Automatic forensic face recognition from digital images.
Peacock, C; Goode, A; Brett, A
2004-01-01
Digital image evidence is now widely available from criminal investigations and surveillance operations, often captured by security and surveillance CCTV. This has resulted in a growing demand from law enforcement agencies for automatic person-recognition based on image data. In forensic science, a fundamental requirement for such automatic face recognition is to evaluate the weight that can justifiably be attached to this recognition evidence in a scientific framework. This paper describes a pilot study carried out by the Forensic Science Service (UK) which explores the use of digital facial images in forensic investigation. For the purpose of the experiment a specific software package was chosen (Image Metrics Optasia). The paper does not describe the techniques used by the software to reach its decision of probabilistic matches to facial images, but accepts the output of the software as though it were a 'black box'. In this way, the paper lays a foundation for how face recognition systems can be compared in a forensic framework. The aim of the paper is to explore how reliably and under what conditions digital facial images can be presented in evidence.
Target recognition and phase acquisition by using incoherent digital holographic imaging
NASA Astrophysics Data System (ADS)
Lee, Munseob; Lee, Byung-Tak
2017-05-01
In this study, we proposed the Incoherent Digital Holographic Imaging (IDHI) for recognition and phase information of dedicated target. Although recent development of a number of target recognition techniques such as LIDAR, there have limited success in target discrimination, in part due to low-resolution, low scanning speed, and computation power. In the paper, the proposed system consists of the incoherent light source, such as LED, Michelson interferometer, and digital CCD for acquisition of four phase shifting image. First of all, to compare with relative coherence, we used a source as laser and LED, respectively. Through numerical reconstruction by using the four phase shifting method and Fresnel diffraction method, we recovered the intensity and phase image of USAF resolution target apart from about 1.0m distance. In this experiment, we show 1.2 times improvement in resolution compared to conventional imaging. Finally, to confirm the recognition result of camouflaged targets with the same color from background, we carry out to test holographic imaging in incoherent light. In this result, we showed the possibility of a target detection and recognition that used three dimensional shape and size signatures, numerical distance from phase information of obtained holographic image.
Background feature descriptor for offline handwritten numeral recognition
NASA Astrophysics Data System (ADS)
Ming, Delie; Wang, Hao; Tian, Tian; Jie, Feiran; Lei, Bo
2011-11-01
This paper puts forward an offline handwritten numeral recognition method based on background structural descriptor (sixteen-value numerical background expression). Through encoding the background pixels in the image according to a certain rule, 16 different eigenvalues were generated, which reflected the background condition of every digit, then reflected the structural features of the digits. Through pattern language description of images by these features, automatic segmentation of overlapping digits and numeral recognition can be realized. This method is characterized by great deformation resistant ability, high recognition speed and easy realization. Finally, the experimental results and conclusions are presented. The experimental results of recognizing datasets from various practical application fields reflect that with this method, a good recognition effect can be achieved.
Analysis of objects in binary images. M.S. Thesis - Old Dominion Univ.
NASA Technical Reports Server (NTRS)
Leonard, Desiree M.
1991-01-01
Digital image processing techniques are typically used to produce improved digital images through the application of successive enhancement techniques to a given image or to generate quantitative data about the objects within that image. In support of and to assist researchers in a wide range of disciplines, e.g., interferometry, heavy rain effects on aerodynamics, and structure recognition research, it is often desirable to count objects in an image and compute their geometric properties. Therefore, an image analysis application package, focusing on a subset of image analysis techniques used for object recognition in binary images, was developed. This report describes the techniques and algorithms utilized in three main phases of the application and are categorized as: image segmentation, object recognition, and quantitative analysis. Appendices provide supplemental formulas for the algorithms employed as well as examples and results from the various image segmentation techniques and the object recognition algorithm implemented.
NASA Astrophysics Data System (ADS)
Dyomin, V. V.; Polovtsev, I. G.; Davydova, A. Yu.
2018-03-01
The physical principles of a method for determination of geometrical characteristics of particles and particle recognition based on the concepts of digital holography, followed by processing of the particle images reconstructed from the digital hologram, using the morphological parameter are reported. An example of application of this method for fast plankton particle recognition is given.
Thermal-Polarimetric and Visible Data Collection for Face Recognition
2016-09-01
pixels • Spectral range: 7.5–13 μm • Analog image output: NTSC analog video • Digital image output: Firewire radiometric, 14-bit digital video to...PC The analog video was not used for this study. The radiometric, 14-bit digital data provided temperature measurement information for comparison...distribution unlimited. 18 9. References 1. Choi J, Hu S, Young SS, Davis LS. Thermal to visible face recognition. Proc. SPIE 8371, Sensing
Recognition of degraded handwritten digits using dynamic Bayesian networks
NASA Astrophysics Data System (ADS)
Likforman-Sulem, Laurence; Sigelle, Marc
2007-01-01
We investigate in this paper the application of dynamic Bayesian networks (DBNs) to the recognition of handwritten digits. The main idea is to couple two separate HMMs into various architectures. First, a vertical HMM and a horizontal HMM are built observing the evolving streams of image columns and image rows respectively. Then, two coupled architectures are proposed to model interactions between these two streams and to capture the 2D nature of character images. Experiments performed on the MNIST handwritten digit database show that coupled architectures yield better recognition performances than non-coupled ones. Additional experiments conducted on artificially degraded (broken) characters demonstrate that coupled architectures better cope with such degradation than non coupled ones and than discriminative methods such as SVMs.
Warped document image correction method based on heterogeneous registration strategies
NASA Astrophysics Data System (ADS)
Tong, Lijing; Zhan, Guoliang; Peng, Quanyao; Li, Yang; Li, Yifan
2013-03-01
With the popularity of digital camera and the application requirement of digitalized document images, using digital cameras to digitalize document images has become an irresistible trend. However, the warping of the document surface impacts on the quality of the Optical Character Recognition (OCR) system seriously. To improve the warped document image's vision quality and the OCR rate, this paper proposed a warped document image correction method based on heterogeneous registration strategies. This method mosaics two warped images of the same document from different viewpoints. Firstly, two feature points are selected from one image. Then the two feature points are registered in the other image base on heterogeneous registration strategies. At last, image mosaics are done for the two images, and the best mosaiced image is selected by OCR recognition results. As a result, for the best mosaiced image, the distortions are mostly removed and the OCR results are improved markedly. Experimental results show that the proposed method can resolve the issue of warped document image correction more effectively.
NASA Technical Reports Server (NTRS)
Juday, Richard D. (Editor)
1988-01-01
The present conference discusses topics in pattern-recognition correlator architectures, digital stereo systems, geometric image transformations and their applications, topics in pattern recognition, filter algorithms, object detection and classification, shape representation techniques, and model-based object recognition methods. Attention is given to edge-enhancement preprocessing using liquid crystal TVs, massively-parallel optical data base management, three-dimensional sensing with polar exponential sensor arrays, the optical processing of imaging spectrometer data, hybrid associative memories and metric data models, the representation of shape primitives in neural networks, and the Monte Carlo estimation of moment invariants for pattern recognition.
Identifying images of handwritten digits using deep learning in H2O
NASA Astrophysics Data System (ADS)
Sadhasivam, Jayakumar; Charanya, R.; Kumar, S. Harish; Srinivasan, A.
2017-11-01
Automatic digit recognition is of popular interest today. Deep learning techniques make it possible for object recognition in image data. Perceiving the digit has turned into a fundamental part as far as certifiable applications. Since, digits are composed in various styles in this way to distinguish the digit it is important to perceive and arrange it with the assistance of machine learning methods. This exploration depends on supervised learning vector quantization neural system arranged under counterfeit artificial neural network. The pictures of digits are perceived, prepared and tried. After the system is made digits are prepared utilizing preparing dataset vectors and testing is connected to the pictures of digits which are separated to each other by fragmenting the picture and resizing the digit picture as needs be for better precision.
Automatic Mexican sign language and digits recognition using normalized central moments
NASA Astrophysics Data System (ADS)
Solís, Francisco; Martínez, David; Espinosa, Oscar; Toxqui, Carina
2016-09-01
This work presents a framework for automatic Mexican sign language and digits recognition based on computer vision system using normalized central moments and artificial neural networks. Images are captured by digital IP camera, four LED reflectors and a green background in order to reduce computational costs and prevent the use of special gloves. 42 normalized central moments are computed per frame and used in a Multi-Layer Perceptron to recognize each database. Four versions per sign and digit were used in training phase. 93% and 95% of recognition rates were achieved for Mexican sign language and digits respectively.
Implementation of age and gender recognition system for intelligent digital signage
NASA Astrophysics Data System (ADS)
Lee, Sang-Heon; Sohn, Myoung-Kyu; Kim, Hyunduk
2015-12-01
Intelligent digital signage systems transmit customized advertising and information by analyzing users and customers, unlike existing system that presented advertising in the form of broadcast without regard to type of customers. Currently, development of intelligent digital signage system has been pushed forward vigorously. In this study, we designed a system capable of analyzing gender and age of customers based on image obtained from camera, although there are many different methods for analyzing customers. We conducted age and gender recognition experiments using public database. The age/gender recognition experiments were performed through histogram matching method by extracting Local binary patterns (LBP) features after facial area on input image was normalized. The results of experiment showed that gender recognition rate was as high as approximately 97% on average. Age recognition was conducted based on categorization into 5 age classes. Age recognition rates for women and men were about 67% and 68%, respectively when that conducted separately for different gender.
Terrain type recognition using ERTS-1 MSS images
NASA Technical Reports Server (NTRS)
Gramenopoulos, N.
1973-01-01
For the automatic recognition of earth resources from ERTS-1 digital tapes, both multispectral and spatial pattern recognition techniques are important. Recognition of terrain types is based on spatial signatures that become evident by processing small portions of an image through selected algorithms. An investigation of spatial signatures that are applicable to ERTS-1 MSS images is described. Artifacts in the spatial signatures seem to be related to the multispectral scanner. A method for suppressing such artifacts is presented. Finally, results of terrain type recognition for one ERTS-1 image are presented.
NASA Technical Reports Server (NTRS)
Liu, Hua-Kuang (Editor); Schenker, Paul (Editor)
1987-01-01
The papers presented in this volume provide an overview of current research in both optical and digital pattern recognition, with a theme of identifying overlapping research problems and methodologies. Topics discussed include image analysis and low-level vision, optical system design, object analysis and recognition, real-time hybrid architectures and algorithms, high-level image understanding, and optical matched filter design. Papers are presented on synthetic estimation filters for a control system; white-light correlator character recognition; optical AI architectures for intelligent sensors; interpreting aerial photographs by segmentation and search; and optical information processing using a new photopolymer.
Speech Recognition for A Digital Video Library.
ERIC Educational Resources Information Center
Witbrock, Michael J.; Hauptmann, Alexander G.
1998-01-01
Production of the meta-data supporting the Informedia Digital Video Library interface is automated using techniques derived from artificial intelligence research. Speech recognition and natural-language processing, information retrieval, and image analysis are applied to produce an interface that helps users locate information and navigate more…
Compact hybrid optoelectrical unit for image processing and recognition
NASA Astrophysics Data System (ADS)
Cheng, Gang; Jin, Guofan; Wu, Minxian; Liu, Haisong; He, Qingsheng; Yuan, ShiFu
1998-07-01
In this paper a compact opto-electric unit (CHOEU) for digital image processing and recognition is proposed. The central part of CHOEU is an incoherent optical correlator, which is realized with a SHARP QA-1200 8.4 inch active matrix TFT liquid crystal display panel which is used as two real-time spatial light modulators for both the input image and reference template. CHOEU can do two main processing works. One is digital filtering; the other is object matching. Using CHOEU an edge-detection operator is realized to extract the edges from the input images. Then the reprocessed images are sent into the object recognition unit for identifying the important targets. A novel template- matching method is proposed for gray-tome image recognition. A positive and negative cycle-encoding method is introduced to realize the absolute difference measurement pixel- matching on a correlator structure simply. The system has god fault-tolerance ability for rotation distortion, Gaussian noise disturbance or information losing. The experiments are given at the end of this paper.
The Design of a Single-Bit CMOS Image Sensor for Iris Recognition Applications
Park, Keunyeol; Song, Minkyu
2018-01-01
This paper presents a single-bit CMOS image sensor (CIS) that uses a data processing technique with an edge detection block for simple iris segmentation. In order to recognize the iris image, the image sensor conventionally captures high-resolution image data in digital code, extracts the iris data, and then compares it with a reference image through a recognition algorithm. However, in this case, the frame rate decreases by the time required for digital signal conversion of multi-bit digital data through the analog-to-digital converter (ADC) in the CIS. In order to reduce the overall processing time as well as the power consumption, we propose a data processing technique with an exclusive OR (XOR) logic gate to obtain single-bit and edge detection image data instead of multi-bit image data through the ADC. In addition, we propose a logarithmic counter to efficiently measure single-bit image data that can be applied to the iris recognition algorithm. The effective area of the proposed single-bit image sensor (174 × 144 pixel) is 2.84 mm2 with a 0.18 μm 1-poly 4-metal CMOS image sensor process. The power consumption of the proposed single-bit CIS is 2.8 mW with a 3.3 V of supply voltage and 520 frame/s of the maximum frame rates. The error rate of the ADC is 0.24 least significant bit (LSB) on an 8-bit ADC basis at a 50 MHz sampling frequency. PMID:29495273
The Design of a Single-Bit CMOS Image Sensor for Iris Recognition Applications.
Park, Keunyeol; Song, Minkyu; Kim, Soo Youn
2018-02-24
This paper presents a single-bit CMOS image sensor (CIS) that uses a data processing technique with an edge detection block for simple iris segmentation. In order to recognize the iris image, the image sensor conventionally captures high-resolution image data in digital code, extracts the iris data, and then compares it with a reference image through a recognition algorithm. However, in this case, the frame rate decreases by the time required for digital signal conversion of multi-bit digital data through the analog-to-digital converter (ADC) in the CIS. In order to reduce the overall processing time as well as the power consumption, we propose a data processing technique with an exclusive OR (XOR) logic gate to obtain single-bit and edge detection image data instead of multi-bit image data through the ADC. In addition, we propose a logarithmic counter to efficiently measure single-bit image data that can be applied to the iris recognition algorithm. The effective area of the proposed single-bit image sensor (174 × 144 pixel) is 2.84 mm² with a 0.18 μm 1-poly 4-metal CMOS image sensor process. The power consumption of the proposed single-bit CIS is 2.8 mW with a 3.3 V of supply voltage and 520 frame/s of the maximum frame rates. The error rate of the ADC is 0.24 least significant bit (LSB) on an 8-bit ADC basis at a 50 MHz sampling frequency.
ERIC Educational Resources Information Center
El-Gazzar, Abdel-Latif I.
The relative effectiveness of digital versus photographic images was examined with 96 college students as subjects. A 2x2 balanced factorial design was employed to test eight hypotheses. The four groups were (1) digitized black and white; (2) digitized pseudocolor; (3) photographic black and white; and (4) photographic realistic color. Findings…
Character recognition using a neural network model with fuzzy representation
NASA Technical Reports Server (NTRS)
Tavakoli, Nassrin; Seniw, David
1992-01-01
The degree to which digital images are recognized correctly by computerized algorithms is highly dependent upon the representation and the classification processes. Fuzzy techniques play an important role in both processes. In this paper, the role of fuzzy representation and classification on the recognition of digital characters is investigated. An experimental Neural Network model with application to character recognition was developed. Through a set of experiments, the effect of fuzzy representation on the recognition accuracy of this model is presented.
An adaptive deep Q-learning strategy for handwritten digit recognition.
Qiao, Junfei; Wang, Gongming; Li, Wenjing; Chen, Min
2018-02-22
Handwritten digits recognition is a challenging problem in recent years. Although many deep learning-based classification algorithms are studied for handwritten digits recognition, the recognition accuracy and running time still need to be further improved. In this paper, an adaptive deep Q-learning strategy is proposed to improve accuracy and shorten running time for handwritten digit recognition. The adaptive deep Q-learning strategy combines the feature-extracting capability of deep learning and the decision-making of reinforcement learning to form an adaptive Q-learning deep belief network (Q-ADBN). First, Q-ADBN extracts the features of original images using an adaptive deep auto-encoder (ADAE), and the extracted features are considered as the current states of Q-learning algorithm. Second, Q-ADBN receives Q-function (reward signal) during recognition of the current states, and the final handwritten digits recognition is implemented by maximizing the Q-function using Q-learning algorithm. Finally, experimental results from the well-known MNIST dataset show that the proposed Q-ADBN has a superiority to other similar methods in terms of accuracy and running time. Copyright © 2018 Elsevier Ltd. All rights reserved.
SU-F-T-20: Novel Catheter Lumen Recognition Algorithm for Rapid Digitization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dise, J; McDonald, D; Ashenafi, M
Purpose: Manual catheter recognition remains a time-consuming aspect of high-dose-rate brachytherapy (HDR) treatment planning. In this work, a novel catheter lumen recognition algorithm was created for accurate and rapid digitization. Methods: MatLab v8.5 was used to create the catheter recognition algorithm. Initially, the algorithm searches the patient CT dataset using an intensity based k-means filter designed to locate catheters. Once the catheters have been located, seed points are manually selected to initialize digitization of each catheter. From each seed point, the algorithm searches locally in order to automatically digitize the remaining catheter. This digitization is accomplished by finding pixels withmore » similar image curvature and divergence parameters compared to the seed pixel. Newly digitized pixels are treated as new seed positions, and hessian image analysis is used to direct the algorithm toward neighboring catheter pixels, and to make the algorithm insensitive to adjacent catheters that are unresolvable on CT, air pockets, and high Z artifacts. The algorithm was tested using 11 HDR treatment plans, including the Syed template, tandem and ovoid applicator, and multi-catheter lung brachytherapy. Digitization error was calculated by comparing manually determined catheter positions to those determined by the algorithm. Results: he digitization error was 0.23 mm ± 0.14 mm axially and 0.62 mm ± 0.13 mm longitudinally at the tip. The time of digitization, following initial seed placement was less than 1 second per catheter. The maximum total time required to digitize all tested applicators was 4 minutes (Syed template with 15 needles). Conclusion: This algorithm successfully digitizes HDR catheters for a variety of applicators with or without CT markers. The minimal axial error demonstrates the accuracy of the algorithm, and its insensitivity to image artifacts and challenging catheter positioning. Future work to automatically place initial seed positions would improve the algorithm speed.« less
Study of optical design of three-dimensional digital ophthalmoscopes.
Fang, Yi-Chin; Yen, Chih-Ta; Chu, Chin-Hsien
2015-10-01
This study primarily involves using optical zoom structures to design a three-dimensional (3D) human-eye optical sensory system with infrared and visible light. According to experimental data on two-dimensional (2D) and 3D images, human-eye recognition of 3D images is substantially higher (approximately 13.182%) than that of 2D images. Thus, 3D images are more effective than 2D images when they are used at work or in high-recognition devices. In the optical system design, infrared and visible light wavebands were incorporated as light sources to perform simulations. The results can be used to facilitate the design of optical systems suitable for 3D digital ophthalmoscopes.
A Taxonomy of 3D Occluded Objects Recognition Techniques
NASA Astrophysics Data System (ADS)
Soleimanizadeh, Shiva; Mohamad, Dzulkifli; Saba, Tanzila; Al-ghamdi, Jarallah Saleh
2016-03-01
The overall performances of object recognition techniques under different condition (e.g., occlusion, viewpoint, and illumination) have been improved significantly in recent years. New applications and hardware are shifted towards digital photography, and digital media. This faces an increase in Internet usage requiring object recognition for certain applications; particularly occulded objects. However occlusion is still an issue unhandled, interlacing the relations between extracted feature points through image, research is going on to develop efficient techniques and easy to use algorithms that would help users to source images; this need to overcome problems and issues regarding occlusion. The aim of this research is to review recognition occluded objects algorithms and figure out their pros and cons to solve the occlusion problem features, which are extracted from occluded object to distinguish objects from other co-existing objects by determining the new techniques, which could differentiate the occluded fragment and sections inside an image.
Analysis and Recognition of Curve Type as The Basis of Object Recognition in Image
NASA Astrophysics Data System (ADS)
Nugraha, Nurma; Madenda, Sarifuddin; Indarti, Dina; Dewi Agushinta, R.; Ernastuti
2016-06-01
An object in an image when analyzed further will show the characteristics that distinguish one object with another object in an image. Characteristics that are used in object recognition in an image can be a color, shape, pattern, texture and spatial information that can be used to represent objects in the digital image. The method has recently been developed for image feature extraction on objects that share characteristics curve analysis (simple curve) and use the search feature of chain code object. This study will develop an algorithm analysis and the recognition of the type of curve as the basis for object recognition in images, with proposing addition of complex curve characteristics with maximum four branches that will be used for the process of object recognition in images. Definition of complex curve is the curve that has a point of intersection. By using some of the image of the edge detection, the algorithm was able to do the analysis and recognition of complex curve shape well.
Digital mammography, cancer screening: Factors important for image compression
NASA Technical Reports Server (NTRS)
Clarke, Laurence P.; Blaine, G. James; Doi, Kunio; Yaffe, Martin J.; Shtern, Faina; Brown, G. Stephen; Winfield, Daniel L.; Kallergi, Maria
1993-01-01
The use of digital mammography for breast cancer screening poses several novel problems such as development of digital sensors, computer assisted diagnosis (CAD) methods for image noise suppression, enhancement, and pattern recognition, compression algorithms for image storage, transmission, and remote diagnosis. X-ray digital mammography using novel direct digital detection schemes or film digitizers results in large data sets and, therefore, image compression methods will play a significant role in the image processing and analysis by CAD techniques. In view of the extensive compression required, the relative merit of 'virtually lossless' versus lossy methods should be determined. A brief overview is presented here of the developments of digital sensors, CAD, and compression methods currently proposed and tested for mammography. The objective of the NCI/NASA Working Group on Digital Mammography is to stimulate the interest of the image processing and compression scientific community for this medical application and identify possible dual use technologies within the NASA centers.
NASA Astrophysics Data System (ADS)
Alzner, Edgar; Murphy, Laura
1986-06-01
The growing digital nature of radiology images led to a recognition that compatibility of communication between imaging, display and data storage devices of different modalities and different manufacturers is necessary. The ACR-NEMA Digital Imaging and Communications Standard Committee was formed to develop a communications standard for radiological images. This standard includes the overall structure of a communication message and the protocols for bi-directional communication using end-to-end connections. The evolution and rationale of the ACR-NEMA Digital Imaging and Communication Standard are described. An overview is provided and sane practical implementation considerations are discussed. PACS will became reality only if the medical community accepts and implements the ACR-NEMA Standard.
ERIC Educational Resources Information Center
Henthorne, Eileen
1995-01-01
Describes a project at the Princeton University libraries that converted the pre-1981 public card catalog, using digital imaging and optical character recognition technology, to fully tagged and indexed records of text in MARC format that are available on an online database and will be added to the online catalog. (LRW)
Exhibits Recognition System for Combining Online Services and Offline Services
NASA Astrophysics Data System (ADS)
Ma, He; Liu, Jianbo; Zhang, Yuan; Wu, Xiaoyu
2017-10-01
In order to achieve a more convenient and accurate digital museum navigation, we have developed a real-time and online-to-offline museum exhibits recognition system using image recognition method based on deep learning. In this paper, the client and server of the system are separated and connected through the HTTP. Firstly, by using the client app in the Android mobile phone, the user can take pictures and upload them to the server. Secondly, the features of the picture are extracted using the deep learning network in the server. With the help of the features, the pictures user uploaded are classified with a well-trained SVM. Finally, the classification results are sent to the client and the detailed exhibition’s introduction corresponding to the classification results are shown in the client app. Experimental results demonstrate that the recognition accuracy is close to 100% and the computing time from the image uploading to the exhibit information show is less than 1S. By means of exhibition image recognition algorithm, our implemented exhibits recognition system can combine online detailed exhibition information to the user in the offline exhibition hall so as to achieve better digital navigation.
Makeyev, Oleksandr; Sazonov, Edward; Schuckers, Stephanie; Lopez-Meyer, Paulo; Melanson, Ed; Neuman, Michael
2007-01-01
In this paper we propose a sound recognition technique based on the limited receptive area (LIRA) neural classifier and continuous wavelet transform (CWT). LIRA neural classifier was developed as a multipurpose image recognition system. Previous tests of LIRA demonstrated good results in different image recognition tasks including: handwritten digit recognition, face recognition, metal surface texture recognition, and micro work piece shape recognition. We propose a sound recognition technique where scalograms of sound instances serve as inputs of the LIRA neural classifier. The methodology was tested in recognition of swallowing sounds. Swallowing sound recognition may be employed in systems for automated swallowing assessment and diagnosis of swallowing disorders. The experimental results suggest high efficiency and reliability of the proposed approach.
Permutation coding technique for image recognition systems.
Kussul, Ernst M; Baidyk, Tatiana N; Wunsch, Donald C; Makeyev, Oleksandr; Martín, Anabel
2006-11-01
A feature extractor and neural classifier for image recognition systems are proposed. The proposed feature extractor is based on the concept of random local descriptors (RLDs). It is followed by the encoder that is based on the permutation coding technique that allows to take into account not only detected features but also the position of each feature on the image and to make the recognition process invariant to small displacements. The combination of RLDs and permutation coding permits us to obtain a sufficiently general description of the image to be recognized. The code generated by the encoder is used as an input data for the neural classifier. Different types of images were used to test the proposed image recognition system. It was tested in the handwritten digit recognition problem, the face recognition problem, and the microobject shape recognition problem. The results of testing are very promising. The error rate for the Modified National Institute of Standards and Technology (MNIST) database is 0.44% and for the Olivetti Research Laboratory (ORL) database it is 0.1%.
Object recognition of ladar with support vector machine
NASA Astrophysics Data System (ADS)
Sun, Jian-Feng; Li, Qi; Wang, Qi
2005-01-01
Intensity, range and Doppler images can be obtained by using laser radar. Laser radar can detect much more object information than other detecting sensor, such as passive infrared imaging and synthetic aperture radar (SAR), so it is well suited as the sensor of object recognition. Traditional method of laser radar object recognition is extracting target features, which can be influenced by noise. In this paper, a laser radar recognition method-Support Vector Machine is introduced. Support Vector Machine (SVM) is a new hotspot of recognition research after neural network. It has well performance on digital written and face recognition. Two series experiments about SVM designed for preprocessing and non-preprocessing samples are performed by real laser radar images, and the experiments results are compared.
Study on recognition algorithm for paper currency numbers based on neural network
NASA Astrophysics Data System (ADS)
Li, Xiuyan; Liu, Tiegen; Li, Yuanyao; Zhang, Zhongchuan; Deng, Shichao
2008-12-01
Based on the unique characteristic, the paper currency numbers can be put into record and the automatic identification equipment for paper currency numbers is supplied to currency circulation market in order to provide convenience for financial sectors to trace the fiduciary circulation socially and provide effective supervision on paper currency. Simultaneously it is favorable for identifying forged notes, blacklisting the forged notes numbers and solving the major social problems, such as armor cash carrier robbery, money laundering. For the purpose of recognizing the paper currency numbers, a recognition algorithm based on neural network is presented in the paper. Number lines in original paper currency images can be draw out through image processing, such as image de-noising, skew correction, segmentation, and image normalization. According to the different characteristics between digits and letters in serial number, two kinds of classifiers are designed. With the characteristics of associative memory, optimization-compute and rapid convergence, the Discrete Hopfield Neural Network (DHNN) is utilized to recognize the letters; with the characteristics of simple structure, quick learning and global optimum, the Radial-Basis Function Neural Network (RBFNN) is adopted to identify the digits. Then the final recognition results are obtained by combining the two kinds of recognition results in regular sequence. Through the simulation tests, it is confirmed by simulation results that the recognition algorithm of combination of two kinds of recognition methods has such advantages as high recognition rate and faster recognition simultaneously, which is worthy of broad application prospect.
Development of an Autonomous Face Recognition Machine.
1986-12-08
This approach, like Baron’s, would be a very time consuming task. The problem of locating a face in Bromley’s work was the least complex of the three...top level design and the development and design decisions that were made in developing the Autonomous Face Recognition Machine (AFRM). The chapter is...images within a digital image. The second sectio examines the algorithm used in performing face recognition. The decision to divide the development
Facial Recognition in a Group-Living Cichlid Fish.
Kohda, Masanori; Jordan, Lyndon Alexander; Hotta, Takashi; Kosaka, Naoya; Karino, Kenji; Tanaka, Hirokazu; Taniyama, Masami; Takeyama, Tomohiro
2015-01-01
The theoretical underpinnings of the mechanisms of sociality, e.g. territoriality, hierarchy, and reciprocity, are based on assumptions of individual recognition. While behavioural evidence suggests individual recognition is widespread, the cues that animals use to recognise individuals are established in only a handful of systems. Here, we use digital models to demonstrate that facial features are the visual cue used for individual recognition in the social fish Neolamprologus pulcher. Focal fish were exposed to digital images showing four different combinations of familiar and unfamiliar face and body colorations. Focal fish attended to digital models with unfamiliar faces longer and from a further distance to the model than to models with familiar faces. These results strongly suggest that fish can distinguish individuals accurately using facial colour patterns. Our observations also suggest that fish are able to rapidly (≤ 0.5 sec) discriminate between familiar and unfamiliar individuals, a speed of recognition comparable to primates including humans.
Digital imaging technology assessment: Digital document storage project
NASA Technical Reports Server (NTRS)
1989-01-01
An ongoing technical assessment and requirements definition project is examining the potential role of digital imaging technology at NASA's STI facility. The focus is on the basic components of imaging technology in today's marketplace as well as the components anticipated in the near future. Presented is a requirement specification for a prototype project, an initial examination of current image processing at the STI facility, and an initial summary of image processing projects at other sites. Operational imaging systems incorporate scanners, optical storage, high resolution monitors, processing nodes, magnetic storage, jukeboxes, specialized boards, optical character recognition gear, pixel addressable printers, communications, and complex software processes.
An effective approach for iris recognition using phase-based image matching.
Miyazawa, Kazuyuki; Ito, Koichi; Aoki, Takafumi; Kobayashi, Koji; Nakajima, Hiroshi
2008-10-01
This paper presents an efficient algorithm for iris recognition using phase-based image matching--an image matching technique using phase components in 2D Discrete Fourier Transforms (DFTs) of given images. Experimental evaluation using CASIA iris image databases (versions 1.0 and 2.0) and Iris Challenge Evaluation (ICE) 2005 database clearly demonstrates that the use of phase components of iris images makes possible to achieve highly accurate iris recognition with a simple matching algorithm. This paper also discusses major implementation issues of our algorithm. In order to reduce the size of iris data and to prevent the visibility of iris images, we introduce the idea of 2D Fourier Phase Code (FPC) for representing iris information. The 2D FPC is particularly useful for implementing compact iris recognition devices using state-of-the-art Digital Signal Processing (DSP) technology.
Mexican sign language recognition using normalized moments and artificial neural networks
NASA Astrophysics Data System (ADS)
Solís-V., J.-Francisco; Toxqui-Quitl, Carina; Martínez-Martínez, David; H.-G., Margarita
2014-09-01
This work presents a framework designed for the Mexican Sign Language (MSL) recognition. A data set was recorded with 24 static signs from the MSL using 5 different versions, this MSL dataset was captured using a digital camera in incoherent light conditions. Digital Image Processing was used to segment hand gestures, a uniform background was selected to avoid using gloved hands or some special markers. Feature extraction was performed by calculating normalized geometric moments of gray scaled signs, then an Artificial Neural Network performs the recognition using a 10-fold cross validation tested in weka, the best result achieved 95.83% of recognition rate.
NASA Astrophysics Data System (ADS)
Fernández, Ariel; Ferrari, José A.
2017-05-01
Pattern recognition and feature extraction are image processing applications of great interest in defect inspection and robot vision among others. In comparison to purely digital methods, the attractiveness of optical processors for pattern recognition lies in their highly parallel operation and real-time processing capability. This work presents an optical implementation of the generalized Hough transform (GHT), a well-established technique for recognition of geometrical features in binary images. Detection of a geometric feature under the GHT is accomplished by mapping the original image to an accumulator space; the large computational requirements for this mapping make the optical implementation an attractive alternative to digital-only methods. We explore an optical setup where the transformation is obtained, and the size and orientation parameters can be controlled, allowing for dynamic scale and orientation-variant pattern recognition. A compact system for the above purposes results from the use of an electrically tunable lens for scale control and a pupil mask implemented on a high-contrast spatial light modulator for orientation/shape variation of the template. Real-time can also be achieved. In addition, by thresholding of the GHT and optically inverse transforming, the previously detected features of interest can be extracted.
Indoor navigation by image recognition
NASA Astrophysics Data System (ADS)
Choi, Io Teng; Leong, Chi Chong; Hong, Ka Wo; Pun, Chi-Man
2017-07-01
With the progress of smartphones hardware, it is simple on smartphone using image recognition technique such as face detection. In addition, indoor navigation system development is much slower than outdoor navigation system. Hence, this research proves a usage of image recognition technique for navigation in indoor environment. In this paper, we introduced an indoor navigation application that uses the indoor environment features to locate user's location and a route calculating algorithm to generate an appropriate path for user. The application is implemented on Android smartphone rather than iPhone. Yet, the application design can also be applied on iOS because the design is implemented without using special features only for Android. We found that digital navigation system provides better and clearer location information than paper map. Also, the indoor environment is ideal for Image recognition processing. Hence, the results motivate us to design an indoor navigation system using image recognition.
NASA Technical Reports Server (NTRS)
Heydorn, R. D.
1984-01-01
The Mathematical Pattern Recognition and Image Analysis (MPRIA) Project is concerned with basic research problems related to the study of the Earth from remotely sensed measurement of its surface characteristics. The program goal is to better understand how to analyze the digital image that represents the spatial, spectral, and temporal arrangement of these measurements for purposing of making selected inference about the Earth.
NASA Astrophysics Data System (ADS)
Lhamon, Michael Earl
A pattern recognition system which uses complex correlation filter banks requires proportionally more computational effort than single-real valued filters. This introduces increased computation burden but also introduces a higher level of parallelism, that common computing platforms fail to identify. As a result, we consider algorithm mapping to both optical and digital processors. For digital implementation, we develop computationally efficient pattern recognition algorithms, referred to as, vector inner product operators that require less computational effort than traditional fast Fourier methods. These algorithms do not need correlation and they map readily onto parallel digital architectures, which imply new architectures for optical processors. These filters exploit circulant-symmetric matrix structures of the training set data representing a variety of distortions. By using the same mathematical basis as with the vector inner product operations, we are able to extend the capabilities of more traditional correlation filtering to what we refer to as "Super Images". These "Super Images" are used to morphologically transform a complicated input scene into a predetermined dot pattern. The orientation of the dot pattern is related to the rotational distortion of the object of interest. The optical implementation of "Super Images" yields feature reduction necessary for using other techniques, such as artificial neural networks. We propose a parallel digital signal processor architecture based on specific pattern recognition algorithms but general enough to be applicable to other similar problems. Such an architecture is classified as a data flow architecture. Instead of mapping an algorithm to an architecture, we propose mapping the DSP architecture to a class of pattern recognition algorithms. Today's optical processing systems have difficulties implementing full complex filter structures. Typically, optical systems (like the 4f correlators) are limited to phase-only implementation with lower detection performance than full complex electronic systems. Our study includes pseudo-random pixel encoding techniques for approximating full complex filtering. Optical filter bank implementation is possible and they have the advantage of time averaging the entire filter bank at real time rates. Time-averaged optical filtering is computational comparable to billions of digital operations-per-second. For this reason, we believe future trends in high speed pattern recognition will involve hybrid architectures of both optical and DSP elements.
Optical character recognition of camera-captured images based on phase features
NASA Astrophysics Data System (ADS)
Diaz-Escobar, Julia; Kober, Vitaly
2015-09-01
Nowadays most of digital information is obtained using mobile devices specially smartphones. In particular, it brings the opportunity for optical character recognition in camera-captured images. For this reason many recognition applications have been recently developed such as recognition of license plates, business cards, receipts and street signal; document classification, augmented reality, language translator and so on. Camera-captured images are usually affected by geometric distortions, nonuniform illumination, shadow, noise, which make difficult the recognition task with existing systems. It is well known that the Fourier phase contains a lot of important information regardless of the Fourier magnitude. So, in this work we propose a phase-based recognition system exploiting phase-congruency features for illumination/scale invariance. The performance of the proposed system is tested in terms of miss classifications and false alarms with the help of computer simulation.
Palmprint Recognition Across Different Devices.
Jia, Wei; Hu, Rong-Xiang; Gui, Jie; Zhao, Yang; Ren, Xiao-Ming
2012-01-01
In this paper, the problem of Palmprint Recognition Across Different Devices (PRADD) is investigated, which has not been well studied so far. Since there is no publicly available PRADD image database, we created a non-contact PRADD image database containing 12,000 grayscale captured from 100 subjects using three devices, i.e., one digital camera and two smart-phones. Due to the non-contact image acquisition used, rotation and scale changes between different images captured from a same palm are inevitable. We propose a robust method to calculate the palm width, which can be effectively used for scale normalization of palmprints. On this PRADD image database, we evaluate the recognition performance of three different methods, i.e., subspace learning method, correlation method, and orientation coding based method, respectively. Experiments results show that orientation coding based methods achieved promising recognition performance for PRADD.
Palmprint Recognition across Different Devices
Jia, Wei; Hu, Rong-Xiang; Gui, Jie; Zhao, Yang; Ren, Xiao-Ming
2012-01-01
In this paper, the problem of Palmprint Recognition Across Different Devices (PRADD) is investigated, which has not been well studied so far. Since there is no publicly available PRADD image database, we created a non-contact PRADD image database containing 12,000 grayscale captured from 100 subjects using three devices, i.e., one digital camera and two smart-phones. Due to the non-contact image acquisition used, rotation and scale changes between different images captured from a same palm are inevitable. We propose a robust method to calculate the palm width, which can be effectively used for scale normalization of palmprints. On this PRADD image database, we evaluate the recognition performance of three different methods, i.e., subspace learning method, correlation method, and orientation coding based method, respectively. Experiments results show that orientation coding based methods achieved promising recognition performance for PRADD. PMID:22969380
Jersey number detection in sports video for athlete identification
NASA Astrophysics Data System (ADS)
Ye, Qixiang; Huang, Qingming; Jiang, Shuqiang; Liu, Yang; Gao, Wen
2005-07-01
Athlete identification is important for sport video content analysis since users often care about the video clips with their preferred athletes. In this paper, we propose a method for athlete identification by combing the segmentation, tracking and recognition procedures into a coarse-to-fine scheme for jersey number (digital characters on sport shirt) detection. Firstly, image segmentation is employed to separate the jersey number regions with its background. And size/pipe-like attributes of digital characters are used to filter out candidates. Then, a K-NN (K nearest neighbor) classifier is employed to classify a candidate into a digit in "0-9" or negative. In the recognition procedure, we use the Zernike moment features, which are invariant to rotation and scale for digital shape recognition. Synthetic training samples with different fonts are used to represent the pattern of digital characters with non-rigid deformation. Once a character candidate is detected, a SSD (smallest square distance)-based tracking procedure is started. The recognition procedure is performed every several frames in the tracking process. After tracking tens of frames, the overall recognition results are combined to determine if a candidate is a true jersey number or not by a voting procedure. Experiments on several types of sports video shows encouraging result.
Digital Images and Human Vision
NASA Technical Reports Server (NTRS)
Watson, Andrew B.; Null, Cynthia H. (Technical Monitor)
1997-01-01
Processing of digital images destined for visual consumption raises many interesting questions regarding human visual sensitivity. This talk will survey some of these questions, including some that have been answered and some that have not. There will be an emphasis upon visual masking, and a distinction will be drawn between masking due to contrast gain control processes, and due to processes such as hypothesis testing, pattern recognition, and visual search.
Digital-Electronic/Optical Apparatus Would Recognize Targets
NASA Technical Reports Server (NTRS)
Scholl, Marija S.
1994-01-01
Proposed automatic target-recognition apparatus consists mostly of digital-electronic/optical cross-correlator that processes infrared images of targets. Infrared images of unknown targets correlated quickly with images of known targets. Apparatus incorporates some features of correlator described in "Prototype Optical Correlator for Robotic Vision System" (NPO-18451), and some of correlator described in "Compact Optical Correlator" (NPO-18473). Useful in robotic system; to recognize and track infrared-emitting, moving objects as variously shaped hot workpieces on conveyor belt.
Optical Fourier diffractometry applied to degraded bone structure recognition
NASA Astrophysics Data System (ADS)
Galas, Jacek; Godwod, Krzysztof; Szawdyn, Jacek; Sawicki, Andrzej
1993-09-01
Image processing and recognition methods are useful in many fields. This paper presents the hybrid optical and digital method applied to recognition of pathological changes in bones involved by metabolic bone diseases. The trabecular bone structure, registered by x ray on the photographic film, is analyzed in the new type of computer controlled diffractometer. The set of image parameters, extracted from diffractogram, is evaluated by statistical analysis. The synthetic image descriptors in discriminant space, constructed on the base of 3 training groups of images (control, osteoporosis, and osteomalacia groups) by discriminant analysis, allow us to recognize bone samples with degraded bone structure and to recognize the disease. About 89% of the images were classified correctly. This method after optimization process will be verified in medical investigations.
Clinical applications of computerized thermography
NASA Technical Reports Server (NTRS)
Anbar, Michael
1988-01-01
Computerized or digital, thermography is a rapidly growing diagnostic imaging modality. It has superseded contact thermography and analog imaging thermography which do not allow effective quantization. Medical applications of digital thermography can be classified in two groups: static and dynamic imaging. They can also be classified into macro thermography (resolution greater than 1 mm) and micro thermography (resolution less than 100 microns). Both modalities allow a thermal resolution of 0.1 C. The diagnostic power of images produced by any of these modalities can be augmented by the use of digital image enhancement and image recognition procedures. Computerized thermography has been applied in neurology, cardiovascular and plastic surgery, rehabilitation and sports medicine, psychiatry, dermatology and ophthalmology. Examples of these applications are shown and their scope and limitations are discussed.
Degraded character recognition based on gradient pattern
NASA Astrophysics Data System (ADS)
Babu, D. R. Ramesh; Ravishankar, M.; Kumar, Manish; Wadera, Kevin; Raj, Aakash
2010-02-01
Degraded character recognition is a challenging problem in the field of Optical Character Recognition (OCR). The performance of an optical character recognition depends upon printed quality of the input documents. Many OCRs have been designed which correctly identifies the fine printed documents. But, very few reported work has been found on the recognition of the degraded documents. The efficiency of the OCRs system decreases if the input image is degraded. In this paper, a novel approach based on gradient pattern for recognizing degraded printed character is proposed. The approach makes use of gradient pattern of an individual character for recognition. Experiments were conducted on character image that is either digitally written or a degraded character extracted from historical documents and the results are found to be satisfactory.
Automatic target recognition apparatus and method
Baumgart, Chris W.; Ciarcia, Christopher A.
2000-01-01
An automatic target recognition apparatus (10) is provided, having a video camera/digitizer (12) for producing a digitized image signal (20) representing an image containing therein objects which objects are to be recognized if they meet predefined criteria. The digitized image signal (20) is processed within a video analysis subroutine (22) residing in a computer (14) in a plurality of parallel analysis chains such that the objects are presumed to be lighter in shading than the background in the image in three of the chains and further such that the objects are presumed to be darker than the background in the other three chains. In two of the chains the objects are defined by surface texture analysis using texture filter operations. In another two of the chains the objects are defined by background subtraction operations. In yet another two of the chains the objects are defined by edge enhancement processes. In each of the analysis chains a calculation operation independently determines an error factor relating to the probability that the objects are of the type which should be recognized, and a probability calculation operation combines the results of the analysis chains.
Introduction to computer image processing
NASA Technical Reports Server (NTRS)
Moik, J. G.
1973-01-01
Theoretical backgrounds and digital techniques for a class of image processing problems are presented. Image formation in the context of linear system theory, image evaluation, noise characteristics, mathematical operations on image and their implementation are discussed. Various techniques for image restoration and image enhancement are presented. Methods for object extraction and the problem of pictorial pattern recognition and classification are discussed.
Pc-based car license plate reading
NASA Astrophysics Data System (ADS)
Tanabe, Katsuyoshi; Marubayashi, Eisaku; Kawashima, Harumi; Nakanishi, Tadashi; Shio, Akio
1994-03-01
A PC-based car license plate recognition system has been developed. The system recognizes Chinese characters and Japanese phonetic hiragana characters as well as six digits on Japanese license plates. The system consists of a CCD camera, vehicle sensors, a strobe unit, a monitoring center, and an i486-based PC. The PC includes in its extension slots: a vehicle detector board, a strobe emitter board, and an image grabber board. When a passing vehicle is detected by the vehicle sensors, the strobe emits a pulse of light. The light pulse is synchronized with the time the vehicle image is frozen on an image grabber board. The recognition process is composed of three steps: image thresholding, character region extraction, and matching-based character recognition. The recognition software can handle obscured characters. Experimental results for hundreds of outdoor images showed high recognition performance within relatively short performance times. The results confirmed that the system is applicable to a wide variety of applications such as automatic vehicle identification and travel time measurement.
NASA Astrophysics Data System (ADS)
Fang, Yi-Chin; Wu, Bo-Wen; Lin, Wei-Tang; Jon, Jen-Liung
2007-11-01
Resolution and color are two main directions for measuring optical digital image, but it will be a hard work to integral improve the image quality of optical system, because there are many limits such as size, materials and environment of optical system design. Therefore, it is important to let blurred images as aberrations and noises or due to the characteristics of human vision as far distance and small targets to raise the capability of image recognition with artificial intelligence such as genetic algorithm and neural network in the condition that decreasing color aberration of optical system and not to increase complex calculation in the image processes. This study could achieve the goal of integral, economically and effectively to improve recognition and classification in low quality image from optical system and environment.
NASA Astrophysics Data System (ADS)
Hou, H. S.
1985-07-01
An overview of the recent progress in the area of digital processing of binary images in the context of document processing is presented here. The topics covered include input scan, adaptive thresholding, halftoning, scaling and resolution conversion, data compression, character recognition, electronic mail, digital typography, and output scan. Emphasis has been placed on illustrating the basic principles rather than descriptions of a particular system. Recent technology advances and research in this field are also mentioned.
Image processing for a tactile/vision substitution system using digital CNN.
Lin, Chien-Nan; Yu, Sung-Nien; Hu, Jin-Cheng
2006-01-01
In view of the parallel processing and easy implementation properties of CNN, we propose to use digital CNN as the image processor of a tactile/vision substitution system (TVSS). The digital CNN processor is used to execute the wavelet down-sampling filtering and the half-toning operations, aiming to extract important features from the images. A template combination method is used to embed the two image processing functions into a single CNN processor. The digital CNN processor is implemented on an intellectual property (IP) and is implemented on a XILINX VIRTEX II 2000 FPGA board. Experiments are designated to test the capability of the CNN processor in the recognition of characters and human subjects in different environments. The experiments demonstrates impressive results, which proves the proposed digital CNN processor a powerful component in the design of efficient tactile/vision substitution systems for the visually impaired people.
Static sign language recognition using 1D descriptors and neural networks
NASA Astrophysics Data System (ADS)
Solís, José F.; Toxqui, Carina; Padilla, Alfonso; Santiago, César
2012-10-01
A frame work for static sign language recognition using descriptors which represents 2D images in 1D data and artificial neural networks is presented in this work. The 1D descriptors were computed by two methods, first one consists in a correlation rotational operator.1 and second is based on contour analysis of hand shape. One of the main problems in sign language recognition is segmentation; most of papers report a special color in gloves or background for hand shape analysis. In order to avoid the use of gloves or special clothing, a thermal imaging camera was used to capture images. Static signs were picked up from 1 to 9 digits of American Sign Language, a multilayer perceptron reached 100% recognition with cross-validation.
Halldin, Cara N; Petsonk, Edward L; Laney, A Scott
2014-03-01
Chest radiographs are recommended for prevention and detection of pneumoconiosis. In 2011, the International Labour Office (ILO) released a revision of the International Classification of Radiographs of Pneumoconioses that included a digitized standard images set. The present study compared results of classifications of digital chest images performed using the new ILO 2011 digitized standard images to classification approaches used in the past. Underground coal miners (N = 172) were examined using both digital and film-screen radiography (FSR) on the same day. Seven National Institute for Occupational Safety and Health-certified B Readers independently classified all 172 digital radiographs, once using the ILO 2011 digitized standard images (DRILO2011-D) and once using digitized standard images used in the previous research (DRRES). The same seven B Readers classified all the miners' chest films using the ILO film-based standards. Agreement between classifications of FSR and digital radiography was identical, using a standard image set (either DRILO2011-D or DRRES). The overall weighted κ value was 0.58. Some specific differences in the results were seen and noted. However, intrareader variability in this study was similar to the published values and did not appear to be affected by the use of the new ILO 2011 digitized standard images. These findings validate the use of the ILO digitized standard images for classification of small pneumoconiotic opacities. When digital chest radiographs are obtained and displayed appropriately, results of pneumoconiosis classifications using the 2011 ILO digitized standards are comparable to film-based ILO classifications and to classifications using earlier research standards. Published by Elsevier Inc.
Comparison of eye imaging pattern recognition using neural network
NASA Astrophysics Data System (ADS)
Bukhari, W. M.; Syed A., M.; Nasir, M. N. M.; Sulaima, M. F.; Yahaya, M. S.
2015-05-01
The beauty of eye recognition system that it is used in automatic identifying and verifies a human weather from digital images or video source. There are various behaviors of the eye such as the color of the iris, size of pupil and shape of the eye. This study represents the analysis, design and implementation of a system for recognition of eye imaging. All the eye images that had been captured from the webcam in RGB format must through several techniques before it can be input for the pattern and recognition processes. The result shows that the final value of weight and bias after complete training 6 eye images for one subject is memorized by the neural network system and be the reference value of the weight and bias for the testing part. The target classifies to 5 different types for 5 subjects. The eye images can recognize the subject based on the target that had been set earlier during the training process. When the values between new eye image and the eye image in the database are almost equal, it is considered the eye image is matched.
Improving the recognition of fingerprint biometric system using enhanced image fusion
NASA Astrophysics Data System (ADS)
Alsharif, Salim; El-Saba, Aed; Stripathi, Reshma
2010-04-01
Fingerprints recognition systems have been widely used by financial institutions, law enforcement, border control, visa issuing, just to mention few. Biometric identifiers can be counterfeited, but considered more reliable and secure compared to traditional ID cards or personal passwords methods. Fingerprint pattern fusion improves the performance of a fingerprint recognition system in terms of accuracy and security. This paper presents digital enhancement and fusion approaches that improve the biometric of the fingerprint recognition system. It is a two-step approach. In the first step raw fingerprint images are enhanced using high-frequency-emphasis filtering (HFEF). The second step is a simple linear fusion process between the raw images and the HFEF ones. It is shown that the proposed approach increases the verification and identification of the fingerprint biometric recognition system, where any improvement is justified using the correlation performance metrics of the matching algorithm.
Neural network face recognition using wavelets
NASA Astrophysics Data System (ADS)
Karunaratne, Passant V.; Jouny, Ismail I.
1997-04-01
The recognition of human faces is a phenomenon that has been mastered by the human visual system and that has been researched extensively in the domain of computer neural networks and image processing. This research is involved in the study of neural networks and wavelet image processing techniques in the application of human face recognition. The objective of the system is to acquire a digitized still image of a human face, carry out pre-processing on the image as required, an then, given a prior database of images of possible individuals, be able to recognize the individual in the image. The pre-processing segment of the system includes several procedures, namely image compression, denoising, and feature extraction. The image processing is carried out using Daubechies wavelets. Once the images have been passed through the wavelet-based image processor they can be efficiently analyzed by means of a neural network. A back- propagation neural network is used for the recognition segment of the system. The main constraints of the system is with regard to the characteristics of the images being processed. The system should be able to carry out effective recognition of the human faces irrespective of the individual's facial-expression, presence of extraneous objects such as head-gear or spectacles, and face/head orientation. A potential application of this face recognition system would be as a secondary verification method in an automated teller machine.
NASA Technical Reports Server (NTRS)
Gramenopoulos, N. (Principal Investigator)
1973-01-01
The author has identified the following significant results. For the recognition of terrain types, spatial signatures are developed from the diffraction patterns of small areas of ERTS-1 images. This knowledge is exploited for the measurements of a small number of meaningful spatial features from the digital Fourier transforms of ERTS-1 image cells containing 32 x 32 picture elements. Using these spatial features and a heuristic algorithm, the terrain types in the vicinity of Phoenix, Arizona were recognized by the computer with a high accuracy. Then, the spatial features were combined with spectral features and using the maximum likelihood criterion the recognition accuracy of terrain types increased substantially. It was determined that the recognition accuracy with the maximum likelihood criterion depends on the statistics of the feature vectors. Nonlinear transformations of the feature vectors are required so that the terrain class statistics become approximately Gaussian. It was also determined that for a given geographic area the statistics of the classes remain invariable for a period of a month but vary substantially between seasons.
NASA Astrophysics Data System (ADS)
Millán, María S.
2012-10-01
On the verge of the 50th anniversary of Vander Lugt’s formulation for pattern matching based on matched filtering and optical correlation, we acknowledge the very intense research activity developed in the field of correlation-based pattern recognition during this period of time. The paper reviews some domains that appeared as emerging fields in the last years of the 20th century and have been developed later on in the 21st century. Such is the case of three-dimensional (3D) object recognition, biometric pattern matching, optical security and hybrid optical-digital processors. 3D object recognition is a challenging case of multidimensional image recognition because of its implications in the recognition of real-world objects independent of their perspective. Biometric recognition is essentially pattern recognition for which the personal identification is based on the authentication of a specific physiological characteristic possessed by the subject (e.g. fingerprint, face, iris, retina, and multifactor combinations). Biometric recognition often appears combined with encryption-decryption processes to secure information. The optical implementations of correlation-based pattern recognition processes still rely on the 4f-correlator, the joint transform correlator, or some of their variants. But the many applications developed in the field have been pushing the systems for a continuous improvement of their architectures and algorithms, thus leading towards merged optical-digital solutions.
The recognition of graphical patterns invariant to geometrical transformation of the models
NASA Astrophysics Data System (ADS)
Ileană, Ioan; Rotar, Corina; Muntean, Maria; Ceuca, Emilian
2010-11-01
In case that a pattern recognition system is used for images recognition (in robot vision, handwritten recognition etc.), the system must have the capacity to identify an object indifferently of its size or position in the image. The problem of the invariance of recognition can be approached in some fundamental modes. One may apply the similarity criterion used in associative recall. The original pattern is replaced by a mathematical transform that assures some invariance (e.g. the value of two-dimensional Fourier transformation is translation invariant, the value of Mellin transformation is scale invariant). In a different approach the original pattern is represented through a set of features, each of them being coded indifferently of the position, orientation or position of the pattern. Generally speaking, it is easy to obtain invariance in relation with one transformation group, but is difficult to obtain simultaneous invariance at rotation, translation and scale. In this paper we analyze some methods to achieve invariant recognition of images, particularly for digit images. A great number of experiments are due and the conclusions are underplayed in the paper.
NASA Astrophysics Data System (ADS)
Costache, G. N.; Gavat, I.
2004-09-01
Along with the aggressive growing of the amount of digital data available (text, audio samples, digital photos and digital movies joined all in the multimedia domain) the need for classification, recognition and retrieval of this kind of data became very important. In this paper will be presented a system structure to handle multimedia data based on a recognition perspective. The main processing steps realized for the interesting multimedia objects are: first, the parameterization, by analysis, in order to obtain a description based on features, forming the parameter vector; second, a classification, generally with a hierarchical structure to make the necessary decisions. For audio signals, both speech and music, the derived perceptual features are the melcepstral (MFCC) and the perceptual linear predictive (PLP) coefficients. For images, the derived features are the geometric parameters of the speaker mouth. The hierarchical classifier consists generally in a clustering stage, based on the Kohonnen Self-Organizing Maps (SOM) and a final stage, based on a powerful classification algorithm called Support Vector Machines (SVM). The system, in specific variants, is applied with good results in two tasks: the first, is a bimodal speech recognition which uses features obtained from speech signal fused to features obtained from speaker's image and the second is a music retrieval from large music database.
Hipp, Jason D; Cheng, Jerome Y; Toner, Mehmet; Tompkins, Ronald G; Balis, Ulysses J
2011-02-26
HISTORICALLY, EFFECTIVE CLINICAL UTILIZATION OF IMAGE ANALYSIS AND PATTERN RECOGNITION ALGORITHMS IN PATHOLOGY HAS BEEN HAMPERED BY TWO CRITICAL LIMITATIONS: 1) the availability of digital whole slide imagery data sets and 2) a relative domain knowledge deficit in terms of application of such algorithms, on the part of practicing pathologists. With the advent of the recent and rapid adoption of whole slide imaging solutions, the former limitation has been largely resolved. However, with the expectation that it is unlikely for the general cohort of contemporary pathologists to gain advanced image analysis skills in the short term, the latter problem remains, thus underscoring the need for a class of algorithm that has the concurrent properties of image domain (or organ system) independence and extreme ease of use, without the need for specialized training or expertise. In this report, we present a novel, general case pattern recognition algorithm, Spatially Invariant Vector Quantization (SIVQ), that overcomes the aforementioned knowledge deficit. Fundamentally based on conventional Vector Quantization (VQ) pattern recognition approaches, SIVQ gains its superior performance and essentially zero-training workflow model from its use of ring vectors, which exhibit continuous symmetry, as opposed to square or rectangular vectors, which do not. By use of the stochastic matching properties inherent in continuous symmetry, a single ring vector can exhibit as much as a millionfold improvement in matching possibilities, as opposed to conventional VQ vectors. SIVQ was utilized to demonstrate rapid and highly precise pattern recognition capability in a broad range of gross and microscopic use-case settings. With the performance of SIVQ observed thus far, we find evidence that indeed there exist classes of image analysis/pattern recognition algorithms suitable for deployment in settings where pathologists alone can effectively incorporate their use into clinical workflow, as a turnkey solution. We anticipate that SIVQ, and other related class-independent pattern recognition algorithms, will become part of the overall armamentarium of digital image analysis approaches that are immediately available to practicing pathologists, without the need for the immediate availability of an image analysis expert.
Recognition and inference of crevice processing on digitized paintings
NASA Astrophysics Data System (ADS)
Karuppiah, S. P.; Srivatsa, S. K.
2013-03-01
This paper is designed to detect and removal of cracks on digitized paintings. The cracks are detected by threshold. Afterwards, the thin dark brush strokes which have been misidentified as cracks are removed using Median radial basis function neural network on hue and saturation data, Semi-automatic procedure based on region growing. Finally, crack is filled using wiener filter. The paper is well designed in such a way that most of the cracks on digitized paintings have identified and removed. The paper % of betterment is 90%. This paper helps us to perform not only on digitized paintings but also the medical images and bmp images. This paper is implemented by Mat Lab.
Phase in Optical Image Processing
NASA Astrophysics Data System (ADS)
Naughton, Thomas J.
2010-04-01
The use of phase has a long standing history in optical image processing, with early milestones being in the field of pattern recognition, such as VanderLugt's practical construction technique for matched filters, and (implicitly) Goodman's joint Fourier transform correlator. In recent years, the flexibility afforded by phase-only spatial light modulators and digital holography, for example, has enabled many processing techniques based on the explicit encoding and decoding of phase. One application area concerns efficient numerical computations. Pushing phase measurement to its physical limits, designs employing the physical properties of phase have ranged from the sensible to the wonderful, in some cases making computationally easy problems easier to solve and in other cases addressing mathematics' most challenging computationally hard problems. Another application area is optical image encryption, in which, typically, a phase mask modulates the fractional Fourier transformed coefficients of a perturbed input image, and the phase of the inverse transform is then sensed as the encrypted image. The inherent linearity that makes the system so elegant mitigates against its use as an effective encryption technique, but we show how a combination of optical and digital techniques can restore confidence in that security. We conclude with the concept of digital hologram image processing, and applications of same that are uniquely suited to optical implementation, where the processing, recognition, or encryption step operates on full field information, such as that emanating from a coherently illuminated real-world three-dimensional object.
License Plate Recognition System for Indian Vehicles
NASA Astrophysics Data System (ADS)
Sanap, P. R.; Narote, S. P.
2010-11-01
We consider the task of recognition of Indian vehicle number plates (also called license plates or registration plates in other countries). A system for Indian number plate recognition must cope with wide variations in the appearance of the plates. Each state uses its own range of designs with font variations between the designs. Also, vehicle owners may place the plates inside glass covered frames or use plates made of nonstandard materials. These issues compound the complexity of automatic number plate recognition, making existing approaches inadequate. We have developed a system that incorporates a novel combination of image processing and artificial neural network technologies to successfully locate and read Indian vehicle number plates in digital images. Commercial application of the system is envisaged.
Local Subspace Classifier with Transform-Invariance for Image Classification
NASA Astrophysics Data System (ADS)
Hotta, Seiji
A family of linear subspace classifiers called local subspace classifier (LSC) outperforms the k-nearest neighbor rule (kNN) and conventional subspace classifiers in handwritten digit classification. However, LSC suffers very high sensitivity to image transformations because it uses projection and the Euclidean distances for classification. In this paper, I present a combination of a local subspace classifier (LSC) and a tangent distance (TD) for improving accuracy of handwritten digit recognition. In this classification rule, we can deal with transform-invariance easily because we are able to use tangent vectors for approximation of transformations. However, we cannot use tangent vectors in other type of images such as color images. Hence, kernel LSC (KLSC) is proposed for incorporating transform-invariance into LSC via kernel mapping. The performance of the proposed methods is verified with the experiments on handwritten digit and color image classification.
NASA Technical Reports Server (NTRS)
Heydorn, R. P.
1984-01-01
The Mathematical Pattern Recognition and Image Analysis (MPRIA) Project is concerned with basic research problems related to the study of he Earth from remotely sensed measurements of its surface characteristics. The program goal is to better understand how to analyze the digital image that represents the spatial, spectral, and temporal arrangement of these measurements for purposing of making selected inferences about the Earth. This report summarizes the progress that has been made toward this program goal by each of the principal investigators in the MPRIA Program.
Sign Language Recognition System using Neural Network for Digital Hardware Implementation
NASA Astrophysics Data System (ADS)
Vargas, Lorena P.; Barba, Leiner; Torres, C. O.; Mattos, L.
