A study on airborne integrated display system and human information processing
NASA Technical Reports Server (NTRS)
Mizumoto, K.; Iwamoto, H.; Shimizu, S.; Kuroda, I.
1983-01-01
The cognitive behavior of pilots was examined in an experiment involving mock ups of an eight display electronic attitude direction indicator for an airborne integrated display. Displays were presented in digital, analog digital, and analog format to experienced pilots. Two tests were run, one involving the speed of memorization in a single exposure and the other comprising two five second exposures spaced 30 sec apart. Errors increased with the speed of memorization. Generally, the analog information was assimilated faster than the digital data, with regard to the response speed. Information processing was quantified as 25 bits for the first five second exposure and 15 bits during the second.
Display integration for ground combat vehicles
NASA Astrophysics Data System (ADS)
Busse, David J.
1998-09-01
The United States Army's requirement to employ high resolution target acquisition sensors and information warfare to increase its dominance over enemy forces has led to the need to integrate advanced display devices into ground combat vehicle crew stations. The Army's force structure require the integration of advanced displays on both existing and emerging ground combat vehicle systems. The fielding of second generation target acquisition sensors, color digital terrain maps and high volume digital command and control information networks on these platforms define display performance requirements. The greatest challenge facing the system integrator is the development and integration of advanced displays that meet operational, vehicle and human computer interface performance requirements for the ground combat vehicle fleet. The subject of this paper is to address those challenges: operational and vehicle performance, non-soldier centric crew station configurations, display performance limitations related to human computer interfaces and vehicle physical environments, display technology limitations and the Department of Defense (DOD) acquisition reform initiatives. How the ground combat vehicle Program Manager and system integrator are addressing these challenges are discussed through the integration of displays on fielded, current and future close combat vehicle applications.
NASA Astrophysics Data System (ADS)
Sui, Haigang; Xiao, Jinghuan; Wang, Qi; Li, Qian
2007-06-01
PDA (Personal Digital Assistant) is a useful tool for navigation which has many advantages such as its smallness and portability. In the meantime, digital charts have been found a wide application in past ten years, and many users are hoping for giving up the paper chart entirely and using ENC by the law. However, traditional paper chart is a nonreplaced tool for people in hydrographical survey and other application fields, and would coexist with ENC for a long time. How to manage and display integrated chart for traditional paper chart and ENC together in PDA for navigating is still an unsolved problem. Aiming at this, a new integrated spatial data model and display techniques for ENC and paper chart are presented. The core idea of the new algorithm is to build an integrated spatial data model, structure and display environment for both paper chart and ENC. Based on the above algorithms and strategies, an Integrated Electronic Chart Pocket Navigator System named PNS based on PDA was developed. It has been applied in Tianjin Marine Safety Administration Bureau and obtained a good evaluation.
DMD: a digital light processing application to projection displays
NASA Astrophysics Data System (ADS)
Feather, Gary A.
1989-01-01
Summary Revolutionary technologies achieve rapid product and subsequent business diffusion only when the in- ventors focus on technology application, maturation, and proliferation. A revolutionary technology is emerg- ing with micro-electromechanical systems (MEMS). MEMS are being developed by leveraging mature semi- conductor processing coupled with mechanical systems into complete, integrated, useful systems. The digital micromirror device (DMD), a Texas Instruments invented MEMS, has focused on its application to projec- tion displays. The DMD has demonstrated its application as a digital light processor, processing and produc- ing compelling computer and video projection displays. This tutorial discusses requirements in the projection display market and the potential solutions offered by this digital light processing system. The seminar in- cludes an evaluation of the market, system needs, design, fabrication, application, and performance results of a system using digital light processing solutions.
Digital Earth system based river basin data integration
NASA Astrophysics Data System (ADS)
Zhang, Xin; Li, Wanqing; Lin, Chao
2014-12-01
Digital Earth is an integrated approach to build scientific infrastructure. The Digital Earth systems provide a three-dimensional visualization and integration platform for river basin data which include the management data, in situ observation data, remote sensing observation data and model output data. This paper studies the Digital Earth system based river basin data integration technology. Firstly, the construction of the Digital Earth based three-dimensional river basin data integration environment is discussed. Then the river basin management data integration technology is presented which is realized by general database access interface, web service and ActiveX control. Thirdly, the in situ data stored in database tables as records integration is realized with three-dimensional model of the corresponding observation apparatus display in the Digital Earth system by a same ID code. In the next two parts, the remote sensing data and the model output data integration technologies are discussed in detail. The application in the Digital Zhang River basin System of China shows that the method can effectively improve the using efficiency and visualization effect of the data.
NASA Astrophysics Data System (ADS)
Lin, Y.-C.
2017-08-01
HBIM technology makes great contributions to 3D digital preservation and management of the existing traditional architectures, and VR technology has also been gradually emphasized by 3D users in recent years, especially 3D immersive situation makes users more likely to experience the real space field. Taking Han type traditional architecture with relatively complex geometrical structure as an example, this research carries out digital preservation through HBIM technology and tries to switch to VR platform to allow users to enter 3D immersive scene for management and display. It is shown in the research results that the application of integration of HBIM and VR technology to Han type traditional architecture needs to consider 3D digital model of the architecture, and the number of polygon shall be controlled below about 2 million, which can make the operation in VR environment more smooth; the integration of two technologies can achieve the purpose of 3D immersive digital management, which can provide the humanized application close to the real experience for the display of subsequent management of ancient relics and architectural aesthetics.
Integrated cockpit display and processor: the best solution for Link-16 applications
NASA Astrophysics Data System (ADS)
Smeyne, Alan L.; Savaya, John
2000-08-01
Link-16 Data Link systems are being added to current avionics systems to provide increased situational awareness and command data. By using a single intelligent display system, the impact to existing aircraft systems to implement Link-16 capabilities is minimized. Litton Guidance & Control Systems (G&CS), a military avionics supplier for more than forty years, provides Open System Architecture (OSA), large screen aircraft display systems. Based on a common set of plug-in modules, these Smart Multi-Function Displays (SMFD) are available in a variety of sizes and processing capabilities, any one of which can meet the Link-16 requirements. Using a single smart SMFD connected to a Link-16 subsystem has many advantages. With digital moving map capability, the SMFD can monitor and display air and ground tracks of both friendly and hostile forces while providing potential threat data to the operator. The SMFD can also monitor vehicle status and mission data to share between friendly air and surface forces. To support the integrated digital battlefield, Link-16 capability is required and the Litton G&CS SMFD provides the processing/display functionality to implement this capability.
Development and flight test experiences with a flight-crucial digital control system
NASA Technical Reports Server (NTRS)
Mackall, Dale A.
1988-01-01
Engineers and scientists in the advanced fighter technology integration (AFTI) F-16 program investigated the integration of emerging technologies into an advanced fighter aircraft. AFTI's three major technologies included: flight-crucial digital control, decoupled aircraft flight control, and integration of avionics, flight control, and pilot displays. In addition to investigating improvements in fighter performance, researchers studied the generic problems confronting the designers of highly integrated flight-crucial digital control. An overview is provided of both the advantages and problems of integration digital control systems. Also, an examination of the specification, design, qualification, and flight test life-cycle phase is provided. An overview is given of the fault-tolerant design, multimoded decoupled flight control laws, and integrated avionics design. The approach to qualifying the software and system designs is discussed, and the effects of design choices on system qualification are highlighted.
Accelerometer Method and Apparatus for Integral Display and Control Functions
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr. (Inventor)
1996-01-01
Method and apparatus for detecting mechanical vibrations and outputting a signal in response thereto. Art accelerometer package having integral display and control functions is suitable for mounting upon the machinery to be monitored. Display circuitry provides signals to a bar graph display which may be used to monitor machine conditions over a period of time. Control switches may be set which correspond to elements in the bar graph to provide an alert if vibration signals increase in amplitude over a selected trip point. The circuitry is shock mounted within the accelerometer housing. The method provides for outputting a broadband analog accelerometer signal, integrating this signal to produce a velocity signal, integrating and calibrating the velocity signal before application to a display driver, and selecting a trip point at which a digitally compatible output signal is generated.
Accelerometer Method and Apparatus for Integral Display and Control Functions
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr. (Inventor)
1998-01-01
Method and apparatus for detecting mechanical vibrations and outputting a signal in response thereto is discussed. An accelerometer package having integral display and control functions is suitable for mounting upon the machinery to be monitored. Display circuitry provides signals to a bar graph display which may be used to monitor machine conditions over a period of time. Control switches may be set which correspond to elements in the bar graph to provide an alert if vibration signals increase in amplitude over a selected trip point. The circuitry is shock mounted within the accelerometer housing. The method provides for outputting a broadband analog accelerometer signal, integrating this signal to produce a velocity signal, integrating and calibrating the velocity signal before application to a display driver, and selecting a trip point at which a digitally compatible output signal is generated.
Unified Digital Image Display And Processing System
NASA Astrophysics Data System (ADS)
Horii, Steven C.; Maguire, Gerald Q.; Noz, Marilyn E.; Schimpf, James H.
1981-11-01
Our institution like many others, is faced with a proliferation of medical imaging techniques. Many of these methods give rise to digital images (e.g. digital radiography, computerized tomography (CT) , nuclear medicine and ultrasound). We feel that a unified, digital system approach to image management (storage, transmission and retrieval), image processing and image display will help in integrating these new modalities into the present diagnostic radiology operations. Future techniques are likely to employ digital images, so such a system could readily be expanded to include other image sources. We presently have the core of such a system. We can both view and process digital nuclear medicine (conventional gamma camera) images, positron emission tomography (PET) and CT images on a single system. Images from our recently installed digital radiographic unit can be added. Our paper describes our present system, explains the rationale for its configuration, and describes the directions in which it will expand.
NASA Astrophysics Data System (ADS)
Wang, Ximing; Edwardson, Matthew; Dromerick, Alexander; Winstein, Carolee; Wang, Jing; Liu, Brent
2015-03-01
Previously, we presented an Interdisciplinary Comprehensive Arm Rehabilitation Evaluation (ICARE) imaging informatics system that supports a large-scale phase III stroke rehabilitation trial. The ePR system is capable of displaying anonymized patient imaging studies and reports, and the system is accessible to multiple clinical trial sites and users across the United States via the web. However, the prior multicenter stroke rehabilitation trials lack any significant neuroimaging analysis infrastructure. In stroke related clinical trials, identification of the stroke lesion characteristics can be meaningful as recent research shows that lesion characteristics are related to stroke scale and functional recovery after stroke. To facilitate the stroke clinical trials, we hope to gain insight into specific lesion characteristics, such as vascular territory, for patients enrolled into large stroke rehabilitation trials. To enhance the system's capability for data analysis and data reporting, we have integrated new features with the system: a digital brain template display, a lesion quantification tool and a digital case report form. The digital brain templates are compiled from published vascular territory templates at each of 5 angles of incidence. These templates were updated to include territories in the brainstem using a vascular territory atlas and the Medical Image Processing, Analysis and Visualization (MIPAV) tool. The digital templates are displayed for side-by-side comparisons and transparent template overlay onto patients' images in the image viewer. The lesion quantification tool quantifies planimetric lesion area from user-defined contour. The digital case report form stores user input into a database, then displays contents in the interface to allow for reviewing, editing, and new inputs. In sum, the newly integrated system features provide the user with readily-accessible web-based tools to identify the vascular territory involved, estimate lesion area, and store these results in a web-based digital format.
Flight Test Results of a Synthetic Vision Elevation Database Integrity Monitor
NASA Technical Reports Server (NTRS)
deHaag, Maarten Uijt; Sayre, Jonathon; Campbell, Jacob; Young, Steve; Gray, Robert
2001-01-01
This paper discusses the flight test results of a real-time Digital Elevation Model (DEM) integrity monitor for Civil Aviation applications. Providing pilots with Synthetic Vision (SV) displays containing terrain information has the potential to improve flight safety by improving situational awareness and thereby reducing the likelihood of Controlled Flight Into Terrain (CFIT). Utilization of DEMs, such as the digital terrain elevation data (DTED), requires a DEM integrity check and timely integrity alerts to the pilots when used for flight-critical terrain-displays, otherwise the DEM may provide hazardous misleading terrain information. The discussed integrity monitor checks the consistency between a terrain elevation profile synthesized from sensor information, and the profile given in the DEM. The synthesized profile is derived from DGPS and radar altimeter measurements. DEMs of various spatial resolutions are used to illustrate the dependency of the integrity monitor s performance on the DEMs spatial resolution. The paper will give a description of proposed integrity algorithms, the flight test setup, and the results of a flight test performed at the Ohio University airport and in the vicinity of Asheville, NC.
1983-08-01
AD- R136 99 THE INTEGRATED MISSION-PLNNING STATION: FUNCTIONAL 1/3 REQUIREMENTS AVIATOR-..(U) RNACAPR SCIENCES INC SANTA BARBARA CA S P ROGERS RUG...Continue on reverse side o necess.ar and identify by btock number) Interactive Systems Aviation Control-Display Functional Require- Plan-Computer...Dialogue Avionics Systems ments Map Display Army Aviation Design Criteria Helicopters M4ission Planning Cartography Digital Map Human Factors Navigation
Near-to-eye electroholography via guided-wave acousto-optics for augmented reality
NASA Astrophysics Data System (ADS)
Jolly, Sundeep; Savidis, Nickolaos; Datta, Bianca; Smalley, Daniel; Bove, V. Michael
2017-03-01
Near-to-eye holographic displays act to directly project wavefronts into a viewer's eye in order to recreate 3-D scenes for augmented or virtual reality applications. Recently, several solutions for near-to-eye electroholography have been proposed based on digital spatial light modulators in conjunction with supporting optics, such as holographic waveguides for light delivery; however, such schemes are limited by the inherent low space-bandwidth product available with current digital SLMs. In this paper, we depict a fully monolithic, integrated optical platform for transparent near-to-eye holographic display requiring no supporting optics. Our solution employs a guided-wave acousto-optic spatial light modulator implemented in lithium niobate in conjunction with an integrated Bragg-regime reflection volume hologram.
NASA Technical Reports Server (NTRS)
Gilliland, M. G.; Rougelot, R. S.; Schumaker, R. A.
1966-01-01
Video signal processor uses special-purpose integrated circuits with nonsaturating current mode switching to accept texture and color information from a digital computer in a visual spaceflight simulator and to combine these, for display on color CRT with analog information concerning fading.
Carlson, Jay; Kowalczuk, Jędrzej; Psota, Eric; Pérez, Lance C
2012-01-01
Robotic surgical platforms require vision feedback systems, which often consist of low-resolution, expensive, single-imager analog cameras. These systems are retooled for 3D display by simply doubling the cameras and outboard control units. Here, a fully-integrated digital stereoscopic video camera employing high-definition sensors and a class-compliant USB video interface is presented. This system can be used with low-cost PC hardware and consumer-level 3D displays for tele-medical surgical applications including military medical support, disaster relief, and space exploration.
2012-02-07
circuits on mechanically flexible substrates for digital, analog and radio frequency applications. The asobtained thin-film transistors ( TFTs ) exhibit... flexible substrates for digital, analog and radio frequency applications. The as- obtained thin-film transistors ( TFTs ) exhibit highly uniform device...LCD) and organic light- emitting diode ( OLED ) displays lack the transparency and flexibility and are thus unsuitable for flexible electronic
MIRAGE: The data acquisition, analysis, and display system
NASA Technical Reports Server (NTRS)
Rosser, Robert S.; Rahman, Hasan H.
1993-01-01
Developed for the NASA Johnson Space Center and Life Sciences Directorate by GE Government Services, the Microcomputer Integrated Real-time Acquisition Ground Equipment (MIRAGE) system is a portable ground support system for Spacelab life sciences experiments. The MIRAGE system can acquire digital or analog data. Digital data may be NRZ-formatted telemetry packets of packets from a network interface. Analog signal are digitized and stored in experimental packet format. Data packets from any acquisition source are archived to a disk as they are received. Meta-parameters are generated from the data packet parameters by applying mathematical and logical operators. Parameters are displayed in text and graphical form or output to analog devices. Experiment data packets may be retransmitted through the network interface. Data stream definition, experiment parameter format, parameter displays, and other variables are configured using spreadsheet database. A database can be developed to support virtually any data packet format. The user interface provides menu- and icon-driven program control. The MIRAGE system can be integrated with other workstations to perform a variety of functions. The generic capabilities, adaptability and ease of use make the MIRAGE a cost-effective solution to many experimental data processing requirements.
Realizing the increased potential of an open-system high-definition digital projector design
NASA Astrophysics Data System (ADS)
Daniels, Reginald
1999-05-01
Modern video projectors are becoming more compact and capable. Various display technologies are very competitive and are delivering higher performance and more compact projectors to market at an ever quickening pace. However the end users are often left with the daunting task of integrating the 'off the self projectors' into a previously existing system. As the projectors become more digitally enhanced, there will be a series of designs, and the digital projector technology matures. The design solutions will be restricted by the state of the art at the time of manufacturing. In order to allow the most growth and performance for a given price, many design decisions will be made and revisited over a period of years or decades. A modular open digital system design concept is indeed a major challenge of the future high definition digital displays for al applications.
Advanced optical manufacturing digital integrated system
NASA Astrophysics Data System (ADS)
Tao, Yizheng; Li, Xinglan; Li, Wei; Tang, Dingyong
2012-10-01
It is necessarily to adapt development of advanced optical manufacturing technology with modern science technology development. To solved these problems which low of ration, ratio of finished product, repetition, consistent in big size and high precision in advanced optical component manufacturing. Applied business driven and method of Rational Unified Process, this paper has researched advanced optical manufacturing process flow, requirement of Advanced Optical Manufacturing integrated System, and put forward architecture and key technology of it. Designed Optical component core and Manufacturing process driven of Advanced Optical Manufacturing Digital Integrated System. the result displayed effective well, realized dynamic planning Manufacturing process, information integration improved ratio of production manufactory.
State-of-the-art cockpit design for the HH-65A helicopters
NASA Technical Reports Server (NTRS)
Castleberry, D. E.; Mcelreath, M. Y.
1982-01-01
In the design of a HH-65A helicopter cockpit, advanced integrated electronics systems technology was employed to achieve several important goals for this multimission aircraft. They were: (1) integrated systems operation with consistent and simplified cockpit procedures; (2) mission-task-related cockpit displays and controls, and (3) reduced pilot instrument scan effort with excellent outside visibility. The integrated avionics system was implemented to depend heavily upon distributed but complementary processing, multiplex digital bus technology, and multifunction CRT controls and displays. This avionics system was completely flight tested and will soon enter operational service with the Coast Guard.
Combat vehicle crew helmet-mounted display: next generation high-resolution head-mounted display
NASA Astrophysics Data System (ADS)
Nelson, Scott A.
1994-06-01
The Combat Vehicle Crew Head-Mounted Display (CVC HMD) program is an ARPA-funded, US Army Natick Research, Development, and Engineering Center monitored effort to develop a high resolution, flat panel HMD for the M1 A2 Abrams main battle tank. CVC HMD is part of the ARPA High Definition Systems (HDS) thrust to develop and integrate small (24 micrometers square pels), high resolution (1280 X 1024 X 6-bit grey scale at 60 frame/sec) active matrix electroluminescent (AMEL) and active matrix liquid crystal displays (AMLCD) for head mounted and projection applications. The Honeywell designed CVC HMD is a next generation head-mounted display system that includes advanced flat panel image sources, advanced digital display driver electronics, high speed (> 1 Gbps) digital interconnect electronics, and light weight, high performance optical and mechanical designs. The resulting dramatic improvements in size, weight, power, and cost have already led to program spin offs for both military and commercial applications.
Analog/digital pH meter system I.C.
NASA Technical Reports Server (NTRS)
Vincent, Paul; Park, Jea
1992-01-01
The project utilizes design automation software tools to design, simulate, and fabricate a pH meter integrated circuit (IC) system including a successive approximation type seven-bit analog to digital converter circuits using a 1.25 micron N-Well CMOS MOSIS process. The input voltage ranges from 0.5 to 1.0 V derived from a special type pH sensor, and the output is a three-digit decimal number display of pH with one decimal point.
Integrated clinical workstations for image and text data capture, display, and teleconsultation.
Dayhoff, R; Kuzmak, P M; Kirin, G
1994-01-01
The Department of Veterans Affairs (VA) DHCP Imaging System digitally records clinically significant diagnostic images selected by medical specialists in a variety of hospital departments, including radiology, cardiology, gastroenterology, pathology, dermatology, hematology, surgery, podiatry, dental clinic, and emergency room. These images, which include true color and gray scale images, scanned documents, and electrocardiogram waveforms, are stored on network file servers and displayed on workstations located throughout a medical center. All images are managed by the VA's hospital information system (HIS), allowing integrated displays of text and image data from all medical specialties. Two VA medical centers currently have DHCP Imaging Systems installed, and other installations are underway.
Standardized access, display, and retrieval of medical video
NASA Astrophysics Data System (ADS)
Bellaire, Gunter; Steines, Daniel; Graschew, Georgi; Thiel, Andreas; Bernarding, Johannes; Tolxdorff, Thomas; Schlag, Peter M.
1999-05-01
The system presented here enhances documentation and data- secured, second-opinion facilities by integrating video sequences into DICOM 3.0. We present an implementation for a medical video server extended by a DICOM interface. Security mechanisms conforming with DICOM are integrated to enable secure internet access. Digital video documents of diagnostic and therapeutic procedures should be examined regarding the clip length and size necessary for second opinion and manageable with today's hardware. Image sources relevant for this paper include 3D laparoscope, 3D surgical microscope, 3D open surgery camera, synthetic video, and monoscopic endoscopes, etc. The global DICOM video concept and three special workplaces of distinct applications are described. Additionally, an approach is presented to analyze the motion of the endoscopic camera for future automatic video-cutting. Digital stereoscopic video sequences are especially in demand for surgery . Therefore DSVS are also integrated into the DICOM video concept. Results are presented describing the suitability of stereoscopic display techniques for the operating room.
NASA Technical Reports Server (NTRS)
Mciver, D.; Hatfield, J. J.
1978-01-01
Digital and display technology combined with human factors research under development today are expected to become operational in the commercial aircraft of the 1990s. Attention is given to reducing the pilot's workload and increasing aircraft reliability through integration of electronic systems, and through multi-mode displays. Recent advances in display technology are outlined, including electroluminescent panels, beam penetration color CRTs, liquid crystal modules, and LED panels and indicators. Research cockpits are described in terms of simplification of aircraft systems evaluation and control.
Advanced optical network architecture for integrated digital avionics
NASA Astrophysics Data System (ADS)
Morgan, D. Reed
1996-12-01
For the first time in the history of avionics, the network designer now has a choice in selecting the media that interconnects the sources and sinks of digital data on aircraft. Electrical designs are already giving way to photonics in application areas where the data rate times distance product is large or where special design requirements such as low weight or EMI considerations are critical. Future digital avionic architectures will increasingly favor the use of photonic interconnects as network data rates of one gigabit/second and higher are needed to support real-time operation of high-speed integrated digital processing. As the cost of optical network building blocks is reduced and as temperature-rugged laser sources are matured, metal interconnects will be forced to retreat to applications spanning shorter and shorter distances. Although the trend is already underway, the widespread use of digital optics will first occur at the system level, where gigabit/second, real-time interconnects between sensors, processors, mass memories and displays separated by a least of few meters will be required. The application of photonic interconnects for inter-printed wiring board signalling across the backplane will eventually find application for gigabit/second applications since signal degradation over copper traces occurs before one gigabit/second and 0.5 meters are reached. For the foreseeable future however, metal interconnects will continue to be used to interconnect devices on printed wiring boards since 5 gigabit/second signals can be sent over metal up to around 15 centimeters. Current-day applications of optical interconnects at the system level are described and a projection of how advanced optical interconnect technology will be driven by the use of high speed integrated digital processing on future aircraft is presented. The recommended advanced network for application in the 2010 time frame is a fiber-based system with a signalling speed of around 2-3 gigabits per second. This switch-based unified network will interconnect sensors, displays, mass memory and controls and displays to computer modules within the processing complex. The characteristics of required building blocks needed for the future are described. These building blocks include the fiber, an optical switch, a laser-based transceiver, blind-mate connectors and an optical backplane.
Integrated clinical workstations for image and text data capture, display, and teleconsultation.
Dayhoff, R.; Kuzmak, P. M.; Kirin, G.
1994-01-01
The Department of Veterans Affairs (VA) DHCP Imaging System digitally records clinically significant diagnostic images selected by medical specialists in a variety of hospital departments, including radiology, cardiology, gastroenterology, pathology, dermatology, hematology, surgery, podiatry, dental clinic, and emergency room. These images, which include true color and gray scale images, scanned documents, and electrocardiogram waveforms, are stored on network file servers and displayed on workstations located throughout a medical center. All images are managed by the VA's hospital information system (HIS), allowing integrated displays of text and image data from all medical specialties. Two VA medical centers currently have DHCP Imaging Systems installed, and other installations are underway. PMID:7949899
Microcomputer-controlled world time display for public area viewing
NASA Astrophysics Data System (ADS)
Yep, S.; Rashidian, M.
1982-05-01
The design, development, and implementation of a microcomputer-controlled world clock is discussed. The system, designated international Time Display System (ITDS), integrates a Geochron Calendar Map and a microcomputer-based digital display to automatically compensate for daylight savings time, leap year, and time zone differences. An in-depth technical description of the design and development of the electronic hardware, firmware, and software systems is provided. Reference material on the time zones, fabrication techniques, and electronic subsystems are also provided.
1988-06-01
DETAILED PROBLEM STATEM ENT ......................................................... 23 A . INTRODUCTION...assorted information about the world land masses. When this is done, the problem of storage, manipulation, and display of realistic, dense, and accurate...elevation data becomes a problem of paramount importance. If the data which is stored can be utilized to recreate specific information about certain
Perception Of "Features" And "Objects": Applications To The Design Of Instrument Panel Displays
NASA Astrophysics Data System (ADS)
Poynter, Douglas; Czarnomski, Alan J.
1988-10-01
An experiment was conducted to determine whether socalled feature displays allow for faster and more accurate processing compared to object displays. Previous psychological studies indicate that features can be processed in parallel across the visual field, whereas objects must be processed one at a time with the aid of attentional focus. Numbers and letters are examples of objects; line orientation and color are examples of features. In this experiment, subjects were asked to search displays composed of up to 16 elements for the presence of specific elements. The ability to detect, localize, and identify targets was influenced by display format. Digital errors increased with the number of elements, the number of targets, and the distance of the target from the fixation point. Line orientation errors increased only with the number of targets. Several other display types were evaluated, and each produced a pattern of errors similar to either digital or line orientation format. Results of the study were discussed in terms of Feature Integration Theory, which distinguishes between elements that are processed with parallel versus serial mechanisms.
Integrated navigation, flight guidance, and synthetic vision system for low-level flight
NASA Astrophysics Data System (ADS)
Mehler, Felix E.
2000-06-01
Future military transport aircraft will require a new approach with respect to the avionics suite to fulfill an ever-changing variety of missions. The most demanding phases of these mission are typically the low level flight segments, including tactical terrain following/avoidance,payload drop and/or board autonomous landing at forward operating strips without ground-based infrastructure. As a consequence, individual components and systems must become more integrated to offer a higher degree of reliability, integrity, flexibility and autonomy over existing systems while reducing crew workload. The integration of digital terrain data not only introduces synthetic vision into the cockpit, but also enhances navigation and guidance capabilities. At DaimlerChrysler Aerospace AG Military Aircraft Division (Dasa-M), an integrated navigation, flight guidance and synthetic vision system, based on digital terrain data, has been developed to fulfill the requirements of the Future Transport Aircraft (FTA). The fusion of three independent navigation sensors provides a more reliable and precise solution to both the 4D-flight guidance and the display components, which is comprised of a Head-up and a Head-down Display with synthetic vision. This paper will present the system, its integration into the DLR's VFW 614 Advanced Technology Testing Aircraft System (ATTAS) and the results of the flight-test campaign.
Environmental qualification of the MH-53J color multifunction display
NASA Astrophysics Data System (ADS)
Malia, Timothy E.
1996-05-01
In early 1994, Loral Federal Systems Owego (LFS-O) was awarded the MH-53J Interactive Defensive Avionics System/Multi-Mission Advanced Tactical Terminal (IDAS/MATT) upgrade program as prime contractor. The MH-53J is a USAF special operations helicopter providing infiltration and exfiltration mission capability in a low-slow manner. One element the upgrade was a new digital map system (DMS), which consists of a 2 GB digital memory unit (DMU), a digital map computer (DMC) and a 6' by 8' color multi-function display (CMFD). Although the original specification was written for a CRT, Loral determined that an active matrix liquid crystal display (AMLCD) based solution would better achieve the mission goals. The display upgrade was not intended to be a development program, but LFS-O found that there were very few solutions available near term, and chose to develop the display in Owego, making it their first military AMLCD production program. The CMFD is based on a commercial liquid crystal display manufactured by Display Technologies Incorporated (DTI), a joint venture of IBM and Toshiba. In March of 1995, just nine months after the design started, LFS-O delivered the first CMFD for systems integration. In December 1995, LFS-O successfully completed the environmental qualification of the CMFD. The extensive testing unearthed several initial deficiencies in the thermal, vibration, humidity salt fog and EMI design. This paper discusses these challenges and how they were overcome to achieve compliance with the USAF requirements.
NASA Technical Reports Server (NTRS)
1975-01-01
Signal processing equipment specifications, operating and test procedures, and systems design and engineering are described. Five subdivisions of the overall circuitry are treated: (1) the spectrum analyzer; (2) the spectrum integrator; (3) the velocity discriminator; (4) the display interface; and (5) the formatter. They function in series: (1) first in analog form to provide frequency resolution, (2) then in digital form to achieve signal to noise improvement (video integration) and frequency discrimination, and (3) finally in analog form again for the purpose of real-time display of the significant velocity data. The formatter collects binary data from various points in the processor and provides a serial output for bi-phase recording. Block diagrams are used to illustrate the system.
The implementation of fail-operative functions in integrated digital avionics systems
NASA Technical Reports Server (NTRS)
Osoer, S. S.
1976-01-01
System architectures which incorporate fail operative flight guidance functions within a total integrated avionics complex are described. It is shown that the mixture of flight critical and nonflight critical functions within a common computer complex is an efficient solution to the integration of navigation, guidance, flight control, display, and flight management. Interfacing subsystems retain autonomous capability to avoid vulnerability to total avionics system shutdown as a result of only a few failures.
Light ray field capture using focal plane sweeping and its optical reconstruction using 3D displays.
Park, Jae-Hyeung; Lee, Sung-Keun; Jo, Na-Young; Kim, Hee-Jae; Kim, Yong-Soo; Lim, Hong-Gi
2014-10-20
We propose a method to capture light ray field of three-dimensional scene using focal plane sweeping. Multiple images are captured using a usual camera at different focal distances, spanning the three-dimensional scene. The captured images are then back-projected to four-dimensional spatio-angular space to obtain the light ray field. The obtained light ray field can be visualized either using digital processing or optical reconstruction using various three-dimensional display techniques including integral imaging, layered display, and holography.
Design of integrated eye tracker-display device for head mounted systems
NASA Astrophysics Data System (ADS)
David, Y.; Apter, B.; Thirer, N.; Baal-Zedaka, I.; Efron, U.
2009-08-01
We propose an Eye Tracker/Display system, based on a novel, dual function device termed ETD, which allows sharing the optical paths of the Eye tracker and the display and on-chip processing. The proposed ETD design is based on a CMOS chip combining a Liquid-Crystal-on-Silicon (LCoS) micro-display technology with near infrared (NIR) Active Pixel Sensor imager. The ET operation allows capturing the Near IR (NIR) light, back-reflected from the eye's retina. The retinal image is then used for the detection of the current direction of eye's gaze. The design of the eye tracking imager is based on the "deep p-well" pixel technology, providing low crosstalk while shielding the active pixel circuitry, which serves the imaging and the display drivers, from the photo charges generated in the substrate. The use of the ETD in the HMD Design enables a very compact design suitable for Smart Goggle applications. A preliminary optical, electronic and digital design of the goggle and its associated ETD chip and digital control, are presented.
See-through 3D technology for augmented reality
NASA Astrophysics Data System (ADS)
Lee, Byoungho; Lee, Seungjae; Li, Gang; Jang, Changwon; Hong, Jong-Young
2017-06-01
Augmented reality is recently attracting a lot of attention as one of the most spotlighted next-generation technologies. In order to get toward realization of ideal augmented reality, we need to integrate 3D virtual information into real world. This integration should not be noticed by users blurring the boundary between the virtual and real worlds. Thus, ultimate device for augmented reality can reconstruct and superimpose 3D virtual information on the real world so that they are not distinguishable, which is referred to as see-through 3D technology. Here, we introduce our previous researches to combine see-through displays and 3D technologies using emerging optical combiners: holographic optical elements and index matched optical elements. Holographic optical elements are volume gratings that have angular and wavelength selectivity. Index matched optical elements are partially reflective elements using a compensation element for index matching. Using these optical combiners, we could implement see-through 3D displays based on typical methodologies including integral imaging, digital holographic displays, multi-layer displays, and retinal projection. Some of these methods are expected to be optimized and customized for head-mounted or wearable displays. We conclude with demonstration and analysis of fundamental researches for head-mounted see-through 3D displays.
Engineering studies of vectorcardiographs in blood pressure measuring systems, appendix 1
NASA Technical Reports Server (NTRS)
Mark, R. G.
1975-01-01
A small, portable, relatively inexpensive computer system was developed for on-line use in clinical or laboratory situations. The system features an integrated hardware-software package that permits use of all peripherals, such as analog-to-digital converter, oscilloscope, plotter, digital bus, with an interpreter constructed around the BASIC programming language. The system is conceptually similar to the LINC system developed in 1962, but is more compact and powerful due to intervening advances in integrated circuit technology. A description of the hardware of the system was given. A reference manual, user manual, and programming guides were also presented. Finally, a stereo display system for vectorcardiograms was described.
A portable system for acquiring and removing motion artefact from ECG signals
NASA Astrophysics Data System (ADS)
Griffiths, A.; Das, A.; Fernandes, B.; Gaydecki, P.
2007-07-01
A novel electrocardiograph (ECG) signal acquisition and display system is under development. It is designed for patients ranging from the elderly to athletes. The signals are obtained from electrodes integrated into a vest, amplified, digitally processed and transmitted via Bluetooth to a PC with a Labview ® interface. Digital signal processing is performed to remove movement artefact and electromyographic (EMG) noise, which severely distorts signal morphology and complicates clinical diagnosis. Independent component analysis (ICA) is also used to improve the signal quality. The complete system will integrate the electronics into a single module which will be embedded in the vest.
Rotorcraft digital advanced avionics system (RODAAS) functional description
NASA Technical Reports Server (NTRS)
Peterson, E. M.; Bailey, J.; Mcmanus, T. J.
1985-01-01
A functional design of a rotorcraft digital advanced avionics system (RODAAS) to transfer the technology developed for general aviation in the Demonstration Advanced Avionics System (DAAS) program to rotorcraft operation was undertaken. The objective was to develop an integrated avionics system design that enhances rotorcraft single pilot IFR operations without increasing the required pilot training/experience by exploiting advanced technology in computers, busing, displays and integrated systems design. A key element of the avionics system is the functionally distributed architecture that has the potential for high reliability with low weight, power and cost. A functional description of the RODAAS hardware and software functions is presented.
Instruction manual, optical effects module electronic controller and processor, model OEMCP
NASA Technical Reports Server (NTRS)
1975-01-01
The OEM-1 electronic module is discussed; it is comprised of four subsystems: the signal processing and display; the stepper motor controls; the chopper controls; and the dc-dc invertor. The OEM-1 module controls the sample wheel so that the relative transmittance of the samples can be compared to the clear aperture position. The 3-1/2 digit digital voltmeter displays the clear aperture signal level as well as the ratio of the remaining sample positions relative to the clear aperture position. The sample wheel position is decoded so that the signals and ratios can be correlated to the data. The OEM is automatically reset to the I sub o on initial turn-on and can be reset to the '0' position by actuating a front panel switch. The sample wheel can be interrupted to change samples or induce a longer integration time if desired by a front panel command. Integration times from 1 - 50 seconds are provided at the front panel, and BCD data for external interfacing is provided.
NASA Astrophysics Data System (ADS)
Hess, M.; Garside, D.; Nelson, T.; Robson, S.; Weyrich, T.
2017-08-01
As cultural sector practice becomes increasingly dependent on digital technologies for the production, display, and dissemination of art and material heritage, it is important that those working in the sector understand the basic scientific principles underpinning these technologies and the social, political and economic implications of exploiting them. The understanding of issues in cultural heritage preservation and digital heritage begins in the education of the future stakeholders and the innovative integration of technologies into the curriculum. This paper gives an example of digital technology skills embedded into a module in the interdisciplinary UCL Bachelor of Arts and Sciences, named "Technologies in Arts and Cultural Heritage", at University College London.
A cryptologic based trust center for medical images.
Wong, S T
1996-01-01
To investigate practical solutions that can integrate cryptographic techniques and picture archiving and communication systems (PACS) to improve the security of medical images. The PACS at the University of California San Francisco Medical Center consolidate images and associated data from various scanners into a centralized data archive and transmit them to remote display stations for review and consultation purposes. The purpose of this study is to investigate the model of a digital trust center that integrates cryptographic algorithms and protocols seamlessly into such a digital radiology environment to improve the security of medical images. The timing performance of encryption, decryption, and transmission of the cryptographic protocols over 81 volumetric PACS datasets has been measured. Lossless data compression is also applied before the encryption. The transmission performance is measured against three types of networks of different bandwidths: narrow-band Integrated Services Digital Network, Ethernet, and OC-3c Asynchronous Transfer Mode. The proposed digital trust center provides a cryptosystem solution to protect the confidentiality and to determine the authenticity of digital images in hospitals. The results of this study indicate that diagnostic images such as x-rays and magnetic resonance images could be routinely encrypted in PACS. However, applying encryption in teleradiology and PACS is a tradeoff between communications performance and security measures. Many people are uncertain about how to integrate cryptographic algorithms coherently into existing operations of the clinical enterprise. This paper describes a centralized cryptosystem architecture to ensure image data authenticity in a digital radiology department. The system performance has been evaluated in a hospital-integrated PACS environment.
A cryptologic based trust center for medical images.
Wong, S T
1996-01-01
OBJECTIVE: To investigate practical solutions that can integrate cryptographic techniques and picture archiving and communication systems (PACS) to improve the security of medical images. DESIGN: The PACS at the University of California San Francisco Medical Center consolidate images and associated data from various scanners into a centralized data archive and transmit them to remote display stations for review and consultation purposes. The purpose of this study is to investigate the model of a digital trust center that integrates cryptographic algorithms and protocols seamlessly into such a digital radiology environment to improve the security of medical images. MEASUREMENTS: The timing performance of encryption, decryption, and transmission of the cryptographic protocols over 81 volumetric PACS datasets has been measured. Lossless data compression is also applied before the encryption. The transmission performance is measured against three types of networks of different bandwidths: narrow-band Integrated Services Digital Network, Ethernet, and OC-3c Asynchronous Transfer Mode. RESULTS: The proposed digital trust center provides a cryptosystem solution to protect the confidentiality and to determine the authenticity of digital images in hospitals. The results of this study indicate that diagnostic images such as x-rays and magnetic resonance images could be routinely encrypted in PACS. However, applying encryption in teleradiology and PACS is a tradeoff between communications performance and security measures. CONCLUSION: Many people are uncertain about how to integrate cryptographic algorithms coherently into existing operations of the clinical enterprise. This paper describes a centralized cryptosystem architecture to ensure image data authenticity in a digital radiology department. The system performance has been evaluated in a hospital-integrated PACS environment. PMID:8930857
Tampa Bay Study Data and Information Management System (DIMS)
NASA Astrophysics Data System (ADS)
Edgar, N. T.; Johnston, J. B.; Yates, K.; Smith, K. E.
2005-05-01
Providing easy access to data and information is an essential component of both science and management. The Tampa Bay Data and Information Management System (DIMS) catalogs and publicizes data and products which are generated through the Tampa Bay Integrated Science Study. The publicly accessible interface consists of a Web site (http://gulfsci.usgs.gov), a digital library, and an interactive map server (IMS). The Tampa Bay Study Web site contains information from scientists involved in the study, and is also the portal site for the digital library and IMS. Study information is highlighted on the Web site according to the estuarine component: geology and geomorphology, water and sediment quality, ecosystem structure and function, and hydrodynamics. The Tampa Bay Digital Library is a web-based clearinghouse for digital products on Tampa Bay, including documents, maps, spatial and tabular data sets, presentations, etc. New developments to the digital library include new search features, 150 new products over the past year, and partnerships to expand the offering of science products. The IMS is a Web-based geographic information system (GIS) used to store, analyze and display data pertaining to Tampa Bay. Upgrades to the IMS have improved performance and speed, as well as increased the number of data sets available for mapping. The Tampa Bay DIMS is a dynamic entity and will continue to evolve with the study. Beginning in 2005, the Tampa Bay Integrated Coastal Model will have a more prominent presence within the DIMS. The Web site will feature model projects and plans; the digital library will host model products and data sets; the IMS will display spatial model data sets and analyses. These tools will be used to increase communication of USGS efforts in Tampa Bay to the public, local managers, and scientists.
Pilot vehicle interface on the advanced fighter technology integration F-16
NASA Technical Reports Server (NTRS)
Dana, W. H.; Smith, W. B.; Howard, J. D.
1986-01-01
This paper focuses on the work load aspects of the pilot vehicle interface in regard to the new technologies tested during AMAS Phase II. Subjects discussed in this paper include: a wide field-of-view head-up display; automated maneuvering attack system/sensor tracker system; master modes that configure flight controls and mission avionics; a modified helmet mounted sight; improved multifunction display capability; a voice interactive command system; ride qualities during automated weapon delivery; a color moving map; an advanced digital map display; and a g-induced loss-of-consciousness and spatial disorientation autorecovery system.
Erdenebat, Munkh-Uchral; Kwon, Ki-Chul; Yoo, Kwan-Hee; Baasantseren, Ganbat; Park, Jae-Hyeung; Kim, Eun-Soo; Kim, Nam
2014-04-15
We propose a 360 degree integral-floating display with an enhanced vertical viewing angle. The system projects two-dimensional elemental image arrays via a high-speed digital micromirror device projector and reconstructs them into 3D perspectives with a lens array. Double floating lenses relate initial 3D perspectives to the center of a vertically curved convex mirror. The anamorphic optic system tailors the initial 3D perspectives horizontally and vertically disperse light rays more widely. By the proposed method, the entire 3D image provides both monocular and binocular depth cues, a full-parallax demonstration with high-angular ray density and an enhanced vertical viewing angle.
Investigation of an advanced fault tolerant integrated avionics system
NASA Technical Reports Server (NTRS)
Dunn, W. R.; Cottrell, D.; Flanders, J.; Javornik, A.; Rusovick, M.
1986-01-01
Presented is an advanced, fault-tolerant multiprocessor avionics architecture as could be employed in an advanced rotorcraft such as LHX. The processor structure is designed to interface with existing digital avionics systems and concepts including the Army Digital Avionics System (ADAS) cockpit/display system, navaid and communications suites, integrated sensing suite, and the Advanced Digital Optical Control System (ADOCS). The report defines mission, maintenance and safety-of-flight reliability goals as might be expected for an operational LHX aircraft. Based on use of a modular, compact (16-bit) microprocessor card family, results of a preliminary study examining simplex, dual and standby-sparing architectures is presented. Given the stated constraints, it is shown that the dual architecture is best suited to meet reliability goals with minimum hardware and software overhead. The report presents hardware and software design considerations for realizing the architecture including redundancy management requirements and techniques as well as verification and validation needs and methods.
Light-field and holographic three-dimensional displays [Invited].
Yamaguchi, Masahiro
2016-12-01
A perfect three-dimensional (3D) display that satisfies all depth cues in human vision is possible if a light field can be reproduced exactly as it appeared when it emerged from a real object. The light field can be generated based on either light ray or wavefront reconstruction, with the latter known as holography. This paper first provides an overview of the advances of ray-based and wavefront-based 3D display technologies, including integral photography and holography, and the integration of those technologies with digital information systems. Hardcopy displays have already been used in some applications, whereas the electronic display of a light field is under active investigation. Next, a fundamental question in this technology field is addressed: what is the difference between ray-based and wavefront-based methods for light-field 3D displays? In considering this question, it is of particular interest to look at the technology of holographic stereograms. The phase information in holography contributes to the resolution of a reconstructed image, especially for deep 3D images. Moreover, issues facing the electronic display system of light fields are discussed, including the resolution of the spatial light modulator, the computational techniques of holography, and the speckle in holographic images.
Storage and distribution of pathology digital images using integrated web-based viewing systems.
Marchevsky, Alberto M; Dulbandzhyan, Ronda; Seely, Kevin; Carey, Steve; Duncan, Raymond G
2002-05-01
Health care providers have expressed increasing interest in incorporating digital images of gross pathology specimens and photomicrographs in routine pathology reports. To describe the multiple technical and logistical challenges involved in the integration of the various components needed for the development of a system for integrated Web-based viewing, storage, and distribution of digital images in a large health system. An Oracle version 8.1.6 database was developed to store, index, and deploy pathology digital photographs via our Intranet. The database allows for retrieval of images by patient demographics or by SNOMED code information. The Intranet of a large health system accessible from multiple computers located within the medical center and at distant private physician offices. The images can be viewed using any of the workstations of the health system that have authorized access to our Intranet, using a standard browser or a browser configured with an external viewer or inexpensive plug-in software, such as Prizm 2.0. The images can be printed on paper or transferred to film using a digital film recorder. Digital images can also be displayed at pathology conferences by using wireless local area network (LAN) and secure remote technologies. The standardization of technologies and the adoption of a Web interface for all our computer systems allows us to distribute digital images from a pathology database to a potentially large group of users distributed in multiple locations throughout a large medical center.
Affordable multisensor digital video architecture for 360° situational awareness displays
NASA Astrophysics Data System (ADS)
Scheiner, Steven P.; Khan, Dina A.; Marecki, Alexander L.; Berman, David A.; Carberry, Dana
2011-06-01
One of the major challenges facing today's military ground combat vehicle operations is the ability to achieve and maintain full-spectrum situational awareness while under armor (i.e. closed hatch). Thus, the ability to perform basic tasks such as driving, maintaining local situational awareness, surveillance, and targeting will require a high-density array of real time information be processed, distributed, and presented to the vehicle operators and crew in near real time (i.e. low latency). Advances in display and sensor technologies are providing never before seen opportunities to supply large amounts of high fidelity imagery and video to the vehicle operators and crew in real time. To fully realize the advantages of these emerging display and sensor technologies, an underlying digital architecture must be developed that is capable of processing these large amounts of video and data from separate sensor systems and distributing it simultaneously within the vehicle to multiple vehicle operators and crew. This paper will examine the systems and software engineering efforts required to overcome these challenges and will address development of an affordable, integrated digital video architecture. The approaches evaluated will enable both current and future ground combat vehicle systems the flexibility to readily adopt emerging display and sensor technologies, while optimizing the Warfighter Machine Interface (WMI), minimizing lifecycle costs, and improve the survivability of the vehicle crew working in closed-hatch systems during complex ground combat operations.
Demonstration of three gorges archaeological relics based on 3D-visualization technology
NASA Astrophysics Data System (ADS)
Xu, Wenli
2015-12-01
This paper mainly focuses on the digital demonstration of three gorges archeological relics to exhibit the achievements of the protective measures. A novel and effective method based on 3D-visualization technology, which includes large-scaled landscape reconstruction, virtual studio, and virtual panoramic roaming, etc, is proposed to create a digitized interactive demonstration system. The method contains three stages: pre-processing, 3D modeling and integration. Firstly, abundant archaeological information is classified according to its history and geographical information. Secondly, build up a 3D-model library with the technology of digital images processing and 3D modeling. Thirdly, use virtual reality technology to display the archaeological scenes and cultural relics vividly and realistically. The present work promotes the application of virtual reality to digital projects and enriches the content of digital archaeology.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-27
... Frames and Image Display Devices and Components Thereof; Notice of Institution of Investigation... United States after importation of certain digital photo frames and image display devices and components... certain digital photo frames and image display devices and components thereof that infringe one or more of...
Development of STOLAND, a versatile navigation, guidance and control system
NASA Technical Reports Server (NTRS)
Young, L. S.; Hansen, Q. M.; Rouse, W. E.; Osder, S. S.
1972-01-01
STOLAND has been developed to perform navigation, guidance, control, and flight management experiments in advanced V/STOL aircraft. The experiments have broad requirements and have dictated that STOLAND be capable of providing performance that would be realistic and equivalent to a wide range of current and future avionics systems. An integrated digital concept using modern avionics components was selected as the simplest approach to maximizing versatility and growth potential. Unique flexibility has been obtained by use of a single, general-purpose digital computer for all navigation, guidance, control, and displays computation.
NASA Technical Reports Server (NTRS)
Hanaway, John F.; Moorehead, Robert W.
1989-01-01
The Space Shuttle avionics system, which was conceived in the early 1970's and became operational in the 1980's represents a significant advancement of avionics system technology in the areas of systems and redundacy management, digital data base technology, flight software, flight control integration, digital fly-by-wire technology, crew display interface, and operational concepts. The origins and the evolution of the system are traced; the requirements, the constraints, and other factors which led to the final configuration are outlined; and the functional operation of the system is described. An overall system block diagram is included.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-18
... Image Display Devices and Components Thereof; Issuance of a Limited Exclusion Order and Cease and Desist... within the United States after importation of certain digital photo frames and image display devices and...: (1) The unlicensed entry of digital photo frames and image display devices and components thereof...
Whishaw, I Q; Coles, B L
1996-05-01
This study describes how rats use their paws and digits when handling a wide range of foodstuffs, including food pellets, grapes, sunflower seeds, shelled and unshelled peanuts, and different sized pastas, etc. Analysis of videorecordings show that the rats display digit postures that include variations in the spacing of the digits, differences in the relative use of different digits, and interlimb differences in paw and digit posture. The rats also display limb preferences in that one paw is used in a supporting function while the other rotates, flips, or pushes the food as is required by the shape of the item. There is a significant correlation between the paw used for manipulation and food items of similar shape but no correlation between the limb used for manipulation and that used for skilled reaching. Small unilateral lesions to the forepaw area of somatic sensorimotor cortex produced impairments in use of the paw contralateral to the lesions. These results: (1) reveal a surprising complexity in the way in which rats use their paws and digits in manipulating food; (2) show that rats have limb preferences in spontaneous food handling; and (3) show that manipulatory dexterity is dependent upon the integrity of the forelimb area of motor cortex. The results are discussed in relation to the evolution of motor skill, the use of rats for investigating questions of motor system organization, neural plasticity, and recovery of function after brain damage.
Erdenebat, Munkh-Uchral; Kim, Byeong-Jun; Piao, Yan-Ling; Park, Seo-Yeon; Kwon, Ki-Chul; Piao, Mei-Lan; Yoo, Kwan-Hee; Kim, Nam
2017-10-01
A mobile three-dimensional image acquisition and reconstruction system using a computer-generated integral imaging technique is proposed. A depth camera connected to the mobile device acquires the color and depth data of a real object simultaneously, and an elemental image array is generated based on the original three-dimensional information for the object, with lens array specifications input into the mobile device. The three-dimensional visualization of the real object is reconstructed on the mobile display through optical or digital reconstruction methods. The proposed system is implemented successfully and the experimental results certify that the system is an effective and interesting method of displaying real three-dimensional content on a mobile device.
Shaw, S L; Salmon, E D; Quatrano, R S
1995-12-01
In this report, we describe a relatively inexpensive method for acquiring, storing and processing light microscope images that combines the advantages of video technology with the powerful medium now termed digital photography. Digital photography refers to the recording of images as digital files that are stored, manipulated and displayed using a computer. This report details the use of a gated video-rate charge-coupled device (CCD) camera and a frame grabber board for capturing 256 gray-level digital images from the light microscope. This camera gives high-resolution bright-field, phase contrast and differential interference contrast (DIC) images but, also, with gated on-chip integration, has the capability to record low-light level fluorescent images. The basic components of the digital photography system are described, and examples are presented of fluorescence and bright-field micrographs. Digital processing of images to remove noise, to enhance contrast and to prepare figures for printing is discussed.
Point Cloud Analysis for Conservation and Enhancement of Modernist Architecture
NASA Astrophysics Data System (ADS)
Balzani, M.; Maietti, F.; Mugayar Kühl, B.
2017-02-01
Documentation of cultural assets through improved acquisition processes for advanced 3D modelling is one of the main challenges to be faced in order to address, through digital representation, advanced analysis on shape, appearance and conservation condition of cultural heritage. 3D modelling can originate new avenues in the way tangible cultural heritage is studied, visualized, curated, displayed and monitored, improving key features such as analysis and visualization of material degradation and state of conservation. An applied research focused on the analysis of surface specifications and material properties by means of 3D laser scanner survey has been developed within the project of Digital Preservation of FAUUSP building, Faculdade de Arquitetura e Urbanismo da Universidade de São Paulo, Brazil. The integrated 3D survey has been performed by the DIAPReM Center of the Department of Architecture of the University of Ferrara in cooperation with the FAUUSP. The 3D survey has allowed the realization of a point cloud model of the external surfaces, as the basis to investigate in detail the formal characteristics, geometric textures and surface features. The digital geometric model was also the basis for processing the intensity values acquired by laser scanning instrument; this method of analysis was an essential integration to the macroscopic investigations in order to manage additional information related to surface characteristics displayable on the point cloud.
XML-based scripting of multimodality image presentations in multidisciplinary clinical conferences
NASA Astrophysics Data System (ADS)
Ratib, Osman M.; Allada, Vivekanand; Dahlbom, Magdalena; Marcus, Phillip; Fine, Ian; Lapstra, Lorelle
2002-05-01
We developed a multi-modality image presentation software for display and analysis of images and related data from different imaging modalities. The software is part of a cardiac image review and presentation platform that supports integration of digital images and data from digital and analog media such as videotapes, analog x-ray films and 35 mm cine films. The software supports standard DICOM image files as well as AVI and PDF data formats. The system is integrated in a digital conferencing room that includes projections of digital and analog sources, remote videoconferencing capabilities, and an electronic whiteboard. The goal of this pilot project is to: 1) develop a new paradigm for image and data management for presentation in a clinically meaningful sequence adapted to case-specific scenarios, 2) design and implement a multi-modality review and conferencing workstation using component technology and customizable 'plug-in' architecture to support complex review and diagnostic tasks applicable to all cardiac imaging modalities and 3) develop an XML-based scripting model of image and data presentation for clinical review and decision making during routine clinical tasks and multidisciplinary clinical conferences.
Projection-type see-through holographic three-dimensional display
NASA Astrophysics Data System (ADS)
Wakunami, Koki; Hsieh, Po-Yuan; Oi, Ryutaro; Senoh, Takanori; Sasaki, Hisayuki; Ichihashi, Yasuyuki; Okui, Makoto; Huang, Yi-Pai; Yamamoto, Kenji
2016-10-01
Owing to the limited spatio-temporal resolution of display devices, dynamic holographic three-dimensional displays suffer from a critical trade-off between the display size and the visual angle. Here we show a projection-type holographic three-dimensional display, in which a digitally designed holographic optical element and a digital holographic projection technique are combined to increase both factors at the same time. In the experiment, the enlarged holographic image, which is twice as large as the original display device, projected on the screen of the digitally designed holographic optical element was concentrated at the target observation area so as to increase the visual angle, which is six times as large as that for a general holographic display. Because the display size and the visual angle can be designed independently, the proposed system will accelerate the adoption of holographic three-dimensional displays in industrial applications, such as digital signage, in-car head-up displays, smart-glasses and head-mounted displays.
NASA Astrophysics Data System (ADS)
Venter, Petrus J.; Bogalecki, Alfons W.; du Plessis, Monuko; Goosen, Marius E.; Nell, Ilse J.; Rademeyer, P.
2011-03-01
Display technologies always seem to find a wide range of interesting applications. As devices develop towards miniaturization, niche applications for small displays may emerge. While OLEDs and LCDs dominate the market for small displays, they have some shortcomings as relatively expensive technologies. Although CMOS is certainly not the dominating semiconductor for photonics, its widespread use, favourable cost and robustness present an attractive potential if it could find application in the microdisplay environment. Advances in improving the quantum efficiency of avalanche electroluminescence and the favourable spectral characteristics of light generated through the said mechanism may afford CMOS the possibility to be used as a display technology. This work shows that it is possible to integrate a fully functional display in a completely standard CMOS technology mainly geared towards digital design while using light sources completely compatible with the process and without any post processing required.
