Paul E; Rasmussen, Steven L

    2004-03-01

    The U.S. Environmental Protection Agency (EPA) Reference Method 9 (Method 9) is the preferred enforcement approach for verifying facility compliance with federal visible opacity standards. Supporters of Method 9 have cited its flexibility and low cost as important technological and economic advantages of the methodology. The Digital Opacity Compliance System (DOCS), an innovative technology that employs digital imaging technology for quantifying visible opacity, has been proposed as a technically defensible and economically competitive alternative to Method 9. Results from the field application of the DOCS at EPA-approved Method 9 smoke schools located in Ogden, UT, Augusta, GA, and Columbus, OH, demonstrated that, under clear sky conditions, the DOCS consistently met the opacity error rate established under Method 9. Application of hypothesis testing on the smoke school data set confirmed that the DOCS was equivalent to Method 9 under clear sky conditions. Under overcast sky conditions, human observers seemed to be more accurate than the DOCS in measuring opacity. However, within the smoke school environment, human observers routinely employ backgrounds other than sky (e.g., trees, telephone poles, billboards) to quantify opacity on overcast days. Under conditions that compel the use of sky as plume background (e.g., emission stacks having heights above the tree line), the DOCS appears to be a more accurate methodology for quantifying opacity than are human observers.

  4. Teaching "Digital Earth" technologies in Environmental Sciences

    NASA Astrophysics Data System (ADS)

    Griffiths, J. A.

    2014-04-01

    As part of a review process for a module entitled "Digital Earth" which is currently taught as part of a BSc in Environmental Sciences program, research into the current provision of Geographical Information Science and Technology (GIS&T) related modules on UKbased Environmental Science degrees is made. The result of this search is used with DiBiase et al. (2006) "Body of Knowledge of GIS&T" to develop a foundation level module for Environmental Sciences. Reference is also made to the current provision geospatial analysis techniques in secondary and tertiary education in the UK, US and China, and the optimal use of IT and multimedia in geo-education.

  5. A Historical Perspective on Digital Hearing Aids: How Digital Technology Has Changed Modern Hearing Aids

    PubMed Central

    Levitt, Harry

    2007-01-01

    This article provides the author's perspective on the development of digital hearing aids and how digital signal processing approaches have led to changes in hearing aid design. Major landmarks in the evolution of digital technology are identified, and their impact on the development of digital hearing aids is discussed. Differences between analog and digital approaches to signal processing in hearing aids are identified. PMID:17301334

  6. New long-zoom lens for 4K super 35mm digital cameras

    NASA Astrophysics Data System (ADS)

    Thorpe, Laurence J.; Usui, Fumiaki; Kamata, Ryuhei

    2015-05-01

    The world of television production is beginning to adopt 4K Super 35 mm (S35) image capture for a widening range of program genres that seek both the unique imaging properties of that large image format and the protection of their program assets in a world anticipating future 4K services. Documentary and natural history production in particular are transitioning to this form of production. The nature of their shooting demands long zoom lenses. In their traditional world of 2/3-inch digital HDTV cameras they have a broad choice in portable lenses - with zoom ranges as high as 40:1. In the world of Super 35mm the longest zoom lens is limited to 12:1 offering a telephoto of 400mm. Canon was requested to consider a significantly longer focal range lens while severely curtailing its size and weight. Extensive computer simulation explored countless combinations of optical and optomechanical systems in a quest to ensure that all operational requests and full 4K performance could be met. The final lens design is anticipated to have applications beyond entertainment production, including a variety of security systems.

  7. Side oblique real-time orthophotography with the 9Kx9K digital framing camera

    NASA Astrophysics Data System (ADS)

    Gorin, Brian A.

    2003-08-01

    BAE SYSTEMS has reported on a new framing camera incorporating an ultra high resolution CCD detector array comprised of 9,216 x 9,216 pixels fabricated on one silicon wafer. The detector array features a 1:2 frame-per-second readout capable of stereo imagery with Nyquist resolution of 57 lp/mm from high velocity, low altitude (V/H) airborne platforms. Flight tests demonstrated the capability of the focal plane electronics for differential image motion compensation (IMC) with Nyquist performance utilizing a focal plane shutter (FPS) to enable both nadir and significant side and forward oblique imaging angles. The impact of FPS for differential image motion compensation is evaluated with the exterior orientation calibration parameters, which include the existing shutter velocity and flight dynamics from sample mapping applications. System requirements for GPS/INS are included with the effect of vertical error and side oblique angle impact of the digital elevation map (DEM) required to create the orthophoto. Results from the differentiated "collinearity equations" which relate the image coordinates to elements of interior and exterior orientation are combined with the DEM impact to provide useful guidelines for side oblique applications. The application of real-time orthophotography is described with the implications for system requirements for side oblique orthophoto capability.

  8. A new lunar digital elevation model from the Lunar Orbiter Laser Altimeter and SELENE Terrain Camera

    NASA Astrophysics Data System (ADS)

    Barker, M. K.; Mazarico, E.; Neumann, G. A.; Zuber, M. T.; Haruyama, J.; Smith, D. E.

    2016-07-01

    We present an improved lunar digital elevation model (DEM) covering latitudes within ±60°, at a horizontal resolution of 512 pixels per degree (∼60 m at the equator) and a typical vertical accuracy ∼3 to 4 m. This DEM is constructed from ∼ 4.5 ×109 geodetically-accurate topographic heights from the Lunar Orbiter Laser Altimeter (LOLA) onboard the Lunar Reconnaissance Orbiter, to which we co-registered 43,200 stereo-derived DEMs (each 1° × 1°) from the SELENE Terrain Camera (TC) (∼1010 pixels total). After co-registration, approximately 90% of the TC DEMs show root-mean-square vertical residuals with the LOLA data of <5 m compared to ∼ 50% prior to co-registration. We use the co-registered TC data to estimate and correct orbital and pointing geolocation errors from the LOLA altimetric profiles (typically amounting to <10 m horizontally and <1 m vertically). By combining both co-registered datasets, we obtain a near-global DEM with high geodetic accuracy, and without the need for surface interpolation. We evaluate the resulting LOLA + TC merged DEM (designated as "SLDEM2015") with particular attention to quantifying seams and crossover errors.

  9. Examination of the semi-automatic calculation technique of vegetation cover rate by digital camera images.

    NASA Astrophysics Data System (ADS)

    Takemine, S.; Rikimaru, A.; Takahashi, K.

    The rice is one of the staple foods in the world High quality rice production requires periodically collecting rice growth data to control the growth of rice The height of plant the number of stem the color of leaf is well known parameters to indicate rice growth Rice growth diagnosis method based on these parameters is used operationally in Japan although collecting these parameters by field survey needs a lot of labor and time Recently a laborsaving method for rice growth diagnosis is proposed which is based on vegetation cover rate of rice Vegetation cover rate of rice is calculated based on discriminating rice plant areas in a digital camera image which is photographed in nadir direction Discrimination of rice plant areas in the image was done by the automatic binarization processing However in the case of vegetation cover rate calculation method depending on the automatic binarization process there is a possibility to decrease vegetation cover rate against growth of rice In this paper a calculation method of vegetation cover rate was proposed which based on the automatic binarization process and referred to the growth hysteresis information For several images obtained by field survey during rice growing season vegetation cover rate was calculated by the conventional automatic binarization processing and the proposed method respectively And vegetation cover rate of both methods was compared with reference value obtained by visual interpretation As a result of comparison the accuracy of discriminating rice plant areas was increased by the proposed

  10. Hard color-shrinkage for color-image processing of a digital color camera

    NASA Astrophysics Data System (ADS)

    Saito, Takahiro; Ueda, Yasutaka; Fujii, Nobuhiro; Komatsu, Takashi

    2010-01-01

    The classic shrinkage works well for monochrome-image denoising. To utilize inter-channel color correlations, a noisy image undergoes the color-transformation from the RGB to the luminance-and-chrominance color space, and the luminance and the chrominance components are separately denoised. However, this approach cannot cope with signaldependent noise of a digital color camera. To utilize the noise's signal-dependencies, previously we have proposed the soft color-shrinkage where the inter-channel color correlations are directly utilized in the RGB color space. The soft color-shrinkage works well; but involves a large amount of computations. To alleviate the drawback, taking up the l0-l2 optimization problem whose solution yields the hard shrinkage, we introduce the l0 norms of color differences and the l0 norms of color sums into the model, and derive hard color-shrinkage as its solution. For each triplet of three primary colors, the hard color-shrinkage has 24 feasible solutions, and from among them selects the optimal feasible solution giving the minimal energy. We propose a method to control its shrinkage parameters spatially-adaptively according to both the local image statistics and the noise's signal-dependencies, and apply the spatially-adaptive hard color-shrinkage to removal of signal-dependent noise in a shift-invariant wavelet transform domain. The hard color-shrinkage performs mostly better than the soft color-shrinkage, from objective and subjective viewpoints.

  11. Analysis of chemiluminescence measurements by grey-scale ICCD and colour digital cameras

    NASA Astrophysics Data System (ADS)

    Migliorini, F.; Maffi, S.; De Iuliis, S.; Zizak, G.

    2014-05-01

    Spectral, grey-scale and colour chemiluminescence measurements of C2* and CH* radicals' emission are carried out on the flame front of a methane-air premixed flame at different equivalence ratios. To this purpose, properly spatially resolved optical equipment has been implemented in order to reduce the background emission from other burned gas regions. The grey-scale (ICCD + interference filters) and RGB colour (commercial digital camera) approaches have been compared in order to find a correspondence between the C2* and the green component, as well as the CH* and the blue component of the emission intensities. The C2*/CH* chemiluminescence ratio has been investigated at different equivalence ratios and a good correlation has been obtained, showing the possibility of sensing the equivalence ratio in practical systems. The grey-scale and colour chemiluminescence analysis has then been applied to a meso-scale not premixed swirl combustor fuelled with a methane-air mixture and operating at 0.3 MPa. 2D results are presented and discussed in this work.

  12. Product quality-based eco-efficiency applied to digital cameras.

    PubMed

    Park, Pil-Ju; Tahara, Kiyotaka; Inaba, Atsushi

    2007-04-01

    When calculating eco-efficiency, there are considerable confusion and controversy about what the product value is and how it should be quantified. We have proposed here a quantification method for eco-efficiency that derives the ratio of the multiplication value of the product quality and the life span of a product to its whole environmental impact based on Life Cycle Assessment (LCA). In this study, product quality was used as the product value and quantified by the following three steps: (1) normalization based on a value function, (2) determination of the subjective weighting factors of the attributes, and (3) calculation of product quality of the chosen products. The applicability of the proposed method to an actual product was evaluated using digital cameras. The results show that the eco-efficiency values of products equipped with rechargeable batteries were higher than those products that use alkaline batteries, because of higher quality values and lower environmental impacts. The sensitivity analysis shows that the proposed method was superior to the existing methods, because it enables to identify the quality level of the chosen products by considering all products that have the same functions in the market and because, when adding a new product, the calculated quality values in the proposed method do not have to be changed.

  13. Integral estimation of number of resolvable signal levels of digital cameras

    NASA Astrophysics Data System (ADS)

    Cheremkhin, P. A.; Evtikhiev, N. N.; Krasnov, V. V.; Kurbatova, E. A.; Starikov, R. S.; Starikov, S. N.

    2016-08-01

    Number of signal levels of modern photo- and videocameras equals thousands and tens of thousands. However because of temporal and spatial camera pixels noises and linear dynamic range limitation, number of resolvable signal levels is significantly lower. Earlier iterative method of estimation of number of resolvable signal levels of cameras was proposed. In this paper integral method of estimation of number of resolvable signal levels of cameras is proposed and applied to consumer camera.

  14. Performance analysis of digital cameras versus chromatic white light (CWL) sensors for the localization of latent fingerprints in crime scenes

    NASA Astrophysics Data System (ADS)

    Jankow, Mathias; Hildebrandt, Mario; Sturm, Jennifer; Kiltz, Stefan; Vielhauer, Claus

    2012-06-01

    In future applications of contactless acquisition techniques for latent fingerprints the automatic localization of potential fingerprint traces in crime scenes is required. Our goal is to study the application of a camera-based approach1 comparing with the performance of chromatic white light (CWL) techniques2 for the latent fingerprint localization in coarse and the resulting acquisition using detailed scans. Furthermore, we briefly evaluate the suitability of the camera-based acquisition for the detection of malicious fingerprint traces using an extended camera setup in comparison to Kiltz et al.3 Our experimental setup includes a Canon EOS 550D4 digital single-lens reflex (DSLR) camera and a FRT MicroProf2005 surface measurement device with CWL6002 sensor. We apply at least two fingerprints to each surface in our test set with 8 different either smooth, textured and structured surfaces to evaluate the detection performance of the two localization techniques using different pre-processing and feature extraction techniques. Printed fingerprint patterns as reproducible but potentially malicious traces3 are additionally acquired and analyzed on foil and compact discs. Our results indicate positive tendency towards a fast localization using the camera-based technique. All fingerprints that are located using the CWL sensor are found using the camera. However,the disadvantage of the camera-based technique is that the size of the region of interest for the detailed scan for each potential latent fingerprint is usually slightly larger compared to the CWL-based localization. Furthermore, this technique does not acquire 3D data and the resulting images are distorted due to the necessary angle between the camera and the surface. When applying the camera-based approach, it is required to optimize the feature extraction and classification. Furthermore, the required acquisition time for each potential fingerprint needs to be estimated to determine the time-savings of the

  15. Study on key techniques for camera-based hydrological record image digitization

    NASA Astrophysics Data System (ADS)

    Li, Shijin; Zhan, Di; Hu, Jinlong; Gao, Xiangtao; Bo, Ping

    2015-10-01

    With the development of information technology, the digitization of scientific or engineering drawings has received more and more attention. In hydrology, meteorology, medicine and mining industry, the grid drawing sheet is commonly used to record the observations from sensors. However, these paper drawings may be destroyed and contaminated due to improper preservation or overuse. Further, it will be a heavy workload and prone to error if these data are manually transcripted into the computer. Hence, in order to digitize these drawings, establishing the corresponding data base will ensure the integrity of data and provide invaluable information for further research. This paper presents an automatic system for hydrological record image digitization, which consists of three key techniques, i.e., image segmentation, intersection point localization and distortion rectification. First, a novel approach to the binarization of the curves and grids in the water level sheet image has been proposed, which is based on the fusion of gradient and color information adaptively. Second, a fast search strategy for cross point location is invented and point-by-point processing is thus avoided, with the help of grid distribution information. And finally, we put forward a local rectification method through analyzing the central portions of the image and utilizing the domain knowledge of hydrology. The processing speed is accelerated, while the accuracy is still satisfying. Experiments on several real water level records show that our proposed techniques are effective and capable of recovering the hydrological observations accurately.

  16. Dry imaging cameras

    PubMed Central

    Indrajit, IK; Alam, Aftab; Sahni, Hirdesh; Bhatia, Mukul; Sahu, Samaresh

    2011-01-01

    Dry imaging cameras are important hard copy devices in radiology. Using dry imaging camera, multiformat images of digital modalities in radiology are created from a sealed unit of unexposed films. The functioning of a modern dry camera, involves a blend of concurrent processes, in areas of diverse sciences like computers, mechanics, thermal, optics, electricity and radiography. Broadly, hard copy devices are classified as laser and non laser based technology. When compared with the working knowledge and technical awareness of different modalities in radiology, the understanding of a dry imaging camera is often superficial and neglected. To fill this void, this article outlines the key features of a modern dry camera and its important issues that impact radiology workflow. PMID:21799589

  17. Applying Digital Sensor Technology: A Problem-Solving Approach

    ERIC Educational Resources Information Center

    Seedhouse, Paul; Knight, Dawn

    2016-01-01

    There is currently an explosion in the number and range of new devices coming onto the technology market that use digital sensor technology to track aspects of human behaviour. In this article, we present and exemplify a three-stage model for the application of digital sensor technology in applied linguistics that we have developed, namely,…

  18. Estimates of the error caused by atmospheric turbulence in determining object's motion speed using a digital camera

    NASA Astrophysics Data System (ADS)

    Valley, M. T.; Dudorov, V. V.; Kolosov, V. V.; Filimonov, G. A.

    2006-11-01

    The paper considers the error caused by atmospheric turbulence, in determining the motion speed of an object by using its successive images recorded on a matrix of a digital camera. Numerical modeling of the image of a moving object in successive time moments is performed. Fluctuation variance of the image mass centre affecting the measurement error is calculated. Error dependences on the distance to the object and path slope angle are obtained for different turbulence models. Considered are the situations, when the angular displacement of the object between two immediate shots of the digital camera is greater than the isoplanatism angle as well as the situations when the angular displacement is smaller than this angle.

  19. Comparative spectral analysis between the functionality of the human eye and of the optical part of a digital camera

    NASA Astrophysics Data System (ADS)

    Toadere, Florin

    2015-02-01

    A software that comparatively analysis the spectral functionality of the optical part of the human eye and of the optical image acquisition system of the digital camera, is presented. Comparisons are done using demonstrative images which present the spectral color transformations of an image that is considered the test object. To perform the simulations are presented the spectral models and are computed their effects on the colors of the spectral image, during the propagation of the D48 sun light through the eye and the optics of the digital camera. The simulations are made using a spectral image processing algorithm which converts the spectral image into XYZ color space, CIE CAM02 color appearance model and then into RGB color space.

  20. Transitioning towards the Digital Native: Examining Digital Technologies, Video Games, and Learning

    ERIC Educational Resources Information Center

    Salomon, John

    2010-01-01

    Although digital technologies have become commonplace among people who grew up around them, little is known about the effect that such technology will have on learners or its impact on traditional methods of educational delivery. This dissertation examines how certain technologies affect digital natives and seeks to understand specific…

  1. Two Years of Digital Terrain Model Production Using the Lunar Reconnaissance Orbiter Narrow Angle Camera

    NASA Astrophysics Data System (ADS)

    Burns, K.; Robinson, M. S.; Speyerer, E.; LROC Science Team

    2011-12-01

    One of the primary objectives of the Lunar Reconnaissance Orbiter Camera (LROC) is to gather stereo observations with the Narrow Angle Camera (NAC). These stereo observations are used to generate digital terrain models (DTMs). The NAC has a pixel scale of 0.5 to 2.0 meters but was not designed for stereo observations and thus requires the spacecraft to roll off-nadir to acquire these images. Slews interfere with the data collection of the other instruments, so opportunities are currently limited to four per day. Arizona State University has produced DTMs from 95 stereo pairs for 11 Constellation Project (CxP) sites (Aristarchus, Copernicus crater, Gruithuisen domes, Hortensius domes, Ina D-caldera, Lichtenberg crater, Mare Ingenii, Marius hills, Reiner Gamma, South Pole-Aitkin Rim, Sulpicius Gallus) as well as 30 other regions of scientific interest (including: Bhabha crater, highest and lowest elevation points, Highland Ponds, Kugler Anuchin, Linne Crater, Planck Crater, Slipher crater, Sears Crater, Mandel'shtam Crater, Virtanen Graben, Compton/Belkovich, Rumker Domes, King Crater, Luna 16/20/23/24 landing sites, Ranger 6 landing site, Wiener F Crater, Apollo 11/14/15/17, fresh craters, impact melt flows, Larmor Q crater, Mare Tranquillitatis pit, Hansteen Alpha, Moore F Crater, and Lassell Massif). To generate DTMs, the USGS ISIS software and SOCET SET° from BAE Systems are used. To increase the absolute accuracy of the DTMs, data obtained from the Lunar Orbiter Laser Altimeter (LOLA) is used to coregister the NAC images and define the geodetic reference frame. NAC DTMs have been used in examination of several sites, e.g. Compton-Belkovich, Marius Hills and Ina D-caldera [1-3]. LROC will continue to acquire high-resolution stereo images throughout the science phase of the mission and any extended mission opportunities, thus providing a vital dataset for scientific research as well as future human and robotic exploration. [1] B.L. Jolliff (2011) Nature

  2. Digital X-ray camera for quality evaluation three-dimensional topographic reconstruction of single crystals of biological macromolecules

    NASA Technical Reports Server (NTRS)

    Borgstahl, Gloria (Inventor); Lovelace, Jeff (Inventor); Snell, Edward Holmes (Inventor); Bellamy, Henry (Inventor)

    2008-01-01

    The present invention provides a digital topography imaging system for determining the crystalline structure of a biological macromolecule, wherein the system employs a charge coupled device (CCD) camera with antiblooming circuitry to directly convert x-ray signals to electrical signals without the use of phosphor and measures reflection profiles from the x-ray emitting source after x-rays are passed through a sample. Methods for using said system are also provided.

  3. A New Towed Digital DeepSea Camera and Multi-Rock Coring System: The WHOI TowCam

    NASA Astrophysics Data System (ADS)

    Billings, A.; Fornari, D.

    2002-12-01

    This year, a team of engineers at the Woods Hole Oceanographic Institution (WHOI) developed and successfully tested a new, digital deep-sea camera system as part of a NSF equipment development grant. The system has been used during two expeditions, one to the Galapagos Rift, and the most recent one to the Hess Deep. To date it has acquired nearly 20,000 digital seafloor images. The new WHOI Towed Digital Camera and Multi-Rock Coring System (TowCam) is an internally recording digital deep sea camera system that also permits acquisition of volcanic glass samples using up to six rock cores in conjunction with CTD water properties data. The TowCam is towed on a standard UNOLS coaxial CTD sea cable, thereby permitting real-time acquisition of digital depth and altitude data that can be used to help quantify objects in the digital images. The use of the conducting sea cable and CTD system also permits triggering of six rock core units on the sled so that discrete samples of volcanic glass can be collected during a lowering. By operating either at night in between Alvin dives, or during other seagoing programs, photographic information of the seafloor can be recorded for near real-time analysis and for planning subsequent Alvin dives or other sampling and surveying programs. The new WHOI TowCam is a self-recording, deep-sea towed camera system rated to 6000m. It is capable of remotely taking 1000 high-resolution color digital photographs on each lowering at intervals of 10-60 sec, while being towed 5-7m above the bottom at speeds of up to 1/2 knot. The digital camera (DigiSeaCam) was developed by DeepSea Power and Light of San Diego, CA and uses a 3.3 Megapixel Nikon995. The onboard CTD (SeaBird25) permits real-time display and recording of digital depth, altitude and other standard CTD sensors (e.g. conductivity, temperature, turbidity), and provides connectivity to the pylon that permits triggering of the rock corers. A strobe monitor connected to a spare serial port in

  4. Digital technology and human development: a charter for nature conservation.

    PubMed

    Maffey, Georgina; Homans, Hilary; Banks, Ken; Arts, Koen

    2015-11-01

    The application of digital technology in conservation holds much potential for advancing the understanding of, and facilitating interaction with, the natural world. In other sectors, digital technology has long been used to engage communities and share information. Human development-which holds parallels with the nature conservation sector-has seen a proliferation of innovation in technological development. Throughout this Perspective, we consider what nature conservation can learn from the introduction of digital technology in human development. From this, we derive a charter to be used before and throughout project development, in order to help reduce replication and failure of digital innovation in nature conservation projects. We argue that the proposed charter will promote collaboration with the development of digital tools and ensure that nature conservation projects progress appropriately with the development of new digital technologies. PMID:26508341

  5. Digital technology and human development: a charter for nature conservation.

    PubMed

    Maffey, Georgina; Homans, Hilary; Banks, Ken; Arts, Koen

    2015-11-01

    The application of digital technology in conservation holds much potential for advancing the understanding of, and facilitating interaction with, the natural world. In other sectors, digital technology has long been used to engage communities and share information. Human development-which holds parallels with the nature conservation sector-has seen a proliferation of innovation in technological development. Throughout this Perspective, we consider what nature conservation can learn from the introduction of digital technology in human development. From this, we derive a charter to be used before and throughout project development, in order to help reduce replication and failure of digital innovation in nature conservation projects. We argue that the proposed charter will promote collaboration with the development of digital tools and ensure that nature conservation projects progress appropriately with the development of new digital technologies.

  6. Analog Film Images...Back-Up Digital Technology.

    ERIC Educational Resources Information Center

    Brunner, Alex

    1999-01-01

    Examines the role of microfilm in storing information to eliminate digital obsolescence. Discusses the benefits of digital-to-analog microfilm systems; changes in conventional microfilm technology; and the advantages of true hybrid imaging systems that allow retrieval of images from document microfilm, digitally created microfilm or paper scanners…

  7. Per-Pixel Coded Exposure for High-Speed and High-Resolution Imaging Using a Digital Micromirror Device Camera.

    PubMed

    Feng, Wei; Zhang, Fumin; Qu, Xinghua; Zheng, Shiwei

    2016-03-04

    High-speed photography is an important tool for studying rapid physical phenomena. However, low-frame-rate CCD (charge coupled device) or CMOS (complementary metal oxide semiconductor) camera cannot effectively capture the rapid phenomena with high-speed and high-resolution. In this paper, we incorporate the hardware restrictions of existing image sensors, design the sampling functions, and implement a hardware prototype with a digital micromirror device (DMD) camera in which spatial and temporal information can be flexibly modulated. Combined with the optical model of DMD camera, we theoretically analyze the per-pixel coded exposure and propose a three-element median quicksort method to increase the temporal resolution of the imaging system. Theoretically, this approach can rapidly increase the temporal resolution several, or even hundreds, of times without increasing bandwidth requirements of the camera. We demonstrate the effectiveness of our method via extensive examples and achieve 100 fps (frames per second) gain in temporal resolution by using a 25 fps camera.

  8. Per-Pixel Coded Exposure for High-Speed and High-Resolution Imaging Using a Digital Micromirror Device Camera

    PubMed Central

    Feng, Wei; Zhang, Fumin; Qu, Xinghua; Zheng, Shiwei

    2016-01-01

    High-speed photography is an important tool for studying rapid physical phenomena. However, low-frame-rate CCD (charge coupled device) or CMOS (complementary metal oxide semiconductor) camera cannot effectively capture the rapid phenomena with high-speed and high-resolution. In this paper, we incorporate the hardware restrictions of existing image sensors, design the sampling functions, and implement a hardware prototype with a digital micromirror device (DMD) camera in which spatial and temporal information can be flexibly modulated. Combined with the optical model of DMD camera, we theoretically analyze the per-pixel coded exposure and propose a three-element median quicksort method to increase the temporal resolution of the imaging system. Theoretically, this approach can rapidly increase the temporal resolution several, or even hundreds, of times without increasing bandwidth requirements of the camera. We demonstrate the effectiveness of our method via extensive examples and achieve 100 fps (frames per second) gain in temporal resolution by using a 25 fps camera. PMID:26959023

  9. Fault dislocation modeled structure of lobate scarps from Lunar Reconnaissance Orbiter Camera digital terrain models

    NASA Astrophysics Data System (ADS)

    Williams, N. R.; Watters, T. R.; Pritchard, M. E.; Banks, M. E.; Bell, J. F.

    2013-02-01

    Before the launch of the Lunar Reconnaissance Orbiter, known characteristics of lobate scarps on the Moon were limited to studies of only a few dozen scarps revealed in Apollo-era photographs within ~20° of the equator. The Lunar Reconnaissance Orbiter Camera now provides meter-scale images of more than 100 lobate scarps, as well as stereo-derived topography of about a dozen scarps. High-resolution digital terrain models (DTMs) provide unprecedented insight into scarp morphology and dimensions. Here, we analyze images and DTMs of the Slipher, Racah X-1, Mandel'shtam-1, Feoktistov, Simpelius-1, and Oppenheimer F lobate scarps. Parameters in fault dislocation models are iteratively varied to provide best fits to DTM topographic profiles to test previous interpretations that the observed landforms are the result of shallow, low-angle thrust faults. Results suggest that these faults occur from the surface down to depths of hundreds of meters, have dip angles of 35-40°, and have typical maximum slips of tens of meters. These lunar scarp models are comparable to modeled geometries of lobate scarps on Mercury, Mars, and asteroid 433 Eros, but are shallower and ~10° steeper than geometries determined in studies with limited Apollo-era data. Frictional and rock mass strength criteria constrain the state of global differential stress between 3.5 and 18.6 MPa at the modeled maximum depths of faulting. Our results are consistent with thermal history models that predict relatively small compressional stresses that likely arise from cooling of a magma ocean.

  10. Snow process monitoring in mountain forest environments with a digital camera network

    NASA Astrophysics Data System (ADS)

    Dong, Chunyu; Menzel, Lucas

    2016-04-01

    Snow processes are important components of the hydrologic cycle in mountainous areas and at high latitudes. Sparse observations in remote regions, in combination with complex topography, local climate specifics and the impact of heterogeneous vegetation cover complicate a detailed investigation of snow related processes. In this study, a camera network is applied to monitor the complex snow processes with high temporal resolution in montane forest environments (800-1200 m a.s.l.) in southwestern Germany. A typical feature of this region is the high temporal variability of weather conditions, with frequent snow accumulation and ablation processes and recurrent snow interception on conifers. We developed a semi-automatic procedure to interpret snow depths from the digital images, which shows high consistency with manual readings and station-based measurements. To extract the snow canopy interception dynamics from the pictures, six binary classification methods are compared. MaxEntropy classifier shows obviously better performance than the others in various illumination conditions, and it is thus selected to execute the snow interception quantification. The snow accumulation and ablation processes on the ground as well as the snow loading and unloading in forest canopies are investigated based on the snow parameters derived from the time-lapse photography monitoring. Besides, the influences of meteorological conditions, forest cover and elevation on snow processes are considered. Further, our investigations serve to improve the snow and interception modules of a hydrological model. We found that time-lapse photography proves to be an effective and low-cost approach to collect useful snow-related information which supports our understanding of snow processes and the further development of hydrological models. We will present selected results from our investigations over two consecutive winters.

  11. Single-camera stereo-digital image correlation with a four-mirror adapter: optimized design and validation

    NASA Astrophysics Data System (ADS)

    Yu, Liping; Pan, Bing

    2016-12-01

    A low-cost, easy-to-implement but practical single-camera stereo-digital image correlation (DIC) system using a four-mirror adapter is established for accurate shape and three-dimensional (3D) deformation measurements. The mirrors assisted pseudo-stereo imaging system can convert a single camera into two virtual cameras, which view a specimen from different angles and record the surface images of the test object onto two halves of the camera sensor. To enable deformation measurement in non-laboratory conditions or extreme high temperature environments, an active imaging optical design, combining an actively illuminated monochromatic source with a coupled band-pass optical filter, is compactly integrated to the pseudo-stereo DIC system. The optical design, basic principles and implementation procedures of the established system for 3D profile and deformation measurements are described in detail. The effectiveness and accuracy of the established system are verified by measuring the profile of a regular cylinder surface and displacements of a translated planar plate. As an application example, the established system is used to determine the tensile strains and Poisson's ratio of a composite solid propellant specimen during stress relaxation test. Since the established single-camera stereo-DIC system only needs a single camera and presents strong robustness against variations in ambient light or the thermal radiation of a hot object, it demonstrates great potential in determining transient deformation in non-laboratory or high-temperature environments with the aid of a single high-speed camera.

  12. A pilot project combining multispectral proximal sensors and digital cameras for monitoring tropical pastures

    NASA Astrophysics Data System (ADS)

    Handcock, Rebecca N.; Gobbett, D. L.; González, Luciano A.; Bishop-Hurley, Greg J.; McGavin, Sharon L.