2011-01-01
This work presents an image pattern recognition system using neural network for the identification of sign language to deaf people. The system has several stored image that show the specific symbol in this kind of language, which is employed to teach a multilayer neural network using a back propagation algorithm. Initially, the images are processed to adapt them and to improve the performance of discriminating of the network, including in this process of filtering, reduction and elimination noise algorithms as well as edge detection. The system is evaluated using the signs without including movement in their representation.
Automated Coronal Loop Identification Using Digital Image Processing Techniques
NASA Technical Reports Server (NTRS)
Lee, Jong K.; Gary, G. Allen; Newman, Timothy S.
2003-01-01
The results of a master thesis project on a study of computer algorithms for automatic identification of optical-thin, 3-dimensional solar coronal loop centers from extreme ultraviolet and X-ray 2-dimensional images will be presented. These center splines are proxies of associated magnetic field lines. The project is pattern recognition problems in which there are no unique shapes or edges and in which photon and detector noise heavily influence the images. The study explores extraction techniques using: (1) linear feature recognition of local patterns (related to the inertia-tensor concept), (2) parametric space via the Hough transform, and (3) topological adaptive contours (snakes) that constrains curvature and continuity as possible candidates for digital loop detection schemes. We have developed synthesized images for the coronal loops to test the various loop identification algorithms. Since the topology of these solar features is dominated by the magnetic field structure, a first-order magnetic field approximation using multiple dipoles provides a priori information in the identification process. Results from both synthesized and solar images will be presented.
Pattern recognition and feature extraction with an optical Hough transform
NASA Astrophysics Data System (ADS)
Fernández, Ariel
2016-09-01
Pattern recognition and localization along with feature extraction are image processing applications of great interest in defect inspection and robot vision among others. In comparison to purely digital methods, the attractiveness of optical processors for pattern recognition lies in their highly parallel operation and real-time processing capability. This work presents an optical implementation of the generalized Hough transform (GHT), a well-established technique for the recognition of geometrical features in binary images. Detection of a geometric feature under the GHT is accomplished by mapping the original image to an accumulator space; the large computational requirements for this mapping make the optical implementation an attractive alternative to digital- only methods. Starting from the integral representation of the GHT, it is possible to device an optical setup where the transformation is obtained, and the size and orientation parameters can be controlled, allowing for dynamic scale and orientation-variant pattern recognition. A compact system for the above purposes results from the use of an electrically tunable lens for scale control and a rotating pupil mask for orientation variation, implemented on a high-contrast spatial light modulator (SLM). Real-time (as limited by the frame rate of the device used to capture the GHT) can also be achieved, allowing for the processing of video sequences. Besides, by thresholding of the GHT (with the aid of another SLM) and inverse transforming (which is optically achieved in the incoherent system under appropriate focusing setting), the previously detected features of interest can be extracted.
ERIC Educational Resources Information Center
Galloway, Edward A.; Michalek, Gabrielle V.
1995-01-01
Discusses the conversion project of the congressional papers of Senator John Heinz into digital format and the provision of electronic access to these papers by Carnegie Mellon University. Topics include collection background, project team structure, document processing, scanning, use of optical character recognition software, verification…
Russian Character Recognition using Self-Organizing Map
NASA Astrophysics Data System (ADS)
Gunawan, D.; Arisandi, D.; Ginting, F. M.; Rahmat, R. F.; Amalia, A.
2017-01-01
The World Tourism Organization (UNWTO) in 2014 released that there are 28 million visitors who visit Russia. Most of the visitors might have problem in typing Russian word when using digital dictionary. This is caused by the letters, called Cyrillic that used by the Russian and the countries around it, have different shape than Latin letters. The visitors might not familiar with Cyrillic. This research proposes an alternative way to input the Cyrillic words. Instead of typing the Cyrillic words directly, camera can be used to capture image of the words as input. The captured image is cropped, then several pre-processing steps are applied such as noise filtering, binary image processing, segmentation and thinning. Next, the feature extraction process is applied to the image. Cyrillic letters recognition in the image is done by utilizing Self-Organizing Map (SOM) algorithm. SOM successfully recognizes 89.09% Cyrillic letters from the computer-generated images. On the other hand, SOM successfully recognizes 88.89% Cyrillic letters from the image captured by the smartphone’s camera. For the word recognition, SOM successfully recognized 292 words and partially recognized 58 words from the image captured by the smartphone’s camera. Therefore, the accuracy of the word recognition using SOM is 83.42%
NASA Astrophysics Data System (ADS)
Sanger, Demas S.; Haneishi, Hideaki; Miyake, Yoichi
1995-08-01
This paper proposed a simple and automatic method for recognizing the light sources from various color negative film brands by means of digital image processing. First, we stretched the image obtained from a negative based on the standardized scaling factors, then extracted the dominant color component among red, green, and blue components of the stretched image. The dominant color component became the discriminator for the recognition. The experimental results verified that any one of the three techniques could recognize the light source from negatives of any film brands and all brands greater than 93.2 and 96.6% correct recognitions, respectively. This method is significant for the automation of color quality control in color reproduction from color negative film in mass processing and printing machine.
Evaluating a voice recognition system: finding the right product for your department.
Freeh, M; Dewey, M; Brigham, L
2001-06-01
The Department of Radiology at the University of Utah Health Sciences Center has been in the process of transitioning from the traditional film-based department to a digital imaging department for the past 2 years. The department is now transitioning from the traditional method of dictating reports (dictation by radiologist to transcription to review and signing by radiologist) to a voice recognition system. The transition to digital operations will not be complete until we have the ability to directly interface the dictation process with the image review process. Voice recognition technology has advanced to the level where it can and should be an integral part of the new way of working in radiology and is an integral part of an efficient digital imaging department. The transition to voice recognition requires the task of identifying the product and the company that will best meet a department's needs. This report introduces the methods we used to evaluate the vendors and the products available as we made our purchasing decision. We discuss our evaluation method and provide a checklist that can be used by other departments to assist with their evaluation process. The criteria used in the evaluation process fall into the following major categories: user operations, technical infrastructure, medical dictionary, system interfaces, service support, cost, and company strength. Conclusions drawn from our evaluation process will be detailed, with the intention being to shorten the process for others as they embark on a similar venture. As more and more organizations investigate the many products and services that are now being offered to enhance the operations of a radiology department, it becomes increasingly important that solid methods are used to most effectively evaluate the new products. This report should help others complete the task of evaluating a voice recognition system and may be adaptable to other products as well.
Vision-based obstacle recognition system for automated lawn mower robot development
NASA Astrophysics Data System (ADS)
Mohd Zin, Zalhan; Ibrahim, Ratnawati
2011-06-01
Digital image processing techniques (DIP) have been widely used in various types of application recently. Classification and recognition of a specific object using vision system require some challenging tasks in the field of image processing and artificial intelligence. The ability and efficiency of vision system to capture and process the images is very important for any intelligent system such as autonomous robot. This paper gives attention to the development of a vision system that could contribute to the development of an automated vision based lawn mower robot. The works involve on the implementation of DIP techniques to detect and recognize three different types of obstacles that usually exist on a football field. The focus was given on the study on different types and sizes of obstacles, the development of vision based obstacle recognition system and the evaluation of the system's performance. Image processing techniques such as image filtering, segmentation, enhancement and edge detection have been applied in the system. The results have shown that the developed system is able to detect and recognize various types of obstacles on a football field with recognition rate of more 80%.
Edge detection techniques for iris recognition system
NASA Astrophysics Data System (ADS)
Tania, U. T.; Motakabber, S. M. A.; Ibrahimy, M. I.
2013-12-01
Nowadays security and authentication are the major parts of our daily life. Iris is one of the most reliable organ or part of human body which can be used for identification and authentication purpose. To develop an iris authentication algorithm for personal identification, this paper examines two edge detection techniques for iris recognition system. Between the Sobel and the Canny edge detection techniques, the experimental result shows that the Canny's technique has better ability to detect points in a digital image where image gray level changes even at slow rate.
ERIC Educational Resources Information Center
Kichuk, Diana
2015-01-01
The electronic conversion of scanned image files to readable text using optical character recognition (OCR) software and the subsequent migration of raw OCR text to e-book text file formats are key remediation or media conversion technologies used in digital repository e-book production. Despite real progress, the OCR problem of reliability and…
An optical processor for object recognition and tracking
NASA Technical Reports Server (NTRS)
Sloan, J.; Udomkesmalee, S.
1987-01-01
The design and development of a miniaturized optical processor that performs real time image correlation are described. The optical correlator utilizes the Vander Lugt matched spatial filter technique. The correlation output, a focused beam of light, is imaged onto a CMOS photodetector array. In addition to performing target recognition, the device also tracks the target. The hardware, composed of optical and electro-optical components, occupies only 590 cu cm of volume. A complete correlator system would also include an input imaging lens. This optical processing system is compact, rugged, requires only 3.5 watts of operating power, and weighs less than 3 kg. It represents a major achievement in miniaturizing optical processors. When considered as a special-purpose processing unit, it is an attractive alternative to conventional digital image recognition processing. It is conceivable that the combined technology of both optical and ditital processing could result in a very advanced robot vision system.
Multiple view image analysis of freefalling U.S. wheat grains for damage assessment
USDA-ARS?s Scientific Manuscript database
Currently, inspection of wheat in the United States for grade and class is performed by human visual analysis. This is a time consuming operation typically taking several minutes for each sample. Digital imaging research has addressed this issue over the past two decades, with success in recognition...
Start-ups Bring AI to Pathology.
2018-04-01
New startups are developing pattern-recognition algorithms that could one day help pathologists more accurately spot tumors on digitized tissue images, thereby aiding in diagnosis, treatment, drug discovery, and more. ©2018 American Association for Cancer Research.
NASA Astrophysics Data System (ADS)
Sarkisov, Sergey S.; Kukhtareva, Tatiana; Kukhtarev, Nickolai V.; Curley, Michael J.; Edwards, Vernessa; Creer, Marylyn
2013-03-01
There is a great need for rapid detection of bio-hazardous species particularly in applications to food safety and biodefense. It has been recently demonstrated that the colonies of various bio-species could be rapidly detected using culture-specific and reproducible patterns generated by scattered non-coherent light. However, the method heavily relies on a digital pattern recognition algorithm, which is rather complex, requires substantial computational power and is prone to ambiguities due to shift, scale, or orientation mismatch between the analyzed pattern and the reference from the library. The improvement could be made, if, in addition to the intensity of the scattered optical wave, its phase would be also simultaneously recorded and used for the digital holographic pattern recognition. In this feasibility study the research team recorded digital Gabor-type (in-line) holograms of colonies of micro-organisms, such as Salmonella with a laser diode as a low-coherence light source and a lensless high-resolution (2.0x2.0 micron pixel pitch) digital image sensor. The colonies were grown in conventional Petri dishes using standard methods. The digitally recorded holograms were used for computational reconstruction of the amplitude and phase information of the optical wave diffracted on the colonies. Besides, the pattern recognition of the colony fragments using the cross-correlation between the digital hologram was also implemented. The colonies of mold fungi Altenaria sp, Rhizophus, sp, and Aspergillus sp have been also generating nano-colloidal silver during their growth in specially prepared matrices. The silver-specific plasmonic optical extinction peak at 410-nm was also used for rapid detection and growth monitoring of the fungi colonies.
Mazura, Jan C; Juluru, Krishna; Chen, Joseph J; Morgan, Tara A; John, Majnu; Siegel, Eliot L
2012-06-01
Image de-identification has focused on the removal of textual protected health information (PHI). Surface reconstructions of the face have the potential to reveal a subject's identity even when textual PHI is absent. This study assessed the ability of a computer application to match research subjects' 3D facial reconstructions with conventional photographs of their face. In a prospective study, 29 subjects underwent CT scans of the head and had frontal digital photographs of their face taken. Facial reconstructions of each CT dataset were generated on a 3D workstation. In phase 1, photographs of the 29 subjects undergoing CT scans were added to a digital directory and tested for recognition using facial recognition software. In phases 2-4, additional photographs were added in groups of 50 to increase the pool of possible matches and the test for recognition was repeated. As an internal control, photographs of all subjects were tested for recognition against an identical photograph. Of 3D reconstructions, 27.5% were matched correctly to corresponding photographs (95% upper CL, 40.1%). All study subject photographs were matched correctly to identical photographs (95% lower CL, 88.6%). Of 3D reconstructions, 96.6% were recognized simply as a face by the software (95% lower CL, 83.5%). Facial recognition software has the potential to recognize features on 3D CT surface reconstructions and match these with photographs, with implications for PHI.
Font group identification using reconstructed fonts
NASA Astrophysics Data System (ADS)
Cutter, Michael P.; van Beusekom, Joost; Shafait, Faisal; Breuel, Thomas M.
2011-01-01
Ideally, digital versions of scanned documents should be represented in a format that is searchable, compressed, highly readable, and faithful to the original. These goals can theoretically be achieved through OCR and font recognition, re-typesetting the document text with original fonts. However, OCR and font recognition remain hard problems, and many historical documents use fonts that are not available in digital forms. It is desirable to be able to reconstruct fonts with vector glyphs that approximate the shapes of the letters that form a font. In this work, we address the grouping of tokens in a token-compressed document into candidate fonts. This permits us to incorporate font information into token-compressed images even when the original fonts are unknown or unavailable in digital format. This paper extends previous work in font reconstruction by proposing and evaluating an algorithm to assign a font to every character within a document. This is a necessary step to represent a scanned document image with a reconstructed font. Through our evaluation method, we have measured a 98.4% accuracy for the assignment of letters to candidate fonts in multi-font documents.
NASA Astrophysics Data System (ADS)
Guo, Dongwei; Wang, Zhe
2018-05-01
Convolutional neural networks (CNN) achieve great success in computer vision, it can learn hierarchical representation from raw pixels and has outstanding performance in various image recognition tasks [1]. However, CNN is easy to be fraudulent in terms of it is possible to produce images totally unrecognizable to human eyes that CNNs believe with near certainty are familiar objects. [2]. In this paper, an associative memory model based on multiple features is proposed. Within this model, feature extraction and classification are carried out by CNN, T-SNE and exponential bidirectional associative memory neural network (EBAM). The geometric features extracted from CNN and the digital features extracted from T-SNE are associated by EBAM. Thus we ensure the recognition of robustness by a comprehensive assessment of the two features. In our model, we can get only 8% error rate with fraudulent data. In systems that require a high safety factor or some key areas, strong robustness is extremely important, if we can ensure the image recognition robustness, network security will be greatly improved and the social production efficiency will be extremely enhanced.
NASA Technical Reports Server (NTRS)
Barrett, Eamon B. (Editor); Pearson, James J. (Editor)
1989-01-01
Image understanding concepts and models, image understanding systems and applications, advanced digital processors and software tools, and advanced man-machine interfaces are among the topics discussed. Particular papers are presented on such topics as neural networks for computer vision, object-based segmentation and color recognition in multispectral images, the application of image algebra to image measurement and feature extraction, and the integration of modeling and graphics to create an infrared signal processing test bed.
Kernel-aligned multi-view canonical correlation analysis for image recognition
NASA Astrophysics Data System (ADS)
Su, Shuzhi; Ge, Hongwei; Yuan, Yun-Hao
2016-09-01
Existing kernel-based correlation analysis methods mainly adopt a single kernel in each view. However, only a single kernel is usually insufficient to characterize nonlinear distribution information of a view. To solve the problem, we transform each original feature vector into a 2-dimensional feature matrix by means of kernel alignment, and then propose a novel kernel-aligned multi-view canonical correlation analysis (KAMCCA) method on the basis of the feature matrices. Our proposed method can simultaneously employ multiple kernels to better capture the nonlinear distribution information of each view, so that correlation features learned by KAMCCA can have well discriminating power in real-world image recognition. Extensive experiments are designed on five real-world image datasets, including NIR face images, thermal face images, visible face images, handwritten digit images, and object images. Promising experimental results on the datasets have manifested the effectiveness of our proposed method.
Automatic Target Recognition Based on Cross-Plot
Wong, Kelvin Kian Loong; Abbott, Derek
2011-01-01
Automatic target recognition that relies on rapid feature extraction of real-time target from photo-realistic imaging will enable efficient identification of target patterns. To achieve this objective, Cross-plots of binary patterns are explored as potential signatures for the observed target by high-speed capture of the crucial spatial features using minimal computational resources. Target recognition was implemented based on the proposed pattern recognition concept and tested rigorously for its precision and recall performance. We conclude that Cross-plotting is able to produce a digital fingerprint of a target that correlates efficiently and effectively to signatures of patterns having its identity in a target repository. PMID:21980508
Basic research planning in mathematical pattern recognition and image analysis
NASA Technical Reports Server (NTRS)
Bryant, J.; Guseman, L. F., Jr.
1981-01-01
Fundamental problems encountered while attempting to develop automated techniques for applications of remote sensing are discussed under the following categories: (1) geometric and radiometric preprocessing; (2) spatial, spectral, temporal, syntactic, and ancillary digital image representation; (3) image partitioning, proportion estimation, and error models in object scene interference; (4) parallel processing and image data structures; and (5) continuing studies in polarization; computer architectures and parallel processing; and the applicability of "expert systems" to interactive analysis.
Combination of dynamic Bayesian network classifiers for the recognition of degraded characters
NASA Astrophysics Data System (ADS)
Likforman-Sulem, Laurence; Sigelle, Marc
2009-01-01
We investigate in this paper the combination of DBN (Dynamic Bayesian Network) classifiers, either independent or coupled, for the recognition of degraded characters. The independent classifiers are a vertical HMM and a horizontal HMM whose observable outputs are the image columns and the image rows respectively. The coupled classifiers, presented in a previous study, associate the vertical and horizontal observation streams into single DBNs. The scores of the independent and coupled classifiers are then combined linearly at the decision level. We compare the different classifiers -independent, coupled or linearly combined- on two tasks: the recognition of artificially degraded handwritten digits and the recognition of real degraded old printed characters. Our results show that coupled DBNs perform better on degraded characters than the linear combination of independent HMM scores. Our results also show that the best classifier is obtained by linearly combining the scores of the best coupled DBN and the best independent HMM.
Visible digital watermarking system using perceptual models
NASA Astrophysics Data System (ADS)
Cheng, Qiang; Huang, Thomas S.
2001-03-01
This paper presents a visible watermarking system using perceptual models. %how and why A watermark image is overlaid translucently onto a primary image, for the purposes of immediate claim of copyright, instantaneous recognition of owner or creator, or deterrence to piracy of digital images or video. %perceptual The watermark is modulated by exploiting combined DCT-domain and DWT-domain perceptual models. % so that the watermark is visually uniform. The resulting watermarked image is visually pleasing and unobtrusive. The location, size and strength of the watermark vary randomly with the underlying image. The randomization makes the automatic removal of the watermark difficult even though the algorithm is known publicly but the key to the random sequence generator. The experiments demonstrate that the watermarked images have pleasant visual effect and strong robustness. The watermarking system can be used in copyright notification and protection.
NASA Astrophysics Data System (ADS)
Chidananda, H.; Reddy, T. Hanumantha
2017-06-01
This paper presents a natural representation of numerical digit(s) using hand activity analysis based on number of fingers out stretched for each numerical digit in sequence extracted from a video. The analysis is based on determining a set of six features from a hand image. The most important features used from each frame in a video are the first fingertip from top, palm-line, palm-center, valley points between the fingers exists above the palm-line. Using this work user can convey any number of numerical digits using right or left or both the hands naturally in a video. Each numerical digit ranges from 0 to9. Hands (right/left/both) used to convey digits can be recognized accurately using the valley points and with this recognition whether the user is a right / left handed person in practice can be analyzed. In this work, first the hand(s) and face parts are detected by using YCbCr color space and face part is removed by using ellipse based method. Then, the hand(s) are analyzed to recognize the activity that represents a series of numerical digits in a video. This work uses pixel continuity algorithm using 2D coordinate geometry system and does not use regular use of calculus, contours, convex hull and datasets.
Dual function seal: visualized digital signature for electronic medical record systems.
Yu, Yao-Chang; Hou, Ting-Wei; Chiang, Tzu-Chiang
2012-10-01
Digital signature is an important cryptography technology to be used to provide integrity and non-repudiation in electronic medical record systems (EMRS) and it is required by law. However, digital signatures normally appear in forms unrecognizable to medical staff, this may reduce the trust from medical staff that is used to the handwritten signatures or seals. Therefore, in this paper we propose a dual function seal to extend user trust from a traditional seal to a digital signature. The proposed dual function seal is a prototype that combines the traditional seal and digital seal. With this prototype, medical personnel are not just can put a seal on paper but also generate a visualized digital signature for electronic medical records. Medical Personnel can then look at the visualized digital signature and directly know which medical personnel generated it, just like with a traditional seal. Discrete wavelet transform (DWT) is used as an image processing method to generate a visualized digital signature, and the peak signal to noise ratio (PSNR) is calculated to verify that distortions of all converted images are beyond human recognition, and the results of our converted images are from 70 dB to 80 dB. The signature recoverability is also tested in this proposed paper to ensure that the visualized digital signature is verifiable. A simulated EMRS is implemented to show how the visualized digital signature can be integrity into EMRS.
NASA Technical Reports Server (NTRS)
1976-01-01
Papers are presented on the applicability of Landsat data to water management and control needs, IBIS, a geographic information system based on digital image processing and image raster datatype, and the Image Data Access Method (IDAM) for the Earth Resources Interactive Processing System. Attention is also given to the Prototype Classification and Mensuration System (PROCAMS) applied to agricultural data, the use of Landsat for water quality monitoring in North Carolina, and the analysis of geophysical remote sensing data using multivariate pattern recognition. The Illinois crop-acreage estimation experiment, the Pacific Northwest Resources Inventory Demonstration, and the effects of spatial misregistration on multispectral recognition are also considered. Individual items are announced in this issue.
Ruiz, J E; Paciornik, S; Pinto, L D; Ptak, F; Pires, M P; Souza, P L
2018-01-01
An optimized method of digital image processing to interpret quantum dots' height measurements obtained by atomic force microscopy is presented. The method was developed by combining well-known digital image processing techniques and particle recognition algorithms. The properties of quantum dot structures strongly depend on dots' height, among other features. Determination of their height is sensitive to small variations in their digital image processing parameters, which can generate misleading results. Comparing the results obtained with two image processing techniques - a conventional method and the new method proposed herein - with the data obtained by determining the height of quantum dots one by one within a fixed area, showed that the optimized method leads to more accurate results. Moreover, the log-normal distribution, which is often used to represent natural processes, shows a better fit to the quantum dots' height histogram obtained with the proposed method. Finally, the quantum dots' height obtained were used to calculate the predicted photoluminescence peak energies which were compared with the experimental data. Again, a better match was observed when using the proposed method to evaluate the quantum dots' height. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Yung-Sheng; Wang, Jeng-Yau
2015-09-01
Light source plays a significant role to acquire a qualified image from objects for facilitating the image processing and pattern recognition. For objects possessing specular surface, the phenomena of reflection and halo appearing in the acquired image will increase the difficulty of information processing. Such a situation may be improved by the assistance of valuable diffuse light source. Consider reading resistor via computer vision, due to the resistor's specular reflective surface it will face with a severe non-uniform luminous intensity on image yielding a higher error rate in recognition without a well-controlled light source. A measurement system including mainly a digital microscope embedded in a replaceable diffuse cover, a ring-type LED embedded onto a small pad carrying a resistor for evaluation, and Arduino microcontrollers connected with PC, is presented in this paper. Several replaceable cost-effective diffuse covers made by paper bowl, cup and box inside pasted with white paper are presented for reducing specular reflection and halo effects and compared with a commercial diffuse some. The ring-type LED can be flexibly configured to be a full or partial lighting based on the application. For each self-made diffuse cover, a set of resistors with 4 or 5 color bands are captured via digital microscope for experiments. The signal-to-noise ratio from the segmented resistor-image is used for performance evaluation. The detected principal axis of resistor body is used for the partial LED configuration to further improve the lighting condition. Experimental results confirm that the proposed mechanism can not only evaluate the cost-effective diffuse light source but also be extended as an automatic recognition system for resistor reading.
Pattern-Recognition Processor Using Holographic Photopolymer
NASA Technical Reports Server (NTRS)
Chao, Tien-Hsin; Cammack, Kevin
2006-01-01
proposed joint-transform optical correlator (JTOC) would be capable of operating as a real-time pattern-recognition processor. The key correlation-filter reading/writing medium of this JTOC would be an updateable holographic photopolymer. The high-resolution, high-speed characteristics of this photopolymer would enable pattern-recognition processing to occur at a speed three orders of magnitude greater than that of state-of-the-art digital pattern-recognition processors. There are many potential applications in biometric personal identification (e.g., using images of fingerprints and faces) and nondestructive industrial inspection. In order to appreciate the advantages of the proposed JTOC, it is necessary to understand the principle of operation of a conventional JTOC. In a conventional JTOC (shown in the upper part of the figure), a collimated laser beam passes through two side-by-side spatial light modulators (SLMs). One SLM displays a real-time input image to be recognized. The other SLM displays a reference image from a digital memory. A Fourier-transform lens is placed at its focal distance from the SLM plane, and a charge-coupled device (CCD) image detector is placed at the back focal plane of the lens for use as a square-law recorder. Processing takes place in two stages. In the first stage, the CCD records the interference pattern between the Fourier transforms of the input and reference images, and the pattern is then digitized and saved in a buffer memory. In the second stage, the reference SLM is turned off and the interference pattern is fed back to the input SLM. The interference pattern thus becomes Fourier-transformed, yielding at the CCD an image representing the joint-transform correlation between the input and reference images. This image contains a sharp correlation peak when the input and reference images are matched. The drawbacks of a conventional JTOC are the following: The CCD has low spatial resolution and is not an ideal square-law detector for the purpose of holographic recording of interference fringes. A typical state-of-the-art CCD has a pixel-pitch limited resolution of about 100 lines/mm. In contrast, the holographic photopolymer to be used in the proposed JTOC offers a resolution > 2,000 lines/mm. In addition to being disadvantageous in itself, the low resolution of the CCD causes overlap of a DC term and the desired correlation term in the output image. This overlap severely limits the correlation signal-to-noise ratio. The two-stage nature of the process limits the achievable throughput rate. A further limit is imposed by the low frame rate (typical video rates) of low- and medium-cost commercial CCDs.
Handwritten digits recognition based on immune network
NASA Astrophysics Data System (ADS)
Li, Yangyang; Wu, Yunhui; Jiao, Lc; Wu, Jianshe
2011-11-01
With the development of society, handwritten digits recognition technique has been widely applied to production and daily life. It is a very difficult task to solve these problems in the field of pattern recognition. In this paper, a new method is presented for handwritten digit recognition. The digit samples firstly are processed and features extraction. Based on these features, a novel immune network classification algorithm is designed and implemented to the handwritten digits recognition. The proposed algorithm is developed by Jerne's immune network model for feature selection and KNN method for classification. Its characteristic is the novel network with parallel commutating and learning. The performance of the proposed method is experimented to the handwritten number datasets MNIST and compared with some other recognition algorithms-KNN, ANN and SVM algorithm. The result shows that the novel classification algorithm based on immune network gives promising performance and stable behavior for handwritten digits recognition.
Ibrahim, Reham S; Fathy, Hoda
2018-03-30
Tracking the impact of commonly applied post-harvesting and industrial processing practices on the compositional integrity of ginger rhizome was implemented in this work. Untargeted metabolite profiling was performed using digitally-enhanced HPTLC method where the chromatographic fingerprints were extracted using ImageJ software then analysed with multivariate Principal Component Analysis (PCA) for pattern recognition. A targeted approach was applied using a new, validated, simple and fast HPTLC image analysis method for simultaneous quantification of the officially recognized markers 6-, 8-, 10-gingerol and 6-shogaol in conjunction with chemometric Hierarchical Clustering Analysis (HCA). The results of both targeted and untargeted metabolite profiling revealed that peeling, drying in addition to storage employed during processing have a great influence on ginger chemo-profile, the different forms of processed ginger shouldn't be used interchangeably. Moreover, it deemed necessary to consider the holistic metabolic profile for comprehensive evaluation of ginger during processing. Copyright © 2018. Published by Elsevier B.V.
Segmenting Images for a Better Diagnosis
NASA Technical Reports Server (NTRS)
2004-01-01
NASA's Hierarchical Segmentation (HSEG) software has been adapted by Bartron Medical Imaging, LLC, for use in segmentation feature extraction, pattern recognition, and classification of medical images. Bartron acquired licenses from NASA Goddard Space Flight Center for application of the HSEG concept to medical imaging, from the California Institute of Technology/Jet Propulsion Laboratory to incorporate pattern-matching software, and from Kennedy Space Center for data-mining and edge-detection programs. The Med-Seg[TM] united developed by Bartron provides improved diagnoses for a wide range of medical images, including computed tomography scans, positron emission tomography scans, magnetic resonance imaging, ultrasound, digitized Z-ray, digitized mammography, dental X-ray, soft tissue analysis, and moving object analysis. It also can be used in analysis of soft-tissue slides. Bartron's future plans include the application of HSEG technology to drug development. NASA is advancing it's HSEG software to learn more about the Earth's magnetosphere.
Forensic detection of noise addition in digital images
NASA Astrophysics Data System (ADS)
Cao, Gang; Zhao, Yao; Ni, Rongrong; Ou, Bo; Wang, Yongbin
2014-03-01
We proposed a technique to detect the global addition of noise to a digital image. As an anti-forensics tool, noise addition is typically used to disguise the visual traces of image tampering or to remove the statistical artifacts left behind by other operations. As such, the blind detection of noise addition has become imperative as well as beneficial to authenticate the image content and recover the image processing history, which is the goal of general forensics techniques. Specifically, the special image blocks, including constant and strip ones, are used to construct the features for identifying noise addition manipulation. The influence of noising on blockwise pixel value distribution is formulated and analyzed formally. The methodology of detectability recognition followed by binary decision is proposed to ensure the applicability and reliability of noising detection. Extensive experimental results demonstrate the efficacy of our proposed noising detector.
Increasing the efficiency of digitization workflows for herbarium specimens.
Tulig, Melissa; Tarnowsky, Nicole; Bevans, Michael; Anthony Kirchgessner; Thiers, Barbara M
2012-01-01
The New York Botanical Garden Herbarium has been databasing and imaging its estimated 7.3 million plant specimens for the past 17 years. Due to the size of the collection, we have been selectively digitizing fundable subsets of specimens, making successive passes through the herbarium with each new grant. With this strategy, the average rate for databasing complete records has been 10 specimens per hour. With 1.3 million specimens databased, this effort has taken about 130,000 hours of staff time. At this rate, to complete the herbarium and digitize the remaining 6 million specimens, another 600,000 hours would be needed. Given the current biodiversity and economic crises, there is neither the time nor money to complete the collection at this rate.Through a combination of grants over the last few years, The New York Botanical Garden has been testing new protocols and tactics for increasing the rate of digitization through combinations of data collaboration, field book digitization, partial data entry and imaging, and optical character recognition (OCR) of specimen images. With the launch of the National Science Foundation's new Advancing Digitization of Biological Collections program, we hope to move forward with larger, more efficient digitization projects, capturing data from larger portions of the herbarium at a fraction of the cost and time.
Increasing the efficiency of digitization workflows for herbarium specimens
Tulig, Melissa; Tarnowsky, Nicole; Bevans, Michael; Anthony Kirchgessner; Thiers, Barbara M.
2012-01-01
Abstract The New York Botanical Garden Herbarium has been databasing and imaging its estimated 7.3 million plant specimens for the past 17 years. Due to the size of the collection, we have been selectively digitizing fundable subsets of specimens, making successive passes through the herbarium with each new grant. With this strategy, the average rate for databasing complete records has been 10 specimens per hour. With 1.3 million specimens databased, this effort has taken about 130,000 hours of staff time. At this rate, to complete the herbarium and digitize the remaining 6 million specimens, another 600,000 hours would be needed. Given the current biodiversity and economic crises, there is neither the time nor money to complete the collection at this rate. Through a combination of grants over the last few years, The New York Botanical Garden has been testing new protocols and tactics for increasing the rate of digitization through combinations of data collaboration, field book digitization, partial data entry and imaging, and optical character recognition (OCR) of specimen images. With the launch of the National Science Foundation’s new Advancing Digitization of Biological Collections program, we hope to move forward with larger, more efficient digitization projects, capturing data from larger portions of the herbarium at a fraction of the cost and time. PMID:22859882
NASA Astrophysics Data System (ADS)
Hayes, Brian
1994-12-01
Gleaning further clues to the structure of the universe will require larger data samples. To that end, a major new survey of the skies called the Sloan Digital Star Survey (SDSS), is in preparation. It will catalog some 50 million galaxies and about 70 million stars. A new 2.5 meter telescope to be erected at Apache Point Observatory in New Mexico will be dedicated to the survey. The telescope is not the key innovation that will make the survey possible. The crucial factor is the technology for digitally recording large numbers of images and spectra and for automating the analysis, recognition, and classification of those images and spectra. The methods to be used are discussed.
Hellerhoff, K
2010-11-01
In recent years digital full field mammography has increasingly replaced conventional film mammography. High quality imaging is guaranteed by high quantum efficiency and very good contrast resolution with optimized dosing even for women with dense glandular tissue. However, digital mammography remains a projection procedure by which overlapping tissue limits the detectability of subtle alterations. Tomosynthesis is a procedure developed from digital mammography for slice examination of breasts which eliminates the effects of overlapping tissue and allows 3D imaging of breasts. A curved movement of the X-ray tube during scanning allows the acquisition of many 2D images from different angles. Subseqently, reconstruction algorithms employing a shift and add method improve the recognition of details at a defined level and at the same time eliminate smear artefacts due to overlapping structures. The total dose corresponds to that of conventional mammography imaging. The technical procedure, including the number of levels, suitable anodes/filter combinations, angle regions of images and selection of reconstruction algorithms, is presently undergoing optimization. Previous studies on the clinical value of tomosynthesis have examined screening parameters, such as recall rate and detection rate as well as information on tumor extent for histologically proven breast tumors. More advanced techniques, such as contrast medium-enhanced tomosynthesis, are presently under development and dual-energy imaging is of particular importance.
Intelligent Image Analysis for Image-Guided Laser Hair Removal and Skin Therapy
NASA Technical Reports Server (NTRS)
Walker, Brian; Lu, Thomas; Chao, Tien-Hsin
2012-01-01
We present the development of advanced automatic target recognition (ATR) algorithms for the hair follicles identification in digital skin images to accurately direct the laser beam to remove the hair. The ATR system first performs a wavelet filtering to enhance the contrast of the hair features in the image. The system then extracts the unique features of the targets and sends the features to an Adaboost based classifier for training and recognition operations. The ATR system automatically classifies the hair, moles, or other skin lesion and provides the accurate coordinates of the intended hair follicle locations. The coordinates can be used to guide a scanning laser to focus energy only on the hair follicles. The intended benefit would be to protect the skin from unwanted laser exposure and to provide more effective skin therapy.
NASA Astrophysics Data System (ADS)
Zhang, K.; Sheng, Y. H.; Li, Y. Q.; Han, B.; Liang, Ch.; Sha, W.
2006-10-01
In the field of digital photogrammetry and computer vision, the determination of conjugate points in a stereo image pair, referred to as "image matching," is the critical step to realize automatic surveying and recognition. Traditional matching methods encounter some problems in the digital close-range stereo photogrammetry, because the change of gray-scale or texture is not obvious in the close-range stereo images. The main shortcoming of traditional matching methods is that geometric information of matching points is not fully used, which will lead to wrong matching results in regions with poor texture. To fully use the geometry and gray-scale information, a new stereo image matching algorithm is proposed in this paper considering the characteristics of digital close-range photogrammetry. Compared with the traditional matching method, the new algorithm has three improvements on image matching. Firstly, shape factor, fuzzy maths and gray-scale projection are introduced into the design of synthetical matching measure. Secondly, the topology connecting relations of matching points in Delaunay triangulated network and epipolar-line are used to decide matching order and narrow the searching scope of conjugate point of the matching point. Lastly, the theory of parameter adjustment with constraint is introduced into least square image matching to carry out subpixel level matching under epipolar-line constraint. The new algorithm is applied to actual stereo images of a building taken by digital close-range photogrammetric system. The experimental result shows that the algorithm has a higher matching speed and matching accuracy than pyramid image matching algorithm based on gray-scale correlation.
Online Farsi digit recognition using their upper half structure
NASA Astrophysics Data System (ADS)
Ghods, Vahid; Sohrabi, Mohammad Karim
2015-03-01
In this paper, we investigated the efficiency of upper half Farsi numerical digit structure. In other words, half of data (upper half of the digit shapes) was exploited for the recognition of Farsi numerical digits. This method can be used for both offline and online recognition. Half of data is more effective in speed process, data transfer and in this application accuracy. Hidden Markov model (HMM) was used to classify online Farsi digits. Evaluation was performed by TMU dataset. This dataset contains more than 1200 samples of online handwritten Farsi digits. The proposed method yielded more accuracy in recognition rate.
Target Recognition Using Neural Networks for Model Deformation Measurements
NASA Technical Reports Server (NTRS)
Ross, Richard W.; Hibler, David L.
1999-01-01
Optical measurements provide a non-invasive method for measuring deformation of wind tunnel models. Model deformation systems use targets mounted or painted on the surface of the model to identify known positions, and photogrammetric methods are used to calculate 3-D positions of the targets on the model from digital 2-D images. Under ideal conditions, the reflective targets are placed against a dark background and provide high-contrast images, aiding in target recognition. However, glints of light reflecting from the model surface, or reduced contrast caused by light source or model smoothness constraints, can compromise accurate target determination using current algorithmic methods. This paper describes a technique using a neural network and image processing technologies which increases the reliability of target recognition systems. Unlike algorithmic methods, the neural network can be trained to identify the characteristic patterns that distinguish targets from other objects of similar size and appearance and can adapt to changes in lighting and environmental conditions.
Identification of Alfalfa Leaf Diseases Using Image Recognition Technology
Qin, Feng; Liu, Dongxia; Sun, Bingda; Ruan, Liu; Ma, Zhanhong; Wang, Haiguang
2016-01-01
Common leaf spot (caused by Pseudopeziza medicaginis), rust (caused by Uromyces striatus), Leptosphaerulina leaf spot (caused by Leptosphaerulina briosiana) and Cercospora leaf spot (caused by Cercospora medicaginis) are the four common types of alfalfa leaf diseases. Timely and accurate diagnoses of these diseases are critical for disease management, alfalfa quality control and the healthy development of the alfalfa industry. In this study, the identification and diagnosis of the four types of alfalfa leaf diseases were investigated using pattern recognition algorithms based on image-processing technology. A sub-image with one or multiple typical lesions was obtained by artificial cutting from each acquired digital disease image. Then the sub-images were segmented using twelve lesion segmentation methods integrated with clustering algorithms (including K_means clustering, fuzzy C-means clustering and K_median clustering) and supervised classification algorithms (including logistic regression analysis, Naive Bayes algorithm, classification and regression tree, and linear discriminant analysis). After a comprehensive comparison, the segmentation method integrating the K_median clustering algorithm and linear discriminant analysis was chosen to obtain lesion images. After the lesion segmentation using this method, a total of 129 texture, color and shape features were extracted from the lesion images. Based on the features selected using three methods (ReliefF, 1R and correlation-based feature selection), disease recognition models were built using three supervised learning methods, including the random forest, support vector machine (SVM) and K-nearest neighbor methods. A comparison of the recognition results of the models was conducted. The results showed that when the ReliefF method was used for feature selection, the SVM model built with the most important 45 features (selected from a total of 129 features) was the optimal model. For this SVM model, the recognition accuracies of the training set and the testing set were 97.64% and 94.74%, respectively. Semi-supervised models for disease recognition were built based on the 45 effective features that were used for building the optimal SVM model. For the optimal semi-supervised models built with three ratios of labeled to unlabeled samples in the training set, the recognition accuracies of the training set and the testing set were both approximately 80%. The results indicated that image recognition of the four alfalfa leaf diseases can be implemented with high accuracy. This study provides a feasible solution for lesion image segmentation and image recognition of alfalfa leaf disease. PMID:27977767
Identification of Alfalfa Leaf Diseases Using Image Recognition Technology.
Qin, Feng; Liu, Dongxia; Sun, Bingda; Ruan, Liu; Ma, Zhanhong; Wang, Haiguang
2016-01-01
Common leaf spot (caused by Pseudopeziza medicaginis), rust (caused by Uromyces striatus), Leptosphaerulina leaf spot (caused by Leptosphaerulina briosiana) and Cercospora leaf spot (caused by Cercospora medicaginis) are the four common types of alfalfa leaf diseases. Timely and accurate diagnoses of these diseases are critical for disease management, alfalfa quality control and the healthy development of the alfalfa industry. In this study, the identification and diagnosis of the four types of alfalfa leaf diseases were investigated using pattern recognition algorithms based on image-processing technology. A sub-image with one or multiple typical lesions was obtained by artificial cutting from each acquired digital disease image. Then the sub-images were segmented using twelve lesion segmentation methods integrated with clustering algorithms (including K_means clustering, fuzzy C-means clustering and K_median clustering) and supervised classification algorithms (including logistic regression analysis, Naive Bayes algorithm, classification and regression tree, and linear discriminant analysis). After a comprehensive comparison, the segmentation method integrating the K_median clustering algorithm and linear discriminant analysis was chosen to obtain lesion images. After the lesion segmentation using this method, a total of 129 texture, color and shape features were extracted from the lesion images. Based on the features selected using three methods (ReliefF, 1R and correlation-based feature selection), disease recognition models were built using three supervised learning methods, including the random forest, support vector machine (SVM) and K-nearest neighbor methods. A comparison of the recognition results of the models was conducted. The results showed that when the ReliefF method was used for feature selection, the SVM model built with the most important 45 features (selected from a total of 129 features) was the optimal model. For this SVM model, the recognition accuracies of the training set and the testing set were 97.64% and 94.74%, respectively. Semi-supervised models for disease recognition were built based on the 45 effective features that were used for building the optimal SVM model. For the optimal semi-supervised models built with three ratios of labeled to unlabeled samples in the training set, the recognition accuracies of the training set and the testing set were both approximately 80%. The results indicated that image recognition of the four alfalfa leaf diseases can be implemented with high accuracy. This study provides a feasible solution for lesion image segmentation and image recognition of alfalfa leaf disease.
Tug-of-war lacunarity—A novel approach for estimating lacunarity
NASA Astrophysics Data System (ADS)
Reiss, Martin A.; Lemmerer, Birgit; Hanslmeier, Arnold; Ahammer, Helmut
2016-11-01
Modern instrumentation provides us with massive repositories of digital images that will likely only increase in the future. Therefore, it has become increasingly important to automatize the analysis of digital images, e.g., with methods from pattern recognition. These methods aim to quantify the visual appearance of captured textures with quantitative measures. As such, lacunarity is a useful multi-scale measure of texture's heterogeneity but demands high computational efforts. Here we investigate a novel approach based on the tug-of-war algorithm, which estimates lacunarity in a single pass over the image. We computed lacunarity for theoretical and real world sample images, and found that the investigated approach is able to estimate lacunarity with low uncertainties. We conclude that the proposed method combines low computational efforts with high accuracy, and that its application may have utility in the analysis of high-resolution images.
NASA Technical Reports Server (NTRS)
Joyce, A. T.
1974-01-01
Significant progress has been made in the classification of surface conditions (land uses) with computer-implemented techniques based on the use of ERTS digital data and pattern recognition software. The supervised technique presently used at the NASA Earth Resources Laboratory is based on maximum likelihood ratioing with a digital table look-up approach to classification. After classification, colors are assigned to the various surface conditions (land uses) classified, and the color-coded classification is film recorded on either positive or negative 9 1/2 in. film at the scale desired. Prints of the film strips are then mosaicked and photographed to produce a land use map in the format desired. Computer extraction of statistical information is performed to show the extent of each surface condition (land use) within any given land unit that can be identified in the image. Evaluations of the product indicate that classification accuracy is well within the limits for use by land resource managers and administrators. Classifications performed with digital data acquired during different seasons indicate that the combination of two or more classifications offer even better accuracy.
High-quality and small-capacity e-learning video featuring lecturer-superimposing PC screen images
NASA Astrophysics Data System (ADS)
Nomura, Yoshihiko; Murakami, Michinobu; Sakamoto, Ryota; Sugiura, Tokuhiro; Matsui, Hirokazu; Kato, Norihiko
2006-10-01
Information processing and communication technology are progressing quickly, and are prevailing throughout various technological fields. Therefore, the development of such technology should respond to the needs for improvement of quality in the e-learning education system. The authors propose a new video-image compression processing system that ingeniously employs the features of the lecturing scene. While dynamic lecturing scene is shot by a digital video camera, screen images are electronically stored by a PC screen image capturing software in relatively long period at a practical class. Then, a lecturer and a lecture stick are extracted from the digital video images by pattern recognition techniques, and the extracted images are superimposed on the appropriate PC screen images by off-line processing. Thus, we have succeeded to create a high-quality and small-capacity (HQ/SC) video-on-demand educational content featuring the advantages: the high quality of image sharpness, the small electronic file capacity, and the realistic lecturer motion.
Disocclusion: a variational approach using level lines.
Masnou, Simon
2002-01-01
Object recognition, robot vision, image and film restoration may require the ability to perform disocclusion. We call disocclusion the recovery of occluded areas in a digital image by interpolation from their vicinity. It is shown in this paper how disocclusion can be performed by means of the level-lines structure, which offers a reliable, complete and contrast-invariant representation of images. Level-lines based disocclusion yields a solution that may have strong discontinuities. The proposed method is compatible with Kanizsa's amodal completion theory.
Employing wavelet-based texture features in ammunition classification
NASA Astrophysics Data System (ADS)
Borzino, Ángelo M. C. R.; Maher, Robert C.; Apolinário, José A.; de Campos, Marcello L. R.
2017-05-01
Pattern recognition, a branch of machine learning, involves classification of information in images, sounds, and other digital representations. This paper uses pattern recognition to identify which kind of ammunition was used when a bullet was fired based on a carefully constructed set of gunshot sound recordings. To do this task, we show that texture features obtained from the wavelet transform of a component of the gunshot signal, treated as an image, and quantized in gray levels, are good ammunition discriminators. We test the technique with eight different calibers and achieve a classification rate better than 95%. We also compare the performance of the proposed method with results obtained by standard temporal and spectrographic techniques
Kinect-based sign language recognition of static and dynamic hand movements
NASA Astrophysics Data System (ADS)
Dalawis, Rando C.; Olayao, Kenneth Deniel R.; Ramos, Evan Geoffrey I.; Samonte, Mary Jane C.
2017-02-01
A different approach of sign language recognition of static and dynamic hand movements was developed in this study using normalized correlation algorithm. The goal of this research was to translate fingerspelling sign language into text using MATLAB and Microsoft Kinect. Digital input image captured by Kinect devices are matched from template samples stored in a database. This Human Computer Interaction (HCI) prototype was developed to help people with communication disability to express their thoughts with ease. Frame segmentation and feature extraction was used to give meaning to the captured images. Sequential and random testing was used to test both static and dynamic fingerspelling gestures. The researchers explained some factors they encountered causing some misclassification of signs.
Diffuse Interface Methods for Multiclass Segmentation of High-Dimensional Data
2014-03-04
handwritten digits , 1998. http://yann.lecun.com/exdb/mnist/. [19] S. Nene, S. Nayar, H. Murase, Columbia Object Image Library (COIL-100), Technical Report... recognition on smartphones using a multiclass hardware-friendly support vector machine, in: Ambient Assisted Living and Home Care, Springer, 2012, pp. 216–223.
Optical character recognition based on nonredundant correlation measurements.
Braunecker, B; Hauck, R; Lohmann, A W
1979-08-15
The essence of character recognition is a comparison between the unknown character and a set of reference patterns. Usually, these reference patterns are all possible characters themselves, the whole alphabet in the case of letter characters. Obviously, N analog measurements are highly redundant, since only K = log(2)N binary decisions are enough to identify one out of N characters. Therefore, we devised K reference patterns accordingly. These patterns, called principal components, are found by digital image processing, but used in an optical analog computer. We will explain the concept of principal components, and we will describe experiments with several optical character recognition systems, based on this concept.
NASA Technical Reports Server (NTRS)
Hsu, Ken-Yuh (Editor); Liu, Hua-Kuang (Editor)
1992-01-01
The present conference discusses optical neural networks, photorefractive nonlinear optics, optical pattern recognition, digital and analog processors, and holography and its applications. Attention is given to bifurcating optical information processing, neural structures in digital halftoning, an exemplar-based optical neural net classifier for color pattern recognition, volume storage in photorefractive disks, and microlaser-based compact optical neuroprocessors. Also treated are the optical implementation of a feature-enhanced optical interpattern-associative neural network model and its optical implementation, an optical pattern binary dual-rail logic gate module, a theoretical analysis for holographic associative memories, joint transform correlators, image addition and subtraction via the Talbot effect, and optical wavelet-matched filters. (No individual items are abstracted in this volume)
NASA Astrophysics Data System (ADS)
Hsu, Ken-Yuh; Liu, Hua-Kuang
The present conference discusses optical neural networks, photorefractive nonlinear optics, optical pattern recognition, digital and analog processors, and holography and its applications. Attention is given to bifurcating optical information processing, neural structures in digital halftoning, an exemplar-based optical neural net classifier for color pattern recognition, volume storage in photorefractive disks, and microlaser-based compact optical neuroprocessors. Also treated are the optical implementation of a feature-enhanced optical interpattern-associative neural network model and its optical implementation, an optical pattern binary dual-rail logic gate module, a theoretical analysis for holographic associative memories, joint transform correlators, image addition and subtraction via the Talbot effect, and optical wavelet-matched filters. (No individual items are abstracted in this volume)
Photo-reconnaissance applications of computer processing of images.
NASA Technical Reports Server (NTRS)
Billingsley, F. C.
1972-01-01
Discussion of imaging processing techniques for enhancement and calibration of Jet Propulsion Laboratory imaging experiment pictures returned from NASA space vehicles such as Ranger, Mariner and Surveyor. Particular attention is given to data transmission, resolution vs recognition, and color aspects of digital data processing. The effectiveness of these techniques in applications to images from a wide variety of sources is noted. It is anticipated that the use of computer processing for enhancement of imagery will increase with the improvement and cost reduction of these techniques in the future.
Yuan, Tao; Zheng, Xinqi; Hu, Xuan; Zhou, Wei; Wang, Wei
2014-01-01
Objective and effective image quality assessment (IQA) is directly related to the application of optical remote sensing images (ORSI). In this study, a new IQA method of standardizing the target object recognition rate (ORR) is presented to reflect quality. First, several quality degradation treatments with high-resolution ORSIs are implemented to model the ORSIs obtained in different imaging conditions; then, a machine learning algorithm is adopted for recognition experiments on a chosen target object to obtain ORRs; finally, a comparison with commonly used IQA indicators was performed to reveal their applicability and limitations. The results showed that the ORR of the original ORSI was calculated to be up to 81.95%, whereas the ORR ratios of the quality-degraded images to the original images were 65.52%, 64.58%, 71.21%, and 73.11%. The results show that these data can more accurately reflect the advantages and disadvantages of different images in object identification and information extraction when compared with conventional digital image assessment indexes. By recognizing the difference in image quality from the application effect perspective, using a machine learning algorithm to extract regional gray scale features of typical objects in the image for analysis, and quantitatively assessing quality of ORSI according to the difference, this method provides a new approach for objective ORSI assessment.
Deep learning approach to bacterial colony classification.
Zieliński, Bartosz; Plichta, Anna; Misztal, Krzysztof; Spurek, Przemysław; Brzychczy-Włoch, Monika; Ochońska, Dorota
2017-01-01
In microbiology it is diagnostically useful to recognize various genera and species of bacteria. It can be achieved using computer-aided methods, which make the recognition processes more automatic and thus significantly reduce the time necessary for the classification. Moreover, in case of diagnostic uncertainty (the misleading similarity in shape or structure of bacterial cells), such methods can minimize the risk of incorrect recognition. In this article, we apply the state of the art method for texture analysis to classify genera and species of bacteria. This method uses deep Convolutional Neural Networks to obtain image descriptors, which are then encoded and classified with Support Vector Machine or Random Forest. To evaluate this approach and to make it comparable with other approaches, we provide a new dataset of images. DIBaS dataset (Digital Image of Bacterial Species) contains 660 images with 33 different genera and species of bacteria.
Fragrant pear sexuality recognition with machine vision
NASA Astrophysics Data System (ADS)
Ma, Benxue; Ying, Yibin
2006-10-01
In this research, a method to identify Kuler fragrant pear's sexuality with machine vision was developed. Kuler fragrant pear has male pear and female pear. They have an obvious difference in favor. To detect the sexuality of Kuler fragrant pear, images of fragrant pear were acquired by CCD color camera. Before feature extraction, some preprocessing is conducted on the acquired images to remove noise and unnecessary contents. Color feature, perimeter feature and area feature of fragrant pear bottom image were extracted by digital image processing technique. And the fragrant pear sexuality was determined by complexity obtained from perimeter and area. In this research, using 128 Kurle fragrant pears as samples, good recognition rate between the male pear and the female pear was obtained for Kurle pear's sexuality detection (82.8%). Result shows this method could detect male pear and female pear with a good accuracy.
Citrus fruit recognition using color image analysis
NASA Astrophysics Data System (ADS)
Xu, Huirong; Ying, Yibin
2004-10-01
An algorithm for the automatic recognition of citrus fruit on the tree was developed. Citrus fruits have different color with leaves and branches portions. Fifty-three color images with natural citrus-grove scenes were digitized and analyzed for red, green, and blue (RGB) color content. The color characteristics of target surfaces (fruits, leaves, or branches) were extracted using the range of interest (ROI) tool. Several types of contrast color indices were designed and tested. In this study, the fruit image was enhanced using the (R-B) contrast color index because results show that the fruit have the highest color difference among the objects in the image. A dynamic threshold function was derived from this color model and used to distinguish citrus fruit from background. The results show that the algorithm worked well under frontlighting or backlighting condition. However, there are misclassifications when the fruit or the background is under a brighter sunlight.
FPGA design of correlation-based pattern recognition
NASA Astrophysics Data System (ADS)
Jridi, Maher; Alfalou, Ayman
2017-05-01
Optical/Digital pattern recognition and tracking based on optical/digital correlation are a well-known techniques to detect, identify and localize a target object in a scene. Despite the limited number of treatments required by the correlation scheme, computational time and resources are relatively high. The most computational intensive treatment required by the correlation is the transformation from spatial to spectral domain and then from spectral to spatial domain. Furthermore, these transformations are used on optical/digital encryption schemes like the double random phase encryption (DRPE). In this paper, we present a VLSI architecture for the correlation scheme based on the fast Fourier transform (FFT). One interesting feature of the proposed scheme is its ability to stream image processing in order to perform correlation for video sequences. A trade-off between the hardware consumption and the robustness of the correlation can be made in order to understand the limitations of the correlation implementation in reconfigurable and portable platforms. Experimental results obtained from HDL simulations and FPGA prototype have demonstrated the advantages of the proposed scheme.
Method and apparatus for optical encoding with compressible imaging
NASA Technical Reports Server (NTRS)
Leviton, Douglas B. (Inventor)
2006-01-01
The present invention presents an optical encoder with increased conversion rates. Improvement in the conversion rate is a result of combining changes in the pattern recognition encoder's scale pattern with an image sensor readout technique which takes full advantage of those changes, and lends itself to operation by modern, high-speed, ultra-compact microprocessors and digital signal processors (DSP) or field programmable gate array (FPGA) logic elements which can process encoder scale images at the highest speeds. Through these improvements, all three components of conversion time (reciprocal conversion rate)--namely exposure time, image readout time, and image processing time--are minimized.
Breast Mass Detection in Digital Mammogram Based on Gestalt Psychology
Bu, Qirong; Liu, Feihong; Zhang, Min; Ren, Yu; Lv, Yi
2018-01-01
Inspired by gestalt psychology, we combine human cognitive characteristics with knowledge of radiologists in medical image analysis. In this paper, a novel framework is proposed to detect breast masses in digitized mammograms. It can be divided into three modules: sensation integration, semantic integration, and verification. After analyzing the progress of radiologist's mammography screening, a series of visual rules based on the morphological characteristics of breast masses are presented and quantified by mathematical methods. The framework can be seen as an effective trade-off between bottom-up sensation and top-down recognition methods. This is a new exploratory method for the automatic detection of lesions. The experiments are performed on Mammographic Image Analysis Society (MIAS) and Digital Database for Screening Mammography (DDSM) data sets. The sensitivity reached to 92% at 1.94 false positive per image (FPI) on MIAS and 93.84% at 2.21 FPI on DDSM. Our framework has achieved a better performance compared with other algorithms. PMID:29854359
NASA Astrophysics Data System (ADS)
Iqbal, Asim; Farooq, Umar; Mahmood, Hassan; Asad, Muhammad Usman; Khan, Akrama; Atiq, Hafiz Muhammad
2010-02-01
A self teaching image processing and voice recognition based system is developed to educate visually impaired children, chiefly in their primary education. System comprises of a computer, a vision camera, an ear speaker and a microphone. Camera, attached with the computer system is mounted on the ceiling opposite (on the required angle) to the desk on which the book is placed. Sample images and voices in the form of instructions and commands of English, Urdu alphabets, Numeric Digits, Operators and Shapes are already stored in the database. A blind child first reads the embossed character (object) with the help of fingers than he speaks the answer, name of the character, shape etc into the microphone. With the voice command of a blind child received by the microphone, image is taken by the camera which is processed by MATLAB® program developed with the help of Image Acquisition and Image processing toolbox and generates a response or required set of instructions to child via ear speaker, resulting in self education of a visually impaired child. Speech recognition program is also developed in MATLAB® with the help of Data Acquisition and Signal Processing toolbox which records and process the command of the blind child.
Zhang, Jian; Niu, Xin; Yang, Xue-zhi; Zhu, Qing-wen; Li, Hai-yan; Wang, Xuan; Zhang, Zhi-guo; Sha, Hong
2014-09-01
To design the pulse information which includes the parameter of pulse-position, pulse-number, pulse-shape and pulse-force acquisition and analysis system with function of dynamic recognition, and research the digitalization and visualization of some common cardiovascular mechanism of single pulse. To use some flexible sensors to catch the radial artery pressure pulse wave and utilize the high frequency B mode ultrasound scanning technology to synchronously obtain the information of radial extension and axial movement, by the way of dynamic images, then the gathered information was analyzed and processed together with ECG. Finally, the pulse information acquisition and analysis system was established which has the features of visualization and dynamic recognition, and it was applied to serve for ten healthy adults. The new system overcome the disadvantage of one-dimensional pulse information acquisition and process method which was common used in current research area of pulse diagnosis in traditional Chinese Medicine, initiated a new way of pulse diagnosis which has the new features of dynamic recognition, two-dimensional information acquisition, multiplex signals combination and deep data mining. The newly developed system could translate the pulse signals into digital, visual and measurable motion information of vessel.
A super resolution framework for low resolution document image OCR
NASA Astrophysics Data System (ADS)
Ma, Di; Agam, Gady
2013-01-01
Optical character recognition is widely used for converting document images into digital media. Existing OCR algorithms and tools produce good results from high resolution, good quality, document images. In this paper, we propose a machine learning based super resolution framework for low resolution document image OCR. Two main techniques are used in our proposed approach: a document page segmentation algorithm and a modified K-means clustering algorithm. Using this approach, by exploiting coherence in the document, we reconstruct from a low resolution document image a better resolution image and improve OCR results. Experimental results show substantial gain in low resolution documents such as the ones captured from video.
Effects of compression and individual variability on face recognition performance
NASA Astrophysics Data System (ADS)
McGarry, Delia P.; Arndt, Craig M.; McCabe, Steven A.; D'Amato, Donald P.
2004-08-01
The Enhanced Border Security and Visa Entry Reform Act of 2002 requires that the Visa Waiver Program be available only to countries that have a program to issue to their nationals machine-readable passports incorporating biometric identifiers complying with applicable standards established by the International Civil Aviation Organization (ICAO). In June 2002, the New Technologies Working Group of ICAO unanimously endorsed the use of face recognition (FR) as the globally interoperable biometric for machine-assisted identity confirmation with machine-readable travel documents (MRTDs), although Member States may elect to use fingerprint and/or iris recognition as additional biometric technologies. The means and formats are still being developed through which biometric information might be stored in the constrained space of integrated circuit chips embedded within travel documents. Such information will be stored in an open, yet unalterable and very compact format, probably as digitally signed and efficiently compressed images. The objective of this research is to characterize the many factors that affect FR system performance with respect to the legislated mandates concerning FR. A photograph acquisition environment and a commercial face recognition system have been installed at Mitretek, and over 1,400 images have been collected of volunteers. The image database and FR system are being used to analyze the effects of lossy image compression, individual differences, such as eyeglasses and facial hair, and the acquisition environment on FR system performance. Images are compressed by varying ratios using JPEG2000 to determine the trade-off points between recognition accuracy and compression ratio. The various acquisition factors that contribute to differences in FR system performance among individuals are also being measured. The results of this study will be used to refine and test efficient face image interchange standards that ensure highly accurate recognition, both for automated FR systems and human inspectors. Working within the M1-Biometrics Technical Committee of the InterNational Committee for Information Technology Standards (INCITS) organization, a standard face image format will be tested and submitted to organizations such as ICAO.
Effectiveness of feature and classifier algorithms in character recognition systems
NASA Astrophysics Data System (ADS)
Wilson, Charles L.
1993-04-01
At the first Census Optical Character Recognition Systems Conference, NIST generated accuracy data for more than character recognition systems. Most systems were tested on the recognition of isolated digits and upper and lower case alphabetic characters. The recognition experiments were performed on sample sizes of 58,000 digits, and 12,000 upper and lower case alphabetic characters. The algorithms used by the 26 conference participants included rule-based methods, image-based methods, statistical methods, and neural networks. The neural network methods included Multi-Layer Perceptron's, Learned Vector Quantitization, Neocognitrons, and cascaded neural networks. In this paper 11 different systems are compared using correlations between the answers of different systems, comparing the decrease in error rate as a function of confidence of recognition, and comparing the writer dependence of recognition. This comparison shows that methods that used different algorithms for feature extraction and recognition performed with very high levels of correlation. This is true for neural network systems, hybrid systems, and statistically based systems, and leads to the conclusion that neural networks have not yet demonstrated a clear superiority to more conventional statistical methods. Comparison of these results with the models of Vapnick (for estimation problems), MacKay (for Bayesian statistical models), Moody (for effective parameterization), and Boltzmann models (for information content) demonstrate that as the limits of training data variance are approached, all classifier systems have similar statistical properties. The limiting condition can only be approached for sufficiently rich feature sets because the accuracy limit is controlled by the available information content of the training set, which must pass through the feature extraction process prior to classification.