All-CMOS night vision viewer with integrated microdisplay
NASA Astrophysics Data System (ADS)
Goosen, Marius E.; Venter, Petrus J.; du Plessis, Monuko; Faure, Nicolaas M.; Janse van Rensburg, Christo; Rademeyer, Pieter
2014-02-01
The unrivalled integration potential of CMOS has made it the dominant technology for digital integrated circuits. With the advent of visible light emission from silicon through hot carrier electroluminescence, several applications arose, all of which rely upon the advantages of mature CMOS technologies for a competitive edge in a very active and attractive market. In this paper we present a low-cost night vision viewer which employs only standard CMOS technologies. A commercial CMOS imager is utilized for near infrared image capturing with a 128x96 pixel all-CMOS microdisplay implemented to convey the image to the user. The display is implemented in a standard 0.35 μm CMOS process, with no process alterations or post processing. The display features a 25 μm pixel pitch and a 3.2 mm x 2.4 mm active area, which through magnification presents the virtual image to the user equivalent of a 19-inch display viewed from a distance of 3 meters. This work represents the first application of a CMOS microdisplay in a low-cost consumer product.
A Reconfigurable Readout Integrated Circuit for Heterogeneous Display-Based Multi-Sensor Systems
Park, Kyeonghwan; Kim, Seung Mok; Eom, Won-Jin; Kim, Jae Joon
2017-01-01
This paper presents a reconfigurable multi-sensor interface and its readout integrated circuit (ROIC) for display-based multi-sensor systems, which builds up multi-sensor functions by utilizing touch screen panels. In addition to inherent touch detection, physiological and environmental sensor interfaces are incorporated. The reconfigurable feature is effectively implemented by proposing two basis readout topologies of amplifier-based and oscillator-based circuits. For noise-immune design against various noises from inherent human-touch operations, an alternate-sampling error-correction scheme is proposed and integrated inside the ROIC, achieving a 12-bit resolution of successive approximation register (SAR) of analog-to-digital conversion without additional calibrations. A ROIC prototype that includes the whole proposed functions and data converters was fabricated in a 0.18 μm complementary metal oxide semiconductor (CMOS) process, and its feasibility was experimentally verified to support multiple heterogeneous sensing functions of touch, electrocardiogram, body impedance, and environmental sensors. PMID:28368355
A Reconfigurable Readout Integrated Circuit for Heterogeneous Display-Based Multi-Sensor Systems.
Park, Kyeonghwan; Kim, Seung Mok; Eom, Won-Jin; Kim, Jae Joon
2017-04-03
This paper presents a reconfigurable multi-sensor interface and its readout integrated circuit (ROIC) for display-based multi-sensor systems, which builds up multi-sensor functions by utilizing touch screen panels. In addition to inherent touch detection, physiological and environmental sensor interfaces are incorporated. The reconfigurable feature is effectively implemented by proposing two basis readout topologies of amplifier-based and oscillator-based circuits. For noise-immune design against various noises from inherent human-touch operations, an alternate-sampling error-correction scheme is proposed and integrated inside the ROIC, achieving a 12-bit resolution of successive approximation register (SAR) of analog-to-digital conversion without additional calibrations. A ROIC prototype that includes the whole proposed functions and data converters was fabricated in a 0.18 μm complementary metal oxide semiconductor (CMOS) process, and its feasibility was experimentally verified to support multiple heterogeneous sensing functions of touch, electrocardiogram, body impedance, and environmental sensors.
NASA Technical Reports Server (NTRS)
Butler, David R.; Walsh, Stephen J.; Brown, Daniel G.
1991-01-01
Methods are described for using Landsat Thematic Mapper digital data and digital elevation models for the display of natural hazard sites in a mountainous region of northwestern Montana, USA. Hazard zones can be easily identified on the three-dimensional images. Proximity of facilities such as highways and building locations to hazard sites can also be easily displayed. A temporal sequence of Landsat TM (or similar) satellite data sets could also be used to display landscape changes associated with dynamic natural hazard processes.
Rewarding peer reviewers: maintaining the integrity of science communication.
Gasparyan, Armen Yuri; Gerasimov, Alexey N; Voronov, Alexander A; Kitas, George D
2015-04-01
This article overviews currently available options for rewarding peer reviewers. Rewards and incentives may help maintain the quality and integrity of scholarly publications. Publishers around the world implemented a variety of financial and nonfinancial mechanisms for incentivizing their best reviewers. None of these is proved effective on its own. A strategy of combined rewards and credits for the reviewers1 creative contributions seems a workable solution. Opening access to reviews and assigning publication credits to the best reviews is one of the latest achievements of digitization. Reviews, posted on academic networking platforms, such as Publons, add to the transparency of the whole system of peer review. Reviewer credits, properly counted and displayed on individual digital profiles, help distinguish the best contributors, invite them to review and offer responsible editorial posts.
Rewarding Peer Reviewers: Maintaining the Integrity of Science Communication
2015-01-01
This article overviews currently available options for rewarding peer reviewers. Rewards and incentives may help maintain the quality and integrity of scholarly publications. Publishers around the world implemented a variety of financial and nonfinancial mechanisms for incentivizing their best reviewers. None of these is proved effective on its own. A strategy of combined rewards and credits for the reviewers1 creative contributions seems a workable solution. Opening access to reviews and assigning publication credits to the best reviews is one of the latest achievements of digitization. Reviews, posted on academic networking platforms, such as Publons, add to the transparency of the whole system of peer review. Reviewer credits, properly counted and displayed on individual digital profiles, help distinguish the best contributors, invite them to review and offer responsible editorial posts. PMID:25829801
NASA Technical Reports Server (NTRS)
Stewart, James F.; Shuck, Thomas L.
1990-01-01
Flight tests conducted with the self-repairing flight control system (SRFCS) installed on the NASA F-15 highly integrated digital electronic control aircraft are described. The development leading to the current SRFCS configuration is highlighted. Key objectives of the program are outlined: (1) to flight-evaluate a control reconfiguration strategy with three types of control surface failure; (2) to evaluate a cockpit display that will inform the pilot of the maneuvering capacity of the damage aircraft; and (3) to flight-evaluate the onboard expert system maintenance diagnostics process using representative faults set to occur only under maneuvering conditions. Preliminary flight results addressing the operation of the overall system, as well as the individual technologies, are included.
Advanced helmet vision system (AHVS) integrated night vision helmet mounted display (HMD)
NASA Astrophysics Data System (ADS)
Ashcraft, Todd W.; Atac, Robert
2012-06-01
Gentex Corporation, under contract to Naval Air Systems Command (AIR 4.0T), designed the Advanced Helmet Vision System to provide aircrew with 24-hour, visor-projected binocular night vision and HMD capability. AHVS integrates numerous key technologies, including high brightness Light Emitting Diode (LED)-based digital light engines, advanced lightweight optical materials and manufacturing processes, and innovations in graphics processing software. This paper reviews the current status of miniaturization and integration with the latest two-part Gentex modular helmet, highlights the lessons learned from previous AHVS phases, and discusses plans for qualification and flight testing.
NASA Technical Reports Server (NTRS)
Foster, John D.; Moralez, Ernesto, III; Franklin, James A.; Schroeder, Jeffery A.
1987-01-01
Results of a substantial body of ground-based simulation experiments indicate that a high degree of precision of operation for recovery aboard small ships in heavy seas and low visibility with acceptable levels of effort by the pilot can be achieved by integrating the aircraft flight and propulsion controls. The availability of digital fly-by-wire controls makes it feasible to implement an integrated control design to achieve and demonstrate in flight the operational benefits promised by the simulation experience. It remains to validate these systems concepts in flight to establish their value for advanced short takeoff vertical landing (STOVL) aircraft designs. This paper summarizes analytical studies and simulation experiments which provide a basis for the flight research program that will develop and validate critical technologies for advanced STOVL aircraft through the development and evaluation of advanced, integrated control and display concepts, and lays out the plan for the flight program that will be conducted on NASA's V/STOL Research Aircraft (VSRA).
Fox, Richard J.
1983-01-01
A radiation detector readout circuit is provided which produces a radiation dose-rate readout from a detector even though the detector output may be highly energy dependent. A linear charge amplifier including an output charge pump circuit amplifies the charge signal pulses from the detector and pumps the charge into a charge storage capacitor. The discharge rate of the capacitor through a resistor is controlled to provide a time-dependent voltage which when integrated provides an output proportional to the dose-rate of radiation detected by the detector. This output may be converted to digital form for readout on a digital display.
Fox, R.J.
1981-09-01
A radiation detector readout circuit is provided which produces a radiation dose-rate readout from a detector even through the detector output may be highly energy dependent. A linear charge amplifier including an output charge pump circuit amplifies the charge signal pulses from the detector and pumps the charge into a charge storage capacitor. The discharge rate of the capacitor through a resistor is controlled to provide a time-dependent voltage which when integrated provides an output proportional to the dose-rate of radiation detected by the detector. This output may be converted to digital form for readout on a digital display.
Telemedicine optoelectronic biomedical data processing system
NASA Astrophysics Data System (ADS)
Prosolovska, Vita V.
2010-08-01
The telemedicine optoelectronic biomedical data processing system is created to share medical information for the control of health rights and timely and rapid response to crisis. The system includes the main blocks: bioprocessor, analog-digital converter biomedical images, optoelectronic module for image processing, optoelectronic module for parallel recording and storage of biomedical imaging and matrix screen display of biomedical images. Rated temporal characteristics of the blocks defined by a particular triggering optoelectronic couple in analog-digital converters and time imaging for matrix screen. The element base for hardware implementation of the developed matrix screen is integrated optoelectronic couples produced by selective epitaxy.
Information, entropy, and fidelity in visual communication
NASA Astrophysics Data System (ADS)
Huck, Friedrich O.; Fales, Carl L.; Alter-Gartenberg, Rachel; Rahman, Zia-ur
1992-10-01
This paper presents an assessment of visual communication that integrates the critical limiting factors of image gathering an display with the digital processing that is used to code and restore images. The approach focuses on two mathematical criteria, information and fidelity, and on their relationships to the entropy of the encoded data and to the visual quality of the restored image.
2012-09-01
2.3.4 operating system on a Samsung Galaxy S II. All four types of digital mapping capabilities were integrated with this software. The display size...Leader’s course 0 Senior Leader’s course 0 Ranger 12 Combat Life Saver 0 Master Gunner 5 Other: armorer, landscaping 9. Using the scale below
ERIC Educational Resources Information Center
de Lange, Thomas
2011-01-01
This article examines how a classroom procedure known as PGE (Plan/Go-through/Evaluate) group work aims at integrating formal and non-formal media experiences and practices into classroom-based media learning. The study displays, on the one hand, how PGE group work emerged and was institutionally embedded in a media course. On the other hand, the…
Information, entropy and fidelity in visual communication
NASA Technical Reports Server (NTRS)
Huck, Friedrich O.; Fales, Carl L.; Alter-Gartenberg, Rachel; Rahman, Zia-Ur
1992-01-01
This paper presents an assessment of visual communication that integrates the critical limiting factors of image gathering and display with the digital processing that is used to code and restore images. The approach focuses on two mathematical criteria, information and fidelity, and on their relationships to the entropy of the encoded data and to the visual quality of the restored image.
Multi-DSP and FPGA based Multi-channel Direct IF/RF Digital receiver for atmospheric radar
NASA Astrophysics Data System (ADS)
Yasodha, Polisetti; Jayaraman, Achuthan; Kamaraj, Pandian; Durga rao, Meka; Thriveni, A.
2016-07-01
Modern phased array radars depend highly on digital signal processing (DSP) to extract the echo signal information and to accomplish reliability along with programmability and flexibility. The advent of ASIC technology has made various digital signal processing steps to be realized in one DSP chip, which can be programmed as per the application and can handle high data rates, to be used in the radar receiver to process the received signal. Further, recent days field programmable gate array (FPGA) chips, which can be re-programmed, also present an opportunity to utilize them to process the radar signal. A multi-channel direct IF/RF digital receiver (MCDRx) is developed at NARL, taking the advantage of high speed ADCs and high performance DSP chips/FPGAs, to be used for atmospheric radars working in HF/VHF bands. Multiple channels facilitate the radar t be operated in multi-receiver modes and also to obtain the wind vector with improved time resolution, without switching the antenna beam. MCDRx has six channels, implemented on a custom built digital board, which is realized using six numbers of ADCs for simultaneous processing of the six input signals, Xilinx vertex5 FPGA and Spartan6 FPGA, and two ADSPTS201 DSP chips, each of which performs one phase of processing. MCDRx unit interfaces with the data storage/display computer via two gigabit ethernet (GbE) links. One of the six channels is used for Doppler beam swinging (DBS) mode and the other five channels are used for multi-receiver mode operations, dedicatedly. Each channel has (i) ADC block, to digitize RF/IF signal, (ii) DDC block for digital down conversion of the digitized signal, (iii) decoding block to decode the phase coded signal, and (iv) coherent integration block for integrating the data preserving phase intact. ADC block consists of Analog devices make AD9467 16-bit ADCs, to digitize the input signal at 80 MSPS. The output of ADC is centered around (80 MHz - input frequency). The digitized data is fed to DDC block, which down converts the data to base-band. The DDC block has NCO, mixer and two chains of Bessel filters (fifth order cascaded integration comb filter, two FIR filters, two half band filters and programmable FIR filters) for in-phase (I) and Quadrature phase (Q) channels. The NCO has 32 bits and is set to match the output frequency of ADC. Further, DDC down samples (decimation) the data and reduces the data rate to 16 MSPS. This data is further decimated and the data rate is reduced down to 4/2/1/0.5/0.25/0.125/0.0625 MSPS for baud lengths 0.25/0.5/1/2/4/8/16 μs respectively. The down sampled data is then fed to decoding block, which performs cross correlation to achieve pulse compression of the binary-phase coded data to obtain better range resolution with maximum possible height coverage. This step improves the signal power by a factor equal to the length of the code. Coherent integration block integrates the decoded data coherently for successive pulses, which improves the signal to noise ratio and reduces the data volume. DDC, decoding and coherent integration blocks are implemented in Xilinx vertex5 FPGA. Till this point, function of all six channels is same for DBS mode and multi-receiver modes. Data from vertex5 FPGA is transferred to PC via GbE-1 interface for multi-modes or to two Analog devices make ADSP-TS201 DSP chips (A and B), via link port for DBS mode. ADSP-TS201 chips perform the normalization, DC removal, windowing, FFT computation and spectral averaging on the data, which is transferred to storage/display PC via GbE-2 interface for real-time data display and data storing. Physical layer of GbE interface is implemented in an external chip (Marvel 88E1111) and MAC layer is implemented internal to vertex5 FPGA. The MCDRx has total 4 GB of DDR2 memory for data storage. Spartan6 FPGA is used for generating timing signals, required for basic operation of the radar and testing of the MCDRx.
Moore, G.K.; Baten, L.G.; Allord, G.J.; Robinove, C.J.
1983-01-01
The Fox-Wolf River basin in east-central Wisconsin was selected to test concepts for a water-resources information system using digital mapping technology. This basin of 16,800 sq km is typical of many areas in the country. Fifty digital data sets were included in the Fox-Wolf information system. Many data sets were digitized from 1:500,000 scale maps and overlays. Some thematic data were acquired from WATSTORE and other digital data files. All data were geometrically transformed into a Lambert Conformal Conic map projection and converted to a raster format with a 1-km resolution. The result of this preliminary processing was a group of spatially registered, digital data sets in map form. Parameter evaluation, areal stratification, data merging, and data integration were used to achieve the processing objectives and to obtain analysis results for the Fox-Wolf basin. Parameter evaluation includes the visual interpretation of single data sets and digital processing to obtain new derived data sets. In the areal stratification stage, masks were used to extract from one data set all features that are within a selected area on another data set. Most processing results were obtained by data merging. Merging is the combination of two or more data sets into a composite product, in which the contribution of each original data set is apparent and can be extracted from the composite. One processing result was also obtained by data integration. Integration is the combination of two or more data sets into a single new product, from which the original data cannot be separated or calculated. (USGS)
A study of real-time computer graphic display technology for aeronautical applications
NASA Technical Reports Server (NTRS)
Rajala, S. A.
1981-01-01
The development, simulation, and testing of an algorithm for anti-aliasing vector drawings is discussed. The pseudo anti-aliasing line drawing algorithm is an extension to Bresenham's algorithm for computer control of a digital plotter. The algorithm produces a series of overlapping line segments where the display intensity shifts from one segment to the other in this overlap (transition region). In this algorithm the length of the overlap and the intensity shift are essentially constants because the transition region is an aid to the eye in integrating the segments into a single smooth line.
Conformal, Transparent Printed Antenna Developed for Communication and Navigation Systems
NASA Technical Reports Server (NTRS)
Lee, Richard Q.; Simons, Rainee N.
1999-01-01
Conformal, transparent printed antennas have advantages over conventional antennas in terms of space reuse and aesthetics. Because of their compactness and thin profile, these antennas can be mounted on video displays for efficient integration in communication systems such as palmtop computers, digital telephones, and flat-panel television displays. As an array of multiple elements, the antenna subsystem may save weight by reusing space (via vertical stacking) on photovoltaic arrays or on Earth-facing sensors. Also, the antenna could go unnoticed on automobile windshields or building windows, enabling satellite uplinks and downlinks or other emerging high-frequency communications.
Projection displays and MEMS: timely convergence for a bright future
NASA Astrophysics Data System (ADS)
Hornbeck, Larry J.
1995-09-01
Projection displays and microelectromechanical systems (MEMS) have evolved independently, occasionally crossing paths as early as the 1950s. But the commercially viable use of MEMS for projection displays has been illusive until the recent invention of Texas Instruments Digital Light Processing TM (DLP) technology. DLP technology is based on the Digital Micromirror DeviceTM (DMD) microchip, a MEMS technology that is a semiconductor digital light switch that precisely controls a light source for projection display and hardcopy applications. DLP technology provides a unique business opportunity because of the timely convergence of market needs and technology advances. The world is rapidly moving to an all- digital communications and entertainment infrastructure. In the near future, most of the technologies necessary for this infrastrucutre will be available at the right performance and price levels. This will make commercially viable an all-digital chain (capture, compression, transmission, reception decompression, hearing, and viewing). Unfortunately, the digital images received today must be translated into analog signals for viewing on today's televisions. Digital video is the final link in the all-digital infrastructure and DLP technoogy provides that link. DLP technology is an enabler for digital, high-resolution, color projection displays that have high contrast, are bright, seamless, and have the accuracy of color and grayscale that can be achieved only by digital control. This paper contains an introduction to DMD and DLP technology, including the historical context from which to view their developemnt. The architecture, projection operation, and fabrication are presented. Finally, the paper includes an update about current DMD business opportunities in projection displays and hardcopy.
Using ARINC 818 Avionics Digital Video Bus (ADVB) for military displays
NASA Astrophysics Data System (ADS)
Alexander, Jon; Keller, Tim
2007-04-01
ARINC 818 Avionics Digital Video Bus (ADVB) is a new digital video interface and protocol standard developed especially for high bandwidth uncompressed digital video. The first draft of this standard, released in January of 2007, has been advanced by ARINC and the aerospace community to meet the acute needs of commercial aviation for higher performance digital video. This paper analyzes ARINC 818 for use in military display systems found in avionics, helicopters, and ground vehicles. The flexibility of ARINC 818 for the diverse resolutions, grayscales, pixel formats, and frame rates of military displays is analyzed as well as the suitability of ARINC 818 to support requirements for military video systems including bandwidth, latency, and reliability. Implementation issues relevant to military displays are presented.
Display nonlinearity in digital image processing for visual communications
NASA Astrophysics Data System (ADS)
Peli, Eli
1992-11-01
The luminance emitted from a cathode ray tube (CRT) display is a nonlinear function (the gamma function) of the input video signal voltage. In most analog video systems, compensation for this nonlinear transfer function is implemented in the camera amplifiers. When CRT displays are used to present psychophysical stimuli in vision research, the specific display nonlinearity usually is measured and accounted for to ensure that the luminance of each pixel in the synthetic image property represents the intended value. However, when using digital image processing, the linear analog-to-digital converters store a digital image that is nonlinearly related to the displayed or recorded image. The effect of this nonlinear transformation on a variety of image-processing applications used in visual communications is described.
Display nonlinearity in digital image processing for visual communications
NASA Astrophysics Data System (ADS)
Peli, Eli
1991-11-01
The luminance emitted from a cathode ray tube, (CRT) display is a nonlinear function (the gamma function) of the input video signal voltage. In most analog video systems, compensation for this nonlinear transfer function is implemented in the camera amplifiers. When CRT displays are used to present psychophysical stimuli in vision research, the specific display nonlinearity usually is measured and accounted for to ensure that the luminance of each pixel in the synthetic image properly represents the intended value. However, when using digital image processing, the linear analog-to-digital converters store a digital image that is nonlinearly related to the displayed or recorded image. This paper describes the effect of this nonlinear transformation on a variety of image-processing applications used in visual communications.
Design and performance of a custom ASIC digitizer for wire chamber readout in 65 nm CMOS technology
NASA Astrophysics Data System (ADS)
Lee, M. J.; Brown, D. N.; Chang, J. K.; Ding, D.; Gnani, D.; Grace, C. R.; Jones, J. A.; Kolomensky, Y. G.; von der Lippe, H.; Mcvittie, P. J.; Stettler, M. W.; Walder, J.-P.
2015-06-01
We present the design and performance of a prototype ASIC digitizer for integrated wire chamber readout, implemented in 65 nm commercial CMOS technology. Each channel of the 4-channel prototype is composed of two 16-bit Time-to-Digital Converters (TDCs), one 8-bit Analog-to-Digital Converter (ADC), a front-end preamplifier and shaper, plus digital and analog buffers that support a variety of digitization chains. The prototype has a multiplexed digital backend that executes a state machine, distributes control and timing signals, and buffers data for serial output. Laboratory bench tests measure the absolute TDC resolution between 74 ps and 480 ps, growing with the absolute delay, and a relative time resolution of 19 ps. Resolution outliers due to cross-talk between clock signals and supply or reference voltages are seen. After calibration, the ADC displays good linearity and noise performance, with an effective number of bits of 6.9. Under normal operating conditions the circuit consumes 32 mW per channel. Potential design improvements to address the resolution drift and tails are discussed.
Multipurpose panel, phase 1, study report. [display utilizing multiplexing and digital techniques
NASA Technical Reports Server (NTRS)
Parkin, W.
1975-01-01
The feasibility of a multipurpose panel which provides a programmable electronic display for changeable panel nomenclature, multiplexes similar indicator display signals to the signal display, and demultiplexes command signals is examined. Topics discussed include: electronic display technology, miniaturized electronic and memory devices, and data management systems which employ digital address and multiplexing.
Accelerometer method and apparatus for integral display and control functions
NASA Astrophysics Data System (ADS)
Bozeman, Richard J., Jr.
1992-06-01
Vibration analysis has been used for years to provide a determination of the proper functioning of different types of machinery, including rotating machinery and rocket engines. A determination of a malfunction, if detected at a relatively early stage in its development, will allow changes in operating mode or a sequenced shutdown of the machinery prior to a total failure. Such preventative measures result in less extensive and/or less expensive repairs, and can also prevent a sometimes catastrophic failure of equipment. Standard vibration analyzers are generally rather complex, expensive, and of limited portability. They also usually result in displays and controls being located remotely from the machinery being monitored. Consequently, a need exists for improvements in accelerometer electronic display and control functions which are more suitable for operation directly on machines and which are not so expensive and complex. The invention includes methods and apparatus for detecting mechanical vibrations and outputting a signal in response thereto. The apparatus includes an accelerometer package having integral display and control functions. The accelerometer package is suitable for mounting upon the machinery to be monitored. Display circuitry provides signals to a bar graph display which may be used to monitor machine condition over a period of time. Control switches may be set which correspond to elements in the bar graph to provide an alert if vibration signals increase over the selected trip point. The circuitry is shock mounted within the accelerometer housing. The method provides for outputting a broadband analog accelerometer signal, integrating this signal to produce a velocity signal, integrating and calibrating the velocity signal before application to a display driver, and selecting a trip point at which a digitally compatible output signal is generated. The benefits of a vibration recording and monitoring system with controls and displays readily mountable on the machinery being monitored and having capabilities described will be appreciated by those working in the art.
Accelerometer method and apparatus for integral display and control functions
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr. (Inventor)
1992-01-01
Vibration analysis has been used for years to provide a determination of the proper functioning of different types of machinery, including rotating machinery and rocket engines. A determination of a malfunction, if detected at a relatively early stage in its development, will allow changes in operating mode or a sequenced shutdown of the machinery prior to a total failure. Such preventative measures result in less extensive and/or less expensive repairs, and can also prevent a sometimes catastrophic failure of equipment. Standard vibration analyzers are generally rather complex, expensive, and of limited portability. They also usually result in displays and controls being located remotely from the machinery being monitored. Consequently, a need exists for improvements in accelerometer electronic display and control functions which are more suitable for operation directly on machines and which are not so expensive and complex. The invention includes methods and apparatus for detecting mechanical vibrations and outputting a signal in response thereto. The apparatus includes an accelerometer package having integral display and control functions. The accelerometer package is suitable for mounting upon the machinery to be monitored. Display circuitry provides signals to a bar graph display which may be used to monitor machine condition over a period of time. Control switches may be set which correspond to elements in the bar graph to provide an alert if vibration signals increase over the selected trip point. The circuitry is shock mounted within the accelerometer housing. The method provides for outputting a broadband analog accelerometer signal, integrating this signal to produce a velocity signal, integrating and calibrating the velocity signal before application to a display driver, and selecting a trip point at which a digitally compatible output signal is generated. The benefits of a vibration recording and monitoring system with controls and displays readily mountable on the machinery being monitored and having capabilities described will be appreciated by those working in the art.
Multiresolution image gathering and restoration
NASA Technical Reports Server (NTRS)
Fales, Carl L.; Huck, Friedrich O.; Alter-Gartenberg, Rachel; Rahman, Zia-Ur
1992-01-01
In this paper we integrate multiresolution decomposition with image gathering and restoration. This integration leads to a Wiener-matrix filter that accounts for the aliasing, blurring, and noise in image gathering, together with the digital filtering and decimation in signal decomposition. Moreover, as implemented here, the Wiener-matrix filter completely suppresses the blurring and raster effects of the image-display device. We demonstrate that this filter can significantly improve the fidelity and visual quality produced by conventional image reconstruction. The extent of this improvement, in turn, depends on the design of the image-gathering device.
Digital technologies in support of flood resilience: A case study from Nepal
NASA Astrophysics Data System (ADS)
Liu, Wei; McCallum, Ian; See, Linda; Dugar, Sumit; Laso-Bayas, Juan-Carlos
2016-04-01
This paper presents ongoing efforts to support flood resilience in the Karnali basin in Nepal through the provision of different forms of digital technology. Flood Risk Geo-Wiki is an online visualization and crowdsourcing tool, which has been adapted to display flood risk maps at the global scale as well as information of relevance to planners and the community at the local level. Community-based flood risk maps, which have traditionally been drawn on paper, are being digitized and integrated with OpenStreetMap to provide better access to this collective knowledge base. Mobile phones, using the GeoODK (Geographical Open Data Kit) questionnaire builder, are being deployed to collect georeferenced information on flood risks and vulnerability, which can be used to validate flood models and design action plans and strategies for coping with future flood events. These types of digital technologies are simple to implement yet together can help support flood prone communities.
NASA Astrophysics Data System (ADS)
Kimpe, Tom; Rostang, Johan; Avanaki, Ali; Espig, Kathryn; Xthona, Albert; Cocuranu, Ioan; Parwani, Anil V.; Pantanowitz, Liron
2014-03-01
Digital pathology systems typically consist of a slide scanner, processing software, visualization software, and finally a workstation with display for visualization of the digital slide images. This paper studies whether digital pathology images can look different when presenting them on different display systems, and whether these visual differences can result in different perceived contrast of clinically relevant features. By analyzing a set of four digital pathology images of different subspecialties on three different display systems, it was concluded that pathology images look different when visualized on different display systems. The importance of these visual differences is elucidated when they are located in areas of the digital slide that contain clinically relevant features. Based on a calculation of dE2000 differences between background and clinically relevant features, it was clear that perceived contrast of clinically relevant features is influenced by the choice of display system. Furthermore, it seems that the specific calibration target chosen for the display system has an important effect on the perceived contrast of clinically relevant features. Preliminary results suggest that calibrating to DICOM GSDF calibration performed slightly worse than sRGB, while a new experimental calibration target CSDF performed better than both DICOM GSDF and sRGB. This result is promising as it suggests that further research work could lead to better definition of an optimized calibration target for digital pathology images resulting in a positive effect on clinical performance.
FITPix COMBO—Timepix detector with integrated analog signal spectrometric readout
NASA Astrophysics Data System (ADS)
Holik, M.; Kraus, V.; Georgiev, V.; Granja, C.
2016-02-01
The hybrid semiconductor pixel detector Timepix has proven a powerful tool in radiation detection and imaging. Energy loss and directional sensitivity as well as particle type resolving power are possible by high resolution particle tracking and per-pixel energy and quantum-counting capability. The spectrometric resolving power of the detector can be further enhanced by analyzing the analog signal of the detector common sensor electrode (also called back-side pulse). In this work we present a new compact readout interface, based on the FITPix readout architecture, extended with integrated analog electronics for the detector's common sensor signal. Integrating simultaneous operation of the digital per-pixel information with the common sensor (called also back-side electrode) analog pulse processing circuitry into one device enhances the detector capabilities and opens new applications. Thanks to noise suppression and built-in electromagnetic interference shielding the common hardware platform enables parallel analog signal spectroscopy on the back side pulse signal with full operation and read-out of the pixelated digital part, the noise level is 600 keV and spectrometric resolution around 100 keV for 5.5 MeV alpha particles. Self-triggering is implemented with delay of few tens of ns making use of adjustable low-energy threshold of the particle analog signal amplitude. The digital pixelated full frame can be thus triggered and recorded together with the common sensor analog signal. The waveform, which is sampled with frequency 100 MHz, can be recorded in adjustable time window including time prior to the trigger level. An integrated software tool provides control, on-line display and read-out of both analog and digital channels. Both the pixelated digital record and the analog waveform are synchronized and written out by common time stamp.
NASA Astrophysics Data System (ADS)
Howie, Philip V.
1993-04-01
The MD Explorer is an eight-seat twin-turbine engine helicopter which is being developed using integrated product definition (IPD) team methodology. New techniques include NOTAR antitorque system for directional control, a composite fuselage, an all-composite bearingless main rotor, and digital cockpit displays. Three-dimensional CAD models are the basis of the entire Explorer design. Solid models provide vendor with design clarification, removing much of the normal drawing interpretation errors.
Non-parametric PCM to ADM conversion. [Pulse Code to Adaptive Delta Modulation
NASA Technical Reports Server (NTRS)
Locicero, J. L.; Schilling, D. L.
1977-01-01
An all-digital technique to convert pulse code modulated (PCM) signals into adaptive delta modulation (ADM) format is presented. The converter developed is shown to be independent of the statistical parameters of the encoded signal and can be constructed with only standard digital hardware. The structure of the converter is simple enough to be fabricated on a large scale integrated circuit where the advantages of reliability and cost can be optimized. A concise evaluation of this PCM to ADM translation technique is presented and several converters are simulated on a digital computer. A family of performance curves is given which displays the signal-to-noise ratio for sinusoidal test signals subjected to the conversion process, as a function of input signal power for several ratios of ADM rate to Nyquist rate.
Image-Enhancement Aid For The Partially Sighted
NASA Technical Reports Server (NTRS)
Lawton, T. A.; Gennery, D. B.
1989-01-01
Digital filtering enhances ability to read and to recognize objects. Possible to construct portable vision aid by combining miniature video equipment to observe scene and display images with very-large-scale integrated circuits to implement real-time digital image-data processing. Afflicted observer views scene through magnifier to shift spatial frequencies downward and thereby improves perceived image. However, less magnification needed, larger the scene observed. Thus, one measure of effectiveness of new system is amount of magnification required with and without it. In series of tests, found 27 to 70 percent more magnification needed for afflicted observers to recognize unfiltered words than to recognize filtered words.
The x-ray light valve: a low-cost, digital radiographic imaging system-spatial resolution
NASA Astrophysics Data System (ADS)
MacDougall, Robert D.; Koprinarov, Ivaylo; Webster, Christie A.; Rowlands, J. A.
2007-03-01
In recent years, new x-ray radiographic systems based on large area flat panel technology have revolutionized our capability to produce digital x-ray radiographic images. However, these active matrix flat panel imagers (AMFPIs) are extraordinarily expensive compared to the systems they are replacing. Thus there is a need for a low cost digital imaging system for general applications in radiology. Different approaches have been considered to make lower cost, integrated x-ray imaging devices for digital radiography, including: scanned projection x-ray, an integrated approach based on computed radiography technology and optically demagnified x-ray screen/CCD systems. These approaches suffer from either high cost or high mechanical complexity and do not have the image quality of AMFPIs. We have identified a new approach - the X-ray Light Valve (XLV). The XLV has the potential to achieve the immediate readout in an integrated system with image quality comparable to AMFPIs. The XLV concept combines three well-established and hence lowcost technologies: an amorphous selenium (a-Se) layer to convert x-rays to image charge, a liquid crystal (LC) cell as an analog display, and an optical scanner for image digitization. Here we investigate the spatial resolution possible with XLV systems. Both a-Se and LC cells have both been shown separately to have inherently very high spatial resolution. Due to the close electrostatic coupling in the XLV, it can be expected that the spatial resolution of this system will also be very high. A prototype XLV was made and a typical office scanner was used for image digitization. The Modulation Transfer Function was measured and the limiting factor was seen to be the optical scanner. However, even with this limitation the XLV system is able to meet or exceed the resolution requirements for chest radiography.
Overview of the land analysis system (LAS)
Quirk, Bruce K.; Olseson, Lyndon R.
1987-01-01
The Land Analysis System (LAS) is a fully integrated digital analysis system designed to support remote sensing, image processing, and geographic information systems research. LAS is being developed through a cooperative effort between the National Aeronautics and Space Administration Goddard Space Flight Center and the U. S. Geological Survey Earth Resources Observation Systems (EROS) Data Center. LAS has over 275 analysis modules capable to performing input and output, radiometric correction, geometric registration, signal processing, logical operations, data transformation, classification, spatial analysis, nominal filtering, conversion between raster and vector data types, and display manipulation of image and ancillary data. LAS is currently implant using the Transportable Applications Executive (TAE). While TAE was designed primarily to be transportable, it still provides the necessary components for a standard user interface, terminal handling, input and output services, display management, and intersystem communications. With TAE the analyst uses the same interface to the processing modules regardless of the host computer or operating system. LAS was originally implemented at EROS on a Digital Equipment Corporation computer system under the Virtual Memorial System operating system with DeAnza displays and is presently being converted to run on a Gould Power Node and Sun workstation under the Berkeley System Distribution UNIX operating system.
Virtual reality 3D headset based on DMD light modulators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernacki, Bruce E.; Evans, Allan; Tang, Edward
We present the design of an immersion-type 3D headset suitable for virtual reality applications based upon digital micro-mirror devices (DMD). Our approach leverages silicon micro mirrors offering 720p resolution displays in a small form-factor. Supporting chip sets allow rapid integration of these devices into wearable displays with high resolution and low power consumption. Applications include night driving, piloting of UAVs, fusion of multiple sensors for pilots, training, vision diagnostics and consumer gaming. Our design is described in which light from the DMD is imaged to infinity and the user’s own eye lens forms a real image on the user’s retina.
Very Large Scale Integrated Circuits for Military Systems.
1981-01-01
ABBREVIATIONS A/D Analog-to-digital C AGC Automatic Gain Control A A/J Anti-jam ASP Advanced Signal Processor AU Arithmetic Units C.AD Computer-Aided...ESM) equipments (Ref. 23); in lieu of an adequate automatic proces- sing capability, the function is now performed manually (Ref. 24), which involves...a human operator, displays, etc., and a sacrifice in performance (acquisition speed, saturation signal density). Various automatic processing
Code of Federal Regulations, 2011 CFR
2011-04-01
... capability to display the date and time of recorded events on video and/or digital recordings. The displayed... digital record retention. (1) All video recordings and/or digital records of coverage provided by the.... (3) Duly authenticated copies of video recordings and/or digital records shall be provided to the...
Code of Federal Regulations, 2014 CFR
2014-04-01
... capability to display the date and time of recorded events on video and/or digital recordings. The displayed... digital record retention. (1) All video recordings and/or digital records of coverage provided by the.... (3) Duly authenticated copies of video recordings and/or digital records shall be provided to the...
Code of Federal Regulations, 2013 CFR
2013-04-01
... capability to display the date and time of recorded events on video and/or digital recordings. The displayed... digital record retention. (1) All video recordings and/or digital records of coverage provided by the.... (3) Duly authenticated copies of video recordings and/or digital records shall be provided to the...
Code of Federal Regulations, 2010 CFR
2010-04-01
... capability to display the date and time of recorded events on video and/or digital recordings. The displayed... digital record retention. (1) All video recordings and/or digital records of coverage provided by the.... (3) Duly authenticated copies of video recordings and/or digital records shall be provided to the...
Code of Federal Regulations, 2012 CFR
2012-04-01
... capability to display the date and time of recorded events on video and/or digital recordings. The displayed... digital record retention. (1) All video recordings and/or digital records of coverage provided by the.... (3) Duly authenticated copies of video recordings and/or digital records shall be provided to the...
LED instrument approach instruction display
NASA Technical Reports Server (NTRS)
Meredith, B. D.; Kelly, W. L., IV; Crouch, R. K.
1979-01-01
A display employing light emitting diodes (LED's) was developed to demonstrate the feasibility of such displays for presenting landing and navigation information to reduce the workload of general aviation pilots during IFR flight. The display consists of a paper tape reader, digital memory, control electronics, digital latches, and LED alphanumeric displays. A presentable digital countdown clock-timer is included as part of the system to provide a convenient means of monitoring time intervals for precise flight navigation. The system is a limited capability prototype assembled to test pilot reaction to such a device under simulated IFR operation. Pilot opinion indicates that the display is helpful in reducing the IFR pilots workload when used with a runway approach plate. However, the development of a compact, low power second generation display was recommended which could present several instructions simultaneously and provide information update capability. A microprocessor-based display could fulfill these requirements.
NASA Technical Reports Server (NTRS)
Dowden, Donald J.; Bessette, Denis E.
1987-01-01
The AFTI F-16 Automated Maneuvering Attack System has undergone developmental and demonstration flight testing over a total of 347.3 flying hours in 237 sorties. The emphasis of this phase of the flight test program was on the development of automated guidance and control systems for air-to-air and air-to-ground weapons delivery, using a digital flight control system, dual avionics multiplex buses, an advanced FLIR sensor with laser ranger, integrated flight/fire-control software, advanced cockpit display and controls, and modified core Multinational Stage Improvement Program avionics.
Apollo experience report: Real-time display system
NASA Technical Reports Server (NTRS)
Sullivan, C. J.; Burbank, L. W.
1976-01-01
The real time display system used in the Apollo Program is described; the systematic organization of the system, which resulted from hardware/software trade-offs and the establishment of system criteria, is emphasized. Each basic requirement of the real time display system was met by a separate subsystem. The computer input multiplexer subsystem, the plotting display subsystem, the digital display subsystem, and the digital television subsystem are described. Also described are the automated display design and the generation of precision photographic reference slides required for the three display subsystems.
A system for the automatic measurement and digital display of systolic and diastolic blood pressures
NASA Technical Reports Server (NTRS)
Schulze, A. E.
1971-01-01
Basic components of system are - occluding cuff with mounted cuff microscope, cuff pump deflator, pressure transducer, preamplifier unit, electrocardiograph machine, an analog to digital convertor unit, and digital display unit. System utilizes indirect auscultatory method, based on Korotkoff sounds, for measurement.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-13
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-807] Certain Digital Photo Frames and Image Display Devices and Components Thereof; Commission Determination Not To Review an Initial... importation, and the sale within the United States after importation of certain digital photo frames and image...
Skylab indicators (event timer) (secondary display) (four-digit metabolic display)
NASA Technical Reports Server (NTRS)
Tiberg, W.
1971-01-01
The effort expended in developing the following indicators is summarized: (1) event timer; (2) secondary display; and (3) 4 digit display (metabolic). The mechanical design, vibration analysis, and thermal analysis of all these units are identical, and descriptions pertain to all three units. All problems incurred during the program are discussed along with the recommendations, conclusions, and actions taken to rectify the situations.
Second International Airborne Remote Sensing Conference and Exhibition
NASA Technical Reports Server (NTRS)
1996-01-01
The conference provided four days of displays and scientific presentations on applications, technology, a science of sub-orbital data gathering and analysis. The twelve displayed aircraft equipped with sophisticated instrumentation represented a wide range of environmental and reconnaissance missions,including marine pollution control, fire detection, Open Skies Treaty verification, thermal mapping, hydrographical measurements, military research, ecological and agricultural observations, geophysical research, atmospheric and meterological observations, and aerial photography. The U.S. Air Force and the On-Site Inspection Agency displayed the new Open Skies Treaty verification Boeing OC 135B that promotes international monitoring of military forces and activities. SRl's Jetstream uses foliage and ground penetrating SAR for forest inventories, toxic waste delineation, and concealed target and buried unexploded ordnance detection. Earth Search Sciences's Gulfstream 1 with prototype miniaturized airborne hyperspectral imaging equipment specializes in accurate mineral differentiation, low-cost hydrocarbon exploration, and nonproliferation applications. John E. Chance and the U.S. Army Corps of Engineers displayed the Bell 2 helicopter with SHOALS that performs hydrographic surveying of navigation projects, coastal environment assessment, and nautical charting surveys. Bechtel Nevada and U.S. DOE displayed both the Beech King AIR B-200 platform equipped to provide first response to nuclear accidents and routine environmental surveillance, and the MBB BO-105 helicopter used in spectral analysis for environmental assessment and military appraisal. NASA Ames Research Center's high-altitude Lockheed ER-2 assists in earth resources monitoring research in atmospheric chemistry, oceanography, and electronic sensors; ozone and greenhouse studies and satellite calibration and data validation. Ames also showcased the Learjet 24 Airborne Observatory that completed missions in Venus cloud cover analysis, Quadantid meteor shower studies, extra-solar far infrared ionic structure lines measurement, Cape Kennedy launch support, and studies in air pollution, The Products and Services Exhibit showcased new sensor and image processing technologies, aircraft data collection services, unmanned vehicle technology, platform equipment, turn-key services, software a workstations, GPS services, publications, and processing and integration systems by 58 exhibitors. The participation of aircraft users and crews provided unique dialogue between those who plan data collection a operate the remote sensing technology, and those who supply the data processing and integration equipment. Research results using hyperspectral imagery, radar and optical sensors, lidar, digital aerial photography, a integrated systems were presented. Major research and development programs and campaigns we reviewed, including CNR's LARA Project and European Space Agency's 1991-1995 Airborne Campaign. The pre-conference short courses addressed airborne video, photogrammetry, hyperspectral data analysis, digital orthophotography, imagery and GIS integration, IFSAR, GPS, and spectrometer calibration.
Electron lithography STAR design guidelines. Part 1: The STAR user design manual
NASA Technical Reports Server (NTRS)
Trotter, J. D.; Newman, W.
1982-01-01
The STAR system developed by NASA enables any user with a logic diagram to design a semicustom digital MOS integrated circuit. The system is comprised of a library of standard logic cells and computer programs to place, route, and display designs implemented with cells from the library. Library cells of the CMOS metal gate and CMOS silicon gate technologies were simulated using SPICE, and the results are shown and compared.
Digital Light Processing update: status and future applications
NASA Astrophysics Data System (ADS)
Hornbeck, Larry J.
1999-05-01
Digital Light Processing (DLP) projection displays based on the Digital Micromirror Device (DMD) were introduced to the market in 1996. Less than 3 years later, DLP-based projectors are found in such diverse applications as mobile, conference room, video wall, home theater, and large-venue. They provide high-quality, seamless, all-digital images that have exceptional stability as well as freedom from both flicker and image lag. Marked improvements have been made in the image quality of DLP-based projection display, including brightness, resolution, contrast ratio, and border image. DLP-based mobile projectors that weighted about 27 pounds in 1996 now weight only about 7 pounds. This weight reduction has been responsible for the definition of an entirely new projector class, the ultraportable. New applications are being developed for this important new projection display technology; these include digital photofinishing for high process speed minilab and maxilab applications and DLP Cinema for the digital delivery of films to audiences around the world. This paper describes the status of DLP-based projection display technology, including its manufacturing, performance improvements, and new applications, with emphasis on DLP Cinema.
Picture archiving and communication system--Part one: Filmless radiology and distance radiology.
De Backer, A I; Mortelé, K J; De Keulenaer, B L
2004-01-01
Picture archiving and communication system (PACS) is a collection of technologies used to carry out digital medical imaging. PACS is used to digitally acquire medical images from the various modalities, such as computed tomography (CT), magnetic resonance imaging (MRI), ultrasound, and digital projection radiography. The image data and pertinent information are transmitted to other and possibly remote locations over networks, where they may be displayed on computer workstations for soft copy viewing in multiple locations, thus permitting simultaneous consultations and almost instant reporting from radiologists at a distance. Data are secured and archived on digital media such as optical disks or tape, and may be automatically retrieved as necessary. Close integration with the hospital information system (HIS)--radiology information system (RIS) is critical for system functionality. Medical image management systems are maturing, providing access outside of the radiology department to images throughout the hospital via the Ethernet, at different hospitals, or from a home workstation if teleradiology has been implemented.
Interactive display system having a digital micromirror imaging device
Veligdan, James T.; DeSanto, Leonard; Kaull, Lisa; Brewster, Calvin
2006-04-11
A display system includes a waveguide optical panel having an inlet face and an opposite outlet face. A projector cooperates with a digital imaging device, e.g. a digital micromirror imaging device, for projecting an image through the panel for display on the outlet face. The imaging device includes an array of mirrors tiltable between opposite display and divert positions. The display positions reflect an image light beam from the projector through the panel for display on the outlet face. The divert positions divert the image light beam away from the panel, and are additionally used for reflecting a probe light beam through the panel toward the outlet face. Covering a spot on the panel, e.g. with a finger, reflects the probe light beam back through the panel toward the inlet face for detection thereat and providing interactive capability.
Bringing Text Display Digital Radio to Consumers with Hearing Loss
ERIC Educational Resources Information Center
Sheffield, Ellyn G.; Starling, Michael; Schwab, Daniel
2011-01-01
Radio is migrating to digital transmission, expanding its offerings to include captioning for individuals with hearing loss. Text display radio requires a large amount of word throughput with minimal screen display area, making good user interface design crucial to its success. In two experiments, we presented hearing, hard-of-hearing, and deaf…
Cockpit display of hazardous wind shear information
NASA Technical Reports Server (NTRS)
Wanke, Craig; Hansman, R. John, Jr.
1990-01-01
Information on cockpit display of wind shear information is given in viewgraph form. Based on the current status of windshear sensors and candidate data dissemination systems, the near-term capabilities for windshear avoidance will most likely include: (1) Ground-based detection: TDWR (Terminal Doppler Weather Radar), LLWAS (Low-Level Windshear Alert System), Automated PIREPS; (2) Ground-Air datalinks: Air traffic control voice channels, Mode-S digital datalink, ACARS alphanumeric datalink. The possible datapaths for integration of these systems are illustrated in a diagram. In the future, airborne windshear detection systems such as lidars, passive IR detectors, or airborne Doppler radars may also become available. Possible future datalinks include satellite downlink and specialized en route weather channels.
NASA Technical Reports Server (NTRS)
Koeberlein, Ernest, III; Pender, Shaw Exum
1994-01-01
This paper describes the Multimission Telemetry Visualization (MTV) data acquisition/distribution system. MTV was developed by JPL's Multimedia Communications Laboratory (MCL) and designed to process and display digital, real-time, science and engineering data from JPL's Mission Control Center. The MTV system can be accessed using UNIX workstations and PC's over common datacom and telecom networks from worldwide locations. It is designed to lower data distribution costs while increasing data analysis functionality by integrating low-cost, off-the-shelf desktop hardware and software. MTV is expected to significantly lower the cost of real-time data display, processing, distribution, and allow for greater spacecraft safety and mission data access.
NASA Technical Reports Server (NTRS)
Young, Steve; UijtdeHaag, Maarten; Sayre, Jonathon
2003-01-01
Synthetic Vision Systems (SVS) provide pilots with displays of stored geo-spatial data representing terrain, obstacles, and cultural features. As comprehensive validation is impractical, these databases typically have no quantifiable level of integrity. Further, updates to the databases may not be provided as changes occur. These issues limit the certification level and constrain the operational context of SVS for civil aviation. Previous work demonstrated the feasibility of using a realtime monitor to bound the integrity of Digital Elevation Models (DEMs) by using radar altimeter measurements during flight. This paper describes an extension of this concept to include X-band Weather Radar (WxR) measurements. This enables the monitor to detect additional classes of DEM errors and to reduce the exposure time associated with integrity threats. Feature extraction techniques are used along with a statistical assessment of similarity measures between the sensed and stored features that are detected. Recent flight-testing in the area around the Juneau, Alaska Airport (JNU) has resulted in a comprehensive set of sensor data that is being used to assess the feasibility of the proposed monitor technology. Initial results of this assessment are presented.
Ameisen, David; Deroulers, Christophe; Perrier, Valérie; Bouhidel, Fatiha; Battistella, Maxime; Legrès, Luc; Janin, Anne; Bertheau, Philippe; Yunès, Jean-Baptiste
2014-01-01
Since microscopic slides can now be automatically digitized and integrated in the clinical workflow, quality assessment of Whole Slide Images (WSI) has become a crucial issue. We present a no-reference quality assessment method that has been thoroughly tested since 2010 and is under implementation in multiple sites, both public university-hospitals and private entities. It is part of the FlexMIm R&D project which aims to improve the global workflow of digital pathology. For these uses, we have developed two programming libraries, in Java and Python, which can be integrated in various types of WSI acquisition systems, viewers and image analysis tools. Development and testing have been carried out on a MacBook Pro i7 and on a bi-Xeon 2.7GHz server. Libraries implementing the blur assessment method have been developed in Java, Python, PHP5 and MySQL5. For web applications, JavaScript, Ajax, JSON and Sockets were also used, as well as the Google Maps API. Aperio SVS files were converted into the Google Maps format using VIPS and Openslide libraries. We designed the Java library as a Service Provider Interface (SPI), extendable by third parties. Analysis is computed in real-time (3 billion pixels per minute). Tests were made on 5000 single images, 200 NDPI WSI, 100 Aperio SVS WSI converted to the Google Maps format. Applications based on our method and libraries can be used upstream, as calibration and quality control tool for the WSI acquisition systems, or as tools to reacquire tiles while the WSI is being scanned. They can also be used downstream to reacquire the complete slides that are below the quality threshold for surgical pathology analysis. WSI may also be displayed in a smarter way by sending and displaying the regions of highest quality before other regions. Such quality assessment scores could be integrated as WSI's metadata shared in clinical, research or teaching contexts, for a more efficient medical informatics workflow.
Performance Effects of Display Incogruity in a Digital and Analog Clock Reading Task
NASA Technical Reports Server (NTRS)
Comstock, J. Raymond, Jr.; Derks, Peter L.
2004-01-01
In an era of increasing automation, it is important to design displays and input devices that minimize human error. In this context, information concerning the human response to the detection of incongruous information is important. Such incongruous information can be operationalized as unexpected (perhaps erroneous) information on which a decision by the human or operation by an automated system is based. In the aviation environment, decision making when faced with inadequate, incomplete, or incongruous information may occur in a failure scenario. An additional challenge facing the human operator in automated environments is maintaining alertness or vigilance. The vigilance issue is of particular concern as a factor that may interact with performance when faced with inadequate, incomplete, or incongruous information. From the literature on eye-scan behavior we know that the time spent looking at a particular display or indicator is a function of the type of information one is trying to discern from the display. For example, quick glances are all it takes for confirming that an indicator is in a normal position or range, whereas a continuous look of several seconds may be required for confirmation that a complex control input is having the desired effect. Important to consider is that while an extended look takes place, visual input from other sources may be missed. Much like an extended look, the interpretation of incongruous information may require extra time. The present experiment was designed to explore the performance consequences of a decision making task when incongruous information was presented. For this experiment a display incongruity was created on a subset of trials of a clock reading laboratory task. Display incongruity was made possible through presentation of 'impossible' times (e.g. 1:65 or 11:90). Subjects made 'same' 'different' decisions and keyboard responses to pairings of Analog-Analog (AA), Digital-Digital (DD), and Analog- Digital (AD), display combinations. For trials during which display incongruities were not presented, based on prior research comparing digital and analog clock displays, it would be expected that the Digital-Digital condition would result in the shortest response times and the Analog-Analog and Analog-Digital conditions would have longer response times. The performance consequence expected on trials with incongruous times would be very long response times.
The Taxiway Navigation and Situation Awareness (T-NASA) System
NASA Technical Reports Server (NTRS)
Foyle, David C.; Sridhar, Banavar (Technical Monitor)
1997-01-01
The goal of NASA's Terminal Area Productivity (TAP) Low-Visibility Landing and Surface Operations (LVLASO) subelement is to improve the efficiency of airport surface operations for commercial aircraft operating in weather conditions to Category IIIB while maintaining a high degree of safety. Currently, surface operations are one of the least technologically sophisticated components of the air transport system, being conducted in the 1990's with the same basic technology as in the 1930's. Pilots are given little or no explicit information about their current position, and routing information is limited to ATC communications and airport charts. In TAP/LVLASO, advanced technologies such as satellite navigation systems, digital data communications, advanced information presentation technology, and ground surveillance systems will be integrated into flight deck displays to enable expeditious and safe traffic movement on the airport surface. The cockpit display suite is called the T-NASA (Taxiway Navigation and Situation Awareness) System. This system has three integrated components: 1) Moving Map track-up airport surface display with own-ship, traffic and graphical route guidance 2) Scene-Linked Symbology - route/taxi information virtually projected via a Head-up Display (HUD) onto the forward scene; and, 3) 3-D Audio Ground Collision Avoidance and Navigation system - spatially-localized auditory traffic and navigation alerts. In the current paper, the design philosophy of the T-NASA system will be presented, and the T-NASA system display components described.
NASA Astrophysics Data System (ADS)
Venolia, Dan S.; Williams, Lance
1990-08-01
A range of stereoscopic display technologies exist which are no more intrusive, to the user, than a pair of spectacles. Combining such a display system with sensors for the position and orientation of the user's point-of-view results in a greatly enhanced depiction of three-dimensional data. As the point of view changes, the stereo display channels are updated in real time. The face of a monitor or display screen becomes a window on a three-dimensional scene. Motion parallax naturally conveys the placement and relative depth of objects in the field of view. Most of the advantages of "head-mounted display" technology are achieved with a less cumbersome system. To derive the full benefits of stereo combined with motion parallax, both stereo channels must be updated in real time. This may limit the size and complexity of data bases which can be viewed on processors of modest resources, and restrict the use of additional three-dimensional cues, such as texture mapping, depth cueing, and hidden surface elimination. Effective use of "full 3D" may still be undertaken in a non-interactive mode. Integral composite holograms have often been advanced as a powerful 3D visualization tool. Such a hologram is typically produced from a film recording of an object on a turntable, or a computer animation of an object rotating about one axis. The individual frames of film are multiplexed, in a composite hologram, in such a way as to be indexed by viewing angle. The composite may be produced as a cylinder transparency, which provides a stereo view of the object as if enclosed within the cylinder, which can be viewed from any angle. No vertical parallax is usually provided (this would require increasing the dimensionality of the multiplexing scheme), but the three dimensional image is highly resolved and easy to view and interpret. Even a modest processor can duplicate the effect of such a precomputed display, provided sufficient memory and bus bandwidth. This paper describes the components of a stereo display system with user point-of-view tracking for interactive 3D, and a digital realization of integral composite display which we term virtual integral holography. The primary drawbacks of holographic display - film processing turnaround time, and the difficulties of displaying scenes in full color -are obviated, and motion parallax cues provide easy 3D interpretation even for users who cannot see in stereo.