    2016-08-01

    Timely and accurate monitoring of pasture biomass and ground cover is necessary in livestock production systems to ensure productive and sustainable management. Interest in the use of proximal sensors for monitoring pasture status in grazing systems has increased, since data can be returned in near real time. Proximal sensors have the potential for deployment on large properties where remote sensing may not be suitable due to issues such as spatial scale or cloud cover. There are unresolved challenges in gathering reliable sensor data and in calibrating raw sensor data to values such as pasture biomass or vegetation ground cover, which allow meaningful interpretation of sensor data by livestock producers. Our goal was to assess whether a combination of proximal sensors could be reliably deployed to monitor tropical pasture status in an operational beef production system, as a precursor to designing a full sensor deployment. We use this pilot project to (1) illustrate practical issues around sensor deployment, (2) develop the methods necessary for the quality control of the sensor data, and (3) assess the strength of the relationships between vegetation indices derived from the proximal sensors and field observations across the wet and dry seasons. Proximal sensors were deployed at two sites in a tropical pasture on a beef production property near Townsville, Australia. Each site was monitored by a Skye SKR-four-band multispectral sensor (every 1 min), a digital camera (every 30 min), and a soil moisture sensor (every 1 min), each of which were operated over 18 months. Raw data from each sensor was processed to calculate multispectral vegetation indices. The data capture from the digital cameras was more reliable than the multispectral sensors, which had up to 67 % of data discarded after data cleaning and quality control for technical issues related to the sensor design, as well as environmental issues such as water incursion and insect infestations. We recommend

  13. A calibration technology for multi-camera system with various focal lengths

    NASA Astrophysics Data System (ADS)

    Yang, Ruihua; Zhang, Jin; Deng, Huaxia; Yu, Liandong

    2016-01-01

    Calibration is the basis of three-dimensional (3D) reconstruction for machine vision technology. Nowadays, the most widely used calibration method among computer vision is the technique for binocular stereo measurement. However, binocular stereo vision has limited view field which is difficult to measure large-scale mechanical components synchronously. Thus, enlarging the view field is urgent in need for the large scale measurement. With the application of multi-camera system, the calibration for cameras with different focal lengths is required. In this paper, a method aiming at calibration problems for multi-camera system of different focal lengths is proposed. An imaging model for multi-camera system with various focal lengths is analyzed. The Harris corner detector is applied to determine the relationship between signal camera and checkerboard. Finally, the external parameters of different cameras can be obtained by the link with the checkerboard. The calibration results indicate that the calculation method used in this work can calibrate multi-camera with various focal lengths.

  14. Comparison of - and Mutual Informaton Based Calibration of Terrestrial Laser Scanner and Digital Camera for Deformation Monitoring

    NASA Astrophysics Data System (ADS)

    Omidalizarandi, M.; Neumann, I.

    2015-12-01

    In the current state-of-the-art, geodetic deformation analysis of natural and artificial objects (e.g. dams, bridges,...) is an ongoing research in both static and kinematic mode and has received considerable interest by researchers and geodetic engineers. In this work, due to increasing the accuracy of geodetic deformation analysis, a terrestrial laser scanner (TLS; here the Zoller+Fröhlich IMAGER 5006) and a high resolution digital camera (Nikon D750) are integrated to complementarily benefit from each other. In order to optimally combine the acquired data of the hybrid sensor system, a highly accurate estimation of the extrinsic calibration parameters between TLS and digital camera is a vital preliminary step. Thus, the calibration of the aforementioned hybrid sensor system can be separated into three single calibrations: calibration of the camera, calibration of the TLS and extrinsic calibration between TLS and digital camera. In this research, we focus on highly accurate estimating extrinsic parameters between fused sensors and target- and targetless (mutual information) based methods are applied. In target-based calibration, different types of observations (image coordinates, TLS measurements and laser tracker measurements for validation) are utilized and variance component estimation is applied to optimally assign adequate weights to the observations. Space resection bundle adjustment based on the collinearity equations is solved using Gauss-Markov and Gauss-Helmert model. Statistical tests are performed to discard outliers and large residuals in the adjustment procedure. At the end, the two aforementioned approaches are compared and advantages and disadvantages of them are investigated and numerical results are presented and discussed.

  15. Planning for optical disk technology with digital cartography.

    USGS Publications Warehouse

    Light, D.L.

    1986-01-01

    A major shortfall that still exists in digital systems is the need for very large mass storage capacity. The decade of the 1980s has introduced laser optical disk storage technology, which may be the breakthrough needed for mass storage. This paper addresses system concepts for digital cartography during the transition period. Emphasis will be placed on determining USGS mass storage requirements and introducing laser optical disk technology for handling storage problems for digital data in this decade.-from Author

  16. Digital Media and Technology in Afterschool Programs, Libraries, and Museums

    ERIC Educational Resources Information Center

    Herr-Stephenson, Becky; Rhoten, Diana; Perkel, Dan; Sims, Christo

    2011-01-01

    Digital media and technology have become culturally and economically powerful parts of contemporary middle-class American childhoods. Immersed in various forms of digital media as well as mobile and Web-based technologies, young people today appear to develop knowledge and skills through participation in media. This MacArthur Report examines the…

  17. Digital Technology at the National Science Museum of Japan

    ERIC Educational Resources Information Center

    Lydens, Lois; Saito, Yasuji; Inoue, Tohru

    2007-01-01

    The National Science Museum (NSM) in Japan has recently completed a project using different types of visitor-oriented digital technologies. With sponsorship from the Japan Society for the Promotion of Science (JSPS), the NSM team carried out a four-year study to examine how digital technologies can be used to enhance as well as educationally…

  18. Imaging Emission Spectra with Handheld and Cellphone Cameras

    ERIC Educational Resources Information Center

    Sitar, David

    2012-01-01

    As point-and-shoot digital camera technology advances it is becoming easier to image spectra in a laboratory setting on a shoestring budget and get immediate results. With this in mind, I wanted to test three cameras to see how their results would differ. Two undergraduate physics students and I used one handheld 7.1 megapixel (MP) digital Cannon…

  19. Are Digital Natives a Myth or Reality? University Students' Use of Digital Technologies

    ERIC Educational Resources Information Center

    Margaryan, Anoush; Littlejohn, Allison; Vojt, Gabrielle

    2011-01-01

    This study investigated the extent and nature of university students' use of digital technologies for learning and socialising. The findings show that students use a limited range of mainly established technologies. Use of collaborative knowledge creation tools, virtual worlds, and social networking sites was low. "Digital natives" and students of…

  20. Use of Digital Image Technology to 'Clearly' Depict Global Change

    NASA Astrophysics Data System (ADS)

    Molnia, B. F.; Carbo, C. L.

    2014-12-01

    Earth is dynamic and beautiful. Understanding why, when, how, and how fast its surface changes yields information and serves as a source of inspiration. The artistic use of geoscience information can inform the public about what is happening to their planet in a non-confrontational and apolitical way. While individual images may clearly depict a landscape, photographic comparisons are necessary to clearly capture and display annual, decadal, or century-scale impacts of climate and environmental change on Earth's landscapes. After years of effort to artistically communicate geoscience concepts with unenhanced individual photographs or pairs of images, the authors have partnered to maximize this process by using digital image enhancement technology. This is done, not to manipulate the inherent artistic content or information content of the photographs, but to insure that the comparative photo pairs produced are geometrically correct and unambiguous. For comparative photography, information-rich historical photographs are selected from archives, websites, and other sources. After determining the geographic location from which the historical photograph was made, the original site is identified and eventually revisited. There, the historical photos field of view is again photographed, ideally from the original location. From nearly 250 locations revisited, about 175 pairs have been produced. Every effort is made to reoccupy the original historical site. However, vegetation growth, visibility reduction, and co-seismic level change may make this impossible. Also, inherent differences in lens optics, camera construction, and image format may result in differences in the geometry of the new photograph when compared to the old. Upon selection, historical photos are cleaned, contrast stretched, brightness adjusted, and sharpened to maximize site identification and information extraction. To facilitate matching historical and new images, digital files of each are overlain in

  1. Cameras Monitor Spacecraft Integrity to Prevent Failures

    NASA Technical Reports Server (NTRS)

    2014-01-01

    The Jet Propulsion Laboratory contracted Malin Space Science Systems Inc. to outfit Curiosity with four of its cameras using the latest commercial imaging technology. The company parlayed the knowledge gained under working with NASA to develop an off-the-shelf line of cameras, along with a digital video recorder, designed to help troubleshoot problems that may arise on satellites in space.

  2. Redefining Student Affairs through Digital Technology: A Ten-Year Historiography of Digital Technology Use by Student Affairs Administrators

    ERIC Educational Resources Information Center

    Cabellon, Edmund T.

    2016-01-01

    The student affairs profession is at a crossroads (Torres & Walbert, 2010) given digital technology's growth and the academy's administrative expansion (Bowen, 2013). Student affairs administrators must simultaneously respond to digital technology's implications in students' lives (Kirschner & Karpinski, 2010) and to new state and federal…

  3. Small Field of View Scintimammography Gamma Camera Integrated to a Stereotactic Core Biopsy Digital X-ray System

    SciTech Connect

    Andrew Weisenberger; Fernando Barbosa; T. D. Green; R. Hoefer; Cynthia Keppel; Brian Kross; Stanislaw Majewski; Vladimir Popov; Randolph Wojcik

    2002-10-01

    A small field of view gamma camera has been developed for integration with a commercial stereotactic core biopsy system. The goal is to develop and implement a dual-modality imaging system utilizing scintimammography and digital radiography to evaluate the reliability of scintimammography in predicting the malignancy of suspected breast lesions from conventional X-ray mammography. The scintimammography gamma camera is a custom-built mini gamma camera with an active area of 5.3 cm /spl times/ 5.3 cm and is based on a 2 /spl times/ 2 array of Hamamatsu R7600-C8 position-sensitive photomultiplier tubes. The spatial resolution of the gamma camera at the collimator surface is < 4 mm full-width at half-maximum and a sensitivity of /spl sim/ 4000 Hz/mCi. The system is also capable of acquiring dynamic scintimammographic data to allow for dynamic uptake studies. Sample images of preliminary clinical results are presented to demonstrate the performance of the system.

  4. Active hyperspectral imaging using a quantum cascade laser (QCL) array and digital-pixel focal plane array (DFPA) camera.

    PubMed

    Goyal, Anish; Myers, Travis; Wang, Christine A; Kelly, Michael; Tyrrell, Brian; Gokden, B; Sanchez, Antonio; Turner, George; Capasso, Federico

    2014-06-16

    We demonstrate active hyperspectral imaging using a quantum-cascade laser (QCL) array as the illumination source and a digital-pixel focal-plane-array (DFPA) camera as the receiver. The multi-wavelength QCL array used in this work comprises 15 individually addressable QCLs in which the beams from all lasers are spatially overlapped using wavelength beam combining (WBC). The DFPA camera was configured to integrate the laser light reflected from the sample and to perform on-chip subtraction of the passive thermal background. A 27-frame hyperspectral image was acquired of a liquid contaminant on a diffuse gold surface at a range of 5 meters. The measured spectral reflectance closely matches the calculated reflectance. Furthermore, the high-speed capabilities of the system were demonstrated by capturing differential reflectance images of sand and KClO3 particles that were moving at speeds of up to 10 m/s.

  5. PLANNING FOR OPTICAL DISK TECHNOLOGY WITH DIGITAL CARTOGRAPHY.

    USGS Publications Warehouse

    Light, Donald L.

    1984-01-01

    Progress in the computer field continues to suggest that the transition from traditional analog mapping systems to digital systems has become a practical possibility. A major shortfall that still exists in digital systems is the need for very large mass storage capacity. The decade of the 1980's has introduced laser optical disk storage technology, which may be the breakthrough needed for mass storage. This paper addresses system concepts for digital cartography during the transition period. Emphasis is placed on determining U. S. Geological Survey mass storage requirements and introducing laser optical disk technology for handling storage problems for digital data in this decade.

  6. Can New Digital Technologies Support Parasitology Teaching and Learning?

    PubMed

    Jabbar, Abdul; Gasser, Robin B; Lodge, Jason

    2016-07-01

    Traditionally, parasitology courses have mostly been taught face-to-face on campus, but now digital technologies offer opportunities for teaching and learning. Here, we give a perspective on how new technologies might be used through student-centred teaching approaches. First, a snapshot of recent trends in the higher education is provided; then, a brief account is given of how digital technologies [e.g., massive open online courses (MOOCs), flipped classroom (FC), games, quizzes, dedicated Facebook, and digital badges] might promote parasitology teaching and learning in digital learning environments. In our opinion, some of these digital technologies might be useful for competency-based, self-regulated, learner-centred teaching and learning in an online or blended teaching environment. PMID:27131629

  7. IR camera system with an advanced image processing technologies

    NASA Astrophysics Data System (ADS)

    Ohkubo, Syuichi; Tamura, Tetsuo

    2016-05-01

    We have developed image processing technologies for resolving issues caused by the inherent UFPA (uncooled focal plane array) sensor characteristics to spread its applications. For example, large time constant of an uncooled IR (infra-red) sensor limits its application field, because motion blur is caused in monitoring the objective moving at high speed. The developed image processing technologies can eliminate the blur and retrieve almost the equivalent image observed in still motion. This image processing is based on the idea that output of the IR sensor is construed as the convolution of radiated IR energy from the objective and impulse response of the IR sensor. With knowledge of the impulse response and moving speed of the objective, the IR energy from the objective can be de-convolved from the observed images. We have successfully retrieved the image without blur using the IR sensor of 15 ms time constant under the conditions in which the objective is moving at the speed of about 10 pixels/60 Hz. The image processing for reducing FPN (fixed pattern noise) has also been developed. UFPA having the responsivity in the narrow wavelength region, e.g., around 8 μm is appropriate for measuring the surface of glass. However, it suffers from severe FPN due to lower sensitivity compared with 8-13 μm. The developed image processing exploits the images of the shutter itself, and can reduce FPN significantly.

  8. Digital Natives as Preservice Teachers: What Technology Preparation Is Needed?

    ERIC Educational Resources Information Center

    Lei, Jing

    2009-01-01

    This study focused on "digital natives" as preservice teachers to examine their beliefs, attitudes, and technology experiences and expertise, identify the strengths and weaknesses in their technology knowledge and skills, and explore what technology preparation was needed to prepare them to integrate technology in their future classrooms. Results…

  9. Evaluation of a novel laparoscopic camera for characterization of renal ischemia in a porcine model using digital light processing (DLP) hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Olweny, Ephrem O.; Tan, Yung K.; Faddegon, Stephen; Jackson, Neil; Wehner, Eleanor F.; Best, Sara L.; Park, Samuel K.; Thapa, Abhas; Cadeddu, Jeffrey A.; Zuzak, Karel J.

    2012-03-01

    Digital light processing hyperspectral imaging (DLP® HSI) was adapted for use during laparoscopic surgery by coupling a conventional laparoscopic light guide with a DLP-based Agile Light source (OL 490, Optronic Laboratories, Orlando, FL), incorporating a 0° laparoscope, and a customized digital CCD camera (DVC, Austin, TX). The system was used to characterize renal ischemia in a porcine model.

  10. Increasing signal-to-noise ratio of reconstructed digital holograms by using light spatial noise portrait of camera's photosensor

    NASA Astrophysics Data System (ADS)

    Cheremkhin, Pavel A.; Evtikhiev, Nikolay N.; Krasnov, Vitaly V.; Rodin, Vladislav G.; Starikov, Sergey N.

    2015-01-01

    Digital holography is technique which includes recording of interference pattern with digital photosensor, processing of obtained holographic data and reconstruction of object wavefront. Increase of signal-to-noise ratio (SNR) of reconstructed digital holograms is especially important in such fields as image encryption, pattern recognition, static and dynamic display of 3D scenes, and etc. In this paper compensation of photosensor light spatial noise portrait (LSNP) for increase of SNR of reconstructed digital holograms is proposed. To verify the proposed method, numerical experiments with computer generated Fresnel holograms with resolution equal to 512×512 elements were performed. Simulation of shots registration with digital camera Canon EOS 400D was performed. It is shown that solo use of the averaging over frames method allows to increase SNR only up to 4 times, and further increase of SNR is limited by spatial noise. Application of the LSNP compensation method in conjunction with the averaging over frames method allows for 10 times SNR increase. This value was obtained for LSNP measured with 20 % error. In case of using more accurate LSNP, SNR can be increased up to 20 times.

  11. Digital image measurement of specimen deformation based on CCD cameras and Image J software: an application to human pelvic biomechanics

    NASA Astrophysics Data System (ADS)

    Jia, Yongwei; Cheng, Liming; Yu, Guangrong; Lou, Yongjian; Yu, Yan; Chen, Bo; Ding, Zuquan

    2008-03-01

    A method of digital image measurement of specimen deformation based on CCD cameras and Image J software was developed. This method was used to measure the biomechanics behavior of human pelvis. Six cadaveric specimens from the third lumbar vertebra to the proximal 1/3 part of femur were tested. The specimens without any structural abnormalities were dissected of all soft tissue, sparing the hip joint capsules and the ligaments of the pelvic ring and floor. Markers with black dot on white background were affixed to the key regions of the pelvis. Axial loading from the proximal lumbar was applied by MTS in the gradient of 0N to 500N, which simulated the double feet standing stance. The anterior and lateral images of the specimen were obtained through two CCD cameras. Based on Image J software, digital image processing software, which can be freely downloaded from the National Institutes of Health, digital 8-bit images were processed. The procedure includes the recognition of digital marker, image invert, sub-pixel reconstruction, image segmentation, center of mass algorithm based on weighted average of pixel gray values. Vertical displacements of S1 (the first sacral vertebrae) in front view and micro-angular rotation of sacroiliac joint in lateral view were calculated according to the marker movement. The results of digital image measurement showed as following: marker image correlation before and after deformation was excellent. The average correlation coefficient was about 0.983. According to the 768 × 576 pixels image (pixel size 0.68mm × 0.68mm), the precision of the displacement detected in our experiment was about 0.018 pixels and the comparatively error could achieve 1.11\\perthou. The average vertical displacement of S1 of the pelvis was 0.8356+/-0.2830mm under vertical load of 500 Newtons and the average micro-angular rotation of sacroiliac joint in lateral view was 0.584+/-0.221°. The load-displacement curves obtained from our optical measure system

  12. The future of consumer cameras

    NASA Astrophysics Data System (ADS)

    Battiato, Sebastiano; Moltisanti, Marco

    2015-03-01

    In the last two decades multimedia, and in particular imaging devices (camcorders, tablets, mobile phones, etc.) have been dramatically diffused. Moreover the increasing of their computational performances, combined with an higher storage capability, allows them to process large amount of data. In this paper an overview of the current trends of consumer cameras market and technology will be given, providing also some details about the recent past (from Digital Still Camera up today) and forthcoming key issues.

  13. Differences in glance behavior between drivers using a rearview camera, parking sensor system, both technologies, or no technology during low-speed parking maneuvers.

    PubMed

    Kidd, David G; McCartt, Anne T

    2016-02-01

    This study characterized the use of various fields of view during low-speed parking maneuvers by drivers with a rearview camera, a sensor system, a camera and sensor system combined, or neither technology. Participants performed four different low-speed parking maneuvers five times. Glances to different fields of view the second time through the four maneuvers were coded along with the glance locations at the onset of the audible warning from the sensor system and immediately after the warning for participants in the sensor and camera-plus-sensor conditions. Overall, the results suggest that information from cameras and/or sensor systems is used in place of mirrors and shoulder glances. Participants with a camera, sensor system, or both technologies looked over their shoulders significantly less than participants without technology. Participants with cameras (camera and camera-plus-sensor conditions) used their mirrors significantly less compared with participants without cameras (no-technology and sensor conditions). Participants in the camera-plus-sensor condition looked at the center console/camera display for a smaller percentage of the time during the low-speed maneuvers than participants in the camera condition and glanced more frequently to the center console/camera display immediately after the warning from the sensor system compared with the frequency of glances to this location at warning onset. Although this increase was not statistically significant, the pattern suggests that participants in the camera-plus-sensor condition may have used the warning as a cue to look at the camera display. The observed differences in glance behavior between study groups were illustrated by relating it to the visibility of a 12-15-month-old child-size object. These findings provide evidence that drivers adapt their glance behavior during low-speed parking maneuvers following extended use of rearview cameras and parking sensors, and suggest that other technologies which

  14. Differences in glance behavior between drivers using a rearview camera, parking sensor system, both technologies, or no technology during low-speed parking maneuvers.

    PubMed

    Kidd, David G; McCartt, Anne T

    2016-02-01

    This study characterized the use of various fields of view during low-speed parking maneuvers by drivers with a rearview camera, a sensor system, a camera and sensor system combined, or neither technology. Participants performed four different low-speed parking maneuvers five times. Glances to different fields of view the second time through the four maneuvers were coded along with the glance locations at the onset of the audible warning from the sensor system and immediately after the warning for participants in the sensor and camera-plus-sensor conditions. Overall, the results suggest that information from cameras and/or sensor systems is used in place of mirrors and shoulder glances. Participants with a camera, sensor system, or both technologies looked over their shoulders significantly less than participants without technology. Participants with cameras (camera and camera-plus-sensor conditions) used their mirrors significantly less compared with participants without cameras (no-technology and sensor conditions). Participants in the camera-plus-sensor condition looked at the center console/camera display for a smaller percentage of the time during the low-speed maneuvers than participants in the camera condition and glanced more frequently to the center console/camera display immediately after the warning from the sensor system compared with the frequency of glances to this location at warning onset. Although this increase was not statistically significant, the pattern suggests that participants in the camera-plus-sensor condition may have used the warning as a cue to look at the camera display. The observed differences in glance behavior between study groups were illustrated by relating it to the visibility of a 12-15-month-old child-size object. These findings provide evidence that drivers adapt their glance behavior during low-speed parking maneuvers following extended use of rearview cameras and parking sensors, and suggest that other technologies which

  15. New measuring concepts using integrated online analysis of color and monochrome digital high-speed camera sequences

    NASA Astrophysics Data System (ADS)

    Renz, Harald

    1997-05-01

    High speed sequences allow a subjective assessment of very fast processes and serve as an important basis for the quantitative analysis of movements. Computer systems help to acquire, handle, display and store digital image sequences as well as to perform measurement tasks automatically. High speed cameras have been used since several years for safety tests, material testing or production optimization. To get the very high speed of 1000 or more images per second, three have been used mainly 16 mm film cameras, which could provide an excellent image resolution and the required time resolution. But up to now, most results have been only judged by viewing. For some special applications like safety tests using crash or high-g sled tests in the automobile industry there have been used image analyzing techniques to measure also the characteristic of moving objects inside images. High speed films, shot during the short impact, allow judgement of the dynamic scene. Additionally they serve as an important basis for the quantitative analysis of the very fast movements. Thus exact values of the velocity and acceleration, the dummies or vehicles are exposed to, can be derived. For analysis of the sequences the positions of signalized points--mostly markers, which are fixed by the test engineers before a test--have to be measured frame by frame. The trajectories show the temporal sequence of the test objects and are the base for calibrated diagrams of distance, velocity and acceleration. Today there are replaced more and more 16 mm film cameras by electronic high speed cameras. The development of high-speed recording systems is very far advanced and the prices of these systems are more and more comparable to those of traditional film cameras. Also the resolution has been increased very greatly. The new cameras are `crashproof' and can be used for similar tasks as the 16 mm film cameras at similar sizes. High speed video cameras now offer an easy setup and direct access to

  16. Current State of Digital Reference in Primary and Secondary Education; The Technological Challenges of digital Reference; Question Negotiation and the Technological Environment; Evaluation of Chat Reference Service Quality; Visual Resource Reference: Collaboration between Digital Museums and Digital Libraries.

    ERIC Educational Resources Information Center

    Lankes, R. David; Penka, Jeffrey T.; Janes, Joseph; Silverstein, Joanne; White, Marilyn Domas; Abels, Eileen G.; Kaske, Neal; Goodrum, Abby A.

    2003-01-01

    Includes five articles that discuss digital reference in elementary and secondary education; the need to understand the technological environment of digital reference; question negotiation in digital reference; a pilot study that evaluated chat reference service quality; and collaborative digital museum and digital library reference services. (LRW)

  17. A microcontroller-based system for automated and continuous sky glow measurements with the use of digital single-lens reflex cameras

    NASA Astrophysics Data System (ADS)

    Solano Lamphar, Hétor Antonio; Kundracik, Frantisek

    2014-02-01

    In recent years, the scientific community has shown an increased interest in sky glow research. This has revealed an increased need for automated technology that enables continuous evaluation of sky glow. As a result, a reliable low-cost platform has been developed and constructed for automating sky glow measurement. The core of the system is embedded software and hardware managed by a microcontroller with ARM architecture. A monolithic photodiode transimpedance amplifier is used to allow linear light measurement. Data from the diode are collected and used to arrange the exposure time of every image captured by the digital single-lens reflex camera. This proposal supports experimenters by providing a low-cost system to analyse sky glow variations overnight without a human interface.

  18. Digital storytelling: an innovative technological approach to nursing education.

    PubMed

    Price, Deborah M; Strodtman, Linda; Brough, Elizabeth; Lonn, Steven; Luo, Airong

    2015-01-01

    This study investigated the impact of using digital stories in promoting deeper understanding in nursing students about palliative care concepts. Students (N = 134) created a 5-minute narrated digital story utilizing VoiceThread technology that synthesized and applied knowledge that had been presented in class and course readings. Postsurvey and focus group evaluation data revealed that through the writing and sharing of digital stories, students embraced the personal and complex nature of palliative care.

  19. Bridging storytelling traditions with digital technology

    PubMed Central

    Cueva, Melany; Kuhnley, Regina; Revels, Laura J.; Cueva, Katie; Dignan, Mark; Lanier, Anne P.

    2013-01-01

    Objective The purpose of this project was to learn how Community Health Workers (CHWs) in Alaska perceived digital storytelling as a component of the “Path to Understanding Cancer” curriculum and as a culturally respectful tool for sharing cancer-related health messages. Design A pre-course written application, end-of-course written evaluation, and internet survey informed this project. Methods Digital storytelling was included in seven 5-day cancer education courses (May 2009–2012) in which 67 CHWs each created a personal 2–3 minute cancer-related digital story. Participant-chosen digital story topics included tobacco cessation, the importance of recommended cancer screening exams, cancer survivorship, loss, grief and end-of-life comfort care, and self-care as patient care providers. All participants completed an end-of-course written evaluation. In July 2012, contact information was available for 48 participants, of whom 24 completed an internet survey. Results All 67 participants successfully completed a digital story which they shared and discussed with course members. On the written post-course evaluation, all participants reported that combining digital storytelling with cancer education supported their learning and was a culturally respectful way to provide health messages. Additionally, 62 of 67 CHWs reported that the course increased their confidence to share cancer information with their communities. Up to 3 years post-course, all 24 CHW survey respondents reported they had shown their digital story. Of note, 23 of 24 CHWs also reported change in their own behavior as a result of the experience. Conclusions All CHWs, regardless of computer skills, successfully created a digital story as part of the cancer education course. CHWs reported that digital stories enhanced their learning and were a culturally respectful way to share cancer-related information. Digital storytelling gave the power of the media into the hands of CHWs to increase their

  20. Digital video technology - today and tomorrow: 11th office information technology conference

    SciTech Connect

    Liberman, J.

    1994-10-01

    Digital video is probably computing`s fastest moving technology today. Just three years ago, the zenith of digital video technology on the PC was the successful marriage of digital text and graphics with analog audio and video by means of expensive analog laser disc players and video overlay boards. The state of the art involves two different approaches to fully digital video on computers: hardware-assisted and software-only solutions.

  1. Colloquium: Digital Technologies--Help or Hindrance for the Humanities?

    ERIC Educational Resources Information Center

    Barker, Elton; Bissell, Chris; Hardwick, Lorna; Jones, Allan; Ridge, Mia; Wolffe, John

    2012-01-01

    This article offers reflections arising from a recent colloquium at the Open University on the implications of the development of digital humanities for research in arts disciplines, and also for their interactions with computing and technology. Particular issues explored include the ways in which the digital turn in humanities research is also a…

  2. An image compression algorithm for a high-resolution digital still camera

    NASA Technical Reports Server (NTRS)

    Nerheim, Rosalee

    1989-01-01

    The Electronic Still Camera (ESC) project will provide for the capture and transmission of high-quality images without the use of film. The image quality will be superior to video and will approach the quality of 35mm film. The camera, which will have the same general shape and handling as a 35mm camera, will be able to send images to earth in near real-time. Images will be stored in computer memory (RAM) in removable cartridges readable by a computer. To save storage space, the image will be compressed and reconstructed at the time of viewing. Both lossless and loss-y image compression algorithms are studied, described, and compared.

  3. Effective Use of Digital Technologies of High School Teachers as Digital Immigrants in Six Rural Public Schools

    ERIC Educational Resources Information Center

    Pattee, Andy

    2012-01-01

    Problem: A widening experiential gap of effective use of technology in K-12 schools between "digital immigrants" and "digital natives" (Prensky, 2001) is becoming more evident as digital natives become classroom teachers and showcase pedagogical strategies with digital technologies. There is a dearth of research on digital…

  4. The Digital Literacy Debate: An Investigation of Digital Propensity and Information and Communication Technology

    ERIC Educational Resources Information Center

    Nasah, Angelique; DaCosta, Boaventura; Kinsell, Carolyn; Seok, Soonhwa

    2010-01-01

    Research suggests students' use of information and communication technology (ICT) may be more a matter of digital literacy and access rather than a generational trait. We sought to identify ICT preferences of post-secondary students (N = 580) through a Digital Propensity Index (DPI), investigating communication methods, Internet practices and the…

  5. Application of real-time single camera SLAM technology for image-guided targeting in neurosurgery

    NASA Astrophysics Data System (ADS)

    Chang, Yau-Zen; Hou, Jung-Fu; Tsao, Yi Hsiang; Lee, Shih-Tseng

    2012-10-01

    In this paper, we propose an application of augmented reality technology for targeting tumors or anatomical structures inside the skull. The application is a combination of the technologies of MonoSLAM (Single Camera Simultaneous Localization and Mapping) and computer graphics. A stereo vision system is developed to construct geometric data of human face for registration with CT images. Reliability and accuracy of the application is enhanced by the use of fiduciary markers fixed to the skull. The MonoSLAM keeps track of the current location of the camera with respect to an augmented reality (AR) marker using the extended Kalman filter. The fiduciary markers provide reference when the AR marker is invisible to the camera. Relationship between the markers on the face and the augmented reality marker is obtained by a registration procedure by the stereo vision system and is updated on-line. A commercially available Android based tablet PC equipped with a 320×240 front-facing camera was used for implementation. The system is able to provide a live view of the patient overlaid by the solid models of tumors or anatomical structures, as well as the missing part of the tool inside the skull.

  6. Digital photogrammetric analysis of the IMP camera images: Mapping the Mars Pathfinder landing site in three dimensions

    USGS Publications Warehouse

    Kirk, R.L.; Howington-Kraus, E.; Hare, T.; Dorrer, E.; Cook, D.; Becker, K.; Thompson, K.; Redding, B.; Blue, J.; Galuszka, D.; Lee, E.M.; Gaddis, L.R.; Johnson, J. R.; Soderblom, L.A.; Ward, A.W.; Smith, P.H.; Britt, D.T.