Cost analysis of a project to digitize classic articles in neurosurgery*
Bauer, Kathleen
2002-01-01
In summer 2000, the Cushing/Whitney Medical Library at Yale University began a demonstration project to digitize classic articles in neurosurgery from the late 1800s and early 1900s. The objective of the first phase of the project was to measure the time and costs involved in digitization, and those results are reported here. In the second phase, metadata will be added to the digitized articles, and the project will be publicized. Thirteen articles were scanned using optical character recognition (OCR) software, and the resulting text files were carefully proofread. Time for photocopying, scanning, and proofreading were recorded. This project achieved an average cost per item (total pages plus images) of $4.12, a figure at the high end of average costs found in other studies. This project experienced high costs for two reasons. First, the articles contained many images, which required extra processing. Second, the older fonts and the poor condition of many of these articles complicated the OCR process. The average article cost $84.46 to digitize. Although costs were high, the selection of historically important articles maximized the benefit gained from the investment in digitization. PMID:11999182
Cost analysis of a project to digitize classic articles in neurosurgery.
Bauer, Kathleen
2002-04-01
In summer 2000, the Cushing/Whitney Medical Library at Yale University began a demonstration project to digitize classic articles in neurosurgery from the late 1800s and early 1900s. The objective of the first phase of the project was to measure the time and costs involved in digitization, and those results are reported here. In the second phase, metadata will be added to the digitized articles, and the project will be publicized. Thirteen articles were scanned using optical character recognition (OCR) software, and the resulting text files were carefully proofread. Time for photocopying, scanning, and proofreading were recorded. This project achieved an average cost per item (total pages plus images) of $4.12, a figure at the high end of average costs found in other studies. This project experienced high costs for two reasons. First, the articles contained many images, which required extra processing. Second, the older fonts and the poor condition of many of these articles complicated the OCR process. The average article cost $84.46 to digitize. Although costs were high, the selection of historically important articles maximized the benefit gained from the investment in digitization.
NASA Astrophysics Data System (ADS)
Kostopoulos, S.; Sidiropoulos, K.; Glotsos, D.; Dimitropoulos, N.; Kalatzis, I.; Asvestas, P.; Cavouras, D.
2014-03-01
The aim of this study was to design a pattern recognition system for assisting the diagnosis of breast lesions, using image information from Ultrasound (US) and Digital Mammography (DM) imaging modalities. State-of-art computer technology was employed based on commercial Graphics Processing Unit (GPU) cards and parallel programming. An experienced radiologist outlined breast lesions on both US and DM images from 59 patients employing a custom designed computer software application. Textural features were extracted from each lesion and were used to design the pattern recognition system. Several classifiers were tested for highest performance in discriminating benign from malignant lesions. Classifiers were also combined into ensemble schemes for further improvement of the system's classification accuracy. Following the pattern recognition system optimization, the final system was designed employing the Probabilistic Neural Network classifier (PNN) on the GPU card (GeForce 580GTX) using CUDA programming framework and C++ programming language. The use of such state-of-art technology renders the system capable of redesigning itself on site once additional verified US and DM data are collected. Mixture of US and DM features optimized performance with over 90% accuracy in correctly classifying the lesions.
Digital atlas of fetal brain MRI.
Chapman, Teresa; Matesan, Manuela; Weinberger, Ed; Bulas, Dorothy I
2010-02-01
Fetal MRI can be performed in the second and third trimesters. During this time, the fetal brain undergoes profound structural changes. Interpretation of appropriate development might require comparison with normal age-based models. Consultation of a hard-copy atlas is limited by the inability to compare multiple ages simultaneously. To provide images of normal fetal brains from weeks 18 through 37 in a digital format that can be reviewed interactively. This will facilitate recognition of abnormal brain development. T2-W images for the atlas were obtained from fetal MR studies of normal brains scanned for other indications from 2005 to 2007. Images were oriented in standard axial, coronal and sagittal projections, with laterality established by situs. Gestational age was determined by last menstrual period, earliest US measurements and sonogram performed on the same day as the MR. The software program used for viewing the atlas, written in C#, permits linked scrolling and resizing the images. Simultaneous comparison of varying gestational ages is permissible. Fetal brain images across gestational ages 18 to 37 weeks are provided as an interactive digital atlas and are available for free download from http://radiology.seattlechildrens.org/teaching/fetal_brain . Improved interpretation of fetal brain abnormalities can be facilitated by the use of digital atlas cataloging of the normal changes throughout fetal development. Here we provide a description of the atlas and a discussion of normal fetal brain development.
NASA Astrophysics Data System (ADS)
Jia, Yongwei; Cheng, Liming; Yu, Guangrong; Lou, Yongjian; Yu, Yan; Chen, Bo; Ding, Zuquan
2008-03-01
A method of digital image measurement of specimen deformation based on CCD cameras and Image J software was developed. This method was used to measure the biomechanics behavior of human pelvis. Six cadaveric specimens from the third lumbar vertebra to the proximal 1/3 part of femur were tested. The specimens without any structural abnormalities were dissected of all soft tissue, sparing the hip joint capsules and the ligaments of the pelvic ring and floor. Markers with black dot on white background were affixed to the key regions of the pelvis. Axial loading from the proximal lumbar was applied by MTS in the gradient of 0N to 500N, which simulated the double feet standing stance. The anterior and lateral images of the specimen were obtained through two CCD cameras. Based on Image J software, digital image processing software, which can be freely downloaded from the National Institutes of Health, digital 8-bit images were processed. The procedure includes the recognition of digital marker, image invert, sub-pixel reconstruction, image segmentation, center of mass algorithm based on weighted average of pixel gray values. Vertical displacements of S1 (the first sacral vertebrae) in front view and micro-angular rotation of sacroiliac joint in lateral view were calculated according to the marker movement. The results of digital image measurement showed as following: marker image correlation before and after deformation was excellent. The average correlation coefficient was about 0.983. According to the 768 × 576 pixels image (pixel size 0.68mm × 0.68mm), the precision of the displacement detected in our experiment was about 0.018 pixels and the comparatively error could achieve 1.11\\perthou. The average vertical displacement of S1 of the pelvis was 0.8356+/-0.2830mm under vertical load of 500 Newtons and the average micro-angular rotation of sacroiliac joint in lateral view was 0.584+/-0.221°. The load-displacement curves obtained from our optical measure system matched the clinical results. Digital image measurement of specimen deformation based on CCD cameras and Image J software has good perspective for application in biomechanical research, which has the advantage of simple optical setup, no-contact, high precision, and no special requirement of test environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Virnstein, R.; Tepera, M.; Beazley, L.
1997-06-01
A pilot study is very briefly summarized in the article. The study tested the potential of multi-spectral digital imagery for discrimination of seagrass densities and species, algae, and bottom types. Imagery was obtained with the Compact Airborne Spectral Imager (casi) and two flight lines flown with hyper-spectral mode. The photogrammetric method used allowed interpretation of the highest quality product, eliminating limitations caused by outdated or poor quality base maps and the errors associated with transfer of polygons. Initial image analysis indicates that the multi-spectral imagery has several advantages, including sophisticated spectral signature recognition and classification, ease of geo-referencing, and rapidmore » mosaicking.« less
van Der Laak, J A; Pahlplatz, M M; Hanselaar, A G; de Wilde, P C
2000-04-01
Transmitted light microscopy is used in pathology to examine stained tissues. Digital image analysis is gaining importance as a means to quantify alterations in tissues. A prerequisite for accurate and reproducible quantification is the possibility to recognise stains in a standardised manner, independently of variations in the staining density. The usefulness of three colour models was studied using data from computer simulations and experimental data from an immuno-doublestained tissue section. Direct use of the three intensities obtained by a colour camera results in the red-green-blue (RGB) model. By decoupling the intensity from the RGB data, the hue-saturation-intensity (HSI) model is obtained. However, the major part of the variation in perceived intensities in transmitted light microscopy is caused by variations in staining density. Therefore, the hue-saturation-density (HSD) transform was defined as the RGB to HSI transform, applied to optical density values rather than intensities for the individual RGB channels. In the RGB model, the mixture of chromatic and intensity information hampers standardisation of stain recognition. In the HSI model, mixtures of stains that could be distinguished from other stains in the RGB model could not be separated. The HSD model enabled all possible distinctions in a two-dimensional, standardised data space. In the RGB model, standardised recognition is only possible by using complex and time-consuming algorithms. The HSI model is not suitable for stain recognition in transmitted light microscopy. The newly derived HSD model was found superior to the existing models for this purpose. Copyright 2000 Wiley-Liss, Inc.
Digital signal processing algorithms for automatic voice recognition
NASA Technical Reports Server (NTRS)
Botros, Nazeih M.
1987-01-01
The current digital signal analysis algorithms are investigated that are implemented in automatic voice recognition algorithms. Automatic voice recognition means, the capability of a computer to recognize and interact with verbal commands. The digital signal is focused on, rather than the linguistic, analysis of speech signal. Several digital signal processing algorithms are available for voice recognition. Some of these algorithms are: Linear Predictive Coding (LPC), Short-time Fourier Analysis, and Cepstrum Analysis. Among these algorithms, the LPC is the most widely used. This algorithm has short execution time and do not require large memory storage. However, it has several limitations due to the assumptions used to develop it. The other 2 algorithms are frequency domain algorithms with not many assumptions, but they are not widely implemented or investigated. However, with the recent advances in the digital technology, namely signal processors, these 2 frequency domain algorithms may be investigated in order to implement them in voice recognition. This research is concerned with real time, microprocessor based recognition algorithms.
2017-12-01
satisfactory performance. We do not use statistical models, and we do not create patterns that require supervised learning. Our methodology is intended...statistical models, and we do not create patterns that require supervised learning. Our methodology is intended for use in personal digital image...THESIS MOTIVATION .........................................................................19 III. METHODOLOGY
NASA Technical Reports Server (NTRS)
Gramenopoulos, N. (Principal Investigator)
1974-01-01
The author has identified the following significant results. A diffraction pattern analysis of MSS images led to the development of spatial signatures for farm land, urban areas and mountains. Four spatial features are employed to describe the spatial characteristics of image cells in the digital data. Three spectral features are combined with the spatial features to form a seven dimensional vector describing each cell. Then, the classification of the feature vectors is accomplished by using the maximum likelihood criterion. It was determined that the recognition accuracy with the maximum likelihood criterion depends on the statistics of the feature vectors. It was also determined that for a given geographic area the statistics of the classes remain invariable for a period of a month, but vary substantially between seasons. Three ERTS-1 images from the Phoenix, Arizona area were processed, and recognition rates between 85% and 100% were obtained for the terrain classes of desert, farms, mountains, and urban areas. To eliminate the need for training data, a new clustering algorithm has been developed. Seven ERTS-1 images from four test sites have been processed through the clustering algorithm, and high recognition rates have been achieved for all terrain classes.
Fine grained recognition of masonry walls for built heritage assessment
NASA Astrophysics Data System (ADS)
Oses, N.; Dornaika, F.; Moujahid, A.
2015-01-01
This paper presents the ground work carried out to achieve automatic fine grained recognition of stone masonry. This is a necessary first step in the development of the analysis tool. The built heritage that will be assessed consists of stone masonry constructions and many of the features analysed can be characterized according to the geometry and arrangement of the stones. Much of the assessment is carried out through visual inspection. Thus, we apply image processing on digital images of the elements under inspection. The main contribution of the paper is the performance evaluation of the automatic categorization of masonry walls from a set of extracted straight line segments. The element chosen to perform this evaluation is the stone arrangement of masonry walls. The validity of the proposed framework is assessed on real images of masonry walls using machine learning paradigms. These include classifiers as well as automatic feature selection.
The Need for Careful Data Collection for Pattern Recognition in Digital Pathology.
Marée, Raphaël
2017-01-01
Effective pattern recognition requires carefully designed ground-truth datasets. In this technical note, we first summarize potential data collection issues in digital pathology and then propose guidelines to build more realistic ground-truth datasets and to control their quality. We hope our comments will foster the effective application of pattern recognition approaches in digital pathology.
Estimating and Separating Noise from AIA Images
NASA Astrophysics Data System (ADS)
Kirk, Michael S.; Ireland, Jack; Young, C. Alex; Pesnell, W. Dean
2016-10-01
All digital images are corrupted by noise and SDO AIA is no different. In most solar imaging, we have the luxury of high photon counts and low background contamination, which when combined with carful calibration, minimize much of the impact noise has on the measurement. Outside high-intensity regions, such as in coronal holes, the noise component can become significant and complicate feature recognition and segmentation. We create a practical estimate of noise in the high-resolution AIA images across the detector CCD in all seven EUV wavelengths. A mixture of Poisson and Gaussian noise is well suited in the digital imaging environment due to the statistical distributions of photons and the characteristics of the CCD. Using state-of-the-art noise estimation techniques, the publicly available solar images, and coronal loop simulations; we construct a maximum-a-posteriori assessment of the error in these images. The estimation and mitigation of noise not only provides a clearer view of large-scale solar structure in the solar corona, but also provides physical constraints on fleeting EUV features observed with AIA.
Kim, Nancy; Boone, Kyle B; Victor, Tara; Lu, Po; Keatinge, Carolyn; Mitchell, Cary
2010-08-01
Recently published practice standards recommend that multiple effort indicators be interspersed throughout neuropsychological evaluations to assess for response bias, which is most efficiently accomplished through use of effort indicators from standard cognitive tests already included in test batteries. The present study examined the utility of a timed recognition trial added to standard administration of the WAIS-III Digit Symbol subtest in a large sample of "real world" noncredible patients (n=82) as compared with credible neuropsychology clinic patients (n=89). Scores from the recognition trial were more sensitive in identifying poor effort than were standard Digit Symbol scores, and use of an equation incorporating Digit Symbol Age-Corrected Scaled Scores plus accuracy and time scores from the recognition trial was associated with nearly 80% sensitivity at 88.7% specificity. Thus, inclusion of a brief recognition trial to Digit Symbol administration has the potential to provide accurate assessment of response bias.
Wójcicki, Tomasz; Nowicki, Michał
2016-01-01
The article presents a selected area of research and development concerning the methods of material analysis based on the automatic image recognition of the investigated metallographic sections. The objectives of the analyses of the materials for gas nitriding technology are described. The methods of the preparation of nitrided layers, the steps of the process and the construction and operation of devices for gas nitriding are given. We discuss the possibility of using the methods of digital images processing in the analysis of the materials, as well as their essential task groups: improving the quality of the images, segmentation, morphological transformations and image recognition. The developed analysis model of the nitrided layers formation, covering image processing and analysis techniques, as well as selected methods of artificial intelligence are presented. The model is divided into stages, which are formalized in order to better reproduce their actions. The validation of the presented method is performed. The advantages and limitations of the developed solution, as well as the possibilities of its practical use, are listed. PMID:28773389
Neural network-based systems for handprint OCR applications.
Ganis, M D; Wilson, C L; Blue, J L
1998-01-01
Over the last five years or so, neural network (NN)-based approaches have been steadily gaining performance and popularity for a wide range of optical character recognition (OCR) problems, from isolated digit recognition to handprint recognition. We present an NN classification scheme based on an enhanced multilayer perceptron (MLP) and describe an end-to-end system for form-based handprint OCR applications designed by the National Institute of Standards and Technology (NIST) Visual Image Processing Group. The enhancements to the MLP are based on (i) neuron activations functions that reduce the occurrences of singular Jacobians; (ii) successive regularization to constrain the volume of the weight space; and (iii) Boltzmann pruning to constrain the dimension of the weight space. Performance characterization studies of NN systems evaluated at the first OCR systems conference and the NIST form-based handprint recognition system are also summarized.
NASA Astrophysics Data System (ADS)
El-Saba, Aed; Alsharif, Salim; Jagapathi, Rajendarreddy
2011-04-01
Fingerprint recognition is one of the first techniques used for automatically identifying people and today it is still one of the most popular and effective biometric techniques. With this increase in fingerprint biometric uses, issues related to accuracy, security and processing time are major challenges facing the fingerprint recognition systems. Previous work has shown that polarization enhancementencoding of fingerprint patterns increase the accuracy and security of fingerprint systems without burdening the processing time. This is mainly due to the fact that polarization enhancementencoding is inherently a hardware process and does not have detrimental time delay effect on the overall process. Unpolarized images, however, posses a high visual contrast and when fused (without digital enhancement) properly with polarized ones, is shown to increase the recognition accuracy and security of the biometric system without any significant processing time delay.
Concurrent evolution of feature extractors and modular artificial neural networks
NASA Astrophysics Data System (ADS)
Hannak, Victor; Savakis, Andreas; Yang, Shanchieh Jay; Anderson, Peter
2009-05-01
This paper presents a new approach for the design of feature-extracting recognition networks that do not require expert knowledge in the application domain. Feature-Extracting Recognition Networks (FERNs) are composed of interconnected functional nodes (feurons), which serve as feature extractors, and are followed by a subnetwork of traditional neural nodes (neurons) that act as classifiers. A concurrent evolutionary process (CEP) is used to search the space of feature extractors and neural networks in order to obtain an optimal recognition network that simultaneously performs feature extraction and recognition. By constraining the hill-climbing search functionality of the CEP on specific parts of the solution space, i.e., individually limiting the evolution of feature extractors and neural networks, it was demonstrated that concurrent evolution is a necessary component of the system. Application of this approach to a handwritten digit recognition task illustrates that the proposed methodology is capable of producing recognition networks that perform in-line with other methods without the need for expert knowledge in image processing.
Zhang, Xiao-Bo; Ge, Xiao-Guang; Jin, Yan; Shi, Ting-Ting; Wang, Hui; Li, Meng; Jing, Zhi-Xian; Guo, Lan-Ping; Huang, Lu-Qi
2017-11-01
With the development of computer and image processing technology, image recognition technology has been applied to the national medicine resources census work at all stages.Among them: ①In the preparatory work, in order to establish a unified library of traditional Chinese medicine resources, using text recognition technology based on paper materials, be the assistant in the digitalization of various categories related to Chinese medicine resources; to determine the representative area and plots of the survey from each census team, based on the satellite remote sensing image and vegetation map and other basic data, using remote sensing image classification and other technical methods to assist in determining the key investigation area. ②In the process of field investigation, to obtain the planting area of Chinese herbal medicine was accurately, we use the decision tree model, spectral feature and object-oriented method were used to assist the regional identification and area estimation of Chinese medicinal materials.③In the process of finishing in the industry, in order to be able to relatively accurately determine the type of Chinese medicine resources in the region, based on the individual photos of the plant, the specimens and the name of the use of image recognition techniques, to assist the statistical summary of the types of traditional Chinese medicine resources. ④In the application of the results of transformation, based on the pharmaceutical resources and individual samples of medicinal herbs, the development of Chinese medicine resources to identify APP and authentic herbs 3D display system, assisted the identification of Chinese medicine resources and herbs identification characteristics. The introduction of image recognition technology in the census of Chinese medicine resources, assisting census personnel to carry out related work, not only can reduce the workload of the artificial, improve work efficiency, but also improve the census results of information technology and sharing application ability. With the deepening of the work of Chinese medicine resources census, image recognition technology in the relevant work will also play its unique role. Copyright© by the Chinese Pharmaceutical Association.
Learning optimal features for visual pattern recognition
NASA Astrophysics Data System (ADS)
Labusch, Kai; Siewert, Udo; Martinetz, Thomas; Barth, Erhardt
2007-02-01
The optimal coding hypothesis proposes that the human visual system has adapted to the statistical properties of the environment by the use of relatively simple optimality criteria. We here (i) discuss how the properties of different models of image coding, i.e. sparseness, decorrelation, and statistical independence are related to each other (ii) propose to evaluate the different models by verifiable performance measures (iii) analyse the classification performance on images of handwritten digits (MNIST data base). We first employ the SPARSENET algorithm (Olshausen, 1998) to derive a local filter basis (on 13 × 13 pixels windows). We then filter the images in the database (28 × 28 pixels images of digits) and reduce the dimensionality of the resulting feature space by selecting the locally maximal filter responses. We then train a support vector machine on a training set to classify the digits and report results obtained on a separate test set. Currently, the best state-of-the-art result on the MNIST data base has an error rate of 0,4%. This result, however, has been obtained by using explicit knowledge that is specific to the data (elastic distortion model for digits). We here obtain an error rate of 0,55% which is second best but does not use explicit data specific knowledge. In particular it outperforms by far all methods that do not use data-specific knowledge.
NASA Astrophysics Data System (ADS)
Ben Salah, Ahmed; Ragot, Nicolas; Paquet, Thierry
2013-01-01
The French National Library (BnF*) has launched many mass digitization projects in order to give access to its collection. The indexation of digital documents on Gallica (digital library of the BnF) is done through their textual content obtained thanks to service providers that use Optical Character Recognition softwares (OCR). OCR softwares have become increasingly complex systems composed of several subsystems dedicated to the analysis and the recognition of the elements in a page. However, the reliability of these systems is always an issue at stake. Indeed, in some cases, we can find errors in OCR outputs that occur because of an accumulation of several errors at different levels in the OCR process. One of the frequent errors in OCR outputs is the missed text components. The presence of such errors may lead to severe defects in digital libraries. In this paper, we investigate the detection of missed text components to control the OCR results from the collections of the French National Library. Our verification approach uses local information inside the pages based on Radon transform descriptors and Local Binary Patterns descriptors (LBP) coupled with OCR results to control their consistency. The experimental results show that our method detects 84.15% of the missed textual components, by comparing the OCR ALTO files outputs (produced by the service providers) to the images of the document.
Fast words boundaries localization in text fields for low quality document images
NASA Astrophysics Data System (ADS)
Ilin, Dmitry; Novikov, Dmitriy; Polevoy, Dmitry; Nikolaev, Dmitry
2018-04-01
The paper examines the problem of word boundaries precise localization in document text zones. Document processing on a mobile device consists of document localization, perspective correction, localization of individual fields, finding words in separate zones, segmentation and recognition. While capturing an image with a mobile digital camera under uncontrolled capturing conditions, digital noise, perspective distortions or glares may occur. Further document processing gets complicated because of its specifics: layout elements, complex background, static text, document security elements, variety of text fonts. However, the problem of word boundaries localization has to be solved at runtime on mobile CPU with limited computing capabilities under specified restrictions. At the moment, there are several groups of methods optimized for different conditions. Methods for the scanned printed text are quick but limited only for images of high quality. Methods for text in the wild have an excessively high computational complexity, thus, are hardly suitable for running on mobile devices as part of the mobile document recognition system. The method presented in this paper solves a more specialized problem than the task of finding text on natural images. It uses local features, a sliding window and a lightweight neural network in order to achieve an optimal algorithm speed-precision ratio. The duration of the algorithm is 12 ms per field running on an ARM processor of a mobile device. The error rate for boundaries localization on a test sample of 8000 fields is 0.3
Applications of magnetic resonance image segmentation in neurology
NASA Astrophysics Data System (ADS)
Heinonen, Tomi; Lahtinen, Antti J.; Dastidar, Prasun; Ryymin, Pertti; Laarne, Paeivi; Malmivuo, Jaakko; Laasonen, Erkki; Frey, Harry; Eskola, Hannu
1999-05-01
After the introduction of digital imagin devices in medicine computerized tissue recognition and classification have become important in research and clinical applications. Segmented data can be applied among numerous research fields including volumetric analysis of particular tissues and structures, construction of anatomical modes, 3D visualization, and multimodal visualization, hence making segmentation essential in modern image analysis. In this research project several PC based software were developed in order to segment medical images, to visualize raw and segmented images in 3D, and to produce EEG brain maps in which MR images and EEG signals were integrated. The software package was tested and validated in numerous clinical research projects in hospital environment.
Machine vision system for inspecting characteristics of hybrid rice seed
NASA Astrophysics Data System (ADS)
Cheng, Fang; Ying, Yibin
2004-03-01
Obtaining clear images advantaged of improving the classification accuracy involves many factors, light source, lens extender and background were discussed in this paper. The analysis of rice seed reflectance curves showed that the wavelength of light source for discrimination of the diseased seeds from normal rice seeds in the monochromic image recognition mode was about 815nm for jinyou402 and shanyou10. To determine optimizing conditions for acquiring digital images of rice seed using a computer vision system, an adjustable color machine vision system was developed. The machine vision system with 20mm to 25mm lens extender produce close-up images which made it easy to object recognition of characteristics in hybrid rice seeds. White background was proved to be better than black background for inspecting rice seeds infected by disease and using the algorithms based on shape. Experimental results indicated good classification for most of the characteristics with the machine vision system. The same algorithm yielded better results in optimizing condition for quality inspection of rice seed. Specifically, the image processing can correct for details such as fine fissure with the machine vision system.
NASA Astrophysics Data System (ADS)
Shahbazi, M.; Sattari, M.; Homayouni, S.; Saadatseresht, M.
2012-07-01
Recent advances in positioning techniques have made it possible to develop Mobile Mapping Systems (MMS) for detection and 3D localization of various objects from a moving platform. On the other hand, automatic traffic sign recognition from an equipped mobile platform has recently been a challenging issue for both intelligent transportation and municipal database collection. However, there are several inevitable problems coherent to all the recognition methods completely relying on passive chromatic or grayscale images. This paper presents the implementation and evaluation of an operational MMS. Being distinct from the others, the developed MMS comprises one range camera based on Photonic Mixer Device (PMD) technology and one standard 2D digital camera. The system benefits from certain algorithms to detect, recognize and localize the traffic signs by fusing the shape, color and object information from both range and intensity images. As the calibrating stage, a self-calibration method based on integrated bundle adjustment via joint setup with the digital camera is applied in this study for PMD camera calibration. As the result, an improvement of 83 % in RMS of range error and 72 % in RMS of coordinates residuals for PMD camera, over that achieved with basic calibration is realized in independent accuracy assessments. Furthermore, conventional photogrammetric techniques based on controlled network adjustment are utilized for platform calibration. Likewise, the well-known Extended Kalman Filtering (EKF) is applied to integrate the navigation sensors, namely GPS and INS. The overall acquisition system along with the proposed techniques leads to 90 % true positive recognition and the average of 12 centimetres 3D positioning accuracy.
NASA Astrophysics Data System (ADS)
Shahbazi, M.; Sattari, M.; Homayouni, S.; Saadatseresht, M.
2012-07-01
Recent advances in positioning techniques have made it possible to develop Mobile Mapping Systems (MMS) for detection and 3D localization of various objects from a moving platform. On the other hand, automatic traffic sign recognition from an equipped mobile platform has recently been a challenging issue for both intelligent transportation and municipal database collection. However, there are several inevitable problems coherent to all the recognition methods completely relying on passive chromatic or grayscale images. This paper presents the implementation and evaluation of an operational MMS. Being distinct from the others, the developed MMS comprises one range camera based on Photonic Mixer Device (PMD) technology and one standard 2D digital camera. The system benefits from certain algorithms to detect, recognize and localize the traffic signs by fusing the shape, color and object information from both range and intensity images. As the calibrating stage, a self-calibration method based on integrated bundle adjustment via joint setup with the digital camera is applied in this study for PMD camera calibration. As the result, an improvement of 83% in RMS of range error and 72% in RMS of coordinates residuals for PMD camera, over that achieved with basic calibration is realized in independent accuracy assessments. Furthermore, conventional photogrammetric techniques based on controlled network adjustment are utilized for platform calibration. Likewise, the well-known Extended Kalman Filtering (EKF) is applied to integrate the navigation sensors, namely GPS and INS. The overall acquisition system along with the proposed techniques leads to 90% true positive recognition and the average of 12 centimetres 3D positioning accuracy.
Digital video steganalysis exploiting collusion sensitivity
NASA Astrophysics Data System (ADS)
Budhia, Udit; Kundur, Deepa
2004-09-01
In this paper we present an effective steganalyis technique for digital video sequences based on the collusion attack. Steganalysis is the process of detecting with a high probability and low complexity the presence of covert data in multimedia. Existing algorithms for steganalysis target detecting covert information in still images. When applied directly to video sequences these approaches are suboptimal. In this paper, we present a method that overcomes this limitation by using redundant information present in the temporal domain to detect covert messages in the form of Gaussian watermarks. Our gains are achieved by exploiting the collusion attack that has recently been studied in the field of digital video watermarking, and more sophisticated pattern recognition tools. Applications of our scheme include cybersecurity and cyberforensics.
Real-time polarization imaging algorithm for camera-based polarization navigation sensors.
Lu, Hao; Zhao, Kaichun; You, Zheng; Huang, Kaoli
2017-04-10
Biologically inspired polarization navigation is a promising approach due to its autonomous nature, high precision, and robustness. Many researchers have built point source-based and camera-based polarization navigation prototypes in recent years. Camera-based prototypes can benefit from their high spatial resolution but incur a heavy computation load. The pattern recognition algorithm in most polarization imaging algorithms involves several nonlinear calculations that impose a significant computation burden. In this paper, the polarization imaging and pattern recognition algorithms are optimized through reduction to several linear calculations by exploiting the orthogonality of the Stokes parameters without affecting precision according to the features of the solar meridian and the patterns of the polarized skylight. The algorithm contains a pattern recognition algorithm with a Hough transform as well as orientation measurement algorithms. The algorithm was loaded and run on a digital signal processing system to test its computational complexity. The test showed that the running time decreased to several tens of milliseconds from several thousand milliseconds. Through simulations and experiments, it was found that the algorithm can measure orientation without reducing precision. It can hence satisfy the practical demands of low computational load and high precision for use in embedded systems.
NASA Astrophysics Data System (ADS)
Cyganek, Boguslaw; Smolka, Bogdan
2015-02-01
In this paper a system for real-time recognition of objects in multidimensional video signals is proposed. Object recognition is done by pattern projection into the tensor subspaces obtained from the factorization of the signal tensors representing the input signal. However, instead of taking only the intensity signal the novelty of this paper is first to build the Extended Structural Tensor representation from the intensity signal that conveys information on signal intensities, as well as on higher-order statistics of the input signals. This way the higher-order input pattern tensors are built from the training samples. Then, the tensor subspaces are built based on the Higher-Order Singular Value Decomposition of the prototype pattern tensors. Finally, recognition relies on measurements of the distance of a test pattern projected into the tensor subspaces obtained from the training tensors. Due to high-dimensionality of the input data, tensor based methods require high memory and computational resources. However, recent achievements in the technology of the multi-core microprocessors and graphic cards allows real-time operation of the multidimensional methods as is shown and analyzed in this paper based on real examples of object detection in digital images.
Image correlation method for DNA sequence alignment.
Curilem Saldías, Millaray; Villarroel Sassarini, Felipe; Muñoz Poblete, Carlos; Vargas Vásquez, Asticio; Maureira Butler, Iván
2012-01-01
The complexity of searches and the volume of genomic data make sequence alignment one of bioinformatics most active research areas. New alignment approaches have incorporated digital signal processing techniques. Among these, correlation methods are highly sensitive. This paper proposes a novel sequence alignment method based on 2-dimensional images, where each nucleic acid base is represented as a fixed gray intensity pixel. Query and known database sequences are coded to their pixel representation and sequence alignment is handled as object recognition in a scene problem. Query and database become object and scene, respectively. An image correlation process is carried out in order to search for the best match between them. Given that this procedure can be implemented in an optical correlator, the correlation could eventually be accomplished at light speed. This paper shows an initial research stage where results were "digitally" obtained by simulating an optical correlation of DNA sequences represented as images. A total of 303 queries (variable lengths from 50 to 4500 base pairs) and 100 scenes represented by 100 x 100 images each (in total, one million base pair database) were considered for the image correlation analysis. The results showed that correlations reached very high sensitivity (99.01%), specificity (98.99%) and outperformed BLAST when mutation numbers increased. However, digital correlation processes were hundred times slower than BLAST. We are currently starting an initiative to evaluate the correlation speed process of a real experimental optical correlator. By doing this, we expect to fully exploit optical correlation light properties. As the optical correlator works jointly with the computer, digital algorithms should also be optimized. The results presented in this paper are encouraging and support the study of image correlation methods on sequence alignment.
What does voice-processing technology support today?
Nakatsu, R; Suzuki, Y
1995-01-01
This paper describes the state of the art in applications of voice-processing technologies. In the first part, technologies concerning the implementation of speech recognition and synthesis algorithms are described. Hardware technologies such as microprocessors and DSPs (digital signal processors) are discussed. Software development environment, which is a key technology in developing applications software, ranging from DSP software to support software also is described. In the second part, the state of the art of algorithms from the standpoint of applications is discussed. Several issues concerning evaluation of speech recognition/synthesis algorithms are covered, as well as issues concerning the robustness of algorithms in adverse conditions. Images Fig. 3 PMID:7479720
Automated detection of diabetic retinopathy on digital fundus images.
Sinthanayothin, C; Boyce, J F; Williamson, T H; Cook, H L; Mensah, E; Lal, S; Usher, D
2002-02-01
The aim was to develop an automated screening system to analyse digital colour retinal images for important features of non-proliferative diabetic retinopathy (NPDR). High performance pre-processing of the colour images was performed. Previously described automated image analysis systems were used to detect major landmarks of the retinal image (optic disc, blood vessels and fovea). Recursive region growing segmentation algorithms combined with the use of a new technique, termed a 'Moat Operator', were used to automatically detect features of NPDR. These features included haemorrhages and microaneurysms (HMA), which were treated as one group, and hard exudates as another group. Sensitivity and specificity data were calculated by comparison with an experienced fundoscopist. The algorithm for exudate recognition was applied to 30 retinal images of which 21 contained exudates and nine were without pathology. The sensitivity and specificity for exudate detection were 88.5% and 99.7%, respectively, when compared with the ophthalmologist. HMA were present in 14 retinal images. The algorithm achieved a sensitivity of 77.5% and specificity of 88.7% for detection of HMA. Fully automated computer algorithms were able to detect hard exudates and HMA. This paper presents encouraging results in automatic identification of important features of NPDR.
NASA Astrophysics Data System (ADS)
Kolb, Kimberly E.; Choi, Hee-sue S.; Kaur, Balvinder; Olson, Jeffrey T.; Hill, Clayton F.; Hutchinson, James A.
2016-05-01
The US Army's Communications Electronics Research, Development and Engineering Center (CERDEC) Night Vision and Electronic Sensors Directorate (referred to as NVESD) is developing a virtual detection, recognition, and identification (DRI) testing methodology using simulated imagery as a means of augmenting the field testing component of sensor performance evaluation, which is expensive, resource intensive, time consuming, and limited to the available target(s) and existing atmospheric visibility and environmental conditions at the time of testing. Existing simulation capabilities such as the Digital Imaging Remote Sensing Image Generator (DIRSIG) and NVESD's Integrated Performance Model Image Generator (NVIPM-IG) can be combined with existing detection algorithms to reduce cost/time, minimize testing risk, and allow virtual/simulated testing using full spectral and thermal object signatures, as well as those collected in the field. NVESD has developed an end-to-end capability to demonstrate the feasibility of this approach. Simple detection algorithms have been used on the degraded images generated by NVIPM-IG to determine the relative performance of the algorithms on both DIRSIG-simulated and collected images. Evaluating the degree to which the algorithm performance agrees between simulated versus field collected imagery is the first step in validating the simulated imagery procedure.
New technique for real-time distortion-invariant multiobject recognition and classification
NASA Astrophysics Data System (ADS)
Hong, Rutong; Li, Xiaoshun; Hong, En; Wang, Zuyi; Wei, Hongan
2001-04-01
A real-time hybrid distortion-invariant OPR system was established to make 3D multiobject distortion-invariant automatic pattern recognition. Wavelet transform technique was used to make digital preprocessing of the input scene, to depress the noisy background and enhance the recognized object. A three-layer backpropagation artificial neural network was used in correlation signal post-processing to perform multiobject distortion-invariant recognition and classification. The C-80 and NOA real-time processing ability and the multithread programming technology were used to perform high speed parallel multitask processing and speed up the post processing rate to ROIs. The reference filter library was constructed for the distortion version of 3D object model images based on the distortion parameter tolerance measuring as rotation, azimuth and scale. The real-time optical correlation recognition testing of this OPR system demonstrates that using the preprocessing, post- processing, the nonlinear algorithm os optimum filtering, RFL construction technique and the multithread programming technology, a high possibility of recognition and recognition rate ere obtained for the real-time multiobject distortion-invariant OPR system. The recognition reliability and rate was improved greatly. These techniques are very useful to automatic target recognition.
Analysis of digitized cervical images to detect cervical neoplasia
NASA Astrophysics Data System (ADS)
Ferris, Daron G.
2004-05-01
Cervical cancer is the second most common malignancy in women worldwide. If diagnosed in the premalignant stage, cure is invariably assured. Although the Papanicolaou (Pap) smear has significantly reduced the incidence of cervical cancer where implemented, the test is only moderately sensitive, highly subjective and skilled-labor intensive. Newer optical screening tests (cervicography, direct visual inspection and speculoscopy), including fluorescent and reflective spectroscopy, are fraught with certain weaknesses. Yet, the integration of optical probes for the detection and discrimination of cervical neoplasia with automated image analysis methods may provide an effective screening tool for early detection of cervical cancer, particularly in resource poor nations. Investigative studies are needed to validate the potential for automated classification and recognition algorithms. By applying image analysis techniques for registration, segmentation, pattern recognition, and classification, cervical neoplasia may be reliably discriminated from normal epithelium. The National Cancer Institute (NCI), in cooperation with the National Library of Medicine (NLM), has embarked on a program to begin this and other similar investigative studies.
Barker, Lynne Ann; Morton, Nicholas; Romanowski, Charles A J; Gosden, Kevin
2013-10-24
We report a rare case of a patient unable to read (alexic) and write (agraphic) after a mild head injury. He had preserved speech and comprehension, could spell aloud, identify words spelt aloud and copy letter features. He was unable to visualise letters but showed no problems with digits. Neuropsychological testing revealed general visual memory, processing speed and imaging deficits. Imaging data revealed an 8 mm colloid cyst of the third ventricle that splayed the fornix. Little is known about functions mediated by fornical connectivity, but this region is thought to contribute to memory recall. Other regions thought to mediate letter recognition and letter imagery, visual word form area and visual pathways were intact. We remediated reading and writing by multimodal letter retraining. The study raises issues about the neural substrates of reading, role of fornical tracts to selective memory in the absence of other pathology, and effective remediation strategies for selective functional deficits.
NASA Astrophysics Data System (ADS)
Liu, Brent; Lee, Jasper; Documet, Jorge; Guo, Bing; King, Nelson; Huang, H. K.
2006-03-01
By implementing a tracking and verification system, clinical facilities can effectively monitor workflow and heighten information security in today's growing demand towards digital imaging informatics. This paper presents the technical design and implementation experiences encountered during the development of a Location Tracking and Verification System (LTVS) for a clinical environment. LTVS integrates facial biometrics with wireless tracking so that administrators can manage and monitor patient and staff through a web-based application. Implementation challenges fall into three main areas: 1) Development and Integration, 2) Calibration and Optimization of Wi-Fi Tracking System, and 3) Clinical Implementation. An initial prototype LTVS has been implemented within USC's Healthcare Consultation Center II Outpatient Facility, which currently has a fully digital imaging department environment with integrated HIS/RIS/PACS/VR (Voice Recognition).
Computer generated maps from digital satellite data - A case study in Florida
NASA Technical Reports Server (NTRS)
Arvanitis, L. G.; Reich, R. M.; Newburne, R.
1981-01-01
Ground cover maps are important tools to a wide array of users. Over the past three decades, much progress has been made in supplementing planimetric and topographic maps with ground cover details obtained from aerial photographs. The present investigation evaluates the feasibility of using computer maps of ground cover from satellite input tapes. Attention is given to the selection of test sites, a satellite data processing system, a multispectral image analyzer, general purpose computer-generated maps, the preliminary evaluation of computer maps, a test for areal correspondence, the preparation of overlays and acreage estimation of land cover types on the Landsat computer maps. There is every indication to suggest that digital multispectral image processing systems based on Landsat input data will play an increasingly important role in pattern recognition and mapping land cover in the years to come.
Design and realization of an active SAR calibrator for TerraSAR-X
NASA Astrophysics Data System (ADS)
Dummer, Georg; Lenz, Rainer; Lutz, Benjamin; Kühl, Markus; Müller-Glaser, Klaus D.; Wiesbeck, Werner
2005-10-01
TerraSAR-X is a new earth observing satellite which will be launched in spring 2006. It carries a high resolution X-band SAR sensor. For high image data quality, accurate ground calibration targets are necessary. This paper describes a novel system concept for an active and highly integrated, digitally controlled SAR system calibrator. A total of 16 active transponder and receiver systems and 17 receiver only systems will be fabricated for a calibration campaign. The calibration units serve for absolute radiometric calibration of the SAR image data. Additionally, they are equipped with an extra receiver path for two dimensional satellite antenna pattern recognition. The calibrator is controlled by a dedicated digital Electronic Control Unit (ECU). The different voltages needed by the calibrator and the ECU are provided by the third main unit called Power Management Unit (PMU).
Deformation-Aware Log-Linear Models
NASA Astrophysics Data System (ADS)
Gass, Tobias; Deselaers, Thomas; Ney, Hermann
In this paper, we present a novel deformation-aware discriminative model for handwritten digit recognition. Unlike previous approaches our model directly considers image deformations and allows discriminative training of all parameters, including those accounting for non-linear transformations of the image. This is achieved by extending a log-linear framework to incorporate a latent deformation variable. The resulting model has an order of magnitude less parameters than competing approaches to handling image deformations. We tune and evaluate our approach on the USPS task and show its generalization capabilities by applying the tuned model to the MNIST task. We gain interesting insights and achieve highly competitive results on both tasks.
Locating and decoding barcodes in fuzzy images captured by smart phones
NASA Astrophysics Data System (ADS)
Deng, Wupeng; Hu, Jiwei; Liu, Quan; Lou, Ping
2017-07-01
With the development of barcodes for commercial use, people's requirements for detecting barcodes by smart phone become increasingly pressing. The low quality of barcode image captured by mobile phone always affects the decoding and recognition rates. This paper focuses on locating and decoding EAN-13 barcodes in fuzzy images. We present a more accurate locating algorithm based on segment length and high fault-tolerant rate algorithm for decoding barcodes. Unlike existing approaches, location algorithm is based on the edge segment length of EAN -13 barcodes, while our decoding algorithm allows the appearance of fuzzy region in barcode image. Experimental results are performed on damaged, contaminated and scratched digital images, and provide a quite promising result for EAN -13 barcode location and decoding.
Image recognition of clipped stigma traces in rice seeds
NASA Astrophysics Data System (ADS)
Cheng, F.; Ying, YB
2005-11-01
The objective of this research is to develop algorithm to recognize clipped stigma traces in rice seeds using image processing. At first, the micro-configuration of clipped stigma traces was observed with electronic scanning microscope. Then images of rice seeds were acquired with a color machine vision system. A digital image-processing algorithm based on morphological operations and Hough transform was developed to inspect the occurrence of clipped stigma traces. Five varieties of Jinyou402, Shanyou10, Zhongyou207, Jiayou and you3207 were evaluated. The algorithm was implemented with all image sets using a Matlab 6.5 procedure. The results showed that the algorithm achieved an average accuracy of 96%. The algorithm was proved to be insensitive to the different rice seed varieties.
Yassin, Ali A
2014-01-01
Now, the security of digital images is considered more and more essential and fingerprint plays the main role in the world of image. Furthermore, fingerprint recognition is a scheme of biometric verification that applies pattern recognition techniques depending on image of fingerprint individually. In the cloud environment, an adversary has the ability to intercept information and must be secured from eavesdroppers. Unluckily, encryption and decryption functions are slow and they are often hard. Fingerprint techniques required extra hardware and software; it is masqueraded by artificial gummy fingers (spoof attacks). Additionally, when a large number of users are being verified at the same time, the mechanism will become slow. In this paper, we employed each of the partial encryptions of user's fingerprint and discrete wavelet transform to obtain a new scheme of fingerprint verification. Moreover, our proposed scheme can overcome those problems; it does not require cost, reduces the computational supplies for huge volumes of fingerprint images, and resists well-known attacks. In addition, experimental results illustrate that our proposed scheme has a good performance of user's fingerprint verification.
Yassin, Ali A.
2014-01-01
Now, the security of digital images is considered more and more essential and fingerprint plays the main role in the world of image. Furthermore, fingerprint recognition is a scheme of biometric verification that applies pattern recognition techniques depending on image of fingerprint individually. In the cloud environment, an adversary has the ability to intercept information and must be secured from eavesdroppers. Unluckily, encryption and decryption functions are slow and they are often hard. Fingerprint techniques required extra hardware and software; it is masqueraded by artificial gummy fingers (spoof attacks). Additionally, when a large number of users are being verified at the same time, the mechanism will become slow. In this paper, we employed each of the partial encryptions of user's fingerprint and discrete wavelet transform to obtain a new scheme of fingerprint verification. Moreover, our proposed scheme can overcome those problems; it does not require cost, reduces the computational supplies for huge volumes of fingerprint images, and resists well-known attacks. In addition, experimental results illustrate that our proposed scheme has a good performance of user's fingerprint verification. PMID:27355051
Reducing uncertainty in wind turbine blade health inspection with image processing techniques
NASA Astrophysics Data System (ADS)
Zhang, Huiyi
Structural health inspection has been widely applied in the operation of wind farms to find early cracks in wind turbine blades (WTBs). Increased numbers of turbines and expanded rotor diameters are driving up the workloads and safety risks for site employees. Therefore, it is important to automate the inspection process as well as minimize the uncertainties involved in routine blade health inspection. In addition, crack documentation and trending is vital to assess rotor blade and turbine reliability in the 20 year designed life span. A new crack recognition and classification algorithm is described that can support automated structural health inspection of the surface of large composite WTBs. The first part of the study investigated the feasibility of digital image processing in WTB health inspection and defined the capability of numerically detecting cracks as small as hairline thickness. The second part of the study identified and analyzed the uncertainty of the digital image processing method. A self-learning algorithm was proposed to recognize and classify cracks without comparing a blade image to a library of crack images. The last part of the research quantified the uncertainty in the field conditions and the image processing methods.
Recognition of Time Stamps on Full-Disk Hα Images Using Machine Learning Methods
NASA Astrophysics Data System (ADS)
Xu, Y.; Huang, N.; Jing, J.; Liu, C.; Wang, H.; Fu, G.
2016-12-01
Observation and understanding of the physics of the 11-year solar activity cycle and 22-year magnetic cycle are among the most important research topics in solar physics. The solar cycle is responsible for magnetic field and particle fluctuation in the near-earth environment that have been found increasingly important in affecting the living of human beings in the modern era. A systematic study of large-scale solar activities, as made possible by our rich data archive, will further help us to understand the global-scale magnetic fields that are closely related to solar cycles. The long-time-span data archive includes both full-disk and high-resolution Hα images. Prior to the widely use of CCD cameras in 1990s, 35-mm films were the major media to store images. The research group at NJIT recently finished the digitization of film data obtained by the National Solar Observatory (NSO) and Big Bear Solar Observatory (BBSO) covering the period of 1953 to 2000. The total volume of data exceeds 60 TB. To make this huge database scientific valuable, some processing and calibration are required. One of the most important steps is to read the time stamps on all of the 14 million images, which is almost impossible to be done manually. We implemented three different methods to recognize the time stamps automatically, including Optical Character Recognition (OCR), Classification Tree and TensorFlow. The latter two are known as machine learning algorithms which are very popular now a day in pattern recognition area. We will present some sample images and the results of clock recognition from all three methods.
Hough transform for human action recognition
NASA Astrophysics Data System (ADS)
Siemon, Mia S. N.
2016-09-01
Nowadays, the demand of computer analysis, especially regarding team sports, continues drastically growing. More and more decisions are made by electronic devices for the live to become `easier' to a certain context. There already exist application areas in sports, during which critical situations are being handled by means of digital software. This paper aims at the evaluation and introduction to the necessary foundation which would make it possible to develop a concept similar to that of `hawk-eye', a decision-making program to evaluate the impact of a ball with respect to a target line and to apply it to the sport of volleyball. The pattern recognition process is in this case performed by means of the mathematical model of Hough transform which is able of identifying relevant lines and circles in the image in order to later on use them for the necessary evaluation of the image and the decision-making process.
Teachers' Perceptions of Digital Badges as Recognition of Professional Development
ERIC Educational Resources Information Center
Jones, W. Monty; Hope, Samantha; Adams, Brianne
2018-01-01
This mixed methods study examined teachers' perceptions and uses of digital badges received as recognition of participation in a professional development program. Quantitative and qualitative survey data was collected from 99 K-12 teachers who were awarded digital badges in Spring 2016. In addition, qualitative data was collected through…
A Electro-Optical Image Algebra Processing System for Automatic Target Recognition
NASA Astrophysics Data System (ADS)
Coffield, Patrick Cyrus
The proposed electro-optical image algebra processing system is designed specifically for image processing and other related computations. The design is a hybridization of an optical correlator and a massively paralleled, single instruction multiple data processor. The architecture of the design consists of three tightly coupled components: a spatial configuration processor (the optical analog portion), a weighting processor (digital), and an accumulation processor (digital). The systolic flow of data and image processing operations are directed by a control buffer and pipelined to each of the three processing components. The image processing operations are defined in terms of basic operations of an image algebra developed by the University of Florida. The algebra is capable of describing all common image-to-image transformations. The merit of this architectural design is how it implements the natural decomposition of algebraic functions into spatially distributed, point use operations. The effect of this particular decomposition allows convolution type operations to be computed strictly as a function of the number of elements in the template (mask, filter, etc.) instead of the number of picture elements in the image. Thus, a substantial increase in throughput is realized. The implementation of the proposed design may be accomplished in many ways. While a hybrid electro-optical implementation is of primary interest, the benefits and design issues of an all digital implementation are also discussed. The potential utility of this architectural design lies in its ability to control a large variety of the arithmetic and logic operations of the image algebra's generalized matrix product. The generalized matrix product is the most powerful fundamental operation in the algebra, thus allowing a wide range of applications. No other known device or design has made this claim of processing speed and general implementation of a heterogeneous image algebra.
CMOS Image Sensor with a Built-in Lane Detector.
Hsiao, Pei-Yung; Cheng, Hsien-Chein; Huang, Shih-Shinh; Fu, Li-Chen
2009-01-01
This work develops a new current-mode mixed signal Complementary Metal-Oxide-Semiconductor (CMOS) imager, which can capture images and simultaneously produce vehicle lane maps. The adopted lane detection algorithm, which was modified to be compatible with hardware requirements, can achieve a high recognition rate of up to approximately 96% under various weather conditions. Instead of a Personal Computer (PC) based system or embedded platform system equipped with expensive high performance chip of Reduced Instruction Set Computer (RISC) or Digital Signal Processor (DSP), the proposed imager, without extra Analog to Digital Converter (ADC) circuits to transform signals, is a compact, lower cost key-component chip. It is also an innovative component device that can be integrated into intelligent automotive lane departure systems. The chip size is 2,191.4 × 2,389.8 μm, and the package uses 40 pin Dual-In-Package (DIP). The pixel cell size is 18.45 × 21.8 μm and the core size of photodiode is 12.45 × 9.6 μm; the resulting fill factor is 29.7%.
Robertson, Stephanie; Azizpour, Hossein; Smith, Kevin; Hartman, Johan
2018-04-01
Breast cancer is the most common malignant disease in women worldwide. In recent decades, earlier diagnosis and better adjuvant therapy have substantially improved patient outcome. Diagnosis by histopathology has proven to be instrumental to guide breast cancer treatment, but new challenges have emerged as our increasing understanding of cancer over the years has revealed its complex nature. As patient demand for personalized breast cancer therapy grows, we face an urgent need for more precise biomarker assessment and more accurate histopathologic breast cancer diagnosis to make better therapy decisions. The digitization of pathology data has opened the door to faster, more reproducible, and more precise diagnoses through computerized image analysis. Software to assist diagnostic breast pathology through image processing techniques have been around for years. But recent breakthroughs in artificial intelligence (AI) promise to fundamentally change the way we detect and treat breast cancer in the near future. Machine learning, a subfield of AI that applies statistical methods to learn from data, has seen an explosion of interest in recent years because of its ability to recognize patterns in data with less need for human instruction. One technique in particular, known as deep learning, has produced groundbreaking results in many important problems including image classification and speech recognition. In this review, we will cover the use of AI and deep learning in diagnostic breast pathology, and other recent developments in digital image analysis. Copyright © 2017 Elsevier Inc. All rights reserved.
Deep Learning for Image-Based Cassava Disease Detection.
Ramcharan, Amanda; Baranowski, Kelsee; McCloskey, Peter; Ahmed, Babuali; Legg, James; Hughes, David P
2017-01-01
Cassava is the third largest source of carbohydrates for human food in the world but is vulnerable to virus diseases, which threaten to destabilize food security in sub-Saharan Africa. Novel methods of cassava disease detection are needed to support improved control which will prevent this crisis. Image recognition offers both a cost effective and scalable technology for disease detection. New deep learning models offer an avenue for this technology to be easily deployed on mobile devices. Using a dataset of cassava disease images taken in the field in Tanzania, we applied transfer learning to train a deep convolutional neural network to identify three diseases and two types of pest damage (or lack thereof). The best trained model accuracies were 98% for brown leaf spot (BLS), 96% for red mite damage (RMD), 95% for green mite damage (GMD), 98% for cassava brown streak disease (CBSD), and 96% for cassava mosaic disease (CMD). The best model achieved an overall accuracy of 93% for data not used in the training process. Our results show that the transfer learning approach for image recognition of field images offers a fast, affordable, and easily deployable strategy for digital plant disease detection.
An embedded system for face classification in infrared video using sparse representation
NASA Astrophysics Data System (ADS)
Saavedra M., Antonio; Pezoa, Jorge E.; Zarkesh-Ha, Payman; Figueroa, Miguel
2017-09-01
We propose a platform for robust face recognition in Infrared (IR) images using Compressive Sensing (CS). In line with CS theory, the classification problem is solved using a sparse representation framework, where test images are modeled by means of a linear combination of the training set. Because the training set constitutes an over-complete dictionary, we identify new images by finding their sparsest representation based on the training set, using standard l1-minimization algorithms. Unlike conventional face-recognition algorithms, we feature extraction is performed using random projections with a precomputed binary matrix, as proposed in the CS literature. This random sampling reduces the effects of noise and occlusions such as facial hair, eyeglasses, and disguises, which are notoriously challenging in IR images. Thus, the performance of our framework is robust to these noise and occlusion factors, achieving an average accuracy of approximately 90% when the UCHThermalFace database is used for training and testing purposes. We implemented our framework on a high-performance embedded digital system, where the computation of the sparse representation of IR images was performed by a dedicated hardware using a deeply pipelined architecture on an Field-Programmable Gate Array (FPGA).
Application of the ANNA neural network chip to high-speed character recognition.
Sackinger, E; Boser, B E; Bromley, J; Lecun, Y; Jackel, L D
1992-01-01
A neural network with 136000 connections for recognition of handwritten digits has been implemented using a mixed analog/digital neural network chip. The neural network chip is capable of processing 1000 characters/s. The recognition system has essentially the same rate (5%) as a simulation of the network with 32-b floating-point precision.
Personal recognition using hand shape and texture.
Kumar, Ajay; Zhang, David
2006-08-01
This paper proposes a new bimodal biometric system using feature-level fusion of hand shape and palm texture. The proposed combination is of significance since both the palmprint and hand-shape images are proposed to be extracted from the single hand image acquired from a digital camera. Several new hand-shape features that can be used to represent the hand shape and improve the performance are investigated. The new approach for palmprint recognition using discrete cosine transform coefficients, which can be directly obtained from the camera hardware, is demonstrated. None of the prior work on hand-shape or palmprint recognition has given any attention on the critical issue of feature selection. Our experimental results demonstrate that while majority of palmprint or hand-shape features are useful in predicting the subjects identity, only a small subset of these features are necessary in practice for building an accurate model for identification. The comparison and combination of proposed features is evaluated on the diverse classification schemes; naive Bayes (normal, estimated, multinomial), decision trees (C4.5, LMT), k-NN, SVM, and FFN. Although more work remains to be done, our results to date indicate that the combination of selected hand-shape and palmprint features constitutes a promising addition to the biometrics-based personal recognition systems.
Morphological feature extraction for the classification of digital images of cancerous tissues.
Thiran, J P; Macq, B
1996-10-01
This paper presents a new method for automatic recognition of cancerous tissues from an image of a microscopic section. Based on the shape and the size analysis of the observed cells, this method provides the physician with nonsubjective numerical values for four criteria of malignancy. This automatic approach is based on mathematical morphology, and more specifically on the use of Geodesy. This technique is used first to remove the background noise from the image and then to operate a segmentation of the nuclei of the cells and an analysis of their shape, their size, and their texture. From the values of the extracted criteria, an automatic classification of the image (cancerous or not) is finally operated.
Survey of Technologies for the Airport Border of the Future
2014-04-01
geometry Handwriting recognition ID cards Image classification Image enhancement Image fusion Image matching Image processing Image segmentation Iris...00 Tongue print Footstep recognition Odour recognition Retinal recognition Emotion recognition Periocular recognition Handwriting recognition Ear...recognition Palmprint recognition Hand geometry DNA matching Vein matching Ear recognition Handwriting recognition Periocular recognition Emotion
Counterfeit deterrence and digital imaging technology
NASA Astrophysics Data System (ADS)
Church, Sara E.; Fuller, Reese H.; Jaffe, Annette B.; Pagano, Lorelei W.
2000-04-01
The US government recognizes the growing problem of counterfeiting currency using digital imaging technology, as desktop systems become more sophisticated, less expensive and more prevalent. As the rate of counterfeiting with this type of equipment has grown, the need for specific prevention methods has become apparent to the banknote authorities. As a result, the Treasury Department and Federal Reserve have begun to address issues related specifically to this type of counterfeiting. The technical representatives of these agencies are taking a comprehensive approach to minimize counterfeiting using digital technology. This approach includes identification of current technology solutions for banknote recognition, data stream intervention and output marking, outreach to the hardware and software industries and enhancement of public education efforts. Other aspects include strong support and cooperation with existing international efforts to prevent counterfeiting, review and amendment of existing anti- counterfeiting legislation and investigation of currency design techniques to make faithful reproduction more difficult. Implementation of these steps and others are to lead to establishment of a formal, permanent policy to address and prevent the use of emerging technologies to counterfeit currency.
Preoperative Planning in Orthopaedic Surgery. Current Practice and Evolving Applications.
Atesok, Kivanc; Galos, David; Jazrawi, Laith M; Egol, Kenneth A
2015-12-01
Preoperative planning is an essential prerequisite for the success of orthopaedic procedures. Traditionally, the exercise has involved the written down, step by step "blueprint" of the surgical procedure. Preoperative planning of the technical aspects of the orthopaedic procedure has been performed on hardcopy radiographs using various methods such as copying the radiographic image on tracing papers to practice the planned interventions. This method has become less practical due to variability in radiographic magnification and increasing implementation of digital imaging systems. Advances in technology along with recognition of the importance of surgical safety protocols resulted in widespread changes in orthopaedic preoperative planning approaches. Nowadays, perioperative "briefings" have gained particular importance and novel planning methods have started to integrate into orthopaedic practice. These methods include using software that enables surgeons to perform preoperative planning on digital radiographs and to construct 3D digital models or prototypes of various orthopaedic pathologies from a patient's CT scans to practice preoperatively. Evidence-to-date suggests that preoperative planning and briefings are effective means of favorably influencing the outcomes of orthopaedic procedures.
One-Dimensional Signal Extraction Of Paper-Written ECG Image And Its Archiving
NASA Astrophysics Data System (ADS)
Zhang, Zhi-ni; Zhang, Hong; Zhuang, Tian-ge
1987-10-01
A method for converting paper-written electrocardiograms to one dimensional (1-D) signals for archival storage on floppy disk is presented here. Appropriate image processing techniques were employed to remove the back-ground noise inherent to ECG recorder charts and to reconstruct the ECG waveform. The entire process consists of (1) digitization of paper-written ECGs with an image processing system via a TV camera; (2) image preprocessing, including histogram filtering and binary image generation; (3) ECG feature extraction and ECG wave tracing, and (4) transmission of the processed ECG data to IBM-PC compatible floppy disks for storage and retrieval. The algorithms employed here may also be used in the recognition of paper-written EEG or EMG and may be useful in robotic vision.
Hybrid neuro-fuzzy approach for automatic vehicle license plate recognition
NASA Astrophysics Data System (ADS)
Lee, Hsi-Chieh; Jong, Chung-Shi
1998-03-01
Most currently available vehicle identification systems use techniques such as R.F., microwave, or infrared to help identifying the vehicle. Transponders are usually installed in the vehicle in order to transmit the corresponding information to the sensory system. It is considered expensive to install a transponder in each vehicle and the malfunction of the transponder will result in the failure of the vehicle identification system. In this study, novel hybrid approach is proposed for automatic vehicle license plate recognition. A system prototype is built which can be used independently or cooperating with current vehicle identification system in identifying a vehicle. The prototype consists of four major modules including the module for license plate region identification, the module for character extraction from the license plate, the module for character recognition, and the module for the SimNet neuro-fuzzy system. To test the performance of the proposed system, three hundred and eighty vehicle image samples are taken by a digital camera. The license plate recognition success rate of the prototype is approximately 91% while the character recognition success rate of the prototype is approximately 97%.
Computer Vision for Artificially Intelligent Robotic Systems
NASA Astrophysics Data System (ADS)
Ma, Chialo; Ma, Yung-Lung
1987-04-01
In this paper An Acoustic Imaging Recognition System (AIRS) will be introduced which is installed on an Intelligent Robotic System and can recognize different type of Hand tools' by Dynamic pattern recognition. The dynamic pattern recognition is approached by look up table method in this case, the method can save a lot of calculation time and it is practicable. The Acoustic Imaging Recognition System (AIRS) is consist of four parts -- position control unit, pulse-echo signal processing unit, pattern recognition unit and main control unit. The position control of AIRS can rotate an angle of ±5 degree Horizental and Vertical seperately, the purpose of rotation is to find the maximum reflection intensity area, from the distance, angles and intensity of the target we can decide the characteristic of this target, of course all the decision is target, of course all the decision is processed bye the main control unit. In Pulse-Echo Signal Process Unit, we ultilize the correlation method, to overcome the limitation of short burst of ultrasonic, because the Correlation system can transmit large time bandwidth signals and obtain their resolution and increased intensity through pulse compression in the correlation receiver. The output of correlator is sampled and transfer into digital data by u law coding method, and this data together with delay time T, angle information OH, eV will be sent into main control unit for further analysis. The recognition process in this paper, we use dynamic look up table method, in this method at first we shall set up serval recognition pattern table and then the new pattern scanned by Transducer array will be devided into serval stages and compare with the sampling table. The comparison is implemented by dynamic programing and Markovian process. All the hardware control signals, such as optimum delay time for correlator receiver, horizental and vertical rotation angle for transducer plate, are controlled by the Main Control Unit, the Main Control Unit also handles the pattern recognition process. The distance from the target to the transducer plate is limitted by the power and beam angle of transducer elements, in this AIRS Model, we use a narrow beam transducer and it's input voltage is 50V p-p. A RobOt equipped with AIRS can not only measure the distance from the target but also recognize a three dimensional image of target from the image lab of Robot memory. Indexitems, Accoustic System, Supersonic transducer, Dynamic programming, Look-up-table, Image process, pattern Recognition, Quad Tree, Quadappoach.