NASA Astrophysics Data System (ADS)
Sheraw, Christopher Duncan
2003-10-01
Organic thin film transistors are attractive candidates for a variety of low cost, large area commercial electronics including smart cards, RF identification tags, and flat panel displays. Of particular interest are high performance organic thin film transistors (TFTs) that can be fabricated on flexible polymeric substrates allowing low-cost, lightweight, rugged electronics such as flexible active matrix displays. This thesis reports pentacene organic thin film transistors fabricated on flexible polymeric substrates with record performance, the fastest photolithographically patterned organic TFT integrated circuits on polymeric substrates reported to date, and the fabrication of the organic TFT backplanes used to build the first organic TFT-driven active matrix liquid crystal display (AMLCD), also the first AMLCD on a flexible substrate, ever reported. In addition, the first investigation of functionalized pentacene derivatives used as the active layer in organic thin film transistors is reported. A low temperature (<110°C) process technology was developed allowing the fabrication of high performance organic TFTs, integrated circuits, and large TFT arrays on flexible polymeric substrates. This process includes the development of a novel water-based photolithographic active layer patterning process using polyvinyl alcohol that allows the patterning of organic semiconductor materials for elimination of active layer leakage current without causing device degradation. The small molecule aromatic hydrocarbon pentacene was used as the active layer material to fabricate organic TFTs on the polymeric material polyethylene naphthalate with field-effect mobility as large as 2.1 cm2/V-s and on/off current ratio of 108. These are the best values reported for organic TFTs on polymeric substrates and comparable to organic TFTs on rigid substrates. Analog and digital integrated circuits were also fabricated on polymeric substrates using pentacene TFTs with propagation delay as low as 38 musec and clocked digital circuits that operated at 1.1 kHz. These are the fastest photolithographically patterned organic TFT circuits on polymeric substrates reported to date. Finally, 16 x 16 pentacene TFT pixel arrays were fabricated on polymeric substrates and integrated with polymer dispersed liquid crystal to build an AMLCD. The pixel arrays showed good optical response to changing data signals when standard quarter-VGA display waveforms were applied. This result marks the first organic TFT-driven active matrix liquid crystal display ever reported as well as the first active matrix liquid crystal display on a flexible polymeric substrate. Lastly, functionalized pentacene derivatives were used as the active layer in organic thin film transistor materials. Functional groups were added to the pentacene molecule to influence the molecular ordering so that the amount of pi-orbital overlap would be increased allowing the potential for improved field-effect mobility. The functionalization of these materials also improves solubility allowing for the possibility of solution-processed devices and increased oxidative stability. Organic thin film transistors were fabricated using five different functionalized pentacene active layers. Devices based on the pentacene derivative triisopropylsilyl pentacene were found to have the best performance with field-effect mobility as large as 0.4 cm 2/V-s.
Optimization of the polyplanar optical display electronics for a monochrome B-52 display
NASA Astrophysics Data System (ADS)
DeSanto, Leonard
1998-09-01
The Polyplanar Optical Display (POD) is a unique display screen which can be used with any projection source. The prototype ten-inch display is two inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. In order to achieve a long lifetime, the new display uses a new 200 mW green solid-state laser (10,000 hr. life) at 532 nm as its light source. To produce real-time video, the laser light is being modulated by a Digital Light Processing (DLPTM) chip manufactured by Texas Instruments (TI). In order to use the solid-state laser as the light source and also fit within the constraints of the B-52 display, the Digital Micromirror Device (DMDTM) chip is operated remotely from the Texas Instruments circuit board. In order to achieve increased brightness a monochrome digitizing interface was investigated. The operation of the DMDTM divorced from the light engine and the interfacing of the DMDTM board with the RS-170 video format specific to the B-52 aircraft will be discussed, including the increased brightness of the monochrome digitizing interface. A brief description of the electronics required to drive the new 200 mW laser is also presented.
Yanagita, Satoshi; Imahana, Masato; Suwa, Kazuaki; Sugimura, Hitomi; Nishiki, Masayuki
2016-01-01
Japanese Society of Radiological Technology (JSRT) standard digital image database contains many useful cases of chest X-ray images, and has been used in many state-of-the-art researches. However, the pixel values of all the images are simply digitized as relative density values by utilizing a scanned film digitizer. As a result, the pixel values are completely different from the standardized display system input value of digital imaging and communications in medicine (DICOM), called presentation value (P-value), which can maintain a visual consistency when observing images using different display luminance. Therefore, we converted all the images from JSRT standard digital image database to DICOM format followed by the conversion of the pixel values to P-value using an original program developed by ourselves. Consequently, JSRT standard digital image database has been modified so that the visual consistency of images is maintained among different luminance displays.
Design requirements for ubiquitous computing environments for healthcare professionals.
Bång, Magnus; Larsson, Anders; Eriksson, Henrik
2004-01-01
Ubiquitous computing environments can support clinical administrative routines in new ways. The aim of such computing approaches is to enhance routine physical work, thus it is important to identify specific design requirements. We studied healthcare professionals in an emergency room and developed the computer-augmented environment NOSTOS to support teamwork in that setting. NOSTOS uses digital pens and paper-based media as the primary input interface for data capture and as a means of controlling the system. NOSTOS also includes a digital desk, walk-up displays, and sensor technology that allow the system to track documents and activities in the workplace. We propose a set of requirements and discuss the value of tangible user interfaces for healthcare personnel. Our results suggest that the key requirements are flexibility in terms of system usage and seamless integration between digital and physical components. We also discuss how ubiquitous computing approaches like NOSTOS can be beneficial in the medical workplace.
Migration of the digital interactive breast-imaging teaching file
NASA Astrophysics Data System (ADS)
Cao, Fei; Sickles, Edward A.; Huang, H. K.; Zhou, Xiaoqiang
1998-06-01
The digital breast imaging teaching file developed during the last two years in our laboratory has been used successfully at UCSF (University of California, San Francisco) as a routine teaching tool for training radiology residents and fellows in mammography. Building on this success, we have ported the teaching file from an old Pixar imaging/Sun SPARC 470 display system to our newly designed telemammography display workstation (Ultra SPARC 2 platform with two DOME Md5/SBX display boards). The old Pixar/Sun 470 system, although adequate for fast and high-resolution image display, is 4- year-old technology, expensive to maintain and difficult to upgrade. The new display workstation is more cost-effective and is also compatible with the digital image format from a full-field direct digital mammography system. The digital teaching file is built on a sophisticated computer-aided instruction (CAI) model, which simulates the management sequences used in imaging interpretation and work-up. Each user can be prompted to respond by making his/her own observations, assessments, and work-up decisions as well as the marking of image abnormalities. This effectively replaces the traditional 'show-and-tell' teaching file experience with an interactive, response-driven type of instruction.
Distance reporting in digital pathology: A study on 950 cases
Vodovnik, Aleksandar
2015-01-01
Background: Increased workload, case complexity, financial constraints, and staffing shortages justify wider implementations of digital pathology. One of its main advantages is distance reporting. Aim: A feasibility study was conducted at our institution in order to achieve comprehensive pathology services available by distance. Methods: One senior pathologist reported 950 cases (3,650 slides) by distance during 19 weeks. Slides were scanned by ScanScope AT Turbo (Aperio) and digital images accessed through SymPathy (Tieto) on a 14” laptop. Mobile phone, mobile broadband, broadband over Wi-Fi and broadband were used for internet connections along with a virtual private network technology (VPN). Lync (Microsoft) was tested for one case consultation and resident's teaching session. Larger displays were accessed when available. Effects of ergonomics and working flexibility on the user experience were observed. Details on network speed, frequency of technical issues, data usage, scanning, and turnaround, were collected and evaluated. Turnaround was compared to in-office microscopic reporting, measured from the registration to sign off. Results: Network speeds varied 1–80 Mbps (median download speed 8–65 Mbps). 20 Mbps were satisfactory for the instant upload of digital images. VPN, image viewer, and laptop failed on two occasions each. An estimated data usage per digital image was 10 MB (1–50 MB). Two cases (15 slides) were deferred to microscopic slides (0.21/0.41%) due to scanty material and suboptimal slide quality. Additional nine cases (15 slides) needed to be rescanned for various reasons (0.95/0.41%). Average turnaround was shorter, and the percentage of cases reported up to 3 days higher (3.13 days/72.25%) comparing with in-office microscopic reporting (3.90 days/40.56%). Larger displays improved the most user experience at magnifications over ×20. Conclusions: Existing IT solutions at our institution allow efficient and reliable distance reporting for the core pathology services in histology and cytology. Stable network speeds, fully integrated laboratory information management system, technical reliability, working flexibility, larger displays, and shorter turnaround contributed to the overall satisfaction with distance reporting. A further expansion of our pathology services available by distance, diagnostic and educational, rely on gaining experience in digital reporting and marginal IT investment. Adjustments to the organization of pathology services may follow to fully benefit from the implementation of digital pathology. PMID:25969793
Distance reporting in digital pathology: A study on 950 cases.
Vodovnik, Aleksandar
2015-01-01
Increased workload, case complexity, financial constraints, and staffing shortages justify wider implementations of digital pathology. One of its main advantages is distance reporting. A feasibility study was conducted at our institution in order to achieve comprehensive pathology services available by distance. One senior pathologist reported 950 cases (3,650 slides) by distance during 19 weeks. Slides were scanned by ScanScope AT Turbo (Aperio) and digital images accessed through SymPathy (Tieto) on a 14" laptop. Mobile phone, mobile broadband, broadband over Wi-Fi and broadband were used for internet connections along with a virtual private network technology (VPN). Lync (Microsoft) was tested for one case consultation and resident's teaching session. Larger displays were accessed when available. Effects of ergonomics and working flexibility on the user experience were observed. Details on network speed, frequency of technical issues, data usage, scanning, and turnaround, were collected and evaluated. Turnaround was compared to in-office microscopic reporting, measured from the registration to sign off. Network speeds varied 1-80 Mbps (median download speed 8-65 Mbps). 20 Mbps were satisfactory for the instant upload of digital images. VPN, image viewer, and laptop failed on two occasions each. An estimated data usage per digital image was 10 MB (1-50 MB). Two cases (15 slides) were deferred to microscopic slides (0.21/0.41%) due to scanty material and suboptimal slide quality. Additional nine cases (15 slides) needed to be rescanned for various reasons (0.95/0.41%). Average turnaround was shorter, and the percentage of cases reported up to 3 days higher (3.13 days/72.25%) comparing with in-office microscopic reporting (3.90 days/40.56%). Larger displays improved the most user experience at magnifications over ×20. Existing IT solutions at our institution allow efficient and reliable distance reporting for the core pathology services in histology and cytology. Stable network speeds, fully integrated laboratory information management system, technical reliability, working flexibility, larger displays, and shorter turnaround contributed to the overall satisfaction with distance reporting. A further expansion of our pathology services available by distance, diagnostic and educational, rely on gaining experience in digital reporting and marginal IT investment. Adjustments to the organization of pathology services may follow to fully benefit from the implementation of digital pathology.
The Effects of Virtual Weather on Presence
NASA Astrophysics Data System (ADS)
Wissmath, Bartholomäus; Weibel, David; Mast, Fred W.
In modern societies people tend to spend more time in front of computer screens than outdoors. Along with an increasing degree of realism displayed in digital environments, simulated weather appears more and more realistic and more often implemented in digital environments. Research has found that the actual weather influences behavior and mood. In this paper we experimentally examine the effects of virtual weather on the sense of presence. Thereby we found individuals (N=30) to immerse deeper in digital environments displaying fair weather conditions than in environments displaying bad weather. We also investigate whether virtual weather can influence behavior. The possible implications of theses findings for presence theory as well as digital environment designers will be discussed.
A novel emissive projection display (EPD) on transparent phosphor screen
NASA Astrophysics Data System (ADS)
Cheng, Botao; Sun, Leonard; Yu, Ge; Sun, Ted X.
2017-03-01
A new paradigm of digital projection is on the horizon, based on innovative emissive screen that are made fully transparent. It can be readily applied and convert any surface to a high image quality emissive digital display, without affecting the surface appearance. For example, it can convert any glass window or windshield to completely see-through display, with unlimited field of view and viewing angles. It also enables a scalable and economic projection display on a pitch-black emissive screen with black level and image contrast that rivals other emissive displays such as plasma display or OLED.
Lin, Meng Kuan; Nicolini, Oliver; Waxenegger, Harald; Galloway, Graham J; Ullmann, Jeremy F P; Janke, Andrew L
2013-01-01
Digital Imaging Processing (DIP) requires data extraction and output from a visualization tool to be consistent. Data handling and transmission between the server and a user is a systematic process in service interpretation. The use of integrated medical services for management and viewing of imaging data in combination with a mobile visualization tool can be greatly facilitated by data analysis and interpretation. This paper presents an integrated mobile application and DIP service, called M-DIP. The objective of the system is to (1) automate the direct data tiling, conversion, pre-tiling of brain images from Medical Imaging NetCDF (MINC), Neuroimaging Informatics Technology Initiative (NIFTI) to RAW formats; (2) speed up querying of imaging measurement; and (3) display high-level of images with three dimensions in real world coordinates. In addition, M-DIP provides the ability to work on a mobile or tablet device without any software installation using web-based protocols. M-DIP implements three levels of architecture with a relational middle-layer database, a stand-alone DIP server, and a mobile application logic middle level realizing user interpretation for direct querying and communication. This imaging software has the ability to display biological imaging data at multiple zoom levels and to increase its quality to meet users' expectations. Interpretation of bioimaging data is facilitated by an interface analogous to online mapping services using real world coordinate browsing. This allows mobile devices to display multiple datasets simultaneously from a remote site. M-DIP can be used as a measurement repository that can be accessed by any network environment, such as a portable mobile or tablet device. In addition, this system and combination with mobile applications are establishing a virtualization tool in the neuroinformatics field to speed interpretation services.
Lin, Meng Kuan; Nicolini, Oliver; Waxenegger, Harald; Galloway, Graham J.; Ullmann, Jeremy F. P.; Janke, Andrew L.
2013-01-01
Digital Imaging Processing (DIP) requires data extraction and output from a visualization tool to be consistent. Data handling and transmission between the server and a user is a systematic process in service interpretation. The use of integrated medical services for management and viewing of imaging data in combination with a mobile visualization tool can be greatly facilitated by data analysis and interpretation. This paper presents an integrated mobile application and DIP service, called M-DIP. The objective of the system is to (1) automate the direct data tiling, conversion, pre-tiling of brain images from Medical Imaging NetCDF (MINC), Neuroimaging Informatics Technology Initiative (NIFTI) to RAW formats; (2) speed up querying of imaging measurement; and (3) display high-level of images with three dimensions in real world coordinates. In addition, M-DIP provides the ability to work on a mobile or tablet device without any software installation using web-based protocols. M-DIP implements three levels of architecture with a relational middle-layer database, a stand-alone DIP server, and a mobile application logic middle level realizing user interpretation for direct querying and communication. This imaging software has the ability to display biological imaging data at multiple zoom levels and to increase its quality to meet users’ expectations. Interpretation of bioimaging data is facilitated by an interface analogous to online mapping services using real world coordinate browsing. This allows mobile devices to display multiple datasets simultaneously from a remote site. M-DIP can be used as a measurement repository that can be accessed by any network environment, such as a portable mobile or tablet device. In addition, this system and combination with mobile applications are establishing a virtualization tool in the neuroinformatics field to speed interpretation services. PMID:23847587
NASA Astrophysics Data System (ADS)
Malinconico, L. L., Jr.; Sunderlin, D.; Liew, C. W.
2015-12-01
Over the course of the last three years we have designed, developed and refined two Apps for the iPad. GeoFieldBook and StratLogger allow for the real-time display of spatial (structural) and temporal (stratigraphic) field data as well as very easy in-field navigation. Field techniques and methods for data acquisition and mapping in the field have dramatically advanced and simplified how we collect and analyze data while in the field. The Apps are not geologic mapping programs, but rather a way of bypassing the analog field book step to acquire digital data directly that can then be used in various analysis programs (GIS, Google Earth, Stereonet, spreadsheet and drawing programs). We now complete all of our fieldwork digitally. GeoFieldBook can be used to collect structural and other field observations. Each record includes location/date/time information, orientation measurements, formation names, text observations and photos taken with the tablet camera. Records are customizable, so users can add fields of their own choosing. Data are displayed on an image base in real time with oriented structural symbols. The image base is also used for in-field navigation. In StratLogger, the user records bed thickness, lithofacies, biofacies, and contact data in preset and modifiable fields. Each bed/unit record may also be photographed and geo-referenced. As each record is collected, a column diagram of the stratigraphic sequence is built in real time, complete with lithology color, lithology texture, and fossil symbols. The recorded data from any measured stratigraphic sequence can be exported as both the live-drawn column image and as a .csv formatted file for use in spreadsheet or other applications. Common to both Apps is the ability to export the data (via .csv files), photographs and maps or stratigraphic columns (images). Since the data are digital they are easily imported into various processing programs (for example for stereoplot analysis). Requiring that all maps, stratigraphic columns and cross-sections be produced digitally continues our integration on the use of digital technologies throughout the curriculum. Initial evaluation suggests that students using the Apps more quickly progress towards synthesis and interpretation of the data as well as a deeper understanding of complex 4D field relationships.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-31
... Certain Digital Photo Frames and Image Display Devices and Components Thereof, DN 2842; the Commission is... importation of certain digital photo frames and image display devices and components thereof. The complaint...
Optimization of the polyplanar optical display electronics for a monochrome B-52 display
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeSanto, L.
The Polyplanar Optical Display (POD) is a unique display screen which can be used with any projection source. The prototype ten-inch display is two inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. In order to achieve a long lifetime, the new display uses a new 200 mW green solid-state laser (10,000 hr. life) at 532 nm as its light source. To produce real-time video, the laser light is being modulated by amore » Digital Light Processing (DLP{trademark}) chip manufactured by Texas Instruments (TI). In order to use the solid-state laser as the light source and also fit within the constraints of the B-52 display, the Digital Micromirror Device (DMD{trademark}) chip is operated remotely from the Texas Instruments circuit board. In order to achieve increased brightness a monochrome digitizing interface was investigated. The operation of the DMD{trademark} divorced from the light engine and the interfacing of the DMD{trademark} board with the RS-170 video format specific to the B-52 aircraft will be discussed, including the increased brightness of the monochrome digitizing interface. A brief description of the electronics required to drive the new 200 mW laser is also presented.« less
Pilot study of digital tools to support multimodal hand hygiene in a clinical setting.
Thirkell, Gary; Chambers, Joanne; Gilbart, Wayne; Thornhill, Kerrill; Arbogast, James; Lacey, Gerard
2018-03-01
Digital tools for hand hygiene do not share data, limiting their potential to support multimodal programs. The Christie NHS Foundation Trust, United Kingdom, worked with GOJO (in the United States), MEG (in Ireland), and SureWash (in Ireland) to integrate their systems and pilot their combined use in a clinical setting. A 28-bed medical oncology unit piloted the system for 5 weeks. Live data from the tools were combined to create a novel combined risk status metric that was displayed publicly and via a management Web site. The combined risk status reduced over the pilot period. However, larger and longer duration studies are required to reach statistical significance. Staff and especially patient reaction was positive in that 70% of the hand hygiene training events were by patients. The digital tools did not negatively impact clinical workflow and received positive engagement from staff and patients. The combined risk status did not change significantly over the short pilot period because there was also no specific hand hygiene improvement campaign underway at the time of the pilot study. The results indicate that integrated digital tools can provide both rich data and novel tools that both measure impact and provide feedback to support the implementation of multimodal hand hygiene campaigns, reducing the need for significant additional personnel resources. Copyright © 2018 Association for Professionals in Infection Control and Epidemiology, Inc. All rights reserved.
O'Connor, Timothy; Rawat, Siddharth; Markman, Adam; Javidi, Bahram
2018-03-01
We propose a compact imaging system that integrates an augmented reality head mounted device with digital holographic microscopy for automated cell identification and visualization. A shearing interferometer is used to produce holograms of biological cells, which are recorded using customized smart glasses containing an external camera. After image acquisition, segmentation is performed to isolate regions of interest containing biological cells in the field-of-view, followed by digital reconstruction of the cells, which is used to generate a three-dimensional (3D) pseudocolor optical path length profile. Morphological features are extracted from the cell's optical path length map, including mean optical path length, coefficient of variation, optical volume, projected area, projected area to optical volume ratio, cell skewness, and cell kurtosis. Classification is performed using the random forest classifier, support vector machines, and K-nearest neighbor, and the results are compared. Finally, the augmented reality device displays the cell's pseudocolor 3D rendering of its optical path length profile, extracted features, and the identified cell's type or class. The proposed system could allow a healthcare worker to quickly visualize cells using augmented reality smart glasses and extract the relevant information for rapid diagnosis. To the best of our knowledge, this is the first report on the integration of digital holographic microscopy with augmented reality devices for automated cell identification and visualization.
Digital 3D holographic display using scattering layers for enhanced viewing angle and image size
NASA Astrophysics Data System (ADS)
Yu, Hyeonseung; Lee, KyeoReh; Park, Jongchan; Park, YongKeun
2017-05-01
In digital 3D holographic displays, the generation of realistic 3D images has been hindered by limited viewing angle and image size. Here we demonstrate a digital 3D holographic display using volume speckle fields produced by scattering layers in which both the viewing angle and the image size are greatly enhanced. Although volume speckle fields exhibit random distributions, the transmitted speckle fields have a linear and deterministic relationship with the input field. By modulating the incident wavefront with a digital micro-mirror device, volume speckle patterns are controlled to generate 3D images of micrometer-size optical foci with 35° viewing angle in a volume of 2 cm × 2 cm × 2 cm.
2000-01-01
second tier technologies: digital micromirror devices (DMD); alternating current gas plasma (ACGP); inorganic electroluminescent (EL, TFEL, AMEL... Micromirror Device (DMD) - Alternating Current Gas Plasma (ACGP) - Electroluminescent (EL, TFEL, AMEL) - Vacuum Fluorescent Display (VFD) - Inorganic Light...Instruments Digital Micromirror Device (DMD) Digital Light Processing technology and another, the Qualcomm/Hughes-JVC CRT/Liquid Crystal Light Valve
ewrapper: Operationalizing engagement strategies in mHealth
Wagner, Blake; Liu, Elaine; Shaw, Steven D.; Iakovlev, Gleb; Zhou, Linlu; Harrington, Christina; Abowd, Gregory; Yoon, Carolyn; Kumar, Santosh; Murphy, Susan; Spring, Bonnie; Nahum-Shani, Inbal
2018-01-01
The advancement of digital technologies particularly in the domain of mobile health (mHealth) holds great promise in the promotion of health behavior. However, keeping users engaged remains a central challenge. This paper proposes a novel approach to address this issue by supplementing existing and future mHealth applications with an engagement wrapper - a collection of engagement strategies integrated into a single, coherent model. The engagement wrapper is operationalized within the format of an ambient display on the lock screen of mobile devices. PMID:29362728
2014-04-01
from the pulse oximeter were integrated, digitized, and displayed graphically in real time in LabView (National Instruments) and logged at 20 Hz...Peripheral oxygenation monitoring: Fg-SpO2 levels were measured using a pulse oximeter placed on the left index finger (ROBD-2; Series 6202, Environics...Tolland, CT). Heart rate monitoring: HR was measured using a pulse oximeter placed on the left index finger (ROBD-2; Series 6202, Environics
2014-04-01
from the pulse oximeter were integrated, digitized, and displayed graphically in real time in LabView (National Instruments) and logged at 20 Hz...Peripheral oxygenation monitoring: Fg-SpO2 levels were measured using a pulse oximeter placed on the left index finger (ROBD-2; Series 6202, Environics...Tolland, CT). Heart rate monitoring: HR was measured using a pulse oximeter placed on the left index finger (ROBD-2; Series 6202, Environics
ewrapper: Operationalizing engagement strategies in mHealth.
Wagner, Blake; Liu, Elaine; Shaw, Steven D; Iakovlev, Gleb; Zhou, Linlu; Harrington, Christina; Abowd, Gregory; Yoon, Carolyn; Kumar, Santosh; Murphy, Susan; Spring, Bonnie; Nahum-Shani, Inbal
2017-09-01
The advancement of digital technologies particularly in the domain of mobile health (mHealth) holds great promise in the promotion of health behavior. However, keeping users engaged remains a central challenge. This paper proposes a novel approach to address this issue by supplementing existing and future mHealth applications with an engagement wrapper - a collection of engagement strategies integrated into a single, coherent model. The engagement wrapper is operationalized within the format of an ambient display on the lock screen of mobile devices.
NASA Technical Reports Server (NTRS)
Duff, Michael J. B. (Editor); Siegel, Howard J. (Editor); Corbett, Francis J. (Editor)
1986-01-01
The conference presents papers on the architectures, algorithms, and applications of image processing. Particular attention is given to a very large scale integration system for image reconstruction from projections, a prebuffer algorithm for instant display of volume data, and an adaptive image sequence filtering scheme based on motion detection. Papers are also presented on a simple, direct practical method of sensing local motion and analyzing local optical flow, image matching techniques, and an automated biological dosimetry system.
Computer Graphics Instruction in VizClass
ERIC Educational Resources Information Center
Grimes, Douglas; Warschauer, Mark; Hutchinson, Tara; Kuester, Falko
2005-01-01
"VizClass" is a university classroom environment designed to offer students in computer graphics and engineering courses up-to-date visualization technologies. Three digital whiteboards and a three-dimensional stereoscopic display provide complementary display surfaces. Input devices include touchscreens on the digital whiteboards, remote…
Tangible display systems: bringing virtual surfaces into the real world
NASA Astrophysics Data System (ADS)
Ferwerda, James A.
2012-03-01
We are developing tangible display systems that enable natural interaction with virtual surfaces. Tangible display systems are based on modern mobile devices that incorporate electronic image displays, graphics hardware, tracking systems, and digital cameras. Custom software allows the orientation of a device and the position of the observer to be tracked in real-time. Using this information, realistic images of surfaces with complex textures and material properties illuminated by environment-mapped lighting, can be rendered to the screen at interactive rates. Tilting or moving in front of the device produces realistic changes in surface lighting and material appearance. In this way, tangible displays allow virtual surfaces to be observed and manipulated as naturally as real ones, with the added benefit that surface geometry and material properties can be modified in real-time. We demonstrate the utility of tangible display systems in four application areas: material appearance research; computer-aided appearance design; enhanced access to digital library and museum collections; and new tools for digital artists.
Multimedia architectures: from desktop systems to portable appliances
NASA Astrophysics Data System (ADS)
Bhaskaran, Vasudev; Konstantinides, Konstantinos; Natarajan, Balas R.
1997-01-01
Future desktop and portable computing systems will have as their core an integrated multimedia system. Such a system will seamlessly combine digital video, digital audio, computer animation, text, and graphics. Furthermore, such a system will allow for mixed-media creation, dissemination, and interactive access in real time. Multimedia architectures that need to support these functions have traditionally required special display and processing units for the different media types. This approach tends to be expensive and is inefficient in its use of silicon. Furthermore, such media-specific processing units are unable to cope with the fluid nature of the multimedia market wherein the needs and standards are changing and system manufacturers may demand a single component media engine across a range of products. This constraint has led to a shift towards providing a single-component multimedia specific computing engine that can be integrated easily within desktop systems, tethered consumer appliances, or portable appliances. In this paper, we review some of the recent architectural efforts in developing integrated media systems. We primarily focus on two efforts, namely the evolution of multimedia-capable general purpose processors and a more recent effort in developing single component mixed media co-processors. Design considerations that could facilitate the migration of these technologies to a portable integrated media system also are presented.
Lee, Kee Hyuck; Yoo, Sooyoung; Shin, HoGyun; Baek, Rong-Min; Chung, Chin Youb; Hwang, Hee
2013-01-01
It is reported that digital dashboard systems in hospitals provide a user interface (UI) that can centrally manage and retrieve various information related to patients in a single screen, support the decision-making of medical professionals on a real time basis by integrating the scattered medical information systems and core work flows, enhance the competence and decision-making ability of medical professionals, and reduce the probability of misdiagnosis. However, the digital dashboard systems of hospitals reported to date have some limitations when medical professionals use them to generally treat inpatients, because those were limitedly used for the work process of certain departments or developed to improve specific disease-related indicators. Seoul National University Bundang Hospital developed a new concept of EMR system to overcome such limitations. The system allows medical professionals to easily access all information on inpatients and effectively retrieve important information from any part of the hospital by displaying inpatient information in the form of digital dashboard. In this study, we would like to introduce the structure, development methodology and the usage of our new concept.
Integrated Computer Controlled Glow Discharge Tube
NASA Astrophysics Data System (ADS)
Kaiser, Erik; Post-Zwicker, Andrew
2002-11-01
An "Interactive Plasma Display" was created for the Princeton Plasma Physics Laboratory to demonstrate the characteristics of plasma to various science education outreach programs. From high school students and teachers, to undergraduate students and visitors to the lab, the plasma device will be a key component in advancing the public's basic knowledge of plasma physics. The device is fully computer controlled using LabVIEW, a touchscreen Graphical User Interface [GUI], and a GPIB interface. Utilizing a feedback loop, the display is fully autonomous in controlling pressure, as well as in monitoring the safety aspects of the apparatus. With a digital convectron gauge continuously monitoring pressure, the computer interface analyzes the input signals, while making changes to a digital flow controller. This function works independently of the GUI, allowing the user to simply input and receive a desired pressure; quickly, easily, and intuitively. The discharge tube is a 36" x 4"id glass cylinder with 3" side port. A 3000 volt, 10mA power supply, is used to breakdown the plasma. A 300 turn solenoid was created to demonstrate the magnetic pinching of a plasma. All primary functions of the device are controlled through the GUI digital controllers. This configuration allows for operators to safely control the pressure (100mTorr-1Torr), magnetic field (0-90Gauss, 7amps, 10volts), and finally, the voltage applied across the electrodes (0-3000v, 10mA).
Vroom: designing an augmented environment for remote collaboration in digital cinema production
NASA Astrophysics Data System (ADS)
Margolis, Todd; Cornish, Tracy
2013-03-01
As media technologies become increasingly affordable, compact and inherently networked, new generations of telecollaborative platforms continue to arise which integrate these new affordances. Virtual reality has been primarily concerned with creating simulations of environments that can transport participants to real or imagined spaces that replace the "real world". Meanwhile Augmented Reality systems have evolved to interleave objects from Virtual Reality environments into the physical landscape. Perhaps now there is a new class of systems that reverse this precept to enhance dynamic media landscapes and immersive physical display environments to enable intuitive data exploration through collaboration. Vroom (Virtual Room) is a next-generation reconfigurable tiled display environment in development at the California Institute for Telecommunications and Information Technology (Calit2) at the University of California, San Diego. Vroom enables freely scalable digital collaboratories, connecting distributed, high-resolution visualization resources for collaborative work in the sciences, engineering and the arts. Vroom transforms a physical space into an immersive media environment with large format interactive display surfaces, video teleconferencing and spatialized audio built on a highspeed optical network backbone. Vroom enables group collaboration for local and remote participants to share knowledge and experiences. Possible applications include: remote learning, command and control, storyboarding, post-production editorial review, high resolution video playback, 3D visualization, screencasting and image, video and multimedia file sharing. To support these various scenarios, Vroom features support for multiple user interfaces (optical tracking, touch UI, gesture interface, etc.), support for directional and spatialized audio, giga-pixel image interactivity, 4K video streaming, 3D visualization and telematic production. This paper explains the design process that has been utilized to make Vroom an accessible and intuitive immersive environment for remote collaboration specifically for digital cinema production.
The Speed of Serial Attention Shifts in Visual Search: Evidence from the N2pc Component.
Grubert, Anna; Eimer, Martin
2016-02-01
Finding target objects among distractors in visual search display is often assumed to be based on sequential movements of attention between different objects. However, the speed of such serial attention shifts is still under dispute. We employed a search task that encouraged the successive allocation of attention to two target objects in the same search display and measured N2pc components to determine how fast attention moved between these objects. Each display contained one digit in a known color (fixed-color target) and another digit whose color changed unpredictably across trials (variable-color target) together with two gray distractor digits. Participants' task was to find the fixed-color digit and compare its numerical value with that of the variable-color digit. N2pc components to fixed-color targets preceded N2pc components to variable-color digits, demonstrating that these two targets were indeed selected in a fixed serial order. The N2pc to variable-color digits emerged approximately 60 msec after the N2pc to fixed-color digits, which shows that attention can be reallocated very rapidly between different target objects in the visual field. When search display durations were increased, thereby relaxing the temporal demands on serial selection, the two N2pc components to fixed-color and variable-color targets were elicited within 90 msec of each other. Results demonstrate that sequential shifts of attention between different target locations can operate very rapidly at speeds that are in line with the assumptions of serial selection models of visual search.
Image display device in digital TV
Choi, Seung Jong [Seoul, KR
2006-07-18
Disclosed is an image display device in a digital TV that is capable of carrying out the conversion into various kinds of resolution by using single bit map data in the digital TV. The image display device includes: a data processing part for executing bit map conversion, compression, restoration and format-conversion for text data; a memory for storing the bit map data obtained according to the bit map conversion and compression in the data processing part and image data inputted from an arbitrary receiving part, the receiving part receiving one of digital image data and analog image data; an image outputting part for reading the image data from the memory; and a display processing part for mixing the image data read from the image outputting part and the bit map data converted in format from the a data processing part. Therefore, the image display device according to the present invention can convert text data in such a manner as to correspond with various resolution, carry out the compression for bit map data, thereby reducing the memory space, and support text data of an HTML format, thereby providing the image with the text data of various shapes.
NASA Technical Reports Server (NTRS)
Pedings, Marc
2007-01-01
RT-Display is a MATLAB-based data acquisition environment designed to use a variety of commercial off-the-shelf (COTS) hardware to digitize analog signals to a standard data format usable by other post-acquisition data analysis tools. This software presents the acquired data in real time using a variety of signal-processing algorithms. The acquired data is stored in a standard Operator Interactive Signal Processing Software (OISPS) data-formatted file. RT-Display is primarily configured to use the Agilent VXI (or equivalent) data acquisition boards used in such systems as MIDDAS (Multi-channel Integrated Dynamic Data Acquisition System). The software is generalized and deployable in almost any testing environment, without limitations or proprietary configuration for a specific test program or project. With the Agilent hardware configured and in place, users can start the program and, in one step, immediately begin digitizing multiple channels of data. Once the acquisition is completed, data is converted into a common binary format that also can be translated to specific formats used by external analysis software, such as OISPS and PC-Signal (product of AI Signal Research Inc.). RT-Display at the time of this reporting was certified on Agilent hardware capable of acquisition up to 196,608 samples per second. Data signals are presented to the user on-screen simultaneously for 16 channels. Each channel can be viewed individually, with a maximum capability of 160 signal channels (depending on hardware configuration). Current signal presentations include: time data, fast Fourier transforms (FFT), and power spectral density plots (PSD). Additional processing algorithms can be easily incorporated into this environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lam, H.N.
1999-07-01
In this paper, the development and implementation of a direct-coupled building emulator for a building energy management and control system (EMCS) is presented. The building emulator consists of a microcomputer and a computer model of an air-conditioning system implemented in a modular dynamic simulation software package for direct-coupling to an EMCS, without using analog-to-digital and digital-to-analog converters. The building emulator can be used to simulate in real time the behavior of the air-conditioning system under a given operating environment and subject to a given usage pattern. Software modules for data communication, graphical display, dynamic data exchange, and synchronization of simulationmore » outputs with real time have been developed to achieve direct digital data transfer between the building emulator and a commercial EMCS. Based on the tests conducted, the validity of the building emulator has been established and the proportional-plus-integral control function of the EMCS assessed.« less
Recent advances in standards for collaborative Digital Anatomic Pathology
2011-01-01
Context Collaborative Digital Anatomic Pathology refers to the use of information technology that supports the creation and sharing or exchange of information, including data and images, during the complex workflow performed in an Anatomic Pathology department from specimen reception to report transmission and exploitation. Collaborative Digital Anatomic Pathology can only be fully achieved using medical informatics standards. The goal of the international integrating the Healthcare Enterprise (IHE) initiative is precisely specifying how medical informatics standards should be implemented to meet specific health care needs and making systems integration more efficient and less expensive. Objective To define the best use of medical informatics standards in order to share and exchange machine-readable structured reports and their evidences (including whole slide images) within hospitals and across healthcare facilities. Methods Specific working groups dedicated to Anatomy Pathology within multiple standards organizations defined standard-based data structures for Anatomic Pathology reports and images as well as informatic transactions in order to integrate Anatomic Pathology information into the electronic healthcare enterprise. Results The DICOM supplements 122 and 145 provide flexible object information definitions dedicated respectively to specimen description and Whole Slide Image acquisition, storage and display. The content profile “Anatomic Pathology Structured Report” (APSR) provides standard templates for structured reports in which textual observations may be bound to digital images or regions of interest. Anatomic Pathology observations are encoded using an international controlled vocabulary defined by the IHE Anatomic Pathology domain that is currently being mapped to SNOMED CT concepts. Conclusion Recent advances in standards for Collaborative Digital Anatomic Pathology are a unique opportunity to share or exchange Anatomic Pathology structured reports that are interoperable at an international level. The use of machine-readable format of APSR supports the development of decision support as well as secondary use of Anatomic Pathology information for epidemiology or clinical research. PMID:21489187
Utilization of a CRT display light pen in the design of feedback control systems
NASA Technical Reports Server (NTRS)
Thompson, J. G.; Young, K. R.
1972-01-01
A hierarchical structure of the interlinked programs was developed to provide a flexible computer-aided design tool. A graphical input technique and a data structure are considered which provide the capability of entering the control system model description into the computer in block diagram form. An information storage and retrieval system was developed to keep track of the system description, and analysis and simulation results, and to provide them to the correct routines for further manipulation or display. Error analysis and diagnostic capabilities are discussed, and a technique was developed to reduce a transfer function to a set of nested integrals suitable for digital simulation. A general, automated block diagram reduction procedure was set up to prepare the system description for the analysis routines.
2014-01-01
Background Since microscopic slides can now be automatically digitized and integrated in the clinical workflow, quality assessment of Whole Slide Images (WSI) has become a crucial issue. We present a no-reference quality assessment method that has been thoroughly tested since 2010 and is under implementation in multiple sites, both public university-hospitals and private entities. It is part of the FlexMIm R&D project which aims to improve the global workflow of digital pathology. For these uses, we have developed two programming libraries, in Java and Python, which can be integrated in various types of WSI acquisition systems, viewers and image analysis tools. Methods Development and testing have been carried out on a MacBook Pro i7 and on a bi-Xeon 2.7GHz server. Libraries implementing the blur assessment method have been developed in Java, Python, PHP5 and MySQL5. For web applications, JavaScript, Ajax, JSON and Sockets were also used, as well as the Google Maps API. Aperio SVS files were converted into the Google Maps format using VIPS and Openslide libraries. Results We designed the Java library as a Service Provider Interface (SPI), extendable by third parties. Analysis is computed in real-time (3 billion pixels per minute). Tests were made on 5000 single images, 200 NDPI WSI, 100 Aperio SVS WSI converted to the Google Maps format. Conclusions Applications based on our method and libraries can be used upstream, as calibration and quality control tool for the WSI acquisition systems, or as tools to reacquire tiles while the WSI is being scanned. They can also be used downstream to reacquire the complete slides that are below the quality threshold for surgical pathology analysis. WSI may also be displayed in a smarter way by sending and displaying the regions of highest quality before other regions. Such quality assessment scores could be integrated as WSI's metadata shared in clinical, research or teaching contexts, for a more efficient medical informatics workflow. PMID:25565494
RAPID: A random access picture digitizer, display, and memory system
NASA Technical Reports Server (NTRS)
Yakimovsky, Y.; Rayfield, M.; Eskenazi, R.
1976-01-01
RAPID is a system capable of providing convenient digital analysis of video data in real-time. It has two modes of operation. The first allows for continuous digitization of an EIA RS-170 video signal. Each frame in the video signal is digitized and written in 1/30 of a second into RAPID's internal memory. The second mode leaves the content of the internal memory independent of the current input video. In both modes of operation the image contained in the memory is used to generate an EIA RS-170 composite video output signal representing the digitized image in the memory so that it can be displayed on a monitor.
Evaluation of force-torque displays for use with space station telerobotic activities
NASA Technical Reports Server (NTRS)
Hendrich, Robert C.; Bierschwale, John M.; Manahan, Meera K.; Stuart, Mark A.; Legendre, A. Jay
1992-01-01
Recent experiments which addressed Space Station remote manipulation tasks found that tactile force feedback (reflecting forces and torques encountered at the end-effector through the manipulator hand controller) does not improve performance significantly. Subjective response from astronaut and non-astronaut test subjects indicated that force information, provided visually, could be useful. No research exists which specifically investigates methods of presenting force-torque information visually. This experiment was designed to evaluate seven different visual force-torque displays which were found in an informal telephone survey. The displays were prototyped in the HyperCard programming environment. In a within-subjects experiment, 14 subjects nullified forces and torques presented statically, using response buttons located at the bottom of the screen. Dependent measures included questionnaire data, errors, and response time. Subjective data generally demonstrate that subjects rated variations of pseudo-perspective displays consistently better than bar graph and digital displays. Subjects commented that the bar graph and digital displays could be used, but were not compatible with using hand controllers. Quantitative data show similar trends to the subjective data, except that the bar graph and digital displays both provided good performance, perhaps do to the mapping of response buttons to display elements. Results indicate that for this set of displays, the pseudo-perspective displays generally represent a more intuitive format for presenting force-torque information.
ARINC 818 specification revisions enable new avionics architectures
NASA Astrophysics Data System (ADS)
Grunwald, Paul
2014-06-01
The ARINC 818 Avionics Digital Video Bus is the standard for cockpit video that has gained wide acceptance in both the commercial and military cockpits. The Boeing 787, A350XWB, A400M, KC-46A, and many other aircraft use it. The ARINC 818 specification, which was initially release in 2006, has recently undergone a major update to address new avionics architectures and capabilities. Over the seven years since its release, projects have gone beyond the specification due to the complexity of new architectures and desired capabilities, such as video switching, bi-directional communication, data-only paths, and camera and sensor control provisions. The ARINC 818 specification was revised in 2013, and ARINC 818-2 was approved in November 2013. The revisions to the ARINC 818-2 specification enable switching, stereo and 3-D provisions, color sequential implementations, regions of interest, bi-directional communication, higher link rates, data-only transmission, and synchronization signals. This paper discusses each of the new capabilities and the impact on avionics and display architectures, especially when integrating large area displays, stereoscopic displays, multiple displays, and systems that include a large number of sensors.
Information transfer rate with serial and simultaneous visual display formats
NASA Astrophysics Data System (ADS)
Matin, Ethel; Boff, Kenneth R.
1988-04-01
Information communication rate for a conventional display with three spatially separated windows was compared with rate for a serial display in which data frames were presented sequentially in one window. For both methods, each frame contained a randomly selected digit with various amounts of additional display 'clutter.' Subjects recalled the digits in a prescribed order. Large rate differences were found, with faster serial communication for all levels of the clutter factors. However, the rate difference was most pronounced for highly cluttered displays. An explanation for the latter effect in terms of visual masking in the retinal periphery was supported by the results of a second experiment. The working hypothesis that serial displays can speed information transfer for automatic but not for controlled processing is discussed.
42 CFR 37.44 - Approval of radiographic facilities that use digital radiography systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... image acquisition, digitization, processing, compression, transmission, display, archiving, and... quality digital chest radiographs by submitting to NIOSH digital radiographic image files of a test object... digital radiographic image files from six or more sample chest radiographs that are of acceptable quality...
42 CFR 37.44 - Approval of radiographic facilities that use digital radiography systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... image acquisition, digitization, processing, compression, transmission, display, archiving, and... quality digital chest radiographs by submitting to NIOSH digital radiographic image files of a test object... digital radiographic image files from six or more sample chest radiographs that are of acceptable quality...
Mori, Yutaka; Nomura, Takanori
2013-06-01
In holographic displays, it is undesirable to observe the speckle noises with the reconstructed images. A method for improvement of reconstructed image quality by synthesizing low-coherence digital holograms is proposed. It is possible to obtain speckleless reconstruction of holograms due to low-coherence digital holography. An image sensor records low-coherence digital holograms, and the holograms are synthesized by computational calculation. Two approaches, the threshold-processing and the picking-a-peak methods, are proposed in order to reduce random noise of low-coherence digital holograms. The reconstructed image quality by the proposed methods is compared with the case of high-coherence digital holography. Quantitative evaluation is given to confirm the proposed methods. In addition, the visual evaluation by 15 people is also shown.
A Real-Time Optical 3D Tracker for Head-Mounted Display Systems
1990-03-01
paper. OPTOTRAK [Nor88] uses one camera with two dual-axis CCD infrared position sensors. Each position sen- sor has a dedicated processor board to...enhance the use- [Nor88] Northern Digital. Trade literature on Optotrak fulness of head-mounted display systems. - Northern Digital’s Three Dimensional
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-15
... Certain Display Devices, Including Digital Televisions and Monitors II, DN 2787; the Commission is... importation of certain display devices, including digital televisions and monitors II. The complaint names as... in the United States economy, the production of like or directly competitive articles in the United...
NASA Astrophysics Data System (ADS)
Ross, Arthur; Renfro, Timothy
2012-03-01
The Digital Electronics class at McMurry University created a Christmas light display that toggles the power of different strands of lights, according to what frequencies are played in a song, as an example of an analog to digital circuit. This was accomplished using a BA3830S IC six-band audio filter and six solid-state relays.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-11
... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-765] In the Matter of Certain Display Devices, Including Digital Televisions and Monitors II; Notice of Investigation AGENCY: U.S. International Trade... that a complaint was filed with the U.S. International Trade Commission on February 9, 2011, under...
Validation of a new digital breast tomosynthesis medical display
NASA Astrophysics Data System (ADS)
Marchessoux, Cédric; Vivien, Nicolas; Kumcu, Asli; Kimpe, Tom
2011-03-01
The main objective of this study is to evaluate and validate the new Barco medical display MDMG-5221 which has been optimized for the Digital Breast Tomosynthesis (DBT) imaging modality system, and to prove the benefit of the new DBT display in terms of image quality and clinical performance. The clinical performance is evaluated by the detection of micro-calcifications inserted in reconstructed Digital Breast Tomosynthesis slices. The slices are shown in dynamic cine loops, at two frames rates. The statistical analysis chosen for this study is the Receiver Operating Characteristic Multiple-Reader, Multiple-Case methodology, in order to measure the clinical performance of the two displays. Four experienced radiologists are involved in this study. For this clinical study, 50 normal and 50 abnormal independent datasets were used. The result is that the new display outperforms the mammography display for a signal detection task using real DBT images viewed at 25 and 50 slices per second. In the case of 50 slices per second, the p-value = 0.0664. For a cut-off where alpha=0.05, the conclusion is that the null hypothesis cannot be rejected, however the trend is that the new display performs 6% better than the old display in terms of AUC. At 25 slices per second, the difference between the two displays is very apparent. The new display outperforms the mammography display by 10% in terms of AUC, with a good statistical significance of p=0.0415.
Apparatus for measuring the local void fraction in a flowing liquid containing a gas
Dunn, P.F.
1979-07-17
The local void fraction in liquid containing a gas is measured by placing an impedance-variation probe in the liquid, applying a controlled voltage or current to the probe, and measuring the probe current or voltage. A circuit for applying the one electrical parameter and measuring the other includes a feedback amplifier that minimizes the effect of probe capacitance and a digitizer to provide a clean signal. Time integration of the signal provides a measure of the void fraction, and an oscilloscope display also shows bubble size and distribution.
Apparatus for measuring the local void fraction in a flowing liquid containing a gas
Dunn, Patrick F.
1981-01-01
The local void fraction in liquid containing a gas is measured by placing an impedance-variation probe in the liquid, applying a controlled voltage or current to the probe, and measuring the probe current or voltage. A circuit for applying the one electrical parameter and measuring the other includes a feedback amplifier that minimizes the effect of probe capacitance and a digitizer to provide a clean signal. Time integration of the signal provides a measure of the void fraction, and an oscilloscope display also shows bubble size and distribution.
NASA Astrophysics Data System (ADS)
Hagen, William E.; Holtzman, Julian C.
The Army Terrain Integrated Interference Prediction System (ATIIPS), a CAD terrain based simulation tool for determining the degradation effects on a network on nonspread spectrum radios caused by a network of spread spectrum radios is presented. A brief overview of the program is given, with typical graphics displays shown. Typical results for both a link simulation of interference and for a network simulation, using a slow hopped FM/FSK spread spectrum interfering radio network on a narrow band FM/FSK fixed frequency digital radio are presented.
Fang, Yu-Hua Dean; Asthana, Pravesh; Salinas, Cristian; Huang, Hsuan-Ming; Muzic, Raymond F
2010-01-01
An integrated software package, Compartment Model Kinetic Analysis Tool (COMKAT), is presented in this report. COMKAT is an open-source software package with many functions for incorporating pharmacokinetic analysis in molecular imaging research and has both command-line and graphical user interfaces. With COMKAT, users may load and display images, draw regions of interest, load input functions, select kinetic models from a predefined list, or create a novel model and perform parameter estimation, all without having to write any computer code. For image analysis, COMKAT image tool supports multiple image file formats, including the Digital Imaging and Communications in Medicine (DICOM) standard. Image contrast, zoom, reslicing, display color table, and frame summation can be adjusted in COMKAT image tool. It also displays and automatically registers images from 2 modalities. Parametric imaging capability is provided and can be combined with the distributed computing support to enhance computation speeds. For users without MATLAB licenses, a compiled, executable version of COMKAT is available, although it currently has only a subset of the full COMKAT capability. Both the compiled and the noncompiled versions of COMKAT are free for academic research use. Extensive documentation, examples, and COMKAT itself are available on its wiki-based Web site, http://comkat.case.edu. Users are encouraged to contribute, sharing their experience, examples, and extensions of COMKAT. With integrated functionality specifically designed for imaging and kinetic modeling analysis, COMKAT can be used as a software environment for molecular imaging and pharmacokinetic analysis.
Omniview motionless camera orientation system
NASA Technical Reports Server (NTRS)
Martin, H. Lee (Inventor); Kuban, Daniel P. (Inventor); Zimmermann, Steven D. (Inventor); Busko, Nicholas (Inventor)
2010-01-01
An apparatus and method is provided for converting digital images for use in an imaging system. The apparatus includes a data memory which stores digital data representing an image having a circular or spherical field of view such as an image captured by a fish-eye lens, a control input for receiving a signal for selecting a portion of the image, and a converter responsive to the control input for converting digital data corresponding to the selected portion into digital data representing a planar image for subsequent display. Various methods include the steps of storing digital data representing an image having a circular or spherical field of view, selecting a portion of the image, and converting the stored digital data corresponding to the selected portion into digital data representing a planar image for subsequent display. In various embodiments, the data converter and data conversion step may use an orthogonal set of transformation algorithms.
How Elsevier's Article of the Future supports researchers in the digital era
NASA Astrophysics Data System (ADS)
Keall, B.
2012-04-01
The first phase of Elsevier's Article of the Future article format was released on SciVerse ScienceDirect in January 2012. While this new format for online scholarly articles brings a significantly improved online presentation, it also enables further enhancements in terms of domain-specific content and contextualization of research results. Of particular interest to the Earth Sciences research community are the seamless integration of an interactive map viewer that displays author-submitted KML files inside the article, and real-time links to leading research data portals like Pangaea and Earthchem. These enhancements allow for a richer form of communication between authors and readers, and present researchers with valuable additional information in the context of the article. In this presentaion I will review these ongoing efforts to enhance online articles in the digital era.
Digital hand-held temperature monitor
NASA Astrophysics Data System (ADS)
Allin, L. V.; Ferrari, I.
1980-09-01
A hand-held non-invasive monitoring instrument has been designed, constructed and tested to allow core temperature measurements to be obtained from human subjects who have swallowed a temperature-sensing radio transmitter (radio pill). This instrument uses a simple AM radio for a receiver, digital circuitry to decode the received signal and a four-digit LED module to display the temperature. The unit, which is battery-powered, can be held in one hand while an antenna probe is swept over the abdomen of the subject until a continuously audible signal is generated by a piezoelectric sound source, indicating reception. The digital display then presents the body core temperature in tenths of a degree Celsius.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-12
... Image Display Devices and Components Thereof; Notice of Request for Written Submissions on Remedy, the... importation, and the sale within the United States after importation of certain digital photo frames and image... the President, has 60 days to approve or disapprove the Commission's action. See section 337(j), 19 U...
NASA Technical Reports Server (NTRS)
Whitmore, Mihriban; Baggerman, Susan; Byrne, Vicky
2004-01-01
With the advent of the ISS and the experience of Russian, European, and US crewmembers on Mir, the importance of the psychological element in long duration missions is increasingly recognized. An integrated imagery system or Magic Window System could enhance the habitability, performance, and productivity for long term stays in space. Because this is type of system is a new concept for space, functional and technical requirements need to be determined. As part of a three-year project, the functional and technical requirements for an Imagery System onboard the International Space Station (ISS) have been explored. Valuable information was gathered from a survey completed by participants that had been in analog environments (remote/isolated) such as Antarctica, Aquarius, ISS crewmember debriefs, and crew support meetings to identify key functions desired for an integrated Magic Window System. Exercise and medical care activities were identified as areas that could benefit from such a system. It was determined that for exercise, it was worth exploring the concept of displaying a dynamic screen that changes as the crewmember's speed changes while showing physiological measures in a combined display. In terms of enhancing the interfaces for medical care activities, the Magic Window System could show video clips along side procedures for just-in-time training scenarios through a heads-up display. In addition, the portability, usability, and reliability were stressed as important considerations for an integrated system of technologies or Magic Window System. In addition, a review of state-of-the-art screens and other existing technologies such as tablet PCs and Personal Digital Assistants (PDAs) was conducted and contributed to defining technical requirements and feasibility of systems. Some heuristic evaluations of large displays and PDAs were conducted. Finally, feasibility for implementation onboard ISS has been considered. Currently, specific headset units are undergoing usability testing. The outcome of these activities will be valuable to determine the best candidates for an integrated system that could accommodate different needs depending on task.
Human interaction with wearable computer systems: a look at glasses-mounted displays
NASA Astrophysics Data System (ADS)
Revels, Allen R.; Quill, Laurie L.; Kancler, David E.; Masquelier, Barbara L.
1998-09-01
With the advancement of technology and the information explosion, integration of the two into performance aiding systems can have a significant impact on operational and maintenance environments. The Department of Defense and commercial industry have made great strides in digitizing and automating technical manuals and data to be presented on performance aiding systems. These performance aides are computerized interactive systems that provide procedures on how to operate and maintain fielded systems. The idea is to provide the end-user a system which is compatible with their work environment. The purpose of this paper is to show, historically, the progression of wearable computer aiding systems for maintenance environments, and then highlight the work accomplished in the design and development of glasses- mounted displays (GMD). The paper reviews work performed over the last seven years, then highlights, through review of a usability study, the advances made with GMDs. The use of portable computing systems, such as laptop and notebook, computers, does not necessarily increase the accessibility of the displayed information while accomplishing a given task in a hands-busy, mobile work environment. The use of a GMD increases accessibility of the information by placing it in eye sight of the user without obstructing the surrounding environment. Although the potential utility for this type of display is great, hardware and human integration must be refined. Results from the usability study show the usefulness and usability of the GMD in a mobile, hands-free environment.
NASA Astrophysics Data System (ADS)
Feng, Di; Yang, Xingpeng; Jin, Guofan; Yan, Yingbai; Fan, Shoushan
2006-01-01
Liquid crystal displays (LCDs) with edge-lit backlight systems offer several advantages, such as low energy consuming, low weight, and high uniformity of intensity, over traditional cathode-ray tube displays, and make them ideal for many applications including monitors in notebook personal computers, screens for TV, and many portable information terminals, such as mobile phones, personal digital assistants, etc. To satisfy market requirements for mobile and personal display panels, it is more and more necessary to modify the backlight system and make it thinner, lighter, and brighter all at once. In this paper, we have proposed a new integrated LGP based on periodic and aperiodic microprism structures by using polymethyl methacrylate material, which can be designed to control the illumination angle, and to get high uniformity of intensity. So the backlight system will be simplified to use only light sources and one LGP without using other optical sheets, such as reflection sheet, diffusion sheet and prism sheets. By using optimizing program and ray tracing method, the designed LGPs can achieve a uniformity of intensity better than 86%, and get a peak illumination angle from +400 to -200, without requiring other optical sheets. We have designed a backlight system with only one LED light source and one LGP, and other LGP design examples with different sizes (1.8 inches and 14.1 inches) and different light source (LED or CCFL), are performed also.
[Digital acoustic burglar alarm system using infrared radio remote control].
Wang, Song-De; Zhao, Yan; Yao, Li-Ping; Zhang, Shuan-Ji
2009-03-01
Using butt emission infrared sensors, radio receiving and sending modules, double function integrated circuit with code and code translation, LED etc, a digital acoustic burglar alarm system using infrared radio to realize remote control was designed. It uses infrared ray invisible to eyes, composing area of radio distance. Once people and objects shelter the infrared ray, a testing signal will be output by the tester, and the sender will be triggered to work. The radio coding signal that sender sent is received by the receiver, then processed by a serial circuit. The control signal is output to trigger the sounder to give out an alarm signal, and the operator will be cued to notice this variation. At the same time, the digital display will be lighted and the alarm place will be watched. Digital coding technology is used, and a number of sub alarm circuits can joint the main receiver, so a lot of places can be monitored. The whole system features a module structure, with the property of easy alignment, stable operation, debug free and so on. The system offers an alarm range reaching 1 000 meters in all directions, and can be widely used in family, shop, storehouse, orchard and so on.