    1999-01-01

    This paper describes our photogrammetric analysis of the Imager for Mars Pathfinder data, part of a broader program of mapping the Mars Pathfinder landing site in support of geoscience investigations. This analysis, carried out primarily with a commercial digital photogrammetric system, supported by our in-house Integrated Software for Imagers and Spectrometers (ISIS), consists of three steps: (1) geometric control: simultaneous solution for refined estimates of camera positions and pointing plus three-dimensional (3-D) coordinates of ???103 features sitewide, based on the measured image coordinates of those features; (2) topographic modeling: identification of ???3 ?? 105 closely spaced points in the images and calculation (based on camera parameters from step 1) of their 3-D coordinates, yielding digital terrain models (DTMs); and (3) geometric manipulation of the data: combination of the DTMs from different stereo pairs into a sitewide model, and reprojection of image data to remove parallax between the different spectral filters in the two cameras and to provide an undistorted planimetric view of the site. These processes are described in detail and example products are shown. Plans for combining the photogrammetrically derived topographic data with spectrophotometry are also described. These include photometric modeling using surface orientations from the DTM to study surface microtextures and improve the accuracy of spectral measurements, and photoclinometry to refine the DTM to single-pixel resolution where photometric properties are sufficiently uniform. Finally, the inclusion of rover images in a joint photogrammetric analysis with IMP images is described. This challenging task will provide coverage of areas hidden to the IMP, but accurate ranging of distant features can be achieved only if the lander is also visible in the rover image used. Copyright 1999 by the American Geophysical Union.

  7. Low-cost camera modifications and methodologies for very-high-resolution digital images

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aerial color and color-infrared photography are usually acquired at high altitude so the ground resolution of the photographs is < 1 m. Moreover, current color-infrared cameras and manned aircraft flight time are expensive, so the objective is the development of alternative methods for obtaining ve...

  8. Greenness indices from digital cameras predict the timing and seasonal dynamics of canopy-scale photosynthesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The proliferation of tower-mounted cameras co-located with eddy covariance instrumentation provides a novel opportunity to better understand the relationship between canopy phenology and the seasonality of canopy photosynthesis. In this paper, we describe the abilities and limitations of webcams to ...

  9. The introduction of digital dental technology into BDS curricula.

    PubMed

    Chatham, C; Spencer, M H; Wood, D J; Johnson, A

    2014-12-01

    The aim of this study was to determine the degree to which digital dental technologies have been introduced into the curricula of UK dental schools. A survey was carried out of all the UK dental schools that teach undergraduate dental students. The survey contained six questions and was designed to determine if digital dental technology techniques or systems were being taught in the curricula, what these techniques were, and whether the school dental laboratories supported these techniques. Sixteen schools were surveyed and 11 replied: a response rate of 69%. Forty-five percent of the schools that replied did not teach digital dental technology in their curriculum. Of the 55% of schools who did teach digital dental technology, 50% gave lectures or demonstrations while the other 50% allowed practical involvement by the student. Two thirds of these stated that not all the students participated in practical usage. Seventy-three percent of the schools that replied had dental laboratories using some, but not all the digital dental technology techniques listed. Eighty percent of the schools that were not teaching digital dental technology said it was because it was not included in the curriculum, and 20% stated it was due to a lack of technical expertise or support.

  10. Vicious cycles: digital technologies and determinants of health in Australia.

    PubMed

    Baum, Fran; Newman, Lareen; Biedrzycki, Katherine

    2014-06-01

    Digital technologies are increasingly important as ways to gain access to most of the important social determinants of health including employment, housing, education and social networks. However, little is known about the impact of the new technologies on opportunities for health and well-being. This paper reports on a focus group study of the impact of these technologies on people from low socio-economic backgrounds. We use Bourdieu's theories of social inequities and the ways in which social, cultural and economic capitals interact to reinforce and reproduce inequities to examine the ways in which digital technologies are contributing to these processes. Six focus group discussions with 55 people were held to examine their access to and views about using digital technologies. These data are analysed in light of Bourdieu's theory to determine how people's existing capitals shape their access to and use of digital technologies and what the implications of exclusion from the technologies are likely to be for the social determinants of health. The paper concludes that some people are being caught in a vicious cycle whereby lack of digital access or the inability to make beneficial use reinforces and amplifies existing disadvantage including low levels of reading and writing literacy. The paper concludes with a consideration of actions health promoters could take to interrupt this cycle and so contribute to reducing health inequities.

  11. Vicious cycles: digital technologies and determinants of health in Australia.

    PubMed

    Baum, Fran; Newman, Lareen; Biedrzycki, Katherine

    2014-06-01

    Digital technologies are increasingly important as ways to gain access to most of the important social determinants of health including employment, housing, education and social networks. However, little is known about the impact of the new technologies on opportunities for health and well-being. This paper reports on a focus group study of the impact of these technologies on people from low socio-economic backgrounds. We use Bourdieu's theories of social inequities and the ways in which social, cultural and economic capitals interact to reinforce and reproduce inequities to examine the ways in which digital technologies are contributing to these processes. Six focus group discussions with 55 people were held to examine their access to and views about using digital technologies. These data are analysed in light of Bourdieu's theory to determine how people's existing capitals shape their access to and use of digital technologies and what the implications of exclusion from the technologies are likely to be for the social determinants of health. The paper concludes that some people are being caught in a vicious cycle whereby lack of digital access or the inability to make beneficial use reinforces and amplifies existing disadvantage including low levels of reading and writing literacy. The paper concludes with a consideration of actions health promoters could take to interrupt this cycle and so contribute to reducing health inequities. PMID:23144236

  12. A Digital Readout System For The CSO Microwave Kinetic Inductance Camera

    NASA Astrophysics Data System (ADS)

    Max-Moerbeck, Walter; Mazin, B. A.; Zmuidzinas, J.

    2007-12-01

    Submillimeter galaxies are important to the understanding of galaxy formation and evolution. Determination of the spectral energy distribution in the millimeter and submillimeter regimes allows important and powerful diagnostics. Our group is developing a camera for the Caltech Submillimeter Observatory (CSO) using Microwave Kinetic Inductance Detectors (MKIDs). MKIDs are superconducting devices whose impedance changes with the absorption of photons. The camera will have 600 spatial pixels and 4 bands at 750 μm, 850 μm, 1.1 mm and 1.3 mm. For each spatial pixel of the camera the radiation is coupled to the MKIDs using phased-array antennas. This signal is split into 4 different bands using filters and detected using the superconductor as part of a MKID's resonant circuit. The detection process consists of measurement of the changes in the transmission through the resonator when it is illuminated. By designing resonant circuits to have different resonant frequencies and high transmission out resonance, MKIDs can be frequency-domain multiplexed. This allows the simultaneous readout of many detectors through a single coaxial cable. The readout system makes use of microwave IQ modulation and is based on commercial electronics components operating at room temperature. The basic readout has been demonstrated on the CSO. We are working on the implementation of an improved design to be tested on a prototype system with 6x6 pixels and 4 colors next April on the CSO.

  13. Single-camera microscopic stereo digital image correlation using a diffraction grating.

    PubMed

    Pan, Bing; Wang, Qiong

    2013-10-21

    A simple, cost-effective but practical microscopic 3D-DIC method using a single camera and a transmission diffraction grating is proposed for surface profile and deformation measurement of small-scale objects. By illuminating a test sample with quasi-monochromatic source, the transmission diffraction grating placed in front of the camera can produce two laterally spaced first-order diffraction views of the sample surface into the two halves of the camera target. The single image comprising negative and positive first-order diffraction views can be used to reconstruct the profile of the test sample, while the two single images acquired before and after deformation can be employed to determine the 3D displacements and strains of the sample surface. The basic principles and implementation procedures of the proposed technique for microscopic 3D profile and deformation measurement are described in detail. The effectiveness and accuracy of the presented microscopic 3D-DIC method is verified by measuring the profile and 3D displacements of a regular cylinder surface.

  14. Digital Storytelling: Using Technology to Spark Creativity

    ERIC Educational Resources Information Center

    Tackvic, Charlene

    2012-01-01

    For any curriculum area that entails writing, digital storytelling could transform students' perceptions of and their actual abilities to express themselves through the written word. The use of two Web sites has helped the students of one school go from staring apprehensively at blank pages to eagerly publishing stories.

  15. Airborne Digital Sensor System and GPS-aided inertial technology for direct geopositioning in rough terrain

    USGS Publications Warehouse

    Sanchez, Richard D.

    2004-01-01

    High-resolution airborne digital cameras with onboard data collection based on the Global Positioning System (GPS) and inertial navigation systems (INS) technology may offer a real-time means to gather accurate topographic map information by reducing ground control and eliminating aerial triangulation. Past evaluations of this integrated system over relatively flat terrain have proven successful. The author uses Emerge Digital Sensor System (DSS) combined with Applanix Corporation?s Position and Orientation Solutions for Direct Georeferencing to examine the positional mapping accuracy in rough terrain. The positional accuracy documented in this study did not meet large-scale mapping requirements owing to an apparent system mechanical failure. Nonetheless, the findings yield important information on a new approach for mapping in Antarctica and other remote or inaccessible areas of the world.

  16. Automatic digitization of flash x rays: Applying a new technology to an old diagnostic

    SciTech Connect

    Lee, C.G.; Osher, J.E.; Haskins, J.; Rikard, R.D.

    1989-05-30

    By digitizing the radiographs of targets we take before and after impact for our electric gun experiments, we have greatly improved both the quality of the information we receive from our flash x-ray machine. This new technology enables us to extract more information than ever before and do it accurately and efficiently. A charge-coupled-device (CCD) camera changes the radiograph images to analog signals, which are then converted to digital signals for processing in our MicroVAX and VAX computers. A signal-processing program called VIEW manipulates the signals and produces color-enhanced images that are displayed on color monitors. Analysis of these images results in quicker and more efficient data extraction; the addition of color adds new dimensions to our interpretation of the information. 1 ref., 8 figs.

  17. New Digital Technologies: Educational Opportunities for Australian Indigenous Learners

    ERIC Educational Resources Information Center

    Watson, Shalini

    2013-01-01

    This article presents a number of possibilities that digital technologies can offer to increase access for Indigenous people to higher education in Australia. Such technologies can assist Indigenous high school students acquire the knowledge and skills they require to be accepted into higher education courses. They can also assist Indigenous…

  18. Technology Tools to Support Reading in the Digital Age

    ERIC Educational Resources Information Center

    Biancarosa, Gina; Griffiths, Gina G.

    2012-01-01

    Advances in digital technologies are dramatically altering the texts and tools available to teachers and students. These technological advances have created excitement among many for their potential to be used as instructional tools for literacy education. Yet with the promise of these advances come issues that can exacerbate the literacy…

  19. Technological Implications for Assessment Ecosystems: Opportunities for Digital Technology to Advance Assessment

    ERIC Educational Resources Information Center

    Behrens, John T.; DiCerbo, Kristen E.

    2014-01-01

    Background: It would be easy to think the technological shifts in the digital revolution are simple incremental progressions in societal advancement. However, the nature of digital technology is resulting in qualitative differences in nearly all parts of daily life. Purpose: This paper investigates how the new possibilities for understanding,…

  20. Technology research for digital flight control

    NASA Technical Reports Server (NTRS)

    Carestia, R. A.

    1983-01-01

    The use of advanced digital systems for flight control and guidance for a specific mission is investigated. The research areas include advanced electronic system architectures, tests with the global positioning system (GPS) in a helicopter, and advanced integrated systems concept for rotorcraft. Emphasis is on a search and rescue mission, differential global positioning systems to provide a data base of performance information for navigation, and a study to determine the present usage and trends of microcomputers and microcomputer components in the avionics industries.

  1. Digital multi-focusing from a single photograph taken with an uncalibrated conventional camera.

    PubMed

    Cao, Yang; Fang, Shuai; Wang, Zengfu

    2013-09-01

    The demand to restore all-in-focus images from defocused images and produce photographs focused at different depths is emerging in more and more cases, such as low-end hand-held cameras and surveillance cameras. In this paper, we manage to solve this challenging multi-focusing problem with a single image taken with an uncalibrated conventional camera. Different from all existing multi-focusing approaches, our method does not need to include a deconvolution process, which is quite time-consuming and will cause ringing artifacts in the focused region and low depth-of-field. This paper proposes a novel systematic approach to realize multi-focusing from a single photograph. First of all, with the optical explanation for the local smooth assumption, we present a new point-to-point defocus model. Next, the blur map of the input image, which reflects the amount of defocus blur at each pixel in the image, is estimated by two steps. 1) With the sharp edge prior, a rough blur map is obtained by estimating the blur amount at the edge regions. 2) The guided image filter is applied to propagate the blur value from the edge regions to the whole image by which a refined blur map is obtained. Thus far, we can restore the all-in-focus photograph from a defocused input. To further produce photographs focused at different depths, the depth map from the blur map must be derived. To eliminate the ambiguity over the focal plane, user interaction is introduced and a binary graph cut algorithm is used. So we introduce user interaction and use a binary graph cut algorithm to eliminate the ambiguity over the focal plane. Coupled with the camera parameters, this approach produces images focused at different depths. The performance of this new multi-focusing algorithm is evaluated both objectively and subjectively by various test images. Both results demonstrate that this algorithm produces high quality depth maps and multi-focusing results, outperforming the previous approaches. PMID

  2. Homogeneous nucleation rates from the piston-expansion tube using a digital camera

    NASA Astrophysics Data System (ADS)

    Peters, Franz; Graßmann, Arne

    2000-08-01

    Homogeneous nucleation rates of n-pentanol in nitrogen are obtained from a piston-expansion tube (pex-tube) involving the nucleation pulse method which generates a limited number of nuclei that grow into droplets. The detection of the droplets is achieved by a new counting method developed on the basis of a CCD camera in combination with a laser light sheet. Nucleation rates between 104 and 109cm-3 s-1 are covered for the nucleation temperature 260 K. The rates are plotted as isotherms versus supersaturation. An influence of the initial expansion temperature on the nucleation rate is identified. Literature data from other expansion experiments agree with our finding.

  3. Field test comparison of an autocorrelation technique for determining grain size using a digital 'beachball' camera versus traditional methods

    USGS Publications Warehouse

    Barnard, P.L.; Rubin, D.M.; Harney, J.; Mustain, N.

    2007-01-01

    This extensive field test of an autocorrelation technique for determining grain size from digital images was conducted using a digital bed-sediment camera, or 'beachball' camera. Using 205 sediment samples and >1200 images from a variety of beaches on the west coast of the US, grain size ranging from sand to granules was measured from field samples using both the autocorrelation technique developed by Rubin [Rubin, D.M., 2004. A simple autocorrelation algorithm for determining grain size from digital images of sediment. Journal of Sedimentary Research, 74(1): 160-165.] and traditional methods (i.e. settling tube analysis, sieving, and point counts). To test the accuracy of the digital-image grain size algorithm, we compared results with manual point counts of an extensive image data set in the Santa Barbara littoral cell. Grain sizes calculated using the autocorrelation algorithm were highly correlated with the point counts of the same images (r2 = 0.93; n = 79) and had an error of only 1%. Comparisons of calculated grain sizes and grain sizes measured from grab samples demonstrated that the autocorrelation technique works well on high-energy dissipative beaches with well-sorted sediment such as in the Pacific Northwest (r2 ??? 0.92; n = 115). On less dissipative, more poorly sorted beaches such as Ocean Beach in San Francisco, results were not as good (r2 ??? 0.70; n = 67; within 3% accuracy). Because the algorithm works well compared with point counts of the same image, the poorer correlation with grab samples must be a result of actual spatial and vertical variability of sediment in the field; closer agreement between grain size in the images and grain size of grab samples can be achieved by increasing the sampling volume of the images (taking more images, distributed over a volume comparable to that of a grab sample). In all field tests the autocorrelation method was able to predict the mean and median grain size with ???96% accuracy, which is more than

  4. Online rate control in digital cameras for near-constant distortion based on minimum/maximum criterion

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Yong; Ortega, Antonio

    2000-04-01

    We address the problem of online rate control in digital cameras, where the goal is to achieve near-constant distortion for each image. Digital cameras usually have a pre-determined number of images that can be stored for the given memory size and require limited time delay and constant quality for each image. Due to time delay restrictions, each image should be stored before the next image is received. Therefore, we need to define an online rate control that is based on the amount of memory used by previously stored images, the current image, and the estimated rate of future images. In this paper, we propose an algorithm for online rate control, in which an adaptive reference, a 'buffer-like' constraint, and a minimax criterion (as a distortion metric to achieve near-constant quality) are used. The adaptive reference is used to estimate future images and the 'buffer-like' constraint is required to keep enough memory for future images. We show that using our algorithm to select online bit allocation for each image in a randomly given set of images provides near constant quality. Also, we show that our result is near optimal when a minimax criterion is used, i.e., it achieves a performance close to that obtained by applying an off-line rate control that assumes exact knowledge of the images. Suboptimal behavior is only observed in situations where the distribution of images is not truly random (e.g., if most of the 'complex' images are captured at the end of the sequence.) Finally, we propose a T- step delay rate control algorithm and using the result of 1- step delay rate control algorithm, we show that this algorithm removes the suboptimal behavior.

  5. Quantitative single-particle digital autoradiography with α-particle emitters for targeted radionuclide therapy using the iQID camera

    SciTech Connect

    Miller, Brian W.; Frost, Sofia H. L.; Frayo, Shani L.; Kenoyer, Aimee L.; Santos, Erlinda; Jones, Jon C.; Orozco, Johnnie J.; Green, Damian J.; Press, Oliver W.; Pagel, John M.; Sandmaier, Brenda M.; Hamlin, Donald K.; Wilbur, D. Scott; Fisher, Darrell R.

    2015-07-15

    Purpose: Alpha-emitting radionuclides exhibit a potential advantage for cancer treatments because they release large amounts of ionizing energy over a few cell diameters (50–80 μm), causing localized, irreparable double-strand DNA breaks that lead to cell death. Radioimmunotherapy (RIT) approaches using monoclonal antibodies labeled with α emitters may thus inactivate targeted cells with minimal radiation damage to surrounding tissues. Tools are needed to visualize and quantify the radioactivity distribution and absorbed doses to targeted and nontargeted cells for accurate dosimetry of all treatment regimens utilizing α particles, including RIT and others (e.g., Ra-223), especially for organs and tumors with heterogeneous radionuclide distributions. The aim of this study was to evaluate and characterize a novel single-particle digital autoradiography imager, the ionizing-radiation quantum imaging detector (iQID) camera, for use in α-RIT experiments. Methods: The iQID camera is a scintillator-based radiation detection system that images and identifies charged-particle and gamma-ray/x-ray emissions spatially and temporally on an event-by-event basis. It employs CCD-CMOS cameras and high-performance computing hardware for real-time imaging and activity quantification of tissue sections, approaching cellular resolutions. In this work, the authors evaluated its characteristics for α-particle imaging, including measurements of intrinsic detector spatial resolutions and background count rates at various detector configurations and quantification of activity distributions. The technique was assessed for quantitative imaging of astatine-211 ({sup 211}At) activity distributions in cryosections of murine and canine tissue samples. Results: The highest spatial resolution was measured at ∼20 μm full width at half maximum and the α-particle background was measured at a rate as low as (2.6 ± 0.5) × 10{sup −4} cpm/cm{sup 2} (40 mm diameter detector area

  6. Quantitative single-particle digital autoradiography with α-particle emitters for targeted radionuclide therapy using the iQID camera

    PubMed Central

    Miller, Brian W.; Frost, Sofia H. L.; Frayo, Shani L.; Kenoyer, Aimee L.; Santos, Erlinda; Jones, Jon C.; Green, Damian J.; Hamlin, Donald K.; Wilbur, D. Scott; Orozco, Johnnie J.; Press, Oliver W.; Pagel, John M.; Sandmaier, Brenda M.

    2015-01-01

    Purpose: Alpha-emitting radionuclides exhibit a potential advantage for cancer treatments because they release large amounts of ionizing energy over a few cell diameters (50–80 μm), causing localized, irreparable double-strand DNA breaks that lead to cell death. Radioimmunotherapy (RIT) approaches using monoclonal antibodies labeled with α emitters may thus inactivate targeted cells with minimal radiation damage to surrounding tissues. Tools are needed to visualize and quantify the radioactivity distribution and absorbed doses to targeted and nontargeted cells for accurate dosimetry of all treatment regimens utilizing α particles, including RIT and others (e.g., Ra-223), especially for organs and tumors with heterogeneous radionuclide distributions. The aim of this study was to evaluate and characterize a novel single-particle digital autoradiography imager, the ionizing-radiation quantum imaging detector (iQID) camera, for use in α-RIT experiments. Methods: The iQID camera is a scintillator-based radiation detection system that images and identifies charged-particle and gamma-ray/x-ray emissions spatially and temporally on an event-by-event basis. It employs CCD-CMOS cameras and high-performance computing hardware for real-time imaging and activity quantification of tissue sections, approaching cellular resolutions. In this work, the authors evaluated its characteristics for α-particle imaging, including measurements of intrinsic detector spatial resolutions and background count rates at various detector configurations and quantification of activity distributions. The technique was assessed for quantitative imaging of astatine-211 (211At) activity distributions in cryosections of murine and canine tissue samples. Results: The highest spatial resolution was measured at ∼20 μm full width at half maximum and the α-particle background was measured at a rate as low as (2.6 ± 0.5) × 10−4 cpm/cm2 (40 mm diameter detector area). Simultaneous imaging of

  7. A digital architecture for striping noise compensation in push-broom hyperspectral cameras

    NASA Astrophysics Data System (ADS)

    Valenzuela, Wladimir E.; Figueroa, Miguel; Pezoa, Jorge E.; Meza, Pablo

    2015-09-01

    We present a striping noise compensation architecture for hyperspectral push-broom cameras, implemented on a Field-Programmable Gate Array (FPGA). The circuit is fast, compact, low power, and is capable of eliminating the striping noise in-line during the image acquisition process. The architecture implements a multi dimensional neural network (MDNN) algorithm for striping noise compensation previously reported by our group. The algorithm relies on the assumption that the amount of light impinging at the neighboring photo-detectors is approximately the same in the spatial and spectral dimensions. Under this assumption, two striping noise parameters are estimated using spatial and spectral information from the raw data. We implemented the circuit on a Xilinx ZYNQ XC7Z2010 FPGA and tested it with images obtained from a NIR N17E push-broom camera, with a frame rate of 25fps and a band-pixel rate of 1.888 MHz. The setup consists of a loop of 320 samples of 320 spatial lines and 236 spectral bands between 900 and 1700 nanometers, in laboratory condition, captured with a rigid push-broom controller. The noise compensation core can run at more than 100 MHZ and consumes less than 30mW of dynamic power, using less than 10% of the logic resources available on the chip. It also uses one of two ARM processors available on the FPGA for data acquisition and communication purposes.

  8. New Trends of Emerging Technologies in Digital Pathology.

    PubMed

    Bueno, Gloria; Fernández-Carrobles, M Milagro; Deniz, Oscar; García-Rojo, Marcial

    2016-01-01

    The future paradigm of pathology will be digital. Instead of conventional microscopy, a pathologist will perform a diagnosis through interacting with images on computer screens and performing quantitative analysis. The fourth generation of virtual slide telepathology systems, so-called virtual microscopy and whole-slide imaging (WSI), has allowed for the storage and fast dissemination of image data in pathology and other biomedical areas. These novel digital imaging modalities encompass high-resolution scanning of tissue slides and derived technologies, including automatic digitization and computational processing of whole microscopic slides. Moreover, automated image analysis with WSI can extract specific diagnostic features of diseases and quantify individual components of these features to support diagnoses and provide informative clinical measures of disease. Therefore, the challenge is to apply information technology and image analysis methods to exploit the new and emerging digital pathology technologies effectively in order to process and model all the data and information contained in WSI. The final objective is to support the complex workflow from specimen receipt to anatomic pathology report transmission, that is, to improve diagnosis both in terms of pathologists' efficiency and with new information. This article reviews the main concerns about and novel methods of digital pathology discussed at the latest workshop in the field carried out within the European project AIDPATH (Academia and Industry Collaboration for Digital Pathology). PMID:27100343

  9. Educational Perspectives on Digital Communications Technologies

    ERIC Educational Resources Information Center

    Brett, Clare

    2009-01-01

    This article examines key issues in how new technologies are impacting upon how we teach, learn and collaborate, and uses an educational research project called GRAIL (Graduate Researcher's Academic Identity Online) under development to illustrate some fundamental issues in adopting new technologies. A significant challenge to the effective use of…

  10. High precision digital control LED spot light source used to calibrate camera

    NASA Astrophysics Data System (ADS)

    Du, Boyu; Xu, Xiping; Liu, Yang

    2015-04-01

    This paper introduces a method of using LED point light source as the camera calibration light. According to the characteristics of the LED point light source, the constant current source is used to provide the necessary current and the illuminometer is used to measure the luminance of the LED point light source. The constant current source is controlled by ARM MCU and exchange data with the host computer though the mode of serial communications. The PC is used as the host computer, it adjust the current according to the luminance of the LED point light source until the luminance achieve the anticipated value. By experimental analysis, we found that the LED point light source can achieve the desired requirements as the calibration light source, and the accuracy is quite better that achieve the desired effect and it can adaptive control the luminance of LED well. The system is convenient and flexible, and its performance is stable and reliable.

  11. Noncontact imaging of plethysmographic pulsation and spontaneous low-frequency oscillation in skin perfusion with a digital red-green-blue camera

    NASA Astrophysics Data System (ADS)

    Nishidate, Izumi; Hoshi, Akira; Aoki, Yuta; Nakano, Kazuya; Niizeki, Kyuichi; Aizu, Yoshihisa

    2016-03-01

    A non-contact imaging method with a digital RGB camera is proposed to evaluate plethysmogram and spontaneous lowfrequency oscillation. In vivo experiments with human skin during mental stress induced by the Stroop color-word test demonstrated the feasibility of the method to evaluate the activities of autonomic nervous systems.

  12. Using immersive media and digital technology to communicate Earth Science

    NASA Astrophysics Data System (ADS)

    Kapur, Ravi

    2016-04-01

    A number of technologies in digital media and interactivity have rapidly advanced and are now converging to enable rich, multi-sensoral experiences which create opportunities for both digital art and science communication. Techniques used in full-dome film-making can now be deployed in virtual reality experiences; gaming technologies can be utilised to explore real data sets; and collaborative interactivity enable new forms of public artwork. This session will explore these converging trends through a number of emerging and forthcoming projects dealing with Earth science, climate change and planetary science.

  13. Two Persons with Multiple Disabilities Use Camera-Based Microswitch Technology to Control Stimulation with Small Mouth and Eyelid Responses

    ERIC Educational Resources Information Center

    Lancioni, Giulio E.; Bellini, Domenico; Oliva, Doretta; Singh, Nirbhay N.; O'Reilly, Mark F.; Sigafoos, Jeff; Lang, Russell

    2012-01-01

    Background: A camera-based microswitch technology was recently developed to monitor small facial responses of persons with multiple disabilities and allow those responses to control environmental stimulation. This study assessed such a technology with 2 new participants using slight variations of previous responses. Method: The technology involved…

  14. Validity and reliability of a dietary assessment method: the application of a digital camera with a mobile phone card attachment.

    PubMed

    Wang, Da-Hong; Kogashiwa, Michiko; Ohta, Sachiko; Kira, Shohei

    2002-12-01

    This study was aimed at evaluation of the validity and reliability of an alternative dietary measurement method that assists epidemiologic studies. We validated a handheld personal digital assistant with camera and mobile phone card, called Wellnavi, in which a 1-d weighed diet record was employed as a reference method. Twenty college students majoring in food and nutrition participated in this study. They were asked to keep a diet record and to take digital photos of all these recorded food at the same time, then send them to the dietitians by the mobile phone card. In the reliability study, other twenty students from the same college were asked to take digital photos of the same meal during a day by two same instruments under the same circumstances and to send these photos to the different dietitians electronically. With respect to validity, median nutrient intakes estimated by the Wellnavi method and the diet record method are comparable. Correlation coefficients between the median nutrient intakes estimated from these two methods ranged from 0.46 for monounsaturated fatty acid to 0.93 for vitamin B12 and copper (median r = 0.77). With respect to reliability, our data show a good agreement between two Wellnavi instruments for most of the nutrients. Correlation coefficients between the nutrient intakes estimated from 2 instruments ranged from 0.55 for vitamin B1 and water-insoluble dietary fiber to 0.92 for vitamin B12 (median r = 0.78). In conclusion, the results indicate this dietary assessment instrument can usefully measure individual dietary intakes for a variety of nutrients in an epidemiologic study. PMID:12775117

  15. Measuring stress intensity factors with a camera: Integrated digital image correlation (I-DIC)

    NASA Astrophysics Data System (ADS)

    Hild, François; Roux, Stéphane

    2006-01-01

    A novel 'integrated' approach coupling image correlation and elastic displacement field identification provides a powerful and accurate tool to evaluate mode I and II stress intensity factors. This technique is applied to silicon carbide subjected to a sandwiched three-point bend test, using digital pictures obtained in optical microscopy where the pixel physical scale is about 2 μm. A crack whose maximum opening is 500 nm can be detected and its geometry identified. The toughness is determined well within a 10%uncertainty. To cite this article: F. Hild, S. Roux, C. R. Mecanique 334 (2006).

  16. Digital video technologies and their network requirements

    SciTech Connect

    R. P. Tsang; H. Y. Chen; J. M. Brandt; J. A. Hutchins

    1999-11-01

    Coded digital video signals are considered to be one of the most difficult data types to transport due to their real-time requirements and high bit rate variability. In this study, the authors discuss the coding mechanisms incorporated by the major compression standards bodies, i.e., JPEG and MPEG, as well as more advanced coding mechanisms such as wavelet and fractal techniques. The relationship between the applications which use these coding schemes and their network requirements are the major focus of this study. Specifically, the authors relate network latency, channel transmission reliability, random access speed, buffering and network bandwidth with the various coding techniques as a function of the applications which use them. Such applications include High-Definition Television, Video Conferencing, Computer-Supported Collaborative Work (CSCW), and Medical Imaging.

  17. Imaging Emission Spectra with Handheld and Cellphone Cameras

    NASA Astrophysics Data System (ADS)

    Sitar, David

    2012-12-01

    As point-and-shoot digital camera technology advances it is becoming easier to image spectra in a laboralory setting on a shoestring budget and get immediale results. With this in mind, I wanted to test three cameras to see how their results would differ. Two undergraduate physics students and I used one handheld 7.1 megapixel (MP) digital Cannon point-and-shoot auto focusing camera and two different cellphone cameras: one at 6.1 MP and the other at 5.1 MP.

  18. Technology tools to support reading in the digital age.

    PubMed

    Biancarosa, Gina; Griffiths, Gina G

    2012-01-01

    Advances in digital technologies are dramatically altering the texts and tools available to teachers and students. These technological advances have created excitement among many for their potential to be used as instructional tools for literacy education. Yet with the promise of these advances come issues that can exacerbate the literacy challenges identified in the other articles in this issue. In this article Gina Biancarosa and Gina Griffiths characterize how literacy demands have changed in the digital age and how challenges identified in other articles in the issue intersect with these new demands. Rather than seeing technology as something to be fit into an already crowded education agenda, Biancarosa and Griffiths argue that technology can be conceptualized as affording tools that teachers can deploy in their quest to create young readers who possess the higher levels of literacy skills and background knowledge demanded by today's information-based society. Biancarosa and Griffiths draw on research to highlight some of the ways technology has been used to build the skills and knowledge needed both by children who are learning to read and by those who have progressed to reading to learn. In their review of the research, Biancarosa and Griffiths focus on the hardware and software used to display and interface with digital text, or what they term e-reading technology. Drawing on studies of e-reading technology and computer technology more broadly, they also reflect on the very real, practical challenges to optimal use of e-reading technology. The authors conclude by presenting four recommendations to help schools and school systems meet some of the challenges that come with investing in e-reading technology: use only technologies that support Universal Design for Learning; choose evidence-based tools; provide technology users with systemic supports; and capitalize on the data capacities and volume of information that technology provides.