NASA Astrophysics Data System (ADS)
Ma, Yung-Lung; Ma, Chialo
1987-03-01
In this paper An Acoustic Imaging Recognition System (AIRS) will be introduced which is installed on an Intelligent Robotic System and can recognize different type of Hand tools' by Dynamic pattern recognition. The dynamic pattern recognition is approached by look up table method in this case, the method can save a lot of calculation time and it is practicable. The Acoustic Imaging Recognition System (AIRS) is consist of four parts _ position control unit, pulse-echo signal processing unit, pattern recognition unit and main control unit. The position control of AIRS can rotate an angle of ±5 degree Horizental and Vertical seperately, the purpose of rotation is to find the maximum reflection intensity area, from the distance, angles and intensity of the target we can decide the characteristic of this target, of course all the decision is target, of course all the decision is processed by the main control unit. In Pulse-Echo Signal Process Unit, we utilize the correlation method, to overcome the limitation of short burst of ultrasonic, because the Correlation system can transmit large time bandwidth signals and obtain their resolution and increased intensity through pulse compression in the correlation receiver. The output of correlator is sampled and transfer into digital data by p law coding method, and this data together with delay time T, angle information eH, eV will be sent into main control unit for further analysis. The recognition process in this paper, we use dynamic look up table method, in this method at first we shall set up serval recognition pattern table and then the new pattern scanned by Transducer array will be devided into serval stages and compare with the sampling table. The comparison is implemented by dynamic programing and Markovian process. All the hardware control signals, such as optimum delay time for correlator receiver, horizental and vertical rotation angle for transducer plate, are controlled by the Main Control Unit, the Main Control Unit also handles the pattern recognition process. The distance from the target to the transducer plate is limitted by the power and beam angle of transducer elements, in this AIRS Models, we use a narrow beam transducer and it's input voltage is 50V p-p. A Robot equipped with AIRS can not only measure the distance from the target but also recognize a three dimensional image of target from the image lab of Robot memory. Indexitems, Accoustic System, Supersonic transducer, Dynamic programming, Look-up-table, Image process, pattern Recognition, Quad Tree, Quadappoach.
NASA Astrophysics Data System (ADS)
Stewart, P. A. E.
1987-05-01
Present and projected applications of penetrating radiation techniques to gas turbine research and development are considered. Approaches discussed include the visualization and measurement of metal component movement using high energy X-rays, the measurement of metal temperatures using epithermal neutrons, the measurement of metal stresses using thermal neutron diffraction, and the visualization and measurement of oil and fuel systems using either cold neutron radiography or emitting isotope tomography. By selecting the radiation appropriate to the problem, the desired data can be probed for and obtained through imaging or signal acquisition, and the necessary information can then be extracted with digital image processing or knowledge based image manipulation and pattern recognition.
Convolutional Neural Networks for 1-D Many-Channel Data
Deep convolutional neural networks (CNNs) represent the state of the art in image recognition. The same properties that led to their success in that... crack detection ( 8,000 data points, 72 channels). Though the models predictive ability is limited to fitting the trend , its partial success suggests that...originally written to classify digits in the MNIST database (28 28 pixels, 1 channel), for use on 1-D acoustic data taken from experiments focused on
Image Description with Local Patterns: An Application to Face Recognition
NASA Astrophysics Data System (ADS)
Zhou, Wei; Ahrary, Alireza; Kamata, Sei-Ichiro
In this paper, we propose a novel approach for presenting the local features of digital image using 1D Local Patterns by Multi-Scans (1DLPMS). We also consider the extentions and simplifications of the proposed approach into facial images analysis. The proposed approach consists of three steps. At the first step, the gray values of pixels in image are represented as a vector giving the local neighborhood intensity distrubutions of the pixels. Then, multi-scans are applied to capture different spatial information on the image with advantage of less computation than other traditional ways, such as Local Binary Patterns (LBP). The second step is encoding the local features based on different encoding rules using 1D local patterns. This transformation is expected to be less sensitive to illumination variations besides preserving the appearance of images embedded in the original gray scale. At the final step, Grouped 1D Local Patterns by Multi-Scans (G1DLPMS) is applied to make the proposed approach computationally simpler and easy to extend. Next, we further formulate boosted algorithm to extract the most discriminant local features. The evaluated results demonstrate that the proposed approach outperforms the conventional approaches in terms of accuracy in applications of face recognition, gender estimation and facial expression.
A Dynamic Bayesian Network Based Structural Learning towards Automated Handwritten Digit Recognition
NASA Astrophysics Data System (ADS)
Pauplin, Olivier; Jiang, Jianmin
Pattern recognition using Dynamic Bayesian Networks (DBNs) is currently a growing area of study. In this paper, we present DBN models trained for classification of handwritten digit characters. The structure of these models is partly inferred from the training data of each class of digit before performing parameter learning. Classification results are presented for the four described models.
Fuzzy Logic Module of Convolutional Neural Network for Handwritten Digits Recognition
NASA Astrophysics Data System (ADS)
Popko, E. A.; Weinstein, I. A.
2016-08-01
Optical character recognition is one of the important issues in the field of pattern recognition. This paper presents a method for recognizing handwritten digits based on the modeling of convolutional neural network. The integrated fuzzy logic module based on a structural approach was developed. Used system architecture adjusted the output of the neural network to improve quality of symbol identification. It was shown that proposed algorithm was flexible and high recognition rate of 99.23% was achieved.
Automated Meteor Detection by All-Sky Digital Camera Systems
NASA Astrophysics Data System (ADS)
Suk, Tomáš; Šimberová, Stanislava
2017-12-01
We have developed a set of methods to detect meteor light traces captured by all-sky CCD cameras. Operating at small automatic observatories (stations), these cameras create a network spread over a large territory. Image data coming from these stations are merged in one central node. Since a vast amount of data is collected by the stations in a single night, robotic storage and analysis are essential to processing. The proposed methodology is adapted to data from a network of automatic stations equipped with digital fish-eye cameras and includes data capturing, preparation, pre-processing, analysis, and finally recognition of objects in time sequences. In our experiments we utilized real observed data from two stations.
Emerging Computer Media: On Image Interaction
NASA Astrophysics Data System (ADS)
Lippman, Andrew B.
1982-01-01
Emerging technologies such as inexpensive, powerful local computing, optical digital videodiscs, and the technologies of human-machine interaction are initiating a revolution in both image storage systems and image interaction systems. This paper will present a review of new approaches to computer media predicated upon three dimensional position sensing, speech recognition, and high density image storage. Examples will be shown such as the Spatial Data Management Systems wherein the free use of place results in intuitively clear retrieval systems and potentials for image association; the Movie-Map, wherein inherently static media generate dynamic views of data, and conferencing work-in-progress wherein joint processing is stressed. Application to medical imaging will be suggested, but the primary emphasis is on the general direction of imaging and reference systems. We are passing the age of simple possibility of computer graphics and image porcessing and entering the age of ready usability.
NASA Astrophysics Data System (ADS)
Cheatham, Patrick S.
1982-02-01
The term image quality can, unfortunately, apply to anything from a public relations firm's discussion to a comparison between corner drugstores' film processing. If we narrow the discussion to optical systems, we clarify the problem somewhat, but only slightly. We are still faced with a multitude of image quality measures all different, and all couched in different terminology. Optical designers speak of MTF values, digital processors talk about summations of before and after image differences, pattern recognition engineers allude to correlation values, and radar imagers use side-lobe response values measured in decibels. Further complexity is introduced by terms such as information content, bandwidth, Strehl ratios, and, of course, limiting resolution. The problem is to compare these different yardsticks and try to establish some concrete ideas about evaluation of a final image. We need to establish the image attributes which are the most important to perception of the image in question and then begin to apply the different system parameters to those attributes.
Shaffer, Franklin D.
2013-03-12
The application relates to particle trajectory recognition from a Centroid Population comprised of Centroids having an (x, y, t) or (x, y, f) coordinate. The method is applicable to visualization and measurement of particle flow fields of high particle. In one embodiment, the centroids are generated from particle images recorded on camera frames. The application encompasses digital computer systems and distribution mediums implementing the method disclosed and is particularly applicable to recognizing trajectories of particles in particle flows of high particle concentration. The method accomplishes trajectory recognition by forming Candidate Trajectory Trees and repeated searches at varying Search Velocities, such that initial search areas are set to a minimum size in order to recognize only the slowest, least accelerating particles which produce higher local concentrations. When a trajectory is recognized, the centroids in that trajectory are removed from consideration in future searches.
Automated thematic mapping and change detection of ERTS-A images
NASA Technical Reports Server (NTRS)
Gramenopoulos, N. (Principal Investigator)
1975-01-01
The author has identified the following significant results. In the first part of the investigation, spatial and spectral features were developed which were employed to automatically recognize terrain features through a clustering algorithm. In this part of the investigation, the size of the cell which is the number of digital picture elements used for computing the spatial and spectral features was varied. It was determined that the accuracy of terrain recognition decreases slowly as the cell size is reduced and coincides with increased cluster diffuseness. It was also proven that a cell size of 17 x 17 pixels when used with the clustering algorithm results in high recognition rates for major terrain classes. ERTS-1 data from five diverse geographic regions of the United States were processed through the clustering algorithm with 17 x 17 pixel cells. Simple land use maps were produced and the average terrain recognition accuracy was 82 percent.
Large-area settlement pattern recognition from Landsat-8 data
NASA Astrophysics Data System (ADS)
Wieland, Marc; Pittore, Massimiliano
2016-09-01
The study presents an image processing and analysis pipeline that combines object-based image analysis with a Support Vector Machine to derive a multi-layered settlement product from Landsat-8 data over large areas. 43 image scenes are processed over large parts of Central Asia (Southern Kazakhstan, Kyrgyzstan, Tajikistan and Eastern Uzbekistan). The main tasks tackled by this work include built-up area identification, settlement type classification and urban structure types pattern recognition. Besides commonly used accuracy assessments of the resulting map products, thorough performance evaluations are carried out under varying conditions to tune algorithm parameters and assess their applicability for the given tasks. As part of this, several research questions are being addressed. In particular the influence of the improved spatial and spectral resolution of Landsat-8 on the SVM performance to identify built-up areas and urban structure types are evaluated. Also the influence of an extended feature space including digital elevation model features is tested for mountainous regions. Moreover, the spatial distribution of classification uncertainties is analyzed and compared to the heterogeneity of the building stock within the computational unit of the segments. The study concludes that the information content of Landsat-8 images is sufficient for the tested classification tasks and even detailed urban structures could be extracted with satisfying accuracy. Freely available ancillary settlement point location data could further improve the built-up area classification. Digital elevation features and pan-sharpening could, however, not significantly improve the classification results. The study highlights the importance of dynamically tuned classifier parameters, and underlines the use of Shannon entropy computed from the soft answers of the SVM as a valid measure of the spatial distribution of classification uncertainties.
Handwritten digits recognition using HMM and PSO based on storks
NASA Astrophysics Data System (ADS)
Yan, Liao; Jia, Zhenhong; Yang, Jie; Pang, Shaoning
2010-07-01
A new method for handwritten digits recognition based on hidden markov model (HMM) and particle swarm optimization (PSO) is proposed. This method defined 24 strokes with the sense of directional, to make up for the shortage that is sensitive in choice of stating point in traditional methods, but also reduce the ambiguity caused by shakes. Make use of excellent global convergence of PSO; improving the probability of finding the optimum and avoiding local infinitesimal obviously. Experimental results demonstrate that compared with the traditional methods, the proposed method can make most of the recognition rate of handwritten digits improved.
Assessing the impact of graphical quality on automatic text recognition in digital maps
NASA Astrophysics Data System (ADS)
Chiang, Yao-Yi; Leyk, Stefan; Honarvar Nazari, Narges; Moghaddam, Sima; Tan, Tian Xiang
2016-08-01
Converting geographic features (e.g., place names) in map images into a vector format is the first step for incorporating cartographic information into a geographic information system (GIS). With the advancement in computational power and algorithm design, map processing systems have been considerably improved over the last decade. However, the fundamental map processing techniques such as color image segmentation, (map) layer separation, and object recognition are sensitive to minor variations in graphical properties of the input image (e.g., scanning resolution). As a result, most map processing results would not meet user expectations if the user does not "properly" scan the map of interest, pre-process the map image (e.g., using compression or not), and train the processing system, accordingly. These issues could slow down the further advancement of map processing techniques as such unsuccessful attempts create a discouraged user community, and less sophisticated tools would be perceived as more viable solutions. Thus, it is important to understand what kinds of maps are suitable for automatic map processing and what types of results and process-related errors can be expected. In this paper, we shed light on these questions by using a typical map processing task, text recognition, to discuss a number of map instances that vary in suitability for automatic processing. We also present an extensive experiment on a diverse set of scanned historical maps to provide measures of baseline performance of a standard text recognition tool under varying map conditions (graphical quality) and text representations (that can vary even within the same map sheet). Our experimental results help the user understand what to expect when a fully or semi-automatic map processing system is used to process a scanned map with certain (varying) graphical properties and complexities in map content.
Wang, Xuefeng
2017-01-01
This paper presents a survey on a system that uses digital image processing techniques to identify anthracnose and powdery mildew diseases of sandalwood from digital images. Our main objective is researching the most suitable identification technology for the anthracnose and powdery mildew diseases of the sandalwood leaf, which provides algorithmic support for the real-time machine judgment of the health status and disease level of sandalwood. We conducted real-time monitoring of Hainan sandalwood leaves with varying severity levels of anthracnose and powdery mildew beginning in March 2014. We used image segmentation, feature extraction and digital image classification and recognition technology to carry out a comparative experimental study for the image analysis of powdery mildew, anthracnose disease and healthy leaves in the field. Performing the actual test for a large number of diseased leaves pointed to three conclusions: (1) Distinguishing effects of BP (Back Propagation) neural network method, in all kinds of classical methods, for sandalwood leaf anthracnose and powdery mildew disease are relatively good; the size of the lesion areas were closest to the actual. (2) The differences between two diseases can be shown well by the shape feature, color feature and texture feature of the disease image. (3) Identifying and diagnosing the diseased leaves have ideal results by SVM, which is based on radial basis kernel function. The identification rate of the anthracnose and healthy leaves was 92% respectively, and that of powdery mildew was 84%. Disease identification technology lays the foundation for remote monitoring disease diagnosis, preparing for remote transmission of the disease images, which is a very good guide and reference for further research of the disease identification and diagnosis system in sandalwood and other species of trees. PMID:28749977
Wu, Chunyan; Wang, Xuefeng
2017-01-01
This paper presents a survey on a system that uses digital image processing techniques to identify anthracnose and powdery mildew diseases of sandalwood from digital images. Our main objective is researching the most suitable identification technology for the anthracnose and powdery mildew diseases of the sandalwood leaf, which provides algorithmic support for the real-time machine judgment of the health status and disease level of sandalwood. We conducted real-time monitoring of Hainan sandalwood leaves with varying severity levels of anthracnose and powdery mildew beginning in March 2014. We used image segmentation, feature extraction and digital image classification and recognition technology to carry out a comparative experimental study for the image analysis of powdery mildew, anthracnose disease and healthy leaves in the field. Performing the actual test for a large number of diseased leaves pointed to three conclusions: (1) Distinguishing effects of BP (Back Propagation) neural network method, in all kinds of classical methods, for sandalwood leaf anthracnose and powdery mildew disease are relatively good; the size of the lesion areas were closest to the actual. (2) The differences between two diseases can be shown well by the shape feature, color feature and texture feature of the disease image. (3) Identifying and diagnosing the diseased leaves have ideal results by SVM, which is based on radial basis kernel function. The identification rate of the anthracnose and healthy leaves was 92% respectively, and that of powdery mildew was 84%. Disease identification technology lays the foundation for remote monitoring disease diagnosis, preparing for remote transmission of the disease images, which is a very good guide and reference for further research of the disease identification and diagnosis system in sandalwood and other species of trees.
Composition of a dewarped and enhanced document image from two view images.
Koo, Hyung Il; Kim, Jinho; Cho, Nam Ik
2009-07-01
In this paper, we propose an algorithm to compose a geometrically dewarped and visually enhanced image from two document images taken by a digital camera at different angles. Unlike the conventional works that require special equipment or assumptions on the contents of books or complicated image acquisition steps, we estimate the unfolded book or document surface from the corresponding points between two images. For this purpose, the surface and camera matrices are estimated using structure reconstruction, 3-D projection analysis, and random sample consensus-based curve fitting with the cylindrical surface model. Because we do not need any assumption on the contents of books, the proposed method can be applied not only to optical character recognition (OCR), but also to the high-quality digitization of pictures in documents. In addition to the dewarping for a structurally better image, image mosaic is also performed for further improving the visual quality. By finding better parts of images (with less out of focus blur and/or without specular reflections) from either of views, we compose a better image by stitching and blending them. These processes are formulated as energy minimization problems that can be solved using a graph cut method. Experiments on many kinds of book or document images show that the proposed algorithm robustly works and yields visually pleasing results. Also, the OCR rate of the resulting image is comparable to that of document images from a flatbed scanner.
NASA Astrophysics Data System (ADS)
Chavez-Sanchez, Cristina M.; Alvarez-Borrego, Josue; Montoya-Rodriguez, L.; Garcia-Gasca, A.; Fajer Avila, Emma J.; Pacheco-Marges, R.
2004-10-01
White spot syndrome (WSSV) is a viral disease which affects many crustacean species including commercial shrimps. Adequate, precise and quick methods to diagnose on time the presence of the disease in order to apply different strategies to avoid the dispersion and to reduce mortalities is necessary. Histopathology is an important diagnostic method. However, histopathology has the problem that requires time to prepare the histological slides and time to arrive to some diagnosis because this depend on the nature of the tissues, the pathogen(s) to find, the number of organisms, number of slides to analyze and the skill of the technician. This paper try to demonstrate the sensibility of one digital system of processing and recognition of images using color correlation with phase filters, to identify inclusion bodies of WSSV. Infected tissues were processed to obtain histological slides and to verify that the inclusion bodies observed were of WSV, in situ hybridization were carried out. The sensibility results of the recognition of the inclusion bodies of WSSV with the color correlation program was 86.1%. The highest percentage of recognition was in nervous system and tegument glands with 100%. The values in the stomach epithelium and heart tissue was 78.45% of recognition. Tissues with the lowest recognition values were lymphoid organ and hematopoietic tissue. It is necessary further studies to increase the sensibility and to obtain the specificity.
Reading recognition of pointer meter based on pattern recognition and dynamic three-points on a line
NASA Astrophysics Data System (ADS)
Zhang, Yongqiang; Ding, Mingli; Fu, Wuyifang; Li, Yongqiang
2017-03-01
Pointer meters are frequently applied to industrial production for they are directly readable. They should be calibrated regularly to ensure the precision of the readings. Currently the method of manual calibration is most frequently adopted to accomplish the verification of the pointer meter, and professional skills and subjective judgment may lead to big measurement errors and poor reliability and low efficiency, etc. In the past decades, with the development of computer technology, the skills of machine vision and digital image processing have been applied to recognize the reading of the dial instrument. In terms of the existing recognition methods, all the parameters of dial instruments are supposed to be the same, which is not the case in practice. In this work, recognition of pointer meter reading is regarded as an issue of pattern recognition. We obtain the features of a small area around the detected point, make those features as a pattern, divide those certified images based on Gradient Pyramid Algorithm, train a classifier with the support vector machine (SVM) and complete the pattern matching of the divided mages. Then we get the reading of the pointer meter precisely under the theory of dynamic three points make a line (DTPML), which eliminates the error caused by tiny differences of the panels. Eventually, the result of the experiment proves that the proposed method in this work is superior to state-of-the-art works.
Impaired processing of self-face recognition in anorexia nervosa.
Hirot, France; Lesage, Marine; Pedron, Lya; Meyer, Isabelle; Thomas, Pierre; Cottencin, Olivier; Guardia, Dewi
2016-03-01
Body image disturbances and massive weight loss are major clinical symptoms of anorexia nervosa (AN). The aim of the present study was to examine the influence of body changes and eating attitudes on self-face recognition ability in AN. Twenty-seven subjects suffering from AN and 27 control participants performed a self-face recognition task (SFRT). During the task, digital morphs between their own face and a gender-matched unfamiliar face were presented in a random sequence. Participants' self-face recognition failures, cognitive flexibility, body concern and eating habits were assessed with the Self-Face Recognition Questionnaire (SFRQ), Trail Making Test (TMT), Body Shape Questionnaire (BSQ) and Eating Disorder Inventory-2 (EDI-2), respectively. Subjects suffering from AN exhibited significantly greater difficulties than control participants in identifying their own face (p = 0.028). No significant difference was observed between the two groups for TMT (all p > 0.1, non-significant). Regarding predictors of self-face recognition skills, there was a negative correlation between SFRT and body mass index (p = 0.01) and a positive correlation between SFRQ and EDI-2 (p < 0.001) or BSQ (p < 0.001). Among factors involved, nutritional status and intensity of eating disorders could play a part in impaired self-face recognition.
Scene Analysis: Non-Linear Spatial Filtering for Automatic Target Detection.
1982-12-01
In this thesis, a method for two-dimensional pattern recognition was developed and tested. The method included a global search scheme for candidate...test global switch TYPEO Creating negative video file only.W 11=0 12=256 13=512 14=768 GO 70 2 1 TYPE" Creating negative and horizontally flipped video...purpose was to develop a base of image processing software for the AFIT Digital Signal Processing Laboratory NOVA- ECLIPSE minicomputer system, for
Shape in Picture: Mathematical Description of Shape in Grey-Level Images
1992-09-11
representation is scale-space, derived frrr- the linear isotropic diffusion equation; recently other types of equations have been considered. Multiscale...recognition of dimensions in the general case of an arbitrary denominator is similar to that just explained. 3 Linear Inequalities in the Two-Dimensional...solid region containing all pixels of the space, whose coordinates satisfy a linear inequality. A Um C scspt fr Digital Geometry 41 s a a v--’ -0 7 O
Colorimetric Recognition of Aldehydes and Ketones.
Li, Zheng; Fang, Ming; LaGasse, Maria K; Askim, Jon R; Suslick, Kenneth S
2017-08-07
A colorimetric sensor array has been designed for the identification of and discrimination among aldehydes and ketones in vapor phase. Due to rapid chemical reactions between the solid-state sensor elements and gaseous analytes, distinct color difference patterns were produced and digitally imaged for chemometric analysis. The sensor array was developed from classical spot tests using aniline and phenylhydrazine dyes that enable molecular recognition of a wide variety of aliphatic or aromatic aldehydes and ketones, as demonstrated by hierarchical cluster, principal component, and support vector machine analyses. The aldehyde/ketone-specific sensors were further employed for differentiation among and identification of ten liquor samples (whiskies, brandy, vodka) and ethanol controls, showing its potential applications in the beverage industry. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Recognition of Roasted Coffee Bean Levels using Image Processing and Neural Network
NASA Astrophysics Data System (ADS)
Nasution, T. H.; Andayani, U.
2017-03-01
The coffee beans roast levels have some characteristics. However, some people cannot recognize the coffee beans roast level. In this research, we propose to design a method to recognize the coffee beans roast level of images digital by processing the image and classifying with backpropagation neural network. The steps consist of how to collect the images data with image acquisition, pre-processing, feature extraction using Gray Level Co-occurrence Matrix (GLCM) method and finally normalization of data extraction using decimal scaling features. The values of decimal scaling features become an input of classifying in backpropagation neural network. We use the method of backpropagation to recognize the coffee beans roast levels. The results showed that the proposed method is able to identify the coffee roasts beans level with an accuracy of 97.5%.
Recognition of simulated cyanosis by color-vision-normal and color-vision-deficient subjects.
Dain, Stephen J
2014-04-01
There are anecdotal reports that the recognition of cyanosis is difficult for some color-deficient observers. The chromaticity changes of blood with oxygenation in vitro lie close to the dichromatic confusion lines. The chromaticity changes of lips and nail beds measured in vivo are also generally aligned in the same way. Experiments involving visual assessment of cyanosis in vivo are fraught with technical and ethical difficulties A single lower face image of a healthy individual was digitally altered to produce levels of simulated cyanosis. The color change is essentially one of saturation. Some images with other color changes were also included to ensure that there was no propensity to identify those as cyanosed. The images were assessed for reality by a panel of four instructors from the NSW Ambulance Service training section. The images were displayed singly and the observer was required to identify if the person was cyanosed or not. Color normal subjects comprised 32 experienced ambulance officers and 27 new recruits. Twenty-seven color deficient subjects (non-NSW Ambulance Service) were examined. The recruits were less accurate and slower at identifying the cyanosed images and the color vision deficient were less accurate and slower still. The identification of cyanosis is a skill that improves with training and is adversely affected in color deficient observers.
3D interactive augmented reality-enhanced digital learning systems for mobile devices
NASA Astrophysics Data System (ADS)
Feng, Kai-Ten; Tseng, Po-Hsuan; Chiu, Pei-Shuan; Yang, Jia-Lin; Chiu, Chun-Jie
2013-03-01
With enhanced processing capability of mobile platforms, augmented reality (AR) has been considered a promising technology for achieving enhanced user experiences (UX). Augmented reality is to impose virtual information, e.g., videos and images, onto a live-view digital display. UX on real-world environment via the display can be e ectively enhanced with the adoption of interactive AR technology. Enhancement on UX can be bene cial for digital learning systems. There are existing research works based on AR targeting for the design of e-learning systems. However, none of these work focuses on providing three-dimensional (3-D) object modeling for en- hanced UX based on interactive AR techniques. In this paper, the 3-D interactive augmented reality-enhanced learning (IARL) systems will be proposed to provide enhanced UX for digital learning. The proposed IARL systems consist of two major components, including the markerless pattern recognition (MPR) for 3-D models and velocity-based object tracking (VOT) algorithms. Realistic implementation of proposed IARL system is conducted on Android-based mobile platforms. UX on digital learning can be greatly improved with the adoption of proposed IARL systems.
Thibodeau, Linda
2014-06-01
The purpose of this study was to compare the benefits of 3 types of remote microphone hearing assistance technology (HAT), adaptive digital broadband, adaptive frequency modulation (FM), and fixed FM, through objective and subjective measures of speech recognition in clinical and real-world settings. Participants included 11 adults, ages 16 to 78 years, with primarily moderate-to-severe bilateral hearing impairment (HI), who wore binaural behind-the-ear hearing aids; and 15 adults, ages 18 to 30 years, with normal hearing. Sentence recognition in quiet and in noise and subjective ratings were obtained in 3 conditions of wireless signal processing. Performance by the listeners with HI when using the adaptive digital technology was significantly better than that obtained with the FM technology, with the greatest benefits at the highest noise levels. The majority of listeners also preferred the digital technology when listening in a real-world noisy environment. The wireless technology allowed persons with HI to surpass persons with normal hearing in speech recognition in noise, with the greatest benefit occurring with adaptive digital technology. The use of adaptive digital technology combined with speechreading cues would allow persons with HI to engage in communication in environments that would have otherwise not been possible with traditional wireless technology.
TreeRipper web application: towards a fully automated optical tree recognition software.
Hughes, Joseph
2011-05-20
Relationships between species, genes and genomes have been printed as trees for over a century. Whilst this may have been the best format for exchanging and sharing phylogenetic hypotheses during the 20th century, the worldwide web now provides faster and automated ways of transferring and sharing phylogenetic knowledge. However, novel software is needed to defrost these published phylogenies for the 21st century. TreeRipper is a simple website for the fully-automated recognition of multifurcating phylogenetic trees (http://linnaeus.zoology.gla.ac.uk/~jhughes/treeripper/). The program accepts a range of input image formats (PNG, JPG/JPEG or GIF). The underlying command line c++ program follows a number of cleaning steps to detect lines, remove node labels, patch-up broken lines and corners and detect line edges. The edge contour is then determined to detect the branch length, tip label positions and the topology of the tree. Optical Character Recognition (OCR) is used to convert the tip labels into text with the freely available tesseract-ocr software. 32% of images meeting the prerequisites for TreeRipper were successfully recognised, the largest tree had 115 leaves. Despite the diversity of ways phylogenies have been illustrated making the design of a fully automated tree recognition software difficult, TreeRipper is a step towards automating the digitization of past phylogenies. We also provide a dataset of 100 tree images and associated tree files for training and/or benchmarking future software. TreeRipper is an open source project licensed under the GNU General Public Licence v3.
A telecommunications journey rural health network.
Moore, Joe
2012-01-01
Utilizing a multi-gigabit statewide fiber healthcare network, Radiology Consultants of Iowa (RCI) set out to provide instantaneous service to their rural, critical access, hospital partners. RCIs idea was to assemble a collection of technologies and services that would even out workflow, reduce time on the road, and provide superior service. These technologies included PACS, voice recognition enabled dictation, HL7 interface technology, an imaging system for digitizing paper and prior films, and modern communication networks. The Iowa Rural Health Telecommunication Project was undertaken to form a system that all critical access hospitals would participate in, allowing RCI radiologists the efficiency of "any image, anywhere, anytime".
LANDSAT and radar mapping of intrusive rocks in SE-Brazil
NASA Technical Reports Server (NTRS)
Parada, N. D. J. (Principal Investigator); Dossantos, A. R.; Dosanjos, C. E.; Moreira, J. C.; Barbosa, M. P.; Veneziani, P.
1982-01-01
The feasibility of intrusive rock mapping was investigated and criteria for regional geological mapping established at the scale of 1:500,00 in polycyclic and polymetamorphic areas using the logic method of photointerpretation of LANDSAT imagery and radar from the RADAMBRASIL project. The spectral behavior of intrusive rocks, was evaluated using the interactive multispectral image analysis system (Image-100). The region of Campos (city) in northern Rio de Janeiro State was selected as the study area and digital imagery processing and pattern recognition techniques were applied. Various maps at the 2:250,000 scale were obtained to evaluate the results of automatic data processing.
Dynamic Features for Iris Recognition.
da Costa, R M; Gonzaga, A
2012-08-01
The human eye is sensitive to visible light. Increasing illumination on the eye causes the pupil of the eye to contract, while decreasing illumination causes the pupil to dilate. Visible light causes specular reflections inside the iris ring. On the other hand, the human retina is less sensitive to near infra-red (NIR) radiation in the wavelength range from 800 nm to 1400 nm, but iris detail can still be imaged with NIR illumination. In order to measure the dynamic movement of the human pupil and iris while keeping the light-induced reflexes from affecting the quality of the digitalized image, this paper describes a device based on the consensual reflex. This biological phenomenon contracts and dilates the two pupils synchronously when illuminating one of the eyes by visible light. In this paper, we propose to capture images of the pupil of one eye using NIR illumination while illuminating the other eye using a visible-light pulse. This new approach extracts iris features called "dynamic features (DFs)." This innovative methodology proposes the extraction of information about the way the human eye reacts to light, and to use such information for biometric recognition purposes. The results demonstrate that these features are discriminating features, and, even using the Euclidean distance measure, an average accuracy of recognition of 99.1% was obtained. The proposed methodology has the potential to be "fraud-proof," because these DFs can only be extracted from living irises.
Correlation applied to the recognition of regular geometric figures
NASA Astrophysics Data System (ADS)
Lasso, William; Morales, Yaileth; Vega, Fabio; Díaz, Leonardo; Flórez, Daniel; Torres, Cesar
2013-11-01
It developed a system capable of recognizing of regular geometric figures, the images are taken by the software automatically through a process of validating the presence of figure to the camera lens, the digitized image is compared with a database that contains previously images captured, to subsequently be recognized and finally identified using sonorous words referring to the name of the figure identified. The contribution of system set out is the fact that the acquisition of data is done in real time and using a spy smart glasses with usb interface offering an system equally optimal but much more economical. This tool may be useful as a possible application for visually impaired people can get information of surrounding environment.
High-speed railway real-time localization auxiliary method based on deep neural network
NASA Astrophysics Data System (ADS)
Chen, Dongjie; Zhang, Wensheng; Yang, Yang
2017-11-01
High-speed railway intelligent monitoring and management system is composed of schedule integration, geographic information, location services, and data mining technology for integration of time and space data. Assistant localization is a significant submodule of the intelligent monitoring system. In practical application, the general access is to capture the image sequences of the components by using a high-definition camera, digital image processing technique and target detection, tracking and even behavior analysis method. In this paper, we present an end-to-end character recognition method based on a deep CNN network called YOLO-toc for high-speed railway pillar plate number. Different from other deep CNNs, YOLO-toc is an end-to-end multi-target detection framework, furthermore, it exhibits a state-of-art performance on real-time detection with a nearly 50fps achieved on GPU (GTX960). Finally, we realize a real-time but high-accuracy pillar plate number recognition system and integrate natural scene OCR into a dedicated classification YOLO-toc model.
Ultra wide band 3-D cross section (RCS) holography
NASA Astrophysics Data System (ADS)
Collins, H. D.; Hall, T. E.
1992-07-01
Ultra wide band impulse holography is an exciting new concept for predictive radar cross section (RCS) evaluation employing near-field measurements. Reconstruction of the near-field hologram data maps the target's scattering areas, and uniquely identifies the 'hot spot' locations on the target. In addition, the target and calibration sphere's plane wave angular spectrums are computed (via digital algorithm) and used to generate the target's far-field RCS values in three dimensions for each frequency component in the impulse. Thin and thick targets are defined in terms of their near-field amplitude variations in range. Range gating and computer holographic techniques are applied to correct these variations. Preliminary experimental results on various targets verify the concept of RCS holography. The unique 3-D presentation (i.e., typically containing 524,288 RCS values for a 1024 (times) 512 sampled aperture for every frequency component) illustrates the efficacy of target recognition in terms of its far-field plane wave angular spectrum image. RCS images can then be viewed at different angles for target recognition, etc.
Techniques for generation of control and guidance signals derived from optical fields, part 2
NASA Technical Reports Server (NTRS)
Hemami, H.; Mcghee, R. B.; Gardner, S. R.
1971-01-01
The development is reported of a high resolution technique for the detection and identification of landmarks from spacecraft optical fields. By making use of nonlinear regression analysis, a method is presented whereby a sequence of synthetic images produced by a digital computer can be automatically adjusted to provide a least squares approximation to a real image. The convergence of the method is demonstrated by means of a computer simulation for both elliptical and rectangular patterns. Statistical simulation studies with elliptical and rectangular patterns show that the computational techniques developed are able to at least match human pattern recognition capabilities, even in the presence of large amounts of noise. Unlike most pattern recognition techniques, this ability is unaffected by arbitrary pattern rotation, translation, and scale change. Further development of the basic approach may eventually allow a spacecraft or robot vehicle to be provided with an ability to very accurately determine its spatial relationship to arbitrary known objects within its optical field of view.
Neuromorphic Hardware Architecture Using the Neural Engineering Framework for Pattern Recognition.
Wang, Runchun; Thakur, Chetan Singh; Cohen, Gregory; Hamilton, Tara Julia; Tapson, Jonathan; van Schaik, Andre
2017-06-01
We present a hardware architecture that uses the neural engineering framework (NEF) to implement large-scale neural networks on field programmable gate arrays (FPGAs) for performing massively parallel real-time pattern recognition. NEF is a framework that is capable of synthesising large-scale cognitive systems from subnetworks and we have previously presented an FPGA implementation of the NEF that successfully performs nonlinear mathematical computations. That work was developed based on a compact digital neural core, which consists of 64 neurons that are instantiated by a single physical neuron using a time-multiplexing approach. We have now scaled this approach up to build a pattern recognition system by combining identical neural cores together. As a proof of concept, we have developed a handwritten digit recognition system using the MNIST database and achieved a recognition rate of 96.55%. The system is implemented on a state-of-the-art FPGA and can process 5.12 million digits per second. The architecture and hardware optimisations presented offer high-speed and resource-efficient means for performing high-speed, neuromorphic, and massively parallel pattern recognition and classification tasks.
Vision communications based on LED array and imaging sensor
NASA Astrophysics Data System (ADS)
Yoo, Jong-Ho; Jung, Sung-Yoon
2012-11-01
In this paper, we propose a brand new communication concept, called as "vision communication" based on LED array and image sensor. This system consists of LED array as a transmitter and digital device which include image sensor such as CCD and CMOS as receiver. In order to transmit data, the proposed communication scheme simultaneously uses the digital image processing and optical wireless communication scheme. Therefore, the cognitive communication scheme is possible with the help of recognition techniques used in vision system. By increasing data rate, our scheme can use LED array consisting of several multi-spectral LEDs. Because arranged each LED can emit multi-spectral optical signal such as visible, infrared and ultraviolet light, the increase of data rate is possible similar to WDM and MIMO skills used in traditional optical and wireless communications. In addition, this multi-spectral capability also makes it possible to avoid the optical noises in communication environment. In our vision communication scheme, the data packet is composed of Sync. data and information data. Sync. data is used to detect the transmitter area and calibrate the distorted image snapshots obtained by image sensor. By making the optical rate of LED array be same with the frame rate (frames per second) of image sensor, we can decode the information data included in each image snapshot based on image processing and optical wireless communication techniques. Through experiment based on practical test bed system, we confirm the feasibility of the proposed vision communications based on LED array and image sensor.
NASA Astrophysics Data System (ADS)
Cheremkhin, Pavel A.; Evtikhiev, Nikolay N.; Krasnov, Vitaly V.; Rodin, Vladislav G.; Starikov, Sergey N.
2015-01-01
Digital holography is technique which includes recording of interference pattern with digital photosensor, processing of obtained holographic data and reconstruction of object wavefront. Increase of signal-to-noise ratio (SNR) of reconstructed digital holograms is especially important in such fields as image encryption, pattern recognition, static and dynamic display of 3D scenes, and etc. In this paper compensation of photosensor light spatial noise portrait (LSNP) for increase of SNR of reconstructed digital holograms is proposed. To verify the proposed method, numerical experiments with computer generated Fresnel holograms with resolution equal to 512×512 elements were performed. Simulation of shots registration with digital camera Canon EOS 400D was performed. It is shown that solo use of the averaging over frames method allows to increase SNR only up to 4 times, and further increase of SNR is limited by spatial noise. Application of the LSNP compensation method in conjunction with the averaging over frames method allows for 10 times SNR increase. This value was obtained for LSNP measured with 20 % error. In case of using more accurate LSNP, SNR can be increased up to 20 times.
3-D Object Recognition from Point Cloud Data
NASA Astrophysics Data System (ADS)
Smith, W.; Walker, A. S.; Zhang, B.
2011-09-01
The market for real-time 3-D mapping includes not only traditional geospatial applications but also navigation of unmanned autonomous vehicles (UAVs). Massively parallel processes such as graphics processing unit (GPU) computing make real-time 3-D object recognition and mapping achievable. Geospatial technologies such as digital photogrammetry and GIS offer advanced capabilities to produce 2-D and 3-D static maps using UAV data. The goal is to develop real-time UAV navigation through increased automation. It is challenging for a computer to identify a 3-D object such as a car, a tree or a house, yet automatic 3-D object recognition is essential to increasing the productivity of geospatial data such as 3-D city site models. In the past three decades, researchers have used radiometric properties to identify objects in digital imagery with limited success, because these properties vary considerably from image to image. Consequently, our team has developed software that recognizes certain types of 3-D objects within 3-D point clouds. Although our software is developed for modeling, simulation and visualization, it has the potential to be valuable in robotics and UAV applications. The locations and shapes of 3-D objects such as buildings and trees are easily recognizable by a human from a brief glance at a representation of a point cloud such as terrain-shaded relief. The algorithms to extract these objects have been developed and require only the point cloud and minimal human inputs such as a set of limits on building size and a request to turn on a squaring option. The algorithms use both digital surface model (DSM) and digital elevation model (DEM), so software has also been developed to derive the latter from the former. The process continues through the following steps: identify and group 3-D object points into regions; separate buildings and houses from trees; trace region boundaries; regularize and simplify boundary polygons; construct complex roofs. Several case studies have been conducted using a variety of point densities, terrain types and building densities. The results have been encouraging. More work is required for better processing of, for example, forested areas, buildings with sides that are not at right angles or are not straight, and single trees that impinge on buildings. Further work may also be required to ensure that the buildings extracted are of fully cartographic quality. A first version will be included in production software later in 2011. In addition to the standard geospatial applications and the UAV navigation, the results have a further advantage: since LiDAR data tends to be accurately georeferenced, the building models extracted can be used to refine image metadata whenever the same buildings appear in imagery for which the GPS/IMU values are poorer than those for the LiDAR.
Computerized morphometry as an aid in distinguishing recurrent versus nonrecurrent meningiomas.
Noy, Shawna; Vlodavsky, Euvgeni; Klorin, Geula; Drumea, Karen; Ben Izhak, Ofer; Shor, Eli; Sabo, Edmond
2011-06-01
To use novel digital and morphometric methods to identify variables able to better predict the recurrence of intracranial meningiomas. Histologic images from 30 previously diagnosed meningioma tumors that recurred over 10 years of follow-up were consecutively selected from the Rambam Pathology Archives. Images were captured and morphometrically analyzed. Novel algorithms of digital pattern recognition using Fourier transformation and fractal and nuclear texture analyses were applied to evaluate the overall growth pattern complexity of the tumors, as well as the chromatin texture of individual tumor nuclei. The extracted parameters were then correlated with patient prognosis. Kaplan-Meier analyses revealed statistically significant associations between tumor morphometric parameters and recurrence times. Tumors with less nuclear orientation, more nuclear density, higher fractal dimension, and less regular chromatin textures tended to recur faster than those with a higher degree of nuclear order, less pattern complexity, lower density, and more homogeneous chromatin nuclear textures (p < 0.01). To our knowledge, these digital morphometric methods were used for the first time to accurately predict tumor recurrence in patients with intracranial meningiomas. The use of these methods may bring additional valuable information to the clinician regarding the optimal management of these patients.
Reading handprinted addresses on IRS tax forms
NASA Astrophysics Data System (ADS)
Ramanaprasad, Vemulapati; Shin, Yong-Chul; Srihari, Sargur N.
1996-03-01
The hand-printed address recognition system described in this paper is a part of the Name and Address Block Reader (NABR) system developed by the Center of Excellence for Document Analysis and Recognition (CEDAR). NABR is currently being used by the IRS to read address blocks (hand-print as well as machine-print) on fifteen different tax forms. Although machine- print address reading was relatively straightforward, hand-print address recognition has posed some special challenges due to demands on processing speed (with an expected throughput of 8450 forms/hour) and recognition accuracy. We discuss various subsystems involved in hand- printed address recognition, including word segmentation, word recognition, digit segmentation, and digit recognition. We also describe control strategies used to make effective use of these subsystems to maximize recognition accuracy. We present system performance on 931 address blocks in recognizing various fields, such as city, state, ZIP Code, street number and name, and personal names.
Higher-order neural network software for distortion invariant object recognition
NASA Technical Reports Server (NTRS)
Reid, Max B.; Spirkovska, Lilly
1991-01-01
The state-of-the-art in pattern recognition for such applications as automatic target recognition and industrial robotic vision relies on digital image processing. We present a higher-order neural network model and software which performs the complete feature extraction-pattern classification paradigm required for automatic pattern recognition. Using a third-order neural network, we demonstrate complete, 100 percent accurate invariance to distortions of scale, position, and in-plate rotation. In a higher-order neural network, feature extraction is built into the network, and does not have to be learned. Only the relatively simple classification step must be learned. This is key to achieving very rapid training. The training set is much smaller than with standard neural network software because the higher-order network only has to be shown one view of each object to be learned, not every possible view. The software and graphical user interface run on any Sun workstation. Results of the use of the neural software in autonomous robotic vision systems are presented. Such a system could have extensive application in robotic manufacturing.
Automatic violence detection in digital movies
NASA Astrophysics Data System (ADS)
Fischer, Stephan
1996-11-01
Research on computer-based recognition of violence is scant. We are working on the automatic recognition of violence in digital movies, a first step towards the goal of a computer- assisted system capable of protecting children against TV programs containing a great deal of violence. In the video domain a collision detection and a model-mapping to locate human figures are run, while the creation and comparison of fingerprints to find certain events are run int he audio domain. This article centers on the recognition of fist- fights in the video domain and on the recognition of shots, explosions and cries in the audio domain.
Skin image retrieval using Gabor wavelet texture feature.
Ou, X; Pan, W; Zhang, X; Xiao, P
2016-12-01
Skin imaging plays a key role in many clinical studies. We have used many skin imaging techniques, including the recently developed capacitive contact skin imaging based on fingerprint sensors. The aim of this study was to develop an effective skin image retrieval technique using Gabor wavelet transform, which can be used on different types of skin images, but with a special focus on skin capacitive contact images. Content-based image retrieval (CBIR) is a useful technology to retrieve stored images from database by supplying query images. In a typical CBIR, images are retrieved based on colour, shape, texture, etc. In this study, texture feature is used for retrieving skin images, and Gabor wavelet transform is used for texture feature description and extraction. The results show that the Gabor wavelet texture features can work efficiently on different types of skin images. Although Gabor wavelet transform is slower compared with other image retrieval techniques, such as principal component analysis (PCA) and grey-level co-occurrence matrix (GLCM), Gabor wavelet transform is the best for retrieving skin capacitive contact images and facial images with different orientations. Gabor wavelet transform can also work well on facial images with different expressions and skin cancer/disease images. We have developed an effective skin image retrieval method based on Gabor wavelet transform, that it is useful for retrieving different types of images, namely digital colour face images, digital colour skin cancer and skin disease images, and particularly greyscale skin capacitive contact images. Gabor wavelet transform can also be potentially useful for face recognition (with different orientation and expressions) and skin cancer/disease diagnosis. © 2016 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
SAR processing using SHARC signal processing systems
NASA Astrophysics Data System (ADS)
Huxtable, Barton D.; Jackson, Christopher R.; Skaron, Steve A.
1998-09-01
Synthetic aperture radar (SAR) is uniquely suited to help solve the Search and Rescue problem since it can be utilized either day or night and through both dense fog or thick cloud cover. Other papers in this session, and in this session in 1997, describe the various SAR image processing algorithms that are being developed and evaluated within the Search and Rescue Program. All of these approaches to using SAR data require substantial amounts of digital signal processing: for the SAR image formation, and possibly for the subsequent image processing. In recognition of the demanding processing that will be required for an operational Search and Rescue Data Processing System (SARDPS), NASA/Goddard Space Flight Center and NASA/Stennis Space Center are conducting a technology demonstration utilizing SHARC multi-chip modules from Boeing to perform SAR image formation processing.
NASA Astrophysics Data System (ADS)
Barros, George O.; Navarro, Brenda; Duarte, Angelo; Dos-Santos, Washington L. C.
2017-04-01
PathoSpotter is a computational system designed to assist pathologists in teaching about and researching kidney diseases. PathoSpotter-K is the version that was developed to detect nephrological lesions in digital images of kidneys. Here, we present the results obtained using the first version of PathoSpotter-K, which uses classical image processing and pattern recognition methods to detect proliferative glomerular lesions with an accuracy of 88.3 ± 3.6%. Such performance is only achieved by similar systems if they use images of cell in contexts that are much less complex than the glomerular structure. The results indicate that the approach can be applied to the development of systems designed to train pathology students and to assist pathologists in determining large-scale clinicopathological correlations in morphological research.
New approach for segmentation and recognition of handwritten numeral strings
NASA Astrophysics Data System (ADS)
Sadri, Javad; Suen, Ching Y.; Bui, Tien D.
2004-12-01
In this paper, we propose a new system for segmentation and recognition of unconstrained handwritten numeral strings. The system uses a combination of foreground and background features for segmentation of touching digits. The method introduces new algorithms for traversing the top/bottom-foreground-skeletons of the touched digits, and for finding feature points on these skeletons, and matching them to build all the segmentation paths. For the first time a genetic representation is used to show all the segmentation hypotheses. Our genetic algorithm tries to search and evolve the population of candidate segmentations and finds the one with the highest confidence for its segmentation and recognition. We have also used a new method for feature extraction which lowers the variations in the shapes of the digits, and then a MLP neural network is utilized to produce the labels and confidence values for those digits. The NIST SD19 and CENPARMI databases are used for evaluating the system. Our system can get a correct segmentation-recognition rate of 96.07% with rejection rate of 2.61% which compares favorably with those that exist in the literature.
New approach for segmentation and recognition of handwritten numeral strings
NASA Astrophysics Data System (ADS)
Sadri, Javad; Suen, Ching Y.; Bui, Tien D.
2005-01-01
In this paper, we propose a new system for segmentation and recognition of unconstrained handwritten numeral strings. The system uses a combination of foreground and background features for segmentation of touching digits. The method introduces new algorithms for traversing the top/bottom-foreground-skeletons of the touched digits, and for finding feature points on these skeletons, and matching them to build all the segmentation paths. For the first time a genetic representation is used to show all the segmentation hypotheses. Our genetic algorithm tries to search and evolve the population of candidate segmentations and finds the one with the highest confidence for its segmentation and recognition. We have also used a new method for feature extraction which lowers the variations in the shapes of the digits, and then a MLP neural network is utilized to produce the labels and confidence values for those digits. The NIST SD19 and CENPARMI databases are used for evaluating the system. Our system can get a correct segmentation-recognition rate of 96.07% with rejection rate of 2.61% which compares favorably with those that exist in the literature.
Potgieter, Jenni-Marí; Swanepoel, De Wet; Myburgh, Hermanus Carel; Hopper, Thomas Christopher; Smits, Cas
2015-07-01
The objective of this study was to develop and validate a smartphone-based digits-in-noise hearing test for South African English. Single digits (0-9) were recorded and spoken by a first language English female speaker. Level corrections were applied to create a set of homogeneous digits with steep speech recognition functions. A smartphone application was created to utilize 120 digit-triplets in noise as test material. An adaptive test procedure determined the speech reception threshold (SRT). Experiments were performed to determine headphones effects on the SRT and to establish normative data. Participants consisted of 40 normal-hearing subjects with thresholds ≤15 dB across the frequency spectrum (250-8000 Hz) and 186 subjects with normal-hearing in both ears, or normal-hearing in the better ear. The results show steep speech recognition functions with a slope of 20%/dB for digit-triplets presented in noise using the smartphone application. The results of five headphone types indicate that the smartphone-based hearing test is reliable and can be conducted using standard Android smartphone headphones or clinical headphones. A digits-in-noise hearing test was developed and validated for South Africa. The mean SRT and speech recognition functions correspond to previous developed telephone-based digits-in-noise tests.
Qin, Jiangyi; Huang, Zhiping; Liu, Chunwu; Su, Shaojing; Zhou, Jing
2015-01-01
A novel blind recognition algorithm of frame synchronization words is proposed to recognize the frame synchronization words parameters in digital communication systems. In this paper, a blind recognition method of frame synchronization words based on the hard-decision is deduced in detail. And the standards of parameter recognition are given. Comparing with the blind recognition based on the hard-decision, utilizing the soft-decision can improve the accuracy of blind recognition. Therefore, combining with the characteristics of Quadrature Phase Shift Keying (QPSK) signal, an improved blind recognition algorithm based on the soft-decision is proposed. Meanwhile, the improved algorithm can be extended to other signal modulation forms. Then, the complete blind recognition steps of the hard-decision algorithm and the soft-decision algorithm are given in detail. Finally, the simulation results show that both the hard-decision algorithm and the soft-decision algorithm can recognize the parameters of frame synchronization words blindly. What's more, the improved algorithm can enhance the accuracy of blind recognition obviously.
Korean letter handwritten recognition using deep convolutional neural network on android platform
NASA Astrophysics Data System (ADS)
Purnamawati, S.; Rachmawati, D.; Lumanauw, G.; Rahmat, R. F.; Taqyuddin, R.
2018-03-01
Currently, popularity of Korean culture attracts many people to learn everything about Korea, particularly its language. To acquire Korean Language, every single learner needs to be able to understand Korean non-Latin character. A digital approach needs to be carried out in order to make Korean learning process easier. This study is done by using Deep Convolutional Neural Network (DCNN). DCNN performs the recognition process on the image based on the model that has been trained such as Inception-v3 Model. Subsequently, re-training process using transfer learning technique with the trained and re-trained value of model is carried though in order to develop a new model with a better performance without any specific systemic errors. The testing accuracy of this research results in 86,9%.
Faron, Matthew L; Buchan, Blake W; Vismara, Chiara; Lacchini, Carla; Bielli, Alessandra; Gesu, Giovanni; Liebregts, Theo; van Bree, Anita; Jansz, Arjan; Soucy, Genevieve; Korver, John; Ledeboer, Nathan A
2016-03-01
Recently, systems have been developed to create total laboratory automation for clinical microbiology. These systems allow for the automation of specimen processing, specimen incubation, and imaging of bacterial growth. In this study, we used the WASPLab to validate software that discriminates and segregates positive and negative chromogenic methicillin-resistant Staphylococcus aureus (MRSA) plates by recognition of pigmented colonies. A total of 57,690 swabs submitted for MRSA screening were enrolled in the study. Four sites enrolled specimens following their standard of care. Chromogenic agar used at these sites included MRSASelect (Bio-Rad Laboratories, Redmond, WA), chromID MRSA (bioMérieux, Marcy l'Etoile, France), and CHROMagar MRSA (BD Diagnostics, Sparks, MD). Specimens were plated and incubated using the WASPLab. The digital camera took images at 0 and 16 to 24 h and the WASPLab software determined the presence of positive colonies based on a hue, saturation, and value (HSV) score. If the HSV score fell within a defined threshold, the plate was called positive. The performance of the digital analysis was compared to manual reading. Overall, the digital software had a sensitivity of 100% and a specificity of 90.7% with the specificity ranging between 90.0 and 96.0 across all sites. The results were similar using the three different agars with a sensitivity of 100% and specificity ranging between 90.7 and 92.4%. These data demonstrate that automated digital analysis can be used to accurately sort positive from negative chromogenic agar cultures regardless of the pigmentation produced. Copyright © 2016 Faron et al.
NASA Astrophysics Data System (ADS)
Li, Shuo; Jin, Weiqi; Li, Li; Li, Yiyang
2018-05-01
Infrared thermal images can reflect the thermal-radiation distribution of a particular scene. However, the contrast of the infrared images is usually low. Hence, it is generally necessary to enhance the contrast of infrared images in advance to facilitate subsequent recognition and analysis. Based on the adaptive double plateaus histogram equalization, this paper presents an improved contrast enhancement algorithm for infrared thermal images. In the proposed algorithm, the normalized coefficient of variation of the histogram, which characterizes the level of contrast enhancement, is introduced as feedback information to adjust the upper and lower plateau thresholds. The experiments on actual infrared images show that compared to the three typical contrast-enhancement algorithms, the proposed algorithm has better scene adaptability and yields better contrast-enhancement results for infrared images with more dark areas or a higher dynamic range. Hence, it has high application value in contrast enhancement, dynamic range compression, and digital detail enhancement for infrared thermal images.
Jothilakshmi, G R; Raaza, Arun; Rajendran, V; Sreenivasa Varma, Y; Guru Nirmal Raj, R
2018-06-05
Breast cancer is one of the life-threatening cancers occurring in women. In recent years, from the surveys provided by various medical organizations, it has become clear that the mortality rate of females is increasing owing to the late detection of breast cancer. Therefore, an automated algorithm is needed to identify the early occurrence of microcalcification, which would assist radiologists and physicians in reducing the false predictions via image processing techniques. In this work, we propose a new algorithm to detect the pattern of a microcalcification by calculating its physical characteristics. The considered physical characteristics are the reflection coefficient and mass density of the binned digital mammogram image. The calculation of physical characteristics doubly confirms the presence of malignant microcalcification. Subsequently, by interpolating the physical characteristics via thresholding and mapping techniques, a three-dimensional (3D) projection of the region of interest (RoI) is obtained in terms of the distance in millimeter. The size of a microcalcification is determined using this 3D-projected view. This algorithm is verified with 100 abnormal mammogram images showing microcalcification and 10 normal mammogram images. In addition to the size calculation, the proposed algorithm acts as a good classifier that is used to classify the considered input image as normal or abnormal with the help of only two physical characteristics. This proposed algorithm exhibits a classification accuracy of 99%.
Poka Yoke system based on image analysis and object recognition
NASA Astrophysics Data System (ADS)
Belu, N.; Ionescu, L. M.; Misztal, A.; Mazăre, A.
2015-11-01
Poka Yoke is a method of quality management which is related to prevent faults from arising during production processes. It deals with “fail-sating” or “mistake-proofing”. The Poka-yoke concept was generated and developed by Shigeo Shingo for the Toyota Production System. Poka Yoke is used in many fields, especially in monitoring production processes. In many cases, identifying faults in a production process involves a higher cost than necessary cost of disposal. Usually, poke yoke solutions are based on multiple sensors that identify some nonconformities. This means the presence of different equipment (mechanical, electronic) on production line. As a consequence, coupled with the fact that the method itself is an invasive, affecting the production process, would increase its price diagnostics. The bulky machines are the means by which a Poka Yoke system can be implemented become more sophisticated. In this paper we propose a solution for the Poka Yoke system based on image analysis and identification of faults. The solution consists of a module for image acquisition, mid-level processing and an object recognition module using associative memory (Hopfield network type). All are integrated into an embedded system with AD (Analog to Digital) converter and Zync 7000 (22 nm technology).
Word recognition materials for native speakers of Taiwan Mandarin.
Nissen, Shawn L; Harris, Richard W; Dukes, Alycia
2008-06-01
To select, digitally record, evaluate, and psychometrically equate word recognition materials that can be used to measure the speech perception abilities of native speakers of Taiwan Mandarin in quiet. Frequently used bisyllabic words produced by male and female talkers of Taiwan Mandarin were digitally recorded and subsequently evaluated using 20 native listeners with normal hearing at 10 intensity levels (-5 to 40 dB HL) in increments of 5 dB. Using logistic regression, 200 words with the steepest psychometric slopes were divided into 4 lists and 8 half-lists that were relatively equivalent in psychometric function slope. To increase auditory homogeneity of the lists, the intensity of words in each list was digitally adjusted so that the threshold of each list was equal to the midpoint between the mean thresholds of the male and female half-lists. Digital recordings of the word recognition lists and the associated clinical instructions are available on CD upon request.
Beesmart - a Crowdsourcing Project with Smartphones
NASA Astrophysics Data System (ADS)
Gülch, E.; Uddin, S.; Willi, B.
2016-06-01
The project Beesmart aims at the derivation of a geolocation yield catalogue for honey bees by using a crowd-sourcing approach with the help of smartphones. A central issue are thus the design of an application (App2bee) for smartphones and the design of a software for flower recognition, which uses sensor information of the smart phone and information about blooming times to recognize and localise flowers. The implemented flower recognition is based on the approach "Minimal-bag-of-visual-Words". A classification accuracy of about 60-70% can be reached, which is of course affected by the big variety of flowers, by the way on how images are taken and how the image quality and resolution actually are. The classification results are further improved by applying apriori a simple manual segmentation on the touch screen to put the focus in the image on the flower in question. The design and the functionality of the App2Bee are presented followed by details on the communication, database and Web-portal components. In a second part of the project the classification of larger areas of flowers important for honey bees are investigate using a fixed-wing UAV system with two different types of cameras, a RGB digital camera and a NIR digital camera. It is certainly not possible to recognize single flowers, but it could be shown, that larger fields of the same flower, like e.g. Red Clover, can be classified with this approach. With the data available it was also possible to classify bare-ground, roads, low pasture, high pasture as well as mixed pasture. For the high pasture it was possible to automatically identify clusters of flowers, like Yarrow.
Robust traffic sign detection using fuzzy shape recognizer
NASA Astrophysics Data System (ADS)
Li, Lunbo; Li, Jun; Sun, Jianhong
2009-10-01
A novel fuzzy approach for the detection of traffic signs in natural environments is presented. More than 3000 road images were collected under different weather conditions by a digital camera, and used for testing this approach. Every RGB image was converted into HSV colour space, and segmented by the hue and saturation thresholds. A symmetrical detector was used to extract the local features of the regions of interest (ROI), and the shape of ROI was determined by a fuzzy shape recognizer which invoked a set of fuzzy rules. The experimental results show that the proposed algorithm is translation, rotation and scaling invariant, and gives reliable shape recognition in complex traffic scenes where clustering and partial occlusion normally occur.
Information recovery through image sequence fusion under wavelet transformation
NASA Astrophysics Data System (ADS)
He, Qiang
2010-04-01
Remote sensing is widely applied to provide information of areas with limited ground access with applications such as to assess the destruction from natural disasters and to plan relief and recovery operations. However, the data collection of aerial digital images is constrained by bad weather, atmospheric conditions, and unstable camera or camcorder. Therefore, how to recover the information from the low-quality remote sensing images and how to enhance the image quality becomes very important for many visual understanding tasks, such like feature detection, object segmentation, and object recognition. The quality of remote sensing imagery can be improved through meaningful combination of the employed images captured from different sensors or from different conditions through information fusion. Here we particularly address information fusion to remote sensing images under multi-resolution analysis in the employed image sequences. The image fusion is to recover complete information by integrating multiple images captured from the same scene. Through image fusion, a new image with high-resolution or more perceptive for human and machine is created from a time series of low-quality images based on image registration between different video frames.
Accurate label-free 3-part leukocyte recognition with single cell lens-free imaging flow cytometry.