Integrated long-range UAV/UGV collaborative target tracking
NASA Astrophysics Data System (ADS)
Moseley, Mark B.; Grocholsky, Benjamin P.; Cheung, Carol; Singh, Sanjiv
2009-05-01
Coordinated operations between unmanned air and ground assets allow leveraging of multi-domain sensing and increase opportunities for improving line of sight communications. While numerous military missions would benefit from coordinated UAV-UGV operations, foundational capabilities that integrate stove-piped tactical systems and share available sensor data are required and not yet available. iRobot, AeroVironment, and Carnegie Mellon University are working together, partially SBIR-funded through ARDEC's small unit network lethality initiative, to develop collaborative capabilities for surveillance, targeting, and improved communications based on PackBot UGV and Raven UAV platforms. We integrate newly available technologies into computational, vision, and communications payloads and develop sensing algorithms to support vision-based target tracking. We first simulated and then applied onto real tactical platforms an implementation of Decentralized Data Fusion, a novel technique for fusing track estimates from PackBot and Raven platforms for a moving target in an open environment. In addition, system integration with AeroVironment's Digital Data Link onto both air and ground platforms has extended our capabilities in communications range to operate the PackBot as well as in increased video and data throughput. The system is brought together through a unified Operator Control Unit (OCU) for the PackBot and Raven that provides simultaneous waypoint navigation and traditional teleoperation. We also present several recent capability accomplishments toward PackBot-Raven coordinated operations, including single OCU display design and operation, early target track results, and Digital Data Link integration efforts, as well as our near-term capability goals.
Digital devices: big challenge in color management
NASA Astrophysics Data System (ADS)
Vauderwange, Oliver; Curticapean, Dan; Dreβler, Paul; Wozniak, Peter
2014-09-01
The paper will present how the students learn to find technical solutions in color management by using adequate digital devices and recognize the specific upcoming tasks in this area. Several issues, problems and their solutions will be discussed. The scientific background offer specific didactical solutions in this area of optics. Color management is the major item of this paper. Color management is a crucial responsibility for media engineers and designers. Print, screen and mobile applications must independently display the same colors. Predictability and consistency in the color representation are the aims of a color management system. This is only possible in a standardized and audited production workflow. Nowadays digital media have a fast-paced development process. An increasing number of different digital devices with different display sizes and display technologies are a great challenge for every color management system. The authors will present their experience in the field of color management. The design and development of a suitable learning environment with the required infrastructure is in the focus. The combination of theoretical and practical lectures creates a deeper understanding in the area of the digital color representation.
Farahani, Navid; Post, Robert; Duboy, Jon; Ahmed, Ishtiaque; Kolowitz, Brian J; Krinchai, Teppituk; Monaco, Sara E; Fine, Jeffrey L; Hartman, Douglas J; Pantanowitz, Liron
2016-01-01
Digital slides obtained from whole slide imaging (WSI) platforms are typically viewed in two dimensions using desktop personal computer monitors or more recently on mobile devices. To the best of our knowledge, we are not aware of any studies viewing digital pathology slides in a virtual reality (VR) environment. VR technology enables users to be artificially immersed in and interact with a computer-simulated world. Oculus Rift is among the world's first consumer-targeted VR headsets, intended primarily for enhanced gaming. Our aim was to explore the use of the Oculus Rift for examining digital pathology slides in a VR environment. An Oculus Rift Development Kit 2 (DK2) was connected to a 64-bit computer running Virtual Desktop software. Glass slides from twenty randomly selected lymph node cases (ten with benign and ten malignant diagnoses) were digitized using a WSI scanner. Three pathologists reviewed these digital slides on a 27-inch 5K display and with the Oculus Rift after a 2-week washout period. Recorded endpoints included concordance of final diagnoses and time required to examine slides. The pathologists also rated their ease of navigation, image quality, and diagnostic confidence for both modalities. There was 90% diagnostic concordance when reviewing WSI using a 5K display and Oculus Rift. The time required to examine digital pathology slides on the 5K display averaged 39 s (range 10-120 s), compared to 62 s with the Oculus Rift (range 15-270 s). All pathologists confirmed that digital pathology slides were easily viewable in a VR environment. The ratings for image quality and diagnostic confidence were higher when using the 5K display. Using the Oculus Rift DK2 to view and navigate pathology whole slide images in a virtual environment is feasible for diagnostic purposes. However, image resolution using the Oculus Rift device was limited. Interactive VR technologies such as the Oculus Rift are novel tools that may be of use in digital pathology.
Cardio-PACs: a new opportunity
NASA Astrophysics Data System (ADS)
Heupler, Frederick A., Jr.; Thomas, James D.; Blume, Hartwig R.; Cecil, Robert A.; Heisler, Mary
2000-05-01
It is now possible to replace film-based image management in the cardiac catheterization laboratory with a Cardiology Picture Archiving and Communication System (Cardio-PACS) based on digital imaging technology. The first step in the conversion process is installation of a digital image acquisition system that is capable of generating high-quality DICOM-compatible images. The next three steps, which are the subject of this presentation, involve image display, distribution, and storage. Clinical requirements and associated cost considerations for these three steps are listed below: Image display: (1) Image quality equal to film, with DICOM format, lossless compression, image processing, desktop PC-based with color monitor, and physician-friendly imaging software; (2) Performance specifications include: acquire 30 frames/sec; replay 15 frames/sec; access to file server 5 seconds, and to archive 5 minutes; (3) Compatibility of image file, transmission, and processing formats; (4) Image manipulation: brightness, contrast, gray scale, zoom, biplane display, and quantification; (5) User-friendly control of image review. Image distribution: (1) Standard IP-based network between cardiac catheterization laboratories, file server, long-term archive, review stations, and remote sites; (2) Non-proprietary formats; (3) Bidirectional distribution. Image storage: (1) CD-ROM vs disk vs tape; (2) Verification of data integrity; (3) User-designated storage capacity for catheterization laboratory, file server, long-term archive. Costs: (1) Image acquisition equipment, file server, long-term archive; (2) Network infrastructure; (3) Review stations and software; (4) Maintenance and administration; (5) Future upgrades and expansion; (6) Personnel.
The Digital Ageing Atlas: integrating the diversity of age-related changes into a unified resource.
Craig, Thomas; Smelick, Chris; Tacutu, Robi; Wuttke, Daniel; Wood, Shona H; Stanley, Henry; Janssens, Georges; Savitskaya, Ekaterina; Moskalev, Alexey; Arking, Robert; de Magalhães, João Pedro
2015-01-01
Multiple studies characterizing the human ageing phenotype have been conducted for decades. However, there is no centralized resource in which data on multiple age-related changes are collated. Currently, researchers must consult several sources, including primary publications, in order to obtain age-related data at various levels. To address this and facilitate integrative, system-level studies of ageing we developed the Digital Ageing Atlas (DAA). The DAA is a one-stop collection of human age-related data covering different biological levels (molecular, cellular, physiological, psychological and pathological) that is freely available online (http://ageing-map.org/). Each of the >3000 age-related changes is associated with a specific tissue and has its own page displaying a variety of information, including at least one reference. Age-related changes can also be linked to each other in hierarchical trees to represent different types of relationships. In addition, we developed an intuitive and user-friendly interface that allows searching, browsing and retrieving information in an integrated and interactive fashion. Overall, the DAA offers a new approach to systemizing ageing resources, providing a manually-curated and readily accessible source of age-related changes. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Real-Time Visualization of Tissue Ischemia
NASA Technical Reports Server (NTRS)
Bearman, Gregory H. (Inventor); Chrien, Thomas D. (Inventor); Eastwood, Michael L. (Inventor)
2000-01-01
A real-time display of tissue ischemia which comprises three CCD video cameras, each with a narrow bandwidth filter at the correct wavelength is discussed. The cameras simultaneously view an area of tissue suspected of having ischemic areas through beamsplitters. The output from each camera is adjusted to give the correct signal intensity for combining with, the others into an image for display. If necessary a digital signal processor (DSP) can implement algorithms for image enhancement prior to display. Current DSP engines are fast enough to give real-time display. Measurement at three, wavelengths, combined into a real-time Red-Green-Blue (RGB) video display with a digital signal processing (DSP) board to implement image algorithms, provides direct visualization of ischemic areas.
General-Purpose Electronic System Tests Aircraft
NASA Technical Reports Server (NTRS)
Glover, Richard D.
1989-01-01
Versatile digital equipment supports research, development, and maintenance. Extended aircraft interrogation and display system is general-purpose assembly of digital electronic equipment on ground for testing of digital electronic systems on advanced aircraft. Many advanced features, including multiple 16-bit microprocessors, pipeline data-flow architecture, advanced operating system, and resident software-development tools. Basic collection of software includes program for handling many types of data and for displays in various formats. User easily extends basic software library. Hardware and software interfaces to subsystems provided by user designed for flexibility in configuration to meet user's requirements.
Automation technology using Geographic Information System (GIS)
NASA Technical Reports Server (NTRS)
Brooks, Cynthia L.
1994-01-01
Airport Surface Movement Area is but one of the actions taken to increase the capacity and safety of existing airport facilities. The System Integration Branch (SIB) has designed an integrated system consisting of an electronic moving display in the cockpit, and includes display of taxi routes which will warn controllers and pilots of the position of other traffic and warning information automatically. Although, this system has in test simulation proven to be accurate and helpful; the initial process of obtaining an airport layout of the taxi-routes and designing each of them is a very tedious and time-consuming process. Other methods of preparing the display maps are being researched. One such method is the use of the Geographical Information System (GIS). GIS is an integrated system of computer hardware and software linking topographical, demographic and other resource data that is being referenced. The software can support many areas of work with virtually unlimited information compatibility due to the system's open architecture. GIS will allow us to work faster with increased efficiency and accuracy while providing decision making capabilities. GIS is currently being used at the Langley Research Center with other applications and has been validated as an accurate system for that task. GIS usage for our task will involve digitizing aerial photographs of the topology for each taxi-runway and identifying each position according to its specific spatial coordinates. The information currently being used can be integrated with the GIS system, due to its ability to provide a wide variety of user interfaces. Much more research and data analysis will be needed before this technique will be used, however we are hopeful this will lead to better usage of man-power and technological capabilities for the future.
How to integrate quantitative information into imaging reports for oncologic patients.
Martí-Bonmatí, L; Ruiz-Martínez, E; Ten, A; Alberich-Bayarri, A
2018-05-01
Nowadays, the images and information generated in imaging tests, as well as the reports that are issued, are digital and represent a reliable source of data. Reports can be classified according to their content and to the type of information they include into three main types: organized (free text in natural language), predefined (with templates and guidelines elaborated with previously determined natural language like that used in BI-RADS and PI-RADS), or structured (with drop-down menus displaying questions with various possible answers that have been agreed on with the rest of the multidisciplinary team, which use standardized lexicons and are structured in the form of a database with data that can be traced and exploited with statistical tools and data mining). The structured report, compatible with Management of Radiology Report Templates (MRRT), makes it possible to incorporate quantitative information related with the digital analysis of the data from the acquired images to accurately and precisely describe the properties and behavior of tissues by means of radiomics (characteristics and parameters). In conclusion, structured digital information (images, text, measurements, radiomic features, and imaging biomarkers) should be integrated into computerized reports so that they can be indexed in large repositories. Radiologic databanks are fundamental for exploiting health information, phenotyping lesions and diseases, and extracting conclusions in personalized medicine. Copyright © 2018 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.
Digital map databases in support of avionic display systems
NASA Astrophysics Data System (ADS)
Trenchard, Michael E.; Lohrenz, Maura C.; Rosche, Henry, III; Wischow, Perry B.
1991-08-01
The emergence of computerized mission planning systems (MPS) and airborne digital moving map systems (DMS) has necessitated the development of a global database of raster aeronautical chart data specifically designed for input to these systems. The Naval Oceanographic and Atmospheric Research Laboratory''s (NOARL) Map Data Formatting Facility (MDFF) is presently dedicated to supporting these avionic display systems with the development of the Compressed Aeronautical Chart (CAC) database on Compact Disk Read Only Memory (CDROM) optical discs. The MDFF is also developing a series of aircraft-specific Write-Once Read Many (WORM) optical discs. NOARL has initiated a comprehensive research program aimed at improving the pilots'' moving map displays current research efforts include the development of an alternate image compression technique and generation of a standard set of color palettes. The CAC database will provide digital aeronautical chart data in six different scales. CAC is derived from the Defense Mapping Agency''s (DMA) Equal Arc-second (ARC) Digitized Raster Graphics (ADRG) a series of scanned aeronautical charts. NOARL processes ADRG to tailor the chart image resolution to that of the DMS display while reducing storage requirements through image compression techniques. CAC is being distributed by DMA as a library of CDROMs.
NASA Astrophysics Data System (ADS)
Kuzmak, Peter M.; Dayhoff, Ruth E.
1998-07-01
The U.S. Department of Veterans Affairs is integrating imaging into the healthcare enterprise using the Digital Imaging and Communication in Medicine (DICOM) standard protocols. Image management is directly integrated into the VistA Hospital Information System (HIS) software and clinical database. Radiology images are acquired via DICOM, and are stored directly in the HIS database. Images can be displayed on low- cost clinician's workstations throughout the medical center. High-resolution diagnostic quality multi-monitor VistA workstations with specialized viewing software can be used for reading radiology images. DICOM has played critical roles in the ability to integrate imaging functionality into the Healthcare Enterprise. Because of its openness, it allows the integration of system components from commercial and non- commercial sources to work together to provide functional cost-effective solutions (see Figure 1). Two approaches are used to acquire and handle images within the radiology department. At some VA Medical Centers, DICOM is used to interface a commercial Picture Archiving and Communications System (PACS) to the VistA HIS. At other medical centers, DICOM is used to interface the image producing modalities directly to the image acquisition and display capabilities of VistA itself. Both of these approaches use a small set of DICOM services that has been implemented by VistA to allow patient and study text data to be transmitted to image producing modalities and the commercial PACS, and to enable images and study data to be transferred back.
Digital video system for on-line portal verification
NASA Astrophysics Data System (ADS)
Leszczynski, Konrad W.; Shalev, Shlomo; Cosby, N. Scott
1990-07-01
A digital system has been developed for on-line acquisition, processing and display of portal images during radiation therapy treatment. A metal/phosphor screen combination is the primary detector, where the conversion from high-energy photons to visible light takes place. A mirror angled at 45 degrees reflects the primary image to a low-light-level camera, which is removed from the direct radiation beam. The image registered by the camera is digitized, processed and displayed on a CRT monitor. Advanced digital techniques for processing of on-line images have been developed and implemented to enhance image contrast and suppress the noise. Some elements of automated radiotherapy treatment verification have been introduced.
Architecture for a 1-GHz Digital RADAR
NASA Technical Reports Server (NTRS)
Mallik, Udayan
2011-01-01
An architecture for a Direct RF-digitization Type Digital Mode RADAR was developed at GSFC in 2008. Two variations of a basic architecture were developed for use on RADAR imaging missions using aircraft and spacecraft. Both systems can operate with a pulse repetition rate up to 10 MHz with 8 received RF samples per pulse repetition interval, or at up to 19 kHz with 4K received RF samples per pulse repetition interval. The first design describes a computer architecture for a Continuous Mode RADAR transceiver with a real-time signal processing and display architecture. The architecture can operate at a high pulse repetition rate without interruption for an infinite amount of time. The second design describes a smaller and less costly burst mode RADAR that can transceive high pulse repetition rate RF signals without interruption for up to 37 seconds. The burst-mode RADAR was designed to operate on an off-line signal processing paradigm. The temporal distribution of RF samples acquired and reported to the RADAR processor remains uniform and free of distortion in both proposed architectures. The majority of the RADAR's electronics is implemented in digital CMOS (complementary metal oxide semiconductor), and analog circuits are restricted to signal amplification operations and analog to digital conversion. An implementation of the proposed systems will create a 1-GHz, Direct RF-digitization Type, L-Band Digital RADAR--the highest band achievable for Nyquist Rate, Direct RF-digitization Systems that do not implement an electronic IF downsample stage (after the receiver signal amplification stage), using commercially available off-the-shelf integrated circuits.
An Interactive Graphics Program for Investigating Digital Signal Processing.
ERIC Educational Resources Information Center
Miller, Billy K.; And Others
1983-01-01
Describes development of an interactive computer graphics program for use in teaching digital signal processing. The program allows students to interactively configure digital systems on a monitor display and observe their system's performance by means of digital plots on the system's outputs. A sample program run is included. (JN)
O'Connell, Timothy; Chang, Debra
2012-01-01
While on call, radiology residents review imaging studies and issue preliminary reports to referring clinicians. In the absence of an integrated reporting system at the training sites of the authors' institution, residents were typing and faxing preliminary reports. To partially automate the on-call resident workflow, a Web-based system for resident reporting was developed by using the free open-source xAMP Web application framework and an open-source DICOM (Digital Imaging and Communications in Medicine) software toolkit, with the goals of reducing errors and lowering barriers to education. This reporting system integrates with the picture archiving and communication system to display a worklist of studies. Patient data are automatically entered in the preliminary report to prevent identification errors and simplify the report creation process. When the final report for a resident's on-call study is available, the reporting system queries the report broker for the final report, and then displays the preliminary report side by side with the final report, thus simplifying the review process and encouraging review of all of the resident's reports. The xAMP Web application framework should be considered for development of radiology department informatics projects owing to its zero cost, minimal hardware requirements, ease of programming, and large support community.
NASA Technical Reports Server (NTRS)
Westmoreland, Sally; Stow, Douglas A.
1992-01-01
A framework is proposed for analyzing ancillary data and developing procedures for incorporating ancillary data to aid interactive identification of land-use categories in land-use updates. The procedures were developed for use within an integrated image processsing/geographic information systems (GIS) that permits simultaneous display of digital image data with the vector land-use data to be updated. With such systems and procedures, automated techniques are integrated with visual-based manual interpretation to exploit the capabilities of both. The procedural framework developed was applied as part of a case study to update a portion of the land-use layer in a regional scale GIS. About 75 percent of the area in the study site that experienced a change in land use was correctly labeled into 19 categories using the combination of automated and visual interpretation procedures developed in the study.
NASA Technical Reports Server (NTRS)
Glover, R. D.
1983-01-01
The NASA Dryden Flight Research Facility has developed a microprocessor-based, user-programmable, general-purpose aircraft interrogation and display system (AIDS). The hardware and software of this ground-support equipment have been designed to permit diverse applications in support of aircraft digital flight-control systems and simulation facilities. AIDS is often employed to provide engineering-units display of internal digital system parameters during development and qualification testing. Such visibility into the system under test has proved to be a key element in the final qualification testing of aircraft digital flight-control systems. Three first-generation 8-bit units are now in service in support of several research aircraft projects, and user acceptance has been high. A second-generation design, extended AIDS (XAIDS), incorporating multiple 16-bit processors, is now being developed to support the forward swept wing aircraft project (X-29A). This paper outlines the AIDS concept, summarizes AIDS operational experience, and describes the planned XAIDS design and mechanization.
NASA Astrophysics Data System (ADS)
Staft, L. A.; Craw, P. A.
2003-12-01
In July 2003, the U.S. Geological Survey and the Alaska Division of Geological & Geophysical Surveys (DGGS) conducted field studies on the Susitna Glacier Fault (SGF), which ruptured on November 2002 during the M 7.9 Denali fault earthquake. The DGGS assumed responsibility for Geographic Information System (GIS) and data management, integrating remotely sensed imagery, GPS data, GIS, and photo-linking software to aid in planning and documentation of fieldwork. Pre-field preparation included acquisition of over 150, 1:6,000-scale true-color aerial photographs taken shortly after the SGF rupture, 1:63,360-scale color-infrared (CIR) 1980 aerial photographs, and digital geographic information including a 15-minute Digital Elevation Model (DEM), 1:63,360-scale Digital Raster Graphics (DRG), and LandSat 7 satellite imagery. Using Orthomapper software, we orthorectified and mosaiced seven CIRs, creating a georeferenced, digital photo base of the study area. We used this base to reference the 1:6,000-scale aerial photography, to view locations of field sites downloaded from GPS, and to locate linked digital photographs that were taken in the field. Photos were linked using GPS-Photo Link software which "links" digital photographs to GPS data by correlating time stamps from the GPS track log or waypoint file to those of the digital photos, using the correlated point data to create a photo location ESRI shape file. When this file is opened in ArcMap or ArcView with the GPS-Photo Link utility enabled, a thumbnail image of the linked photo appears when the cursor is over the photo location. Viewing photographed features and scarp-profile locations in GIS allowed us to evaluate data coverage of the rupture daily. Using remotely sensed imagery in the field with GIS gave us the versatility to display data on a variety of bases, including topographic maps, air photos, and satellite imagery, during fieldwork. In the field, we downloaded, processed, and reviewed data as it was collected, taking major steps toward final digital map production. Using the described techniques greatly enhanced our ability to analyze and interpret field data; the resulting digital data structure allows us to efficiently gather, disseminate, and archive critical field data.
NASA Astrophysics Data System (ADS)
Oswald, Helmut; Mueller-Jones, Kay; Builtjes, Jan; Fleck, Eckart
1998-07-01
The developments in information technologies -- computer hardware, networking and storage media -- has led to expectations that these advances make it possible to replace 35 mm film completely by digital techniques in the catheter laboratory. Besides the role of an archival medium, cine film is used as the major image review and exchange medium in cardiology. None of the today technologies can fulfill completely the requirements to replace cine film. One of the major drawbacks of cine film is the single access in time and location. For the four catheter laboratories in our institutions we have designed a complementary concept combining the CD-R, also called CD-medical, as a single patient storage and exchange medium, and a digital archive for on-line access and image review of selected frames or short sequences on adequate medical workstations. The image data from various modalities as well as all digital documents regarding to a patient are part of an electronic patient record. The access, the processing and the display of documents is supported by an integrated medical application.
Orthoscopic real-image display of digital holograms.
Makowski, P L; Kozacki, T; Zaperty, W
2017-10-01
We present a practical solution for the long-standing problem of depth inversion in real-image holographic display of digital holograms. It relies on a field lens inserted in front of the spatial light modulator device addressed by a properly processed hologram. The processing algorithm accounts for pixel size and wavelength mismatch between capture and display devices in a way that prevents image deformation. Complete images of large dimensions are observable from one position with a naked eye. We demonstrate the method experimentally on a 10-cm-long 3D object using a single full-HD spatial light modulator, but it can supplement most holographic displays designed to form a real image, including circular wide angle configurations.
Digital watermarking opportunities enabled by mobile media proliferation
NASA Astrophysics Data System (ADS)
Modro, Sierra; Sharma, Ravi K.
2009-02-01
Consumer usages of mobile devices and electronic media are changing. Mobile devices now include increased computational capabilities, mobile broadband access, better integrated sensors, and higher resolution screens. These enhanced features are driving increased consumption of media such as images, maps, e-books, audio, video, and games. As users become more accustomed to using mobile devices for media, opportunities arise for new digital watermarking usage models. For example, transient media, like images being displayed on screens, could be watermarked to provide a link between mobile devices. Applications based on these emerging usage models utilizing watermarking can provide richer user experiences and drive increased media consumption. We describe the enabling factors and highlight a few of the usage models and new opportunities. We also outline how the new opportunities are driving further innovation in watermarking technologies. We discuss challenges in market adoption of applications based on these usage models.
V/STOLAND digital avionics system for XV-15 tilt rotor
NASA Technical Reports Server (NTRS)
Liden, S.
1980-01-01
A digital flight control system for the tilt rotor research aircraft provides sophisticated navigation, guidance, control, display and data acquisition capabilities for performing terminal area navigation, guidance and control research. All functions of the XV-15 V/STOLAND system were demonstrated on the NASA-ARC S-19 simulation facility under a comprehensive dynamic acceptance test. The most noteworthy accomplishments of the system are: (1) automatic configuration control of a tilt-rotor aircraft over the total operating range; (2) total hands-off landing to touchdown on various selectable straight-in glide slopes and on a flight path that includes a two-revolution helix; (3) automatic guidance along a programmed three-dimensional reference flight path; (4) navigation data for the automatic guidance computed on board, based on VOR/DME, TACAN, or MLS navid data; and (5) integration of a large set of functions in a single computer, utilizing 16k words of storage for programs and data.
Choi, Subin; Park, Kyeonghwan; Lee, Seungwook; Lim, Yeongjin; Oh, Byungjoo; Chae, Hee Young; Park, Chan Sam; Shin, Heugjoo; Kim, Jae Joon
2018-03-02
This paper presents a resolution-reconfigurable wide-range resistive sensor readout interface for wireless multi-gas monitoring applications that displays results on a smartphone. Three types of sensing resolutions were selected to minimize processing power consumption, and a dual-mode front-end structure was proposed to support the detection of a variety of hazardous gases with wide range of characteristic resistance. The readout integrated circuit (ROIC) was fabricated in a 0.18 μm CMOS process to provide three reconfigurable data conversions that correspond to a low-power resistance-to-digital converter (RDC), a 12-bit successive approximation register (SAR) analog-to-digital converter (ADC), and a 16-bit delta-sigma modulator. For functional feasibility, a wireless sensor system prototype that included in-house microelectromechanical (MEMS) sensing devices and commercial device products was manufactured and experimentally verified to detect a variety of hazardous gases.
Color reproduction with a smartphone
NASA Astrophysics Data System (ADS)
Thoms, Lars-Jochen; Colicchia, Giuseppe; Girwidz, Raimund
2013-10-01
The world is full of colors. Most of the colors we see around us can be created on common digital displays simply by superposing light with three different wavelengths. However, no mixture of colors can produce a fully pure color identical to a spectral color. Using a smartphone, students can investigate the main features of primary color addition and understand how colors are made on digital displays.
A liquid-crystal-on-silicon color sequential display using frame buffer pixel circuits
NASA Astrophysics Data System (ADS)
Lee, Sangrok
Next generation liquid-crystal-on-silicon (LCOS) high definition (HD) televisions and image projection displays will need to be low-cost and high quality to compete with existing systems based on digital micromirror devices (DMDs), plasma displays, and direct view liquid crystal displays. In this thesis, a novel frame buffer pixel architecture that buffers data for the next image frame while displaying the current frame, offers such a competitive solution is presented. The primary goal of the thesis is to demonstrate the LCOS microdisplay architecture for high quality image projection displays and at potentially low cost. The thesis covers four main research areas: new frame buffer pixel circuits to improve the LCOS performance, backplane architecture design and testing, liquid crystal modes for the LCOS microdisplay, and system integration and demonstration. The design requirements for the LCOS backplane with a 64 x 32 pixel array are addressed and measured electrical characteristics matches to computer simulation results. Various liquid crystal (LC) modes applicable for LCOS microdisplays and their physical properties are discussed. One- and two-dimensional director simulations are performed for the selected LC modes. Test liquid crystal cells with the selected LC modes are made and their electro-optic effects are characterized. The 64 x 32 LCOS microdisplays fabricated with the best LC mode are optically tested with interface circuitry. The characteristics of the LCOS microdisplays are summarized with the successful demonstration.
A coastal and marine digital library at USGS
Lightsom, Fran
2003-01-01
The Marine Realms Information Bank (MRIB) is a distributed geolibrary [NRC, 1999] from the U.S. Geological Survey (USGS) and the Woods Hole Oceanographic Institution (WHOI), whose purpose is to classify, integrate, and facilitate access to Earth systems science information about ocean, lake, and coastal environments. Core MRIB services are: (1) the search and display of information holdings by place and subject, and (2) linking of information assets that exist in remote physical locations. The design of the MRIB features a classification system to integrate information from remotely maintained sources. This centralized catalogue organizes information using 12 criteria: locations, geologic time, physiographic features, biota, disciplines, research methods, hot topics, project names, agency names, authors, content type, and file type. For many of these fields, MRIB has developed classification hierarchies.
Visible-Infrared Hyperspectral Image Projector
NASA Technical Reports Server (NTRS)
Bolcar, Matthew
2013-01-01
The VisIR HIP generates spatially-spectrally complex scenes. The generated scenes simulate real-world targets viewed by various remote sensing instruments. The VisIR HIP consists of two subsystems: a spectral engine and a spatial engine. The spectral engine generates spectrally complex uniform illumination that spans the wavelength range between 380 nm and 1,600 nm. The spatial engine generates two-dimensional gray-scale scenes. When combined, the two engines are capable of producing two-dimensional scenes with a unique spectrum at each pixel. The VisIR HIP can be used to calibrate any spectrally sensitive remote-sensing instrument. Tests were conducted on the Wide-field Imaging Interferometer Testbed at NASA s Goddard Space Flight Center. The device is a variation of the calibrated hyperspectral image projector developed by the National Institute of Standards and Technology in Gaithersburg, MD. It uses Gooch & Housego Visible and Infrared OL490 Agile Light Sources to generate arbitrary spectra. The two light sources are coupled to a digital light processing (DLP(TradeMark)) digital mirror device (DMD) that serves as the spatial engine. Scenes are displayed on the DMD synchronously with desired spectrum. Scene/spectrum combinations are displayed in rapid succession, over time intervals that are short compared to the integration time of the system under test.
Radiology on handheld devices: image display, manipulation, and PACS integration issues.
Raman, Bhargav; Raman, Raghav; Raman, Lalithakala; Beaulieu, Christopher F
2004-01-01
Handheld personal digital assistants (PDAs) have undergone continuous and substantial improvements in hardware and graphics capabilities, making them a compelling platform for novel developments in teleradiology. The latest PDAs have processor speeds of up to 400 MHz and storage capacities of up to 80 Gbytes with memory expansion methods. A Digital Imaging and Communications in Medicine (DICOM)-compliant, vendor-independent handheld image access system was developed in which a PDA server acts as the gateway between a picture archiving and communication system (PACS) and PDAs. The system is compatible with most currently available PDA models. It is capable of both wired and wireless transfer of images and includes custom PDA software and World Wide Web interfaces that implement a variety of basic image manipulation functions. Implementation of this system, which is currently undergoing debugging and beta testing, required optimization of the user interface to efficiently display images on smaller PDA screens. The PDA server manages user work lists and implements compression and security features to accelerate transfer speeds, protect patient information, and regulate access. Although some limitations remain, PDA-based teleradiology has the potential to increase the efficiency of the radiologic work flow, increasing productivity and improving communication with referring physicians and patients. Copyright RSNA, 2004
NASA Technical Reports Server (NTRS)
Landis, Kenneth H.; Glusman, Steven I.
1985-01-01
The Advanced Cockpit Controls/Advanced Flight Control System (ACC/AFCS) study was conducted by the Boeing Vertol Company as part of the Army's Advanced Digital/Optical Control System (ADOCS) program. Specifically, the ACC/AFCS investigation was aimed at developing the flight control laws for the ADOCS demonstrator aircraft which will provide satisfactory handling qualities for an attack helicopter mission. The three major elements of design considered are as follows: Pilot's integrated Side-Stick Controller (SSC) -- Number of axes controlled; force/displacement characteristics; ergonomic design. Stability and Control Augmentation System (SCAS)--Digital flight control laws for the various mission phases; SCAS mode switching logic. Pilot's Displays--For night/adverse weather conditions, the dynamics of the superimposed symbology presented to the pilot in a format similar to the Advanced Attack Helicopter (AAH) Pilot Night Vision System (PNVS) for each mission phase as a function of ACAS characteristics; display mode switching logic. Findings from the literature review and the analysis and synthesis of desired control laws are reported in Volume 2. Conclusions drawn from pilot rating data and commentary were used to formulate recommendations for the ADOCS demonstrator flight control system design. The ACC/AFCS simulation data also provide an extensive data base to aid the development of advanced flight control system design for future V/STOL aircraft.
Development of ADOCS controllers and control laws. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Landis, Kenneth H.; Glusman, Steven I.
1985-01-01
The Advanced Cockpit Controls/Advanced Flight Control System (ACC/AFCS) study was conducted by the Boeing Vertol Company as part of the Army's Advanced Digital/Optical Control System (ADOCS) program. Specifically, the ACC/AFCS investigation was aimed at developing the flight control laws for the ADOCS demonstrator aircraft that will provide satisfactory handling qualities for an attack helicopter mission. The three major elements of design considered during the study are as follows: Pilot's integrated Side-Stick Controller (SSC) -- Number of axes controlled; force/displacement characteristics; ergonomic design. Stability and Control Augmentation System (SCAS)--Digital flight control laws for the various mission phases; SCAS mode switching logic. Pilot's Displays--For night/adverse weather conditions, the dynamics of the superimposed symbology presented to the pilot in a format similar to the Advanced Attack Helicopter (AAH) Pilot Night Vision System (PNVS) for each mission phase as a function of SCAS characteristics; display mode switching logic. Volume 1 is an Executive Summary of the study. Conclusions drawn from analysis of pilot rating data and commentary were used to formulate recommendations for the ADOCS demonstrator flight control system design. The ACC/AFCS simulation data also provide an extensive data base to aid the development of advanced flight control system design for future V/STOL aircraft.
NASA Astrophysics Data System (ADS)
Bates, Alan
2015-12-01
Instruments or digital meters with data values visible on a seven-segment display can easily be found in the physics lab. Examples include multimeters, sound level meters, Geiger-Müller counters and electromagnetic field meters, where the display is used to show numerical data. Such instruments, without the ability to connect to computers or data loggers, can measure and display data at a particular instant in time. The user should be present to read the display and to record the data. Unlike these digital meters, the sensor-data logger system has the advantage of automatically measuring and recording data at selectable sample rates over a desired sample time. The process of adding data logging features to a digital meter with a seven-segment display can be achieved with Seven Segment Optical Character Recognition (SSOCR) software. One might ask, why not just purchase a field meter with data logging features? They are relatively inexpensive, reliable, available online, and can be delivered within a few days. But then there is the challenge of making your own instrument, the excitement of implementing a design, the pleasure of experiencing an entire process from concept to product, and the satisfaction of avoiding costs by taking advantage of available technology. This experiment makes use of an electromagnetic field meter with a seven-segment liquid crystal display to measure background electromagnetic field intensity. Images of the meter display are automatically captured with a camera and analyzed using SSOCR to produce a text file containing meter display values.
Categorization and identification of simultaneous targets.
Theeuwes, J
1991-02-01
Early and late selection theories of visual attention disagree about whether identification occurs before or after selection. Studies showing the category effect, i.e., the time to detect a letter is hardly affected by the number of digits present in the display, are taken as evidence for late selection theories since these studies suggest parallel identification of all items in the display. As an extension of previous studies, in the present study two categorically different targets were presented simultaneously among a variable number of nontargets. Subjects were shown brief displays of two target letters among either 2, 4 or 6 nontarget digits. Subjects responded 'same' when the two letters were identical and 'different' otherwise. Since the 'same-different' response reflects the combined outcome of the simultaneous targets, late-selection theory predicts that the time to match the target letters is independent of the number of nontarget digits. Alternatively, early-selection theory predicts a linear increase of reaction time with display size since the presence of more than one target disrupts parallel preattentive processing, leading to a serial search through all items in the display. The results provide evidence for the early-selection view since reaction time increased linearly with the number of categorically different nontargets. A control experiment revealed that none of the alternative explanations could account for the display size effect.
Development of an Integrated Hydrologic Modeling System for Rainfall-Runoff Simulation
NASA Astrophysics Data System (ADS)
Lu, B.; Piasecki, M.
2008-12-01
This paper aims to present the development of an integrated hydrological model which involves functionalities of digital watershed processing, online data retrieval, hydrologic simulation and post-event analysis. The proposed system is intended to work as a back end to the CUAHSI HIS cyberinfrastructure developments. As a first step into developing this system, a physics-based distributed hydrologic model PIHM (Penn State Integrated Hydrologic Model) is wrapped into OpenMI(Open Modeling Interface and Environment ) environment so as to seamlessly interact with OpenMI compliant meteorological models. The graphical user interface is being developed from the openGIS application called MapWindows which permits functionality expansion through the addition of plug-ins. . Modules required to set up through the GUI workboard include those for retrieving meteorological data from existing database or meteorological prediction models, obtaining geospatial data from the output of digital watershed processing, and importing initial condition and boundary condition. They are connected to the OpenMI compliant PIHM to simulate rainfall-runoff processes and includes a module for automatically displaying output after the simulation. Online databases are accessed through the WaterOneFlow web services, and the retrieved data are either stored in an observation database(OD) following the schema of Observation Data Model(ODM) in case for time series support, or a grid based storage facility which may be a format like netCDF or a grid-based-data database schema . Specific development steps include the creation of a bridge to overcome interoperability issue between PIHM and the ODM, as well as the embedding of TauDEM (Terrain Analysis Using Digital Elevation Models) into the model. This module is responsible for developing watershed and stream network using digital elevation models. Visualizing and editing geospatial data is achieved by the usage of MapWinGIS, an ActiveX control developed by MapWindow team. After applying to the practical watershed, the performance of the model can be tested by the post-event analysis module.
Augmenting digital displays with computation
NASA Astrophysics Data System (ADS)
Liu, Jing
As we inevitably step deeper and deeper into a world connected via the Internet, more and more information will be exchanged digitally. Displays are the interface between digital information and each individual. Naturally, one fundamental goal of displays is to reproduce information as realistically as possible since humans still care a lot about what happens in the real world. Human eyes are the receiving end of such information exchange; therefore it is impossible to study displays without studying the human visual system. In fact, the design of displays is rather closely coupled with what human eyes are capable of perceiving. For example, we are less interested in building displays that emit light in the invisible spectrum. This dissertation explores how we can augment displays with computation, which takes both display hardware and the human visual system into consideration. Four novel projects on display technologies are included in this dissertation: First, we propose a software-based approach to driving multiview autostereoscopic displays. Our display algorithm can dynamically assign views to hardware display zones based on multiple observers' current head positions, substantially reducing crosstalk and stereo inversion. Second, we present a dense projector array that creates a seamless 3D viewing experience for multiple viewers. We smoothly interpolate the set of viewer heights and distances on a per-vertex basis across the arrays field of view, reducing image distortion, crosstalk, and artifacts from tracking errors. Third, we propose a method for high dynamic range display calibration that takes into account the variation of the chrominance error over luminance. We propose a data structure for enabling efficient representation and querying of the calibration function, which also allows user-guided balancing between memory consumption and the amount of computation. Fourth, we present user studies that demonstrate that the ˜ 60 Hz critical flicker fusion rate for traditional displays is not enough for some computational displays that show complex image patterns. The study focuses on displays with hidden channels, and their application to 3D+2D TV. By taking advantage of the fast growing power of computation and sensors, these four novel display setups - in combination with display algorithms - advance the frontier of computational display research.
Techniques and strategies for data integration in mineral resource assessment
Trautwein, Charles M.; Dwyer, John L.
1991-01-01
The Geologic and the National Mapping divisions of the U.S. Geological Survey have been involved formally in cooperative research and development of computer-based geographic information systems (GISs) applied to mineral-resource assessment objectives since 1982. Experience in the Conterminous United States Mineral Assessment Program (CUSMAP) projects including the Rolla, Missouri; Dillon, Montana; Butte, Montana; and Tonopah, Nevada 1?? ?? 2?? quadrangles, has resulted in the definition of processing requirements for geographically and mineral-resource data that are common to these studies. The diverse formats of data sets collected and compiled for regional mineral-resource assessments necessitate capabilities for digitally encoding and entering data into appropriate tabular, vector, and raster subsystems of the GIS. Although many of the required data sets are either available or can be provided in a digital format suitable for direct entry, their utility is largely dependent on the original intent and consequent preprocessing of the data. In this respect, special care must be taken to ensure the digital data type, encoding, and format will meet assessment objectives. Data processing within the GIS is directed primarily toward the development and application of models that can be used to describe spatially geological, geophysical, and geochemical environments either known or inferred to be associated with specific types of mineral deposits. Consequently, capabilities to analyze spatially, aggregate, and display relations between data sets are principal processing requirements. To facilitate the development of these models within the GIS, interfaces must be developed among vector-, raster-, and tabular-based processing subsystems to reformat resident data sets for comparative analyses and multivariate display of relations.
Digital image forensics for photographic copying
NASA Astrophysics Data System (ADS)
Yin, Jing; Fang, Yanmei
2012-03-01
Image display technology has greatly developed over the past few decades, which make it possible to recapture high-quality images from the display medium, such as a liquid crystal display(LCD) screen or a printed paper. The recaptured images are not regarded as a separate image class in the current research of digital image forensics, while the content of the recaptured images may have been tempered. In this paper, two sets of features based on the noise and the traces of double JPEG compression are proposed to identify these recaptured images. Experimental results showed that our proposed features perform well for detecting photographic copying.
Data recording and trend display during anaesthesia using 'MacLab'.
Kennedy, R R
1991-08-01
A single screen display of variables monitored during anaesthesia may be ergonomically superior to the 'stack' of monitors seen in many anaesthetising locations. A system based on a MacLab (Analogue Digital Instruments) analogue-to-digital convertor used in conjunction with a Macintosh computer was evaluated. The system was configured to provide trend displays of up to eight variables on a single screen. It was found to be a useful adjunct to monitoring during anaesthesia. Advantages of this system are low cost, flexibility, and the quality of the software and support provided. Limitations of this and other similar systems are discussed.
Development open source microcontroller based temperature data logger
NASA Astrophysics Data System (ADS)
Abdullah, M. H.; Che Ghani, S. A.; Zaulkafilai, Z.; Tajuddin, S. N.
2017-10-01
This article discusses the development stages in designing, prototyping, testing and deploying a portable open source microcontroller based temperature data logger for use in rough industrial environment. The 5V powered prototype of data logger is equipped with open source Arduino microcontroller for integrating multiple thermocouple sensors with their module, secure digital (SD) card storage, liquid crystal display (LCD), real time clock and electronic enclosure made of acrylic. The program for the function of the datalogger is programmed so that 8 readings from the thermocouples can be acquired within 3 s interval and displayed on the LCD simultaneously. The recorded temperature readings at four different points on both hydrodistillation show similar profile pattern and highest yield of extracted oil was achieved on hydrodistillation 2 at 0.004%. From the obtained results, this study achieved the objective of developing an inexpensive, portable and robust eight channels temperature measuring module with capabilities to monitor and store real time data.
Adaptive focus for deep tissue using diffuse backscatter
NASA Astrophysics Data System (ADS)
Kress, Jeremy; Pourrezaei, Kambiz
2014-02-01
A system integrating high density diffuse optical imaging with adaptive optics using MEMS for deep tissue interaction is presented. In this system, a laser source is scanned over a high density fiber bundle using Digital Micromirror Device (DMD) and channeled to a tissue phantom. Backscatter is then collected from the tissue phantom by a high density fiber array of different fiber type and channeled to CMOS sensor for image acquisition. Intensity focus is directly verified using a second CMOS sensor which measures intensity transmitted though the tissue phantom. A set of training patterns are displayed on the DMD and backscatter is numerically fit to the transmission intensity. After the training patterns are displayed, adaptive focus is performed using only the backscatter and fitting functions. Additionally, tissue reconstruction and prediction of interference focusing by photoacoustic and optical tomographic methods is discussed. Finally, potential NIR applications such as in-vivo adaptive neural photostimulation and cancer targeting are discussed.
Farahani, Navid; Post, Robert; Duboy, Jon; Ahmed, Ishtiaque; Kolowitz, Brian J.; Krinchai, Teppituk; Monaco, Sara E.; Fine, Jeffrey L.; Hartman, Douglas J.; Pantanowitz, Liron
2016-01-01
Background: Digital slides obtained from whole slide imaging (WSI) platforms are typically viewed in two dimensions using desktop personal computer monitors or more recently on mobile devices. To the best of our knowledge, we are not aware of any studies viewing digital pathology slides in a virtual reality (VR) environment. VR technology enables users to be artificially immersed in and interact with a computer-simulated world. Oculus Rift is among the world's first consumer-targeted VR headsets, intended primarily for enhanced gaming. Our aim was to explore the use of the Oculus Rift for examining digital pathology slides in a VR environment. Methods: An Oculus Rift Development Kit 2 (DK2) was connected to a 64-bit computer running Virtual Desktop software. Glass slides from twenty randomly selected lymph node cases (ten with benign and ten malignant diagnoses) were digitized using a WSI scanner. Three pathologists reviewed these digital slides on a 27-inch 5K display and with the Oculus Rift after a 2-week washout period. Recorded endpoints included concordance of final diagnoses and time required to examine slides. The pathologists also rated their ease of navigation, image quality, and diagnostic confidence for both modalities. Results: There was 90% diagnostic concordance when reviewing WSI using a 5K display and Oculus Rift. The time required to examine digital pathology slides on the 5K display averaged 39 s (range 10–120 s), compared to 62 s with the Oculus Rift (range 15–270 s). All pathologists confirmed that digital pathology slides were easily viewable in a VR environment. The ratings for image quality and diagnostic confidence were higher when using the 5K display. Conclusion: Using the Oculus Rift DK2 to view and navigate pathology whole slide images in a virtual environment is feasible for diagnostic purposes. However, image resolution using the Oculus Rift device was limited. Interactive VR technologies such as the Oculus Rift are novel tools that may be of use in digital pathology. PMID:27217972
NASA Astrophysics Data System (ADS)
Li, Qingquan; Fang, Zhixiang; Li, Hanwu; Xiao, Hui
2005-10-01
The global positioning system (GPS) has become the most extensively used positioning and navigation tool in the world. Applications of GPS abound in surveying, mapping, transportation, agriculture, military planning, GIS, and the geosciences. However, the positional and elevation accuracy of any given GPS location is prone to error, due to a number of factors. The applications of Global Positioning System (GPS) positioning is more and more popular, especially the intelligent navigation system which relies on GPS and Dead Reckoning technology is developing quickly for future huge market in China. In this paper a practical combined positioning model of GPS/DR/MM is put forward, which integrates GPS, Gyro, Vehicle Speed Sensor (VSS) and digital navigation maps to provide accurate and real-time position for intelligent navigation system. This model is designed for automotive navigation system making use of Kalman filter to improve position and map matching veracity by means of filtering raw GPS and DR signals, and then map-matching technology is used to provide map coordinates for map displaying. In practical examples, for illustrating the validity of the model, several experiments and their results of integrated GPS/DR positioning in intelligent navigation system will be shown for the conclusion that Kalman Filter based GPS/DR integrating position approach is necessary, feasible and efficient for intelligent navigation application. Certainly, this combined positioning model, similar to other model, can not resolve all situation issues. Finally, some suggestions are given for further improving integrated GPS/DR/MM application.
NASA Astrophysics Data System (ADS)
D'Haene, Nicky; Maris, Calliope; Rorive, Sandrine; Moles Lopez, Xavier; Rostang, Johan; Marchessoux, Cédric; Pantanowitz, Liron; Parwani, Anil V.; Salmon, Isabelle
2013-03-01
User experience with viewing images in pathology is crucial for accurate interpretation and diagnosis. With digital pathology, images are being read on a display system, and this poses new types of questions: such as what is the difference in terms of pixelation, refresh lag or obscured features compared to an optical microscope. Is there a resultant change in user performance in terms of speed of slide review, perception of adequacy and quality or in diagnostic confidence? A prior psychophysical study was carried out comparing various display modalities on whole slide imaging (WSI) in pathology at the University of Pittsburgh Medical Center (UPMC) in the USA. This prior study compared professional and non-professional grade display modalities and highlighted the importance of using a medical grade display to view pathological digital images. This study was duplicated in Europe at the Department of Pathology in Erasme Hospital (Université Libre de Bruxelles (ULB)) in an attempt to corroborate these findings. Digital WSI with corresponding glass slides of 58 cases including surgical pathology and cytopathology slides of varying difficulty were employed. Similar non-professional and professional grade display modalities were compared to an optical microscope (Olympus BX51). Displays ranged from a laptop (DELL Latitude D620), to a consumer grade display (DELL E248WFPb), to two professional grade monitors (Eizo CG245W and Barco MDCC-6130). Three pathologists were selected from the Department of Pathology in Erasme Hospital (ULB) in Belgium to view and interpret the pathological images on these different displays. The results show that non-professional grade displays (laptop and consumer) have inferior user experience compared to professional grade monitors and the optical microscope.
Digital Image Processing Overview For Helmet Mounted Displays
NASA Astrophysics Data System (ADS)
Parise, Michael J.
1989-09-01
Digital image processing provides a means to manipulate an image and presents a user with a variety of display formats that are not available in the analog image processing environment. When performed in real time and presented on a Helmet Mounted Display, system capability and flexibility are greatly enhanced. The information content of a display can be increased by the addition of real time insets and static windows from secondary sensor sources, near real time 3-D imaging from a single sensor can be achieved, graphical information can be added, and enhancement techniques can be employed. Such increased functionality is generating a considerable amount of interest in the military and commercial markets. This paper discusses some of these image processing techniques and their applications.
High-performance web viewer for cardiac images
NASA Astrophysics Data System (ADS)
dos Santos, Marcelo; Furuie, Sergio S.
2004-04-01
With the advent of the digital devices for medical diagnosis the use of the regular films in radiology has decreased. Thus, the management and handling of medical images in digital format has become an important and critical task. In Cardiology, for example, the main difficulty is to display dynamic images with the appropriated color palette and frame rate used on acquisition process by Cath, Angio and Echo systems. In addition, other difficulty is handling large images in memory by any existing personal computer, including thin clients. In this work we present a web-based application that carries out these tasks with robustness and excellent performance, without burdening the server and network. This application provides near-diagnostic quality display of cardiac images stored as DICOM 3.0 files via a web browser and provides a set of resources that allows the viewing of still and dynamic images. It can access image files from the local disks, or network connection. Its features include: allows real-time playback, dynamic thumbnails image viewing during loading, access to patient database information, image processing tools, linear and angular measurements, on-screen annotations, image printing and exporting DICOM images to other image formats, and many others, all characterized by a pleasant user-friendly interface, inside a Web browser by means of a Java application. This approach offers some advantages over the most of medical images viewers, such as: facility of installation, integration with other systems by means of public and standardized interfaces, platform independence, efficient manipulation and display of medical images, all with high performance.
47 CFR 79.107 - User interfaces provided by digital apparatus.
Code of Federal Regulations, 2014 CFR
2014-10-01
... SERVICES ACCESSIBILITY OF VIDEO PROGRAMMING Apparatus § 79.107 User interfaces provided by digital... States and designed to receive or play back video programming transmitted in digital format simultaneously with sound, including apparatus designed to receive or display video programming transmitted in...
Color standardization and optimization in whole slide imaging.
Yagi, Yukako
2011-03-30
Standardization and validation of the color displayed by digital slides is an important aspect of digital pathology implementation. While the most common reason for color variation is the variance in the protocols and practices in the histology lab, the color displayed can also be affected by variation in capture parameters (for example, illumination and filters), image processing and display factors in the digital systems themselves. We have been developing techniques for color validation and optimization along two paths. The first was based on two standard slides that are scanned and displayed by the imaging system in question. In this approach, one slide is embedded with nine filters with colors selected especially for H&E stained slides (looking like tiny Macbeth color chart); the specific color of the nine filters were determined in our previous study and modified for whole slide imaging (WSI). The other slide is an H&E stained mouse embryo. Both of these slides were scanned and the displayed images were compared to a standard. The second approach was based on our previous multispectral imaging research. As a first step, the two slide method (above) was used to identify inaccurate display of color and its cause, and to understand the importance of accurate color in digital pathology. We have also improved the multispectral-based algorithm for more consistent results in stain standardization. In near future, the results of the two slide and multispectral techniques can be combined and will be widely available. We have been conducting a series of researches and developing projects to improve image quality to establish Image Quality Standardization. This paper discusses one of most important aspects of image quality - color.
Reconfigurable Full-Page Braille Displays
NASA Technical Reports Server (NTRS)
Garner, H. Douglas
1994-01-01
Electrically actuated braille display cells of proposed type arrayed together to form full-page braille displays. Like other braille display cells, these provide changeable patterns of bumps driven by digitally recorded text stored on magnetic tapes or in solid-state electronic memories. Proposed cells contain electrorheological fluid. Viscosity of such fluid increases in strong electrostatic field.
NASA Technical Reports Server (NTRS)
Jedlovec, Gary; Srikishen, Jayanthi; Edwards, Rita; Cross, David; Welch, Jon; Smith, Matt
2013-01-01
The use of collaborative scientific visualization systems for the analysis, visualization, and sharing of "big data" available from new high resolution remote sensing satellite sensors or four-dimensional numerical model simulations is propelling the wider adoption of ultra-resolution tiled display walls interconnected by high speed networks. These systems require a globally connected and well-integrated operating environment that provides persistent visualization and collaboration services. This abstract and subsequent presentation describes a new collaborative visualization system installed for NASA's Shortterm Prediction Research and Transition (SPoRT) program at Marshall Space Flight Center and its use for Earth science applications. The system consists of a 3 x 4 array of 1920 x 1080 pixel thin bezel video monitors mounted on a wall in a scientific collaboration lab. The monitors are physically and virtually integrated into a 14' x 7' for video display. The display of scientific data on the video wall is controlled by a single Alienware Aurora PC with a 2nd Generation Intel Core 4.1 GHz processor, 32 GB memory, and an AMD Fire Pro W600 video card with 6 mini display port connections. Six mini display-to-dual DVI cables are used to connect the 12 individual video monitors. The open source Scalable Adaptive Graphics Environment (SAGE) windowing and media control framework, running on top of the Ubuntu 12 Linux operating system, allows several users to simultaneously control the display and storage of high resolution still and moving graphics in a variety of formats, on tiled display walls of any size. The Ubuntu operating system supports the open source Scalable Adaptive Graphics Environment (SAGE) software which provides a common environment, or framework, enabling its users to access, display and share a variety of data-intensive information. This information can be digital-cinema animations, high-resolution images, high-definition video-teleconferences, presentation slides, documents, spreadsheets or laptop screens. SAGE is cross-platform, community-driven, open-source visualization and collaboration middleware that utilizes shared national and international cyberinfrastructure for the advancement of scientific research and education.
NASA Astrophysics Data System (ADS)
Jedlovec, G.; Srikishen, J.; Edwards, R.; Cross, D.; Welch, J. D.; Smith, M. R.
2013-12-01
The use of collaborative scientific visualization systems for the analysis, visualization, and sharing of 'big data' available from new high resolution remote sensing satellite sensors or four-dimensional numerical model simulations is propelling the wider adoption of ultra-resolution tiled display walls interconnected by high speed networks. These systems require a globally connected and well-integrated operating environment that provides persistent visualization and collaboration services. This abstract and subsequent presentation describes a new collaborative visualization system installed for NASA's Short-term Prediction Research and Transition (SPoRT) program at Marshall Space Flight Center and its use for Earth science applications. The system consists of a 3 x 4 array of 1920 x 1080 pixel thin bezel video monitors mounted on a wall in a scientific collaboration lab. The monitors are physically and virtually integrated into a 14' x 7' for video display. The display of scientific data on the video wall is controlled by a single Alienware Aurora PC with a 2nd Generation Intel Core 4.1 GHz processor, 32 GB memory, and an AMD Fire Pro W600 video card with 6 mini display port connections. Six mini display-to-dual DVI cables are used to connect the 12 individual video monitors. The open source Scalable Adaptive Graphics Environment (SAGE) windowing and media control framework, running on top of the Ubuntu 12 Linux operating system, allows several users to simultaneously control the display and storage of high resolution still and moving graphics in a variety of formats, on tiled display walls of any size. The Ubuntu operating system supports the open source Scalable Adaptive Graphics Environment (SAGE) software which provides a common environment, or framework, enabling its users to access, display and share a variety of data-intensive information. This information can be digital-cinema animations, high-resolution images, high-definition video-teleconferences, presentation slides, documents, spreadsheets or laptop screens. SAGE is cross-platform, community-driven, open-source visualization and collaboration middleware that utilizes shared national and international cyberinfrastructure for the advancement of scientific research and education.
Use of Landsat data to evaluate lesser prairie chicken habitats in western Oklahoma
Cannon, R. W.; Knopf, Fritz L.; Pettinger, Lawrence R.
1982-01-01
Landsat digital data were used to evaluate lesser prairie chicken (Tympanuchus pallidicinctus) habitats in western Oklahoma. Data for 7 (4,144 ha) study areas, 4 in shinnery oak (Quercus havardii), and 3 in sand sagebrush (Artemisia filifolia) rangeland, were analyzed using the Interactive Digital Image Manipulation System at the EROS Center. In shinnery oak rangeland, density of displaying males was correlated positively with percentage of area in grassland classes and negatively correlated with the percentage in brushland classes. In sand sagebrush rangeland, density of displaying males was negatively, but not significantly correlated with percentage of area in bare soil and grassland classes, and positively, but not significantly correlated with percentage of area in brushland classes. The trends found between density of displaying males and the Landsat-generated resource classes closely parallel similar relationships found with field sampling techniques. Analysis of the Landsat digital data for this study cost 13.8 cents/ha. Because larger areas could have been analyzed with the same digital data, the unit cost for analysis would decline with increasingly larger areas.
Emerging digital micromirror device (DMD) applications
NASA Astrophysics Data System (ADS)
Dudley, Dana; Duncan, Walter M.; Slaughter, John
2003-01-01
For the past six years, Digital Light Processing technology from Texas Instruments has made significant inroads in the projection display market. With products enabling the world"s smallest data and video projectors, HDTVs, and digital cinema, DLP technology is extremely powerful and flexible. At the heart of these display solutions is Texas Instruments Digital Micromirror Device (DMD), a semiconductor-based "light switch" array of thousands of individually addressable, tiltable, mirror-pixels. With success of the DMD as a spatial light modulator for projector applications, dozens of new applications are now being enabled by general-use DMD products that are recently available to developers. The same light switching speed and "on-off" (contrast) ratio that have resulted in superior projector performance, along with the capability of operation outside the visible spectrum, make the DMD very attractive for many applications, including volumetric display, holographic data storage, lithography, scientific instrumentation, and medical imaging. This paper presents an overview of past and future DMD performance in the context of new DMD applications, cites several examples of emerging products, and describes the DMD components and tools now available to developers.