  19. Quantitative Single-Particle Digital Autoradiography with α-Particle Emitters for Targeted Radionuclide Therapy using the iQID Camera

    SciTech Connect

    Miller, Brian W.; Frost, Sophia; Frayo, Shani; Kenoyer, Aimee L.; Santos, E. B.; Jones, Jon C.; Green, Damian J.; Hamlin, Donald K.; Wilbur, D. Scott; Fisher, Darrell R.; Orozco, Johnnie J.; Press, Oliver W.; Pagel, John M.; Sandmaier, B. M.

    2015-07-01

    Abstract Alpha emitting radionuclides exhibit a potential advantage for cancer treatments because they release large amounts of ionizing energy over a few cell diameters (50–80 μm) causing localized, irreparable double-strand DNA breaks that lead to cell death. Radioimmunotherapy (RIT) approaches using monoclonal antibodies labeled with alpha emitters may inactivate targeted cells with minimal radiation damage to surrounding tissues. For accurate dosimetry in alpha-RIT, tools are needed to visualize and quantify the radioactivity distribution and absorbed dose to targeted and non-targeted cells, especially for organs and tumors with heterogeneous radionuclide distributions. The aim of this study was to evaluate and characterize a novel single-particle digital autoradiography imager, iQID (ionizing-radiation Quantum Imaging Detector), for use in alpha-RIT experiments. Methods: The iQID camera is a scintillator-based radiation detection technology that images and identifies charged-particle and gamma-ray/X-ray emissions spatially and temporally on an event-by-event basis. It employs recent advances in CCD/CMOS cameras and computing hardware for real-time imaging and activity quantification of tissue sections, approaching cellular resolutions. In this work, we evaluated this system’s characteristics for alpha particle imaging including measurements of spatial resolution and background count rates at various detector configurations and quantification of activity distributions. The technique was assessed for quantitative imaging of astatine-211 (211At) activity distributions in cryosections of murine and canine tissue samples. Results: The highest spatial resolution was measured at ~20 μm full width at half maximum (FWHM) and the alpha particle background was measured at a rate of (2.6 ± 0.5) × 10–4 cpm/cm2 (40 mm diameter detector area). Simultaneous imaging of multiple tissue sections was performed using a large-area iQID configuration (ø 11.5 cm

  20. Coherent digital demodulation of single-camera N-projections for 3D-object shape measurement: co-phased profilometry.

    PubMed

    Servin, M; Garnica, G; Estrada, J C; Quiroga, A

    2013-10-21

    Fringe projection profilometry is a well-known technique to digitize 3-dimensional (3D) objects and it is widely used in robotic vision and industrial inspection. Probably the single most important problem in single-camera, single-projection profilometry are the shadows and specular reflections generated by the 3D object under analysis. Here a single-camera along with N-fringe-projections is (digital) coherent demodulated in a single-step, solving the shadows and specular reflections problem. Co-phased profilometry coherently phase-demodulates a whole set of N-fringe-pattern perspectives in a single demodulation and unwrapping process. The mathematical theory behind digital co-phasing N-fringe-patterns is mathematically similar to co-phasing a segmented N-mirror telescope.

  1. Referenced dual pressure- and temperature-sensitive paint for digital color camera read out.

    PubMed

    Fischer, Lorenz H; Karakus, Cüneyt; Meier, Robert J; Risch, Nikolaus; Wolfbeis, Otto S; Holder, Elisabeth; Schäferling, Michael

    2012-12-01

    The first fluorescent material for the referenced simultaneous RGB (red green blue) imaging of barometric pressure (oxygen partial pressure) and temperature is presented. This sensitive coating consists of two platinum(II) complexes as indicators and a reference dye, each of which is incorporated in appropriate polymer nanoparticles. These particles are dispersed in a polyurethane hydrogel and spread onto a solid support. The emission of the (oxygen) pressure indicator, PtTFPP, matches the red channel of a RGB color camera, whilst the emission of the temperature indicator [Pt(II) (Br-thq)(acac)] matches the green channel. The reference dye, 9,10-diphenylanthracene, emits in the blue channel. In contrast to other dual-sensitive materials, this new coating allows for the simultaneous imaging of both indicator signals, as well as the reference signal, in one RGB color picture without having to separate the signals with additional optical filters. All of these dyes are excitable with a 405 nm light-emitting diode (LED). With this new composite material, barometric pressure can be determined with a resolution of 22 mbar; the temperature can be determined with a resolution of 4.3 °C.

  2. Single camera absolute motion based digital elevation mapping for a next generation planetary lander

    NASA Astrophysics Data System (ADS)

    Feetham, Luke M.; Aouf, Nabil; Bourdarias, Clement; Voirin, Thomas

    2014-05-01

    Robotic planetary surface exploration missions are becoming much more ambitious in their science goals as they attempt to answer the bigger questions relating to the possibility of life elsewhere in our solar system. Answering these questions will require scientifically rich landing sites. Such sites are unlikely to be located in relatively flat regions that are free from hazards, therefore there is a growing need for next generation entry descent and landing systems to possess highly sophisticated navigation capabilities coupled with active hazard avoidance that can enable a pin-point landing. As a first step towards achieving these goals, a multi-source, multi-rate data fusion algorithm is presented that combines single camera recursive feature-based structure from motion (SfM) estimates with measurements from an inertial measurement unit in order to overcome the scale ambiguity problem by directly estimating the unknown scale factor. This paper focuses on accurate estimation of absolute motion parameters, as well as the estimation of sparse landing site structure to provide a starting point for hazard detection. We assume no prior knowledge of the landing site terrain structure or of the landing craft motion in order to fully assess the capabilities of the proposed algorithm to allow a pin-point landing on distant solar system bodies where accurate knowledge of the desired landing site may be limited. We present results using representative synthetic images of deliberately challenging landing scenarios, which demonstrates that the proposed method has great potential.

  3. Digital Citizenship: Addressing Appropriate Technology Behavior

    ERIC Educational Resources Information Center

    Ribble, Mike S.; Bailey, Gerald D.; Ross, Tweed W.

    2004-01-01

    Recently, the popular press has pointed to increasing evidence of misuse and abuse of emerging technologies in U.S. schools. Some examples include using Web sites to intimidate or threaten students, downloading music illegally from the Internet, plagiarizing information using the Internet, using cellular phones during class time, and playing games…

  4. Cultivating Wisdom through Digital Learning Technologies

    ERIC Educational Resources Information Center

    Kok, Ayse

    2009-01-01

    The word "wisdom" is rarely seen in contemporary technology and learning discourse. This conceptual paper aims to provide some clear principles that answer the question: How can we establish wisdom in complex learning networks? By considering the nature of contemporary calls for wisdom the paper provides a metatheoretical framework to…

  5. Range-Gated LADAR Coherent Imaging Using Parametric Up-Conversion of IR and NIR Light for Imaging with a Visible-Range Fast-Shuttered Intensified Digital CCD Camera

    SciTech Connect

    YATES,GEORGE J.; MCDONALD,THOMAS E. JR.; BLISS,DAVID E.; CAMERON,STEWART M.; ZUTAVERN,FRED J.

    2000-12-20

    Research is presented on infrared (IR) and near infrared (NIR) sensitive sensor technologies for use in a high speed shuttered/intensified digital video camera system for range-gated imaging at ''eye-safe'' wavelengths in the region of 1.5 microns. The study is based upon nonlinear crystals used for second harmonic generation (SHG) in optical parametric oscillators (OPOS) for conversion of NIR and IR laser light to visible range light for detection with generic S-20 photocathodes. The intensifiers are ''stripline'' geometry 18-mm diameter microchannel plate intensifiers (MCPIIS), designed by Los Alamos National Laboratory and manufactured by Philips Photonics. The MCPIIS are designed for fast optical shattering with exposures in the 100-200 ps range, and are coupled to a fast readout CCD camera. Conversion efficiency and resolution for the wavelength conversion process are reported. Experimental set-ups for the wavelength shifting and the optical configurations for producing and transporting laser reflectance images are discussed.

  6. HST High Gain Antennae photographed by Electronic Still Camera

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This close-up view of one of the two High Gain Antennae (HGA) on the Hubble Space Telescope (HST) was photographed with an Electronic Still Camera (ESC), and downlinked to ground controllers soon afterward. Electronic still photography is a technology which provides the means for a handheld camera to electronically capture and digitize an image with resolution approaching film quality.

  7. Plasma technology and its use in flat panel digital radiography.

    PubMed

    Zur, Albert

    2010-01-01

    Plasma DR technology is used to produce a cost effective flat panel x-ray detector that acquires digital x-ray images with excellent diagnostic quality. The detector is radiation hard and permanently zero defect, with a full virtual pixel matrix that has no dead lines, pixels, or dead pixel clusters. The technology also allows the full potential of large area amorphous Selenium imaging to finally be realized (see Figure 4).

  8. Educational Digital Technologies in Developing Countries Challenge Third Party Providers

    ERIC Educational Resources Information Center

    Passey, Don; Laferrière, Thérèse; Ahmad, Manal Yazbak-Abu; Bhowmik, Miron; Gross, Diana; Price, Janet; Resta, Paul; Shonfeld, Miri

    2016-01-01

    In this conceptual paper, we consider issues and challenges of third party and governmental organisations in planning and implementing access to and uses of digital technologies for learning and teaching in developing countries. We consider failures and weaknesses in the planning and implementation processes highlighted by research in developed…

  9. "Digital Natives": An Asian Perspective for Using Learning Technologies

    ERIC Educational Resources Information Center

    Kennedy, David M.; Fox, Bob

    2013-01-01

    Students entering universities in the 21st century have been described variously as digital natives, the millennial generation or the net generation. Considerable study has occurred around the world to determine the knowledge, skills, understanding and the purposes to which this group of individuals makes technology work for them. A number of…

  10. Digital Mindsets: Teachers' Technology Use in Personal Life and Teaching

    ERIC Educational Resources Information Center

    Tour, Ekaterina

    2015-01-01

    Over the last few years there have been important calls for new literacies to become an integral part of language education. Yet traditional approaches to technology continue to persist in many contexts. Although the role of teachers in this problem has been acknowledged, little is known about how teachers' everyday digital literacy practices…

  11. Web Surveys to Digital Movies: Technological Tools of the Trade.

    ERIC Educational Resources Information Center

    Fetterman, David M.

    2002-01-01

    Highlights some of the technological tools used by educational researchers today, focusing on data collection related tools such as Web surveys, digital photography, voice recognition and transcription, file sharing and virtual office, videoconferencing on the Internet, instantaneous chat and chat rooms, reporting and dissemination, and digital…

  12. Bridging Divides through Technology Use: Transnationalism and Digital Literacy Socialization

    ERIC Educational Resources Information Center

    Nogueron, Silvia Cecilia

    2011-01-01

    In this study, I investigate the digital literacy practices of adult immigrants, and their relationship with transnational processes and practices. Specifically, I focus on their conditions of access to information and communication technologies (ICTs) in their life trajectories, their conditions of learning in a community center, and their…

  13. Composing with New Technology: Teacher Reflections on Learning Digital Video

    ERIC Educational Resources Information Center

    Bruce, David L.; Chiu, Ming Ming

    2015-01-01

    This study explores teachers' reflections on their learning to compose with new technologies in the context of teacher education and/or teacher professional development. English language arts (ELA) teachers (n = 240) in 15 courses learned to use digital video (DV), completed at least one DV group project, and responded to open-ended survey…

  14. Supporting Student Research with Semantic Technologies and Digital Archives

    ERIC Educational Resources Information Center

    Martinez-Garcia, Agustina; Corti, Louise

    2012-01-01

    This article discusses how the idea of higher education students as producers of knowledge rather than consumers can be operationalised by means of student research projects, in which processes of research archiving and analysis are enabled through the use of semantic technologies. It discusses how existing digital repository frameworks can be…

  15. The Role of Digital Technologies in Numeracy Teaching and Learning

    ERIC Educational Resources Information Center

    Geiger, Vince; Goos, Merrilyn; Dole, Shelley

    2015-01-01

    This paper presents a model of numeracy that integrates the use of digital technologies among other elements of teaching and learning mathematics. Drawing on data from a school-based project, which includes records of classroom observations, semi-structured teacher interviews and artefacts such as student work samples, a classroom-based vignette…

  16. Buckets: A New Digital Library Technology for Preserving NASA Research.

    ERIC Educational Resources Information Center

    Nelson, Michael L.

    2001-01-01

    Discusses the need for preserving and disseminating scientific and technical information through digital libraries and describes buckets, an intelligent construct for publishing that contains data and metadata and methods for accessing them. Explains SODA (Smart Object, Dumb Archive) and discusses experiences using these technologies in NASA and…

  17. Pre-Service Teacher Self-Efficacy in Digital Technology

    ERIC Educational Resources Information Center

    Lemon, Narelle; Garvis, Susanne

    2016-01-01

    Self-efficacy is an important motivational construct for primary school teachers (teachers of children aged 5-12 years) within Australia. Teacher self-efficacy beliefs will determine the level of teacher confidence and competence to engage with a task. In this study, we explore engagement with digital technology and the associated learning and…

  18. Digital Images: Capturing America's Past with the Technology of Today

    ERIC Educational Resources Information Center

    Berson, Michael J.

    2004-01-01

    The use of digital photography in the social studies classroom offers students an application of technology that can help them develop the skills necessary to access, analyze, and evaluate all forms of information and communication. Students learn to recognize how images represent diverse perspectives, connect disparate pieces of information, and…

  19. Technology and Music Education in a Digitized, Disembodied, Posthuman World

    ERIC Educational Resources Information Center

    Thwaites, Trevor

    2014-01-01

    Digital forms of sound manipulation are eroding traditional methods of sound development and transmission, causing a disjuncture in the ontology of music. Sound, the ambient phenomenon, is becoming disrupted and decentred by the struggles between long established controls, beliefs and desires as well as controls from within technologized contexts.…

  20. Key performance requirements for military low-light television cameras

    NASA Astrophysics Data System (ADS)

    Shimer, Steven; Heim, Gerald

    2007-04-01

    Low-light-level video cameras have benefited from rapid advances in digital technology during the past two decades. In legacy cameras, the video signal was processed using analog electronics which made real-time, nonlinear processing of the video signal very difficult. In state-of-the-art cameras, the analog signal is digitized directly from the sensor and processed entirely in the digital domain, enabling the application of advanced processing techniques to the video signal in real time. In fact, all aspects of modern low-light television cameras are controlled via digital technology, resulting in various enhancements that surpass analog electronics. In addition to video processing, large-scale digital integration in these low-light level cameras enables precise control of the image intensifier and image sensor, facilitating large inter-scene dynamic range capability, extended intra-scene dynamic range and blooming control. Digital video processing and digital camera control are used to provide improved system-level performance, including nearly perfect pixel response uniformity, correction of blemishes, and electronic boresight. Compact digital electronics also enable comprehensive camera built-in-test (BIT) capability which provides coverage for the entire camera--from photons into the sensor to the processed video signal going out the connector. Individuals involved in the procurement of present and future low-light-level cameras need to understand these advanced camera capabilities in order to write accurate specifications for their advanced video system requirements. This paper provides an overview of these modern video system capabilities along with example specification text.

  1. Digital Participatory Pedagogy: Digital Participation as a Method for Technology Integration in Curriculum

    ERIC Educational Resources Information Center

    Dooley, Caitlin McMunn; Lewis Ellison, Tisha; Welch, Meghan M.; Allen, Mindy; Bauer, Dennis

    2016-01-01

    This qualitative participatory action research study provides two case studies to demonstrate how teachers in Grades 4 and 6 integrated digital tools into everyday, content-focused classroom instruction. The study demonstrates how teachers' technological pedagogical knowledge might combine with a participatory stance to encourage students to…

  2. Camera-on-a-Chip

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Jet Propulsion Laboratory's research on a second generation, solid-state image sensor technology has resulted in the Complementary Metal- Oxide Semiconductor Active Pixel Sensor (CMOS), establishing an alternative to the Charged Coupled Device (CCD). Photobit Corporation, the leading supplier of CMOS image sensors, has commercialized two products of their own based on this technology: the PB-100 and PB-300. These devices are cameras on a chip, combining all camera functions. CMOS "active-pixel" digital image sensors offer several advantages over CCDs, a technology used in video and still-camera applications for 30 years. The CMOS sensors draw less energy, they use the same manufacturing platform as most microprocessors and memory chips, and they allow on-chip programming of frame size, exposure, and other parameters.

  3. New ultrahigh-speed CCD camera achieves sub-electron read noise using on-chip multiplication gain (EMCCD) technology

    NASA Astrophysics Data System (ADS)

    Guntupalli, Ravi K.; Hagan, Vern; Cooper, Andrew; Simpson, Raymond W.

    2005-03-01

    The imaging performance of a high speed camera utilizing novel "on-chip electron multiplication gain CCD (EMCCD)" technology is presented. The EMCCD technology has become a popular choice for low-light, high-speed scientific imaging and spectroscopy applications. By amplifying the signal right on the CCD, the new technology overcomes the read noise limitation, typical of high speed CCD cameras. Using all solid-state technology, the EMCCDs alleviate the shortcomings of the traditional amplification technologies using external photocathode materials such as intensified CCD (ICCD) and electron-bombarded CCD (EBCCD) cameras. For example, the technology is not susceptible to burn-in or damage in high light conditions and does not suffer from potential loss of spatial resolution in the photocathode material. A new camera, Cascade:128+, was developed using back illuminated, frame transfer EMCCD with 128x128 pixels to achieve frame rates in excess of 510 full frames per second and the system read noise below one electron rms. Custom data acquisition hardware and software allow real time access to the image data. The camera is ideal for high-frame rate, low-light level imaging applications in physical and biological sciences including adaptive optics, plasma diagnostics, neural-imaging and single molecule tracking.

  4. Noninvasive imaging of human skin hemodynamics using a digital red-green-blue camera

    NASA Astrophysics Data System (ADS)

    Nishidate, Izumi; Tanaka, Noriyuki; Kawase, Tatsuya; Maeda, Takaaki; Yuasa, Tomonori; Aizu, Yoshihisa; Yuasa, Tetsuya; Niizeki, Kyuichi

    2011-08-01

    In order to visualize human skin hemodynamics, we investigated a method that is specifically developed for the visualization of concentrations of oxygenated blood, deoxygenated blood, and melanin in skin tissue from digital RGB color images. Images of total blood concentration and oxygen saturation can also be reconstructed from the results of oxygenated and deoxygenated blood. Experiments using tissue-like agar gel phantoms demonstrated the ability of the developed method to quantitatively visualize the transition from an oxygenated blood to a deoxygenated blood in dermis. In vivo imaging of the chromophore concentrations and tissue oxygen saturation in the skin of the human hand are performed for 14 subjects during upper limb occlusion at 50 and 250 mm Hg. The response of the total blood concentration in the skin acquired by this method and forearm volume changes obtained from the conventional strain-gauge plethysmograph were comparable during the upper arm occlusion at pressures of both 50 and 250 mm Hg. The results presented in the present paper indicate the possibility of visualizing the hemodynamics of subsurface skin tissue.

  5. Using Commercial Digital Cameras and Structure-for-Motion Software to Map Snow Cover Depth from Small Aircraft

    NASA Astrophysics Data System (ADS)

    Sturm, M.; Nolan, M.; Larsen, C. F.

    2014-12-01

    A long-standing goal in snow hydrology has been to map snow cover in detail, either mapping snow depth or snow water equivalent (SWE) with sub-meter resolution. Airborne LiDAR and air photogrammetry have been used successfully for this purpose, but both require significant investments in equipment and substantial processing effort. Here we detail a relatively inexpensive and simple airborne photogrammetric technique that can be used to measure snow depth. The main airborne hardware consists of a consumer-grade digital camera attached to a survey-quality, dual-frequency GPS. Photogrammetric processing is done using commercially available Structure from Motion (SfM) software that does not require ground control points. Digital elevation models (DEMs) are made from snow-free acquisitions in the summer and snow-covered acquisitions in winter, and the maps are then differenced to arrive at snow thickness. We tested the accuracy and precision of snow depths measured using this system through 1) a comparison with airborne scanning LiDAR, 2) a comparison of results from two independent and slightly different photogrameteric systems, and 3) comparison to extensive on-the-ground measured snow depths. Vertical accuracy and precision are on the order of +/-30 cm and +/- 8 cm, respectively. The accuracy can be made to approach that of the precision if suitable snow-free ground control points exists and are used to co-register summer to winter DEM maps. Final snow depth accuracy from our series of tests was on the order of ±15 cm. This photogrammetric method substantially lowers the economic and expertise barriers to entry for mapping snow.

  6. Complementary HFET technology for wireless digital and microwave applications

    SciTech Connect

    Baca, A.G.; Zolper, J.C.; Dubbert, D.F.

    1996-09-01

    Development of a complementary heterostructure field effect transistor (CHFET) technology for low-power, mixed-mode digital-microwave applications is presented. Digital CHFET technology with independently optimizable transistors has been shown to operate with 319 ps loaded gate delays at 8.9 fJ. Power consumption is dominated by leakage currents of the p-channel FET, while performance is determined by the characteristics of 0.7 {mu}m gate length devices. As a microwave technology, the nJFET forms the basis of low-power cirucitry without any modification to the digital process. Narrow band amplification with a 0.7x100 {mu}m nJFET has been demonstrated at 2.1-2.4 GHz with gains of 8-10 dB at 1 mW power. These amplifiers showed a minimum noise figure of 2.5 dB. Next generation CHFET transistors with sub 0.5 {mu}m gate lengths have also been developed. Cutoff frequencies of 49 and 11.5 GHz were achieved for n- and p-channel FETs with 0.3 and 0.4 {mu}m gates, respectively. These FETs will enable enhancements in both digital and microwave circuits.

  7. Advanced distributed simulation technology: Digital Voice Gateway Reference Guide

    NASA Astrophysics Data System (ADS)

    Vanhook, Dan; Stadler, Ed

    1994-01-01

    The Digital Voice Gateway (referred to as the 'DVG' in this document) transmits and receives four full duplex encoded speech channels over the Ethernet. The information in this document applies only to DVG's running firmware of the version listed on the title page. This document, previously named Digital Voice Gateway Reference Guide, BBN Systems and Technologies Corporation, Cambridge, MA 02138, was revised for revision 2.00. This new revision changes the network protocol used by the DVG, to comply with the SINCGARS radio simulation (For SIMNET 6.6.1). Because of the extensive changes to revision 2.00 a separate document was created rather than supplying change pages.

  8. Camera-Based Microswitch Technology to Monitor Mouth, Eyebrow, and Eyelid Responses of Children with Profound Multiple Disabilities

    ERIC Educational Resources Information Center

    Lancioni, Giulio E.; Bellini, Domenico; Oliva, Doretta; Singh, Nirbhay N.; O'Reilly, Mark F.; Lang, Russell; Didden, Robert

    2011-01-01

    A camera-based microswitch technology was recently used to successfully monitor small eyelid and mouth responses of two adults with profound multiple disabilities (Lancioni et al., Res Dev Disab 31:1509-1514, 2010a). This technology, in contrast with the traditional optic microswitches used for those responses, did not require support frames on…

  9. Camera-Based Microswitch Technology for Eyelid and Mouth Responses of Persons with Profound Multiple Disabilities: Two Case Studies

    ERIC Educational Resources Information Center

    Lancioni, Giulio E.; Bellini, Domenico; Oliva, Doretta; Singh, Nirbhay N.; O'Reilly, Mark F.; Sigafoos, Jeff

    2010-01-01

    These two studies assessed camera-based microswitch technology for eyelid and mouth responses of two persons with profound multiple disabilities and minimal motor behavior. This technology, in contrast with the traditional optic microswitches used for those responses, did not require support frames on the participants' face but only small color…

  10. Mistaking Computers for Technology: Technology Literacy and the Digital Divide

    ERIC Educational Resources Information Center

    Amiel, Tel

    2006-01-01

    No other information and communication technology has swept the globe with greater speed than the Internet, having the potential to promote vast social, economic, and political transformations. As new technologies become available the pattern of adoption and diffusion creates disparities in access and ownership. At the most basic this gap is…

  11. Beyond photography: Evaluation of the consumer digital camera to identify strabismus and anisometropia by analyzing the Bruckner's reflex

    PubMed Central

    Bani, Sadat A. O.; Amitava, Abadan K.; Sharma, Richa; Danish, Alam

    2013-01-01

    Amblyopia screening is often either costly or laborious. We evaluated the Canon Powershot TX1 (CPTX1) digital camera as an efficient screener for amblyogenic risk factors (ARF). We included 138 subjects: 84-amblyopes and 54-normal. With the red-eye-reduction feature off, we obtained Bruckner reflex photographs of different sized crescents which suggested anisometropia, while asymmetrical brightness indicated strabismus; symmetry implied normalcy. Eight sets of randomly arranged 138 photographs were made. After training, 8 personnel, marked each as normal or abnormal. Of the 84 amblyopes, 42 were strabismus alone (SA), 36 had anisometropia alone (AA) while six were mixed amblyopes (MA). Overall mean sensitivity for amblyopes was 0.86 (95% CI: 0.83-0.89) and specificity 0.85 (95% CI: 0.77-0.93). Sub-group analyses on SA, AA and MA returned sensitivities of 0.86, 0.89 and 0.69, while specificities were 0.85 for all three. Overall Cohen's Kappa was 0.66 (95% CI: 0.62-0.71). The CPTX1 appears to be a feasible option to screen for ARF, although results need to be validated on appropriate age groups. PMID:24212318

  12. Intellectual Property, Digital Technology and the Developing World

    NASA Astrophysics Data System (ADS)

    Pupillo, Lorenzo Maria

    This chapter provides an overview of how the converging ICTs are challenging the traditional off-line copyright doctrine and suggests how developing countries should approach issues such as copyright in the digital world, software (Protection, Open Source, Reverse Engineering), and data base protection. The balance of the chapter is organized into three sections. After the introduction, the second section explains how digital technology is dramatically changing the entertainment industry, what are the major challenges to the industry, and what are the approaches that the economic literature suggest to face the structural changes that the digital revolution is bringing forward. Starting from the assumption that IPRs frameworks need to be customized to the countries’ development needs, the third section makes recommendations on how developing countries should use copyright to support access to information and to creative industries.

  13. Digital Microdroplet Ejection Technology-Based Heterogeneous Objects Prototyping.

    PubMed

    Li, Na; Yang, Jiquan; Feng, Chunmei; Yang, Jianfei; Zhu, Liya; Guo, Aiqing

    2016-01-01

    An integrate fabrication framework is presented to build heterogeneous objects (HEO) using digital microdroplets injecting technology and rapid prototyping. The heterogeneous materials part design and manufacturing method in structure and material was used to change the traditional process. The net node method was used for digital modeling that can configure multimaterials in time. The relationship of material, color, and jetting nozzle was built. The main important contributions are to combine the structure, material, and visualization in one process and give the digital model for manufacture. From the given model, it is concluded that the method is effective for HEO. Using microdroplet rapid prototyping and the model given in the paper HEO could be gotten basically. The model could be used in 3D biomanufacturing. PMID:26981110

  14. Digital Microdroplet Ejection Technology-Based Heterogeneous Objects Prototyping

    PubMed Central

    Yang, Jiquan; Feng, Chunmei; Yang, Jianfei; Zhu, Liya; Guo, Aiqing

    2016-01-01

    An integrate fabrication framework is presented to build heterogeneous objects (HEO) using digital microdroplets injecting technology and rapid prototyping. The heterogeneous materials part design and manufacturing method in structure and material was used to change the traditional process. The net node method was used for digital modeling that can configure multimaterials in time. The relationship of material, color, and jetting nozzle was built. The main important contributions are to combine the structure, material, and visualization in one process and give the digital model for manufacture. From the given model, it is concluded that the method is effective for HEO. Using microdroplet rapid prototyping and the model given in the paper HEO could be gotten basically. The model could be used in 3D biomanufacturing. PMID:26981110

  15. Digital Microdroplet Ejection Technology-Based Heterogeneous Objects Prototyping.

    PubMed

    Li, Na; Yang, Jiquan; Feng, Chunmei; Yang, Jianfei; Zhu, Liya; Guo, Aiqing

    2016-01-01

    An integrate fabrication framework is presented to build heterogeneous objects (HEO) using digital microdroplets injecting technology and rapid prototyping. The heterogeneous materials part design and manufacturing method in structure and material was used to change the traditional process. The net node method was used for digital modeling that can configure multimaterials in time. The relationship of material, color, and jetting nozzle was built. The main important contributions are to combine the structure, material, and visualization in one process and give the digital model for manufacture. From the given model, it is concluded that the method is effective for HEO. Using microdroplet rapid prototyping and the model given in the paper HEO could be gotten basically. The model could be used in 3D biomanufacturing.