Li, Yuqian; Cornelis, Bruno; Dusa, Alexandra; Vanmeerbeeck, Geert; Vercruysse, Dries; Sohn, Erik; Blaszkiewicz, Kamil; Prodanov, Dimiter; Schelkens, Peter; Lagae, Liesbet
2018-05-01
Three-part white blood cell differentials which are key to routine blood workups are typically performed in centralized laboratories on conventional hematology analyzers operated by highly trained staff. With the trend of developing miniaturized blood analysis tool for point-of-need in order to accelerate turnaround times and move routine blood testing away from centralized facilities on the rise, our group has developed a highly miniaturized holographic imaging system for generating lens-free images of white blood cells in suspension. Analysis and classification of its output data, constitutes the final crucial step ensuring appropriate accuracy of the system. In this work, we implement reference holographic images of single white blood cells in suspension, in order to establish an accurate ground truth to increase classification accuracy. We also automate the entire workflow for analyzing the output and demonstrate clear improvement in the accuracy of the 3-part classification. High-dimensional optical and morphological features are extracted from reconstructed digital holograms of single cells using the ground-truth images and advanced machine learning algorithms are investigated and implemented to obtain 99% classification accuracy. Representative features of the three white blood cell subtypes are selected and give comparable results, with a focus on rapid cell recognition and decreased computational cost. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
ERIC Educational Resources Information Center
Zipke, Marcy
2017-01-01
Two experiments explored the effects of reading digital storybooks on tablet computers with 25 preschoolers, aged 4-5. In the first experiment, the students' word recognition scores were found to increase significantly more when students explored a digital storybook and employed the read-aloud function than when they were read to from a comparable…
Biometrics Foundation Documents
2009-01-01
a digital form. The quality of the sensor used has a significant impact on the recognition results. Example “sensors” could be digital cameras...Difficult to control sensor and channel variances that significantly impact capabilities Not sufficiently distinctive for identification over large...expressions, hairstyle, glasses, hats, makeup, etc. have on face recognition systems? Minor variances , such as those mentioned, will have a moderate
ERIC Educational Resources Information Center
McClean, Clare M.
1998-01-01
Reviews strengths and weaknesses of five optical character recognition (OCR) software packages used to digitize paper documents before publishing on the Internet. Outlines options available and stages of the conversion process. Describes the learning experience of Eurotext, a United Kingdom-based electronic libraries project (eLib). (PEN)
Document image cleanup and binarization
NASA Astrophysics Data System (ADS)
Wu, Victor; Manmatha, Raghaven
1998-04-01
Image binarization is a difficult task for documents with text over textured or shaded backgrounds, poor contrast, and/or considerable noise. Current optical character recognition (OCR) and document analysis technology do not handle such documents well. We have developed a simple yet effective algorithm for document image clean-up and binarization. The algorithm consists of two basic steps. In the first step, the input image is smoothed using a low-pass filter. The smoothing operation enhances the text relative to any background texture. This is because background texture normally has higher frequency than text does. The smoothing operation also removes speckle noise. In the second step, the intensity histogram of the smoothed image is computed and a threshold automatically selected as follows. For black text, the first peak of the histogram corresponds to text. Thresholding the image at the value of the valley between the first and second peaks of the histogram binarizes the image well. In order to reliably identify the valley, the histogram is smoothed by a low-pass filter before the threshold is computed. The algorithm has been applied to some 50 images from a wide variety of source: digitized video frames, photos, newspapers, advertisements in magazines or sales flyers, personal checks, etc. There are 21820 characters and 4406 words in these images. 91 percent of the characters and 86 percent of the words are successfully cleaned up and binarized. A commercial OCR was applied to the binarized text when it consisted of fonts which were OCR recognizable. The recognition rate was 84 percent for the characters and 77 percent for the words.
NASA Astrophysics Data System (ADS)
Linek, M.; Jungmann, M.; Berlage, T.; Clauser, C.
2005-12-01
Within the Ocean Drilling Program (ODP), image logging tools have been routinely deployed such as the Formation MicroScanner (FMS) or the Resistivity-At-Bit (RAB) tools. Both logging methods are based on resistivity measurements at the borehole wall and therefore are sensitive to conductivity contrasts, which are mapped in color scale images. These images are commonly used to study the structure of the sedimentary rocks and the oceanic crust (petrologic fabric, fractures, veins, etc.). So far, mapping of lithology from electrical images is purely based on visual inspection and subjective interpretation. We apply digital image analysis on electrical borehole wall images in order to develop a method, which augments objective rock identification. We focus on supervised textural pattern recognition which studies the spatial gray level distribution with respect to certain rock types. FMS image intervals of rock classes known from core data are taken in order to train textural characteristics for each class. A so-called gray level co-occurrence matrix is computed by counting the occurrence of a pair of gray levels that are a certain distant apart. Once the matrix for an image interval is computed, we calculate the image contrast, homogeneity, energy, and entropy. We assign characteristic textural features to different rock types by reducing the image information into a small set of descriptive features. Once a discriminating set of texture features for each rock type is found, we are able to discriminate the entire FMS images regarding the trained rock type classification. A rock classification based on texture features enables quantitative lithology mapping and is characterized by a high repeatability, in contrast to a purely visual subjective image interpretation. We show examples for the rock classification between breccias, pillows, massive units, and horizontally bedded tuffs based on ODP image data.
Wilkins, Ruth; Flegal, Farrah; Knoll, Joan H.M.; Rogan, Peter K.
2017-01-01
Accurate digital image analysis of abnormal microscopic structures relies on high quality images and on minimizing the rates of false positive (FP) and negative objects in images. Cytogenetic biodosimetry detects dicentric chromosomes (DCs) that arise from exposure to ionizing radiation, and determines radiation dose received based on DC frequency. Improvements in automated DC recognition increase the accuracy of dose estimates by reclassifying FP DCs as monocentric chromosomes or chromosome fragments. We also present image segmentation methods to rank high quality digital metaphase images and eliminate suboptimal metaphase cells. A set of chromosome morphology segmentation methods selectively filtered out FP DCs arising primarily from sister chromatid separation, chromosome fragmentation, and cellular debris. This reduced FPs by an average of 55% and was highly specific to these abnormal structures (≥97.7%) in three samples. Additional filters selectively removed images with incomplete, highly overlapped, or missing metaphase cells, or with poor overall chromosome morphologies that increased FP rates. Image selection is optimized and FP DCs are minimized by combining multiple feature based segmentation filters and a novel image sorting procedure based on the known distribution of chromosome lengths. Applying the same image segmentation filtering procedures to both calibration and test samples reduced the average dose estimation error from 0.4 Gy to <0.2 Gy, obviating the need to first manually review these images. This reliable and scalable solution enables batch processing for multiple samples of unknown dose, and meets current requirements for triage radiation biodosimetry of high quality metaphase cell preparations. PMID:29026522
[Glossary of terms used by radiologists in image processing].
Rolland, Y; Collorec, R; Bruno, A; Ramée, A; Morcet, N; Haigron, P
1995-01-01
We give the definition of 166 words used in image processing. Adaptivity, aliazing, analog-digital converter, analysis, approximation, arc, artifact, artificial intelligence, attribute, autocorrelation, bandwidth, boundary, brightness, calibration, class, classification, classify, centre, cluster, coding, color, compression, contrast, connectivity, convolution, correlation, data base, decision, decomposition, deconvolution, deduction, descriptor, detection, digitization, dilation, discontinuity, discretization, discrimination, disparity, display, distance, distorsion, distribution dynamic, edge, energy, enhancement, entropy, erosion, estimation, event, extrapolation, feature, file, filter, filter floaters, fitting, Fourier transform, frequency, fusion, fuzzy, Gaussian, gradient, graph, gray level, group, growing, histogram, Hough transform, Houndsfield, image, impulse response, inertia, intensity, interpolation, interpretation, invariance, isotropy, iterative, JPEG, knowledge base, label, laplacian, learning, least squares, likelihood, matching, Markov field, mask, matching, mathematical morphology, merge (to), MIP, median, minimization, model, moiré, moment, MPEG, neural network, neuron, node, noise, norm, normal, operator, optical system, optimization, orthogonal, parametric, pattern recognition, periodicity, photometry, pixel, polygon, polynomial, prediction, pulsation, pyramidal, quantization, raster, reconstruction, recursive, region, rendering, representation space, resolution, restoration, robustness, ROC, thinning, transform, sampling, saturation, scene analysis, segmentation, separable function, sequential, smoothing, spline, split (to), shape, threshold, tree, signal, speckle, spectrum, spline, stationarity, statistical, stochastic, structuring element, support, syntaxic, synthesis, texture, truncation, variance, vision, voxel, windowing.
Sodickson, Aaron; Warden, Graham I; Farkas, Cameron E; Ikuta, Ichiro; Prevedello, Luciano M; Andriole, Katherine P; Khorasani, Ramin
2012-08-01
To develop and validate an informatics toolkit that extracts anatomy-specific computed tomography (CT) radiation exposure metrics (volume CT dose index and dose-length product) from existing digital image archives through optical character recognition of CT dose report screen captures (dose screens) combined with Digital Imaging and Communications in Medicine attributes. This institutional review board-approved HIPAA-compliant study was performed in a large urban health care delivery network. Data were drawn from a random sample of CT encounters that occurred between 2000 and 2010; images from these encounters were contained within the enterprise image archive, which encompassed images obtained at an adult academic tertiary referral hospital and its affiliated sites, including a cancer center, a community hospital, and outpatient imaging centers, as well as images imported from other facilities. Software was validated by using 150 randomly selected encounters for each major CT scanner manufacturer, with outcome measures of dose screen retrieval rate (proportion of correctly located dose screens) and anatomic assignment precision (proportion of extracted exposure data with correctly assigned anatomic region, such as head, chest, or abdomen and pelvis). The 95% binomial confidence intervals (CIs) were calculated for discrete proportions, and CIs were derived from the standard error of the mean for continuous variables. After validation, the informatics toolkit was used to populate an exposure repository from a cohort of 54 549 CT encounters; of which 29 948 had available dose screens. Validation yielded a dose screen retrieval rate of 99% (597 of 605 CT encounters; 95% CI: 98%, 100%) and an anatomic assignment precision of 94% (summed DLP fraction correct 563 in 600 CT encounters; 95% CI: 92%, 96%). Patient safety applications of the resulting data repository include benchmarking between institutions, CT protocol quality control and optimization, and cumulative patient- and anatomy-specific radiation exposure monitoring. Large-scale anatomy-specific radiation exposure data repositories can be created with high fidelity from existing digital image archives by using open-source informatics tools.
QuantiFly: Robust Trainable Software for Automated Drosophila Egg Counting.
Waithe, Dominic; Rennert, Peter; Brostow, Gabriel; Piper, Matthew D W
2015-01-01
We report the development and testing of software called QuantiFly: an automated tool to quantify Drosophila egg laying. Many laboratories count Drosophila eggs as a marker of fitness. The existing method requires laboratory researchers to count eggs manually while looking down a microscope. This technique is both time-consuming and tedious, especially when experiments require daily counts of hundreds of vials. The basis of the QuantiFly software is an algorithm which applies and improves upon an existing advanced pattern recognition and machine-learning routine. The accuracy of the baseline algorithm is additionally increased in this study through correction of bias observed in the algorithm output. The QuantiFly software, which includes the refined algorithm, has been designed to be immediately accessible to scientists through an intuitive and responsive user-friendly graphical interface. The software is also open-source, self-contained, has no dependencies and is easily installed (https://github.com/dwaithe/quantifly). Compared to manual egg counts made from digital images, QuantiFly achieved average accuracies of 94% and 85% for eggs laid on transparent (defined) and opaque (yeast-based) fly media. Thus, the software is capable of detecting experimental differences in most experimental situations. Significantly, the advanced feature recognition capabilities of the software proved to be robust to food surface artefacts like bubbles and crevices. The user experience involves image acquisition, algorithm training by labelling a subset of eggs in images of some of the vials, followed by a batch analysis mode in which new images are automatically assessed for egg numbers. Initial training typically requires approximately 10 minutes, while subsequent image evaluation by the software is performed in just a few seconds. Given the average time per vial for manual counting is approximately 40 seconds, our software introduces a timesaving advantage for experiments starting with as few as 20 vials. We also describe an optional acrylic box to be used as a digital camera mount and to provide controlled lighting during image acquisition which will guarantee the conditions used in this study.
QuantiFly: Robust Trainable Software for Automated Drosophila Egg Counting
Waithe, Dominic; Rennert, Peter; Brostow, Gabriel; Piper, Matthew D. W.
2015-01-01
We report the development and testing of software called QuantiFly: an automated tool to quantify Drosophila egg laying. Many laboratories count Drosophila eggs as a marker of fitness. The existing method requires laboratory researchers to count eggs manually while looking down a microscope. This technique is both time-consuming and tedious, especially when experiments require daily counts of hundreds of vials. The basis of the QuantiFly software is an algorithm which applies and improves upon an existing advanced pattern recognition and machine-learning routine. The accuracy of the baseline algorithm is additionally increased in this study through correction of bias observed in the algorithm output. The QuantiFly software, which includes the refined algorithm, has been designed to be immediately accessible to scientists through an intuitive and responsive user-friendly graphical interface. The software is also open-source, self-contained, has no dependencies and is easily installed (https://github.com/dwaithe/quantifly). Compared to manual egg counts made from digital images, QuantiFly achieved average accuracies of 94% and 85% for eggs laid on transparent (defined) and opaque (yeast-based) fly media. Thus, the software is capable of detecting experimental differences in most experimental situations. Significantly, the advanced feature recognition capabilities of the software proved to be robust to food surface artefacts like bubbles and crevices. The user experience involves image acquisition, algorithm training by labelling a subset of eggs in images of some of the vials, followed by a batch analysis mode in which new images are automatically assessed for egg numbers. Initial training typically requires approximately 10 minutes, while subsequent image evaluation by the software is performed in just a few seconds. Given the average time per vial for manual counting is approximately 40 seconds, our software introduces a timesaving advantage for experiments starting with as few as 20 vials. We also describe an optional acrylic box to be used as a digital camera mount and to provide controlled lighting during image acquisition which will guarantee the conditions used in this study. PMID:25992957
NASA Technical Reports Server (NTRS)
Meier, M. J.; Evans, W. E.
1975-01-01
Snow-covered areas on LANDSAT (ERTS) images of the Santiam River basin, Oregon, and other basins in Washington were measured using several operators and methods. Seven methods were used: (1) Snowline tracing followed by measurement with planimeter, (2) mean snowline altitudes determined from many locations, (3) estimates in 2.5 x 2.5 km boxes of snow-covered area with reference to snow-free images, (4) single radiance-threshold level for entire basin, (5) radiance-threshold setting locally edited by reference to altitude contours and other images, (6) two-band color-sensitive extraction locally edited as in (5), and (7) digital (spectral) pattern recognition techniques. The seven methods are compared in regard to speed of measurement, precision, the ability to recognize snow in deep shadow or in trees, relative cost, and whether useful supplemental data are produced.
Ratio maps of iron ore deposits Atlantic City district, Wyoming
NASA Technical Reports Server (NTRS)
Vincent, R. K.
1973-01-01
Preliminary results of a spectral rationing technique are shown for a region at the southern end of the Wind River Range, Wyoming. Digital ratio graymaps and analog ratio images have been produced for the test site, but ground truth is not yet available for thorough interpretation of these products. ERTS analog ratio images were found generally better than either ERTS single-channel images or high altitude aerial photos for the discrimination of vegetation from non-vegetation in the test site region. Some linear geological features smaller than the ERTS spatial resolution are seen as well in ERTS ratio and single-channel images as in high altitude aerial photography. Geochemical information appears to be extractable from ERTS data. Good preliminary quantitative agreement between ERTS-derived ratios and laboratory-derived reflectance ratios of rocks and minerals encourage plans to use lab data as training sets for a simple ratio gating logic approach to automatic recognition maps.
ERIC Educational Resources Information Center
Collins, E. Anthony
2011-01-01
Artistic, scholarly, and professional works by individual faculty members in the field of film and digital media are not being adequately recognized or rewarded as scholarship activity during performance evaluation in institutions of higher learning. Conventional systems for the recognition and evaluation of work prioritize scientism and compel…
ERIC Educational Resources Information Center
Harris, Richard W.; And Others
1988-01-01
A two-microphone adaptive digital noise cancellation technique improved word-recognition ability for 20 normal and 12 hearing-impaired adults by reducing multitalker speech babble and speech spectrum noise 18-22 dB. Word recognition improvements averaged 37-50 percent for normal and 27-40 percent for hearing-impaired subjects. Improvement was best…
Low Temperature Performance of High-Speed Neural Network Circuits
NASA Technical Reports Server (NTRS)
Duong, T.; Tran, M.; Daud, T.; Thakoor, A.
1995-01-01
Artificial neural networks, derived from their biological counterparts, offer a new and enabling computing paradigm specially suitable for such tasks as image and signal processing with feature classification/object recognition, global optimization, and adaptive control. When implemented in fully parallel electronic hardware, it offers orders of magnitude speed advantage. Basic building blocks of the new architecture are the processing elements called neurons implemented as nonlinear operational amplifiers with sigmoidal transfer function, interconnected through weighted connections called synapses implemented using circuitry for weight storage and multiply functions either in an analog, digital, or hybrid scheme.
Research and development on performance models of thermal imaging systems
NASA Astrophysics Data System (ADS)
Wang, Ji-hui; Jin, Wei-qi; Wang, Xia; Cheng, Yi-nan
2009-07-01
Traditional ACQUIRE models perform the discrimination tasks of detection (target orientation, recognition and identification) for military target based upon minimum resolvable temperature difference (MRTD) and Johnson criteria for thermal imaging systems (TIS). Johnson criteria is generally pessimistic for performance predict of sampled imager with the development of focal plane array (FPA) detectors and digital image process technology. Triangle orientation discrimination threshold (TOD) model, minimum temperature difference perceived (MTDP)/ thermal range model (TRM3) Model and target task performance (TTP) metric have been developed to predict the performance of sampled imager, especially TTP metric can provides better accuracy than the Johnson criteria. In this paper, the performance models above are described; channel width metrics have been presented to describe the synthesis performance including modulate translate function (MTF) channel width for high signal noise to ration (SNR) optoelectronic imaging systems and MRTD channel width for low SNR TIS; the under resolvable questions for performance assessment of TIS are indicated; last, the development direction of performance models for TIS are discussed.
Information based universal feature extraction
NASA Astrophysics Data System (ADS)
Amiri, Mohammad; Brause, Rüdiger
2015-02-01
In many real world image based pattern recognition tasks, the extraction and usage of task-relevant features are the most crucial part of the diagnosis. In the standard approach, they mostly remain task-specific, although humans who perform such a task always use the same image features, trained in early childhood. It seems that universal feature sets exist, but they are not yet systematically found. In our contribution, we tried to find those universal image feature sets that are valuable for most image related tasks. In our approach, we trained a neural network by natural and non-natural images of objects and background, using a Shannon information-based algorithm and learning constraints. The goal was to extract those features that give the most valuable information for classification of visual objects hand-written digits. This will give a good start and performance increase for all other image learning tasks, implementing a transfer learning approach. As result, in our case we found that we could indeed extract features which are valid in all three kinds of tasks.
Visual identification system for homeland security and law enforcement support
NASA Astrophysics Data System (ADS)
Samuel, Todd J.; Edwards, Don; Knopf, Michael
2005-05-01
This paper describes the basic configuration for a visual identification system (VIS) for Homeland Security and law enforcement support. Security and law enforcement systems with an integrated VIS will accurately and rapidly provide identification of vehicles or containers that have entered, exited or passed through a specific monitoring location. The VIS system stores all images and makes them available for recall for approximately one week. Images of alarming vehicles will be archived indefinitely as part of the alarming vehicle"s or cargo container"s record. Depending on user needs, the digital imaging information will be provided electronically to the individual inspectors, supervisors, and/or control center at the customer"s office. The key components of the VIS are the high-resolution cameras that capture images of vehicles, lights, presence sensors, image cataloging software, and image recognition software. In addition to the cameras, the physical integration and network communications of the VIS components with the balance of the security system and client must be ensured.
Performance enhancement of various real-time image processing techniques via speculative execution
NASA Astrophysics Data System (ADS)
Younis, Mohamed F.; Sinha, Purnendu; Marlowe, Thomas J.; Stoyenko, Alexander D.
1996-03-01
In real-time image processing, an application must satisfy a set of timing constraints while ensuring the semantic correctness of the system. Because of the natural structure of digital data, pure data and task parallelism have been used extensively in real-time image processing to accelerate the handling time of image data. These types of parallelism are based on splitting the execution load performed by a single processor across multiple nodes. However, execution of all parallel threads is mandatory for correctness of the algorithm. On the other hand, speculative execution is an optimistic execution of part(s) of the program based on assumptions on program control flow or variable values. Rollback may be required if the assumptions turn out to be invalid. Speculative execution can enhance average, and sometimes worst-case, execution time. In this paper, we target various image processing techniques to investigate applicability of speculative execution. We identify opportunities for safe and profitable speculative execution in image compression, edge detection, morphological filters, and blob recognition.
Extrinsic Cognitive Load Impairs Spoken Word Recognition in High- and Low-Predictability Sentences.
Hunter, Cynthia R; Pisoni, David B
Listening effort (LE) induced by speech degradation reduces performance on concurrent cognitive tasks. However, a converse effect of extrinsic cognitive load on recognition of spoken words in sentences has not been shown. The aims of the present study were to (a) examine the impact of extrinsic cognitive load on spoken word recognition in a sentence recognition task and (b) determine whether cognitive load and/or LE needed to understand spectrally degraded speech would differentially affect word recognition in high- and low-predictability sentences. Downstream effects of speech degradation and sentence predictability on the cognitive load task were also examined. One hundred twenty young adults identified sentence-final spoken words in high- and low-predictability Speech Perception in Noise sentences. Cognitive load consisted of a preload of short (low-load) or long (high-load) sequences of digits, presented visually before each spoken sentence and reported either before or after identification of the sentence-final word. LE was varied by spectrally degrading sentences with four-, six-, or eight-channel noise vocoding. Level of spectral degradation and order of report (digits first or words first) were between-participants variables. Effects of cognitive load, sentence predictability, and speech degradation on accuracy of sentence-final word identification as well as recall of preload digit sequences were examined. In addition to anticipated main effects of sentence predictability and spectral degradation on word recognition, we found an effect of cognitive load, such that words were identified more accurately under low load than high load. However, load differentially affected word identification in high- and low-predictability sentences depending on the level of sentence degradation. Under severe spectral degradation (four-channel vocoding), the effect of cognitive load on word identification was present for high-predictability sentences but not for low-predictability sentences. Under mild spectral degradation (eight-channel vocoding), the effect of load was present for low-predictability sentences but not for high-predictability sentences. There were also reliable downstream effects of speech degradation and sentence predictability on recall of the preload digit sequences. Long digit sequences were more easily recalled following spoken sentences that were less spectrally degraded. When digits were reported after identification of sentence-final words, short digit sequences were recalled more accurately when the spoken sentences were predictable. Extrinsic cognitive load can impair recognition of spectrally degraded spoken words in a sentence recognition task. Cognitive load affected word identification in both high- and low-predictability sentences, suggesting that load may impact both context use and lower-level perceptual processes. Consistent with prior work, LE also had downstream effects on memory for visual digit sequences. Results support the proposal that extrinsic cognitive load and LE induced by signal degradation both draw on a central, limited pool of cognitive resources that is used to recognize spoken words in sentences under adverse listening conditions.
[Automated Assessment for Bone Age of Left Wrist Joint in Uyghur Teenagers by Deep Learning].
Hu, T H; Huo, Z; Liu, T A; Wang, F; Wan, L; Wang, M W; Chen, T; Wang, Y H
2018-02-01
To realize the automated bone age assessment by applying deep learning to digital radiography (DR) image recognition of left wrist joint in Uyghur teenagers, and explore its practical application value in forensic medicine bone age assessment. The X-ray films of left wrist joint after pretreatment, which were taken from 245 male and 227 female Uyghur nationality teenagers in Uygur Autonomous Region aged from 13.0 to 19.0 years old, were chosen as subjects. And AlexNet was as a regression model of image recognition. From the total samples above, 60% of male and female DR images of left wrist joint were selected as net train set, and 10% of samples were selected as validation set. As test set, the rest 30% were used to obtain the image recognition accuracy with an error range in ±1.0 and ±0.7 age respectively, compared to the real age. The modelling results of deep learning algorithm showed that when the error range was in ±1.0 and ±0.7 age respectively, the accuracy of the net train set was 81.4% and 75.6% in male, and 80.5% and 74.8% in female, respectively. When the error range was in ±1.0 and ±0.7 age respectively, the accuracy of the test set was 79.5% and 71.2% in male, and 79.4% and 66.2% in female, respectively. The combination of bone age research on teenagers' left wrist joint and deep learning, which has high accuracy and good feasibility, can be the research basis of bone age automatic assessment system for the rest joints of body. Copyright© by the Editorial Department of Journal of Forensic Medicine.
Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex.
Malach, R; Reppas, J B; Benson, R R; Kwong, K K; Jiang, H; Kennedy, W A; Ledden, P J; Brady, T J; Rosen, B R; Tootell, R B
1995-01-01
The stages of integration leading from local feature analysis to object recognition were explored in human visual cortex by using the technique of functional magnetic resonance imaging. Here we report evidence for object-related activation. Such activation was located at the lateral-posterior aspect of the occipital lobe, just abutting the posterior aspect of the motion-sensitive area MT/V5, in a region termed the lateral occipital complex (LO). LO showed preferential activation to images of objects, compared to a wide range of texture patterns. This activation was not caused by a global difference in the Fourier spatial frequency content of objects versus texture images, since object images produced enhanced LO activation compared to textures matched in power spectra but randomized in phase. The preferential activation to objects also could not be explained by different patterns of eye movements: similar levels of activation were observed when subjects fixated on the objects and when they scanned the objects with their eyes. Additional manipulations such as spatial frequency filtering and a 4-fold change in visual size did not affect LO activation. These results suggest that the enhanced responses to objects were not a manifestation of low-level visual processing. A striking demonstration that activity in LO is uniquely correlated to object detectability was produced by the "Lincoln" illusion, in which blurring of objects digitized into large blocks paradoxically increases their recognizability. Such blurring led to significant enhancement of LO activation. Despite the preferential activation to objects, LO did not seem to be involved in the final, "semantic," stages of the recognition process. Thus, objects varying widely in their recognizability (e.g., famous faces, common objects, and unfamiliar three-dimensional abstract sculptures) activated it to a similar degree. These results are thus evidence for an intermediate link in the chain of processing stages leading to object recognition in human visual cortex. Images Fig. 1 Fig. 2 Fig. 3 PMID:7667258
Study on field weed recognition in real time
NASA Astrophysics Data System (ADS)
He, Yong; Pan, Jiazhi; Zhang, Yun
2006-02-01
This research aimed to identify weeds from crops in early stage in the field by using image-processing technology. As 3CCD images offer greater binary value difference between weed and crop section than ordinary digital images taken by common cameras. It has 3 channels (green, red, ir red), which takes a snap-photo of the same area, and the three images can be composed into one image, which facilitates the segmentation of different areas. In this research, MS3100 3CCD camera is used to get images of 6 kinds of weeds and crops. Part of these images contained more than 2 kinds of plants. The leaves' shapes, sizes and colors may be very similar or differs from each other greatly. Some are sword-shaped and some (are) round. Some are large as palm and some small as peanut. Some are little brown while other is blue or green. Different combinations are taken into consideration. By the application of image-processing toolkit in MATLAB, the different areas in the image can be segmented clearly. The texture of the images was also analyzed. The processing methods include operations, such as edge detection, erosion, dilation and other algorithms to process the edge vectors and textures. It is of great importance to segment, in real time, the different areas in digital images in field. When the technique is applied in precision farming, many energies and herbicides and many other materials can be saved. At present time large scale softwares as MATLAB on PC are also used, but the computation can be reduced and integrated into a small embedded system. The research results have shown that the application of this technique in agricultural engineering is feasible and of great economical value.
Note: A simple sample transfer alignment for ultra-high vacuum systems.
Tamtögl, A; Carter, E A; Ward, D J; Avidor, N; Kole, P R; Jardine, A P; Allison, W
2016-06-01
The alignment of ultra-high-vacuum sample transfer systems can be problematic when there is no direct line of sight to assist the user. We present the design of a simple and cheap system which greatly simplifies the alignment of sample transfer devices. Our method is based on the adaptation of a commercial digital camera which provides live views from within the vacuum chamber. The images of the camera are further processed using an image recognition and processing code which determines any misalignments and reports them to the user. Installation has proven to be extremely useful in order to align the sample with respect to the transfer mechanism. Furthermore, the alignment software can be easily adapted for other systems.
Sadeghi, Zahra; Testolin, Alberto
2017-08-01
In humans, efficient recognition of written symbols is thought to rely on a hierarchical processing system, where simple features are progressively combined into more abstract, high-level representations. Here, we present a computational model of Persian character recognition based on deep belief networks, where increasingly more complex visual features emerge in a completely unsupervised manner by fitting a hierarchical generative model to the sensory data. Crucially, high-level internal representations emerging from unsupervised deep learning can be easily read out by a linear classifier, achieving state-of-the-art recognition accuracy. Furthermore, we tested the hypothesis that handwritten digits and letters share many common visual features: A generative model that captures the statistical structure of the letters distribution should therefore also support the recognition of written digits. To this aim, deep networks trained on Persian letters were used to build high-level representations of Persian digits, which were indeed read out with high accuracy. Our simulations show that complex visual features, such as those mediating the identification of Persian symbols, can emerge from unsupervised learning in multilayered neural networks and can support knowledge transfer across related domains.
Modeling of skin cancer dermatoscopy images
NASA Astrophysics Data System (ADS)
Iralieva, Malica B.; Myakinin, Oleg O.; Bratchenko, Ivan A.; Zakharov, Valery P.
2018-04-01
An early identified cancer is more likely to effective respond to treatment and has a less expensive treatment as well. Dermatoscopy is one of general diagnostic techniques for skin cancer early detection that allows us in vivo evaluation of colors and microstructures on skin lesions. Digital phantoms with known properties are required during new instrument developing to compare sample's features with data from the instrument. An algorithm for image modeling of skin cancer is proposed in the paper. Steps of the algorithm include setting shape, texture generation, adding texture and normal skin background setting. The Gaussian represents the shape, and then the texture generation based on a fractal noise algorithm is responsible for spatial chromophores distributions, while the colormap applied to the values corresponds to spectral properties. Finally, a normal skin image simulated by mixed Monte Carlo method using a special online tool is added as a background. Varying of Asymmetry, Borders, Colors and Diameter settings is shown to be fully matched to the ABCD clinical recognition algorithm. The asymmetry is specified by setting different standard deviation values of Gaussian in different parts of image. The noise amplitude is increased to set the irregular borders score. Standard deviation is changed to determine size of the lesion. Colors are set by colormap changing. The algorithm for simulating different structural elements is required to match with others recognition algorithms.
NASA Astrophysics Data System (ADS)
Yang, Yongying; Chai, Huiting; Li, Chen; Zhang, Yihui; Wu, Fan; Bai, Jian; Shen, Yibing
2017-05-01
Digitized evaluation of micro sparse defects on large fine optical surfaces is one of the challenges in the field of optical manufacturing and inspection. The surface defects evaluation system (SDES) for large fine optical surfaces is developed based on our previously reported work. In this paper, the electromagnetic simulation model based on Finite-Difference Time-Domain (FDTD) for vector diffraction theory is firstly established to study the law of microscopic scattering dark-field imaging. Given the aberration in actual optical systems, point spread function (PSF) approximated by a Gaussian function is introduced in the extrapolation from the near field to the far field and the scatter intensity distribution in the image plane is deduced. Analysis shows that both diffraction-broadening imaging and geometrical imaging should be considered in precise size evaluation of defects. Thus, a novel inverse-recognition calibration method is put forward to avoid confusion caused by diffraction-broadening effect. The evaluation method is applied to quantitative evaluation of defects information. The evaluation results of samples of many materials by SDES are compared with those by OLYMPUS microscope to verify the micron-scale resolution and precision. The established system has been applied to inspect defects on large fine optical surfaces and can achieve defects inspection of surfaces as large as 850 mm×500 mm with the resolution of 0.5 μm.
IDEAL: Images Across Domains, Experiments, Algorithms and Learning
NASA Astrophysics Data System (ADS)
Ushizima, Daniela M.; Bale, Hrishikesh A.; Bethel, E. Wes; Ercius, Peter; Helms, Brett A.; Krishnan, Harinarayan; Grinberg, Lea T.; Haranczyk, Maciej; Macdowell, Alastair A.; Odziomek, Katarzyna; Parkinson, Dilworth Y.; Perciano, Talita; Ritchie, Robert O.; Yang, Chao
2016-11-01
Research across science domains is increasingly reliant on image-centric data. Software tools are in high demand to uncover relevant, but hidden, information in digital images, such as those coming from faster next generation high-throughput imaging platforms. The challenge is to analyze the data torrent generated by the advanced instruments efficiently, and provide insights such as measurements for decision-making. In this paper, we overview work performed by an interdisciplinary team of computational and materials scientists, aimed at designing software applications and coordinating research efforts connecting (1) emerging algorithms for dealing with large and complex datasets; (2) data analysis methods with emphasis in pattern recognition and machine learning; and (3) advances in evolving computer architectures. Engineering tools around these efforts accelerate the analyses of image-based recordings, improve reusability and reproducibility, scale scientific procedures by reducing time between experiments, increase efficiency, and open opportunities for more users of the imaging facilities. This paper describes our algorithms and software tools, showing results across image scales, demonstrating how our framework plays a role in improving image understanding for quality control of existent materials and discovery of new compounds.
High Tech Aids Low Vision: A Review of Image Processing for the Visually Impaired.
Moshtael, Howard; Aslam, Tariq; Underwood, Ian; Dhillon, Baljean
2015-08-01
Recent advances in digital image processing provide promising methods for maximizing the residual vision of the visually impaired. This paper seeks to introduce this field to the readership and describe its current state as found in the literature. A systematic search revealed 37 studies that measure the value of image processing techniques for subjects with low vision. The techniques used are categorized according to their effect and the principal findings are summarized. The majority of participants preferred enhanced images over the original for a wide range of enhancement types. Adapting the contrast and spatial frequency content often improved performance at object recognition and reading speed, as did techniques that attenuate the image background and a technique that induced jitter. A lack of consistency in preference and performance measures was found, as well as a lack of independent studies. Nevertheless, the promising results should encourage further research in order to allow their widespread use in low-vision aids.
Skeletonization of gray-scale images by gray weighted distance transform
NASA Astrophysics Data System (ADS)
Qian, Kai; Cao, Siqi; Bhattacharya, Prabir
1997-07-01
In pattern recognition, thinning algorithms are often a useful tool to represent a digital pattern by means of a skeletonized image, consisting of a set of one-pixel-width lines that highlight the significant features interest in applying thinning directly to gray-scale images, motivated by the desire of processing images characterized by meaningful information distributed over different levels of gray intensity. In this paper, a new algorithm is presented which can skeletonize both black-white and gray pictures. This algorithm is based on the gray distance transformation and can be used to process any non-well uniformly distributed gray-scale picture and can preserve the topology of original picture. This process includes a preliminary phase of investigation in the 'hollows' in the gray-scale image; these hollows are considered not as topological constrains for the skeleton structure depending on their statistically significant depth. This algorithm can also be executed on a parallel machine as all the operations are executed in local. Some examples are discussed to illustrate the algorithm.
Bin Mustafa, Ammar Safwan; Ishii, Takashi; Matsunaga, Yoshiki; Nakadate, Ryu; Ishii, Hiroyuki; Ogawa, Kouji; Saito, Akiko; Sugawara, Motoaki; Niki, Kiyomi; Takanishi, Atsuo
2013-01-01
Physicians use ultrasound scans to obtain real-time images of internal organs, because such scans are safe and inexpensive. However, people in remote areas face difficulties to be scanned due to aging society and physician's shortage. Hence, it is important to develop an autonomous robotic system to perform remote ultrasound scans. Previously, we developed a robotic system for automatic ultrasound scan focusing on human's liver. In order to make it a completely autonomous system, we present in this paper a way to autonomously localize the epigastric region as the starting position for the automatic ultrasound scan. An image processing algorithm marks the umbilicus and mammary papillae on a digital photograph of the patient's abdomen. Then, we made estimation for the location of the epigastric region using the distances between these landmarks. A supporting algorithm distinguishes rib position from epigastrium using the relationship between force and displacement. We implemented these algorithms with the automatic scanning system into an apparatus: a Mitsubishi Electric's MELFA RV-1 six axis manipulator. Tests on 14 healthy male subjects showed the apparatus located the epigastric region with a success rate of 94%. The results suggest that image recognition was effective in localizing a human body part.
PCANet: A Simple Deep Learning Baseline for Image Classification?
Chan, Tsung-Han; Jia, Kui; Gao, Shenghua; Lu, Jiwen; Zeng, Zinan; Ma, Yi
2015-12-01
In this paper, we propose a very simple deep learning network for image classification that is based on very basic data processing components: 1) cascaded principal component analysis (PCA); 2) binary hashing; and 3) blockwise histograms. In the proposed architecture, the PCA is employed to learn multistage filter banks. This is followed by simple binary hashing and block histograms for indexing and pooling. This architecture is thus called the PCA network (PCANet) and can be extremely easily and efficiently designed and learned. For comparison and to provide a better understanding, we also introduce and study two simple variations of PCANet: 1) RandNet and 2) LDANet. They share the same topology as PCANet, but their cascaded filters are either randomly selected or learned from linear discriminant analysis. We have extensively tested these basic networks on many benchmark visual data sets for different tasks, including Labeled Faces in the Wild (LFW) for face verification; the MultiPIE, Extended Yale B, AR, Facial Recognition Technology (FERET) data sets for face recognition; and MNIST for hand-written digit recognition. Surprisingly, for all tasks, such a seemingly naive PCANet model is on par with the state-of-the-art features either prefixed, highly hand-crafted, or carefully learned [by deep neural networks (DNNs)]. Even more surprisingly, the model sets new records for many classification tasks on the Extended Yale B, AR, and FERET data sets and on MNIST variations. Additional experiments on other public data sets also demonstrate the potential of PCANet to serve as a simple but highly competitive baseline for texture classification and object recognition.
Oba, Sandra I.; Galvin, John J.; Fu, Qian-Jie
2014-01-01
Auditory training has been shown to significantly improve cochlear implant (CI) users’ speech and music perception. However, it is unclear whether post-training gains in performance were due to improved auditory perception or to generally improved attention, memory and/or cognitive processing. In this study, speech and music perception, as well as auditory and visual memory were assessed in ten CI users before, during, and after training with a non-auditory task. A visual digit span (VDS) task was used for training, in which subjects recalled sequences of digits presented visually. After the VDS training, VDS performance significantly improved. However, there were no significant improvements for most auditory outcome measures (auditory digit span, phoneme recognition, sentence recognition in noise, digit recognition in noise), except for small (but significant) improvements in vocal emotion recognition and melodic contour identification. Post-training gains were much smaller with the non-auditory VDS training than observed in previous auditory training studies with CI users. The results suggest that post-training gains observed in previous studies were not solely attributable to improved attention or memory, and were more likely due to improved auditory perception. The results also suggest that CI users may require targeted auditory training to improve speech and music perception. PMID:23516087
Recurrent Convolutional Neural Networks: A Better Model of Biological Object Recognition.
Spoerer, Courtney J; McClure, Patrick; Kriegeskorte, Nikolaus
2017-01-01
Feedforward neural networks provide the dominant model of how the brain performs visual object recognition. However, these networks lack the lateral and feedback connections, and the resulting recurrent neuronal dynamics, of the ventral visual pathway in the human and non-human primate brain. Here we investigate recurrent convolutional neural networks with bottom-up (B), lateral (L), and top-down (T) connections. Combining these types of connections yields four architectures (B, BT, BL, and BLT), which we systematically test and compare. We hypothesized that recurrent dynamics might improve recognition performance in the challenging scenario of partial occlusion. We introduce two novel occluded object recognition tasks to test the efficacy of the models, digit clutter (where multiple target digits occlude one another) and digit debris (where target digits are occluded by digit fragments). We find that recurrent neural networks outperform feedforward control models (approximately matched in parametric complexity) at recognizing objects, both in the absence of occlusion and in all occlusion conditions. Recurrent networks were also found to be more robust to the inclusion of additive Gaussian noise. Recurrent neural networks are better in two respects: (1) they are more neurobiologically realistic than their feedforward counterparts; (2) they are better in terms of their ability to recognize objects, especially under challenging conditions. This work shows that computer vision can benefit from using recurrent convolutional architectures and suggests that the ubiquitous recurrent connections in biological brains are essential for task performance.
Restoration Of MEX SRC Images For Improved Topography: A New Image Product
NASA Astrophysics Data System (ADS)
Duxbury, T. C.
2012-12-01
Surface topography is an important constraint when investigating the evolution of solar system bodies. Topography is typically obtained from stereo photogrammetric or photometric (shape from shading) analyses of overlapping / stereo images and from laser / radar altimetry data. The ESA Mars Express Mission [1] carries a Super Resolution Channel (SRC) as part of the High Resolution Stereo Camera (HRSC) [2]. The SRC can build up overlapping / stereo coverage of Mars, Phobos and Deimos by viewing the surfaces from different orbits. The derivation of high precision topography data from the SRC raw images is degraded because the camera is out of focus. The point spread function (PSF) is multi-peaked, covering tens of pixels. After registering and co-adding hundreds of star images, an accurate SRC PSF was reconstructed and is being used to restore the SRC images to near blur free quality. The restored images offer a factor of about 3 in improved geometric accuracy as well as identifying the smallest of features to significantly improve the stereo photogrammetric accuracy in producing digital elevation models. The difference between blurred and restored images provides a new derived image product that can provide improved feature recognition to increase spatial resolution and topographic accuracy of derived elevation models. Acknowledgements: This research was funded by the NASA Mars Express Participating Scientist Program. [1] Chicarro, et al., ESA SP 1291(2009) [2] Neukum, et al., ESA SP 1291 (2009). A raw SRC image (h4235.003) of a Martian crater within Gale crater (the MSL landing site) is shown in the upper left and the restored image is shown in the lower left. A raw image (h0715.004) of Phobos is shown in the upper right and the difference between the raw and restored images, a new derived image data product, is shown in the lower right. The lower images, resulting from an image restoration process, significantly improve feature recognition for improved derived topographic accuracy.
NASA Astrophysics Data System (ADS)
Chen, Joseph J.; Siddiqui, Khan M.; Fort, Leslie; Moffitt, Ryan; Juluru, Krishna; Kim, Woojin; Safdar, Nabile; Siegel, Eliot L.
2007-03-01
3D and multi-planar reconstruction of CT images have become indispensable in the routine practice of diagnostic imaging. These tools cannot only enhance our ability to diagnose diseases, but can also assist in therapeutic planning as well. The technology utilized to create these can also render surface reconstructions, which may have the undesired potential of providing sufficient detail to allow recognition of facial features and consequently patient identity, leading to violation of patient privacy rights as described in the HIPAA (Health Insurance Portability and Accountability Act) legislation. The purpose of this study is to evaluate whether 3D reconstructed images of a patient's facial features can indeed be used to reliably or confidently identify that specific patient. Surface reconstructed images of the study participants were created used as candidates for matching with digital photographs of participants. Data analysis was performed to determine the ability of observers to successfully match 3D surface reconstructed images of the face with facial photographs. The amount of time required to perform the match was recorded as well. We also plan to investigate the ability of digital masks or physical drapes to conceal patient identity. The recently expressed concerns over the inability to truly "anonymize" CT (and MRI) studies of the head/face/brain are yet to be tested in a prospective study. We believe that it is important to establish whether these reconstructed images are a "threat" to patient privacy/security and if so, whether minimal interventions from a clinical perspective can substantially reduce this possibility.
3D digitization methods based on laser excitation and active triangulation: a comparison
NASA Astrophysics Data System (ADS)
Aubreton, Olivier; Mériaudeau, Fabrice; Truchetet, Frédéric
2016-04-01
3D reconstruction of surfaces is an important topic in computer vision and corresponds to a large field of applications: industrial inspection, reverse engineering, object recognition, biometry, archeology… Because of the large varieties of applications, one can find in the literature a lot of approaches which can be classified into two families: passive and active [1]. Certainly because of their reliability, active approaches, using imaging system with an additional controlled light source, seem to be the most commonly used in the industrial field. In this domain, the 3D digitization approach based on active 3D triangulation has had important developments during the last ten years [2] and seems to be mature today if considering the important number of systems proposed by manufacturers. Unfortunately, the performances of active 3D scanners depend on the optical properties of the surface to digitize. As an example, on Fig 1.a, a 3D shape with a diffuse surface has been digitized with Comet V scanner (Steinbichler). The 3D reconstruction is presented on Fig 1.b. The same experiment was carried out on a similar object (same shape) but presenting a specular surface (Fig 1.c and Fig 1.d) ; it can clearly be observed, that the specularity influences of the performance of the digitization.
Semi-automated contour recognition using DICOMautomaton
NASA Astrophysics Data System (ADS)
Clark, H.; Wu, J.; Moiseenko, V.; Lee, R.; Gill, B.; Duzenli, C.; Thomas, S.
2014-03-01
Purpose: A system has been developed which recognizes and classifies Digital Imaging and Communication in Medicine contour data with minimal human intervention. It allows researchers to overcome obstacles which tax analysis and mining systems, including inconsistent naming conventions and differences in data age or resolution. Methods: Lexicographic and geometric analysis is used for recognition. Well-known lexicographic methods implemented include Levenshtein-Damerau, bag-of-characters, Double Metaphone, Soundex, and (word and character)-N-grams. Geometrical implementations include 3D Fourier Descriptors, probability spheres, boolean overlap, simple feature comparison (e.g. eccentricity, volume) and rule-based techniques. Both analyses implement custom, domain-specific modules (e.g. emphasis differentiating left/right organ variants). Contour labels from 60 head and neck patients are used for cross-validation. Results: Mixed-lexicographical methods show an effective improvement in more than 10% of recognition attempts compared with a pure Levenshtein-Damerau approach when withholding 70% of the lexicon. Domain-specific and geometrical techniques further boost performance. Conclusions: DICOMautomaton allows users to recognize contours semi-automatically. As usage increases and the lexicon is filled with additional structures, performance improves, increasing the overall utility of the system.
NASA Astrophysics Data System (ADS)
Samala, Ravi K.; Chan, Heang-Ping; Hadjiiski, Lubomir; Helvie, Mark A.; Richter, Caleb; Cha, Kenny
2018-02-01
We propose a cross-domain, multi-task transfer learning framework to transfer knowledge learned from non-medical images by a deep convolutional neural network (DCNN) to medical image recognition task while improving the generalization by multi-task learning of auxiliary tasks. A first stage cross-domain transfer learning was initiated from ImageNet trained DCNN to mammography trained DCNN. 19,632 regions-of-interest (ROI) from 2,454 mass lesions were collected from two imaging modalities: digitized-screen film mammography (SFM) and full-field digital mammography (DM), and split into training and test sets. In the multi-task transfer learning, the DCNN learned the mass classification task simultaneously from the training set of SFM and DM. The best transfer network for mammography was selected from three transfer networks with different number of convolutional layers frozen. The performance of single-task and multitask transfer learning on an independent SFM test set in terms of the area under the receiver operating characteristic curve (AUC) was 0.78+/-0.02 and 0.82+/-0.02, respectively. In the second stage cross-domain transfer learning, a set of 12,680 ROIs from 317 mass lesions on DBT were split into validation and independent test sets. We first studied the data requirements for the first stage mammography trained DCNN by varying the mammography training data from 1% to 100% and evaluated its learning on the DBT validation set in inference mode. We found that the entire available mammography set provided the best generalization. The DBT validation set was then used to train only the last four fully connected layers, resulting in an AUC of 0.90+/-0.04 on the independent DBT test set.
Image pattern recognition supporting interactive analysis and graphical visualization
NASA Technical Reports Server (NTRS)
Coggins, James M.
1992-01-01
Image Pattern Recognition attempts to infer properties of the world from image data. Such capabilities are crucial for making measurements from satellite or telescope images related to Earth and space science problems. Such measurements can be the required product itself, or the measurements can be used as input to a computer graphics system for visualization purposes. At present, the field of image pattern recognition lacks a unified scientific structure for developing and evaluating image pattern recognition applications. The overall goal of this project is to begin developing such a structure. This report summarizes results of a 3-year research effort in image pattern recognition addressing the following three principal aims: (1) to create a software foundation for the research and identify image pattern recognition problems in Earth and space science; (2) to develop image measurement operations based on Artificial Visual Systems; and (3) to develop multiscale image descriptions for use in interactive image analysis.
Target recognition for ladar range image using slice image
NASA Astrophysics Data System (ADS)
Xia, Wenze; Han, Shaokun; Wang, Liang
2015-12-01
A shape descriptor and a complete shape-based recognition system using slice images as geometric feature descriptor for ladar range images are introduced. A slice image is a two-dimensional image generated by three-dimensional Hough transform and the corresponding mathematical transformation. The system consists of two processes, the model library construction and recognition. In the model library construction process, a series of range images are obtained after the model object is sampled at preset attitude angles. Then, all the range images are converted into slice images. The number of slice images is reduced by clustering analysis and finding a representation to reduce the size of the model library. In the recognition process, the slice image of the scene is compared with the slice image in the model library. The recognition results depend on the comparison. Simulated ladar range images are used to analyze the recognition and misjudgment rates, and comparison between the slice image representation method and moment invariants representation method is performed. The experimental results show that whether in conditions without noise or with ladar noise, the system has a high recognition rate and low misjudgment rate. The comparison experiment demonstrates that the slice image has better representation ability than moment invariants.
Image dependency in the recognition of newly learnt faces.
Longmore, Christopher A; Santos, Isabel M; Silva, Carlos F; Hall, Abi; Faloyin, Dipo; Little, Emily
2017-05-01
Research investigating the effect of lighting and viewpoint changes on unfamiliar and newly learnt faces has revealed that such recognition is highly image dependent and that changes in either of these leads to poor recognition accuracy. Three experiments are reported to extend these findings by examining the effect of apparent age on the recognition of newly learnt faces. Experiment 1 investigated the ability to generalize to novel ages of a face after learning a single image. It was found that recognition was best for the learnt image with performance falling the greater the dissimilarity between the study and test images. Experiments 2 and 3 examined whether learning two images aids subsequent recognition of a novel image. The results indicated that interpolation between two studied images (Experiment 2) provided some additional benefit over learning a single view, but that this did not extend to extrapolation (Experiment 3). The results from all studies suggest that recognition was driven primarily by pictorial codes and that the recognition of faces learnt from a limited number of sources operates on stored images of faces as opposed to more abstract, structural, representations.
A hardware implementation of the discrete Pascal transform for image processing
NASA Astrophysics Data System (ADS)
Goodman, Thomas J.; Aburdene, Maurice F.
2006-02-01
The discrete Pascal transform is a polynomial transform with applications in pattern recognition, digital filtering, and digital image processing. It already has been shown that the Pascal transform matrix can be decomposed into a product of binary matrices. Such a factorization leads to a fast and efficient hardware implementation without the use of multipliers, which consume large amounts of hardware. We recently developed a field-programmable gate array (FPGA) implementation to compute the Pascal transform. Our goal was to demonstrate the computational efficiency of the transform while keeping hardware requirements at a minimum. Images are uploaded into memory from a remote computer prior to processing, and the transform coefficients can be offloaded from the FPGA board for analysis. Design techniques like as-soon-as-possible scheduling and adder sharing allowed us to develop a fast and efficient system. An eight-point, one-dimensional transform completes in 13 clock cycles and requires only four adders. An 8x8 two-dimensional transform completes in 240 cycles and requires only a top-level controller in addition to the one-dimensional transform hardware. Finally, through minor modifications to the controller, the transform operations can be pipelined to achieve 100% utilization of the four adders, allowing one eight-point transform to complete every seven clock cycles.
Development of an automated MODS plate reader to detect early growth of Mycobacterium tuberculosis.
Comina, G; Mendoza, D; Velazco, A; Coronel, J; Sheen, P; Gilman, R H; Moore, D A J; Zimic, M
2011-06-01
In this work, an automated microscopic observation drug susceptibility (MODS) plate reader has been developed. The reader automatically handles MODS plates and after autofocussing digital images are acquired of the characteristic microscopic cording structures of Mycobacterium tuberculosis, which are the identification method utilized in the MODS technique to detect tuberculosis and multidrug resistant tuberculosis. In conventional MODS, trained technicians manually move the MODS plate on the stage of an inverted microscope while trying to locate and focus upon the characteristic microscopic cording colonies. In centres with high tuberculosis diagnostic demand, sufficient time may not be available to adequately examine all cultures. An automated reader would reduce labour time and the handling of M. tuberculosis cultures by laboratory personnel. Two hundred MODS culture images (100 from tuberculosis positive and 100 from tuberculosis negative sputum samples confirmed by a standard MODS reading using a commercial microscope) were acquired randomly using the automated MODS plate reader. A specialist analysed these digital images with the help of a personal computer and designated them as M. tuberculosis present or absent. The specialist considered four images insufficiently clear to permit a definitive reading. The readings from the 196 valid images resulted in a 100% agreement with the conventional nonautomated standard reading. The automated MODS plate reader combined with open-source MODS pattern recognition software provides a novel platform for high throughput automated tuberculosis diagnosis. © 2011 The Authors Journal of Microscopy © 2011 Royal Microscopical Society.
A Limited-Vocabulary, Multi-Speaker Automatic Isolated Word Recognition System.
ERIC Educational Resources Information Center
Paul, James E., Jr.
Techniques for automatic recognition of isolated words are investigated, and a computer simulation of a word recognition system is effected. Considered in detail are data acquisition and digitizing, word detection, amplitude and time normalization, short-time spectral estimation including spectral windowing, spectral envelope approximation,…
Study on Formulation of Optimum Lighting-system for Purchasing Power at Stores
NASA Astrophysics Data System (ADS)
Fujita, Hiroki; Nakashima, Yoshio; Takamatsu, Mamoru; Oota, Masaaki; Sawa, Kazuhiro
In store lighting, difference in the look-and-feel of foods gives effects on the purchasing power of customers. This study conducted the digitalization and quantification on the effects of the variation of light-source color and illuminance used for lighting foods on image recognition on foods. As a result, it was clarified that when meat was illuminated with the light source of “pink” or “faint pink,” image evaluation on foods became higher. In addition, when illuminance increase was applied to these two light-source colors, image evaluation on “faint pink” became further higher. The reason is supposed to be that the redness of meat increased, which may have enhanced fresher impression. From this study, it has been clarified that the light-source color and illuminance optimum for each food are variant. The results show that lighting foods with the optimum light-source color and illuminance can make foods look better.
Intelligent platforms for disease assessment: novel approaches in functional echocardiography.
Sengupta, Partho P
2013-11-01
Accelerating trends in the dynamic digital era (from 2004 onward) has resulted in the emergence of novel parametric imaging tools that allow easy and accurate extraction of quantitative information from cardiac images. This review principally attempts to heighten the awareness of newer emerging paradigms that may advance acquisition, visualization and interpretation of the large functional data sets obtained during cardiac ultrasound imaging. Incorporation of innovative cognitive software that allow advanced pattern recognition and disease forecasting will likely transform the human-machine interface and interpretation process to achieve a more efficient and effective work environment. Novel technologies for automation and big data analytics that are already active in other fields need to be rapidly adapted to the health care environment with new academic-industry collaborations to enrich and accelerate the delivery of newer decision making tools for enhancing patient care. Copyright © 2013. Published by Elsevier Inc.
Small Interactive Image Processing System (SMIPS) users manual
NASA Technical Reports Server (NTRS)
Moik, J. G.
1973-01-01
The Small Interactive Image Processing System (SMIP) is designed to facilitate the acquisition, digital processing and recording of image data as well as pattern recognition in an interactive mode. Objectives of the system are ease of communication with the computer by personnel who are not expert programmers, fast response to requests for information on pictures, complete error recovery as well as simplification of future programming efforts for extension of the system. The SMIP system is intended for operation under OS/MVT on an IBM 360/75 or 91 computer equipped with the IBM-2250 Model 1 display unit. This terminal is used as an interface between user and main computer. It has an alphanumeric keyboard, a programmed function keyboard and a light pen which are used for specification of input to the system. Output from the system is displayed on the screen as messages and pictures.
Fast image processing with a microcomputer applied to speckle photography
NASA Astrophysics Data System (ADS)
Erbeck, R.
1985-11-01
An automated image recognition system is described for speckle photography investigations in fluid dynamics. The system is employed for characterizing the pattern of interference fringes obtained using speckle interferometry. A rotating ground glass serves as a screen on which laser light passing through a specklegraph plate, the flow and a compensation plate (CP) is shone to produce a compensated Young's pattern. The image produced on the ground glass is photographed by a video camera whose signal is digitized and processed through a microcomputer using a 6502 CPU chip. The normalized correlation function of the intensity is calculated in two directions of the recorded pattern to obtain the wavelength and the light deflection angle. The system has a capability of one picture every two seconds. Sample data are provided for a free jet of CO2 issuing into air in both laminar and turbulent form.
Automated Dermoscopy Image Analysis of Pigmented Skin Lesions
Baldi, Alfonso; Quartulli, Marco; Murace, Raffaele; Dragonetti, Emanuele; Manganaro, Mario; Guerra, Oscar; Bizzi, Stefano
2010-01-01
Dermoscopy (dermatoscopy, epiluminescence microscopy) is a non-invasive diagnostic technique for the in vivo observation of pigmented skin lesions (PSLs), allowing a better visualization of surface and subsurface structures (from the epidermis to the papillary dermis). This diagnostic tool permits the recognition of morphologic structures not visible by the naked eye, thus opening a new dimension in the analysis of the clinical morphologic features of PSLs. In order to reduce the learning-curve of non-expert clinicians and to mitigate problems inherent in the reliability and reproducibility of the diagnostic criteria used in pattern analysis, several indicative methods based on diagnostic algorithms have been introduced in the last few years. Recently, numerous systems designed to provide computer-aided analysis of digital images obtained by dermoscopy have been reported in the literature. The goal of this article is to review these systems, focusing on the most recent approaches based on content-based image retrieval systems (CBIR). PMID:24281070
A unified framework for gesture recognition and spatiotemporal gesture segmentation.
Alon, Jonathan; Athitsos, Vassilis; Yuan, Quan; Sclaroff, Stan
2009-09-01
Within the context of hand gesture recognition, spatiotemporal gesture segmentation is the task of determining, in a video sequence, where the gesturing hand is located and when the gesture starts and ends. Existing gesture recognition methods typically assume either known spatial segmentation or known temporal segmentation, or both. This paper introduces a unified framework for simultaneously performing spatial segmentation, temporal segmentation, and recognition. In the proposed framework, information flows both bottom-up and top-down. A gesture can be recognized even when the hand location is highly ambiguous and when information about when the gesture begins and ends is unavailable. Thus, the method can be applied to continuous image streams where gestures are performed in front of moving, cluttered backgrounds. The proposed method consists of three novel contributions: a spatiotemporal matching algorithm that can accommodate multiple candidate hand detections in every frame, a classifier-based pruning framework that enables accurate and early rejection of poor matches to gesture models, and a subgesture reasoning algorithm that learns which gesture models can falsely match parts of other longer gestures. The performance of the approach is evaluated on two challenging applications: recognition of hand-signed digits gestured by users wearing short-sleeved shirts, in front of a cluttered background, and retrieval of occurrences of signs of interest in a video database containing continuous, unsegmented signing in American Sign Language (ASL).
Face photo-sketch synthesis and recognition.
Wang, Xiaogang; Tang, Xiaoou
2009-11-01
In this paper, we propose a novel face photo-sketch synthesis and recognition method using a multiscale Markov Random Fields (MRF) model. Our system has three components: 1) given a face photo, synthesizing a sketch drawing; 2) given a face sketch drawing, synthesizing a photo; and 3) searching for face photos in the database based on a query sketch drawn by an artist. It has useful applications for both digital entertainment and law enforcement. We assume that faces to be studied are in a frontal pose, with normal lighting and neutral expression, and have no occlusions. To synthesize sketch/photo images, the face region is divided into overlapping patches for learning. The size of the patches decides the scale of local face structures to be learned. From a training set which contains photo-sketch pairs, the joint photo-sketch model is learned at multiple scales using a multiscale MRF model. By transforming a face photo to a sketch (or transforming a sketch to a photo), the difference between photos and sketches is significantly reduced, thus allowing effective matching between the two in face sketch recognition. After the photo-sketch transformation, in principle, most of the proposed face photo recognition approaches can be applied to face sketch recognition in a straightforward way. Extensive experiments are conducted on a face sketch database including 606 faces, which can be downloaded from our Web site (http://mmlab.ie.cuhk.edu.hk/facesketch.html).
Spence, Morgan L; Storrs, Katherine R; Arnold, Derek H
2014-07-29
Humans are experts at face recognition. The mechanisms underlying this complex capacity are not fully understood. Recently, it has been proposed that face recognition is supported by a coarse-scale analysis of visual information contained in horizontal bands of contrast distributed along the vertical image axis-a biological facial "barcode" (Dakin & Watt, 2009). A critical prediction of the facial barcode hypothesis is that the distribution of image contrast along the vertical axis will be more important for face recognition than image distributions along the horizontal axis. Using a novel paradigm involving dynamic image distortions, a series of experiments are presented examining famous face recognition impairments from selectively disrupting image distributions along the vertical or horizontal image axes. Results show that disrupting the image distribution along the vertical image axis is more disruptive for recognition than matched distortions along the horizontal axis. Consistent with the facial barcode hypothesis, these results suggest that human face recognition relies disproportionately on appropriately scaled distributions of image contrast along the vertical image axis. © 2014 ARVO.
A comparison study between MLP and convolutional neural network models for character recognition
NASA Astrophysics Data System (ADS)
Ben Driss, S.; Soua, M.; Kachouri, R.; Akil, M.
2017-05-01
Optical Character Recognition (OCR) systems have been designed to operate on text contained in scanned documents and images. They include text detection and character recognition in which characters are described then classified. In the classification step, characters are identified according to their features or template descriptions. Then, a given classifier is employed to identify characters. In this context, we have proposed the unified character descriptor (UCD) to represent characters based on their features. Then, matching was employed to ensure the classification. This recognition scheme performs a good OCR Accuracy on homogeneous scanned documents, however it cannot discriminate characters with high font variation and distortion.3 To improve recognition, classifiers based on neural networks can be used. The multilayer perceptron (MLP) ensures high recognition accuracy when performing a robust training. Moreover, the convolutional neural network (CNN), is gaining nowadays a lot of popularity for its high performance. Furthermore, both CNN and MLP may suffer from the large amount of computation in the training phase. In this paper, we establish a comparison between MLP and CNN. We provide MLP with the UCD descriptor and the appropriate network configuration. For CNN, we employ the convolutional network designed for handwritten and machine-printed character recognition (Lenet-5) and we adapt it to support 62 classes, including both digits and characters. In addition, GPU parallelization is studied to speed up both of MLP and CNN classifiers. Based on our experimentations, we demonstrate that the used real-time CNN is 2x more relevant than MLP when classifying characters.