Pisano, E D; Cole, E B; Major, S; Zong, S; Hemminger, B M; Muller, K E; Johnston, R E; Walsh, R; Conant, E; Fajardo, L L; Feig, S A; Nishikawa, R M; Yaffe, M J; Williams, M B; Aylward, S R
2000-09-01
To determine the preferences of radiologists among eight different image processing algorithms applied to digital mammograms obtained for screening and diagnostic imaging tasks. Twenty-eight images representing histologically proved masses or calcifications were obtained by using three clinically available digital mammographic units. Images were processed and printed on film by using manual intensity windowing, histogram-based intensity windowing, mixture model intensity windowing, peripheral equalization, multiscale image contrast amplification (MUSICA), contrast-limited adaptive histogram equalization, Trex processing, and unsharp masking. Twelve radiologists compared the processed digital images with screen-film mammograms obtained in the same patient for breast cancer screening and breast lesion diagnosis. For the screening task, screen-film mammograms were preferred to all digital presentations, but the acceptability of images processed with Trex and MUSICA algorithms were not significantly different. All printed digital images were preferred to screen-film radiographs in the diagnosis of masses; mammograms processed with unsharp masking were significantly preferred. For the diagnosis of calcifications, no processed digital mammogram was preferred to screen-film mammograms. When digital mammograms were preferred to screen-film mammograms, radiologists selected different digital processing algorithms for each of three mammographic reading tasks and for different lesion types. Soft-copy display will eventually allow radiologists to select among these options more easily.
Electromagnetic pulse-induced current measurement device
NASA Astrophysics Data System (ADS)
Gandhi, Om P.; Chen, Jin Y.
1991-08-01
To develop safety guidelines for exposure to high fields associated with an electromagnetic pulse (EMP), it is necessary to devise techniques that would measure the peak current induced in the human body. The main focus of this project was to design, fabricate, and test a portable, self-contained stand-on device that would measure and hold the peak current and the integrated change Q. The design specifications of the EMP-Induced Current Measurement Device are as follows: rise time of the current pulse, 5 ns; peak current, 20-600 A; charge Q, 0-20 microcoulombs. The device uses a stand-on parallel-plate bilayer sensor and fast high-frequency circuit that are well-shielded against spurious responses to high incident fields. Since the polarity of the incident peak electric field of the EMP may be either positive or negative, the induced peak current can also be positive or negative. Therefore, the device is designed to respond to either of these polarities and measure and hold both the peak current and the integrated charge which are simultaneously displayed on two separate 3-1/2 digit displays. The prototype device has been preliminarily tested with the EMP's generated at the Air Force Weapons Laboratory (ALECS facility) at Kirtland AFB, New Mexico.
Memmolo, P; Finizio, A; Paturzo, M; Ferraro, P; Javidi, B
2012-05-01
A method based on spatial transformations of multiwavelength digital holograms and the correlation matching of their numerical reconstructions is proposed, with the aim to improve superimposition of different color reconstructed images. This method is based on an adaptive affine transform of the hologram that permits management of the physical parameters of numerical reconstruction. In addition, we present a procedure to synthesize a single digital hologram in which three different colors are multiplexed. The optical reconstruction of the synthetic hologram by a spatial light modulator at one wavelength allows us to display all color features of the object, avoiding loss of details.
Iterative current mode per pixel ADC for 3D SoftChip implementation in CMOS
NASA Astrophysics Data System (ADS)
Lachowicz, Stefan W.; Rassau, Alexander; Lee, Seung-Minh; Eshraghian, Kamran; Lee, Mike M.
2003-04-01
Mobile multimedia communication has rapidly become a significant area of research and development constantly challenging boundaries on a variety of technological fronts. The processing requirements for the capture, conversion, compression, decompression, enhancement, display, etc. of increasingly higher quality multimedia content places heavy demands even on current ULSI (ultra large scale integration) systems, particularly for mobile applications where area and power are primary considerations. The ADC presented in this paper is designed for a vertically integrated (3D) system comprising two distinct layers bonded together using Indium bump technology. The top layer is a CMOS imaging array containing analogue-to-digital converters, and a buffer memory. The bottom layer takes the form of a configurable array processor (CAP), a highly parallel array of soft programmable processors capable of carrying out complex processing tasks directly on data stored in the top plane. This paper presents a ADC scheme for the image capture plane. The analogue photocurrent or sampled voltage is transferred to the ADC via a column or a column/row bus. In the proposed system, an array of analogue-to-digital converters is distributed, so that a one-bit cell is associated with one sensor. The analogue-to-digital converters are algorithmic current-mode converters. Eight such cells are cascaded to form an 8-bit converter. Additionally, each photo-sensor is equipped with a current memory cell, and multiple conversions are performed with scaled values of the photocurrent for colour processing.
Microcomputer-Based Digital Signal Processing Laboratory Experiments.
ERIC Educational Resources Information Center
Tinari, Jr., Rocco; Rao, S. Sathyanarayan
1985-01-01
Describes a system (Apple II microcomputer interfaced to flexible, custom-designed digital hardware) which can provide: (1) Fast Fourier Transform (FFT) computation on real-time data with a video display of spectrum; (2) frequency synthesis experiments using the inverse FFT; and (3) real-time digital filtering experiments. (JN)
Using Digital Globes to Explore the Deep Sea and Advance Public Literacy in Earth System Science
ERIC Educational Resources Information Center
Beaulieu, Stace E.; Emery, Emery; Brickley, Annette; Spargo, Abbey; Patterson, Kathleen; Joyce, Katherine; Silva, Tim; Madin, Katherine
2015-01-01
Digital globes are new technologies increasingly used in informal and formal education to display global datasets and show connections among Earth systems. But how effective are digital globes in advancing public literacy in Earth system science? We addressed this question by developing new content for digital globes with the intent to educate and…
An Infrared Data Acquisition and Processing System
1977-09-01
Display Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Terminai High Speed Printer/Plotter . . . . Digital Tape Unit...In addition to the recently procured Honeywell Model 96 analog re- corder, a High Density digital tape unit is planned. This unit will increase the...diagram of Figure 1 we see that a Digital Equipment Corp. (DEC) PDP-11/15 minicomputer with 28K of core memory drives the digital section of IRDAPS
Advanced aerosense display interfaces
NASA Astrophysics Data System (ADS)
Hopper, Darrel G.; Meyer, Frederick M.
1998-09-01
High-resolution display technologies are being developed to meet the ever-increasing demand for realistic detail. The requirement for evermore visual information exceeds the capacity of fielded aerospace display interfaces. In this paper we begin an exploration of display interfaces and evolving aerospace requirements. Current and evolving standards for avionics, commercial, and flat panel displays are summarized and compared to near term goals for military and aerospace applications. Aerospace and military applications prior to 2005 up to UXGA and digital HDTV resolution can be met by using commercial interface standard developments. Advanced aerospace requirements require yet higher resolutions (2560 X 2048 color pixels, 5120 X 4096 color pixels at 85 Hz, etc.) and necessitate the initiation of discussion herein of an 'ultra digital interface standard (UDIS)' which includes 'smart interface' features such as large memory and blazingly fast resizing microcomputer. Interface capacity, IT, increased about 105 from 1973 to 1998; 102 more is needed for UDIS.
NASA Technical Reports Server (NTRS)
Schneider, E. T.; Enevoldson, E. K.
1984-01-01
The introduction of electronic fuel control to modern turbine engines has a number of advantages, which are related to an increase in engine performance and to a reduction or elimination of the problems associated with high angle of attack engine operation from the surface to 50,000 feet. If the appropriate engine display devices are available to the pilot, the fuel control system can provide a great amount of information. Some of the wealth of information available from modern fuel controls are discussed in this paper. The considered electronic engine control systems in their most recent forms are known as the Full Authority Digital Engine Control (FADEC) and the Digital Electronic Engine Control (DEEC). Attention is given to some details regarding the control systems, typical engine problems, the solution of problems with the aid of displays, engine displays in normal operation, an example display format, a multipage format, flight strategies, and hardware considerations.
The Fundamentals of Using the Digital Micromirror Device (DMD(TM)) for Projection Display
NASA Technical Reports Server (NTRS)
Yoder, Lars A.
1995-01-01
Developed by Texas Instruments (TI) the digital micromirror device (DMD(tm)) is a quickly emerging and highly useful micro-electro-mechanical structures (MEMS) device. Using standard semiconductor fabrication technology, the DMD's simplicity in concept and design will provide advantageous solutions for many different applications. At the rudimentary level, the DMD is a precision, semiconductor light switch. In the initial commercial development of DMD technology, TI has concentrated on projection display and hardcopy. This paper will focus on how the DMD is used for projection display. Other application areas are being explored and evaluated to find appropriate and beneficial uses for the DMD.
Bringing text display digital radio to consumers with hearing loss.
Sheffield, Ellyn G; Starling, Michael; Schwab, Daniel
2011-01-01
Radio is migrating to digital transmission, expanding its offerings to include captioning for individuals with hearing loss. Text display radio requires a large amount of word throughput with minimal screen display area, making good user interface design crucial to its success. In two experiments, we presented hearing, hard-of-hearing, and deaf consumers with National Public Radio stories converted to text and examined their preferences for and reactions to midsized and small radio text displays. We focused on physical display attributes such as text color, font style, line length, and scrolling type as well as emergency alert messages and emergency prompts for drivers, announcer identification schemes, and synchronization of audio and text. Results suggest that midsized, Global Positioning System (GPS)-style displays were well liked, synchronization of audio and text was important to comprehension and retrieval of story details, identification of announcers was served best with a combination of name change in parenthesis and color change, and a mixture of color and flashing symbols was preferred for emergency alerting.
Review of integrated digital systems: evolution and adoption
NASA Astrophysics Data System (ADS)
Fritz, Lawrence W.
The factors that are influencing the evolution of photogrammetric and remote sensing technology to transition into fully integrated digital systems are reviewed. These factors include societal pressures for new, more timely digital products from the Spatial Information Sciencesand the adoption of rapid technological advancements in digital processing hardware and software. Current major developments in leading government mapping agencies of the USA, such as the Digital Production System (DPS) modernization programme at the Defense Mapping Agency, and the Automated Nautical Charting System II (ANCS-II) programme and Integrated Digital Photogrammetric Facility (IDPF) at NOAA/National Ocean Service, illustrate the significant benefits to be realized. These programmes are examples of different levels of integrated systems that have been designed to produce digital products. They provide insights to the management complexities to be considered for very large integrated digital systems. In recognition of computer industry trends, a knowledge-based architecture for managing the complexity of the very large spatial information systems of the future is proposed.
Video integrated measurement system. [Diagnostic display devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spector, B.; Eilbert, L.; Finando, S.
A Video Integrated Measurement (VIM) System is described which incorporates the use of various noninvasive diagnostic procedures (moire contourography, electromyography, posturometry, infrared thermography, etc.), used individually or in combination, for the evaluation of neuromusculoskeletal and other disorders and their management with biofeedback and other therapeutic procedures. The system provides for measuring individual diagnostic and therapeutic modes, or multiple modes by split screen superimposition, of real time (actual) images of the patient and idealized (ideal-normal) models on a video monitor, along with analog and digital data, graphics, color, and other transduced symbolic information. It is concluded that this system provides anmore » innovative and efficient method by which the therapist and patient can interact in biofeedback training/learning processes and holds considerable promise for more effective measurement and treatment of a wide variety of physical and behavioral disorders.« less
Image-based electronic patient records for secured collaborative medical applications.
Zhang, Jianguo; Sun, Jianyong; Yang, Yuanyuan; Liang, Chenwen; Yao, Yihong; Cai, Weihua; Jin, Jin; Zhang, Guozhen; Sun, Kun
2005-01-01
We developed a Web-based system to interactively display image-based electronic patient records (EPR) for secured intranet and Internet collaborative medical applications. The system consists of four major components: EPR DICOM gateway (EPR-GW), Image-based EPR repository server (EPR-Server), Web Server and EPR DICOM viewer (EPR-Viewer). In the EPR-GW and EPR-Viewer, the security modules of Digital Signature and Authentication are integrated to perform the security processing on the EPR data with integrity and authenticity. The privacy of EPR in data communication and exchanging is provided by SSL/TLS-based secure communication. This presentation gave a new approach to create and manage image-based EPR from actual patient records, and also presented a way to use Web technology and DICOM standard to build an open architecture for collaborative medical applications.
Database Integrity Monitoring for Synthetic Vision Systems Using Machine Vision and SHADE
NASA Technical Reports Server (NTRS)
Cooper, Eric G.; Young, Steven D.
2005-01-01
In an effort to increase situational awareness, the aviation industry is investigating technologies that allow pilots to visualize what is outside of the aircraft during periods of low-visibility. One of these technologies, referred to as Synthetic Vision Systems (SVS), provides the pilot with real-time computer-generated images of obstacles, terrain features, runways, and other aircraft regardless of weather conditions. To help ensure the integrity of such systems, methods of verifying the accuracy of synthetically-derived display elements using onboard remote sensing technologies are under investigation. One such method is based on a shadow detection and extraction (SHADE) algorithm that transforms computer-generated digital elevation data into a reference domain that enables direct comparison with radar measurements. This paper describes machine vision techniques for making this comparison and discusses preliminary results from application to actual flight data.
Virtual reality 3D headset based on DMD light modulators
NASA Astrophysics Data System (ADS)
Bernacki, Bruce E.; Evans, Allan; Tang, Edward
2014-06-01
We present the design of an immersion-type 3D headset suitable for virtual reality applications based upon digital micromirror devices (DMD). Current methods for presenting information for virtual reality are focused on either polarizationbased modulators such as liquid crystal on silicon (LCoS) devices, or miniature LCD or LED displays often using lenses to place the image at infinity. LCoS modulators are an area of active research and development, and reduce the amount of viewing light by 50% due to the use of polarization. Viewable LCD or LED screens may suffer low resolution, cause eye fatigue, and exhibit a "screen door" or pixelation effect due to the low pixel fill factor. Our approach leverages a mature technology based on silicon micro mirrors delivering 720p resolution displays in a small form-factor with high fill factor. Supporting chip sets allow rapid integration of these devices into wearable displays with high-definition resolution and low power consumption, and many of the design methods developed for DMD projector applications can be adapted to display use. Potential applications include night driving with natural depth perception, piloting of UAVs, fusion of multiple sensors for pilots, training, vision diagnostics and consumer gaming. Our design concept is described in which light from the DMD is imaged to infinity and the user's own eye lens forms a real image on the user's retina resulting in a virtual retinal display.
Digital Authenticity and Integrity: Digital Cultural Heritage Documents as Research Resources
ERIC Educational Resources Information Center
Bradley; Rachael
2005-01-01
This article presents the results of a survey addressing methods of securing digital content and ensuring the content's authenticity and integrity, as well as the perceived importance of authenticity and integrity. The survey was sent to 40 digital repositories in the United States and Canada between June 30 and July 19, 2003. Twenty-two…
Accelerating Harmonization in Digital Health.
Moore, Carolyn; Werner, Laurie; BenDor, Amanda Puckett; Bailey, Mike; Khan, Nighat
2017-01-01
Digital tools play an important role in supporting front-line health workers who deliver primary care. This paper explores the current state of efforts undertaken to move away from single-purpose applications of digital health towards integrated systems and solutions that align with national strategies. Through examples from health information systems, data and health worker training, this paper demonstrates how governments and stakeholders are working to integrate digital health services. We emphasize three factors as crucial for this integration: development and implementation of national digital health strategies; technical interoperability and collaborative approaches to ensure that digital health has an impact on the primary care level. Consolidation of technologies will enable an integrated, scaleable approach to the use of digital health to support health workers. As this edition explores a paradigm shift towards harmonization in primary healthcare systems, this paper explores complementary efforts undertaken to move away from single-purpose applications of digital health towards integrated systems and solutions that align with national strategies. It describes a paradigm shift towards integrated and interoperable systems that respond to health workers' needs in training, data and health information; and calls for the consolidation and integration of digital health tools and approaches across health areas, functions and levels of the health system. It then considers the critical factors that must be in place to support this paradigm shift. This paper aims not only to describe steps taken to move from fractured pilots to effective systems, but to propose a new perspective focused on consolidation and collaboration guided by national digital health strategies.
Data Transport Subsystem - The SFOC glue
NASA Technical Reports Server (NTRS)
Parr, Stephen J.
1988-01-01
The design and operation of the Data Transport Subsystem (DTS) for the JPL Space Flight Operation Center (SFOC) are described. The SFOC is the ground data system under development to serve interplanetary space probes; in addition to the DTS, it comprises a ground interface facility, a telemetry-input subsystem, data monitor and display facilities, and a digital TV system. DTS links the other subsystems via an ISO OSI presentation layer and an LAN. Here, particular attention is given to the DTS services and service modes (virtual circuit, datagram, and broadcast), the DTS software architecture, the logical-name server, the role of the integrated AI library, and SFOC as a distributed system.
Electronics design of the airborne stabilized platform attitude acquisition module
NASA Astrophysics Data System (ADS)
Xu, Jiang; Wei, Guiling; Cheng, Yong; Li, Baolin; Bu, Hongyi; Wang, Hao; Zhang, Zhanwei; Li, Xingni
2014-02-01
We present an attitude acquisition module electronics design for the airborne stabilized platform. The design scheme, which is based on Integrated MEMS sensor ADIS16405, develops the attitude information processing algorithms and the hardware circuit. The hardware circuits with a small volume of only 44.9 x 43.6 x 24.6 mm3, has the characteristics of lightweight, modularization and digitalization. The interface design of the PC software uses the combination plane chart with track line to receive the attitude information and display. Attitude calculation uses the Kalman filtering algorithm to improve the measurement accuracy of the module in the dynamic environment.
Design of area array CCD image acquisition and display system based on FPGA
NASA Astrophysics Data System (ADS)
Li, Lei; Zhang, Ning; Li, Tianting; Pan, Yue; Dai, Yuming
2014-09-01
With the development of science and technology, CCD(Charge-coupled Device) has been widely applied in various fields and plays an important role in the modern sensing system, therefore researching a real-time image acquisition and display plan based on CCD device has great significance. This paper introduces an image data acquisition and display system of area array CCD based on FPGA. Several key technical challenges and problems of the system have also been analyzed and followed solutions put forward .The FPGA works as the core processing unit in the system that controls the integral time sequence .The ICX285AL area array CCD image sensor produced by SONY Corporation has been used in the system. The FPGA works to complete the driver of the area array CCD, then analog front end (AFE) processes the signal of the CCD image, including amplification, filtering, noise elimination, CDS correlation double sampling, etc. AD9945 produced by ADI Corporation to convert analog signal to digital signal. Developed Camera Link high-speed data transmission circuit, and completed the PC-end software design of the image acquisition, and realized the real-time display of images. The result through practical testing indicates that the system in the image acquisition and control is stable and reliable, and the indicators meet the actual project requirements.
Sarnoff JND Vision Model for Flat-Panel Design
NASA Technical Reports Server (NTRS)
Brill, Michael H.; Lubin, Jeffrey
1998-01-01
This document describes adaptation of the basic Sarnoff JND Vision Model created in response to the NASA/ARPA need for a general-purpose model to predict the perceived image quality attained by flat-panel displays. The JND model predicts the perceptual ratings that humans will assign to a degraded color-image sequence relative to its nondegraded counterpart. Substantial flexibility is incorporated into this version of the model so it may be used to model displays at the sub-pixel and sub-frame level. To model a display (e.g., an LCD), the input-image data can be sampled at many times the pixel resolution and at many times the digital frame rate. The first stage of the model downsamples each sequence in time and in space to physiologically reasonable rates, but with minimum interpolative artifacts and aliasing. Luma and chroma parts of the model generate (through multi-resolution pyramid representation) a map of differences-between test and reference called the JND map, from which a summary rating predictor is derived. The latest model extensions have done well in calibration against psychophysical data and against image-rating data given a CRT-based front-end. THe software was delivered to NASA Ames and is being integrated with LCD display models at that facility,
Organize Your Digital Photos: Display Your Images Without Hogging Hard-Disk Space
ERIC Educational Resources Information Center
Branzburg, Jeffrey
2005-01-01
According to InfoTrends/CAP Ventures, by the end of this year more than 55 percent of all U.S. households will own at least one digital camera. With so many digital cameras in use, it is important for people to understand how to organize and store digital images in ways that make them easy to find. Additionally, today's affordable, large megapixel…
Generating nonlinear FM chirp radar signals by multiple integrations
Doerry, Armin W [Albuquerque, NM
2011-02-01
A phase component of a nonlinear frequency modulated (NLFM) chirp radar pulse can be produced by performing digital integration operations over a time interval defined by the pulse width. Each digital integration operation includes applying to a respectively corresponding input parameter value a respectively corresponding number of instances of digital integration.
Novel Digital Driving Method Using Dual Scan for Active Matrix Organic Light-Emitting Diode Displays
NASA Astrophysics Data System (ADS)
Jung, Myoung Hoon; Choi, Inho; Chung, Hoon-Ju; Kim, Ohyun
2008-11-01
A new digital driving method has been developed for low-temperature polycrystalline silicon, transistor-driven, active-matrix organic light-emitting diode (AM-OLED) displays by time-ratio gray-scale expression. This driving method effectively increases the emission ratio and the number of subfields by inserting another subfield set into nondisplay periods in the conventional digital driving method. By employing the proposed modified gravity center coding, this method can be used to effectively compensate for dynamic false contour noise. The operation and performance were verified by current measurement and image simulation. The simulation results using eight test images show that the proposed approach improves the average peak signal-to-noise ratio by 2.61 dB, and the emission ratio by 20.5%, compared with the conventional digital driving method.
Panning artifacts in digital pathology images
NASA Astrophysics Data System (ADS)
Avanaki, Ali R. N.; Lanciault, Christian; Espig, Kathryn S.; Xthona, Albert; Kimpe, Tom R. L.
2017-03-01
In making a pathologic diagnosis, a pathologist uses cognitive processes: perception, attention, memory, and search (Pena and Andrade-Filho, 2009). Typically, this involves focus while panning from one region of a slide to another, using either a microscope in a traditional workflow or software program and display in a digital pathology workflow (DICOM Standard Committee, 2010). We theorize that during panning operation, the pathologist receives information important to diagnosis efficiency and/or correctness. As compared to an optical microscope, panning in a digital pathology image involves some visual artifacts due to the following: (i) the frame rate is finite; (ii) time varying visual signals are reconstructed using imperfect zero-order hold. Specifically, after pixel's digital drive is changed, it takes time for a pixel to emit the expected amount of light. Previous work suggests that 49% of navigation is conducted in low-power/overview with digital pathology (Molin et al., 2015), but the influence of display factors has not been measured. We conducted a reader study to establish a relationship between display frame rate, panel response time, and threshold panning speed (above which the artifacts become noticeable). Our results suggest visual tasks that involve tissue structure are more impacted by the simulated panning artifacts than those that only involve color (e.g., staining intensity estimation), and that the panning artifacts versus normalized panning speed has a peak behavior which is surprising and may change for a diagnostic task. This is work in progress and our final findings should be considered in designing future digital pathology systems.
Measuring the Environment through Digital Images
NASA Astrophysics Data System (ADS)
Pickle, J.; Schloss, A. L.
2009-12-01
A network of sites for citizen scientists to take a consistent time sequence of digital photographs of the landscape and an Internet site (http://picturepost.unh.edu/) that efficiently stores and distributes the digital images creates a low-cost and sustainable resource for scientific environmental monitoring and formal and informal science education. Digital photographs taken from the same location and positioned in the same direction and orientation allow scientists to monitor a variety of environmental parameters, including plant health, growth, and phenology; erosion and deposition; water levels; and cloud and canopy cover. The PicturePost platform is simply an octagon placed in the center of a flat surface and secured to a post anchored in the ground or onto a building. The edges of the octagon allow positioning of the camera so the complete landscape may be photographed in less than a minute. A NASA-funded project, Digital Earth Watch (aka Measuring Vegetation Health, (http://mvh.sr.unh.edu) provides educational activities and background materials that help people learn about plants as environmental “green canaries” and about the basics of cameras and digital images. The website also provides free software to analyze digital images. Although this project has been in development for four years, it is only beginning to find partners in which the data support multiple efforts. A large part of this integration is a result of recent NASA funding, which has allowed a new website to be developed to archive and display the images. The developing collaborations and the development of the new website at the same time enhanced both efforts. Because the website could include tools/features that appealed to the collaborating groups, all participants contributed ideas facing fewer restrictions. PicturePost made from recycled plastic lumber.
Information theoretic analysis of linear shift-invariant edge-detection operators
NASA Astrophysics Data System (ADS)
Jiang, Bo; Rahman, Zia-ur
2012-06-01
Generally, the designs of digital image processing algorithms and image gathering devices remain separate. Consequently, the performance of digital image processing algorithms is evaluated without taking into account the influences by the image gathering process. However, experiments show that the image gathering process has a profound impact on the performance of digital image processing and the quality of the resulting images. Huck et al. proposed one definitive theoretic analysis of visual communication channels, where the different parts, such as image gathering, processing, and display, are assessed in an integrated manner using Shannon's information theory. We perform an end-to-end information theory based system analysis to assess linear shift-invariant edge-detection algorithms. We evaluate the performance of the different algorithms as a function of the characteristics of the scene and the parameters, such as sampling, additive noise etc., that define the image gathering system. The edge-detection algorithm is regarded as having high performance only if the information rate from the scene to the edge image approaches its maximum possible. This goal can be achieved only by jointly optimizing all processes. Our information-theoretic assessment provides a new tool that allows us to compare different linear shift-invariant edge detectors in a common environment.
NASA Astrophysics Data System (ADS)
Delgado, F. J.; Martinez, R.; Finat, J.; Martinez, J.; Puche, J. C.; Finat, F. J.
2013-07-01
In this work we develop a multiply interconnected system which involves objects, agents and interactions between them from the use of ICT applied to open repositories, users communities and web services. Our approach is applied to Architectural Cultural Heritage Environments (ACHE). It includes components relative to digital accessibility (to augmented ACHE repositories), contents management (ontologies for the semantic web), semiautomatic recognition (to ease the reuse of materials) and serious videogames (for interaction in urban environments). Their combination provides a support for local real/remote virtual tourism (including some tools for low-level RT display of rendering in portable devices), mobile-based smart interactions (with a special regard to monitored environments) and CH related games (as extended web services). Main contributions to AR models on usual GIS applied to architectural environments, concern to an interactive support performed directly on digital files which allows to access to CH contents which are referred to GIS of urban districts (involving facades, historical or preindustrial buildings) and/or CH repositories in a ludic and transversal way to acquire cognitive, medial and social abilities in collaborative environments.
Confocal retinal imaging using a digital light projector with a near infrared VCSEL source
NASA Astrophysics Data System (ADS)
Muller, Matthew S.; Elsner, Ann E.
2018-02-01
A custom near infrared VCSEL source has been implemented in a confocal non-mydriatic retinal camera, the Digital Light Ophthalmoscope (DLO). The use of near infrared light improves patient comfort, avoids pupil constriction, penetrates the deeper retina, and does not mask visual stimuli. The DLO performs confocal imaging by synchronizing a sequence of lines displayed with a digital micromirror device to the rolling shutter exposure of a 2D CMOS camera. Real-time software adjustments enable multiply scattered light imaging, which rapidly and cost-effectively emphasizes drusen and other scattering disruptions in the deeper retina. A separate 5.1" LCD display provides customizable visible stimuli for vision experiments with simultaneous near infrared imaging.
Post-processing methods of rendering and visualizing 3-D reconstructed tomographic images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, S.T.C.
The purpose of this presentation is to discuss the computer processing techniques of tomographic images, after they have been generated by imaging scanners, for volume visualization. Volume visualization is concerned with the representation, manipulation, and rendering of volumetric data. Since the first digital images were produced from computed tomography (CT) scanners in the mid 1970s, applications of visualization in medicine have expanded dramatically. Today, three-dimensional (3D) medical visualization has expanded from using CT data, the first inherently digital source of 3D medical data, to using data from various medical imaging modalities, including magnetic resonance scanners, positron emission scanners, digital ultrasound,more » electronic and confocal microscopy, and other medical imaging modalities. We have advanced from rendering anatomy to aid diagnosis and visualize complex anatomic structures to planning and assisting surgery and radiation treatment. New, more accurate and cost-effective procedures for clinical services and biomedical research have become possible by integrating computer graphics technology with medical images. This trend is particularly noticeable in current market-driven health care environment. For example, interventional imaging, image-guided surgery, and stereotactic and visualization techniques are now stemming into surgical practice. In this presentation, we discuss only computer-display-based approaches of volumetric medical visualization. That is, we assume that the display device available is two-dimensional (2D) in nature and all analysis of multidimensional image data is to be carried out via the 2D screen of the device. There are technologies such as holography and virtual reality that do provide a {open_quotes}true 3D screen{close_quotes}. To confine the scope, this presentation will not discuss such approaches.« less
Development of ADOCS controllers and control laws. Volume 3: Simulation results and recommendations
NASA Technical Reports Server (NTRS)
Landis, Kenneth H.; Glusman, Steven I.
1985-01-01
The Advanced Cockpit Controls/Advanced Flight Control System (ACC/AFCS) study was conducted by the Boeing Vertol Company as part of the Army's Advanced Digital/Optical Control System (ADOCS) program. Specifically, the ACC/AFCS investigation was aimed at developing the flight control laws for the ADOCS demonstator aircraft which will provide satisfactory handling qualities for an attack helicopter mission. The three major elements of design considered are as follows: Pilot's integrated Side-Stick Controller (SSC) -- Number of axes controlled; force/displacement characteristics; ergonomic design. Stability and Control Augmentation System (SCAS)--Digital flight control laws for the various mission phases; SCAS mode switching logic. Pilot's Displays--For night/adverse weather conditions, the dynamics of the superimposed symbology presented to the pilot in a format similar to the Advanced Attack Helicopter (AAH) Pilot Night Vision System (PNVS) for each mission phase is a function of SCAS characteristics; display mode switching logic. Results of the five piloted simulations conducted at the Boeing Vertol and NASA-Ames simulation facilities are presented in Volume 3. Conclusions drawn from analysis of pilot rating data and commentary were used to formulate recommendations for the ADOCS demonstrator flight control system design. The ACC/AFCS simulation data also provide an extensive data base to aid the development of advanced flight control system design for future V/STOL aircraft.
Tracking a Head-Mounted Display in a Room-Sized Environment with Head-Mounted Cameras
1990-04-01
poor resolution and a very limited working volume [Wan90]. 4 OPTOTRAK [Nor88] uses one camera with two dual-axis CCD infrared position sensors. Each...Nor88] Northern Digital. Trade literature on Optotrak - Northern Digital’s Three Dimensional Optical Motion Tracking and Analysis System. Northern Digital
Software Graphical User Interface For Analysis Of Images
NASA Technical Reports Server (NTRS)
Leonard, Desiree M.; Nolf, Scott R.; Avis, Elizabeth L.; Stacy, Kathryn
1992-01-01
CAMTOOL software provides graphical interface between Sun Microsystems workstation and Eikonix Model 1412 digitizing camera system. Camera scans and digitizes images, halftones, reflectives, transmissives, rigid or flexible flat material, or three-dimensional objects. Users digitize images and select from three destinations: work-station display screen, magnetic-tape drive, or hard disk. Written in C.
Method of improving a digital image
NASA Technical Reports Server (NTRS)
Jobson, Daniel J. (Inventor); Woodell, Glenn A. (Inventor); Rahman, Zia-ur (Inventor)
1999-01-01
A method of improving a digital image is provided. The image is initially represented by digital data indexed to represent positions on a display. The digital data is indicative of an intensity value I.sub.i (x,y) for each position (x,y) in each i-th spectral band. The intensity value for each position in each i-th spectral band is adjusted to generate an adjusted intensity value for each position in each i-th spectral band in accordance with ##EQU1## where S is the number of unique spectral bands included in said digital data, W.sub.n is a weighting factor and * denotes the convolution operator. Each surround function F.sub.n (x,y) is uniquely scaled to improve an aspect of the digital image, e.g., dynamic range compression, color constancy, and lightness rendition. The adjusted intensity value for each position in each i-th spectral band is filtered with a common function and then presented to a display device. For color images, a novel color restoration step is added to give the image true-to-life color that closely matches human observation.
Pakkala, T; Kuusela, L; Ekholm, M; Wenzel, A; Haiter-Neto, F; Kortesniemi, M
2012-01-01
In clinical practice, digital radiographs taken for caries diagnostics are viewed on varying types of displays and usually in relatively high ambient lighting (room illuminance) conditions. Our purpose was to assess the effect of room illuminance and varying display types on caries diagnostic accuracy in digital dental radiographs. Previous studies have shown that the diagnostic accuracy of caries detection is significantly better in reduced lighting conditions. Our hypothesis was that higher display luminance could compensate for this in higher ambient lighting conditions. Extracted human teeth with approximal surfaces clinically ranging from sound to demineralized were radiographed and evaluated by 3 observers who detected carious lesions on 3 different types of displays in 3 different room illuminance settings ranging from low illumination, i.e. what is recommended for diagnostic viewing, to higher illumination levels corresponding to those found in an average dental office. Sectioning and microscopy of the teeth validated the presence or absence of a carious lesion. Sensitivity, specificity and accuracy were calculated for each modality and observer. Differences were estimated by analyzing the binary data assuming the added effects of observer and modality in a generalized linear model. The observers obtained higher sensitivities in lower illuminance settings than in higher illuminance settings. However, this was related to a reduction in specificity, which meant that there was no significant difference in overall accuracy. Contrary to our hypothesis, there were no significant differences between the accuracy of different display types. Therefore, different displays and room illuminance levels did not affect the overall accuracy of radiographic caries detection. Copyright © 2012 S. Karger AG, Basel.
Innovative railroad information displays : executive summary
DOT National Transportation Integrated Search
1998-01-01
The objectives ofthis study were to explore the potential of advanced digital technology, : novel concepts of information management, geographic information databases and : display capabilities in order to enhance planning and decision-making process...
A Survey of Display Hardware and Software.
ERIC Educational Resources Information Center
Poore, Jesse H., Jr.; And Others
Reported are two papers which deal with the fundamentals of display hardware and software in computer systems. The first report presents the basic principles of display hardware in terms of image generation from buffers presumed to be loaded and controlled by a digital computer. The concepts surrounding the electrostatic tube, the electromagnetic…
Go Digital! Making Physical Samples a Valued Part of the Online Record of Science
NASA Astrophysics Data System (ADS)
Klump, J. F.; Lehnert, K.
2016-12-01
Physical samples, at first glance, seem to be the opposite to the virtual world of the internet. Yet, as anything not natively digital, physical samples can have a digital representation that is accessible through the internet. Most museums and other institutions have many more objects in their collections than they could ever put on display and many samples exist outside of formal curation workflows. Nevertheless, these objects can be of importance to science, maybe because this particular fossil is a holotype that defines an extinct animal species, or it is a mineral sample that was used to derive a reference optical reflectance spectrum that is used in the interpretation of remote sensing data from satellites. As these examples show, the value of a scientific collection lies not only in its objects but also in how these objects are integrated into the record of science. Fundamental to this are, of course, catalogues of the samples held in a collection. Significant value can be added to a collection if its catalogue is web accessible, and even better if its catalogue can be harvested into disciplinary portals to aid the discovery of samples. Sample curation in the digital age, however, must go beyond simply labeling and cataloguing. In the same way that publications and datasets can now be identified and accessed over the web, steps are now being made to do the same for physical samples. Globally unique, resolvable identifiers of samples, datasets and literature can serve as nodes to link these resources together and in this way, then cross-link between scientific interpretation in the literature, data interpreted in these works, and samples from which these data were derived. These linkages must not only be recorded in the metadata but must also be machine actionable to allow integration of these digital assets into the ever growing body and richness of the scientific record. This presentation will discuss cyberinfrastructures for samples and sample curation through case studies that illustrate how the life cycle of a sample relates to other digital objects in literature and data, and how added value is generated through these linkages.
Extended experience with digital radiography and viewing in an ICU environment
NASA Astrophysics Data System (ADS)
Humphrey, Louis M.; Fitzpatrick, Kevin; Paine, Susan; Ravin, Carl E.
1992-07-01
After several years of continual operation, the utility of digital viewing stations was investigated by distributing questionnaires to past and present users. The results of the questionnaire indicated that the respondents preferred using the workstations over handling film. For evaluation of line placements, chest tubes and pleural effusions, softcopy display was preferred over hardcopy. However, for analysis of air space disease and pneumothorax, images displayed on the workstation were not perceived to be as useful as standard hardcopy.
NASA Technical Reports Server (NTRS)
Ohri, A. K.; Owen, H. A.; Wilson, T. G.; Rodriguez, G. E.
1974-01-01
The simulation of converter-controller combinations by means of a flexible digital computer program which produces output to a graphic display is discussed. The procedure is an alternative to mathematical analysis of converter systems. The types of computer programming involved in the simulation are described. Schematic diagrams, state equations, and output equations are displayed for four basic forms of inductor-energy-storage dc to dc converters. Mathematical models are developed to show the relationship of the parameters.
The Development of the AFIT Communications Laboratory and Experiments for Communications Students.
1985-12-01
Actiatesdigtal wag*andPermits monitoring of max. Actiatesdigial sorag animum signal excursions over selects the "A" or " porn indeienite time...level at which the vertical display is installed in the 71.5. either peak detected or digitally averaged. Video signals above the level set by the... Video signals below the level set by the PEAK AVERAGE control or VERT P05 Positions the display Or baseline on digitally averaged and stored. th c_
Digital Control of the Czochralski Growth of Gallium Arsenide-Controller Software Reference Manual
1987-07-15
possible with regard to the format of the commands. Several help menus and extensive command prompts guide the operator. The dialog between the...single-zone heater is in use.) - 4 - Kfc ^&S^^ p IS’ K: i 1. Digital Control of Czochralski GaAs Crystal Growth (2) Four tachometers which are...commands for the display of menus or auxiliary information. The scrolled portion shrinks to four lines if auxiliary data display is re- quested with the
IDSP- INTERACTIVE DIGITAL SIGNAL PROCESSOR
NASA Technical Reports Server (NTRS)
Mish, W. H.
1994-01-01
The Interactive Digital Signal Processor, IDSP, consists of a set of time series analysis "operators" based on the various algorithms commonly used for digital signal analysis work. The processing of a digital time series to extract information is usually achieved by the application of a number of fairly standard operations. However, it is often desirable to "experiment" with various operations and combinations of operations to explore their effect on the results. IDSP is designed to provide an interactive and easy-to-use system for this type of digital time series analysis. The IDSP operators can be applied in any sensible order (even recursively), and can be applied to single time series or to simultaneous time series. IDSP is being used extensively to process data obtained from scientific instruments onboard spacecraft. It is also an excellent teaching tool for demonstrating the application of time series operators to artificially-generated signals. IDSP currently includes over 43 standard operators. Processing operators provide for Fourier transformation operations, design and application of digital filters, and Eigenvalue analysis. Additional support operators provide for data editing, display of information, graphical output, and batch operation. User-developed operators can be easily interfaced with the system to provide for expansion and experimentation. Each operator application generates one or more output files from an input file. The processing of a file can involve many operators in a complex application. IDSP maintains historical information as an integral part of each file so that the user can display the operator history of the file at any time during an interactive analysis. IDSP is written in VAX FORTRAN 77 for interactive or batch execution and has been implemented on a DEC VAX-11/780 operating under VMS. The IDSP system generates graphics output for a variety of graphics systems. The program requires the use of Versaplot and Template plotting routines and IMSL Math/Library routines. These software packages are not included in IDSP. The virtual memory requirement for the program is approximately 2.36 MB. The IDSP system was developed in 1982 and was last updated in 1986. Versaplot is a registered trademark of Versatec Inc. Template is a registered trademark of Template Graphics Software Inc. IMSL Math/Library is a registered trademark of IMSL Inc.
Projection display technologies for the new millennium
NASA Astrophysics Data System (ADS)
Kahn, Frederic J.
2000-04-01
Although analog CRTs continue to enable most of the world's electronic projection displays such as US consumer rear projection televisions, discrete pixel (digital) active matrix LCD and DLP reflective mirror array projectors have rapidly created large nonconsumer markets--primarily for business. Recent advances in image quality, compactness and cost effectiveness of digital projectors have the potential to revolutionize major consumer and entertainment markets as well. Digital penetration of the mainstream consumer projection TV market will begin in the hear 2000. By 2005 digital projection HDTVs could take the major share of the consumer HDTV projection market. Digital projection is expected to dominate both the consumer HDTV and the cinema market by 2010, resulting in potential shipments for all projection markets exceeding 10 M units per year. Digital projection is improving at a rate 10X faster than analog CRT projectors and 5X faster than PDP flat panels. Continued rapid improvement of digital projection is expected due to its relative immaturity and due to the wide diversity of technological improvements being pursued. Key technology enablers are the imaging panels, light sources and micro-optics. Market shares of single panel projectors, MEMs panels, LCOS panels and low T p-Si TFT LCD panel variants are expected to increase.
Intrahospital teleradiology from the emergency room
NASA Astrophysics Data System (ADS)
Fuhrman, Carl R.; Slasky, B. S.; Gur, David; Lattner, Stefanie; Herron, John M.; Plunkett, Michael B.; Towers, Jeffrey D.; Thaete, F. Leland
1993-09-01
Off-hour operations of the modern emergency room presents a challenge to conventional image management systems. To assess the utility of intrahospital teleradiology systems from the emergency room (ER), we installed a high-resolution film digitizer which was interfaced to a central archive and to a workstation at the main reading room. The system was designed to allow for digitization of images as soon as the films were processed. Digitized images were autorouted to both destinations, and digitized images could be laser printed (if desired). Almost real time interpretations of nonselected cases were performed at both locations (conventional film in the ER and a workstation in the main reading room), and an analysis of disagreements was performed. Our results demonstrate that in spite of a `significant' difference in reporting, `clinically significant differences' were found in less than 5% of cases. Folder management issues, preprocessing, image orientation, and setting reasonable lookup tables for display were identified as the main limitations to the systems' routine use in a busy environment. The main limitation of the conventional film was the identification of subtle abnormalities in the bright regions of the film. Once identified on either system (conventional film or soft display), all abnormalities were visible and detectable on both display modalities.
Innovative railroad information displays : video guide
DOT National Transportation Integrated Search
1998-01-01
The objectives of this study were to explore the potential of advanced digital technology, : novel concepts of information management, geographic information databases and : display capabilities in order to enhance planning and decision-making proces...
NASA Astrophysics Data System (ADS)
Langhans, Knut; Bezecny, Daniel; Homann, Dennis; Bahr, Detlef; Vogt, Carsten; Blohm, Christian; Scharschmidt, Karl-Heinz
1998-04-01
An improved generation of our 'FELIX 3D Display' is presented. This system is compact, light, modular and easy to transport. The created volumetric images consist of many voxels, which are generated in a half-sphere display volume. In that way a spatial object can be displayed occupying a physical space with height, width and depth. The new FELIX generation uses a screen rotating with 20 revolutions per second. This target screen is mounted by an easy to change mechanism making it possible to use appropriate screens for the specific purpose of the display. An acousto-optic deflection unit with an integrated small diode pumped laser draws the images on the spinning screen. Images can consist of up to 10,000 voxels at a refresh rate of 20 Hz. Currently two different hardware systems are investigated. The first one is based on a standard PCMCIA digital/analog converter card as an interface and is controlled by a notebook. The developed software is provided with a graphical user interface enabling several animation features. The second, new prototype is designed to display images created by standard CAD applications. It includes the development of a new high speed hardware interface suitable for state-of-the- art fast and high resolution scanning devices, which require high data rates. A true 3D volume display as described will complement the broad range of 3D visualization tools, such as volume rendering packages, stereoscopic and virtual reality techniques, which have become widely available in recent years. Potential applications for the FELIX 3D display include imaging in the field so fair traffic control, medical imaging, computer aided design, science as well as entertainment.
The MAP program: building the digital terrain model.
R.H. Twito; R.W. Mifflin; R.J. McGaughey
1987-01-01
PLANS, a software package for integrated timber-harvest planning, uses digital terrain models to provide the topographic data needed to fit harvest and transportation designs to specific terrain. MAP, an integral program in the PLANS package, is used to construct the digital terrain models required by PLANS. MAP establishes digital terrain models using digitizer-traced...
Multisensory integration in complete unawareness: evidence from audiovisual congruency priming.
Faivre, Nathan; Mudrik, Liad; Schwartz, Naama; Koch, Christof
2014-11-01
Multisensory integration is thought to require conscious perception. Although previous studies have shown that an invisible stimulus could be integrated with an audible one, none have demonstrated integration of two subliminal stimuli of different modalities. Here, pairs of identical or different audiovisual target letters (the sound /b/ with the written letter "b" or "m," respectively) were preceded by pairs of masked identical or different audiovisual prime digits (the sound /6/ with the written digit "6" or "8," respectively). In three experiments, awareness of the audiovisual digit primes was manipulated, such that participants were either unaware of the visual digit, the auditory digit, or both. Priming of the semantic relations between the auditory and visual digits was found in all experiments. Moreover, a further experiment showed that unconscious multisensory integration was not obtained when participants did not undergo prior conscious training of the task. This suggests that following conscious learning, unconscious processing suffices for multisensory integration. © The Author(s) 2014.
Virtual Application of Darul Arif Palace from Serdang Sultanate using Virtual Reality
NASA Astrophysics Data System (ADS)
Syahputra, M. F.; Annisa, T.; Rahmat, R. F.; Muchtar, M. A.
2017-01-01
Serdang Sultanate is one of Malay Sultanate in Sumatera Utara. In the 18th century, many Malay Aristocrats have developed in Sumatera Utara. Social revolution has happened in 1946, many sultanates were overthrown and member of PKI (Communist Party of Indonesia) did mass killing on members of the sultanate families. As the results of this incident, many cultural and historical heritage destroyed. The integration of heritage preservation and the digital technology has become recent trend. The digital technology is not only able to record, preserve detailed documents and information of heritage completely, but also effectively bring the value-added. In this research, polygonal modelling techniques from 3D modelling technology is used to reconstruct Darul Arif Palace of Serdang Sultanate. After modelling the palace, it will be combined with virtual reality technology to allow user to explore the palace and the environment around the palace. Virtual technology is simulation of real objects in virtual world. The results in this research is that virtual reality application can run using Head-Mounted Display.
Electronic method for autofluorography of macromolecules on two-D matrices
Davidson, Jackson B.; Case, Arthur L.
1983-01-01
A method for detecting, localizing, and quantifying macromolecules contained in a two-dimensional matrix is provided which employs a television-based position sensitive detection system. A molecule-containing matrix may be produced by conventional means to produce spots of light at the molecule locations which are detected by the television system. The matrix, such as a gel matrix, is exposed to an electronic camera system including an image-intensifier and secondary electron conduction camera capable of light integrating times of many minutes. A light image stored in the form of a charge image on the camera tube target is scanned by conventional television techniques, digitized, and stored in a digital memory. Intensity of any point on the image may be determined from the number at the memory address of the point. The entire image may be displayed on a television monitor for inspection and photographing or individual spots may be analyzed through selected readout of the memory locations. Compared to conventional film exposure methods, the exposure time may be reduced 100-1000 times.
BAE Systems' 17μm LWIR camera core for civil, commercial, and military applications
NASA Astrophysics Data System (ADS)
Lee, Jeffrey; Rodriguez, Christian; Blackwell, Richard
2013-06-01
Seventeen (17) µm pixel Long Wave Infrared (LWIR) Sensors based on vanadium oxide (VOx) micro-bolometers have been in full rate production at BAE Systems' Night Vision Sensors facility in Lexington, MA for the past five years.[1] We introduce here a commercial camera core product, the Airia-MTM imaging module, in a VGA format that reads out in 30 and 60Hz progressive modes. The camera core is architected to conserve power with all digital interfaces from the readout integrated circuit through video output. The architecture enables a variety of input/output interfaces including Camera Link, USB 2.0, micro-display drivers and optional RS-170 analog output supporting legacy systems. The modular board architecture of the electronics facilitates hardware upgrades allow us to capitalize on the latest high performance low power electronics developed for the mobile phones. Software and firmware is field upgradeable through a USB 2.0 port. The USB port also gives users access to up to 100 digitally stored (lossless) images.
Polyplanar optical display electronics
NASA Astrophysics Data System (ADS)
DeSanto, Leonard; Biscardi, Cyrus
1997-07-01
The polyplanar optical display (POD) is a unique display screen which can be used with any projection source. The prototype ten inch display is two inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. In order to achieve a long lifetime, the new display uses a 100 milliwatt green solid- state laser at 532 nm as its light source. To produce real- time video, the laser light is being modulated by a digital light processing (DLP) chip manufactured by Texas Instruments. In order to use the solid-state laser as the light source and also fit within the constraints of the B-52 display, the digital micromirror device (DMD) circuit board is removed from the Texas Instruments DLP light engine assembly. Due to the compact architecture of the projection system within the display chassis, the DMD chip is operated remotely from the Texas Instruments circuit board. We discuss the operation of the DMD divorced from the light engine and the interfacing of the DMD board with various video formats including the format specific to the B-52 aircraft. A brief discussion of the electronics required to drive the laser is also presented.
Guetterman, Timothy C; Fetters, Michael D; Creswell, John W
2015-11-01
Mixed methods research is becoming an important methodology to investigate complex health-related topics, yet the meaningful integration of qualitative and quantitative data remains elusive and needs further development. A promising innovation to facilitate integration is the use of visual joint displays that bring data together visually to draw out new insights. The purpose of this study was to identify exemplar joint displays by analyzing the various types of joint displays being used in published articles. We searched for empirical articles that included joint displays in 3 journals that publish state-of-the-art mixed methods research. We analyzed each of 19 identified joint displays to extract the type of display, mixed methods design, purpose, rationale, qualitative and quantitative data sources, integration approaches, and analytic strategies. Our analysis focused on what each display communicated and its representation of mixed methods analysis. The most prevalent types of joint displays were statistics-by-themes and side-by-side comparisons. Innovative joint displays connected findings to theoretical frameworks or recommendations. Researchers used joint displays for convergent, explanatory sequential, exploratory sequential, and intervention designs. We identified exemplars for each of these designs by analyzing the inferences gained through using the joint display. Exemplars represented mixed methods integration, presented integrated results, and yielded new insights. Joint displays appear to provide a structure to discuss the integrated analysis and assist both researchers and readers in understanding how mixed methods provides new insights. We encourage researchers to use joint displays to integrate and represent mixed methods analysis and discuss their value. © 2015 Annals of Family Medicine, Inc.
Guetterman, Timothy C.; Fetters, Michael D.; Creswell, John W.
2015-01-01
PURPOSE Mixed methods research is becoming an important methodology to investigate complex health-related topics, yet the meaningful integration of qualitative and quantitative data remains elusive and needs further development. A promising innovation to facilitate integration is the use of visual joint displays that bring data together visually to draw out new insights. The purpose of this study was to identify exemplar joint displays by analyzing the various types of joint displays being used in published articles. METHODS We searched for empirical articles that included joint displays in 3 journals that publish state-of-the-art mixed methods research. We analyzed each of 19 identified joint displays to extract the type of display, mixed methods design, purpose, rationale, qualitative and quantitative data sources, integration approaches, and analytic strategies. Our analysis focused on what each display communicated and its representation of mixed methods analysis. RESULTS The most prevalent types of joint displays were statistics-by-themes and side-by-side comparisons. Innovative joint displays connected findings to theoretical frameworks or recommendations. Researchers used joint displays for convergent, explanatory sequential, exploratory sequential, and intervention designs. We identified exemplars for each of these designs by analyzing the inferences gained through using the joint display. Exemplars represented mixed methods integration, presented integrated results, and yielded new insights. CONCLUSIONS Joint displays appear to provide a structure to discuss the integrated analysis and assist both researchers and readers in understanding how mixed methods provides new insights. We encourage researchers to use joint displays to integrate and represent mixed methods analysis and discuss their value. PMID:26553895
Two high accuracy digital integrators for Rogowski current transducers.
Luo, Pan-dian; Li, Hong-bin; Li, Zhen-hua
2014-01-01
The Rogowski current transducers have been widely used in AC current measurement, but their accuracy is mainly subject to the analog integrators, which have typical problems such as poor long-term stability and being susceptible to environmental conditions. The digital integrators can be another choice, but they cannot obtain a stable and accurate output for the reason that the DC component in original signal can be accumulated, which will lead to output DC drift. Unknown initial conditions can also result in integral output DC offset. This paper proposes two improved digital integrators used in Rogowski current transducers instead of traditional analog integrators for high measuring accuracy. A proportional-integral-derivative (PID) feedback controller and an attenuation coefficient have been applied in improving the Al-Alaoui integrator to change its DC response and get an ideal frequency response. For the special design in the field of digital signal processing, the improved digital integrators have better performance than analog integrators. Simulation models are built for the purpose of verification and comparison. The experiments prove that the designed integrators can achieve higher accuracy than analog integrators in steady-state response, transient-state response, and temperature changing condition.
Two high accuracy digital integrators for Rogowski current transducers
NASA Astrophysics Data System (ADS)
Luo, Pan-dian; Li, Hong-bin; Li, Zhen-hua
2014-01-01
The Rogowski current transducers have been widely used in AC current measurement, but their accuracy is mainly subject to the analog integrators, which have typical problems such as poor long-term stability and being susceptible to environmental conditions. The digital integrators can be another choice, but they cannot obtain a stable and accurate output for the reason that the DC component in original signal can be accumulated, which will lead to output DC drift. Unknown initial conditions can also result in integral output DC offset. This paper proposes two improved digital integrators used in Rogowski current transducers instead of traditional analog integrators for high measuring accuracy. A proportional-integral-derivative (PID) feedback controller and an attenuation coefficient have been applied in improving the Al-Alaoui integrator to change its DC response and get an ideal frequency response. For the special design in the field of digital signal processing, the improved digital integrators have better performance than analog integrators. Simulation models are built for the purpose of verification and comparison. The experiments prove that the designed integrators can achieve higher accuracy than analog integrators in steady-state response, transient-state response, and temperature changing condition.
Computer-based desktop system for surgical videotape editing.
Vincent-Hamelin, E; Sarmiento, J M; de la Puente, J M; Vicente, M
1997-05-01
The educational role of surgical video presentations should be optimized by linking surgical images to graphic evaluation of indications, techniques, and results. We describe a PC-based video production system for personal editing of surgical tapes, according to the objectives of each presentation. The hardware requirement is a personal computer (100 MHz processor, 1-Gb hard disk, 16 Mb RAM) with a PC-to-TV/video transfer card plugged into a slot. Computer-generated numerical data, texts, and graphics are transformed into analog signals displayed on TV/video. A Genlock interface (a special interface card) synchronizes digital and analog signals, to overlay surgical images to electronic illustrations. The presentation is stored as digital information or recorded on a tape. The proliferation of multimedia tools is leading us to adapt presentations to the objectives of lectures and to integrate conceptual analyses with dynamic image-based information. We describe a system that handles both digital and analog signals, production being recorded on a tape. Movies may be managed in a digital environment, with either an "on-line" or "off-line" approach. System requirements are high, but handling a single device optimizes editing without incurring such complexity that management becomes impractical to surgeons. Our experience suggests that computerized editing allows linking surgical scientific and didactic messages on a single communication medium, either a videotape or a CD-ROM.
NASA Astrophysics Data System (ADS)
Moody, Marc; Fisher, Robert; Little, J. Kristin
2014-06-01
Boeing has developed a degraded visual environment navigational aid that is flying on the Boeing AH-6 light attack helicopter. The navigational aid is a two dimensional software digital map underlay generated by the Boeing™ Geospatial Embedded Mapping Software (GEMS) and fully integrated with the operational flight program. The page format on the aircraft's multi function displays (MFD) is termed the Approach page. The existing work utilizes Digital Terrain Elevation Data (DTED) and OpenGL ES 2.0 graphics capabilities to compute the pertinent graphics underlay entirely on the graphics processor unit (GPU) within the AH-6 mission computer. The next release will incorporate cultural databases containing Digital Vertical Obstructions (DVO) to warn the crew of towers, buildings, and power lines when choosing an opportune landing site. Future IRAD will include Light Detection and Ranging (LIDAR) point cloud generating sensors to provide 2D and 3D synthetic vision on the final approach to the landing zone. Collision detection with respect to terrain, cultural, and point cloud datasets may be used to further augment the crew warning system. The techniques for creating the digital map underlay leverage the GPU almost entirely, making this solution viable on most embedded mission computing systems with an OpenGL ES 2.0 capable GPU. This paper focuses on the AH-6 crew interface process for determining a landing zone and flying the aircraft to it.
CytometryML: a markup language for analytical cytology
NASA Astrophysics Data System (ADS)
Leif, Robert C.; Leif, Stephanie H.; Leif, Suzanne B.