  16. Final Report for the Advanced Camera for Surveys (ACS) from Ball Aerospace and Technologies Corporation

    NASA Technical Reports Server (NTRS)

    Volmer, Paul; Sullivan, Pam (Technical Monitor)

    2003-01-01

    The Advanced Camera for Surveys ACS was launched aboard the Space Shuttle Columbia just before dawn on March 1, 2002. After successfully docking with the Hubble Space Telescope (HST), several components were replaced. One of the components was the Advanced Camera for Surveys built by Ball Aerospace & Technologies Corp. (BATC) in Boulder, Colorado. Over the life of the HST contract at BATC hundreds of employees had the pleasure of working on the concept, design, fabrication, assembly and test of ACS. Those employees thank NASA - Goddard Space Flight Center and the science team at Johns Hopkins University (JHU) for the opportunity to participate in building a great science instrument for HST. After installation in HST a mini-functional test was performed and later a complete functional test. ACS performed well and has continued performing well since then. One of the greatest rewards for the BATC employees is a satisfied science team. Following is an excerpt from the JHU final report, "The foremost promise of ACS was to increase Hubble's capability for surveys in the near infrared by a factor of 10. That promise was kept. "

  17. Canadian community pharmacists’ use of digital health technologies in practice

    PubMed Central

    Leung, Valerie; Tharmalingam, Sukirtha; Cooper, Janet; Charlebois, Maureen

    2016-01-01

    Background: In 2010, a pan-Canadian study on the current state and benefits of provincial drug information systems (DIS) found that substantial benefits were being realized and that pharmacists perceived DIS to be a valuable tool in the evolving models of pharmacy practice. To understand changes in digital health and the impact on practice since that time, a survey of community pharmacists in Canada was conducted. Methods: In 2014, Canada Health Infoway (Infoway) and the Canadian Pharmacists Association (CPhA) invited community pharmacists to participate in a Web-based survey to understand their use and perceived benefits of digital health in practice. The survey was open from April 15 to May 12, 2014. Results: Of the 447 survey responses, almost all used some form of digital health in practice. Those with access to DIS and provincial laboratory information systems (LIS) reported increased productivity and better quality of care. Those without access to these systems would overwhelmingly like access. Discussion: There have been significant advances in digital health and community pharmacy practice over the past several years. In addition to digital health benefits in the areas of productivity and quality of care, pharmacists are also experiencing substantial benefits in areas related to recently expanded scope of practice activities such as ordering lab tests. Conclusion: Community pharmacists frequently use digital health in practice and recognize the benefits of these technologies. Digital health is, and will continue to be, a key enabler for practice transformation and improved quality of care. Can Pharm J (Ott) 2016;149:xx-xx. PMID:26798376

  18. A Bevel Gear Quality Inspection System Based on Multi-Camera Vision Technology.

    PubMed

    Liu, Ruiling; Zhong, Dexing; Lyu, Hongqiang; Han, Jiuqiang

    2016-01-01

    Surface defect detection and dimension measurement of automotive bevel gears by manual inspection are costly, inefficient, low speed and low accuracy. In order to solve these problems, a synthetic bevel gear quality inspection system based on multi-camera vision technology is developed. The system can detect surface defects and measure gear dimensions simultaneously. Three efficient algorithms named Neighborhood Average Difference (NAD), Circle Approximation Method (CAM) and Fast Rotation-Position (FRP) are proposed. The system can detect knock damage, cracks, scratches, dents, gibbosity or repeated cutting of the spline, etc. The smallest detectable defect is 0.4 mm × 0.4 mm and the precision of dimension measurement is about 40-50 μm. One inspection process takes no more than 1.3 s. Both precision and speed meet the requirements of real-time online inspection in bevel gear production. PMID:27571078

  19. A Bevel Gear Quality Inspection System Based on Multi-Camera Vision Technology

    PubMed Central

    Liu, Ruiling; Zhong, Dexing; Lyu, Hongqiang; Han, Jiuqiang

    2016-01-01

    Surface defect detection and dimension measurement of automotive bevel gears by manual inspection are costly, inefficient, low speed and low accuracy. In order to solve these problems, a synthetic bevel gear quality inspection system based on multi-camera vision technology is developed. The system can detect surface defects and measure gear dimensions simultaneously. Three efficient algorithms named Neighborhood Average Difference (NAD), Circle Approximation Method (CAM) and Fast Rotation-Position (FRP) are proposed. The system can detect knock damage, cracks, scratches, dents, gibbosity or repeated cutting of the spline, etc. The smallest detectable defect is 0.4 mm × 0.4 mm and the precision of dimension measurement is about 40–50 μm. One inspection process takes no more than 1.3 s. Both precision and speed meet the requirements of real-time online inspection in bevel gear production. PMID:27571078

  20. A Bevel Gear Quality Inspection System Based on Multi-Camera Vision Technology.

    PubMed

    Liu, Ruiling; Zhong, Dexing; Lyu, Hongqiang; Han, Jiuqiang

    2016-08-25

    Surface defect detection and dimension measurement of automotive bevel gears by manual inspection are costly, inefficient, low speed and low accuracy. In order to solve these problems, a synthetic bevel gear quality inspection system based on multi-camera vision technology is developed. The system can detect surface defects and measure gear dimensions simultaneously. Three efficient algorithms named Neighborhood Average Difference (NAD), Circle Approximation Method (CAM) and Fast Rotation-Position (FRP) are proposed. The system can detect knock damage, cracks, scratches, dents, gibbosity or repeated cutting of the spline, etc. The smallest detectable defect is 0.4 mm × 0.4 mm and the precision of dimension measurement is about 40-50 μm. One inspection process takes no more than 1.3 s. Both precision and speed meet the requirements of real-time online inspection in bevel gear production.

  1. Digital Technology in the protection of cultural heritage Bao Fan Temple mural digital mapping survey

    NASA Astrophysics Data System (ADS)

    Zheng, Y.

    2015-08-01

    Peng Xi county, Sichuan province, the Bao Fan temple mural digitization survey mapping project: we use three-dimensional laserscanning, multi-baseline definition digital photography, multi-spectral digital image acquisition and other technologies for digital survey mapping. The purpose of this project is to use modern mathematical reconnaissance mapping means to obtain accurate mural shape, color, quality and other data. Combined with field investigation and laboratory analysis results, and based on a comprehensive survey and study, a comprehensive analysis of the historical Bao Fan Temple mural artistic and scientific value was conducted. A study of the mural's many qualities (structural, material, technique, preservation environment, degradation, etc.) reveal all aspects of the information carried by the Bao Fan Temple mural. From multiple angles (archeology, architecture, surveying, conservation science and other disciplines) an assessment for the Bao Fan Temple mural provides basic data and recommendations for conservation of the mural. In order to achieve the conservation of cultural relics in the Bao Fan Temple mural digitization survey mapping process, we try to apply the advantages of three-dimensional laser scanning equipment. For wall murals this means obtaining three-dimensional scale data from the scan of the building and through the analysis of these data to help determine the overall condition of the settlement as well as the deformation of the wall structure. Survey analysis provides an effective set of conclusions and suggestions for appropriate mural conservation. But before data collection, analysis and research need to first to select the appropriate scanning equipment, set the appropriate scanning accuracy and layout position of stations necessary to determine the scope of required data. We use the fine features of the three-dimensional laser scanning measuring arm to scan the mural surface deformation degradation to reflect the actual state of

  2. The role of technology and digital gaming in nurse education.

    PubMed

    Johnston, Brian; Boyle, Liz; MacArthur, Ewan; Manion, Baltasar Fernandez

    2013-03-13

    There is growing evidence that using e-learning and digital gaming technology can support students in their learning. An international project, Continuing/Higher Education in Research Methods Using Games, funded by the European Commission's Lifelong Learning Programme and led by a team at the University of the West of Scotland, aims to develop interactive activities and games to support nursing and social science students. This article looks at the scope of the project in helping to deliver nurse education.

  3. Advanced framework for digital forensic technologies and procedures.

    PubMed

    Trček, Denis; Abie, Habtamu; Skomedal, Asmund; Starc, Iztok

    2010-11-01

    Recent trends in global networks are leading toward service-oriented architectures and sensor networks. On one hand of the spectrum, this means deployment of services from numerous providers to form new service composites, and on the other hand this means emergence of Internet of things. Both these kinds belong to a plethora of realms and can be deployed in many ways, which will pose serious problems in cases of abuse. Consequently, both trends increase the need for new approaches to digital forensics that would furnish admissible evidence for litigation. Because technology alone is clearly not sufficient, it has to be adequately supported by appropriate investigative procedures, which have yet become a subject of an international consensus. This paper therefore provides appropriate a holistic framework to foster an internationally agreed upon approach in digital forensics along with necessary improvements. It is based on a top-down approach, starting with legal, continuing with organizational, and ending with technical issues. More precisely, the paper presents a new architectural technological solution that addresses the core forensic principles at its roots. It deploys so-called leveled message authentication codes and digital signatures to provide data integrity in a way that significantly eases forensic investigations into attacked systems in their operational state. Further, using a top-down approach a conceptual framework for forensics readiness is given, which provides levels of abstraction and procedural guides embellished with a process model that allow investigators perform routine investigations, without becoming overwhelmed by low-level details. As low-level details should not be left out, the framework is further evaluated to include these details to allow organizations to configure their systems for proactive collection and preservation of potential digital evidence in a structured manner. The main reason behind this approach is to stimulate efforts

  4. Advanced framework for digital forensic technologies and procedures.

    PubMed

    Trček, Denis; Abie, Habtamu; Skomedal, Asmund; Starc, Iztok

    2010-11-01

    Recent trends in global networks are leading toward service-oriented architectures and sensor networks. On one hand of the spectrum, this means deployment of services from numerous providers to form new service composites, and on the other hand this means emergence of Internet of things. Both these kinds belong to a plethora of realms and can be deployed in many ways, which will pose serious problems in cases of abuse. Consequently, both trends increase the need for new approaches to digital forensics that would furnish admissible evidence for litigation. Because technology alone is clearly not sufficient, it has to be adequately supported by appropriate investigative procedures, which have yet become a subject of an international consensus. This paper therefore provides appropriate a holistic framework to foster an internationally agreed upon approach in digital forensics along with necessary improvements. It is based on a top-down approach, starting with legal, continuing with organizational, and ending with technical issues. More precisely, the paper presents a new architectural technological solution that addresses the core forensic principles at its roots. It deploys so-called leveled message authentication codes and digital signatures to provide data integrity in a way that significantly eases forensic investigations into attacked systems in their operational state. Further, using a top-down approach a conceptual framework for forensics readiness is given, which provides levels of abstraction and procedural guides embellished with a process model that allow investigators perform routine investigations, without becoming overwhelmed by low-level details. As low-level details should not be left out, the framework is further evaluated to include these details to allow organizations to configure their systems for proactive collection and preservation of potential digital evidence in a structured manner. The main reason behind this approach is to stimulate efforts

  5. A Survey of Complex Object Technologies for Digital Libraries

    NASA Technical Reports Server (NTRS)

    Nelson, Michael L.; Argue, Brad; Efron, Miles; Denn, Sheila; Pattuelli, Maria Cristina

    2001-01-01

    Many early web-based digital libraries (DLs) had implicit assumptions reflected in their architecture that the unit of focus in the DL (frequently "reports" or "e-prints") would only be manifested in a single, or at most a few, common file formats such as PDF or PostScript. DLs have now matured to the point where their contents are commonly no longer simple files. Complex objects in DLs have emerged from in response to various requirements, including: simple aggregation of formats and supporting files, bundling additional information to aid digital preservation, creating opaque digital objects for e-commerce applications, and the incorporation of dynamic services with the traditional data files. We examine a representative (but not necessarily exhaustive) number of current and recent historical web-based complex object technologies and projects that are applicable to DLs: Aurora, Buckets, ComMentor, Cryptolopes, Digibox, Document Management Alliance, FEDORA, Kahn-Wilensky Framework Digital Objects, Metadata Encoding & Transmission Standard, Multivalent Documents, Open eBooks, VERS Encapsulated Objects, and the Warwick Framework.

  6. Optical/digital identification/verification system based on digital watermarking technology

    NASA Astrophysics Data System (ADS)

    Herrigel, Alexander; Voloshynovskiy, Sviatoslav V.; Hrytskiv, Zenon D.

    2000-06-01

    This paper presents a new approach for the secure integrity verification of driver licenses, passports or other analogue identification documents. The system embeds (detects) the reference number of the identification document with the DCT watermark technology in (from) the owner photo of the identification document holder. During verification the reference number is extracted and compared with the reference number printed in the identification document. The approach combines optical and digital image processing techniques. The detection system must be able to scan an analogue driver license or passport, convert the image of this document into a digital representation and then apply the watermark verification algorithm to check the payload of the embedded watermark. If the payload of the watermark is identical with the printed visual reference number of the issuer, the verification was successful and the passport or driver license has not been modified. This approach constitutes a new class of application for the watermark technology, which was originally targeted for the copyright protection of digital multimedia data. The presented approach substantially increases the security of the analogue identification documents applied in many European countries.

  7. Improved Construction of Auricular Prosthesis by Digital Technologies.

    PubMed

    Nuseir, Amjad; Hatamleh, Muhanad; Watson, Jason; Al-Wahadni, Ahed M; Alzoubi, Firas; Murad, Mohammed

    2015-09-01

    Implant-retained auricular prostheses are a successful prosthetic treatment option for patients who are missing their ear(s) due to trauma, oncology, or birth defects. The prosthetic ear is aesthetically pleasing, composed of natural looking anatomical contours, shape, and texture along with good color that blends with surrounding existing skin. These outcomes can be optimized by the integration of digital technologies in the construction process. This report describes a sequential process of reconstructing a missing left ear by digital technologies. Two implants were planned for placement in the left mastoid region utilizing specialist biomedical software (Materialise, Belgium). The implant positions were determined underneath the thickest portion (of anti-helix area) left ear that is virtually simulated by means of mirror imaging of the right ear. A surgical stent recording the implant positions was constructed and used in implant fixtures placement. Implants were left for eight weeks, after which they were loaded with abutments and an irreversible silicone impression was taken to record their positions. The right existing ear was virtually segmented using the patient CT scan and then mirror imaged to produce a left ear, which was then printed using 3D printer (Z Corp, USA). The left ear was then duplicated in wax which was fitted over the defect side. Then, it was conventionally flasked. Skin color was digitalized using spectromatch skin color system (London, UK). The resultant silicone color was mixed as prescribed and then packed into the mold. The silicone was cured conventionally. Ear was trimmed and fitted and there was no need for any extrinsic coloring. The prosthetic ear was an exact match to the existing right ear in shape, skin color, and orientation due to the great advantages of technologies employed. Additionally, these technologies saved time and provided a base for reproducible results regardless of operator.

  8. Improved Construction of Auricular Prosthesis by Digital Technologies.

    PubMed

    Nuseir, Amjad; Hatamleh, Muhanad; Watson, Jason; Al-Wahadni, Ahed M; Alzoubi, Firas; Murad, Mohammed

    2015-09-01

    Implant-retained auricular prostheses are a successful prosthetic treatment option for patients who are missing their ear(s) due to trauma, oncology, or birth defects. The prosthetic ear is aesthetically pleasing, composed of natural looking anatomical contours, shape, and texture along with good color that blends with surrounding existing skin. These outcomes can be optimized by the integration of digital technologies in the construction process. This report describes a sequential process of reconstructing a missing left ear by digital technologies. Two implants were planned for placement in the left mastoid region utilizing specialist biomedical software (Materialise, Belgium). The implant positions were determined underneath the thickest portion (of anti-helix area) left ear that is virtually simulated by means of mirror imaging of the right ear. A surgical stent recording the implant positions was constructed and used in implant fixtures placement. Implants were left for eight weeks, after which they were loaded with abutments and an irreversible silicone impression was taken to record their positions. The right existing ear was virtually segmented using the patient CT scan and then mirror imaged to produce a left ear, which was then printed using 3D printer (Z Corp, USA). The left ear was then duplicated in wax which was fitted over the defect side. Then, it was conventionally flasked. Skin color was digitalized using spectromatch skin color system (London, UK). The resultant silicone color was mixed as prescribed and then packed into the mold. The silicone was cured conventionally. Ear was trimmed and fitted and there was no need for any extrinsic coloring. The prosthetic ear was an exact match to the existing right ear in shape, skin color, and orientation due to the great advantages of technologies employed. Additionally, these technologies saved time and provided a base for reproducible results regardless of operator. PMID:26221855

  9. The Role and Value of Public Libraries in the Age of Digital Technologies

    ERIC Educational Resources Information Center

    Aabo, Svanhild

    2005-01-01

    Discusses public libraries' role and value in the age of digital technologies. Reassessments of their role due to technological development and widespread public use of the Internet are analysed. Central challenges of the digital society, including an increased digital divide and a weakening of local community identity, have resulted in lower…

  10. Demonstration of 11-ps exposure time of a framing camera using pulse-dilation technology and a magnetic lens

    NASA Astrophysics Data System (ADS)

    Bai, Yanli; Long, Jinghua; Liu, Jinyuan; Cai, Houzhi; Niu, Lihong; Zhang, Dongfang; Ma, Xue; Liu, Dan; Yang, Qinlao; Niu, Hanben

    2015-12-01

    A framing camera with high temporal and spatial resolution is demonstrated using pulse-dilation technology and a magnetic lens. The magnetic field of the magnetic lens is simulated using LORENTZ-3EM software, and the magnetic field distribution on-axis is similar to a Gaussian function. The temporal and spatial resolutions of the instrument are measured using light at the wavelength of 266 nm from a frequency tripled femtosecond laser. The measured exposure time of this camera is ˜11 ps, and the spatial resolution is better than 100 μm.

  11. A Study on the Timing Technology of Digital Satellite TV

    NASA Astrophysics Data System (ADS)

    Song, K. X.

    2013-03-01

    Based on analyzing and summarizing the modern timing technologies, through intensive analyzing the characteristics of the current digital satellite TV signals, and without changing equipment configuration of the digital satellite TV transmitter and signal system, this thesis puts forward the method of using the digital TV signal to transmit the standard time and frequency, and carries out the relevant researches on the key technologies. Meanwhile, we make experiments on the digital satellite TV timing system, which are based on the proposed timing method. Through analyzing the test data, the timing method is proved practicable and with a high precision. The main research work is as follows: (1) Firstly, we summarize the necessary conditions and key elements required for timing by analyzing the characteristics of modern timing methods, and analyze China’s digital satellite TV signal system; Secondly, we propose the idea that the inherent flag bit of source coding signals of TV is used to trigger event of timing and then complete this task; Thirdly, we propose the principle of transmitting the standard time and frequency through digital satellite TV signal, analyze the error sources which affect the accuracy of timing, and find the ways to reduce the error effect. (2) Synchronization clock signal is recovered from asynchronous serial interface (ASI) data to achieve bit synchronization, so that the transmitter can accurately access to the high-precision standard time code. At the same time, the TV signal transmission delay on the transmission channel is accurately measured in order to supply the necessary information for timing. Based on the analysis of the ASI data transmission characteristics and transmission standards, a method using over-sampling to recover the ASI clock signal and synchronize the digital TV signal source coding is proposed in this paper. This method is proved effective by the implementation on the FPGA (Field Programmable Gate Array). (3) Using

  12. A comparative study of reflectance spectral indices and digital camera imagery to quantify in-vivo foliar chlorophyll concentration in common New England forest species

    NASA Astrophysics Data System (ADS)

    Gagnon, Michael T.

    Quantifying foliar chlorophyll content is an important procedure in ecosystem studies. Established extraction techniques for quantifying chlorophyll concentration were compared to hyperspectral reflectance indices collected with a GER2600 spectroradiometer, and digital image indices derived from digital camera imagery. Findings show REIP:(R 2=0.52) is a strong indicator reflectance changes associated with plant stress, but RE3/RE2:(R2=0.72), FD715/FD705:(R2=0.77) and CRI red-edge(d) :(R2=0.73) predicted differences in chlorophyll concentration across a range of species more accurately. Many spectral indices predict chlorophyll concentrations more accurately than the REIP, but fail to document the blue-shift associated with foliar stress. Camera imagery results show gray card normalized percent red (R-GC)/( R+GC):(R2=0.63) and percent green (G-GC)/(G+GC):(R 2=0.68) to be strong predictors of chlorophyll concentration across multiple species. For individual species (%Red-%Blue)/(%Red+%Blue) or ( RvB:%R) is a reliable camera index that tracks phenological changes in chlorophyll accurately. Pearson's r across the 2008 growing season for black oak (N=40) was (R2=-0.95), and sugar maple (N=33) was (R2=-0.64).

  13. Product Accuracy Effect of Oblique and Vertical Non-Metric Digital Camera Utilization in Uav-Photogrammetry to Determine Fault Plane

    NASA Astrophysics Data System (ADS)

    Amrullah, C.; Suwardhi, D.; Meilano, I.

    2016-06-01

    This study aims to see the effect of non-metric oblique and vertical camera combination along with the configuration of the ground control points to improve the precision and accuracy in UAV-Photogrammetry project. The field observation method is used for data acquisition with aerial photographs and ground control points. All data are processed by digital photogrammetric process with some scenarios in camera combination and ground control point configuration. The model indicates that the value of precision and accuracy increases with the combination of oblique and vertical camera at all control point configuration. The best products of the UAV-Photogrammetry model are produced in the form of Digital Elevation Model (DEM) compared to the LiDAR DEM. Furthermore, DEM from UAV-Photogrammetry and LiDAR are used to define the fault plane by using cross-section on the model and interpretation to determine the point at the extreme height of terrain changes. The result of the defined fault planes indicate that two models do not show any significant difference.

  14. Overview of 3D surface digitization technologies in Europe

    NASA Astrophysics Data System (ADS)

    D'Apuzzo, Nicola

    2006-02-01

    This paper presents an overview of the different 3D surface digitization technologies commercially available in the European market. The solutions for 3D surface measurement offered by major European companies can be divided into different groups depending on various characteristics, such as technology (e.g. laser scanning, white light projection), system construction (e.g. fix, on CMM/robot/arm) or measurement type (e.g. surface scanning, profile scanning). Crossing between the categories is possible, however, the majority of commercial products can be divided into the following groups: (a) laser profilers mounted on CMM, (b) portable coded light projection systems, (c) desktop solutions with laser profiler or coded light projectin system and multi-axes platform, (d) laser point measurement systems where both sensor and object move, (e) hand operated laser profilers, hand held laser profiler or point measurement systems, (f) dedicated systems. This paper presents the different 3D surface digitization technologies and describes them with their advantages and disadvantages. Various examples of their use are shown for different application fields. A special interest is given to applications regarding the 3D surface measurement of the human body.

  15. Advanced Technologies Demonstrated by the Miniature Integrated Camera and Spectrometer (MICAS) Aboard Deep Space 1

    NASA Astrophysics Data System (ADS)

    Rodgers, David H.; Beauchamp, Patricia M.; Soderblom, Laurence A.; Brown, Robert H.; Chen, Gun-Shing; Lee, Meemong; Sandel, Bill R.; Thomas, David A.; Benoit, Robert T.; Yelle, Roger V.

    2007-04-01

    MICAS is an integrated multi-channel instrument that includes an ultraviolet imaging spectrometer (80 185 nm), two high-resolution visible imagers (10 20 μrad/pixel, 400 900 nm), and a short-wavelength infrared imaging spectrometer (1250 2600 nm). The wavelength ranges were chosen to maximize the science data that could be collected using existing semiconductor technologies and avoiding the need for multi-octave spectrometers. It was flown on DS1 to validate technologies derived from the development of PICS (Planetary Imaging Camera Spectrometer). These technologies provided a novel systems approach enabling the miniaturization and integration of four instruments into one entity, spanning a wavelength range from the UV to IR, and from ambient to cryogenic temperatures with optical performance at a fraction of a wavelength. The specific technologies incorporated were: a built-in fly-by sequence; lightweight and ultra-stable, monolithic silicon-carbide construction, which enabled room-temperature alignment for cryogenic (85 140 K) performance, and provided superb optical performance and immunity to thermal distortion; diffraction-limited, shared optics operating from 80 to 2600 nm; advanced detector technologies for the UV, visible and short-wavelength IR; high-performance thermal radiators coupled directly to the short-wave infrared (SWIR) detector optical bench, providing an instrument with a mass less than 10 kg, instrument power less than 10 W, and total instrument cost of less than ten million dollars. The design allows the wavelength range to be extended by at least an octave at the short wavelength end and to ˜50 microns at the long wavelength end. Testing of the completed instrument demonstrated excellent optical performance down to 77 K, which would enable a greatly reduced background for longer wavelength detectors. During the Deep Space 1 Mission, MICAS successfully collected images and spectra for asteroid 9969 Braille, Mars, and comet 19/P Borrelly

  16. Advanced technologies demonstrated by the miniature integrated camera and spectrometer (MICAS) aboard deep space 1

    USGS Publications Warehouse

    Rodgers, D.H.; Beauchamp, P.M.; Soderblom, L.A.; Brown, R.H.; Chen, G.-S.; Lee, M.; Sandel, B.R.; Thomas, D.A.; Benoit, R.T.; Yelle, R.V.

    2007-01-01

    MICAS is an integrated multi-channel instrument that includes an ultraviolet imaging spectrometer (80-185 nm), two high-resolution visible imagers (10-20 ??rad/pixel, 400-900 nm), and a short-wavelength infrared imaging spectrometer (1250-2600 nm). The wavelength ranges were chosen to maximize the science data that could be collected using existing semiconductor technologies and avoiding the need for multi-octave spectrometers. It was flown on DS1 to validate technologies derived from the development of PICS (Planetary Imaging Camera Spectrometer). These technologies provided a novel systems approach enabling the miniaturization and integration of four instruments into one entity, spanning a wavelength range from the UV to IR, and from ambient to cryogenic temperatures with optical performance at a fraction of a wavelength. The specific technologies incorporated were: a built-in fly-by sequence; lightweight and ultra-stable, monolithic silicon-carbide construction, which enabled room-temperature alignment for cryogenic (85-140 K) performance, and provided superb optical performance and immunity to thermal distortion; diffraction-limited, shared optics operating from 80 to 2600 nm; advanced detector technologies for the UV, visible and short-wavelength IR; high-performance thermal radiators coupled directly to the short-wave infrared (SWIR) detector optical bench, providing an instrument with a mass less than 10 kg, instrument power less than 10 W, and total instrument cost of less than ten million dollars. The design allows the wavelength range to be extended by at least an octave at the short wavelength end and to 50 microns at the long wavelength end. Testing of the completed instrument demonstrated excellent optical performance down to 77 K, which would enable a greatly reduced background for longer wavelength detectors. During the Deep Space 1 Mission, MICAS successfully collected images and spectra for asteroid 9969 Braille, Mars, and comet 19/P Borrelly. The

  17. Technology: A Do-It-Yourself Document Camera, Spyware, and Firefox

    ERIC Educational Resources Information Center

    Van Horn, Royal

    2005-01-01

    Teachers in the author's graduate classes often say how much they would like to have a document camera in their classrooms. Since such a camera typically costs about $800, it is unlikely that many teachers will have their wish come true. In this column the author describes a simple solution: just make your own. He also looks at the issue of…

  18. Inspection focus technology of space tridimensional mapping camera based on astigmatic method

    NASA Astrophysics Data System (ADS)

    Wang, Zhi; Zhang, Liping

    2010-10-01

    The CCD plane of the space tridimensional mapping camera will be deviated from the focal plane(including the CCD plane deviated due to camera focal length changed), under the condition of space environment and vibration, impact when satellite is launching, image resolution ratio will be descended because defocusing. For tridimensional mapping camera, principal point position and focal length variation of the camera affect positioning accuracy of ground target, conventional solution is under the condition of vacuum and focusing range, calibrate the position of CCD plane with code of photoelectric encoder, when the camera defocusing in orbit, the magnitude and direction of defocusing amount are obtained by photoelectric encoder, then the focusing mechanism driven by step motor to compensate defocusing amount of the CCD plane. For tridimensional mapping camera, under the condition of space environment and vibration, impact when satellite is launching, if the camera focal length changes, above focusing method has been meaningless. Thus, the measuring and focusing method was put forward based on astigmation, a quadrant detector was adopted to measure the astigmation caused by the deviation of the CCD plane, refer to calibrated relation between the CCD plane poison and the asrigmation, the deviation vector of the CCD plane can be obtained. This method includes all factors caused deviation of the CCD plane, experimental results show that the focusing resolution of mapping camera focusing mechanism based on astigmatic method can reach 0.25 μm.

  19. Qualification Tests of Micro-camera Modules for Space Applications

    NASA Astrophysics Data System (ADS)

    Kimura, Shinichi; Miyasaka, Akira

    Visual capability is very important for space-based activities, for which small, low-cost space cameras are desired. Although cameras for terrestrial applications are continually being improved, little progress has been made on cameras used in space, which must be extremely robust to withstand harsh environments. This study focuses on commercial off-the-shelf (COTS) CMOS digital cameras because they are very small and are based on an established mass-market technology. Radiation and ultrahigh-vacuum tests were conducted on a small COTS camera that weighs less than 100 mg (including optics). This paper presents the results of the qualification tests for COTS cameras and for a small, low-cost COTS-based space camera.

  20. Erosion research with a digital camera: the structure from motion method used in gully monitoring - field experiments from southern Morocco

    NASA Astrophysics Data System (ADS)

    Kaiser, Andreas; Rock, Gilles; Neugirg, Fabian; Müller, Christoph; Ries, Johannes

    2014-05-01

    From a geoscientific view arid or semiarid landscapes are often associated with soil degrading erosion processes and thus active geomorphology. In this regard gully incision represents one of the most important influences on surface dynamics. Established approaches to monitor and quantify soil loss require costly and labor-intensive measuring methods: terrestrial or airborne LiDAR scans to create digital elevation models and unmanned airborne vehicles for image acquisition provide adequate tools for geomorphological surveying. Despite their ever advancing abilities, they are finite with their applicability in detailed recordings of complex surfaces. Especially undercuttings and plunge pools in the headcut area of gully systems are invisible or cause shadowing effects. The presented work aims to apply and advance an adequate tool to avoid the above mentioned obstacles and weaknesses of the established methods. The emerging structure from motion-based high resolution 3D-visualisation not only proved to be useful in gully erosion. Moreover, it provides a solid ground for additional applications in geosciences such as surface roughness measurements, quantification of gravitational mass movements or capturing stream connectivity. During field campaigns in semiarid southern Morocco a commercial DSLR camera was used, to produce images that served as input data for software based point cloud and mesh generation. Thus, complex land surfaces could be reconstructed entirely in high resolution by photographing the object from different perspectives. In different scales the resulting 3D-mesh represents a holistic reconstruction of the actual shape complexity with its limits set only by computing capacity. Analysis and visualization of time series of different erosion-related events illustrate the additional benefit of the method. It opens new perspectives on process understanding that can be exploited by open source and commercial software. Results depicted a soil loss of 5

  1. Digital modeling technology for full dental crown tooth preparation.

    PubMed

    Dai, Ning; Zhong, Yicheng; Liu, Hao; Yuan, Fusong; Sun, Yuchun

    2016-04-01

    A dental defect is one of the most common oral diseases, and it often requires a full crown restoration. In this clinical operation, the dentist must manually prepare the affected tooth for the full crown so that it has a convergence angle between 4° and 10°, no undercuts, and uniform and even shoulder widths and depths using a high speed diamond bur in the patient׳s mouth within one hour, which is a difficult task that requires visual-manual operation. The quality of the tooth preparation has an important effect on the success rate of the subsequent prosthodontic treatment. This study involved research into digital modeling technology for full dental crown tooth preparation. First, the margin line of the tooth preparation was designed using a semi-automatic interactive process. Second, the inserting direction was automatically computed. Then, the characteristic parameters and the constraints on the tooth preparation were defined for the model. Next, the shoulder and axial surface of the tooth preparation were formed using parametric modeling. Finally, the implicit surface of a radial basis function was used to construct the tooth preparation׳s occlusal surface. The experimental results verified that the method of digital modeling for full crown preparation proposed in this study can quickly and accurately implement personalized designs of various parameters, such as the shoulder width and the convergence angle; it provides a digital design tool for full crown preparation.

  2. Digital modeling technology for full dental crown tooth preparation.

    PubMed

    Dai, Ning; Zhong, Yicheng; Liu, Hao; Yuan, Fusong; Sun, Yuchun

    2016-04-01

    A dental defect is one of the most common oral diseases, and it often requires a full crown restoration. In this clinical operation, the dentist must manually prepare the affected tooth for the full crown so that it has a convergence angle between 4° and 10°, no undercuts, and uniform and even shoulder widths and depths using a high speed diamond bur in the patient׳s mouth within one hour, which is a difficult task that requires visual-manual operation. The quality of the tooth preparation has an important effect on the success rate of the subsequent prosthodontic treatment. This study involved research into digital modeling technology for full dental crown tooth preparation. First, the margin line of the tooth preparation was designed using a semi-automatic interactive process. Second, the inserting direction was automatically computed. Then, the characteristic parameters and the constraints on the tooth preparation were defined for the model. Next, the shoulder and axial surface of the tooth preparation were formed using parametric modeling. Finally, the implicit surface of a radial basis function was used to construct the tooth preparation׳s occlusal surface. The experimental results verified that the method of digital modeling for full crown preparation proposed in this study can quickly and accurately implement personalized designs of various parameters, such as the shoulder width and the convergence angle; it provides a digital design tool for full crown preparation. PMID:26945598

  3. Using Disruptive Technologies to Make Digital Connections: Stories of Media Use and Digital Literacy in Secondary Classrooms

    ERIC Educational Resources Information Center

    Nowell, Shanedra D.