Infrared imagery acquisition process supporting simulation and real image training
NASA Astrophysics Data System (ADS)
O'Connor, John
2012-05-01
The increasing use of infrared sensors requires development of advanced infrared training and simulation tools to meet current Warfighter needs. In order to prepare the force, a challenge exists for training and simulation images to be both realistic and consistent with each other to be effective and avoid negative training. The US Army Night Vision and Electronic Sensors Directorate has corrected this deficiency by developing and implementing infrared image collection methods that meet the needs of both real image trainers and real-time simulations. The author presents innovative methods for collection of high-fidelity digital infrared images and the associated equipment and environmental standards. The collected images are the foundation for US Army, and USMC Recognition of Combat Vehicles (ROC-V) real image combat ID training and also support simulations including the Night Vision Image Generator and Synthetic Environment Core. The characteristics, consistency, and quality of these images have contributed to the success of these and other programs. To date, this method has been employed to generate signature sets for over 350 vehicles. The needs of future physics-based simulations will also be met by this data. NVESD's ROC-V image database will support the development of training and simulation capabilities as Warfighter needs evolve.
Automatic face recognition in HDR imaging
NASA Astrophysics Data System (ADS)
Pereira, Manuela; Moreno, Juan-Carlos; Proença, Hugo; Pinheiro, António M. G.
2014-05-01
The gaining popularity of the new High Dynamic Range (HDR) imaging systems is raising new privacy issues caused by the methods used for visualization. HDR images require tone mapping methods for an appropriate visualization on conventional and non-expensive LDR displays. These visualization methods might result in completely different visualization raising several issues on privacy intrusion. In fact, some visualization methods result in a perceptual recognition of the individuals, while others do not even show any identity. Although perceptual recognition might be possible, a natural question that can rise is how computer based recognition will perform using tone mapping generated images? In this paper, a study where automatic face recognition using sparse representation is tested with images that result from common tone mapping operators applied to HDR images. Its ability for the face identity recognition is described. Furthermore, typical LDR images are used for the face recognition training.
Adaptive Learning and Pruning Using Periodic Packet for Fast Invariance Extraction and Recognition
NASA Astrophysics Data System (ADS)
Chang, Sheng-Jiang; Zhang, Bian-Li; Lin, Lie; Xiong, Tao; Shen, Jin-Yuan
2005-02-01
A new learning scheme using a periodic packet as the neuronal activation function is proposed for invariance extraction and recognition of handwritten digits. Simulation results show that the proposed network can extract the invariant feature effectively and improve both the convergence and the recognition rate.
[Design and development of an online system of parasite's images for training and evaluation].
Yuan-Chun, Mao; Sui, Xu; Jie, Wang; Hua-Yun, Zhou; Jun, Cao
2017-08-08
To design and develop an online training and evaluation system for parasitic pathogen recognition. The system was based on a Parasitic Diseases Specimen Image Digitization Construction Database by using MYSQL 5.0 as the system of database development software, and PHP 5 as the interface development language. It was mainly used for online training and evaluation of parasitic pathology diagnostic techniques. The system interface was designed simple, flexible, and easy to operate for medical staff. It enabled full day and 24 hours accessible to online training study and evaluation. Thus, the system broke the time and space constraints of the traditional training models. The system provides a shared platform for the professional training of parasitic diseases, and a reference for other training tasks.
Cellular preservation of musculoskeletal specializations in the Cretaceous bird Confuciusornis
Jiang, Baoyu; Zhao, Tao; Regnault, Sophie; Edwards, Nicholas P.; Kohn, Simon C.; Li, Zhiheng; Wogelius, Roy A.; Benton, Michael J.; Hutchinson, John R.
2017-01-01
The hindlimb of theropod dinosaurs changed appreciably in the lineage leading to extant birds, becoming more ‘crouched' in association with changes to body shape and gait dynamics. This postural evolution included anatomical changes of the foot and ankle, altering the moment arms and control of the muscles that manipulated the tarsometatarsus and digits, but the timing of these changes is unknown. Here, we report cellular-level preservation of tendon- and cartilage-like tissues from the lower hindlimb of Early Cretaceous Confuciusornis. The digital flexor tendons passed through cartilages, cartilaginous cristae and ridges on the plantar side of the distal tibiotarsus and proximal tarsometatarsus, as in extant birds. In particular, fibrocartilaginous and cartilaginous structures on the plantar surface of the ankle joint of Confuciusornis may indicate a more crouched hindlimb posture. Recognition of these specialized soft tissues in Confuciusornis is enabled by our combination of imaging and chemical analyses applied to an exceptionally preserved fossil. PMID:28327586
Nguyen, Dat Tien; Hong, Hyung Gil; Kim, Ki Wan; Park, Kang Ryoung
2017-03-16
The human body contains identity information that can be used for the person recognition (verification/recognition) problem. In this paper, we propose a person recognition method using the information extracted from body images. Our research is novel in the following three ways compared to previous studies. First, we use the images of human body for recognizing individuals. To overcome the limitations of previous studies on body-based person recognition that use only visible light images for recognition, we use human body images captured by two different kinds of camera, including a visible light camera and a thermal camera. The use of two different kinds of body image helps us to reduce the effects of noise, background, and variation in the appearance of a human body. Second, we apply a state-of-the art method, called convolutional neural network (CNN) among various available methods, for image features extraction in order to overcome the limitations of traditional hand-designed image feature extraction methods. Finally, with the extracted image features from body images, the recognition task is performed by measuring the distance between the input and enrolled samples. The experimental results show that the proposed method is efficient for enhancing recognition accuracy compared to systems that use only visible light or thermal images of the human body.
Radiomics: Images Are More than Pictures, They Are Data
Kinahan, Paul E.; Hricak, Hedvig
2016-01-01
In the past decade, the field of medical image analysis has grown exponentially, with an increased number of pattern recognition tools and an increase in data set sizes. These advances have facilitated the development of processes for high-throughput extraction of quantitative features that result in the conversion of images into mineable data and the subsequent analysis of these data for decision support; this practice is termed radiomics. This is in contrast to the traditional practice of treating medical images as pictures intended solely for visual interpretation. Radiomic data contain first-, second-, and higher-order statistics. These data are combined with other patient data and are mined with sophisticated bioinformatics tools to develop models that may potentially improve diagnostic, prognostic, and predictive accuracy. Because radiomics analyses are intended to be conducted with standard of care images, it is conceivable that conversion of digital images to mineable data will eventually become routine practice. This report describes the process of radiomics, its challenges, and its potential power to facilitate better clinical decision making, particularly in the care of patients with cancer. PMID:26579733
NASA Astrophysics Data System (ADS)
Poinsot, Audrey; Yang, Fan; Brost, Vincent
2011-02-01
Including multiple sources of information in personal identity recognition and verification gives the opportunity to greatly improve performance. We propose a contactless biometric system that combines two modalities: palmprint and face. Hardware implementations are proposed on the Texas Instrument Digital Signal Processor and Xilinx Field-Programmable Gate Array (FPGA) platforms. The algorithmic chain consists of a preprocessing (which includes palm extraction from hand images), Gabor feature extraction, comparison by Hamming distance, and score fusion. Fusion possibilities are discussed and tested first using a bimodal database of 130 subjects that we designed (uB database), and then two common public biometric databases (AR for face and PolyU for palmprint). High performance has been obtained for recognition and verification purpose: a recognition rate of 97.49% with AR-PolyU database and an equal error rate of 1.10% on the uB database using only two training samples per subject have been obtained. Hardware results demonstrate that preprocessing can easily be performed during the acquisition phase, and multimodal biometric recognition can be treated almost instantly (0.4 ms on FPGA). We show the feasibility of a robust and efficient multimodal hardware biometric system that offers several advantages, such as user-friendliness and flexibility.
Warden, Graham I.; Farkas, Cameron E.; Ikuta, Ichiro; Prevedello, Luciano M.; Andriole, Katherine P.; Khorasani, Ramin
2012-01-01
Purpose: To develop and validate an informatics toolkit that extracts anatomy-specific computed tomography (CT) radiation exposure metrics (volume CT dose index and dose-length product) from existing digital image archives through optical character recognition of CT dose report screen captures (dose screens) combined with Digital Imaging and Communications in Medicine attributes. Materials and Methods: This institutional review board–approved HIPAA-compliant study was performed in a large urban health care delivery network. Data were drawn from a random sample of CT encounters that occurred between 2000 and 2010; images from these encounters were contained within the enterprise image archive, which encompassed images obtained at an adult academic tertiary referral hospital and its affiliated sites, including a cancer center, a community hospital, and outpatient imaging centers, as well as images imported from other facilities. Software was validated by using 150 randomly selected encounters for each major CT scanner manufacturer, with outcome measures of dose screen retrieval rate (proportion of correctly located dose screens) and anatomic assignment precision (proportion of extracted exposure data with correctly assigned anatomic region, such as head, chest, or abdomen and pelvis). The 95% binomial confidence intervals (CIs) were calculated for discrete proportions, and CIs were derived from the standard error of the mean for continuous variables. After validation, the informatics toolkit was used to populate an exposure repository from a cohort of 54 549 CT encounters; of which 29 948 had available dose screens. Results: Validation yielded a dose screen retrieval rate of 99% (597 of 605 CT encounters; 95% CI: 98%, 100%) and an anatomic assignment precision of 94% (summed DLP fraction correct 563 in 600 CT encounters; 95% CI: 92%, 96%). Patient safety applications of the resulting data repository include benchmarking between institutions, CT protocol quality control and optimization, and cumulative patient- and anatomy-specific radiation exposure monitoring. Conclusion: Large-scale anatomy-specific radiation exposure data repositories can be created with high fidelity from existing digital image archives by using open-source informatics tools. ©RSNA, 2012 Supplemental material: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.12111822/-/DC1 PMID:22668563
Automated system for acquisition and image processing for the control and monitoring boned nopal
NASA Astrophysics Data System (ADS)
Luevano, E.; de Posada, E.; Arronte, M.; Ponce, L.; Flores, T.
2013-11-01
This paper describes the design and fabrication of a system for acquisition and image processing to control the removal of thorns nopal vegetable (Opuntia ficus indica) in an automated machine that uses pulses of a laser of Nd: YAG. The areolas, areas where thorns grow on the bark of the Nopal, are located applying segmentation algorithms to the images obtained by a CCD. Once the position of the areolas is known, coordinates are sent to a motors system that controls the laser to interact with all areolas and remove the thorns of the nopal. The electronic system comprises a video decoder, memory for image and software storage, and digital signal processor for system control. The firmware programmed tasks on acquisition, preprocessing, segmentation, recognition and interpretation of the areolas. This system achievement identifying areolas and generating table of coordinates of them, which will be send the motor galvo system that controls the laser for removal
Klein, Audrey A; Nelson, Lindsay M; Anker, Justin J
2013-03-01
Though studies have examined attentional bias for alcohol-related information among alcohol-dependent individuals, few have examined memory bias. This study examined attention and recognition memory biases for alcohol-related information among patients recently admitted to residential alcohol treatment (n=100; 40% female). Participants completed a computerized attentional task wherein they classified a centrally-presented digit as odd or even. On some trials, an alcohol word, neutral word, or anagram was presented along with the digit. On these dual trials participants first classified the digit and then classified the other stimulus as a word or nonword. Participants took longer to classify digits that appeared with alcohol words compared to neutral words; suggesting the alcohol words distracted them from processing the digit. In a subsequent recognition memory test, participants showed significantly higher hit rates (i.e., correctly classifying an old item as old) and false alarm rates (i.e., incorrectly classifying a new item as old) to the alcohol words compared to the neutral words, and they also showed a more liberal response bias to alcohol words. The findings suggest that alcohol-dependent individuals exhibit both attention and memory bias for alcohol-related information. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sheng, Yehua; Zhang, Ka; Ye, Chun; Liang, Cheng; Li, Jian
2008-04-01
Considering the problem of automatic traffic sign detection and recognition in stereo images captured under motion conditions, a new algorithm for traffic sign detection and recognition based on features and probabilistic neural networks (PNN) is proposed in this paper. Firstly, global statistical color features of left image are computed based on statistics theory. Then for red, yellow and blue traffic signs, left image is segmented to three binary images by self-adaptive color segmentation method. Secondly, gray-value projection and shape analysis are used to confirm traffic sign regions in left image. Then stereo image matching is used to locate the homonymy traffic signs in right image. Thirdly, self-adaptive image segmentation is used to extract binary inner core shapes of detected traffic signs. One-dimensional feature vectors of inner core shapes are computed by central projection transformation. Fourthly, these vectors are input to the trained probabilistic neural networks for traffic sign recognition. Lastly, recognition results in left image are compared with recognition results in right image. If results in stereo images are identical, these results are confirmed as final recognition results. The new algorithm is applied to 220 real images of natural scenes taken by the vehicle-borne mobile photogrammetry system in Nanjing at different time. Experimental results show a detection and recognition rate of over 92%. So the algorithm is not only simple, but also reliable and high-speed on real traffic sign detection and recognition. Furthermore, it can obtain geometrical information of traffic signs at the same time of recognizing their types.
Military applications of automatic speech recognition and future requirements
NASA Technical Reports Server (NTRS)
Beek, Bruno; Cupples, Edward J.
1977-01-01
An updated summary of the state-of-the-art of automatic speech recognition and its relevance to military applications is provided. A number of potential systems for military applications are under development. These include: (1) digital narrowband communication systems; (2) automatic speech verification; (3) on-line cartographic processing unit; (4) word recognition for militarized tactical data system; and (5) voice recognition and synthesis for aircraft cockpit.
Target recognition of log-polar ladar range images using moment invariants
NASA Astrophysics Data System (ADS)
Xia, Wenze; Han, Shaokun; Cao, Jie; Yu, Haoyong
2017-01-01
The ladar range image has received considerable attentions in the automatic target recognition field. However, previous research does not cover target recognition using log-polar ladar range images. Therefore, we construct a target recognition system based on log-polar ladar range images in this paper. In this system combined moment invariants and backpropagation neural network are selected as shape descriptor and shape classifier, respectively. In order to fully analyze the effect of log-polar sampling pattern on recognition result, several comparative experiments based on simulated and real range images are carried out. Eventually, several important conclusions are drawn: (i) if combined moments are computed directly by log-polar range images, translation, rotation and scaling invariant properties of combined moments will be invalid (ii) when object is located in the center of field of view, recognition rate of log-polar range images is less sensitive to the changing of field of view (iii) as object position changes from center to edge of field of view, recognition performance of log-polar range images will decline dramatically (iv) log-polar range images has a better noise robustness than Cartesian range images. Finally, we give a suggestion that it is better to divide field of view into recognition area and searching area in the real application.
Karimi, Mohammad H; Asemani, Davud
2014-05-01
Ceramic and tile industries should indispensably include a grading stage to quantify the quality of products. Actually, human control systems are often used for grading purposes. An automatic grading system is essential to enhance the quality control and marketing of the products. Since there generally exist six different types of defects originating from various stages of tile manufacturing lines with distinct textures and morphologies, many image processing techniques have been proposed for defect detection. In this paper, a survey has been made on the pattern recognition and image processing algorithms which have been used to detect surface defects. Each method appears to be limited for detecting some subgroup of defects. The detection techniques may be divided into three main groups: statistical pattern recognition, feature vector extraction and texture/image classification. The methods such as wavelet transform, filtering, morphology and contourlet transform are more effective for pre-processing tasks. Others including statistical methods, neural networks and model-based algorithms can be applied to extract the surface defects. Although, statistical methods are often appropriate for identification of large defects such as Spots, but techniques such as wavelet processing provide an acceptable response for detection of small defects such as Pinhole. A thorough survey is made in this paper on the existing algorithms in each subgroup. Also, the evaluation parameters are discussed including supervised and unsupervised parameters. Using various performance parameters, different defect detection algorithms are compared and evaluated. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Digital image transformation and rectification of spacecraft and radar images
NASA Technical Reports Server (NTRS)
Wu, S. S. C.
1985-01-01
The application of digital processing techniques to spacecraft television pictures and radar images is discussed. The use of digital rectification to produce contour maps from spacecraft pictures is described; images with azimuth and elevation angles are converted into point-perspective frame pictures. The digital correction of the slant angle of radar images to ground scale is examined. The development of orthophoto and stereoscopic shaded relief maps from digital terrain and digital image data is analyzed. Digital image transformations and rectifications are utilized on Viking Orbiter and Lander pictures of Mars.
Fast and accurate face recognition based on image compression
NASA Astrophysics Data System (ADS)
Zheng, Yufeng; Blasch, Erik
2017-05-01
Image compression is desired for many image-related applications especially for network-based applications with bandwidth and storage constraints. The face recognition community typical reports concentrate on the maximal compression rate that would not decrease the recognition accuracy. In general, the wavelet-based face recognition methods such as EBGM (elastic bunch graph matching) and FPB (face pattern byte) are of high performance but run slowly due to their high computation demands. The PCA (Principal Component Analysis) and LDA (Linear Discriminant Analysis) algorithms run fast but perform poorly in face recognition. In this paper, we propose a novel face recognition method based on standard image compression algorithm, which is termed as compression-based (CPB) face recognition. First, all gallery images are compressed by the selected compression algorithm. Second, a mixed image is formed with the probe and gallery images and then compressed. Third, a composite compression ratio (CCR) is computed with three compression ratios calculated from: probe, gallery and mixed images. Finally, the CCR values are compared and the largest CCR corresponds to the matched face. The time cost of each face matching is about the time of compressing the mixed face image. We tested the proposed CPB method on the "ASUMSS face database" (visible and thermal images) from 105 subjects. The face recognition accuracy with visible images is 94.76% when using JPEG compression. On the same face dataset, the accuracy of FPB algorithm was reported as 91.43%. The JPEG-compressionbased (JPEG-CPB) face recognition is standard and fast, which may be integrated into a real-time imaging device.
System for quantifying the formation stages of corneal arcus
NASA Astrophysics Data System (ADS)
Nasution, Aulia; Fahdarina, Sally; Cahya, Deny I.
2015-07-01
Extensive research on interpreting the clinical signs of corneal-arcus formation and their related diagnostics potentials have found that there is a strong correlation of the arcus formation with the risk of coronary artery diseases and lipid stratification. Clinically the stages of the arcus formation are normally observed as separate grey-whitish arcs, that are formed at the inferior and then at the superior poles of the cornea. These arcs will by time being elongated to form a ring approximately 1 mm in width. In this paper, efforts to develop quantification system that is capable to recognize the stages of the arcus formation will be reported. The quantification was based on eye-images taken using prior developed low-cost digital image acquisition system, which self constructed from a plastic safety welding-goggle that was modified by placing two Logitec C525 webcam and LEDs lighting system. Pattern images of arcs with variation of arc's positions, lengths and thickness were used for pre-calibration purposes. Then these similar arcs are drawn on the of periphery of cornea images to simulate dummy corneal arcus, which mimick the stages of corneal arcus development. Using 672 data images, results of recognition show a good recognition rate, i.e. 93.6 % for determining arc's length (with maximum %RSD of 5.67 %) and 84.83 % for determining arc's thickness (with maximum %RSD of 5.67 %). Worser precision data were observed to happen for the small arc's length as well as small arc's thickness. Current efforts are devoted to translate the system for clinical trials.
Innate Pattern Recognition and Categorization in a Jumping Spider
Dolev, Yinnon; Nelson, Ximena J.
2014-01-01
The East African jumping spider Evarcha culicivora feeds indirectly on vertebrate blood by preferentially preying upon blood-fed Anopheles mosquitoes, the vectors of human malaria1, using the distinct resting posture and engorged abdomen characteristic of these specific prey as key elements for their recognition. To understand perceptual categorization of objects by these spiders, we investigated their predatory behavior toward different digital stimuli - abstract ‘stick figure’ representations of Anopheles constructed solely by known key identification elements, disarranged versions of these, as well as non-prey items and detailed images of alternative prey. We hypothesized that the abstract images representing Anopheles would be perceived as potential prey, and would be preferred to those of non-preferred prey. Spiders perceived the abstract stick figures of Anopheles specifically as their preferred prey, attacking them significantly more often than non-preferred prey, even when the comprising elements of the Anopheles stick figures were disarranged and disconnected from each other. However, if the relative angles between the elements of the disconnected stick figures of Anopheles were altered, the otherwise identical set of elements was no longer perceived as prey. These data show that E. culicivora is capable of making discriminations based on abstract concepts, such as the hypothetical angle formed by discontinuous elements. It is this inter-element angle rather than resting posture that is important for correct identification of Anopheles. Our results provide a glimpse of the underlying processes of object recognition in animals with minute brains, and suggest that these spiders use a local processing approach for object recognition, rather than a holistic or global approach. This study provides an excellent basis for a comparative analysis on feature extraction and detection by animals as diverse as bees and mammals. PMID:24893306
Rapid Naming Speed and Chinese Character Recognition
ERIC Educational Resources Information Center
Liao, Chen-Huei; Georgiou, George K.; Parrila, Rauno
2008-01-01
We examined the relationship between rapid naming speed (RAN) and Chinese character recognition accuracy and fluency. Sixty-three grade 2 and 54 grade 4 Taiwanese children were administered four RAN tasks (colors, digits, Zhu-Yin-Fu-Hao, characters), and two character recognition tasks. RAN tasks accounted for more reading variance in grade 4 than…
Digital camera with apparatus for authentication of images produced from an image file
NASA Technical Reports Server (NTRS)
Friedman, Gary L. (Inventor)
1993-01-01
A digital camera equipped with a processor for authentication of images produced from an image file taken by the digital camera is provided. The digital camera processor has embedded therein a private key unique to it, and the camera housing has a public key that is so uniquely based upon the private key that digital data encrypted with the private key by the processor may be decrypted using the public key. The digital camera processor comprises means for calculating a hash of the image file using a predetermined algorithm, and second means for encrypting the image hash with the private key, thereby producing a digital signature. The image file and the digital signature are stored in suitable recording means so they will be available together. Apparatus for authenticating at any time the image file as being free of any alteration uses the public key for decrypting the digital signature, thereby deriving a secure image hash identical to the image hash produced by the digital camera and used to produce the digital signature. The apparatus calculates from the image file an image hash using the same algorithm as before. By comparing this last image hash with the secure image hash, authenticity of the image file is determined if they match, since even one bit change in the image hash will cause the image hash to be totally different from the secure hash.
Nguyen, Dat Tien; Hong, Hyung Gil; Kim, Ki Wan; Park, Kang Ryoung
2017-01-01
The human body contains identity information that can be used for the person recognition (verification/recognition) problem. In this paper, we propose a person recognition method using the information extracted from body images. Our research is novel in the following three ways compared to previous studies. First, we use the images of human body for recognizing individuals. To overcome the limitations of previous studies on body-based person recognition that use only visible light images for recognition, we use human body images captured by two different kinds of camera, including a visible light camera and a thermal camera. The use of two different kinds of body image helps us to reduce the effects of noise, background, and variation in the appearance of a human body. Second, we apply a state-of-the art method, called convolutional neural network (CNN) among various available methods, for image features extraction in order to overcome the limitations of traditional hand-designed image feature extraction methods. Finally, with the extracted image features from body images, the recognition task is performed by measuring the distance between the input and enrolled samples. The experimental results show that the proposed method is efficient for enhancing recognition accuracy compared to systems that use only visible light or thermal images of the human body. PMID:28300783
[Research progress of multi-model medical image fusion and recognition].
Zhou, Tao; Lu, Huiling; Chen, Zhiqiang; Ma, Jingxian
2013-10-01
Medical image fusion and recognition has a wide range of applications, such as focal location, cancer staging and treatment effect assessment. Multi-model medical image fusion and recognition are analyzed and summarized in this paper. Firstly, the question of multi-model medical image fusion and recognition is discussed, and its advantage and key steps are discussed. Secondly, three fusion strategies are reviewed from the point of algorithm, and four fusion recognition structures are discussed. Thirdly, difficulties, challenges and possible future research direction are discussed.
Method for automatic detection of wheezing in lung sounds.
Riella, R J; Nohama, P; Maia, J M
2009-07-01
The present report describes the development of a technique for automatic wheezing recognition in digitally recorded lung sounds. This method is based on the extraction and processing of spectral information from the respiratory cycle and the use of these data for user feedback and automatic recognition. The respiratory cycle is first pre-processed, in order to normalize its spectral information, and its spectrogram is then computed. After this procedure, the spectrogram image is processed by a two-dimensional convolution filter and a half-threshold in order to increase the contrast and isolate its highest amplitude components, respectively. Thus, in order to generate more compressed data to automatic recognition, the spectral projection from the processed spectrogram is computed and stored as an array. The higher magnitude values of the array and its respective spectral values are then located and used as inputs to a multi-layer perceptron artificial neural network, which results an automatic indication about the presence of wheezes. For validation of the methodology, lung sounds recorded from three different repositories were used. The results show that the proposed technique achieves 84.82% accuracy in the detection of wheezing for an isolated respiratory cycle and 92.86% accuracy for the detection of wheezes when detection is carried out using groups of respiratory cycles obtained from the same person. Also, the system presents the original recorded sound and the post-processed spectrogram image for the user to draw his own conclusions from the data.
Chinese Herbal Medicine Image Recognition and Retrieval by Convolutional Neural Network
Sun, Xin; Qian, Huinan
2016-01-01
Chinese herbal medicine image recognition and retrieval have great potential of practical applications. Several previous studies have focused on the recognition with hand-crafted image features, but there are two limitations in them. Firstly, most of these hand-crafted features are low-level image representation, which is easily affected by noise and background. Secondly, the medicine images are very clean without any backgrounds, which makes it difficult to use in practical applications. Therefore, designing high-level image representation for recognition and retrieval in real world medicine images is facing a great challenge. Inspired by the recent progress of deep learning in computer vision, we realize that deep learning methods may provide robust medicine image representation. In this paper, we propose to use the Convolutional Neural Network (CNN) for Chinese herbal medicine image recognition and retrieval. For the recognition problem, we use the softmax loss to optimize the recognition network; then for the retrieval problem, we fine-tune the recognition network by adding a triplet loss to search for the most similar medicine images. To evaluate our method, we construct a public database of herbal medicine images with cluttered backgrounds, which has in total 5523 images with 95 popular Chinese medicine categories. Experimental results show that our method can achieve the average recognition precision of 71% and the average retrieval precision of 53% over all the 95 medicine categories, which are quite promising given the fact that the real world images have multiple pieces of occluded herbal and cluttered backgrounds. Besides, our proposed method achieves the state-of-the-art performance by improving previous studies with a large margin. PMID:27258404
NASA Astrophysics Data System (ADS)
Bazhin, V. Yu; Danilov, I. V.; Petrov, P. A.
2018-05-01
During the casting of light alloys and ligatures based on aluminum and magnesium, problems of the qualitative distribution of the metal and its crystallization in the mold arise. To monitor the defects of molds on the casting conveyor, a camera with a resolution of 780 x 580 pixels and a shooting rate of 75 frames per second was selected. Images of molds from casting machines were used as input data for neural network algorithm. On the preparation of a digital database and its analytical evaluation stage, the architecture of the convolutional neural network was chosen for the algorithm. The information flow from the local controller is transferred to the OPC server and then to the SCADA system of foundry. After the training, accuracy of neural network defect recognition was about 95.1% on a validation split. After the training, weight coefficients of the neural network were used on testing split and algorithm had identical accuracy with validation images. The proposed technical solutions make it possible to increase the efficiency of the automated process control system in the foundry by expanding the digital database.
Fuzzy set methods for object recognition in space applications
NASA Technical Reports Server (NTRS)
Keller, James M.
1991-01-01
Progress on the following tasks is reported: (1) fuzzy set-based decision making methodologies; (2) feature calculation; (3) clustering for curve and surface fitting; and (4) acquisition of images. The general structure for networks based on fuzzy set connectives which are being used for information fusion and decision making in space applications is described. The structure and training techniques for such networks consisting of generalized means and gamma-operators are described. The use of other hybrid operators in multicriteria decision making is currently being examined. Numerous classical features on image regions such as gray level statistics, edge and curve primitives, texture measures from cooccurrance matrix, and size and shape parameters were implemented. Several fractal geometric features which may have a considerable impact on characterizing cluttered background, such as clouds, dense star patterns, or some planetary surfaces, were used. A new approach to a fuzzy C-shell algorithm is addressed. NASA personnel are in the process of acquiring suitable simulation data and hopefully videotaped actual shuttle imagery. Photographs have been digitized to use in the algorithms. Also, a model of the shuttle was assembled and a mechanism to orient this model in 3-D to digitize for experiments on pose estimation is being constructed.
Digital processing of radiographic images from PACS to publishing.
Christian, M E; Davidson, H C; Wiggins, R H; Berges, G; Cannon, G; Jackson, G; Chapman, B; Harnsberger, H R
2001-03-01
Several studies have addressed the implications of filmless radiologic imaging on telemedicine, diagnostic ability, and electronic teaching files. However, many publishers still require authors to submit hard-copy images for publication of articles and textbooks. This study compares the quality digital images directly exported from picture archive and communications systems (PACS) to images digitized from radiographic film. The authors evaluated the quality of publication-grade glossy photographs produced from digital radiographic images using 3 different methods: (1) film images digitized using a desktop scanner and then printed, (2) digital images obtained directly from PACS then printed, and (3) digital images obtained from PACS and processed to improve sharpness prior to printing. Twenty images were printed using each of the 3 different methods and rated for quality by 7 radiologists. The results were analyzed for statistically significant differences among the image sets. Subjective evaluations of the filmless images found them to be of equal or better quality than the digitized images. Direct electronic transfer of PACS images reduces the number of steps involved in creating publication-quality images as well as providing the means to produce high-quality radiographic images in a digital environment.
Digital Camera with Apparatus for Authentication of Images Produced from an Image File
NASA Technical Reports Server (NTRS)
Friedman, Gary L. (Inventor)
1996-01-01
A digital camera equipped with a processor for authentication of images produced from an image file taken by the digital camera is provided. The digital camera processor has embedded therein a private key unique to it, and the camera housing has a public key that is so uniquely related to the private key that digital data encrypted with the private key may be decrypted using the public key. The digital camera processor comprises means for calculating a hash of the image file using a predetermined algorithm, and second means for encrypting the image hash with the private key, thereby producing a digital signature. The image file and the digital signature are stored in suitable recording means so they will be available together. Apparatus for authenticating the image file as being free of any alteration uses the public key for decrypting the digital signature, thereby deriving a secure image hash identical to the image hash produced by the digital camera and used to produce the digital signature. The authenticating apparatus calculates from the image file an image hash using the same algorithm as before. By comparing this last image hash with the secure image hash, authenticity of the image file is determined if they match. Other techniques to address time-honored methods of deception, such as attaching false captions or inducing forced perspectives, are included.
21 CFR 892.2030 - Medical image digitizer.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Medical image digitizer. 892.2030 Section 892.2030...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2030 Medical image digitizer. (a) Identification. A medical image digitizer is a device intended to convert an analog medical image into a digital...
21 CFR 892.2030 - Medical image digitizer.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Medical image digitizer. 892.2030 Section 892.2030...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2030 Medical image digitizer. (a) Identification. A medical image digitizer is a device intended to convert an analog medical image into a digital...
21 CFR 892.2030 - Medical image digitizer.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Medical image digitizer. 892.2030 Section 892.2030...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2030 Medical image digitizer. (a) Identification. A medical image digitizer is a device intended to convert an analog medical image into a digital...
21 CFR 892.2030 - Medical image digitizer.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Medical image digitizer. 892.2030 Section 892.2030...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2030 Medical image digitizer. (a) Identification. A medical image digitizer is a device intended to convert an analog medical image into a digital...
Target recognition of ladar range images using slice image: comparison of four improved algorithms
NASA Astrophysics Data System (ADS)
Xia, Wenze; Han, Shaokun; Cao, Jingya; Wang, Liang; Zhai, Yu; Cheng, Yang
2017-07-01
Compared with traditional 3-D shape data, ladar range images possess properties of strong noise, shape degeneracy, and sparsity, which make feature extraction and representation difficult. The slice image is an effective feature descriptor to resolve this problem. We propose four improved algorithms on target recognition of ladar range images using slice image. In order to improve resolution invariance of the slice image, mean value detection instead of maximum value detection is applied in these four improved algorithms. In order to improve rotation invariance of the slice image, three new improved feature descriptors-which are feature slice image, slice-Zernike moments, and slice-Fourier moments-are applied to the last three improved algorithms, respectively. Backpropagation neural networks are used as feature classifiers in the last two improved algorithms. The performance of these four improved recognition systems is analyzed comprehensively in the aspects of the three invariances, recognition rate, and execution time. The final experiment results show that the improvements for these four algorithms reach the desired effect, the three invariances of feature descriptors are not directly related to the final recognition performance of recognition systems, and these four improved recognition systems have different performances under different conditions.
CW-SSIM kernel based random forest for image classification
NASA Astrophysics Data System (ADS)
Fan, Guangzhe; Wang, Zhou; Wang, Jiheng
2010-07-01
Complex wavelet structural similarity (CW-SSIM) index has been proposed as a powerful image similarity metric that is robust to translation, scaling and rotation of images, but how to employ it in image classification applications has not been deeply investigated. In this paper, we incorporate CW-SSIM as a kernel function into a random forest learning algorithm. This leads to a novel image classification approach that does not require a feature extraction or dimension reduction stage at the front end. We use hand-written digit recognition as an example to demonstrate our algorithm. We compare the performance of the proposed approach with random forest learning based on other kernels, including the widely adopted Gaussian and the inner product kernels. Empirical evidences show that the proposed method is superior in its classification power. We also compared our proposed approach with the direct random forest method without kernel and the popular kernel-learning method support vector machine. Our test results based on both simulated and realworld data suggest that the proposed approach works superior to traditional methods without the feature selection procedure.
Absolute Position Encoders With Vertical Image Binning
NASA Technical Reports Server (NTRS)
Leviton, Douglas B.
2005-01-01
Improved optoelectronic patternrecognition encoders that measure rotary and linear 1-dimensional positions at conversion rates (numbers of readings per unit time) exceeding 20 kHz have been invented. Heretofore, optoelectronic pattern-recognition absoluteposition encoders have been limited to conversion rates <15 Hz -- too low for emerging industrial applications in which conversion rates ranging from 1 kHz to as much as 100 kHz are required. The high conversion rates of the improved encoders are made possible, in part, by use of vertically compressible or binnable (as described below) scale patterns in combination with modified readout sequences of the image sensors [charge-coupled devices (CCDs)] used to read the scale patterns. The modified readout sequences and the processing of the images thus read out are amenable to implementation by use of modern, high-speed, ultra-compact microprocessors and digital signal processors or field-programmable gate arrays. This combination of improvements makes it possible to greatly increase conversion rates through substantial reductions in all three components of conversion time: exposure time, image-readout time, and image-processing time.
Yang, Fan; Paindavoine, M
2003-01-01
This paper describes a real time vision system that allows us to localize faces in video sequences and verify their identity. These processes are image processing techniques based on the radial basis function (RBF) neural network approach. The robustness of this system has been evaluated quantitatively on eight video sequences. We have adapted our model for an application of face recognition using the Olivetti Research Laboratory (ORL), Cambridge, UK, database so as to compare the performance against other systems. We also describe three hardware implementations of our model on embedded systems based on the field programmable gate array (FPGA), zero instruction set computer (ZISC) chips, and digital signal processor (DSP) TMS320C62, respectively. We analyze the algorithm complexity and present results of hardware implementations in terms of the resources used and processing speed. The success rates of face tracking and identity verification are 92% (FPGA), 85% (ZISC), and 98.2% (DSP), respectively. For the three embedded systems, the processing speeds for images size of 288 /spl times/ 352 are 14 images/s, 25 images/s, and 4.8 images/s, respectively.
Patterson, Emily S.; Rayo, Mike; Gill, Carolina; Gurcan, Metin N.
2011-01-01
Background: Adoption of digital images for pathological specimens has been slower than adoption of digital images in radiology, despite a number of anticipated advantages for digital images in pathology. In this paper, we explore the factors that might explain this slower rate of adoption. Materials and Method: Semi-structured interviews on barriers and facilitators to the adoption of digital images were conducted with two radiologists, three pathologists, and one pathologist's assistant. Results: Barriers and facilitators to adoption of digital images were reported in the areas of performance, workflow-efficiency, infrastructure, integration with other software, and exposure to digital images. The primary difference between the settings was that performance with the use of digital images as compared to the traditional method was perceived to be higher in radiology and lower in pathology. Additionally, exposure to digital images was higher in radiology than pathology, with some radiologists exclusively having been trained and/or practicing with digital images. The integration of digital images both improved and reduced efficiency in routine and non-routine workflow patterns in both settings, and was variable across the different organizations. A comparison of these findings with prior research on adoption of other health information technologies suggests that the barriers to adoption of digital images in pathology are relatively tractable. Conclusions: Improving performance using digital images in pathology would likely accelerate adoption of innovative technologies that are facilitated by the use of digital images, such as electronic imaging databases, electronic health records, double reading for challenging cases, and computer-aided diagnostic systems. PMID:21383925
Image manipulation: Fraudulence in digital dental records: Study and review
Chowdhry, Aman; Sircar, Keya; Popli, Deepika Bablani; Tandon, Ankita
2014-01-01
Introduction: In present-day times, freely available software allows dentists to tweak their digital records as never before. But, there is a fine line between acceptable enhancements and scientific delinquency. Aims and Objective: To manipulate digital images (used in forensic dentistry) of casts, lip prints, and bite marks in order to highlight tampering techniques and methods of detecting and preventing manipulation of digital images. Materials and Methods: Digital image records of forensic data (casts, lip prints, and bite marks photographed using Samsung Techwin L77 digital camera) were manipulated using freely available software. Results: Fake digital images can be created either by merging two or more digital images, or by altering an existing image. Discussion and Conclusion: Retouched digital images can be used for fraudulent purposes in forensic investigations. However, tools are available to detect such digital frauds, which are extremely difficult to assess visually. Thus, all digital content should mandatorily have attached metadata and preferably watermarking in order to avert their malicious re-use. Also, computer alertness, especially about imaging software's, should be promoted among forensic odontologists/dental professionals. PMID:24696587
Iris recognition via plenoptic imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santos-Villalobos, Hector J.; Boehnen, Chris Bensing; Bolme, David S.
Iris recognition can be accomplished for a wide variety of eye images by using plenoptic imaging. Using plenoptic technology, it is possible to correct focus after image acquisition. One example technology reconstructs images having different focus depths and stitches them together, resulting in a fully focused image, even in an off-angle gaze scenario. Another example technology determines three-dimensional data for an eye and incorporates it into an eye model used for iris recognition processing. Another example technology detects contact lenses. Application of the technologies can result in improved iris recognition under a wide variety of scenarios.
Digital image transformation and rectification of spacecraft and radar images
Wu, S.S.C.
1985-01-01
Digital image transformation and rectification can be described in three categories: (1) digital rectification of spacecraft pictures on workable stereoplotters; (2) digital correction of radar image geometry; and (3) digital reconstruction of shaded relief maps and perspective views including stereograms. Digital rectification can make high-oblique pictures workable on stereoplotters that would otherwise not accommodate such extreme tilt angles. It also enables panoramic line-scan geometry to be used to compile contour maps with photogrammetric plotters. Rectifications were digitally processed on both Viking Orbiter and Lander pictures of Mars as well as radar images taken by various radar systems. By merging digital terrain data with image data, perspective and three-dimensional views of Olympus Mons and Tithonium Chasma, also of Mars, are reconstructed through digital image processing. ?? 1985.
Optimization of image processing algorithms on mobile platforms
NASA Astrophysics Data System (ADS)
Poudel, Pramod; Shirvaikar, Mukul
2011-03-01
This work presents a technique to optimize popular image processing algorithms on mobile platforms such as cell phones, net-books and personal digital assistants (PDAs). The increasing demand for video applications like context-aware computing on mobile embedded systems requires the use of computationally intensive image processing algorithms. The system engineer has a mandate to optimize them so as to meet real-time deadlines. A methodology to take advantage of the asymmetric dual-core processor, which includes an ARM and a DSP core supported by shared memory, is presented with implementation details. The target platform chosen is the popular OMAP 3530 processor for embedded media systems. It has an asymmetric dual-core architecture with an ARM Cortex-A8 and a TMS320C64x Digital Signal Processor (DSP). The development platform was the BeagleBoard with 256 MB of NAND RAM and 256 MB SDRAM memory. The basic image correlation algorithm is chosen for benchmarking as it finds widespread application for various template matching tasks such as face-recognition. The basic algorithm prototypes conform to OpenCV, a popular computer vision library. OpenCV algorithms can be easily ported to the ARM core which runs a popular operating system such as Linux or Windows CE. However, the DSP is architecturally more efficient at handling DFT algorithms. The algorithms are tested on a variety of images and performance results are presented measuring the speedup obtained due to dual-core implementation. A major advantage of this approach is that it allows the ARM processor to perform important real-time tasks, while the DSP addresses performance-hungry algorithms.
Presentation Attack Detection for Iris Recognition System Using NIR Camera Sensor
Nguyen, Dat Tien; Baek, Na Rae; Pham, Tuyen Danh; Park, Kang Ryoung
2018-01-01
Among biometric recognition systems such as fingerprint, finger-vein, or face, the iris recognition system has proven to be effective for achieving a high recognition accuracy and security level. However, several recent studies have indicated that an iris recognition system can be fooled by using presentation attack images that are recaptured using high-quality printed images or by contact lenses with printed iris patterns. As a result, this potential threat can reduce the security level of an iris recognition system. In this study, we propose a new presentation attack detection (PAD) method for an iris recognition system (iPAD) using a near infrared light (NIR) camera image. To detect presentation attack images, we first localized the iris region of the input iris image using circular edge detection (CED). Based on the result of iris localization, we extracted the image features using deep learning-based and handcrafted-based methods. The input iris images were then classified into real and presentation attack categories using support vector machines (SVM). Through extensive experiments with two public datasets, we show that our proposed method effectively solves the iris recognition presentation attack detection problem and produces detection accuracy superior to previous studies. PMID:29695113
Presentation Attack Detection for Iris Recognition System Using NIR Camera Sensor.
Nguyen, Dat Tien; Baek, Na Rae; Pham, Tuyen Danh; Park, Kang Ryoung
2018-04-24
Among biometric recognition systems such as fingerprint, finger-vein, or face, the iris recognition system has proven to be effective for achieving a high recognition accuracy and security level. However, several recent studies have indicated that an iris recognition system can be fooled by using presentation attack images that are recaptured using high-quality printed images or by contact lenses with printed iris patterns. As a result, this potential threat can reduce the security level of an iris recognition system. In this study, we propose a new presentation attack detection (PAD) method for an iris recognition system (iPAD) using a near infrared light (NIR) camera image. To detect presentation attack images, we first localized the iris region of the input iris image using circular edge detection (CED). Based on the result of iris localization, we extracted the image features using deep learning-based and handcrafted-based methods. The input iris images were then classified into real and presentation attack categories using support vector machines (SVM). Through extensive experiments with two public datasets, we show that our proposed method effectively solves the iris recognition presentation attack detection problem and produces detection accuracy superior to previous studies.
Digital radiographic imaging: is the dental practice ready?
Parks, Edwin T
2008-04-01
Digital radiographic imaging is slowly, but surely, replacing film-based imaging. It has many advantages over traditional imaging, but the technology also has some drawbacks. The author presents an overview of the types of digital image receptors available, image enhancement software and the range of costs for the new technology. PRACTICE IMPLICATIONS. The expenses associated with converting to digital radiographic imaging are considerable. The purpose of this article is to provide the clinician with an overview of digital radiographic imaging technology so that he or she can be an informed consumer when evaluating the numerous digital systems in the marketplace.
New efficient algorithm for recognizing handwritten Hindi digits
NASA Astrophysics Data System (ADS)
El-Sonbaty, Yasser; Ismail, Mohammed A.; Karoui, Kamal
2001-12-01
In this paper a new algorithm for recognizing handwritten Hindi digits is proposed. The proposed algorithm is based on using the topological characteristics combined with statistical properties of the given digits in order to extract a set of features that can be used in the process of digit classification. 10,000 handwritten digits are used in the experimental results. 1100 digits are used for training and another 5500 unseen digits are used for testing. The recognition rate has reached 97.56%, a substitution rate of 1.822%, and a rejection rate of 0.618%.
ERIC Educational Resources Information Center
Gunal, Serkan
2008-01-01
Digital libraries play a crucial role in distance learning. Nowadays, they are one of the fundamental information sources for the students enrolled in this learning system. These libraries contain huge amount of instructional data (text, audio and video) offered by the distance learning program. Organization of the digital libraries is…
The fast iris image clarity evaluation based on Tenengrad and ROI selection
NASA Astrophysics Data System (ADS)
Gao, Shuqin; Han, Min; Cheng, Xu
2018-04-01
In iris recognition system, the clarity of iris image is an important factor that influences recognition effect. In the process of recognition, the blurred image may possibly be rejected by the automatic iris recognition system, which will lead to the failure of identification. Therefore it is necessary to evaluate the iris image definition before recognition. Considered the existing evaluation methods on iris image definition, we proposed a fast algorithm to evaluate the definition of iris image in this paper. In our algorithm, firstly ROI (Region of Interest) is extracted based on the reference point which is determined by using the feature of the light spots within the pupil, then Tenengrad operator is used to evaluate the iris image's definition. Experiment results show that, the iris image definition algorithm proposed in this paper could accurately distinguish the iris images of different clarity, and the algorithm has the merit of low computational complexity and more effectiveness.
NASA Astrophysics Data System (ADS)
Jelinek, Herbert F.; Cree, Michael J.; Leandro, Jorge J. G.; Soares, João V. B.; Cesar, Roberto M.; Luckie, A.
2007-05-01
Proliferative diabetic retinopathy can lead to blindness. However, early recognition allows appropriate, timely intervention. Fluorescein-labeled retinal blood vessels of 27 digital images were automatically segmented using the Gabor wavelet transform and classified using traditional features such as area, perimeter, and an additional five morphological features based on the derivatives-of-Gaussian wavelet-derived data. Discriminant analysis indicated that traditional features do not detect early proliferative retinopathy. The best single feature for discrimination was the wavelet curvature with an area under the curve (AUC) of 0.76. Linear discriminant analysis with a selection of six features achieved an AUC of 0.90 (0.73-0.97, 95% confidence interval). The wavelet method was able to segment retinal blood vessels and classify the images according to the presence or absence of proliferative retinopathy.
NASA Technical Reports Server (NTRS)
Blodget, H. W.; Gunther, F. J.; Podwysocki, M. H.
1978-01-01
Digital LANDSAT MSS data for an area in the southwestern Arabian Shield were computer-enhanced to improve discrimination of rock classes, and recognition of gossans associated with massive sulphide deposits. The test area is underlain by metamorphic rocks that are locally intruded by granites; these are partly overlain by sandstones. The test area further includes the Wadi Wassat and Wadi Qatan massive sulphide deposits, which are commonly capped by gossans of ferric oxides, silica, and carbonates. Color patterns and boundaries on contrast-stretched ratio color composite imagery, and on complementary images constructed using principal component and canonical analyses transformations, correspond exceptionally well to 1:100,000 scale field maps. A qualitative visual comparison of information content showed that the ratio enhancement provided the best overall image for identification of rock type and alteration products.
Management of natural resources through automatic cartographic inventory. [France
NASA Technical Reports Server (NTRS)
Rey, P.; Gourinard, Y.; Cambou, F. (Principal Investigator)
1974-01-01
The author has identified the following significant results. (1) Accurate recognition of previously known ground features from ERTS-1 imagery has been confirmed and a probable detection range for the major signatures can be given. (2) Unidentified elements, however, must be decoded by means of the equal densitometric value zone method. (3) Determination of these zonings involves an analogical treatment of images using the color equidensity methods (pseudo-color), color composites and especially temporal color composite (repetitive superposition). (4) After this analogical preparation, the digital equidensities can be processed by computer in the four MSS bands, according to a series of transfer operations from imagery and automatic cartography.
NASA Technical Reports Server (NTRS)
Bodechtel, J. (Principal Investigator)
1975-01-01
The author has identified the following significant results. The geological interpretation on data exhibiting the Italian peninsula led to the recognition of tectonic features which are explained by a clockwise rotation of various blocks along left-handed transform faults. These faults can be interpreted as resulting from shear due to main stress directed north-eastwards. A land use map of the mountainous regions of Italy was produced on a scale of 1:250,000. For the digital treatment of MSS-CCTs an image processing software was written in FORTRAN 4. The software package includes descriptive statistics and also classification algorithms.
Automated location detection of injection site for preclinical stereotactic neurosurgery procedure
NASA Astrophysics Data System (ADS)
Abbaszadeh, Shiva; Wu, Hemmings C. H.
2017-03-01
Currently, during stereotactic neurosurgery procedures, the manual task of locating the proper area for needle insertion or implantation of electrode/cannula/optic fiber can be time consuming. The requirement of the task is to quickly and accurately find the location for insertion. In this study we investigate an automated method to locate the entry point of region of interest. This method leverages a digital image capture system, pattern recognition, and motorized stages. Template matching of known anatomical identifiable regions is used to find regions of interest (e.g. Bregma) in rodents. For our initial study, we tackle the problem of automatically detecting the entry point.
Identification of serial number on bank card using recurrent neural network
NASA Astrophysics Data System (ADS)
Liu, Li; Huang, Linlin; Xue, Jian
2018-04-01
Identification of serial number on bank card has many applications. Due to the different number printing mode, complex background, distortion in shape, etc., it is quite challenging to achieve high identification accuracy. In this paper, we propose a method using Normalization-Cooperated Gradient Feature (NCGF) and Recurrent Neural Network (RNN) based on Long Short-Term Memory (LSTM) for serial number identification. The NCGF maps the gradient direction elements of original image to direction planes such that the RNN with direction planes as input can recognize numbers more accurately. Taking the advantages of NCGF and RNN, we get 90%digit string recognition accuracy.
Fuzzy set methods for object recognition in space applications
NASA Technical Reports Server (NTRS)
Keller, James M.
1992-01-01
Progress on the following tasks is reported: feature calculation; membership calculation; clustering methods (including initial experiments on pose estimation); and acquisition of images (including camera calibration information for digitization of model). The report consists of 'stand alone' sections, describing the activities in each task. We would like to highlight the fact that during this quarter, we believe that we have made a major breakthrough in the area of fuzzy clustering. We have discovered a method to remove the probabilistic constraints that the sum of the memberships across all classes must add up to 1 (as in the fuzzy c-means). A paper, describing this approach, is included.
Context-dependent similarity effects in letter recognition.
Kinoshita, Sachiko; Robidoux, Serje; Guilbert, Daniel; Norris, Dennis
2015-10-01
In visual word recognition tasks, digit primes that are visually similar to letter string targets (e.g., 4/A, 8/B) are known to facilitate letter identification relative to visually dissimilar digits (e.g., 6/A, 7/B); in contrast, with letter primes, visual similarity effects have been elusive. In the present study we show that the visual similarity effect with letter primes can be made to come and go, depending on whether it is necessary to discriminate between visually similar letters. The results support a Bayesian view which regards letter recognition not as a passive activation process driven by the fixed stimulus properties, but as a dynamic evidence accumulation process for a decision that is guided by the task context.
49 CFR 384.227 - Record of digital image or photograph.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 5 2014-10-01 2014-10-01 false Record of digital image or photograph. 384.227... § 384.227 Record of digital image or photograph. The State must: (a) Record the digital color image or.... The digital color image or photograph or black and white laser engraved photograph must either be made...
49 CFR 384.227 - Record of digital image or photograph.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 5 2013-10-01 2013-10-01 false Record of digital image or photograph. 384.227... § 384.227 Record of digital image or photograph. The State must: (a) Record the digital color image or.... The digital color image or photograph or black and white laser engraved photograph must either be made...
49 CFR 384.227 - Record of digital image or photograph.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 5 2011-10-01 2011-10-01 false Record of digital image or photograph. 384.227... § 384.227 Record of digital image or photograph. The State must: (a) Record the digital color image or.... The digital color image or photograph or black and white laser engraved photograph must either be made...
49 CFR 384.227 - Record of digital image or photograph.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 5 2012-10-01 2012-10-01 false Record of digital image or photograph. 384.227... § 384.227 Record of digital image or photograph. The State must: (a) Record the digital color image or.... The digital color image or photograph or black and white laser engraved photograph must either be made...
Chalazonitis, A N; Koumarianos, D; Tzovara, J; Chronopoulos, P
2003-06-01
Over the past decade, the technology that permits images to be digitized and the reduction in the cost of digital equipment allows quick digital transfer of any conventional radiological film. Images then can be transferred to a personal computer, and several software programs are available that can manipulate their digital appearance. In this article, the fundamentals of digital imaging are discussed, as well as the wide variety of optional adjustments that the Adobe Photoshop 6.0 (Adobe Systems, San Jose, CA) program can offer to present radiological images with satisfactory digital imaging quality.
The AAPM/RSNA physics tutorial for residents: digital fluoroscopy.
Pooley, R A; McKinney, J M; Miller, D A
2001-01-01
A digital fluoroscopy system is most commonly configured as a conventional fluoroscopy system (tube, table, image intensifier, video system) in which the analog video signal is converted to and stored as digital data. Other methods of acquiring the digital data (eg, digital or charge-coupled device video and flat-panel detectors) will become more prevalent in the future. Fundamental concepts related to digital imaging in general include binary numbers, pixels, and gray levels. Digital image data allow the convenient use of several image processing techniques including last image hold, gray-scale processing, temporal frame averaging, and edge enhancement. Real-time subtraction of digital fluoroscopic images after injection of contrast material has led to widespread use of digital subtraction angiography (DSA). Additional image processing techniques used with DSA include road mapping, image fade, mask pixel shift, frame summation, and vessel size measurement. Peripheral angiography performed with an automatic moving table allows imaging of the peripheral vasculature with a single contrast material injection.
Sub-pattern based multi-manifold discriminant analysis for face recognition
NASA Astrophysics Data System (ADS)
Dai, Jiangyan; Guo, Changlu; Zhou, Wei; Shi, Yanjiao; Cong, Lin; Yi, Yugen
2018-04-01
In this paper, we present a Sub-pattern based Multi-manifold Discriminant Analysis (SpMMDA) algorithm for face recognition. Unlike existing Multi-manifold Discriminant Analysis (MMDA) approach which is based on holistic information of face image for recognition, SpMMDA operates on sub-images partitioned from the original face image and then extracts the discriminative local feature from the sub-images separately. Moreover, the structure information of different sub-images from the same face image is considered in the proposed method with the aim of further improve the recognition performance. Extensive experiments on three standard face databases (Extended YaleB, CMU PIE and AR) demonstrate that the proposed method is effective and outperforms some other sub-pattern based face recognition methods.
Detecting Copy Move Forgery In Digital Images
NASA Astrophysics Data System (ADS)
Gupta, Ashima; Saxena, Nisheeth; Vasistha, S. K.
2012-03-01
In today's world several image manipulation software's are available. Manipulation of digital images has become a serious problem nowadays. There are many areas like medical imaging, digital forensics, journalism, scientific publications, etc, where image forgery can be done very easily. To determine whether a digital image is original or doctored is a big challenge. To find the marks of tampering in a digital image is a challenging task. The detection methods can be very useful in image forensics which can be used as a proof for the authenticity of a digital image. In this paper we propose the method to detect region duplication forgery by dividing the image into overlapping block and then perform searching to find out the duplicated region in the image.
Multiscale image processing and antiscatter grids in digital radiography.
Lo, Winnie Y; Hornof, William J; Zwingenberger, Allison L; Robertson, Ian D
2009-01-01
Scatter radiation is a source of noise and results in decreased signal-to-noise ratio and thus decreased image quality in digital radiography. We determined subjectively whether a digitally processed image made without a grid would be of similar quality to an image made with a grid but without image processing. Additionally the effects of exposure dose and of a using a grid with digital radiography on overall image quality were studied. Thoracic and abdominal radiographs of five dogs of various sizes were made. Four acquisition techniques were included (1) with a grid, standard exposure dose, digital image processing; (2) without a grid, standard exposure dose, digital image processing; (3) without a grid, half the exposure dose, digital image processing; and (4) with a grid, standard exposure dose, no digital image processing (to mimic a film-screen radiograph). Full-size radiographs as well as magnified images of specific anatomic regions were generated. Nine reviewers rated the overall image quality subjectively using a five-point scale. All digitally processed radiographs had higher overall scores than nondigitally processed radiographs regardless of patient size, exposure dose, or use of a grid. The images made at half the exposure dose had a slightly lower quality than those made at full dose, but this was only statistically significant in magnified images. Using a grid with digital image processing led to a slight but statistically significant increase in overall quality when compared with digitally processed images made without a grid but whether this increase in quality is clinically significant is unknown.
SU-C-209-06: Improving X-Ray Imaging with Computer Vision and Augmented Reality
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDougall, R.D.; Scherrer, B; Don, S
Purpose: To determine the feasibility of using a computer vision algorithm and augmented reality interface to reduce repeat rates and improve consistency of image quality and patient exposure in general radiography. Methods: A prototype device, designed for use with commercially available hardware (Microsoft Kinect 2.0) capable of depth sensing and high resolution/frame rate video, was mounted to the x-ray tube housing as part of a Philips DigitalDiagnost digital radiography room. Depth data and video was streamed to a Windows 10 PC. Proprietary software created an augmented reality interface where overlays displayed selectable information projected over real-time video of the patient.more » The information displayed prior to and during x-ray acquisition included: recognition and position of ordered body part, position of image receptor, thickness of anatomy, location of AEC cells, collimated x-ray field, degree of patient motion and suggested x-ray technique. Pre-clinical data was collected in a volunteer study to validate patient thickness measurements and x-ray images were not acquired. Results: Proprietary software correctly identified ordered body part, measured patient motion, and calculated thickness of anatomy. Pre-clinical data demonstrated accuracy and precision of body part thickness measurement when compared with other methods (e.g. laser measurement tool). Thickness measurements provided the basis for developing a database of thickness-based technique charts that can be automatically displayed to the technologist. Conclusion: The utilization of computer vision and commercial hardware to create an augmented reality view of the patient and imaging equipment has the potential to drastically improve the quality and safety of x-ray imaging by reducing repeats and optimizing technique based on patient thickness. Society of Pediatric Radiology Pilot Grant; Washington University Bear Cub Fund.« less
Unified Digital Image Display And Processing System
NASA Astrophysics Data System (ADS)
Horii, Steven C.; Maguire, Gerald Q.; Noz, Marilyn E.; Schimpf, James H.
1981-11-01
Our institution like many others, is faced with a proliferation of medical imaging techniques. Many of these methods give rise to digital images (e.g. digital radiography, computerized tomography (CT) , nuclear medicine and ultrasound). We feel that a unified, digital system approach to image management (storage, transmission and retrieval), image processing and image display will help in integrating these new modalities into the present diagnostic radiology operations. Future techniques are likely to employ digital images, so such a system could readily be expanded to include other image sources. We presently have the core of such a system. We can both view and process digital nuclear medicine (conventional gamma camera) images, positron emission tomography (PET) and CT images on a single system. Images from our recently installed digital radiographic unit can be added. Our paper describes our present system, explains the rationale for its configuration, and describes the directions in which it will expand.
Vehicle license plate recognition based on geometry restraints and multi-feature decision
NASA Astrophysics Data System (ADS)
Wu, Jianwei; Wang, Zongyue
2005-10-01
Vehicle license plate (VLP) recognition is of great importance to many traffic applications. Though researchers have paid much attention to VLP recognition there has not been a fully operational VLP recognition system yet for many reasons. This paper discusses a valid and practical method for vehicle license plate recognition based on geometry restraints and multi-feature decision including statistical and structural features. In general, the VLP recognition includes the following steps: the location of VLP, character segmentation, and character recognition. This paper discusses the three steps in detail. The characters of VLP are always declining caused by many factors, which makes it more difficult to recognize the characters of VLP, therefore geometry restraints such as the general ratio of length and width, the adjacent edges being perpendicular are used for incline correction. Image Moment has been proved to be invariant to translation, rotation and scaling therefore image moment is used as one feature for character recognition. Stroke is the basic element for writing and hence taking it as a feature is helpful to character recognition. Finally we take the image moment, the strokes and the numbers of each stroke for each character image and some other structural features and statistical features as the multi-feature to match each character image with sample character images so that each character image can be recognized by BP neural net. The proposed method combines statistical and structural features for VLP recognition, and the result shows its validity and efficiency.
NASA Astrophysics Data System (ADS)
Giardino, Marco; Magagna, Alessandra; Ferrero, Elena; Perrone, Gianluigi
2015-04-01
Digital field mapping has certainly provided geoscientists with the opportunity to map and gather data in the field directly using digital tools and software rather than using paper maps, notebooks and analogue devices and then subsequently transferring the data to a digital format for subsequent analysis. But, the same opportunity has to be recognized for Geoscience education, as well as for stimulating and helping students in the recognition of landforms and interpretation of the geological and geomorphological components of a landscape. More, an early exposure to mapping during school and prior to university can optimise the ability to "read" and identify uncertainty in 3d models. During 2014, about 200 Secondary School students (aged 12-15) of the Piedmont region (NW Italy) participated in a research program involving the use of mobile devices (smartphone and tablet) in the field. Students, divided in groups, used the application Trimble Outdoors Navigators for tracking a geological trail in the Sangone Valley and for taking georeferenced pictures and notes. Back to school, students downloaded the digital data in a .kml file for the visualization on Google Earth. This allowed them: to compare the hand tracked trail on a paper map with the digital trail, and to discuss about the functioning and the precision of the tools; to overlap a digital/semitransparent version of the 2D paper map (a Regional Technical Map) used during the field trip on the 2.5D landscape of Google Earth, as to help them in the interpretation of conventional symbols such as contour lines; to perceive the landforms seen during the field trip as a part of a more complex Pleistocene glacial landscape; to understand the classical and innovative contributions from different geoscientific disciplines to the generation of a 3D structural geological model of the Rivoli-Avigliana Morainic Amphitheatre. In 2013 and 2014, some other pilot projects have been carried out in different areas of the Piedmont region, and in the Sesia Val Grande Geopark, for testing the utility of digital field mapping in Geoscience education. Feedback from students are positive: they are stimulated and involved by the use of ICT for learning Geoscience, and they voluntary choose to work with their personal mobile device (more than 90% of them own a smartphone); they are interested in knowing the features of GPS, and of software for the visualization of satellite and aerial images, but they recognize the importance of integrating and comparing traditional and innovative methods in the field.