2003-06-01
Cytometry Markup Language, CytometryML, is a proposed new analytical cytology data standard. CytometryML is a set of XML schemas for encoding both flow cytometry and digital microscopy text based data types. CytometryML schemas reference both DICOM (Digital Imaging and Communications in Medicine) codes and FCS keywords. These schemas provide representations for the keywords in FCS 3.0 and will soon include DICOM microscopic image data. Flow Cytometry Standard (FCS) list-mode has been mapped to the DICOM Waveform Information Object. A preliminary version of a list mode binary data type, which does not presently exist in DICOM, has been designed. This binary type is required to enhance the storage and transmission of flow cytometry and digital microscopy data. Index files based on Waveform indices will be used to rapidly locate the cells present in individual subsets. DICOM has the advantage of employing standard file types, TIF and JPEG, for Digital Microscopy. Using an XML schema based representation means that standard commercial software packages such as Excel and MathCad can be used to analyze, display, and store analytical cytometry data. Furthermore, by providing one standard for both DICOM data and analytical cytology data, it eliminates the need to create and maintain special purpose interfaces for analytical cytology data thereby integrating the data into the larger DICOM and other clinical communities. A draft version of CytometryML is available at www.newportinstruments.com.
A novel fully integrated handheld gamma camera
NASA Astrophysics Data System (ADS)
Massari, R.; Ucci, A.; Campisi, C.; Scopinaro, F.; Soluri, A.
2016-10-01
In this paper, we present an innovative, fully integrated handheld gamma camera, namely designed to gather in the same device the gamma ray detector with the display and the embedded computing system. The low power consumption allows the prototype to be battery operated. To be useful in radioguided surgery, an intraoperative gamma camera must be very easy to handle since it must be moved to find a suitable view. Consequently, we have developed the first prototype of a fully integrated, compact and lightweight gamma camera for radiopharmaceuticals fast imaging. The device can operate without cables across the sterile field, so it may be easily used in the operating theater for radioguided surgery. The prototype proposed consists of a Silicon Photomultiplier (SiPM) array coupled with a proprietary scintillation structure based on CsI(Tl) crystals. To read the SiPM output signals, we have developed a very low power readout electronics and a dedicated analog to digital conversion system. One of the most critical aspects we faced designing the prototype was the low power consumption, which is mandatory to develop a battery operated device. We have applied this detection device in the lymphoscintigraphy technique (sentinel lymph node mapping) comparing the results obtained with those of a commercial gamma camera (Philips SKYLight). The results obtained confirm a rapid response of the device and an adequate spatial resolution for the use in the scintigraphic imaging. This work confirms the feasibility of a small gamma camera with an integrated display. This device is designed for radioguided surgery and small organ imaging, but it could be easily combined into surgical navigation systems.
Digital-Difference Processing For Collision Avoidance.
NASA Technical Reports Server (NTRS)
Shores, Paul; Lichtenberg, Chris; Kobayashi, Herbert S.; Cunningham, Allen R.
1988-01-01
Digital system for automotive crash avoidance measures and displays difference in frequency between two sinusoidal input signals of slightly different frequencies. Designed for use with Doppler radars. Characterized as digital mixer coupled to frequency counter measuring difference frequency in mixer output. Technique determines target path mathematically. Used for tracking cars, missiles, bullets, baseballs, and other fast-moving objects.
Digital Images over the Internet: Rome Reborn at the Library of Congress.
ERIC Educational Resources Information Center
Valauskas, Edward J.
1994-01-01
Describes digital images of incunabula from the Library of the Vatican that are available over the Internet based on an actual exhibit that was displayed at the Library of Congress. Viewers, i.e., compression routines created to efficiently send color images, are explained; and other digital exhibits are described. (Contains three references.)…
An Inexpensive, Very High Impedance Digital Voltmeter for Selective Electrodes.
ERIC Educational Resources Information Center
Caceci, Marco S.
1984-01-01
Describes a compact, digital voltmeter which exceeds, both in accuracy and input impedance, most commercial pH meters and potentiometers. The instrument consists of two parts: a very high impedance hybrid operational amplifier used as a voltage follower (ICH8500/A, Intersil) and a four and one-half digits LED display panel meter (RP-4500,…
Displays: Entering a New Dimension
ERIC Educational Resources Information Center
Starkman, Neal
2007-01-01
As display technologies prepare to welcome 3-D, the 21st-century classroom will soon bear little resemblance to anything students and teachers have ever seen. In this article, the author presents the latest innovations in the world of digital display technology. These include: (1) Touchlight, an interactive touch screen program that takes a normal…
A volumetric three-dimensional digital light photoactivatable dye display
NASA Astrophysics Data System (ADS)
Patel, Shreya K.; Cao, Jian; Lippert, Alexander R.
2017-07-01
Volumetric three-dimensional displays offer spatially accurate representations of images with a 360° view, but have been difficult to implement due to complex fabrication requirements. Herein, a chemically enabled volumetric 3D digital light photoactivatable dye display (3D Light PAD) is reported. The operating principle relies on photoactivatable dyes that become reversibly fluorescent upon illumination with ultraviolet light. Proper tuning of kinetics and emission wavelengths enables the generation of a spatial pattern of fluorescent emission at the intersection of two structured light beams. A first-generation 3D Light PAD was fabricated using the photoactivatable dye N-phenyl spirolactam rhodamine B, a commercial picoprojector, an ultraviolet projector and a custom quartz imaging chamber. The system displays a minimum voxel size of 0.68 mm3, 200 μm resolution and good stability over repeated `on-off' cycles. A range of high-resolution 3D images and animations can be projected, setting the foundation for widely accessible volumetric 3D displays.
NASA Technical Reports Server (NTRS)
Easley, W. C.; Tanguy, J. S.
1986-01-01
An upgrade of the transport systems research vehicle (TSRV) experimental flight system retained the original monochrome display system. The original host computer was replaced with a Norden 11/70, a new digital autonomous terminal access communication (DATAC) data bus was installed for data transfer between display system and host, while a new data interface method was required. The new display data interface uses four split phase bipolar (SPBP) serial busses. The DATAC bus uses a shared interface ram (SIR) for intermediate storage of its data transfer. A display interface unit (DIU) was designed and configured to read from and write to the SIR to properly convert the data from parallel to SPBP serial and vice versa. It is found that separation of data for use by each SPBP bus and synchronization of data tranfer throughout the entire experimental flight system are major problems which require solution in DIU design. The techniques used to accomplish these new data interface requirements are described.
A volumetric three-dimensional digital light photoactivatable dye display
Patel, Shreya K.; Cao, Jian; Lippert, Alexander R.
2017-01-01
Volumetric three-dimensional displays offer spatially accurate representations of images with a 360° view, but have been difficult to implement due to complex fabrication requirements. Herein, a chemically enabled volumetric 3D digital light photoactivatable dye display (3D Light PAD) is reported. The operating principle relies on photoactivatable dyes that become reversibly fluorescent upon illumination with ultraviolet light. Proper tuning of kinetics and emission wavelengths enables the generation of a spatial pattern of fluorescent emission at the intersection of two structured light beams. A first-generation 3D Light PAD was fabricated using the photoactivatable dye N-phenyl spirolactam rhodamine B, a commercial picoprojector, an ultraviolet projector and a custom quartz imaging chamber. The system displays a minimum voxel size of 0.68 mm3, 200 μm resolution and good stability over repeated ‘on-off’ cycles. A range of high-resolution 3D images and animations can be projected, setting the foundation for widely accessible volumetric 3D displays. PMID:28695887
Motmot, an open-source toolkit for realtime video acquisition and analysis.
Straw, Andrew D; Dickinson, Michael H
2009-07-22
Video cameras sense passively from a distance, offer a rich information stream, and provide intuitively meaningful raw data. Camera-based imaging has thus proven critical for many advances in neuroscience and biology, with applications ranging from cellular imaging of fluorescent dyes to tracking of whole-animal behavior at ecologically relevant spatial scales. Here we present 'Motmot': an open-source software suite for acquiring, displaying, saving, and analyzing digital video in real-time. At the highest level, Motmot is written in the Python computer language. The large amounts of data produced by digital cameras are handled by low-level, optimized functions, usually written in C. This high-level/low-level partitioning and use of select external libraries allow Motmot, with only modest complexity, to perform well as a core technology for many high-performance imaging tasks. In its current form, Motmot allows for: (1) image acquisition from a variety of camera interfaces (package motmot.cam_iface), (2) the display of these images with minimal latency and computer resources using wxPython and OpenGL (package motmot.wxglvideo), (3) saving images with no compression in a single-pass, low-CPU-use format (package motmot.FlyMovieFormat), (4) a pluggable framework for custom analysis of images in realtime and (5) firmware for an inexpensive USB device to synchronize image acquisition across multiple cameras, with analog input, or with other hardware devices (package motmot.fview_ext_trig). These capabilities are brought together in a graphical user interface, called 'FView', allowing an end user to easily view and save digital video without writing any code. One plugin for FView, 'FlyTrax', which tracks the movement of fruit flies in real-time, is included with Motmot, and is described to illustrate the capabilities of FView. Motmot enables realtime image processing and display using the Python computer language. In addition to the provided complete applications, the architecture allows the user to write relatively simple plugins, which can accomplish a variety of computer vision tasks and be integrated within larger software systems. The software is available at http://code.astraw.com/projects/motmot.
2009-12-01
forward-looking infrared FOV field-of-view HDU helmet display unit HMD helmet-mounted display IHADSS Integrated Helmet and Display...monocular Integrated Helmet and Display Sighting System (IHADSS) helmet-mounted display ( HMD ) in the British Army’s Apache AH Mk 1 attack helicopter has any...Integrated Helmet and Display Sighting System, IHADSS, Helmet-mounted display, HMD , Apache helicopter, Visual performance UNCLAS UNCLAS UNCLAS SAR 96
Digital I and C system upgrade integration technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, H. W.; Shih, C.; Wang, J. R.
2012-07-01
This work developed an integration technique for digital I and C system upgrade, the utility can replace the I and C systems step by step systematically by this method. Inst. of Nuclear Energy Research (INER) developed a digital Instrumentation and Control (I and C) replacement integration technique on the basis of requirement of the three existing nuclear power plants (NPPs), which are Chin-Shan (CS) NPP, Kuo-Sheng (KS) NPP, and Maanshan (MS) NPP, in Taiwan, and also developed the related Critical Digital Review (CDR) Procedure. The digital I and C replacement integration technique includes: (I) Establishment of Nuclear Power Plant Digitalmore » Replacement Integration Guideline, (2) Preliminary Investigation on I and C System Digitalization, (3) Evaluation on I and C System Digitalization, and (4) Establishment of I and C System Digitalization Architectures. These works can be a reference for performing I and C system digital replacement integration of the three existing NPPs of Taiwan Power Company (TPC). A CDR is the review for a critical system digital I and C replacement. The major reference of this procedure is EPRI TR- 1011710 (2005) 'Handbook for Evaluating Critical Digital Equipment and Systems' which was published by the Electric Power Research Inst. (EPRI). With this document, INER developed a TPC-specific CDR procedure. Currently, CDR becomes one of the policies for digital I and C replacement in TPC. The contents of this CDR procedure include: Scope, Responsibility, Operation Procedure, Operation Flow Chart, CDR review items. The CDR review items include the comparison of the design change, Software Verification and Validation (SVandV), Failure Mode and Effects Analysis (FMEA), Evaluation of Diversity and Defense-in-depth (D3), Evaluation of Watchdog Timer, Evaluation of Electromagnetic Compatibility (EMC), Evaluation of Grounding for System/Component, Seismic Evaluation, Witness and Inspection, Lessons Learnt from the Digital I and C Failure Events. A solid review can assure the quality of the digital I and C system replacement. (authors)« less
NASA Astrophysics Data System (ADS)
Condit, C. D.; Mninch, M.
2012-12-01
The Dynamic Digital Map (DDM) is an ideal vehicle for the professional geologist to use to describe the geologic setting of key sites to the public in a format that integrates and presents maps and associated analytical data and multimedia without the need for an ArcGIS interface. Maps with field trip guide stops that include photographs, movies and figures and animations, showing, for example, how the features seen in the field formed, or how data might be best visualized in "time-frame" sequences are ideally included in DDMs. DDMs distribute geologic maps, images, movies, analytical data, and text such as field guides, in an integrated cross-platform, web enabled format that are intuitive to use, easily and quickly searchable, and require no additional proprietary software to operate. Maps, photos, movies and animations are stored outside the program, which acts as an organizational framework and index to present these data. Once created, the DDM can be downloaded from the web site hosting it in the flavor matching the user's operating system (e.g. Linux, Windows and Macintosh) as zip, dmg or tar files (and soon as iOS and Android tablet apps). When decompressed, the DDM can then access its associated data directly from that site with no browser needed. Alternatively, the entire package can be distributed and used from CD, DVD, or flash-memory storage. The intent of this presentation is to introduce the variety of geology that can be accessed from the over 25 DDMs created to date, concentrating on the DDM of the Springerville Volcanic Field. We will highlight selected features of some of them, introduce a simplified interface to the original DDM (that we renamed DDMC for Classic) and give a brief look at a the recently (2010-2011) completed geologic maps of the Springerville Volcanic field to see examples of each of the features discussed above, and a display of the integrated analytical data set. We will also highlight the differences between the classic or DDMCs and the new Dynamic Digital Map Extended (DDME) designed from the ground up to take advantage of the expanded connectedness this redesigned program will accommodate.
Confocal Retinal Imaging Using a Digital Light Projector with a Near Infrared VCSEL Source
Muller, Matthew S.; Elsner, Ann E.
2018-01-01
A custom near infrared VCSEL source has been implemented in a confocal non-mydriatic retinal camera, the Digital Light Ophthalmoscope (DLO). The use of near infrared light improves patient comfort, avoids pupil constriction, penetrates the deeper retina, and does not mask visual stimuli. The DLO performs confocal imaging by synchronizing a sequence of lines displayed with a digital micromirror device to the rolling shutter exposure of a 2D CMOS camera. Real-time software adjustments enable multiply scattered light imaging, which rapidly and cost-effectively emphasizes drusen and other scattering disruptions in the deeper retina. A separate 5.1″ LCD display provides customizable visible stimuli for vision experiments with simultaneous near infrared imaging. PMID:29899586
Protecting Digital Evidence Integrity by Using Smart Cards
NASA Astrophysics Data System (ADS)
Saleem, Shahzad; Popov, Oliver
RFC 3227 provides general guidelines for digital evidence collection and archiving, while the International Organization on Computer Evidence offers guidelines for best practice in the digital forensic examination. In the light of these guidelines we will analyze integrity protection mechanism provided by EnCase and FTK which is mainly based on Message Digest Codes (MDCs). MDCs for integrity protection are not tamper proof, hence they can be forged. With the proposed model for protecting digital evidence integrity by using smart cards (PIDESC) that establishes a secure platform for digitally signing the MDC (in general for a whole range of cryptographic services) in combination with Public Key Cryptography (PKC), one can show that this weakness might be overcome.
Unmanned ground vehicles for integrated force protection
NASA Astrophysics Data System (ADS)
Carroll, Daniel M.; Mikell, Kenneth; Denewiler, Thomas
2004-09-01
The combination of Command and Control (C2) systems with Unmanned Ground Vehicles (UGVs) provides Integrated Force Protection from the Robotic Operation Command Center. Autonomous UGVs are directed as Force Projection units. UGV payloads and fixed sensors provide situational awareness while unattended munitions provide a less-than-lethal response capability. Remote resources serve as automated interfaces to legacy physical devices such as manned response vehicles, barrier gates, fence openings, garage doors, and remote power on/off capability for unmanned systems. The Robotic Operations Command Center executes the Multiple Resource Host Architecture (MRHA) to simultaneously control heterogeneous unmanned systems. The MRHA graphically displays video, map, and status for each resource using wireless digital communications for integrated data, video, and audio. Events are prioritized and the user is prompted with audio alerts and text instructions for alarms and warnings. A control hierarchy of missions and duty rosters support autonomous operations. This paper provides an overview of the key technology enablers for Integrated Force Protection with details on a force-on-force scenario to test and demonstrate concept of operations using Unmanned Ground Vehicles. Special attention is given to development and applications for the Remote Detection Challenge and Response (REDCAR) initiative for Integrated Base Defense.
Three-dimensional (3D) GIS-based coastline change analysis and display using LIDAR series data
NASA Astrophysics Data System (ADS)
Zhou, G.
This paper presents a method to visualize and analyze topography and topographic changes on coastline area. The study area, Assantage Island Nation Seashore (AINS), is located along a 37-mile stretch of Assateague Island National Seashore in Eastern Shore, VA. The DEMS data sets from 1996 through 2000 for various time intervals, e.g., year-to-year, season-to-season, date-to-date, and a four year (1996-2000) are created. The spatial patterns and volumetric amounts of erosion and deposition of each part on a cell-by-cell basis were calculated. A 3D dynamic display system using ArcView Avenue for visualizing dynamic coastal landforms has been developed. The system was developed into five functional modules: Dynamic Display, Analysis, Chart analysis, Output, and Help. The Display module includes five types of displays: Shoreline display, Shore Topographic Profile, Shore Erosion Display, Surface TIN Display, and 3D Scene Display. Visualized data include rectified and co-registered multispectral Landsat digital image and NOAA/NASA ATM LIDAR data. The system is demonstrated using multitemporal digital satellite and LIDAR data for displaying changes on the Assateague Island National Seashore, Virginia. The analyzed results demonstrated that a further understanding to the study and comparison of the complex morphological changes that occur naturally or human-induced on barrier islands is required.
47 CFR 79.109 - Activating accessibility features.
Code of Federal Regulations, 2014 CFR
2014-10-01
... ACCESSIBILITY OF VIDEO PROGRAMMING Apparatus § 79.109 Activating accessibility features. (a) Requirements... video programming transmitted in digital format simultaneously with sound, including apparatus designed to receive or display video programming transmitted in digital format using Internet protocol, with...
Advanced electronic displays and their potential in future transport aircraft
NASA Technical Reports Server (NTRS)
Hatfield, J. J.
1981-01-01
It is pointed out that electronic displays represent one of the keys to continued integration and improvement of the effectiveness of avionic systems in future transport aircraft. An employment of modern electronic display media and generation has become vital in connection with the increases in modes and functions of modern aircraft. Requirements for electronic systems of future transports are examined, and a description is provided of the tools which are available for cockpit integration, taking into account trends in information processing and presentation, trends in integrated display devices, and trends concerning input/output devices. Developments related to display media, display generation, and I/O devices are considered, giving attention to a comparison of CRT and flat-panel display technology, advanced HUD technology and multifunction controls. Integrated display formats are discussed along with integrated systems and cockpit configurations.
Liquid crystal true 3D displays for augmented reality applications
NASA Astrophysics Data System (ADS)
Li, Yan; Liu, Shuxin; Zhou, Pengcheng; Chen, Quanming; Su, Yikai
2018-02-01
Augmented reality (AR) technology, which integrates virtual computer-generated information into the real world scene, is believed to be the next-generation human-machine interface. However, most AR products adopt stereoscopic 3D display technique, which causes the accommodation-vergence conflict. To solve this problem, we have proposed two approaches. The first is a multi-planar volumetric display using fast switching polymer-stabilized liquid crystal (PSLC) films. By rapidly switching the films between scattering and transparent states while synchronizing with a high-speed projector, the 2D slices of a 3D volume could be displayed in time sequence. We delved into the research on developing high-performance PSLC films in both normal mode and reverse mode; moreover, we also realized the demonstration of four-depth AR images with correct accommodation cues. For the second approach, we realized a holographic AR display using digital blazed gratings and a 4f system to eliminate zero-order and higher-order noise. With a 4k liquid crystal on silicon device, we achieved a field of view (FOV) of 32 deg. Moreover, we designed a compact waveguidebased holographic 3D display. In the design, there are two holographic optical elements (HOEs), each of which functions as a diffractive grating and a Fresnel lens. Because of the grating effect, holographic 3D image light is coupled into and decoupled out of the waveguide by modifying incident angles. Because of the lens effect, the collimated zero order light is focused at a point, and got filtered out. The optical power of the second HOE also helps enlarge FOV.
Review of Defense Display Research Programs
2001-01-01
micromirror device (DMD) projection displays, or some future contender, such as organic light emitting diode displays (OLED)—will be installed via...Instruments (TI) digital micromirror device (DMD) technology, developed in an $11.3M research effort managed by the Air Force Research Laboratory from 1991...systems for simulator/trainer systems in the near-mid term and advanced cockpits in the far term. Such large area, curved display systems will require the
Authomatization of Digital Collection Access Using Mobile and Wireless Data Terminals
NASA Astrophysics Data System (ADS)
Leontiev, I. V.
Information technologies become vital due to information processing needs, database access, data analysis and decision support. Currently, a lot of scientific projects are oriented on database integration of heterogeneous systems. The problem of on-line and rapid access to large integrated systems of digital collections is also very important. Usually users move between different locations, either at work or at home. In most cases users need an efficient and remote access to information, stored in integrated data collections. Desktop computers are unable to fulfill the needs, so mobile and wireless devices become helpful. Handhelds and data terminals are nessessary in medical assistance (they store detailed information about each patient, and helpful for nurses), immediate access to data collections is used in a Highway patrol services (databanks of cars, owners, driver licences). Using mobile access, warehouse operations can be validated. Library and museum items cyclecounting will speed up using online barcode-scanning and central database access. That's why mobile devices - cell phones, PDA, handheld computers with wireless access, WindowsCE and PalmOS terminals become popular. Generally, mobile devices have a relatively slow processor, and limited display capabilities, but they are effective for storing and displaying textual data, recognize user hand-writing with stylus, support GUI. Users can perform operations on handheld terminal, and exchange data with the main system (using immediate radio access, or offline access during syncronization process) for update. In our report, we give an approach for mobile access to data collections, which raises an efficiency of data processing in a book library, helps to control available books, books in stock, validate service charges, eliminate staff mistakes, generate requests for book delivery. Our system uses mobile devices Symbol RF (with radio-channel access), and data terminals Symbol Palm Terminal for batch-processing and synchronization with remote library databases. We discuss the use of PalmOS-compatible devices, and WindowsCE terminals. Our software system is based on modular, scalable three-tier architecture. Additional functionality can be easily customized. Scalability is also supplied by Internet / Intranet technologies, and radio-access points. The base module of the system supports generic warehouse operations: cyclecounting with handheld barcode-scanners, efficient items delivery and issue, item movement, reserving, report generating on finished and in-process operations. Movements are optimized using worker's current location, operations are sorted in a priority order and transmitted to mobile and wireless worker's terminals. Mobile terminals improve of tasks processing control, eliminate staff mistakes, display actual information about main processes, provide data for online-reports, and significantly raise the efficiency of data exchange.
Microcomputer-based Peltier thermostat for precision optical radiation measurements
NASA Astrophysics Data System (ADS)
Zhu, Xiaosong; Krochmann, Eike; Chen, Jiashu
1992-03-01
We have developed a microcomputer-based thermostat for a light measuring head in precision optical radiation measurements. This thermostat consists of a single-chip microcomputer, a digital-to-analog converter, a liquid crystal display, a power operational amplifier, and a Peltier element (thermoelectric cooler). The Peltier element keeps the temperature of the photometer head at 20±0.1 °C in the ambient temperature range from -20 to 60 °C. A control algorithm which combines the ``Bang-Bang'' mode and proportional-plus-integral-plus-derivative mode is used to achieve fast and smooth thermostatic performance. This thermostat is effective, inexpensive, and easy to adjust. Several applications of the Peltier thermostat are mentioned.
Implementation of an optimum profile guidance system on STOLAND
NASA Technical Reports Server (NTRS)
Flanagan, P. F.
1978-01-01
The implementation on the STOLAND airborne digital computer of an optimum profile guidance system for the augmentor wing jet STOL research aircraft is described. Major tasks were to implement the guidance and control logic to airborne computer software and to integrate the module with the existing STOLAND navigation, display, and autopilot routines. The optimum profile guidance system comprises an algorithm for synthesizing mimimum fuel trajectories for a wide range of starting positions in the terminal area and a control law for flying the aircraft automatically along the trajectory. The avionics software developed is described along with a FORTRAN program that was constructed to reflect the modular nature and algorthms implemented in the avionics software.
NASA Technical Reports Server (NTRS)
Baer-Riedhart, Jennifer L.; Landy, Robert J.
1987-01-01
The highly integrated digital electronic control (HIDEC) program at NASA Ames Research Center, Dryden Flight Research Facility is a multiphase flight research program to quantify the benefits of promising integrated control systems. McDonnell Aircraft Company is the prime contractor, with United Technologies Pratt and Whitney Aircraft, and Lear Siegler Incorporated as major subcontractors. The NASA F-15A testbed aircraft was modified by the HIDEC program by installing a digital electronic flight control system (DEFCS) and replacing the standard F100 (Arab 3) engines with F100 engine model derivative (EMD) engines equipped with digital electronic engine controls (DEEC), and integrating the DEEC's and DEFCS. The modified aircraft provides the capability for testing many integrated control modes involving the flight controls, engine controls, and inlet controls. This paper focuses on the first two phases of the HIDEC program, which are the digital flight control system/aircraft model identification (DEFCS/AMI) phase and the adaptive engine control system (ADECS) phase.
[Interface interconnection and data integration in implementing of digital operating room].
Feng, Jingyi; Chen, Hua; Liu, Jiquan
2011-10-01
The digital operating-room, with highly integrated clinical information, is very important for rescuing lives of patients and improving quality of operations. Since equipments in domestic operating-rooms have diversified interface and nonstandard communication protocols, designing and implementing an integrated data sharing program for different kinds of diagnosing, monitoring, and treatment equipments become a key point in construction of digital operating room. This paper addresses interface interconnection and data integration for commonly used clinical equipments from aspects of hardware interface, interface connection and communication protocol, and offers a solution for interconnection and integration of clinical equipments in heterogeneous environment. Based on the solution, a case of an optimal digital operating-room is presented in this paper. Comparing with the international solution for digital operating-room, the solution proposed in this paper is more economical and effective. And finally, this paper provides a proposal for the platform construction of digital perating-room as well as a viewpoint for standardization of domestic clinical equipments.
Code of Federal Regulations, 2013 CFR
2013-04-01
... recordings and/or digital records shall be provided to the Commission upon request. (x) Video library log. A... events on video and/or digital recordings. The displayed date and time shall not significantly obstruct... each gaming machine change booth. (w) Video recording and/or digital record retention. (1) All video...
Code of Federal Regulations, 2012 CFR
2012-04-01
... recordings and/or digital records shall be provided to the Commission upon request. (x) Video library log. A... events on video and/or digital recordings. The displayed date and time shall not significantly obstruct... each gaming machine change booth. (w) Video recording and/or digital record retention. (1) All video...
Code of Federal Regulations, 2014 CFR
2014-04-01
... recordings and/or digital records shall be provided to the Commission upon request. (x) Video library log. A... events on video and/or digital recordings. The displayed date and time shall not significantly obstruct... each gaming machine change booth. (w) Video recording and/or digital record retention. (1) All video...
The New Visual Displays That Are "Floating" Your Way. Building Digital Libraries
ERIC Educational Resources Information Center
Huwe, Terence K.
2005-01-01
In this column, the author describes three very experimental visual display technologies that will affect library collections and services in the near future. While each of these new display strategies is unique in its technological approach, there is a common denominator to all three: better freedom of mobility that will allow people to interact…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas Ulrich; Ronald Boring; William Phoenix
2012-08-01
The United States (U.S.) nuclear industry, like similar process control industries, has moved toward upgrading its control rooms. The upgraded control rooms typically feature digital control system (DCS) displays embedded in the panels. These displays gather information from the system and represent that information on a single display surface. In this manner, the DCS combines many previously separate analog indicators and controls into a single digital display, whereby the operators can toggle between multiple windows to monitor and control different aspects of the plant. The design of the DCS depends on the function of the system it monitors, but revolvesmore » around presenting the information most germane to an operator at any point in time. DCSs require a carefully designed human system interface. This report centers on redesigning existing DCS displays for an example chemical volume control system (CVCS) at a U.S. nuclear power plant. The crucial nature of the CVCS, which controls coolant levels and boration in the primary system, requires a thorough human factors evaluation of its supporting DCS. The initial digital controls being developed for the DCSs tend to directly mimic the former analog controls. There are, however, unique operator interactions with a digital vs. analog interface, and the differences have not always been carefully factored in the translation of an analog interface to a replacement DCS. To ensure safety, efficiency, and usability of the emerging DCSs, a human factors usability evaluation was conducted on a CVCS DCS currently being used and refined at an existing U.S. nuclear power plant. Subject matter experts from process control engineering, software development, and human factors evaluated the DCS displays to document potential usability issues and propose design recommendations. The evaluation yielded 167 potential usability issues with the DCS. These issues should not be considered operator performance problems but rather opportunities identified by experts to improve upon the design of the DCS. A set of nine design recommendations was developed to address these potential issues. The design principles addressed the following areas: (1) color, (2) pop-up window structure, (3) navigation, (4) alarms, (5) process control diagram, (6) gestalt grouping, (7) typography, (8) terminology, and (9) data entry. Visuals illustrating the improved DCS displays accompany the design recommendations. These nine design principles serve as the starting point to a planned general DCS style guide that can be used across the U.S. nuclear industry to aid in the future design of effective DCS interfaces.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hopwood, J.E.; Affeldt, B.
An IBM personal computer (PC), a Gerber coordinate digitizer, and a collection of other instruments make up a system known as the Coordinate Digitizer Interactive Processor (CDIP). The PC extracts coordinate data from the digitizer through a special interface, and then, after reformatting, transmits the data to a remote VAX computer, a floppy disk, and a display terminal. This system has improved the efficiency of producing printed circuit-board artwork and extended the useful life of the Gerber GCD-1 Digitizer. 1 ref., 12 figs.
3D interactive augmented reality-enhanced digital learning systems for mobile devices
NASA Astrophysics Data System (ADS)
Feng, Kai-Ten; Tseng, Po-Hsuan; Chiu, Pei-Shuan; Yang, Jia-Lin; Chiu, Chun-Jie
2013-03-01
With enhanced processing capability of mobile platforms, augmented reality (AR) has been considered a promising technology for achieving enhanced user experiences (UX). Augmented reality is to impose virtual information, e.g., videos and images, onto a live-view digital display. UX on real-world environment via the display can be e ectively enhanced with the adoption of interactive AR technology. Enhancement on UX can be bene cial for digital learning systems. There are existing research works based on AR targeting for the design of e-learning systems. However, none of these work focuses on providing three-dimensional (3-D) object modeling for en- hanced UX based on interactive AR techniques. In this paper, the 3-D interactive augmented reality-enhanced learning (IARL) systems will be proposed to provide enhanced UX for digital learning. The proposed IARL systems consist of two major components, including the markerless pattern recognition (MPR) for 3-D models and velocity-based object tracking (VOT) algorithms. Realistic implementation of proposed IARL system is conducted on Android-based mobile platforms. UX on digital learning can be greatly improved with the adoption of proposed IARL systems.
Maxillary anterior papilla display during smiling: a clinical study of the interdental smile line.
Hochman, Mark N; Chu, Stephen J; Tarnow, Dennis P
2012-08-01
The purpose of this research was to quantify the visual display (presence) or lack of display (absence) of interdental papillae during maximum smiling in a patient population aged 10 to 89 years. Four hundred twenty digital single-lens reflex photographs of patients were taken and examined for the visual display of interdental papillae between the maxillary anterior teeth during maximum smiling. Three digital photographs were taken per patient from the frontal, right frontal-lateral, and left frontal-lateral views. The data set of photographs was examined by two examiners for the presence or absence of the visual display of papillae. The visual display of interdental papillae during maximum smiling occurred in 380 of the 420 patients examined in this study, equivalent to a 91% occurrence rate. Eighty-seven percent of all patients categorized as having a low gingival smile line (n = 303) were found to display the interdental papillae upon smiling. Differences were noted for individual age groups according to the decade of life as well as a trend toward decreasing papillary display with increasing age. The importance of interdental papillae display during dynamic smiling should not be left undiagnosed since it is visible in over 91% of older patients and in 87% of patients with a low gingival smile line, representing a common and important esthetic element that needs to be assessed during smile analysis of the patient.
ERIC Educational Resources Information Center
Sadaf, Ayesha; Johnson, Barbara L.
2017-01-01
This study explored teachers' behavioral, normative, and control beliefs related to digital literacy integration into their classrooms. Ajzen's Theory of Planned Behavior (TPB) was used as a theoretical framework to collect and analyze data. Findings revealed that teachers' integration of digital literacy were related to their behavioral beliefs…
Field-Programmable Gate Array-based fluxgate magnetometer with digital integration
NASA Astrophysics Data System (ADS)
Butta, Mattia; Janosek, Michal; Ripka, Pavel
2010-05-01
In this paper, a digital magnetometer based on printed circuit board fluxgate is presented. The fluxgate is pulse excited and the signal is extracted by gate integration. We investigate the possibility to perform integration on very narrow gates (typically 500 ns) by using digital techniques. The magnetometer is based on field-programmable gate array (FPGA) card: we will show all the advantages and disadvantages, given by digitalization of fluxgate output voltage by means of analog-to-digital converter on FPGA card, as well as digitalization performed by external digitizer. Due to very narrow gate, it is shown that a magnetometer entirely based on a FPGA card is preferable, because it avoids noise due to trigger instability. Both open loop and feedback operative mode are described and achieved results are presented.
Flexible Display and Integrated Communication Devices (FDICD) Technology. Volume 2
2008-06-01
AFRL-RH-WP-TR-2008-0072 Flexible Display and Integrated Communication Devices (FDICD) Technology, Volume II David Huffman Keith Tognoni...14 April 2004 – 20 June 2008 4. TITLE AND SUBTITLE Flexible Display and Integrated Communication Devices (FDICD) Technology, Volume II 5a...14. ABSTRACT This flexible display and integrated communication devices (FDICD) technology program sought to create a family of powerful
A Scalable, Collaborative, Interactive Light-field Display System
2014-06-01
displays, 3D display, holographic video, integral photography, plenoptic , computed photography 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...light-field, holographic displays, 3D display, holographic video, integral photography, plenoptic , computed photography 1 Distribution A: Approved
NASA Technical Reports Server (NTRS)
Cash, B.
1985-01-01
Simple technique developed for monitoring direct currents up to several hundred amperes and digitally displaying values directly in current units. Used to monitor current magnitudes beyond range of standard laboratory ammeters, which typically measure 10 to 20 amperes maximum. Technique applicable to any current-monitoring situation.
NASA Technical Reports Server (NTRS)
Buggle, R. N.; Metka, W. H., Jr
1984-01-01
Instrument reads tip temperature and contact potential in seconds. Tinned soldering tip touched to temperature sensitive button for 4 seconds and to voltage probe for 1 to 3 seconds. Tip temperature and voltage appear on digital displays. Instrument quickly gives assurance conditions are correct for reliable soldering.
Upton, Richard G.
1978-01-01
A digital scale converter is provided for binary coded decimal (BCD) conversion. The converter may be programmed to convert a BCD value of a first scale to the equivalent value of a second scale according to a known ratio. The value to be converted is loaded into a first BCD counter and counted down to zero while a second BCD counter registers counts from zero or an offset value depending upon the conversion. Programmable rate multipliers are used to generate pulses at selected rates to the counters for the proper conversion ratio. The value present in the second counter at the time the first counter is counted to the zero count is the equivalent value of the second scale. This value may be read out and displayed on a conventional seven-segment digital display.
Digital rights language support for evolving digital cinema requirements
NASA Astrophysics Data System (ADS)
Orri, Xavier; Mas, Joan-Maria; Macq, Benoit M. M.
2003-06-01
Digital cinema can be defined as the digital electronic distribution and display of theatrical film content or live material to the theatre. However, this simple definition does not reflect the complex mesh of balanced business relationships between the different parties involved in the worldwide cinematic distribution. Its transition from an analogue to a digital business will happen progressively, starting with only content being digitally distributed and going until an all-digital business. From these facts derive strong requirements on digital rights management (DRM) systems for digital cinema and therefore on the digital rights language supporting it. This paper explores the requirements imposed by the cinematic distribution model and by its progressive transition to digital, and the impact these have on digital rights languages. We analyze the support provided by different digital rights languages, identifying weaknesses and exploring solutions in fulfilling the requirements of the digital cinema distribution model.
New Integrated Video and Graphics Technology: Digital Video Interactive.
ERIC Educational Resources Information Center
Optical Information Systems, 1987
1987-01-01
Describes digital video interactive (DVI), a new technology which combines the interactivity of the graphics capabilities in personal computers with the realism of high-quality motion video and multitrack audio in an all-digital integrated system. (MES)
Optimal scan strategy for mega-pixel and kilo-gray-level OLED-on-silicon microdisplay.
Ji, Yuan; Ran, Feng; Ji, Weigui; Xu, Meihua; Chen, Zhangjing; Jiang, Yuxi; Shen, Weixin
2012-06-10
The digital pixel driving scheme makes the organic light-emitting diode (OLED) microdisplays more immune to the pixel luminance variations and simplifies the circuit architecture and design flow compared to the analog pixel driving scheme. Additionally, it is easily applied in full digital systems. However, the data bottleneck becomes a notable problem as the number of pixels and gray levels grow dramatically. This paper will discuss the digital driving ability to achieve kilogray-levels for megapixel displays. The optimal scan strategy is proposed for creating ultra high gray levels and increasing light efficiency and contrast ratio. Two correction schemes are discussed to improve the gray level linearity. A 1280×1024×3 OLED-on-silicon microdisplay, with 4096 gray levels, is designed based on the optimal scan strategy. The circuit driver is integrated in the silicon backplane chip in the 0.35 μm 3.3 V-6 V dual voltage one polysilicon layer, four metal layers (1P4M) complementary metal-oxide semiconductor (CMOS) process with custom top metal. The design aspects of the optimal scan controller are also discussed. The test results show the gray level linearity of the correction schemes for the optimal scan strategy is acceptable by the human eye.
Fabrication and characterization of low temperature polycrystalline silicon thin film transistors
NASA Astrophysics Data System (ADS)
Krishnan, Anand Thiruvengadathan
2000-10-01
The proliferation of devices with built-in displays, such as personal digital assistants and cellular phones has created a demand for rugged light-weight displays. Polymeric substrates could be suited for these applications, and they offer the possibility of flexible displays also. However, driver circuitry needs to be integrated in the display if the cost is to be reduced. Low temperature (<350°C) polycrystalline silicon (poly-Si) thin film transistors, if developed, offer driver circuitry integration during pixel transistor fabrication on top of flexible substrates. This thesis addresses several issues related to the fabrication of thin film transistors at low temperatures on glass substrates. A high-density plasma (electron cyclotron resonance (ECR)) based approach was adopted for deposition of thin films. A process for deposition of n-type doped silicon (n-type doped Si) at T < 350°C and having resistivity <1 ohm/cm has been developed. Intrinsic poly-Si was deposited under different conditions of microwave power, RF bias and deposition times. The properties of n-type doped Si and intrinsic poly-Si were correlated with the structure and the deposition conditions. A novel TFT structure has been proposed and implemented in this work. This top gate TFT structure uses n-type doped Si and utilizes only two masks and one alignment step. There are no critical etch steps and good interface quality could be obtained even without post-processing hydrogenation as the poly-Si surface was not exposed to air before deposition of the gate dielectric. TFTs using this top gate structure were fabricated with no process step exceeding 340°C electrode temperature (surface temperature <300°C). These TFTs show ON/OFF ratios in excess of 105. Their sub-threshold swing is ˜0.5 V/decade and mobility is 1--10 cm2/V-s. Several TFTs were also fabricated using alternative dielectrics such as oxide deposited from tetramethyl silane in an RFPECVD chamber and silicon nitride deposited in the ECR and these TFTs also show reasonable device characteristics. TFTs processed using this high-density plasma based approach show great potential for use in applications such as driver circuitry integration on low temperature substrates.
Grayscale standard display function on LCD color monitors
NASA Astrophysics Data System (ADS)
De Monte, Denis; Casale, Carlo; Albani, Luigi; Bonfiglio, Silvio
2007-03-01
Currently, as a rule, digital medical systems use monochromatic Liquid Crystal Display (LCD) monitors to ensure an accurate reproduction of the Grayscale Standard Display Function (GSDF) as specified in the Digital Imaging and Communications in Medicine (DICOM) Standard. As a drawback, special panels need to be utilized in digital medical systems, while it would be preferable to use regular color panels, which are manufactured on a wide scale and are thus available at by far lower prices. The method proposed introduces a temporal color dithering technique to accurately reproduce the GSDF on color monitors without losing monitor resolution. By exploiting the characteristics of the Human Visual System (HVS) the technique ensures that a satisfactory grayscale reproduction is achieved minimizing perceivable flickering and undesired color artifacts. The algorithm has been implemented in the monitor using a low-cost Field Programmable Gate Array (FPGA). Quantitative evaluations of luminance response on a 3 Mega-pixel color monitor have shown that the compliance with the GSDF can be achieved with the accuracy level required by medical applications. At the same time the measured color deviation is below the threshold perceivable by the human eye.
Villa, Francesco
1982-01-01
Method and apparatus for sequentially scanning a plurality of target elements with an electron scanning beam modulated in accordance with variations in a high-frequency analog signal to provide discrete analog signal samples representative of successive portions of the analog signal; coupling the discrete analog signal samples from each of the target elements to a different one of a plurality of high speed storage devices; converting the discrete analog signal samples to equivalent digital signals; and storing the digital signals in a digital memory unit for subsequent measurement or display.
ERIC Educational Resources Information Center
McAdams, Laurie
2013-01-01
The digital age has impacted education and how teachers prepare students to master 21st century literacies. Numerous national, state, and local entities have made the integration of technology into the literacy curriculum a priority, and teachers are becoming more proficient with their use of digital tools. However, integrating technology to…
NASA Technical Reports Server (NTRS)
Glover, Richard D.
1987-01-01
A pipelined, multiprocessor, general-purpose ground support equipment for digital flight systems has been developed and placed in service at the NASA Ames Research Center's Dryden Flight Research Facility. The design is an outgrowth of the earlier aircraft interrogation and display system (AIDS) used in support of several research projects to provide engineering-units display of internal control system parameters during development and qualification testing activities. The new system, incorporating multiple 16-bit processors, is called extended AIDS (XAIDS) and is now supporting the X-29A forward-swept-wing aircraft project. This report describes the design and mechanization of XAIDS and shows the steps whereby a typical user may take advantage of its high throughput and flexible features.
Atomized scan strategy for high definition for VR application
NASA Astrophysics Data System (ADS)
Huang, Shuping; Ran, Feng; Ji, Yuan; Chen, Wendong
2017-10-01
Silicon-based OLED (Organic Light Emitting Display) microdisplay technology begins to attract people's attention in the emerging VR and AR devices. The high display frame refresh rate is an important solution to alleviate the dizziness in VR applications. Traditional display circuit drivers use the analog method or the digital PWM method that follow the serial scan order from the first pixel to the last pixel by using the shift registers. This paper proposes a novel atomized scan strategy based on the digital fractal scan strategy using the pseudo-random scan order. It can be used to realize the high frame refresh rate with the moderate pixel clock frequency in the high definition OLED microdisplay. The linearity of the gray level is also improved compared with the Z fractal scan strategy.
NASA Technical Reports Server (NTRS)
Cheng, Thomas D.; Angelici, Gary L.; Slye, Robert E.; Ma, Matt
1991-01-01
The USDA presently uses labor-intensive photographic interpretation procedures to delineate large geographical areas into manageable size sampling units for the estimation of domestic crop and livestock production. Computer software to automate the boundary delineation procedure, called the computer-assisted stratification and sampling (CASS) system, was developed using a Hewlett Packard color-graphics workstation. The CASS procedures display Thematic Mapper (TM) satellite digital imagery on a graphics display workstation as the backdrop for the onscreen delineation of sampling units. USGS Digital Line Graph (DLG) data for roads and waterways are displayed over the TM imagery to aid in identifying potential sample unit boundaries. Initial analysis conducted with three Missouri counties indicated that CASS was six times faster than the manual techniques in delineating sampling units.
ERIC Educational Resources Information Center
Palaiologou, Ioanna
2016-01-01
A body of research is emerging on early childhood education teachers' views on the integration of digital technologies in their practice. Despite evidence of the digitalisation of homes in affluent societies and children's interactions in highly mediated digital environments, few teachers so far have integrated digital devices into a play-based…
ERIC Educational Resources Information Center
Keough, Brian; Wolfe, Mark
2012-01-01
This article discusses integrated approaches to the management and preservation of born digital photography. It examines the changing practices among photographers, and the needed relationships between the photographers using digital technology and the archivists responsible for acquiring their born digital images. Special consideration is given…
ERIC Educational Resources Information Center
Liu, Rong; Unger, John A.; Scullion, Vicki A.
2014-01-01
Drawing data from an action-oriented research project for integrating digital video cameras into the reading process in pre-college courses, this study proposes using digital video cameras in reading summaries and responses to promote critical thinking and to teach social justice concepts. The digital video research project is founded on…
ERIC Educational Resources Information Center
Ching, Cynthia Carter; Wang, X. Christine; Shih, Mei-Li; Kedem, Yore
2006-01-01
To explore meaningful and effective technology integration in early childhood education, we investigated how kindergarten-first-grade students created and employed digital photography journals to support social and cognitive reflection. These students used a digital camera to document their daily school activities and created digital photo…
Towards Making Data Bases Practical for use in the Field
NASA Astrophysics Data System (ADS)
Fischer, T. P.; Lehnert, K. A.; Chiodini, G.; McCormick, B.; Cardellini, C.; Clor, L. E.; Cottrell, E.
2014-12-01
Geological, geochemical, and geophysical research is often field based with travel to remote areas and collection of samples and data under challenging environmental conditions. Cross-disciplinary investigations would greatly benefit from near real-time data access and visualisation within the existing framework of databases and GIS tools. An example of complex, interdisciplinary field-based and data intensive investigations is that of volcanologists and gas geochemists, who sample gases from fumaroles, hot springs, dry gas vents, hydrothermal vents and wells. Compositions of volcanic gas plumes are measured directly or by remote sensing. Soil gas fluxes from volcanic areas are measured by accumulation chamber and involve hundreds of measurements to calculate the total emission of a region. Many investigators also collect rock samples from recent or ancient volcanic eruptions. Structural, geochronological, and geophysical data collected during the same or related field campaigns complement these emissions data. All samples and data collected in the field require a set of metadata including date, time, location, sample or measurement id, and descriptive comments. Currently, most of these metadata are written in field notebooks and later transferred into a digital format. Final results such as laboratory analyses of samples and calculated flux data are tabulated for plotting, correlation with other types of data, modeling and finally publication and presentation. Data handling, organization and interpretation could be greatly streamlined by using digital tools available in the field to record metadata, assign an International Geo Sample Number (IGSN), upload measurements directly from field instruments, and arrange sample curation. Available data display tools such as GeoMapApp and existing data sets (PetDB, IRIS, UNAVCO) could be integrated to direct locations for additional measurements during a field campaign. Nearly live display of sampling locations, pictures, and comments could be used as an educational and outreach tool during sampling expeditions. Achieving these goals requires the integration of existing online data resources, with common access through a dedicated web portal.
Storing Data and Video on One Tape
NASA Technical Reports Server (NTRS)
Nixon, J. H.; Cater, J. P.
1985-01-01
Microprocessor-based system originally developed for anthropometric research merges digital data with video images for storage on video cassette recorder. Combined signals later retrieved and displayed simultaneously on television monitor. System also extracts digital portion of stored information and transfers it to solid-state memory.
BROADBAND DIGITAL GEOPHYSICAL TELEMETRY SYSTEM.
Seeley, Robert L.; Daniels, Jeffrey J.
1984-01-01
A system has been developed to simultaneously sample and transmit digital data from five remote geophysical data receiver stations to a control station that processes, displays, and stores the data. A microprocessor in each remote station receives commands from the control station over a single telemetry channel.
A flight test facility design for examining digital information transfer
NASA Technical Reports Server (NTRS)
Knox, Charles E.
1990-01-01
Information is given in viewgraph form on a flight test facility design for examining digital information transfer. Information is given on aircraft/ground exchange, data link research activities, data link display format, a data link flight test, and the flight test setup.
VHDL Modeling and Simulation of a Digital Image Synthesizer for Countering ISAR
2003-06-01
This thesis discusses VHDL modeling and simulation of a full custom Application Specific Integrated Circuit (ASIC) for a Digital Image Synthesizer...necessary for a given application . With such a digital method, it is possible for a small ship to appear as large as an aircraft carrier or any high...INTRODUCTION TO DIGITAL IMAGE SYNTHESIZER (DIS) A. BACKGROUND The Digital Image Synthesizer (DIS) is an Application Specific Integrated Circuit
Lofeu, Leandro; Brandt, Renata; Kohlsdorf, Tiana
2017-08-02
Developmental associations often explain phenotypic integration. The intersected hormonal regulation of ontogenetic processes fosters predictions of steroid-mediated phenotypic integration among sexually dimorphic traits, a statement defied by associations between classical dimorphism predictors (e.g. body size) and traits that apparently lack sex-specific functions (e.g. ratios between the lengths of Digits II and IV - 2D:4D). Developmental bases of female-biased 2D:4D have been identified, but these remain unclear for taxa presenting male-biased 2D:4D (e.g. anura). Here we propose two alternative hypotheses to investigate evolution of male-biased 2D:4D associated with sexually dimorphic body size using Leptodactylus frogs: I)'hypothesis of sex-specific digit responses' - Digit IV would be reactive to testosterone but exhibit responses in the opposite direction of those observed in female-biased 2D:4D lineages, so that Digit IV turns shorter in males; II) 'hypothesis of identity of the dimorphic digit'- Digit II would be the dimorphic digit. We compiled the following databases using Leptodactylus frogs: 1) adults of two species from natural populations and 2) testosterone-treated L. fuscus at post-metamorphic stage. Studied traits seem monomorphic in L. fuscus; L. podicipinus exhibits male-biased 2D:4D. When present, 2D:4D dimorphism was male-biased and associated with dimorphic body size; sex differences resided on Digit II instead of IV, corroborating our 'hypothesis of identity of the dimorphic digit'. Developmental steroid roles were validated: testosterone-treated L. fuscus frogs were smaller and exhibited masculinized 2D:4D, and Digit II was the digit that responded to testosterone. We propose a model where evolution of sexual dimorphism in 2D:4D first originates from the advent, in a given digit, of increased tissue sensitivity to steroids. Phenotypic integration with other sexually dimorphic traits would then occur through multi-trait hormonal effects during development. Such process of phenotypic integration seems fitness-independent in its origin and might explain several cases of steroid-mediated integration among sexually dimorphic traits.
Medical color displays and their calibration
NASA Astrophysics Data System (ADS)
Fan, Jiahua; Roehrig, Hans; Dallas, W.; Krupinski, Elizabeth
2009-08-01
Color displays are increasingly used for medical imaging, replacing the traditional monochrome displays in radiology for multi-modality applications, 3D representation applications, etc. Color displays are also used increasingly because of wide spread application of Tele-Medicine, Tele-Dermatology and Digital Pathology. At this time, there is no concerted effort for calibration procedures for this diverse range of color displays in Telemedicine and in other areas of the medical field. Using a colorimeter to measure the display luminance and chrominance properties as well as some processing software we developed a first attempt to a color calibration protocol for the medical imaging field.
Simple measurement of lenticular lens quality for autostereoscopic displays
NASA Astrophysics Data System (ADS)
Gray, Stuart; Boudreau, Robert A.
2013-03-01
Lenticular lens based autostereoscopic 3D displays are finding many applications in digital signage and consumer electronics devices. A high quality 3D viewing experience requires the lenticular lens be properly aligned with the pixels on the display device so that each eye views the correct image. This work presents a simple and novel method for rapidly assessing the quality of a lenticular lens to be used in autostereoscopic displays. Errors in lenticular alignment across the entire display are easily observed with a simple test pattern where adjacent views are programmed to display different colors.
Securing Digital Images Integrity using Artificial Neural Networks
NASA Astrophysics Data System (ADS)
Hajji, Tarik; Itahriouan, Zakaria; Ouazzani Jamil, Mohammed
2018-05-01
Digital image signature is a technique used to protect the image integrity. The application of this technique can serve several areas of imaging applied to smart cities. The objective of this work is to propose two methods to protect digital image integrity. We present a description of two approaches using artificial neural networks (ANN) to digitally sign an image. The first one is “Direct Signature without learning” and the second is “Direct Signature with learning”. This paper presents the theory of proposed approaches and an experimental study to test their effectiveness.
The Integrity of Digital Information: Mechanics and Definitional Issues.
ERIC Educational Resources Information Center
Lynch, Clifford A.
1994-01-01
Considers issues regarding the migration of a system of literature into electronic formats. Highlights include integrity in an information distribution system; digest technology; tracings that permit detection of copied digital objects; verifying sources; digital signature technology and cryptography; electronic publishing; and intellectual…
ERIC Educational Resources Information Center
Salomon, Anna M.
2014-01-01
Today's teachers are tasked with the integration of technology in their curriculum and their classrooms. In order to do that, teachers require professional development/training and support. Further, schools are encountering a unique landscape of teaching with digital natives becoming teachers alongside digital immigrants. This study aimed to…
Packet based serial link realized in FPGA dedicated for high resolution infrared image transmission
NASA Astrophysics Data System (ADS)
Bieszczad, Grzegorz
2015-05-01
In article the external digital interface specially designed for thermographic camera built in Military University of Technology is described. The aim of article is to illustrate challenges encountered during design process of thermal vision camera especially related to infrared data processing and transmission. Article explains main requirements for interface to transfer Infra-Red or Video digital data and describes the solution which we elaborated based on Low Voltage Differential Signaling (LVDS) physical layer and signaling scheme. Elaborated link for image transmission is built using FPGA integrated circuit with built-in high speed serial transceivers achieving up to 2500Gbps throughput. Image transmission is realized using proprietary packet protocol. Transmission protocol engine was described in VHDL language and tested in FPGA hardware. The link is able to transmit 1280x1024@60Hz 24bit video data using one signal pair. Link was tested to transmit thermal-vision camera picture to remote monitor. Construction of dedicated video link allows to reduce power consumption compared to solutions with ASIC based encoders and decoders realizing video links like DVI or packed based Display Port, with simultaneous reduction of wires needed to establish link to one pair. Article describes functions of modules integrated in FPGA design realizing several functions like: synchronization to video source, video stream packeting, interfacing transceiver module and dynamic clock generation for video standard conversion.
NASA Astrophysics Data System (ADS)
Kim, Tae-Wook; Park, Sang-Gyu; Choi, Byong-Deok
2011-03-01
The previous pixel-level digital-to-analog-conversion (DAC) scheme that implements a part of a DAC in a pixel circuit turned out to be very efficient for reducing the peripheral area of an integrated data driver fabricated with low-temperature polycrystalline silicon thin-film transistors (LTPS TFTs). However, how the pixel-level DAC can be compatible with the existing pixel circuits including compensation schemes of TFT variations and IR drops on supply rails, which is of primary importance for active matrix organic light emitting diodes (AMOLEDs) is an issue in this scheme, because LTPS TFTs suffer from random variations in their characteristics. In this paper, we show that the pixel-level DAC scheme can be successfully used with the previous compensation schemes by giving two examples of voltage- and current-programming pixels. The previous pixel-level DAC schemes require additional two TFTs and one capacitor, but for these newly proposed pixel circuits, the overhead is no more than two TFTs by utilizing the already existing capacitor. In addition, through a detailed analysis, it has been shown that the pixel-level DAC can be expanded to a 4-bit resolution, or be applied together with 1:2 demultiplexing driving for 6- to 8-in. diagonal XGA AMOLED display panels.
Subroutines GEORGE and DRASTC simplify operation of automatic digital plotter
NASA Technical Reports Server (NTRS)
Englel, F., III; Gray, W. H.; Richard, P. J.
1967-01-01
FORTRAN language subroutines enable the production of a tape for a 360-30 tape unit that controls the CALCOMP 566 Digital Incremental Plotter. This provides the plotter with instructions for graphically displaying data points with the proper scaling of axes, numbering, lettering, and tic marking.
A system for automatic analysis of blood pressure data for digital computer entry
NASA Technical Reports Server (NTRS)
Miller, R. L.
1972-01-01
Operation of automatic blood pressure data system is described. Analog blood pressure signal is analyzed by three separate circuits, systolic, diastolic, and cycle defect. Digital computer output is displayed on teletype paper tape punch and video screen. Illustration of system is included.
USSR and Eastern Europe Scientific Abstracts, Electronics and Electrical Engineering, Number 24.