    2014-01-01

    This study focused on ways teachers and students in an urban high school used technologies often labeled as disruptive (i.e. social media and mobile phones) as learning and relationship building tools, inside and outside the classroom. In this teacher research study, secondary teachers discussed digital literacies, the digital divide, and digital…

  4. Ground-based detection of nighttime clouds above Manila Observatory (14.64°N, 121.07°E) using a digital camera.

    PubMed

    Gacal, Glenn Franco B; Antioquia, Carlo; Lagrosas, Nofel

    2016-08-01

    Ground-based cloud detection at nighttime is achieved by using cameras, lidars, and ceilometers. Despite these numerous instruments gathering cloud data, there is still an acknowledged scarcity of information on quantified local cloud cover, especially at nighttime. In this study, a digital camera is used to continuously collect images near the sky zenith at nighttime in an urban environment. An algorithm is developed to analyze pixel values of images of nighttime clouds. A minimum threshold pixel value of 17 is assigned to determine cloud occurrence. The algorithm uses temporal averaging to estimate the cloud fraction based on the results within the limited field of view. The analysis of the data from the months of January, February, and March 2015 shows that cloud occurrence is low during the months with relatively lower minimum temperature (January and February), while cloud occurrence during the warmer month (March) increases. PMID:27505386

  5. Ground-based detection of nighttime clouds above Manila Observatory (14.64°N, 121.07°E) using a digital camera.

    PubMed

    Gacal, Glenn Franco B; Antioquia, Carlo; Lagrosas, Nofel

    2016-08-01

    Ground-based cloud detection at nighttime is achieved by using cameras, lidars, and ceilometers. Despite these numerous instruments gathering cloud data, there is still an acknowledged scarcity of information on quantified local cloud cover, especially at nighttime. In this study, a digital camera is used to continuously collect images near the sky zenith at nighttime in an urban environment. An algorithm is developed to analyze pixel values of images of nighttime clouds. A minimum threshold pixel value of 17 is assigned to determine cloud occurrence. The algorithm uses temporal averaging to estimate the cloud fraction based on the results within the limited field of view. The analysis of the data from the months of January, February, and March 2015 shows that cloud occurrence is low during the months with relatively lower minimum temperature (January and February), while cloud occurrence during the warmer month (March) increases.

  6. Digital Control Technologies for Modular DC-DC Converters

    NASA Technical Reports Server (NTRS)

    Button, Robert M.; Kascak, Peter E.; Lebron-Velilla, Ramon

    2002-01-01

    Recent trends in aerospace Power Management and Distribution (PMAD) systems focus on using commercial off-the-shelf (COTS) components as standard building blocks. This move to more modular designs has been driven by a desire to reduce costs and development times, but is also due to the impressive power density and efficiency numbers achieved by today's commercial DC-DC converters. However, the PMAD designer quickly learns of the hidden "costs" of using COTS converters. The most significant cost is the required addition of external input filters to meet strict electromagnetic interference (MIAMI) requirements for space systems. In fact, the high power density numbers achieved by the commercial manufacturers are greatly due to the lack of necessary input filters included in the COTS module. The NASA Glenn Research Center is currently pursuing a digital control technology that addresses this problem with modular DC-DC converters. This paper presents the digital control technologies that have been developed to greatly reduce the input filter requirements for paralleled, modular DC-DC converters. Initial test result show that the input filter's inductor size was reduced by 75 percent, and the capacitor size was reduced by 94 percent while maintaining the same power quality specifications.

  7. Using a slit lamp-mounted digital high-speed camera for dynamic observation of phakic lenses during eye movements: a pilot study

    PubMed Central

    Leitritz, Martin Alexander; Ziemssen, Focke; Bartz-Schmidt, Karl Ulrich; Voykov, Bogomil

    2014-01-01

    Purpose To evaluate a digital high-speed camera combined with digital morphometry software for dynamic measurements of phakic intraocular lens movements to observe kinetic influences, particularly in fast direction changes and at lateral end points. Materials and methods A high-speed camera taking 300 frames per second observed movements of eight iris-claw intraocular lenses and two angle-supported intraocular lenses. Standardized saccades were performed by the patients to trigger mass inertia with lens position changes. Freeze images with maximum deviation were used for digital software-based morphometry analysis with ImageJ. Results Two eyes from each of five patients (median age 32 years, range 28–45 years) without findings other than refractive errors were included. The high-speed images showed sufficient usability for further morphometric processing. In the primary eye position, the median decentrations downward and in a lateral direction were −0.32 mm (range −0.69 to 0.024) and 0.175 mm (range −0.37 to 0.45), respectively. Despite the small sample size of asymptomatic patients, we found a considerable amount of lens dislocation. The median distance amplitude during eye movements was 0.158 mm (range 0.02–0.84). There was a slight positive correlation (r=0.39, P<0.001) between the grade of deviation in the primary position and the distance increase triggered by movements. Conclusion With the use of a slit lamp-mounted high-speed camera system and morphometry software, observation and objective measurements of iris-claw intraocular lenses and angle-supported intraocular lenses movements seem to be possible. Slight decentration in the primary position might be an indicator of increased lens mobility during kinetic stress during eye movements. Long-term assessment by high-speed analysis with higher case numbers has to clarify the relationship between progressing motility and endothelial cell damage. PMID:25071365

  8. Integration of the digital technologies in the teaching of astronomy

    NASA Astrophysics Data System (ADS)

    de Macedo, J. A.; Voelzke, M. R.

    2014-08-01

    This study presents results of a survey conducted at the Federal Institution of Education, Science and Technology in the North of Minas Gerais (IFNMG), and aimed to investigate the potential uses of interactive materials in the teaching of astronomy. Despite being part of official documents, proposals included in the curriculum of several states, and having contributed to human and technological development, astronomy is rarely taught adequately in the Brazilian basic education. When it is taught, it is with unsatisfactory results as presented by students and teachers as shown by several studies, such as those carried out by (Voelzke and Gonzaga, 2013). Digital technologies are commonly used by youth, but neglected by the majority of teachers. In this sense, a survey with the aim of pointing out the potential use of digital technologies in teaching astronomy was developed. An advanced course in astronomy was offered for participants with the goal to help them understand astronomical phenomena. The following steps were to be taken: i) analysis of the pedagogical projects (PPC) of the licenciates at the IFNMG, with its Campus Januária as research locus; ii) analysis of students' preconceptions about astronomy and digital technologies, identified by the application of an initial questionnaire; iii) preparation of the course taking into account the students' previous knowledge; iv) application of the education proposal developed under part-time presence modality, using various interactive tools; v) application and analysis of the final questionnaire. The test consisted of thirty-two students of physics, mathematics and biology and was conducted with the qualitative and quantitative methodology, combined with a content analysis. Among other results, it was verified that: (i) In the IFNMG only the licenciate-course in physics includes astronomy content diluted in various subjects of the curriculum; (ii) the analysis of the initial questionnaire showed even that group

  9. [Application of digital earth technology in research of traditional Chinese medicine resources].

    PubMed

    Liu, Jinxin; Liu, Xinxin; Gao, Lu; Wei, Yingqin; Meng, Fanyun; Wang, Yongyan

    2011-02-01

    This paper describes the digital earth technology and its core technology-"3S" integration technology. The advance and promotion of the "3S" technology provide more favorable means and technical support for Chinese medicine resources survey, evaluation and appropriate zoning. Grid is a mature and popular technology that can connect all kinds of information resources. The author sums up the application of digital earth technology in the research of traditional Chinese medicine resources in recent years, and proposes the new method and technical route of investigation in traditional Chinese medicine resources, traditional Chinese medicine zoning and suitability assessment by combining the digital earth technology and grid.

  10. Digital Linear Tape (DLT) technology and product family overview

    NASA Technical Reports Server (NTRS)

    Lignos, Demetrios

    1994-01-01

    The demand that began a couple of years ago for increased data storage capacity continues. Peripheral Strategies (a Santa Barbara, California, Storage Market Research Firm) projects the amount of data stored on the average enterprise network will grow by 50 percent to 100 percent per year. Furthermore, Peripheral Strategies says that a typical mid-range workstation system containing 30GB to 50GB of storage today will grow at the rate of 50 percent per year. Dan Friedlander, a Boulder, Colorado-based consultant specializing in PC-LAN backup, says, 'The average NetWare LAN is about 8GB, but there are many that have 30GB to 300GB.....' The substantial growth of storage requirements has created various tape technologies that seek to satisfy the needs of today's and, especially, the next generations's systems and applications. There are five leading tape technologies in the market today: QIC (Quarter Inch Cartridge), IBM 3480/90, 8mm, DAT (Digital Audio Tape) and DLT (Digital Linear Tape). Product performance specifications and user needs have combined to classify these technologies into low-end, mid-range, and high-end systems applications. Although the manufacturers may try to position their products differently, product specifications and market requirements have determined that QIC and DAT are primarily low-end systems products while 8mm and DLT are competing for mid-range systems applications and the high-end systems space, where IBM compatibility is not required. The 3480/90 products seem to be used primarily in the IBM market, for interchangeability purposes. There are advantages and disadvantages for each of the tape technologies in the market today. We believe that DLT technology offers a significant number of very important features and specifications that make it extremely attractive for most current as well as emerging new applications, such as Hierarchical Storage Management (HSM). This paper will demonstrate why we think that the DLT technology and family

  11. A 3.3-to-25V all-digital charge pump based system with temperature and load compensation for avalanche photodiode cameras with fixed sensitivity

    NASA Astrophysics Data System (ADS)

    Mandai, S.; Charbon, E.

    2013-03-01

    This paper presents a digitally controlled charge pump (DCP) to supply high voltages, while ensuring temperature and load current independence of excess bias in cameras based on avalanche photodiodes. This is achieved through a single-photon avalanche diode (SPAD) based monitoring mechanism that continuously reconfigures the DCP using a feedback loop to compensate breakdown voltage variations by temperature and load current in real time. The sensitivity of the SPADs, or photon detection probability (PDP), is maintained to within 1.9% when the temperature shifts from 28°C to 65°C and the load current changes from 0 μA to 100 μA.

  12. Infrared Camera

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A sensitive infrared camera that observes the blazing plumes from the Space Shuttle or expendable rocket lift-offs is capable of scanning for fires, monitoring the environment and providing medical imaging. The hand-held camera uses highly sensitive arrays in infrared photodetectors known as quantum well infrared photo detectors (QWIPS). QWIPS were developed by the Jet Propulsion Laboratory's Center for Space Microelectronics Technology in partnership with Amber, a Raytheon company. In October 1996, QWIP detectors pointed out hot spots of the destructive fires speeding through Malibu, California. Night vision, early warning systems, navigation, flight control systems, weather monitoring, security and surveillance are among the duties for which the camera is suited. Medical applications are also expected.

  13. Pre-School Children Creating and Communicating with Digital Technologies in the Home

    ERIC Educational Resources Information Center

    McPake, Joanna; Plowman, Lydia; Stephen, Christine

    2013-01-01

    There is a limited literature on pre-school children's experiences with "digital technologies" at home and little discussion of the ways in which children harness these technologies for their own purposes. This paper discusses findings drawn from three studies that investigated the role of "domestic technologies" and "digital toys and games" in…

  14. A Historical Perspective on Student Affairs Professionals' Use of Digital Technology

    ERIC Educational Resources Information Center

    Cabellon, Edmund T.; Payne-Kirchmeier, Julie

    2016-01-01

    This chapter provides a historical perspective of student affairs professionals' use of digital and social technologies in their work on college campuses. The purpose of the chapter is to describe how digital technology tools have evolved since 2005, demonstrate how student affairs technology shifted and changed during this time, and shape student…

  15. Emerging Digital Optical Disc Technologies: An Opportunity and a Challenge for Educational Researchers.

    ERIC Educational Resources Information Center

    Harvey, Francis A.

    1987-01-01

    Description of new applications of digital optical disc storage technologies focuses on CD-ROM (Compact Disc--Read Only Memory); CD-I (Compact Disc--Interactive); and DV-I (Digital Video--Interactive). Features of each technology are described in the context of instructional design and educational technology, and the role of educational research…

  16. Malaysian Teachers' Conceptions and Uses of Digital Technology in English Writing Instruction: A Multiple Case Study

    ERIC Educational Resources Information Center

    Mohamed Razali, Abu Bakar

    2013-01-01

    Very little is known about how teachers' "conceptualizations" of digital technology and their "uses" of the technology evolve and relate. Yet knowing about and understanding teachers' conceptions and uses of digital technology are essential for learning how teachers integrate it effectively for student learning. By applying…

  17. Technology: Digital Photography in an Inner-City Fifth Grade, Part 2

    ERIC Educational Resources Information Center

    Riner, Phil

    2005-01-01

    Last month, Phil Riner began discussing his project of teaching digital photography and prosocial behavior skills to inner-city fifth-graders. This work led him to generate some very specific procedures for camera care and use. Phil also taught the students some simple rules for taking better photos. These rules fell into four broad categories:…

  18. Presence capture cameras - a new challenge to the image quality

    NASA Astrophysics Data System (ADS)

    Peltoketo, Veli-Tapani

    2016-04-01

    Commercial presence capture cameras are coming to the markets and a new era of visual entertainment starts to get its shape. Since the true presence capturing is still a very new technology, the real technical solutions are just passed a prototyping phase and they vary a lot. Presence capture cameras have still the same quality issues to tackle as previous phases of digital imaging but also numerous new ones. This work concentrates to the quality challenges of presence capture cameras. A camera system which can record 3D audio-visual reality as it is has to have several camera modules, several microphones and especially technology which can synchronize output of several sources to a seamless and smooth virtual reality experience. Several traditional quality features are still valid in presence capture cameras. Features like color fidelity, noise removal, resolution and dynamic range create the base of virtual reality stream quality. However, co-operation of several cameras brings a new dimension for these quality factors. Also new quality features can be validated. For example, how the camera streams should be stitched together with 3D experience without noticeable errors and how to validate the stitching? The work describes quality factors which are still valid in the presence capture cameras and defines the importance of those. Moreover, new challenges of presence capture cameras are investigated in image and video quality point of view. The work contains considerations how well current measurement methods can be used in presence capture cameras.

  19. Measurement of Young’s modulus and Poisson’s ratio of metals by means of ESPI using a digital camera

    NASA Astrophysics Data System (ADS)

    Francisco, J. B. Pascual; Michtchenko, A.; Barragán Pérez, O.; Susarrey Huerta, O.

    2016-09-01

    In this paper, mechanical experiments with a low-cost interferometry set-up are presented. The set-up is suitable for an undergraduate laboratory where optical equipment is absent. The arrangement consists of two planes of illumination, allowing the measurement of the two perpendicular in-plane displacement directions. An axial load was applied on three different metals, and the longitudinal and transversal displacements were measured sequentially. A digital camera was used to acquire the images of the different states of load of the illuminated area. A personal computer was used to perform the digital subtraction of the images to obtain the fringe correlations, which are needed to calculate the displacements. Finally, Young’s modulus and Poisson’s ratio of the metals were calculated using the displacement data.

  20. Medium Format Camera Evaluation Based on the Latest Phase One Technology

    NASA Astrophysics Data System (ADS)

    Tölg, T.; Kemper, G.; Kalinski, D.

    2016-06-01

    In early 2016, Phase One Industrial launched a new high resolution camera with a 100 MP CMOS sensor. CCD sensors excel at ISOs up to 200, but in lower light conditions, exposure time must be increased and Forward Motion Compensation (FMC) has to be employed to avoid smearing the images. The CMOS sensor has an ISO range of up to 6400, which enables short exposures instead of using FMC. This paper aims to evaluate the strengths of each of the sensor types based on real missions over a test field in Speyer, Germany, used for airborne camera calibration. The test field area has about 30 Ground Control Points (GCPs), which enable a perfect scenario for a proper geometric evaluation of the cameras. The test field includes both a Siemen star and scale bars to show any blurring caused by forward motion. The result of the comparison showed that both cameras offer high accuracy photogrammetric results with post processing, including triangulation, calibration, orthophoto and DEM generation. The forward motion effect can be compensated by a fast shutter speed and a higher ISO range of the CMOS-based camera. The results showed no significant differences between cameras.

  1. Using Information and Communication Technology (ICT) to the Maximum: Learning and Teaching Biology with Limited Digital Technologies

    ERIC Educational Resources Information Center

    Van Rooy, Wilhelmina S.

    2012-01-01

    Background: The ubiquity, availability and exponential growth of digital information and communication technology (ICT) creates unique opportunities for learning and teaching in the senior secondary school biology curriculum. Digital technologies make it possible for emerging disciplinary knowledge and understanding of biological processes…

  2. A geometric comparison of video camera-captured raster data to vector-parented raster data generated by the X-Y digitizing table

    NASA Technical Reports Server (NTRS)

    Swalm, C.; Pelletier, R.; Rickman, D.; Gilmore, K.

    1989-01-01

    The relative accuracy of a georeferenced raster data set captured by the Megavision 1024XM system using the Videk Megaplus CCD cameras is compared to a georeferenced raster data set generated from vector lines manually digitized through the ELAS software package on a Summagraphics X-Y digitizer table. The study also investigates the amount of time necessary to fully complete the rasterization of the two data sets, evaluating individual areas such as time necessary to generate raw data, time necessary to edit raw data, time necessary to georeference raw data, and accuracy of georeferencing against a norm. Preliminary results exhibit a high level of agreement between areas of the vector-parented data and areas of the captured file data where sufficient control points were chosen. Maps of 1:20,000 scale were digitized into raster files of 5 meter resolution per pixel and overall error in RMS was estimated at less than eight meters. Such approaches offer time and labor-saving advantages as well as increasing the efficiency of project scheduling and enabling the digitization of new types of data.

  3. [Whole slide imaging technology: from digitization to online applications].

    PubMed

    Ameisen, David; Le Naour, Gilles; Daniel, Christel

    2012-11-01

    As e-health becomes essential to modern care, whole slide images (virtual slides) are now an important clinical, teaching and research tool in pathology. Virtual microscopy consists of digitizing a glass slide by acquiring hundreds of tiles of regions of interest at different zoom levels and assembling them into a structured file. This gigapixel image can then be remotely viewed over a terminal, exactly the way pathologists use a microscope. In this article, we will first describe the key elements of this technology, from the acquisition, using a scanner or a motorized microscope, to the broadcasting of virtual slides through a local or distant viewer over an intranet or Internet connection. As virtual slides are now commonly used in virtual classrooms, clinical data and research databases, we will highlight the main issues regarding its uses in modern pathology. Emphasis will be made on quality assurance policies, standardization and scaling.

  4. Progress in Low-Power Digital Microwave Radiometer Technologies

    NASA Technical Reports Server (NTRS)

    Piepmeier, Jeffrey R.; Kim, Edward J.

    2004-01-01

    Three component technologies were combined into a digital correlation microwave radiometer. The radiometer comprises a dual-channel X-band superheterodyne receiver, low-power high-speed cross-correlator (HSCC), three-level ADCs, and a correlated noise source (CNS). The HSCC dissipates 10 mW and operates at 500 MHz clock speed. The ADCs are implemented using ECL components and dissipate more power than desired. Thus, a low-power ADC development is underway. The new ADCs arc predicted to dissipated less than 200 mW and operate at 1 GSps with 1.5 GHz of input bandwidth. The CNS provides different input correlation values for calibration of the radiometer. The correlation channel had a null offset of 0.0008. Test results indicate that the correlation channel can be calibrated with 0.09% error in gain.

  5. [Development and prospect of digital technology in the field of prosthodontics].

    PubMed

    Zhang, F Q

    2016-04-01

    The development of digital technology is gradually changing clinical practice and laboratory procedure of prosthodontics. After decades of exploration and development, the modern digital technology has been perfectly merged with prosthodontics and created a brand new treatment mode. The application of digital impression, digital design and digital processing has changed the way we treat patients and the way we communicate with patients. The data storage also provides a basis for long-term follow-up. The establishment of digital remote system, transferring data through internet, has improved communication in dental technique, tracing analysis of patient's condition, sharing and management of medical data, and popularization and promotion of knowledge. Digital technology promoted the development of prosthodontics in the direction of more precision, more convenience, more efficiency and more simulation in functional recovery, which will be one of the development directions of dentistry and even the medical science in the future.

  6. [Development and prospect of digital technology in the field of prosthodontics].

    PubMed

    Zhang, F Q

    2016-04-01

    The development of digital technology is gradually changing clinical practice and laboratory procedure of prosthodontics. After decades of exploration and development, the modern digital technology has been perfectly merged with prosthodontics and created a brand new treatment mode. The application of digital impression, digital design and digital processing has changed the way we treat patients and the way we communicate with patients. The data storage also provides a basis for long-term follow-up. The establishment of digital remote system, transferring data through internet, has improved communication in dental technique, tracing analysis of patient's condition, sharing and management of medical data, and popularization and promotion of knowledge. Digital technology promoted the development of prosthodontics in the direction of more precision, more convenience, more efficiency and more simulation in functional recovery, which will be one of the development directions of dentistry and even the medical science in the future. PMID:27117213

  7. Getting the Picture: Using the Digital Camera as a Tool to Support Reflective Practice and Responsive Care

    ERIC Educational Resources Information Center

    Luckenbill, Julia

    2012-01-01

    Many early childhood educators use cameras to share the charming things that children do and the artwork they make. Programs often bind these photographs into portfolios and give them to children and their families as mementos at the end of the year. In the author's classrooms, they use photography on a daily basis to document children's…

  8. The Digital Divide

    ERIC Educational Resources Information Center

    Hudson, Hannah Trierweiler

    2011-01-01

    Megan is a 14-year-old from Nebraska who just started ninth grade. She has her own digital camera, cell phone, Nintendo DS, and laptop, and one or more of these devices is usually by her side. Compared to the interactions and exploration she's engaged in at home, Megan finds the technology in her classroom falls a little flat. Most of the…

  9. Aviation spectral camera infinity target simulation system

    NASA Astrophysics Data System (ADS)

    Liu, Xinyue; Ming, Xing; Liu, Jiu; Guo, Wenji; Lv, Gunbo

    2014-11-01

    With the development of science and technology, the applications of aviation spectral camera becoming more widely. Developing a test system of dynamic target is more important. Aviation spectral camera infinity target simulation system can be used to test the resolution and the modulation transfer function of camera. The construction and work principle of infinity target simulation system were introduced in detail. Dynamic target generator based digital micromirror device (DMD) and required performance of collimation System were analyzed and reported. The dynamic target generator based on DMD had the advantages of replacing image convenient, size small and flexible. According to the requirement of tested camera, by rotating and moving mirror, has completed a full field infinity dynamic target test plan.

  10. Situational Awareness from a Low-Cost Camera System

    NASA Technical Reports Server (NTRS)

    Freudinger, Lawrence C.; Ward, David; Lesage, John

    2010-01-01

    A method gathers scene information from a low-cost camera system. Existing surveillance systems using sufficient cameras for continuous coverage of a large field necessarily generate enormous amounts of raw data. Digitizing and channeling that data to a central computer and processing it in real time is difficult when using low-cost, commercially available components. A newly developed system is located on a combined power and data wire to form a string-of-lights camera system. Each camera is accessible through this network interface using standard TCP/IP networking protocols. The cameras more closely resemble cell-phone cameras than traditional security camera systems. Processing capabilities are built directly onto the camera backplane, which helps maintain a low cost. The low power requirements of each camera allow the creation of a single imaging system comprising over 100 cameras. Each camera has built-in processing capabilities to detect events and cooperatively share this information with neighboring cameras. The location of the event is reported to the host computer in Cartesian coordinates computed from data correlation across multiple cameras. In this way, events in the field of view can present low-bandwidth information to the host rather than high-bandwidth bitmap data constantly being generated by the cameras. This approach offers greater flexibility than conventional systems, without compromising performance through using many small, low-cost cameras with overlapping fields of view. This means significant increased viewing without ignoring surveillance areas, which can occur when pan, tilt, and zoom cameras look away. Additionally, due to the sharing of a single cable for power and data, the installation costs are lower. The technology is targeted toward 3D scene extraction and automatic target tracking for military and commercial applications. Security systems and environmental/ vehicular monitoring systems are also potential applications.

  11. HST High Gain Antennae photographed by Electronic Still Camera

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This view of one of the two High Gain Antennae (HGA) on the Hubble Space Telescope (HST) was photographed with an Electronic Still Camera (ESC). The scene was downlinked to ground controllers soon after the Shuttle Endeavour caught up to the orbiting telescope. Electronic still photography is a technology which provides the means for a handheld camera to electronically capture and digitize an image with resolution approaching film quality.

  12. Anger Camera Firmware

    2010-11-19

    The firmware is responsible for the operation of Anger Camera Electronics, calculation of position, time of flight and digital communications. It provides a first stage analysis of 48 signals from 48 analog signals that have been converted to digital values using A/D convertors.

  13. Polarization encoded color camera.

    PubMed

    Schonbrun, Ethan; Möller, Guðfríður; Di Caprio, Giuseppe

    2014-03-15

    Digital cameras would be colorblind if they did not have pixelated color filters integrated into their image sensors. Integration of conventional fixed filters, however, comes at the expense of an inability to modify the camera's spectral properties. Instead, we demonstrate a micropolarizer-based camera that can reconfigure its spectral response. Color is encoded into a linear polarization state by a chiral dispersive element and then read out in a single exposure. The polarization encoded color camera is capable of capturing three-color images at wavelengths spanning the visible to the near infrared. PMID:24690806

  14. iGeneration: The Social Cognitive Effects of Digital Technology on Teenagers

    ERIC Educational Resources Information Center

    Ives, Eugenia A.

    2012-01-01

    The purpose of this study was to examine and better understand the social cognitive effects of digital technology on teenagers' brains and their socialization processes, as well as to learn best practices with regard to digital technology consumption. An extensive literature review was conducted on the social cognitive effects of digital…

  15. Status of Technology and Digitization in the Nation's Museums and Libraries: 2002 Report.

    ERIC Educational Resources Information Center

    Institute of Museum and Library Services, Washington, DC.

    The Institute of Museum and Library Services (IMLS) undertook a study of the use of technology and digitization activities in libraries and museums nationwide. This report first presents key cumulative findings of the survey that measured technology use and digitization activities by museums and libraries. It then presents a series of tables and…

  16. Status of Technology and Digitization in the Nation's Museums and Libraries

    ERIC Educational Resources Information Center

    Institute of Museum and Library Services, 2006

    2006-01-01

    This report investigates current trends in libraries and museums regarding the use of digitization and other technologies. In 2001, the Institute of Museum and Library Services conducted the first-ever study of the status of new technology adoption and digitization in the nation's museums and libraries. The baseline study identified pockets of…

  17. The Use of Digital Technologies across the Adult Life Span in Distance Education

    ERIC Educational Resources Information Center

    Jelfs, Anne; Richardson, John T. E.

    2013-01-01

    In June 2010, a survey was carried out to explore access to digital technology, attitudes to digital technology and approaches to studying across the adult life span in students taking courses with the UK Open University. In total, 7000 people were surveyed, of whom more than 4000 responded. Nearly all these students had access to a computer and…

  18. Teaching in a Digital Age: How Educators Use Technology to Improve Student Learning

    ERIC Educational Resources Information Center

    McKnight, Katherine; O'Malley, Kimberly; Ruzic, Roxanne; Horsley, Maria Kelly; Franey, John J.; Bassett, Katherine

    2016-01-01

    A successful digital conversion for classrooms, districts, and states is not determined by the technology, but by how technology enables teaching and learning. The purpose of our multisite case study was to document digital instructional strategies teachers use to enhance and transform student learning, and align that use with learning research.…

  19. Students' Everyday Engagement with Digital Technology in University: Exploring Patterns of Use and "Usefulness"

    ERIC Educational Resources Information Center

    Henderson, Michael; Selwyn, Neil; Finger, Glenn; Aston, Rachel

    2015-01-01

    The much-discussed potential of "technology-enhanced learning" is not always apparent in the day-to-day use of digital technology throughout higher education. Against this background, the present paper considers the digital devices and resources that students engage most frequently with during their university studies, what these…

  20. Comic Relief: Graduate Students Address Multiple Meanings for Technology Integration with Digital Comic Creation

    ERIC Educational Resources Information Center

    Sockman, Beth Rajan; Sutton, Rhonda; Herrmann, Michele

    2016-01-01

    This study determined the usefulness of digital comic creation with 77 graduate students in a teacher technology course. Students completed an assigned reading and created digital comics that addressed technology integration concerns in the schools and society. Using practical action research, 77 student-created comics were analyzed. The findings…

  1. How Digital Technologies, Blended Learning and MOOCs Will Impact the Future of Higher Education

    ERIC Educational Resources Information Center

    Morris, Neil P.

    2014-01-01

    Digital technologies are revolutionizing all parts of society, including higher education. Universities are rapidly adapting to the prevalence of staff and student mobile devices, digital tools and services on campus, and are developing strategies to harness these technologies to enhance student learning. In this paper, I explore the use of…

  2. Teachers' Use of Digital Technology in Secondary Music Education: Illustrations of Changing Classrooms

    ERIC Educational Resources Information Center

    Wise, Stuart; Greenwood, Janinka; Davis, Niki

    2011-01-01

    The music industry in the 21st century uses digital technology in a wide range of applications including performance, composition and in recording and publishing. Much of this digital technology is freely available via downloads from the internet, as part of software included with computers when they are purchased and via applications that are…

  3. Organizational Influences in Technology Adoption Decisions: A Case Study of Digital Libraries

    ERIC Educational Resources Information Center

    Oguz, Fatih

    2016-01-01

    The purpose of this study was to understand the organizational level decision factors in technology adoption in the context of digital libraries. A qualitative case study approach was used to investigate the adoption of a specific technology, XML-based Web services, in digital libraries. Rogers' diffusion of innovations and Wenger's communities of…

  4. Using Digital Technology to See Angles from Different Angles. Part 1: Corners

    ERIC Educational Resources Information Center

    Host, Erin; Baynham, Emily; McMaster, Heather

    2014-01-01

    In Part 1 of their article, Erin Host, Emily Baynham and Heather McMaster use a combination of digital technology and concrete materials to explore the concept of "corners". They provide a practical, easy to follow sequence of activities that builds on students' understandings. [For "Using Digital Technology to See Angles from…

  5. Digital Technology and the Culture of Teaching and Learning in Higher Education

    ERIC Educational Resources Information Center

    Lai, Kwok-Wing

    2011-01-01

    This paper discusses how the use of digital technologies may support a shift of cultural practices in teaching and learning, to better meet the needs of 21st century higher education learners. A brief discussion of the changing needs of the learners is provided, followed by a review of the overall impact of digital technologies on teaching and…

  6. Adult Learning in the Digital Age: Perspectives on Online Technologies and Outcomes

    ERIC Educational Resources Information Center

    Kidd, Terry T., Ed.; Keengwe, Jared, Ed.

    2010-01-01

    As instructors move further into the incorporation of 21st century technologies in adult education, a new paradigm of digitally-enriched mediated learning has emerged. This book provides a comprehensive framework of trends and issues related to adult learning for the facilitation of authentic learning in the age of digital technology. This…

  7. Geospatial technologies and digital geomorphological mapping: Concepts, issues and research

    NASA Astrophysics Data System (ADS)

    Bishop, Michael P.; James, L. Allan; Shroder, John F.; Walsh, Stephen J.

    2012-01-01

    Geomorphological mapping plays an essential role in understanding Earth surface processes, geochronology, natural resources, natural hazards and landscape evolution. It involves the partitioning of the terrain into conceptual spatial entities based upon criteria that include morphology (form), genetics (process), composition and structure, chronology, environmental system associations (land cover, soils, ecology), as well as spatial topological relationships of surface features (landforms). Historically, the power of human visualization was primarily relied upon for analysis, introducing subjectivity and biases with respect to selection of criteria for terrain segmentation and placement of boundaries. This paper reviews new spatio-temporal data and geocomputational approaches that now permit Earth scientists to go far beyond traditional mapping, permitting quantitative characterization of landscape morphology and the integration of varied landscape thematic information. Numerous conceptual, theoretical, and information-technology issues are at the heart of digital geomorphological mapping (DGM), and scientific progress has not kept pace with new and rapidly evolving geospatial technologies. Consequently, new capabilities exist but numerous issues have not been adequately addressed. Therefore, this paper discusses conceptual foundations and illustrates how geomorphometry and mapping approaches can be used to produce geomorphological information related to the land surface and landforms, process rates, process-form relationships, and geomorphic systems.