Multi-font printed Mongolian document recognition system
NASA Astrophysics Data System (ADS)
Peng, Liangrui; Liu, Changsong; Ding, Xiaoqing; Wang, Hua; Jin, Jianming
2009-01-01
Mongolian is one of the major ethnic languages in China. Large amount of Mongolian printed documents need to be digitized in digital library and various applications. Traditional Mongolian script has unique writing style and multi-font-type variations, which bring challenges to Mongolian OCR research. As traditional Mongolian script has some characteristics, for example, one character may be part of another character, we define the character set for recognition according to the segmented components, and the components are combined into characters by rule-based post-processing module. For character recognition, a method based on visual directional feature and multi-level classifiers is presented. For character segmentation, a scheme is used to find the segmentation point by analyzing the properties of projection and connected components. As Mongolian has different font-types which are categorized into two major groups, the parameter of segmentation is adjusted for each group. A font-type classification method for the two font-type group is introduced. For recognition of Mongolian text mixed with Chinese and English, language identification and relevant character recognition kernels are integrated. Experiments show that the presented methods are effective. The text recognition rate is 96.9% on the test samples from practical documents with multi-font-types and mixed scripts.
NASA Astrophysics Data System (ADS)
Ahmad, Kashif; Conci, Nicola; Boato, Giulia; De Natale, Francesco G. B.
2017-11-01
Over the last few years, a rapid growth has been witnessed in the number of digital photos produced per year. This rapid process poses challenges in the organization and management of multimedia collections, and one viable solution consists of arranging the media on the basis of the underlying events. However, album-level annotation and the presence of irrelevant pictures in photo collections make event-based organization of personal photo albums a more challenging task. To tackle these challenges, in contrast to conventional approaches relying on supervised learning, we propose a pipeline for event recognition in personal photo collections relying on a multiple instance-learning (MIL) strategy. MIL is a modified form of supervised learning and fits well for such applications with weakly labeled data. The experimental evaluation of the proposed approach is carried out on two large-scale datasets including a self-collected and a benchmark dataset. On both, our approach significantly outperforms the existing state-of-the-art.
Open source OCR framework using mobile devices
NASA Astrophysics Data System (ADS)
Zhou, Steven Zhiying; Gilani, Syed Omer; Winkler, Stefan
2008-02-01
Mobile phones have evolved from passive one-to-one communication device to powerful handheld computing device. Today most new mobile phones are capable of capturing images, recording video, and browsing internet and do much more. Exciting new social applications are emerging on mobile landscape, like, business card readers, sing detectors and translators. These applications help people quickly gather the information in digital format and interpret them without the need of carrying laptops or tablet PCs. However with all these advancements we find very few open source software available for mobile phones. For instance currently there are many open source OCR engines for desktop platform but, to our knowledge, none are available on mobile platform. Keeping this in perspective we propose a complete text detection and recognition system with speech synthesis ability, using existing desktop technology. In this work we developed a complete OCR framework with subsystems from open source desktop community. This includes a popular open source OCR engine named Tesseract for text detection & recognition and Flite speech synthesis module, for adding text-to-speech ability.
The impact of digital imaging in the field of cytopathology.
Pantanowitz, Liron; Hornish, Maryanne; Goulart, Robert A
2009-03-06
With the introduction of digital imaging, pathology is undergoing a digital transformation. In the field of cytology, digital images are being used for telecytology, automated screening of Pap test slides, training and education (e.g. online digital atlases), and proficiency testing. To date, there has been no systematic review on the impact of digital imaging on the practice of cytopathology. This article critically addresses the emerging role of computer-assisted screening and the application of digital imaging to the field of cytology, including telecytology, virtual microscopy, and the impact of online cytology resources. The role of novel diagnostic techniques like image cytometry is also reviewed.
Incorporating digital imaging into dental hygiene practice.
Saxe, M J; West, D J
1997-01-01
The objective of this paper is to describe digital imaging technology: available modalities, scientific imaging process, advantages and limitations, and applications to dental hygiene practice. Advances in technology have created innovative imaging modalities for intraoral radiography that eliminate film as the traditional image receptor. Digital imaging generates instantaneous radiographic images on a display monitor following exposure. Advantages include lower patient exposure per image and elimination of film processing. Digital imaging enhances diagnostic capabilities and, therefore, treatment decisions by the oral healthcare provider. Utilization of digital imaging technology for intraoral radiography will advance the practice of dental hygiene. Although spatial resolution is inferior to conventional film, digital imaging provides adequate resolution to diagnose oral diseases. Dental hygienists must evaluate new technologies in radiography to continue providing quality care while reducing patient exposure to ionizing radiation.
NASA Astrophysics Data System (ADS)
Trokielewicz, Mateusz; Bartuzi, Ewelina; Michowska, Katarzyna; Andrzejewska, Antonina; Selegrat, Monika
2015-09-01
In the age of modern, hyperconnected society that increasingly relies on mobile devices and solutions, implementing a reliable and accurate biometric system employing iris recognition presents new challenges. Typical biometric systems employing iris analysis require expensive and complicated hardware. We therefore explore an alternative way using visible spectrum iris imaging. This paper aims at answering several questions related to applying iris biometrics for images obtained in the visible spectrum using smartphone camera. Can irides be successfully and effortlessly imaged using a smartphone's built-in camera? Can existing iris recognition methods perform well when presented with such images? The main advantage of using near-infrared (NIR) illumination in dedicated iris recognition cameras is good performance almost independent of the iris color and pigmentation. Are the images obtained from smartphone's camera of sufficient quality even for the dark irides? We present experiments incorporating simple image preprocessing to find the best visibility of iris texture, followed by a performance study to assess whether iris recognition methods originally aimed at NIR iris images perform well with visible light images. To our best knowledge this is the first comprehensive analysis of iris recognition performance using a database of high-quality images collected in visible light using the smartphones flashlight together with the application of commercial off-the-shelf (COTS) iris recognition methods.
NASA Astrophysics Data System (ADS)
Miwa, Shotaro; Kage, Hiroshi; Hirai, Takashi; Sumi, Kazuhiko
We propose a probabilistic face recognition algorithm for Access Control System(ACS)s. Comparing with existing ACSs using low cost IC-cards, face recognition has advantages in usability and security that it doesn't require people to hold cards over scanners and doesn't accept imposters with authorized cards. Therefore face recognition attracts more interests in security markets than IC-cards. But in security markets where low cost ACSs exist, price competition is important, and there is a limitation on the quality of available cameras and image control. Therefore ACSs using face recognition are required to handle much lower quality images, such as defocused and poor gain-controlled images than high security systems, such as immigration control. To tackle with such image quality problems we developed a face recognition algorithm based on a probabilistic model which combines a variety of image-difference features trained by Real AdaBoost with their prior probability distributions. It enables to evaluate and utilize only reliable features among trained ones during each authentication, and achieve high recognition performance rates. The field evaluation using a pseudo Access Control System installed in our office shows that the proposed system achieves a constant high recognition performance rate independent on face image qualities, that is about four times lower EER (Equal Error Rate) under a variety of image conditions than one without any prior probability distributions. On the other hand using image difference features without any prior probabilities are sensitive to image qualities. We also evaluated PCA, and it has worse, but constant performance rates because of its general optimization on overall data. Comparing with PCA, Real AdaBoost without any prior distribution performs twice better under good image conditions, but degrades to a performance as good as PCA under poor image conditions.
Image compression system and method having optimized quantization tables
NASA Technical Reports Server (NTRS)
Ratnakar, Viresh (Inventor); Livny, Miron (Inventor)
1998-01-01
A digital image compression preprocessor for use in a discrete cosine transform-based digital image compression device is provided. The preprocessor includes a gathering mechanism for determining discrete cosine transform statistics from input digital image data. A computing mechanism is operatively coupled to the gathering mechanism to calculate a image distortion array and a rate of image compression array based upon the discrete cosine transform statistics for each possible quantization value. A dynamic programming mechanism is operatively coupled to the computing mechanism to optimize the rate of image compression array against the image distortion array such that a rate-distortion-optimal quantization table is derived. In addition, a discrete cosine transform-based digital image compression device and a discrete cosine transform-based digital image compression and decompression system are provided. Also, a method for generating a rate-distortion-optimal quantization table, using discrete cosine transform-based digital image compression, and operating a discrete cosine transform-based digital image compression and decompression system are provided.
Processing Electromyographic Signals to Recognize Words
NASA Technical Reports Server (NTRS)
Jorgensen, C. C.; Lee, D. D.
2009-01-01
A recently invented speech-recognition method applies to words that are articulated by means of the tongue and throat muscles but are otherwise not voiced or, at most, are spoken sotto voce. This method could satisfy a need for speech recognition under circumstances in which normal audible speech is difficult, poses a hazard, is disturbing to listeners, or compromises privacy. The method could also be used to augment traditional speech recognition by providing an additional source of information about articulator activity. The method can be characterized as intermediate between (1) conventional speech recognition through processing of voice sounds and (2) a method, not yet developed, of processing electroencephalographic signals to extract unspoken words directly from thoughts. This method involves computational processing of digitized electromyographic (EMG) signals from muscle innervation acquired by surface electrodes under a subject's chin near the tongue and on the side of the subject s throat near the larynx. After preprocessing, digitization, and feature extraction, EMG signals are processed by a neural-network pattern classifier, implemented in software, that performs the bulk of the recognition task as described.
Advanced digital image archival system using MPEG technologies
NASA Astrophysics Data System (ADS)
Chang, Wo
2009-08-01
Digital information and records are vital to the human race regardless of the nationalities and eras in which they were produced. Digital image contents are produced at a rapid pace from cultural heritages via digitalization, scientific and experimental data via high speed imaging sensors, national defense satellite images from governments, medical and healthcare imaging records from hospitals, personal collection of photos from digital cameras. With these mass amounts of precious and irreplaceable data and knowledge, what standards technologies can be applied to preserve and yet provide an interoperable framework for accessing the data across varieties of systems and devices? This paper presents an advanced digital image archival system by applying the international standard of MPEG technologies to preserve digital image content.
Beam uniformity analysis of infrared laser illuminators
NASA Astrophysics Data System (ADS)
Allik, Toomas H.; Dixon, Roberta E.; Proffitt, R. Patrick; Fung, Susan; Ramboyong, Len; Soyka, Thomas J.
2015-02-01
Uniform near-infrared (NIR) and short-wave infrared (SWIR) illuminators are desired in low ambient light detection, recognition, and identification of military applications. Factors that contribute to laser illumination image degradation are high frequency, coherent laser speckle and low frequency nonuniformities created by the laser or external laser cavity optics. Laser speckle analysis and beam uniformity improvements have been independently studied by numerous authors, but analysis to separate these two effects from a single measurement technique has not been published. In this study, profiles of compact, diode laser NIR and SWIR illuminators were measured and evaluated. Digital 12-bit images were recorded with a flat-field calibrated InGaAs camera with measurements at F/1.4 and F/16. Separating beam uniformity components from laser speckle was approximated by filtering the original image. The goal of this paper is to identify and quantify the beam quality variation of illumination prototypes, draw awareness to its impact on range performance modeling, and develop measurement techniques and methodologies for military, industry, and vendors of active sources.
Eccles, B A; Klevecz, R R
1986-06-01
Mitotic frequency in a synchronous culture of mammalian cells was determined fully automatically and in real time using low-intensity phase-contrast microscopy and a newvicon video camera connected to an EyeCom III image processor. Image samples, at a frequency of one per minute for 50 hours, were analyzed by first extracting the high-frequency picture components, then thresholding and probing for annular objects indicative of putative mitotic cells. Both the extraction of high-frequency components and the recognition of rings of varying radii and discontinuities employed novel algorithms. Spatial and temporal relationships between annuli were examined to discern the occurrences of mitoses, and such events were recorded in a computer data file. At present, the automatic analysis is suited for random cell proliferation rate measurements or cell cycle studies. The automatic identification of mitotic cells as described here provides a measure of the average proliferative activity of the cell population as a whole and eliminates more than eight hours of manual review per time-lapse video recording.
Image recognition on raw and processed potato detection: a review
NASA Astrophysics Data System (ADS)
Qi, Yan-nan; Lü, Cheng-xu; Zhang, Jun-ning; Li, Ya-shuo; Zeng, Zhen; Mao, Wen-hua; Jiang, Han-lu; Yang, Bing-nan
2018-02-01
Objective: Chinese potato staple food strategy clearly pointed out the need to improve potato processing, while the bottleneck of this strategy is technology and equipment of selection of appropriate raw and processed potato. The purpose of this paper is to summarize the advanced raw and processed potato detection methods. Method: According to consult research literatures in the field of image recognition based potato quality detection, including the shape, weight, mechanical damage, germination, greening, black heart, scab potato etc., the development and direction of this field were summarized in this paper. Result: In order to obtain whole potato surface information, the hardware was built by the synchronous of image sensor and conveyor belt to achieve multi-angle images of a single potato. Researches on image recognition of potato shape are popular and mature, including qualitative discrimination on abnormal and sound potato, and even round and oval potato, with the recognition accuracy of more than 83%. Weight is an important indicator for potato grading, and the image classification accuracy presents more than 93%. The image recognition of potato mechanical damage focuses on qualitative identification, with the main affecting factors of damage shape and damage time. The image recognition of potato germination usually uses potato surface image and edge germination point. Both of the qualitative and quantitative detection of green potato have been researched, currently scab and blackheart image recognition need to be operated using the stable detection environment or specific device. The image recognition of processed potato mainly focuses on potato chips, slices and fries, etc. Conclusion: image recognition as a food rapid detection tool have been widely researched on the area of raw and processed potato quality analyses, its technique and equipment have the potential for commercialization in short term, to meet to the strategy demand of development potato as staple food in China.
Automated facial acne assessment from smartphone images
NASA Astrophysics Data System (ADS)
Amini, Mohammad; Vasefi, Fartash; Valdebran, Manuel; Huang, Kevin; Zhang, Haomiao; Kemp, William; MacKinnon, Nicholas
2018-02-01
A smartphone mobile medical application is presented, that provides analysis of the health of skin on the face using a smartphone image and cloud-based image processing techniques. The mobile application employs the use of the camera to capture a front face image of a subject, after which the captured image is spatially calibrated based on fiducial points such as position of the iris of the eye. A facial recognition algorithm is used to identify features of the human face image, to normalize the image, and to define facial regions of interest (ROI) for acne assessment. We identify acne lesions and classify them into two categories: those that are papules and those that are pustules. Automated facial acne assessment was validated by performing tests on images of 60 digital human models and 10 real human face images. The application was able to identify 92% of acne lesions within five facial ROIs. The classification accuracy for separating papules from pustules was 98%. Combined with in-app documentation of treatment, lifestyle factors, and automated facial acne assessment, the app can be used in both cosmetic and clinical dermatology. It allows users to quantitatively self-measure acne severity and treatment efficacy on an ongoing basis to help them manage their chronic facial acne.
Bassan, Paul; Weida, Miles J; Rowlette, Jeremy; Gardner, Peter
2014-08-21
Chemical imaging in the field of vibrational spectroscopy is developing into a promising tool to complement digital histopathology. Applications include screening of biopsy tissue via automated recognition of tissue/cell type and disease state based on the chemical information from the spectrum. For integration into clinical practice, data acquisition needs to be speeded up to implement a rack based system where specimens are rapidly imaged to compete with current visible scanners where 100's of slides can be scanned overnight. Current Fourier transform infrared (FTIR) imaging with focal plane array (FPA) detectors are currently the state-of-the-art instrumentation for infrared absorption chemical imaging, however recent development in broadly tunable lasers in the mid-IR range is considered the most promising potential candidate for next generation microscopes. In this paper we test a prototype quantum cascade laser (QCL) based spectral imaging microscope with a focus on discrete frequency chemical imaging. We demonstrate how a protein chemical image of the amide I band (1655 cm(-1)) of a 2 × 2.4 cm(2) breast tissue microarray (TMA) containing over 200 cores can be measured in 9 min. This result indicates that applications requiring chemical images from a few key wavelengths would be ideally served by laser-based microscopes.
Crukley, Jeffery; Scollie, Susan D
2014-03-01
The purpose of this study was to determine the effects of hearing instruments set to Desired Sensation Level version 5 (DSL v5) hearing instrument prescription algorithm targets and equipped with directional microphones and digital noise reduction (DNR) on children's sentence recognition in noise performance and loudness perception in a classroom environment. Ten children (ages 8-17 years) with stable, congenital sensorineural hearing losses participated in the study. Participants were fitted bilaterally with behind-the-ear hearing instruments set to DSL v5 prescriptive targets. Sentence recognition in noise was evaluated using the Bamford-Kowal-Bench Speech in Noise Test (Niquette et al., 2003). Loudness perception was evaluated using a modified version of the Contour Test of Loudness Perception (Cox, Alexander, Taylor, & Gray, 1997). Children's sentence recognition in noise performance was significantly better when using directional microphones alone or in combination with DNR than when using omnidirectional microphones alone or in combination with DNR. Children's loudness ratings for sounds above 72 dB SPL were lowest when fitted with the DSL v5 Noise prescription combined with directional microphones. DNR use showed no effect on loudness ratings. Use of the DSL v5 Noise prescription with a directional microphone improved sentence recognition in noise performance and reduced loudness perception ratings for loud sounds relative to a typical clinical reference fitting with the DSL v5 Quiet prescription with no digital signal processing features enabled. Potential clinical strategies are discussed.
Energy conservation using face detection
NASA Astrophysics Data System (ADS)
Deotale, Nilesh T.; Kalbande, Dhananjay R.; Mishra, Akassh A.
2011-10-01
Computerized Face Detection, is concerned with the difficult task of converting a video signal of a person to written text. It has several applications like face recognition, simultaneous multiple face processing, biometrics, security, video surveillance, human computer interface, image database management, digital cameras use face detection for autofocus, selecting regions of interest in photo slideshows that use a pan-and-scale and The Present Paper deals with energy conservation using face detection. Automating the process to a computer requires the use of various image processing techniques. There are various methods that can be used for Face Detection such as Contour tracking methods, Template matching, Controlled background, Model based, Motion based and color based. Basically, the video of the subject are converted into images are further selected manually for processing. However, several factors like poor illumination, movement of face, viewpoint-dependent Physical appearance, Acquisition geometry, Imaging conditions, Compression artifacts makes Face detection difficult. This paper reports an algorithm for conservation of energy using face detection for various devices. The present paper suggests Energy Conservation can be done by Detecting the Face and reducing the brightness of complete image and then adjusting the brightness of the particular area of an image where the face is located using histogram equalization.
Automatic detection of diabetic retinopathy using an artificial neural network: a screening tool.
Gardner, G G; Keating, D; Williamson, T H; Elliott, A T
1996-11-01
To determine if neural networks can detect diabetic features in fundus images and compare the network against an ophthalmologist screening a set of fundus images. 147 diabetic and 32 normal images were captured from a fundus camera, stored on computer, and analysed using a back propagation neural network. The network was trained to recognise features in the retinal image. The effects of digital filtering techniques and different network variables were assessed. 200 diabetic and 101 normal images were then randomised and used to evaluate the network's performance for the detection of diabetic retinopathy against an ophthalmologist. Detection rates for the recognition of vessels, exudates, and haemorrhages were 91.7%, 93.1%, and 73.8% respectively. When compared with the results of the ophthalmologist, the network achieved a sensitivity of 88.4% and a specificity of 83.5% for the detection of diabetic retinopathy. Detection of vessels, exudates, and haemorrhages was possible, with success rates dependent upon preprocessing and the number of images used in training. When compared with the ophthalmologist, the network achieved good accuracy for the detection of diabetic retinopathy. The system could be used as an aid to the screening of diabetic patients for retinopathy.
Near infrared and visible face recognition based on decision fusion of LBP and DCT features
NASA Astrophysics Data System (ADS)
Xie, Zhihua; Zhang, Shuai; Liu, Guodong; Xiong, Jinquan
2018-03-01
Visible face recognition systems, being vulnerable to illumination, expression, and pose, can not achieve robust performance in unconstrained situations. Meanwhile, near infrared face images, being light- independent, can avoid or limit the drawbacks of face recognition in visible light, but its main challenges are low resolution and signal noise ratio (SNR). Therefore, near infrared and visible fusion face recognition has become an important direction in the field of unconstrained face recognition research. In order to extract the discriminative complementary features between near infrared and visible images, in this paper, we proposed a novel near infrared and visible face fusion recognition algorithm based on DCT and LBP features. Firstly, the effective features in near-infrared face image are extracted by the low frequency part of DCT coefficients and the partition histograms of LBP operator. Secondly, the LBP features of visible-light face image are extracted to compensate for the lacking detail features of the near-infrared face image. Then, the LBP features of visible-light face image, the DCT and LBP features of near-infrared face image are sent to each classifier for labeling. Finally, decision level fusion strategy is used to obtain the final recognition result. The visible and near infrared face recognition is tested on HITSZ Lab2 visible and near infrared face database. The experiment results show that the proposed method extracts the complementary features of near-infrared and visible face images and improves the robustness of unconstrained face recognition. Especially for the circumstance of small training samples, the recognition rate of proposed method can reach 96.13%, which has improved significantly than 92.75 % of the method based on statistical feature fusion.
NASA Astrophysics Data System (ADS)
Ji, Zhengping; Ovsiannikov, Ilia; Wang, Yibing; Shi, Lilong; Zhang, Qiang
2015-05-01
In this paper, we develop a server-client quantization scheme to reduce bit resolution of deep learning architecture, i.e., Convolutional Neural Networks, for image recognition tasks. Low bit resolution is an important factor in bringing the deep learning neural network into hardware implementation, which directly determines the cost and power consumption. We aim to reduce the bit resolution of the network without sacrificing its performance. To this end, we design a new quantization algorithm called supervised iterative quantization to reduce the bit resolution of learned network weights. In the training stage, the supervised iterative quantization is conducted via two steps on server - apply k-means based adaptive quantization on learned network weights and retrain the network based on quantized weights. These two steps are alternated until the convergence criterion is met. In this testing stage, the network configuration and low-bit weights are loaded to the client hardware device to recognize coming input in real time, where optimized but expensive quantization becomes infeasible. Considering this, we adopt a uniform quantization for the inputs and internal network responses (called feature maps) to maintain low on-chip expenses. The Convolutional Neural Network with reduced weight and input/response precision is demonstrated in recognizing two types of images: one is hand-written digit images and the other is real-life images in office scenarios. Both results show that the new network is able to achieve the performance of the neural network with full bit resolution, even though in the new network the bit resolution of both weight and input are significantly reduced, e.g., from 64 bits to 4-5 bits.
Mathematical algorithm for the automatic recognition of intestinal parasites.
Alva, Alicia; Cangalaya, Carla; Quiliano, Miguel; Krebs, Casey; Gilman, Robert H; Sheen, Patricia; Zimic, Mirko
2017-01-01
Parasitic infections are generally diagnosed by professionals trained to recognize the morphological characteristics of the eggs in microscopic images of fecal smears. However, this laboratory diagnosis requires medical specialists which are lacking in many of the areas where these infections are most prevalent. In response to this public health issue, we developed a software based on pattern recognition analysis from microscopi digital images of fecal smears, capable of automatically recognizing and diagnosing common human intestinal parasites. To this end, we selected 229, 124, 217, and 229 objects from microscopic images of fecal smears positive for Taenia sp., Trichuris trichiura, Diphyllobothrium latum, and Fasciola hepatica, respectively. Representative photographs were selected by a parasitologist. We then implemented our algorithm in the open source program SCILAB. The algorithm processes the image by first converting to gray-scale, then applies a fourteen step filtering process, and produces a skeletonized and tri-colored image. The features extracted fall into two general categories: geometric characteristics and brightness descriptions. Individual characteristics were quantified and evaluated with a logistic regression to model their ability to correctly identify each parasite separately. Subsequently, all algorithms were evaluated for false positive cross reactivity with the other parasites studied, excepting Taenia sp. which shares very few morphological characteristics with the others. The principal result showed that our algorithm reached sensitivities between 99.10%-100% and specificities between 98.13%- 98.38% to detect each parasite separately. We did not find any cross-positivity in the algorithms for the three parasites evaluated. In conclusion, the results demonstrated the capacity of our computer algorithm to automatically recognize and diagnose Taenia sp., Trichuris trichiura, Diphyllobothrium latum, and Fasciola hepatica with a high sensitivity and specificity.
Mathematical algorithm for the automatic recognition of intestinal parasites
Alva, Alicia; Cangalaya, Carla; Quiliano, Miguel; Krebs, Casey; Gilman, Robert H.; Sheen, Patricia; Zimic, Mirko
2017-01-01
Parasitic infections are generally diagnosed by professionals trained to recognize the morphological characteristics of the eggs in microscopic images of fecal smears. However, this laboratory diagnosis requires medical specialists which are lacking in many of the areas where these infections are most prevalent. In response to this public health issue, we developed a software based on pattern recognition analysis from microscopi digital images of fecal smears, capable of automatically recognizing and diagnosing common human intestinal parasites. To this end, we selected 229, 124, 217, and 229 objects from microscopic images of fecal smears positive for Taenia sp., Trichuris trichiura, Diphyllobothrium latum, and Fasciola hepatica, respectively. Representative photographs were selected by a parasitologist. We then implemented our algorithm in the open source program SCILAB. The algorithm processes the image by first converting to gray-scale, then applies a fourteen step filtering process, and produces a skeletonized and tri-colored image. The features extracted fall into two general categories: geometric characteristics and brightness descriptions. Individual characteristics were quantified and evaluated with a logistic regression to model their ability to correctly identify each parasite separately. Subsequently, all algorithms were evaluated for false positive cross reactivity with the other parasites studied, excepting Taenia sp. which shares very few morphological characteristics with the others. The principal result showed that our algorithm reached sensitivities between 99.10%-100% and specificities between 98.13%- 98.38% to detect each parasite separately. We did not find any cross-positivity in the algorithms for the three parasites evaluated. In conclusion, the results demonstrated the capacity of our computer algorithm to automatically recognize and diagnose Taenia sp., Trichuris trichiura, Diphyllobothrium latum, and Fasciola hepatica with a high sensitivity and specificity. PMID:28410387
NutriNet: A Deep Learning Food and Drink Image Recognition System for Dietary Assessment.
Mezgec, Simon; Koroušić Seljak, Barbara
2017-06-27
Automatic food image recognition systems are alleviating the process of food-intake estimation and dietary assessment. However, due to the nature of food images, their recognition is a particularly challenging task, which is why traditional approaches in the field have achieved a low classification accuracy. Deep neural networks have outperformed such solutions, and we present a novel approach to the problem of food and drink image detection and recognition that uses a newly-defined deep convolutional neural network architecture, called NutriNet. This architecture was tuned on a recognition dataset containing 225,953 512 × 512 pixel images of 520 different food and drink items from a broad spectrum of food groups, on which we achieved a classification accuracy of 86 . 72 % , along with an accuracy of 94 . 47 % on a detection dataset containing 130 , 517 images. We also performed a real-world test on a dataset of self-acquired images, combined with images from Parkinson's disease patients, all taken using a smartphone camera, achieving a top-five accuracy of 55 % , which is an encouraging result for real-world images. Additionally, we tested NutriNet on the University of Milano-Bicocca 2016 (UNIMIB2016) food image dataset, on which we improved upon the provided baseline recognition result. An online training component was implemented to continually fine-tune the food and drink recognition model on new images. The model is being used in practice as part of a mobile app for the dietary assessment of Parkinson's disease patients.
Recognition without Awareness: An Elusive Phenomenon
ERIC Educational Resources Information Center
Jeneson, Annette; Kirwan, C. Brock; Squire, Larry R.
2010-01-01
Two recent studies described conditions under which recognition memory performance appeared to be driven by nondeclarative memory. Specifically, participants successfully discriminated old images from highly similar new images even when no conscious memory for the images could be retrieved. Paradoxically, recognition performance was better when…
Recognition of blurred images by the method of moments.
Flusser, J; Suk, T; Saic, S
1996-01-01
The article is devoted to the feature-based recognition of blurred images acquired by a linear shift-invariant imaging system against an image database. The proposed approach consists of describing images by features that are invariant with respect to blur and recognizing images in the feature space. The PSF identification and image restoration are not required. A set of symmetric blur invariants based on image moments is introduced. A numerical experiment is presented to illustrate the utilization of the invariants for blurred image recognition. Robustness of the features is also briefly discussed.
Automatic extraction of numeric strings in unconstrained handwritten document images
NASA Astrophysics Data System (ADS)
Haji, M. Mehdi; Bui, Tien D.; Suen, Ching Y.
2011-01-01
Numeric strings such as identification numbers carry vital pieces of information in documents. In this paper, we present a novel algorithm for automatic extraction of numeric strings in unconstrained handwritten document images. The algorithm has two main phases: pruning and verification. In the pruning phase, the algorithm first performs a new segment-merge procedure on each text line, and then using a new regularity measure, it prunes all sequences of characters that are unlikely to be numeric strings. The segment-merge procedure is composed of two modules: a new explicit character segmentation algorithm which is based on analysis of skeletal graphs and a merging algorithm which is based on graph partitioning. All the candidate sequences that pass the pruning phase are sent to a recognition-based verification phase for the final decision. The recognition is based on a coarse-to-fine approach using probabilistic RBF networks. We developed our algorithm for the processing of real-world documents where letters and digits may be connected or broken in a document. The effectiveness of the proposed approach is shown by extensive experiments done on a real-world database of 607 documents which contains handwritten, machine-printed and mixed documents with different types of layouts and levels of noise.
NASA Astrophysics Data System (ADS)
Cruz-Roa, Angel; Arevalo, John; Basavanhally, Ajay; Madabhushi, Anant; González, Fabio
2015-01-01
Learning data representations directly from the data itself is an approach that has shown great success in different pattern recognition problems, outperforming state-of-the-art feature extraction schemes for different tasks in computer vision, speech recognition and natural language processing. Representation learning applies unsupervised and supervised machine learning methods to large amounts of data to find building-blocks that better represent the information in it. Digitized histopathology images represents a very good testbed for representation learning since it involves large amounts of high complex, visual data. This paper presents a comparative evaluation of different supervised and unsupervised representation learning architectures to specifically address open questions on what type of learning architectures (deep or shallow), type of learning (unsupervised or supervised) is optimal. In this paper we limit ourselves to addressing these questions in the context of distinguishing between anaplastic and non-anaplastic medulloblastomas from routine haematoxylin and eosin stained images. The unsupervised approaches evaluated were sparse autoencoders and topographic reconstruct independent component analysis, and the supervised approach was convolutional neural networks. Experimental results show that shallow architectures with more neurons are better than deeper architectures without taking into account local space invariances and that topographic constraints provide useful invariant features in scale and rotations for efficient tumor differentiation.
Omniview motionless camera orientation system
NASA Technical Reports Server (NTRS)
Martin, H. Lee (Inventor); Kuban, Daniel P. (Inventor); Zimmermann, Steven D. (Inventor); Busko, Nicholas (Inventor)
2010-01-01
An apparatus and method is provided for converting digital images for use in an imaging system. The apparatus includes a data memory which stores digital data representing an image having a circular or spherical field of view such as an image captured by a fish-eye lens, a control input for receiving a signal for selecting a portion of the image, and a converter responsive to the control input for converting digital data corresponding to the selected portion into digital data representing a planar image for subsequent display. Various methods include the steps of storing digital data representing an image having a circular or spherical field of view, selecting a portion of the image, and converting the stored digital data corresponding to the selected portion into digital data representing a planar image for subsequent display. In various embodiments, the data converter and data conversion step may use an orthogonal set of transformation algorithms.
NASA Technical Reports Server (NTRS)
Tescher, Andrew G. (Editor)
1989-01-01
Various papers on image compression and automatic target recognition are presented. Individual topics addressed include: target cluster detection in cluttered SAR imagery, model-based target recognition using laser radar imagery, Smart Sensor front-end processor for feature extraction of images, object attitude estimation and tracking from a single video sensor, symmetry detection in human vision, analysis of high resolution aerial images for object detection, obscured object recognition for an ATR application, neural networks for adaptive shape tracking, statistical mechanics and pattern recognition, detection of cylinders in aerial range images, moving object tracking using local windows, new transform method for image data compression, quad-tree product vector quantization of images, predictive trellis encoding of imagery, reduced generalized chain code for contour description, compact architecture for a real-time vision system, use of human visibility functions in segmentation coding, color texture analysis and synthesis using Gibbs random fields.
Yanagita, Satoshi; Imahana, Masato; Suwa, Kazuaki; Sugimura, Hitomi; Nishiki, Masayuki
2016-01-01
Japanese Society of Radiological Technology (JSRT) standard digital image database contains many useful cases of chest X-ray images, and has been used in many state-of-the-art researches. However, the pixel values of all the images are simply digitized as relative density values by utilizing a scanned film digitizer. As a result, the pixel values are completely different from the standardized display system input value of digital imaging and communications in medicine (DICOM), called presentation value (P-value), which can maintain a visual consistency when observing images using different display luminance. Therefore, we converted all the images from JSRT standard digital image database to DICOM format followed by the conversion of the pixel values to P-value using an original program developed by ourselves. Consequently, JSRT standard digital image database has been modified so that the visual consistency of images is maintained among different luminance displays.
Working and strategic memory deficits in schizophrenia
NASA Technical Reports Server (NTRS)
Stone, M.; Gabrieli, J. D.; Stebbins, G. T.; Sullivan, E. V.
1998-01-01
Working memory and its contribution to performance on strategic memory tests in schizophrenia were studied. Patients (n = 18) and control participants (n = 15), all men, received tests of immediate memory (forward digit span), working memory (listening, computation, and backward digit span), and long-term strategic (free recall, temporal order, and self-ordered pointing) and nonstrategic (recognition) memory. Schizophrenia patients performed worse on all tests. Education, verbal intelligence, and immediate memory capacity did not account for deficits in working memory in schizophrenia patients. Reduced working memory capacity accounted for group differences in strategic memory but not in recognition memory. Working memory impairment may be central to the profile of impaired cognitive performance in schizophrenia and is consistent with hypothesized frontal lobe dysfunction associated with this disease. Additional medial-temporal dysfunction may account for the recognition memory deficit.
Image-based automatic recognition of larvae
NASA Astrophysics Data System (ADS)
Sang, Ru; Yu, Guiying; Fan, Weijun; Guo, Tiantai
2010-08-01
As the main objects, imagoes have been researched in quarantine pest recognition in these days. However, pests in their larval stage are latent, and the larvae spread abroad much easily with the circulation of agricultural and forest products. It is presented in this paper that, as the new research objects, larvae are recognized by means of machine vision, image processing and pattern recognition. More visional information is reserved and the recognition rate is improved as color image segmentation is applied to images of larvae. Along with the characteristics of affine invariance, perspective invariance and brightness invariance, scale invariant feature transform (SIFT) is adopted for the feature extraction. The neural network algorithm is utilized for pattern recognition, and the automatic identification of larvae images is successfully achieved with satisfactory results.
Zhang, Yong; Li, Peng; Jin, Yingyezhe; Choe, Yoonsuck
2015-11-01
This paper presents a bioinspired digital liquid-state machine (LSM) for low-power very-large-scale-integration (VLSI)-based machine learning applications. To the best of the authors' knowledge, this is the first work that employs a bioinspired spike-based learning algorithm for the LSM. With the proposed online learning, the LSM extracts information from input patterns on the fly without needing intermediate data storage as required in offline learning methods such as ridge regression. The proposed learning rule is local such that each synaptic weight update is based only upon the firing activities of the corresponding presynaptic and postsynaptic neurons without incurring global communications across the neural network. Compared with the backpropagation-based learning, the locality of computation in the proposed approach lends itself to efficient parallel VLSI implementation. We use subsets of the TI46 speech corpus to benchmark the bioinspired digital LSM. To reduce the complexity of the spiking neural network model without performance degradation for speech recognition, we study the impacts of synaptic models on the fading memory of the reservoir and hence the network performance. Moreover, we examine the tradeoffs between synaptic weight resolution, reservoir size, and recognition performance and present techniques to further reduce the overhead of hardware implementation. Our simulation results show that in terms of isolated word recognition evaluated using the TI46 speech corpus, the proposed digital LSM rivals the state-of-the-art hidden Markov-model-based recognizer Sphinx-4 and outperforms all other reported recognizers including the ones that are based upon the LSM or neural networks.
Automatic anatomy recognition on CT images with pathology
NASA Astrophysics Data System (ADS)
Huang, Lidong; Udupa, Jayaram K.; Tong, Yubing; Odhner, Dewey; Torigian, Drew A.
2016-03-01
Body-wide anatomy recognition on CT images with pathology becomes crucial for quantifying body-wide disease burden. This, however, is a challenging problem because various diseases result in various abnormalities of objects such as shape and intensity patterns. We previously developed an automatic anatomy recognition (AAR) system [1] whose applicability was demonstrated on near normal diagnostic CT images in different body regions on 35 organs. The aim of this paper is to investigate strategies for adapting the previous AAR system to diagnostic CT images of patients with various pathologies as a first step toward automated body-wide disease quantification. The AAR approach consists of three main steps - model building, object recognition, and object delineation. In this paper, within the broader AAR framework, we describe a new strategy for object recognition to handle abnormal images. In the model building stage an optimal threshold interval is learned from near-normal training images for each object. This threshold is optimally tuned to the pathological manifestation of the object in the test image. Recognition is performed following a hierarchical representation of the objects. Experimental results for the abdominal body region based on 50 near-normal images used for model building and 20 abnormal images used for object recognition show that object localization accuracy within 2 voxels for liver and spleen and 3 voxels for kidney can be achieved with the new strategy.
Optical recognition of statistical patterns
NASA Astrophysics Data System (ADS)
Lee, S. H.
1981-12-01
Optical implementation of the Fukunaga-Koontz transform (FKT) and the Least-Squares Linear Mapping Technique (LSLMT) is described. The FKT is a linear transformation which performs image feature extraction for a two-class image classification problem. The LSLMT performs a transform from large dimensional feature space to small dimensional decision space for separating multiple image classes by maximizing the interclass differences while minimizing the intraclass variations. The FKT and the LSLMT were optically implemented by utilizing a coded phase optical processor. The transform was used for classifying birds and fish. After the F-K basis functions were calculated, those most useful for classification were incorporated into a computer generated hologram. The output of the optical processor, consisting of the squared magnitude of the F-K coefficients, was detected by a T.V. camera, digitized, and fed into a micro-computer for classification. A simple linear classifier based on only two F-K coefficients was able to separate the images into two classes, indicating that the F-K transform had chosen good features. Two advantages of optically implementing the FKT and LSLMT are parallel and real time processing.
Optical recognition of statistical patterns
NASA Technical Reports Server (NTRS)
Lee, S. H.
1981-01-01
Optical implementation of the Fukunaga-Koontz transform (FKT) and the Least-Squares Linear Mapping Technique (LSLMT) is described. The FKT is a linear transformation which performs image feature extraction for a two-class image classification problem. The LSLMT performs a transform from large dimensional feature space to small dimensional decision space for separating multiple image classes by maximizing the interclass differences while minimizing the intraclass variations. The FKT and the LSLMT were optically implemented by utilizing a coded phase optical processor. The transform was used for classifying birds and fish. After the F-K basis functions were calculated, those most useful for classification were incorporated into a computer generated hologram. The output of the optical processor, consisting of the squared magnitude of the F-K coefficients, was detected by a T.V. camera, digitized, and fed into a micro-computer for classification. A simple linear classifier based on only two F-K coefficients was able to separate the images into two classes, indicating that the F-K transform had chosen good features. Two advantages of optically implementing the FKT and LSLMT are parallel and real time processing.
Zhang, Juwei; Tan, Xiaojiang; Zheng, Pengbo
2017-01-01
Electromagnetic methods are commonly employed to detect wire rope discontinuities. However, determining the residual strength of wire rope based on the quantitative recognition of discontinuities remains problematic. We have designed a prototype device based on the residual magnetic field (RMF) of ferromagnetic materials, which overcomes the disadvantages associated with in-service inspections, such as large volume, inconvenient operation, low precision, and poor portability by providing a relatively small and lightweight device with improved detection precision. A novel filtering system consisting of the Hilbert-Huang transform and compressed sensing wavelet filtering is presented. Digital image processing was applied to achieve the localization and segmentation of defect RMF images. The statistical texture and invariant moment characteristics of the defect images were extracted as the input of a radial basis function neural network. Experimental results show that the RMF device can detect defects in various types of wire rope and prolong the service life of test equipment by reducing the friction between the detection device and the wire rope by accommodating a high lift-off distance. PMID:28300790
NASA Technical Reports Server (NTRS)
1986-01-01
Digital Imaging is the computer processed numerical representation of physical images. Enhancement of images results in easier interpretation. Quantitative digital image analysis by Perceptive Scientific Instruments, locates objects within an image and measures them to extract quantitative information. Applications are CAT scanners, radiography, microscopy in medicine as well as various industrial and manufacturing uses. The PSICOM 327 performs all digital image analysis functions. It is based on Jet Propulsion Laboratory technology, is accurate and cost efficient.
Visual texture for automated characterisation of geological features in borehole televiewer imagery
NASA Astrophysics Data System (ADS)
Al-Sit, Waleed; Al-Nuaimy, Waleed; Marelli, Matteo; Al-Ataby, Ali
2015-08-01
Detailed characterisation of the structure of subsurface fractures is greatly facilitated by digital borehole logging instruments, the interpretation of which is typically time-consuming and labour-intensive. Despite recent advances towards autonomy and automation, the final interpretation remains heavily dependent on the skill, experience, alertness and consistency of a human operator. Existing computational tools fail to detect layers between rocks that do not exhibit distinct fracture boundaries, and often struggle characterising cross-cutting layers and partial fractures. This paper presents a novel approach to the characterisation of planar rock discontinuities from digital images of borehole logs. Multi-resolution texture segmentation and pattern recognition techniques utilising Gabor filters are combined with an iterative adaptation of the Hough transform to enable non-distinct, partial, distorted and steep fractures and layers to be accurately identified and characterised in a fully automated fashion. This approach has successfully detected fractures and layers with high detection accuracy and at a relatively low computational cost.
A temporal comparison of forest cover using digital earth science data and visualization techniques
Jones, John W.
1993-01-01
Increased demands on forest resources and the recognition of old-growth forests as critical habitats and purifiers of the atmosphere have stimulated attention to forest harvest practices in the United States and worldwide. Visualization technology provides a means by which a history of forestry activities may be documented and presented to the public and decisionmakers. In this project, landsat multispectral scanner and thematic mapper images, acquired July 7, 1981, and July 8, 1991, respectively, were georeferenced, resampled, enhanced, and draped over U.S. Geological Survey 30-meter digital elevation models. These data then were used to create perspective views of portions of Mt. Hood Forest, Oregon. The "fly-by" animation (produced by rapidly displaying a sequence of these perspective views) conveys the forest cover change resulting from forest harvest activities over the 10-year period. This project shows the value of combining satellite data with base cartographic data and earth science information for use in public education and decision-making processes.
Single camera photogrammetry system for EEG electrode identification and localization.
Baysal, Uğur; Sengül, Gökhan
2010-04-01
In this study, photogrammetric coordinate measurement and color-based identification of EEG electrode positions on the human head are simultaneously implemented. A rotating, 2MP digital camera about 20 cm above the subject's head is used and the images are acquired at predefined stop points separated azimuthally at equal angular displacements. In order to realize full automation, the electrodes have been labeled by colored circular markers and an electrode recognition algorithm has been developed. The proposed method has been tested by using a plastic head phantom carrying 25 electrode markers. Electrode locations have been determined while incorporating three different methods: (i) the proposed photogrammetric method, (ii) conventional 3D radiofrequency (RF) digitizer, and (iii) coordinate measurement machine having about 6.5 mum accuracy. It is found that the proposed system automatically identifies electrodes and localizes them with a maximum error of 0.77 mm. It is suggested that this method may be used in EEG source localization applications in the human brain.
Hayes, S; Taylor, R; Paterson, A
2005-12-01
Forensic facial approximation involves building a likeness of the head and face on the skull of an unidentified individual, with the aim that public broadcast of the likeness will trigger recognition in those who knew the person in life. This paper presents an overview of the collaborative practice between Ronn Taylor (Forensic Sculptor to the Victorian Institute of Forensic Medicine) and Detective Sergeant Adrian Paterson (Victoria Police Criminal Identification Squad). This collaboration involves clay modelling to determine an approximation of the person's head shape and feature location, with surface texture and more speculative elements being rendered digitally onto an image of the model. The advantages of this approach are that through clay modelling anatomical contouring is present, digital enhancement resolves some of the problems of visual perception of a representation, such as edge and shape determination, and the approximation can be easily modified as and when new information is received.
Pornographic image recognition and filtering using incremental learning in compressed domain
NASA Astrophysics Data System (ADS)
Zhang, Jing; Wang, Chao; Zhuo, Li; Geng, Wenhao
2015-11-01
With the rapid development and popularity of the network, the openness, anonymity, and interactivity of networks have led to the spread and proliferation of pornographic images on the Internet, which have done great harm to adolescents' physical and mental health. With the establishment of image compression standards, pornographic images are mainly stored with compressed formats. Therefore, how to efficiently filter pornographic images is one of the challenging issues for information security. A pornographic image recognition and filtering method in the compressed domain is proposed by using incremental learning, which includes the following steps: (1) low-resolution (LR) images are first reconstructed from the compressed stream of pornographic images, (2) visual words are created from the LR image to represent the pornographic image, and (3) incremental learning is adopted to continuously adjust the classification rules to recognize the new pornographic image samples after the covering algorithm is utilized to train and recognize the visual words in order to build the initial classification model of pornographic images. The experimental results show that the proposed pornographic image recognition method using incremental learning has a higher recognition rate as well as costing less recognition time in the compressed domain.
Consistency of response and image recognition, pulmonary nodules
Liu, M A Q; Galvan, E; Bassett, R; Murphy, W A; Matamoros, A; Marom, E M
2014-01-01
Objective: To investigate the effect of recognition of a previously encountered radiograph on consistency of response in localized pulmonary nodules. Methods: 13 radiologists interpreted 40 radiographs each to locate pulmonary nodules. A few days later, they again interpreted 40 radiographs. Half of the images in the second set were new. We asked the radiologists whether each image had been in the first set. We used Fisher's exact test and Kruskal–Wallis test to evaluate the correlation between recognition of an image and consistency in its interpretation. We evaluated the data using all possible recognition levels—definitely, probably or possibly included vs definitely, probably or possibly not included by collapsing the recognition levels into two and by eliminating the “possibly included” and “possibly not included” scores. Results: With all but one of six methods of looking at the data, there was no significant correlation between consistency in interpretation and recognition of the image. When the possibly included and possibly not included scores were eliminated, there was a borderline statistical significance (p = 0.04) with slightly greater consistency in interpretation of recognized than that of non-recognized images. Conclusion: We found no convincing evidence that radiologists' recognition of images in an observer performance study affects their interpretation on a second encounter. Advances in knowledge: Conscious recognition of chest radiographs did not result in a greater degree of consistency in the tested interpretation than that in the interpretation of images that were not recognized. PMID:24697724
Assessment of HRSC Digital Terrain Models Produced for the South Polar Residual Cap
NASA Astrophysics Data System (ADS)
Putri, Alfiah Rizky Diana; Sidiropoulos, Panagiotis; Muller, Jan-Peter
2017-04-01
The current Digital Terrain Models available for Mars consist of NASA MOLA (Mars Orbital Laser Altimeter) Digital Terrain Models with an average resolution of 112 m/ pixel (512 pixels/degree) for the polar region. The ESA/DLR High Resolution Stereo Camera is currently orbiting Mars and mapping its surface, 98% with resolution of ≤100 m/pixel and better and 100% at lower resolution [1]. It is possible to produce Digital Terrain Models from HRSC images using various methods. In this study, the method developed on Kim and Muller [2] which uses the VICAR open source program together with photogrammetry sofrware from DLR (Deutschen Zentrums für Luft- und Raumfahrt) with image matching based on the GOTCHA (Gruen-Otto-Chau) algorithm [3]. Digital Terrain Models have been processed over the South Pole with emphasis on areas around South Polar Residual Cap from High Resolution Stereo Camera images [4]. Digital Terrain Models have been produced for 31 orbits out of 149 polar orbits available. This study analyses the quality of the DTMs including an assessment of accuracy of elevations using the MOLA MEGDR (Mission Experiment Gridded Data Records) which has roughly 42 million MOLA PEDR (Precision Experiment Data Records) points between latitudes of 78 o -90 o S. The issues encountered in the production of Digital Terrain Models will be described and the statistical results and assessment method will be presented. The resultant DTMs will be accessible via http://i-Mars.eu/web-GIS References: [1] Neukum, G. et. al, 2004. Mars Express: The Scientific Payload pp. 17-35. [2] Kim, J.-R. and J.-P. Muller. 2009. PSS vol. 57, pp. 2095-2112. [3] Shin, D. and J.-P. Muller. 2012. Pattern Recognition, 45(10), 3795 -3809. [4] Putri, A.R. D., et al., Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B4, 463-469 Acknowledgements: The research leading to these results has received partial funding from the STFC "MSSL Consolidated Grant" ST/K000977/1 and partial support from the European Union's Seventh Framework Programme (FP7/2007-2013) under iMars grant agreement n ˚ 607379. The first author would like to acknowledge support for her studies from Indonesia Endowment Fund for Education (LPDP), Ministry of Finance, Republic of Indonesia. The authors would also like to thank Alexander Dumke (Freie Universitaet Berlin) for providing the EXTORI exterior orientation elements which were critical in the production of accuracy geolocations.
Chen, Yibing; Ogata, Taiki; Ueyama, Tsuyoshi; Takada, Toshiyuki; Ota, Jun
2018-01-01
Machine vision is playing an increasingly important role in industrial applications, and the automated design of image recognition systems has been a subject of intense research. This study has proposed a system for automatically designing the field-of-view (FOV) of a camera, the illumination strength and the parameters in a recognition algorithm. We formulated the design problem as an optimisation problem and used an experiment based on a hierarchical algorithm to solve it. The evaluation experiments using translucent plastics objects showed that the use of the proposed system resulted in an effective solution with a wide FOV, recognition of all objects and 0.32 mm and 0.4° maximal positional and angular errors when all the RGB (red, green and blue) for illumination and R channel image for recognition were used. Though all the RGB illumination and grey scale images also provided recognition of all the objects, only a narrow FOV was selected. Moreover, full recognition was not achieved by using only G illumination and a grey-scale image. The results showed that the proposed method can automatically design the FOV, illumination and parameters in the recognition algorithm and that tuning all the RGB illumination is desirable even when single-channel or grey-scale images are used for recognition. PMID:29786665
Chen, Yibing; Ogata, Taiki; Ueyama, Tsuyoshi; Takada, Toshiyuki; Ota, Jun
2018-05-22
Machine vision is playing an increasingly important role in industrial applications, and the automated design of image recognition systems has been a subject of intense research. This study has proposed a system for automatically designing the field-of-view (FOV) of a camera, the illumination strength and the parameters in a recognition algorithm. We formulated the design problem as an optimisation problem and used an experiment based on a hierarchical algorithm to solve it. The evaluation experiments using translucent plastics objects showed that the use of the proposed system resulted in an effective solution with a wide FOV, recognition of all objects and 0.32 mm and 0.4° maximal positional and angular errors when all the RGB (red, green and blue) for illumination and R channel image for recognition were used. Though all the RGB illumination and grey scale images also provided recognition of all the objects, only a narrow FOV was selected. Moreover, full recognition was not achieved by using only G illumination and a grey-scale image. The results showed that the proposed method can automatically design the FOV, illumination and parameters in the recognition algorithm and that tuning all the RGB illumination is desirable even when single-channel or grey-scale images are used for recognition.
Utility of Digital Stereo Images for Optic Disc Evaluation
Ying, Gui-shuang; Pearson, Denise J.; Bansal, Mayank; Puri, Manika; Miller, Eydie; Alexander, Judith; Piltz-Seymour, Jody; Nyberg, William; Maguire, Maureen G.; Eledath, Jayan; Sawhney, Harpreet
2010-01-01
Purpose. To assess the suitability of digital stereo images for optic disc evaluations in glaucoma. Methods. Stereo color optic disc images in both digital and 35-mm slide film formats were acquired contemporaneously from 29 subjects with various cup-to-disc ratios (range, 0.26–0.76; median, 0.475). Using a grading scale designed to assess image quality, the ease of visualizing optic disc features important for glaucoma diagnosis, and the comparative diameters of the optic disc cup, experienced observers separately compared the primary digital stereo images to each subject's 35-mm slides, to scanned images of the same 35-mm slides, and to grayscale conversions of the digital images. Statistical analysis accounted for multiple gradings and comparisons and also assessed image formats under monoscopic viewing. Results. Overall, the quality of primary digital color images was judged superior to that of 35-mm slides (P < 0.001), including improved stereo (P < 0.001), but the primary digital color images were mostly equivalent to the scanned digitized images of the same slides. Color seemingly added little to grayscale optic disc images, except that peripapillary atrophy was best seen in color (P < 0.0001); both the nerve fiber layer (P < 0.0001) and the paths of blood vessels on the optic disc (P < 0.0001) were best seen in grayscale. The preference for digital over film images was maintained under monoscopic viewing conditions. Conclusions. Digital stereo optic disc images are useful for evaluating the optic disc in glaucoma and allow the application of advanced image processing applications. Grayscale images, by providing luminance distinct from color, may be informative for assessing certain features. PMID:20505199
NASA Astrophysics Data System (ADS)
Phillips, Jonathan B.; Coppola, Stephen M.; Jin, Elaine W.; Chen, Ying; Clark, James H.; Mauer, Timothy A.
2009-01-01
Texture appearance is an important component of photographic image quality as well as object recognition. Noise cleaning algorithms are used to decrease sensor noise of digital images, but can hinder texture elements in the process. The Camera Phone Image Quality (CPIQ) initiative of the International Imaging Industry Association (I3A) is developing metrics to quantify texture appearance. Objective and subjective experimental results of the texture metric development are presented in this paper. Eight levels of noise cleaning were applied to ten photographic scenes that included texture elements such as faces, landscapes, architecture, and foliage. Four companies (Aptina Imaging, LLC, Hewlett-Packard, Eastman Kodak Company, and Vista Point Technologies) have performed psychophysical evaluations of overall image quality using one of two methods of evaluation. Both methods presented paired comparisons of images on thin film transistor liquid crystal displays (TFT-LCD), but the display pixel pitch and viewing distance differed. CPIQ has also been developing objective texture metrics and targets that were used to analyze the same eight levels of noise cleaning. The correlation of the subjective and objective test results indicates that texture perception can be modeled with an objective metric. The two methods of psychophysical evaluation exhibited high correlation despite the differences in methodology.
Tracker: Image-Processing and Object-Tracking System Developed
NASA Technical Reports Server (NTRS)
Klimek, Robert B.; Wright, Theodore W.
1999-01-01
Tracker is an object-tracking and image-processing program designed and developed at the NASA Lewis Research Center to help with the analysis of images generated by microgravity combustion and fluid physics experiments. Experiments are often recorded on film or videotape for analysis later. Tracker automates the process of examining each frame of the recorded experiment, performing image-processing operations to bring out the desired detail, and recording the positions of the objects of interest. It can load sequences of images from disk files or acquire images (via a frame grabber) from film transports, videotape, laser disks, or a live camera. Tracker controls the image source to automatically advance to the next frame. It can employ a large array of image-processing operations to enhance the detail of the acquired images and can analyze an arbitrarily large number of objects simultaneously. Several different tracking algorithms are available, including conventional threshold and correlation-based techniques, and more esoteric procedures such as "snake" tracking and automated recognition of character data in the image. The Tracker software was written to be operated by researchers, thus every attempt was made to make the software as user friendly and self-explanatory as possible. Tracker is used by most of the microgravity combustion and fluid physics experiments performed by Lewis, and by visiting researchers. This includes experiments performed on the space shuttles, Mir, sounding rockets, zero-g research airplanes, drop towers, and ground-based laboratories. This software automates the analysis of the flame or liquid s physical parameters such as position, velocity, acceleration, size, shape, intensity characteristics, color, and centroid, as well as a number of other measurements. It can perform these operations on multiple objects simultaneously. Another key feature of Tracker is that it performs optical character recognition (OCR). This feature is useful in extracting numerical instrumentation data that are embedded in images. All the results are saved in files for further data reduction and graphing. There are currently three Tracking Systems (workstations) operating near the laboratories and offices of Lewis Microgravity Science Division researchers. These systems are used independently by students, scientists, and university-based principal investigators. The researchers bring their tapes or films to the workstation and perform the tracking analysis. The resultant data files generated by the tracking process can then be analyzed on the spot, although most of the time researchers prefer to transfer them via the network to their offices for further analysis or plotting. In addition, many researchers have installed Tracker on computers in their office for desktop analysis of digital image sequences, which can be digitized by the Tracking System or some other means. Tracker has not only provided a capability to efficiently and automatically analyze large volumes of data, saving many hours of tedious work, but has also provided new capabilities to extract valuable information and phenomena that was heretofore undetected and unexploited.
HIPAA, dermatology images, and the law.
Scheinfeld, Noah; Rothstein, Brooke
2013-12-01
From smart phones to iPads, the world has grown increasingly reliant on new technology. In this ever-expanding digital age, medicine is at the forefront of these new technologies. In the field of dermatology and general medicine, digital images have become an important tool used in patient management. Today, one can even find physicians who use their cellular phone cameras to take patient images and transmit them to other physicians. However, as digital imaging technology has become more prevalent so too have concerns about the impact of this technology on the electronic medical record, quality of patient care, and medicolegal issues. This article will discuss the advent of digital imaging technology in dermatology and the legal ramifications digital images have on medical care, abiding by HIPAA, the use of digital images as evidence, and the possible abuses digital images can pose in a health care setting.
Evidence and diagnostic reporting in the IHE context.
Loef, Cor; Truyen, Roel
2005-05-01
Capturing clinical observations and findings during the diagnostic imaging process is increasingly becoming a critical step in diagnostic reporting. Standards developers-notably HL7 and DICOM-are making significant progress toward standards that enable exchanging clinical observations and findings among the various information systems of the healthcare enterprise. DICOM-like the HL7 Clinical Document Architecture (CDA) -uses templates and constrained, coded vocabulary (SNOMED, LOINC, etc.). Such a representation facilitates automated software recognition of findings and observations, intrapatient comparison, correlation to norms, and outcomes research. The scope of DICOM Structured Reporting (SR) includes many findings that products routinely create in digital form (measurements, computed estimates, etc.). In the Integrating the Healthcare Enterprise (IHE) framework, two Integration Profiles are defined for clinical data capture and diagnostic reporting: Evidence Document, and Simple Image and Numeric Report. This report describes these two DICOM SR-based integration profiles in the diagnostic reporting process.
Comparing object recognition from binary and bipolar edge images for visual prostheses.
Jung, Jae-Hyun; Pu, Tian; Peli, Eli
2016-11-01
Visual prostheses require an effective representation method due to the limited display condition which has only 2 or 3 levels of grayscale in low resolution. Edges derived from abrupt luminance changes in images carry essential information for object recognition. Typical binary (black and white) edge images have been used to represent features to convey essential information. However, in scenes with a complex cluttered background, the recognition rate of the binary edge images by human observers is limited and additional information is required. The polarity of edges and cusps (black or white features on a gray background) carries important additional information; the polarity may provide shape from shading information missing in the binary edge image. This depth information may be restored by using bipolar edges. We compared object recognition rates from 16 binary edge images and bipolar edge images by 26 subjects to determine the possible impact of bipolar filtering in visual prostheses with 3 or more levels of grayscale. Recognition rates were higher with bipolar edge images and the improvement was significant in scenes with complex backgrounds. The results also suggest that erroneous shape from shading interpretation of bipolar edges resulting from pigment rather than boundaries of shape may confound the recognition.
Robust digital image inpainting algorithm in the wireless environment
NASA Astrophysics Data System (ADS)
Karapetyan, G.; Sarukhanyan, H. G.; Agaian, S. S.
2014-05-01
Image or video inpainting is the process/art of retrieving missing portions of an image without introducing undesirable artifacts that are undetectable by an ordinary observer. An image/video can be damaged due to a variety of factors, such as deterioration due to scratches, laser dazzling effects, wear and tear, dust spots, loss of data when transmitted through a channel, etc. Applications of inpainting include image restoration (removing laser dazzling effects, dust spots, date, text, time, etc.), image synthesis (texture synthesis), completing panoramas, image coding, wireless transmission (recovery of the missing blocks), digital culture protection, image de-noising, fingerprint recognition, and film special effects and production. Most inpainting methods can be classified in two key groups: global and local methods. Global methods are used for generating large image regions from samples while local methods are used for filling in small image gaps. Each method has its own advantages and limitations. For example, the global inpainting methods perform well on textured image retrieval, whereas the classical local methods perform poorly. In addition, some of the techniques are computationally intensive; exceeding the capabilities of most currently used mobile devices. In general, the inpainting algorithms are not suitable for the wireless environment. This paper presents a new and efficient scheme that combines the advantages of both local and global methods into a single algorithm. Particularly, it introduces a blind inpainting model to solve the above problems by adaptively selecting support area for the inpainting scheme. The proposed method is applied to various challenging image restoration tasks, including recovering old photos, recovering missing data on real and synthetic images, and recovering the specular reflections in endoscopic images. A number of computer simulations demonstrate the effectiveness of our scheme and also illustrate the main properties and implementation steps of the presented algorithm. Furthermore, the simulation results show that the presented method is among the state-of-the-art and compares favorably against many available methods in the wireless environment. Robustness in the wireless environment with respect to the shape of the manually selected "marked" region is also illustrated. Currently, we are working on the expansion of this work to video and 3-D data.
Image processing techniques for digital orthophotoquad production
Hood, Joy J.; Ladner, L. J.; Champion, Richard A.
1989-01-01
Orthophotographs have long been recognized for their value as supplements or alternatives to standard maps. Recent trends towards digital cartography have resulted in efforts by the US Geological Survey to develop a digital orthophotoquad production system. Digital image files were created by scanning color infrared photographs on a microdensitometer. Rectification techniques were applied to remove tile and relief displacement, thereby creating digital orthophotos. Image mosaicking software was then used to join the rectified images, producing digital orthophotos in quadrangle format.
NASA Astrophysics Data System (ADS)
Yang, W. B.; Ye, Y. N.