1976-11-12
GERMANY DUMMER, Joachim, graduate mathematician, and KLEIN, Richard, graduate engineer, Radio Works Combine State Enterprise, Erfurt DIGITAL FRONT PANEL ...operation, performance, and applications of a digital front panel display instrument was described and illustrated with circuit diagrams, block diagrams...technics, various digital and alphabetic panels , holography, and possibly the screens of cathode-ray tubes. One of the chief merits of "ftiros" is the
Meeting the Challenges of Regional Security
1994-02-01
targets over time, assessing strike damage, and, of course, developing up-to- date maps of crucial urban and industrial areas. Coupled with modem digital ...of huge diverse data bases is key to dissecting criminal infrastructures, and identifying relevant regional and global linkages. New digital processing...cities). They can aid in reaction force planning and training. One 10-inch optical disc can easily store 25 (and display at any scale with 4- digit
Setti, E; Musumeci, R
2001-06-01
The world wide web is an exciting service that allows one to publish electronic documents made of text and images on the internet. Client software called a web browser can access these documents, and display and print them. The most popular browsers are currently Microsoft Internet Explorer (Microsoft, Redmond, WA) and Netscape Communicator (Netscape Communications, Mountain View, CA). These browsers can display text in hypertext markup language (HTML) format and images in Joint Photographic Expert Group (JPEG) and Graphic Interchange Format (GIF). Currently, neither browser can display radiologic images in native Digital Imaging and Communications in Medicine (DICOM) format. With the aim to publish radiologic images on the internet, we wrote a dedicated Java applet. Our software can display radiologic and histologic images in DICOM, JPEG, and GIF formats, and provides a a number of functions like windowing and magnification lens. The applet is compatible with some web browsers, even the older versions. The software is free and available from the author.
Visual cues for person-centered communication.
Williams, Kristine; Harris, Brynn; Lueger, Amy; Ward, Kathleen; Wassmer, Rebecca; Weber, Amy
2011-11-01
Nursing home communication is frequently limited and task-focused and fails to affirm resident personhood. We tested the feasibility and effects of automated digital displays of resident photographs to remind staff (N = 11) of resident (n = 6) personhood. Historical photographs were displayed in digital photo frames mounted in each resident's room. To evaluate the intervention's effects, staff-resident conversations were audio-recorded prior to displaying the frames and repeated 2 weeks and 3 months later. Conversations were transcribed and statements were topic coded (task-focused vs. interpersonal). Staff person-centered talk increased from 11% to 32% (z = 2.37, p = .02) after the intervention and task-talk decreased from 64% to 40%. Resident interpersonal topics increased from 20% to 37%. Staff statements increased from 29 at baseline, to 37 postintervention, and 41 at 3-month follow-up and resident engagement and reminiscence also increased. Effects were reduced after 3 months. Automated photo displays are an easily implemented, low-cost intervention to promote person-centered communication.
Polyplanar optical display electronics
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeSanto, L.; Biscardi, C.
The Polyplanar Optical Display (POD) is a unique display screen which can be used with any projection source. The prototype ten inch display is two inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. In order to achieve a long lifetime, the new display uses a 100 milliwatt green solid-state laser (10,000 hr. life) at 532 nm as its light source. To produce real-time video, the laser light is being modulated by amore » Digital Light Processing (DLP{trademark}) chip manufactured by Texas Instruments. In order to use the solid-state laser as the light source and also fit within the constraints of the B-52 display, the Digital Micromirror Device (DMD{trademark}) circuit board is removed from the Texas Instruments DLP light engine assembly. Due to the compact architecture of the projection system within the display chassis, the DMD{trademark} chip is operated remotely from the Texas Instruments circuit board. The authors discuss the operation of the DMD{trademark} divorced from the light engine and the interfacing of the DMD{trademark} board with various video formats (CVBS, Y/C or S-video and RGB) including the format specific to the B-52 aircraft. A brief discussion of the electronics required to drive the laser is also presented.« less
Beacon data acquisition and display system
Skogmo, D.G.; Black, B.D.
1991-12-17
A system for transmitting aircraft beacon information received by a secondary surveillance radar through telephone lines to a remote display includes a digitizer connected to the radar for preparing a serial file of data records containing position and identification information of the beacons detected by each sweep of the radar. This information is transmitted through the telephone lines to a remote computer where it is displayed. 6 figures.
Beacon data acquisition and display system
Skogmo, David G.; Black, Billy D.
1991-01-01
A system for transmitting aircraft beacon information received by a secondary surveillance radar through telephone lines to a remote display includes a digitizer connected to the radar for preparing a serial file of data records containing position and identification information of the beacons detected by each sweep of the radar. This information is transmitted through the telephone lines to a remote computer where it is displayed.
The Eye Catching Property of Digital-Signage with Scent and a Scent-Emitting Video Display System
NASA Astrophysics Data System (ADS)
Tomono, Akira; Otake, Syunya
In this paper, the effective method of inducing a glance aimed at the digital signage by emitting a scent is described. The simulation experiment was done using the immersive VR System because there were a lot of restrictions to the experiment in an actual passageway. In order to investigate the eye catching property of the digital signage, the passer-by's eye movement was analyzed. Through the experiment, they were clarified that the digital signage with the scent was paid to attention, and the strong impression remained in the memory. Next, a scent-emitting video display system applying to the digital signage is described. To this end, a scent-emitting device that is able to quickly change the scents it is releasing, and present them from a distance (by the non-contact method), thus maintaining a relationship between the scent and the image, must be developed. We propose a new method where a device that can release pressurized gases is placed behind the display screen filled with tiny pores. Scents are then ejected from this device, traveling through the pores to the front side of the screen. An excellent scent delivery characteristic was obtained because the distance to the user is close and the scent is presented from the front. We also present a method for inducing viewer reactions using on-screen images, thereby enabling scent release to coincide precisely with viewer inhalations. We anticipate that the simultaneous presentation of scents and video images will deepen viewers' comprehension of these images.
NASA Technical Reports Server (NTRS)
Myers, L. P.; Burcham, F. W., Jr.
1984-01-01
The highly integrated digital electronic control (HIDEC) program will integrate the propulsion and flight control systems on an F-15 airplane at NASA Ames Research Center's Dryden Flight Research Facility. Ames-Dryden has conducted several propulsion control programs that have contributed to the HIDEC program. The digital electronic engine control (DEEC) flight evaluation investigated the performance and operability of the F100 engine equipped with a full-authority digital electronic control system. Investigations of nozzle instability, fault detection and accommodation, and augmentor transient capability provided important information for the HIDEC program. The F100 engine model derivative (EMD) was also flown in the F-15 airplane, and airplane performance was significantly improved. A throttle response problem was found and solved with a software fix to the control logic. For the HIDEC program, the F100 EMD engines equipped with DEEC controls will be integrated with the digital flight control system. The control modes to be implemented are an integrated flightpath management mode and an integrated adaptive engine control system mode. The engine control experience that will be used in the HIDEC program is discussed.
Integrated Digital Survey of the "FONTANA RUSTICA" in the Gardens of the Quirinale.
NASA Astrophysics Data System (ADS)
Paris, L.; Troiano, W.
2013-07-01
The paper illustrates the results of a research on integrated digital survey of the "Fontana Rustica" in the gardens of the Quirinale, artifact somewhat atypical for its particular organical configuration, and whose history is still to be discovered. The activity is performed by Critevat, interdepartmental research center in Rieti, within of the scientific collaboration with the Office for the conservation of artistic heritage of the Quirinale Palace. The integrated digital survey in recent years has had a strong impulse thanks to the technological development of the shape acquisition instruments. The research has analyzed the problems of interaction and integration of digital data obtainable using the latest digital technologies such as 3D laser-scanner and digital photogrammetry. A further level of research has focused on the possibility of management of 3D models in relation to data obtained by instruments and methods of investigation of different scientific culture such as seismic transmission tomography and thermografy.
Electronic method for autofluorography of macromolecules on two-D matrices. [Patent application
Davidson, J.B.; Case, A.L.
1981-12-30
A method for detecting, localizing, and quantifying macromolecules contained in a two-dimensional matrix is provided which employs a television-based position sensitive detection system. A molecule-containing matrix may be produced by conventional means to produce spots of light at the molecule locations which are detected by the television system. The matrix, such as a gel matrix, is exposed to an electronic camera system including an image-intensifier and secondary electron conduction camera capable of light integrating times of many minutes. A light image stored in the form of a charge image on the camera tube target is scanned by conventional television techniques, digitized, and stored in a digital memory. Intensity of any point on the image may be determined from the number at the memory address of the point. The entire image may be displayed on a television monitor for inspection and photographing or individual spots may be analyzed through selected readout of the memory locations. Compared to conventional film exposure methods, the exposure time may be reduced 100 to 1000 times.
Software Tools for Developing and Simulating the NASA LaRC CMF Motion Base
NASA Technical Reports Server (NTRS)
Bryant, Richard B., Jr.; Carrelli, David J.
2006-01-01
The NASA Langley Research Center (LaRC) Cockpit Motion Facility (CMF) motion base has provided many design and analysis challenges. In the process of addressing these challenges, a comprehensive suite of software tools was developed. The software tools development began with a detailed MATLAB/Simulink model of the motion base which was used primarily for safety loads prediction, design of the closed loop compensator and development of the motion base safety systems1. A Simulink model of the digital control law, from which a portion of the embedded code is directly generated, was later added to this model to form a closed loop system model. Concurrently, software that runs on a PC was created to display and record motion base parameters. It includes a user interface for controlling time history displays, strip chart displays, data storage, and initializing of function generators used during motion base testing. Finally, a software tool was developed for kinematic analysis and prediction of mechanical clearances for the motion system. These tools work together in an integrated package to support normal operations of the motion base, simulate the end to end operation of the motion base system providing facilities for software-in-the-loop testing, mechanical geometry and sensor data visualizations, and function generator setup and evaluation.
NASA Astrophysics Data System (ADS)
Furlong, Cosme; Pryputniewicz, Ryszard J.
2002-06-01
Recent technological trends based on miniaturization of mechanical, electro-mechanical, and photonic devices to the microscopic scale, have led to the development of microelectromechanical systems (MEMS). Effective development of MEMS components requires the synergism of advanced design, analysis, and fabrication methodologies, and also of quantitative metrology techniques for characterizing their performance, reliability, and integrity during the electronic packaging cycle. In this paper, we describe opto-electronic techniques for measuring, with sub-micrometer accuracy, shape and changes in states of deformation of MEMS strictures. With the described opto-electronic techniques, it is possible to characterize MEMS components using the display and data modes. In the display mode, interferometric information related to shape and deformation is displayed at video frame rates, providing the capability for adjusting and setting experimental conditions. In the data mode, interferometric information related to shape and deformation is recorded as high-spatial and high-digital resolution images, which are further processed to provide quantitative 3D information. Furthermore, the quantitative 3D data are exported to computer-aided design (CAD) environments and utilized for analysis and optimization of MEMS devices. Capabilities of opto- electronic techniques are illustrated with representative applications demonstrating their applicability to provide indispensable quantitative information for the effective development and optimization of MEMS devices.
NASA Astrophysics Data System (ADS)
Schlam, E.
1983-01-01
Human factors in visible displays are discussed, taking into account an introduction to color vision, a laser optometric assessment of visual display viewability, the quantification of color contrast, human performance evaluations of digital image quality, visual problems of office video display terminals, and contemporary problems in airborne displays. Other topics considered are related to electroluminescent technology, liquid crystal and related technologies, plasma technology, and display terminal and systems. Attention is given to the application of electroluminescent technology to personal computers, electroluminescent driving techniques, thin film electroluminescent devices with memory, the fabrication of very large electroluminescent displays, the operating properties of thermally addressed dye switching liquid crystal display, light field dichroic liquid crystal displays for very large area displays, and hardening military plasma displays for a nuclear environment.
Electron lithography STAR design guidelines. Part 2: The design of a STAR for space applications
NASA Technical Reports Server (NTRS)
Trotter, J. D.; Newman, W.
1982-01-01
The STAR design system developed by NASA enables any user with a logic diagram to design a semicustom digital MOS integrated circuit. The system is comprised of a library of standard logic cells and computr programs to place, route, and display designs implemented with cells from the library. Also described is the development of a radiation-hard array designed for the STAR system. The design is based on the CMOS silicon gate technology developed by SANDIA National Laboratories. The design rules used are given as well as the model parameters developed for the basic array element. Library cells of the CMOS metal gate and CMOS silicon gate technologies were simulated using SPICE, and the results are shown and compared.
Liu, Kaijun; Fang, Binji; Wu, Yi; Li, Ying; Jin, Jun; Tan, Liwen; Zhang, Shaoxiang
2013-09-01
Anatomical knowledge of the larynx region is critical for understanding laryngeal disease and performing required interventions. Virtual reality is a useful method for surgical education and simulation. Here, we assembled segmented cross-section slices of the larynx region from the Chinese Visible Human dataset. The laryngeal structures were precisely segmented manually as 2D images, then reconstructed and displayed as 3D images in the virtual reality Dextrobeam system. Using visualization and interaction with the virtual reality modeling language model, a digital laryngeal anatomy instruction was constructed using HTML and JavaScript languages. The volume larynx models can thus display an arbitrary section of the model and provide a virtual dissection function. This networked teaching system of the digital laryngeal anatomy can be read remotely, displayed locally, and manipulated interactively.
Performance tests and quality control of cathode ray tube displays.
Roehrig, H; Blume, H; Ji, T L; Browne, M
1990-08-01
Spatial resolution, noise, characteristic curve, and absolute luminance are the essential parameters that describe physical image quality of a display. This paper presents simple procedures for assessing the performance of a cathode ray tube (CRT) in terms of these parameters as well as easy set up techniques. The procedures can be used in the environment where the CRT is used. The procedures are based on a digital representation of the Society of Motion Pictures and Television Engineers pattern plus a few simple other digital patterns. Additionally, measurement techniques are discussed for estimating brightness uniformity, veiling glare, and distortion. Apart from the absolute luminance, all performance features can be assessed with an uncalibrated photodetector and the eyes of a human observer. The measurement techniques especially enable the user to perform comparisons of different display systems.
ERIC Educational Resources Information Center
Baxa, Julie; Christ, Tanya
2018-01-01
Selecting and integrating the use of digital texts/tools in literacy lessons are complex tasks. The DigiLit framework provides a succinct model to guide planning, reflection, coaching, and formative evaluation of teachers' successful digital text/tool selection and integration for literacy lessons. For digital text/tool selection, teachers need to…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tokurei, S; Department of Radiology, Yamaguchi University Hospital, Ube, Yamaguchi; Morishita, J
2015-06-15
Purpose: To develop a method for improving sharpness of images reproduced on liquid-crystal displays (LCDs) by compensating for the degradation of modulation transfer function (MTF) of the LCD. Methods: The inherent MTF of a color LCD (display MTF) was measured using a commercially available color digital camera. The frequency responses necessary to compensate for the resolution property of the LCD were calculated from the inverses of the display MTFs in both the horizontal and vertical directions. In addition, the inverses of the display MTFs were combined with the response of the human eye. The finite impulse response (FIR) filters weremore » computed by taking the inverse Fourier transform of the frequency responses, and the effects of the FIR filtering on both the resolution and noise properties of the displayed images were verified by measuring the MTF and Wiener spectrum (WS), respectively. The FIR filtering was then applied to the representation of digital bone and chest radiographs. Results: The FIR filtering improved the MTF values by up to almost 1.0 or greater over the frequency range of interest, while it minimally increased the WS values. Combining the inverses of the display MTFs with the response of the human eye led to further refinement of the MTF. Our method was successfully and beneficially applied to the image interpretation of bone radiographs. The resolution enhancement of chest radiographs, which include larger scattered radiation than bone radiographs, was easily perceived by incorporating the response of the human eye. In addition, no artifacts were observed on the processed images. Conclusion: Our proposed method to compensate for the degradation of the resolution properties of LCDs has the potential to improve the observer performance of radiologists when reading digital radiographs. This work was supported in part by grant from EIZO Corporation.« less
Optical links in handheld multimedia devices
NASA Astrophysics Data System (ADS)
van Geffen, S.; Duis, J.; Miller, R.
2008-04-01
Ever emerging applications in handheld multimedia devices such as mobile phones, laptop computers, portable video games and digital cameras requiring increased screen resolutions are driving higher aggregate bitrates between host processor and display(s) enabling services such as mobile video conferencing, video on demand and TV broadcasting. Larger displays and smaller phones require complex mechanical 3D hinge configurations striving to combine maximum functionality with compact building volumes. Conventional galvanic interconnections such as Micro-Coax and FPC carrying parallel digital data between host processor and display module may produce Electromagnetic Interference (EMI) and bandwidth limitations caused by small cable size and tight cable bends. To reduce the number of signals through a hinge, the mobile phone industry, organized in the MIPI (Mobile Industry Processor Interface) alliance, is currently defining an electrical interface transmitting serialized digital data at speeds >1Gbps. This interface allows for electrical or optical interconnects. Above 1Gbps optical links may offer a cost effective alternative because of their flexibility, increased bandwidth and immunity to EMI. This paper describes the development of optical links for handheld communication devices. A cable assembly based on a special Plastic Optical Fiber (POF) selected for its mechanical durability is terminated with a small form factor molded lens assembly which interfaces between an 850nm VCSEL transmitter and a receiving device on the printed circuit board of the display module. A statistical approach based on a Lean Design For Six Sigma (LDFSS) roadmap for new product development tries to find an optimum link definition which will be robust and low cost meeting the power consumption requirements appropriate for battery operated systems.
US GeoData: Digital cartographic and geographic data
,
1985-01-01
The increasing use of computers for storing and analyzing earth science information has sparked a growth in the demand for various types of cartographic data in digital form. The production of map data in computerized form is called digital cartography, and it involves the collection, storage, processing, analysis, and display of map data with the aid of computers. The U.S. Geological Survey, the Nation's largest earth science research agency, has expanded its national mapping program to incorporate operations associated with digital cartography, including the collection of planimetric, elevation, and geographic names information in digital form. This digital information is available for use in meeting the multipurpose needs and applications of the map user community.
NASA Johnson Space Center Life Sciences Data System
NASA Technical Reports Server (NTRS)
Rahman, Hasan; Cardenas, Jeffery
1994-01-01
The Life Sciences Project Division (LSPD) at JSC, which manages human life sciences flight experiments for the NASA Life Sciences Division, augmented its Life Sciences Data System (LSDS) in support of the Spacelab Life Sciences-2 (SLS-2) mission, October 1993. The LSDS is a portable ground system supporting Shuttle, Spacelab, and Mir based life sciences experiments. The LSDS supports acquisition, processing, display, and storage of real-time experiment telemetry in a workstation environment. The system may acquire digital or analog data, storing the data in experiment packet format. Data packets from any acquisition source are archived and meta-parameters are derived through the application of mathematical and logical operators. Parameters may be displayed in text and/or graphical form, or output to analog devices. Experiment data packets may be retransmitted through the network interface and database applications may be developed to support virtually any data packet format. The user interface provides menu- and icon-driven program control and the LSDS system can be integrated with other workstations to perform a variety of functions. The generic capabilities, adaptability, and ease of use make the LSDS a cost-effective solution to many experiment data processing requirements. The same system is used for experiment systems functional and integration tests, flight crew training sessions and mission simulations. In addition, the system has provided the infrastructure for the development of the JSC Life Sciences Data Archive System scheduled for completion in December 1994.
Inertial Orientation Trackers with Drift Compensation
NASA Technical Reports Server (NTRS)
Foxlin, Eric M.
2008-01-01
A class of inertial-sensor systems with drift compensation has been invented for use in measuring the orientations of human heads (and perhaps other, similarly sized objects). These systems can be designed to overcome some of the limitations of prior orientation-measuring systems that are based, variously, on magnetic, optical, mechanical-linkage, and acoustical principles. The orientation signals generated by the systems of this invention could be used for diverse purposes, including controlling head-orientation-dependent virtual reality visual displays or enabling persons whose limbs are paralyzed to control machinery by means of head motions. The inventive concept admits to variations too numerous to describe here, making it necessary to limit this description to a typical system, the selected aspects of which are illustrated in the figure. A set of sensors is mounted on a bracket on a band or a cap that gently but firmly grips the wearer s head to be tracked. Among the sensors are three drift-sensitive rotationrate sensors (e.g., integrated-circuit angular- rate-measuring gyroscopes), which put out DC voltages nominally proportional to the rates of rotation about their sensory axes. These sensors are mounted in mutually orthogonal orientations for measuring rates of rotation about the roll, pitch, and yaw axes of the wearer s head. The outputs of these rate sensors are conditioned and digitized, and the resulting data are fed to an integrator module implemented in software in a digital computer. In the integrator module, the angular-rate signals are jointly integrated by any of several established methods to obtain a set of angles that represent approximately the orientation of the head in an external, inertial coordinate system. Because some drift is always present as a component of an angular position computed by integrating the outputs of angular-rate sensors, the orientation signal is processed further in a drift-compensator software module.
NASA Astrophysics Data System (ADS)
Patel, K. C.; Ruiz, R.; Lille, J.; Wan, L.; Dobiz, E.; Gao, H.; Robertson, N.; Albrecht, T. R.
2012-03-01
Directed self-assembly is emerging as a promising technology to define sub-20nm features. However, a straightforward path to scale block copolymer lithography to single-digit fabrication remains challenging given the diverse material properties found in the wide spectrum of self-assembling materials. A vast amount of block copolymer research for industrial applications has been dedicated to polystyrene-b-methyl methacrylate (PS-b-PMMA), a model system that displays multiple properties making it ideal for lithography, but that is limited by a weak interaction parameter that prevents it from scaling to single-digit lithography. Other block copolymer materials have shown scalability to much smaller dimensions, but at the expense of other material properties that could delay their insertion into industrial lithographic processes. We report on a line doubling process applied to block copolymer patterns to double the frequency of PS-b-PMMA line/space features, demonstrating the potential of this technique to reach single-digit lithography. We demonstrate a line-doubling process that starts with directed self-assembly of PS-b-PMMA to define line/space features. This pattern is transferred into an underlying sacrificial hard-mask layer followed by a growth of self-aligned spacers which subsequently serve as hard-masks for transferring the 2x frequency doubled pattern to the underlying substrate. We applied this process to two different block copolymer materials to demonstrate line-space patterns with a half pitch of 11nm and 7nm underscoring the potential to reach single-digit critical dimensions. A subsequent patterning step with perpendicular lines can be used to cut the fine line patterns into a 2-D array of islands suitable for bit patterned media. Several integration challenges such as line width control and line roughness are addressed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Hara, J.M.; W. Gunther, G. Martinez-Guridi
New and advanced reactors will use integrated digital instrumentation and control (I&C) systems to support operators in their monitoring and control functions. Even though digital systems are typically highly reliable, their potential for degradation or failure could significantly affect operator performance and, consequently, impact plant safety. The U.S. Nuclear Regulatory Commission (NRC) supported this research project to investigate the effects of degraded I&C systems on human performance and plant operations. The objective was to develop human factors engineering (HFE) review guidance addressing the detection and management of degraded digital I&C conditions by plant operators. We reviewed pertinent standards and guidelines,more » empirical studies, and plant operating experience. In addition, we conducted an evaluation of the potential effects of selected failure modes of the digital feedwater system on human-system interfaces (HSIs) and operator performance. The results indicated that I&C degradations are prevalent in plants employing digital systems and the overall effects on plant behavior can be significant, such as causing a reactor trip or causing equipment to operate unexpectedly. I&C degradations can impact the HSIs used by operators to monitor and control the plant. For example, sensor degradations can make displays difficult to interpret and can sometimes mislead operators by making it appear that a process disturbance has occurred. We used the information obtained as the technical basis upon which to develop HFE review guidance. The guidance addresses the treatment of degraded I&C conditions as part of the design process and the HSI features and functions that support operators to monitor I&C performance and manage I&C degradations when they occur. In addition, we identified topics for future research.« less
ERIC Educational Resources Information Center
Dooley, Caitlin McMunn; Lewis Ellison, Tisha; Welch, Meghan M.; Allen, Mindy; Bauer, Dennis
2016-01-01
This qualitative participatory action research study provides two case studies to demonstrate how teachers in Grades 4 and 6 integrated digital tools into everyday, content-focused classroom instruction. The study demonstrates how teachers' technological pedagogical knowledge might combine with a participatory stance to encourage students to…
1999-08-01
Electro - Optic Sensor Integration Technology (NEOSIT) software application. The design is highly modular and based on COTS tools to facilitate integration with sensors, navigation and digital data sources already installed on different host
Manufacturing Methods and Engineering for TFT Addressed Display.
1980-02-20
type required for the Army’s DMD (Digital Message Device), based on an active-matrix addressed electroluminescent display previously developed by...electroluminescent phosphor as the light emitter, and finally packaging or encapsulation. Because of size limitations of the pilot manufacturing facility, the DMD ...display was designed as two identical halves, which were then to be made individually in the auto- mated machine and later assembled into a single DMD
Hard copies for digital medical images: an overview
NASA Astrophysics Data System (ADS)
Blume, Hartwig R.; Muka, Edward
1995-04-01
This paper is a condensed version of an invited overview on the technology of film hard-copies used in radiology. Because the overview was given to an essentially nonmedical audience, the reliance on film hard-copies in radiology is outlined in greater detail. The overview is concerned with laser image recorders generating monochrome prints on silver-halide films. The basic components of laser image recorders are sketched. The paper concentrates on the physical parameters - characteristic function, dynamic range, digitization resolution, modulation transfer function, and noise power spectrum - which define image quality and information transfer capability of the printed image. A preliminary approach is presented to compare the printed image quality with noise in the acquired image as well as with the noise of state-of- the-art cathode-ray-tube display systems. High-performance laser-image- recorder/silver-halide-film/light-box systems are well capable of reproducing acquired radiologic information. Most recently development was begun toward a display function standard for soft-copy display systems to facilitate similarity of image presentation between different soft-copy displays as well as between soft- and hard-copy displays. The standard display function is based on perceptional linearization. The standard is briefly reviewed to encourage the printer industry to adopt it, too.
Ultra-realistic imaging: a new beginning for display holography
NASA Astrophysics Data System (ADS)
Bjelkhagen, Hans I.; Brotherton-Ratcliffe, David
2014-02-01
Recent improvements in key foundation technologies are set to potentially transform the field of Display Holography. In particular new recording systems, based on recent DPSS and semiconductor lasers combined with novel recording materials and processing, have now demonstrated full-color analogue holograms of both lower noise and higher spectral accuracy. Progress in illumination technology is leading to a further major reduction in display noise and to a significant increase of the clear image depth and brightness of such holograms. So too, recent progress in 1-step Direct-Write Digital Holography (DWDH) now opens the way to the creation of High Virtual Volume Displays (HVV) - large format full-parallax DWDH reflection holograms having fundamentally larger clear image depths. In a certain fashion HVV displays can be thought of as providing a high quality full-color digital equivalent to the large-format laser-illuminated transmission holograms of the sixties and seventies. Back then, the advent of such holograms led to much optimism for display holography in the market. However, problems with laser illumination, their monochromatic analogue nature and image noise are well cited as being responsible for their failure in reality. Is there reason for believing that the latest technology improvements will make the mark this time around? This paper argues that indeed there is.
Achieving consistent color and grayscale presentation on medial color displays
NASA Astrophysics Data System (ADS)
Fan, Jiahua; Roehrig, Hans; Dallas, William; Krupinski, Elizabeth A.
2008-03-01
Color displays are increasingly used for medical imaging, replacing the traditional monochrome displays in radiology for multi-modality applications, 3D representation applications, etc. Color displays are also used increasingly because of wide spread application of Tele-Medicine, Tele-Dermatology and Digital Pathology. At this time, there is no concerted effort for calibration procedures for this diverse range of color displays in Telemedicine and in other areas of the medical field. Using a colorimeter to measure the display luminance and chrominance properties as well as some processing software we developed a first attempt to a color calibration protocol for the medical imaging field.
Multi-star processing and gyro filtering for the video inertial pointing system
NASA Technical Reports Server (NTRS)
Murphy, J. P.
1976-01-01
The video inertial pointing (VIP) system is being developed to satisfy the acquisition and pointing requirements of astronomical telescopes. The VIP system uses a single video sensor to provide star position information that can be used to generate three-axis pointing error signals (multi-star processing) and for input to a cathode ray tube (CRT) display of the star field. The pointing error signals are used to update the telescope's gyro stabilization system (gyro filtering). The CRT display facilitates target acquisition and positioning of the telescope by a remote operator. Linearized small angle equations are used for the multistar processing and a consideration of error performance and singularities lead to star pair location restrictions and equation selection criteria. A discrete steady-state Kalman filter which uses the integration of the gyros is developed and analyzed. The filter includes unit time delays representing asynchronous operations of the VIP microprocessor and video sensor. A digital simulation of a typical gyro stabilized gimbal is developed and used to validate the approach to the gyro filtering.
NASA Technical Reports Server (NTRS)
Richards, Stephanie E. (Compiler); Levine, Howard G.; Romero, Vergel
2016-01-01
Biotube was developed for plant gravitropic research investigating the potential for magnetic fields to orient plant roots as they grow in microgravity. Prior to flight, experimental seeds are placed into seed cassettes, that are capable of containing up to 10 seeds, and inserted between two magnets located within one of three Magnetic Field Chamber (MFC). Biotube is stored within an International Space Station (ISS) stowage locker and provides three levels of containment for chemical fixatives. Features include monitoring of temperature, fixative/ preservative delivery to specimens, and real-time video imaging downlink. Biotube's primary subsystems are: (1) The Water Delivery System that automatically activates and controls the delivery of water (to initiate seed germination). (2) The Fixative Storage and Delivery System that stores and delivers chemical fixative or RNA later to each seed cassette. (3) The Digital Imaging System consisting of 4 charge-coupled device (CCD) cameras, a video multiplexer, a lighting multiplexer, and 16 infrared light-emitting diodes (LEDs) that provide illumination while the photos are being captured. (4) The Command and Data Management System that provides overall control of the integrated subsystems, graphical user interface, system status and error message display, image display, and other functions.
Distributed data collection for a database of radiological image interpretations
NASA Astrophysics Data System (ADS)
Long, L. Rodney; Ostchega, Yechiam; Goh, Gin-Hua; Thoma, George R.
1997-01-01
The National Library of Medicine, in collaboration with the National Center for Health Statistics and the National Institute for Arthritis and Musculoskeletal and Skin Diseases, has built a system for collecting radiological interpretations for a large set of x-ray images acquired as part of the data gathered in the second National Health and Nutrition Examination Survey. This system is capable of delivering across the Internet 5- and 10-megabyte x-ray images to Sun workstations equipped with X Window based 2048 X 2560 image displays, for the purpose of having these images interpreted for the degree of presence of particular osteoarthritic conditions in the cervical and lumbar spines. The collected interpretations can then be stored in a database at the National Library of Medicine, under control of the Illustra DBMS. This system is a client/server database application which integrates (1) distributed server processing of client requests, (2) a customized image transmission method for faster Internet data delivery, (3) distributed client workstations with high resolution displays, image processing functions and an on-line digital atlas, and (4) relational database management of the collected data.
An Airborne Programmable Digital to Video Converter Interface and Operation Manual.
1981-02-01
Identify by block number) SCAN CONVERTER VIDEO DISPLAY TELEVISION DISPLAY 20. ABSTRACT (Continue on reverse oide If necessary and Identify by block...programmable cathode ray tube (CRT) controller which is accessed by the CPU to permit operation in a wide variety of modes. The Alphanumeric Generator
Displays, memories, and signal processing: A compilation
NASA Technical Reports Server (NTRS)
1975-01-01
Articles on electronics systems and techniques were presented. The first section is on displays and other electro-optical systems; the second section is devoted to signal processing. The third section presented several new memory devices for digital equipment, including articles on holographic memories. The latest patent information available is also given.
Implementation of a wireless ECG acquisition SoC for IEEE 802.15.4 (ZigBee) applications.
Wang, Liang-Hung; Chen, Tsung-Yen; Lin, Kuang-Hao; Fang, Qiang; Lee, Shuenn-Yuh
2015-01-01
This paper presents a wireless biosignal acquisition system-on-a-chip (WBSA-SoC) specialized for electrocardiogram (ECG) monitoring. The proposed system consists of three subsystems, namely, 1) the ECG acquisition node, 2) the protocol for standard IEEE 802.15.4 ZigBee system, and 3) the RF transmitter circuits. The ZigBee protocol is adopted for wireless communication to achieve high integration, applicability, and portability. A fully integrated CMOS RF front end containing a quadrature voltage-controlled oscillator and a 2.4-GHz low-IF (i.e., zero-IF) transmitter is employed to transmit ECG signals through wireless communication. The low-power WBSA-SoC is implemented by the TSMC 0.18-μm standard CMOS process. An ARM-based displayer with FPGA demodulation and an RF receiver with analog-to-digital mixed-mode circuits are constructed as verification platform to demonstrate the wireless ECG acquisition system. Measurement results on the human body show that the proposed SoC can effectively acquire ECG signals.
A PDA-based electrocardiogram/blood pressure telemonitor for telemedicine.
Bolanos, Marcos; Nazeran, Homayoun; Gonzalez, Izzac; Parra, Ricardo; Martinez, Christopher
2004-01-01
An electrocardiogram (ECG) / blood pressure (BP) telemonitor consisting of comprehensive integration of various electrical engineering concepts, devices, and methods was developed. This personal digital assistant-based (PDAbased) system focused on integration of biopotential amplifiers, photoplethysmographic measurement of blood pressure, microcontroller devices, programming methods, wireless transmission, signal filtering and analysis, interfacing, and long term memory devices (24 hours) to develop a state-of-the-art ECG/BP telemonitor. These instrumentation modules were developed and tested to realize a complete and compact system that could be deployed to assist in telemedicine applications and heart rate variability studies. The specific objective of this device was to facilitate the long term monitoring and recording of ECG and blood pressure signals. This device was able to acquire ECG/BP waveforms, transmit them wirelessly to a PDA, save them onto a compact flash memory, and display them on the LCD screen of the PDA. It was also capable of calculating the heart rate (HR) in beats per minute, and providing systolic and diastolic blood pressure values.
Clinical evaluation of a 2K x 2K workstation for primary diagnosis in pediatric radiology
NASA Astrophysics Data System (ADS)
Razavi, Mahmood; Sayre, James W.; Simons, Margaret A.; Hamedaninia, Azar; Boechat, Maria I.; Hall, Theodore R.; Kangarloo, Hooshang; Taira, Ricky K.; Chuang, Keh-Shih; Kashifian, Payam
1991-07-01
Preliminary results of a large-scale ROC study evaluating the diagnostic performance of digital hardcopy film and 2K X 2K softcopy display for pediatric chest radiographs are presented. The pediatric disease categories studied were pneumothorax, linear atelectasis, air bronchograms, and interstitial disease. Digital images were obtained directly from a computed radiography system. Results from the readings of 239 chest radiographs by 4 radiologists show no significant difference between viewing images on film and softcopy display for the disease categories pneumothorax and air bronchograms. A slight performance edge for softcopy was seen for the disease categories of interstitial disease and linear atelectasis.
V/STOL AND digital avionics system for UH-1H
NASA Technical Reports Server (NTRS)
Liden, S.
1978-01-01
A hardware and software system for the Bell UH-1H helicopter was developed that provides sophisticated navigation, guidance, control, display, and data acquisition capabilities for performing terminal area navigation, guidance and control research. Two Sperry 1819B general purpose digital computers were used. One contains the development software that performs all the specified system flight computations. The second computer is available to NASA for experimental programs that run simultaneously with the other computer programs and which may, at the push of a button, replace selected computer computations. Other features that provide research flexibility include keyboard selectable gains and parameters and software generated alphanumeric and CRT displays.
Podwysocki, Melvin H.; Power, Marty S.; Salisbury, Jack; Jones, O.D.
1984-01-01
Landsat-4 Thematic Mapper (TM) data of southern Nevada collected under conditions of low-angle solar illumination were digitally processed to identify hydroxyl-bearing minerals commonly associated with hydrothermal alteration in volcanic terrains. Digital masking procedures were used to exclude shadow areas and vegetation and thus to produce a CRC image suitable for testing the new TM bands as a means to map hydrothermally altered rocks. Field examination of a masked CRC image revealed that several different types of altered rocks displayed hues associated with spectral characteristics common to hydroxyl-bearing minerals. Several types of unaltered rocks also displayed similar hues.
Research on the Digital Communication and Development of Yunnan Bai Embroidery
NASA Astrophysics Data System (ADS)
Xu, Wu; Jin, Chunjie; Su, Ying; Wu, Lei; He, Jin
2017-12-01
Our country attaches great importance to the protection and development of intangible culture these days, but the shortcoming of discoloration, breakage and occupying too much space still exist in the traditional way of museum protection. This paper starts from the analysis of the above problems, and then cogitates why and how to use the virtual reality (VR) technology to better solve these problems and analyzes this specific object of the Yunnan Bai embroidery in order to achieve its full human value and economic value. Firstly, using 3D MAX to design and produce the three-dimensional model of the embroideries of Bai nationality. Secondly, using the large number of embroidery model data that we collect to construct the Yunnan Bai embroidery model database. Next, creating a digital display system of virtual embroidery and putting the digital display system to the PC client websites and mobile phone applications to achieve information sharing. Finally, through the use of virtual display technology for three-dimensional design of embroidery, the embroidery clothing, bedding and other works with modern style can be designed so as to continuously pursue and give full play to the charm and economic value of embroidery.
NASA Astrophysics Data System (ADS)
Peinsipp-Byma, E.; Geisler, Jürgen; Bader, Thomas
2009-05-01
System concepts for network enabled image-based ISR (intelligence, surveillance, reconnaissance) is the major mission of Fraunhofer IITB's applied research in the area of defence and security solutions. For the TechDemo08 as part of the NATO CNAD POW Defence against terrorism Fraunhofer IITB advanced a new multi display concept to handle the shear amount and high complexity of ISR data acquired by networked, distributed surveillance systems with the objective to support the generation of a common situation picture. Amount and Complexity of ISR data demands an innovative man-machine interface concept for humans to deal with it. The IITB's concept is the Digital Map & Situation Surface. This concept offers to the user a coherent multi display environment combining a horizontal surface for the situation overview from the bird's eye view, an attached vertical display for collateral information and so-called foveatablets as personalized magic lenses in order to obtain high resolved and role-specific information about a focused areaof- interest and to interact with it. In the context of TechDemo08 the Digital Map & Situation Surface served as workspace for team-based situation visualization and analysis. Multiple sea- and landside surveillance components were connected to the system.
NASA Astrophysics Data System (ADS)
Figl, Michael; Birkfellner, Wolfgang; Watzinger, Franz; Wanschitz, Felix; Hummel, Johann; Hanel, Rudolf A.; Ewers, Rolf; Bergmann, Helmar
2002-05-01
Two main concepts of Head Mounted Displays (HMD) for augmented reality (AR) visualization exist, the optical and video-see through type. Several research groups have pursued both approaches for utilizing HMDs for computer aided surgery. While the hardware requirements for a video see through HMD to achieve acceptable time delay and frame rate seem to be enormous the clinical acceptance of such a device is doubtful from a practical point of view. Starting from previous work in displaying additional computer-generated graphics in operating microscopes, we have adapted a miniature head mounted operating microscope for AR by integrating two very small computer displays. To calibrate the projection parameters of this so called Varioscope AR we have used Tsai's Algorithm for camera calibration. Connection to a surgical navigation system was performed by defining an open interface to the control unit of the Varioscope AR. The control unit consists of a standard PC with a dual head graphics adapter to render and display the desired augmentation of the scene. We connected this control unit to a computer aided surgery (CAS) system by the TCP/IP interface. In this paper we present the control unit for the HMD and its software design. We tested two different optical tracking systems, the Flashpoint (Image Guided Technologies, Boulder, CO), which provided about 10 frames per second, and the Polaris (Northern Digital, Ontario, Canada) which provided at least 30 frames per second, both with a time delay of one frame.
Biocular vehicle display optical designs
NASA Astrophysics Data System (ADS)
Chu, H.; Carter, Tom
2012-06-01
Biocular vehicle display optics is a fast collimating lens (f / # < 0.9) that presents the image of the display at infinity to both eyes of the viewer. Each eye captures the scene independently and the brain merges the two images into one through the overlapping portions of the images. With the recent conversion from analog CRT based displays to lighter, more compact active-matrix organic light-emitting diodes (AMOLED) digital image sources, display optical designs have evolved to take advantage of the higher resolution AMOLED image sources. To maximize the field of view of the display optics and fully resolve the smaller pixels, the digital image source is pre-magnified by relay optics or a coherent taper fiber optics plate. Coherent taper fiber optics plates are used extensively to: 1. Convert plano focal planes to spherical focal planes in order to eliminate Petzval field curvature. This elimination enables faster lens speed and/or larger field of view of eye pieces, display optics. 2. Provide pre-magnification to lighten the work load of the optics to further increase the numerical aperture and/or field of view. 3. Improve light flux collection efficiency and field of view by collecting all the light emitted by the image source and guiding imaging light bundles toward the lens aperture stop. 4. Reduce complexity of the optical design and overall packaging volume by replacing pre-magnification optics with a compact taper fiber optics plate. This paper will review and compare the performance of biocular vehicle display designs without and with taper fiber optics plate.
DLP technolgy: applications in optical networking
NASA Astrophysics Data System (ADS)
Yoder, Lars A.; Duncan, Walter M.; Koontz, Elisabeth M.; So, John; Bartlett, Terry A.; Lee, Benjamin L.; Sawyers, Bryce D.; Powell, Donald; Rancuret, Paul
2001-11-01
For the past five years, Digital Light Processing (DLP) technology from Texas Instruments has made significant inroads in the projection display market. With products encompassing the world's smallest data & video projectors, HDTVs, and digital cinema, DLP is an extremely flexible technology. At the heart of these display solutions is Texas Instruments Digital Micromirror Device (DMD), a semiconductor-based light switch array of thousands of individually addressable, tiltable, mirror-pixels. With success of the DMD as a spatial light modulator in the visible regime, the use of DLP technology under the constraints of coherent, infrared light for optical networking applications is being explored. As a coherent light modulator, the DMD device can be used in Dense Wavelength Division Multiplexed (DWDM) optical networks to dynamically manipulate and shape optical signals. This paper will present the fundamentals of using DLP with coherent wavefronts, discuss inherent advantages of the technology, and present several applications for DLP in dynamic optical networks.
DigiSeis—A software component for digitizing seismic signals using the PC sound card
NASA Astrophysics Data System (ADS)
Amin Khan, Khalid; Akhter, Gulraiz; Ahmad, Zulfiqar
2012-06-01
An innovative software-based approach to develop an inexpensive experimental seismic recorder is presented. This approach requires no hardware as the built-in PC sound card is used for digitization of seismic signals. DigiSeis, an ActiveX component is developed to capture the digitized seismic signals from the sound card and deliver them to applications for processing and display. A seismic recorder application software SeisWave is developed over this component, which provides real-time monitoring and display of seismic events picked by a pair of external geophones. This recorder can be used as an educational aid for conducting seismic experiments. It can also be connected with suitable seismic sensors to record earthquakes. The software application and the ActiveX component are available for download. This component can be used to develop seismic recording applications according to user specific requirements.
Market trends in the projection display industry
NASA Astrophysics Data System (ADS)
Dash, Sweta
2000-04-01
The projection display industry represents a multibillion- dollar market that includes four distinct technologies. High-volume consumer products and high-value business products drive the market, with different technologies being used in different application markets. The consumer market is dominated by rear CRT technology, especially in the projection television segment. But rear LCD (liquid crystal display) and rear reflective (DLP, or Digital Light ProcessingTM) televisions are slowly emerging as future competitors to rear CRT projectors. Front CRT projectors are still popular in the high-end home theater market. Front LCD technology and front DLP technology dominate the business market. Traditional light valve technology was the only solution for applications requiring high light outputs, but new three-chip DLP projectors meet the higher light output requirements at a lower price. In the last few years the strongest growth has been in the business market for multimedia presentation applications. This growth was due to the continued increase in display pixel formats, the continued reduction in projector weight, and the improved price/performance ratio. The projection display market will grow at a significant rate during the next five years, driven by the growth in ultraportable (< 10 pound) projectors and the shift in the consumer market to digital and HDTV products.
NASA Astrophysics Data System (ADS)
Smith, Joseph; Marrs, Michael; Strnad, Mark; Apte, Raj B.; Bert, Julie; Allee, David; Colaneri, Nicholas; Forsythe, Eric; Morton, David
2013-05-01
Today's flat panel digital x-ray image sensors, which have been in production since the mid-1990s, are produced exclusively on glass substrates. While acceptable for use in a hospital or doctor's office, conventional glass substrate digital x-ray sensors are too fragile for use outside these controlled environments without extensive reinforcement. Reinforcement, however, significantly increases weight, bulk, and cost, making them impractical for far-forward remote diagnostic applications, which demand rugged and lightweight x-ray detectors. Additionally, glass substrate x-ray detectors are inherently rigid. This limits their use in curved or bendable, conformal x-ray imaging applications such as the non-destructive testing (NDT) of oil pipelines. However, by extending low-temperature thin-film transistor (TFT) technology previously demonstrated on plastic substrate- based electrophoretic and organic light emitting diode (OLED) flexible displays, it is now possible to manufacture durable, lightweight, as well as flexible digital x-ray detectors. In this paper, we discuss the principal technical approaches used to apply flexible display technology to two new large-area flexible digital x-ray sensors for defense, security, and industrial applications and demonstrate their imaging capabilities. Our results include a 4.8″ diagonal, 353 x 463 resolution, flexible digital x-ray detector, fabricated on a 6″ polyethylene naphthalate (PEN) plastic substrate; and a larger, 7.9″ diagonal, 720 x 640 resolution, flexible digital x-ray detector also fabricated on PEN and manufactured on a gen 2 (370 x 470 mm) substrate.
A Real-Time Optical 6D Tracker for Head-Mounted Display Systems
1990-03-01
provides a limited working volumne an(J do not sense orientation directly. OPTOTRAK [Nor88] is a new system which claims to be much more accurate than...1987. [Nor88] Northern Digital. Trade literature on Optotrak - Nor’hern Digital’- Three Di- mensional Optical Motion Tracking and Analysis System
Display Device Color Management and Visual Surveillance of Vehicles
ERIC Educational Resources Information Center
Srivastava, Satyam
2011-01-01
Digital imaging has seen an enormous growth in the last decade. Today users have numerous choices in creating, accessing, and viewing digital image/video content. Color management is important to ensure consistent visual experience across imaging systems. This is typically achieved using color profiles. In this thesis we identify the limitations…
Speech Timing and Working Memory in Profoundly Deaf Children after Cochlear Implantation.
ERIC Educational Resources Information Center
Burkholder, Rose A.; Pisoni, David B.
2003-01-01
Compared speaking rates, digit span, and speech timing in profoundly deaf 8- and 9-year-olds with cochlear implants and normal-hearing children. Found that deaf children displayed longer sentence durations and pauses during recall and shorter digit spans than normal-hearing children. Articulation rates strongly correlated with immediate memory…
Collaborative Strategic Reading on Multi-Touch and Multi-User Digital Tabletop Displays
ERIC Educational Resources Information Center
Maslamani, Jaber Ali; Windeatt, Scott; Olivier, Patrick; Heslop, Phil; Kharrufa, Ahmed; Shearer, John; Balaam, Madeline
2012-01-01
This paper is part of a work-in-progress that reports on the design, development, and evaluation of a Digital Collaborative Strategic Reading (DCSR) application with regard to its effectiveness in improving English as a second language (ESL) reading comprehension. The DCSR application allows users to read collaboratively on multitouch and…
2012-12-11
ment, and difficulties creating high aspect ratio features. In addition, conventional mask-based lithography cannot create curved surfaces in the...There are three types of digital mask technologies: (1) liquid crystal display (LCD); (2) digital micromirror device (DMD); and (3) LCoS. LCD is the
Proceedings of the Fourth Annual Workshop on the Use of Digital Computers in Process Control.
ERIC Educational Resources Information Center
Smith, Cecil L., Ed.
Contents: Computer hardware testing (results of vendor-user interaction); CODIL (a new language for process control programing); the design and implementation of control systems utilizing CRT display consoles; the systems contractor - valuable professional or unnecessary middle man; power station digital computer applications; from inspiration to…
Virtual slide telepathology workstation of the future: lessons learned from teleradiology.
Krupinski, Elizabeth A
2009-08-01
The clinical reading environment for the 21st century pathologist looks very different than it did even a few short years ago. Glass slides are quickly being replaced by digital "virtual slides," and the traditional light microscope is being replaced by the computer display. There are numerous questions that arise however when deciding exactly what this new digital display viewing environment will be like. Choosing a workstation for daily use in the interpretation of digital pathology images can be a very daunting task. Radiology went digital nearly 20 years ago and faced many of the same challenges so there are lessons to be learned from these experiences. One major lesson is that there is no "one size fits all" workstation so users must consider a variety of factors when choosing a workstation. In this article, we summarize some of the potentially critical elements in a pathology workstation and the characteristics one should be aware of and look for in the selection of one. Issues pertaining to both hardware and software aspects of medical workstations will be reviewed particularly as they may impact the interpretation process.
Validity of Subjective Self-Assessment of Digital Competence among Undergraduate Preservice Teachers
ERIC Educational Resources Information Center
Maderick, Joseph Andrew
2013-01-01
Technology is now integrated into the Technological Pedagogical Content Knowledge (TPACK) required to be a highly qualified 21st century teacher. Accurate measurement of digital competence has become critical. Self-assessment has been used widely to measure the digital competence of preservice teachers who are expected to integrate technology into…
ERIC Educational Resources Information Center
Webb, Angela W.; Bunch, J. C.; Wallace, Maria F.
2015-01-01
In today's technological age, visions for technology integration in the classroom continue to be explored and examined. Digital game-based learning is one way to purposefully integrate technology while maintaining a focus on learning objectives. This case study sought to understand agriscience teachers' experiences implementing digital game-based…
iPads and Paintbrushes: Integrating Digital Media into an Intergenerational Art Class
ERIC Educational Resources Information Center
Heydon, Rachel; McKee, Lori; Daly, Bridget
2017-01-01
This exploratory case study integrated digital media into an intergenerational art class. Its goals were to generate knowledge of how to bring young children and elders together to expand their opportunities for meaning-making and seeing themselves in affirming ways so as to generate transferable understanding of digitally enhanced multimodal…
ERIC Educational Resources Information Center
Sockman, Beth Rajan; Sutton, Rhonda; Herrmann, Michele
2016-01-01
This study determined the usefulness of digital comic creation with 77 graduate students in a teacher technology course. Students completed an assigned reading and created digital comics that addressed technology integration concerns in the schools and society. Using practical action research, 77 student-created comics were analyzed. The findings…
NASA Technical Reports Server (NTRS)
Zhou, Zhimin (Inventor); Pain, Bedabrata (Inventor)
1999-01-01
An analog-to-digital converter for on-chip focal-plane image sensor applications. The analog-to-digital converter utilizes a single charge integrating amplifier in a charge balancing architecture to implement successive approximation analog-to-digital conversion. This design requires minimal chip area and has high speed and low power dissipation for operation in the 2-10 bit range. The invention is particularly well suited to CMOS on-chip applications requiring many analog-to-digital converters, such as column-parallel focal-plane architectures.
Digital data base application to porphyry copper mineralization in Alaska; case study summary
Trautwein, Charles M.; Greenlee, David D.; Orr, Donald G.
1982-01-01
The purpose of this report is to summarize the progress in use of digital image analysis techniques in developing a conceptual model for assessing porphyry copper mineral potential. The study area consists of approximately the southern one-half of the 1? by 3? Nabesna quadrangle in east-central Alaska. The digital geologic data base consists of data compiled under the Alaskan Mineral Resource Assessment Program (AMRAP) as well as digital elevation data and Landsat spectral reflectance data from the Multispectral Scanner System. The digital data base used to develop and implement a conceptual model for porphyry-type copper mineralization consisted of 16 original data types and 18 derived data sets formatted in a grid-cell (raster) structure and registered to a map base in the Universal Transverse Mercator (UTM) projection. Minimum curvature and inverse distance squared interpolation techniques were used to generate continuous surfaces from sets of irregularly spaced data points. Processing requirements included: (1) merging or overlaying of data sets, (2) display and color coding of maps and images, (3) univariate and multivariate statistical analyses, and (4) compound overlaying operations. Data sets were merged and processed to create stereoscopic displays of continuous surfaces. The ratio of several data sets were calculated to evaluate relative variations and to enhance the display of surface alteration (gossans). Factor analysis and principal components analysis techniques were used to determine complex relationships and correlations between data sets. The resultant model consists of 10 parameters that identify three areas most likely to contain porphyry copper mineralization; two of these areas are known occurrences of mineralization and the third is not well known. Field studies confirmed that the three areas identified by the model have significant copper potential.
Forecast of Remote Underwater Sensing Technology.
1980-07-01
hr T. MAGNETICS (2 Replies) Q. What will be sensitivities of fluxgate , proton, optical pump, SQUID (superconducting) magnetometers ? A. Fluxgate 0.1...ft Oujtpuit Analog, digital and B3CD Cost $65.K 227 Manu factu rer EG&G Geometric Unit G-806M System Marine Search Proton Magnetometer Sensitivity...optional) Depth Range 0 to 100 m or 6000 m Precision +0.15% FS Time Constant 60 ms Output Digital display, analog and digital BCD output Cost $13.K 243
Preparation and Presentation of Digital Maps in Raster Format
Edwards, K.; Batson, R.M.
1980-01-01
A set of algorithms has been developed at USGS Flagstaff for displaying digital map data in raster format. The set includes: FILLIN, which assigns a specified attribute code to units of a map which have been outlined on a digitizer and converted to raster format; FILBND, which removes the outlines; ZIP, which adds patterns to the map units; and COLOR, which provides a simplified process for creating color separation plates for either photographic or lithographic reproduction. - Authors
Accuracy and consistency of weights provided by home bathroom scales.
Yorkin, Meredith; Spaccarotella, Kim; Martin-Biggers, Jennifer; Quick, Virginia; Byrd-Bredbenner, Carol
2013-12-17
Self-reported body weight is often used for calculation of Body Mass Index because it is easy to collect. Little is known about sources of error introduced by using bathroom scales to measure weight at home. The objective of this study was to evaluate the accuracy and consistency of digital versus dial-type bathroom scales commonly used for self-reported weight. Participants brought functioning bathroom scales (n=18 dial-type, n=43 digital-type) to a central location. Trained researchers assessed accuracy and consistency using certified calibration weights at 10 kg, 25 kg, 50 kg, 75 kg, 100 kg, and 110 kg. Data also were collected on frequency of calibration, age and floor surface beneath the scale. All participants reported using their scale on hard surface flooring. Before calibration, all digital scales displayed 0, but dial scales displayed a mean absolute initial weight of 0.95 (1.9 SD) kg. Digital scales accurately weighed test loads whereas dial-type scale weights differed significantly (p<0.05). Imprecision of dial scales was significantly greater than that of digital scales at all weights (p<0.05). Accuracy and precision did not vary by scale age. Digital home bathroom scales provide sufficiently accurate and consistent weights for public health research. Reminders to zero scales before each use may further improve accuracy of self-reported weight.
Near real-time digital holographic microscope based on GPU parallel computing
NASA Astrophysics Data System (ADS)
Zhu, Gang; Zhao, Zhixiong; Wang, Huarui; Yang, Yan
2018-01-01
A transmission near real-time digital holographic microscope with in-line and off-axis light path is presented, in which the parallel computing technology based on compute unified device architecture (CUDA) and digital holographic microscopy are combined. Compared to other holographic microscopes, which have to implement reconstruction in multiple focal planes and are time-consuming the reconstruction speed of the near real-time digital holographic microscope can be greatly improved with the parallel computing technology based on CUDA, so it is especially suitable for measurements of particle field in micrometer and nanometer scale. Simulations and experiments show that the proposed transmission digital holographic microscope can accurately measure and display the velocity of particle field in micrometer scale, and the average velocity error is lower than 10%.With the graphic processing units(GPU), the computing time of the 100 reconstruction planes(512×512 grids) is lower than 120ms, while it is 4.9s using traditional reconstruction method by CPU. The reconstruction speed has been raised by 40 times. In other words, it can handle holograms at 8.3 frames per second and the near real-time measurement and display of particle velocity field are realized. The real-time three-dimensional reconstruction of particle velocity field is expected to achieve by further optimization of software and hardware. Keywords: digital holographic microscope,
Design of video processing and testing system based on DSP and FPGA
NASA Astrophysics Data System (ADS)
Xu, Hong; Lv, Jun; Chen, Xi'ai; Gong, Xuexia; Yang, Chen'na
2007-12-01
Based on high speed Digital Signal Processor (DSP) and Field Programmable Gate Array (FPGA), a video capture, processing and display system is presented, which is of miniaturization and low power. In this system, a triple buffering scheme was used for the capture and display, so that the application can always get a new buffer without waiting; The Digital Signal Processor has an image process ability and it can be used to test the boundary of workpiece's image. A video graduation technology is used to aim at the position which is about to be tested, also, it can enhance the system's flexibility. The character superposition technology realized by DSP is used to display the test result on the screen in character format. This system can process image information in real time, ensure test precision, and help to enhance product quality and quality management.