  8. Maximizing the Performance of Automated Low Cost All-sky Cameras

    NASA Technical Reports Server (NTRS)

    Bettonvil, F.

    2011-01-01

    Thanks to the wide spread of digital camera technology in the consumer market, a steady increase in the number of active All-sky camera has be noticed European wide. In this paper I look into the details of such All-sky systems and try to optimize the performance in terms of accuracy of the astrometry, the velocity determination and photometry. Having autonomous operation in mind, suggestions are done for the optimal low cost All-sky camera.

  9. A Strategic Necessity: Building Senior Leadership's Fluency in Digital Technology

    ERIC Educational Resources Information Center

    Kolomitz, Kara; Cabellon, Edmund T.

    2016-01-01

    This chapter describes the opportunity for senior student affairs officers (SSAOs) to develop an increased digital fluency to meet the needs of various constituencies in the digital age. The authors explore what a digital fluency is, how it might impact SSAOs' leadership potential, and the benefits for their respective divisions.

  10. Estimation of the Spectral Sensitivity Functions of Un-Modified and Modified Commercial Off-The Digital Cameras to Enable Their Use as a Multispectral Imaging System for Uavs

    NASA Astrophysics Data System (ADS)

    Berra, E.; Gibson-Poole, S.; MacArthur, A.; Gaulton, R.; Hamilton, A.

    2015-08-01

    Commercial off-the-shelf (COTS) digital cameras on-board unmanned aerial vehicles (UAVs) have the potential to be used as multispectral imaging systems; however, their spectral sensitivity is usually unknown and needs to be either measured or estimated. This paper details a step by step methodology for identifying the spectral sensitivity of modified (to be response to near infra-red wavelengths) and un-modified COTS digital cameras, showing the results of its application for three different models of camera. Six digital still cameras, which are being used as imaging systems on-board different UAVs, were selected to have their spectral sensitivities measured by a monochromator. Each camera was exposed to monochromatic light ranging from 370 nm to 1100 nm in 10 nm steps, with images of each step recorded in RAW format. The RAW images were converted linearly into TIFF images using DCRaw, an open-source program, before being batch processed through ImageJ (also open-source), which calculated the mean and standard deviation values from each of the red-green-blue (RGB) channels over a fixed central region within each image. These mean values were then related to the relative spectral radiance from the monochromator and its integrating sphere, in order to obtain the relative spectral response (RSR) for each of the cameras colour channels. It was found that different un-modified camera models present very different RSR in some channels, and one of the modified cameras showed a response that was unexpected. This highlights the need to determine the RSR of a camera before using it for any quantitative studies.

  11. Digital photorefraction

    NASA Astrophysics Data System (ADS)

    Costa, Manuel F.; Jorge, Jorge M.

    1997-12-01

    The early evaluation of the visual status of human infants is of a critical importance. It is of utmost importance to the development of the child's visual system that she perceives clear, focused, retinal images. Furthermore if the refractive problems are not corrected in due time amblyopia may occur. Photorefraction is a non-invasive clinical tool rather convenient for application to this kind of population. A qualitative or semi-quantitative information about refractive errors, accommodation, strabismus, amblyogenic factors and some pathologies (cataracts) can the easily obtained. The photorefraction experimental setup we established using new technological breakthroughs on the fields of imaging devices, image processing and fiber optics, allows the implementation of both the isotropic and eccentric photorefraction approaches. Essentially both methods consist on delivering a light beam into the eyes. It is refracted by the ocular media, strikes the retina, focusing or not, reflects off and is collected by a camera. The system is formed by one CCD color camera and a light source. A beam splitter in front of the camera's objective allows coaxial illumination and observation. An optomechanical system also allows eccentric illumination. The light source is a flash type one and is synchronized with the camera's image acquisition. The camera's image is digitized displayed in real time. Image processing routines are applied for image's enhancement and feature extraction.

  12. Digital photorefraction

    NASA Astrophysics Data System (ADS)

    Costa, Manuel F. M.; Jorge, Jorge M.

    1998-01-01

    The early evaluation of the visual status of human infants is of a critical importance. It is of utmost importance to the development of the child's visual system that she perceives clear, focused, retinal images. Furthermore if the refractive problems are not corrected in due time amblyopia may occur. Photorefraction is a non-invasive clinical tool rather convenient for application to this kind of population. A qualitative or semi-quantitative information about refractive errors, accommodation, strabismus, amblyogenic factors and some pathologies (cataracts) can the easily obtained. The photorefraction experimental setup we established using new technological breakthroughs on the fields of imaging devices, image processing and fiber optics, allows the implementation of both the isotropic and eccentric photorefraction approaches. Essentially both methods consist on delivering a light beam into the eyes. It is refracted by the ocular media, strikes the retina, focusing or not, reflects off and is collected by a camera. The system is formed by one CCD color camera and a light source. A beam splitter in front of the camera's objective allows coaxial illumination and observation. An optomechanical system also allows eccentric illumination. The light source is a flash type one and is synchronized with the camera's image acquisition. The camera's image is digitized displayed in real time. Image processing routines are applied for image's enhancement and feature extraction.

  13. Understanding Computer-Based Digital Video.

    ERIC Educational Resources Information Center

    Martindale, Trey

    2002-01-01

    Discussion of new educational media and technology focuses on producing and delivering computer-based digital video. Highlights include video standards, including international standards and aspect ratio; camera formats and features, including costs; shooting digital video; editing software; compression; and a list of informative Web sites. (LRW)

  14. Research on auto-calibration technology of the image plane's center of 360-degree and all round looking camera

    NASA Astrophysics Data System (ADS)

    Zhang, Shaojun; Xu, Xiping

    2015-10-01

    The 360-degree and all round looking camera, as its characteristics of suitable for automatic analysis and judgment on the ambient environment of the carrier by image recognition algorithm, is usually applied to opto-electronic radar of robots and smart cars. In order to ensure the stability and consistency of image processing results of mass production, it is necessary to make sure the centers of image planes of different cameras are coincident, which requires to calibrate the position of the image plane's center. The traditional mechanical calibration method and electronic adjusting mode of inputting the offsets manually, both exist the problem of relying on human eyes, inefficiency and large range of error distribution. In this paper, an approach of auto- calibration of the image plane of this camera is presented. The imaging of the 360-degree and all round looking camera is a ring-shaped image consisting of two concentric circles, the center of the image is a smaller circle and the outside is a bigger circle. The realization of the technology is just to exploit the above characteristics. Recognizing the two circles through HOUGH TRANSFORM algorithm and calculating the center position, we can get the accurate center of image, that the deviation of the central location of the optic axis and image sensor. The program will set up the image sensor chip through I2C bus automatically, we can adjusting the center of the image plane automatically and accurately. The technique has been applied to practice, promotes productivity and guarantees the consistent quality of products.

  15. Hierarchical object-based classification of ultra-high-resolution digital mapping camera (DMC) imagery for rangeland mapping and assessment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ultra high resolution digital aerial photography has great potential to complement or replace ground measurements of vegetation cover for rangeland monitoring and assessment. We investigated object-based image analysis (OBIA) techniques for classifying vegetation in southwestern U.S. arid rangelands...

  16. Low altitude remote-sensing method to monitor marine and beach litter of various colors using a balloon equipped with a digital camera.

    PubMed

    Kako, Shin'ichiro; Isobe, Atsuhiko; Magome, Shinya

    2012-06-01

    This study aims to establish a low-altitude remote sensing system for surveying litter on a beach or the ocean using a remote-controlled digital camera suspended from a balloon filled with helium gas. The resultant images are processed to identify the litter using projective transformation method and color difference in the CIELUV color space. Low-altitude remote sensing experimental observations were conducted on two locations in Japan. Although the sizes of the litter and the areas covered are distorted in the original photographs taken at various angles and heights, the proposed image process system is capable of identifying object positions with a high degree of accuracy (1-3 m). Furthermore, the color difference approach in the CIELUV color space used in this study is well capable of extracting pixels of litter objects of various colors allowing us to estimate the number of objects from the photographs.

  17. In vivo multispectral imaging of the absorption and scattering properties of exposed brain using a digital red-green-blue camera

    NASA Astrophysics Data System (ADS)

    Yoshida, Keiichiro; Ishizuka, Tomohiro; Mizushima, Chiharu; Nishidate, Izumi; Kawauchi, Satoko; Sato, Shunichi; Sato, Manabu

    2015-04-01

    To evaluate multi-spectral images of the absorption and scattering properties in the cerebral cortex of rat brain, we investigated spectral reflectance images estimated by the Wiener estimation method using a digital red-green-blue camera. A Monte Carlo simulation-based multiple regression analysis for the corresponding spectral absorbance images at nine wavelengths (500, 520, 540, 560, 570, 580, 600, 730, and 760 nm) was then used to specify the absorption and scattering parameters. The spectral images of absorption and reduced scattering coefficients were reconstructed from the absorption and scattering parameters. We performed in vivo experiments on exposed rat brain to confirm the feasibility of this method. The estimated images of the absorption coefficients were dominated by hemoglobin spectra. The estimated images of the reduced scattering coefficients had a broad scattering spectrum, exhibiting a larger magnitude at shorter wavelengths, corresponding to the typical spectrum of brain tissue published in the literature.

  18. Assessment of the Spatial Co-registration of Multitemporal Imagery from Large Format Digital Cameras in the Context of Detailed Change Detection

    PubMed Central

    Coulter, Lloyd L.; Stow, Douglas A.

    2008-01-01

    Large format digital camera (LFDC) systems are becoming more broadly available and regularly collect image data over large areas. Spectral and radiometric attributes of imagery from LFDC systems make this type of image data appropriate for semi-automated change detection. However, achieving accurate spatial co-registration between multitemporal image sets is necessary for semi-automated change detection. This study investigates the accuracy of co-registration between multitemporal image sets acquired using the Leica Geosystems ADS40, Intergraph Z/I Imaging® DMC, and Vexcel UltraCam-D sensors in areas of gentle, moderate, and extreme terrain relief. Custom image sets were collected and orthorectified by imagery vendors, with guidance from the authors. Results indicate that imagery acquired by vendors operating LFDC systems may be co- registered with pixel or sub-pixel level accuracy, even for environments with high terrain relief. Specific image acquisition and processing procedures facilitating this level of co- registration are discussed.

  19. Rethinking Education in the Age of Technology: The Digital Revolution and Schooling in America. Technology, Education--Connections (TEC) Series

    ERIC Educational Resources Information Center

    Collins, Allan; Halverson, Richard

    2009-01-01

    The digital revolution has hit education, with more and more classrooms plugged into the whole wired world. But are schools making the most of new technologies? Are they tapping into the learning potential of today's Firefox/Facebook/cell phone generation? Have schools fallen through the crack of the digital divide? In "Rethinking Education in the…

  20. Increasing Electrochemiluminescence Intensity of a Wireless Electrode Array Chip by Thousands of Times Using a Diode for Sensitive Visual Detection by a Digital Camera.

    PubMed

    Qi, Liming; Xia, Yong; Qi, Wenjing; Gao, Wenyue; Wu, Fengxia; Xu, Guobao

    2016-01-19

    Both a wireless electrochemiluminescence (ECL) electrode microarray chip and the dramatic increase in ECL by embedding a diode in an electromagnetic receiver coil have been first reported. The newly designed device consists of a chip and a transmitter. The chip has an electromagnetic receiver coil, a mini-diode, and a gold electrode array. The mini-diode can rectify alternating current into direct current and thus enhance ECL intensities by 18 thousand times, enabling a sensitive visual detection using common cameras or smart phones as low cost detectors. The detection limit of hydrogen peroxide using a digital camera is comparable to that using photomultiplier tube (PMT)-based detectors. Coupled with a PMT-based detector, the device can detect luminol with higher sensitivity with linear ranges from 10 nM to 1 mM. Because of the advantages including high sensitivity, high throughput, low cost, high portability, and simplicity, it is promising in point of care testing, drug screening, and high throughput analysis. PMID:26669809

  1. ProgRes 3000: a digital color camera with a 2-D array CCD sensor and programmable resolution up to 2994 x 2320 picture elements

    NASA Astrophysics Data System (ADS)

    Lenz, Reimar K.; Lenz, Udo

    1990-11-01

    A newly developed imaging principle two dimensional microscanning with Piezo-controlled Aperture Displacement (PAD) allows for high image resolutions. The advantages of line scanners (high resolution) are combined with those of CCD area sensors (high light sensitivity geometrical accuracy and stability easy focussing illumination control and selection of field of view by means of TV real-time imaging). A custom designed sensor optimized for small sensor element apertures and color fidelity eliminates the need for color filter revolvers or mechanical shutters and guarantees good color convergence. By altering the computer controlled microscan patterns spatial and temporal resolution become interchangeable their product being a constant. The highest temporal resolution is TV real-time (50 fields/sec) the highest spatial resolution is 2994 x 2320 picture elements (Pels) for each of the three color channels (28 MBytes of raw image data in 8 see). Thus for the first time it becomes possible to take 35mm slide quality still color images of natural 3D scenes by purely electronic means. Nearly " square" Pels as well as hexagonal sampling schemes are possible. Excellent geometrical accuracy and low noise is guaranteed by sensor element (Sel) synchronous analog to digital conversion within the camera head. The cameras principle of operation and the procedure to calibrate the two-dimensional piezo-mechanical motion with an accuracy of better than O. 2. tm RMSE in image space is explained. The remaining positioning inaccuracy may be further

  2. Camera-based measurement for transverse vibrations of moving catenaries in mine hoists using digital image processing techniques

    NASA Astrophysics Data System (ADS)

    Yao, Jiannan; Xiao, Xingming; Liu, Yao

    2016-03-01

    This paper proposes a novel, non-contact, sensing method to measure the transverse vibrations of hoisting catenaries in mine hoists. Hoisting catenaries are typically moving cables and it is not feasible to use traditional methods to measure their transverse vibrations. In order to obtain the transverse displacements of an arbitrary point in a moving catenary, by superposing a mask image having the predefined reference line perpendicular to the hoisting catenaries on each frame of the processed image sequence, the dynamic intersecting points with a grey value of 0 in the image sequence could be identified. Subsequently, by traversing the coordinates of the pixel with a grey value of 0 and calculating the distance between the identified dynamic points from the reference, the transverse displacements of the selected arbitrary point in the hoisting catenary can be obtained. Furthermore, based on a theoretical model, the reasonability and applicability of the proposed camera-based method were confirmed. Additionally, a laboratory experiment was also carried out, which then validated the accuracy of the proposed method. The research results indicate that the proposed camera-based method is suitable for the measurement of the transverse vibrations of moving cables.

  3. A Planning Cycle for Integrating Digital Technology into Literacy Instruction

    ERIC Educational Resources Information Center

    Hutchison, Amy; Woodward, Lindsay

    2014-01-01

    With the adoption of the Common Core State Standards by most states, the use of digital tools in literacy and language arts instruction has become of critical importance to educators. These changes produce a need for a better understanding of how literacy and language arts teachers can successfully integrate digital tools into their instruction…

  4. Building a Digital Library: A Technology Manager's Point of View.

    ERIC Educational Resources Information Center

    Shaw, Elizabeth J.

    2000-01-01

    Describes the Historic Pittsburgh project at the University of Pittsburgh, a joint project with the Historical Society of Western Pennsylvania to produce a digital collection of historical materials available on the Internet. Discusses costs; metadata; digitization and preservation of originals; full-text capabilities; scanning; quality review;…

  5. Reference Implications of Digital Technology in a Library Photograph Collection.

    ERIC Educational Resources Information Center

    Benemann, William E.

    1994-01-01

    Describes a feasibility study which focused on converting Japanese-American evacuation and relocation photographs to digital format for improved access and preservation. Problems and issues surrounding indexing the collection, the use of Library of Congress Subject Headings and authority files, and public service issues raised by a digital image…

  6. Measurement of the nonuniformity of first responder thermal imaging cameras

    NASA Astrophysics Data System (ADS)

    Lock, Andrew; Amon, Francine

    2008-04-01

    Police, firefighters, and emergency medical personnel are examples of first responders that are utilizing thermal imaging cameras in a very practical way every day. However, few performance metrics have been developed to assist first responders in evaluating the performance of thermal imaging technology. This paper describes one possible metric for evaluating the nonuniformity of thermal imaging cameras. Several commercially available uncooled focal plane array cameras were examined. Because of proprietary property issues, each camera was considered a 'black box'. In these experiments, an extended area black body (18 cm square) was placed very close to the objective lens of the thermal imaging camera. The resultant video output from the camera was digitized at a resolution of 640x480 pixels and a grayscale depth of 10 bits. The nonuniformity was calculated using the standard deviation of the digitized image pixel intensities divided by the mean of those pixel intensities. This procedure was repeated for each camera at several blackbody temperatures in the range from 30° C to 260° C. It has observed that the nonuniformity initially increases with temperature, then asymptotically approaches a maximum value. Nonuniformity is also applied to the calculation of Spatial Frequency Response as well providing a noise floor. The testing procedures described herein are being developed as part of a suite of tests to be incorporated into a performance standard covering thermal imaging cameras for first responders.

  7. Mixed application MMIC technologies - Progress in combining RF, digital and photonic circuits

    NASA Technical Reports Server (NTRS)

    Swirhun, S.; Bendett, M.; Sokolov, V.; Bauhahn, P.; Sullivan, C.; Mactaggart, R.; Mukherjee, S.; Hibbs-Brenner, M.; Mondal, J.

    1991-01-01

    Approaches for future 'mixed application' monolithic integrated circuits (ICs) employing optical receive/transmit, RF amplification and modulation and digital control functions are discussed. We focus on compatibility of the photonic component fabrication with conventional RF and digital IC technologies. Recent progress at Honeywell in integrating several parts of the desired RF/digital/photonic circuit integration suite required for construction of a future millimeter-wave optically-controlled phased-array element are illustrated.

  8. System design for the digitally implemented communications experiment /DICE/. [Communications Technology Satellite television for teleconferencing

    NASA Technical Reports Server (NTRS)

    Gatfield, A. G.; Suyderhoud, H. G.; Wolejsza, C. J., Jr.

    1977-01-01

    Full-duplex digital television providing a teleconference capability is to be evaluated in an experimental program utilizing the Communications Technology Satellite. The digitally implemented communications experiment employs a QPSK modulator-demodulator capable of operation over a wide range of bit rates. In addition to simultaneous data transmission (used for digital high-speed facsimiles and remote computer terminals), voice transmission through four-to-one compression will be studied.

  9. Linguistic Layering: Social Language Development in the Context of Multimodal Design and Digital Technologies

    ERIC Educational Resources Information Center

    Domingo, Myrrh

    2012-01-01

    In our contemporary society, digital texts circulate more readily and extend beyond page-bound formats to include interactive representations such as online newsprint with hyperlinks to audio and video files. This is to say that multimodality combined with digital technologies extends grammar to include voice, visual, and music, among other modes…

  10. Access to Technology in Transnational Social Fields: Simultaneity and Digital Literacy Socialization of Adult Immigrants

    ERIC Educational Resources Information Center

    Nogueron-Liu, Silvia

    2013-01-01

    Some studies of technology use by immigrants have explored the role of digital media in their maintenance of affiliations with their nations of origin. However, the potential for transnational social networks to serve as "resources" that facilitate digital literacy socialization for adult immigrant learners remains unexplored. In this study, I…

  11. Digital Technology and Creative Arts Career Patterns in the UK Creative Economy

    ERIC Educational Resources Information Center

    Comunian, Roberta; Faggian, Alessandra; Jewell, Sarah

    2015-01-01

    In this article, we ask what role both digital and artistic human capital play in the creative economy by examining employment patterns of digital technology (DT) and creative arts and design (CAD) graduates. Using student micro-data collected by the Higher Education Statistical Agency (HESA) in the United Kingdom, we investigate the…

  12. The Contributions of Digital Communications Technology to Human Rights Education: A Case Study of Amnesty International

    ERIC Educational Resources Information Center

    Norlander, Rebecca Joy

    2013-01-01

    This dissertation addresses the need for critical assessment and evaluation of human rights education (HRE) programs and activities, especially newer initiatives that incorporate the use of digital information and communications technology (ICT). It provides an in-depth case study of the use of digital ICT in Amnesty International's HRE efforts,…

  13. Creativity in the Age of Technology: Measuring the Digital Creativity of Millennials

    ERIC Educational Resources Information Center

    Hoffmann, Jessica; Ivcevic, Zorana; Brackett, Marc

    2016-01-01

    Digital technology and its many uses form an emerging domain of creative expression for adolescents and young adults. To date, measures of self-reported creative behavior cover more traditional forms of creativity, including visual art, music, or writing, but do not include creativity in the digital domain. This article introduces a new measure,…

  14. Beyond the "Digital Natives" Debate: Towards a More Nuanced Understanding of Students' Technology Experiences

    ERIC Educational Resources Information Center

    Bennett, S.; Maton, K.

    2010-01-01

    The idea of the "digital natives", a generation of tech-savvy young people immersed in digital technologies for which current education systems cannot cater, has gained widespread popularity on the basis of claims rather than evidence. Recent research has shown flaws in the argument that there is an identifiable generation or even a single type of…

  15. Digital Storytelling in Writing: A Case Study of Student Teacher Attitudes toward Teaching with Technology

    ERIC Educational Resources Information Center

    Bumgarner, Barri L.

    2012-01-01

    This case study investigated how preservice teachers taught digital storytelling to students who often possessed more technology skills than the teachers. During the spring semester of 2011, two secondary-level language arts teaching interns and their cooperating teachers taught a digital storytelling project. The participants and their students…

  16. Digi-teens: Media Literacies and Digital Technologies in the Secondary Classroom.

    ERIC Educational Resources Information Center

    Burn, Andrew; Reed, Kate

    1999-01-01

    Describes a course set up for Year 11 students using digital editing equipment to examine the audiovisual fabric of films of their choice. Investigates how the advent of digital technologies enables new kinds of reading of visual texts as well as new kinds of textual production. (NH)

  17. Literary Education and Digital Learning: Methods and Technologies for Humanities Studies

    ERIC Educational Resources Information Center

    van Peer, Willie, Ed.; Zyngier, Sonia, Ed.; Viana, Vander, Ed.

    2010-01-01

    Today's popularization of modern technologies has allowed literature specialists to access an array of new opportunities in the digital medium, which have brought about an equal number of challenges and questions. This book provides insight into the most relevant issues in literary education and digital learning. This unique reference fills a gap…

  18. Beyond Digital Natives: European Research on Media Education; Challenges of Technology and Pedagogical Issues

    ERIC Educational Resources Information Center

    Rivoltella, Pier Cesare

    2012-01-01

    This article aims to map issues of Media Education currently under debate in Europe. It points out three main research trends. The first one concerns digital natives and their skills in media and technologies. Here we have quite a dialectic situation: on the one hand, a lot of scholars and policymakers are sure that digital natives exist, that…

  19. Using TPCK with Digital Storytelling to Investigate Contemporary Issues in Educational Technology

    ERIC Educational Resources Information Center

    Maddin, Ellen

    2012-01-01

    Digital storytelling is recognized as a motivating instructional approach that engages students in critical thinking and reflective learning. Technology tools that support digital storytelling are readily available and much easier to use today than they were in years past. The convergence of these factors has facilitated the inclusion of digital…

  20. Using Digital Technologies to Improve the Authenticity of Performance Assessment for High-Stakes Purposes

    ERIC Educational Resources Information Center

    Newhouse, C. Paul

    2015-01-01

    This paper reports on the outcomes of a three-year study investigating the use of digital technologies to increase the authenticity of high-stakes summative assessment in four Western Australian senior secondary courses. The study involved 82 teachers and 1015 students and a range of digital forms of assessment using computer-based exams, digital…

  1. A BUNCH TO BUCKET PHASE DETECTOR USING DIGITAL RECEIVER TECHNOLOGY.

    SciTech Connect

    DELONG,J.; BRENNAN, J. M.; HAYES,T.; TUONG, N. LE,; SMITH, K.

    2003-05-12

    Transferring high-speed digital signals to a Digital Signal Processor is limited by the IO bandwidth of the DSP. A digital receiver circuit is used to translate high frequency W signals to base-band. The translated output frequency is close to DC and the data rate can be reduced, by decimation, before transfer to the DSP. By translating both the longitudinal beam (bunch) and RF cavity pick-ups (bucket) to DC, a DSP can be used to measure their relative phase angle. The result can be used as an error signal in a beam control servo loop and any phase differences can be compensated.

  2. The Digital Classroom: How Technology Is Changing the Way We Teach and Learn

    ERIC Educational Resources Information Center

    Gordon, David T. Ed.

    2000-01-01

    This book features more than 25 articles and essays that discuss the rewards and challenges of integrating technology into schools, as well as short editorials from technology experts, educators, and cultural critics. Digital technologies are reshaping the way education is practiced, raising many questions: How can we better prepare teachers for…

  3. Making Sense of Young People, Education and Digital Technology: The Role of Sociological Theory

    ERIC Educational Resources Information Center

    Selwyn, Neil

    2012-01-01

    This paper considers the contribution of sociological theory to the academic study of young people, education and digital technology. First it discusses the shortcomings of the technological and socially determinist views of technology and education that prevail in current academic and policy discussions. Against this background the paper outlines…

  4. Examining Student Digital Artifacts during a Year-Long Technology Integration Initiative

    ERIC Educational Resources Information Center

    Rodriguez, Prisca M.; Frey, Chris; Dawson, Kara; Liu, Feng; Ritzhaupt, Albert D.

    2012-01-01

    This study was situated within a year-long, statewide technology integration initiative designed to support technology integration within science, technology, engineering, and math classrooms. It examined the elements used in student artifacts in an attempt to investigate trends in digital artifact creation. Among several conclusions, this…

  5. Digital Technology Education and Its Impact on Traditional Academic Roles and Practice

    ERIC Educational Resources Information Center

    Sappey, Jennifer; Relf, Stephen

    2010-01-01

    This paper explores the interface between digital technologies and the teaching labour process in Australian higher education. We develop an adaptation of the seminal Clark (1983, 1994, 2001) and Kozma (1991, 1994) debate about whether technology merely delivers educational content unchanged--technology as the "delivery truck"--or whether…

  6. Single chip camera active pixel sensor

    NASA Technical Reports Server (NTRS)

    Shaw, Timothy (Inventor); Pain, Bedabrata (Inventor); Olson, Brita (Inventor); Nixon, Robert H. (Inventor); Fossum, Eric R. (Inventor); Panicacci, Roger A. (Inventor); Mansoorian, Barmak (Inventor)

    2003-01-01

    A totally digital single chip camera includes communications to operate most of its structure in serial communication mode. The digital single chip camera include a D/A converter for converting an input digital word into an analog reference signal. The chip includes all of the necessary circuitry for operating the chip using a single pin.

  7. New approach to color calibration of high fidelity color digital camera by using unique wide gamut color generator based on LED diodes

    NASA Astrophysics Data System (ADS)

    Kretkowski, M.; Shimodaira, Y.; Jabłoński, R.

    2008-11-01

    Development of a high accuracy color reproduction system requires certain instrumentation and reference for color calibration. Our research led to development of a high fidelity color digital camera with implemented filters that realize the color matching functions. The output signal returns XYZ values which provide absolute description of color. In order to produce XYZ output a mathematical conversion must be applied to CCD output values introducing a conversion matrix. The conversion matrix coefficients are calculated by using a color reference with known XYZ values and corresponding output signals from the CCD sensor under each filter acquisition from a certain amount of color samples. The most important feature of the camera is its ability to acquire colors from the complete theoretically visible color gamut due to implemented filters. However market available color references such as various color checkers are enclosed within HDTV gamut, which is insufficient for calibration in the whole operating color range. This led to development of a unique color reference based on LED diodes called the LED Color Generator (LED CG). It is capable of displaying colors in a wide color gamut estimated by chromaticity coordinates of 12 primary colors. The total amount of colors possible to produce is 25512. The biggest advantage is a possibility of displaying colors with desired spectral distribution (with certain approximations) due to multiple primary colors it consists. The average color difference obtained for test colors was found to be ▵E~0.78 for calibration with LED CG. The result is much better and repetitive in comparison with the Macbeth ColorCheckerTM which typically gives ▵E~1.2 and in the best case ▵E~0.83 with specially developed techniques.

  8. Plenoptic camera image simulation for reconstruction algorithm verification

    NASA Astrophysics Data System (ADS)

    Schwiegerling, Jim

    2014-09-01

    Plenoptic cameras have emerged in recent years as a technology for capturing light field data in a single snapshot. A conventional digital camera can be modified with the addition of a lenslet array to create a plenoptic camera. Two distinct camera forms have been proposed in the literature. The first has the camera image focused onto the lenslet array. The lenslet array is placed over the camera sensor such that each lenslet forms an image of the exit pupil onto the sensor. The second plenoptic form has the lenslet array relaying the image formed by the camera lens to the sensor. We have developed a raytracing package that can simulate images formed by a generalized version of the plenoptic camera. Several rays from each sensor pixel are traced backwards through the system to define a cone of rays emanating from the entrance pupil of the camera lens. Objects that lie within this cone are integrated to lead to a color and exposure level for that pixel. To speed processing three-dimensional objects are approximated as a series of planes at different depths. Repeating this process for each pixel in the sensor leads to a simulated plenoptic image on which different reconstruction algorithms can be tested.

  9. Applying the Technology Acceptance Model in a Study of the Factors Affecting Usage of the Taiwan Digital Archives System

    ERIC Educational Resources Information Center

    Hong, Jon-Chao; Hwang, Ming-Yueh; Hsu, Hsuan-Fang; Wong, Wan-Tzu; Chen, Mei-Yung

    2011-01-01

    The rapid development of information and communication technology and the popularization of the Internet have given a boost to digitization technologies. Since 2001, The National Science Council (NSC) of Taiwan has invested a large amount of funding in the National Digital Archives Program (NDAP) to develop digital content. Some studies have…

  10. Hybrid Placemaking in the Library: Designing Digital Technology to Enhance Users' On-Site Experience

    ERIC Educational Resources Information Center

    Bilandzic, Mark; Johnson, Daniel

    2013-01-01

    This paper presents research findings and design strategies that illustrate how digital technology can be applied as a tool for "hybrid" placemaking in ways that would not be possible in purely digital or physical spaces. Digital technology has revolutionised the way people learn and gather new information. This trend has challenged the…

  11. Integration of Digital Technologies into Play-Based Pedagogy in Kuwaiti Early Childhood Education: Teachers' Views, Attitudes and Aptitudes

    ERIC Educational Resources Information Center

    Aldhafeeri, Fayiz; Palaiologou, Ioanna; Folorunsho, Aderonke

    2016-01-01

    Scholars in the field of early childhood education are still debating the inclusion of digital technologies in play-based pedagogy and our understanding of digital play in early childhood education is still developing. This research paper examines early childhood education teachers' views, aptitudes and attitudes towards digital technologies in…

  12. Miniaturized Autonomous Extravehicular Robotic Camera (Mini AERCam)

    NASA Technical Reports Server (NTRS)

    Fredrickson, Steven E.