2017-08-01
ICOMOS Florence Declaration in 2014, encourages an in-depth reflection on human values through cultural heritage and landscapes, which emphasizes the importance of historical heritage sites, in order to achieve the application of cultural heritage records through the public participation, sharing new technology platform and facilitation tools for knowledge diffusion, for instance. Nikos adopted digitized intangible cultural heritage within i-Treasures project to create a novel digital platform in 2016. Nowadays, the display platform developed based on geographic information system has been gradually accepted and widely used to distribute cultural heritage information, aiming to combine geography, time, events, issues, trends with the interactive maps to show the context of data changes from the consideration of planarity; for example, Burnaby City in Canada has cooperated with the Columbia University to create a navigation platform for guidance of tangible cultural heritage based on story maps in order to provide public recognition function. In this study, Qiong-Lin Settlement in Kinmen Area was taken as an example to illustrate the developing process of an overall planning framework for reappearing the glory of historic settlements of cultural heritage sites with digital technology, which included tangible and intangible cultural heritage preservation and transmission planning, community participation and digital navigation programs. The digital technology with the GIS-based digital platform can provide more diverse and interesting information while using an intuitive, graphical user story mapping interface. So that tangible cultural heritage can be effectively understood, interpreted and preserved with the value-added methods, and also intangible cultural heritage can be continuously transmitted to establish a complete system of cultural heritage preservation. The main contents include several navigation technologies, such as 3D laser scanning, UAV images, photogrammetry, panorama, audio/video, geographic information systems etc.
NutriNet: A Deep Learning Food and Drink Image Recognition System for Dietary Assessment
Koroušić Seljak, Barbara
2017-01-01
Automatic food image recognition systems are alleviating the process of food-intake estimation and dietary assessment. However, due to the nature of food images, their recognition is a particularly challenging task, which is why traditional approaches in the field have achieved a low classification accuracy. Deep neural networks have outperformed such solutions, and we present a novel approach to the problem of food and drink image detection and recognition that uses a newly-defined deep convolutional neural network architecture, called NutriNet. This architecture was tuned on a recognition dataset containing 225,953 512 × 512 pixel images of 520 different food and drink items from a broad spectrum of food groups, on which we achieved a classification accuracy of 86.72%, along with an accuracy of 94.47% on a detection dataset containing 130,517 images. We also performed a real-world test on a dataset of self-acquired images, combined with images from Parkinson’s disease patients, all taken using a smartphone camera, achieving a top-five accuracy of 55%, which is an encouraging result for real-world images. Additionally, we tested NutriNet on the University of Milano-Bicocca 2016 (UNIMIB2016) food image dataset, on which we improved upon the provided baseline recognition result. An online training component was implemented to continually fine-tune the food and drink recognition model on new images. The model is being used in practice as part of a mobile app for the dietary assessment of Parkinson’s disease patients. PMID:28653995
42 CFR 37.44 - Approval of radiographic facilities that use digital radiography systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... image acquisition, digitization, processing, compression, transmission, display, archiving, and... quality digital chest radiographs by submitting to NIOSH digital radiographic image files of a test object... digital radiographic image files from six or more sample chest radiographs that are of acceptable quality...
42 CFR 37.44 - Approval of radiographic facilities that use digital radiography systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... image acquisition, digitization, processing, compression, transmission, display, archiving, and... quality digital chest radiographs by submitting to NIOSH digital radiographic image files of a test object... digital radiographic image files from six or more sample chest radiographs that are of acceptable quality...
Study of optical techniques for the Ames unitary wind tunnel: Digital image processing, part 6
NASA Technical Reports Server (NTRS)
Lee, George
1993-01-01
A survey of digital image processing techniques and processing systems for aerodynamic images has been conducted. These images covered many types of flows and were generated by many types of flow diagnostics. These include laser vapor screens, infrared cameras, laser holographic interferometry, Schlieren, and luminescent paints. Some general digital image processing systems, imaging networks, optical sensors, and image computing chips were briefly reviewed. Possible digital imaging network systems for the Ames Unitary Wind Tunnel were explored.
Nguyen, Dat Tien; Park, Kang Ryoung
2016-07-21
With higher demand from users, surveillance systems are currently being designed to provide more information about the observed scene, such as the appearance of objects, types of objects, and other information extracted from detected objects. Although the recognition of gender of an observed human can be easily performed using human perception, it remains a difficult task when using computer vision system images. In this paper, we propose a new human gender recognition method that can be applied to surveillance systems based on quality assessment of human areas in visible light and thermal camera images. Our research is novel in the following two ways: First, we utilize the combination of visible light and thermal images of the human body for a recognition task based on quality assessment. We propose a quality measurement method to assess the quality of image regions so as to remove the effects of background regions in the recognition system. Second, by combining the features extracted using the histogram of oriented gradient (HOG) method and the measured qualities of image regions, we form a new image features, called the weighted HOG (wHOG), which is used for efficient gender recognition. Experimental results show that our method produces more accurate estimation results than the state-of-the-art recognition method that uses human body images.
Nguyen, Dat Tien; Park, Kang Ryoung
2016-01-01
With higher demand from users, surveillance systems are currently being designed to provide more information about the observed scene, such as the appearance of objects, types of objects, and other information extracted from detected objects. Although the recognition of gender of an observed human can be easily performed using human perception, it remains a difficult task when using computer vision system images. In this paper, we propose a new human gender recognition method that can be applied to surveillance systems based on quality assessment of human areas in visible light and thermal camera images. Our research is novel in the following two ways: First, we utilize the combination of visible light and thermal images of the human body for a recognition task based on quality assessment. We propose a quality measurement method to assess the quality of image regions so as to remove the effects of background regions in the recognition system. Second, by combining the features extracted using the histogram of oriented gradient (HOG) method and the measured qualities of image regions, we form a new image features, called the weighted HOG (wHOG), which is used for efficient gender recognition. Experimental results show that our method produces more accurate estimation results than the state-of-the-art recognition method that uses human body images. PMID:27455264
42 CFR 37.51 - Interpreting and classifying chest radiographs-digital radiography systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... standard digital chest radiographic images provided for use with the Guidelines for the Use of the ILO... NIOSH-approved standard digital images may be used for classifying digital chest images for pneumoconiosis. Modification of the appearance of the standard images using software tools is not permitted. (d...
Locality constrained joint dynamic sparse representation for local matching based face recognition.
Wang, Jianzhong; Yi, Yugen; Zhou, Wei; Shi, Yanjiao; Qi, Miao; Zhang, Ming; Zhang, Baoxue; Kong, Jun
2014-01-01
Recently, Sparse Representation-based Classification (SRC) has attracted a lot of attention for its applications to various tasks, especially in biometric techniques such as face recognition. However, factors such as lighting, expression, pose and disguise variations in face images will decrease the performances of SRC and most other face recognition techniques. In order to overcome these limitations, we propose a robust face recognition method named Locality Constrained Joint Dynamic Sparse Representation-based Classification (LCJDSRC) in this paper. In our method, a face image is first partitioned into several smaller sub-images. Then, these sub-images are sparsely represented using the proposed locality constrained joint dynamic sparse representation algorithm. Finally, the representation results for all sub-images are aggregated to obtain the final recognition result. Compared with other algorithms which process each sub-image of a face image independently, the proposed algorithm regards the local matching-based face recognition as a multi-task learning problem. Thus, the latent relationships among the sub-images from the same face image are taken into account. Meanwhile, the locality information of the data is also considered in our algorithm. We evaluate our algorithm by comparing it with other state-of-the-art approaches. Extensive experiments on four benchmark face databases (ORL, Extended YaleB, AR and LFW) demonstrate the effectiveness of LCJDSRC.
A model of attention-guided visual perception and recognition.
Rybak, I A; Gusakova, V I; Golovan, A V; Podladchikova, L N; Shevtsova, N A
1998-08-01
A model of visual perception and recognition is described. The model contains: (i) a low-level subsystem which performs both a fovea-like transformation and detection of primary features (edges), and (ii) a high-level subsystem which includes separated 'what' (sensory memory) and 'where' (motor memory) structures. Image recognition occurs during the execution of a 'behavioral recognition program' formed during the primary viewing of the image. The recognition program contains both programmed attention window movements (stored in the motor memory) and predicted image fragments (stored in the sensory memory) for each consecutive fixation. The model shows the ability to recognize complex images (e.g. faces) invariantly with respect to shift, rotation and scale.
Iris recognition based on robust principal component analysis
NASA Astrophysics Data System (ADS)
Karn, Pradeep; He, Xiao Hai; Yang, Shuai; Wu, Xiao Hong
2014-11-01
Iris images acquired under different conditions often suffer from blur, occlusion due to eyelids and eyelashes, specular reflection, and other artifacts. Existing iris recognition systems do not perform well on these types of images. To overcome these problems, we propose an iris recognition method based on robust principal component analysis. The proposed method decomposes all training images into a low-rank matrix and a sparse error matrix, where the low-rank matrix is used for feature extraction. The sparsity concentration index approach is then applied to validate the recognition result. Experimental results using CASIA V4 and IIT Delhi V1iris image databases showed that the proposed method achieved competitive performances in both recognition accuracy and computational efficiency.
Automated recognition of microcalcification clusters in mammograms
NASA Astrophysics Data System (ADS)
Bankman, Isaac N.; Christens-Barry, William A.; Kim, Dong W.; Weinberg, Irving N.; Gatewood, Olga B.; Brody, William R.
1993-07-01
The widespread and increasing use of mammographic screening for early breast cancer detection is placing a significant strain on clinical radiologists. Large numbers of radiographic films have to be visually interpreted in fine detail to determine the subtle hallmarks of cancer that may be present. We developed an algorithm for detecting microcalcification clusters, the most common and useful signs of early, potentially curable breast cancer. We describe this algorithm, which utilizes contour map representations of digitized mammographic films, and discuss its benefits in overcoming difficulties often encountered in algorithmic approaches to radiographic image processing. We present experimental analyses of mammographic films employing this contour-based algorithm and discuss practical issues relevant to its use in an automated film interpretation instrument.
Use of LANDSAT 2 data technique to estimate silverleaf sunflower infestation
NASA Technical Reports Server (NTRS)
Richardson, A. J.; Escobar, D. E.; Gausman, H. W.; Everitt, J. H. (Principal Investigator)
1982-01-01
The feasibility of the technique using the Earth Resources Technology Satellite (LANDSAT-2) multispectral scanner (MSS) was tested; to distinguish silverleaf sunflowers (Helianthus argophyllus Torr. and Gray) from other plant species and to estimate the hectarage percent of its infestation. Sunflowers gave high mean digital counts in all four LANDSAT MSS bands that were manifested as a pinkish image response on the LANDSAT color composite imagery. Photo- and LANDSAT-estimated hectare percentages for silverleaf sunflower within a 23,467 ha study area were 9.1 and 9.5%, respectively. The geographic occurrence of sunflower areas on the line-printer recognition map was in good agreement with their known aerial photographic locations.
Image preprocessing study on KPCA-based face recognition
NASA Astrophysics Data System (ADS)
Li, Xuan; Li, Dehua
2015-12-01
Face recognition as an important biometric identification method, with its friendly, natural, convenient advantages, has obtained more and more attention. This paper intends to research a face recognition system including face detection, feature extraction and face recognition, mainly through researching on related theory and the key technology of various preprocessing methods in face detection process, using KPCA method, focuses on the different recognition results in different preprocessing methods. In this paper, we choose YCbCr color space for skin segmentation and choose integral projection for face location. We use erosion and dilation of the opening and closing operation and illumination compensation method to preprocess face images, and then use the face recognition method based on kernel principal component analysis method for analysis and research, and the experiments were carried out using the typical face database. The algorithms experiment on MATLAB platform. Experimental results show that integration of the kernel method based on PCA algorithm under certain conditions make the extracted features represent the original image information better for using nonlinear feature extraction method, which can obtain higher recognition rate. In the image preprocessing stage, we found that images under various operations may appear different results, so as to obtain different recognition rate in recognition stage. At the same time, in the process of the kernel principal component analysis, the value of the power of the polynomial function can affect the recognition result.
Semi-automated extraction of landslides in Taiwan based on SPOT imagery and DEMs
NASA Astrophysics Data System (ADS)
Eisank, Clemens; Hölbling, Daniel; Friedl, Barbara; Chen, Yi-Chin; Chang, Kang-Tsung
2014-05-01
The vast availability and improved quality of optical satellite data and digital elevation models (DEMs), as well as the need for complete and up-to-date landslide inventories at various spatial scales have fostered the development of semi-automated landslide recognition systems. Among the tested approaches for designing such systems, object-based image analysis (OBIA) stepped out to be a highly promising methodology. OBIA offers a flexible, spatially enabled framework for effective landslide mapping. Most object-based landslide mapping systems, however, have been tailored to specific, mainly small-scale study areas or even to single landslides only. Even though reported mapping accuracies tend to be higher than for pixel-based approaches, accuracy values are still relatively low and depend on the particular study. There is still room to improve the applicability and objectivity of object-based landslide mapping systems. The presented study aims at developing a knowledge-based landslide mapping system implemented in an OBIA environment, i.e. Trimble eCognition. In comparison to previous knowledge-based approaches, the classification of segmentation-derived multi-scale image objects relies on digital landslide signatures. These signatures hold the common operational knowledge on digital landslide mapping, as reported by 25 Taiwanese landslide experts during personal semi-structured interviews. Specifically, the signatures include information on commonly used data layers, spectral and spatial features, and feature thresholds. The signatures guide the selection and implementation of mapping rules that were finally encoded in Cognition Network Language (CNL). Multi-scale image segmentation is optimized by using the improved Estimation of Scale Parameter (ESP) tool. The approach described above is developed and tested for mapping landslides in a sub-region of the Baichi catchment in Northern Taiwan based on SPOT imagery and a high-resolution DEM. An object-based accuracy assessment is conducted by quantitatively comparing extracted landslide objects with landslide polygons that were visually interpreted by local experts. The applicability and transferability of the mapping system are evaluated by comparing initial accuracies with those achieved for the following two tests: first, usage of a SPOT image from the same year, but for a different area within the Baichi catchment; second, usage of SPOT images from multiple years for the same region. The integration of the common knowledge via digital landslide signatures is new in object-based landslide studies. In combination with strategies to optimize image segmentation this may lead to a more objective, transferable and stable knowledge-based system for the mapping of landslides from optical satellite data and DEMs.
Fast neuromimetic object recognition using FPGA outperforms GPU implementations.
Orchard, Garrick; Martin, Jacob G; Vogelstein, R Jacob; Etienne-Cummings, Ralph
2013-08-01
Recognition of objects in still images has traditionally been regarded as a difficult computational problem. Although modern automated methods for visual object recognition have achieved steadily increasing recognition accuracy, even the most advanced computational vision approaches are unable to obtain performance equal to that of humans. This has led to the creation of many biologically inspired models of visual object recognition, among them the hierarchical model and X (HMAX) model. HMAX is traditionally known to achieve high accuracy in visual object recognition tasks at the expense of significant computational complexity. Increasing complexity, in turn, increases computation time, reducing the number of images that can be processed per unit time. In this paper we describe how the computationally intensive and biologically inspired HMAX model for visual object recognition can be modified for implementation on a commercial field-programmable aate Array, specifically the Xilinx Virtex 6 ML605 evaluation board with XC6VLX240T FPGA. We show that with minor modifications to the traditional HMAX model we can perform recognition on images of size 128 × 128 pixels at a rate of 190 images per second with a less than 1% loss in recognition accuracy in both binary and multiclass visual object recognition tasks.
Meyer-Lindenberg, Andrea; Ebermaier, Christine; Wolvekamp, Pim; Tellhelm, Bernd; Meutstege, Freek J; Lang, Johann; Hartung, Klaus; Fehr, Michael; Nolte, Ingo
2008-01-01
In this study the quality of digital and analog radiography in dogs was compared. For this purpose, three conventional radiographs (varying in exposure) and three digital radiographs (varying in MUSI-contrast [MUSI = MUlti Scale Image Contrast], the main post-processing parameter) of six different body regions of the dog were evaluated (thorax, abdomen, skull, femur, hip joints, elbow). The quality of the radiographs was evaluated by eight veterinary specialists familiar with radiographic images using a questionnaire based on details of each body region significant in obtaining a radiographic diagnosis. In the first part of the study the overall quality of the radiographs was evaluated. Within one region, 89.5% (43/48) chose a digital radiograph as the best image. Divided into analog and digital groups, the digital image with the highest MUSI-contrast was most often considered the best, while the analog image considered the best varied between the one with the medium and the one with the longest exposure time. In the second part of the study, each image was rated for the visibility of specific, diagnostically important details. After summarisation of the scores for each criterion, divided into analog and digital imaging, the digital images were rated considerably superior to conventional images. The results of image comparison revealed that digital radiographs showed better image detail than radiographs taken with the analog technique in all six areas of the body.
Pre-IGY Ionosphere Over Washington D.C
NASA Astrophysics Data System (ADS)
Rice, D. D.; Sojka, J. J.; Eccles, J. V.; Hunsucker, R. D.
2012-12-01
A data recovery study has been sponsored by the NSF to determine how successfully the ionosphere during a pre-IGY era can be inferred from archived ionogram films. This pilot study targets the Washington, DC ionosonde WA938 located at Ft. Belvoir in Fairfax, VA (38.7° N, -77.1° E). The focus of the study is 1951, 61 years ago, or about 5 1/2 solar cycles ago. The ionosonde was a model C-3 designed by the National Bureau of Standards (NBS). Ionograms were taken at approximately six per hour, but not uniformly spaced in time. These were recorded on an extended frame 35 mm film. Between 2-4 weeks of ionograms were recorded on a single film reel. These films were archived at the NOAA's National Geophysical Data Center (NGDC), also known as a World Data Center . Over the past five years, NGDC has been able to digitize several months from selected years of these films. These digitized ionogram images are the starting point for the ionospheric data analysis for this study. SEC has developed an image processing technique called the Expert System for Ionogram Reduction (ESIR), which has been patented [Sojka et al. 2009]. This software was developed specifically to recognize and invert an ionogram from a photographic image, producing an equivalent ionospheric electron density profile. The recognition of both virtual height and frequency axes in these ionogram photos is discussed. We demonstrate how we can validate and calibrate these scales independent of the ionosonde's virtual height and frequency markings. Examples during several months of 1951 of the automated ESIR ionogram reduction will be provided. These examples will be presented in the context of how the mid-latitude ionosphere over Washington DC in 1951 compares with the present-day ionosphere. Limitations in the data extraction are discussed from a point of view of how they might affect confidence in the inferred long-term trends in the ionosphere. Reference: Sojka J. J., D. C. Thompson, D. D. Rice (2009) Sounding Transformation and Recognition, US Patent No. 7,541,967, US Patent Office
NASA Astrophysics Data System (ADS)
Hsieh, Cheng-Ta; Huang, Kae-Horng; Lee, Chang-Hsing; Han, Chin-Chuan; Fan, Kuo-Chin
2017-12-01
Robust face recognition under illumination variations is an important and challenging task in a face recognition system, particularly for face recognition in the wild. In this paper, a face image preprocessing approach, called spatial adaptive shadow compensation (SASC), is proposed to eliminate shadows in the face image due to different lighting directions. First, spatial adaptive histogram equalization (SAHE), which uses face intensity prior model, is proposed to enhance the contrast of each local face region without generating visible noises in smooth face areas. Adaptive shadow compensation (ASC), which performs shadow compensation in each local image block, is then used to produce a wellcompensated face image appropriate for face feature extraction and recognition. Finally, null-space linear discriminant analysis (NLDA) is employed to extract discriminant features from SASC compensated images. Experiments performed on the Yale B, Yale B extended, and CMU PIE face databases have shown that the proposed SASC always yields the best face recognition accuracy. That is, SASC is more robust to face recognition under illumination variations than other shadow compensation approaches.
Finger vein verification system based on sparse representation.
Xin, Yang; Liu, Zhi; Zhang, Haixia; Zhang, Hong
2012-09-01
Finger vein verification is a promising biometric pattern for personal identification in terms of security and convenience. The recognition performance of this technology heavily relies on the quality of finger vein images and on the recognition algorithm. To achieve efficient recognition performance, a special finger vein imaging device is developed, and a finger vein recognition method based on sparse representation is proposed. The motivation for the proposed method is that finger vein images exhibit a sparse property. In the proposed system, the regions of interest (ROIs) in the finger vein images are segmented and enhanced. Sparse representation and sparsity preserving projection on ROIs are performed to obtain the features. Finally, the features are measured for recognition. An equal error rate of 0.017% was achieved based on the finger vein image database, which contains images that were captured by using the near-IR imaging device that was developed in this study. The experimental results demonstrate that the proposed method is faster and more robust than previous methods.
Pisano, E D; Cole, E B; Major, S; Zong, S; Hemminger, B M; Muller, K E; Johnston, R E; Walsh, R; Conant, E; Fajardo, L L; Feig, S A; Nishikawa, R M; Yaffe, M J; Williams, M B; Aylward, S R
2000-09-01
To determine the preferences of radiologists among eight different image processing algorithms applied to digital mammograms obtained for screening and diagnostic imaging tasks. Twenty-eight images representing histologically proved masses or calcifications were obtained by using three clinically available digital mammographic units. Images were processed and printed on film by using manual intensity windowing, histogram-based intensity windowing, mixture model intensity windowing, peripheral equalization, multiscale image contrast amplification (MUSICA), contrast-limited adaptive histogram equalization, Trex processing, and unsharp masking. Twelve radiologists compared the processed digital images with screen-film mammograms obtained in the same patient for breast cancer screening and breast lesion diagnosis. For the screening task, screen-film mammograms were preferred to all digital presentations, but the acceptability of images processed with Trex and MUSICA algorithms were not significantly different. All printed digital images were preferred to screen-film radiographs in the diagnosis of masses; mammograms processed with unsharp masking were significantly preferred. For the diagnosis of calcifications, no processed digital mammogram was preferred to screen-film mammograms. When digital mammograms were preferred to screen-film mammograms, radiologists selected different digital processing algorithms for each of three mammographic reading tasks and for different lesion types. Soft-copy display will eventually allow radiologists to select among these options more easily.
Pisoni, David B.; Cleary, Miranda
2012-01-01
Large individual differences in spoken word recognition performance have been found in deaf children after cochlear implantation. Recently, Pisoni and Geers (2000) reported that simple forward digit span measures of verbal working memory were significantly correlated with spoken word recognition scores even after potentially confounding variables were statistically controlled for. The present study replicates and extends these initial findings to the full set of 176 participants in the CID cochlear implant study. The pooled data indicate that despite statistical “partialling-out” of differences in chronological age, communication mode, duration of deafness, duration of device use, age at onset of deafness, number of active electrodes, and speech feature discrimination, significant correlations still remain between digit span and several measures of spoken word recognition. Strong correlations were also observed between speaking rate and both forward and backward digit span, a result that is similar to previously reported findings in normalhearing adults and children. The results suggest that perhaps as much as 20% of the currently unexplained variance in spoken word recognition scores may be independently accounted for by individual differences in cognitive factors related to the speed and efficiency with which phonological and lexical representations of spoken words are maintained in and retrieved from working memory. A smaller percentage, perhaps about 7% of the currently unexplained variance in spoken word recognition scores, may be accounted for in terms of working memory capacity. We discuss how these relationships may arise and their contribution to subsequent speech and language development in prelingually deaf children who use cochlear implants. PMID:12612485
Speculative Method in Digital Education Research
ERIC Educational Resources Information Center
Ross, Jen
2017-01-01
The question of "what works" is currently dominating educational research, often to the exclusion of other kinds of inquiries and without enough recognition of its limitations. At the same time, digital education practice, policy and research over-emphasises control, efficiency and enhancement, neglecting the "not-yetness" of…
Feedforward object-vision models only tolerate small image variations compared to human
Ghodrati, Masoud; Farzmahdi, Amirhossein; Rajaei, Karim; Ebrahimpour, Reza; Khaligh-Razavi, Seyed-Mahdi
2014-01-01
Invariant object recognition is a remarkable ability of primates' visual system that its underlying mechanism has constantly been under intense investigations. Computational modeling is a valuable tool toward understanding the processes involved in invariant object recognition. Although recent computational models have shown outstanding performances on challenging image databases, they fail to perform well in image categorization under more complex image variations. Studies have shown that making sparse representation of objects by extracting more informative visual features through a feedforward sweep can lead to higher recognition performances. Here, however, we show that when the complexity of image variations is high, even this approach results in poor performance compared to humans. To assess the performance of models and humans in invariant object recognition tasks, we built a parametrically controlled image database consisting of several object categories varied in different dimensions and levels, rendered from 3D planes. Comparing the performance of several object recognition models with human observers shows that only in low-level image variations the models perform similar to humans in categorization tasks. Furthermore, the results of our behavioral experiments demonstrate that, even under difficult experimental conditions (i.e., briefly presented masked stimuli with complex image variations), human observers performed outstandingly well, suggesting that the models are still far from resembling humans in invariant object recognition. Taken together, we suggest that learning sparse informative visual features, although desirable, is not a complete solution for future progresses in object-vision modeling. We show that this approach is not of significant help in solving the computational crux of object recognition (i.e., invariant object recognition) when the identity-preserving image variations become more complex. PMID:25100986
Lumbar spine radiography — poor collimation practices after implementation of digital technology
Zetterberg, L G; Espeland, A
2011-01-01
Objectives The transition from analogue to digital radiography may have reduced the motivation to perform proper collimation, as digital techniques have made it possible to mask areas irradiated outside the area of diagnostic interest (ADI). We examined the hypothesis that collimation practices have deteriorated since digitalisation. Methods After defining the ADI, we compared the proportion of the irradiated field outside the ADI in 86 digital and 86 analogue frontal lumbar spine radiographs using the Mann–Whitney test. 50 digital images and 50 analogue images were from a Norwegian hospital and the remainder from a Danish hospital. Consecutive digital images were compared with analogue images (from the hospitals' archives) produced in the 4 years prior to digitalisation. Both hospitals' standard radiographic procedures remained unchanged during the study. For digital images, the irradiated field was assessed using non-masked raw-data images. Results The proportion of the irradiated field outside the ADI was larger in digital than in analogue images (mean 61.7% vs 42.4%, p<0.001), and also in a subsample of 39 image pairs that could be matched for patient age (p<0.001). The mean total field size was 46% larger in digital than in analogue images (791 cm2 vs 541 cm2). Conclusion Following the implementation of digital radiography, considerably larger areas were irradiated. This causes unnecessarily high radiation doses to patients. PMID:21606070
Digital Image Analysis System for Monitoring Crack Growth at Elevated Temperature
1988-05-01
The objective of the research work reported here was to develop a new concept, based on Digital Image Analysis , for monitoring the crack-tip position...a 512 x 512 pixel frame. c) Digital Image Analysis software developed to locate and digitize the position of the crack-tip, on the observed image
[Improvement of Digital Capsule Endoscopy System and Image Interpolation].
Zhao, Shaopeng; Yan, Guozheng; Liu, Gang; Kuang, Shuai
2016-01-01
Traditional capsule image collects and transmits analog image, with weak anti-interference ability, low frame rate, low resolution. This paper presents a new digital image capsule, which collects and transmits digital image, with frame rate up to 30 frames/sec and pixels resolution of 400 x 400. The image is compressed in the capsule, and is transmitted to the outside of the capsule for decompression and interpolation. A new type of interpolation algorithm is proposed, which is based on the relationship between the image planes, to obtain higher quality colour images. capsule endoscopy, digital image, SCCB protocol, image interpolation
Analysis of contour images using optics of spiral beams
NASA Astrophysics Data System (ADS)
Volostnikov, V. G.; Kishkin, S. A.; Kotova, S. P.
2018-03-01
An approach is outlined to the recognition of contour images using computer technology based on coherent optics principles. A mathematical description of the recognition process algorithm and the results of numerical modelling are presented. The developed approach to the recognition of contour images using optics of spiral beams is described and justified.
NASA Astrophysics Data System (ADS)
Dietrich, Volker; Hartmann, Peter; Kerz, Franca
2015-03-01
Digital cameras are present everywhere in our daily life. Science, business or private life cannot be imagined without digital images. The quality of an image is often rated by its color rendering. In order to obtain a correct color recognition, a near infrared cut (IRC-) filter must be used to alter the sensitivity of imaging sensor. Increasing requirements related to color balance and larger angle of incidence (AOI) enforced the use of new materials as the e.g. BG6X series which substitutes interference coated filters on D263 thin glass. Although the optical properties are the major design criteria, devices have to withstand numerous environmental conditions during use and manufacturing - as e.g. temperature change, humidity, and mechanical shock, as wells as mechanical stress. The new materials show different behavior with respect to all these aspects. They are usually more sensitive against these requirements to a larger or smaller extent. Mechanical strength is especially different. Reliable strength data are of major interest for mobile phone camera applications. As bending strength of a glass component depends not only upon the material itself, but mainly on the surface treatment and test conditions, a single number for the strength might be misleading if the conditions of the test and the samples are not described precisely,. Therefore, Schott started investigations upon the bending strength data of various IRC-filter materials. Different test methods were used to obtain statistical relevant data.
QWIP technology for both military and civilian applications
NASA Astrophysics Data System (ADS)
Gunapala, Sarath D.; Kukkonen, Carl A.; Sirangelo, Mark N.; McQuiston, Barbara K.; Chehayeb, Riad; Kaufmann, M.
2001-10-01
Advanced thermal imaging infrared cameras have been a cost effective and reliable method to obtain the temperature of objects. Quantum Well Infrared Photodetector (QWIP) based thermal imaging systems have advanced the state-of-the-art and are the most sensitive commercially available thermal systems. QWIP Technologies LLC, under exclusive agreement with Caltech University, is currently manufacturing the QWIP-ChipTM, a 320 X 256 element, bound-to-quasibound QWIP FPA. The camera performance falls within the long-wave IR band, spectrally peaked at 8.5 μm. The camera is equipped with a 32-bit floating-point digital signal processor combined with multi- tasking software, delivering a digital acquisition resolution of 12-bits using nominal power consumption of less than 50 Watts. With a variety of video interface options, remote control capability via an RS-232 connection, and an integrated control driver circuit to support motorized zoom and focus- compatible lenses, this camera design has excellent application in both the military and commercial sector. In the area of remote sensing, high-performance QWIP systems can be used for high-resolution, target recognition as part of a new system of airborne platforms (including UAVs). Such systems also have direct application in law enforcement, surveillance, industrial monitoring and road hazard detection systems. This presentation will cover the current performance of the commercial QWIP cameras, conceptual platform systems and advanced image processing for use in both military remote sensing and civilian applications currently being developed in road hazard monitoring.
A model for a PC-based, universal-format, multimedia digitization system: moving beyond the scanner.
McEachen, James C; Cusack, Thomas J; McEachen, John C
2003-08-01
Digitizing images for use in case presentations based on hardcopy films, slides, photographs, negatives, books, and videos can present a challenging task. Scanners and digital cameras have become standard tools of the trade. Unfortunately, use of these devices to digitize multiple images in many different media formats can be a time-consuming and in some cases unachievable process. The authors' goal was to create a PC-based solution for digitizing multiple media formats in a timely fashion while maintaining adequate image presentation quality. The authors' PC-based solution makes use of off-the-shelf hardware applications to include a digital document camera (DDC), VHS video player, and video-editing kit. With the assistance of five staff radiologists, the authors examined the quality of multiple image types digitized with this equipment. The authors also quantified the speed of digitization of various types of media using the DDC and video-editing kit. With regard to image quality, the five staff radiologists rated the digitized angiography, CT, and MR images as adequate to excellent for use in teaching files and case presentations. With regard to digitized plain films, the average rating was adequate. As for performance, the authors recognized a 68% improvement in the time required to digitize hardcopy films using the DDC instead of a professional quality scanner. The PC-based solution provides a means for digitizing multiple images from many different types of media in a timely fashion while maintaining adequate image presentation quality.
Score-Level Fusion of Phase-Based and Feature-Based Fingerprint Matching Algorithms
NASA Astrophysics Data System (ADS)
Ito, Koichi; Morita, Ayumi; Aoki, Takafumi; Nakajima, Hiroshi; Kobayashi, Koji; Higuchi, Tatsuo
This paper proposes an efficient fingerprint recognition algorithm combining phase-based image matching and feature-based matching. In our previous work, we have already proposed an efficient fingerprint recognition algorithm using Phase-Only Correlation (POC), and developed commercial fingerprint verification units for access control applications. The use of Fourier phase information of fingerprint images makes it possible to achieve robust recognition for weakly impressed, low-quality fingerprint images. This paper presents an idea of improving the performance of POC-based fingerprint matching by combining it with feature-based matching, where feature-based matching is introduced in order to improve recognition efficiency for images with nonlinear distortion. Experimental evaluation using two different types of fingerprint image databases demonstrates efficient recognition performance of the combination of the POC-based algorithm and the feature-based algorithm.
Automatic recognition of ship types from infrared images using superstructure moment invariants
NASA Astrophysics Data System (ADS)
Li, Heng; Wang, Xinyu
2007-11-01
Automatic object recognition is an active area of interest for military and commercial applications. In this paper, a system addressing autonomous recognition of ship types in infrared images is proposed. Firstly, an approach of segmentation based on detection of salient features of the target with subsequent shadow removing is proposed, as is the base of the subsequent object recognition. Considering the differences between the shapes of various ships mainly lie in their superstructures, we then use superstructure moment functions invariant to translation, rotation and scale differences in input patterns and develop a robust algorithm of obtaining ship superstructure. Subsequently a back-propagation neural network is used as a classifier in the recognition stage and projection images of simulated three-dimensional ship models are used as the training sets. Our recognition model was implemented and experimentally validated using both simulated three-dimensional ship model images and real images derived from video of an AN/AAS-44V Forward Looking Infrared(FLIR) sensor.
Fuzzy difference-of-Gaussian-based iris recognition method for noisy iris images
NASA Astrophysics Data System (ADS)
Kang, Byung Jun; Park, Kang Ryoung; Yoo, Jang-Hee; Moon, Kiyoung
2010-06-01
Iris recognition is used for information security with a high confidence level because it shows outstanding recognition accuracy by using human iris patterns with high degrees of freedom. However, iris recognition accuracy can be reduced by noisy iris images with optical and motion blurring. We propose a new iris recognition method based on the fuzzy difference-of-Gaussian (DOG) for noisy iris images. This study is novel in three ways compared to previous works: (1) The proposed method extracts iris feature values using the DOG method, which is robust to local variations of illumination and shows fine texture information, including various frequency components. (2) When determining iris binary codes, image noises that cause the quantization error of the feature values are reduced with the fuzzy membership function. (3) The optimal parameters of the DOG filter and the fuzzy membership function are determined in terms of iris recognition accuracy. Experimental results showed that the performance of the proposed method was better than that of previous methods for noisy iris images.
Iris Recognition: The Consequences of Image Compression
NASA Astrophysics Data System (ADS)
Ives, Robert W.; Bishop, Daniel A.; Du, Yingzi; Belcher, Craig
2010-12-01
Iris recognition for human identification is one of the most accurate biometrics, and its employment is expanding globally. The use of portable iris systems, particularly in law enforcement applications, is growing. In many of these applications, the portable device may be required to transmit an iris image or template over a narrow-bandwidth communication channel. Typically, a full resolution image (e.g., VGA) is desired to ensure sufficient pixels across the iris to be confident of accurate recognition results. To minimize the time to transmit a large amount of data over a narrow-bandwidth communication channel, image compression can be used to reduce the file size of the iris image. In other applications, such as the Registered Traveler program, an entire iris image is stored on a smart card, but only 4 kB is allowed for the iris image. For this type of application, image compression is also the solution. This paper investigates the effects of image compression on recognition system performance using a commercial version of the Daugman iris2pi algorithm along with JPEG-2000 compression, and links these to image quality. Using the ICE 2005 iris database, we find that even in the face of significant compression, recognition performance is minimally affected.
Patient-generated Digital Images after Pediatric Ambulatory Surgery.
Miller, Matthew W; Ross, Rachael K; Voight, Christina; Brouwer, Heather; Karavite, Dean J; Gerber, Jeffrey S; Grundmeier, Robert W; Coffin, Susan E
2016-07-06
To describe the use of digital images captured by parents or guardians and sent to clinicians for assessment of wounds after pediatric ambulatory surgery. Subjects with digital images of post-operative wounds were identified as part of an on-going cohort study of infections after ambulatory surgery within a large pediatric healthcare system. We performed a structured review of the electronic health record (EHR) to determine how digital images were documented in the EHR and used in clinical care. We identified 166 patients whose parent or guardian reported sending a digital image of the wound to the clinician after surgery. A corresponding digital image was located in the EHR in only 121 of these encounters. A change in clinical management was documented in 20% of these encounters, including referral for in-person evaluation of the wound and antibiotic prescription. Clinical teams have developed ad hoc workflows to use digital images to evaluate post-operative pediatric surgical patients. Because the use of digital images to support follow-up care after ambulatory surgery is likely to increase, it is important that high-quality images are captured and documented appropriately in the EHR to ensure privacy, security, and a high-level of care.
Patient-Generated Digital Images after Pediatric Ambulatory Surgery
Ross, Rachael K.; Voight, Christina; Brouwer, Heather; Karavite, Dean J.; Gerber, Jeffrey S.; Grundmeier, Robert W.; Coffin, Susan E.
2016-01-01
Summary Objective To describe the use of digital images captured by parents or guardians and sent to clinicians for assessment of wounds after pediatric ambulatory surgery. Methods Subjects with digital images of post-operative wounds were identified as part of an ongoing cohort study of infections after ambulatory surgery within a large pediatric healthcare system. We performed a structured review of the electronic health record (EHR) to determine how digital images were documented in the EHR and used in clinical care. Results We identified 166 patients whose parent or guardian reported sending a digital image of the wound to the clinician after surgery. A corresponding digital image was located in the EHR in only 121 of these encounters. A change in clinical management was documented in 20% of these encounters, including referral for in-person evaluation of the wound and antibiotic prescription. Conclusion Clinical teams have developed ad hoc workflows to use digital images to evaluate post-operative pediatric surgical patients. Because the use of digital images to support follow-up care after ambulatory surgery is likely to increase, it is important that high-quality images are captured and documented appropriately in the EHR to ensure privacy, security, and a high-level of care. PMID:27452477
Karen and George: Face Recognition by Visually Impaired Children.
ERIC Educational Resources Information Center
Ellis, Hadyn D.; And Others
1988-01-01
Two visually impaired children, aged 8 and 10, appeared to have severe difficulty in recognizing faces. After assessment, it became apparent that only one had unusually poor facial recognition skills. After training, which included matching face photographs, schematic faces, and digitized faces, there was no evidence of any improvement.…
The effects of gray scale image processing on digital mammography interpretation performance.
Cole, Elodia B; Pisano, Etta D; Zeng, Donglin; Muller, Keith; Aylward, Stephen R; Park, Sungwook; Kuzmiak, Cherie; Koomen, Marcia; Pavic, Dag; Walsh, Ruth; Baker, Jay; Gimenez, Edgardo I; Freimanis, Rita
2005-05-01
To determine the effects of three image-processing algorithms on diagnostic accuracy of digital mammography in comparison with conventional screen-film mammography. A total of 201 cases consisting of nonprocessed soft copy versions of the digital mammograms acquired from GE, Fischer, and Trex digital mammography systems (1997-1999) and conventional screen-film mammograms of the same patients were interpreted by nine radiologists. The raw digital data were processed with each of three different image-processing algorithms creating three presentations-manufacturer's default (applied and laser printed to film by each of the manufacturers), MUSICA, and PLAHE-were presented in soft copy display. There were three radiologists per presentation. Area under the receiver operating characteristic curve for GE digital mass cases was worse than screen-film for all digital presentations. The area under the receiver operating characteristic for Trex digital mass cases was better, but only with images processed with the manufacturer's default algorithm. Sensitivity for GE digital mass cases was worse than screen film for all digital presentations. Specificity for Fischer digital calcifications cases was worse than screen film for images processed in default and PLAHE algorithms. Specificity for Trex digital calcifications cases was worse than screen film for images processed with MUSICA. Specific image-processing algorithms may be necessary for optimal presentation for interpretation based on machine and lesion type.
Design method of ARM based embedded iris recognition system
NASA Astrophysics Data System (ADS)
Wang, Yuanbo; He, Yuqing; Hou, Yushi; Liu, Ting
2008-03-01
With the advantages of non-invasiveness, uniqueness, stability and low false recognition rate, iris recognition has been successfully applied in many fields. Up to now, most of the iris recognition systems are based on PC. However, a PC is not portable and it needs more power. In this paper, we proposed an embedded iris recognition system based on ARM. Considering the requirements of iris image acquisition and recognition algorithm, we analyzed the design method of the iris image acquisition module, designed the ARM processing module and its peripherals, studied the Linux platform and the recognition algorithm based on this platform, finally actualized the design method of ARM-based iris imaging and recognition system. Experimental results show that the ARM platform we used is fast enough to run the iris recognition algorithm, and the data stream can flow smoothly between the camera and the ARM chip based on the embedded Linux system. It's an effective method of using ARM to actualize portable embedded iris recognition system.
Deep kernel learning method for SAR image target recognition
NASA Astrophysics Data System (ADS)
Chen, Xiuyuan; Peng, Xiyuan; Duan, Ran; Li, Junbao
2017-10-01
With the development of deep learning, research on image target recognition has made great progress in recent years. Remote sensing detection urgently requires target recognition for military, geographic, and other scientific research. This paper aims to solve the synthetic aperture radar image target recognition problem by combining deep and kernel learning. The model, which has a multilayer multiple kernel structure, is optimized layer by layer with the parameters of Support Vector Machine and a gradient descent algorithm. This new deep kernel learning method improves accuracy and achieves competitive recognition results compared with other learning methods.
Comparing object recognition from binary and bipolar edge images for visual prostheses
Jung, Jae-Hyun; Pu, Tian; Peli, Eli
2017-01-01
Visual prostheses require an effective representation method due to the limited display condition which has only 2 or 3 levels of grayscale in low resolution. Edges derived from abrupt luminance changes in images carry essential information for object recognition. Typical binary (black and white) edge images have been used to represent features to convey essential information. However, in scenes with a complex cluttered background, the recognition rate of the binary edge images by human observers is limited and additional information is required. The polarity of edges and cusps (black or white features on a gray background) carries important additional information; the polarity may provide shape from shading information missing in the binary edge image. This depth information may be restored by using bipolar edges. We compared object recognition rates from 16 binary edge images and bipolar edge images by 26 subjects to determine the possible impact of bipolar filtering in visual prostheses with 3 or more levels of grayscale. Recognition rates were higher with bipolar edge images and the improvement was significant in scenes with complex backgrounds. The results also suggest that erroneous shape from shading interpretation of bipolar edges resulting from pigment rather than boundaries of shape may confound the recognition. PMID:28458481
VHDL Modeling and Simulation of a Digital Image Synthesizer for Countering ISAR
2003-06-01
This thesis discusses VHDL modeling and simulation of a full custom Application Specific Integrated Circuit (ASIC) for a Digital Image Synthesizer...necessary for a given application . With such a digital method, it is possible for a small ship to appear as large as an aircraft carrier or any high...INTRODUCTION TO DIGITAL IMAGE SYNTHESIZER (DIS) A. BACKGROUND The Digital Image Synthesizer (DIS) is an Application Specific Integrated Circuit
A method of object recognition for single pixel imaging
NASA Astrophysics Data System (ADS)
Li, Boxuan; Zhang, Wenwen
2018-01-01
Computational ghost imaging(CGI), utilizing a single-pixel detector, has been extensively used in many fields. However, in order to achieve a high-quality reconstructed image, a large number of iterations are needed, which limits the flexibility of using CGI in practical situations, especially in the field of object recognition. In this paper, we purpose a method utilizing the feature matching to identify the number objects. In the given system, approximately 90% of accuracy of recognition rates can be achieved, which provides a new idea for the application of single pixel imaging in the field of object recognition
21 CFR 892.1715 - Full-field digital mammography system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... planar digital x-ray images of the entire breast. This generic type of device may include digital mammography acquisition software, full-field digital image receptor, acquisition workstation, automatic exposure control, image processing and reconstruction programs, patient and equipment supports, component...
21 CFR 892.1715 - Full-field digital mammography system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... planar digital x-ray images of the entire breast. This generic type of device may include digital mammography acquisition software, full-field digital image receptor, acquisition workstation, automatic exposure control, image processing and reconstruction programs, patient and equipment supports, component...
21 CFR 892.1715 - Full-field digital mammography system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... planar digital x-ray images of the entire breast. This generic type of device may include digital mammography acquisition software, full-field digital image receptor, acquisition workstation, automatic exposure control, image processing and reconstruction programs, patient and equipment supports, component...
21 CFR 892.1715 - Full-field digital mammography system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... planar digital x-ray images of the entire breast. This generic type of device may include digital mammography acquisition software, full-field digital image receptor, acquisition workstation, automatic exposure control, image processing and reconstruction programs, patient and equipment supports, component...
Gender recognition from unconstrained and articulated human body.
Wu, Qin; Guo, Guodong
2014-01-01
Gender recognition has many useful applications, ranging from business intelligence to image search and social activity analysis. Traditional research on gender recognition focuses on face images in a constrained environment. This paper proposes a method for gender recognition in articulated human body images acquired from an unconstrained environment in the real world. A systematic study of some critical issues in body-based gender recognition, such as which body parts are informative, how many body parts are needed to combine together, and what representations are good for articulated body-based gender recognition, is also presented. This paper also pursues data fusion schemes and efficient feature dimensionality reduction based on the partial least squares estimation. Extensive experiments are performed on two unconstrained databases which have not been explored before for gender recognition.
Gender Recognition from Unconstrained and Articulated Human Body
Wu, Qin; Guo, Guodong
2014-01-01
Gender recognition has many useful applications, ranging from business intelligence to image search and social activity analysis. Traditional research on gender recognition focuses on face images in a constrained environment. This paper proposes a method for gender recognition in articulated human body images acquired from an unconstrained environment in the real world. A systematic study of some critical issues in body-based gender recognition, such as which body parts are informative, how many body parts are needed to combine together, and what representations are good for articulated body-based gender recognition, is also presented. This paper also pursues data fusion schemes and efficient feature dimensionality reduction based on the partial least squares estimation. Extensive experiments are performed on two unconstrained databases which have not been explored before for gender recognition. PMID:24977203
Pattern-Recognition System for Approaching a Known Target
NASA Technical Reports Server (NTRS)
Huntsberger, Terrance; Cheng, Yang
2008-01-01
A closed-loop pattern-recognition system is designed to provide guidance for maneuvering a small exploratory robotic vehicle (rover) on Mars to return to a landed spacecraft to deliver soil and rock samples that the spacecraft would subsequently bring back to Earth. The system could be adapted to terrestrial use in guiding mobile robots to approach known structures that humans could not approach safely, for such purposes as reconnaissance in military or law-enforcement applications, terrestrial scientific exploration, and removal of explosive or other hazardous items. The system has been demonstrated in experiments in which the Field Integrated Design and Operations (FIDO) rover (a prototype Mars rover equipped with a video camera for guidance) is made to return to a mockup of Mars-lander spacecraft. The FIDO rover camera autonomously acquires an image of the lander from a distance of 125 m in an outdoor environment. Then under guidance by an algorithm that performs fusion of multiple line and texture features in digitized images acquired by the camera, the rover traverses the intervening terrain, using features derived from images of the lander truss structure. Then by use of precise pattern matching for determining the position and orientation of the rover relative to the lander, the rover aligns itself with the bottom of ramps extending from the lander, in preparation for climbing the ramps to deliver samples to the lander. The most innovative aspect of the system is a set of pattern-recognition algorithms that govern a three-phase visual-guidance sequence for approaching the lander. During the first phase, a multifeature fusion algorithm integrates the outputs of a horizontal-line-detection algorithm and a wavelet-transform-based visual-area-of-interest algorithm for detecting the lander from a significant distance. The horizontal-line-detection algorithm is used to determine candidate lander locations based on detection of a horizontal deck that is part of the lander.
Ojeda, G.Y.; Gayes, P.T.; Van Dolah, R. F.; Schwab, W.C.
2004-01-01
Naturally occurring hard bottom areas provide the geological substrate that can support diverse assemblages of sessile benthic organisms, which in turn, attract many reef-dwelling fish species. Alternatively, defining the location and extent of bottom sand bodies is relevant for potential nourishment projects as well as to ensure that transient sediment does not affect reef habitats, particularly in sediment-starved continental margins. Furthermore, defining sediment transport pathways documents the effects these mobile bedforms have on proximal reef habitats. Thematic mapping of these substrates is therefore crucial in safeguarding critical habitats and offshore resources of coastal nations. This study presents the results of a spatially quantitative mapping approach based on classification of sidescan-sonar imagery. By using bottom video for image-to-ground control, digital image textural features for pattern recognition, and an artificial neural network for rapid, quantitative, multivariable decision-making, this approach resulted in recognition rates of hard bottom as high as 87%. The recognition of sand bottom was less successful (31%). This approach was applied to a large (686 km2), high-quality, 2-m resolution sidescan-sonar mosaic of the northern South Carolina inner continental shelf. Results of this analysis indicate that both surficial sand and hard bottoms of variable extent are present over the study area. In total, 59% of the imaged area was covered by hard bottom, while 41% was covered by sand. Qualitative spatial correlation between bottom type and bathymetry appears possible from comparison of our interpretive map and available bathymetry. Hard bottom areas tend to be located on flat, low-lying areas, and sandy bottoms tend to reside on areas of positive relief. Published bio-erosion rates were used to calculate the potential sediment input from the mapped hard bottom areas rendering sediment volumes that may be as high as 0.8 million m3/yr for this portion of the South Carolina coast. ?? 2003 Elsevier Ltd. All rights reserved.
Digital Image Compression Using Artificial Neural Networks
NASA Technical Reports Server (NTRS)
Serra-Ricart, M.; Garrido, L.; Gaitan, V.; Aloy, A.
1993-01-01
The problem of storing, transmitting, and manipulating digital images is considered. Because of the file sizes involved, large amounts of digitized image information are becoming common in modern projects. Our goal is to described an image compression transform coder based on artificial neural networks techniques (NNCTC). A comparison of the compression results obtained from digital astronomical images by the NNCTC and the method used in the compression of the digitized sky survey from the Space Telescope Science Institute based on the H-transform is performed in order to assess the reliability of the NNCTC.
Terashima, Taiko; Yoshimura, Sadako
2018-03-01
To determine whether nurses can accurately assess the skin colour of replanted fingers displayed as digital images on a computer screen. Colour measurement and clinical diagnostic methods for medical digital images have been studied, but reproducing skin colour on a computer screen remains difficult. The inter-rater reliability of skin colour assessment scores was evaluated. In May 2014, 21 nurses who worked on a trauma ward in Japan participated in testing. Six digital images with different skin colours were used. Colours were scored from both digital images and direct patient's observation. The score from a digital image was defined as the test score, and its difference from the direct assessment score as the difference score. Intraclass correlation coefficients were calculated. Nurses' opinions were classified and summarised. The intraclass correlation coefficients for the test scores were fair. Although the intraclass correlation coefficients for the difference scores were poor, they improved to good when three images that might have contributed to poor reliability were excluded. Most nurses stated that it is difficult to assess skin colour in digital images; they did not think it could be a substitute for direct visual assessment. However, most nurses were in favour of including images in nursing progress notes. Although the inter-rater reliability was fairly high, the reliability of colour reproduction in digital images as indicated by the difference scores was poor. Nevertheless, nurses expect the incorporation of digital images in nursing progress notes to be useful. This gap between the reliability of digital colour reproduction and nurses' expectations towards it must be addressed. High inter-rater reliability for digital images in nursing progress notes was not observed. Assessments of future improvements in colour reproduction technologies are required. Further digitisation and visualisation of nursing records might pose challenges. © 2017 John Wiley & Sons Ltd.
Fusion of LBP and SWLD using spatio-spectral information for hyperspectral face recognition
NASA Astrophysics Data System (ADS)
Xie, Zhihua; Jiang, Peng; Zhang, Shuai; Xiong, Jinquan
2018-01-01
Hyperspectral imaging, recording intrinsic spectral information of the skin cross different spectral bands, become an important issue for robust face recognition. However, the main challenges for hyperspectral face recognition are high data dimensionality, low signal to noise ratio and inter band misalignment. In this paper, hyperspectral face recognition based on LBP (Local binary pattern) and SWLD (Simplified Weber local descriptor) is proposed to extract discriminative local features from spatio-spectral fusion information. Firstly, the spatio-spectral fusion strategy based on statistical information is used to attain discriminative features of hyperspectral face images. Secondly, LBP is applied to extract the orientation of the fusion face edges. Thirdly, SWLD is proposed to encode the intensity information in hyperspectral images. Finally, we adopt a symmetric Kullback-Leibler distance to compute the encoded face images. The hyperspectral face recognition is tested on Hong Kong Polytechnic University Hyperspectral Face database (PolyUHSFD). Experimental results show that the proposed method has higher recognition rate (92.8%) than the state of the art hyperspectral face recognition algorithms.
A real time mobile-based face recognition with fisherface methods
NASA Astrophysics Data System (ADS)
Arisandi, D.; Syahputra, M. F.; Putri, I. L.; Purnamawati, S.; Rahmat, R. F.; Sari, P. P.
2018-03-01
Face Recognition is a field research in Computer Vision that study about learning face and determine the identity of the face from a picture sent to the system. By utilizing this face recognition technology, learning process about people’s identity between students in a university will become simpler. With this technology, student won’t need to browse student directory in university’s server site and look for the person with certain face trait. To obtain this goal, face recognition application use image processing methods consist of two phase, pre-processing phase and recognition phase. In pre-processing phase, system will process input image into the best image for recognition phase. Purpose of this pre-processing phase is to reduce noise and increase signal in image. Next, to recognize face phase, we use Fisherface Methods. This methods is chosen because of its advantage that would help system of its limited data. Therefore from experiment the accuracy of face recognition using fisherface is 90%.
Cross-modal face recognition using multi-matcher face scores
NASA Astrophysics Data System (ADS)
Zheng, Yufeng; Blasch, Erik
2015-05-01
The performance of face recognition can be improved using information fusion of multimodal images and/or multiple algorithms. When multimodal face images are available, cross-modal recognition is meaningful for security and surveillance applications. For example, a probe face is a thermal image (especially at nighttime), while only visible face images are available in the gallery database. Matching a thermal probe face onto the visible gallery faces requires crossmodal matching approaches. A few such studies were implemented in facial feature space with medium recognition performance. In this paper, we propose a cross-modal recognition approach, where multimodal faces are cross-matched in feature space and the recognition performance is enhanced with stereo fusion at image, feature and/or score level. In the proposed scenario, there are two cameras for stereo imaging, two face imagers (visible and thermal images) in each camera, and three recognition algorithms (circular Gaussian filter, face pattern byte, linear discriminant analysis). A score vector is formed with three cross-matched face scores from the aforementioned three algorithms. A classifier (e.g., k-nearest neighbor, support vector machine, binomial logical regression [BLR]) is trained then tested with the score vectors by using 10-fold cross validations. The proposed approach was validated with a multispectral stereo face dataset from 105 subjects. Our experiments show very promising results: ACR (accuracy rate) = 97.84%, FAR (false accept rate) = 0.84% when cross-matching the fused thermal faces onto the fused visible faces by using three face scores and the BLR classifier.
Spoof Detection for Finger-Vein Recognition System Using NIR Camera.
Nguyen, Dat Tien; Yoon, Hyo Sik; Pham, Tuyen Danh; Park, Kang Ryoung
2017-10-01
Finger-vein recognition, a new and advanced biometrics recognition method, is attracting the attention of researchers because of its advantages such as high recognition performance and lesser likelihood of theft and inaccuracies occurring on account of skin condition defects. However, as reported by previous researchers, it is possible to attack a finger-vein recognition system by using presentation attack (fake) finger-vein images. As a result, spoof detection, named as presentation attack detection (PAD), is necessary in such recognition systems. Previous attempts to establish PAD methods primarily focused on designing feature extractors by hand (handcrafted feature extractor) based on the observations of the researchers about the difference between real (live) and presentation attack finger-vein images. Therefore, the detection performance was limited. Recently, the deep learning framework has been successfully applied in computer vision and delivered superior results compared to traditional handcrafted methods on various computer vision applications such as image-based face recognition, gender recognition and image classification. In this paper, we propose a PAD method for near-infrared (NIR) camera-based finger-vein recognition system using convolutional neural network (CNN) to enhance the detection ability of previous handcrafted methods. Using the CNN method, we can derive a more suitable feature extractor for PAD than the other handcrafted methods using a training procedure. We further process the extracted image features to enhance the presentation attack finger-vein image detection ability of the CNN method using principal component analysis method (PCA) for dimensionality reduction of feature space and support vector machine (SVM) for classification. Through extensive experimental results, we confirm that our proposed method is adequate for presentation attack finger-vein image detection and it can deliver superior detection results compared to CNN-based methods and other previous handcrafted methods.
Spoof Detection for Finger-Vein Recognition System Using NIR Camera
Nguyen, Dat Tien; Yoon, Hyo Sik; Pham, Tuyen Danh; Park, Kang Ryoung
2017-01-01
Finger-vein recognition, a new and advanced biometrics recognition method, is attracting the attention of researchers because of its advantages such as high recognition performance and lesser likelihood of theft and inaccuracies occurring on account of skin condition defects. However, as reported by previous researchers, it is possible to attack a finger-vein recognition system by using presentation attack (fake) finger-vein images. As a result, spoof detection, named as presentation attack detection (PAD), is necessary in such recognition systems. Previous attempts to establish PAD methods primarily focused on designing feature extractors by hand (handcrafted feature extractor) based on the observations of the researchers about the difference between real (live) and presentation attack finger-vein images. Therefore, the detection performance was limited. Recently, the deep learning framework has been successfully applied in computer vision and delivered superior results compared to traditional handcrafted methods on various computer vision applications such as image-based face recognition, gender recognition and image classification. In this paper, we propose a PAD method for near-infrared (NIR) camera-based finger-vein recognition system using convolutional neural network (CNN) to enhance the detection ability of previous handcrafted methods. Using the CNN method, we can derive a more suitable feature extractor for PAD than the other handcrafted methods using a training procedure. We further process the extracted image features to enhance the presentation attack finger-vein image detection ability of the CNN method using principal component analysis method (PCA) for dimensionality reduction of feature space and support vector machine (SVM) for classification. Through extensive experimental results, we confirm that our proposed method is adequate for presentation attack finger-vein image detection and it can deliver superior detection results compared to CNN-based methods and other previous handcrafted methods. PMID:28974031
Benchmarking Spike-Based Visual Recognition: A Dataset and Evaluation
Liu, Qian; Pineda-García, Garibaldi; Stromatias, Evangelos; Serrano-Gotarredona, Teresa; Furber, Steve B.
2016-01-01
Today, increasing attention is being paid to research into spike-based neural computation both to gain a better understanding of the brain and to explore biologically-inspired computation. Within this field, the primate visual pathway and its hierarchical organization have been extensively studied. Spiking Neural Networks (SNNs), inspired by the understanding of observed biological structure and function, have been successfully applied to visual recognition and classification tasks. In addition, implementations on neuromorphic hardware have enabled large-scale networks to run in (or even faster than) real time, making spike-based neural vision processing accessible on mobile robots. Neuromorphic sensors such as silicon retinas are able to feed such mobile systems with real-time visual stimuli. A new set of vision benchmarks for spike-based neural processing are now needed to measure progress quantitatively within this rapidly advancing field. We propose that a large dataset of spike-based visual stimuli is needed to provide meaningful comparisons between different systems, and a corresponding evaluation methodology is also required to measure the performance of SNN models and their hardware implementations. In this paper we first propose an initial NE (Neuromorphic Engineering) dataset based on standard computer vision benchmarksand that uses digits from the MNIST database. This dataset is compatible with the state of current research on spike-based image recognition. The corresponding spike trains are produced using a range of techniques: rate-based Poisson spike generation, rank order encoding, and recorded output from a silicon retina with both flashing and oscillating input stimuli. In addition, a complementary evaluation methodology is presented to assess both model-level and hardware-level performance. Finally, we demonstrate the use of the dataset and the evaluation methodology using two SNN models to validate the performance of the models and their hardware implementations. With this dataset we hope to (1) promote meaningful comparison between algorithms in the field of neural computation, (2) allow comparison with conventional image recognition methods, (3) provide an assessment of the state of the art in spike-based visual recognition, and (4) help researchers identify future directions and advance the field. PMID:27853419
Benchmarking Spike-Based Visual Recognition: A Dataset and Evaluation.
Liu, Qian; Pineda-García, Garibaldi; Stromatias, Evangelos; Serrano-Gotarredona, Teresa; Furber, Steve B
2016-01-01
Today, increasing attention is being paid to research into spike-based neural computation both to gain a better understanding of the brain and to explore biologically-inspired computation. Within this field, the primate visual pathway and its hierarchical organization have been extensively studied. Spiking Neural Networks (SNNs), inspired by the understanding of observed biological structure and function, have been successfully applied to visual recognition and classification tasks. In addition, implementations on neuromorphic hardware have enabled large-scale networks to run in (or even faster than) real time, making spike-based neural vision processing accessible on mobile robots. Neuromorphic sensors such as silicon retinas are able to feed such mobile systems with real-time visual stimuli. A new set of vision benchmarks for spike-based neural processing are now needed to measure progress quantitatively within this rapidly advancing field. We propose that a large dataset of spike-based visual stimuli is needed to provide meaningful comparisons between different systems, and a corresponding evaluation methodology is also required to measure the performance of SNN models and their hardware implementations. In this paper we first propose an initial NE (Neuromorphic Engineering) dataset based on standard computer vision benchmarksand that uses digits from the MNIST database. This dataset is compatible with the state of current research on spike-based image recognition. The corresponding spike trains are produced using a range of techniques: rate-based Poisson spike generation, rank order encoding, and recorded output from a silicon retina with both flashing and oscillating input stimuli. In addition, a complementary evaluation methodology is presented to assess both model-level and hardware-level performance. Finally, we demonstrate the use of the dataset and the evaluation methodology using two SNN models to validate the performance of the models and their hardware implementations. With this dataset we hope to (1) promote meaningful comparison between algorithms in the field of neural computation, (2) allow comparison with conventional image recognition methods, (3) provide an assessment of the state of the art in spike-based visual recognition, and (4) help researchers identify future directions and advance the field.
Analysis of identification of digital images from a map of cosmic microwaves
NASA Astrophysics Data System (ADS)
Skeivalas, J.; Turla, V.; Jurevicius, M.; Viselga, G.
2018-04-01
This paper discusses identification of digital images from the cosmic microwave background radiation map formed according to the data of the European Space Agency "Planck" telescope by applying covariance functions and wavelet theory. The estimates of covariance functions of two digital images or single images are calculated according to the random functions formed of the digital images in the form of pixel vectors. The estimates of pixel vectors are formed on expansion of the pixel arrays of the digital images by a single vector. When the scale of a digital image is varied, the frequencies of single-pixel color waves remain constant and the procedure for calculation of covariance functions is not affected. For identification of the images, the RGB format spectrum has been applied. The impact of RGB spectrum components and the color tensor on the estimates of covariance functions was analyzed. The identity of digital images is assessed according to the changes in the values of the correlation coefficients in a certain range of values by applying the developed computer program.