Real object-based 360-degree integral-floating display using multiple depth camera
NASA Astrophysics Data System (ADS)
Erdenebat, Munkh-Uchral; Dashdavaa, Erkhembaatar; Kwon, Ki-Chul; Wu, Hui-Ying; Yoo, Kwan-Hee; Kim, Young-Seok; Kim, Nam
2015-03-01
A novel 360-degree integral-floating display based on the real object is proposed. The general procedure of the display system is similar with conventional 360-degree integral-floating displays. Unlike previously presented 360-degree displays, the proposed system displays the 3D image generated from the real object in 360-degree viewing zone. In order to display real object in 360-degree viewing zone, multiple depth camera have been utilized to acquire the depth information around the object. Then, the 3D point cloud representations of the real object are reconstructed according to the acquired depth information. By using a special point cloud registration method, the multiple virtual 3D point cloud representations captured by each depth camera are combined as single synthetic 3D point cloud model, and the elemental image arrays are generated for the newly synthesized 3D point cloud model from the given anamorphic optic system's angular step. The theory has been verified experimentally, and it shows that the proposed 360-degree integral-floating display can be an excellent way to display real object in the 360-degree viewing zone.
Pankok, Carl; Kaber, David B
2018-05-01
Existing measures of display clutter in the literature generally exhibit weak correlations with task performance, which limits their utility in safety-critical domains. A literature review led to formulation of an integrated display data- and user knowledge-driven measure of display clutter. A driving simulation experiment was conducted in which participants were asked to search 'high' and 'low' clutter displays for navigation information. Data-driven measures and subjective perceptions of clutter were collected along with patterns of visual attention allocation and driving performance responses during time periods in which participants searched the navigation display for information. The new integrated measure was more strongly correlated with driving performance than other, previously developed measures of clutter, particularly in the case of low-clutter displays. Integrating display data and user knowledge factors with patterns of visual attention allocation shows promise for measuring display clutter and correlation with task performance, particularly for low-clutter displays. Practitioner Summary: A novel measure of display clutter was formulated, accounting for display data content, user knowledge states and patterns of visual attention allocation. The measure was evaluated in terms of correlations with driver performance in a safety-critical driving simulation study. The measure exhibited stronger correlations with task performance than previously defined measures.
Enhancement of the Shared Graphics Workspace.
1987-12-31
participants to share videodisc images and computer graphics displayed in color and text and facsimile information displayed in black on amber. They...could annotate the information in up to five * colors and print the annotated version at both sites, using a standard fax machine. The SGWS also used a fax...system to display a document, whether text or photo, the camera scans the document, digitizes the data, and sends it via direct memory access (DMA) to
Digital pathology: DICOM-conform draft, testbed, and first results.
Zwönitzer, Ralf; Kalinski, Thomas; Hofmann, Harald; Roessner, Albert; Bernarding, Johannes
2007-09-01
Hospital information systems are state of the art nowadays. Therefore, Digital Pathology, also labelled as Virtual Microscopy, has gained increased attention. Triggered by radiology, standardized information models and workflows were world-wide defined based on DICOM. However, DICOM-conform integration of Digital Pathology into existing clinical information systems imposes new problems requiring specific solutions concerning the huge amount of data as well as the special structure of the data to be managed, transferred, and stored. We implemented a testbed to realize and evaluate the workflow of digitized slides from acquisition to archiving. The experiences led to the draft of a DICOM-conform information model that accounted for extensions, definitions, and technical requirements necessary to integrate digital pathology in a hospital-wide DICOM environment. Slides were digitized, compressed, and could be viewed remotely. Real-time transfer of the huge amount of data was optimized using streaming techniques. Compared to a recent discussion in the DICOM Working Group for Digital Pathology (WG26) our experiences led to a preference of a JPEG2000/JPIP-based streaming of the whole slide image. The results showed that digital pathology is feasible but strong efforts by users and vendors are still necessary to integrate Digital Pathology into existing information systems.
Some Processing and Dynamic-Range Issues in Side-Scan Sonar Work
NASA Astrophysics Data System (ADS)
Asper, V. L.; Caruthers, J. W.
2007-05-01
Often side-scan sonar data are collected in such a way that they afford little opportunity to do more than simply display them as images. These images are often limited in dynamic range and stored only in an 8-bit tiff format of numbers representing less than true intensity values. Furthermore, there is little prior knowledge during a survey of the best range in which to set those eight bits. This can result in clipped strong targets and/or the depth of shadows so that the bits that can be recovered from the image are not fully representative of target or bottom backscatter strengths. Several top-of-the-line sonars do have a means of logging high-bit-rate digital data (sometimes only as an option), but only dedicated specialists pay much attention to such data, if they record them at all. Most users of side-scan sonars are interested only in the images. Discussed in this paper are issues related to storing and processing of high-bit-rate digital data to preserve their integrity for future enhanced, after- the-fact use and ability to recover actual backscatter strengths. This papers discusses issues in the use high-bit- rate, digital side-scan sonar data. This work was supported by the Office of Naval Research, Code 321OA, and the Naval Oceanographic Office, Mine Warfare Program.
Extend Course for Product Designer in Digital Mobile Era
NASA Astrophysics Data System (ADS)
CHAO, Fang-Lin; LIU, Tzu-Heng; HUANG, Xian-Chun
2017-12-01
Product design refers to a system of processes from confirming a product’s specifications to product’s structure. Form, technology, and needs must be considered simultaneously to ensure qualities. In recent years, with the advancement of smartphone technology, many products are connected with apps. Designers cannot exclude themselves from this new wave of the trend. In this article, household hydroponic products design is used as an example, to show the close relationship between digital mobile technology and product design in the contemporary world. Regularly measure the amount of liquid to be added is difficult for a consumer who has no professional experience. To facilitate the introduction of small-scale aquaculture systems into the home, we proposed sensor hardware combined with App software, measured EC and pH value and transmitted to the phone. The app can calculate and display the amount of added and control the amount of inserted through a Bluetooth connection. The physical design needs to take into account the connection between the electronic parts and the circuit board, and interface operation. Thus, not only the model of the product but also the user interface has to be integrated to show the product's quality completely. Besides, authors made reflection upon the necessity for adjustments for interdisciplinary courses under the changing digital mobile era. Also, under the current curriculum structure, possible teaching approach is expressed for extending student’s feasibility.
Bang, Magnus; Timpka, Toomas
2007-06-01
Co-located teams often use material objects to communicate messages in collaboration. Modern desktop computing systems with abstract graphical user interface (GUIs) fail to support this material dimension of inter-personal communication. The aim of this study is to investigate how tangible user interfaces can be used in computer systems to better support collaborative routines among co-located clinical teams. The semiotics of physical objects used in team collaboration was analyzed from data collected during 1 month of observations at an emergency room. The resulting set of communication patterns was used as a framework when designing an experimental system. Following the principles of augmented reality, physical objects were mapped into a physical user interface with the goal of maintaining the symbolic value of those objects. NOSTOS is an experimental ubiquitous computing environment that takes advantage of interaction devices integrated into the traditional clinical environment, including digital pens, walk-up displays, and a digital desk. The design uses familiar workplace tools to function as user interfaces to the computer in order to exploit established cognitive and collaborative routines. Paper-based tangible user interfaces and digital desks are promising technologies for co-located clinical teams. A key issue that needs to be solved before employing such solutions in practice is associated with limited feedback from the passive paper interfaces.
Launching the Next Generation IODP Site Survey Data Bank
NASA Astrophysics Data System (ADS)
Miller, S. P.; Helly, J.; Clark, D.; Eakins, B.; Sutton, D.; Weatherford, J.; Thatch, G.; Miville, B.; Zelt, B.
2005-12-01
The next generation all-digital Site Survey Data Bank (SSDB) became operational on August 15, 2005 as an online resource for Integrated Ocean Drilling Program (IODP) proponents, reviewers, panels and operations, worldwide. There are currently 123 active proposals for drilling at sites distributed across the globe, involving nearly 1000 proponents from more than 40 countries. The goal is to provide an authoritative, persistent, secure, password-controlled and easily-used home for contributed data objects, as proposals evolve through their life cycle from preliminary phases to planned drilling expeditions. Proposal status can be monitored graphically by proposal number, data type or date. A Java SSDBviewer allows discovery of all proposal data objects, displayed over a basemap of global topography, crustal age or other custom maps. Data can be viewed or downloaded under password control. Webform interfaces assist with the uploading of data and metadata. Thirty four different standard data types are currently supported. The system was designed as a fully functioning digital library, not just a database or a web archive, drawing upon the resources of the SIOExplorer Digital Library project. Blocks of metadata are organized to support discovery and use, as appropriate for each data type. The SSDB has been developed by a UCSD team of researchers and computer scientists at the Scripps Institution of Oceanography and the San Diego Supercomputer Center, under contract with IODP Management International Inc., supported by NSF OCE 0432224.
Smile line assessment comparing quantitative measurement and visual estimation.
Van der Geld, Pieter; Oosterveld, Paul; Schols, Jan; Kuijpers-Jagtman, Anne Marie
2011-02-01
Esthetic analysis of dynamic functions such as spontaneous smiling is feasible by using digital videography and computer measurement for lip line height and tooth display. Because quantitative measurements are time-consuming, digital videography and semiquantitative (visual) estimation according to a standard categorization are more practical for regular diagnostics. Our objective in this study was to compare 2 semiquantitative methods with quantitative measurements for reliability and agreement. The faces of 122 male participants were individually registered by using digital videography. Spontaneous and posed smiles were captured. On the records, maxillary lip line heights and tooth display were digitally measured on each tooth and also visually estimated according to 3-grade and 4-grade scales. Two raters were involved. An error analysis was performed. Reliability was established with kappa statistics. Interexaminer and intraexaminer reliability values were high, with median kappa values from 0.79 to 0.88. Agreement of the 3-grade scale estimation with quantitative measurement showed higher median kappa values (0.76) than the 4-grade scale estimation (0.66). Differentiating high and gummy smile lines (4-grade scale) resulted in greater inaccuracies. The estimation of a high, average, or low smile line for each tooth showed high reliability close to quantitative measurements. Smile line analysis can be performed reliably with a 3-grade scale (visual) semiquantitative estimation. For a more comprehensive diagnosis, additional measuring is proposed, especially in patients with disproportional gingival display. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Birchenough, A. G.
1975-01-01
A digital speed control that can be combined with a proportional analog controller is described. The stability and transient response of the analog controller were retained and combined with the long-term accuracy of a crystal-controlled integral controller. A relatively simple circuit was developed by using phase-locked-loop techniques and total error storage. The integral digital controller will maintain speed control accuracy equal to that of the crystal reference oscillator.
New ultraportable display technology and applications
NASA Astrophysics Data System (ADS)
Alvelda, Phillip; Lewis, Nancy D.
1998-08-01
MicroDisplay devices are based on a combination of technologies rooted in the extreme integration capability of conventionally fabricated CMOS active-matrix liquid crystal display substrates. Customized diffraction grating and optical distortion correction technology for lens-system compensation allow the elimination of many lenses and systems-level components. The MicroDisplay Corporation's miniature integrated information display technology is rapidly leading to many new defense and commercial applications. There are no moving parts in MicroDisplay substrates, and the fabrication of the color generating gratings, already part of the CMOS circuit fabrication process, is effectively cost and manufacturing process-free. The entire suite of the MicroDisplay Corporation's technologies was devised to create a line of application- specific integrated circuit single-chip display systems with integrated computing, memory, and communication circuitry. Next-generation portable communication, computer, and consumer electronic devices such as truly portable monitor and TV projectors, eyeglass and head mounted displays, pagers and Personal Communication Services hand-sets, and wristwatch-mounted video phones are among the may target commercial markets for MicroDisplay technology. Defense applications range from Maintenance and Repair support, to night-vision systems, to portable projectors for mobile command and control centers.
Integrating TV/digital data spectrograph system
NASA Technical Reports Server (NTRS)
Duncan, B. J.; Fay, T. D.; Miller, E. R.; Wamsteker, W.; Brown, R. M.; Neely, P. L.
1975-01-01
A 25-mm vidicon camera was previously modified to allow operation in an integration mode for low-light-level astronomical work. The camera was then mated to a low-dispersion spectrograph for obtaining spectral information in the 400 to 750 nm range. A high speed digital video image system was utilized to digitize the analog video signal, place the information directly into computer-type memory, and record data on digital magnetic tape for permanent storage and subsequent analysis.
ERIC Educational Resources Information Center
Bates, Alan
2015-01-01
Instruments or digital meters with data values visible on a seven-segment display can easily be found in the physics lab. Examples include multimeters, sound level meters, Geiger-Müller counters and electromagnetic field meters, where the display is used to show numerical data. Such instruments, without the ability to connect to computers or data…
Comparing the Readability of Text Displays on Paper, E-Book Readers, and Small Screen Devices
ERIC Educational Resources Information Center
Baker, Rebecca Dawn
2010-01-01
Science fiction has long promised the digitalization of books. Characters in films and television routinely check their palm-sized (or smaller) electronic displays for fast-scrolling information. However, this very technology, increasingly prevalent in today's world, has not been embraced universally. While the convenience of pocket-sized…
Re-Mediating Classroom Activity with a Non-Linear, Multi-Display Presentation Tool
ERIC Educational Resources Information Center
Bligh, Brett; Coyle, Do
2013-01-01
This paper uses an Activity Theory framework to evaluate the use of a novel, multi-screen, non-linear presentation tool. The Thunder tool allows presenters to manipulate and annotate multiple digital slides and to concurrently display a selection of juxtaposed resources across a wall-sized projection area. Conventional, single screen presentation…
Night Attack Workload Steering Group. Volume 3. Simulation and Human Factors Subgroup
1982-06-01
information intepretation . The second is the use of pictorial formats or computer generated displays that combine many present-day displays into a small number...base exists in any form (digital, film , or model) which supports the wide area, long track, low level requirements levied by night attack training
ERIC Educational Resources Information Center
Huddy, Avril
2017-01-01
Digital technology has long been integrated into the mainstream learning environment in a variety of ways from basic teaching delivery tools to specific courseware; however, it has struggled to make an impact in the dance technique studio. Despite the enthusiastic and alacritous integration of digital technologies within the repertoire and…
A Planning Cycle for Integrating Digital Technology into Literacy Instruction
ERIC Educational Resources Information Center
Hutchison, Amy; Woodward, Lindsay
2014-01-01
With the adoption of the Common Core State Standards by most states, the use of digital tools in literacy and language arts instruction has become of critical importance to educators. These changes produce a need for a better understanding of how literacy and language arts teachers can successfully integrate digital tools into their instruction…
Rehm, K; Seeley, G W; Dallas, W J; Ovitt, T W; Seeger, J F
1990-01-01
One of the goals of our research in the field of digital radiography has been to develop contrast-enhancement algorithms for eventual use in the display of chest images on video devices with the aim of preserving the diagnostic information presently available with film, some of which would normally be lost because of the smaller dynamic range of video monitors. The ASAHE algorithm discussed in this article has been tested by investigating observer performance in a difficult detection task involving phantoms and simulated lung nodules, using film as the output medium. The results of the experiment showed that the algorithm is successful in providing contrast-enhanced, natural-looking chest images while maintaining diagnostic information. The algorithm did not effect an increase in nodule detectability, but this was not unexpected because film is a medium capable of displaying a wide range of gray levels. It is sufficient at this stage to show that there is no degradation in observer performance. Future tests will evaluate the performance of the ASAHE algorithm in preparing chest images for video display.
The use of optical waveguides in head up display (HUD) applications
NASA Astrophysics Data System (ADS)
Homan, Malcolm
2013-06-01
The application of optical waveguides to Head Up Displays (HUD) is an enabling technology which solves the critical issues of volume reduction (including cockpit intrusion) and mass reduction in an affordable product which retains the high performance optical capabilities associated with today's generation of digital display based HUDs. Improved operability and pilot comfort is achieved regardless of the installation by virtue of the intrinsic properties of optical waveguides and this has enabled BAE Systems Electronic Systems to develop two distinct product streams for glareshield and overhead HUD installations respectively. This paper addresses the design drivers behind the development of the next generation of Head Up Displays and their compatibility with evolving cockpit architectures and structures. The implementation of large scale optical waveguide combiners capable of matching and exceeding the display performances normally only associated with current digital display sourced HUDs has enabled BAE Systems Electronic Systems to solve the volume and installation challenges of the latest military and civil cockpits with it's LiteHUD® technology. Glareshield mounted waveguide based HUDs are compatible with the trend towards the addition of Large Area Displays (LAD) in place of the traditional multiple Head Down Displays (HDD) within military fast jet cockpits. They use an "indirect view" variant of the display which allows the amalgamation of high resolution digital display devices with the inherently small volume and low mass of the waveguide optics. This is then viewed using the more traditional technology of a conventional HUD combiner. This successful combination of technologies has resulted in the LPHUD product which is specifically designed by BAE Systems Electronic Systems to provide an ultra-low profile HUD which can be installed behind a LAD; still providing the level of performance that is at least equivalent to that of a conventional large volume glareshield mounted HUD. In many current Business Jet and Air Transport cockpits overhead mounted HUDs employ a conventional optical combiner to relay the display from a separate projector to the pilot's eyes. In BAE Systems' Electronic Systems QHUDTM configuration this combiner is replaced by the waveguide and the bulky, intrusive overhead projector completely eliminated. The result is a significant reduction in equipment volume and mass and a much greater head clearance combined with a substantially larger Head Motion Box. This latter feature is a fundamental outturn of waveguide optical solutions which removes the restrictions on pilot eye positioning associated with current conventional systems. LiteHUD®, developed by BAE Systems, Electronic Systems achieves equivalent optical performance to in-service HUDs for less cost, mass and volume.
Design of a high-speed high-resolution teleradiology system
NASA Astrophysics Data System (ADS)
Stewart, Brent K.; Dwyer, Samuel J., III; Huang, H. K.; Kangarloo, Hooshang
1992-07-01
A teleradiology system acquires radiographic images from one location and transmits them to one or more distant sites where they are displayed and/or converted to hardcopy film recordings. The long term goal of this research is to demonstrate that teleradiology systems can provide diagnostically equivalent results when compared to conventional radiographic film interpretation. If this hypothesis is proven, the following radiology tasks will be improved: (1) providing for primary interpretation of radiological images for patients in under served areas as well as other medical facilities; (2) integration of radiological services for multi- hospital/clinic health care provides consortiums (HMOs); (3) improving emergency service and intensive care unit coverage; (4) offering consulting-at-a-distance with sub-speciality radiologists; and (5) providing radiologists in the community or in rural areas immediate access to large academic centers for help in the interpretation of difficult and problematic cases. We are designing a high-speed, high-resolution teleradiology system between our level I medical center and several outlying medical centers within the metropolitan area. CT, MR and screen-film examinations will be digitized to 2 K or 4 K at the remote sites, transmitted to the central referral facility and sent to a laser film printer, reproducing the original film. The film can then be used for primary diagnosis, overreading/consultative purposes or for emergency room preparation. Inherently digital modality data (e.g. MR and CT) can be sent without digitization of the multi-format film is desired. A teleradiology system using a Wide Area Network (WAN) is to be connected to the following sites: (1) Olive View Medical Center; (2) Harbor General Medical Center; (3) UCLA Department of Radiological Sciences; and (4) two radiologist''s private residences. The wide area network (WAN) consists of a local carrier (GTE California Incorporated) and an inter-exchange carrier (US Sprint). Each affiliated hospital site is equipped with: (1) a radiographic film digitizer; (2) an interactive grayscale display workstation; (3) a computer system with teleradiology application software; (4) a local area network (LAN); (5) a LAN-WAN router; and (6) and dial-up (multiple switched N X 56 kbps lines) DS-1 WAN interfaces. The UCLA site is equipped with a local area image management network (PACS) for archiving, displaying, laser printed film hardcopy recordings, and WAN interfaces. The radiologists private residence is equipped with a grayscale station and a DS-0 56 kbps modem. We estimate the hardware costs at each remote site to be DLR160,000, DLR200,000 for the central referring facility, and under $DLR20,000 for the radiologist private residence.
Examining Student Digital Artifacts during a Year-Long Technology Integration Initiative
ERIC Educational Resources Information Center
Rodriguez, Prisca M.; Frey, Chris; Dawson, Kara; Liu, Feng; Ritzhaupt, Albert D.
2012-01-01
This study was situated within a year-long, statewide technology integration initiative designed to support technology integration within science, technology, engineering, and math classrooms. It examined the elements used in student artifacts in an attempt to investigate trends in digital artifact creation. Among several conclusions, this…
Electronics. Module 3: Digital Logic Application. Instructor's Guide.
ERIC Educational Resources Information Center
Carter, Ed; Murphy, Mark
This guide contains instructor's materials for a 10-unit secondary school course on digital logic application. The units are introduction to digital, logic gates, digital integrated circuits, combination logic, flip-flops, counters and shift registers, encoders and decoders, arithmetic circuits, memory, and analog/digital and digital/analog…
ERIC Educational Resources Information Center
Tam, Cynthia; Wells, David
2009-01-01
Visual-cognitive loads influence the effectiveness of word prediction technology. Adjusting parameters of word prediction programs can lessen visual-cognitive loads. This study evaluated the benefits of WordQ word prediction software for users' performance when the prediction window was moved to a personal digital assistant (PDA) device placed at…
Are We Ready for Another Change? Digital Signatures Can Change How We Handle the Academic Record
ERIC Educational Resources Information Center
Black, Thomas C.; Mohr, John
2004-01-01
In this electronic age, where information is digital and service is virtual, the registrar profession is changing rapidly to keep up with increasing standards and expectations. EDI and now XML standards enable system-to-system exchanges of academic records information. While many of the registrar's profession display student academic records under…
ERIC Educational Resources Information Center
Thomas, Wayne W.; Boechler, Patricia M.
2014-01-01
With teachers taking more interest in utilizing 3D virtual environments for educational purposes, research is needed to understand how learners perceive and process information within virtual environments (Eschenbrenner, Nah, & Siau, 2008). In this study, the authors sought to determine if learning style or digital literacy predict incidental…
Effects of Various Sketching Tools on Visual Thinking in Idea Development
ERIC Educational Resources Information Center
Chu, Po Ying; Hung, Hsiu Yen; Wu, Chih Fu; Liu, Yen Te
2017-01-01
Due to the wide application of digital tools and the improvement in interactive technologies, design thinking might change in digital world comparing to that in traditional design process. This study aims to explore the difference of design thinking between three kinds of sketching tools, i.e. hand-sketch, tablet, and pen-input display, by means…
VENI, video, VICI: The merging of computer and video technologies
NASA Technical Reports Server (NTRS)
Horowitz, Jay G.
1993-01-01
The topics covered include the following: High Definition Television (HDTV) milestones; visual information bandwidth; television frequency allocation and bandwidth; horizontal scanning; workstation RGB color domain; NTSC color domain; American HDTV time-table; HDTV image size; digital HDTV hierarchy; task force on digital image architecture; open architecture model; future displays; and the ULTIMATE imaging system.
NASA Technical Reports Server (NTRS)
Wenzel, Elizabeth M.
1991-01-01
A 3D auditory display can potentially enhance information transfer by combining directional and iconic information in a quite naturalistic representation of dynamic objects in the interface. Another aspect of auditory spatial clues is that, in conjunction with other modalities, it can act as a potentiator of information in the display. For example, visual and auditory cues together can reinforce the information content of the display and provide a greater sense of presence or realism in a manner not readily achievable by either modality alone. This phenomenon will be particularly useful in telepresence applications, such as advanced teleconferencing environments, shared electronic workspaces, and monitoring telerobotic activities in remote or hazardous situations. Thus, the combination of direct spatial cues with good principles of iconic design could provide an extremely powerful and information-rich display which is also quite easy to use. An alternative approach, recently developed at ARC, generates externalized, 3D sound cues over headphones in realtime using digital signal processing. Here, the synthesis technique involves the digital generation of stimuli using Head-Related Transfer Functions (HRTF's) measured in the two ear-canals of individual subjects. Other similar approaches include an analog system developed by Loomis, et. al., (1990) and digital systems which make use of transforms derived from normative mannikins and simulations of room acoustics. Such an interface also requires the careful psychophysical evaluation of listener's ability to accurately localize the virtual or synthetic sound sources. From an applied standpoint, measurement of each potential listener's HRTF's may not be possible in practice. For experienced listeners, localization performance was only slightly degraded compared to a subject's inherent ability. Alternatively, even inexperienced listeners may be able to adapt to a particular set of HRTF's as long as they provide adequate cues for localization. In general, these data suggest that most listeners can obtain useful directional information from an auditory display without requiring the use of individually-tailored HRTF's.
iPads in Breast Imaging – A Phantom Study
Hammon, M.; Schlechtweg, P. M.; Schulz-Wendtland, R.; Uder, M.; Schwab, S. A.
2014-01-01
Introduction: Modern tablet PCs as the iPad are becoming more and more integrated into medicine. The aim of this study was to evaluate the display quality of iPads regarding digital mammography. Materials and Methods: Three experienced readers compared the display quality of the iPad 2 and 3 with a dedicated 10 megapixel (MP) mammography liquid crystal display (LCD) screen in consensus using the standardized Contrast Detail Mammography (CDMAM) phantom. Phantom fields without agreement between the readers were classified as “uncertain”, correct 2 : 1 decisions were classified as “uncertain/readable”. In a second step display quality of the three reading devices was judged subjectively in a side by side comparison. Results: The 10 MP screen was superior to both iPads in 4 (phantom-)fields and inferior in 2 fields. Comparing the iPads, version 3 was superior in 4 fields and version 2 was superior in 1 field. However these differences were not significant. Total number of “uncertain” fields did not show significant differences. The number of “uncertain” fields was 15 with the 10 MP screen, 16 with the iPad 2 and 17 with the iPad 3 (p > 0.05), the number of “uncertain/readable” fields was 4, 7 and 8, respectively. Subjective image quality of the iPad 3 and the 10 MP screen was rated superior to the iPad 2. Conclusion: The evaluated iPads, especially in version 3, seem to be adequate to display mammograms in a diagnostic quality and thus could be useful e.g. for patient consultation, clinical demonstration or educational and teaching purposes. However primary mammogram reading should still be performed on dedicated large sized reading screens. PMID:24741126
Wireless sensor platform for harsh environments
NASA Technical Reports Server (NTRS)
Garverick, Steven L. (Inventor); Yu, Xinyu (Inventor); Toygur, Lemi (Inventor); He, Yunli (Inventor)
2009-01-01
Reliable and efficient sensing becomes increasingly difficult in harsher environments. A sensing module for high-temperature conditions utilizes a digital, rather than analog, implementation on a wireless platform to achieve good quality data transmission. The module comprises a sensor, integrated circuit, and antenna. The integrated circuit includes an amplifier, A/D converter, decimation filter, and digital transmitter. To operate, an analog signal is received by the sensor, amplified by the amplifier, converted into a digital signal by the A/D converter, filtered by the decimation filter to address the quantization error, and output in digital format by the digital transmitter and antenna.
Silicon photonics devices for metro applications
NASA Astrophysics Data System (ADS)
Fukuda, H.; Kikuchi, K.; Jizodo, M.; Kawamura, Y.; Takeda, K.; Honda, K.
2017-01-01
Digital coherent technology is considered an attractive way of realizing both high-speed metro links and long distance transmissions. In metro areas, there is a strong demand for a smaller, faster transceiver module. This demand is mainly driven by the rapidly increasing data center interconnection traffic, where transmission capacity per faceplane is a key feature. Therefore, optical integration technology is desired. Since compensation in digital coherent technology is performed in the electrical or digital domain, users can deal with those optics performances that are not compensated for digitally. This means using a new material that cannot provide perfect characteristics but that is suitable for miniaturization and integration is possible. Silicon photonics (SiPh) is considered an attractive technology that would enable the significant miniaturization of optical circuits and be capable of optical integration with high manufacturability. While SiPh-based devices have begun to be deployed for very short or short reach links on the basis of direct detection technology, their digital coherent applications have recently been investigated in view of their integration capability. This paper describes recent progress on SiPh-based integrated optical devices for high-speed digital coherent transceivers targeting metro links. An optical modulator and receiver with related circuits have been integrated into a single SiPh chip. TEC-free operation under non-hermetic conditions and the direct attachment of optical fibers have both been realized. Very thin and small packaging with sufficient performance has been demonstrated by using the SiPh chip co-packaged with high-speed ICs.
An Electronic Tree Inventory for Arboriculture Management
NASA Astrophysics Data System (ADS)
Tait, Roger J.; Allen, Tony J.; Sherkat, Nasser; Bellett-Travers, Marcus D.
The integration of Global Positioning System (GPS) technology into mobile devices provides them with an awareness of their physical location. This geospatial context can be employed in a wide range of applications including locating nearby places of interest as well as guiding emergency services to incidents. In this research, a GPS-enabled Personal Digital Assistant (PDA) is used to create a computerised tree inventory for the management of arboriculture. Using the General Packet Radio Service (GPRS), GPS information and arboreal image data are sent to a web-server. An office-based PC running customised Geographical Information Software (GIS) then automatically retrieves the GPS tagged image data for display and analysis purposes. The resulting application allows an expert user to view the condition of individual trees in greater detail than is possible using remotely sensed imagery.
The visualization and availability of experimental research data at Elsevier
NASA Astrophysics Data System (ADS)
Keall, Bethan
2014-05-01
In the digital age, the visualization and availability of experimental research data is an increasingly prominent aspect of the research process and of the scientific output that researchers generate. We expect that the importance of data will continue to grow, driven by technological advancements, requirements from funding bodies to make research data available, and a developing research data infrastructure that is supported by data repositories, science publishers, and other stakeholders. Elsevier is actively contributing to these efforts, for example by setting up bidirectional links between online articles on ScienceDirect and relevant data sets on trusted data repositories. A key aspect of Elsevier's "Article of the Future" program, these links enrich the online article and make it easier for researchers to find relevant data and articles and help place data in the right context for re-use. Recently, we have set up such links with some of the leading data repositories in Earth Sciences, including the British Geological Survey, Integrated Earth Data Applications, the UK Natural Environment Research Council, and the Oak Ridge National Laboratory DAAC. Building on these links, Elsevier has also developed a number of data integration and visualization tools, such as an interactive map viewer that displays the locations of relevant data from PANGAEA next to articles on ScienceDirect. In this presentation we will give an overview of these and other capabilities of the Article of the Future, focusing on how they help advance communication of research in the digital age.
Computer-Assisted Visual Search/Decision Aids as a Training Tool for Mammography
1999-07-01
display of a digital mammogram that compensates for the display brightness, the ambient light and the useful range of pixel intensities in the image...described here extends the work of Liu and Nodine (7) to include adjusting the gray-scale transform for ambient illumination and adjusting the mammogram...visible" disk in each band. The observer’s responses are affected by the display contrast and the ambient room lighting. The contrast of each indicated
Fluorescent protein integrated white LEDs for displays
NASA Astrophysics Data System (ADS)
Press, Daniel Aaron; Melikov, Rustamzhon; Conkar, Deniz; Nur Firat-Karalar, Elif; Nizamoglu, Sedat
2016-11-01
The usage time of displays (e.g., TVs, mobile phones, etc) is in general shorter than their functional life time, which worsens the electronic waste (e-waste) problem around the world. The integration of biomaterials into electronics can help to reduce the e-waste problem. In this study, we demonstrate fluorescent protein integrated white LEDs to use as a backlight source for liquid crystal (LC) displays for the first time. We express and purify enhanced green fluorescent protein (eGFP) and monomeric Cherry protein (mCherry), and afterward we integrate these proteins as a wavelength-converter on a blue LED chip. The protein-integrated backlight exhibits a high luminous efficacy of 248 lm/Wopt and the area of the gamut covers 80% of the NTSC color gamut. The resultant colors and objects in the image on the display can be well observed and distinguished. Therefore, fluorescent proteins show promise for display applications.
Digital Filters for Digital Phase-locked Loops
NASA Technical Reports Server (NTRS)
Simon, M.; Mileant, A.
1985-01-01
An s/z hybrid model for a general phase locked loop is proposed. The impact of the loop filter on the stability, gain margin, noise equivalent bandwidth, steady state error and time response is investigated. A specific digital filter is selected which maximizes the overall gain margin of the loop. This filter can have any desired number of integrators. Three integrators are sufficient in order to track a phase jerk with zero steady state error at loop update instants. This filter has one zero near z = 1.0 for each integrator. The total number of poles of the filter is equal to the number of integrators plus two.
ERIC Educational Resources Information Center
Yang, Kai-Hsiang
2017-01-01
It is widely accepted that the digital game-based learning approach has the advantage of stimulating students' learning motivation, but simply using digital games in the classroom does not guarantee satisfactory learning achievement, especially in the case of the absence of a teacher. Integrating appropriate learning strategies into a game can…
Integration of Digital Dental Casts in Cone-Beam Computed Tomography Scans
Rangel, Frits A.; Maal, Thomas J. J.; Bergé, Stefaan J.; Kuijpers-Jagtman, Anne Marie
2012-01-01
Cone-beam computed tomography (CBCT) is widely used in maxillofacial surgery. The CBCT image of the dental arches, however, is of insufficient quality to use in digital planning of orthognathic surgery. Several authors have described methods to integrate digital dental casts into CBCT scans, but all reported methods have drawbacks. The aim of this feasibility study is to present a new simplified method to integrate digital dental casts into CBCT scans. In a patient scheduled for orthognathic surgery, titanium markers were glued to the gingiva. Next, a CBCT scan and dental impressions were made. During the impression-taking procedure, the titanium markers were transferred to the impression. The impressions were scanned, and all CBCT datasets were exported in DICOM format. The two datasets were matched, and the dentition derived from the scanned impressions was transferred to the CBCT of the patient. After matching the two datasets, the average distance between the corresponding markers was 0.1 mm. This novel method allows for the integration of digital dental casts into CBCT scans, overcoming problems such as unwanted extra radiation exposure, distortion of soft tissues due to the use of bite jigs, and time-consuming digital data handling. PMID:23050159
FIA: An Open Forensic Integration Architecture for Composing Digital Evidence
NASA Astrophysics Data System (ADS)
Raghavan, Sriram; Clark, Andrew; Mohay, George
The analysis and value of digital evidence in an investigation has been the domain of discourse in the digital forensic community for several years. While many works have considered different approaches to model digital evidence, a comprehensive understanding of the process of merging different evidence items recovered during a forensic analysis is still a distant dream. With the advent of modern technologies, pro-active measures are integral to keeping abreast of all forms of cyber crimes and attacks. This paper motivates the need to formalize the process of analyzing digital evidence from multiple sources simultaneously. In this paper, we present the forensic integration architecture (FIA) which provides a framework for abstracting the evidence source and storage format information from digital evidence and explores the concept of integrating evidence information from multiple sources. The FIA architecture identifies evidence information from multiple sources that enables an investigator to build theories to reconstruct the past. FIA is hierarchically composed of multiple layers and adopts a technology independent approach. FIA is also open and extensible making it simple to adapt to technological changes. We present a case study using a hypothetical car theft case to demonstrate the concepts and illustrate the value it brings into the field.
Onboard shuttle on-line software requirements system: Prototype
NASA Technical Reports Server (NTRS)
Kolkhorst, Barbara; Ogletree, Barry
1989-01-01
The prototype discussed here was developed as proof of a concept for a system which could support high volumes of requirements documents with integrated text and graphics; the solution proposed here could be extended to other projects whose goal is to place paper documents in an electronic system for viewing and printing purposes. The technical problems (such as conversion of documentation between word processors, management of a variety of graphics file formats, and difficulties involved in scanning integrated text and graphics) would be very similar for other systems of this type. Indeed, technological advances in areas such as scanning hardware and software and display terminals insure that some of the problems encountered here will be solved in the near-term (less than five years). Examples of these solvable problems include automated input of integrated text and graphics, errors in the recognition process, and the loss of image information which results from the digitization process. The solution developed for the Online Software Requirements System is modular and allows hardware and software components to be upgraded or replaced as industry solutions mature. The extensive commercial software content allows the NASA customer to apply resources to solving the problem and maintaining documents.
Large, David R; Crundall, Elizabeth; Burnett, Gary; Harvey, Catherine; Konstantopoulos, Panos
2016-07-01
Drivers' awareness of the rearward road scene is critical when contemplating or executing lane-change manoeuvres, such as overtaking. Preliminary investigations have speculated on the use of rear-facing cameras to relay images to displays mounted inside the car to create 'digital mirrors'. These may overcome many of the limitations associated with traditional 'wing' and rear-view mirrors, yet will inevitably effect drivers' normal visual scanning behaviour, and may force them to consider the rearward road scene from an unfamiliar perspective that is incongruent with their mental model of the outside world. We describe a study conducted within a medium-fidelity simulator aiming to explore the visual behaviour, driving performance and opinions of drivers while using internally located digital mirrors during different overtaking manoeuvres. Using a generic UK motorway scenario, thirty-eight experienced drivers conducted overtaking manoeuvres using each of five different layouts of digital mirrors with varying degrees of 'real-world' mapping. The results showed reductions in decision time for lane changes and eyes-off road time while using the digital mirrors, when compared with baseline traditional reflective mirrors, suggesting that digital displays may enable drivers to more rapidly pick up the salient information from the rearward road scene. Subjectively, drivers preferred configurations that most closely matched existing mirror locations, where aspects of real-world mapping were largely preserved. The research highlights important human factors issues that require further investigation prior to further development/implementation of digital mirrors within vehicles. Future work should also aim to validate findings within real-world on-road environments whilst considering the effects of digital mirrors on other important visual behaviour characteristics, such as depth perception. Copyright © 2016 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Chen, Yue; Gao, Qin; Song, Fei; Li, Zhizhong; Wang, Yufan
2017-08-01
In the main control rooms of nuclear power plants, operators frequently have to switch between procedure displays and system information displays. In this study, we proposed an operation-unit-based integrated design, which combines the two displays to facilitate the synthesis of information. We grouped actions that complete a single goal into operation units and showed these operation units on the displays of system states. In addition, we used different levels of visual salience to highlight the current unit and provided a list of execution history records. A laboratory experiment, with 42 students performing a simulated procedure to deal with unexpected high pressuriser level, was conducted to compare this design against an action-based integrated design and the existing separated-displays design. The results indicate that our operation-unit-based integrated design yields the best performance in terms of time and completion rate and helped more participants to detect unexpected system failures. Practitioner Summary: In current nuclear control rooms, operators frequently have to switch between procedure and system information displays. We developed an integrated design that incorporates procedure information into system displays. A laboratory study showed that the proposed design significantly improved participants' performance and increased the probability of detecting unexpected system failures.
The ergonomic evaluation of eye movement and mental workload in aircraft pilots.
Itoh, Y; Hayashi, Y; Tsukui, I; Saito, S
1990-06-01
This paper presents an experiment which examines characteristics of pilots' scanning behaviour when using integrated CRT displays, and the changes in characteristics when pilots face abnormal situations. The subjects were five experienced pilots. They performed two modes of flight tasks, under normal and abnormal situations, in flight simulators with standard settings. The flight simulators were for a Boeing 747-300 (B747), which made use of electromechanical displays, and for a Boeing 767 (B767), equipped with integrated CRT displays. The results showed that the B767 pilots tended to gaze at the attitude director indicator which was displayed in the integrated CRT display. It was assumed that 'gaze-type scanning' might be one of the characteristics of pilots' scanning behaviour in cockpits which use the integrated display. By employing subjective ratings and heart rate variability to measure mental workload, no differences in mental workload between the B767 pilots and the B747 pilots were observed. However, in abnormal situations, the changes in scanning pattern for B767 pilots were found to be smaller than those of the B747 pilots. It is concluded that the application of integrated displays helps pilots to obtain sufficient information more easily than electromechanical displays do, even under abnormal situations.
The study of integration about measurable image and 4D production
NASA Astrophysics Data System (ADS)
Zhang, Chunsen; Hu, Pingbo; Niu, Weiyun
2008-12-01
In this paper, we create the geospatial data of three-dimensional (3D) modeling by the combination of digital photogrammetry and digital close-range photogrammetry. For large-scale geographical background, we make the establishment of DEM and DOM combination of three-dimensional landscape model based on the digital photogrammetry which uses aerial image data to make "4D" (DOM: Digital Orthophoto Map, DEM: Digital Elevation Model, DLG: Digital Line Graphic and DRG: Digital Raster Graphic) production. For the range of building and other artificial features which the users are interested in, we realize that the real features of the three-dimensional reconstruction adopting the method of the digital close-range photogrammetry can come true on the basis of following steps : non-metric cameras for data collection, the camera calibration, feature extraction, image matching, and other steps. At last, we combine three-dimensional background and local measurements real images of these large geographic data and realize the integration of measurable real image and the 4D production.The article discussed the way of the whole flow and technology, achieved the three-dimensional reconstruction and the integration of the large-scale threedimensional landscape and the metric building.
Ellakwa, A; Elnajar, S; Littlefair, D; Sara, G
2018-05-03
The aim of the current study is to develop a novel method to investigate the accuracy of 3D scanners and digital articulation systems. An upper and a lower poured stone model were created by taking impression of fully dentate male (fifty years old) participant. Titanium spheres were added to the models to allow for an easily recognisable geometric shape for measurement after scanning and digital articulation. Measurements were obtained using a Coordinate Measuring Machine to record volumetric error, articulation error and clinical effect error. Three scanners were compared, including the Imetric 3D iScan d104i, Shining 3D AutoScan-DS100 and 3Shape D800, as well as their respective digital articulation software packages. Stoneglass Industries PDC digital articulation system was also applied to the Imetric scans for comparison with the CMM measurements. All the scans displayed low volumetric error (p⟩0.05), indicating that the scanners themselves had a minor contribution to the articulation and clinical effect errors. The PDC digital articulation system was found to deliver the lowest average errors, with good repeatability of results. The new measuring technique in the current study was able to assess the scanning and articulation accuracy of the four systems investigated. The PDC digital articulation system using Imetric scans was recommended as it displayed the lowest articulation error and clinical effect error with good repeatability. The low errors from the PDC system may have been due to its use of a 3D axis for alignment rather than the use of a best fit. Copyright© 2018 Dennis Barber Ltd.
Open-loop digital frequency multiplier
NASA Technical Reports Server (NTRS)
Moore, R. C.
1977-01-01
Monostable multivibrator is implemented by using digital integrated circuits where multiplier constant is too large for conventional phase-locked-loop integrated circuit. A 400 Hz clock is generated by divide-by-N counter from 1 Hz timing reference.
Incorporating digital imaging into dental hygiene practice.
Saxe, M J; West, D J
1997-01-01
The objective of this paper is to describe digital imaging technology: available modalities, scientific imaging process, advantages and limitations, and applications to dental hygiene practice. Advances in technology have created innovative imaging modalities for intraoral radiography that eliminate film as the traditional image receptor. Digital imaging generates instantaneous radiographic images on a display monitor following exposure. Advantages include lower patient exposure per image and elimination of film processing. Digital imaging enhances diagnostic capabilities and, therefore, treatment decisions by the oral healthcare provider. Utilization of digital imaging technology for intraoral radiography will advance the practice of dental hygiene. Although spatial resolution is inferior to conventional film, digital imaging provides adequate resolution to diagnose oral diseases. Dental hygienists must evaluate new technologies in radiography to continue providing quality care while reducing patient exposure to ionizing radiation.
Kim, Joowhan; Min, Sung-Wook; Lee, Byoungho
2007-10-01
Integral floating display is a recently proposed three-dimensional (3D) display method which provides a dynamic 3D image in the vicinity to an observer. It has a viewing window only through which correct 3D images can be observed. However, the positional difference between the viewing window and the floating image causes limited viewing zone in integral floating system. In this paper, we provide the principle and experimental results of the location adjustment of the viewing window of the integral floating display system by modifying the elemental image region for integral imaging. We explain the characteristics of the viewing window and propose how to move the viewing window to maximize the viewing zone.
IMAGEP - A FORTRAN ALGORITHM FOR DIGITAL IMAGE PROCESSING
NASA Technical Reports Server (NTRS)
Roth, D. J.
1994-01-01
IMAGEP is a FORTRAN computer algorithm containing various image processing, analysis, and enhancement functions. It is a keyboard-driven program organized into nine subroutines. Within the subroutines are other routines, also, selected via keyboard. Some of the functions performed by IMAGEP include digitization, storage and retrieval of images; image enhancement by contrast expansion, addition and subtraction, magnification, inversion, and bit shifting; display and movement of cursor; display of grey level histogram of image; and display of the variation of grey level intensity as a function of image position. This algorithm has possible scientific, industrial, and biomedical applications in material flaw studies, steel and ore analysis, and pathology, respectively. IMAGEP is written in VAX FORTRAN for DEC VAX series computers running VMS. The program requires the use of a Grinnell 274 image processor which can be obtained from Mark McCloud Associates, Campbell, CA. An object library of the required GMR series software is included on the distribution media. IMAGEP requires 1Mb of RAM for execution. The standard distribution medium for this program is a 1600 BPI 9track magnetic tape in VAX FILES-11 format. It is also available on a TK50 tape cartridge in VAX FILES-11 format. This program was developed in 1991. DEC, VAX, VMS, and TK50 are trademarks of Digital Equipment Corporation.
A portable detection instrument based on DSP for beef marbling
NASA Astrophysics Data System (ADS)
Zhou, Tong; Peng, Yankun
2014-05-01
Beef marbling is one of the most important indices to assess beef quality. Beef marbling is graded by the measurement of the fat distribution density in the rib-eye region. However quality grades of beef in most of the beef slaughtering houses and businesses depend on trainees using their visual senses or comparing the beef slice to the Chinese standard sample cards. Manual grading demands not only great labor but it also lacks objectivity and accuracy. Aiming at the necessity of beef slaughtering houses and businesses, a beef marbling detection instrument was designed. The instrument employs Charge-coupled Device (CCD) imaging techniques, digital image processing, Digital Signal Processor (DSP) control and processing techniques and Liquid Crystal Display (LCD) screen display techniques. The TMS320DM642 digital signal processor of Texas Instruments (TI) is the core that combines high-speed data processing capabilities and real-time processing features. All processes such as image acquisition, data transmission, image processing algorithms and display were implemented on this instrument for a quick, efficient, and non-invasive detection of beef marbling. Structure of the system, working principle, hardware and software are introduced in detail. The device is compact and easy to transport. The instrument can determine the grade of beef marbling reliably and correctly.
Just Another Format: Integrating Resources for Users of Personal Digital Assistants
ERIC Educational Resources Information Center
Koufogiannakis, Denise; Ryan, Pam; Dahl, Susan
2005-01-01
This article discusses the integration of library resources for users of personal digital assistants (PDAs), with a focus on collections issues within an academic environment. The University of Alberta Libraries' PDA services initiative is used as an example of integrating services and resources into a library collection. Licensing issues, loaning…
NASA Technical Reports Server (NTRS)
Chien, E. S. K.; Marinho, J. A.; Russell, J. E., Sr.
1988-01-01
The Cellular Access Digital Network (CADN) is the access vehicle through which cellular technology is brought into the mainstream of the evolving integrated telecommunications network. Beyond the integrated end-to-end digital access and per call network services provisioning of the Integrated Services Digital Network (ISDN), the CADN engenders the added capability of mobility freedom via wireless access. One key element of the CADN network architecture is the standard user to network interface that is independent of RF transmission technology. Since the Mobile Satellite System (MSS) is envisioned to not only complement but also enhance the capabilities of the terrestrial cellular telecommunications network, compatibility and interoperability between terrestrial cellular and mobile satellite systems are vitally important to provide an integrated moving telecommunications network of the future. From a network standpoint, there exist very strong commonalities between the terrestrial cellular system and the mobile satellite system. Therefore, the MSS architecture should be designed as an integral part of the CADN. This paper describes the concept of the CADN, the functional architecture of the MSS, and the user-network interface signaling protocols.
Display of travelling 3D scenes from single integral-imaging capture
NASA Astrophysics Data System (ADS)
Martinez-Corral, Manuel; Dorado, Adrian; Hong, Seok-Min; Sola-Pikabea, Jorge; Saavedra, Genaro
2016-06-01
Integral imaging (InI) is a 3D auto-stereoscopic technique that captures and displays 3D images. We present a method for easily projecting the information recorded with this technique by transforming the integral image into a plenoptic image, as well as choosing, at will, the field of view (FOV) and the focused plane of the displayed plenoptic image. Furthermore, with this method we can generate a sequence of images that simulates a camera travelling through the scene from a single integral image. The application of this method permits to improve the quality of 3D display images and videos.
Finding-specific display presets for computed radiography soft-copy reading.
Andriole, K P; Gould, R G; Webb, W R
1999-05-01
Much work has been done to optimize the display of cross-sectional modality imaging examinations for soft-copy reading (i.e., window/level tissue presets, and format presentations such as tile and stack modes, four-on-one, nine-on-one, etc). Less attention has been paid to the display of digital forms of the conventional projection x-ray. The purpose of this study is to assess the utility of providing presets for computed radiography (CR) soft-copy display, based not on the window/level settings, but on processing applied to the image optimized for visualization of specific findings, pathologies, etc (i.e., pneumothorax, tumor, tube location). It is felt that digital display of CR images based on finding-specific processing presets has the potential to: speed reading of digital projection x-ray examinations on soft copy; improve diagnostic efficacy; standardize display across examination type, clinical scenario, important key findings, and significant negatives; facilitate image comparison; and improve confidence in and acceptance of soft-copy reading. Clinical chest images are acquired using an Agfa-Gevaert (Mortsel, Belgium) ADC 70 CR scanner and Fuji (Stamford, CT) 9000 and AC2 CR scanners. Those demonstrating pertinent findings are transferred over the clinical picture archiving and communications system (PACS) network to a research image processing station (Agfa PS5000), where the optimal image-processing settings per finding, pathologic category, etc, are developed in conjunction with a thoracic radiologist, by manipulating the multiscale image contrast amplification (Agfa MUSICA) algorithm parameters. Soft-copy display of images processed with finding-specific settings are compared with the standard default image presentation for 50 cases of each category. Comparison is scored using a 5-point scale with the positive scale denoting the standard presentation is preferred over the finding-specific processing, the negative scale denoting the finding-specific processing is preferred over the standard presentation, and zero denoting no difference. Processing settings have been developed for several findings including pneumothorax and lung nodules, and clinical cases are currently being collected in preparation for formal clinical trials. Preliminary results indicate a preference for the optimized-processing presentation of images over the standard default, particularly by inexperienced radiology residents and referring clinicians.
Flexible active-matrix displays and shift registers based on solution-processed organic transistors.
Gelinck, Gerwin H; Huitema, H Edzer A; van Veenendaal, Erik; Cantatore, Eugenio; Schrijnemakers, Laurens; van der Putten, Jan B P H; Geuns, Tom C T; Beenhakkers, Monique; Giesbers, Jacobus B; Huisman, Bart-Hendrik; Meijer, Eduard J; Benito, Estrella Mena; Touwslager, Fred J; Marsman, Albert W; van Rens, Bas J E; de Leeuw, Dago M
2004-02-01
At present, flexible displays are an important focus of research. Further development of large, flexible displays requires a cost-effective manufacturing process for the active-matrix backplane, which contains one transistor per pixel. One way to further reduce costs is to integrate (part of) the display drive circuitry, such as row shift registers, directly on the display substrate. Here, we demonstrate flexible active-matrix monochrome electrophoretic displays based on solution-processed organic transistors on 25-microm-thick polyimide substrates. The displays can be bent to a radius of 1 cm without significant loss in performance. Using the same process flow we prepared row shift registers. With 1,888 transistors, these are the largest organic integrated circuits reported to date. More importantly, the operating frequency of 5 kHz is sufficiently high to allow integration with the display operating at video speed. This work therefore represents a major step towards 'system-on-plastic'.
Region of interest based robust watermarking scheme for adaptation in small displays
NASA Astrophysics Data System (ADS)
Vivekanandhan, Sapthagirivasan; K. B., Kishore Mohan; Vemula, Krishna Manohar
2010-02-01
Now-a-days Multimedia data can be easily replicated and the copyright is not legally protected. Cryptography does not allow the use of digital data in its original form and once the data is decrypted, it is no longer protected. Here we have proposed a new double protected digital image watermarking algorithm, which can embed the watermark image blocks into the adjacent regions of the host image itself based on their blocks similarity coefficient which is robust to various noise effects like Poisson noise, Gaussian noise, Random noise and thereby provide double security from various noises and hackers. As instrumentation application requires a much accurate data, the watermark image which is to be extracted back from the watermarked image must be immune to various noise effects. Our results provide better extracted image compared to the present/existing techniques and in addition we have done resizing the same for various displays. Adaptive resizing for various size displays is being experimented wherein we crop the required information in a frame, zoom it for a large display or resize for a small display using a threshold value and in either cases background is not given much importance but it is only the fore-sight object which gains importance which will surely be helpful in performing surgeries.
Code of Federal Regulations, 2011 CFR
2011-04-01
... OF CLASS II GAMES § 547.9 What are the minimum technical standards for Class II gaming system... digits to accommodate the design of the game. (3) Accounting data displayed to the player may be... audit, configuration, recall and test modes; or (ii) Temporarily, during entertaining displays of game...
Code of Federal Regulations, 2010 CFR
2010-04-01
... OF CLASS II GAMES § 547.9 What are the minimum technical standards for Class II gaming system... digits to accommodate the design of the game. (3) Accounting data displayed to the player may be... audit, configuration, recall and test modes; or (ii) Temporarily, during entertaining displays of game...
Code of Federal Regulations, 2012 CFR
2012-04-01
... OF CLASS II GAMES § 547.9 What are the minimum technical standards for Class II gaming system... digits to accommodate the design of the game. (3) Accounting data displayed to the player may be... audit, configuration, recall and test modes; or (ii) Temporarily, during entertaining displays of game...
Diversions: Writing the Alphabet Using Dots, Pixillated Alphanumerics, and Cross-Stitch
ERIC Educational Resources Information Center
Gough, John
2017-01-01
When computers started having screens (or monitors), as well as printers, a new alphanumeric display was created using dots. A crucial variable in designing alphabet letters and digits, using dots, is the height of the display, measured in dots. This article addresses the same design questions tackled by designers of typefaces or fonts, and shows…
Accuracy and consistency of weights provided by home bathroom scales
2013-01-01
Background Self-reported body weight is often used for calculation of Body Mass Index because it is easy to collect. Little is known about sources of error introduced by using bathroom scales to measure weight at home. The objective of this study was to evaluate the accuracy and consistency of digital versus dial-type bathroom scales commonly used for self-reported weight. Methods Participants brought functioning bathroom scales (n = 18 dial-type, n = 43 digital-type) to a central location. Trained researchers assessed accuracy and consistency using certified calibration weights at 10 kg, 25 kg, 50 kg, 75 kg, 100 kg, and 110 kg. Data also were collected on frequency of calibration, age and floor surface beneath the scale. Results All participants reported using their scale on hard surface flooring. Before calibration, all digital scales displayed 0, but dial scales displayed a mean absolute initial weight of 0.95 (1.9 SD) kg. Digital scales accurately weighed test loads whereas dial-type scale weights differed significantly (p < 0.05). Imprecision of dial scales was significantly greater than that of digital scales at all weights (p < 0.05). Accuracy and precision did not vary by scale age. Conclusions Digital home bathroom scales provide sufficiently accurate and consistent weights for public health research. Reminders to zero scales before each use may further improve accuracy of self-reported weight. PMID:24341761
Color imaging technologies in the prepress industry
NASA Astrophysics Data System (ADS)
Silverman, Lee
1992-05-01
Over much of the last half century, electronic technologies have played an increasing role in the prepress production of film and plates prepared for printing presses. The last decade has seen an explosion of technologies capable of supplementing this production. The most outstanding technology infusing this growth has been the microcomputer, but other component technologies have also diversified the capacity for high-quality scanning of photographs. In addition, some fundamental software and affordable laser recorder technologies have provided new approaches to the merging of typographic and halftoned photographic data onto film. The next decade will evolve the methods and the technologies to achieve superior text and image communication on mass distribution media used in the printed page or instead of the printed page. This paper focuses on three domains of electronic prepress classified as the input, transformation, and output phases of the production process. The evolution of the component technologies in each of these three phases is described. The unique attributes in each are defined and then follows a discussion of the pertinent technologies which overlap all three domains. Unique to input is sensor technology and analogue to digital conversion. Unique to the transformation phase is the display on monitor for soft proofing and interactive processing. The display requires special technologies for digital frame storage and high-speed, gamma- compensated, digital to analogue conversion. Unique to output is the need for halftoning and binary recording device linearization or calibration. Specialized direct digital color technologies now allow color quality proofing without the need for writing intermediate separation films, but ultimately these technologies will be supplanted by direct printing technologies. First, dry film processing, then direct plate writing, and finally direct application of ink or toner onto paper at the 20 - 30 thousand impressions per hour now achieved by offset printing. In summary, a review of technological evolution guides industry methodologies that will define a transformation of workflow in graphic arts during the next decade. Prepress production will integrate component technologies with microcomputers in order to optimize the production cycle from graphic design to printed piece. These changes will drastically alter the business structures and tools used to put type and photographs on paper in the volumes expected from printing presses.
Digital Citizenship Means Character Education for the Digital Age
ERIC Educational Resources Information Center
Ohler, Jason
2011-01-01
The reality of students' cyber lives has thrust upon educators a new approach: creating character education programs tuned to digital youth that are both proactive and aggressive. Taking this approach will help integrate students' digital activities within the context of the communities in which they live, both local and digital. The digital age…