    2001-01-01

    The NASA Johnson Space Center (JSC) Engineering Directorate is developing the Autonomous Extravehicular Robotic Camera (AERCam), a low-volume, low-mass free-flying camera system . AERCam project team personnel recently initiated development of a miniaturized version of AERCam known as Mini AERCam. The Mini AERCam target design is a spherical "nanosatellite" free-flyer 7.5 inches in diameter and weighing 1 0 pounds. Mini AERCam is building on the success of the AERCam Sprint STS-87 flight experiment by adding new on-board sensing and processing capabilities while simultaneously reducing volume by 80%. Achieving enhanced capability in a smaller package depends on applying miniaturization technology across virtually all subsystems. Technology innovations being incorporated include micro electromechanical system (MEMS) gyros, "camera-on-a-chip" CMOS imagers, rechargeable xenon gas propulsion system , rechargeable lithium ion battery, custom avionics based on the PowerPC 740 microprocessor, GPS relative navigation, digital radio frequency communications and tracking, micropatch antennas, digital instrumentation, and dense mechanical packaging. The Mini AERCam free-flyer will initially be integrated into an approximate flight-like configuration for demonstration on an airbearing table. A pilot-in-the-loop and hardware-in-the-loop simulation to simulate on-orbit navigation and dynamics will complement the airbearing table demonstration. The Mini AERCam lab demonstration is intended to form the basis for future development of an AERCam flight system that provides beneficial on-orbit views unobtainable from fixed cameras, cameras on robotic manipulators, or cameras carried by EVA crewmembers.

  13. Digital Suicide Prevention: Can Technology Become a Game-changer?

    PubMed Central

    Sahin, Ned; Kalali, Amir

    2016-01-01

    Suicide continues to be a leading cause of death and has been recognized as a significant public health issue. Rapid advances in data science can provide us with useful tools for suicide prevention, and help to dynamically assess suicide risk in quantitative data-driven ways. In this article, the authors highlight the most current international research in digital suicide prevention, including the use of machine learning, smartphone applications, and wearable sensor driven systems. The authors also discuss future opportunities for digital suicide prevention, and propose a novel Sensor-driven Mental State Assessment System. PMID:27800282

  14. Using information and communication technology (ICT) to the maximum: learning and teaching biology with limited digital technologies

    NASA Astrophysics Data System (ADS)

    Van Rooy, Wilhelmina S.

    2012-04-01

    Background: The ubiquity, availability and exponential growth of digital information and communication technology (ICT) creates unique opportunities for learning and teaching in the senior secondary school biology curriculum. Digital technologies make it possible for emerging disciplinary knowledge and understanding of biological processes previously too small, large, slow or fast to be taught. Indeed, much of bioscience can now be effectively taught via digital technology, since its representational and symbolic forms are in digital formats. Purpose: This paper is part of a larger Australian study dealing with the technologies and modalities of learning biology in secondary schools. Sample: The classroom practices of three experienced biology teachers, working in a range of NSW secondary schools, are compared and contrasted to illustrate how the challenges of limited technologies are confronted to seamlessly integrate what is available into a number of molecular genetics lessons to enhance student learning. Design and method: The data are qualitative and the analysis is based on video classroom observations and semi-structured teacher interviews. Results: Findings indicate that if professional development opportunities are provided where the pedagogy of learning and teaching of both the relevant biology and its digital representations are available, then teachers see the immediate pedagogic benefit to student learning. In particular, teachers use ICT for challenging genetic concepts despite limited computer hardware and software availability. Conclusion: Experienced teachers incorporate ICT, however limited, in order to improve the quality of student learning.

  15. The Digital Divide in Classrooms: Teacher Technology Comfort and Evaluations

    ERIC Educational Resources Information Center

    Dornisch, Michele

    2013-01-01

    A disconnect exists between students' comfort with using technology for learning and teachers' comfort in using technology for teaching. Students report the desire for more engaging technology-based assignments. Teachers cite multiple reasons for their hesitancy to use technology in their teaching. The current study investigates whether…

  16. Use of a digital camera onboard an unmanned aerial vehicle to monitor spring phenology at individual tree level

    NASA Astrophysics Data System (ADS)

    Berra, Elias; Gaulton, Rachel; Barr, Stuart

    2016-04-01

    The monitoring of forest phenology, in a cost-effective manner, at a fine spatial scale and over relatively large areas remains a significant challenge. To address this issue, unmanned aerial vehicles (UAVs) appear as a potential new option for forest phenology monitoring. The aim of this study is to assess the potential of imagery acquired from a UAV to track seasonal changes in leaf canopy at individual tree level. UAV flights, deploying consumer-grade standard and near-infrared modified cameras, were carried out over a deciduous woodland during the spring season of 2015, from which a temporal series of calibrated and georeferenced 5 cm spatial resolution orthophotos was generated. Initial results from a subset of trees are presented in this paper. Four trees with different observed Start of Season (SOS) dates were selected to monitor UAV-derived Green Chromatic Coordinate (GCC), as a measure of canopy greenness. Mean GCC values were extracted from within the four individual tree crowns and were plotted against the day of year (DOY) when the data were acquired. The temporal GCC trajectory of each tree was associated with the visual observations of leaf canopy phenology (SOS) and also with the development of understory vegetation. The chronological order when sudden increases of GCC values occurred matched with the chronological order of observed SOS: the first sudden increase in GCC was detected in the tree which first reached SOS; 18.5 days later (on average) the last sudden increase of GCC was detected in the tree which last reached SOS (18 days later than the first one). Trees with later observed SOS presented GCC values increasing slowly over time, which were associated with development of understory vegetation. Ongoing work is dealing with: 1) testing different indices; 2) radiometric calibration (retrieving of spectral reflectance); 3) expanding the analysis to more tree individuals, more tree species and over larger forest areas, and; 4) deriving

  17. Digital Libraries: The Next Generation in File System Technology.

    ERIC Educational Resources Information Center

    Bowman, Mic; Camargo, Bill

    1998-01-01

    Examines file sharing within corporations that use wide-area, distributed file systems. Applications and user interactions strongly suggest that the addition of services typically associated with digital libraries (content-based file location, strongly typed objects, representation of complex relationships between documents, and extrinsic…

  18. The digital compensation technology system for automotive pressure sensor

    NASA Astrophysics Data System (ADS)

    Guo, Bin; Li, Quanling; Lu, Yi; Luo, Zai

    2010-12-01

    Piezoresistive pressure sensor be made of semiconductor silicon based on Piezoresistive phenomenon, has many characteristics. But since the temperature effect of semiconductor, the performance of silicon sensor is also changed by temperature, and the pressure sensor without temperature drift can not be produced at present. This paper briefly describe the principles of sensors, the function of pressure sensor and the various types of compensation method, design the detailed digital compensation program for automotive pressure sensor. Simulation-Digital mixed signal conditioning is used in this dissertation, adopt signal conditioning chip MAX1452. AVR singlechip ATMEGA128 and other apparatus; fulfill the design of digital pressure sensor hardware circuit and singlechip hardware circuit; simultaneously design the singlechip software; Digital pressure sensor hardware circuit is used to implementing the correction and compensation of sensor; singlechip hardware circuit is used to implementing to controll the correction and compensation of pressure sensor; singlechip software is used to implementing to fulfill compensation arithmetic. In the end, it implement to measure the output of sensor, and contrast to the data of non-compensation, the outcome indicates that the compensation precision of compensated sensor output is obviously better than non-compensation sensor, not only improving the compensation precision but also increasing the stabilization of pressure sensor.

  19. The digital compensation technology system for automotive pressure sensor

    NASA Astrophysics Data System (ADS)

    Guo, Bin; Li, Quanling; Lu, Yi; Luo, Zai

    2011-05-01

    Piezoresistive pressure sensor be made of semiconductor silicon based on Piezoresistive phenomenon, has many characteristics. But since the temperature effect of semiconductor, the performance of silicon sensor is also changed by temperature, and the pressure sensor without temperature drift can not be produced at present. This paper briefly describe the principles of sensors, the function of pressure sensor and the various types of compensation method, design the detailed digital compensation program for automotive pressure sensor. Simulation-Digital mixed signal conditioning is used in this dissertation, adopt signal conditioning chip MAX1452. AVR singlechip ATMEGA128 and other apparatus; fulfill the design of digital pressure sensor hardware circuit and singlechip hardware circuit; simultaneously design the singlechip software; Digital pressure sensor hardware circuit is used to implementing the correction and compensation of sensor; singlechip hardware circuit is used to implementing to controll the correction and compensation of pressure sensor; singlechip software is used to implementing to fulfill compensation arithmetic. In the end, it implement to measure the output of sensor, and contrast to the data of non-compensation, the outcome indicates that the compensation precision of compensated sensor output is obviously better than non-compensation sensor, not only improving the compensation precision but also increasing the stabilization of pressure sensor.

  20. Listening Comprehension Technology: Building the Bridge from Analog to Digital

    ERIC Educational Resources Information Center

    Jones, Linda C.

    2008-01-01

    Listening comprehension has had a long and ever-evolving history. Within the last 100 years, we have seen it progress from analog phonograph recordings, through the audiotape era, and into the digital realm. Questions arise as to how this evolution has proceeded, what pitfalls and accomplishments we have experienced, and where we might envision…

  1. Distance Learning Using Digital Fiber Optics: Applications, Technologies, and Benefits.

    ERIC Educational Resources Information Center

    Currer, Joanne M.

    Distance learning provides special or advanced classes in rural schools where declining population has led to decreased funding and fewer classes. With full-motion video using digital fiber, two or more sites are connected into a two-way, full-motion, video conference. The teacher can see and hear the students, and the students can see and hear…

  2. Advances in shutter drive technology to enhance man-portable infrared cameras

    NASA Astrophysics Data System (ADS)

    Durfee, David

    2012-06-01

    With an emphasis on highest reliability, infrared (IR) imagers have traditionally used simplest-possible shutters and field-proven technology. Most commonly, single-step rotary or linear magnetic actuators have been used with good success. However, several newer shutter drive technologies offer benefits in size and power reduction, enabling man-portable imagers that are more compact, lighter, and more durable. This paper will discuss improvements in shutter and shutter drive technology, which enable smaller and more power-efficient imagers. Topics will transition from single-step magnetic actuators to multi-stepping magnetic drives, latching vs. balanced systems for blade position shock-resistance, motor and geared motor drives, and associated stepper driver electronics. It will highlight performance tradeoffs pertinent to man-portable military systems.

  3. Spherical Camera

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Developed largely through a Small Business Innovation Research contract through Langley Research Center, Interactive Picture Corporation's IPIX technology provides spherical photography, a panoramic 360-degrees. NASA found the technology appropriate for use in guiding space robots, in the space shuttle and space station programs, as well as research in cryogenic wind tunnels and for remote docking of spacecraft. Images of any location are captured in their entirety in a 360-degree immersive digital representation. The viewer can navigate to any desired direction within the image. Several car manufacturers already use IPIX to give viewers a look at their latest line-up of automobiles. Another application is for non-invasive surgeries. By using OmniScope, surgeons can look more closely at various parts of an organ with medical viewing instruments now in use. Potential applications of IPIX technology include viewing of homes for sale, hotel accommodations, museum sites, news events, and sports stadiums.

  4. Passport to Digital Citizenship: Journey toward Appropriate Technology Use at School and at Home

    ERIC Educational Resources Information Center

    Ribble, Mike

    2009-01-01

    Technology has changed people's lives. In fewer than 30 years, people have gone from barely hearing about cell phones, laptops, and MP3 players to almost not being able to live without them. Digital citizenship describes the norms of appropriate, responsible behavior with regard to technology use. In this article, the author presents nine elements…

  5. Punctuated Equilibrium--Digital Technology in Schools' Teaching of the Mother Tongue (Swedish)

    ERIC Educational Resources Information Center

    Erixon, Per-Olof

    2016-01-01

    This article deals with how teachers and pupils in seventh to ninth grade in Sweden look upon and relate to the incorporation of new digital technology in mother tongue education (Swedish). The result shows that both the classification and framing of the subject is being challenged by new technology, but that the awareness of the impact seems to…

  6. Digitally Distanced Learning: A Study of International Distance Learners' (Non)Use of Technology

    ERIC Educational Resources Information Center

    Selwyn, Neil

    2011-01-01

    This article considers the uses and non-uses of digital technology by international distance learners. It draws upon data from in-depth interviews with 60 learners from around the world following distance education degree courses provided by a large UK federal university. The article focuses firstly on learners' descriptions of technology's role…

  7. Transforming Schools with Technology: How Smart Use of Digital Tools Helps Achieve Six Key Education Goals

    ERIC Educational Resources Information Center

    Zucker, Andrew A.

    2008-01-01

    In this timely and thoughtful book, Andrew Zucker argues that technology can and will play a central role in efforts to achieve crucial education goals, and that it will be an essential component of further improvement and transformation of schools. The book is marked not only by Zucker's cutting-edge sophistication about digital technologies, but…

  8. Young Children's Learning of Novel Digital Interfaces: How Technology Experience, Age, and Design Come into Play

    ERIC Educational Resources Information Center

    Gilutz, Shuli

    2009-01-01

    This study looks at the relationship between age, technology experience, and design factors in determining young children's comprehension of novel digital interfaces. In Experiment 1, 35 preschoolers played three games that varied in complexity and familiarity. Parental questionnaires were used to assess children's previous technology experience.…

  9. Digital Disturbances, Disorders, and Pathologies: A Discussion of Some Unintended Consequences of Technology in Higher Education

    ERIC Educational Resources Information Center

    Haughton, Noela A.; Yeh, Kuo-Chuan; Nworie, John; Romero, Liz

    2013-01-01

    As with any innovation, the adoption and diffusion of digital technologies in higher education have also brought unintended consequences. This article discusses the unintended misuse of these technologies in the higher education setting. Depending upon severity, these consequences discussed--distraction, addiction, academic dishonesty, and…

  10. 5 Myths about Classroom Technology: How Do We Integrate Digital Tools to Truly Enhance Learning?

    ERIC Educational Resources Information Center

    Renwick, Matt

    2015-01-01

    What's keeping your school behind the technology curve? Is it a fear of the unfamiliar? Expenses? Or some other myth? Have you considered how students with special needs or students learning a second language may benefit from using digital tools? If you've fallen for the perception that technology is too expensive, unnecessary for real learning,…

  11. Innovating Education and Educating for Innovation: The Power of Digital Technologies and Skills

    ERIC Educational Resources Information Center

    OECD Publishing, 2016

    2016-01-01

    OECD's Innovation Strategy calls upon all sectors in the economy and society to innovate in order to foster productivity, growth and well-being. Education systems are critically important for innovation through the development of skills that nurture new ideas and technologies. However, whereas digital technologies are profoundly changing the way…

  12. Children Learning to Use Technologies through Play: A Digital Play Framework

    ERIC Educational Resources Information Center

    Bird, Jo; Edwards, Susan

    2015-01-01

    Digital technologies are increasingly acknowledged as an important aspect of early childhood education. A significant problem for early childhood education has been how to understand the pedagogical use of technologies in a sector that values play-based learning. This paper presents a new framework to understand how children learn to use…

  13. New Technology and Digital Worlds: Analyzing Evidence of Equity in Access, Use, and Outcomes

    ERIC Educational Resources Information Center

    Warschauer, Mark; Matuchniak, Tina

    2010-01-01

    In this chapter, the authors take a broad perspective on how to analyze issues of technology and equity for youth in the United States. They begin with "access" as a starting point, but consider not only whether diverse groups of youth have digital media available to them but also how that access is supported or constrained by technological and…

  14. Education in a Digital Democracy: Leading the Charge for Learning about, with, and beyond Technology.

    ERIC Educational Resources Information Center

    Milliron, Mark David; Miles, Cindy L.

    2000-01-01

    Education is playing an important role in the realization of our democratic ideals in this digital age. Educators need to be persuaded that the new technologies need to be embraced and utilized. Technology skills should be taught, but basic skills such as reading, writing and critical thinking are also more important than ever. (JM)

  15. The Use of Digital Technologies in the Classroom: A Teaching and Learning Perspective

    ERIC Educational Resources Information Center

    Buzzard, Christopher; Crittenden, Victoria L.; Crittenden, William F.; McCarty, Paulette

    2011-01-01

    Today's college students, often referred to as the "digital generation," use an impressive assortment of technological tools in a wide variety of ways. However, the findings reported here suggest that students prefer more traditional instructional technology for effective engagement and learning. Faculty members, however, prefer the use of…

  16. Relating Use of Digital Technology by Pre-Service Teachers to Confidence: A Singapore Survey

    ERIC Educational Resources Information Center

    Yeung, Alexander Seeshing; Lim, Kam Ming; Tay, Eng Guan; Lam-Chiang, Audrey Cheausim; Hui, Chenri

    2012-01-01

    Teachers today are expected to be able to apply a wide range of digital technologies in the classroom. Initial teacher education programs should prepare teachers to apply them with confidence. Pre-service teachers in Singapore responded to a survey on use of technologies in their personal lives and in their teaching, and how confident they were in…

  17. Digital Libraries with Embedded Values: Combining Insights from LIS and Science and Technology Studies

    ERIC Educational Resources Information Center

    Fleischmann, Kenneth R.

    2007-01-01

    In the digital age, libraries are increasingly being augmented or even replaced by information technology (IT), which is often accompanied by implicit assumptions of objectivity and neutrality, yet the field of science and technology studies (STS) has a long history of studying what values are embedded in IT and how they are embedded. This article…

  18. Digital Technology in the 21st Century: Considerations for Clinical Supervision in Rehabilitation Education

    ERIC Educational Resources Information Center

    Byrne, Andrew M.; Hartley, Michael T.

    2010-01-01

    Technological innovations are increasingly affecting the delivery of clinical supervision. Yet there is limited information on how supervisors can use digital technology to broaden settings in which students record client interviews, enhance evaluation of students' clinical performance, and increase accessibility for students with disabilities.…

  19. Robots, GPS/GIS, and Programming Technologies: The Power of "Digital Manipulatives" in Youth Extension Experiences

    ERIC Educational Resources Information Center

    Barker, Bradley S.; Grandgenett, Neal; Nugent, Gwen; Adamchuk, Viacheslav I.

    2010-01-01

    The study reported here examined the effectiveness of educational robotics combined with GPS/GIS technologies used as "digital manipulatives" in the teaching of concepts in science, engineering, and technology. Based on the success of previous summer camps, the study also examined a scaling-up of the intervention from 38 participants to 147. The…

  20. The Effect of the Digital Classroom on Academic Success and Online Technologies Self-Efficacy

    ERIC Educational Resources Information Center

    Ozerbas, Mehmet Arif; Erdogan, Bilge Has

    2016-01-01

    This study aimed to observe whether the learning environment created by digital classroom technologies has any effect on the academic success and online technologies self-efficacy of 7th grade students. In this study, an experimental design with a pre-test/post-test control group was used. The research was conducted with 58 students in a secondary…

  1. Digital Teaching Platforms: Customizing Classroom Learning for Each Student. Technology & Education, Connections (TEC)

    ERIC Educational Resources Information Center

    Dede, Chris, Ed.; Richards, John, Ed.

    2012-01-01

    The Digital Teaching Platform (DTP) brings the power of interactive technology to teaching and learning in classrooms. In this authoritative book, top researchers in the field of learning science and educational technology examine the current state of design and research on DTPs, the principles for evaluating them, and their likely evolution as a…

  2. Digital Advances Reshaping K-12 Testing. Technology Counts, 2014. Education Week. Volume 33 Number 25

    ERIC Educational Resources Information Center

    Edwards, Virginia B., Ed.

    2014-01-01

    Figuring out how to use digital tools to transform testing requires a willingness to invest in new technologies and the patience to experiment with novel approaches, a commitment to ongoing professional development and reliable technical support, and an openness to learn from mistakes. Whatever bumpy ride this technological journey takes, experts…

  3. Improving Technology Competency and Disposition of Beginning Pre-Service Teachers with Digital Storytelling

    ERIC Educational Resources Information Center

    Heo, Misook

    2011-01-01

    This study examined the effects of the digital storytelling experience of beginning pre-service teachers on their self-efficacy in educational technology and disposition toward change with regard to new technological approaches to teaching. A total of 76 freshmen participated in the study. After participating in a brief tutorial session, the…

  4. Mathematics Education & Digital Technologies: Facing the Challenge of Networking European Research Teams

    ERIC Educational Resources Information Center

    Bottino, Rosa Maria; Kynigos, Chronis

    2009-01-01

    This paper introduces the "IJCML" Special Issue dedicated to digital technologies and mathematics education and, in particular, to the work performed by the European Research Team TELMA (Technology Enhanced Learning in Mathematics). TELMA was one of the initiatives of the Kaleidoscope Network of Excellence established by the European Community…

  5. Mitigation and Adaptation: Critical Perspectives toward Digital Technologies in Place-Conscious Environmental Education

    ERIC Educational Resources Information Center

    Greenwood, David A.; Hougham, R. Justin

    2015-01-01

    This paper explores the tension for educators between the proliferation of mobile, digital technologies, and the widely held belief that environmental learning is best nurtured through place-based approaches that emphasize direct experience. We begin by offering a general critique of technology in culture and education, emphasizing what is at…

  6. The Sociology of Education and Digital Technology: Past, Present and Future

    ERIC Educational Resources Information Center

    Selwyn, Neil; Facer, Keri

    2014-01-01

    During the past 15 years of his career, John Furlong's research and writing has focused--in part--on digital technologies and people's everyday experiences of education. While hardly a technology expert, his work has shown an acute awareness of the significance of computers, the internet and mobile telephony in making sociological sense…

  7. Heidegger, Digital Technology, and Postmodern Education: From Being in Cyberspace to Meeting on MySpace

    ERIC Educational Resources Information Center

    Walters, Patrick; Kop, Rita

    2009-01-01

    Digital technology is transforming life and is beginning to have a profound effect on individual psychic life and the wider social milieu. This article seeks to understand the nature of the new technology and its implications for personal life, culture, and education. The scene is set by comparing the introduction of printing to the revolution…

  8. Decreasing the Digital Divide: Technology Use for College Preparation Programs

    ERIC Educational Resources Information Center

    Center for Higher Education Policy Analysis, University of Southern California, 2006

    2006-01-01

    This paper examines the use of instructional technology for college preparation programs. Over the last decade, the proliferation of personal computers and internet access has led to the widespread adoption of instructional technology in all educational sectors. This paper provides a typology of instructional technology specific to college…

  9. Electronic Still Camera

    NASA Technical Reports Server (NTRS)

    Holland, S. Douglas (Inventor)

    1992-01-01

    A handheld, programmable, digital camera is disclosed that supports a variety of sensors and has program control over the system components to provide versatility. The camera uses a high performance design which produces near film quality images from an electronic system. The optical system of the camera incorporates a conventional camera body that was slightly modified, thus permitting the use of conventional camera accessories, such as telephoto lenses, wide-angle lenses, auto-focusing circuitry, auto-exposure circuitry, flash units, and the like. An image sensor, such as a charge coupled device ('CCD') collects the photons that pass through the camera aperture when the shutter is opened, and produces an analog electrical signal indicative of the image. The analog image signal is read out of the CCD and is processed by preamplifier circuitry, a correlated double sampler, and a sample and hold circuit before it is converted to a digital signal. The analog-to-digital converter has an accuracy of eight bits to insure accuracy during the conversion. Two types of data ports are included for two different data transfer needs. One data port comprises a general purpose industrial standard port and the other a high speed/high performance application specific port. The system uses removable hard disks as its permanent storage media. The hard disk receives the digital image signal from the memory buffer and correlates the image signal with other sensed parameters, such as longitudinal or other information. When the storage capacity of the hard disk has been filled, the disk can be replaced with a new disk.

  10. New technologies for radiation-hardening analog to digital converters

    NASA Technical Reports Server (NTRS)

    Gauthier, M. K.

    1982-01-01

    Surveys of available Analog to Digital Converters (ADC) suitable for precision applications showed that none have the proper combination of accuracy and radiation hardness to meet space and/or strategic weapon requirements. A development program which will result in an ADC device which will serve a number of space and strategic applications. Emphasis was placed on approaches that could be integrated onto a single chip within three to five years.

  11. Digital image processing for the earth resources technology satellite data.

    NASA Technical Reports Server (NTRS)

    Will, P. M.; Bakis, R.; Wesley, M. A.

    1972-01-01

    This paper discusses the problems of digital processing of the large volumes of multispectral image data that are expected to be received from the ERTS program. Correction of geometric and radiometric distortions are discussed and a byte oriented implementation is proposed. CPU timing estimates are given for a System/360 Model 67, and show that a processing throughput of 1000 image sets per week is feasible.

  12. Camera Optics.

    ERIC Educational Resources Information Center

    Ruiz, Michael J.

    1982-01-01

    The camera presents an excellent way to illustrate principles of geometrical optics. Basic camera optics of the single-lens reflex camera are discussed, including interchangeable lenses and accessories available to most owners. Several experiments are described and results compared with theoretical predictions or manufacturer specifications.…

  13. Italian University Students and Digital Technologies: Some Results from a Field Research

    NASA Astrophysics Data System (ADS)

    Ferri, Paolo; Cavalli, Nicola; Costa, Elisabetta; Mangiatordi, Andrea; Mizzella, Stefano; Pozzali, Andrea; Scenini, Francesca

    Developments in information and communication technologies have raised the issue of how a kind of intergenerational digital divide can take place between "digital natives" and "digital immigrants". This can in turn have important consequences for the organization of educative systems. In this paper we present the result of a research performed during the course of 2008 to study how university students in Italy make use of digital technologies. The methodology was based on a mix of quantitative and qualitative approaches. A survey research was done, on a sample of 1186 students of the University of Milan-Bicocca, based on a questionnaire administrated through the Intranet of the University. A series of focus groups and in depth interviews with students, parents, and new media experts was furthermore performed. The results are consistent with the presence of a strong intergenerational divide. The implications of the results for the future organization of educative systems are discussed in the paper.

  14. Night Vision Camera

    NASA Technical Reports Server (NTRS)

    1996-01-01

    PixelVision, Inc. developed the Night Video NV652 Back-illuminated CCD Camera, based on the expertise of a former Jet Propulsion Laboratory employee and a former employee of Scientific Imaging Technologies, Inc. The camera operates without an image intensifier, using back-illuminated and thinned CCD technology to achieve extremely low light level imaging performance. The advantages of PixelVision's system over conventional cameras include greater resolution and better target identification under low light conditions, lower cost and a longer lifetime. It is used commercially for research and aviation.

  15. [Development of a digital EEG signal acquiring system based on virtual instrument technology].

    PubMed

    Ying, Jun; Chen, Guang-Fei; He, Shi-Lin

    2009-09-01

    This paper introduces an 16-lead digital EEG signal acquisition system, which applies MCU MSP430 as central control unit with high performance analog devices and high speed multi-channel, multi-bit analog-to-digital converter as peripheral to retrench analog circuit. Data is transferred to PC by USART interface. Software on PC based on virtual instrument technology realizes real-time detection, display and storage. The system has many advantages such as high precision, stable performance, small volume and low power dissipation, thus provides a new means for digital EEG signal acquisition. PMID:20073237

  16. Nagging, Noobs and New Tricks--Students' Perceptions of School as a Context for Digital Technology Use

    ERIC Educational Resources Information Center

    Bulfin, Scott; Johnson, Nicola; Nemorin, Selena; Selwyn, Neil

    2016-01-01

    While digital technology is an integral feature of contemporary education, schools are often presumed to constrain and compromise students' uses of technology. This paper investigates students' experiences of school as a context for digital technology use. Drawing upon survey data from three Australian secondary schools (n = 1174), this paper…

  17. Adoption and Use of Digital Technologies among General Dental Practitioners in the Netherlands

    PubMed Central

    van der Zande, Marieke M.; Gorter, Ronald C.; Aartman, Irene H. A.; Wismeijer, Daniel

    2015-01-01

    Objectives To investigate (1) the degree of digital technology adoption among general dental practitioners, and to assess (2) which personal and practice factors are associated with technology use. Methods A questionnaire was distributed among a stratified sample of 1000 general dental practitioners in the Netherlands, to measure the use of fifteen administrative, communicative, clinical and diagnostic technologies, as well as personal factors and dental practice characteristics. Results The response rate was 31.3%; 65.1% replied to the questionnaire on paper and 34.9% online. Each specific digital technology was used by between 93.2% and 6.8% of the dentists. Administrative technologies were generally used by more dentists than clinical technologies. Dentists had adopted an average number of 6.3±2.3 technologies. 22.5% were low technology users (0 to 4 technologies), 46.2% were intermediate technology users (5 to 7 technologies) and 31.3% were high technology users (8 to12 technologies). High technology users more frequently had a specialization (p<0.001), were younger on average (p=0.024), and worked more hours per week (p=0.003) than low technology users, and invested more hours per year in professional activities (p=0.026) than intermediate technology users. High technology use was also more common for dentists working in practices with a higher average number of patients per year (p<0.001), with more dentists working in the practice (p<0.001) and with more staff (p<0.001). Conclusion With few exceptions, all dentists use some or a substantial number of digital technologies. Technology use is associated with various patterns of person-specific factors, and is higher when working in larger dental practices. The findings provide insight into the current state of digital technology adoption in dental practices. Further exploration why some dentists are more reluctant to adopt technologies than others is valuable for the dental profession’s agility in adjusting

  18. Digital immigrants teaching digital natives: A phenomenological study of higher education faculty perspectives on technology integration with English core content

    NASA Astrophysics Data System (ADS)

    Corey, Robert C.

    In the last two decades, technology use has escalated and educators grapple with its advances and integration into the classroom. Issues surrounding what constitutes a literate society, the clarion calls for educational reform emanating from US presidents to parent teacher organizations, and educators' ability to cope with advances in technology in the classroom demand attention. Therefore, the purpose of this qualitative study was to explore and understand the professional and educational experiences of six English faculty members teaching undergraduate courses at Midwest universities. Using the framework of Technological Pedagogical Content Knowledge -- TPACK (Koehler and Mishra 2008), the major focus of the study was to determine how faculty members understood what characterized the nature of teaching with technology in undergraduate classrooms. Results of this study revealed five themes showing how the participants were introduced to technology, how they assimilated it into their pedagogy, and how they integrated it into teaching practice. This study has the potential to impact the nature of illustrating the methods and techniques used by the six participants as they merge technology, pedagogy, and content knowledge and set in motion classroom practices that assist faculty at all levels to develop and teach technology skills necessary for the 21st century and to better prepare students for thinking critically about how to use digital advances.

  19. Digitized Educational Technology: A Learning Tool Using Remotely Sensed Data

    NASA Technical Reports Server (NTRS)

    Love, Gloria Carter

    1999-01-01

    Digitized Educational software for different levels of instruction were developed and placed on the web (geocities). Students attending the Pre-Engineering Summer 1998 Camp at Dillard University explored the use of the software which included presentations, applications, and special exercises. Student comments were received and considered for adjustments. The second outreach program included students from Colton Junior High School and Natural Science Majors at Dillard University. The Natural Majors completed a second survey concerning reasons why students selected majors in the Sciences and Mathematics. Two student research assistants (DU) and faculty members/parents of Colton Junior High assisted.

  20. On Becoming Technology Fluent: Digital Classrooms and Middle Aged Teachers

    ERIC Educational Resources Information Center

    Plair, Sandra Kay

    2010-01-01

    This dissertation, organized in chapter format, is comprised of a collection of case studies designed to explain why some teachers are not prepared to meet the challenges of the National Education Technology Plan despite the pervasive evidence of technology in our personal and professional lives. The first case study is the personal history of one…